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ABSTRACT 
 

 

THE GENERAL LOT SIZING AND SCHEDULING PROBLEM  

WITH SEQUENCE DEPENDENT CHANGEOVERS 

 

 

Koçlar, Ayşe 

M.Sc., Department of Industrial Engineering 

Supervisor: Asst. Prof. Dr. Haldun Süral 

 

June 2005, 162 pages 

 

 

  In this study, we consider the General Lot Sizing and Scheduling Problem in single 

level capacitated environments with sequence dependent item changeovers. Process 

industries may be regarded as suitable application areas of the problem. The focus on 

capacity utilization and intensively time consuming changeovers necessitate the integration 

of lot sizing and sequencing decisions in the production plan.  

  We present a mathematical model which captures the essence of cases in the most 

generic and realistic setting of the problem. We discuss the impact and validity of some of 

the assumptions commonly encountered in the related literature. We also represent the 

problem using an alternative formulation and attempt to enhance the formulations with the 

use of some additional inequalities. Finally, we develop a heuristic by restricting the 

number of possible changeovers. Computational results are discussed. 

 

Keywords: Integrated Lot Sizing and Scheduling, Sequence Dependent Changeovers, Valid 

Inequalities, Mathematical Programming 
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ÖZ 
 

 

SIRAYA BAĞLI HAZIRLIKLAR ĐÇEREN  

GENEL PARTĐ BÜYÜKLÜĞÜ BELĐRLEME VE SIRALAMA PROBLEMĐ 

 

 

Koçlar, Ayşe 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Haldun Süral 

 

Haziran 2005, 162 sayfa 

 

 

  Bu çalışmada, ürünler arasında sıraya bağlı geçişler içeren, tek düzeyli ve kapasite 

kısıtlı ortamlarda Genel Parti Büyüklüğü Belirleme ve Sıralama Problemi ele alınmıştır. 

Proses endüstrisi tipi ortamlar, problemin uygulama alanları olarak düşünülebilir. 

Kapasiteyi verimli kullanma ihtiyacı ve uzun süren hazırlıklar, üretim planında parti 

büyüklüğü belirleme ile sıralama kararlarının beraberce verilmesini gerektirmektedir.  

  Problemin doğasının en genel ve gerçekçi yönlerini yansıtan durumlar için bir 

matematiksel model sunulmuş ve ilgili literatürde sıkça rastlanan varsayımların etki ve 

geçerliliği sorgulanmıştır. Bunun yanı sıra, problem alternatif bir formülasyon ile temsil 

edilmiş ve her iki formülasyon bir takım ilave eşitsizlikler yardımıyla iyileştirilmeye 

çalışılmıştır. Son olarak, ürünler arasında yapılabilecek geçişlerin sayısını kısıtlayan bir 

sezgisel yöntem geliştirilmiştir. Yapılan testlerin sonuçları sunulmuştur. 

 

Anahtar Kelimeler: Bütünleşik Parti Büyüklüğü Belirleme ve Sıralama, Sıraya Bağlı 

Hazırlıklar, Geçerli Eşitsizlikler, Matematiksel Programlama 

 

 

 

 



 

 vi 

 

 

 

 

 

 

 

 

 

 

 

 

To my family  

and  

to the beloved memory of Seyhun Özbilen in particular 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 vii 

 

 

ACKNOWLEDGMENTS 
 
 
 
  I would like to thank my supervisor Asst. Prof. Dr. Haldun Süral sincerely for his 

guidance, suggestions and dedication throughout this thesis. He is one of the few people I 

know that have not lost a bit of their glittering enthusiasm about their job. Working with 

him was an interesting challenge, made up of hard work and fun at the same time. Although 

I must confess that I felt like playing the devil’s advocate against him at times, I shall 

always recall the pleasure of setting out on a track with new ideas and loads of excitement.  

  I strongly felt the ceaseless faith and support of my family along the way, and I am 

especially obliged for their patient endurance against my sullen mood at home during the 

difficult stages of this study. I deem myself fortunate to have their presence and love. 

Special thanks go to my brother Akın Koçlar for making me discover my thesis theme song 

which accompanied me at times of trouble. 

  I am greatly indebted to my former roommates Melih Özlen and Bora Kat as well 

as to Fatma Kılınç for their help and guidance about the various problems I encountered 

during the study, in addition to their invaluable friendship. I would also like to thank Özlem 

Pınar for the companionship and similar dreams we shared, and to Münire Toksöz for her 

everlasting support even from way overseas.  

  I owe thanks to Prof. Dr. Murat Köksalan for his suggestions on part of this study 

and to Prof. Dr. Meral Azizoğlu for her morale support that reestablished my confidence 

many times throughout this thesis. Although their names do not appear individually here, I 

am grateful to all my professors, friends and colleagues at the department for their 

consideration and cheerful presence which created a genial atmosphere that I will always 

feel privileged to be part of.  

  Last but not the least, completion of this thesis would not be possible without Engin 

Volkan who went through almost every stage of this study together with me. When I look 

back on this journey, I see traces of your support in every possible way; with your 

encouragement, affection, consolation and most notably, with all those words of wisdom 

and patience that you attributed to Yoda to cheer me up. I find it needless to thank you here 

and had I tried, I would not have known how to, either.  
 

“Soon will I rest. Yes, forever sleep. Earned it, I have.” 
                                  Yoda 



 

 viii

 

 

TABLE OF CONTENTS 
 
 

PLAGIARISM.......................................................................................................................iii 

ABSTRACT.......................................................................................................................... iv 

ÖZ ..... ......................................................................................................................................v 

ACKNOWLEDGMENTS ................................................................................................... vii 

TABLE OF CONTENTS.................................................................................................... viii 

LIST OF TABLES................................................................................................................ xi 

LIST OF FIGURES ............................................................................................................ xiii 

CHAPTER 

1. INTRODUCTION ....................................................................................................... 1 

2. THE REVIEW OF RELATED LITERATURE ........................................................... 5 

2.1  Single-Level, Multi-Item Lot Sizing Problems in General.............................. 5 

2.2  Special Features of Single-level, Multi-Item Lot Sizing Models .................... 7 

2.2.1 The Use of Overtime............................................................................... 8 

2.2.2 Models with Setup Times ....................................................................... 9 

2.2.3 Models Involving Sequence Dependency............................................. 10 

2.2.4 Strong Formulations for Lot Sizing Models ......................................... 11 

2.3 The Process Industry....................................................................................... 12 

2.4 Mathematical Applications for Integrated Lot Sizing and Sequencing .......... 15 

3. MATHEMATICAL FORMULATION OF THE GLSP ............................................ 21 

3.1 Verbal Description of the GLSP..................................................................... 23 

3.2 Mathematical Model for the GLSP................................................................. 25 

3.3 The Properties of the GLSP Solution.............................................................. 30 

3.4 Special Cases Handled by the GLSP Formulation ......................................... 32 

3.4.1 Splitting Minimum Batch Sizes for Two Consecutive Periods ............ 32 

3.4.2 Enabling Late Changeovers from Item Zero ........................................ 35 

3.4.3 Prevention of the Manipulation of Item Zero Changeovers ................. 37 

3.5 Formulation of the GLSP as a Transportation Problem.................................. 39 



 

 ix 

4.  ENHANCEMENT OF THE GLSP FORMULATION AND COMPUTATIONAL 

RESULTS ................................................................................................................ 44 

4.1  The Proposed Inequalities.............................................................................. 45 

4.1.1  Valid Inequalities Related with Setups and Changeovers (VI)............ 45 

4.1.1.1 VI-1 (Unit Flow Equalities) .................................................... 48 

4.1.1.2 VI-2 (Separate Unit-Flow Inequalities) .................................. 51 

4.1.1.3 VI-3 (Setup-Startup Inequality) .............................................. 51 

4.1.1.4 VI-4 (Lifted Version of the Changeover Constraint for i=j) .. 53 

4.1.1.5 VI-5 (Initial Changeover Restriction) ..................................... 55 

4.1.2 Elimination Constraints (EC)................................................................ 56 

4.1.2.1 EC-1 (Idle Position Arrangement) .......................................... 56 

4.1.2.2 EC-2 (Production Quantity Distribution)................................ 58 

4.2 Preliminary Experiments ................................................................................ 59 

4.2.1 Experimental Settings ........................................................................... 59 

4.2.2 Preliminary Run Results ....................................................................... 64 

4.2.2.1 Results of Case A (Augmented & Sequence Dependent  

Changeover Times)................................................................. 65 

4.2.2.2 Results of Case B (Augmented & Sequence Dependent 

Changeover Times, No Changeover Costs)............................ 74 

4.2.2.3 Results of Case C (The Original Instances with Sequence 

Independent Change-over Times)........................................... 80 

4.2.2.4 General Conclusions ............................................................... 85 

5.  SOLVING THE GLSP .............................................................................................. 86 

5.1 Experimentation on the GLSP ........................................................................ 86 

5.1.1 Choice of Data Set ................................................................................ 87 

5.1.2 Experimental Settings ........................................................................... 89 

5.1.3 Results of the Experiments ................................................................... 90 

5.2 k-Nearest Heuristic ......................................................................................... 92 

6.  CONCLUSIONS AND DIRECTIONS FOR FURTHER STUDY........................... 97 

REFERENCES....................................................................................................................101 

APPENDICES 

A. AN EXAMPLE INSTANCE FOR WHICH EC-1 IS SHOWN TO BE VALID.....107 



 

 x 

B. MODIFICATION OF THE CHANGEOVER TIME DATA FOR  

PRELIMINARY TESTS - CASE A........................................................................110 

C. PRELIMINARY EXPERIMENTS UNDER CASE A............................................112 

D. PRELIMINARY EXPERIMENTS UNDER CASE B............................................121 

E. PRELIMINARY EXPERIMENTS UNDER CASE C............................................130 

F. VIOLATIONS OF TRIANGLE INEQUALITY IN THE HK INSTANCES.........139 

G. EXPERIMENTS ON HK INSTANCES WITH MBS = 0.1...................................140 

H. EXPERIMENTS ON HK INSTANCES WITH MBS = 0.025...............................143 

I. EXPERIMENTS ON HK INSTANCES WITH MBS = 0.25.................................146 

J. STATISTICAL SIGNIFICANCE TESTS FOR THE EFFECT OF N AND K  

     ON CPU....................................................................................................................149 

K. k-NEAREST EXPERIMENTS ON HK INSTANCES WITH MBS = 0.1.............151 

L. THE TWO-STEP HEURISTIC APPROACH (TSH)..............................................157 

 



 

 xi 

 

 

LIST OF TABLES 
 
 
TABLES 
 

3.1 Problem data for the Minimum Batch Size Splitting Example.................................. 33 

 

4.1 Changeover Times for the Example Problem ............................................................ 46 

4.2 Preliminary Instance Characteristics ......................................................................... 61 

4.3 Legend for Test Options ............................................................................................ 63 

4.4 Detailed Results for Instances with Known Optimals (Case A).................................67 

4.5 Case A- Average Results for the 12 Instances with Known Optimals  

(Excluding Easy Instances) ....................................................................................... 68 

4.6 LPR Statistics of Instances for Which the Optimal Solution is Not Known  

(Case A)..................................................................................................................... 70 

4.7 Detailed Results for Instances Exceeding the Time Limit (Case A)...........................72 

4.8 Detailed Results for Instances with Known Optimals (Case B).................................75 

4.9 Case B- Average Results for the 11 Instances with Known Optimals  

(Excluding Easy Instances) ....................................................................................... 76 

4.10 Detailed Results for Instances Exceeding the Time Limit (Case B)...........................78 

4.11 LPR Statistics of Instances for Which the Optimal Solution is Not Known  

(Case B) ..................................................................................................................... 79 

4.12 Detailed Results for Instances with Known Optimals (Case C).................................81 

4.13 Case C- Average Results for the 13 Instances with Known Optimals  

(Excluding Easy Instances) ....................................................................................... 82 

4.14 Detailed Results for Instances Exceeding the Time Limit (Case C)...........................83 

4.15 LPR Statistics of Instances for Which the Optimal Solution is Not Known  

(Case C) ..................................................................................................................... 84 

 

5.1 Characteristics of HK Instances................................................................................. 89 

5.2 Average Results for Experiments on HK Instances with Alternative MBS  

Settings ...................................................................................................................... 90 

5.3 Procedure Used to Determine the Value of k ............................................................ 94 

5.4 Results of k-Nearest Heuristic Experiments on HK Instances with MBS=0.1 ......... 95 



 

 xii 

A.1 Input Data for Preliminary Instance 15 – Case A.....................................................107 

A.2 Changeover Cost Data for Preliminary Instance 15 – Case A..................................107 

A.3 Changeover Time Data for Preliminary Instance 15 – Case A.................................107 

 

C.1 Solutions of Preliminary Instances Under Case A....................................................112 

C.2 Detailed Results of Experiments on Preliminary Instances Under Case A...............113  

C.3 Case A- Average Results for 15 Instances with Known Optimals............................120 

 

D.1 Solutions of Preliminary Instances Under Case B....................................................121  

D.2 Detailed Results of Experiments on Preliminary Instances Under Case B...............122 

D.3 Case B- Average Results for 14 Instances with Known Optimals............................129 

 

E.1 Solutions of Preliminary Instances Under Case C....................................................130 

E.2 Detailed Results of Experiments on Preliminary Instances Under Case C...............131 

E.3 Case C- Average Results for 16 Instances with Known Optimals............................138 

 

F.1 Details of Triangle Inequality Violations in HK Instances.......................................139 

 

G.1 Solutions of HK Instances with MBS = 0.1..............................................................140  

G.2 Detailed Results of Experiments on HK Instances with MBS = 0.1.........................141 

 

H.1 Solutions of HK Instances with MBS = 0.025..........................................................143  

H.2 Detailed Results of Experiments on HK Instances with MBS = 0.025.....................144 

 

I.1 Solutions of HK Instances with MBS = 0.25............................................................146 

I.2 Detailed Results of Experiments on HK Instances with MBS = 0.25.......................147 

 

K.1 Solutions of HK Instances for k-Nearest 80%..........................................................151  

K.2 Solutions of HK Instances for k-Nearest 60%..........................................................152 

K.3 Solutions of HK Instances for k-Nearest 40%..........................................................153 

K.4 Detailed Results for k-Nearest Experiments on HK Instances..................................154 

 

L.1 TSH Results under Original and Reduced Capacities...............................................161 

 



 

 xiii

 

LIST OF FIGURES 
 

 

FIGURES 

 

3.1  The Framework for Time Periods and Positions in the GLSP...................................... 21 

3.2  Optimal Solution of the Minimum Batch Size Splitting Example................................ 33 

3.3  Minimum Batch Size Splitting over k Consecutive Periods ......................................... 34 

3.4  The Example Problem for Late Item Zero Changeovers .............................................. 36 

3.5  Example Denoting the Manipulation of Item Zero Changeovers ................................. 38 

 

4.1  Optimal Solution for the Example Problem.................................................................. 46 

4.2  LPR of the Example Problem with the Pure Formulation ............................................ 47 

4.3  The Individual Effects of Valid Inequalities on the Solution of the Small Example 

Problem ........................................................................................................................ 50 

4.4  Example Case that Violates EC-1................................................................................. 57 

4.5  Correct Representation that Satisfies EC-1................................................................... 58 

4.6  The List of Additional Inequalities Used in the Preliminary Experiments ................... 62 

 

A.1  The Effect of EC-1 on the LPR of Instance 15 (Case A)…………………..........…..109 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 1 

 

 

CHAPTER 1  

 

INTRODUCTION 

   
 
 
 
  This study is concerned with the General Lot Sizing and Scheduling Problem 

(GLSP) involving sequence dependent changeovers between items. The problem is related 

with determining the lot sizes and production sequences of multiple items with dynamic 

demand on a single facility subject to capacity constraints. The effect of changeovers is 

significant and is observed both in terms of costs and times. The prominent aspect about 

this problem is that changeovers are sequence dependent and the capacity is restrictive. 

Therefore, lot sizing and sequencing decisions need to be made simultaneously, unlike 

traditional approaches to production planning where these decisions are made sequentially. 

  Our aim in this thesis is to study the GLSP in its more generic setting with as few 

restricting assumptions as possible and develop solution methods that yield satisfactory 

results in reasonable times.  

 

 

Motivation for the Study 

 

  In traditional production planning approaches, there is a hierarchy of decisions. Lot 

sizing decisions are made without considering production sequences, which are only 

handled in a secondary step based on the previously given lot sizing decisions. However, 

these kinds of approaches may not be suitable under certain conditions where the 

sequencing decisions cannot simply be disregarded until short term operational plans. The 

capacity may be restrictive with a few highly utilized lines, the setups or changeovers may 

be long and costly, as well as sequence-dependent. Process industries are very suitable 

environments for this setting and they are also the main inspiration for this study.  

  Process industries are characterized by special features that distinguish them from 

discrete part manufacturing systems, requiring different production planning and control 

approaches. The major concern in these environments is capacity availability and capacity 
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utilization due to high capital intensity. Moreover, setups or changeovers are predominant 

in these environments, and are usually dependent upon the sequence in which items are 

produced in the facility. Despite the existence of a vast literature on the production planning 

approaches and principles specifically designed for discrete manufacturing systems, only 

limited amount of research has been carried out for process industry environments. Earlier 

studies on the process industries generally concentrated on the distinguishing characteristics 

of these environments from discrete manufacturing and involved a few real life applications 

with case-specific formulations and solution methods that were very limited in scope and in 

terms of applicability to other systems. Therefore, it is hard to talk about a consensus on the 

modeling assumptions, approaches and solution methods in this literature.  

  However, in the last decades, the number of studies dealing with integrated 

mathematical programming approaches for process industries started to increase. What is 

commonly agreed in these studies is the need to address capacity planning, lot sizing and 

sequencing issues in an integrated manner and study the interactions between them. In this 

line of thinking, the motivation for our study is to use an approach for simultaneous 

decision making for medium term planning in capacity-restrictive environments with 

predominant and sequence dependent changeovers.   

  Our perspective is mathematical programming oriented. Since we observed a gap in 

the field of related applications which were clear on their assumptions and capability, we 

primarily aim at developing a mathematical modeling formulation which is not only 

confined to a narrow range of systems, but is more generic in nature. We attempt to remove 

restrictive assumptions as much as possible and state our modeling framework openly and 

explicitly. This is the distinguishing aspect about our line-of-thinking, which makes our 

formulation a more practical alternative for representing real life situations compared with 

some earlier approaches.  

  With the need to develop a general model having the ability to represent different 

environments, we decided to use the most flexible formulation in large bucket, integrated 

lot sizing and scheduling models, which is the GLSP. In addition to the mathematical 

model, we have also relied on optimal seeking mathematical programming based 

approaches for the solution of the problem, due to their wider applicability compared with 

special-purpose approaches.  
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Problem Definition 

 

  The GLSP is an integrated lot sizing and scheduling model for dynamic and 

deterministic environments. The capacitated production facility is represented as a single-

machine and the objective is to meet item demands without backlogging at minimal total 

cost.  

  Multiple items can be produced within a time period in the GLSP. The production 

lots of items are continuous, i.e., they can extend over to a new period without interruption 

and without the need for additional setups.  

  The prevalent feature of the GLSP is that the time periods within the planning 

horizon are considered to be composed of small positions to which items are assigned in 

order to be able to determine the production sequences. In this way, the number of positions 

within a time period determines the maximum number of items that may be produced in a 

period. 

  The property of continuous lots and the preservation of the setup state are 

especially important, because when combined with the two level time structure in the GLSP 

(featuring time periods and positions), they help represent solutions without making any 

approximations or aggregations due to bucketing, as is the case for some other lot sizing 

models.   

  The problem environment for our study contains predominant and sequence 

dependent changeover costs and times when the setup state of the facility changes. Our 

model is not only limited to the case where the assumption of triangle inequality holds for 

changeovers, which is commonly made in the related literature. In addition, there are 

minimum batch sizes and the possibility of using overtime.    

  As stated by Meyr (2002), the GLSP is known to be the broadest formulation 

among the single line models. This implies that it is the most general formulation with the 

flexibility to represent many other environments under slight modifications. However, it is 

also a highly complex model. Although our study is mainly formulation-oriented, it is for 

this reason that we also need to address the issues related with enhancing our formulation 

and developing reasonable approximations for its solution within the scope of this study.   

 

 

 



 

 4 

Outline of the Chapters 

 

  The following chapters give a detailed account of our study on the GLSP.  

  In Chapter 2, we present a brief review of the literature related with our study. We 

focus on some of the important studies in the single-level, multi-item lot sizing literature 

and their basic features. Then, we introduce the main characteristics of process industries 

and discuss some of the fundamental issues regarding production planning pertaining to 

these environments. Finally, we examine some integrated mathematical applications that 

are comparable to our GLSP formulation. 

  In Chapter 3, we explain the structure of the GLSP in more detail and present its 

mathematical formulation. This formulation is based on previous GLSP models in the 

literature, however, it is partly modified to represent a wider variety of problem situations 

more realistically. In this chapter, we explicitly state the inherent assumptions in our 

formulation and also discuss how certain special cases are handled by our model. An 

equivalent alternative formulation of the GLSP based on the Transportation Problem is also 

presented at the end of the chapter. 

  Chapter 4 is devoted to our attempts at enhancing the GLSP formulations through 

the use of additional inequalities. The aim is to strengthen the LP relaxations and restrict 

the solution spaces to provide faster solutions. We propose a set of additional inequalities 

which are candidates for strong enhancements, and then present the results of some 

preliminary computational experiments conducted to select the best combination of these 

inequalities under different settings.  

  In Chapter 5 we present an analysis of the solution of the GLSP by using our 

enhanced formulation. The computational experiments involve testing the impact of 

problem size parameters and the level of minimum batch sizes. We also develop a heuristic 

approach, which we refer to as the k-Nearest heuristic, setting a limit on item changeovers. 

The performance of the heuristic is tested in comparison with the optimal solutions for 

several classes of problem instances.  

  Chapter 6 concludes the study with a summary of our major contributions and a 

few ideas on possible directions for future research. 
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CHAPTER 2  

 

THE REVIEW OF RELATED LITERATURE 

 
 
 
 
  Multi-item capacitated lot sizing problems with deterministic dynamic demand 

have been the subject of innumerable studies in the mathematical programming literature. 

The major portion of the models developed within this context does not deal with 

sequencing decisions, which are only treated in a second step based on lot sizing decisions. 

Since our motivation is for developing an integrated model that is applicable in process 

industry type environments with highly utilized, expensive capacity lines and sequence 

dependent changeovers, we shall focus on integrated applications while reviewing the 

related lot sizing literature. The scope of production planning and sequencing is considered 

to be medium to short term decisions based on the master production schedule. 

  This chapter is organized as follows. In Section 2.1, we will present a brief 

introduction about single-machine, multi-item lot sizing problems in general, with reference 

to related review papers. Our emphasis will be on the distinction between small and large 

bucket models in this area. In Section 2.2, we will concentrate on specific aspects within 

this literature such as setup times, the use of overtime, modeling sequence dependency etc. 

Some commonly used strong formulations will also be mentioned within this section. In the 

remaining two sections, we will discuss the major characteristics of process industry type 

environments that are relevant to our problem and present some integrated studies that are 

comparable to the GLSP, while concentrating on their assumptions, basic modeling aspects 

and solution methods.  

 

2.1 Single-Level, Multi-Item Lot Sizing Problems in General  

 

  The problem of determining the production lot sizes and their sequence in the 

facilities in the presence of scarce resources and the inherent tradeoffs has been a topic of 

interest for researchers in the fields of Operations Management and Operations Research 

for many decades. Over time, starting with the classical EOQ model, the lot sizing problem 
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has extended to take many different forms with different properties and assumptions in a 

variety of environments, which have all strengthened its linkage to real world applications 

through increased richness and flexibility.  

  The crudest form of the dynamic single-level, multi-item lot sizing model 

determines the production quantity of different items on a single machine to meet customer 

demand on time (without backlogging) over multiple periods of time. The associated costs 

are those of inventory carriage and setup. Production costs are generally disregarded in 

many lot sizing problems, as they are fixed quantities in the objective function without any 

effect in optimization. 

  We refer to Drexl and Kimms (1997) and Gupta and Magnusson (2005) for reviews 

of single-level lot sizing and scheduling models and their basic assumptions.  

  The formulations for the lot sizing and scheduling problem can be mainly classified 

into two groups according to how time is treated. These groups are "small bucket (small 

time window)" and "large bucket (large time window)" models, respectively. In the former, 

the planning horizon is broken down into small intervals in which at most one item can be 

produced (i.e., a single mode of production). It needs to be stated that in small bucket 

models, there is an inherent sequencing decision. The most frequently studied small bucket 

model is the DLSP (Discrete Lot Sizing Problem). The DLSP does not allow the 

preservation of the setup state over idle periods and makes the restrictive assumption of 

“all-or-nothing” production, i.e., production of an item has to exhaust the full period 

capacity, if any (Fleischmann, 1990 and Salomon et al., 1991). These two restrictions are 

removed in the CSLP (Continuous Setup Problem, sometimes referred to as the Product 

Cycling Problem), but again a single item may be produced within a time period 

(Karmarkar and Schrage, 1985).  

  The other class of problems, i.e., the large bucket models, feature larger time 

intervals where multiple items can be produced, for which the CLSP (Capacitated Lot 

Sizing Problem) is the most commonly studied. The classical CLSP only deals with lot 

sizing and it does not consider sequencing decisions within a period. As a result, setups 

cannot be carried over to the following periods and setups for items are incurred in every 

period where they are produced. The most frequently applied solution methods for the 

CLSP rely on Lagrangean relaxation approaches, different types of heuristics or 

reformulations and the addition of strong valid inequalities. Some reference studies for 

these approaches are by Barany et al. (1984), Thizy and Van Wassenhove (1985), Eppen 
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and Martin (1987), Maes and Van Wassenhove (1988), Cattrysse et al. (1990) and Chen 

and Thizy (1990). 

  The GLSP is essentially a large bucket problem, since multiple items can be 

produced within a time period. However, its special structure involving positions (or 

microperiods) within time periods may be associated with a small bucket framework. While 

making the distinction between small and large bucket models, it should be kept in mind 

that as new features are incorporated into different types of formulations, differences 

between them in terms of modeling aspects start to decrease. We can provide many 

examples among the variants of the classical problems to justify this phenomenon. For 

instance, as it has been stated above, the restrictive “all-or-nothing” assumption in the 

classical DLSP is relaxed in the CSLP where the setup state is also preserved over idle 

periods. Another example is the DLSPSD (DLSP with sequence dependent setup costs) 

developed by Fleischmann (1994). The corresponding model involves a two level structure 

for time periods where the micro periods represent the classical small bucket intervals while 

the macro periods are used to account for the demand and inventory information, an 

approach that is very similar to that of the GLSP. However, it should also be noted that 

variant models with extended features usually suffer from increased complexity and when 

applied to these variants, the solution procedures developed for the original versions lose 

their computational advantages. For instance, “fast solution algorithms were developed for 

the classical DLSP, while computational experiments with large multi-item CSLP problems 

are rather disappointing” (Salomon et al., 1991).   

 

2.2 Special Features of Single-level, Multi-Item Lot Sizing Models 

 

  Before proceeding further, it may be worthwhile to shed some light on the 

terminology related with setups that we will frequently use in the remainder of this study.  

  A setup is an indication of the machine adjustments, preparations, cleaning 

activities etc. that are required before production of items. Setups may be incorporated into 

the models via cost penalties in the objective function, usually representing the opportunity 

cost of lost production, and/or setup times (production down time) consuming part of the 

capacity.    

  There are other terms related with setups used in the literature such as startups, 

changeovers, switch-offs etc. A startup is said to take place if a machine starts producing or 

switches between the production of two different items (Constantino, 1996). This implies 
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that the facility is setup to produce an item for which it was not setup in the previous 

period. Alternatively, there are switch-off (or tear-down) variables, which indicate that the 

facility is setup to produce an item, while it is not setup for the same item in the following 

period (Belvaux and Wolsey, 2001). Similar to a startup, a changeover (or switchover) may 

be defined as a change of setup status, or alternatively as the switch-off of an item, 

followed immediately by the startup of another (Belvaux and Wolsey, 2001). The 

traditional distinction between a startup and a changeover is that the latter is usually 

sequence dependent (Wolsey, 1997), although there may be some alternative uses 

(Magnanti and Vachani, 1990 and Magnanti and Sastry, 2002). In many industries, 

changeover times are considered to comprise of both the actual time required to carry out 

the changeover (eg. for cleaning or tool adjustments) and the adjustment time until the new 

product lot begins to be produced at full line speed and efficiency.  

  In the following subsections, a brief review of some special components or aspects 

of single-level, multi-item lot sizing models that are relevant to our study are presented.  

 

2.2.1 The Use of Overtime 

 

  The use of additional capacity in the form of overtime generally serves the purpose 

of a buffer against demand variability. An example for this kind of use for overtime is the 

study by Diaby et al. (1992), dealing with a generalized version of the CLSP which 

involves limited overtime as well as regular time. Anderson and Cheah (1993) include 

overtime options in their version of the CLSP with setup times and minimum batch sizes. 

They discuss that incorporating the possibility of overtime improves the feasibility problem 

and this benefit is especially crucial in the presence of setup times and minimum batch sizes 

in capacitated environments. 

  On the other hand, in some studies, overtime has been used to find initial feasible 

solutions or to check feasibility at intermediate steps of the solution procedure. In order 

words, unlimited use of overtime is allowed at the beginning and in each pass, the solutions 

are forced to eliminate it. These types of approaches have been devised by Trigeiro et al. 

(1989) and Gupta and Magnusson (2005). 

  It needs to be said that the use of overtime is not common in environments where 

capacity is strictly defined (eg. process industries), since the facilities are highly capital 

intensive and utilized to the limit and the addition of extra capacity to compensate for 

production losses is usually not possible (Smith-Daniels and Smith-Daniels, 1986). 
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2.2.2 Models with Setup Times 

 

  The incorporation of setup times increases the complexity of lot sizing problems to 

a great extent. It has been shown that the feasibility problem for the CLSP with non-zero 

setup times is NP-complete (Maes et al., 1991). Because of this, many studies in the 

literature simply ignored setup times with the purpose of simplifying their models and 

reflected the effect of setups only through cost penalties in the objective function. In this 

regard, setup times are either assumed to be performed during off-shift periods or that they 

are insignificant compared with the corresponding setup costs. The latter perspective is the 

product of the underlying idea that setup costs may be used as surrogates for setup times 

(Kuik et al., 1994). However, it is evident that “the problem with setup times is not just an 

extension of the problem without setup times”, as it has been pointed out by Diaby et al. 

(1992). Especially in environments where production lots are continuous and setup times 

take up an important portion of the capacity, setup times need to be taken into account 

explicitly in the models for developing feasible production plans. Moreover, in the case 

where setup costs only represent the opportunity cost of not using the resources for value-

added activity, and no other direct costs, the correct capacity requirements will not be 

evaluated in the absence of setup times and the true opportunity costs (i.e., setup costs) 

cannot be determined (Süral, 1996). 

  Manne (1958) studied the capacitated lot sizing problem with positive setup costs 

and times as well as overtime by using a set partitioning approach.  

  Sequence independent setup costs and times were modeled by Trigeiro et al. (1989) 

and the corresponding CLSP model was solved by using Lagrangean relaxation of the 

capacity constraints. Another study on the CLSP with sequence independent setup times is 

by Diaby et al. (1992), which was also solved by Lagrangean relaxation combined with 

Branch-and-Bound.  

  Note that CLSP models in their classical form assume that setups are not carried 

over between periods, i.e., the setup state cannot be preserved. Gopalakrishnan et al. (1995) 

address the need to model setup carryovers within a large bucket CLSP context for finding 

feasible solutions when setup times are significant. They assume sequence independent and 

constant setup times and their enhanced model keeps information regarding the first and 

last items in each period so that the setup state can be preserved between periods and over 

idle periods. This framework was later extended by Gupta and Magnusson (2005) to 

include sequence dependent setup costs, which require the model to keep information about 
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the sequence of items within a period as well. Details about this study can be found in 

Section 2.4. 

  Salomon et al. (1997) study the small bucket DLSP with sequence dependent setup 

costs and times. Their model assumes that triangle inequality holds for setup times, 

production has an all-or-nothing nature and most importantly, that the setup times take up 

an integral number of time periods. The discrete nature of the problem facilitates the 

construction of a TSP network with time windows. Among the results obtained as a result 

of the experimentation is the fact that the inclusion of setup times facilitates the solution of 

the problem in terms of CPU time as the number of nodes in the network decrease and the 

time windows are tightened. However, it should be noted that prohibition of setup times to 

be fractions of period capacity is one of the most serious restrictions posed by small bucket 

models. 

  Other studies involving setup times (eg. Meyr, 2000, Smith-Daniels and Smith-

Daniels, 1986) will be discussed in detail in the following sections. 

 

2.2.3 Models Involving Sequence Dependency 

 

  The classical CLSP does not involve sequencing decisions, therefore it cannot 

model sequence dependent setups. A great body of work within the CLSP literature deals 

with setups that are only dependent on products and not the sequences. It is for this reason 

that the first attempts at incorporating sequence dependency into the models appears to start 

within the context of small bucket models. Although sequence dependency is encountered 

in many real life applications, there are not many studies in this area. As it has been pointed 

out by Fleischmann (1994) and Salomon et al. (1997), the primary reason for this is the 

extra difficulty caused by the interdependency of items as a result of sequence dependency, 

which prohibits the development of effective solution procedures. 

  One of the earliest studies with sequence dependent setup costs standing out in this 

area is the DLSPSD (DLSP with sequence dependent setup costs) by Fleischmann (1994). 

This model features an additional macro period structure but it cannot preserve the setup 

state over idle periods. Moreover, the assumption of triangle inequality need not be satisfied 

for setup costs. The model was reformulated as a TSP with time windows (TSPTW) and 

solved using Lagrangean relaxation. The TSPTW approach has also been applied to the 

DLSP with sequence dependent setup costs and times by Salomon et al. (1997) and the 

problem was solved to optimality for small to medium sized instances using DP.  
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  Although the case with sequence dependent setups has been treated by other small 

time-bucket models (DLSP), no extensive research has been made for this setting using 

large time-bucket models. Some exceptions are noted below. The details regarding these 

studies can be found in Section 2.4.  

  Prabhakar (1974) produced one of the early studies for integrated lot sizing and 

sequencing with sequence dependent setup costs and times in the chemical industry, using a 

static MIP model for several parallel reactors.  

  Smith-Daniels and Smith-Daniels (1986) addressed sequence dependency in a 

different framework for items and families. Later, Haase (1996) modeled sequence 

dependent setup costs in his large bucket model CLSD for simultaneous lot sizing and 

scheduling. He pointed out that especially in the presence of an item-family structure in the 

production environment, setups between different families may have a substantial impact 

on the solution which has to be considered in the total cost.  

  In their large bucket model, Haase and Kimms (2000) considered sequence 

dependent setup costs and sequence dependent setup times, where the former was a 

function of the latter. Hill et al. (2000) considered sequence dependent changeover times in 

process industry type environments and their impact on MPS generation within a 

continuous time representation. Gupta and Magnusson (2005) used sequence dependent 

setup costs coupled with fixed setup times within an enhanced CLSP context. 

  Finally, for the sequence dependent GLSP, there are relevant studies by 

Fleischmann and Meyr (1997) and Meyr (2000, 2002). 

 

2.2.4 Strong Formulations for Lot Sizing Models 

 

  The traditional formulations for the multi-item, capacitated lot sizing problem make 

use of classical production and inventory variables. However, it has been shown that the 

problems can be modeled using stronger equivalent formulations based on network 

representations.   

  Strength of a formulation is associated with the objective function value of its LP 

relaxation. In this regard, Denizel and Süral (2005) consider strong formulations for the 

CLSP with sequence independent setup times and no setup costs. They emphasize that 

coming up with the right formulation is central to obtaining good quality solutions for 

computationally challenging problems such as the CLSP with setup times. Among the 

strong formulations they address are the Transportation Problem (TP) and the Shortest Path 
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Problem (SP), where the latter is based on the reformulation by Eppen and Martin (1987). 

Their computational results show that the two strong formulations with the same LP 

relaxation values both improve the original formulations significantly and that the SP 

formulation performs slightly better than the TP.  

  As a result of experimentation, De Matta and Guignard (1994b) have shown that 

TP formulations featuring disaggregated production variables instead of the standard 

production and inventory variables yield stronger lower bounds for linear programming or 

Lagrangean relaxations. 

  The studies by Karmarkar and Schrage (1985), Wolsey (1989), Diaby et al. (1992), 

De Matta and Guignard (1994a, 1994b, 1995), and Stadtler (1996 and 2003) are only a few 

more references in the lot sizing literature that make use of the Transportation formulation.  

  One important drawback of these formulations is that the number of production 

variables and setup constraints grow quadratically with the number of time periods 

(Stadtler, 2003).    

 

2.3 The Process Industry  

 

  Traditional production planning approaches focus on discrete parts manufacturing 

industries. However, process industry environments feature special aspects that require 

different perspectives and methods to solving production planning problems. Since we 

regard process industries as suitable application areas for the GLSP, we deemed it 

necessary to present a brief account of this type of environments within our review of the 

literature. This section is devoted to the examination of process industries, with an 

emphasis on the differences between them and discrete parts manufacturing systems in 

particular. 

  We refer to Crama et al. (2001), Fransoo and Rutten (1994) and Ashayeri et al. 

(1996) for the reviews of process industries and their prevalent characteristics. 

  The term “process industry” refers to environments featuring repetitive operations 

that involve physical and chemical reactions on non-discrete (bulk) materials. The APICS 

dictionary gives the following definition for such environments (Fransoo and Rutten, 

1994): 

 
Process industries are businesses that add value to materials by mixing, separating, 
forming, or chemical reactions. Processes may be either continuous or batch and 
generally require rigid process control and high capital investment.     
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  Chemical, pharmaceutical, steel, petroleum, food, beverage, paper, glass and 

semiconductor industries are some of the generally cited examples of process industries. 

The processes within these industries are usually high-volume and capital intensive. They 

are carried out in expensive facilities with a few specialized lines requiring high utilization 

levels. In addition to convergent material flows, divergent flows can also be observed in 

process industries, which implies that the processes may yield by-products and co-products. 

Consequently, in place of the classical “Bills of Materials” (BOM) used in MRP systems in 

discrete manufacturing, planning in process industries generally involves the use of 

“recipes” (formulas or ingredient lists). Flexible recipes can be used in processes with 

variable raw material quality, requiring approaches similar to those used for blending 

problems. 

  Process industries are usually classified between two extreme ends: flow 

(continuous) process industries and batch (mix) process industries. The former is usually 

characterized by heavy industries with high volume production and high changeover times. 

In these environments, there is usually no product differentiation in the process until 

containerization, all items follow the same routing and WIP constitutes the material on the 

entire production line, which may be considered as a single machine. Batch process 

industries, on the other hand, are closer in nature to the discrete manufacturing systems, in 

that their processes are more flexible and diversified.  

  However, it needs to be said that the traditional features that are usually associated 

with process industries, such as inflexible processes, commodity type products with limited 

variety, MTS production etc. are subject to a shift towards more customized production 

strategies for dynamic product mixes with enriched diversity. Therefore a strict one-

dimensional classification of these environments may no longer be sufficient (Crama et al., 

2001). A more detailed classification of process industries was presented by Dennis and 

Meredith (2000) based on different characteristics of the P&IM (Production and Inventory 

Management) systems used.   

  Regarding production planning and control in process industries, the following 

excerpt from Günther and Van Beek (2003) perfectly highlights the issues frequently 

encountered in these environments that distinguish them from discrete manufacturing: 

 
Process industries show a considerably increased complexity compared to discrete 
parts manufacturing. For instance, the complexity of scheduling chemical processes is 
determined by such factors as batch size constraints, shared intermediates, flexible 
proportions of input and output goods, production of by-products, limited 
predictability of processing times and yields, mixing and blending processes, carrying 
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out processes without interruption, use of multi-purpose equipment, sequence and 
usage dependent cleaning operations, finite intermediate storage and use of product 
specific storage devices, cyclical material flows, no-wait production of certain types of 
products, usage of secondary resources, such as energy, steam, or cooling water, and 
complex packaging and filling operations. Very often, time and cost intensive cleaning 
procedures as well as the necessity of detailed quality control after each batch are the 
major motivations for operating the production system in campaign mode, i.e. the 
equipment units required by a particular type of product or process are set up 
according to the corresponding recipe. When set-up and cleaning efforts are 
significant, e.g. in the production of specialty chemicals, only a few campaigns of a 
specific product, possibly, merely a single campaign are carried out each year. (…) As 
a consequence, most of the scheduling approaches developed for discrete parts 
manufacturing are hardly applicable. Hence, despite the analogy of the fundamental 
planning and scheduling problems, there are a number of major issues which have to 
be reflected by the mathematical models and solution algorithms employed.   

  

  The main point that needs to be emphasized in this discussion is that “planning and 

scheduling issues arising in the process industry are tightly intertwined.” (Crama et al., 

2001). That is why, unlike the disaggregated approaches in discrete manufacturing, medium 

term planning at the MPS level in process industries should also consider process details 

such as production sequences, changeovers and product routings etc., as well as deal with 

issues in forecasting, demand management and logistics in a proactive and integrated 

manner (Novitsky, 1984).   

  The point that is of concern for this study is the need to integrate sequencing 

decisions with production plans in the medium and short term. Since high utilization is 

required in process industries, capacity planning is critical and it should be considered at 

the MPS level before raw material constraints, an approach sometimes referred to as 

Capacity-Oriented Production Scheduling (CPS). The use of additional capacity in the form 

of overtime in order to compensate for the production loss is usually not possible, as in 

traditional approaches. Moreover, changeovers consume an important part of the capacity. 

In fact their dominance is so important that they should even be considered at the demand 

management level, since changeovers impact cycle times and thus the selection of the most 

profitable products (Fransoo, 1992). For all these reasons, commonly sequence dependent 

and predominant setups and changeovers have to be treated as a crucial part of the 

production plans (De Matta and Guignard, 1994a, Hill et al., 2000).  

  Finally, we give a few examples for the solution methods used for process industry 

environments in the literature. While there are many papers describing the characteristics of 

process industries and their differences in comparison with discrete parts manufacturing, 
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there are a limited number of studies that deal with generic production planning problems 

in process industries.  

  Although there exist some other approaches for tackling production planning and 

control problems in process industries, such spreadsheets, matrix data structures, network 

based frameworks, flow process scheduling techniques for recipe and raw material 

management, simulation and statistical methods etc., our focus in this study is on the 

mathematical programming applications in process industries. It has to be noted that most 

of the mathematical applications in this field are process-specific with special assumptions 

and restrictions.  

  When process industry applications in the literature are examined, one can find a 

big portion dealing with blending type of problems to determine the best recipes, in 

chemical and food processing industries. These models usually include special process 

restrictions such as nutritional requirements, raw material availability and variable quality, 

perishability etc. (e.g. Jensson, 1988, Munford, 1989, Rutten, 1993, Ashayeri et al., 1994 

and Al-Shammari and Dawood, 1997). Another class of applications addresses bulk storage 

problems in multi-stage environments with special storage facilities (eg. pipes, conveyors, 

tanks, silos etc.), usually featuring special conditioning restrictions, waiting times or 

minimum batch sizes etc. (e.g. Artiba and Riane, 1998 and Synder and Ibrahim, 1996). 

Finally, there are hierarchical models dealing with item and family relationships, 

disaggregation schemes, MPS generation over rolling horizons and integrated logistics 

decisions etc. These issues are usually studied by the use of mathematical models and are 

solved by optimization or disaggregation approaches. (e.g. Oliff and Burch, 1985, Rutten, 

1993, Allen and Schuster, 1994 and Venkataraman and Nathan, 1994). All these studies 

may be regarded as small case study applications which are motivated by real life problems 

and they are usually dedicated to the characteristics of specific systems only, which is 

outside our scope.  

  In the next section, we will present and discuss in more detail some more examples 

for production planning applications in the process industry, with an emphasis on more 

generic mathematical applications for integrated decision making.  

 

2.4 Mathematical Applications for Integrated Lot Sizing and Sequencing 

 

  Since our main motivation is to develop an integrated production planning model 

for capacitated environments with sequence dependent changeovers, we particularly 
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concentrated on mathematical modeling applications in the process industries and the multi-

item, single-machine lot sizing and sequencing literature in general in order to find models 

that are comparable to the GLSP. Below we present more detailed information on a few 

such studies in chronological order. The common point between these studies is that they 

are all integrated mathematical modeling approaches although they make different 

fundamental assumptions, approximations and use different solution methods. The 

justification for using mathematical programming approaches is that they are generic and 

versatile tools that can be applied to a great variety of problems, unlike only problem-

specific methods with limited applicability (Crama et al., 2001) 

  One of the early studies in the area of integrating lot sizing and sequencing is by 

Prabhakar (1974), which considers simultaneous optimization of lot sizing and sequencing 

decisions with special constraints for a static environment in the chemical industry. 

  Smith-Daniels and Smith-Daniels (1986) describe a practical application 

emphasizing item-family structures in a two stage process industry framework. They work 

on the Packaging Line Scheduling Problem (a type of Joint Replenishment Problem), which 

is common in many process industry type applications, where batches of product are first 

processed in the main production line and then are packaged into various sizes of 

containers. Their model incorporates two types of setups: major setups between families 

and minor setups between the items in the same family and this model has a flexible nature 

in that it can consider a product as a major setup component and a package size as a minor 

setup component, and vice versa. Moreover, it is assumed that major setups (changeovers) 

are carried out in off-shift periods, i.e., they do not consume capacity in the form of setup 

time and that they are sequence independent, as opposed to their minor counterparts, which 

incur sequence dependent setup time consumption. The formulation treats the sequencing 

of items within families in each period as independent TSP’s with explicit subtour 

elimination constraints. Other important assumptions are that backlogging is allowed and 

only one family is producible per period, which is restrictive for the feasibility of the 

problem. The MIP solution results are not promising except for very small problems and 

only in the absence of sequence dependencies, which highlights the level of complexity of 

this integrated problem.    

  Selen and Heuts (1990) address chemical process industry environments with 

sequence dependent switchover times, fixed batch sizes and extra plant restrictions such as 

storage capacities. They use a period-by-period heuristic approach (referred to as HS) for 

operational level planning. Their lot sizing and sequencing heuristic is based on the idea of 
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modifying an initially found feasible solution by considering possible and potentially 

profitable item shifts between periods. Sequencing decisions are made based on the set of 

items assigned to periods and the best sequences are determined by using TSP approaches. 

Heuts et al. (1992) test the performance of HS heuristic against a similar improvement 

heuristic in the same process industry setting by using simulation experiments under rolling 

horizons. 

  De Matta and Guignard (1994a) highlight the importance of studying the effects of 

production loss during changeovers for dynamic production scheduling in process 

industries. They develop a small bucket model with sequence dependent changeover costs 

and times for a tile manufacturing company with multiple, non-identical processors and 

solve it using Lagrangean based procedures. The same authors later devise a similar 

approach to model the packaging operations in a pharmaceutical company, this time with 

no changeover times but with sequence dependent changeover costs in a rolling horizon 

environment (De Matta and Guignard, 1995).  

  Haase (1996) devises the formulation CLSD (Capacitated Lot Sizing Problem with 

Sequence Dependent Setup Costs), which is an integrated lot sizing and scheduling model 

with sequence dependent setup costs and continuous lot sizes. This model is similar in 

nature to the GLSP; however, it is a more restricted formulation with additional 

assumptions compared with it. Among these assumptions is the possibility of producing an 

item at most once within a period and that of setup costs satisfying triangle inequality. This 

model explicitly represents sequencing decisions in the form of a TSP with assignment and 

subtour elimination constraints. A backward oriented heuristic with priority based ordering 

of items and local search are used as solution methods with fast and satisfactory results. 

  Haase and Kimms (2000) present an application of production planning for a 

bottleneck process in high technology machine manufacturing where setup costs and times 

are both sequence dependent, and thus lot sizing and sequencing must be considered 

simultaneously. Their large bucket model, the LSPSD (Lot Sizing and Scheduling Problem 

with Sequence Dependent Setup Costs and Times), is different from most of the models in 

the related literature in that all efficient (undominated) production sequences are generated 

by solving TSP’s prior to solving the main model and are used as input parameters. 

Moreover, triangle inequality is assumed to hold and zero-switch property applies for new 

production lots, i.e., production for an item in a period is only possible provided that the 

corresponding incoming inventory is zero, which is a rather restrictive assumption for 

capacitated environments with setup times. The study also concentrates on rescheduling 
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opportunities through a rolling horizon and provides fast solutions using specially designed 

Branch-and-Bound procedures. 

  Hill et al. (2000) address the need to take capacity limitations and sequencing 

decisions into consideration during the preparation of the MPS in process industries. They 

propose a two-level scheme in which the MPS is exploded at the bottleneck stage and 

adjusted for capacity and sequence dependent changeover times via the use of a sequencing 

heuristic. Their approach adopts a continuous time representation and resembles the Job 

Scheduling Problem with setups. Their experiments indicate two important results; the first 

is that the two-level MPS with sequencing considerations results in lower changeover times 

and shortages, and the second is that the performance of this approach is not sensitive to 

changes in the minimum batch sizes. Later, the same authors use similar heuristic 

approaches to study the problem of revising the MPS in sequence dependent process 

industries and they present the results of a full factorial design which tests the effect of 

several factors such as changeover time variation, time between orders, MPS method, 

replanning frequency etc. (Hill et al., 2003)  

  Gupta and Magnusson (2005) extend the idea of Gopalakrishnan et al. (1995) for 

the CLSP with setup carryover (i.e., preservation of the setup state) to include sequence 

dependent setup costs and fixed setup times. What this implies is that sequencing 

information needs to be kept within the large bucket CLSP context, which is uncommon in 

the literature. Their MIP formulation allows the possibility of setup carryovers and empty 

setups (i.e., setups which are not followed by immediate production in the corresponding 

period) through the use of different classes of binary variables. They assume that triangle 

inequality holds for setup costs and thus each item can be produced at most once in a 

period. Sequencing decisions can be associated with the TSP in this model and subtour 

elimination restrictions are also included. The authors propose a row aggregation scheme 

for lower bounding and a greedy heuristic with rather poor results.  

  Finally, we review the studies on our problem, the GLSP. It can be said that most 

large bucket models with integrated decisions and sequence dependency mentioned up to 

now assume that triangle inequality holds and thus, each item can be produced at most once 

in a period. This assumption is relaxed in GLSP models, which allow an item to be 

produced as many times as possible within a period as long as it is within the limit of the 

number of positions in that period.  

  Regarding GLSP, there are a few related studies in the literature, dealing with 

several variants of the problem. For instance, in their review paper, Drexl and Kimms 
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(1997) discuss a simpler version of the GLSP without sequence dependency or minimum 

batch sizes. Later, Fleischmann and Meyr (1997) present two different formulations for the 

GLSP with sequence dependent setup costs (i.e., changeover costs) and minimum batch 

sizes, namely the GLSP-CS and GLSP-LS. The distinction between the two formulations is 

that the former assumes the setup state is conserved after idle periods and the latter assumes 

it is lost. In this study, the associations between the GLSP and other lot sizing models such 

as the DLSP, CLSP, CSLP etc. are clearly explained and the justification for the term 

“General” is made by showing that the time structure in the GLSP may be used to represent 

all other lot sizing models under minor restrictions. This study also shows that the GLSP 

with non-zero minimum batch sizes is NP-complete. In a technical note, Koçlar and Süral 

(2005) have proposed an extension of the GLSP-CS formulation, related with minimum 

batch size splitting between periods (See Chapter 3 for details). 

  The GLSP-CS formulation, which is more general, is later extended to include 

sequence dependent changeover times (Meyr, 2000) in a formulation referred to as the 

GLSPST. Finally, non-identical parallel facilities were modeled within the GLSP 

framework with sequence dependent changeover costs and times (GLSPPL) (Meyr, 2002). 

Apart from these straightforward variations, the model formulations in all the three studies 

above are essentially the same. For solution methods, local search type heuristics (threshold 

accepting or simulated annealing) were employed to fix setup patterns. Fleischmann and 

Meyr (1997) also solve the remaining lot sizing problem heuristically using backward-

processing techniques; but later, Meyr (2000, 2002) combines local search with dual 

reoptimization for the remaining lot sizing problem to increase the quality of the solutions 

and to avoid starting the solution each time from scratch.  

  Finally, Clark and Clark (2000) study the GLSP with sequence dependent setup 

times but no setup costs in environments with parallel facilities. Although they do not refer 

to their formulation as GLSP, their model contains the structure of positions within periods 

and a modeling framework very similar to the GLSP. However, their model allows 

backlogging, assumes that triangle inequality holds and includes no minimum batch sizes, 

differently from the GLSPPL (Meyr, 2002), which is another GLSP study for parallel 

facilities. An important contribution of this paper is through its examination of the rolling 

horizon solution of the GLSP. In their experiments, the authors develop approximate 

mathematical models by relaxing part of the constraints pertaining to time periods later in 

the horizon. However, their results show that the computational requirements of even the 

approximate models soon become prohibitive as problem size increases in terms of the 
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number of items and periods as well as the number of positions within a period, which is a 

very important experimental setting. Thus, they address the need to use efficient heuristic or 

metaheuristic approaches.  
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CHAPTER 3  

 

MATHEMATICAL FORMULATION OF THE GLSP  

 
 
 
 
  In this chapter, we present an introduction of the GLSP and its basic assumptions, 

followed by the verbal and mathematical models, and a brief account of its elements and 

properties. We shed light on some special cases handled by the model and finally present an 

equivalent alternative formulation based on the Transportation Problem. 

  The GLSP features integrated production planning for capacitated single facility 

environments with multiple items. It seeks to determine the sequence and quantity of 

production lots in order to meet deterministic and dynamic demand through the planning 

horizon without backlogging and at minimal total cost (which comprises changeover, 

production, inventory holding and overtime costs). The GLSP is essentially a large bucket 

model and it assumes continuous production lots. Our version of the GLSP also contains 

sequence dependent changeover costs and times and minimum batch sizes.  

  The structure of the GLSP consists of two time levels: time periods (macro-

periods) and positions (micro-periods). As expressed compactly by Fleischmann and Meyr 

(1997), the former relates to the external system dynamics such as demand, inventory 

holding costs etc. whereas the latter represents internal dynamics of the system, such as the 

size and positioning of production lots, the setup status of the facility, etc. Each time period 

contains a fixed number of positions which are non-overlapping and in sequential order. 

One can visualize the two-level structure as in Figure 3.1 below. 

 

 
 

Figure 3.1 The Framework for Time Periods and Positions in the GLSP 
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  In this figure, the small boxes represent positions and the hedges enclosing these 

positions represent time periods, where Ft (Lt) denotes the index number of the first (last) 

position in period t. The positions are ordered in a continuous sequence until the end of the 

planning horizon, which implies that the position following the last position of a given 

period is the first position of the next period, i.e., Lt + 1 = Ft+1.  

  Each position is reserved for the production of at most one item and thus a 

complete series of item-position assignments corresponds to a sequence of items to be 

produced. As a matter of fact, the positions may be regarded as micro-periods with variable 

lengths within fixed-length time periods. The length of a position depends on the size of the 

production lot assigned to it. Within this context, a production lot may be defined as “a 

sequence of consecutive positions over which the same item is produced” (Meyr, 2000). 

The basic assumption of the GLSP is that of continuous production lots, which implies that 

a lot may continue over several positions and several macro-time periods as well without 

interruption, i.e., without the need for further setups. This suggests that the need for setups 

(or changeovers) only arises when the facility switches to a different item. The setup state is 

also preserved over the idle positions that may remain in a period, where an idle position 

refers to a position with an assigned production quantity of zero. 

  As positions correspond to the production of a single item, the number of positions 

within a period (Lt-Ft+1) is an indication of the maximum number of production 

changeovers possible in that period. This value has to be determined in advance for each 

period and input to the model as a parameter.   

  Our GLSP formulation is mainly adopted from several similar studies in the 

literature (See Section 2.4). Among them are the GLSP-CS formulation by Fleischmann 

and Meyr (1997), which assumes that setup state is conserved over idle periods but does not 

involve setup times, and the GLSPST (GLSP with sequence dependent setup times) by 

Meyr (2000). However, compared with these earlier formulations, several aspects stand out 

as distinctive features of our formulation, which are briefly listed below: 

 

� The existence of sequence dependent changeover times in addition to sequence 

dependent changeover costs (Although sequence dependent setup times were 

modeled by Meyr (2000) in GLSPST, they were only tested in sequence 

independent form during the computational experiments.) 
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� Enhanced ability to represent special cases related with minimum batch sizes more 

realistically in our formulation, by allowing minimum batch sizes to be split 

between periods (This point will be clarified later in this chapter.) 

� Handling of item zero (the initial setup state) explicitly in the formulation and 

examination of special related cases (In previous GLSP models, there is no explicit 

information about how the initial setup state is incorporated in the formulations.) 

� The incorporation of production costs in the objective function 

� The possibility of resorting to overtime 

 

  For the last point, it may be argued that short time capacity expansions such as 

overtime are not used frequently in capital intensive environments such as process 

industries (Section 2.2.1). However, our primary motivation for incorporating the overtime 

option with considerably high costs was to come up with the most generic formulation for 

the problem in order to be able to cover possible variants of the problem and also to 

facilitate the process of finding feasible solutions.  

  One of the major strengths of the GLSP formulation is that it is the most general 

formulation for the integrated lot sizing and sequencing problems, with the flexibility to 

model many additional issues such as minimum batch sizes, sequence dependency, setup 

state preservation etc. This generic model may condense down to other specialized variants 

under certain assumptions (e.g. If only one position is allowed within a period, the model 

may be modified to represent the DLSP). Moreover, this exact formulation has the 

advantage of being solvable by general commercial packages, unlike case-specific 

algorithms that are limited in capability and applicability, which is a point emphasized by 

Maes and Van Wassenhove (1988) in favour of mathematical programming approaches.  

 

3.1 Verbal Description of the GLSP 

 

  Our version of the GLSP is an integrated single-level, single-machine, multi-item 

capacitated lot sizing and sequencing model with sequence dependent changeover costs and 

times. Below is a verbal description of the model in terms of its basic assumptions, 

objective, parameters and decision variables.  

 

Basic Assumptions: 

� Item demands are dynamic and deterministic. 
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� Changeover, inventory holding and production costs are time independent. 

� Backlogging demand is not allowed. 

� Production lots are continuous, i.e., they can range over period borders without 

requiring a new setup in the consecutive period.  

� Minimum batch sizes may be split between consecutive positions in two different 

periods if capacity is restricted. 

� The setup state is preserved over idle periods and setups can be carried from one 

period to the next. 

� Changeovers cannot be split between periods, as is the case in almost all large-

bucket lot sizing formulations in the literature. This means that a changeover has to 

be started and completed within the same time period. 

� Production for an item may be scheduled in a period even though the incoming 

inventory is not zero, thus the so called “zero-switch property” does not hold in our 

model, unlike some capacitated problems which make this restricting assumption. 

For instance, Haase and Kimms (2000) assume this property for new production 

lots in a period.  

� Triangle inequality does not necessarily hold for changeover costs and times. 

 

Objective: 

To minimize the total cost which comprises costs associated with inventory holding, 

changeovers, production and overtime.  

 

Basic Decisions: 

� The quantity of each item to be produced in each period 

� The amount of inventory to be kept for each item at the end of each period 

� The production sequence of the items to be produced in each period, thus the 

amount of capacity to be allocated to changeovers in each period 

� The overtime requirement in a period, if any 

 

Parameters: 

� Number of items and number of periods that are taken into consideration in the 

production plan 

� Demand requirement of each item through the planning horizon 

� Capacity available for production and setups in each period 
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� Unit capacity requirement for the production of each item (time-independent) 

� Changeover time associated with item transitions (sequence dependent but time 

independent) 

� Cost terms related with inventory holding, production, changeovers and overtime 

(time independent), where changeover costs are sequence dependent. 

� Minimum batch size of each item (time-independent) 

� Initial inventory levels of all items 

� Maximum number of items producible in a period (i.e., number of positions in each 

period) 

� The initial setup state of the facility (i.e., item zero) 

 

3.2 Mathematical Model for the GLSP 

 

  In this section, we shall present the indices, parameters and decision variables 

along with the mathematical representation of the GLSP formulation. As previously stated, 

our formulation is mainly based on the GLSPST (Meyr, 2000) apart from the modifications 

which are listed at the beginning of this chapter.  

  Following the nomenclature used by Stadtler (1996), the formulation below will be 

referred to as the “Inventory & Lot Sizing (I&L)” formulation throughout the rest of the 

text. 

 

Indices: 

i,j: Items, 1,...,N  

  (Note that the item zero (i=0) denotes the initial setup state of the facility) 

t: Time periods (macro-periods), 1,...,K 

n: Positions (micro-periods), 1,...,LK 

        nτ : The period to which position n belongs (i.e., t| Ft ≤  n ≤  Lt) 

 

Parameters: 

Ct: Capacity in period t 

COt: Cost of overtime in period t 

CPj: Unit cost of production for item j 

djt:  Demand for item j in period t 
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Ft (Lt):  Index for the first (last) position in period t 

hj:  Unit inventory holding cost for item j 

Ij0:   Initial inventory level of item j at the beginning of the planning horizon 

mj:   Minimum batch size of item j 

Mjt:  A very big number  

 (It stands for the maximum quantity of item j producible in period t) 

Pj:   Unit processing time of item j 

SCij:  Changeover cost for the transition from item i to item j, SCii= 0 

STij:  Changeover time for the transition from item i to item j, STii= 0 

t
γ :       Proportion of maximum allowable overtime to capacity in period t 

 

Decision Variables: 

Xjn:  Quantity of item j produced in position n 

 Ijt:        Inventory of item j at the end of period t 

 Ot:        Amount of overtime used in period t 

       1, If item j is assigned to position n                                                 (Setup Variable) 

 0, Otherwise 

      1, If there is a changeover from item i in position         (Changeover Variable) 

                 n-1 to item j in the next position (n)     

        0, Otherwise 

 

Note:   Variable ijnδ  is defined over the following special domain: 

    For 1 0 and 0, ...,,  n i j N= = =  

    For 2, ...,
    0, ...,    if 0

0, ...,  and 
   1, ...,    if 0

,  Kn L
N i

i N j
N i

=
=

= =
>

  

  

This implies that for the first position, only changeovers from item zero are 

defined. Moreover, in the remaining positions, changeovers from actual items (i>0) 

into item zero (j=0) are not defined and thus, they do not appear in any part of the 

formulation. Related explanations are provided following the mathematical 

formulation of I&L.  

 

 

Wjn: 

ijnδ : 
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[I&L] 

Minimize          
0 0 1 1 1 1 1 1

K K
L LN N N K N K

ij ijn j jt j jn t t

i j n j t j n t
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= = = = = = = =
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δ
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    ∑
=

+=
N

j
njn

0
)1(000 δδ          n∀ =1,...,(LK-1)   (3.9) 

    ttt CO γ≤            t∀         (3.10) 

    (0,1)
jn

W ∈             j∀ =0,…,N        

   All other variables are non-negative.                                                     (3.11) 

    

where    Mjt =
j

tt

P

C)1( γ+
           jt,∀        (3.12)  

  

  In addition to N items, the I&L formulation also involves a dummy item (item zero) 

with no demand, only bearing the purpose of indicating the initial setup state of the facility 

at the beginning of the planning horizon. Note that this setup state actually may be for one 

of the N items available in the product mix, or a special starting state featuring completely 

different changeover costs and times. The distinguishing aspect about item zero is that it 
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can only be part of a one-way changeover, i.e., a changeover from item zero to a different 

item, but not vice versa. This is why changeover variables ni0δ  ( 0≠i ) are not defined as 

part of the formulation. The facility remains in the initial setup state until production is 

started for one of the items, which requires a changeover from item zero once and for all. 

Changeover costs and times from item zero to all other items are appropriately defined and 

the constraints in the formulation are built in such a way so as to take this aspect into 

account. A more detailed discussion about how item zero is incorporated in the model can 

be found in Section 3.4. 

  In I&L, the objective function (3.1) minimizes the changeover, inventory holding, 

production and overtime costs. Note that our formulation includes minimum batch sizes, 

and thus the total production quantity of an item throughout the planning horizon is not a 

previously known constant value (such as the total demand over the planning horizon). 

Hence, although production costs are constant over time, they may not be disregarded as in 

most lot sizing models. (Note that in previous GLSP formulations (Fleischmann and Meyr, 

1997, Meyr, 2000 and 2002) production costs are disregarded despite the existence of 

minimum batch sizes, which may not be a sound assumption especially if the minimum 

batch sizes are considerably large.)  

  Constraint (3.2) ensures that demand in a period is satisfied from inventory or 

production with no possibility of backlogging. It should be noted that an item can be 

produced in more than one position within a period. Besides, the term )1( −tjI  is replaced by 

the initial inventory parameter for the first period. 

  Constraint (3.3) establishes the link between production and setup variables, i.e., an 

item can only be produced in a position if it has been set up for it. Here, the upper bound on 

the production quantity of an item in a position (big M term) is taken to be the capacity of 

the corresponding time period, inclusive of overtime (3.12).  

  Constraint (3.4) expresses the capacity limitations in period t and ensures that the 

capacity consumed in a period for production and changeovers does not exceed the 

available regular capacity and overtime. This constraint also ensures that changeovers are 

completed within a single period without being split over period borders.  

  Constraint set (3.5) imposes a minimum batch size restriction upon the startup of a 

production lot, i.e., the lot size should be greater than the minimum batch quantity in the 

first position (or the first two positions in (3.5’)) where the production lot of an item 

commences. A more detailed discussion related with minimum batch sizes is presented in 

Section 3.4.  
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  Constraint (3.6) guarantees that a unique item is assigned to each and every 

position. Note that item zero can also be assigned to positions possibly at the beginning of 

the planning horizon, before changing over to one of the actual items. 

  Constraint (3.7) enforces the sequence dependent changeover variable to take the 

value of 1 for the transitions between the setup states of items in consecutive positions. 

(Note that the domain of the constraint has been arranged so that one-way changeovers 

from item zero are properly handled.) Changeover costs and times associated with the 

transition from an item to itself are defined to be 0. In addition, constraints (3.6) and (3.7) 

together assure the preservation of the setup state over idle positions, by forcing a 

changeover from an item to itself.  

  Constraint (3.8) is an auxiliary restriction which prevents the changeover variable 

from taking on values greater than 1. Note that although changeovers are represented by 

real variables, positive changeover costs together with constraint (3.7) enforce them to take 

binary values in any optimal solution. However, exceptions may occur in the case of 

transitions from an item to itself, incurring no changeover costs or times. This implies that 

in the absence of (3.8), a self-transition changeover variable might take on any value 

greater than 1 without changing the optimal solution value and without violating any of the 

constraints. Thus, constraint (3.8) only helps establish binary values for self-transition 

changeover variables in this formulation.  

  Constraint (3.9) prevents the model from manipulating the asymmetric nature of 

item zero transformations. The reasons for including this constraint will be clarified in 

Section 3.4 with examples.  

  Constraint (3.10) limits the maximum overtime used in a period to be a specific 

portion of the corresponding period’s capacity.  

  Finally, constraint (3.11) represents the non-negativity restrictions.  

  A side remark needs to be made here regarding the production bound in constraint 

(3.3). In many traditional lot sizing models, the bounds on production quantities are 

established by taking both demand and capacity information into consideration, which 

would be translated to the following expression in the presence of minimum batch sizes in 

our case: 
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The bound above considers capacity, minimum batch sizes and the unsatisfied demand 

remaining in future periods, if any. However, the most general formulation should allow for 

the possibility of production for the sake of saving changeover costs or times, without 

necessarily satisfying any demand, especially, even if dit = 0. In this case, it is impossible to 

limit the production of any item by any other bound but the period capacity. (Nevertheless, 

these bounds could be somewhat tightened in our alternative formulation, which will be 

discussed at the end of this chapter.) 

  The total number of variables in this formulation is O(N2LK + 3NLK + NK), out of 

which (N+1)LK are binary (LK denotes the total number of positions in the problem). It 

should be mentioned that determining the number of positions within periods is an 

important challenge inherent in the GLSP formulation. While too few positions would 

severely restrict possible changeovers and increase costs (or even make a feasible solution 

impossible), too many unnecessary positions which are doomed to remain idle would 

immensely increase problem size. Thus, several different values can be tested to come up 

with the most satisfactory setting in a comprehensive study.  

 

3.3 The Properties of the GLSP Solution 

 

  In this section, we list some of the properties of an expected GLSP solution with 

brief remarks in order to gain more insight about the working logic of the model. 

 

� Remaining Inventory: At the end of the planning horizon (at period K), a positive 

amount of inventory can remain on hand for some items due to the existence of 

minimum batch sizes.  

 

� Minimum Batch Size Splitting: Minimum batch sizes may be split between 

consecutive positions in two different periods, i.e., if a production lot extends over 

a period boundary, the minimum batch size restriction applies to the total quantity 

produced in the last position of the first period plus the first position of the next 

period (Constraint (3.5’)). See Section 3.4.1 for details. 

 

� Empty setups: “Empty setups” (setup state changes without immediate production, 

i.e., setups to be used for future periods, as modeled by Gupta and Magnusson, 

2005) cannot be handled in our model in the presence of non-zero minimum batch 
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sizes unless the minimum batch size restriction is split between two consecutive 

positions at the period border (the case described above). 

 

� Triangle Inequality – Minimum Batch Sizes: Since triangle inequality does not 

necessarily hold for changeovers in the most general case under consideration, it 

may be economically more attractive (in terms of changeover costs and/or times) to 

change over from one item to another via a third product which does not require 

production during the period, what we refer to as a “dummy changeover”. In the 

absence of minimum batch sizes, such auxiliary items may appear in the plan 

without being actually produced, the case referred to as “a setup state change 

without a product change” (Fleischmann and Meyr, 1997). This case may or may 

not be realistic, depending on the nature of the process modeled. For example, 

referring to the example stated by Fleischmann and Meyr (1997), some chemical 

industries feature “rinsing products” that cleanse the facility during changeovers, 

acting as “dummy items” with no production. Note that by enforcing production of 

at least a minimum quantity of all items for which the facility is setup, minimum 

batch sizes reduce the occurrence of this phenomenon to a certain extent, which is 

the primary reason for incorporating them as part of the formulation. However, the 

effect of minimum batch sizes depends on their quantity, i.e., if they are too small 

so that the savings associated with “dummy changeovers” exceed the costs of 

unnecessary production and extra inventories, “dummy changeovers” are 

unavoidable. We incorporate this possibility as a property of the GLSP solution and 

construct our mathematical formulation accordingly (e.g. Recall how production 

upper bounds are established in I&L). On the other hand, if triangle inequality is 

assumed to hold for all items, the occurrence of “dummy changeovers” is 

completely eliminated and minimum batch sizes may be set to zero unless they are 

determined by the actual production process.  

 

� Multiple production lots of an item in a period: The GLSP does not enforce each 

item to be produced at most once in a period. Provided that triangle inequality 

holds for changeovers, splitting the production lot of an item and incurring an extra 

changeover would not be beneficial. However, in the more general case where 

triangle inequality does not hold, some dummy changeovers (as discussed above) 

may become more appealing, leading to additional item transitions and the 
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production of multiple lots of the same item within the same period. This property 

renders the problem of establishing the number of positions in a period more 

challenging. 

 

3.4 Special Cases Handled by the GLSP Formulation 

 

  In this section, we provide brief remarks about some of the more involved aspects 

of the formulation and illustrate several special cases with the help of examples.  

 

3.4.1 Splitting Minimum Batch Sizes for Two Consecutive Periods 

 

  If the minimum batch size constraints in I&L (3.5) are reexamined, it can be seen 

that there is a slight modification for the last positions of periods in (3.5’). The following 

discussion explains the need for making this distinction, based on a technical note raised by 

Koçlar and Süral (2005). The note draws attention to a possible shortcoming of the original 

GLSP formulation by Fleischmann and Meyr (1997) regarding minimum batch sizes and 

suggests some modifications in order to model continuous lots more realistically. 

  The GLSP-CS formulation by Fleischmann and Meyr (1997) ensures that the 

production quantity of any item in the first position of a production lot is greater than the 

minimum batch quantity. However, this limitation may be unrealistic in the following 

situation on which no explicit assumptions have been posted in the article: Considering the 

case where an item’s production extends over to a new period, if the first period is restricted 

in terms of capacity such that production of the minimum batch quantity is not possible, 

this model inevitably leaves the available capacity in the first period idle and forces 

production to start in the second period, as the following small-scale example demonstrates. 

 

Example: Consider a problem with 2 items, 2 periods and 2 positions per period where the 

capacity per period is 2 units and changeover times are negligible. Let the other data be as 

shown in Table 3.1. The optimal solution of the problem is presented in Figure 3.2. 
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Table 3.1 Problem data for the Minimum Batch Size Splitting Example  

 
 mj Pj hj dj1 dj2 

Item 1 (j = 1)  1 1 1 1 0 

Item 2 (j = 2) 2 1 1 0 3 

   

 

 

 

Figure 3.2 Optimal Solution of the Minimum Batch Size Splitting Example 

   
 

  As can be followed from Figure 3.2, the optimal solution of the example problem is 

X11=1, X22=1, X23 =2, I21=1 with a total cost of 1. Here, the production of item 2 starts at the 

second position of period 1 using the remaining capacity of 1 unit. Nevertheless, with the 

original form of the minimum batch size constraints, the Fleischmann-Meyr model is 

unable to find a feasible solution in this example. The reason for this is the fact that the 

remaining capacity in period 1 (1 unit) cannot be used since it is smaller than the minimum 

batch size of item 2 (2 units) and the capacity in period 2 is insufficient for the production 

of the total demanded quantity of item 2 (3 units). 

  This example explains the reason why modifying the minimum batch size 

constraint (3.5) may be essential, especially if the capacity is critical and minimum batch 

sizes are considerably large. We therefore propose constraint (3.5’) for the last positions of 

periods, enabling the extension of the production of the minimum batch quantity to the 

consecutive period. 

  However, it should be noted that this modification is only valid for two consecutive 

periods. If the total capacity of the two periods happens to be insufficient to cover the 
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minimum batch quantity, then the modified formulation with constraint (3.5’) may not be 

able to yield a feasible solution either. In order to accommodate this possibility as well, we 

need to extend the assumption of minimum batch size splitting to k consecutive periods (see 

Figure 3.3 below) by making some modifications to the formulation. We suggest the 

addition of constraints (3.14) in the model.  

 

 

 

 
 

Figure 3.3 Minimum Batch Size Splitting over k Consecutive Periods 
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  Constraints (3.14) need only be written for special (j,t) and k combinations. As the 

condition in the constraint states, we check whether there exists a k value greater than or 

equal to 2 for a certain (j,t) pair, suggesting the largest interval [t, t+k-1] where total 

available capacity is insufficient to produce the minimum batch quantity, also considering 

the smallest possible changeover time from another item to j at the start of the lot. If such a 

k value can be found, the constraint is written in place of (3.5’) so that the minimum batch 

size restriction is extended until period t+k, starting with position tL , as displayed in 

Figure 3.3 above. The dashed line in the figure indicates the production lot of the item 

which needs to satisfy the minimum batch size restriction over k+1 consecutive periods. If 

no k greater than or equal to 2 can be found, then the constraint is not written for that (j,t) 

pair and constraint (3.5’) is included in the model instead. Note that k=1 would imply 

minimum batch size splitting over two consecutive periods (constraint (3.5’)), whereas k=0 
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corresponds to the unextended version of the minimum batch size constraints (implying that 

the period capacity exceeds the minimum batch size on its own). 

  This constraint also needs to be adapted to the formulation by ensuring that the 

limited capacity inside the interval is totally consumed by the continuous lot of item j, 

leaving out no possibility to produce other items. 

  We have not included this rather cumbersome modification in our model, since the 

case where minimum batch sizes exceed total capacity for more than two consecutive 

macro periods in fact looks very unlikely. Nevertheless, should capacity critical 

environments to that extent be considered with considerably large minimum batch sizes 

and/or changeover times, our formulation will be able to handle the case with the addition 

of constraint set (3.14) along with some modifications. 

 

3.4.2 Enabling Late Changeovers from Item Zero 

 

  In this part, we shall briefly explain the reasons for which we allow item zero 

changeovers in positions later than position 1. 

  Recall that the dummy item zero indicates the initial setup state of the facility at the 

beginning of the planning horizon. The incorporation of this item in the model poses some 

difficulties in the presence of sequence dependent changeovers. As it has been discussed in 

Section 3.2, changeovers involving this special item are not defined symmetrically, i.e., 

although we can change over from item zero to another item, changeovers from other items 

into item zero ( ni0δ ) are not allowed and all the constraints in the model are appropriately 

built to consider this feature. As a matter of fact, what the model attempts to accomplish is 

to enforce a single transition from item zero (the initial state) into one of the items in the 

product mix at the beginning of the planning horizon before starting production, and never 

return to this state again. We need to point out that this single changeover does not 

necessarily take place in the very first position or even the first period. For this 

phenomenon, there are two reasons, both of which depend mainly on minimum batch size 

restrictions: 

 

i) There may not be any demand early in the planning horizon. In this case, if the item zero 

changeover is performed right at the start, the positive minimum batch sizes oblige 

immediate production of an item in the first position. Note that empty setups, i.e., setups 



 

 36 

without immediately following production, cannot be accommodated for the first position 

unless it is the only position in period 1 (only then can production be delayed until the 

consecutive position in the next period via minimum batch size splitting). Thus, this 

situation would result in unnecessary early production and excessive inventory carrying 

costs.  

 

ii) Case (i) may not even be feasible, since the facility may not be able to start production 

right away due to minimum batch size restrictions and restricted capacity. This case is 

highlighted below using an example. 

 

Example: Consider a problem with two periods and two positions per period, where only 

one item (Item 1) has positive demand in period 1. Let the period capacities be 2 units each 

and the demand quantities of item 1 be one unit for each period. The changeover time 

between item zero and item 1 is 1 unit long and the minimum batch size of the item is 2 

units. The optimal solution would look like the case in Figure 3.4, where the facility 

switches to item 1 in the last position of period 1 (i.e., position 2), where a production lot 

starts up and extends over to the consecutive period in order to take advantage of minimum 

batch size splitting (the case discussed in Section 3.4.1). However, by restricting the initial 

changeover to be at the very first position, we enforce immediate production of item 1 in 

position 1, which is not possible, since the sum of the initial changeover time (1 unit) and 

the minimum batch size (2 units) exceeds the capacity limit (2 units). Even though a 

feasible solution exists, the model is not able to obtain it in this case.  

 

 

 

 

 

 

 

 

 

Figure 3.4 The Example Problem for Late Item Zero Changeovers 
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  Formally, we can say that case (ii) is encountered when the following conditions 

are satisfied: 

 

� 11 ≠L                   (The first period contains more than one position) 

� ∃  unique j s.t. dj1>0         (There is a single item with positive demand in t=1) 

� jj STCm 01 −>                (The minimum batch size of an item exceeds available  

   capacity in period 1) 

� jSTCId 011011 −≤−       (The net demand can be produced with the available  

   capacity in period 1, otherwise the case is infeasible) 

 

  Hence, the item zero changeover cannot be restricted to take place at the first 

position only, and in order to incorporate this aspect in the model, we need to define the 

changeover variables corresponding to item zero over all positions.  

 

3.4.3 Prevention of the Manipulation of Item Zero Changeovers 

 

 
  In this part, we shall try to justify the need for adding constraint (3.9) in our model 

in order to be able prevent the manipulation of item zero changeovers. 

  Even though variable definitions and modifications in model constraints regarding 

item zero changeovers have been made properly, the model can still manipulate the solution 

in the absence of constraint (3.9). Let us illustrate the case with a small example problem.  

 

Example: Consider the first three positions in a problem with 2 items (plus item zero). 

Suppose that the highlighted circles denote positions with positive production values and 

the arrows indicate changeovers between items. If constraint (3.9) is excluded, one can 

come up with a solution similar to that portrayed in Figure 3.5 on the next page. 
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Figure 3.5 Example Denoting the Manipulation of Item Zero Changeovers 

        
 

  In the solution above, the facility initially switches to item 1 in the first position 

and performs the production of items 1 and 2 in the first and third positions respectively. 

However, note that in doing so, there is no direct transition between items 1 and 2; instead, 

item zero reappears in the plan in position 2, causing the logical link between item 

changeovers to be broken. In this way, the changeover cost between items 1 and 2 is not 

incurred. In fact, it is easy to verify that this situation does not violate any constraint and 

causes an incorrect interpretation of changeover penalties. 

 A closer look reveals that the problem occurs in position 2, in which there is no 

production. In this position, it looks as though the facility is set up for item zero (W02=1) 

without a changeover into it ( 102δ ), when in fact such a changeover and the corresponding 

changeover constraint (3.7) are undefined. Instead, the changeover variable 112δ  takes a 

positive value although the facility is not set up for item 1 in position 2. If we examine the 

corresponding changeover constraint (3.15) below, we can see the variable 112δ  can take 

the value of 1 without causing any violations, as the constraint is in “greater than or equal 

to” form. 

 

  11211112 −+≥ WWδ  ⇒    0112 ≥δ             (3.15) 

                          

 

W11=1 

011δ =1 

W02=1 

112δ =1 

W23=1 

023δ =1 

(1) (0) 
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 In order to resolve this problem, let us introduce constraint (9) into the model, 

which is reproduced below: 

 

  ∑
=

+=
N

j
njn

0
)1(000 δδ     n∀ =1,...,(LK-1)         (3.9)                            

 

 This constraint ensures that if there is a changeover in position (n+1) from item 

zero to another item or to itself, then the facility must have been in state zero in the 

previous position (position n) via an earlier transition from itself (i.e., 100 =nδ ). In this 

way, the constraint helps establish an unbroken link of item zero changeovers and prevents 

the reappearance of item zero once the facility is setup for another item. It is easy to verify 

that the case displayed in Figure 3.5 violates constraint (3.9) for n=2 and that the problem is 

eliminated in this way. 

 

3.5 Formulation of the GLSP as a Transportation Problem  

 

 
  In this section we present the alternative mathematical formulation of the GLSP, 

which is based on the Transportation Problem (TP). Similar formulations are also referred 

to as the Simple Plant Location Model (SPL) in some texts. This idea has been applied to 

many lot sizing problems, for which a few examples were provided in Section 2.2.4. 

However, to the best of our knowledge, this is the first study so far to use it within the 

GLSP context. The TP reformulation is known to be a strong formulation for lot sizing 

problems, as it has been briefly discussed in previous sections. For this reason we have 

decided to implement it for our problem in order to evaluate whether a change in 

formulation would bring about considerable improvement in the solution.  

  The basic idea in this alternative formulation is to disaggregate the production 

variables by relating each production quantity to the period at which it will be required. 

Considering our case in light of the TP reformulations in the literature, a first line of 

thinking would suggest that the following relationship holds: 

 

  
n

K

jn jnt
t

X Q
τ=

=∑      ,j n∀                      (3.16) 
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where jnX  is the production variable in the I&L formulation and jntQ  denotes the quantity 

of item j produced in position n to satisfy the demand of period t. The total production 

quantity of position n would thereby be distributed to the future periods of consumption. 

However, one should keep in mind that our formulation of the GLSP incorporates 

minimum batch sizes as well as the possibility of “dummy production”, i.e., unnecessary 

production carried out for the sake of economizing on changeovers. This follows that we 

cannot associate every unit produced with the demand of some period, since part of the 

production quantities may remain unused at the end of the planning horizon. To take this 

case into consideration, we need to define an extra variable jnR  which denotes the quantity 

of the production lot in position n left unused at the end of the horizon. With this addition, 

relation (3.16) is replaced by: 

 

  
n

K

jn jnt jn
t

X Q R
τ=

= +∑     ,j n∀                      (3.17) 

 

  With the new disaggregated production variables, there is no need to include 

inventory variables in the model. Nevertheless, our model incorporates the possibility of 

positive initial item inventories, which are represented as the production of position zero 

(before the beginning of the planning horizon). The initially available inventories are also 

disaggregated according to their period of usage.  

  The extra decision variables and parameters used in the TP formulation are defined 

below, followed by the complete mathematical model. 

 

Decision Variables: 

Qjnt: Quantity of item j produced in position n to satisfy the demand of period t, 

where nt τ≥ . 

(Note that for initial inventory, the definition of the variable is changed as follows: 

Qj0t:     Part of the demand of item j in t satisfied from the initial inventory on hand.) 

Rjn:      Unused portion of the quantity of item j produced in position n, in other words,  

        the production carried to period K+1 (beyond the planning horizon)  

      (Note that if n=0, it represents the unused portion of the initial inventory of item j.) 
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Parameters: 

CQjt: Unit cost of producing item j t periods in advance of demand. 

  CQjt = CPj + t * hj 

For the variables associated with initial inventory, the corresponding cost term 

becomes (t-1)* hj 

 

 

[TP]  

Minimize   0( )
0 0 1 1 1 1 1

( 1)
K K

n

n

L LN N N K N K

ij ijn jnt j j tj t
i j n j n t j t

SC CQ Q t h Qτ
τ

δ −
= = = = = = = =

+ + −∑∑∑ ∑∑∑ ∑∑   

       0
1 1 1 1

( ( 1) )
KLN N K

j j j n j jn t t
j j n t

Kh R CP K h R COOτ
= = = =

+ + + − + +∑ ∑∑ ∑         (3.18) 

Subject to   ∑
=

=
tL

n
jtjnt dQ

0

              jt,∀        (3.19) 

       ∑
=

=+
K

t
jjtj IRQ

1
000               j∀              (3.20)      

           jntjjnt WMQ
nτ

≤               tnj ,,∀    (3.21)      
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               tLntj =∀ ,,    (3.23’) 

 

        Constraints (3.6)-(3.11) 

 

where    Mjst =   





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

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j

ss
jt

P

C
d

)1(
,min

γ
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  We provide brief remarks below regarding different aspects of the TP formulation 

in contrast with the original I&L formulation. 

  The objective function (3.18) again minimizes the total costs of changeovers, 

production, inventory holding and overtime, although in a somewhat different form. The 

costs of inventory holding and production are charged together (as jtCQ ) over the 

corresponding disaggregated production variables. Apart from these, note that the objective 

function also contains extra terms which are associated with: 

� initial inventory which is used to satisfy the demand of some period, incurring 

inventory carrying costs until then, 

i.e., ∑∑
= =

−
N

j

K

t
tjjQht

1 1
0)1(    

� initial inventory which remains unused, incurring inventory carriage costs until 

period K, 

i.e., ∑
=

N

j
jjRKh

1
0  

� unused production realized during a position within the planning horizon, incurring 

a production cost in position n as well as inventory carriage costs until the end of 

the planning horizon, 

i.e.,  ∑∑
= =

+−+
N

j

L

n
jnjnj

K

RhKCP
1 1

))1(( τ  

 

  Constraint (3.19) guarantees that demand is satisfied for all items and periods.  

  Constraint (3.20) ensures that the available initial inventories are either assigned to 

satisfy the demand of some period, or they are left unused at the end of the planning 

horizon. Note that in the absence of this extra constraint, unused initial inventories may not 

take correct values, resulting in incorrect carrying charges. Recall that the I&L formulation 

incorporated inventory balance relations which automatically eliminated this possibility.   

  Another point to be highlighted is the upper bound used in constraint (3.21). Recall 

that the I&L formulation featured a bound on the total quantity produced in a position based 

on capacity. Here, the bound is established over the disaggregated production quantity, 

instead of the total production quantity, which allows us to take demand as well as capacity 

into account while determining a value for the big M term (3.24). Therefore, the resulting 

bound is much tighter compared with its I&L counterpart. 
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  The rest of the formulation becomes essentially identical to the I&L model if all 

production variables are substituted by the disaggregated production variables and unused 

production variables according to relation (3.17).  

  Following the observed results in the literature, our expectation at this point is to 

achieve stronger LP relaxation values with the TP formulation due to tightened production 

bounds. However, a drawback of this formulation is the fact that the number of 

disaggregated production variables grows quadratically with the number of time periods, 

whereas this rate is only linear for I&L. The nature of the tradeoff between tightened 

relaxations versus increased complexity is evaluated through numerical experiments, where 

we expect to ascertain whether it pays off to use the alternative formulation for our 

problem.     
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CHAPTER 4  

 

ENHANCEMENT OF THE GLSP FORMULATION  

AND COMPUTATIONAL RESULTS 

 
 
 
 
  It has been shown that the feasibility problem of the CLSP with positive setup 

times is NP-complete (Maes et al., 1991). Since sequencing decisions are also taken into 

account in the GLSP as well as other additional features, the GLSP is a more general large 

bucket model than the CLSP. The feasibility problem for the GLSP with non-zero 

minimum batch sizes and without setup times is proved to be NP-complete (Fleischmann 

and Meyr, 1997). Thus, we can infer that for our version of the GLSP with positive 

changeover times and minimum batch sizes (also behaving as changeover times in a way), 

which is more general than the formulation used by Fleischmann and Meyr (1997), the 

feasibility problem is also NP-complete without the option of resorting to the use of 

overtime or in the case of limited overtime. 

  In order to attempt to solve the problem optimally, we have decided to make some 

enhancements to the two alternative formulations presented in Chapter 3. This chapter 

discusses the additional inequalities incorporated in our models for the purpose of 

restricting the solution space and facilitating the solution process. Some of these are valid 

inequalities adopted from the literature and some help in eliminating redundant solutions. 

All these inequalities in nature are redundant for the mixed integer solution of the problem. 

It has to be emphasized at this point that the approach adopted by the authors is one of 

single-session (a-priori) addition of additional inequalities. The purpose is to strengthen the 

LP relaxation of the problem, since a strong initial relaxation generally has a big impact on 

the performance of the solution algorithm, as has been pointed out by Aardal (1998). 

Instead of having to design special purpose Branch-and-Cut routines, a-priori addition of 

valid inequalities also enables us to easily make use of commercially available packages for 

the solution of the problem. 
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  In what follows, the proposed inequalities to be used are introduced along with 

brief explanations. We then present the results of a preliminary set of experiments 

conducted so as to assess the impact of incorporating these inequalities in the formulations, 

which will eventually lead us to select the best combination as an experimental setting for 

the rest of the study. 

 

4.1 The Proposed Inequalities  

 

  In this section, we introduce the set of extra constraints that we consider including 

in our model, followed by some explanations. The impact of incorporating some of these 

inequalities on the LP relaxation will be highlighted using small example problems.  

  We have classified the inequalities to be added to the model into two groups 

according to their purposes: i) valid inequalities related with setups and changeovers 

(abbreviated as VI) for strengthening the LP relaxation, and ii) elimination constraints to 

remove redundant integer solutions (abbreviated as EC). Note that although classified 

differently, some inequalities within the EC group are also proven to be valid inequalities 

that are able to strengthen the LP relaxations, as will be discussed in the upcoming parts of 

this section.  

 

4.1.1 Valid Inequalities Related with Setups and Changeovers (VI) 

   

  Analysis of the results of a few initial tests with the formulations introduced in 

Chapter 3 revealed that the LP relaxations are poor in quality, mainly due to the assignment 

of non-integral values to the changeover and setup variables. We present a small size 

problem in order to demonstrate an example LP relaxation solution and the effect of 

incorporating valid inequalities. 

 

Example: Consider a problem with 3 items and a single period with 3 positions. The period 

capacity is 6 units and each item has a demand quantity and minimum batch size of 1 unit. 

Let the changeover times between the items be as shown as in Table 4.1 on the next page. 

 

 
 
 



 

 46 

Table 4.1 Changeover Times for the Example Problem 

 

items 1 2 3

0 1 2 2

1 0 1 2

2 2 0 1

3 1 2 0
 

 
 

  For simplicity, it is assumed that the changeover costs are equal to the changeover 

times. Quick examination of the changeover times is sufficient to realize that for each item, 

there is a single “ideal transition” incurring the lowest changeover time of 1 unit. Since all 

the items need to be produced once, the production sequence with the lowest total 

changeover time can easily be determined as 0 � 1 � 2 � 3. Thus, the optimal sequence 

looks like the following: 

 
 

1 2 3

1

1

1

MIP Optimal : 3.000

1

1

1

 
 

Figure 4.1 Optimal Solution for the Example Problem 

 
 

  In Figure 4.1, the gray boxes stand for the three positions. There are four rows in 

each box, each of which is reserved for a different item, with item zero on the top row and 

the other three items below in order. Items are differentiated with the use of alternative 

colours, where green, pink and yellow indicate items 1, 2 and 3 respectively. Item zero is 

denoted with white, even though it does not appear in the sequence in Figure 4.1. If an item 

is assigned to a certain position in the schedule, the row for the corresponding item in that 

position is highlighted in the item’s colour. For instance, since item 1 is assigned to the first 
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position, the second row of that position has been marked in green. Entries inside the rows 

of the items denote the value of the setup variables (Win) while the arrows linking the 

positions stand for the changeover variables ( ijnδ ) between the rows of the corresponding 

items. Therefore, from the figure, we can understand that after an initial changeover from 

item zero into item 1 in the first position, items 2 and 3 are produced in the remaining two 

positions. This sequence consumes the entire period capacity of 6 units and has an 

associated objective function value of 3.  

  The LP relaxation solution of the same problem is provided in Figure 4.2 below. 

Instead of the desired structure where a single item is assigned to each position and a single 

changeover takes place between each pair of consecutive positions, we see that multiple 

items are assigned to positions with partial (non-integral) values which add up to 1. 

Moreover, we realize that there is no direct link between setup and changeover variables, 

namely an item may be assigned partially to a position but there may be no incoming or 

outgoing changeovers related with it. See items 2 and 3 without any changeovers in Figure 

4.2.   

  

   

Pure

1 2 3

0.958 0.875 0.625

0.042 0.042 0.125

0.042 0.125

0.042 0.125

LPR : 0.042

0.042 0.0420.042

0.958 0.958 0.958

 

 

Figure 4.2 LPR of the Example Problem with the Pure Formulation 

  

 

  The poor LP relaxation quality of the pure formulations has led us to look for ways 

to enhance the structure between the setup and changeover variables by adding some extra 

inequalities, which will be discussed in detail with the use of the example problem.  

  It has to be emphasized that our approach in introducing these valid inequalities is 

not essentially one related with the details of polyhedral theory, but rather one for 
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strengthening the LP relaxation as much as possible. Our focus is on the relationship 

between changeovers and setups, unlike the major portion of the related literature dealing 

with variants of (l,S) type valid inequalities introduced by Barany et al. (1984), which are 

out of our scope in this work. Therefore, we concentrated on a few studies dealing with 

start-ups and sequence dependent setups, such as those by Wolsey (1989, 1997, 2002) and 

Belvaux and Wolsey (2000, 2001). It needs to be said that the field for valid inequalities 

that deal with big bucket models with sequence dependent setups is mostly left open, as has 

been pointed out by Wolsey (2002).  

 

4.1.1.1 VI-1 (Unit Flow Equalities) 

 

a. jn

N

i
ijn W=∑

=0

δ                1,..., , 1,..., Kj N n L∀ = =         (4.1) 

    ( nn W000 =δ  for j = 0 and 1,..., Kn L= )  

 

 b. )1(
1

−
=

=∑ ni

N

j
ijn Wδ    1,..., , 2,..., Ki N n L∀ = =      (4.2) 

   ( )1(0
0

0 −
=

=∑ n

N

j
jn Wδ  for j = 0 and 1,..., Kn L= ) 

 

  The two equalities forming VI-1 provide the link between the setup and changeover 

variables, and in a way, they work as flow balance constraints. VI-1a is related with the 

incoming flow while its counterpart VI-1b handles the outgoing flow. The use of these 

valid inequalities can be traced back to the work of Karmarkar and Schrage (1985), where 

the changeovers were viewed within a network structure as the flow of a single unit 

between item setups. Mathematical proof of the validity of these equations can be given as 

follows: 
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  The proof of VI-1b can be done in exactly the same manner. 

  Note that for the first two sets of valid inequalities, the constraints take a special 

form for item zero, which is due to the asymmetrical nature of its changeovers, as it was 

discussed extensively in Chapter 3. 

  If we add VI-1 to the pure formulation for the small example problem, we obtain a 

stronger LP relaxation solution with an objective value of 0.278. The resultant solution 

sequence with VI-1 is presented in Figure 4.3 on the next page along with the solutions 

corresponding to other valid inequalities that will be discussed next. Note that all valid 

inequalities are separately added to the pure formulation in this figure.  

  It can be seen that although the multi-item assignment to positions remains 

unchanged, the addition of VI-1 to the pure formulation has resulted in a structure where 

changeovers and setups are linked properly with balanced in-flows and out-flows. There are 

now changeovers into and out of items 2 and 3 which were otherwise unconnected to the 

other items in the pure formulation solution.  

 

 

Proof:  For VI-1a, consider the changeover constraint (3.7),  
    i.e., 1)1( −+≥ − jnniijn WWδ .    

             If we sum these constraints over all i, we obtain: 

∑ ∑ −+≥ −
i

jn
i

niijn NNWW )1(δ  

    ∑ −+≥
i

jnijn WN )1(1δ  

i) If  1=jnW  then jn
i
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i

ijn W==⇒≥ ∑∑ 11 δδ  

ii) Otherwise if 0=jnW  then jk ≠∃  s.t. 1=knW  

    ∑ =
i

ikn 1δ      (From i) 

    jn
i

ijn W==⇒∑ 0δ                                        □ 
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Pure Including VI-3

1 2 3 1 2 3

0.958 0.875 0.625 0.833 0.833 0.833

0.042 0.042 0.125 0.167

0.042 0.125 0.167

0.042 0.125 0.167

Including VI-1 Including VI-4

1 2 3 1 2 3

0.833 0.833 0.833 0.833 0.833 0.833

0.056 0.056 0.056 0.167

0.056 0.056 0.056 0.167

0.056 0.056 0.056 0.167

Including VI-2 Including VI-5

1 2 3 1 2 3

0.870 0.815 0.815 0.667 0.333

0.056 0.056 0.056 1.000

0.019 0.074 0.074 0.333 0.333

0.056 0.056 0.056 0.333

LPR : 0.167

LPR : 0.167

LPR : 3.000

LPR : 0.042

LPR : 0.278

LPR : 0.259

0.042 0.0420.042

0.958 0.958 0.958

0.056

0.056

0.056

0.056

0.0560.056

0.056

0.056 0.056

0.833 0.833 0.833

0.0190.056

0.056
0.056

0.056 0.056

0.0740.019

0.056 0.056

0.870 0.815 0.815

0.167

0.167

0.167

0.833 0.833 0.8330.833 0.833

0.167

0.083

0.083

0.083 0.083

0.833 0.833 0.833

1

1

1

 

Figure 4.3 The Individual Effects of Valid Inequalities on the Solution of the Small Example Problem 
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4.1.1.2 VI-2 (Separate Unit-Flow Inequalities) 

 

a. jnijn W≤δ              0,..., , 1,..., ,i N j N n∀ = =       (4.3)  

    ( nn W000 ≤δ  for j = 0 and 1,..., Kn L= )  

 

 b. )1( −≤ niijn Wδ              0,..., , 1,..., ,i N j N n∀ = =       (4.4)  

   ( )1(000 −≤ nn Wδ  for j = 0 and 1,..., Kn L= ) 

                       

  The two sets of inequalities in VI-2 work in a way similar to that of VI-1 

constraints, but they are written separately for each (i,j) pair whereas VI-1 constraints are 

equalities expressed over the sum of items. Again the constraints take a special form for 

item zero. The validity of VI-2 follows from VI-1, as it is basically a separated form of the 

sum of changeover variables, each of which can take only non-negative values.  

  The results obtained as a result of incorporating VI-2 into the pure formulation for 

the small example problem are similar to those of VI-1, but somewhat poorer. If we 

examine Figure 4.3, we can see that although there is an enhanced flow structure in this 

case compared with the pure formulation, the flow balance equations do not necessarily 

hold for all item-position combinations. This is due to the fact that the link between setup 

and changeover variables is established on an individual basis in the form of inequalities in 

VI-2. The resulting LP relaxation value is slightly lower than that corresponding to the 

addition of VI-1.  

  

4.1.1.3 VI-3 (Setup-Startup Inequality) 

 

 1)(
|1 |0|0

)1( ≤−++ ∑ ∑∑
≠= ≠=≠=

−

N

ijj

N

jkk
kjnjn

N

ijj
jinni WW δδ  0,..., ,i N n∀ =                         (4.5)  

 

  VI-3 appears in the startup literature (for the results of Constantino, see Belvaux 

and Wolsey, 2001). The inequality is written for a specific item i and a position n, and is 

formed of four terms that represent the following: 
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  For each i and n pair, four mutually exclusive cases are possible, all of which can 

be handled by this valid inequality as shown below: 

 

i) The facility is set up for item i in positions n-1 and n.  

This logically implies that there can be no startups for item i or for another item in 

position n. 

 1)1( =−niW , 0
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jinδ , ∑
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ijj
jnW

|1

0 , ∑ ∑
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|1 |0

0δ        (constraint satisfied) 

 

ii) The facility is set up for item i in position n-1, but not in n. 

 1)1( =−niW  and ∑
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=
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ijj
jinδ                    (constraint satisfied) 

Examining the mathematical form of the constraint, we can see that both setup 

terms corresponding to items i and j (j ≠i) taking the value of 1 would force the last 

term with the negative sign corresponding to the startup of item j to be 1 as well, 

since the left hand side cannot exceed 1. Logically, this implies that the facility 

switches over from item i to some other item j in position n, which describes a 

startup.  

 

iii) There is a startup of item i in n (i.e., item i is set up in position n, but not in n-1). 

 0)1( =−niW  and 1
|0

=∑
≠=

N

ijj
jinδ   

⇒ ∑
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|1
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0δ                      (constraint satisfied) 

 

 

setup of item i 
in (n-1) 

startup of 
item i in n 

setup of item j 
in n 

startup of 
item j in n 
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iv) The facility is set up for other items in n-1 and n. 

 0)1( =−niW , 0
|0

=∑
≠=

N

ijj
jinδ  and  ∑

≠=

=
N

ijj
jnW

|1

1  

  ⇒ ∑ ∑
≠= ≠=

=
N

ijj

N

jkk
kjn

|1 |0

0δ or 1                    (constraint satisfied) 

This implies that item i does not appear in positions n-1 or n, thus there can be no 

startup for item i in position n (the first two terms in the constraint are zero). The 

facility must be set up for some other item j in position n (the third term is 1). 

Hence, the left hand side of the constraint is already 1 and the last term with the 

negative sign can either take the value of 0 or 1 (i.e., there can be a startup for a 

different item in position n, or not). 

 

  Mathematical proof of the validity of VI-3 can be done by using VI-1 and VI-4, 

which is explained in the next subsection.  

  It can be seen from Figure 4.3 on page 50 that the pure formulation solution 

violates VI-3 for i = 0 and n = 2 and 3. When VI-3 is incorporated into the model, the LP 

relaxation value is improved to 0.167.  

 

4.1.1.4 VI-4 (Lifted Version of the Changeover Constraint for i=j) 
 

 iin

N

ijj
jjnniin WW δδ +≤++ ∑

≠=
− 1

|0
)1(    0,..., ,i N n∀ =                     (4.6)

           

  VI-4 is a lifted version of the changeover constraint (3.7) for i=j. This constraint 

appears in the context of small bucket lot sizing models (for the results of Constantino, see 

Belvaux and Wolsey, 2001).  

  Let us discuss the validity of the constraint on the basis of the possible values that 

the term )1( −+ niin WW  can take. 

  For the case where the facility is set up for item i in positions n-1 and n (i.e., 

1)1( ==− inni WW ), it enforces the corresponding changeover variable ( iinδ ) to take the 

value of 1, as in the unlifted form. Besides, it automatically sets other self-changeover 

variables ( jjnδ ) to zero, since the left hand side cannot take a value greater than 2. 
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  If the sum )1( −+ niin WW  is 1, i.e., if there is a setup for item i in only one of the two 

positions n-1 and n, variable iinδ  is forced to take the value of 0 (via VI-1). This again sets 

other self-changeover variables ( jjnδ ) to zero, since the left hand side cannot exceed the 

value of the right hand side, which is 1. 

  For the final case where )1( −+ niin WW  equals 0, variable iinδ  is again forced to take 

on the value of 0, which implies that the sum of the other self-changeover variables is less 

than 1, i.e., 1
|0

≤∑
≠=

N

ijj
jjnδ , which holds in any case and therefore is not an extra restriction.  

  At this point, we can show mathematically that VI-3 follows from VI-1 and VI-4 

by substitution, as demonstrated below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Referring back to Figure 4.3 on page 50, we can see that the addition of VI-4 to the 

pure formulation improves the LP relaxation value of the example problem. The reader can 

check that VI-4 is violated in the pure formulation for i=2, 3 when n=2 and i=1, 2, 3 when 

n=3. 

  

 

Proof: If we separate self changeovers from the sum in (4.1), we can express VI-1 in  

     the following alternative form: 

jn

N

jii
ijnjjn W=+ ∑

≠= |0

δδ          (4.7) 

  If we use equation (4.7) to substitute self-changeover terms in VI-4, we obtain: 

   )(1)(
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N
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N
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N
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  We can exclude item zero from the domain of the second summation, since no  

             startup is possible for this item. In this way, we obtain VI-3.  

   1)(
|1 |0|0

)1( ≤−++ ∑ ∑∑
≠= ≠=≠=

−

N
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4.1.1.5 VI-5 (Initial Changeover Restriction) 

 

 ∑ ∑
= ≠=

≥
jt

L

n

N

jii
ijn

1 |0

1δ      1,...,j N∀ =                                (4.8) 

where jt  represents the smallest t that satisfies ∑
=

>
t

s
jjs Id

1
0 . 

 

  VI-5 is a logical inequality developed by the authors with the purpose of enforcing 

an initial changeover into each item that requires production. This requirement is evaluated 

through the parameter tj which, by definition, is the earliest period at which the cumulative 

demand exceeds the initially available inventory. This implies that for each j, there must be 

at least one production up to period tj since backlogging is not allowed. Our aim in using 

this inequality is to link this production requirement to changeover variables, by suggesting 

that if production has to be performed for item j somewhere within the interval from the 

beginning of the planning horizon until the last position in period tj, then there must also be 

at least one changeover from a different item into item j within the same interval in order to 

maintain feasibility.     

  In developing VI-5, our main motivation was to break the generally observed LP 

relaxation pattern where item zero has a series of predominant changeovers throughout the 

planning horizon and only a small portion of the unit changeover flow can visit the actual 

items. In this regard, reexamine Figure 4.3 for the pure solution as well as those with other 

inequalities but VI-5. It is easy to notice that the values for the self-changeovers of item 

zero are usually close to 1, while other changeovers take very small values around zero in 

relation to the corresponding W variables which also take small decimal values. We have 

realized that if we could enforce an initial transition from item zero to the actual items, this 

undesirable structure could be broken, since once item zero state has been quit, there is no 

possibility of changing back to it later in the planning horizon. Note that VI-5 is in the form 

of a greater than-or-equal to constraint; therefore it strives to bring the values of the 

changeover variables close to integrality. 

  The final case in Figure 4.3 on page 50 indicates the solution of the example 

problem including VI-5. Since there is a single period and each item has zero initial 

inventory and positive demand, it follows that tj=1 for each j, i.e., each item needs 

production in the first period. This enforces a changeover into each item from another 
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within the planning horizon, which results in a solution where all changeover variables take 

integral values. The inequality was successful in breaking the dominance of item zero 

which was prevalent in all other solutions. The LP relaxation value turns out to be 3, which 

is the optimal solution value; however, some of the setup variables are still partially 

assigned to positions. Therefore, in the scope of this small example problem, VI-5 has 

resulted in the strongest LP relaxation solution by far.   

 

4.1.2 Elimination Constraints (EC) 

 

  In problems with high number of positions, there may be multiple ways to 

represent the same solution, as there may be some idle positions within periods and the 

production quantities may be arbitrarily assigned to the several consecutive positions 

forming the production lot of an item. Although these differences do not cause any changes 

in the objective function value or the resulting optimal production plan, they are sources of 

inherent redundancy in the model, which is undesirable from the point of view of modeling 

efficiency. 

  In order to avoid these redundant solutions and restrict the solution space without 

eliminating any feasible solution, we have incorporated two extra constraints EC-1 and EC-

2 in our model, which will be introduced in the following subsections. These two 

constraints were originally proposed by Fleischmann and Meyr (1997). We have treated 

these constraints as a separate class, since their essential purpose is not one of strengthening 

the LP relaxation solution, as the previously discussed valid inequalities, but one of 

eliminating alternative solutions. However, it needs to be noted that EC inequalities may 

not always be totally ineffective in strengthening the LP relaxation values. In fact, we were 

able to demonstrate a few cases where EC-1 constraints happened to chop off LP relaxation 

solutions, acting as valid inequalities as well. No such inference can be made about EC-2 

constraints as yet.  

 

4.1.2.1 EC-1 (Idle Position Arrangement) 

 

  ∑ ∑∑ ∑
= ≠== ≠=

− ≥
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  EC-1 ensures that idle positions within a period, if any, are placed at the end of that 

period. This is accomplished by keeping track of changeovers into different items (i.e., 

startups) over all consecutive position pairs within a period. Figure 4.4 below may provide 

a clearer understanding as to how certain situations are eliminated by the help of EC-1. 

 

 

. . 
.

 

        

     Figure 4.4 Example Case that Violates EC-1 

 

 
  Assume that in the case depicted above, all the three positions (n-2, n-1 and n) 

belong to the same time period, which is automatically ensured by EC-1, since it is only 

written for positions greater than Ft+2 for any t. In the above figure, item i has been 

assigned to two consecutive positions (one of which can remain idle), followed by a 

changeover into a different item (item j) in position n. Then, it can be verified that the sums 

of the values of the changeover variables corresponding to a change of item status for 

positions n-1 and n are 0 and 1, respectively, i.e.,  

  0
1 ,0

)1( =∑ ∑
= ≠=

−

N

j

N

jii
nijδ  and 1

1 ,0

=∑ ∑
= ≠=

N

j

N

jii
ijnδ  

which implies that EC-1 is violated in this case.  

  The correct representation of the same situation without any loss of information 

would be as illustrated in Figure 4.5 on the next page. 

  In this way, the constraint ensures that all item production lots take up a single 

position at the beginning of a period and positions with self-changeovers (or idle positions), 

if any, are placed at the end of a period for only one item.  
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. . 
.

 

             

           Figure 4.5 Correct Representation that Satisfies EC-1 

 

   Compared with its original version (Fleischmann and Meyr, 1997), the domain of 

EC-1 has been modified slightly so that the final positions of periods are not covered. In 

this way, we try to restrict the solution space for the GLSP in exactly the same way as 

Fleischmann and Meyr, while treating the last position within a period as a special case due 

to the possibility of partial production resulting from minimum batch size splitting 

discussed earlier (Section 3.4.1). 

  As it has been pointed out, EC-1 is actually a valid inequality, since there are cases 

where it can eliminate some LP relaxation solutions and strengthen the LP objective 

function value, although its effect is not as strong as those of VI presented earlier. For 

details, see Appendix A where the validity of EC-1 was demonstrated on an example 

problem in the presence of all other VI. 

 

4.1.2.2 EC-2 (Production Quantity Distribution) 

 

  )2(
0

)1( jjn

N

i
nijjtjn MX δδ −−≤ ∑

=
−

  , 1,..., , ( 1),...,t tt j N n F L∀ = = +         (4.10)  

 

  In the case where the production lot of an item contains multiple positions, EC-2 

assigns the entire production quantity to the first position of the lot in order to avoid 

arbitrary distribution of the total lot size. This is accomplished by checking the following 

two conditions: 

� whether item j is assigned to position n-1 (the penultimate term in the constraint),  

� whether item j is assigned to position n as a result of a self-changeover from the 

previous position (the last term in the constraint).  



 

 59 

  If both conditions are satisfied, the production quantity of position n is set to zero; 

otherwise the constraint poses no restrictions upon the production variable. As an example, 

for the case illustrated in Figure 4.5, the entire production quantity of item j’s production lot 

would be assigned to position n-1, and position n as well as any other upcoming position 

for the same lot, are to be left idle. Observation of the domain reveals that this constraint is 

valid for positions inside the same period, and that the last position is not excluded as in 

EC-1, since the working logic of this inequality is not affected by minimum batch size 

splitting. 

  Note that for the TP formulation, the first type of valid inequalities VI and EC-1 

can be used exactly as described, while EC-2 needs to be modified slightly by replacing the 

original production variable with the distributed and unused production variables 

characterizing the TP formulation, as follows: 

   










+∑

=

K

s
jnsjn

n

QR
τ

)2(
0

)1( jjn

N

i
nijjtM δδ −−≤ ∑

=
−
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4.2 Preliminary Experiments 

 

  In Section 4.1, we have presented a set of valid inequalities and elimination 

constraints that are candidates for enhancing the GLSP formulation. In this section, we will 

describe our preliminary experiments conducted in order to determine the experimental 

settings for the remainder of the study by testing the effect of alternative formulations as 

well as those of the additional inequalities.  

  In Section 4.2.1, we present the experimental settings in terms of the combinations 

of different formulations and additional inequalities tested as well as the test instances used. 

Section 4.2.2 contains the results of the preliminary experiments along with discussions. 

 

4.2.1 Experimental Settings 

 

Test Instances 

 

  For the preliminary test data, we have used the smallest twenty instances within the 

“Practical Industry Problems” used by Meyr (2000) with varying numbers of items and 

time periods. The following points can be made regarding the nature of the test instances: 
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� Information about item demands, period capacities, changeover (setup) costs, 

inventory holding costs, unit production requirements, initial inventories, minimum 

batch sizes are used exactly as given. In line with this, production costs are 

assumed to be zero and the use of overtime is not allowed. Note that the original 

parameters listed above all take real values.  

� The instances contain sequence dependent changeover costs but sequence 

independent changeover times. The latter take up around 1-3% of the total available 

capacity in a period, which appears to be too low. For this reason, we have 

performed the experiments under different settings by making several 

modifications on the original data regarding the nature of changeover times and 

costs, which may be briefly depicted as follows: 

o Case A: The original data (Meyr, 2000) where the sequence independent 

setup times have been transformed into sequence dependent changeover 

times and also augmented in size. Augmenting changeover times tighten 

the test instances. 

o Case B: Data used in Case A without any changeover costs. 

o Case C: The original form of changeover costs and times as used by Meyr 

(2000). 

The details regarding how these cases differ from each other and how the modified 

data are generated will be clarified in the next section.  

� In determining the number of positions within a period, we have used the following 

relation: 

Lt - Ft = min{ }2, +tkN  

where kt is the largest integer satisfying∑
=

≤
tk

j
tj Cm

1

, when items are ordered in 

non-decreasing order of their minimum batch sizes. Thus, kt is an indication of the 

maximum number of items that may be assigned to a period under the extreme case 

where the production quantity of each item is as large as its minimum batch size. 

We need to add 2 to kt in order to be able to consider the possibility of partial 

production (i.e., smaller than the minimum batch size) at the beginning and end of 

each period, due to minimum batch size splitting. In sum, we set the position limit 

by allowing each item to be produced once in a period provided that minimum 

batch sizes do not impose an extra restriction.  
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  The preliminary test bed consists of 15 instances with K=4 periods and 5 instances 

with K=8 periods and different numbers of items. Information about instance characteristics 

and classification is provided in Table 4.2 below.  

 

Table 4.2 Preliminary Instance Characteristics * 

 
K = 4 K = 8 

N  
# of 

instances 
Instances  N  

# of 
instances 

Instances 

2 1 3 

3 1 5 

4 1 6 

- 

5 6 1,2,4,7,8,9 5 2 10,11 

6 1 15 

7 2 16,17 
- 

8 1 18 8 1 12 

9 2 19,20 9 2 13,14 
 

* The naming scheme used in the preliminary experiments is different from that of Meyr (2000), 
    since the instances have been renumbered for convenience. 

 

 
  Among these twenty instances, we classify the smallest three (i.e., instances 3, 5 

and 6) as “Easy” instances. In doing so, we have observed that for these three instances, the 

size of N and K, the special structure of changeover times and period capacities facilitate 

the solution of the problem by reducing solution times drastically to less than a few 

seconds. For this reason, their effect on overall averages may be misleading. By making 

such a distinction, we will be able to isolate the statistics for the easy instances from the 

overall averages and thereby we hope to arrive at more reliable conclusions. 

 

Test Options 

 

  The purpose of the preliminary experiments is twofold: The first is to test the 

contribution of a change in formulation, and the second is to get insight about the 

effectiveness of the additional inequalities and then determine their best combination to be 

used as an experimental setting. In this light, we have developed a set of test options which 

include the two alternative formulations, and the candidate additional inequalities on their 

own as well as within several combinations. For easy referencing, we reproduce all 

additional inequalities as they have been used in the preliminary experiments in Figure 4.6. 
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Figure 4.6 The List of Additional Inequalities Used in the Preliminary Experiments 
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  Table 4.3 below summarizes the three fields of test options used in the preliminary 

experiments. 

 

Table 4.3 Legend for Test Options 
 

Option1: Formulation type 
1   Original (I&L) 

2   Transportation Problem (TP) 

Option2: VI - Valid inequalities 
0   None 
1   VI-1 
2   VI-2 
3   VI-3 
4   VI-4  
5   VI-5 
6   VI-1 + VI-2 
7   VI-1 + VI-2 + VI-3 + VI-4 + VI-5 

8   VI-1 + VI-5 

Option3: EC - Elimination Constraints 
0*   None 
5*     EC-1 + EC-2 

  
    

  According to the notation we have developed, each solution setting is characterized 

by the sequential combination of these three test options. For instance, the setting 285 

implies the representation of an instance using the TP formulation with an inclusion of VI-1 

& VI-5 and EC-1 & EC-2. 

  The two EC-type inequalities were considered as a pair and were always added to 

the models together. Moreover, since we expected only a minor contribution from their 

incorporation, we have not tested them in every possible Option2 combination but only 

together with VI-1 & VI-5 (i.e., setting 8 for Option2) and on their own (setting 0 for 

Option2). Thus, overall, we have 22 options to test for each of the 20 instances in this 

preliminary study.  

  All models were coded with Turbo Pascal 7.0 (Borland) and solved by CPLEX 

8.1.0 with default solution options on Pentium IV 1.6 GHz. PC’s with 256 MB RAM 

running Windows NT Workstation 4.0. The computation times are given in CPU seconds 

on this machine setting. The Prime Modulus Multiplicative Linear Congruential Generator 

described by Law and Kelton (2000) was used as the random number generator. 

  For each of the tests, selected instances were solved with the selected options with 

a time limit of 2 CPU hours (7200 CPU seconds). In case the optimal solution cannot be 
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obtained within this time limit, the time limit was extended for the sake of obtaining the 

optimal function value, if possible.  

 

4.2.2 Preliminary Run Results 

 

  In this section, we provide a summary of the results obtained by solving the twenty 

instances under the three different settings (i.e., Cases A, B and C). For each case, the 

results of the corresponding mixed integer (MIP) as well as the linear programming 

relaxation (LPR) solutions are provided.  

  Below is the set of statistics that we mainly make use of for the preliminary 

analysis: 

 

� CPU  

This statistic denotes the MIP solution time (in CPU seconds) for the 

corresponding option. Note that the termination limit for the solution time is 7200 

CPU seconds.  

 

� CPU R (CPU Ratio, i.e., CPU/CPUr) 

 This ratio indicates the proportion of the MIP solution time of the corresponding 

option to the reference MIP solution time, that is, the I&L formulation without any 

additional inequalities (option 100).  

 

� LPR t  

This statistic denotes the LPR solution time (in CPU seconds) for the 

corresponding option.  

 

� LPR R (LPR Ratio, i.e., LPR/LPRr) 

This statistic denotes the ratio between the LP relaxation value of the 

corresponding option and the reference LP relaxation value (of option 100). 

 

� IGap% (Integrality Gap, i.e., %(opt-LPR)/opt) 

It measures the percentage gap between the optimal solution of the instance and the 

LP relaxation value for the option being tested.  
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� #opt 

This statistic counts the number of times the optimal solution is found with the 

tested option within the time limit.  

 

� DU% (Upper Bound Deviation, i.e., %(UB-opt)/opt)  

It measures the percentage gap between the best feasible solution (upper bound) 

obtained at the end of the time-limited run with the corresponding option and the 

optimal solution of the instance.  

 

� ULP% (Upper Bound-LPR Deviation, i.e., %(UB-LPR)/LPR) 

It measures the percentage gap between the best feasible solution obtained for the 

tested option at the end of the time-limited run and the LP relaxation value under 

the same option. 

 

� Nodes  

It denotes the total number of nodes generated by the tested option within the time-

limited run. 

 

� Node R (Node Ratio, i.e., #Nodes/#Nodesr)  

This ratio represents the proportion of the total number of nodes generated by an 

option to the total number of nodes for the reference option (option 100). 

 

4.2.2.1 Results of Case A (Augmented & Sequence Dependent Changeover Times) 

 

  As has been mentioned in Section 4.2.1, the data used Meyr (2000) includes 

sequence independent changeover times which are also relatively small in size compared 

with period capacities. For this reason, we have decided to base our preliminary analysis on 

a setting closer to what is featured by our mathematical formulation, namely where 

changeover times are higher and sequence dependent.  

  Regarding the modifications made on the original data of Meyr (2000), first of all, 

we have incorporated sequence dependency into changeover times. Sequence dependent 

changeover time values were generated in such a way so as to maintain the mean value for 

each item equal to its original sequence independent changeover time. Each sequence 

dependent changeover time entry was produced assuming an inverse relationship with the 
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corresponding changeover cost with the purpose of creating an inherent tradeoff between 

the two. Although we expected the problem instances to become harder to solve in this 

case, the results of a few rough cut experiments have shown that the effects of sequence 

dependency are not significant, because the impact of changeover times is very small in 

these instances compared with changeover costs. Hence, secondly, we considered 

augmenting the size of the changeover times so that they have a more pronounced effect on 

the solution. In order to do so, we have distributed the available cumulative capacity margin 

(Cumulative Capacity-Cumulative Demands) to changeover times. Details related with the 

modification of the data to be used in this case are provided in Appendix B for reference.   

  Out of the total 20 instances tested under Case A, 4 turn out to be infeasible, due to 

increased changeover times and decreased capacity margins after modifications. Among the 

remaining 16 instances, the optimal solutions are known for all but one instance. Solution 

values of individual instances within the time limit are provided in Appendix C.1 along 

with extended solutions for the instances that cannot be solved within 2 hours.  

 

Instances with Known Optimal Solutions 

 

  Table 4.4 on the next page contains detailed results regarding the LPR performance 

of the 22 test options for the 15 instances with known optimal solutions. Note that for some 

of these instances, the optimal solutions have been obtained outside the time limit. From 

these results, it can be seen that some of the options are capable of reducing the integrality 

gap of the pure formulations, i.e., those without any additional inequalities, considerably at 

the expense of increased LPR times. Examination of individual results as well averages 

reveals that the performance of options 150, 170, 180, 185, 250, 270, 280 and 285 appear to 

be promising in terms of their LPR performance, therefore these may be regarded as our 

favourable options at this point. 

  Another observation is that using the alternative TP formulation helps to reduce the 

integrality gaps only slightly. When the gaps for I&L and TP options are compared across 

individual instances, it can be seen that the difference does not go beyond 8%. (See options 

140-240 for instance 5 and options 160-260 for instances 5 and 6). Thus, we can tentatively 

infer that although a change in formulation slightly improves the LPR performance, it is not 

as effective as the addition of a set of favorable additional inequalities. 



  
67  

Table 4.4 Detailed Results for Instances with Known Optimals (Case A) 

IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t

1 5x4 50.1 0.2 50.1 0.1 46.8 0.1 47.2 0.6 50.1 0.2 48.6 0.3 2.2 0.1 46.8 0.3 2.1 0.7 2.1 0.3 2.1 0.5

2 5x4 76.0 0.1 76.0 0.1 73.0 0.1 73.4 0.7 76.0 0.1 74.2 0.3 19.8 0.1 73.0 0.2 19.7 0.5 19.7 0.2 19.7 0.3

3 2x4 42.3 0.0 42.3 0.0 35.9 0.0 36.2 0.0 42.3 0.0 37.3 0.0 11.6 0.0 35.9 0.0 11.3 0.0 11.3 0.0 11.3 0.0

4 5x4 58.5 0.1 58.5 0.1 55.3 0.1 55.6 0.6 58.5 0.2 56.7 0.4 3.9 0.1 55.3 0.2 3.7 1.0 3.7 0.3 3.7 0.6

5 3x4 95.2 0.0 95.2 0.0 91.0 0.0 91.1 0.1 95.2 0.0 93.3 0.0 43.9 0.0 91.0 0.0 42.2 0.0 42.2 0.0 42.2 0.0

6 4x4 100.0 0.0 100.0 0.0 93.6 0.0 96.6 0.1 100.0 0.0 97.4 0.0 26.0 0.0 93.6 0.0 2.9 0.1 2.9 0.0 2.9 0.1

8 5x4 68.1 0.1 68.1 0.1 64.6 0.1 65.6 1.1 68.1 0.2 66.9 0.4 14.9 0.1 64.6 0.2 14.6 0.7 14.6 0.3 14.6 0.5

9 5x4 68.9 0.1 68.9 0.1 64.9 0.1 65.4 0.7 68.9 0.1 66.9 0.4 4.8 0.1 64.9 0.2 4.6 0.7 4.6 0.3 4.6 0.5

10 5x8 59.5 0.3 59.5 0.3 57.4 0.5 57.6 3.9 59.5 0.5 58.6 1.5 31.9 0.3 57.4 1.2 31.8 1.8 31.8 0.9 31.8 1.4

11 5x8 50.5 0.3 50.5 0.5 47.6 0.5 47.9 2.7 50.5 0.8 49.4 1.4 13.0 0.5 47.6 0.8 12.6 2.2 12.6 1.1 12.6 2.2

15 6x4 70.8 0.2 70.8 0.3 67.2 0.2 69.1 2.1 70.8 0.5 70.0 1.0 4.0 0.3 67.2 0.6 3.6 2.7 3.6 1.0 3.6 1.6

16 7x4 56.8 0.3 56.8 0.3 54.5 0.3 56.1 2.9 56.8 0.8 56.4 1.2 16.0 0.4 54.5 0.7 3.7 4.6 3.7 1.4 3.7 3.1

18 8x4 47.5 0.6 47.5 0.9 46.3 1.1 46.9 9.8 47.5 1.4 47.3 3.3 17.8 0.6 46.3 1.7 13.8 10.5 13.8 3.8 13.8 8.5

19 9x4 48.4 1.2 48.4 1.4 47.4 1.4 48.0 15.3 48.4 2.9 48.2 5.6 9.5 1.1 47.4 3.1 8.1 17.0 8.1 7.9 8.1 16.1
20 9x4 68.6 0.7 68.6 1.1 67.5 1.4 68.0 8.6 68.6 2.4 68.3 5.9 29.2 0.9 67.5 2.6 18.1 15.2 18.1 8.3 18.1 15.6

64.1 0.3 64.1 0.4 60.9 0.4 61.6 3.3 64.1 0.7 62.6 1.4 16.6 0.3 60.9 0.8 12.8 3.8 12.8 1.7 12.8 3.4

180

AVERAGE

110

instance

100 105 185150 160 170120 130 140

IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t

1 5x4 50.1 0.2 50.1 0.2 45.6 0.2 46.1 1.2 50.1 0.3 47.9 0.5 2.2 0.3 45.6 0.4 2.0 0.9 2.0 0.4 2.0 0.7

2 5x4 75.9 0.2 75.9 0.2 69.2 0.3 69.9 1.6 75.9 0.4 71.4 0.6 19.8 0.2 69.2 0.5 19.5 0.9 19.5 0.4 19.5 0.7

3 2x4 36.3 0.0 36.3 0.0 33.3 0.0 33.3 0.0 36.3 0.0 35.9 0.0 11.4 0.0 33.3 0.0 11.3 0.0 11.3 0.0 11.3 0.0

4 5x4 58.4 0.1 58.4 0.1 53.4 0.1 54.0 1.0 58.4 0.2 55.8 0.5 3.9 0.2 53.4 0.4 3.6 0.9 3.6 0.4 3.6 0.5

5 3x4 94.8 0.0 94.8 0.0 82.5 0.0 83.4 0.1 94.8 0.0 85.0 0.0 43.9 0.0 82.5 0.0 41.7 0.1 41.7 0.0 41.7 0.0

6 4x4 99.7 0.0 99.7 0.0 85.3 0.0 90.5 0.1 99.7 0.1 92.2 0.0 25.9 0.0 85.3 0.1 2.5 0.1 2.5 0.1 2.5 0.1

8 5x4 68.1 0.2 68.1 0.2 63.0 0.2 64.4 1.8 68.1 0.5 65.6 0.8 14.9 0.2 63.0 0.4 14.6 1.1 14.6 0.5 14.6 0.7

9 5x4 68.7 0.2 68.7 0.2 59.8 0.2 60.7 1.3 68.7 0.4 64.7 0.5 4.8 0.2 59.8 0.5 4.5 1.1 4.5 0.6 4.5 0.7

10 5x8 59.4 1.3 59.4 1.5 55.5 1.5 56.1 11.1 59.4 2.4 57.2 3.5 31.9 1.3 55.5 3.0 31.7 4.1 31.7 2.5 31.7 3.2

11 5x8 50.4 0.7 50.4 0.7 46.5 0.6 46.9 4.4 50.4 1.0 48.7 1.6 13.0 0.5 46.5 0.8 12.6 3.9 12.6 1.7 12.6 2.2

15 6x4 70.6 0.7 70.6 0.8 64.7 0.6 67.3 3.8 70.6 1.1 68.9 1.9 3.8 0.6 64.7 1.0 3.3 4.3 3.3 1.5 3.3 2.7

16 7x4 56.7 0.7 56.7 0.7 53.1 0.8 55.2 4.7 56.7 1.7 55.9 1.6 16.0 0.9 53.1 1.5 3.7 3.9 3.7 2.9 3.7 3.5

18 8x4 47.5 1.4 47.5 2.5 44.4 3.3 45.6 21.1 47.5 3.7 46.4 5.6 17.8 1.8 44.4 4.8 13.3 13.8 13.3 8.4 13.3 13.4

19 9x4 48.4 3.3 48.4 3.9 45.7 5.9 46.9 30.7 48.4 7.4 47.5 9.0 9.4 4.3 45.7 8.4 7.5 24.4 7.5 13.4 7.5 23.4
20 9x4 68.6 3.2 68.6 3.0 65.3 4.2 66.5 17.2 68.6 5.7 67.2 10.7 29.2 4.3 65.3 6.7 17.6 25.0 17.6 14.5 17.6 23.3

63.6 0.8 63.6 0.9 57.8 1.2 59.1 6.7 63.6 1.7 60.7 2.4 16.5 1.0 57.8 1.9 12.6 5.6 12.6 3.1 12.6 5.0

240205 210 220 230

AVERAGE

instance

200 280 285250 260 270
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  Table 4.5 below displays the average statistics for the 22 test options over 12 

instances (excluding the 3 easy instances) with known optimal solutions. The three easy 

instances have been eliminated, since their effect on overall averages may be misleading, as 

it has been pointed out previously in Section 4.2.1. The averages over all 15 instances may 

be found in Appendix C.3.  

 

Table 4.5 Case A- Average Results for the 12 Instances with Known Optimals 

 (Excluding Easy Instances) * 

 

CPU CPU R LPR R IGap% DU% ULP% Nodes Node R

100 limit 1.00 1.00 60.3 5   (0) 3.2 183.3 514166 1.00

105 limit 1.00 1.00 60.3 5   (0) 5.6 189.1 470912 0.92

110 5843.4 0.81 1.07 57.7 8   (5) 2.2 153.7 151330 0.34

120 6860.3 0.95 1.05 58.4 6   (1) 2.8 166.5 61857 0.12

130 limit 1.00 1.00 60.3 5   (0) 2.6 181.6 289766 0.58

140 limit 1.00 1.03 59.3 5   (0) 3.4 167.5 266027 0.51

150 4753.1 0.66 2.30 13.9 6   (6) 6.2 25.2 214875 0.63

160 5834.9 0.81 1.07 57.7 8   (5) 2.2 153.7 153326 0.35

170 3218.0 0.45 2.36 11.4 9   (7) 0.9 15.3 13704 0.06

180 2839.4 0.39 2.36 11.4 9   (8) 0.1 14.2 26073 0.13

185 2548.4 0.35 2.36 11.4 9   (8) 0.7 15.0 12534 0.06

200 limit 1.00 1.00 60.2 7   (0) 3.4 182.6 486033 0.91

205 limit 1.00 1.00 60.2 5   (0) 5.6 189.0 419029 0.79

210 5753.2 0.80 1.14 55.5 8   (4) 0.6 134.7 118656 0.27

220 6811.9 0.95 1.11 56.6 7   (1) 1.6 144.1 61449 0.11

230 limit 1.00 1.00 60.2 5   (0) 3.8 183.7 267953 0.52

240 limit 1.00 1.06 58.1 6   (0) 4.4 159.1 244575 0.46

250 5602.2 0.78 2.30 13.9 6   (4) 5.1 23.6 243706 0.58

260 5761.0 0.80 1.14 55.5 8   (4) 0.6 134.7 119104 0.27

270 2800.5 0.39 2.37 11.2 9   (8) 0.2 14.0 9818 0.05

280 2542.9 0.35 2.37 11.2 9   (8) 0.1 13.9 15591 0.08

285 2490.3 0.35 2.37 11.2 8   (8) 0.1 13.9 9473 0.05

#opt *

 
* “limit” denotes 7200 CPU seconds, the termination limit for the solution time. 

               #opt denotes the number of times the optimal solution was found, where the entry  
                              in parentheses denotes the number of verified optimal solutions. 
 

 
  Regarding LP relaxations, cross comparison of the average LPR ratios reveals that 

the performance of the options with the TP formulation are close to those of the 

corresponding I&L options. Our tentative inference that a change in formulation only 

slightly improves the integrality gap, whereas the incorporation of strong additional 

inequalities has a considerable effect, is in fact verified by the average results excluding the 

easy instances. Following Table 4.5, we observe that the gap corresponding to the pure I&L 

formulation is 60.3% which only reduces to 60.2% with the pure TP formulation but 
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drastically to around 11.2% for the options enhanced with favourable inequalities. 

Generally speaking, the favourable options (namely options x70, x80 and x85) yield the 

strongest LPR. The LPR statistics for these options turn out to be identical and we expect to 

observe a distinction between them only by observing the MIP performances. 

  Our assessment of the MIP performance relies mainly on two criteria: the average 

solution time (CPU) and the deviation between the final UB & the optimal solution (DU%). 

We do not use the information about the best lower bound (LB) obtained at the end of the 

MIP solution, since this measure essentially reflects the performance of the commercial 

solver and its inherent solution mechanisms, e.g. automatically generated cuts, on which we 

have no direct control. 

  Regarding average CPU, we can see that the incorporation of any additional 

inequality except VI-3, VI-4 and EC’s on their own causes a decrease compared with the 

reference solution time (which is 7200, the time limit). The fastest solutions can be 

obtained by options 285 (2490 sec), 280 (2543 sec) and 185 (2548 sec), as can be checked 

from Table 4.5. Another observation is that for VI added on their own, resorting to the TP 

formulation generally causes reductions in solution time. 

  #opt column displays two types of information, the first is the number of times the 

best UB at the end of the time limit is equal to the optimal solution (regardless of whether 

there is a solution gap or not) and the second inside the parentheses denotes the verified 

optimal solutions, i.e. solutions that terminate within the time limit with zero solution gap. 

#opt statistic reveals that the highest number of optimal solutions are found by the use of 

the favourable options, which is 8 and 9 times out of the 12 instances. 

  The percent gap between the UB and the optimal solution (DU%) is less than 6% 

for almost all options, indicating that the solver is capable of obtaining good quality 

feasible solutions within the time limit. The incorporation of the favourable additional 

inequalities causes a decrease in the size of this gap. However, the effect of a change in 

formulation does not seem to be significant.  

  Since UB’s are very close to optimal solutions, examination of the gap between UB 

and LPR values (ULP%) leads to conclusions which are similar to those obtained as a result 

of observing the integrality gap. We also note that for small size instances (those smaller 

than 6x4), there is hardly any differentiation between the UB values obtained for different 

options within the time limit, as can be seen from the detailed individual statistics for each 

instance in Appendix C.2. The effect of using different formulations and additional 
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inequality combinations starts to reflect itself in the UB’s as the size of the instances 

increases. 

  Observation of the average number of nodes and the Node R (ratio of the number 

of nodes) reveals the TP formulation generates much fewer nodes compared with the I&L 

formulation. Fewest nodes are generated by option 285 on the average. If we refer back to 

Table 4.4, we can see that the average LPR time of this option is among the highest among 

all options. This implies that during the MIP solution, option 285 generates fewer nodes, 

spends considerable amount of time in dealing with each and results in the shortest average 

MIP solution times. 

 

Instances for which the Optimal Solutions Cannot be Obtained within the Time Limit 

 

  There are five instances in Case A that cannot be solved within the time limit under 

any option. Four of these (instances 10, 18, 19 and 20) could be solved optimally by 

extending the time limit but for one (instance 13), the optimal solution is not known. 

  The LPR performance of the four instances that are solved in extended times are 

already included in Table 4.4. For the unsolved instance 13, LPR R and LPR t statistics are 

provided in Table 4.6 below. 

 

Table 4.6 LPR Statistics of Instances for Which the Optimal Solution is Not Known 

(Case A) * 
 

LPR R LPR t

100 1.00 1.52

105 1.00 3.70

110 1.02 4.83

120 1.01 54.49

130 1.00 6.15

140 1.01 23.23

150 1.74 1.36

160 1.02 7.45

170 1.90 30.73

180 1.90 20.48

185 1.90 25.24

200 1.00 4.85

205 1.00 8.69

210 1.07 11.72

220 1.04 87.20

230 1.00 11.51

240 1.02 27.83

250 1.74 5.67

260 1.07 17.52

270 1.92 71.64

280 1.92 38.54

285 1.92 59.29  

* For instance 13 only 
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  Again we can infer that LPR is strengthened with the favourable options. LPR 

solution times have increased considerably compared with those of optimally solvable 

instances, which is an expected result. Although LPR strength does not differ much 

between the favourable options, x70 options give the longest LPR times compared with x80 

and x85.  

  Table 4.7 on the next page displays the detailed statistics for all five instances that 

require extension of the time limit (including the unsolvable instance 13). Information 

regarding the solutions obtained within extended times for each instance can be found in 

Appendix C.1. 

  Since the time limit is exceeded for all options and all instances, we have not 

included any statistics about MIP solution times in Table 4.7. (The average extended 

solution time per instance until optimality is close to 24 CPU hours.) The deviation 

between the upper bound and the optimal solutions for instance 13 cannot be computed as 

the optimal solution is not known. Moreover, for one of the instances (instance 19), no 

feasible solution could be obtained within the time limit for several options. As a result, the 

corresponding statistics involving UB’s cannot be computed and these cases are marked as 

“nofeas” in the table.  

  DU% statistic is lowest for the favourable options (smaller than 1% for TP 

formulations), which indicates that the quality of the upper bounds obtained at the end of 

the time limit is close to optimality. This in fact is a phenomenon that is frequently 

observed during the solution of such hard models with considerable size, where the 

algorithm is able to find a good quality upper bound within a reasonable amount of time, 

but then starts to increase the lower bound with minuscule improvements until the upper 

bound is finally proven to be optimal.  

  When the ULP% statistic is analyzed for the five instances in Table 4.7, it can be 

seen that it is considerably smaller for the favourable options (26% for option 285) than for 

the reference case (191% for option 100, the pure I&L formulation). This improvement is 

partly due to increased upper bound quality, and partly to stronger LPR values.   

  Since we do not know the optimal solution for instance 13, we cannot compute the 

exact deviation of the upper bound. However, for the instances with known optimal 

solutions (excluding easy instances), the average gap between the optimal and the LPR is 

close 14% of the LPR value under the favourable options (x70, x80 and x85). For instance 

13, the smallest value for the ULP% statistic is 37.8% under option 285. This suggests that 

the UB is approximately 24% (of the LPR) away from the optimal solution. 
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 Table 4.7 Detailed Results for Instances Exceeding the Time Limit (Case A) * 

DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t

10 5x8 8.6 167.9 0.3 15.0 183.7 0.3 1.8 138.8 0.5 8.4 155.8 3.9 9.2 169.3 0.5 10.0 165.7 1.5 9.0 60.0 0.3 1.8 138.8 1.2 8.6 59.1 1.8 0.7 47.6 0.9 7.4 57.4 1.4

18 8x4 10.2 109.9 0.6 22.5 133.5 0.9 8.6 102.3 1.1 3.4 94.6 9.8 8.1 106.0 1.4 5.0 99.2 3.3 6.4 29.4 0.6 8.6 102.3 1.7 0.2 16.2 10.5 0.0 16.0 3.8 0.0 16.0 8.5

19 9x4 nofeas nofeas 1.2 nofeas nofeas 1.4 6.0 101.7 1.4 nofeas nofeas 15.3 nofeas nofeas 2.9 18.4 128.6 5.6 39.1 53.6 1.1 6.0 101.7 3.1 0.0 8.8 17.0 0.7 9.5 7.9 0.4 9.2 16.1

20 9x4 15.9 268.6 0.7 23.0 291.3 1.1 9.4 236.5 1.4 15.7 261.2 8.6 9.7 248.8 2.4 7.2 238.0 5.9 12.9 59.5 0.9 9.4 236.5 2.6 2.1 24.7 15.2 0.2 22.4 8.3 0.4 22.6 15.6

11.6 182.1 0.7 20.2 202.8 0.9 6.5 144.8 1.1 9.2 170.5 9.4 9.0 174.7 1.8 10.2 157.9 4.1 16.8 50.6 0.7 6.5 144.8 2.2 2.7 27.2 11.1 0.4 23.9 5.2 2.0 26.3 10.4

13 9x8 - 218.1 1.5 - 284.8 3.7 - 190.6 4.8 - 229.8 54.5 - 227.7 6.2 - 216.7 23.2 - 86.3 1.4 - 190.6 7.5 - 47.4 30.7 - 45.8 20.5 - 64.6 25.2

11.6 191.1 0.9 20.2 223.3 1.5 6.5 154.0 1.8 9.2 185.3 18.4 9.0 188.0 2.7 10.2 169.6 7.9 16.8 57.8 0.9 6.5 154.0 3.2 2.7 31.3 15.0 0.4 28.2 8.3 2.0 34.0 13.3

185150 160 170 180140110100 120 130

AVERAGE

OVERALL

instance

105

DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t

10 5x8 8.4 167.3 1.3 18.8 192.9 1.5 0.8 126.7 1.5 8.2 146.2 11.1 8.7 168.0 2.4 2.5 139.6 3.5 1.9 49.6 1.3 0.8 126.7 3.0 1.1 47.9 4.1 0.8 47.5 2.5 0.0 46.4 3.2

18 8x4 15.4 119.8 1.4 12.7 114.7 2.5 3.5 86.2 3.3 7.5 97.7 21.1 10.1 109.7 3.7 11.3 107.7 5.6 6.9 29.9 1.8 3.5 86.2 4.8 0.2 15.6 13.8 0.2 15.6 8.4 0.6 16.1 13.4

19 9x4 nofeas nofeas 3.3 nofeas nofeas 3.9 2.1 88.1 5.9 0.6 89.6 30.7 nofeas nofeas 7.4 33.0 153.5 9.0 39.8 54.4 4.3 2.1 88.1 8.4 0.0 8.1 24.4 0.0 8.1 13.4 0.3 8.4 23.4

20 9x4 12.1 256.6 3.2 24.5 296.0 3.0 0.5 189.3 4.2 2.9 206.8 17.2 13.5 260.9 5.7 5.9 222.7 10.7 11.3 57.3 4.3 0.5 189.3 6.7 1.2 22.9 25.0 0.2 21.7 14.5 0.6 22.2 23.3

12.0 181.2 2.3 18.7 201.2 2.7 1.7 122.6 3.7 4.8 135.1 20.0 10.8 179.5 4.8 13.2 155.9 7.2 15.0 47.8 2.9 1.7 122.6 5.7 0.6 23.6 16.8 0.3 23.2 9.7 0.4 23.3 15.8

13 9x8 - 225.8 4.9 - 293.1 8.7 - 164.1 11.7 - 171.3 87.2 - 220.1 11.5 - 213.8 27.8 - 82.9 5.7 - 164.1 17.5 - 40.8 71.6 - 41.9 38.5 - 37.8 59.3

12.0 192.4 2.8 18.7 224.2 3.9 1.7 130.9 5.3 4.8 142.3 33.4 10.8 189.7 6.1 13.2 167.5 11.3 15.0 54.8 3.5 1.7 130.9 8.1 0.6 27.1 27.8 0.3 27.0 15.5 0.4 26.2 24.5

285250 260 270 280200 205 210 220 230 240

AVERAGE

OVERALL

instance

 
 

                                
 

 

 

* “nofeas” indicates that no feasible solution could be obtained within the time limit, therefore the corresponding statistic cannot be computed.  In this table, the optimal solution could be obtained in extended time for the 4        
instances at the top (i.e. , 10, 18, 19, 20), but it is not known for instance 13. 
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Conclusions Regarding the TP formulation and VI 

 

  Below are a few concluding remarks about the preliminary results for Case A. 

  Among the VI tested on their own, VI-5 seems to have the strongest impact, 

followed by VI-1. VI-2 and VI-4 also bring about improvements on the pure formulations, 

but their effect is not as strong as those of VI-1 and VI-5. VI-3 only seems to have a weak 

impact. 

  In all runs and with both formulations, VI-1 is better than VI-2 in terms of the 

strength of the LPR, integrality gap, UB deviation and MIP solution time. Moreover, we 

observe that the performance of VI-1 and VI-2 together (i.e., option x6x) is exactly the 

same as using VI-1 on its own (Option x1x), indicating that VI-2 does not bring an extra 

contribution on top of VI-1 when both are present. Therefore, we can conclude that VI-1 

outperforms VI-2. 

  The effect of EC’s on the LPR performance is negligible. In terms of UB deviation 

and the integrality gap, the performances of the options enhanced with EC’s (Options 285 

and 185) are close to their respective counterparts (Options 280 and 180) for optimally 

solvable instances. However, the former generate fewer nodes and they can be solved in 

shorter times on the average. Although the UB performance of the options enhanced with 

the EC’s (Option x85) is observed to be slightly worse in comparison with Option x80 for 

the instances exceeding the time limit, the results at this point indicate that the 

incorporation of EC’s seems to be effective. However, further tests may be necessary to 

justify their usage in the case of harder problem instances. 

  The collective performance of all VI together (Option x70) is the same in terms of 

LPR statistics compared with that of VI-1 and VI-5 together (Option x80). The difference 

between the two is that the former requires longer solution times but generates fewer nodes 

in return. However, options x70 perform worse than options x85 in terms of number of 

nodes, solution times and upper bound deviation.  

  Hence, we can say that out of all the options tested, 180, 185, 280 and 285 stand 

out as viable alternatives. 280 and 285 yield stronger LPR and thus smaller optimality gaps. 

Among the two, 285 generates fewer nodes and provides shorter MIP solution times. 

Moreover, observation of the number of nodes reveals that generally the TP formulation 

generates fewer nodes and spends more time on each node compared with the I&L 

formulation.  
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  One final remark is that the incorporation of useful additional inequalities also 

contributes to the detection of infeasibility in this case. When we examine the individual 

LPR and MIP statistics for the infeasible instances in Appendix C.2, we see that the options 

without the effective inequalities generally reach the time termination limit without even a 

sign of infeasibility whereas the favored options detect infeasibility only in a few seconds.   

 

4.2.2.2 Results of Case B (Augmented & Sequence Dependent Changeover Times, No 

Changeover Costs) 

 
  In this extension case, we have used the same instances in Case A but we set all 

changeover costs to zero, while everything else remains the same. In doing so, we intend to 

test the performance of the favorable options under the situation where the effect of 

changeover times is not dominated by those of changeover costs in the objective function. 

The corresponding results will be briefly discussed below. 

  Since the same instances are used in both cases, the same 4 instances in Case A 

turn out to be infeasible in Case B as well. Among the remaining 16, the optimal solutions 

are known for 14 instances.  

  If the optimal solution values of the instances are examined individually from 

Appendix D.1, one can realize that they have decreased compared to Case A results 

(Appendix C.1). This is evident, since changeover costs constituted a major term in the 

objective function for the first experimental case.  

  Table 4.8 on the next page contains detailed results regarding the LPR performance 

of the 22 test options for the 14 instances with known optimal solutions and Table 4.9 

following it displays the average statistics for the same instances excluding the easy ones. 

  Interesting phenomena can be observed regarding LPR statistics. Here, it can be 

seen that the LPR values across different options are no more different. Moreover, these 

LPR vales are close to those obtained in Case A for the options without the favourable 

additional inequalities, such as option 100, while the stronger options have much lower 

LPR values in Case B compared with Case A. This is an expected result, as in the previous 

case, the effect of additional inequalities in terms of strengthened changeover and setup 

variables showed itself in the objective function in the form of changeover costs, which is 

not possible any more. 
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Table 4.8 Detailed Results for Instances with Known Optimals (Case B) 

IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t

1 5x4 2.2 0.1 2.2 0.1 2.2 0.1 2.2 0.7 2.2 0.2 2.2 0.2 2.2 0.1 2.2 0.2 2.2 0.7 2.2 0.3 2.2 0.4

2 5x4 17.0 0.1 17.0 0.1 17.0 0.1 17.0 0.6 17.0 0.1 17.0 0.1 17.0 0.1 17.0 0.2 16.9 0.4 16.9 0.2 16.9 0.3

3 2x4 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0

4 5x4 6.6 0.1 6.6 0.1 6.6 0.1 6.6 0.8 6.6 0.2 6.6 0.2 6.6 0.1 6.6 0.2 6.5 0.7 6.5 0.3 6.5 0.5

5 3x4 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0

6 4x4 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.1 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 98.3 0.1 98.3 0.0 98.3 0.0

8 5x4 7.4 0.1 7.4 0.1 7.4 0.1 7.4 0.8 7.4 0.2 7.4 0.2 7.4 0.1 7.4 0.2 6.9 0.6 6.9 0.3 6.9 0.3

9 5x4 9.2 0.1 9.2 0.1 9.2 0.1 9.2 0.7 9.2 0.1 9.2 0.2 9.2 0.1 9.2 0.3 9.1 0.6 9.1 0.3 9.1 0.4

10 5x8 6.6 0.3 6.6 0.3 6.6 0.4 6.6 2.6 6.6 0.5 6.6 0.5 6.6 0.3 6.6 0.7 6.6 1.2 6.6 0.7 6.6 1.0

11 5x8 5.4 0.2 5.4 0.3 5.4 0.4 5.4 2.7 5.4 0.7 5.4 0.9 5.4 0.3 5.4 0.5 5.4 1.3 5.4 0.9 5.4 1.3

15 6x4 10.3 0.1 10.3 0.2 10.3 0.2 10.3 1.5 10.3 0.3 10.3 0.6 10.3 0.2 10.3 0.6 10.1 2.4 10.1 0.9 10.1 1.1

16 7x4 5.1 0.2 5.1 0.2 5.1 0.2 5.1 3.3 5.1 0.3 5.1 0.6 5.1 0.3 5.1 0.5 4.9 3.0 4.9 1.0 4.9 1.9

18 8x4 7.1 0.3 7.1 0.4 7.0 1.0 7.1 10.0 7.1 0.6 7.1 1.7 7.1 0.3 7.0 2.4 6.9 7.5 6.9 4.0 6.9 6.4
20 9x4 15.7 0.4 15.7 0.5 15.7 1.3 15.7 7.5 15.7 1.5 15.7 1.5 15.7 0.6 15.7 1.7 15.6 8.5 15.6 7.5 15.6 14.4

20.6 0.1 20.6 0.2 20.6 0.3 20.6 2.2 20.6 0.3 20.6 0.5 20.6 0.2 20.6 0.5 20.4 1.9 20.4 1.2 20.4 2.0

185150 160 170120 130 140 180

AVERAGE

110

instance

100 105

IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t

1 5x4 2.2 0.2 2.2 0.2 2.2 0.2 2.2 0.9 2.2 0.4 2.2 0.3 2.2 0.2 2.2 0.3 2.2 0.5 2.2 0.2 2.2 0.5

2 5x4 17.0 0.2 17.0 0.2 17.0 0.3 17.0 1.6 17.0 0.4 17.0 0.3 17.0 0.3 17.0 0.6 16.9 0.9 16.9 0.5 16.9 0.5

3 2x4 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0 8.8 0.0

4 5x4 6.6 0.1 6.6 0.2 6.6 0.1 6.6 1.1 6.6 0.3 6.6 0.3 6.6 0.2 6.6 0.4 6.5 0.8 6.5 0.3 6.5 0.5

5 3x4 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.0 87.1 0.1 87.1 0.0 87.1 0.0

6 4x4 92.0 0.0 92.0 0.0 92.0 0.0 92.0 0.1 92.0 0.0 92.0 0.0 92.0 0.0 92.0 0.1 92.0 0.1 92.0 0.0 92.0 0.1

8 5x4 7.4 0.2 7.4 0.2 7.3 0.2 7.3 1.3 7.4 0.4 7.4 0.4 7.3 0.2 7.3 0.5 6.9 0.7 6.9 0.4 6.9 0.6

9 5x4 9.2 0.2 9.2 0.2 9.2 0.4 9.2 1.5 9.2 0.3 9.2 0.4 9.2 0.2 9.2 0.4 9.1 1.0 9.1 0.5 9.1 0.5

10 5x8 6.6 1.1 6.6 1.4 6.6 1.1 6.6 8.7 6.6 2.1 6.6 2.2 6.6 0.9 6.6 1.8 6.6 3.5 6.6 1.5 6.6 2.2

11 5x8 5.4 0.6 5.4 0.5 5.4 0.7 5.4 3.0 5.4 1.1 5.4 1.2 5.4 0.5 5.4 0.9 5.4 1.5 5.4 0.9 5.4 1.4

15 6x4 10.1 0.6 10.1 0.8 10.0 0.8 10.0 3.4 10.1 1.0 10.1 0.9 10.1 0.6 10.0 1.3 9.6 2.5 9.6 1.4 9.6 2.8

16 7x4 5.1 0.4 5.1 0.4 5.0 0.7 5.0 6.6 5.1 1.3 5.1 1.0 5.1 0.5 5.0 1.3 4.9 2.0 4.9 1.5 4.9 1.7

18 8x4 7.1 2.1 7.1 2.1 6.9 3.2 7.0 18.1 7.1 3.8 7.1 3.6 7.1 1.8 6.9 6.5 6.8 13.2 6.8 5.9 6.8 7.9
20 9x4 15.7 3.2 15.7 2.8 15.6 5.4 15.6 17.8 15.7 7.7 15.7 4.8 15.7 3.2 15.6 5.1 15.5 16.4 15.5 11.7 15.5 19.1

20.0 0.6 20.0 0.6 20.0 0.9 20.0 4.6 20.0 1.3 20.0 1.1 20.0 0.6 20.0 1.4 19.9 3.1 19.9 1.8 19.9 2.7

200 280 285250 260 270230205 210 220

AVERAGE

instance

240
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Table 4.9 Case B- Average Results for the 11 Instances with Known Optimals 

(Excluding Easy Instances) * 

 

CPU CPU R LPR R IGap% DU% ULP% Nodes Node R

100 3532.7 1.00 1.00 8.4 8   (7) 0.3 9.8 177357 1.00

105 3258.0 0.92 1.00 8.4 8   (7) 0.9 10.4 142850 0.88

110 2272.0 0.49 1.00 8.4 8   (8) 0.3 9.8 46715 0.25

120 4186.8 1.43 1.00 8.4 8   (6) 0.7 10.2 40737 0.24

130 4634.9 1.98 1.00 8.4 8   (5) 0.4 9.9 177372 1.28

140 4279.9 1.62 1.00 8.4 8   (6) 0.5 10.1 159274 1.07

150 4707.7 2.30 1.00 8.4 8   (5) 0.4 9.9 254159 1.89

160 2281.9 0.49 1.00 8.4 8   (8) 0.3 9.8 47281 0.25

170 2803.9 0.72 1.00 8.3 8   (8) 0.2 9.5 24591 0.13

180 2281.4 0.45 1.00 8.3 8   (8) 0.2 9.5 30753 0.15

185 2143.0 0.41 1.00 8.3 8   (8) 0.3 9.6 19940 0.09

200 3684.5 1.07 1.00 8.4 7   (6) 0.2 9.6 159206 0.92

205 3034.1 0.72 1.00 8.4 8   (8) 0.6 10.1 99515 0.54

210 2159.3 0.38 1.00 8.3 9   (8) 0.0 9.4 28745 0.15

220 3297.9 0.91 1.00 8.4 8   (8) 0.2 9.6 19993 0.11

230 4135.4 1.46 1.00 8.4 8   (6) 0.1 9.5 124188 0.78

240 4247.8 1.45 1.00 8.4 8   (7) 0.3 9.7 137902 0.84

250 3670.9 1.55 1.00 8.4 8   (7) 0.3 9.7 151500 1.14

260 2159.2 0.38 1.00 8.3 9   (8) 0.0 9.4 28648 0.14

270 2552.4 0.57 1.00 8.2 8   (8) 0.1 9.3 16675 0.08

280 2365.2 0.46 1.00 8.2 9   (8) 0.0 9.2 26494 0.11

285 2122.0 0.37 1.00 8.2 9   (8) 0.1 9.3 13345 0.06

#opt *

 

* #opt denotes the number of times the optimal solution was found, where the entry 
                          in parentheses denotes the number of verified optimal solutions. 

 

 
  Parallel to these observations, we note that the average integrality gap has also 

reduced drastically from around 60% for option 100 in Case A (Table 4.5) down to 

approximately 8% for the same option in Case B (Table 4.9). The primary reason for this 

could be the drop in the optimal solution value. In Case A, we were able to observe striking 

differences between pure options and the options with effective additional inequalities in 

terms of average integrality gap (60.3% vs. 11.2%), whereas in Case B, the difference 

virtually melts away (8.4% vs. 8.2%). The gap values between the UB and the LPR 

(ULP%) are almost identical for different options as well, due to the same reason.  

  Regarding MIP solution performance, we notice a decrease in average CPU time 

for this case compared with Case A. It may be conjectured that the problems have become 

easier to solve in the absence of changeover costs, which is actually contrary to our 

expectations. The reason for this may be the fact that changeover times are small compared 

with capacity; therefore their effect is reduced even more without costs. Moreover, in Case 



 

 77 

A, we established a negative relation between changeover costs and times, which is also 

removed in Case B, and this might have facilitated the solution process even more. 

  DU% statistics have decreased below 1% for all options, which indicates that the 

upper bounds are almost optimal. Option 285 again results in the lowest solution time and 

smallest number of nodes and the previously selected favourable options perform close to 

it. However, in addition to these favorable options, options 110 and 210 also perform 

considerably well in this case, both in terms of MIP solution time and number of nodes 

generated. The TP formulation generates much fewer nodes compared with the I&L options 

in this case as well.  

  Among the five instances that cannot be solved within the time limit under any 

option, we were able to solve three (instances 10, 18 and 19) by extending the time limit. 

The LPR performance of these instances, as well as two for which the optimal is not known 

(instances 13 and 19), are provided in Table 4.10 on the next page. Following it, LPR R and 

LPR t statistics are provided in Table 4.11 for the two unsolvable instances. 

  The results in the two tables also support the fact that there is no significant 

difference between different options in terms of LPR performance or the quality of upper 

bounds obtained. However, LPR times are higher for the options which were previously 

selected as favourable, in line with the observation of lower solution times and fewer nodes 

for these options. 

  Since we do not know the optimal solution for two instances (13 and 19), we 

cannot compute the exact deviation of the upper bound from the optimal solution. Hence, 

we can also make tentative inferences as we did in Section 4.2.2.1 for Case A. Since the 

average gap between the optimal and the LPR is around 9% of the LPR for the instances 

with known optimal solutions (excluding easy instances) for the favourable TP options and 

the average ULP% statistic for the two unsolvable instances is around 12% for the 

favourable options, we can consider UB to be approximately 3% (of the LPR) away from 

the optimal solution, which is quite small. 
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 Table 4.10 Detailed Results for Instances Exceeding the Time Limit (Case B) * 

DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t

10 5x8 0.3 7.4 0.3 0.6 7.7 0.3 0.0 7.1 0.4 0.5 7.6 2.6 0.5 7.7 0.5 0.9 8.1 0.5 0.2 7.3 0.3 0.0 7.1 0.7 0.7 7.8 1.2 0.1 7.2 0.7 0.0 7.1 1.0

18 8x4 1.2 8.9 0.3 3.2 11.1 0.4 2.5 10.3 1.0 3.2 11.0 10.0 0.7 8.4 0.6 1.8 9.5 1.7 2.4 10.2 0.3 2.5 10.3 2.4 1.0 8.4 7.5 1.4 8.9 4.0 1.2 8.7 6.4

20 9x4 2.3 21.3 0.4 5.7 25.3 0.5 1.0 19.9 1.3 3.7 23.0 7.5 2.7 21.9 1.5 3.2 22.4 1.5 1.6 20.5 0.6 1.0 19.9 1.7 1.0 19.6 8.5 1.2 19.9 7.5 2.1 20.9 14.4

1.3 12.5 0.3 3.2 14.7 0.4 1.2 12.4 0.9 2.4 13.9 6.7 1.3 12.6 0.8 2.0 13.3 1.2 1.4 12.7 0.4 1.2 12.4 1.6 0.9 11.9 5.7 0.9 12.0 4.1 1.1 12.2 7.3

13 9x8 - 16.0 1.0 - 18.0 1.4 - 13.0 2.6 - 19.9 18.6 - 18.2 2.6 - 16.7 4.0 - 16.8 1.5 - 13.0 3.6 - 14.3 15.0 - 13.3 8.1 - 16.9 13.7

19 9x4 - 14.5 0.4 - nofeas 0.6 - 14.3 2.2 - nofeas 9.3 - nofeas 1.6 - 25.2 2.5 - 15.0 0.7 - 14.3 3.0 - 15.0 12.1 - 11.9 7.8 - 15.3 11.8

- 15.2 0.7 - 18.0 1.0 - 13.6 2.4 - 19.9 13.9 - 18.2 2.1 - 20.9 3.2 - 15.9 1.1 - 13.6 3.3 - 14.7 13.6 - 12.6 8.0 - 16.1 12.8

1.3 13.6 0.5 3.2 15.5 0.6 1.2 12.9 1.5 2.4 15.4 9.6 1.3 14.0 1.3 2.0 16.4 2.0 1.4 14.0 0.7 1.2 12.9 2.3 0.9 13.0 8.9 0.9 12.2 5.6 1.1 13.8 9.5

AVERAGE

120 130

AVERAGE

OVERALL

instance

105 140110100 185150 160 170 180

DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t

10 5x8 0.3 7.4 1.1 0.9 8.0 1.4 0.1 7.2 1.1 0.0 7.1 8.7 0.0 7.1 2.1 0.6 7.8 2.2 0.3 7.5 0.9 0.1 7.2 1.8 0.0 7.1 3.5 0.0 7.1 1.5 0.1 7.2 2.2

18 8x4 0.4 8.0 2.1 2.7 10.5 2.1 0.0 7.5 3.2 0.4 7.9 18.1 0.4 8.0 3.8 1.8 9.5 3.6 1.5 9.2 1.8 0.0 7.5 6.5 1.0 8.5 13.2 0.4 7.7 5.9 0.0 7.3 7.9

20 9x4 1.2 20.1 3.2 3.1 22.3 2.8 0.3 18.8 5.4 1.8 20.6 17.8 0.9 19.7 7.7 0.8 19.6 4.8 1.3 20.2 3.2 0.3 18.8 5.1 0.3 18.8 16.4 0.0 18.4 11.7 1.1 19.6 19.1

0.6 11.8 2.2 2.2 13.6 2.1 0.1 11.2 3.2 0.7 11.9 14.9 0.4 11.6 4.5 1.1 12.3 3.5 1.0 12.3 2.0 0.1 11.2 4.5 0.5 11.4 11.0 0.1 11.1 6.4 0.4 11.4 9.7

13 9x8 - 14.7 3.6 - 21.8 3.9 - 12.8 6.7 - 17.8 34.0 - 15.6 7.0 - 16.3 7.3 - 16.0 4.2 - 12.8 9.9 - 13.0 21.4 - 13.4 15.7 - 14.2 24.8

19 9x4 - nofeas 3.3 - nofeas 3.6 - 15.1 6.8 - 16.0 30.5 - nofeas 7.7 - nofeas 6.1 - nofeas 4.6 - 15.1 8.6 - 11.4 66.3 - 13.0 9.8 - 15.7 16.2

- 14.7 3.4 - 21.8 3.7 - 14.0 6.7 - 16.9 32.2 - 15.6 7.3 - 16.3 6.7 - 16.0 4.4 - 14.0 9.2 - 12.2 43.8 - 13.2 12.8 - 14.9 20.5

0.6 12.6 2.7 2.2 15.6 2.8 0.1 12.3 4.6 0.7 13.9 21.8 0.4 12.6 5.6 1.1 13.3 4.8 1.0 13.2 2.9 0.1 12.3 6.4 0.5 11.7 24.2 0.1 11.9 8.9 0.4 12.8 14.0

AVERAGE

OVERALL

AVERAGE

instance

200 205 210 220 230 240 285250 260 270 280

                                 
 

 

 

* “nofeas” indicates that no feasible solution could be obtained within the time limit, therefore the corresponding statistic cannot be computed.  In this table, the optimal solution could be obtained in extended time for the 3        
instances at the top (i.e. , 10, 18,  20), but it is not known for instances 13 and 19. 
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Table 4.11 LPR Statistics of Instances for Which the Optimal Solution is Not Known  

(Case B) * 

 
LPR R LPR t

100 1.00 0.7

105 1.00 1.0

110 1.00 2.4

120 1.00 13.9

130 1.00 2.1

140 1.00 3.2

150 1.00 1.1

160 1.00 3.3

170 1.00 13.6

180 1.00 8.0

185 1.00 12.8

200 1.00 3.4

205 1.00 3.7

210 1.00 6.7

220 1.00 32.2

230 1.00 7.3

240 1.00 6.7

250 1.00 4.4

260 1.00 9.2

270 1.00 43.8

280 1.00 12.8

285 1.00 20.5  

     * Averages for instances 13 and 19 only 

 

   As a result of analyzing the findings for this second case, our expectations that the 

problems become harder to solve without explicit changeover costs in the objective 

function have not been confirmed, probably because changeover times only constitute a low 

level of capacity consumption and the inverse relationship between changeover costs and 

times are also removed in this case. As a result, changeovers have become ineffective 

without costs. The differences in the performance of different options, which were clearly 

pronounced in the previous case, seem to disappear. This suggests that a change of 

formulation and the incorporation of a favorable set of additional inequalities only pays off 

in environments featuring changeovers which have a major effect in terms of both cost and 

capacity consumption. These initial test results have provided a better understanding of the 

underlying difficulties in solving this problem. However, further experimentation is needed 

to justify the tentative conclusions regarding the difficulty of solving the problems under 

different situations depending on whether changeover costs and times are present or how 

they are correlated with each other etc.  
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4.2.2.3 Results of Case C (The Original Instances with Sequence Independent Change-

over Times) 

 

  In our final set of preliminary experiments, we have used changeover times and 

costs exactly as provided by Meyr (2000) and no modifications were made on the data 

(Recall Appendix B for the changes made in Case A).  Thus, in this setting, changeover 

times are sequence independent and relatively small in size compared with period 

capacities and item production requirements.  

  Out of the total 20 instances tested, no infeasibilities are encountered and the 

optimal solutions are known for 16 instances.  

  Table 4.12 on the next page contains detailed results regarding the LPR 

performance of the 22 test options for the 16 instances with known optimal solutions. These 

results indicate noticeable differences in performance in favour of the options previously 

selected as favourable. For instance, the integrality gap of the pure I&L formulation is 

66.5% on the average, which falls down to 11.5% for options 270, 280 and 285, coupled 

with increased LPR times.  

  Table 4.13 on page 82 contains the average statistics for optimally solvable 

instances excluding the 3 easy instances. (The averages over all instances may be found in 

Appendix E.3). These results verify that the options with the TP formulation are stronger 

than the corresponding I&L options in terms of LPR values. Regarding the performance of 

the favourable options, we observe results that are very similar to those in Case A, namely 

that they yield the strongest LP relaxations, lowest UB deviations and smallest solution 

times. Here, the solution time of option 185 turns out to be lower than that of option 285, 

but the fewest number of nodes are again generated by option 285. It can also be said that 

the average solution times are generally lower than those of Case A, presumably because 

the problems are more relaxed and changeover times are sequence-independent. The 

highest number of optimal solutions was obtained as a result of using the favourable 

options. 
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Table 4.12 Detailed Results for Instances with Known Optimals (Case C) 

IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t

1 5x4 49.5 0.1 49.5 0.1 46.2 0.1 46.6 0.7 49.5 0.1 48.0 0.3 1.0 0.1 46.2 0.3 1.0 0.8 1.0 0.4 1.0 0.5

2 5x4 74.9 0.1 74.9 0.1 71.7 0.1 72.2 0.7 74.9 0.1 73.1 0.4 16.2 0.1 71.7 0.3 16.1 0.6 16.1 0.3 16.1 0.2

3 2x4 37.1 0.0 37.1 0.0 30.1 0.0 30.8 0.0 37.1 0.0 31.7 0.0 3.6 0.0 30.1 0.0 3.3 0.0 3.3 0.0 3.3 0.0

4 5x4 57.2 0.1 57.2 0.1 53.9 0.1 54.3 0.6 57.2 0.2 55.4 0.4 1.0 0.1 53.9 0.2 0.9 0.8 0.9 0.3 0.9 0.5

5 3x4 95.0 0.0 95.0 0.0 90.8 0.0 90.9 0.0 95.0 0.0 93.1 0.0 42.5 0.0 90.8 0.0 41.0 0.0 41.0 0.0 41.0 0.0

6 4x4 100.0 0.0 100.0 0.0 93.6 0.0 96.6 0.1 100.0 0.0 97.4 0.1 26.0 0.0 93.6 0.0 2.9 0.1 2.9 0.1 2.9 0.1

7 5x4 100.0 0.1 100.0 0.1 96.6 0.1 97.7 0.4 100.0 0.1 99.0 0.2 42.9 0.1 96.6 0.1 42.7 0.2 42.7 0.1 42.7 0.1

8 5x4 67.6 0.1 67.6 0.1 64.0 0.1 65.1 0.7 67.6 0.2 66.4 0.4 13.5 0.1 64.0 0.2 13.3 1.3 13.3 0.4 13.3 0.5

9 5x4 67.9 0.1 67.9 0.1 63.8 0.1 64.3 0.6 67.9 0.2 65.9 0.4 1.8 0.1 63.8 0.2 1.7 0.7 1.7 0.2 1.7 0.4

10 5x8 57.5 0.3 57.5 0.4 55.3 0.5 55.5 3.7 57.5 0.6 56.6 1.5 28.5 0.2 55.3 1.1 28.4 1.6 28.4 0.8 28.4 1.5

11 5x8 48.9 0.3 48.9 0.4 45.8 0.4 46.2 3.2 48.9 0.7 47.7 1.7 10.0 0.4 45.8 0.8 9.8 3.1 9.8 1.6 9.8 2.0

15 6x4 70.2 0.3 70.2 0.3 66.6 0.3 68.5 2.5 70.2 0.4 69.4 1.2 2.2 0.3 66.6 0.5 2.1 2.7 2.1 1.1 2.0 1.4

16 7x4 56.6 0.3 56.6 0.4 54.3 0.4 56.0 2.5 56.6 0.6 56.3 1.7 15.7 0.5 54.3 0.5 3.3 3.3 3.3 1.5 3.3 2.1

17 7x4 88.6 0.4 88.6 0.5 85.5 0.4 86.1 5.2 88.6 1.0 87.6 2.4 2.2 0.7 85.5 0.9 2.1 6.0 2.1 2.6 2.1 4.0

18 8x4 46.6 0.4 46.6 0.5 45.3 0.9 45.9 10.6 46.6 1.5 46.3 3.9 16.3 0.6 45.3 1.7 12.5 9.6 12.5 3.8 12.5 7.4
19 9x4 46.7 0.8 46.7 1.2 45.7 1.8 46.3 15.0 46.7 3.7 46.5 7.6 12.7 1.6 45.7 3.1 5.1 14.5 5.1 7.4 5.1 13.6

66.5 0.2 66.5 0.3 63.1 0.3 63.9 2.9 66.5 0.6 65.0 1.4 14.8 0.3 63.1 0.6 11.6 2.8 11.6 1.3 11.6 2.1

180

AVERAGE

110

instance

100 105 185150 160 170120 130 140

IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t IGap% LPR t

1 5x4 49.5 0.2 49.5 0.2 44.9 0.2 45.5 1.1 49.5 0.2 47.3 0.5 1.0 0.2 44.9 0.3 1.0 1.0 1.0 0.5 1.0 0.6

2 5x4 74.8 0.2 74.8 0.2 67.8 0.2 68.6 1.4 74.8 0.4 70.1 0.5 16.2 0.2 67.8 0.4 15.9 0.9 15.9 0.5 15.9 0.7

3 2x4 30.5 0.0 30.5 0.0 27.4 0.0 27.4 0.0 30.5 0.0 30.1 0.0 3.5 0.0 27.4 0.0 3.3 0.0 3.3 0.0 3.3 0.0

4 5x4 57.2 0.1 57.2 0.1 52.0 0.2 52.6 0.7 57.2 0.2 54.4 0.3 1.0 0.1 52.0 0.3 0.9 0.7 0.9 0.4 0.9 0.4

5 3x4 94.7 0.0 94.7 0.0 82.0 0.0 82.9 0.1 94.7 0.0 84.6 0.0 42.5 0.0 82.0 0.0 40.7 0.1 40.7 0.0 40.7 0.0

6 4x4 99.7 0.0 99.7 0.0 85.3 0.0 90.5 0.1 99.7 0.1 92.2 0.1 25.9 0.0 85.3 0.1 2.5 0.1 2.5 0.1 2.5 0.1

7 5x4 99.7 0.2 99.7 0.2 90.6 0.2 93.7 1.0 99.7 0.4 95.3 0.3 42.9 0.2 90.6 0.3 42.5 0.5 42.5 0.3 42.5 0.4

8 5x4 67.6 0.3 67.6 0.3 62.4 0.3 63.9 1.7 67.6 0.5 65.1 0.6 13.5 0.2 62.4 0.4 13.2 1.3 13.2 0.5 13.2 0.9

9 5x4 67.7 0.1 67.7 0.2 58.5 0.2 59.5 1.2 67.7 0.4 63.6 0.7 1.8 0.1 58.5 0.4 1.7 0.8 1.7 0.5 1.7 0.5

10 5x8 57.4 1.1 57.4 1.4 53.4 1.2 53.9 8.2 57.4 1.8 55.1 3.7 28.5 1.2 53.4 2.4 28.3 3.3 28.3 1.8 28.3 2.5

11 5x8 48.8 0.5 48.8 0.6 44.7 0.5 45.1 3.9 48.8 1.0 46.9 2.4 10.0 0.7 44.7 0.9 9.7 3.1 9.7 1.6 9.7 2.2

15 6x4 70.0 0.6 70.0 0.9 64.0 0.5 66.6 3.7 70.0 1.1 68.2 1.8 2.1 0.8 64.0 1.1 1.9 3.2 1.9 1.8 1.9 2.9

16 7x4 56.5 0.5 56.5 0.8 52.9 0.7 55.1 5.6 56.5 1.4 55.7 1.9 15.6 0.8 52.9 1.4 3.3 4.7 3.3 2.2 3.3 3.2

17 7x4 88.4 1.2 88.4 1.9 80.8 0.9 82.9 8.1 88.4 2.5 85.9 3.1 2.1 1.3 80.8 1.9 2.0 7.9 2.0 4.3 2.0 6.0

18 8x4 46.6 1.2 46.6 2.4 43.4 2.5 44.7 20.7 46.6 4.4 45.4 5.0 16.3 2.4 43.4 5.1 12.2 12.3 12.2 6.3 12.2 9.5
19 9x4 46.7 3.5 46.7 3.7 43.9 4.3 45.2 28.8 46.7 9.9 45.8 10.3 12.6 3.7 43.9 7.4 4.6 83.5 4.6 11.5 4.6 18.0

66.0 0.6 66.0 0.8 59.6 0.7 61.1 5.4 66.0 1.5 62.9 1.9 14.7 0.7 59.6 1.4 11.5 7.7 11.5 2.0 11.5 3.0AVERAGE

instance

240200 280 285250 260 270230205 210 220
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Table 4.13 Case C- Average Results for the 13 Instances with Known Optimals 

 (Excluding Easy Instances) * 

 

CPU CPU R LPR R IGap% DU% ULP% Nodes Node R

100 6776.7 1.00 1.00 64.0 5   (1) 2.4 139117.7 518341 1.00

105 6564.1 0.93 1.00 64.0 5   (2) 3.4 139118.8 437677 0.84

110 5606.0 0.80 47.88 61.1 9   (6) 0.3 382.0 138480 0.30

120 6575.5 1.03 33.18 61.9 7   (2) 1.7 495.2 71513 0.15

130 6924.6 1.09 1.00 64.0 6   (1) 2.5 139116.6 312347 0.67

140 6873.7 1.06 14.79 62.9 6   (1) 2.2 948.7 282547 0.59

150 4977.5 0.70 795.54 12.6 7   (5) 1.8 19.4 254848 0.63

160 5615.9 0.80 47.88 61.1 9   (6) 0.3 382.0 138163 0.30

170 3102.0 0.43 799.35 10.7 9   (9) 0.2 14.9 16428 0.06

180 2106.2 0.29 799.35 10.7 10  (10) 0.1 14.7 21455 0.10

185 1851.2 0.26 799.35 10.7 10  (10) 0.1 14.8 11023 0.05

200 6879.4 1.06 4.59 63.9 7   (1) 2.7 3102.2 523911 0.99

205 6759.6 0.99 4.59 63.9 7   (1) 2.9 3102.1 391840 0.75

210 5316.5 0.75 131.13 58.4 10   (6) 0.1 210.8 113767 0.26

220 6354.0 0.93 88.95 59.8 7   (2) 1.1 262.6 60543 0.11

230 7066.8 1.17 4.60 63.9 7   (1) 2.2 3095.9 281786 0.59

240 7066.6 1.17 66.93 61.5 7   (1) 1.8 322.5 283667 0.58

250 4213.2 0.60 795.54 12.6 8   (7) 2.0 19.5 168012 0.45

260 5316.3 0.75 131.13 58.4 10   (6) 0.1 210.8 113431 0.26

270 3117.0 0.43 801.35 10.6 10   (8) 0.0 14.5 13339 0.05

280 2233.6 0.31 801.35 10.6 11  (10) 0.0 14.5 16576 0.08

285 1892.7 0.26 801.35 10.6 10  (10) 0.1 14.6 9210 0.04

#opt *

 
 

* #opt denotes the number of times the optimal solution was found, where the entry 
                          in parentheses denotes the number of verified optimal solutions. 

 

 

  Regarding the instances that cannot be solved within the time limit under any 

option, the detailed results are provided in Table 4.14. There are 7 such options in Case C, 4 

of which are unsolved (instances 12, 13, 14 and 20), while the remaining 3 can be solved 

optimally by extending the time limit (instances 10, 18, 19). The average extended solution 

time for these instances turns out to be close to 8.6 CPU hours.  

  From Table 4.14, we can see that the DU% statistic for the 3 optimally solvable 

instances decreases as options are enhanced with favourable inequalities. Overall averages 

indicate that the gap between the UB and the LPR (ULP%) also improves considerably for 

the favourable options and the LPR times are increased. However, it needs to be said that 

the lowest ULP% statistics are obtained for options 180, 270 and 280 in this case, contrary 

to the results in Case A where option 285 was the best setting in this regard.  
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 Table 4.14 Detailed Results for Instances Exceeding the Time Limit (Case C) * 

DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t

10 5x8 5.5 148.0 0.3 16.4 173.5 0.4 2.1 128.1 0.5 9.8 147.0 3.7 11.0 160.9 0.6 7.2 146.7 1.5 10.5 54.6 0.2 2.1 128.1 1.1 2.0 42.5 1.6 0.9 41.0 0.8 1.2 41.4 1.5

18 8x4 6.5 99.3 0.4 13.3 112.2 0.5 1.4 85.5 0.9 8.6 100.9 10.6 9.1 104.3 1.5 8.0 101.3 3.9 2.6 22.6 0.6 1.4 85.5 1.7 0.0 14.3 9.6 0.0 14.2 3.8 0.0 14.2 7.4

19 9x4 13.7 113.3 0.8 7.1 100.9 1.2 0.7 85.4 1.8 2.9 91.4 15.0 5.0 96.9 3.7 8.8 103.4 7.6 9.0 24.8 1.6 0.7 85.4 3.1 0.4 5.9 14.5 0.1 5.5 7.4 0.2 5.6 13.6

8.5 120.2 0.5 12.3 128.9 0.7 1.4 99.7 1.1 7.1 113.1 9.7 8.4 120.7 1.9 8.0 117.1 4.3 7.4 34.0 0.8 1.4 99.7 2.0 0.8 20.9 8.6 0.3 20.2 4.0 0.5 20.4 7.5

12 8x8 - 614.7 2.2 - 765.3 2.0 - 471.7 2.9 - 644.0 53.5 - 546.7 5.0 - 528.1 15.1 - 88.3 1.8 - 471.7 4.0 - 62.1 16.2 - 58.9 8.1 - 70.8 11.6

13 9x8 - 210.5 1.7 - 265.8 3.2 - 178.3 5.3 - 192.4 45.3 - 223.5 4.4 - 208.2 22.3 - 91.6 1.2 - 178.3 8.0 - 40.2 37.7 - 41.6 21.1 - 52.2 25.3

14 9x8 - 700.6 1.9 - 841.6 4.1 - 449.2 4.9 - 534.3 117.3 - 658.4 6.3 - 603.9 21.3 - 85.3 2.1 - 449.2 9.5 - 79.6 41.5 - 53.1 20.1 - 103.3 43.6

20 9x4 - 216.3 0.9 - 284.3 0.9 - 201.6 1.1 - 227.3 8.8 - 232.5 2.3 - 227.9 8.4 - 47.4 1.0 - 201.6 2.9 - 19.7 19.5 - 19.0 8.0 - 19.0 14.9

- 435.5 1.7 - 539.3 2.6 - 325.2 3.5 - 399.5 56.2 - 415.3 4.5 - 392.1 16.8 - 78.1 1.5 - 325.2 6.1 - 50.4 28.7 - 43.1 14.3 - 61.3 23.8

8.5 300.4 1.2 12.3 363.4 1.7 1.4 228.6 2.5 7.1 276.8 36.3 8.4 289.0 3.4 8.0 274.2 11.4 7.4 59.2 1.2 1.4 228.6 4.3 0.8 37.7 20.1 0.3 33.3 9.9 0.5 43.8 16.8

185150 160 170 180140110100 120 130

AVERAGE

OVERALL

instance

105

AVERAGE

DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t DU% ULP% LP t

10 5x8 10.9 160.6 1.1 8.3 154.6 1.4 1.5 117.6 1.2 4.8 127.5 8.2 13.3 166.3 1.8 8.1 140.9 3.7 6.5 49.0 1.2 1.5 117.6 2.4 0.0 39.6 3.3 0.3 39.9 1.8 1.3 41.3 2.5

18 8x4 10.0 105.8 1.2 12.8 111.2 2.4 0.0 76.7 2.5 3.0 86.1 20.7 8.4 103.0 4.4 8.0 98.0 5.0 5.3 25.8 2.4 0.0 76.7 5.1 0.2 14.1 12.3 0.0 13.8 6.3 0.0 13.8 9.5

19 9x4 12.3 110.5 3.5 13.6 112.9 3.7 0.2 78.7 4.3 5.5 92.5 28.8 5.6 97.9 9.9 6.2 95.9 10.3 12.5 28.7 3.7 0.2 78.7 7.4 0.0 4.9 83.5 0.0 4.9 11.5 0.0 4.9 18.0

11.0 125.6 1.9 11.6 126.2 2.5 0.6 91.0 2.7 4.4 102.0 19.2 9.1 122.4 5.3 7.4 111.6 6.3 8.1 34.5 2.4 0.6 91.0 5.0 0.1 19.5 33.0 0.1 19.5 6.5 0.4 20.0 10.0

12 8x8 - 553.4 3.6 - 591.2 4.8 - 429.5 6.5 - 495.5 80.4 - 627.1 8.3 - 507.9 12.3 - 107.3 3.8 - 429.5 9.1 - 67.3 36.7 - 67.5 15.8 - 65.2 23.3

13 9x8 - 211.4 5.2 - 266.7 7.3 - 159.6 10.1 - 180.1 71.9 - 183.9 12.6 - 175.9 26.1 - 80.0 4.9 - 159.6 17.2 - 38.1 54.4 - 36.2 35.3 - 34.7 52.5

14 9x8 - 566.0 13.5 - 888.3 24.6 - 411.2 23.9 - 600.4 268.1 - 708.8 38.9 - 543.5 65.2 - 118.3 16.4 - 411.2 40.0 - 57.1 444.8 - 62.5 65.8 - 109.0 73.7

20 9x4 - 238.6 2.9 - 259.0 3.0 - 181.2 3.4 - 217.4 20.7 - 243.5 8.5 - 206.6 10.8 - 47.6 3.7 - 181.2 6.4 - 17.4 27.4 - 17.4 13.0 - 18.0 25.6

- 392.3 6.3 - 501.3 9.9 - 295.4 11.0 - 373.3 110.3 - 440.8 17.0 - 358.5 28.6 - 88.3 7.2 - 295.4 18.2 - 45.0 140.8 - 45.9 32.5 - 56.7 43.8

11.0 278.0 4.4 11.6 340.6 6.7 0.6 207.8 7.4 4.4 257.1 71.2 9.1 304.4 12.0 7.4 252.7 19.1 8.1 65.2 5.1 0.6 207.8 12.5 0.1 34.1 94.6 0.1 34.6 21.4 0.4 41.0 29.3

285250 260 270 280

AVERAGE

instance

AVERAGE

OVERALL

200 205 210 220 230 240

* In this table, the optimal solution could be obtained in extended time for the 3 instances at the top (i.e. 10, 18, 19), but it is not known for the 4 instances below (12, 13, 14, 20). 
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  Finally, we present the LPR statistics of the four unsolved instances in Case C in 

Table 4.15 below.  

 

Table 4.15 LPR Statistics of Instances for Which the Optimal Solution is Not Known 

(Case C) * 

 
LPR R LPR t

100 1.00 1.7

105 1.00 2.6

110 1.06 3.5

120 1.03 56.2

130 1.00 4.5

140 1.01 16.8

150 2.84 1.5

160 1.06 6.1

170 2.97 28.7

180 2.97 14.3

185 2.97 23.8

200 1.00 6.3

205 1.00 9.9

210 1.16 11.0

220 1.10 110.3

230 1.00 17.0

240 1.06 28.6

250 2.84 7.2

260 1.16 18.2

270 2.98 140.8

280 2.98 32.5

285 2.98 43.8  

* Averages for instances 12, 13, 14 and 20 

 
 
  Since we do not know the optimal solution for instances 12, 13, 14 and 20, we 

cannot compute the exact deviation of the upper bound. However, the same inference that 

was made for the previous cases can also be made about the quality of the upper bounds for 

this case by using the average gap between the optimal and the LPR for the instances with 

known optimal solutions (excluding easy instances). This gap turns out to be 14.5% of the 

LPR for the favourable options. The average ULP% statistic for the four unsolvable 

instances is 43.1% (corresponding to option 180 in Table 4.14), which suggests that the UB 

is approximately 29% (of the LPR) away from the optimal solution. This result is also close 

to our inference about the unsolved instances in Case A.  
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4.2.2.4 General Conclusions 

 

  Generally speaking, our initial conclusions about the favourable options for Case 

A, which was the most ideal setting among the three experimental cases, were not 

disproved in later experiments and all results were more or less in line with each other. 

  It can be said that although their performance was not very striking in Case B 

where changeover costs were removed, the options with favourable additional inequalities 

give satisfactory results in terms of LPR values, CPU times, UB quality and number of 

nodes in all cases. Although a change in formulation does not have a strong impact, the 

combination of VI-1 and VI-5 clearly enhances the formulation quality. The incorporation 

of other VI on top of these does not bring an important improvement to the solution. On the 

other hand, the elimination constraints (EC) were generally observed to be effective both in 

terms of solution times and the number of nodes generated. Thus, in light of all the 

experiments carried out so far, we have decided that the best experimental setting to be 

used for the optimal solution of the GLSP would be 285, while options 180, 185 and 280 

might be considered close alternatives.  
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CHAPTER 5  

 

SOLVING THE GLSP 

 
 
 
 
  After having developed a viable mathematical model and determined its 

applicability and inherent assumptions, we have attempted at enhancing it through the 

addition of some additional inequalities. However, it needs to be said that as the size of the 

instances increases, the computational effort required to solve the problem optimally 

becomes prohibitive even after making strong enhancements. For this reason, it is important 

to develop reasonable approximations in order to attack the solution of such a challenging 

problem.  

  Our main aim in this chapter is to gain more insight about the intricacies of the 

GLSP and consider how best we can make use of the tools and information we have 

developed thus far. In doing so, we used a test bed taken from the literature that is different 

from the preliminary data set and tried to evaluate how the complexity of the problem is 

affected by an increase in the number of items and number of time periods. We also 

examined the effect of minimum batch sizes, which were otherwise unrestrictive in the 

preliminary experiments. In light of all these observations, we intend to come up with a 

satisfactory heuristic approach that is able to provide good feasible solutions within 

reasonable solution times. 

 

5.1 Experimentation on the GLSP  

 

  In this section we describe the computational experiments performed to test the 

effectiveness of our GLSP formulation. The section is organized as follows: First, we 

describe the test problems taken from a reference study in the literature and the 

modifications we have made on them. Then, we state which experimental settings were 

used for these tests. Finally, we present the computational results with an emphasis on the 

effects of alternative minimum batch size settings and those of problem size parameters.  
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5.1.1 Choice of Data Set 

 

  For the preliminary set of experiments, our instances were based on the “Practical 

Industry Problems” used by Meyr (2000). However, this data set has a number of 

disadvantages, among which the most important is that setup times are sequence 

independent and relatively small in size compared to capacities, while the so-called 

sequence dependent setup costs only take several levels of values and are not truly 

sequence dependent. Moreover, further examination of the data reveals that although 

overall capacity utilization appears to be high, the demand-capacity distribution structure 

takes a special form such that all item demands are concentrated late in the planning 

horizon. This special structure facilitates the construction of feasible schedules, as the first 

few periods with no item demands can be reserved for early production for later periods. 

  For all these reasons, we have considered it appropriate to base our experiments on 

an alternative data set from the literature. We have decided to use the data generation 

scheme proposed by Haase and Kimms (2000), which features sequence dependent setup 

times taking up approximately 10% of period capacities. Setup costs are expressed as 

multiples of setup times, therefore they are also sequence dependent. However, there are a 

number of extra assumptions and restrictions in this study, such as the assumption of 

triangle inequality for setups and that of the zero-switch property (i.e., production of an 

item is only possible if the incoming inventory is zero). For this reason, we needed to make 

some modifications to the data in order to fit it within our framework. The points below 

describe the nature of the data used and some of the modifications we have made on them. 

� Unit production requirements (Pi) for all items are equal to 1. Item demands per 

period, inventory holding costs and setup times are uniformly distributed with 

parameters [40,60], [2,10] and [2,10], respectively. Setup times are sequence 

dependent and STjj = 0.  

� Setup costs are dependent on the setup times through the relation SCij=50 x STij. 

� The facility is initially set up for item 1 (i.e., item zero in our formulation is equal 

to item 1). 

� Period capacities are calculated by considering the maximum total demand in any 

period and a utilization coefficient, as follows:  

max it
t

i
t

d

C C
Utilization

  
 
  = =
∑
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The utilization coefficient (Utilization) is taken as 0.8, which is the highest setting 

used by Haase and Kimms (2000). This coefficient accounts for the expected 

utilization of the capacity for production quantities only, since setup times are not 

considered. Following from the original paper, overtime is not allowed.  

� Triangle inequality does not necessarily hold for setup costs and times.  

� Zero-switch property assumption is removed. 

� In the original data, there are no minimum batch sizes. Therefore, we have 

incorporated this parameter (mi) into the model and determined its value according 

to the following relation: 

i it
t

m MBS d= ×∑  

where the minimum batch size of an item is expressed as a portion of its total 

demand quantity throughout the planning horizon. This portion is determined based 

on the coefficient MBS, which is set at different levels for the experiments. For 

instance, setting 0.1 indicates that item minimum batch sizes are set to be 10% of 

their total demands. In this way, minimum batch sizes depend on the number of 

time periods, K. The longer the planning horizon, the greater the item minimum 

batch sizes. 

� The number of positions within a period are determined exactly as in preliminary 

experiments, i.e., by using the following relation: 

Lt - Ft = min{ }2, +tkN  

  The reader is referred to Section 4.2.1 for details. 

 

  In proposing this generation scheme, the authors Haase and Kimms (2000) aimed at 

achieving tight instances. Compared with our preliminary data set, this generation scheme 

provides much tighter instances, since we have a full demand matrix (with no zero entries) 

and higher setup times.  

  Using the scheme described above, we have generated 7 different classes of 

instances, where the number of items range from 6 to 9 and number of periods range from 2 

to 5. Each class contains 10 instance replications. Instance properties including our naming 

scheme are summarized in Table 5.1 below. 
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Table 5.1 Characteristics of HK Instances 

 
N x K Instance #

6 x 2 46,…,55

6 x 3 56,…,65

6 x 4 66,…,75

6 x 5 76,…,85

7 x 3 1,…,5 and 31,…,35

8 x 3 16,…,20 and 36,…,40

9x 3 26,…,30 and 41,…,45  

 

 

  As it has been stated above, we randomly generated the changeover times and did 

not enforce triangle inequality. However, in order to gain more insight about the nature of 

the instances, we have examined triangle inequality violations in our generated data. For 

this purpose, we checked the changeover times for each triple combination possible 

between different items and counted the violations of the inequality. For each instance, 

%Violations is expressed as a ratio of the number of violations to the total number of triple 

combinations possible. The calculations are presented in Appendix F. The average 

%Violation per instance turns out to be 7.8%, which is rather low. Therefore, this data set 

may be regarded as close to the case where triangle inequality assumption is satisfied.  

 

5.1.2 Experimental Settings 

 

  For the experiments, all models were coded with Turbo Pascal 7.0 (Borland) and 

solved by CPLEX 8.1.0 with default solution options on Pentium IV 1.8 GHz. PC’s with 

256 MB RAM running Windows NT Workstation 4.0, which is a slightly superior 

configuration compared with the one used for our preliminary experiments. The 

computation times are given in CPU seconds on this machine setting. The Prime Modulus 

Multiplicative Linear Congruential Generator described by Law and Kelton (2000) was 

used as the random number generator. 

  All 70 instances were solved with option 285 (i.e., TP formulation enhanced with 

VI-1, VI-5 and EC constraints) and with a time limit of 2 CPU hours (7200 CPU seconds). 

In case the optimal solution cannot be obtained within this time limit, the time limit was 

extended for the sake of obtaining the optimal function value, if possible.  



 

 90 

  The minimum batch sizes are determined for each item by using the MBS 

parameter, as explained in Section 5.1.1. For the extended set of experiments, we tested 

alternative MBS settings. The basic MBS setting was 0.1 (i.e., the minimum batch size of 

each item is equal to 10% of its total demand throughout the horizon), but we also used 

lower and higher settings of 0.025 and 0.25, respectively. Some preliminary analysis 

showed that increasing MBS to 0.4 resulted in infeasibilities and required huge amounts of 

computational effort, so we decided that increasing MBS further would not be reasonable. 

Therefore, we have 3 MBS settings to test for each of the 70 instances, namely 0.025, 0.1 

and 0.25. 

 

5.1.3 Results of the Experiments 

 

  Details of the experiments with the 3 different MBS settings of 0.1, 0.025 and 0.25 

are presented in Appendix G, H and I, respectively. These appendices also contain 

information about the solution values obtained at the end of extended solution times 

corresponding to the instances that could not be solved within the time limit.  

  Average results for the experiments with the 2 hr limit are provided in Table 5.2 

below. 

 

Table 5.2 Average Results for Experiments on HK Instances  

with Alternative MBS Settings * 

 

CPU IGap% DU% CPU IGap% DU% CPU IGap% DU%

6 x 2 4.8 41.1 10 (10) 0.0 4.4 41.1 10 (10) 0.0 4.8 41.1 10 (10) 0.0

6 x 3 56.0 61.8 10 (10) 0.0 53.1 61.8 10 (10) 0.0 48.6 61.8 10 (10) 0.0

6 x 4 1301.9 71.9 10 (10) 0.0 1342.7 71.9 10 (10) 0.0 3061.0 73.3 10  (8) 0.0

6 x 5 limit 76.5 2  (0) 0.9 6979.6 76.5 1  (1) 1.0 limit 82.4 4  (0) 3.4

7 x 3 404.5 62.6 10 (10) 0.0 465.9 62.6 10 (10) 0.0 398.6 62.6 10 (10) 0.0

8 x 3 4156.8 63.9 9  (9) 0.0 3517.6 63.9 10  (9) 0.0 3902.0 63.9 8  (8) 0.1

9 x 3 7037.4 64.1 2  (1) 0.9 7085.5 64.1 5  (1) 1.0 6750.2 64.1 3  (1) 0.7

OVERALL 2880.2 63.1 53 (50) 0.3 2778.4 63.1 56 (51) 0.3 3052.2 64.2 55 (47) 0.6

MBS=0.25

#opt 

MBS=0.1

#opt 

MBS=0.025

#opt 

 
* #opt denotes the number of times the optimal solution was found, where the entry in parentheses denotes the number of 
verified optimal solutions. 
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  The column for #opt statistic contains two sets of entries. The first is a measure of 

the number of times the best UB at the end of the time limit is equal to the optimal solution, 

while the second only counts the best UB’s that were verified to be optimal, i.e., only those 

instances that stopped with zero solution gaps were considered.  

  Since our main experimental setting for MBS is 0.1, we will examine the results for 

this case more closely. In this setting, the optimal solutions are known for all instances; 

therefore all gaps can be computed. As it can be seen from Appendix G.1, 20 instances 

could be solved by extending the time limit. The average solution time for these instances is   

6.5 CPU hours.  

  Table 5.2 shows that the integrality gap increases both as the number of items and 

the number of periods increase. However, the number of time periods seems to be more 

effective in this respect. For instance, we observe that the IGap% value of 61.8% for class 

6x3 increases to 71.9% for 6x4, while it only increases to 62.6% for class 7x3.  

  Solution times also increase as instances get larger. In fact, we can say with 99% 

confidence that the number of periods and the number of items both increase CPU times 

significantly (Appendix J). Class 6x5 results in the highest solution times, integrality gaps, 

upper bound deviations and smallest number of optimal solutions. 

  DU% statistics are all close to zero, which indicates that 2 hr. solution limit is 

sufficient to obtain good quality upper bounds for these instances. Out of the total 70 

instances, the optimal solutions were found for 53 within 2 hours, and the overall average 

deviation of the UB is 0.3%.  

  When we compare the optimal solutions for MBS settings 0.1 and 0.025, we can 

see that they are exactly identical for all instance classes. This indicates that decreasing the 

minimum batch size further was not effective in changing the solutions. This observation 

also applies for MBS=0.25 for instances with small number of periods (i.e., K=2,3). 

However as number of time periods increases, minimum batch size restriction starts to take 

effect and MBS=0.25 setting results in higher solution values compared with the other two 

settings. The reader may compare the optimal solution values of instance class 6x4 for 

MBS settings 0.1 and 0.25 in Appendix G.1 and I.1, respectively for confirmation of this 

finding. Therefore, it can be claimed that the minimum batch size scheme we have used 

only changed the solutions for instances with time periods greater than 4.  

  Regarding the average solution statistics of MBS settings 0.025 and 0.25, we again 

refer to Table 5.2. Parallel to the observations we have made above, the statistics of MBS 

setting 0.025 are very close to those of MBS=0.1. The integrality gaps and DU% statistics 
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are almost identical, while the solution times turn out to be lower for some instance classes. 

Moreover, higher number of optimal solutions was found in this setting. This implies that 

although decreasing minimum batch sizes did not cause changes in the optimal solutions, 

the solution effort required to solve these problems decreased for some classes.  

  Since the optimal solutions are only affected by number of periods greater than 4, 

we can examine the statistics for MBS setting 0.25 in two parts. For the first, the statistics 

for instance classes with small number of periods indicate results that are similar to those 

for our MBS=0.025 analysis above. In order words, integrality gap values and UB 

deviations are almost identical, while for some classes, average solution times turn out to be 

smaller than the MBS=0.1 setting. On the other hand, for instance classes 6x4 and 6x5, the 

integrality gaps and solution times are much higher compared to MBS=0.1. In fact, none of 

the ten 6x5 instances could be solved optimally with MBS=0.25 even with extended 

solution times and the average deviation between the best upper bound and the LPR is 

approximately 490% on the average, which is rather high. This suggests that as minimum 

batch sizes start to take influence, the instances become harder to solve.  

  Note that when our results are compared to those of Haase and Kimms (2000), our 

solution times turn out to be much higher. However, such a comparison would not be 

reasonable, since their approach requires solving all TSP’s previously in order to enumerate 

all efficient sequences and these solution times are not included in their results. 

  

5.2 k-Nearest Heuristic  

   

  Although computational results have shown that the average solution quality is 

satisfactory within a 2 hour time limit for our enhanced GLSP formulation, it is evident that 

attacking the optimal solution of this problem is not reasonable for larger problem 

instances. Therefore, one must develop some practical approximations in order to obtain 

good solutions in reasonable times.  

  Unlike other heuristic approaches previously applied to the GLSP or to similar 

models, which either used metaheuristics or backward oriented procedures for obtaining 

feasible solutions, we decided to employ a mathematical programming based 

approximation, which will be referred to as the “k-Nearest” heuristic.   

  This approach is based on our enhanced GLSP formulation (option 285) with a 

restriction on the number of item changeovers possible. This idea has been initiated from 

some rough analysis of the solutions of the experiments, which showed that in the optimal 
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solutions, there are usually only a few preferred changeovers between items, while a great 

deal of changeover combinations are hardly ever used. Since the main drawback of the 

GLSP is the size in terms of number of variables, we thought it would be wise to simply 

reduce the number of changeover variables by allowing only k transitions from an item into 

another but itself. This implies that for each item, we need to define a restricted set of 

allowable items which contains k elements. The elements of these sets are determined based 

on changeover times in our experiments, thus, for each item, we only allow changeovers to 

the k different items that are closest to it in terms of changeover times. As an example, let 

us consider a problem with four items and let the changeover times from item 1 to the other 

items be given as 2, 4 and 3 units, respectively. For this problem, if k is set as 2, then the 

restricted set of allowable items corresponding to item 1 would include items 2 and 4, since 

they are the closest items according to the criterion of changeover time. In this case, the 

changeover from item 1 to item 3 will not be allowed, since it has the longest changeover 

time of 4 units.  

  However, we make an exception to this rule for the following two cases:  

i) the item under consideration is item zero, or  

ii) we are at a period boundary (i.e., n=Lt)  

This means that all changeovers are allowed for the two exceptional cases above. The first 

exception is clearly justifiable. The second is necessary in order to facilitate finding feasible 

solutions. Put in another way, the procedure that we propose only restricts the number of 

changeovers within a period, but allows all transitions between periods.   

  Another issue is how to set the value of input parameter k. As k approaches N-1 

(i.e., the original number of different changeovers possible in the unrestricted problem- the 

maximum value that k can take), the solution is expected to approach the optimal at the 

expense of greater solution effort, and vice versa. In order to verify this conjecture, we have 

decided to use 3 alternative settings for parameter k. We aim at restricting the number of 

changeovers to be approximately 80, 60 and 40% of the original, respectively. The 

procedure we use to determine the value of k depends on the number of items in the 

problem instance under consideration. For each possible k, we compute the proportion of k 

over N-1 and express it as a percentage. Then, among all percentages computed in this way, 

we select the 3 settings that are closest to the approximate percentages of 80, 60 and 40. 

Table 5.3 on the next page presents the calculations and the selected k values corresponding 

to each N that is used in the computational experiments. To clarify, for the problems with 8 

items, the 3 settings of k are determined to be 6, 4 and 3, respectively according to the 3 
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percentage levels. For example k=6 corresponds to using approximately 80% of different 

item changeovers and this setting will be used for problems with 8 items when solved with 

k-Nearest heuristic 80%, as referred to in the experiments that follow.  

 
 

Table 5.3 Procedure Used to Determine the Value of k * 

 

N k %

6 4 80.00 �

3 60.00 �

2 40.00 �

7 5 83.33 �

4 66.67 �

3 50.00

2 33.33 �

8 6 85.71 �

5 71.43

4 57.14 �

3 42.86 �

2 28.57

9 7 87.50 �

6 75.00

5 62.50 �

4 50.00

3 37.50 �

2 25.00  

    * % represents k/(N-1) x 100. 

 

 

  We anticipate that this heuristic will yield better results as the number of items 

increases. This is because the reduction in the number of changeovers for only a few items 

would be a severe restriction whereas with greater number of items, this reduction is 

expected to pay off with more pronounced effects. Moreover, the heuristic is expected to 

become more effective under situations where changeovers satisfy the triangle inequality 

assumption because there will be no more need to perform dummy changeovers between 

items.  

  For the experiments with the k-Nearest heuristic, we have used the 70 experimental 

HK instances with the basic MBS=0.1 setting and a time limit of 2 CPU hours. Recall that 

all instances could be solved optimally for this case, which means that the performance of 

the heuristic can be evaluated in comparison to the original (i.e., k=N-1) optimal solutions. 
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  Table 5.4 displays the average statistics for the 2 hour performance of the 3 k-

Nearest heuristic settings as well as those for the original versions of the instances. The 

detailed statistics may be found in Appendix K.  

 

 

Table 5.4 Results of k-Nearest Heuristic Experiments on HK Instances with MBS=0.1 * 

 

CPU DU% #opt CPU DU% #opt CPU DU% #opt CPU DU% #opt

6 x 2 4.8 0.0 10 4.2 0.0 10 3.7 1.5 7 2.6 6.0 4

6 x 3 56.0 0.0 10 40.5 0.1 9 33.3 0.6 6 16.4 2.8 5

6 x 4 1301.9 0.0 10 773.1 0.0 10 453.5 0.2 9 136.7 5.4 3

6 x 5 limit 0.9 2 6998.8 0.5 5 6439.8 1.3 5 703.8 3.6 3

7 x 3 404.5 0.0 10 458.3 0.0 10 283.8 0.0 10 70.1 3.2 3

8 x 3 4156.8 0.0 9 3092.7 0.0 9 2353.3 0.2 9 973.7 1.8 7

9 x 3 7037.4 0.9 2 7102.9 0.9 4 6732.2 0.8 4 2629.0 0.2 8

OVERALL 2880.2 0.3 53 2638.6 0.2 57 2328.5 0.6 50 647.5 3.3 33

Original k-Nearest 40%k-Nearest 60%k-Nearest 80%

 

* Original denotes the unrestricted optimal MIP solution within a 2 hr limit. 
    #opt statistics are calculated by comparing the best UB at the end of the time limit with the optimal solution of the  
    unrestricted problem. 

 

 

  The results verify our expectations. As the number of changeovers is restricted, 

solution times generally decrease at the expense of worse upper bounds and reduced 

number of optimal solutions. Exceptions to this observation are instance classes 7x3 and 

9x3 for which k-Nearest 80% resulted in slightly higher average solution times compared 

with the original solutions.  

  k-Nearest 80% yields results that are very close to the original solutions, in that the 

solutions times are high and upper bounds are very close to the optimal solutions. In fact, 

upper bound deviations are even slightly lower and the number of optimal solutions found 

is greater for this case compared with the original solutions for the hardest instance classes 

of 6x5 and 9x3. This may be explained by the speed of the heuristic, i.e., it spends less time 

on each node and works for a slightly restricted solution space, and hence it is able to scan 

more solutions within the time limit.  

  For the other two heuristic settings of k-Nearest 60% and 40%, upper bound quality 

starts to deteriorate and the number of optimal solutions decreases for small instance 
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classes. As a matter of fact, the use of this heuristic is not reasonable for very small 

instances, especially those with only a few items, since the original solutions are already 

satisfactory and by approximating, we give up on optimality. However, the picture changes 

as instances become harder. Then, the reduction of solution times becomes considerable 

and upper bound deviations start to take tolerable values. As an example, instances within 

class 6x5 could not be solved at all within the time limit and the optimal solutions were 

obtained only for 2 instances in the original case. However, k-Nearest 40% solves this class 

of problems within 703 seconds on the average and provides 3 optimal solutions, with an 

average upper deviation of 3.6%, which is acceptable. The performance of this heuristic 

setting becomes even better as number of items increase. Compare the results for instance 

classes 7x3, 8x3 and 9x3 to verify that excellent quality upper bounds could be found 

within reasonable solution times. Especially for class 9x3, k-Nearest 40% performs best 

among all other settings in terms of  both CPU and upper bound quality, which is almost 

zero and with a striking count of 8 optimal solutions out of 10, whereas the original 

solution was only able to identify 2.  

  Therefore, as a result of this analysis, we have shown that there is sufficient 

evidence for resorting to restricted number of changeovers for the GLSP with sequence 

dependent changeovers. In this light, the k-Nearest heuristic opens up a promising path to 

obtain effective solutions within reasonable times for problems with high number of items.  
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CHAPTER 6  

 

CONCLUSIONS AND DIRECTIONS FOR FURTHER STUDY 

  
 
 
 
  In this study, we have presented a mathematical formulation for the GLSP, which is 

an integrated multi-item, single-level capacitated lot sizing and sequencing problem with 

sequence dependent changeover costs and times. During the formulation stage, we focused 

on the elimination of restrictive modeling assumptions as much as possible in order to be 

able to represent continuous production lots more realistically under strict capacity 

limitations. We represented the problem using a stronger alternative formulation and also 

considered some enhancements through the incorporation of some additional inequalities. 

Preliminary experiments were conducted to select the best combination of these inequalities 

to be used for the solution of the GLSP. 

  In our computational experiments, we tested the LP relaxation and MIP 

performance of our enhanced formulation using a set of instances taken from the literature. 

We checked the effect of alternative minimum batch size settings which depend on specific 

portions of total item demands over the planning horizon. Our results have shown that 

increasing minimum batch sizes increases the solution times and gaps for large instances, 

while for the major portion of instances, minimum batch sizes did not have a considerable 

effect on the solution. 

  Recognizing the need to develop viable approximations for the GLSP in order to 

tackle larger problems, we considered posing some restrictions on item changeovers, in 

what we referred to as the k-Nearest heuristic. We tested this approach under different 

settings and the results show that the highest restriction, i.e., reducing the number of 

different changeovers possible for each item to be 40% of the original, yielded very 

promising results with low computation times and upper bounds that are very close to 

optimal solutions. This shows that especially for problems with many items, using this kind 

of an approximation is a potentially sound option against striving in vain for optimality.  
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  The fundamental contribution of this thesis is, in our opinion, in the area of 

developing a complete mathematical formulation with explicit assumptions and the 

capability to represent special cases more effectively, compared with earlier GLSP 

formulations. We provide the first numerical results for the tests including both sequence 

dependent changeover times and changeover costs for the single level GLSP. Moreover, we 

develop an alternative TP formulation for the problem and combine it with some effective 

additional inequalities, some of which are original to our work. These approaches have 

been applied to other lot sizing models, but to our knowledge, this is the first time they 

appear within the GLSP context. The TP formulation combined with unit flow equalities, 

our original valid inequality and several redundancy elimination constraints was shown to 

improve the MIP performance of the pure GLSP considerably. Finally, the k-Nearest 

approach proposed may be regarded as a new line of thinking in the area of lot sizing with 

sequence dependent changeovers, with potentially strong impacts. 

  Our experiments were confined to considerably small instances with known 

optimal solutions. For the continuation of the study, the potency of the k-Nearest heuristic 

should be tested for larger instances. The quality of its solutions may be evaluated in 

comparison with the LP relaxation bounds in this case, and inferences about its 

effectiveness can be made using similar gap information available from smaller instances.  

  In our experiments with the k-Nearest heuristic, we used linearly dependent 

changeover costs and times, which enabled the selection of k items based on a single 

criterion. Thus, another possible extension is apparent; the k-Nearest heuristic should be 

designed for use in the context of independent or negatively associated changeover costs 

and times, and a procedure should be developed for selecting the best changeovers with 

respect to both criteria using an appropriate weighting scheme.  

  An important setting that needs to be evaluated during an extensive test would be 

the number of positions within time periods. In all our problems, we used a constant setting 

for this parameter depending on the number of items and minimum batch sizes. 

Nevertheless, other values should be tested to come up with the most satisfactory setting. 

Note that a very low setting would severely restrict the number of production lots and 

would increase the occurrence of infeasibilities, whereas too many positions would 

needlessly increase the size and complexity of the formulation.   

  During our computational experiments, we have observed the strong impact of 

capacity-demand distributions in the test data. The HK data set used for the experiments 

included tight instances with full demand matrices, which may have clouded the effects of 
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the model features tested, such as the minimum batch sizes. Thus, in a thorough analysis, 

alternative demand and capacity patterns should be used as well as different schemes for 

the determination of minimum batch sizes.  

  Regarding the mathematical formulation, an extension of our model would be the 

case where changeover times are also allowed to be split between periods in addition to the 

production lots and minimum batch sizes. This modification would be suitable especially if 

changeover times are excessively long with respect to capacity and it would render the 

production truly continuous over time. However, such a modification is not straightforward 

and is expected to require extensive changes to the original framework. 

  For further research on the solution of the GLSP, one can improve our 

enhancement scheme using strong valid inequalities. Improving the flow-based setup and 

changeover inequalities as well as the incorporation of (l,S) type inequalities rooting back 

to Barany et al. (1984) may be considered (especially for the I&L formulation) as possible 

alternatives in this area. 

  Apart from our k-Nearest heuristic approach, other alternative approximations may 

be considered for this problem. For instance, one may envisage an a-priori tour between the 

items based on the smallest changeover times (or costs), i.e., the optimal TSP tour. If 

certain items are not part of the sequence in a certain period, then a plausible approximation 

for the best tour between the remaining items would be to keep the same order enforced by 

the a-priori tour with unused items skipped. In this way, sequencing decisions will be 

substituted with this predefined tour and they can be easily integrated within the lot sizing 

model. However, such an approximation is expected to produce satisfactory results only 

under special changeover patterns and especially if triangle inequality is satisfied.   

  Although Lagrangean relaxation approaches are commonly used solution methods 

for lot sizing problems, they have not been frequently applied to integrated models 

involving sequencing decisions. As a matter of fact, examination of the model structure 

suggests that the relaxation of a single constraint will not be sufficient to condense it down 

to easier subproblems, because there are many interdependencies between the items and the 

time periods. For example, even if the capacity restriction is relaxed, items will still be 

related through changeover constraints. This requires the relaxation of a set of fundamental 

constraints together, but as such, the remaining problems will have lost their essential 

nature. Alternatively, decomposition approaches may be considered for this problem rather 

than Lagrangean relaxation.   
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  Another heuristic approach could be to consider the mathematical decomposition of 

the lot sizing and sequencing decisions in two sequential steps, while establishing the links 

between them iteratively. A rough initial discussion on such an approach (which is referred 

to as the TSH for the Two-Step Heuristic) is presented in Appendix L for a simpler version 

of our problem. It needs to be said that the results obtained after a rudimentary study are not 

very promising and they call for substantial improvement effort. 
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APPENDIX A 
 

AN EXAMPLE INSTANCE FOR WHICH EC-1 IS SHOWN TO BE VALID 

 

  Below we provide an example instance for which the LPR solution changes upon 

the addition of EC-1 into the model. The example instance is instance 15 from our 

preliminary data set for Case A, which is based on the study by Meyr (2000) with 

augmented and sequence dependent changeover times, as explained in Section 4.2.2.1. The 

instance involves 6 items and 4 periods. Related input parameters are provided in the three 

tables that follow. 

 

Table A.1 Input Data for Preliminary Instance 15 – Case A * 

 

1 2 3 4

1 21.926 30.724 30.724 97.981 33.332 1 2
2 0 0 36.525 172.560 46.935 1 2
3 0 0 0 0.843 58.467 1 2
4 0 0 5.975 69.067 46.688 1 2
5 0.248 0.078 0.078 0.609 85.174 1 2
6 0 0 0 0.662 51.392 1 2

140.741 133.333 133.333 133.333

m

It
em

Capacity

Demands
Period

h P

 

 

 

Table A.2 Changeover Cost Data for Preliminary Instance 15 – Case A  

SC 1 2 3 4 5 6

0 6986.2 5279.3 5495.1 5246.8 2606.5 3625.7
1 0 6516.9 6732.7 6484.4 4709.9 4709.9
2 8070.4 0 6579.3 6331.0 4709.9 4709.9
3 8070.4 6363.5 0 6331.0 4709.9 4709.9
4 8070.4 6363.5 6579.3 0 4709.9 4709.9
5 8070.4 6516.9 6732.7 6484.4 0 4709.9

6 8070.4 6516.9 6732.7 6484.4 4709.9 0  

 

Table A.3 Changeover Time Data for Preliminary Instance 15 – Case A 

ST 1 2 3 4 5 6

0 4.358 6.409 3.897 4.358 4.358 3.897
1 0 4.358 2.650 2.964 4.358 3.897
2 4.358 0 5.767 6.450 4.358 3.897
3 4.358 9.485 0 6.450 4.358 3.897
4 4.358 9.485 5.767 0 4.358 3.897
5 4.358 4.358 2.650 2.964 0 3.897
6 4.358 4.358 2.650 2.964 4.358 0  

* h, P and m stand for inventory holding cost, unit production requirement and minimum batch    
  size, respectively. Case A is the first case tested for Preliminary Experiments in Chapter 4. 
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  In order to show the effect of incorporating EC-1, we have solved the LP relaxation 

of instance 15 described above with and without EC-1 in the presence of all VI (i.e., 

together with VI-1, VI-2, VI-3, VI-4 and VI-5). This is due to the fact that EC constraints 

are not usually effective on their own, but only make a difference together with other 

stronger valid inequalities. The resulting setup-changeover sequences for the first period 

(which involves 6 positions) are provided on the next page for the LP relaxation solutions. 

Note that we have only included the values of the self-changeover variables in order to keep 

the figures simple.  

  The initial observation is that the setup-changeover sequence is modified in the 

presence of EC-1 and as a result, the LPR value has improved by 3 units, which proves that 

EC-1 is not redundant for the LP solution.  

  Let us examine the effect of EC-1 more closely. Recall EC-1: 

  ∑ ∑∑ ∑
= ≠== ≠=

− ≥
N

j

N

jii
ijn

N

j

N

jii
nij

1 ,01 ,0
)1( δδ   )1)..(2(, −+=∀ tt LFnt                           

  It is easy to verify that the first solution on the top violates EC-1 by checking the 

values of the changeover variables for some positions within period 1. For instance, let us 

select the two consecutive positions 2 and 3. Since the values of all changeover variables 

entering a position sum up to 1, we can evaluate the sum of the values of the changeover 

variables between different items (i.e., the terms in EC-1) by subtracting the values of self-

changeover variables from 1. This implies that, 

2
1 0,

N N

ij
j i i j

δ
= = ≠
∑ ∑ = 1- 2

0

N

ii
i

δ
=
∑ = 1- 0.076 = 0.924 

3
1 0,

N N

ij
j i i j

δ
= = ≠
∑ ∑ = 1- 3

0

N

ii
i

δ
=
∑ = 1- 0.023 = 0.977 

  EC-1 is violated since 0.924 < 0.977. The reader can check that there is also a 

violation for the consecutive position pair (3,4).  

  When EC-1 is included (the bottom case in Figure A.1), the values of the setup and 

changeover variables are changed so that the above violations are eliminated. For instance,  

2
1 0,

N N

ij
j i i j

δ
= = ≠
∑ ∑ = 1- 2

0

N

ii
i

δ
=
∑ = 1- 0.003 = 0.997 

  3
1 0,

N N

ij
j i i j

δ
= = ≠
∑ ∑ = 1- 3

0

N

ii
i

δ
=
∑ = 1- (0.001+0.002) = 0.997 

Thus, EC-1 is satisfied. The same result is obtained for consecutive positions 3 and 4.   
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Including all VI, but not EC-1

1 2 3 4 5 6

0.572 0.076 0.023 0.003

0.103 0.417 0.160 0.160 0.160

0.200 0.200 0.200 0.200 0.200

0.023 0.053 0.092 0.160 0.160 0.160 . . .
0.000 0.108 0.297 0.297 0.297

0.405 0.496 0.053 0.020 0.023 0.046

0.072 0.107 0.160 0.160 0.137

LPR: 50319.890

0.0230.020

0.076 0.023 0.0030.572

Including all VI and EC-1

1 2 3 4 5 6

0.539 0.003 0.001

0.113 0.418 0.135 0.200 0.135

0.200 0.200 0.200 0.200 0.200

0.034 0.059 0.101 0.175 0.175 0.177 . . .
0.142 0.287 0.287 0.285

0.428 0.535 0.004 0.004 0.004 0.038

0.089 0.133 0.200 0.135 0.166

LPR: 50322.940

0.0040.003

0.539 0.003 0.001

0.0040.002

 

Figure A.1 The Effect of EC-1 on the LPR of Instance 15 (Case A) 
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APPENDIX B  
 

MODIFICATION OF THE CHANGEOVER TIME DATA FOR PRELIMINARY 

TESTS – CASE A 

 

  Below is a brief account of the ad-hoc method by which we have transformed the 

original data used by Meyr (2000) into a form used in our Preliminary Case A. The 

modifications follow two main steps, namely creating sequence dependent changeover 

times and augmenting the size of the changeover times.  

 

a) Creating Sequence Dependency  

  Our aim is to generate the sequence dependent changeover time parameter STij 

from its sequence independent counterpart STj while assuming an inverse relationship with 

the corresponding changeover cost SCij. The applied procedure is briefly described below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Firstly, the average changeover cost for switching into a certain item is computed 

and the range between the minimum and maximum changeover cost into that item is 
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determined. These are used for computing a coefficient for each (i,j) pair, which depends on 

the dispersion of the corresponding sequence dependent changeover cost entry from the 

mean in terms of the relevant range. Here, the range is divided by two in order to consider a 

single-sided dispersion. Note that the resultant coefficient may also be negative, depending 

on the whether the changeover cost in question is smaller or larger than the average value.  

  The expected value of the changeover time into an item is equal to the available 

sequence independent setup time value. The changeover time from item zero into each item 

is taken to be the original sequence independent setup time parameter. The remaining 

sequence dependent changeover time entries are computed by subtracting (since we would 

like to create an inverse relationship) a given proportion of the mean setup time value times 

the dispersion coefficient from the mean setup time. The proportion to be used is dependent 

on the size of the mean changeover time.  

 

b) Augmenting the Size of Changeover Times 

  Our aim is to increase the quantity of the changeover times by allocating the 

available capacity margin to items while keeping the sequence dependent structure 

generated using the above procedure. Here, we assume that only N* items out of N are 

producible in a period (where * 0.75*N N=    ). Below is a description of the steps 

followed. 
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APPENDIX C  
 

PRELIMINARY EXPERIMENTS UNDER CASE A 

 

Table C.1 Solutions of Preliminary Instances Under Case A * 

 

inst#
Original 
Instance #

N K
Best sol.          

at the end of 
time limit

Extended CPU            
Final Gap%     
at the end of 
extended time

Best sol.

1 11 5 4 36898.8 - - 36898.8

2 21 5 4 31495.4 - - 31495.4

3 41 2 4 17846.0 - - 17846.0

4 51 5 4 32413.2 - - 32413.2

5 63 3 4 6191.0 - - 6191.0

6 83 4 4 8332.4 - - 8332.4

7 94 5 4 INFEASIBLE - - INFEASIBLE

8 104 5 4 55963.3 - - 55963.3

9 111 5 4 27583.2 - - 27583.2

10 11 5 8 64062.2 35941.7 - 64047.3

11 41 5 8 47012.5 - - 47012.5

12 94 8 8 INFEASIBLE - - INFEASIBLE

13 53 9 8 39020.3 290613.8 11.51 39020.3

14 64 9 8 INFEASIBLE - - INFEASIBLE

15 74 6 4 52021.2 - - 52021.2

16 13 7 4 31367.4 - - 31367.4

17 124 7 4 INFEASIBLE - - INFEASIBLE

18 102 8 4 32538.6 22635.8 - 32538.6

19 103 9 4 42830.9 48763.7 - 42830.9

20 123 9 4 27831.3 236201.7 - 27784.5

* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
    Best sol. at the end of the time limit is the best known solution among all options. However, extended solutions were    
    only performed with option 285.  
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Table C.2 Detailed Results of Experiments on Preliminary Instances Under Case A * 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 28198.32 36898.80 23.58 1077971 562852 18405.93 0.2 1.0 1.0 50.1 0.0 100.5 1.0

105 7200.0 31617.37 36898.80 14.31 944748 322423 18405.93 0.1 1.0 1.0 50.1 0.0 100.5 0.9

110 2260.9 36898.49 36898.80 0.00 105995 5 19612.56 0.1 0.3 1.1 46.8 0.0 88.1 0.1

120 7200.0 33680.72 36898.80 8.72 110667 45057 19478.14 0.6 1.0 1.1 47.2 0.0 89.4 0.1

130 7200.0 27800.81 36898.80 24.66 577813 340848 18405.93 0.2 1.0 1.0 50.1 0.0 100.5 0.5

140 7200.0 29512.25 36898.80 20.02 387729 213911 18957.28 0.3 1.0 1.0 48.6 0.0 94.6 0.4

150 1780.9 36898.43 36898.80 0.00 251311 28 36081.14 0.1 0.2 2.0 2.2 0.0 2.3 0.2

160 2260.3 36898.49 36898.80 0.00 105995 5 19612.56 0.3 0.3 1.1 46.8 0.0 88.1 0.1

170 47.7 36898.80 36898.80 0.00 750 0 36136.37 0.7 0.0 2.0 2.1 0.0 2.1 0.0

180 49.8 36898.80 36898.80 0.00 1620 0 36136.37 0.3 0.0 2.0 2.1 0.0 2.1 0.0

185 35.5 36898.80 36898.80 0.00 947 0 36136.37 0.5 0.0 2.0 2.1 0.0 2.1 0.0

200 7200.0 29141.68 36898.80 21.02 1150165 543993 18416.09 0.2 1.0 1.0 50.1 0.0 100.4 1.1

205 7200.0 31858.73 36898.80 13.66 991658 302982 18416.09 0.2 1.0 1.0 50.1 0.0 100.4 0.9

210 1890.5 36898.48 36898.80 0.00 133428 6 20079.48 0.2 0.3 1.1 45.6 0.0 83.8 0.1

220 7200.0 34833.44 36898.80 5.60 135616 37620 19879.42 1.2 1.0 1.1 46.1 0.0 85.6 0.1

230 7200.0 27790.78 36898.80 24.68 673507 342668 18416.09 0.3 1.0 1.0 50.1 0.0 100.4 0.6

240 7200.0 31522.28 36898.80 14.57 483975 242844 19236.85 0.5 1.0 1.0 47.9 0.0 91.8 0.4

250 1382.7 36898.44 36898.80 0.00 150968 61 36081.14 0.3 0.2 2.0 2.2 0.0 2.3 0.1

260 1851.6 36898.48 36898.80 0.00 133428 6 20079.48 0.4 0.3 1.1 45.6 0.0 83.8 0.1

270 61.5 36898.80 36898.80 0.00 654 0 36157.07 0.9 0.0 2.0 2.0 0.0 2.1 0.0

280 49.0 36898.80 36898.80 0.00 1846 0 36157.07 0.4 0.0 2.0 2.0 0.0 2.1 0.0

285 38.7 36898.66 36898.80 0.00 846 1 36157.07 0.7 0.0 2.0 2.0 0.0 2.1 0.0

100 7200.0 16986.92 31495.36 46.07 638027 356893 7564.94 0.1 1.0 1.0 76.0 0.0 316.3 1.0

105 7200.0 19704.48 31542.10 37.53 549983 281912 7564.94 0.1 1.0 1.0 76.0 0.1 317.0 0.9

110 7032.3 31495.05 31495.36 0.00 496739 12 8514.43 0.1 1.0 1.1 73.0 0.0 269.9 0.8

120 7200.0 26177.17 31495.36 16.89 133184 71209 8370.63 0.7 1.0 1.1 73.4 0.0 276.3 0.2

130 7200.0 17802.71 31542.10 43.56 399422 229895 7564.94 0.1 1.0 1.0 76.0 0.1 317.0 0.6

140 7200.0 19960.93 31495.36 36.62 393753 257126 8122.52 0.3 1.0 1.1 74.2 0.0 287.8 0.6

150 1925.1 31495.05 31495.36 0.00 191875 7 25247.88 0.1 0.3 3.3 19.8 0.0 24.7 0.3

160 6942.3 31495.05 31495.36 0.00 496739 12 8514.43 0.2 1.0 1.1 73.0 0.0 269.9 0.8

170 357.8 31495.07 31495.36 0.00 7465 9 25292.72 0.5 0.0 3.3 19.7 0.0 24.5 0.0

180 148.8 31495.20 31495.36 0.00 5375 11 25292.72 0.2 0.0 3.3 19.7 0.0 24.5 0.0

185 133.1 31495.36 31495.36 0.00 3190 0 25292.72 0.3 0.0 3.3 19.7 0.0 24.5 0.0

200 7200.0 17609.55 31495.36 44.09 650833 398778 7580.60 0.2 1.0 1.0 75.9 0.0 315.5 1.0

205 7200.0 22763.96 31495.36 27.72 589395 251496 7580.60 0.2 1.0 1.0 75.9 0.0 315.5 0.9

210 7200.0 30439.67 31495.36 3.35 203092 18464 9690.67 0.3 1.0 1.3 69.2 0.0 225.0 0.3

220 7200.0 26446.32 31495.36 16.03 130962 69466 9471.63 1.6 1.0 1.3 69.9 0.0 232.5 0.2

230 7200.0 17156.37 31495.36 45.53 361165 228275 7580.60 0.4 1.0 1.0 75.9 0.0 315.5 0.6

240 7200.0 20689.64 31495.36 34.31 289547 192274 9011.38 0.6 1.0 1.2 71.4 0.0 249.5 0.5

250 1540.6 31495.05 31495.36 0.00 99056 4 25247.88 0.2 0.2 3.3 19.8 0.0 24.7 0.2

260 7200.0 30506.20 31495.36 3.14 205297 17150 9690.67 0.5 1.0 1.3 69.2 0.0 225.0 0.3

270 239.3 31495.36 31495.36 0.00 2765 0 25349.12 0.9 0.0 3.4 19.5 0.0 24.2 0.0

280 64.2 31495.17 31495.36 0.00 2055 1 25349.12 0.4 0.0 3.4 19.5 0.0 24.2 0.0

285 52.1 31495.36 31495.36 0.00 767 0 25349.12 0.7 0.0 3.4 19.5 0.0 24.2 0.0

100 0.1 17846.03 17846.03 0.00 29 0 10295.83 0.0 1.0 1.0 42.3 0.0 73.3 1.0

105 0.1 17846.03 17846.03 0.00 23 0 10295.83 0.0 1.2 1.0 42.3 0.0 73.3 0.8

110 0.1 17846.03 17846.03 0.00 22 0 11441.34 0.0 0.9 1.1 35.9 0.0 56.0 0.8

120 0.2 17846.03 17846.03 0.00 20 0 11387.94 0.0 2.0 1.1 36.2 0.0 56.7 0.7

130 0.1 17846.03 17846.03 0.00 20 0 10295.83 0.0 1.2 1.0 42.3 0.0 73.3 0.7

140 0.2 17846.03 17846.03 0.00 26 0 11182.69 0.0 1.9 1.1 37.3 0.0 59.6 0.9

150 0.1 17846.03 17846.03 0.00 16 0 15782.09 0.0 1.1 1.5 11.6 0.0 13.1 0.6

160 0.1 17846.03 17846.03 0.00 22 0 11441.34 0.0 0.9 1.1 35.9 0.0 56.0 0.8

170 0.1 17846.03 17846.03 0.00 14 0 15837.93 0.0 1.0 1.5 11.3 0.0 12.7 0.5

180 0.1 17846.03 17846.03 0.00 13 0 15837.93 0.0 0.8 1.5 11.3 0.0 12.7 0.4

185 0.1 17846.03 17846.03 0.00 13 0 15837.93 0.0 0.9 1.5 11.3 0.0 12.7 0.4

200 0.1 17846.03 17846.03 0.00 14 0 11372.49 0.0 1.3 1.1 36.3 0.0 56.9 0.5

205 0.1 17846.03 17846.03 0.00 28 0 11372.49 0.0 1.4 1.1 36.3 0.0 56.9 1.0

210 0.1 17846.03 17846.03 0.00 15 0 11895.19 0.0 1.4 1.2 33.3 0.0 50.0 0.5

220 0.2 17846.03 17846.03 0.00 29 0 11895.19 0.0 2.6 1.2 33.3 0.0 50.0 1.0

230 0.1 17846.03 17846.03 0.00 30 0 11372.49 0.0 1.3 1.1 36.3 0.0 56.9 1.0

240 0.2 17846.03 17846.03 0.00 28 0 11439.03 0.0 1.8 1.1 35.9 0.0 56.0 1.0

250 0.1 17846.03 17846.03 0.00 36 0 15816.37 0.0 1.4 1.5 11.4 0.0 12.8 1.2

260 0.1 17846.03 17846.03 0.00 15 0 11895.19 0.0 1.4 1.2 33.3 0.0 50.0 0.5

270 0.2 17846.03 17846.03 0.00 21 0 15837.93 0.0 1.8 1.5 11.3 0.0 12.7 0.7

280 0.1 17846.03 17846.03 0.00 29 0 15837.93 0.0 1.4 1.5 11.3 0.0 12.7 1.0

285 0.1 17846.03 17846.03 0.00 28 0 15837.93 0.0 1.6 1.5 11.3 0.0 12.7 1.0
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Table C.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 23024.28 32413.16 28.97 801698 460387 13465.64 0.1 1.0 1.0 58.5 0.0 140.7 1.0

105 7200.0 24856.47 32413.16 23.31 635227 277963 13465.64 0.1 1.0 1.0 58.5 0.0 140.7 0.8

110 4248.9 32412.97 32413.16 0.00 178244 6 14493.87 0.1 0.6 1.1 55.3 0.0 123.6 0.2

120 7200.0 29014.53 32413.16 10.49 89651 38629 14389.59 0.6 1.0 1.1 55.6 0.0 125.3 0.1

130 7200.0 22284.96 32413.16 31.25 362558 225318 13465.64 0.2 1.0 1.0 58.5 0.0 140.7 0.5

140 7200.0 25614.58 32413.16 20.97 467524 236367 14018.96 0.4 1.0 1.0 56.7 0.0 131.2 0.6

150 2270.4 32412.84 32413.16 0.00 228033 31 31144.21 0.1 0.3 2.3 3.9 0.0 4.1 0.3

160 4235.9 32412.97 32413.16 0.00 178244 6 14493.87 0.2 0.6 1.1 55.3 0.0 123.6 0.2

170 242.0 32413.16 32413.16 0.00 2771 0 31201.37 1.0 0.0 2.3 3.7 0.0 3.9 0.0

180 95.8 32413.16 32413.16 0.00 2584 0 31201.37 0.3 0.0 2.3 3.7 0.0 3.9 0.0

185 64.1 32413.16 32413.16 0.00 927 0 31201.37 0.6 0.0 2.3 3.7 0.0 3.9 0.0

200 7200.0 23596.89 32413.16 27.20 932021 478693 13475.89 0.1 1.0 1.0 58.4 0.0 140.5 1.2

205 7200.0 25397.80 32413.16 21.64 727332 267331 13475.89 0.1 1.0 1.0 58.4 0.0 140.5 0.9

210 3525.7 32412.87 32413.16 0.00 177645 7 15096.69 0.1 0.5 1.1 53.4 0.0 114.7 0.2

220 7200.0 30396.24 32413.16 6.22 146722 43084 14897.85 1.0 1.0 1.1 54.0 0.0 117.6 0.2

230 7200.0 22492.76 32486.34 30.76 449892 234637 13475.89 0.2 1.0 1.0 58.4 0.2 141.1 0.6

240 7200.0 27694.81 32413.16 14.56 422641 181911 14333.31 0.5 1.0 1.1 55.8 0.0 126.1 0.5

250 4391.6 32412.85 32413.16 0.00 534399 81 31144.21 0.2 0.6 2.3 3.9 0.0 4.1 0.7

260 3557.8 32412.87 32413.16 0.00 177645 7 15096.69 0.4 0.5 1.1 53.4 0.0 114.7 0.2

270 111.2 32413.16 32413.16 0.00 1019 0 31234.56 0.9 0.0 2.3 3.6 0.0 3.8 0.0

280 60.8 32413.16 32413.16 0.00 1198 0 31234.56 0.4 0.0 2.3 3.6 0.0 3.8 0.0

285 36.5 32413.16 32413.16 0.00 410 0 31234.56 0.5 0.0 2.3 3.6 0.0 3.8 0.0

100 1.1 6190.97 6190.97 0.00 458 0 299.86 0.0 1.0 1.0 95.2 0.0 1964.6 1.0

105 1.5 6190.97 6190.97 0.00 657 0 299.86 0.0 1.4 1.0 95.2 0.0 1964.6 1.4

110 0.8 6190.97 6190.97 0.00 116 0 554.69 0.0 0.7 1.8 91.0 0.0 1016.1 0.3

120 2.0 6190.97 6190.97 0.00 176 0 551.60 0.1 1.9 1.8 91.1 0.0 1022.4 0.4

130 1.0 6190.97 6190.97 0.00 203 0 299.86 0.0 0.9 1.0 95.2 0.0 1964.6 0.4

140 2.7 6190.97 6190.97 0.00 525 0 416.22 0.0 2.5 1.4 93.3 0.0 1387.4 1.1

150 1.1 6190.97 6190.97 0.00 306 0 3473.27 0.0 1.0 11.6 43.9 0.0 78.2 0.7

160 0.7 6190.97 6190.97 0.00 116 0 554.69 0.0 0.7 1.8 91.0 0.0 1016.1 0.3

170 1.3 6190.97 6190.97 0.00 83 0 3576.52 0.0 1.2 11.9 42.2 0.0 73.1 0.2

180 0.9 6190.97 6190.97 0.00 71 0 3576.52 0.0 0.8 11.9 42.2 0.0 73.1 0.2

185 0.7 6190.97 6190.97 0.00 40 0 3576.52 0.0 0.6 11.9 42.2 0.0 73.1 0.1

200 0.5 6190.97 6190.97 0.00 155 0 318.90 0.0 0.5 1.1 94.8 0.0 1841.3 0.3

205 0.9 6190.97 6190.97 0.00 356 0 318.90 0.0 0.9 1.1 94.8 0.0 1841.3 0.8

210 0.3 6190.97 6190.97 0.00 19 0 1083.95 0.0 0.3 3.6 82.5 0.0 471.1 0.0

220 1.3 6190.97 6190.97 0.00 89 0 1030.65 0.1 1.2 3.4 83.4 0.0 500.7 0.2

230 0.8 6190.97 6190.97 0.00 137 0 318.90 0.0 0.7 1.1 94.8 0.0 1841.3 0.3

240 1.8 6190.97 6190.97 0.00 361 0 931.63 0.0 1.7 3.1 85.0 0.0 564.5 0.8

250 0.5 6190.97 6190.97 0.00 92 0 3473.27 0.0 0.4 11.6 43.9 0.0 78.2 0.2

260 0.3 6190.97 6190.97 0.00 19 0 1083.95 0.0 0.3 3.6 82.5 0.0 471.1 0.0

270 0.6 6190.97 6190.97 0.00 15 0 3607.84 0.1 0.6 12.0 41.7 0.0 71.6 0.0

280 0.4 6190.97 6190.97 0.00 6 0 3607.84 0.0 0.4 12.0 41.7 0.0 71.6 0.0

285 0.6 6190.97 6190.97 0.00 26 0 3607.84 0.0 0.6 12.0 41.7 0.0 71.6 0.1

100 0.3 8332.36 8332.36 0.00 77 0 0.39 0.0 1.0 1.0 100.0 0.0 2137012.3 1.0

105 0.3 8332.36 8332.36 0.00 72 0 0.39 0.0 1.2 1.0 100.0 0.0 2137012.3 0.9

110 0.3 8332.36 8332.36 0.00 21 0 534.97 0.0 1.1 1372.1 93.6 0.0 1457.6 0.3

120 0.5 8332.36 8332.36 0.00 25 0 283.59 0.1 1.9 727.4 96.6 0.0 2838.2 0.3

130 0.3 8332.36 8332.36 0.00 82 0 0.39 0.0 1.3 1.0 100.0 0.0 2137012.3 1.1

140 0.4 8332.36 8332.36 0.00 46 0 215.01 0.0 1.7 551.5 97.4 0.0 3775.3 0.6

150 0.3 8332.36 8332.36 0.00 46 0 6166.57 0.0 1.1 15816.2 26.0 0.0 35.1 0.6

160 0.3 8332.36 8332.36 0.00 21 0 534.97 0.0 1.2 1372.1 93.6 0.0 1457.6 0.3

170 0.4 8332.36 8332.36 0.00 16 0 8093.54 0.1 1.6 20758.6 2.9 0.0 3.0 0.2

180 0.3 8332.36 8332.36 0.00 13 0 8093.54 0.0 1.4 20758.6 2.9 0.0 3.0 0.2

185 0.3 8332.36 8332.36 0.00 14 0 8093.54 0.1 1.3 20758.6 2.9 0.0 3.0 0.2

200 0.8 8332.36 8332.36 0.00 143 0 21.46 0.0 3.2 55.1 99.7 0.0 38719.6 1.9

205 0.7 8332.36 8332.36 0.00 97 0 21.46 0.0 2.9 55.1 99.7 0.0 38719.6 1.3

210 0.7 8332.36 8332.36 0.00 82 0 1221.51 0.0 2.7 3133.0 85.3 0.0 582.1 1.1

220 2.5 8332.36 8332.36 0.00 172 0 788.74 0.1 10.2 2023.0 90.5 0.0 956.4 2.2

230 0.8 8332.36 8332.36 0.00 52 0 21.46 0.1 3.4 55.1 99.7 0.0 38719.6 0.7

240 1.0 8332.36 8332.36 0.00 95 0 652.52 0.0 4.0 1673.6 92.2 0.0 1177.0 1.2

250 0.8 8332.36 8332.36 0.00 45 0 6178.39 0.0 3.3 15846.5 25.9 0.0 34.9 0.6

260 0.7 8332.36 8332.36 0.00 82 0 1221.51 0.1 2.8 3133.0 85.3 0.0 582.1 1.1

270 1.5 8332.36 8332.36 0.00 22 0 8122.24 0.1 5.9 20832.2 2.5 0.0 2.6 0.3

280 0.9 8332.36 8332.36 0.00 30 0 8122.24 0.1 3.6 20832.2 2.5 0.0 2.6 0.4

285 1.0 8332.36 8332.36 0.00 26 0 8122.24 0.1 4.0 20832.2 2.5 0.0 2.6 0.3
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Table C.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 1.8 infeasible infeasible - 35 0 2.58 0.1

105 1.3 infeasible infeasible - 15 0 2.58 0.1

110 2.7 infeasible infeasible - 0 0 1571.73 0.1

120 5.1 infeasible infeasible - 6 0 1079.70 0.3

130 4.2 infeasible infeasible - 8 0 2.58 0.1

140 2.5 infeasible infeasible - 16 0 463.91 0.2

150 0.0 infeasible infeasible - 0 0 infeasible 0.0

160 2.8 infeasible infeasible - 0 0 1571.73 0.1

170 0.1 infeasible infeasible - 0 0 infeasible 0.1

180 0.1 infeasible infeasible - 0 0 infeasible 0.1

185 0.1 infeasible infeasible - 0 0 infeasible 0.1

200 1.8 infeasible infeasible - 25 0 123.00 0.2

205 1.6 infeasible infeasible - 11 0 123.00 0.2

210 0.1 infeasible infeasible - 0 0 4380.25 0.2

220 0.6 infeasible infeasible - 0 0 3504.02 1.3

230 4.9 infeasible infeasible - 12 0 123.22 0.4

240 3.1 infeasible infeasible - 22 0 2269.63 0.4

250 0.0 infeasible infeasible - 0 0 infeasible 0.1

260 0.1 infeasible infeasible - 0 0 4380.25 0.4

270 0.1 infeasible infeasible - 0 0 infeasible 1.0

280 0.1 infeasible infeasible - 0 0 infeasible 0.3

285 0.1 infeasible infeasible - 0 0 infeasible 0.3

100 7200.0 35055.51 55963.26 37.36 832413 468353 17844.65 0.1 1.0 1.0 68.1 0.0 213.6 1.0

105 7200.0 41477.21 55963.26 25.88 748664 336209 17844.65 0.1 1.0 1.0 68.1 0.0 213.6 0.9

110 4909.2 55962.73 55963.26 0.00 308089 21 19821.83 0.1 0.7 1.1 64.6 0.0 182.3 0.4

120 7200.0 48438.91 55963.26 13.45 139083 63978 19270.58 1.1 1.0 1.1 65.6 0.0 190.4 0.2

130 7200.0 37157.45 55963.26 33.60 552632 308029 17844.65 0.2 1.0 1.0 68.1 0.0 213.6 0.7

140 7200.0 41619.08 55963.26 25.63 408133 223665 18518.66 0.4 1.0 1.0 66.9 0.0 202.2 0.5

150 3626.8 55962.73 55963.26 0.00 362351 38 47610.82 0.1 0.5 2.7 14.9 0.0 17.5 0.4

160 4917.3 55962.73 55963.26 0.00 308089 21 19821.83 0.2 0.7 1.1 64.6 0.0 182.3 0.4

170 193.3 55963.26 55963.26 0.00 4883 0 47775.57 0.7 0.0 2.7 14.6 0.0 17.1 0.0

180 97.8 55963.26 55963.26 0.00 3692 0 47775.57 0.3 0.0 2.7 14.6 0.0 17.1 0.0

185 54.5 55963.26 55963.26 0.00 1289 0 47775.57 0.5 0.0 2.7 14.6 0.0 17.1 0.0

200 7200.0 37945.18 55963.26 32.20 589944 324231 17853.95 0.2 1.0 1.0 68.1 0.0 213.5 0.7

205 7200.0 35799.37 56214.50 36.32 435820 211268 17853.95 0.2 1.0 1.0 68.1 0.4 214.9 0.5

210 5387.0 55962.86 55963.26 0.00 263786 14 20696.60 0.2 0.7 1.2 63.0 0.0 170.4 0.3

220 7200.0 47402.74 55963.26 15.30 98672 51817 19918.32 1.8 1.0 1.1 64.4 0.0 181.0 0.1

230 7200.0 35465.19 55963.26 36.63 315839 206897 17853.95 0.5 1.0 1.0 68.1 0.0 213.5 0.4

240 7200.0 37059.40 56013.74 33.84 395952 257009 19223.61 0.8 1.0 1.1 65.6 0.1 191.4 0.5

250 7200.0 55744.46 55963.26 0.39 573900 18520 47622.19 0.2 1.0 2.7 14.9 0.0 17.5 0.7

260 5488.2 55962.86 55963.26 0.00 263786 14 20696.60 0.4 0.8 1.2 63.0 0.0 170.4 0.3

270 197.1 55963.26 55963.26 0.00 2942 0 47815.13 1.1 0.0 2.7 14.6 0.0 17.0 0.0

280 118.9 55963.26 55963.26 0.00 3682 0 47815.13 0.5 0.0 2.7 14.6 0.0 17.0 0.0

285 87.4 55963.26 55963.26 0.00 1224 0 47815.13 0.7 0.0 2.7 14.6 0.0 17.0 0.0

100 7200.0 22032.60 27583.18 20.12 958893 359085 8589.45 0.1 1.0 1.0 68.9 0.0 221.1 1.0

105 7200.0 26524.81 27583.18 3.84 1085070 111152 8589.45 0.1 1.0 1.0 68.9 0.0 221.1 1.1

110 1268.1 27582.99 27583.18 0.00 49647 2 9669.63 0.1 0.2 1.1 64.9 0.0 185.3 0.1

120 3122.4 27583.04 27583.18 0.00 59831 1 9553.11 0.7 0.4 1.1 65.4 0.0 188.7 0.1

130 7200.0 18956.84 27583.18 31.27 488608 275290 8589.45 0.1 1.0 1.0 68.9 0.0 221.1 0.5

140 7200.0 25016.20 27583.18 9.31 592854 157096 9131.42 0.4 1.0 1.1 66.9 0.0 202.1 0.6

150 310.3 27583.02 27583.18 0.00 29944 4 26257.42 0.1 0.0 3.1 4.8 0.0 5.0 0.0

160 1261.9 27582.99 27583.18 0.00 49647 2 9669.63 0.2 0.2 1.1 64.9 0.0 185.3 0.1

170 62.8 27583.18 27583.18 0.00 1541 0 26315.37 0.7 0.0 3.1 4.6 0.0 4.8 0.0

180 36.3 27583.18 27583.18 0.00 1330 0 26315.37 0.3 0.0 3.1 4.6 0.0 4.8 0.0

185 58.9 27583.18 27583.18 0.00 1326 0 26315.37 0.5 0.0 3.1 4.6 0.0 4.8 0.0

200 7200.0 20559.86 27583.18 25.46 918132 421176 8625.15 0.2 1.0 1.0 68.7 0.0 219.8 1.0

205 7200.0 24778.50 27583.18 10.17 945529 171416 8625.15 0.2 1.0 1.0 68.7 0.0 219.8 1.0

210 634.4 27582.93 27583.18 0.00 26658 2 11101.97 0.2 0.1 1.3 59.8 0.0 148.5 0.0

220 2541.8 27582.99 27583.18 0.00 40089 1 10834.33 1.3 0.4 1.3 60.7 0.0 154.6 0.0

230 7200.0 21991.26 27583.18 20.27 483129 236535 8625.15 0.4 1.0 1.0 68.7 0.0 219.8 0.5

240 7200.0 26169.81 27583.18 5.12 462186 64598 9735.48 0.5 1.0 1.1 64.7 0.0 183.3 0.5

250 2309.8 27582.91 27583.18 0.00 277101 15 26257.42 0.2 0.3 3.1 4.8 0.0 5.0 0.3

260 633.3 27582.93 27583.18 0.00 26658 2 11101.97 0.5 0.1 1.3 59.8 0.0 148.5 0.0

270 34.3 27583.18 27583.18 0.00 598 0 26342.82 1.1 0.0 3.1 4.5 0.0 4.7 0.0

280 19.3 27583.18 27583.18 0.00 516 0 26342.82 0.6 0.0 3.1 4.5 0.0 4.7 0.0

285 23.1 27583.18 27583.18 0.00 248 0 26342.82 0.7 0.0 3.1 4.5 0.0 4.7 0.0
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Table C.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 29807.49 69572.09 57.16 445405 338569 25965.63 0.3 1.0 1.0 59.5 8.6 167.9 1.0

105 7200.0 29737.27 73656.96 59.63 362378 258948 25965.63 0.3 1.0 1.0 59.5 15.0 183.7 0.8

110 7200.0 41639.37 65230.26 36.17 93794 70586 27314.97 0.5 1.0 1.1 57.4 1.8 138.8 0.2

120 7200.0 38501.73 69421.21 44.54 44653 34791 27141.27 3.9 1.0 1.0 57.6 8.4 155.8 0.1

130 7200.0 29528.04 69928.62 57.77 228572 172928 25965.63 0.5 1.0 1.0 59.5 9.2 169.3 0.5

140 7200.0 30303.81 70467.96 57.00 162740 141495 26516.98 1.5 1.0 1.0 58.6 10.0 165.7 0.4

150 7200.0 44923.13 69810.07 35.65 329577 230568 43640.84 0.3 1.0 1.7 31.9 9.0 60.0 0.7

160 7200.0 41635.67 65230.26 36.17 93412 70262 27314.97 1.2 1.0 1.1 57.4 1.8 138.8 0.2

170 7200.0 53513.05 69554.12 23.06 29200 20626 43708.60 1.8 1.0 1.7 31.8 8.6 59.1 0.1

180 7200.0 52754.65 64494.90 18.20 97503 68945 43708.60 0.9 1.0 1.7 31.8 0.7 47.6 0.2

185 7200.0 55407.69 68780.20 19.44 67318 44568 43708.60 1.4 1.0 1.7 31.8 7.4 57.4 0.2

200 7200.0 30274.06 69421.90 56.39 271663 214088 25975.79 1.3 1.0 1.0 59.4 8.4 167.3 0.6

205 7200.0 29905.25 76074.57 60.69 286300 215264 25975.79 1.5 1.0 1.0 59.4 18.8 192.9 0.6

210 7200.0 42451.97 64541.77 34.23 68343 55341 28473.61 1.5 1.0 1.1 55.5 0.8 126.7 0.2

220 7200.0 38492.59 69289.11 44.45 36495 31309 28139.58 11.1 1.0 1.1 56.1 8.2 146.2 0.1

230 7200.0 29589.10 69621.19 57.50 162600 142206 25975.79 2.4 1.0 1.0 59.4 8.7 168.0 0.4

240 7200.0 30779.88 65619.67 53.09 146462 121803 27388.25 3.5 1.0 1.1 57.2 2.5 139.6 0.3

250 7200.0 44887.18 65276.65 31.24 207386 138368 43640.84 1.3 1.0 1.7 31.9 1.9 49.6 0.5

260 7200.0 42442.83 64541.77 34.24 68106 55139 28473.61 3.0 1.0 1.1 55.5 0.8 126.7 0.2

270 7200.0 52276.66 64729.96 19.24 36869 27174 43761.41 4.1 1.0 1.7 31.7 1.1 47.9 0.1

280 7200.0 56158.55 64541.77 12.99 79286 55838 43761.41 2.5 1.0 1.7 31.7 0.8 47.5 0.2

285 7200.0 59219.56 64062.21 7.56 58081 30225 43761.41 3.2 1.0 1.7 31.7 0.0 46.4 0.1

100 7200.0 26994.05 47044.83 42.62 309544 240153 23249.74 0.3 1.0 1.0 50.5 0.1 102.3 1.0

105 7200.0 30171.89 47437.90 36.40 294428 176889 23249.74 0.5 1.0 1.0 50.5 0.9 104.0 1.0

110 7200.0 38402.23 47012.46 18.31 88594 67343 24621.97 0.5 1.0 1.1 47.6 0.0 90.9 0.3

120 7200.0 35669.95 48679.06 26.72 36296 26373 24472.84 2.7 1.0 1.1 47.9 3.5 98.9 0.1

130 7200.0 28656.55 47735.23 39.97 171519 124400 23249.74 0.8 1.0 1.0 50.5 1.5 105.3 0.6

140 7200.0 28569.53 47088.33 39.33 144334 112035 23794.76 1.4 1.0 1.0 49.4 0.2 97.9 0.5

150 7200.0 41347.24 50127.29 17.52 385965 287792 40918.62 0.5 1.0 1.8 13.0 6.6 22.5 1.2

160 7200.0 38394.78 47012.46 18.33 88145 67009 24621.97 0.8 1.0 1.1 47.6 0.0 90.9 0.3

170 7200.0 46702.63 47012.46 0.66 49046 8186 41085.73 2.2 1.0 1.8 12.6 0.0 14.4 0.2

180 3969.6 47012.15 47012.46 0.00 73209 9 41085.73 1.1 0.6 1.8 12.6 0.0 14.4 0.2

185 1047.1 47012.28 47012.46 0.00 9936 2 41085.73 2.2 0.1 1.8 12.6 0.0 14.4 0.0

200 7200.0 26934.14 47556.95 43.36 339688 268436 23299.90 0.7 1.0 1.0 50.4 1.2 104.1 1.1

205 7200.0 27483.17 49487.76 44.46 252721 187272 23299.90 0.7 1.0 1.0 50.4 5.3 112.4 0.8

210 7200.0 39660.73 47012.46 15.64 87998 64604 25161.28 0.6 1.0 1.1 46.5 0.0 86.8 0.3

220 7200.0 35891.59 47012.46 23.66 35456 26783 24967.62 4.4 1.0 1.1 46.9 0.0 88.3 0.1

230 7200.0 27192.82 51087.63 46.77 206949 154507 23299.90 1.0 1.0 1.0 50.4 8.7 119.3 0.7

240 7200.0 28920.30 47055.95 38.54 173992 145764 24125.04 1.6 1.0 1.0 48.7 0.1 95.1 0.6

250 7200.0 41636.81 47276.73 11.93 282882 185883 40918.62 0.5 1.0 1.8 13.0 0.6 15.5 0.9

260 7200.0 39670.79 47012.46 15.62 88570 65016 25161.28 0.8 1.0 1.1 46.5 0.0 86.8 0.3

270 3693.4 47012.00 47012.46 0.00 30498 8 41085.63 3.9 0.5 1.8 12.6 0.0 14.4 0.1

280 1066.8 47012.33 47012.46 0.00 18022 2 41085.63 1.7 0.1 1.8 12.6 0.0 14.4 0.1

285 654.1 47012.03 47012.46 0.00 7370 1 41085.63 2.2 0.1 1.8 12.6 0.0 14.4 0.0

100 7200.0 21907.13 no feas sol inf 113193 98622 17825.10 1.9

105 7200.0 21679.42 no feas sol inf 104933 83191 17825.10 2.7

110 7200.0 44206.84 no feas sol inf 21212 13415 19554.31 2.1

120 422.0 infeasible infeasible - 140 0 18786.36 47.1

130 7200.0 25759.53 no feas sol inf 77997 58103 17825.10 5.2

140 7200.0 21104.53 no feas sol inf 31720 26561 18150.89 16.7

150 0.4 infeasible infeasible - 0 0 infeasible 1.0

160 7200.0 44204.48 no feas sol inf 21173 13394 19554.31 4.7

170 4.0 infeasible infeasible - 0 0 infeasible 3.0

180 2.9 infeasible infeasible - 0 0 infeasible 1.7

185 4.2 infeasible infeasible - 0 0 infeasible 2.6

200 7200.0 20939.22 no feas sol inf 74252 62536 17831.68 3.5

205 7200.0 22779.59 no feas sol inf 56541 39856 17831.68 6.9

210 7200.0 47987.05 no feas sol inf 8919 2862 21602.07 6.9

220 7200.0 46946.16 no feas sol inf 3298 2039 20168.46 60.6

230 7200.0 22126.39 no feas sol inf 60944 50580 17831.74 8.7

240 7200.0 21128.72 no feas sol inf 41965 37167 19311.14 14.1

250 0.6 infeasible infeasible - 0 0 infeasible 1.6

260 7200.0 47991.75 no feas sol inf 8946 2871 21602.07 12.0

270 3.9 infeasible infeasible - 0 0 infeasible 6.4

280 4.5 infeasible infeasible - 0 0 infeasible 4.9

285 5.6 infeasible infeasible - 0 0 infeasible 7.3

MIP LPR

inst#
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Table C.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 15451.03 46922.94 67.07 66863 58082 14752.07 1.5 1.0 1.0 218.1 1.0

105 7200.0 15461.34 56771.76 72.77 69974 59894 14752.07 3.7 1.0 1.0 284.8 1.0

110 7200.0 19881.38 43764.25 54.57 17541 15588 15060.25 4.8 1.0 1.0 190.6 0.3

120 7200.0 16812.82 49233.01 65.85 3047 2871 14926.94 54.5 1.0 1.0 229.8 0.0

130 7200.0 15448.88 48346.92 68.05 38188 34349 14752.07 6.2 1.0 1.0 227.7 0.6

140 7200.0 15459.35 46958.92 67.08 18010 17154 14829.49 23.2 1.0 1.0 216.7 0.3

150 7200.0 25613.70 47696.50 46.30 66840 60153 25605.77 1.4 1.0 1.7 86.3 1.0

160 7200.0 19881.38 43764.25 54.57 17540 15587 15060.25 7.5 1.0 1.0 190.6 0.3

170 7200.0 31084.75 41280.15 24.70 5170 4179 28006.78 30.7 1.0 1.9 47.4 0.1

180 7200.0 31509.98 40837.37 22.84 13767 11226 28006.78 20.5 1.0 1.9 45.8 0.2

185 7200.0 31526.46 46103.77 31.62 8350 5532 28006.78 25.2 1.0 1.9 64.6 0.1

200 7200.0 15451.26 48075.62 67.86 60398 55690 14754.09 4.9 1.0 1.0 225.8 0.9

205 7200.0 15457.76 57995.05 73.35 53734 43912 14754.09 8.7 1.0 1.0 293.1 0.8

210 7200.0 21837.42 41767.49 47.72 11407 10022 15817.01 11.7 1.0 1.1 164.1 0.2

220 7200.0 16779.41 41753.77 59.81 3530 3008 15391.05 87.2 1.0 1.0 171.3 0.1

230 7200.0 15450.50 47222.39 67.28 31804 29686 14754.09 11.5 1.0 1.0 220.1 0.5

240 7200.0 15465.30 47366.20 67.35 29380 28009 15096.73 27.8 1.0 1.0 213.8 0.4

250 7200.0 25670.14 46830.42 45.18 59341 55494 25606.83 5.7 1.0 1.7 82.9 0.9

260 7200.0 21837.42 41767.49 47.72 11397 10012 15817.01 17.5 1.0 1.1 164.1 0.2

270 7200.0 31673.80 39872.46 20.56 4268 3553 28317.42 71.6 1.0 1.9 40.8 0.1

280 7200.0 32132.71 40195.37 20.06 8492 6211 28317.42 38.5 1.0 1.9 41.9 0.1

285 7200.0 32297.73 39020.25 17.23 5074 4478 28317.42 59.3 1.0 1.9 37.8 0.1

100 7200.0 21265.57 no feas sol inf 34610 22087 17266.72 2.0

105 7200.0 21418.34 no feas sol inf 23573 13034 17266.72 3.6

110 7200.0 49739.48 no feas sol inf 12457 7664 18665.07 4.1

120 496.2 infeasible infeasible - 36 0 18093.93 94.5

130 7200.0 21266.53 no feas sol inf 7593 4352 17266.72 4.7

140 7200.0 20483.51 no feas sol inf 7239 5638 17610.29 25.2

150 0.6 infeasible infeasible - 0 0 infeasible 1.0

160 7200.0 49744.80 no feas sol inf 12515 7700 18665.07 9.9

170 20.2 infeasible infeasible - 0 0 infeasible 7.6

180 6.2 infeasible infeasible - 0 0 infeasible 3.5

185 5.9 infeasible infeasible - 0 0 infeasible 3.7

200 7200.0 24824.82 no feas sol inf 7089 3225 17339.78 16.5

205 1546.0 infeasible infeasible - 1245 0 17339.78 24.7

210 7200.0 37857.74 no feas sol inf 6515 5480 21282.12 25.2

220 7200.0 35513.33 no feas sol inf 724 433 19961.90 232.7

230 835.5 infeasible infeasible - 274 0 17339.78 35.5

240 7200.0 19136.24 no feas sol inf 6104 5333 18562.15 56.7

250 1.0 infeasible infeasible - 0 0 infeasible 5.4

260 7200.0 37857.74 no feas sol inf 6502 5467 21282.12 44.3

270 14.3 infeasible infeasible - 0 0 infeasible 11.4

280 8.3 infeasible infeasible - 0 0 infeasible 5.7

285 4.4 infeasible infeasible - 0 0 infeasible 19.9

100 7200.0 25663.87 52022.08 50.67 462652 295305 15170.34 0.2 1.0 1.0 70.8 0.0 242.9 1.0

105 7200.0 33929.37 52021.20 34.78 429282 221624 15170.34 0.3 1.0 1.0 70.8 0.0 242.9 0.9

110 7200.0 49751.67 52021.20 4.36 219527 35180 17048.88 0.2 1.0 1.1 67.2 0.0 205.1 0.5

120 7200.0 40682.21 52021.20 21.80 56179 33530 16088.81 2.1 1.0 1.1 69.1 0.0 223.3 0.1

130 7200.0 29327.59 52021.20 43.62 274920 200976 15170.34 0.5 1.0 1.0 70.8 0.0 242.9 0.6

140 7200.0 29882.61 52022.08 42.56 259285 188879 15600.31 1.0 1.0 1.0 70.0 0.0 233.5 0.6

150 3923.0 52020.69 52021.20 0.00 230859 26 49951.96 0.3 0.5 3.3 4.0 0.0 4.1 0.5

160 7200.0 49811.03 52021.20 4.25 221740 34515 17048.88 0.6 1.0 1.1 67.2 0.0 205.1 0.5

170 414.2 52021.20 52021.20 0.00 4670 1 50130.44 2.7 0.1 3.3 3.6 0.0 3.8 0.0

180 244.2 52021.20 52021.20 0.00 6371 0 50130.44 1.0 0.0 3.3 3.6 0.0 3.8 0.0

185 72.0 52021.20 52021.20 0.00 873 0 50130.44 1.6 0.0 3.3 3.6 0.0 3.8 0.0

200 7200.0 28235.92 52021.20 45.72 355179 266641 15281.95 0.7 1.0 1.0 70.6 0.0 240.4 0.8

205 7200.0 28888.53 52021.20 44.47 289503 181147 15281.95 0.8 1.0 1.0 70.6 0.0 240.4 0.6

210 7200.0 51140.45 52021.20 1.69 188920 12104 18340.58 0.6 1.0 1.2 64.7 0.0 183.6 0.4

220 7200.0 40199.32 52021.20 22.73 44479 28970 17035.07 3.8 1.0 1.1 67.3 0.0 205.4 0.1

230 7200.0 28136.12 52021.20 45.91 215499 151045 15281.95 1.1 1.0 1.0 70.6 0.0 240.4 0.5

240 7200.0 30544.64 52021.20 41.28 199636 151478 16197.41 1.9 1.0 1.1 68.9 0.0 221.2 0.4

250 7200.0 51294.38 52021.20 1.40 303942 122411 50024.71 0.6 1.0 3.3 3.8 0.0 4.0 0.7

260 7200.0 51142.81 52021.20 1.69 188988 12060 18340.58 1.0 1.0 1.2 64.7 0.0 183.6 0.4

270 208.0 52021.20 52021.20 0.00 1565 0 50319.89 4.3 0.0 3.3 3.3 0.0 3.4 0.0

280 157.5 52021.20 52021.20 0.00 2005 0 50319.89 1.5 0.0 3.3 3.3 0.0 3.4 0.0

285 57.5 52021.20 52021.20 0.00 336 0 50322.94 2.7 0.0 3.3 3.3 0.0 3.4 0.0
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Table C.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 15994.86 31476.44 49.18 317821 231550 13566.32 0.3 1.0 1.0 56.8 0.3 132.0 1.0

105 7200.0 17931.41 31434.93 42.96 306065 203332 13566.32 0.3 1.0 1.0 56.8 0.2 131.7 1.0

110 7200.0 27333.92 31367.40 12.86 156211 95318 14269.93 0.3 1.0 1.1 54.5 0.0 119.8 0.5

120 7200.0 20273.36 31371.01 35.38 43600 32172 13762.60 2.9 1.0 1.0 56.1 0.0 127.9 0.1

130 7200.0 16876.97 31471.84 46.37 231081 182379 13566.32 0.8 1.0 1.0 56.8 0.3 132.0 0.7

140 7200.0 19111.63 31371.01 39.08 235326 182894 13665.74 1.2 1.0 1.0 56.4 0.0 129.6 0.7

150 7200.0 27394.33 31371.01 12.68 262235 182271 26349.10 0.4 1.0 1.9 16.0 0.0 19.1 0.8

160 7200.0 27107.06 31367.40 13.58 178637 107059 14269.93 0.7 1.0 1.1 54.5 0.0 119.8 0.6

170 1296.8 31367.30 31367.40 0.00 17166 4 30216.80 4.6 0.2 2.2 3.7 0.0 3.8 0.1

180 630.4 31367.31 31367.40 0.00 11413 1 30216.80 1.4 0.1 2.2 3.7 0.0 3.8 0.0

185 315.2 31367.40 31367.40 0.00 3814 0 30216.80 3.1 0.0 2.2 3.7 0.0 3.8 0.0

200 7200.0 17438.02 31367.40 44.41 382171 296531 13579.86 0.7 1.0 1.0 56.7 0.0 131.0 1.2

205 7200.0 17804.04 31434.93 43.36 274410 195970 13579.86 0.7 1.0 1.0 56.7 0.2 131.5 0.9

210 7200.0 26843.14 31367.40 14.42 188763 137412 14720.15 0.8 1.0 1.1 53.1 0.0 113.1 0.6

220 7200.0 22871.15 31369.74 27.09 40120 29410 14044.32 4.7 1.0 1.0 55.2 0.0 123.4 0.1

230 7200.0 16800.72 31514.07 46.69 179822 136976 13579.86 1.7 1.0 1.0 56.7 0.5 132.1 0.6

240 7200.0 17393.79 31367.40 44.55 240416 194147 13833.71 1.6 1.0 1.0 55.9 0.0 126.7 0.8

250 7200.0 27633.40 31434.93 12.09 281470 172126 26360.00 0.9 1.0 1.9 16.0 0.2 19.3 0.9

260 7200.0 27188.97 31367.40 13.32 191145 131753 14720.15 1.5 1.0 1.1 53.1 0.0 113.1 0.6

270 259.5 31367.29 31367.40 0.00 1844 1 30217.58 3.9 0.0 2.2 3.7 0.0 3.8 0.0

280 177.0 31367.16 31367.40 0.00 2815 1 30217.58 2.9 0.0 2.2 3.7 0.0 3.8 0.0

285 133.0 31367.40 31367.40 0.00 1081 0 30217.58 3.5 0.0 2.2 3.7 0.0 3.8 0.0

100 7200.0 19636.84 no feas sol inf 187715 70918 5423.95 0.3

105 2165.8 infeasible infeasible - 46356 0 5423.95 0.4

110 7200.0 32660.77 no feas sol inf 62595 44771 6891.20 0.4

120 7200.0 44465.81 no feas sol inf 33663 24603 6602.23 5.8

130 55.8 infeasible infeasible - 348 0 5423.95 0.6

140 7200.0 18136.09 no feas sol inf 118392 73509 5909.23 2.4

150 0.3 infeasible infeasible - 0 0 infeasible 0.2

160 7200.0 31400.43 no feas sol inf 66062 49438 6891.20 1.0

170 2.4 infeasible infeasible - 0 0 infeasible 2.7

180 1.4 infeasible infeasible - 0 0 infeasible 0.8

185 1.5 infeasible infeasible - 0 0 infeasible 2.1

200 7200.0 15091.44 no feas sol inf 226098 137012 5515.53 1.2

205 7200.0 47480.91 no feas sol inf 190141 33694 5515.53 1.3

210 7200.0 33849.79 no feas sol inf 61160 44781 9125.57 1.1

220 81.2 infeasible infeasible - 20 0 8110.50 13.9

230 339.3 infeasible infeasible - 3321 0 5515.53 3.2

240 438.5 infeasible infeasible - 1869 0 6689.24 4.3

250 0.3 infeasible infeasible - 0 0 infeasible 0.7

260 7200.0 33850.09 no feas sol inf 61200 44813 9125.57 2.3

270 2.8 infeasible infeasible - 0 0 infeasible 2.6

280 1.2 infeasible infeasible - 0 0 infeasible 1.1

285 2.7 infeasible infeasible - 0 0 infeasible 2.7

100 7200.0 17886.13 35843.45 50.10 147118 123349 17074.15 0.6 1.0 1.0 47.5 10.2 109.9 1.0

105 7200.0 18102.82 39859.90 54.58 126435 99161 17074.15 0.9 1.0 1.0 47.5 22.5 133.5 0.9

110 7200.0 23860.01 35347.53 32.50 53485 45218 17473.48 1.1 1.0 1.0 46.3 8.6 102.3 0.4

120 7200.0 21226.43 33629.87 36.88 15060 12894 17285.19 9.8 1.0 1.0 46.9 3.4 94.6 0.1

130 7200.0 18019.11 35173.67 48.77 81040 71662 17074.15 1.4 1.0 1.0 47.5 8.1 106.0 0.6

140 7200.0 18067.87 34179.09 47.14 70243 61212 17161.18 3.3 1.0 1.0 47.3 5.0 99.2 0.5

150 7200.0 26947.46 34628.29 22.18 124385 93973 26756.48 0.6 1.0 1.6 17.8 6.4 29.4 0.8

160 7200.0 23860.44 35347.53 32.50 53586 45306 17473.48 1.7 1.0 1.0 46.3 8.6 102.3 0.4

170 7200.0 30259.66 32602.28 7.19 23394 17079 28050.05 10.5 1.0 1.6 13.8 0.2 16.2 0.2

180 7200.0 30039.74 32538.64 7.68 56986 42392 28050.05 3.8 1.0 1.6 13.8 0.0 16.0 0.4

185 7200.0 31637.73 32538.64 2.77 29538 12016 28050.05 8.5 1.0 1.6 13.8 0.0 16.0 0.2

200 7200.0 17850.10 37551.89 52.47 95405 86700 17081.28 1.4 1.0 1.0 47.5 15.4 119.8 0.6

205 7200.0 17893.09 36676.43 51.21 93297 81412 17081.28 2.5 1.0 1.0 47.5 12.7 114.7 0.6

210 7200.0 24543.39 33691.01 27.15 32962 27787 18097.25 3.3 1.0 1.1 44.4 3.5 86.2 0.2

220 7200.0 21455.55 34982.64 38.67 13275 11935 17697.09 21.1 1.0 1.0 45.6 7.5 97.7 0.1

230 7200.0 17963.16 35812.56 49.84 65982 57082 17081.28 3.7 1.0 1.0 47.5 10.1 109.7 0.4

240 7200.0 18180.42 36226.08 49.81 53960 47897 17444.78 5.6 1.0 1.0 46.4 11.3 107.7 0.4

250 7200.0 26841.03 34768.51 22.80 80788 59195 26757.23 1.8 1.0 1.6 17.8 6.9 29.9 0.5

260 7200.0 24552.12 33691.01 27.13 33271 28055 18097.25 4.8 1.0 1.1 44.4 3.5 86.2 0.2

270 7200.0 30061.38 32602.28 7.79 16235 12405 28204.82 13.8 1.0 1.7 13.3 0.2 15.6 0.1

280 7200.0 30984.91 32602.28 4.96 29883 19265 28204.82 8.4 1.0 1.7 13.3 0.2 15.6 0.2

285 7200.0 31606.87 32743.89 3.47 20459 10390 28204.82 13.4 1.0 1.7 13.3 0.6 16.1 0.1
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Table C.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 22873.08 no feas sol inf 94300 87087 22099.89 1.2 1.0 1.0 48.4 - - 1.0

105 7200.0 22888.13 no feas sol inf 75941 67384 22099.89 1.4 1.0 1.0 48.4 - - 0.8

110 7200.0 32606.63 45406.41 28.19 33842 28630 22508.71 1.4 1.0 1.0 47.4 6.0 101.7 0.4

120 7200.0 25021.45 no feas sol inf 4041 3758 22284.74 15.3 1.0 1.0 48.0 - - 0.0

130 7200.0 22932.20 no feas sol inf 53639 50112 22099.89 2.9 1.0 1.0 48.4 - - 0.6

140 7200.0 22878.60 50706.32 54.88 28788 25831 22177.31 5.6 1.0 1.0 48.2 18.4 128.6 0.3

150 7200.0 38915.48 59578.54 34.68 78970 71796 38777.12 1.1 1.0 1.8 9.5 39.1 53.6 0.8

160 7200.0 32606.63 45406.41 28.19 33824 28616 22508.71 3.1 1.0 1.0 47.4 6.0 101.7 0.4

170 7200.0 40956.87 42830.94 4.38 7682 4436 39375.38 17.0 1.0 1.8 8.1 0.0 8.8 0.1

180 7200.0 41062.51 43113.10 4.76 18400 11765 39375.38 7.9 1.0 1.8 8.1 0.7 9.5 0.2

185 7200.0 41520.31 43008.64 3.46 12210 7621 39375.38 16.1 1.0 1.8 8.1 0.4 9.2 0.1

200 7200.0 22898.04 no feas sol inf 65265 59320 22111.72 3.3 1.0 1.0 48.4 - - 0.7

205 7200.0 22909.97 no feas sol inf 64374 56480 22111.72 3.9 1.0 1.0 48.4 - - 0.7

210 7200.0 30933.53 43730.02 29.26 26343 20283 23249.44 5.9 1.0 1.1 45.7 2.1 88.1 0.3

220 7200.0 25892.61 43099.97 39.92 7101 5852 22726.25 30.7 1.0 1.0 46.9 0.6 89.6 0.1

230 7200.0 23040.66 no feas sol inf 48827 45234 22111.72 7.4 1.0 1.0 48.4 - - 0.5

240 7200.0 22877.09 56977.74 59.85 30810 28269 22474.16 9.0 1.0 1.0 47.5 33.0 153.5 0.3

250 7200.0 38954.87 59893.48 34.96 57700 51645 38784.15 4.3 1.0 1.8 9.4 39.8 54.4 0.6

260 7200.0 30937.79 43730.02 29.25 26440 20368 23249.44 8.4 1.0 1.1 45.7 2.1 88.1 0.3

270 7200.0 41561.24 42830.94 2.96 8540 4594 39635.43 24.4 1.0 1.8 7.5 0.0 8.1 0.1

280 7200.0 41431.03 42830.94 3.27 25707 15860 39635.43 13.4 1.0 1.8 7.5 0.0 8.1 0.3

285 7200.0 41610.64 42975.74 3.18 10440 5425 39635.44 23.4 1.0 1.8 7.5 0.3 8.4 0.1

100 7200.0 9470.60 32196.35 70.58 84150 78949 8735.75 0.7 1.0 1.0 68.6 15.9 268.6 1.0

105 7200.0 9502.09 34184.96 72.20 92719 82081 8735.75 1.1 1.0 1.0 68.6 23.0 291.3 1.1

110 7200.0 14181.84 30405.09 53.36 31788 28473 9036.15 1.4 1.0 1.0 67.5 9.4 236.5 0.4

120 7200.0 11428.61 32148.64 64.45 10036 9021 8900.38 8.6 1.0 1.0 68.0 15.7 261.2 0.1

130 7200.0 9480.41 30466.44 68.88 55391 47263 8735.75 2.4 1.0 1.0 68.6 9.7 248.8 0.7

140 7200.0 9529.16 29791.01 68.01 41609 38322 8813.16 5.9 1.0 1.0 68.3 7.2 238.0 0.5

150 7200.0 19668.94 31359.57 37.28 102996 90232 19659.63 0.9 1.0 2.3 29.2 12.9 59.5 1.2

160 7200.0 14183.02 30405.09 53.35 31848 28529 9036.15 2.6 1.0 1.0 67.5 9.4 236.5 0.4

170 7200.0 23689.81 28369.76 16.50 15878 13863 22744.87 15.2 1.0 2.6 18.1 2.1 24.7 0.2

180 7200.0 24256.38 27831.28 12.84 34392 27688 22744.87 8.3 1.0 2.6 18.1 0.2 22.4 0.4

185 7200.0 24457.16 27886.55 12.30 19039 14420 22744.87 15.6 1.0 2.6 18.1 0.4 22.6 0.2

200 7200.0 9561.43 31154.27 69.31 81931 75261 8736.56 3.2 1.0 1.0 68.6 12.1 256.6 1.0

205 7200.0 9606.27 34596.68 72.23 78009 67353 8736.56 3.0 1.0 1.0 68.6 24.5 296.0 0.9

210 7200.0 16031.10 27929.07 42.60 25930 22087 9654.58 4.2 1.0 1.1 65.3 0.5 189.3 0.3

220 7200.0 11631.44 28592.29 59.32 8403 7452 9320.09 17.2 1.0 1.1 66.5 2.9 206.8 0.1

230 7200.0 9568.77 31532.69 69.65 52222 49316 8736.64 5.7 1.0 1.0 68.6 13.5 260.9 0.6

240 7200.0 9553.31 29424.21 67.53 35318 31804 9116.81 10.7 1.0 1.0 67.2 5.9 222.7 0.4

250 7200.0 19743.27 30927.36 36.16 74877 68615 19659.78 4.3 1.0 2.3 29.2 11.3 57.3 0.9

260 7200.0 16031.10 27929.07 42.60 25916 22077 9654.58 6.7 1.0 1.1 65.3 0.5 189.3 0.3

270 7200.0 24506.89 28120.81 12.85 14285 12193 22883.79 25.0 1.0 2.6 17.6 1.2 22.9 0.2

280 7200.0 25213.10 27843.02 9.45 20082 15680 22883.79 14.5 1.0 2.6 17.6 0.2 21.7 0.2

285 7200.0 25125.83 27961.87 10.14 12408 8516 22884.26 23.3 1.0 2.6 17.6 0.6 22.2 0.1
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     * LB, UB and Gap (%) refer to the final values of the lower bound, upper bound and the corresponding gap, respectively at the end of the  

             time limit (7200 sec.). If the optimal solution of an instance is not known, the best known solution is provided under Opt.Sol. column in      
             underlined form.  
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Table C.3 Case A- Average Results for 15 Instances with Known Optimals * 
 

CPU CPU R LPR R IGap% DU% ULP% Nodes Node R

100 5760.3 1.00 1.00 64.1 8   (3) 2.5 152933.3 411370 1.00

105 5760.2 1.05 1.00 64.1 8   (3) 4.4 152937.9 376779 0.94

110 4674.8 0.83 92.53 60.9 11   (8) 1.7 291.6 121074 0.36

120 5488.4 1.15 49.53 61.6 9   (4) 2.2 410.6 49500 0.19

130 5760.2 1.03 1.00 64.1 8   (3) 2.1 152932.0 231833 0.61

140 5760.3 1.21 37.75 62.6 8   (3) 2.7 482.2 212861 0.58

150 3802.6 0.74 1057.13 16.6 9   (9) 4.9 28.6 171925 0.62

160 4668.0 0.83 92.53 60.9 11   (8) 1.7 291.6 122671 0.36

170 2574.5 0.61 1386.70 12.8 12  (10) 0.7 18.1 10971 0.11

180 2271.6 0.51 1386.70 12.8 12  (11) 0.1 17.2 20865 0.15

185 2038.8 0.47 1386.70 12.8 12  (11) 0.5 17.9 10032 0.10

200 5760.2 1.14 4.62 63.6 10   (3) 2.6 3044.8 388847 0.91

205 5760.2 1.15 4.62 63.6 8   (3) 4.4 3049.8 335255 0.83

210 4602.7 0.94 210.09 57.8 11   (7) 0.5 181.3 94932 0.33

220 5449.8 1.69 136.06 59.1 10   (4) 1.3 215.7 49179 0.32

230 5760.2 1.16 4.62 63.6 8   (3) 3.0 3045.6 214377 0.55

240 5760.3 1.30 112.71 60.7 9   (3) 3.5 247.1 195692 0.57

250 4481.8 0.97 1059.15 16.5 9   (7) 4.0 27.3 194976 0.60

260 4608.9 0.94 210.09 57.8 11   (7) 0.5 181.3 95291 0.33

270 2240.5 0.86 1391.61 12.6 12  (11) 0.2 17.0 7858 0.11

280 2034.4 0.64 1391.61 12.6 12  (11) 0.1 16.9 12477 0.16

285 1992.3 0.69 1391.61 12.6 11  (11) 0.1 16.9 7583 0.13

#opt *

 
 

*  #opt denotes the number of times the optimal solution was found, where the entry in parentheses     
     denotes the number of verified optimal solutions. 
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APPENDIX D  
 

PRELIMINARY EXPERIMENTS UNDER CASE B 

 

Table D.1 Solutions of Preliminary Instances Under Case B * 

 

inst#
Original 
Instance #

N K
Best sol.        at 
the end of time 

limit
Extended CPU            

Final Gap%     
at the end of 

extended time
Best sol.

1 11 5 4 18813.5 - - 18813.5

2 21 5 4 9107.4 - - 9107.4

3 41 2 4 10714.2 - - 10714.2

4 51 5 4 14402.8 - - 14402.8

5 63 3 4 309.8 - - 309.8

6 83 4 4 154.1 - - 154.1

7 94 5 4 INFEASIBLE - - INFEASIBLE

8 104 5 4 19255.6 - - 19255.6

9 111 5 4 9436.5 - - 9436.5

10 11 5 8 27826.2 19626.8 - 27794.5

11 41 5 8 24569.2 - - 24569.2

12 94 8 8 INFEASIBLE - - INFEASIBLE

13 53 9 8 16653.4 328500.1 5.6 16603.1

14 64 9 8 INFEASIBLE - - INFEASIBLE

15 74 6 4 16909.8 - - 16909.8

16 13 7 4 14299.7 - - 14299.7

17 124 7 4 INFEASIBLE - - INFEASIBLE

18 102 8 4 18372.0 21419.0 - 18372.0

19 103 9 4 24648.0 995786.1 1.8 24340.5

20 123 9 4 10363.3 138490.7 - 10363.3  
 
 
 
 

* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
    Best sol. at the end of the time limit is the best known solution among all options. However, extended solutions were    
    only performed with option 285.  
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Table D.2 Detailed Results of Experiments on Preliminary Instances Under Case B * 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 143.8 18813.31 18813.50 0.00 28374 6 18394.64 0.1 1.0 1.0 2.2 0.0 2.3 1.0

105 96.4 18813.39 18813.50 0.00 10912 2 18394.64 0.1 0.7 1.0 2.2 0.0 2.3 0.4

110 14.8 18813.50 18813.50 0.00 572 0 18395.21 0.1 0.1 1.0 2.2 0.0 2.3 0.0

120 117.7 18813.50 18813.50 0.00 1745 0 18395.21 0.7 0.8 1.0 2.2 0.0 2.3 0.1

130 351.5 18813.34 18813.50 0.00 39227 11 18394.64 0.2 2.4 1.0 2.2 0.0 2.3 1.4

140 104.0 18813.46 18813.50 0.00 9497 3 18394.64 0.2 0.7 1.0 2.2 0.0 2.3 0.3

150 103.4 18813.32 18813.50 0.00 14892 5 18394.64 0.1 0.7 1.0 2.2 0.0 2.3 0.5

160 14.8 18813.50 18813.50 0.00 572 0 18395.21 0.2 0.1 1.0 2.2 0.0 2.3 0.0

170 54.6 18813.50 18813.50 0.00 749 0 18398.75 0.7 0.4 1.0 2.2 0.0 2.3 0.0

180 14.9 18813.50 18813.50 0.00 595 0 18398.75 0.3 0.1 1.0 2.2 0.0 2.3 0.0

185 18.0 18813.50 18813.50 0.00 432 0 18398.75 0.4 0.1 1.0 2.2 0.0 2.3 0.0

200 119.6 18813.31 18813.50 0.00 18350 10 18394.64 0.2 0.8 1.0 2.2 0.0 2.3 0.6

205 98.0 18813.39 18813.50 0.00 13423 3 18394.64 0.2 0.7 1.0 2.2 0.0 2.3 0.5

210 13.3 18813.50 18813.50 0.00 418 0 18396.35 0.2 0.1 1.0 2.2 0.0 2.3 0.0

220 88.4 18813.50 18813.50 0.00 948 0 18396.35 0.9 0.6 1.0 2.2 0.0 2.3 0.0

230 237.8 18813.32 18813.50 0.00 22732 4 18394.64 0.4 1.7 1.0 2.2 0.0 2.3 0.8

240 229.9 18813.32 18813.50 0.00 23724 9 18394.64 0.3 1.6 1.0 2.2 0.0 2.3 0.8

250 151.2 18813.36 18813.50 0.00 16963 4 18394.64 0.2 1.1 1.0 2.2 0.0 2.3 0.6

260 13.1 18813.50 18813.50 0.00 418 0 18396.35 0.3 0.1 1.0 2.2 0.0 2.3 0.0

270 40.0 18813.37 18813.50 0.00 490 1 18398.76 0.5 0.3 1.0 2.2 0.0 2.3 0.0

280 14.1 18813.50 18813.50 0.00 641 0 18398.76 0.2 0.1 1.0 2.2 0.0 2.3 0.0

285 11.0 18813.50 18813.50 0.00 170 0 18398.76 0.5 0.1 1.0 2.2 0.0 2.3 0.0

100 1693.5 9107.33 9107.41 0.00 233529 22 7559.71 0.1 1.0 1.0 17.0 0.0 20.5 1.0

105 1669.5 9107.35 9107.41 0.00 224851 16 7559.71 0.1 1.0 1.0 17.0 0.0 20.5 1.0

110 781.0 9107.34 9107.41 0.00 57701 4 7559.71 0.1 0.5 1.0 17.0 0.0 20.5 0.2

120 4043.8 9107.32 9107.41 0.00 133944 15 7559.71 0.6 2.4 1.0 17.0 0.0 20.5 0.6

130 4772.0 9107.33 9107.41 0.00 463005 32 7559.71 0.1 2.8 1.0 17.0 0.0 20.5 2.0

140 5285.9 9107.32 9107.41 0.00 560509 47 7559.71 0.1 3.1 1.0 17.0 0.0 20.5 2.4

150 7200.0 8815.81 9107.41 3.20 785974 258763 7561.38 0.1 4.3 1.0 17.0 0.0 20.4 3.4

160 773.0 9107.34 9107.41 0.00 57701 4 7559.71 0.2 0.5 1.0 17.0 0.0 20.5 0.2

170 1898.9 9107.39 9107.41 0.00 44294 2 7567.83 0.4 1.1 1.0 16.9 0.0 20.3 0.2

180 776.5 9107.35 9107.41 0.00 36161 5 7567.83 0.2 0.5 1.0 16.9 0.0 20.3 0.2

185 430.4 9107.41 9107.41 0.00 10978 0 7567.83 0.3 0.3 1.0 16.9 0.0 20.3 0.0

200 1390.2 9107.32 9107.41 0.00 184053 17 7559.71 0.2 0.8 1.0 17.0 0.0 20.5 0.8

205 523.4 9107.35 9107.41 0.00 48695 4 7559.71 0.2 0.3 1.0 17.0 0.0 20.5 0.2

210 275.7 9107.41 9107.41 0.00 13513 1 7559.71 0.3 0.2 1.0 17.0 0.0 20.5 0.1

220 1454.1 9107.41 9107.41 0.00 23971 0 7559.71 1.6 0.9 1.0 17.0 0.0 20.5 0.1

230 3958.2 9107.32 9107.41 0.00 280168 28 7559.71 0.4 2.3 1.0 17.0 0.0 20.5 1.2

240 4048.7 9107.32 9107.41 0.00 350307 30 7559.71 0.3 2.4 1.0 17.0 0.0 20.5 1.5

250 3616.8 9107.32 9107.41 0.00 345216 25 7561.38 0.3 2.1 1.0 17.0 0.0 20.4 1.5

260 272.2 9107.41 9107.41 0.00 13513 1 7559.71 0.6 0.2 1.0 17.0 0.0 20.5 0.1

270 740.0 9107.37 9107.41 0.00 12796 1 7568.28 0.9 0.4 1.0 16.9 0.0 20.3 0.1

280 498.8 9107.41 9107.41 0.00 14361 0 7568.28 0.5 0.3 1.0 16.9 0.0 20.3 0.1

285 268.1 9107.41 9107.41 0.00 4552 0 7568.28 0.5 0.2 1.0 16.9 0.0 20.3 0.0

100 0.4 10714.24 10714.24 0.00 12 0 9776.09 0.0 1.0 1.0 8.8 0.0 9.6 1.0

105 0.4 10714.24 10714.24 0.00 12 0 9776.09 0.0 1.1 1.0 8.8 0.0 9.6 1.0

110 0.1 10714.24 10714.24 0.00 5 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.4

120 0.2 10714.24 10714.24 0.00 8 0 9776.09 0.0 0.5 1.0 8.8 0.0 9.6 0.7

130 0.1 10714.24 10714.24 0.00 12 0 9776.09 0.0 0.3 1.0 8.8 0.0 9.6 1.0

140 0.2 10714.24 10714.24 0.00 7 0 9776.09 0.0 0.4 1.0 8.8 0.0 9.6 0.6

150 0.1 10714.24 10714.24 0.00 3 0 9776.09 0.0 0.1 1.0 8.8 0.0 9.6 0.3

160 0.1 10714.24 10714.24 0.00 5 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.4

170 0.1 10714.24 10714.24 0.00 6 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.5

180 0.1 10714.24 10714.24 0.00 6 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.5

185 0.1 10714.24 10714.24 0.00 6 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.5

200 0.1 10714.24 10714.24 0.00 12 0 9776.09 0.0 0.3 1.0 8.8 0.0 9.6 1.0

205 0.1 10714.24 10714.24 0.00 17 0 9776.09 0.0 0.3 1.0 8.8 0.0 9.6 1.4

210 0.1 10714.24 10714.24 0.00 15 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 1.3

220 0.2 10714.24 10714.24 0.00 12 0 9776.09 0.0 0.4 1.0 8.8 0.0 9.6 1.0

230 0.1 10714.24 10714.24 0.00 9 0 9776.09 0.0 0.3 1.0 8.8 0.0 9.6 0.8

240 0.2 10714.24 10714.24 0.00 31 0 9776.09 0.0 0.5 1.0 8.8 0.0 9.6 2.6

250 0.1 10714.24 10714.24 0.00 6 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.5

260 0.1 10714.24 10714.24 0.00 15 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 1.3

270 0.1 10714.24 10714.24 0.00 11 0 9776.09 0.0 0.3 1.0 8.8 0.0 9.6 0.9

280 0.1 10714.24 10714.24 0.00 7 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.6

285 0.1 10714.24 10714.24 0.00 7 0 9776.09 0.0 0.2 1.0 8.8 0.0 9.6 0.6

MIP LPR

inst#

1
5 
x 
4

2
5 
x 
4

3
2 
x 
4

18
81
3.
50

91
07
.4
1

10
71
4.
24
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Table D.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 282.7 14402.71 14402.77 0.00 40370 4 13456.04 0.1 1.0 1.0 6.6 0.0 7.0 1.0

105 132.4 14402.70 14402.77 0.00 17088 2 13456.04 0.1 0.5 1.0 6.6 0.0 7.0 0.4

110 53.0 14402.77 14402.77 0.00 3188 0 13456.95 0.1 0.2 1.0 6.6 0.0 7.0 0.1

120 245.1 14402.77 14402.77 0.00 4583 0 13456.95 0.8 0.9 1.0 6.6 0.0 7.0 0.1

130 337.2 14402.77 14402.77 0.00 22783 0 13456.04 0.2 1.2 1.0 6.6 0.0 7.0 0.6

140 299.0 14402.62 14402.77 0.00 26073 7 13456.04 0.2 1.1 1.0 6.6 0.0 7.0 0.6

150 1669.6 14402.65 14402.77 0.00 189293 26 13457.71 0.1 5.9 1.0 6.6 0.0 7.0 4.7

160 52.6 14402.77 14402.77 0.00 3188 0 13456.95 0.2 0.2 1.0 6.6 0.0 7.0 0.1

170 208.9 14402.76 14402.77 0.00 3334 1 13468.33 0.7 0.7 1.0 6.5 0.0 6.9 0.1

180 68.1 14402.63 14402.77 0.00 1926 1 13468.33 0.3 0.2 1.0 6.5 0.0 6.9 0.0

185 48.4 14402.75 14402.77 0.00 1361 1 13468.33 0.5 0.2 1.0 6.5 0.0 6.9 0.0

200 257.4 14402.67 14402.77 0.00 37666 9 13456.04 0.1 0.9 1.0 6.6 0.0 7.0 0.9

205 150.6 14402.67 14402.77 0.00 14423 2 13456.04 0.2 0.5 1.0 6.6 0.0 7.0 0.4

210 50.3 14402.77 14402.77 0.00 2073 0 13459.22 0.1 0.2 1.0 6.6 0.0 7.0 0.1

220 276.5 14402.77 14402.77 0.00 4686 0 13459.22 1.1 1.0 1.0 6.6 0.0 7.0 0.1

230 117.8 14402.76 14402.77 0.00 8443 3 13456.04 0.3 0.4 1.0 6.6 0.0 7.0 0.2

240 339.4 14402.71 14402.77 0.00 23715 2 13456.04 0.3 1.2 1.0 6.6 0.0 7.0 0.6

250 651.5 14402.66 14402.77 0.00 55744 5 13457.71 0.2 2.3 1.0 6.6 0.0 7.0 1.4

260 50.7 14402.77 14402.77 0.00 2073 0 13459.22 0.4 0.2 1.0 6.6 0.0 7.0 0.1

270 97.9 14402.77 14402.77 0.00 1527 0 13468.41 0.8 0.3 1.0 6.5 0.0 6.9 0.0

280 62.7 14402.77 14402.77 0.00 1798 0 13468.41 0.3 0.2 1.0 6.5 0.0 6.9 0.0

285 40.8 14402.77 14402.77 0.00 947 0 13468.41 0.5 0.1 1.0 6.5 0.0 6.9 0.0

100 0.3 309.77 309.77 0.00 15 0 39.97 0.0 1.0 1.0 87.1 0.0 674.9 1.0

105 0.3 309.77 309.77 0.00 30 0 39.97 0.0 1.1 1.0 87.1 0.0 674.9 2.0

110 0.2 309.77 309.77 0.00 17 0 39.97 0.0 0.8 1.0 87.1 0.0 674.9 1.1

120 1.0 309.77 309.77 0.00 16 0 39.97 0.0 3.8 1.0 87.1 0.0 674.9 1.1

130 0.4 309.77 309.77 0.00 21 0 39.97 0.0 1.5 1.0 87.1 0.0 674.9 1.4

140 0.7 309.77 309.77 0.00 71 0 39.97 0.0 2.6 1.0 87.1 0.0 674.9 4.7

150 0.3 309.77 309.77 0.00 20 0 39.97 0.0 1.1 1.0 87.1 0.0 674.9 1.3

160 0.2 309.77 309.77 0.00 17 0 39.97 0.0 0.8 1.0 87.1 0.0 674.9 1.1

170 0.3 309.77 309.77 0.00 8 0 39.97 0.0 1.3 1.0 87.1 0.0 674.9 0.5

180 0.3 309.77 309.77 0.00 6 0 39.97 0.0 1.2 1.0 87.1 0.0 674.9 0.4

185 0.3 309.77 309.77 0.00 0 0 39.97 0.0 1.0 1.0 87.1 0.0 674.9 0.0

200 0.1 309.77 309.77 0.00 0 0 39.97 0.0 0.5 1.0 87.1 0.0 674.9 0.0

205 0.2 309.77 309.77 0.00 7 0 39.97 0.0 0.6 1.0 87.1 0.0 674.9 0.5

210 0.2 309.77 309.77 0.00 0 0 39.97 0.0 0.7 1.0 87.1 0.0 674.9 0.0

220 0.5 309.77 309.77 0.00 12 0 39.97 0.0 2.1 1.0 87.1 0.0 674.9 0.8

230 0.3 309.77 309.77 0.00 16 0 39.97 0.0 1.1 1.0 87.1 0.0 674.9 1.1

240 0.5 309.77 309.77 0.00 37 0 39.97 0.0 1.8 1.0 87.1 0.0 674.9 2.5

250 0.3 309.77 309.77 0.00 10 0 39.97 0.0 1.1 1.0 87.1 0.0 674.9 0.7

260 0.2 309.77 309.77 0.00 0 0 39.97 0.0 0.7 1.0 87.1 0.0 674.9 0.0

270 0.5 309.77 309.77 0.00 9 0 39.97 0.1 2.0 1.0 87.1 0.0 674.9 0.6

280 0.3 309.77 309.77 0.00 10 0 39.97 0.0 1.1 1.0 87.1 0.0 674.9 0.7

285 0.3 309.77 309.77 0.00 11 0 39.97 0.0 1.0 1.0 87.1 0.0 674.9 0.7

100 0.2 154.06 154.06 0.00 12 0 0.00 0.0 1.0 undefined 100.0 0.0 undefined 1.0

105 0.2 154.06 154.06 0.00 15 0 0.00 0.0 1.1 undefined 100.0 0.0 undefined 1.3

110 0.2 154.06 154.06 0.00 16 0 0.00 0.0 0.8 undefined 100.0 0.0 undefined 1.3

120 0.6 154.06 154.06 0.00 32 0 0.00 0.1 3.0 undefined 100.0 0.0 undefined 2.7

130 0.2 154.06 154.06 0.00 19 0 0.00 0.0 1.1 undefined 100.0 0.0 undefined 1.6

140 0.2 154.06 154.06 0.00 13 0 0.00 0.0 1.2 undefined 100.0 0.0 undefined 1.1

150 0.3 154.06 154.06 0.00 32 0 0.00 0.0 1.5 undefined 100.0 0.0 undefined 2.7

160 0.2 154.06 154.06 0.00 16 0 0.00 0.0 1.1 undefined 100.0 0.0 undefined 1.3

170 0.3 154.06 154.06 0.00 17 0 2.58 0.1 1.6 undefined 98.3 0.0 5880.6 1.4

180 0.3 154.06 154.06 0.00 23 0 2.58 0.0 1.3 undefined 98.3 0.0 5880.6 1.9

185 0.5 154.06 154.06 0.00 26 0 2.58 0.0 2.3 undefined 98.3 0.0 5880.6 2.2

200 0.3 154.06 154.06 0.00 17 0 12.30 0.0 1.4 undefined 92.0 0.0 1152.2 1.4

205 0.3 154.06 154.06 0.00 14 0 12.30 0.0 1.4 undefined 92.0 0.0 1152.2 1.2

210 0.5 154.06 154.06 0.00 35 0 12.30 0.0 2.4 undefined 92.0 0.0 1152.2 2.9

220 1.2 154.06 154.06 0.00 22 0 12.30 0.1 5.9 undefined 92.0 0.0 1152.2 1.8

230 0.4 154.06 154.06 0.00 15 0 12.30 0.0 1.8 undefined 92.0 0.0 1152.2 1.3

240 0.4 154.06 154.06 0.00 25 0 12.30 0.0 2.1 undefined 92.0 0.0 1152.2 2.1

250 0.4 154.06 154.06 0.00 11 0 12.30 0.0 1.9 undefined 92.0 0.0 1152.2 0.9

260 0.5 154.06 154.06 0.00 35 0 12.30 0.1 2.3 undefined 92.0 0.0 1152.2 2.9

270 0.8 154.06 154.06 0.00 19 0 12.30 0.1 3.9 undefined 92.0 0.0 1152.2 1.6

280 0.7 154.06 154.06 0.00 26 0 12.30 0.0 3.3 undefined 92.0 0.0 1152.2 2.2

285 0.6 154.06 154.06 0.00 18 0 12.30 0.1 2.8 undefined 92.0 0.0 1152.2 1.5

6
4 
x 
4

4
5 
x 
4

5
3 
x 
4

14
40
2.
77

30
9.
77

15
4.
06

MIP LPR

inst#
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Table D.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 2.4 infeasible infeasible - 76 0 0.00 0.0

105 5.3 infeasible infeasible - 236 0 0.00 0.0

110 2.2 infeasible infeasible - 0 0 0.00 0.1

120 55.3 infeasible infeasible - 740 0 0.00 0.1

130 4.3 infeasible infeasible - 76 0 0.00 0.1

140 14.1 infeasible infeasible - 640 0 0.00 0.1

150 0.0 infeasible infeasible - 0 0 infeasible 0.0

160 2.2 infeasible infeasible - 0 0 0.00 0.1

170 0.1 infeasible infeasible - 0 0 infeasible 0.2

180 0.1 infeasible infeasible - 0 0 infeasible 0.1

185 0.1 infeasible infeasible - 0 0 infeasible 0.1

200 6.7 infeasible infeasible - 315 0 0.00 0.1

205 2.7 infeasible infeasible - 26 0 0.00 0.3

210 1.1 infeasible infeasible - 0 0 0.00 0.2

220 8.3 infeasible infeasible - 8 0 0.00 0.7

230 3.9 infeasible infeasible - 29 0 0.00 0.3

240 3.5 infeasible infeasible - 46 0 0.00 0.4

250 0.0 infeasible infeasible - 0 0 infeasible 0.1

260 1.1 infeasible infeasible - 0 0 0.00 0.3

270 0.1 infeasible infeasible - 0 0 infeasible 0.6

280 0.1 infeasible infeasible - 0 0 infeasible 0.3

285 0.1 infeasible infeasible - 0 0 infeasible 0.4

100 466.7 19255.46 19255.63 0.00 53431 6 17825.08 0.1 1.0 1.0 7.4 0.0 8.0 1.0

105 635.8 19255.49 19255.63 0.00 91073 15 17825.08 0.1 1.4 1.0 7.4 0.0 8.0 1.7

110 257.2 19255.45 19255.63 0.00 17341 7 17825.46 0.1 0.6 1.0 7.4 0.0 8.0 0.3

120 820.4 19255.50 19255.63 0.00 21523 1 17825.46 0.8 1.8 1.0 7.4 0.0 8.0 0.4

130 1098.1 19255.47 19255.63 0.00 86544 7 17825.08 0.2 2.4 1.0 7.4 0.0 8.0 1.6

140 1184.2 19255.44 19255.63 0.00 105860 17 17825.08 0.2 2.5 1.0 7.4 0.0 8.0 2.0

150 776.6 19255.45 19255.63 0.00 88591 31 17830.42 0.1 1.7 1.0 7.4 0.0 8.0 1.7

160 261.0 19255.45 19255.63 0.00 17341 7 17825.46 0.2 0.6 1.0 7.4 0.0 8.0 0.3

170 250.6 19255.48 19255.63 0.00 6130 1 17931.04 0.6 0.5 1.0 6.9 0.0 7.4 0.1

180 110.5 19255.55 19255.63 0.00 4684 2 17931.04 0.3 0.2 1.0 6.9 0.0 7.4 0.1

185 97.1 19255.51 19255.63 0.00 3599 1 17931.04 0.3 0.2 1.0 6.9 0.0 7.4 0.1

200 423.9 19255.46 19255.63 0.00 46861 9 17836.45 0.2 0.9 1.0 7.4 0.0 8.0 0.9

205 362.9 19255.44 19255.63 0.00 37352 5 17836.45 0.2 0.8 1.0 7.4 0.0 8.0 0.7

210 78.8 19255.60 19255.63 0.00 4528 1 17848.64 0.2 0.2 1.0 7.3 0.0 7.9 0.1

220 431.4 19255.63 19255.63 0.00 7658 0 17842.04 1.3 0.9 1.0 7.3 0.0 7.9 0.1

230 701.8 19255.45 19255.63 0.00 47739 6 17836.45 0.4 1.5 1.0 7.4 0.0 8.0 0.9

240 587.3 19255.47 19255.63 0.00 55461 11 17836.45 0.4 1.3 1.0 7.4 0.0 8.0 1.0

250 542.7 19255.45 19255.63 0.00 39158 6 17841.79 0.2 1.2 1.0 7.3 0.0 7.9 0.7

260 78.5 19255.60 19255.63 0.00 4528 1 17848.64 0.5 0.2 1.0 7.3 0.0 7.9 0.1

270 165.6 19255.58 19255.63 0.00 3076 1 17935.19 0.7 0.4 1.0 6.9 0.0 7.4 0.1

280 114.1 19255.46 19255.63 0.00 2874 1 17935.19 0.4 0.2 1.0 6.9 0.0 7.4 0.1

285 64.5 19255.63 19255.63 0.00 1413 0 17935.19 0.6 0.1 1.0 6.9 0.0 7.4 0.0

100 254.8 9436.39 9436.48 0.00 27293 3 8570.92 0.1 1.0 1.0 9.2 0.0 10.1 1.0

105 408.4 9436.39 9436.48 0.00 38665 55 8570.92 0.1 1.6 1.0 9.2 0.0 10.1 1.4

110 151.7 9436.48 9436.48 0.00 6833 0 8570.93 0.1 0.6 1.0 9.2 0.0 10.1 0.3

120 700.0 9436.48 9436.48 0.00 12473 0 8570.93 0.7 2.7 1.0 9.2 0.0 10.1 0.5

130 1224.8 9436.39 9436.48 0.00 93851 16 8570.92 0.1 4.8 1.0 9.2 0.0 10.1 3.4

140 916.2 9436.39 9436.48 0.00 63051 18 8570.92 0.2 3.6 1.0 9.2 0.0 10.1 2.3

150 1403.2 9436.40 9436.48 0.00 107755 11 8570.92 0.1 5.5 1.0 9.2 0.0 10.1 3.9

160 151.3 9436.48 9436.48 0.00 6833 0 8570.93 0.3 0.6 1.0 9.2 0.0 10.1 0.3

170 218.7 9436.48 9436.48 0.00 4374 0 8577.93 0.6 0.9 1.0 9.1 0.0 10.0 0.2

180 95.7 9436.39 9436.48 0.00 4684 1 8577.93 0.3 0.4 1.0 9.1 0.0 10.0 0.2

185 115.8 9436.48 9436.48 0.00 3156 0 8577.93 0.4 0.5 1.0 9.1 0.0 10.0 0.1

200 515.4 9436.47 9436.48 0.00 47527 1 8570.92 0.2 2.0 1.0 9.2 0.0 10.1 1.7

205 164.2 9436.48 9436.48 0.00 12991 0 8570.92 0.2 0.6 1.0 9.2 0.0 10.1 0.5

210 53.7 9436.48 9436.48 0.00 2018 0 8570.95 0.4 0.2 1.0 9.2 0.0 10.1 0.1

220 304.1 9436.48 9436.48 0.00 3825 1 8570.95 1.5 1.2 1.0 9.2 0.0 10.1 0.1

230 826.7 9436.43 9436.48 0.00 47669 2 8570.92 0.3 3.2 1.0 9.2 0.0 10.1 1.7

240 528.2 9436.39 9436.48 0.00 27215 1 8570.92 0.4 2.1 1.0 9.2 0.0 10.1 1.0

250 1259.1 9436.39 9436.48 0.00 113922 13 8570.92 0.2 4.9 1.0 9.2 0.0 10.1 4.2

260 53.7 9436.48 9436.48 0.00 2018 0 8570.95 0.4 0.2 1.0 9.2 0.0 10.1 0.1

270 161.4 9436.48 9436.48 0.00 2364 0 8579.17 1.0 0.6 1.0 9.1 0.0 10.0 0.1

280 90.1 9436.48 9436.48 0.00 2239 0 8579.17 0.5 0.4 1.0 9.1 0.0 10.0 0.1

285 72.2 9436.48 9436.48 0.00 1282 0 8579.17 0.5 0.3 1.0 9.1 0.0 10.0 0.0
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Table D.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 26470.56 27870.98 5.02 468853 306312 25954.34 0.3 1.0 1.0 6.6 0.3 7.4 1.0

105 7200.0 26453.69 27964.19 5.40 364414 235190 25954.34 0.3 1.0 1.0 6.6 0.6 7.7 0.8

110 7200.0 27184.48 27794.55 2.19 236440 146054 25954.91 0.4 1.0 1.0 6.6 0.0 7.1 0.5

120 7200.0 26846.61 27924.94 3.86 58247 43153 25954.91 2.6 1.0 1.0 6.6 0.5 7.6 0.1

130 7200.0 26410.66 27942.24 5.48 252925 161451 25954.34 0.5 1.0 1.0 6.6 0.5 7.7 0.5

140 7200.0 26312.20 28049.82 6.19 237284 171597 25954.34 0.5 1.0 1.0 6.6 0.9 8.1 0.5

150 7200.0 26507.19 27844.23 4.80 342314 239841 25954.34 0.3 1.0 1.0 6.6 0.2 7.3 0.7

160 7200.0 27185.67 27794.55 2.19 238357 147277 25954.91 0.7 1.0 1.0 6.6 0.0 7.1 0.5

170 7200.0 27055.05 27978.08 3.30 80986 57476 25958.46 1.2 1.0 1.0 6.6 0.7 7.8 0.2

180 7200.0 27166.87 27820.41 2.35 155220 101303 25958.46 0.7 1.0 1.0 6.6 0.1 7.2 0.3

185 7200.0 27449.25 27794.55 1.24 137413 63281 25958.46 1.0 1.0 1.0 6.6 0.0 7.1 0.3

200 7200.0 26441.13 27866.47 5.11 297923 202304 25954.34 1.1 1.0 1.0 6.6 0.3 7.4 0.6

205 7200.0 26501.07 28031.77 5.46 287971 209228 25954.34 1.4 1.0 1.0 6.6 0.9 8.0 0.6

210 7200.0 27262.34 27828.65 2.03 141504 91665 25956.06 1.1 1.0 1.0 6.6 0.1 7.2 0.3

220 7200.0 26943.44 27794.55 3.06 52130 35240 25956.06 8.7 1.0 1.0 6.6 0.0 7.1 0.1

230 7200.0 26453.05 27794.55 4.83 189211 133636 25954.34 2.1 1.0 1.0 6.6 0.0 7.1 0.4

240 7200.0 26404.52 27972.04 5.60 195555 157938 25954.34 2.2 1.0 1.0 6.6 0.6 7.8 0.4

250 7200.0 26355.61 27890.71 5.50 317093 239717 25954.34 0.9 1.0 1.0 6.6 0.3 7.5 0.7

260 7200.0 27261.40 27828.65 2.04 140754 91201 25956.06 1.8 1.0 1.0 6.6 0.1 7.2 0.3

270 7200.0 27165.82 27794.55 2.26 54574 32635 25958.46 3.5 1.0 1.0 6.6 0.0 7.1 0.1

280 7200.0 27308.69 27794.55 1.75 154806 91876 25958.46 1.5 1.0 1.0 6.6 0.0 7.1 0.3

285 7200.0 27453.09 27826.18 1.34 86490 39524 25958.46 2.2 1.0 1.0 6.6 0.1 7.2 0.2

100 7200.0 24166.23 24569.25 1.64 359511 156799 23232.12 0.2 1.0 1.0 5.4 0.0 5.8 1.0

105 7200.0 24223.48 24569.25 1.41 377719 79542 23232.12 0.3 1.0 1.0 5.4 0.0 5.8 1.1

110 623.5 24569.00 24569.25 0.00 20618 12 23232.58 0.4 0.1 1.0 5.4 0.0 5.8 0.1

120 7200.0 24469.40 24569.25 0.41 79507 11733 23232.58 2.7 1.0 1.0 5.4 0.0 5.8 0.2

130 7200.0 24306.45 24569.25 1.07 252499 68120 23232.12 0.7 1.0 1.0 5.4 0.0 5.8 0.7

140 7200.0 24217.03 24569.25 1.43 200998 69783 23232.12 0.9 1.0 1.0 5.4 0.0 5.8 0.6

150 7200.0 24313.87 24569.25 1.04 388670 117942 23232.12 0.3 1.0 1.0 5.4 0.0 5.8 1.1

160 624.3 24569.00 24569.25 0.00 20618 12 23232.58 0.5 0.1 1.0 5.4 0.0 5.8 0.1

170 3632.0 24569.03 24569.25 0.00 46391 13 23240.24 1.3 0.5 1.0 5.4 0.0 5.7 0.1

180 994.8 24569.01 24569.25 0.00 29216 18 23240.24 0.9 0.1 1.0 5.4 0.0 5.7 0.1

185 530.2 24569.05 24569.25 0.00 9245 5 23240.24 1.3 0.1 1.0 5.4 0.0 5.7 0.0

200 7200.0 24034.70 24676.46 2.60 450411 239950 23232.12 0.6 1.0 1.0 5.4 0.4 6.2 1.3

205 5257.6 24569.00 24569.25 0.00 262178 54 23232.12 0.5 0.7 1.0 5.4 0.0 5.8 0.7

210 540.4 24569.01 24569.25 0.00 25029 7 23234.71 0.7 0.1 1.0 5.4 0.0 5.7 0.1

220 6168.6 24569.00 24569.25 0.00 54928 8 23234.71 3.0 0.9 1.0 5.4 0.0 5.7 0.2

230 7200.0 24491.47 24569.25 0.32 265293 25628 23232.12 1.1 1.0 1.0 5.4 0.0 5.8 0.7

240 7108.7 24569.01 24569.25 0.00 259602 66 23232.12 1.2 1.0 1.0 5.4 0.0 5.8 0.7

250 7200.0 24320.59 24569.25 1.01 388339 101641 23232.12 0.5 1.0 1.0 5.4 0.0 5.8 1.1

260 538.3 24569.01 24569.25 0.00 25029 7 23234.71 0.9 0.1 1.0 5.4 0.0 5.7 0.1

270 2204.1 24569.04 24569.25 0.00 40173 12 23240.25 1.5 0.3 1.0 5.4 0.0 5.7 0.1

280 544.5 24569.04 24569.25 0.00 17884 5 23240.25 0.9 0.1 1.0 5.4 0.0 5.7 0.0

285 263.1 24569.23 24569.25 0.00 5904 1 23240.25 1.4 0.0 1.0 5.4 0.0 5.7 0.0

100 7200.0 18103.33 no feas sol inf 61662 45234 17825.08 1.1

105 7200.0 18005.59 no feas sol inf 84750 69870 17825.08 1.2

110 7200.0 18351.21 no feas sol inf 32609 27786 17825.32 1.7

120 7200.0 18130.37 no feas sol inf 5413 4533 17825.32 19.8

130 7200.0 17988.34 no feas sol inf 24660 18158 17825.08 3.6

140 7200.0 17977.23 no feas sol inf 46285 40921 17825.08 4.5

150 0.5 infeasible infeasible - 0 0 infeasible 0.4

160 7200.0 18350.99 no feas sol inf 32476 27675 17825.32 2.7

170 4.0 infeasible infeasible - 0 0 infeasible 2.6

180 3.4 infeasible infeasible - 0 0 infeasible 1.7

185 4.7 infeasible infeasible - 0 0 infeasible 2.8

200 7200.0 18089.64 no feas sol inf 45055 29234 17830.59 3.0

205 7200.0 18314.00 no feas sol inf 39543 21723 17830.59 4.5

210 7200.0 18395.55 no feas sol inf 28370 23735 17832.78 5.0

220 7200.0 18063.72 no feas sol inf 2733 2302 17832.39 31.5

230 7200.0 18052.01 no feas sol inf 29765 22093 17830.59 6.7

240 7200.0 18313.60 no feas sol inf 15803 9317 17830.59 9.4

250 0.6 infeasible infeasible - 0 0 infeasible 2.2

260 7200.0 18395.58 no feas sol inf 28468 23805 17832.78 7.9

270 7.7 infeasible infeasible - 0 0 infeasible 6.0

280 3.6 infeasible infeasible - 0 0 infeasible 3.5

285 6.2 infeasible infeasible - 0 0 infeasible 7.1
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Table D.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 14800.15 17112.32 13.51 56097 46189 14752.07 1.0 1.0 1.0 16.0 1.0

105 7200.0 14823.22 17402.06 14.82 47011 32186 14752.07 1.4 1.0 1.0 18.0 0.8

110 7200.0 15030.98 16666.41 9.81 19755 16163 14753.39 2.6 1.0 1.0 13.0 0.4

120 7200.0 14818.56 17689.71 16.23 1901 1736 14753.28 18.6 1.0 1.0 19.9 0.0

130 7200.0 14768.50 17435.48 15.30 26617 23939 14752.07 2.6 1.0 1.0 18.2 0.5

140 7200.0 14800.34 17208.68 13.99 19019 15953 14752.07 4.0 1.0 1.0 16.7 0.3

150 7200.0 14810.70 17236.79 14.08 48970 42317 14752.07 1.5 1.0 1.0 16.8 0.9

160 7200.0 15030.74 16666.41 9.81 19741 16151 14753.39 3.6 1.0 1.0 13.0 0.4

170 7200.0 14987.11 16896.15 11.30 8480 6912 14783.11 15.0 1.0 1.0 14.3 0.2

180 7200.0 15041.48 16748.84 10.19 17600 15563 14783.11 8.1 1.0 1.0 13.3 0.3

185 7200.0 15043.02 17277.62 12.93 7455 5645 14783.11 13.7 1.0 1.0 16.9 0.1

200 7200.0 14822.21 16925.43 12.43 32759 25150 14753.13 3.6 1.0 1.0 14.7 0.6

205 7200.0 14788.63 17970.65 17.71 49854 33341 14753.13 3.9 1.0 1.0 21.8 0.9

210 7200.0 15162.27 16653.45 8.95 17151 14585 14765.40 6.7 1.0 1.0 12.8 0.3

220 7200.0 14815.74 17384.94 14.78 1520 1395 14763.99 34.0 1.0 1.0 17.8 0.0

230 7200.0 14782.53 17053.45 13.32 27267 23717 14753.22 7.0 1.0 1.0 15.6 0.5

240 7200.0 14784.06 17156.35 13.83 20319 18001 14753.13 7.3 1.0 1.0 16.3 0.4

250 7200.0 14777.81 17117.00 13.67 39480 34446 14753.13 4.2 1.0 1.0 16.0 0.7

260 7200.0 15162.27 16653.45 8.95 17140 14574 14765.40 9.9 1.0 1.0 12.8 0.3

270 7200.0 15075.92 16715.87 9.81 4018 3276 14793.15 21.4 1.0 1.0 13.0 0.1

280 7200.0 15091.92 16780.36 10.06 5846 4922 14793.15 15.7 1.0 1.0 13.4 0.1

285 7200.0 15160.66 16888.84 10.23 3280 2645 14793.15 24.8 1.0 1.0 14.2 0.1

100 7200.0 19141.91 no feas sol inf 13869 2104 17266.46 1.2

105 7200.0 18536.62 no feas sol inf 18590 7192 17266.46 1.8

110 191.7 infeasible infeasible - 12 0 17266.46 3.6

120 1053.2 infeasible infeasible - 24 0 17266.46 33.2

130 1325.4 infeasible infeasible - 1269 0 17266.46 3.8

140 6532.0 infeasible infeasible - 1430 0 17266.46 6.0

150 0.4 infeasible infeasible - 0 0 infeasible 1.1

160 192.2 infeasible infeasible - 12 0 17266.46 5.4

170 16.2 infeasible infeasible - 0 0 infeasible 6.0

180 7.6 infeasible infeasible - 0 0 infeasible 3.4

185 4.8 infeasible infeasible - 0 0 infeasible 3.0

200 115.7 infeasible infeasible - 14 0 17309.48 14.3

205 7200.0 18593.64 no feas sol inf 2175 631 17309.48 21.6

210 7200.0 17739.23 no feas sol inf 5397 4140 17313.74 30.2

220 7200.0 17728.17 no feas sol inf 564 475 17313.44 152.6

230 7200.0 18136.11 no feas sol inf 1389 424 17309.51 34.0

240 7200.0 18709.95 no feas sol inf 1383 294 17309.48 29.4

250 1.1 infeasible infeasible - 0 0 infeasible 4.6

260 7200.0 17739.23 no feas sol inf 5372 4117 17313.74 36.3

270 16.6 infeasible infeasible - 0 0 infeasible 9.8

280 8.5 infeasible infeasible - 0 0 infeasible 5.7

285 13.0 infeasible infeasible - 0 0 infeasible 23.2

100 4386.7 16909.67 16909.84 0.00 337521 40 15165.90 0.1 1.0 1.0 10.3 0.0 11.5 1.0

105 2936.4 16909.68 16909.84 0.00 157632 25 15165.90 0.2 0.7 1.0 10.3 0.0 11.5 0.5

110 1090.5 16909.73 16909.84 0.00 35029 3 15166.04 0.2 0.2 1.0 10.3 0.0 11.5 0.1

120 7200.0 16685.42 16909.84 1.33 64305 18178 15166.04 1.5 1.6 1.0 10.3 0.0 11.5 0.2

130 7200.0 16471.50 16909.84 2.59 302100 130493 15165.90 0.3 1.6 1.0 10.3 0.0 11.5 0.9

140 7200.0 16785.02 16909.84 0.74 234661 40242 15165.90 0.6 1.6 1.0 10.3 0.0 11.5 0.7

150 7200.0 16464.51 16909.84 2.63 368195 174984 15167.93 0.2 1.6 1.0 10.3 0.0 11.5 1.1

160 1094.5 16909.73 16909.84 0.00 35029 3 15166.04 0.6 0.2 1.0 10.3 0.0 11.5 0.1

170 1743.0 16909.72 16909.84 0.00 23025 5 15204.78 2.4 0.4 1.0 10.1 0.0 11.2 0.1

180 1076.2 16909.74 16909.84 0.00 27975 2 15204.78 0.9 0.2 1.0 10.1 0.0 11.2 0.1

185 452.6 16909.83 16909.84 0.00 5722 2 15204.78 1.1 0.1 1.0 10.1 0.0 11.2 0.0

200 7200.0 16380.00 16909.84 3.13 413331 211330 15206.04 0.6 1.6 1.0 10.1 0.0 11.2 1.2

205 4600.3 16909.70 16909.84 0.00 223869 26 15206.04 0.8 1.0 1.0 10.1 0.0 11.2 0.7

210 691.4 16909.78 16909.84 0.00 21181 4 15220.56 0.8 0.2 1.0 10.0 0.0 11.1 0.1

220 4405.8 16909.74 16909.84 0.00 38237 6 15220.56 3.4 1.0 1.0 10.0 0.0 11.1 0.1

230 7200.0 16876.34 16909.84 0.20 244803 8967 15206.04 1.0 1.6 1.0 10.1 0.0 11.2 0.7

240 7200.0 16829.41 16909.84 0.48 209989 19867 15206.04 0.9 1.6 1.0 10.1 0.0 11.2 0.6

250 3361.4 16909.68 16909.84 0.00 142927 16 15208.55 0.6 0.8 1.0 10.1 0.0 11.2 0.4

260 690.5 16909.78 16909.84 0.00 21181 4 15220.56 1.3 0.2 1.0 10.0 0.0 11.1 0.1

270 1572.8 16909.73 16909.84 0.00 19442 2 15281.65 2.5 0.4 1.0 9.6 0.0 10.7 0.1

280 2433.2 16909.75 16909.84 0.00 36652 7 15281.65 1.4 0.6 1.0 9.6 0.0 10.7 0.1

285 710.3 16909.83 16909.84 0.00 6265 1 15281.65 2.8 0.2 1.0 9.6 0.0 10.7 0.0

14 9 
x 
8

15 6 
x 
4

13 9 
x 
8

MIP LPR

inst#

16
60
3.
13

IN
F
E
A
S
IB

L
E

16
90
9.
84

 



 

 127 

Table D.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 2829.9 14299.53 14299.67 0.00 177372 40 13566.20 0.2 1.0 1.0 5.1 0.0 5.4 1.0

105 1158.3 14299.53 14299.67 0.00 65200 19 13566.20 0.2 0.4 1.0 5.1 0.0 5.4 0.4

110 419.8 14299.54 14299.67 0.00 14603 4 13566.34 0.2 0.1 1.0 5.1 0.0 5.4 0.1

120 4127.6 14299.53 14299.67 0.00 45417 16 13566.34 3.3 1.5 1.0 5.1 0.0 5.4 0.3

130 7200.0 14258.09 14299.67 0.29 307403 42695 13566.20 0.3 2.5 1.0 5.1 0.0 5.4 1.7

140 3289.5 14299.53 14299.67 0.00 161712 48 13566.20 0.6 1.2 1.0 5.1 0.0 5.4 0.9

150 4631.5 14299.53 14299.67 0.00 274674 81 13566.20 0.3 1.6 1.0 5.1 0.0 5.4 1.5

160 529.4 14299.54 14299.67 0.00 18086 9 13566.34 0.5 0.2 1.0 5.1 0.0 5.4 0.1

170 1235.0 14299.67 14299.67 0.00 20197 0 13603.13 3.0 0.4 1.0 4.9 0.0 5.1 0.1

180 358.4 14299.59 14299.67 0.00 10758 7 13603.13 1.0 0.1 1.0 4.9 0.0 5.1 0.1

185 280.2 14299.57 14299.67 0.00 4394 2 13603.13 1.9 0.1 1.0 4.9 0.0 5.1 0.0

200 1822.2 14299.53 14299.67 0.00 99048 35 13577.10 0.4 0.6 1.0 5.1 0.0 5.3 0.6

205 617.7 14299.56 14299.67 0.00 33928 9 13577.10 0.4 0.2 1.0 5.1 0.0 5.3 0.2

210 447.8 14299.56 14299.67 0.00 13211 9 13580.25 0.7 0.2 1.0 5.0 0.0 5.3 0.1

220 1547.2 14299.53 14299.67 0.00 15159 4 13580.24 6.6 0.5 1.0 5.0 0.0 5.3 0.1

230 3646.4 14299.53 14299.67 0.00 140685 42 13577.10 1.3 1.3 1.0 5.1 0.0 5.3 0.8

240 5083.0 14299.53 14299.67 0.00 256808 89 13577.10 1.0 1.8 1.0 5.1 0.0 5.3 1.4

250 1996.3 14299.53 14299.67 0.00 94768 17 13577.10 0.5 0.7 1.0 5.1 0.0 5.3 0.5

260 453.3 14299.56 14299.67 0.00 13113 9 13580.25 1.3 0.2 1.0 5.0 0.0 5.3 0.1

270 1494.2 14299.66 14299.67 0.00 25117 1 13603.78 2.0 0.5 1.0 4.9 0.0 5.1 0.1

280 659.3 14299.55 14299.67 0.00 14108 4 13603.78 1.5 0.2 1.0 4.9 0.0 5.1 0.1

285 310.8 14299.67 14299.67 0.00 4575 0 13603.78 1.7 0.1 1.0 4.9 0.0 5.1 0.0

100 12.9 infeasible infeasible - 15 0 5414.09 0.2

105 8.8 infeasible infeasible - 23 0 5414.09 0.3

110 22.1 infeasible infeasible - 58 0 5414.57 0.4

120 43.9 infeasible infeasible - 20 0 5414.57 5.9

130 14.8 infeasible infeasible - 21 0 5414.09 0.4

140 31.7 infeasible infeasible - 18 0 5414.09 0.5

150 0.2 infeasible infeasible - 0 0 infeasible 0.1

160 17.2 infeasible infeasible - 18 0 5414.57 1.1

170 4.2 infeasible infeasible - 0 0 infeasible 1.8

180 2.0 infeasible infeasible - 0 0 infeasible 0.9

185 3.0 infeasible infeasible - 0 0 infeasible 1.0

200 7200.0 6486.92 no feas sol inf 211101 33411 5455.31 1.2

205 13.1 infeasible infeasible - 26 0 5455.31 1.5

210 7200.0 6688.93 no feas sol inf 31813 9730 5461.95 2.2

220 7200.0 6268.15 no feas sol inf 26628 18900 5461.95 10.8

230 7200.0 6068.41 no feas sol inf 186136 97343 5455.37 2.1

240 41.8 infeasible infeasible - 76 0 5455.31 2.3

250 0.5 infeasible infeasible - 0 0 infeasible 0.4

260 7200.0 6687.39 no feas sol inf 31516 9655 5461.95 2.7

270 6.9 infeasible infeasible - 0 0 infeasible 2.1

280 2.6 infeasible infeasible - 0 0 infeasible 0.9

285 3.3 infeasible infeasible - 0 0 infeasible 2.3

100 7200.0 17175.32 18592.98 7.62 153465 115775 17074.08 0.3 1.0 1.0 7.1 1.2 8.9 1.0

105 7200.0 17178.29 18965.30 9.42 139011 101995 17074.08 0.4 1.0 1.0 7.1 3.2 11.1 0.9

110 7200.0 17507.50 18831.86 7.03 88746 72706 17078.32 1.0 1.0 1.0 7.0 2.5 10.3 0.6

120 7200.0 17200.91 18954.02 9.25 22209 18017 17075.33 10.0 1.0 1.0 7.1 3.2 11.0 0.1

130 7200.0 17152.77 18500.97 7.29 88445 53713 17074.08 0.6 1.0 1.0 7.1 0.7 8.4 0.6

140 7200.0 17144.55 18700.75 8.32 101595 77217 17074.08 1.7 1.0 1.0 7.1 1.8 9.5 0.7

150 7200.0 17128.34 18807.30 8.93 146442 115519 17074.08 0.3 1.0 1.0 7.1 2.4 10.2 1.0

160 7200.0 17508.00 18831.86 7.03 89558 73377 17078.32 2.4 1.0 1.0 7.0 2.5 10.3 0.6

170 7200.0 17677.38 18546.97 4.69 33201 24907 17106.10 7.5 1.0 1.0 6.9 1.0 8.4 0.2

180 7200.0 17665.32 18629.77 5.18 49871 37617 17106.10 4.0 1.0 1.0 6.9 1.4 8.9 0.3

185 7200.0 17750.30 18589.65 4.52 35531 25085 17106.10 6.4 1.0 1.0 6.9 1.2 8.7 0.2

200 7200.0 17135.95 18446.28 7.10 90155 64009 17074.83 2.1 1.0 1.0 7.1 0.4 8.0 0.6

205 7200.0 17176.73 18866.03 8.95 93561 71262 17074.83 2.1 1.0 1.0 7.1 2.7 10.5 0.6

210 7200.0 17937.18 18371.96 2.37 65795 40765 17095.29 3.2 1.0 1.0 6.9 0.0 7.5 0.4

220 7200.0 17282.49 18439.40 6.27 13100 9591 17082.41 18.1 1.0 1.0 7.0 0.4 7.9 0.1

230 7200.0 17176.34 18447.10 6.89 74458 51061 17074.84 3.8 1.0 1.0 7.1 0.4 8.0 0.5

240 7200.0 17126.95 18700.38 8.41 66428 56185 17074.83 3.6 1.0 1.0 7.1 1.8 9.5 0.4

250 7200.0 17111.16 18644.64 8.22 90270 73714 17074.83 1.8 1.0 1.0 7.1 1.5 9.2 0.6

260 7200.0 17937.13 18371.96 2.37 65688 40705 17095.29 6.5 1.0 1.0 6.9 0.0 7.5 0.4

270 7200.0 17798.03 18564.82 4.13 17995 13166 17114.63 13.2 1.0 1.0 6.8 1.0 8.5 0.1

280 7200.0 17843.20 18439.76 3.24 38728 29838 17114.63 5.9 1.0 1.0 6.8 0.4 7.7 0.3

285 7200.0 18113.49 18371.96 1.41 29260 10426 17114.63 7.9 1.0 1.0 6.8 0.0 7.3 0.2

inst#

16 7 
x 
4

17 7 
x 
4

18 8 
x 
4

MIP LPR

14
29
9.
67

IN
F
E
A
S
IB

L
E

18
37
1.
96
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Table D.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 22192.18 25294.22 12.26 96978 79050 22099.88 0.4 1.0 1.0 14.5 1.0

105 7200.0 22242.88 no feas sol inf 84591 74397 22099.88 0.6 1.0 1.0 - 0.9

110 7200.0 22551.88 25262.63 10.73 59574 50648 22102.11 2.2 1.0 1.0 14.3 0.6

120 7200.0 22271.79 no feas sol inf 8862 7856 22102.11 9.3 1.0 1.0 - 0.1

130 7200.0 22145.64 no feas sol inf 78102 72792 22099.88 1.6 1.0 1.0 - 0.8

140 7200.0 22157.05 27679.50 19.95 72278 64820 22099.88 2.5 1.0 1.0 25.2 0.7

150 7200.0 22188.64 25405.01 12.66 83509 72874 22099.88 0.7 1.0 1.0 15.0 0.9

160 7200.0 22551.35 25262.63 10.73 58965 50115 22102.11 3.0 1.0 1.0 14.3 0.6

170 7200.0 22707.36 25435.88 10.73 9584 8184 22114.78 12.1 1.0 1.0 15.0 0.1

180 7200.0 22912.31 24753.54 7.44 12636 10793 22114.78 7.8 1.0 1.0 11.9 0.1

185 7200.0 22875.09 25505.20 10.31 10097 8476 22114.78 11.8 1.0 1.0 15.3 0.1

200 7200.0 22184.19 no feas sol inf 75014 69130 22105.45 3.3 1.0 1.0 - 0.8

205 7200.0 22234.78 no feas sol inf 59623 49917 22105.45 3.6 1.0 1.0 - 0.6

210 7200.0 22966.43 25462.87 9.80 32959 28757 22114.04 6.8 1.0 1.0 15.1 0.3

220 7200.0 22431.33 25658.88 12.58 6285 4976 22113.18 30.5 1.0 1.0 16.0 0.1

230 7200.0 22199.68 no feas sol inf 56379 50986 22105.45 7.7 1.0 1.0 - 0.6

240 7200.0 22230.22 no feas sol inf 35422 32419 22105.45 6.1 1.0 1.0 - 0.4

250 7200.0 22208.33 no feas sol inf 67010 60642 22105.45 4.6 1.0 1.0 - 0.7

260 7200.0 22967.26 25462.87 9.80 33210 28976 22114.04 8.6 1.0 1.0 15.1 0.3

270 7200.0 22934.49 24647.99 6.95 4800 3372 22128.26 66.3 1.0 1.0 11.4 0.0

280 7200.0 23001.10 24994.87 7.98 10011 8120 22128.26 9.8 1.0 1.0 13.0 0.1

285 7200.0 22961.69 25608.45 10.34 4199 3508 22128.26 16.2 1.0 1.0 15.7 0.0

100 7200.0 8786.25 10599.24 17.10 71206 53514 8735.73 0.4 1.0 1.0 15.7 2.3 21.3 1.0

105 7200.0 8862.74 10949.58 19.06 84786 55250 8735.73 0.5 1.0 1.0 15.7 5.7 25.3 1.2

110 7200.0 9281.12 10471.64 11.37 32792 26713 8737.19 1.3 1.0 1.0 15.7 1.0 19.9 0.5

120 7200.0 8847.20 10746.65 17.67 4156 3623 8737.18 7.5 1.0 1.0 15.7 3.7 23.0 0.1

130 7200.0 8776.34 10645.58 17.56 42310 33308 8735.73 1.5 1.0 1.0 15.7 2.7 21.9 0.6

140 7200.0 8851.63 10691.70 17.21 50772 34768 8735.73 1.5 1.0 1.0 15.7 3.2 22.4 0.7

150 7200.0 8775.17 10529.82 16.66 88953 67138 8735.73 0.6 1.0 1.0 15.7 1.6 20.5 1.2

160 7200.0 9281.12 10471.64 11.37 32803 26724 8737.19 1.7 1.0 1.0 15.7 1.0 19.9 0.5

170 7200.0 9206.03 10468.41 12.06 7821 5926 8749.81 8.5 1.0 1.0 15.6 1.0 19.6 0.1

180 7200.0 9245.06 10491.57 11.88 17189 13328 8749.81 7.5 1.0 1.0 15.6 1.2 19.9 0.2

185 7200.0 9302.01 10580.66 12.08 7509 5164 8749.81 14.4 1.0 1.0 15.6 2.1 20.9 0.1

200 7200.0 8806.55 10490.61 16.05 65942 50428 8735.88 3.2 1.0 1.0 15.7 1.2 20.1 0.9

205 7200.0 8848.14 10681.07 17.16 66275 50328 8735.88 2.8 1.0 1.0 15.7 3.1 22.3 0.9

210 7200.0 9496.53 10394.21 8.64 26928 21512 8750.03 5.4 1.0 1.0 15.6 0.3 18.8 0.4

220 7200.0 8986.67 10547.16 14.80 5279 4633 8747.90 17.8 1.0 1.0 15.6 1.8 20.6 0.1

230 7200.0 8891.93 10455.60 14.96 44872 37205 8735.88 7.7 1.0 1.0 15.7 0.9 19.7 0.6

240 7200.0 8835.62 10447.11 15.43 48122 38468 8735.88 4.8 1.0 1.0 15.7 0.8 19.6 0.7

250 7200.0 8813.76 10499.07 16.05 62105 48019 8735.88 3.2 1.0 1.0 15.7 1.3 20.2 0.9

260 7200.0 9495.91 10394.21 8.64 26809 21413 8750.03 5.1 1.0 1.0 15.6 0.3 18.8 0.4

270 7200.0 9313.13 10397.44 10.43 5870 4060 8755.47 16.4 1.0 1.0 15.5 0.3 18.8 0.1

280 7200.0 9433.40 10363.31 8.97 7348 5114 8755.47 11.7 1.0 1.0 15.5 0.0 18.4 0.1

285 7200.0 9602.30 10472.92 8.31 5939 4242 8755.47 19.1 1.0 1.0 15.5 1.1 19.6 0.1

19 9 
x 
4

MIP LPR

inst#

9 
x 
4

20

24
34

0.
48

10
36

3.
31

 
 

     * LB, UB and Gap (%) refer to the final values of the lower bound, upper bound and the corresponding gap, respectively at the end of the  

             time limit (7200 sec.). If the optimal solution of an instance is not known, the best known solution is provided under Opt.Sol. column in      
             underlined form.  
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Table D.3 Case B- Average Results for 14 Instances with Known Optimals * 
 

CPU CPU R LPR R IGap% DU% ULP% Nodes Node R

100 2775.7 1.00 1.00 20.6 11  (10) 0.3 61.0 139355 1.00

105 2559.9 0.96 1.00 20.6 11  (10) 0.7 61.5 112243 0.99

110 1785.2 0.51 1.00 20.6 11  (11) 0.3 60.9 36707 0.40

120 3289.8 1.64 1.00 20.6 11   (9) 0.5 61.3 32012 0.50

130 3641.8 1.77 1.00 20.6 11   (8) 0.3 61.0 139367 1.29

140 3362.9 1.57 1.00 20.6 11   (9) 0.4 61.2 125150 1.29

150 3699.0 2.00 1.00 20.6 11   (8) 0.3 61.0 199701 1.79

160 1793.0 0.53 1.00 20.6 11  (11) 0.3 60.9 37152 0.40

170 2203.1 0.79 1.00 20.4 11  (11) 0.2 476.4 19324 0.27

180 1792.6 0.54 1.00 20.4 11  (11) 0.2 476.4 24165 0.32

185 1683.9 0.57 1.00 20.4 11  (11) 0.2 476.5 15669 0.26

200 2895.0 0.99 1.00 20.0 10   (9) 0.2 138.8 125093 0.90

205 2384.0 0.74 1.00 20.0 11  (11) 0.5 139.1 78193 0.64

210 1696.6 0.53 1.00 20.0 12  (11) 0.0 138.6 22589 0.41

220 2591.3 1.31 1.00 20.0 11  (11) 0.2 138.7 15712 0.34

230 3249.3 1.37 1.00 20.0 11   (9) 0.1 138.7 97580 0.84

240 3337.7 1.45 1.00 20.0 11  (10) 0.2 138.8 108359 1.17

250 2884.3 1.44 1.00 20.0 11  (10) 0.2 138.8 119038 1.04

260 1696.6 0.52 1.00 20.0 12  (11) 0.0 138.6 22512 0.41

270 2005.6 0.88 1.00 19.9 11  (11) 0.1 138.5 13105 0.28

280 1858.5 0.69 1.00 19.9 12  (11) 0.0 138.4 20820 0.33

285 1667.3 0.58 1.00 19.9 12  (11) 0.1 138.5 10488 0.25

#opt *

 
 

* #opt denotes the number of times the optimal solution was found, where the entry in parentheses     
    denotes the number of verified optimal solutions. 
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APPENDIX E  
 

PRELIMINARY EXPERIMENTS UNDER CASE C 

 

Table E.1 Solutions of Preliminary Instances Under Case C * 

 

inst#
Original 
Instance #

N K
Best sol.        at 
the end of time 

limit
Extended CPU            

Final Gap%     
at the end of 

extended time
Best sol.

1 11 5 4 36461.0 - - 36461.0

2 21 5 4 30123.8 - - 30123.8

3 41 2 4 16374.9 - - 16374.9

4 51 5 4 31457.1 - - 31457.1

5 63 3 4 6037.3 - - 6037.3

6 83 4 4 8332.4 - - 8332.4

7 94 5 4 46587.1 - - 46587.1

8 104 5 4 55051.6 - - 55051.6

9 111 5 4 26736.6 - - 26736.6

10 11 5 8 61071.5 31628.5 - 61045.5

11 41 5 8 45466.2 - - 45466.2

12 94 8 8 99582.8 329280.2 2.2 91285.6

13 53 9 8 38088.0 411080.9 8.3 37927.5

14 64 9 8 102512.8 381131.4 21.1 100537.1

15 74 6 4 50971.5 - - 50971.5

16 13 7 4 31246.3 - - 31246.3

17 124 7 4 47540.1 - - 47540.1

18 102 8 4 31970.3 41198.8 - 31970.3

19 103 9 4 41452.6 20105.5 - 41452.6

20 123 9 4 26700.2 439204.0 3.82 26639.5  
 
 
 
 

* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
    Best sol. at the end of the time limit is the best known solution among all options. However, extended solutions were    
    only done with option 285.  
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Table E.2 Detailed Results of Experiments on Preliminary Instances Under Case C * 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 27621.97 36460.97 24.24 921698 473838 18405.93 0.1 1.0 1.0 49.5 0.0 98.1 1.0

105 7200.0 30114.64 36460.97 17.41 1072765 453941 18405.93 0.1 1.0 1.0 49.5 0.0 98.1 1.2

110 5159.3 36460.70 36460.97 0.00 178066 7 19612.56 0.1 0.7 1.1 46.2 0.0 85.9 0.2

120 7200.0 33966.07 36460.97 6.84 120164 40799 19478.14 0.7 1.0 1.1 46.6 0.0 87.2 0.1

130 7200.0 27593.60 36460.97 24.32 507607 305091 18405.93 0.1 1.0 1.0 49.5 0.0 98.1 0.6

140 7200.0 29186.17 36460.97 19.95 397503 229573 18957.28 0.3 1.0 1.0 48.0 0.0 92.3 0.4

150 1543.9 36460.61 36460.97 0.00 179353 34 36081.14 0.1 0.2 2.0 1.0 0.0 1.1 0.2

160 5189.9 36460.70 36460.97 0.00 178066 7 19612.56 0.3 0.7 1.1 46.2 0.0 85.9 0.2

170 135.9 36460.74 36460.97 0.00 2757 3 36098.70 0.8 0.0 2.0 1.0 0.0 1.0 0.0

180 65.5 36460.72 36460.97 0.00 2187 2 36098.70 0.4 0.0 2.0 1.0 0.0 1.0 0.0

185 39.8 36460.97 36460.97 0.00 820 0 36098.70 0.5 0.0 2.0 1.0 0.0 1.0 0.0

200 7200.0 29729.07 36460.97 18.46 1207876 531026 18416.09 0.2 1.0 1.0 49.5 0.0 98.0 1.3

205 7200.0 32046.42 36460.97 12.11 862605 231437 18416.09 0.2 1.0 1.0 49.5 0.0 98.0 0.9

210 2055.8 36460.68 36460.97 0.00 94352 7 20079.48 0.2 0.3 1.1 44.9 0.0 81.6 0.1

220 7200.0 33781.85 36460.97 7.35 123096 43893 19876.14 1.1 1.0 1.1 45.5 0.0 83.4 0.1

230 7200.0 29382.14 36460.97 19.41 582755 272015 18416.09 0.2 1.0 1.0 49.5 0.0 98.0 0.6

240 7200.0 30718.49 36460.97 15.75 476997 248746 19233.07 0.5 1.0 1.0 47.3 0.0 89.6 0.5

250 2893.9 36460.60 36460.97 0.00 301632 92 36081.14 0.2 0.4 2.0 1.0 0.0 1.1 0.3

260 2075.6 36460.68 36460.97 0.00 94352 7 20079.48 0.3 0.3 1.1 44.9 0.0 81.6 0.1

270 106.9 36460.97 36460.97 0.00 1623 0 36106.35 1.0 0.0 2.0 1.0 0.0 1.0 0.0

280 67.4 36460.61 36460.97 0.00 1982 3 36106.35 0.5 0.0 2.0 1.0 0.0 1.0 0.0

285 56.4 36460.97 36460.97 0.00 1331 0 36106.35 0.6 0.0 2.0 1.0 0.0 1.0 0.0

100 7200.0 18334.98 30512.56 39.91 765511 448625 7564.94 0.1 1.0 1.0 74.9 1.3 303.3 1.0

105 7200.0 20043.76 30123.81 33.46 597131 266201 7564.94 0.1 1.0 1.0 74.9 0.0 298.2 0.8

110 4825.2 30123.52 30123.81 0.00 289820 12 8514.43 0.1 0.7 1.1 71.7 0.0 253.8 0.4

120 7200.0 25419.14 30123.81 15.62 142558 75063 8365.09 0.7 1.0 1.1 72.2 0.0 260.1 0.2

130 7200.0 16465.52 30216.84 45.51 339343 215828 7564.94 0.1 1.0 1.0 74.9 0.3 299.4 0.4

140 7200.0 21615.21 30123.81 28.25 400890 229315 8115.30 0.4 1.0 1.1 73.1 0.0 271.2 0.5

150 1040.4 30123.53 30123.81 0.00 77215 3 25247.88 0.1 0.1 3.3 16.2 0.0 19.3 0.1

160 4863.7 30123.52 30123.81 0.00 289820 12 8514.43 0.3 0.7 1.1 71.7 0.0 253.8 0.4

170 163.2 30123.81 30123.81 0.00 3410 0 25278.64 0.6 0.0 3.3 16.1 0.0 19.2 0.0

180 73.0 30123.81 30123.81 0.00 2879 0 25278.64 0.3 0.0 3.3 16.1 0.0 19.2 0.0

185 47.0 30123.81 30123.81 0.00 790 0 25278.64 0.2 0.0 3.3 16.1 0.0 19.2 0.0

200 7200.0 20300.11 30123.81 32.61 709379 375339 7580.60 0.2 1.0 1.0 74.8 0.0 297.4 0.9

205 7200.0 24218.39 30123.81 19.60 616076 260085 7580.60 0.2 1.0 1.0 74.8 0.0 297.4 0.8

210 6810.0 30123.57 30123.81 0.00 236906 11 9690.67 0.2 0.9 1.3 67.8 0.0 210.9 0.3

220 7200.0 25775.50 30123.81 14.43 130998 66149 9465.09 1.4 1.0 1.3 68.6 0.0 218.3 0.2

230 7200.0 18019.38 30123.81 40.18 372886 220181 7580.60 0.4 1.0 1.0 74.8 0.0 297.4 0.5

240 7200.0 20790.26 30123.81 30.98 429604 258106 9003.76 0.5 1.0 1.2 70.1 0.0 234.6 0.6

250 776.1 30123.68 30123.81 0.00 52245 8 25247.88 0.2 0.1 3.3 16.2 0.0 19.3 0.1

260 6829.6 30123.57 30123.81 0.00 236906 11 9690.67 0.4 0.9 1.3 67.8 0.0 210.9 0.3

270 240.9 30123.81 30123.81 0.00 4146 0 25322.53 0.9 0.0 3.3 15.9 0.0 19.0 0.0

280 43.7 30123.81 30123.81 0.00 1116 0 25322.53 0.5 0.0 3.3 15.9 0.0 19.0 0.0

285 32.1 30123.81 30123.81 0.00 488 0 25322.53 0.7 0.0 3.3 15.9 0.0 19.0 0.0

100 0.1 16374.87 16374.87 0.00 16 0 10295.83 0.0 1.0 1.0 37.1 0.0 59.0 1.0

105 0.1 16374.87 16374.87 0.00 14 0 10295.83 0.0 1.0 1.0 37.1 0.0 59.0 0.9

110 0.1 16374.87 16374.87 0.00 8 0 11441.34 0.0 0.6 1.1 30.1 0.0 43.1 0.5

120 0.2 16374.87 16374.87 0.00 12 0 11336.41 0.0 2.1 1.1 30.8 0.0 44.4 0.8

130 0.1 16374.87 16374.87 0.00 15 0 10295.83 0.0 1.1 1.0 37.1 0.0 59.0 0.9

140 0.2 16374.87 16374.87 0.00 16 0 11182.69 0.0 1.6 1.1 31.7 0.0 46.4 1.0

150 0.1 16374.87 16374.87 0.00 11 0 15782.09 0.0 1.3 1.5 3.6 0.0 3.8 0.7

160 0.1 16374.87 16374.87 0.00 8 0 11441.34 0.0 0.6 1.1 30.1 0.0 43.1 0.5

170 0.1 16374.87 16374.87 0.00 4 0 15837.93 0.0 0.8 1.5 3.3 0.0 3.4 0.3

180 0.1 16374.87 16374.87 0.00 4 0 15837.93 0.0 0.7 1.5 3.3 0.0 3.4 0.3

185 0.1 16374.87 16374.87 0.00 0 0 15837.93 0.0 0.6 1.5 3.3 0.0 3.4 0.0

200 0.1 16374.87 16374.87 0.00 12 0 11372.49 0.0 1.0 1.1 30.5 0.0 44.0 0.8

205 0.1 16374.87 16374.87 0.00 16 0 11372.49 0.0 1.2 1.1 30.5 0.0 44.0 1.0

210 0.1 16374.87 16374.87 0.00 3 0 11895.19 0.0 1.1 1.2 27.4 0.0 37.7 0.2

220 0.2 16374.87 16374.87 0.00 8 0 11895.19 0.0 1.9 1.2 27.4 0.0 37.7 0.5

230 0.1 16374.87 16374.87 0.00 8 0 11372.49 0.0 0.9 1.1 30.5 0.0 44.0 0.5

240 0.2 16374.87 16374.87 0.00 16 0 11439.03 0.0 1.6 1.1 30.1 0.0 43.1 1.0

250 0.2 16374.87 16374.87 0.00 14 0 15801.25 0.0 1.5 1.5 3.5 0.0 3.6 0.9

260 0.1 16374.87 16374.87 0.00 3 0 11895.19 0.0 1.1 1.2 27.4 0.0 37.7 0.2

270 0.1 16374.87 16374.87 0.00 0 0 15837.93 0.0 1.1 1.5 3.3 0.0 3.4 0.0

280 0.1 16374.87 16374.87 0.00 4 0 15837.93 0.0 0.9 1.5 3.3 0.0 3.4 0.3

285 0.1 16374.87 16374.87 0.00 0 0 15837.93 0.0 0.9 1.5 3.3 0.0 3.4 0.0
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Table E.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 23113.64 31457.08 26.52 765058 372423 13465.64 0.1 1.0 1.0 57.2 0.0 133.6 1.0

105 7200.0 24481.64 31546.70 22.40 670900 256592 13465.64 0.1 1.0 1.0 57.2 0.3 134.3 0.9

110 5477.8 31456.88 31457.08 0.00 152291 7 14493.87 0.1 0.8 1.1 53.9 0.0 117.0 0.2

120 7200.0 28262.15 31457.08 10.16 96808 43286 14389.59 0.6 1.0 1.1 54.3 0.0 118.6 0.1

130 7200.0 21191.31 31457.08 32.63 396433 243023 13465.64 0.2 1.0 1.0 57.2 0.0 133.6 0.5

140 7200.0 24840.23 31457.08 21.03 362914 202433 14018.96 0.4 1.0 1.0 55.4 0.0 124.4 0.5

150 3988.9 31456.77 31457.08 0.00 450249 125 31144.21 0.1 0.6 2.3 1.0 0.0 1.0 0.6

160 5474.3 31456.88 31457.08 0.00 152291 7 14493.87 0.2 0.8 1.1 53.9 0.0 117.0 0.2

170 112.0 31456.82 31457.08 0.00 2717 3 31165.14 0.8 0.0 2.3 0.9 0.0 0.9 0.0

180 77.8 31456.80 31457.08 0.00 2603 8 31165.14 0.3 0.0 2.3 0.9 0.0 0.9 0.0

185 46.6 31457.08 31457.08 0.00 875 0 31165.14 0.5 0.0 2.3 0.9 0.0 0.9 0.0

200 7200.0 22606.71 31457.08 28.13 958492 521039 13475.89 0.1 1.0 1.0 57.2 0.0 133.4 1.3

205 7200.0 25071.36 31457.08 20.30 757411 295907 13475.89 0.1 1.0 1.0 57.2 0.0 133.4 1.0

210 2544.9 31456.81 31457.08 0.00 131370 9 15096.69 0.2 0.4 1.1 52.0 0.0 108.4 0.2

220 7200.0 29143.25 31457.08 7.36 134324 44964 14897.85 0.7 1.0 1.1 52.6 0.0 111.2 0.2

230 7200.0 22093.39 31457.08 29.77 396424 238101 13475.89 0.2 1.0 1.0 57.2 0.0 133.4 0.5

240 7200.0 25253.54 31457.08 19.72 434824 227695 14330.20 0.3 1.0 1.1 54.4 0.0 119.5 0.6

250 1987.6 31456.77 31457.08 0.00 249442 52 31144.21 0.1 0.3 2.3 1.0 0.0 1.0 0.3

260 2537.8 31456.81 31457.08 0.00 131370 9 15096.69 0.3 0.4 1.1 52.0 0.0 108.4 0.2

270 62.2 31457.08 31457.08 0.00 898 1 31173.91 0.7 0.0 2.3 0.9 0.0 0.9 0.0

280 74.3 31457.07 31457.08 0.00 1673 1 31173.91 0.4 0.0 2.3 0.9 0.0 0.9 0.0

285 20.7 31457.06 31457.08 0.00 330 1 31173.91 0.4 0.0 2.3 0.9 0.0 0.9 0.0

100 1.6 6037.33 6037.33 0.00 706 0 299.86 0.0 1.0 1.0 95.0 0.0 1913.4 1.0

105 2.2 6037.33 6037.33 0.00 972 0 299.86 0.0 1.4 1.0 95.0 0.0 1913.4 1.4

110 0.9 6037.33 6037.33 0.00 151 0 554.69 0.0 0.6 1.8 90.8 0.0 988.4 0.2

120 1.9 6037.33 6037.33 0.00 257 0 551.60 0.0 1.2 1.8 90.9 0.0 994.5 0.4

130 2.6 6037.33 6037.33 0.00 607 0 299.86 0.0 1.6 1.0 95.0 0.0 1913.4 0.9

140 3.0 6037.33 6037.33 0.00 700 0 416.22 0.0 1.9 1.4 93.1 0.0 1350.5 1.0

150 0.7 6037.33 6037.33 0.00 204 0 3473.27 0.0 0.4 11.6 42.5 0.0 73.8 0.3

160 0.9 6037.33 6037.33 0.00 151 0 554.69 0.0 0.6 1.8 90.8 0.0 988.4 0.2

170 0.8 6037.33 6037.33 0.00 47 0 3560.16 0.0 0.5 11.9 41.0 0.0 69.6 0.1

180 0.8 6037.33 6037.33 0.00 73 0 3560.16 0.0 0.5 11.9 41.0 0.0 69.6 0.1

185 0.6 6037.33 6037.33 0.00 53 0 3560.16 0.0 0.4 11.9 41.0 0.0 69.6 0.1

200 1.6 6037.33 6037.33 0.00 735 0 318.90 0.0 1.0 1.1 94.7 0.0 1793.1 1.0

205 1.5 6037.33 6037.33 0.00 641 0 318.90 0.0 1.0 1.1 94.7 0.0 1793.1 0.9

210 0.6 6037.33 6037.33 0.00 26 0 1083.95 0.0 0.4 3.6 82.0 0.0 457.0 0.0

220 1.6 6037.33 6037.33 0.00 134 0 1030.65 0.1 1.0 3.4 82.9 0.0 485.8 0.2

230 2.5 6037.33 6037.33 0.00 839 0 318.90 0.0 1.6 1.1 94.7 0.0 1793.1 1.2

240 2.2 6037.33 6037.33 0.00 504 0 931.63 0.0 1.4 3.1 84.6 0.0 548.0 0.7

250 0.6 6037.33 6037.33 0.00 143 0 3473.27 0.0 0.4 11.6 42.5 0.0 73.8 0.2

260 0.5 6037.33 6037.33 0.00 26 0 1083.95 0.0 0.3 3.6 82.0 0.0 457.0 0.0

270 0.9 6037.33 6037.33 0.00 56 0 3579.64 0.1 0.5 11.9 40.7 0.0 68.7 0.1

280 0.6 6037.33 6037.33 0.00 37 0 3579.64 0.0 0.4 11.9 40.7 0.0 68.7 0.1

285 0.6 6037.33 6037.33 0.00 59 0 3579.64 0.0 0.4 11.9 40.7 0.0 68.7 0.1

100 0.3 8332.36 8332.36 0.00 96 0 0.39 0.0 1.0 1.0 100.0 0.0 2137012.3 1.0

105 0.3 8332.36 8332.36 0.00 108 0 0.39 0.0 1.1 1.0 100.0 0.0 2137012.3 1.1

110 0.3 8332.36 8332.36 0.00 25 0 534.97 0.0 1.0 1372.1 93.6 0.0 1457.6 0.3

120 0.5 8332.36 8332.36 0.00 26 0 283.59 0.1 1.8 727.4 96.6 0.0 2838.2 0.3

130 0.4 8332.36 8332.36 0.00 109 0 0.39 0.0 1.3 1.0 100.0 0.0 2137012.3 1.1

140 0.4 8332.36 8332.36 0.00 45 0 215.01 0.1 1.4 551.5 97.4 0.0 3775.3 0.5

150 0.4 8332.36 8332.36 0.00 51 0 6164.52 0.0 1.2 15811.0 26.0 0.0 35.2 0.5

160 0.3 8332.36 8332.36 0.00 25 0 534.97 0.0 1.0 1372.1 93.6 0.0 1457.6 0.3

170 0.4 8332.36 8332.36 0.00 14 0 8093.54 0.1 1.3 20758.6 2.9 0.0 3.0 0.1

180 0.4 8332.36 8332.36 0.00 16 0 8093.54 0.1 1.2 20758.6 2.9 0.0 3.0 0.2

185 0.4 8332.36 8332.36 0.00 15 0 8093.54 0.1 1.2 20758.6 2.9 0.0 3.0 0.2

200 0.5 8332.36 8332.36 0.00 59 0 21.46 0.0 1.7 55.1 99.7 0.0 38719.6 0.6

205 0.6 8332.36 8332.36 0.00 85 0 21.46 0.0 2.0 55.1 99.7 0.0 38719.6 0.9

210 0.6 8332.36 8332.36 0.00 44 0 1221.36 0.0 2.0 3132.6 85.3 0.0 582.2 0.5

220 2.5 8332.36 8332.36 0.00 165 0 788.60 0.1 8.7 2022.6 90.5 0.0 956.6 1.7

230 0.6 8332.36 8332.36 0.00 67 0 21.46 0.1 2.1 55.1 99.7 0.0 38719.6 0.7

240 0.4 8332.36 8332.36 0.00 36 0 652.52 0.1 1.4 1673.6 92.2 0.0 1177.0 0.4

250 0.6 8332.36 8332.36 0.00 40 0 6177.38 0.0 2.2 15844.0 25.9 0.0 34.9 0.4

260 0.6 8332.36 8332.36 0.00 44 0 1221.36 0.1 2.0 3132.6 85.3 0.0 582.2 0.5

270 1.0 8332.36 8332.36 0.00 20 0 8122.24 0.1 3.5 20832.2 2.5 0.0 2.6 0.2

280 0.7 8332.36 8332.36 0.00 15 0 8122.24 0.1 2.2 20832.2 2.5 0.0 2.6 0.2

285 0.8 8332.36 8332.36 0.00 23 0 8122.24 0.1 2.8 20832.2 2.5 0.0 2.6 0.2
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Table E.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 1696.0 46586.84 46587.12 0.00 300541 5 2.58 0.1 1.0 1.0 100.0 0.0 1805948.9 1.0

105 506.6 46587.09 46587.12 0.00 101784 2 2.58 0.1 0.3 1.0 100.0 0.0 1805948.9 0.3

110 594.1 46586.67 46587.12 0.00 53491 2 1571.73 0.1 0.4 609.3 96.6 0.0 2864.1 0.2

120 3394.5 46586.83 46587.12 0.00 182385 3 1079.70 0.4 2.0 418.6 97.7 0.0 4214.8 0.6

130 3618.9 46586.72 46587.12 0.00 519860 17 2.58 0.1 2.1 1.0 100.0 0.0 1805948.9 1.7

140 2957.3 46586.79 46587.12 0.00 473215 7 463.91 0.2 1.7 179.8 99.0 0.0 9942.3 1.6

150 248.8 46586.71 46587.12 0.00 54853 8 26590.20 0.1 0.1 10308.3 42.9 0.0 75.2 0.2

160 623.5 46586.67 46587.12 0.00 53491 2 1571.73 0.1 0.4 609.3 96.6 0.0 2864.1 0.2

170 45.0 46587.12 46587.12 0.00 1773 0 26716.70 0.2 0.0 10357.3 42.7 0.0 74.4 0.0

180 30.6 46587.12 46587.12 0.00 1967 0 26716.70 0.1 0.0 10357.3 42.7 0.0 74.4 0.0

185 21.4 46587.12 46587.12 0.00 677 0 26716.70 0.1 0.0 10357.3 42.7 0.0 74.4 0.0

200 3029.8 46586.66 46587.12 0.00 420725 8 123.00 0.2 1.8 47.7 99.7 0.0 37775.4 1.4

205 1474.1 46586.70 46587.12 0.00 161385 4 123.00 0.2 0.9 47.7 99.7 0.0 37775.4 0.5

210 253.8 46586.72 46587.12 0.00 15895 1 4360.53 0.2 0.1 1690.5 90.6 0.0 968.4 0.1

220 1231.5 46587.12 46587.12 0.00 34469 0 2947.60 1.0 0.7 1142.7 93.7 0.0 1480.5 0.1

230 5467.2 46586.68 46587.12 0.00 488827 11 123.22 0.4 3.2 47.8 99.7 0.0 37709.6 1.6

240 5465.0 46586.68 46587.12 0.00 554400 25 2211.10 0.3 3.2 857.2 95.3 0.0 2007.0 1.8

250 434.2 46586.76 46587.12 0.00 41941 4 26590.20 0.2 0.3 10308.3 42.9 0.0 75.2 0.1

260 254.4 46586.72 46587.12 0.00 15895 1 4360.53 0.3 0.2 1690.5 90.6 0.0 968.4 0.1

270 44.1 46587.12 46587.12 0.00 796 0 26783.43 0.5 0.0 10383.2 42.5 0.0 73.9 0.0

280 53.7 46587.12 46587.12 0.00 955 0 26783.43 0.3 0.0 10383.2 42.5 0.0 73.9 0.0

285 33.8 46587.12 46587.12 0.00 435 0 26783.43 0.4 0.0 10383.2 42.5 0.0 73.9 0.0

100 7200.0 37319.42 55051.64 32.21 939200 575979 17844.65 0.1 1.0 1.0 67.6 0.0 208.5 1.0

105 7200.0 40342.75 55051.64 26.72 787207 324391 17844.65 0.1 1.0 1.0 67.6 0.0 208.5 0.8

110 5946.0 55051.11 55051.64 0.00 358293 21 19821.83 0.1 0.8 1.1 64.0 0.0 177.7 0.4

120 7200.0 46139.83 55051.64 16.19 114013 58273 19217.80 0.7 1.0 1.1 65.1 0.0 186.5 0.1

130 7200.0 35393.33 55051.64 35.71 482701 291989 17844.65 0.2 1.0 1.0 67.6 0.0 208.5 0.5

140 7200.0 39332.74 55051.64 28.55 374416 231057 18518.66 0.4 1.0 1.0 66.4 0.0 197.3 0.4

150 7200.0 51255.50 55051.64 6.90 783781 250927 47610.18 0.1 1.0 2.7 13.5 0.0 15.6 0.8

160 5977.9 55051.11 55051.64 0.00 358293 21 19821.83 0.2 0.8 1.1 64.0 0.0 177.7 0.4

170 207.7 55051.12 55051.64 0.00 5972 3 47730.42 1.3 0.0 2.7 13.3 0.0 15.3 0.0

180 238.3 55051.26 55051.64 0.00 10232 6 47730.42 0.4 0.0 2.7 13.3 0.0 15.3 0.0

185 138.8 55051.64 55051.64 0.00 4378 0 47730.42 0.5 0.0 2.7 13.3 0.0 15.3 0.0

200 7200.0 36242.93 55051.64 34.17 553202 328428 17853.95 0.3 1.0 1.0 67.6 0.0 208.3 0.6

205 7200.0 35382.83 55051.64 35.73 478038 257986 17853.95 0.3 1.0 1.0 67.6 0.0 208.3 0.5

210 6455.3 55051.16 55051.64 0.00 285833 7 20696.60 0.3 0.9 1.2 62.4 0.0 166.0 0.3

220 7200.0 46168.11 55051.64 16.14 114046 59799 19884.74 1.7 1.0 1.1 63.9 0.0 176.9 0.1

230 7200.0 34451.88 55051.64 37.42 328836 210900 17853.95 0.5 1.0 1.0 67.6 0.0 208.3 0.4

240 7200.0 38526.11 55051.64 30.02 402738 253045 19223.61 0.6 1.0 1.1 65.1 0.0 186.4 0.4

250 2223.7 55051.10 55051.64 0.00 174463 56 47621.55 0.2 0.3 2.7 13.5 0.0 15.6 0.2

260 6419.3 55051.16 55051.64 0.00 285833 7 20696.60 0.4 0.9 1.2 62.4 0.0 166.0 0.3

270 370.4 55051.23 55051.64 0.00 7013 2 47764.91 1.3 0.1 2.7 13.2 0.0 15.3 0.0

280 109.1 55051.27 55051.64 0.00 2892 2 47764.91 0.5 0.0 2.7 13.2 0.0 15.3 0.0

285 126.6 55051.64 55051.64 0.00 2207 0 47764.95 0.9 0.0 2.7 13.2 0.0 15.3 0.0

100 7200.0 21859.59 26736.57 18.24 1004466 405502 8589.45 0.1 1.0 1.0 67.9 0.0 211.3 1.0

105 5626.0 26736.33 26736.57 0.00 733267 22 8589.45 0.1 0.8 1.0 67.9 0.0 211.3 0.7

110 475.3 26736.34 26736.57 0.00 23641 2 9669.63 0.1 0.1 1.1 63.8 0.0 176.5 0.0

120 2885.9 26736.50 26736.57 0.00 66291 5 9553.11 0.6 0.4 1.1 64.3 0.0 179.9 0.1

130 7200.0 20742.31 26736.57 22.42 572435 273433 8589.45 0.2 1.0 1.0 67.9 0.0 211.3 0.6

140 7200.0 24850.22 26736.57 7.06 583489 105246 9129.59 0.4 1.0 1.1 65.9 0.0 192.9 0.6

150 284.4 26736.35 26736.57 0.00 35379 3 26257.42 0.1 0.0 3.1 1.8 0.0 1.8 0.0

160 477.0 26736.34 26736.57 0.00 23641 2 9669.63 0.2 0.1 1.1 63.8 0.0 176.5 0.0

170 43.4 26736.57 26736.57 0.00 836 0 26273.75 0.7 0.0 3.1 1.7 0.0 1.8 0.0

180 20.3 26736.57 26736.57 0.00 557 0 26273.75 0.2 0.0 3.1 1.7 0.0 1.8 0.0

185 18.7 26736.57 26736.57 0.00 256 0 26273.75 0.4 0.0 3.1 1.7 0.0 1.8 0.0

200 7200.0 23159.05 26736.57 13.38 1120584 394258 8625.15 0.1 1.0 1.0 67.7 0.0 210.0 1.1

205 7200.0 20898.39 26736.57 21.84 744358 273722 8625.15 0.2 1.0 1.0 67.7 0.0 210.0 0.7

210 593.3 26736.57 26736.57 0.00 22788 1 11101.97 0.2 0.1 1.3 58.5 0.0 140.8 0.0

220 2168.9 26736.49 26736.57 0.00 39825 1 10834.33 1.2 0.3 1.3 59.5 0.0 146.8 0.0

230 7200.0 22153.95 26736.57 17.14 464409 162656 8625.15 0.4 1.0 1.0 67.7 0.0 210.0 0.5

240 7200.0 23644.56 26736.57 11.56 508565 115883 9734.82 0.7 1.0 1.1 63.6 0.0 174.6 0.5

250 161.2 26736.38 26736.57 0.00 16486 12 26257.42 0.1 0.0 3.1 1.8 0.0 1.8 0.0

260 594.2 26736.57 26736.57 0.00 22788 1 11101.97 0.4 0.1 1.3 58.5 0.0 140.8 0.0

270 23.1 26736.57 26736.57 0.00 259 0 26281.00 0.8 0.0 3.1 1.7 0.0 1.7 0.0

280 16.4 26736.57 26736.57 0.00 422 0 26281.00 0.5 0.0 3.1 1.7 0.0 1.7 0.0

285 13.4 26736.57 26736.57 0.00 149 0 26281.00 0.5 0.0 3.1 1.7 0.0 1.7 0.0
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Table E.2 (continued) 
 

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 29161.02 64387.09 54.71 324709 269334 25965.63 0.3 1.0 1.0 57.5 5.5 148.0 1.0

105 7200.0 29705.65 71027.37 58.18 340480 276951 25965.63 0.4 1.0 1.0 57.5 16.4 173.5 1.0

110 7200.0 40515.10 62302.93 34.97 101970 75192 27314.97 0.5 1.0 1.1 55.3 2.1 128.1 0.3

120 7200.0 38182.59 67027.11 43.03 39230 32606 27141.27 3.7 1.0 1.0 55.5 9.8 147.0 0.1

130 7200.0 29744.41 67745.31 56.09 195089 161142 25965.63 0.6 1.0 1.0 57.5 11.0 160.9 0.6

140 7200.0 30481.34 65429.08 53.41 117261 95728 26516.98 1.5 1.0 1.0 56.6 7.2 146.7 0.4

150 7200.0 44581.45 67450.06 33.90 296517 223585 43640.84 0.2 1.0 1.7 28.5 10.5 54.6 0.9

160 7200.0 40513.92 62302.93 34.97 101854 75092 27314.97 1.1 1.0 1.1 55.3 2.1 128.1 0.3

170 7200.0 54574.96 62275.47 12.37 38616 23218 43694.67 1.6 1.0 1.7 28.4 2.0 42.5 0.1

180 7200.0 54307.47 61589.36 11.82 102506 63785 43694.67 0.8 1.0 1.7 28.4 0.9 41.0 0.3

185 7200.0 56841.82 61801.67 8.03 63677 29013 43694.67 1.5 1.0 1.7 28.4 1.2 41.4 0.2

200 7200.0 29289.66 67695.00 56.73 282565 239294 25975.79 1.1 1.0 1.0 57.4 10.9 160.6 0.9

205 7200.0 29783.60 66141.75 54.97 229871 168494 25975.79 1.4 1.0 1.0 57.4 8.3 154.6 0.7

210 7200.0 41282.45 61956.42 33.37 71116 51887 28473.61 1.2 1.0 1.1 53.4 1.5 117.6 0.2

220 7200.0 39124.06 63982.78 38.85 34265 29007 28130.10 8.2 1.0 1.1 53.9 4.8 127.5 0.1

230 7200.0 29849.97 69180.61 56.85 175016 149058 25975.79 1.8 1.0 1.0 57.4 13.3 166.3 0.5

240 7200.0 31650.74 65963.45 52.02 128893 116139 27382.60 3.7 1.0 1.1 55.1 8.1 140.9 0.4

250 7200.0 48721.54 65034.02 25.08 242370 177169 43640.84 1.2 1.0 1.7 28.5 6.5 49.0 0.7

260 7200.0 41282.68 61956.42 33.37 71152 51919 28473.61 2.4 1.0 1.1 53.4 1.5 117.6 0.2

270 7200.0 54049.40 61071.52 11.50 39852 24957 43760.13 3.3 1.0 1.7 28.3 0.0 39.6 0.1

280 7200.0 59493.15 61207.65 2.80 67094 15782 43760.13 1.8 1.0 1.7 28.3 0.3 39.9 0.2

285 7200.0 56366.63 61846.73 8.86 59413 32029 43760.13 2.5 1.0 1.7 28.3 1.3 41.3 0.2

100 7200.0 27241.96 46355.68 41.23 323590 236433 23249.74 0.3 1.0 1.0 48.9 2.0 99.4 1.0

105 7200.0 27627.33 47842.75 42.25 307401 232842 23249.74 0.4 1.0 1.0 48.9 5.2 105.8 0.9

110 7200.0 38310.81 45466.25 15.74 85468 57319 24621.97 0.4 1.0 1.1 45.8 0.0 84.7 0.3

120 7200.0 35773.77 45483.89 21.35 26504 19379 24472.84 3.2 1.0 1.1 46.2 0.0 85.9 0.1

130 7200.0 27610.36 48756.15 43.37 210980 175808 23249.74 0.7 1.0 1.0 48.9 7.2 109.7 0.7

140 7200.0 28452.94 47665.87 40.31 152770 130254 23794.76 1.7 1.0 1.0 47.7 4.8 100.3 0.5

150 7200.0 41702.67 46153.71 9.64 286400 133784 40918.62 0.4 1.0 1.8 10.0 1.5 12.8 0.9

160 7200.0 38319.06 45466.25 15.72 85878 57574 24621.97 0.8 1.0 1.1 45.8 0.0 84.7 0.3

170 7200.0 44031.65 45466.25 3.16 34593 9473 41028.93 3.1 1.0 1.8 9.8 0.0 10.8 0.1

180 2307.9 45466.00 45466.25 0.00 31172 4 41028.93 1.6 0.3 1.8 9.8 0.0 10.8 0.1

185 1193.0 45465.95 45466.25 0.00 12023 2 41028.93 2.0 0.2 1.8 9.8 0.0 10.8 0.0

200 7200.0 27648.05 46293.66 40.28 420341 315761 23299.90 0.5 1.0 1.0 48.8 1.8 98.7 1.3

205 7200.0 27829.41 46421.44 40.05 311923 220293 23299.90 0.6 1.0 1.0 48.8 2.1 99.2 1.0

210 7200.0 38832.73 45466.25 14.59 90475 63100 25161.28 0.5 1.0 1.1 44.7 0.0 80.7 0.3

220 7200.0 36044.47 45560.84 20.89 32335 24171 24967.44 3.9 1.0 1.1 45.1 0.2 82.5 0.1

230 7200.0 27337.79 45619.65 40.07 194108 147875 23299.90 1.0 1.0 1.0 48.8 0.3 95.8 0.6

240 7200.0 29107.05 45560.84 36.11 155540 123619 24123.70 2.4 1.0 1.0 46.9 0.2 88.9 0.5

250 7200.0 41331.37 46066.51 10.28 303895 151499 40918.62 0.7 1.0 1.8 10.0 1.3 12.6 0.9

260 7200.0 38810.63 45466.25 14.64 88920 62068 25161.28 0.9 1.0 1.1 44.7 0.0 80.7 0.3

270 7200.0 43794.71 45466.25 3.68 30541 9918 41035.73 3.1 1.0 1.8 9.7 0.0 10.8 0.1

280 796.9 45466.15 45466.25 0.00 9478 1 41035.73 1.6 0.1 1.8 9.7 0.0 10.8 0.0

285 1537.7 45465.94 45466.25 0.00 13263 3 41036.70 2.2 0.2 1.8 9.7 0.0 10.8 0.0

100 7200.0 20575.62 127388.53 83.85 77047 71482 17825.10 2.2 1.0 1.0 614.7 1.0

105 7200.0 20589.13 154241.61 86.65 68170 60728 17825.10 2.0 1.0 1.0 765.3 0.9

110 7200.0 39558.75 111792.21 64.61 25839 22468 19554.31 2.9 1.0 1.1 471.7 0.3

120 7200.0 28952.31 139764.40 79.28 5267 4622 18786.36 53.5 1.0 1.1 644.0 0.1

130 7200.0 20779.78 115270.83 81.97 58141 51469 17825.10 5.0 1.0 1.0 546.7 0.8

140 7200.0 20533.44 114009.85 81.99 42398 38273 18150.89 15.1 1.0 1.0 528.1 0.6

150 7200.0 62850.18 117841.28 46.67 75180 59606 62585.38 1.8 1.0 3.5 88.3 1.0

160 7200.0 39546.65 111792.21 64.62 25758 22390 19554.31 4.0 1.0 1.1 471.7 0.3

170 7200.0 70723.29 101570.01 30.37 10603 7455 62677.50 16.2 1.0 3.5 62.1 0.1

180 7200.0 71084.91 99582.78 28.62 20679 15287 62677.50 8.1 1.0 3.5 58.9 0.3

185 7200.0 71576.28 107083.31 33.16 12797 10699 62677.50 11.6 1.0 3.5 70.8 0.2

200 7200.0 20749.94 116515.35 82.19 84386 72243 17831.68 3.6 1.0 1.0 553.4 1.1

205 7200.0 20672.81 123249.93 83.23 71120 48760 17831.68 4.8 1.0 1.0 591.2 0.9

210 7200.0 43951.64 114389.13 61.58 21262 18529 21602.07 6.5 1.0 1.2 429.5 0.3

220 7200.0 31297.15 120110.76 73.94 4900 4386 20168.27 80.4 1.0 1.1 495.5 0.1

230 7200.0 20578.93 129653.44 84.13 48126 45365 17831.74 8.3 1.0 1.0 627.1 0.6

240 7200.0 20596.43 117390.29 82.45 30328 28032 19311.14 12.3 1.0 1.1 507.9 0.4

250 7200.0 62749.66 129753.25 51.64 64852 58743 62590.89 3.8 1.0 3.5 107.3 0.8

260 7200.0 43951.64 114389.13 61.58 21307 18574 21602.07 9.1 1.0 1.2 429.5 0.3

270 7200.0 71908.01 104876.05 31.44 5483 4743 62701.17 36.7 1.0 3.5 67.3 0.1

280 7200.0 74881.64 105042.93 28.71 11867 10248 62701.17 15.8 1.0 3.5 67.5 0.2

285 7200.0 72542.10 103553.95 29.95 7445 6331 62701.26 23.3 1.0 3.5 65.2 0.1
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Table E.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 15449.23 45807.02 66.27 55335 48542 14752.07 1.7 1.0 1.0 210.5 1.0

105 7200.0 15451.44 53958.48 71.36 67456 54139 14752.07 3.2 1.0 1.0 265.8 1.2

110 7200.0 19818.75 41908.40 52.71 16442 15172 15060.25 5.3 1.0 1.0 178.3 0.3

120 7200.0 16417.62 43647.34 62.39 4456 4092 14926.47 45.3 1.0 1.0 192.4 0.1

130 7200.0 15448.96 47722.82 67.63 32777 31235 14752.07 4.4 1.0 1.0 223.5 0.6

140 7200.0 15460.24 45708.16 66.18 16353 14574 14829.49 22.3 1.0 1.0 208.2 0.3

150 7200.0 25670.52 49057.38 47.67 75308 72021 25605.77 1.2 1.0 1.7 91.6 1.4

160 7200.0 19818.75 41908.40 52.71 16454 15184 15060.25 8.0 1.0 1.0 178.3 0.3

170 7200.0 31063.43 39256.71 20.87 5702 3571 28000.37 37.7 1.0 1.9 40.2 0.1

180 7200.0 31164.23 39634.63 21.37 11041 8222 28000.37 21.1 1.0 1.9 41.6 0.2

185 7200.0 31431.98 42629.31 26.27 8235 5384 28000.37 25.3 1.0 1.9 52.2 0.1

200 7200.0 15453.85 45941.75 66.36 56281 50923 14754.09 5.2 1.0 1.0 211.4 1.0

205 7200.0 15454.98 54109.78 71.44 61539 55846 14754.09 7.3 1.0 1.0 266.7 1.1

210 7200.0 22196.34 41051.30 45.93 12597 11637 15814.80 10.1 1.0 1.1 159.6 0.2

220 7200.0 17423.43 43093.04 59.57 3189 3005 15387.25 71.9 1.0 1.0 180.1 0.1

230 7200.0 15455.41 41881.17 63.10 37104 35344 14754.09 12.6 1.0 1.0 183.9 0.7

240 7200.0 15487.17 41646.76 62.81 22557 20317 15096.39 26.1 1.0 1.0 175.9 0.4

250 7200.0 25637.20 46095.90 44.38 70400 66056 25606.83 4.9 1.0 1.7 80.0 1.3

260 7200.0 22196.34 41051.30 45.93 12616 11656 15814.80 17.2 1.0 1.1 159.6 0.2

270 7200.0 31060.20 39060.65 20.48 3284 2282 28275.19 54.4 1.0 1.9 38.1 0.1

280 7200.0 32020.44 38504.46 16.84 11583 7507 28275.19 35.3 1.0 1.9 36.2 0.2

285 7200.0 32429.87 38088.04 14.86 5876 3346 28275.19 52.5 1.0 1.9 34.7 0.1

100 7200.0 20365.55 138229.89 85.27 58408 51614 17266.72 1.9 1.0 1.0 700.6 1.0

105 7200.0 24180.87 162591.94 85.13 35500 25051 17266.72 4.1 1.0 1.0 841.6 0.6

110 7200.0 40559.35 102512.84 60.43 18352 15096 18665.07 4.9 1.0 1.1 449.2 0.3

120 7200.0 26567.69 114767.64 76.85 1811 1317 18093.85 117.3 1.0 1.0 534.3 0.0

130 7200.0 20642.58 130953.44 84.24 32764 30687 17266.72 6.3 1.0 1.0 658.4 0.6

140 7200.0 20429.84 123964.02 83.52 20934 18875 17610.29 21.3 1.0 1.0 603.9 0.4

150 7200.0 67083.09 123676.99 45.76 62877 58967 66737.23 2.1 1.0 3.9 85.3 1.1

160 7200.0 40559.35 102512.84 60.43 18333 15077 18665.07 9.5 1.0 1.1 449.2 0.3

170 7200.0 69533.85 120274.65 42.19 2678 2096 66980.12 41.5 1.0 3.9 79.6 0.0

180 7200.0 71796.79 102579.55 30.01 6661 4955 66980.12 20.1 1.0 3.9 53.1 0.1

185 7200.0 74829.96 136390.79 45.14 4489 3820 67078.50 43.6 1.0 3.9 103.3 0.1

200 7200.0 20475.02 115481.51 82.27 32353 30377 17339.78 13.5 1.0 1.0 566.0 0.6

205 7200.0 21158.35 171362.29 87.65 22067 18557 17339.78 24.6 1.0 1.0 888.3 0.4

210 7200.0 39365.40 108798.41 63.82 8448 7783 21282.12 23.9 1.0 1.2 411.2 0.1

220 7200.0 23717.03 139805.59 83.04 914 824 19961.26 268.1 1.0 1.2 600.4 0.0

230 7200.0 20791.70 140245.85 85.17 17866 16704 17339.78 38.9 1.0 1.0 708.8 0.3

240 7200.0 19050.07 119445.18 84.05 13330 12399 18562.15 65.2 1.0 1.1 543.5 0.2

250 7200.0 67052.35 145794.90 54.01 33153 31431 66796.18 16.4 1.0 3.9 118.3 0.6

260 7200.0 39365.40 108798.41 63.82 8461 7796 21282.12 40.0 1.0 1.2 411.2 0.1

270 7200.0 71020.53 105471.42 32.66 1559 1393 67120.03 444.8 1.0 3.9 57.1 0.0

280 7200.0 72668.44 109087.36 33.39 3448 2947 67120.03 65.8 1.0 3.9 62.5 0.1

285 7200.0 71768.21 140611.78 48.96 2338 2137 67276.60 73.7 1.0 3.9 109.0 0.0

100 7200.0 31599.24 50980.04 38.02 544809 409708 15170.34 0.3 1.0 1.0 70.2 0.0 236.1 1.0

105 7200.0 28505.19 51007.64 44.12 343487 176512 15170.34 0.3 1.0 1.0 70.2 0.1 236.2 0.6

110 7200.0 47650.31 50971.50 6.52 188154 53574 17048.85 0.3 1.0 1.1 66.6 0.0 199.0 0.3

120 7200.0 40143.21 50971.50 21.24 42431 25578 16071.04 2.5 1.0 1.1 68.5 0.0 217.2 0.1

130 7200.0 26758.33 50971.50 47.50 275966 202232 15170.34 0.4 1.0 1.0 70.2 0.0 236.0 0.5

140 7200.0 31019.52 50980.04 39.15 299021 196369 15600.31 1.2 1.0 1.0 69.4 0.0 226.8 0.5

150 7200.0 50752.44 50971.50 0.43 401860 77352 49843.06 0.3 1.0 3.3 2.2 0.0 2.3 0.7

160 7200.0 47670.18 50971.50 6.48 188931 53412 17048.85 0.5 1.0 1.1 66.6 0.0 199.0 0.3

170 255.4 50971.50 50971.50 0.00 3450 0 49924.67 2.7 0.0 3.3 2.1 0.0 2.1 0.0

180 222.7 50971.50 50971.50 0.00 4077 0 49924.67 1.1 0.0 3.3 2.1 0.0 2.1 0.0

185 107.2 50971.50 50971.50 0.00 1222 0 49945.07 1.4 0.0 3.3 2.0 0.0 2.1 0.0

200 7200.0 28743.91 50971.50 43.61 317570 217312 15281.95 0.6 1.0 1.0 70.0 0.0 233.5 0.6

205 7200.0 25854.13 50971.50 49.28 298281 186437 15281.95 0.9 1.0 1.0 70.0 0.0 233.5 0.5

210 7200.0 46354.15 50971.50 9.06 157951 63682 18340.58 0.5 1.0 1.2 64.0 0.0 177.9 0.3

220 7200.0 39774.47 50971.50 21.97 51699 34817 17035.07 3.7 1.0 1.1 66.6 0.0 199.2 0.1

230 7200.0 24579.48 50971.50 51.78 212623 157290 15281.95 1.1 1.0 1.0 70.0 0.0 233.5 0.4

240 7200.0 28511.92 50971.50 44.06 199003 155151 16197.41 1.8 1.0 1.1 68.2 0.0 214.7 0.4

250 3094.5 50970.99 50971.50 0.00 164396 89 49885.94 0.8 0.4 3.3 2.1 0.0 2.2 0.3

260 7200.0 46277.96 50971.50 9.21 154594 63225 18340.58 1.1 1.0 1.2 64.0 0.0 177.9 0.3

270 377.2 50971.49 50971.50 0.00 3999 1 49990.91 3.2 0.1 3.3 1.9 0.0 2.0 0.0

280 222.1 50971.32 50971.50 0.00 3370 7 49990.91 1.8 0.0 3.3 1.9 0.0 2.0 0.0

285 112.4 50971.50 50971.50 0.00 789 0 50023.71 2.9 0.0 3.3 1.9 0.0 1.9 0.0
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Table E.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 16408.32 31304.28 47.58 330855 255065 13566.32 0.3 1.0 1.0 56.6 0.2 130.7 1.0

105 7200.0 17713.62 31373.84 43.54 277011 173504 13566.32 0.4 1.0 1.0 56.6 0.4 131.3 0.8

110 7200.0 27767.63 31246.28 11.13 205689 119854 14269.93 0.4 1.0 1.1 54.3 0.0 119.0 0.6

120 7200.0 20899.71 31319.50 33.27 47623 37006 13762.32 2.5 1.0 1.0 56.0 0.2 127.6 0.1

130 7200.0 16890.15 31347.91 46.12 226114 179105 13566.32 0.6 1.0 1.0 56.6 0.3 131.1 0.7

140 7200.0 17246.10 31304.28 44.91 233681 194393 13665.60 1.7 1.0 1.0 56.3 0.2 129.1 0.7

150 7200.0 27284.82 31304.28 12.84 269973 191579 26349.10 0.5 1.0 1.9 15.7 0.2 18.8 0.8

160 7200.0 27773.43 31246.28 11.11 206685 120373 14269.93 0.5 1.0 1.1 54.3 0.0 119.0 0.6

170 4809.8 31245.97 31246.28 0.00 53966 24 30214.34 3.3 0.7 2.2 3.3 0.0 3.4 0.2

180 561.7 31245.99 31246.28 0.00 12970 7 30214.34 1.5 0.1 2.2 3.3 0.0 3.4 0.0

185 339.4 31246.24 31246.28 0.00 4476 2 30214.34 2.1 0.0 2.2 3.3 0.0 3.4 0.0

200 7200.0 16003.19 31304.28 48.88 345366 265504 13579.86 0.5 1.0 1.0 56.5 0.2 130.5 1.0

205 7200.0 15681.41 31370.69 50.01 244595 168091 13579.86 0.8 1.0 1.0 56.5 0.4 131.0 0.7

210 7200.0 27822.86 31246.28 10.96 229282 148426 14720.15 0.7 1.0 1.1 52.9 0.0 112.3 0.7

220 7200.0 23191.38 31367.19 26.06 46439 36532 14044.32 5.6 1.0 1.0 55.1 0.4 123.3 0.1

230 7200.0 16786.06 31350.31 46.46 192681 153747 13579.86 1.4 1.0 1.0 56.5 0.3 130.9 0.6

240 7200.0 16500.91 31347.91 47.36 150979 119514 13833.71 1.9 1.0 1.0 55.7 0.3 126.6 0.5

250 7200.0 27457.63 31246.28 12.13 279393 189964 26360.00 0.8 1.0 1.9 15.6 0.0 18.5 0.8

260 7200.0 27823.87 31246.28 10.95 229510 148568 14720.15 1.4 1.0 1.1 52.9 0.0 112.3 0.7

270 3294.9 31246.01 31246.28 0.00 26547 6 30215.71 4.7 0.5 2.2 3.3 0.0 3.4 0.1

280 1397.8 31246.02 31246.28 0.00 25092 5 30215.71 2.2 0.2 2.2 3.3 0.0 3.4 0.1

285 470.8 31246.08 31246.28 0.00 5511 2 30215.71 3.2 0.1 2.2 3.3 0.0 3.4 0.0

100 7200.0 10447.72 48768.06 78.58 299592 235835 5423.95 0.4 1.0 1.0 88.6 2.6 799.1 1.0

105 7200.0 18871.76 48028.93 60.71 251910 164821 5423.95 0.5 1.0 1.0 88.6 1.0 785.5 0.8

110 7200.0 32036.38 47540.41 32.61 83671 61721 6891.20 0.4 1.0 1.3 85.5 0.0 589.9 0.3

120 7200.0 25889.77 47544.06 45.55 26995 21329 6602.23 5.2 1.0 1.2 86.1 0.0 620.1 0.1

130 7200.0 11906.81 47540.07 74.95 191194 160731 5423.95 1.0 1.0 1.0 88.6 0.0 776.5 0.6

140 7200.0 14942.33 47540.07 68.57 171062 146284 5908.84 2.4 1.0 1.1 87.6 0.0 704.6 0.6

150 7200.0 47020.73 47540.07 1.09 257657 126141 46482.49 0.7 1.0 8.6 2.2 0.0 2.3 0.9

160 7200.0 32729.54 47540.07 31.15 77649 56239 6891.20 0.9 1.0 1.3 85.5 0.0 589.9 0.3

170 5752.0 47539.69 47540.07 0.00 32905 7 46545.95 6.0 0.8 8.6 2.1 0.0 2.1 0.1

180 2182.2 47539.63 47540.07 0.00 26042 121 46545.95 2.6 0.3 8.6 2.1 0.0 2.1 0.1

185 512.6 47540.07 47540.07 0.00 3606 0 46546.10 4.0 0.1 8.6 2.1 0.0 2.1 0.0

200 7200.0 16963.17 47791.39 64.51 315882 246431 5515.53 1.2 1.0 1.0 88.4 0.5 766.5 1.1

205 7200.0 12858.98 47544.06 72.95 229577 144802 5515.53 1.9 1.0 1.0 88.4 0.0 762.0 0.8

210 7200.0 34757.36 47540.07 26.89 68301 47576 9125.57 0.9 1.0 1.7 80.8 0.0 421.0 0.2

220 7200.0 26408.12 47540.07 44.45 22656 18450 8110.50 8.1 1.0 1.5 82.9 0.0 486.2 0.1

230 7200.0 11768.79 47544.97 75.25 145668 120137 5515.53 2.5 1.0 1.0 88.4 0.0 762.0 0.5

240 7200.0 13076.66 47899.25 72.70 148596 130904 6689.24 3.1 1.0 1.2 85.9 0.8 616.1 0.5

250 7200.0 46966.38 47540.07 1.21 225261 120509 46523.74 1.3 1.0 8.6 2.1 0.0 2.2 0.8

260 7200.0 34749.55 47540.07 26.90 68083 47435 9125.57 1.9 1.0 1.7 80.8 0.0 421.0 0.2

270 7200.0 47479.42 47540.07 0.13 32482 3150 46593.96 7.9 1.0 8.6 2.0 0.0 2.0 0.1

280 4654.5 47539.65 47540.07 0.00 43067 17 46593.96 4.3 0.6 8.6 2.0 0.0 2.0 0.1

285 600.4 47540.07 47540.07 0.00 2233 0 46597.26 6.0 0.1 8.6 2.0 0.0 2.0 0.0

100 7200.0 17886.39 34033.90 47.45 134810 115156 17074.15 0.4 1.0 1.0 46.6 6.5 99.3 1.0

105 7200.0 17871.21 36227.69 50.67 114454 100467 17074.15 0.5 1.0 1.0 46.6 13.3 112.2 0.8

110 7200.0 23556.56 32413.46 27.32 47659 29323 17472.90 0.9 1.0 1.0 45.3 1.4 85.5 0.4

120 7200.0 20629.30 34729.76 40.60 16530 14466 17283.31 10.6 1.0 1.0 45.9 8.6 100.9 0.1

130 7200.0 18067.91 34875.80 48.19 86323 77273 17074.15 1.5 1.0 1.0 46.6 9.1 104.3 0.6

140 7200.0 18014.38 34540.78 47.85 67123 61490 17161.18 3.9 1.0 1.0 46.3 8.0 101.3 0.5

150 7200.0 26911.90 32797.17 17.94 132479 87709 26756.48 0.6 1.0 1.6 16.3 2.6 22.6 1.0

160 7200.0 23554.28 32413.46 27.33 47521 29209 17472.90 1.7 1.0 1.0 45.3 1.4 85.5 0.4

170 7200.0 30430.25 31976.07 4.83 21424 12309 27984.67 9.6 1.0 1.6 12.5 0.0 14.3 0.2

180 7200.0 30199.04 31970.33 5.54 55756 36276 27984.67 3.8 1.0 1.6 12.5 0.0 14.2 0.4

185 7200.0 30897.47 31970.33 3.36 37581 17248 27984.67 7.4 1.0 1.6 12.5 0.0 14.2 0.3

200 7200.0 17850.35 35161.57 49.23 91954 81777 17081.28 1.2 1.0 1.0 46.6 10.0 105.8 0.7

205 7200.0 17933.50 36075.67 50.29 96837 81345 17081.28 2.4 1.0 1.0 46.6 12.8 111.2 0.7

210 7200.0 24788.78 31970.33 22.46 45512 39251 18093.69 2.5 1.0 1.1 43.4 0.0 76.7 0.3

220 7200.0 21906.93 32915.14 33.44 15154 11944 17690.82 20.7 1.0 1.0 44.7 3.0 86.1 0.1

230 7200.0 17923.76 34667.82 48.30 62957 56812 17081.28 4.4 1.0 1.0 46.6 8.4 103.0 0.5

240 7200.0 18161.43 34535.81 47.41 57547 51095 17442.66 5.0 1.0 1.0 45.4 8.0 98.0 0.4

250 7200.0 26851.01 33650.86 20.21 76822 57742 26757.23 2.4 1.0 1.6 16.3 5.3 25.8 0.6

260 7200.0 24797.25 31970.33 22.44 45974 39649 18093.69 5.1 1.0 1.1 43.4 0.0 76.7 0.3

270 7200.0 30704.27 32041.39 4.17 16350 10818 28085.84 12.3 1.0 1.6 12.2 0.2 14.1 0.1

280 7200.0 29675.63 31970.33 7.18 34152 25022 28085.84 6.3 1.0 1.6 12.2 0.0 13.8 0.3

285 7200.0 31517.07 31970.33 1.42 22692 8742 28085.84 9.5 1.0 1.6 12.2 0.0 13.8 0.2

31
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Table E.2 (continued) 
 

Opt.  
sol.

Option CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t CPU R LPR R IGap% DU% ULP% Node R

100 7200.0 22822.17 47128.88 51.57 83593 73677 22099.89 0.8 1.0 1.0 46.7 13.7 113.3 1.0

105 7200.0 22949.59 44395.09 48.31 92001 65787 22099.89 1.2 1.0 1.0 46.7 7.1 100.9 1.1

110 7200.0 30535.66 41742.13 26.85 32030 25754 22508.71 1.8 1.0 1.0 45.7 0.7 85.4 0.4

120 7200.0 24385.15 42638.61 42.81 8142 6300 22276.56 15.0 1.0 1.0 46.3 2.9 91.4 0.1

130 7200.0 22890.03 43522.87 47.41 56462 49229 22099.89 3.7 1.0 1.0 46.7 5.0 96.9 0.7

140 7200.0 23056.13 45115.50 48.90 39771 36484 22177.31 7.6 1.0 1.0 46.5 8.8 103.4 0.5

150 7200.0 36302.54 45172.59 19.64 87312 77846 36204.68 1.6 1.0 1.6 12.7 9.0 24.8 1.0

160 7200.0 30534.94 41742.13 26.85 32002 25732 22508.71 3.1 1.0 1.0 45.7 0.7 85.4 0.4

170 7200.0 40261.36 41635.13 3.30 11148 8407 39328.03 14.5 1.0 1.8 5.1 0.4 5.9 0.1

180 7200.0 40683.95 41490.60 1.94 25966 16559 39328.03 7.4 1.0 1.8 5.1 0.1 5.5 0.3

185 7200.0 40646.77 41540.20 2.15 12919 7111 39328.03 13.6 1.0 1.8 5.1 0.2 5.6 0.2

200 7200.0 22862.37 46537.62 50.87 66904 56689 22111.72 3.5 1.0 1.0 46.7 12.3 110.5 0.8

205 7200.0 23032.65 47072.12 51.07 62968 46116 22111.72 3.7 1.0 1.0 46.7 13.6 112.9 0.8

210 7200.0 31038.62 41533.04 25.27 29196 24545 23248.13 4.3 1.0 1.1 43.9 0.2 78.7 0.3

220 7200.0 26432.48 43729.49 39.55 7750 6363 22717.84 28.8 1.0 1.0 45.2 5.5 92.5 0.1

230 7200.0 23110.94 43762.01 47.19 46027 38214 22111.72 9.9 1.0 1.0 46.7 5.6 97.9 0.6

240 7200.0 23032.64 44030.49 47.69 39983 37247 22473.02 10.3 1.0 1.0 45.8 6.2 95.9 0.5

250 7200.0 36349.08 46624.70 22.04 55811 47544 36219.53 3.7 1.0 1.6 12.6 12.5 28.7 0.7

260 7200.0 31039.18 41533.04 25.27 29232 24571 23248.13 7.4 1.0 1.1 43.9 0.2 78.7 0.3

270 7200.0 40809.71 41452.58 1.55 8900 5091 39530.24 83.5 1.0 1.8 4.6 0.0 4.9 0.1

280 7200.0 40944.85 41452.58 1.22 24197 15163 39530.24 11.5 1.0 1.8 4.6 0.0 4.9 0.3

285 7200.0 41027.92 41452.98 1.03 10893 5000 39530.24 18.0 1.0 1.8 4.6 0.0 4.9 0.1

100 7200.0 9446.24 27632.72 65.82 83291 72183 8735.75 0.9 1.0 1.0 216.3 1.0

105 7200.0 9503.38 33573.27 71.69 96854 82308 8735.75 0.9 1.0 1.0 284.3 1.2

110 7200.0 14029.26 27254.68 48.53 36997 31217 9036.14 1.1 1.0 1.0 201.6 0.4

120 7200.0 11281.53 29133.80 61.28 8079 7038 8900.36 8.8 1.0 1.0 227.3 0.1

130 7200.0 9509.74 29049.34 67.26 68227 62223 8735.75 2.3 1.0 1.0 232.5 0.8

140 7200.0 9525.20 28900.14 67.04 44028 40753 8812.72 8.4 1.0 1.0 227.9 0.5

150 7200.0 19675.54 28976.28 32.10 114452 101728 19659.63 1.0 1.0 2.3 47.4 1.4

160 7200.0 14029.26 27254.68 48.53 37035 31255 9036.14 2.9 1.0 1.0 201.6 0.4

170 7200.0 23368.44 27159.79 13.96 15510 12719 22695.30 19.5 1.0 2.6 19.7 0.2

180 7200.0 23398.37 27005.80 13.36 35062 29085 22695.30 8.0 1.0 2.6 19.0 0.4

185 7200.0 23510.45 26997.36 12.92 18607 14769 22695.30 14.9 1.0 2.6 19.0 0.2

200 7200.0 9503.32 29581.41 67.87 78196 68777 8736.56 2.9 1.0 1.0 238.6 0.9

205 7200.0 9664.94 31365.20 69.19 84890 74150 8736.56 3.0 1.0 1.0 259.0 1.0

210 7200.0 15022.40 27144.72 44.66 30277 27204 9654.58 3.4 1.0 1.1 181.2 0.4

220 7200.0 11648.86 29578.92 60.62 9295 8619 9320.09 20.7 1.0 1.1 217.4 0.1

230 7200.0 9600.76 30010.44 68.01 51300 47922 8736.64 8.5 1.0 1.0 243.5 0.6

240 7200.0 9624.69 27947.83 65.56 36601 33615 9115.47 10.8 1.0 1.0 206.6 0.4

250 7200.0 19758.05 29022.89 31.92 81281 69412 19659.78 3.7 1.0 2.3 47.6 1.0

260 7200.0 15020.23 27144.72 44.67 30183 27119 9654.58 6.4 1.0 1.1 181.2 0.4

270 7200.0 24518.80 26700.25 8.17 13490 10570 22734.22 27.4 1.0 2.6 17.4 0.2

280 7200.0 24599.96 26700.25 7.87 23473 18215 22734.22 13.0 1.0 2.6 17.4 0.3

285 7200.0 24481.78 26834.81 8.77 13234 9796 22734.63 25.6 1.0 2.6 18.0 0.2

26
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     * LB, UB and Gap (%) refer to the final values of the lower bound, upper bound and the corresponding gap, respectively at the end of the  

             time limit (7200 sec.). If the optimal solution of an instance is not known, the best known solution is provided under Opt.Sol. column in      
             underlined form.  
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 Table E.3 Case C- Average Results for 16 Instances with Known Optimals * 
 

CPU CPU R LPR R IGap% DU% ULP% Nodes Node R

100 5506.2 1.00 1.00 66.5 8   (4) 2.0 246719.6 421203 1.00

105 5333.5 0.97 1.00 66.5 8   (5) 2.7 246720.6 355681 0.90

110 4555.0 0.79 124.84 63.1 12   (9) 0.3 466.0 112527 0.31

120 5342.8 1.15 72.61 63.9 10   (5) 1.3 644.6 58123 0.21

130 5626.4 1.14 1.00 66.5 9   (4) 2.1 246718.7 253827 0.73

140 5585.1 1.16 46.64 65.0 9   (4) 1.8 1094.0 229617 0.63

150 4044.3 0.75 1635.38 14.8 10   (8) 1.5 22.8 207081 0.61

160 4563.0 0.79 124.84 63.1 12   (9) 0.3 466.0 112269 0.30

170 2520.4 0.51 1947.73 11.6 12  (12) 0.2 16.9 13352 0.08

180 1711.3 0.39 1947.73 11.6 13  (13) 0.1 16.7 17438 0.11

185 1504.1 0.34 1947.73 11.6 13  (13) 0.1 16.8 8961 0.06

200 5589.6 1.09 7.31 66.0 10   (4) 2.2 5055.3 425728 0.96

205 5492.3 1.06 7.31 66.0 10   (4) 2.3 5055.2 318417 0.78

210 4319.7 0.82 302.63 59.6 13   (9) 0.1 238.6 92441 0.25

220 5162.9 1.48 198.98 61.1 10   (5) 0.9 305.9 49210 0.24

230 5742.0 1.23 7.31 66.0 10   (4) 1.8 5050.2 229008 0.63

240 5741.8 1.23 159.25 62.9 10   (4) 1.5 372.6 230514 0.60

250 3423.3 0.74 1637.45 14.7 11  (10) 1.6 22.8 136522 0.46

260 4319.6 0.82 302.63 59.6 13   (9) 0.1 238.6 92168 0.25

270 2532.7 0.67 1953.95 11.5 13  (11) 0.0 16.4 10843 0.06

280 1814.9 0.47 1953.95 11.5 14  (13) 0.0 16.4 13472 0.09

285 1537.9 0.47 1953.95 11.5 13  (13) 0.1 16.5 7489 0.05

#opt *

 
 

*  #opt denotes the number of times the optimal solution was found, where the entry in parentheses     
    denotes the number of verified optimal solutions. 
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APPENDIX F  
 

VIOLATIONS OF TRIANGLE INEQUALITY IN THE HK INSTANCES 

 

Table F.1 Details of Triangle Inequality Violations in HK Instances 
 

inst# # Violations
# Triple 

Combinations
% Violation inst# # Violations

# Triple 
Combinations

% Violation

46 15 150 10.00 1 25 252 9.92

47 16 150 10.67 2 12 252 4.76

48 17 150 11.33 3 24 252 9.52

49 14 150 9.33 4 28 252 11.11

50 9 150 6.00 5 25 252 9.92

51 6 150 4.00 31 12 252 4.76

52 14 150 9.33 32 21 252 8.33

53 9 150 6.00 33 18 252 7.14

54 14 150 9.33 34 12 252 4.76

55 4 150 2.67 35 41 252 16.27

56 16 150 10.67 16 32 392 8.16

57 6 150 4.00 17 11 392 2.81

58 11 150 7.33 18 25 392 6.38

59 16 150 10.67 19 34 392 8.67

60 6 150 4.00 20 13 392 3.32

61 5 150 3.33 36 33 392 8.42

62 16 150 10.67 37 23 392 5.87

63 12 150 8.00 38 21 392 5.36

64 10 150 6.67 39 39 392 9.95

65 14 150 9.33 40 41 392 10.46

66 16 150 10.67 26 48 576 8.33

67 12 150 8.00 27 59 576 10.24

68 15 150 10.00 28 56 576 9.72

69 11 150 7.33 29 36 576 6.25

70 13 150 8.67 30 32 576 5.56

71 7 150 4.67 41 52 576 9.03

72 8 150 5.33 42 29 576 5.03

73 6 150 4.00 43 33 576 5.73

74 5 150 3.33 44 67 576 11.63

75 9 150 6.00 45 46 576 7.99

76 17 150 11.33

77 23 150 15.33 Average %Violation 7.81

78 15 150 10.00

79 8 150 5.33

80 15 150 10.00

81 7 150 4.67

82 9 150 6.00

83 13 150 8.67

84 12 150 8.00

85 16 150 10.67
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APPENDIX G  
 

EXPERIMENTS ON HK INSTANCES WITH MBS = 0.1 

 

Table G.1 Solutions of HK Instances with MBS = 0.1 * 
 

inst#
Best sol.        

at the end of 
time limit

Extended CPU            
Final Gap%     
at the end of 
extended time

Best sol. inst#
Best sol.        

at the end of 
time limit

Extended CPU            
Final Gap%     
at the end of 
extended time

Best sol.

46 1977.72 - - 1977.72 1 2633.32 - - 2633.32

47 1810.80 - - 1810.80 2 3210.22 - - 3210.22

48 1662.24 - - 1662.24 3 3012.42 - - 3012.42

49 1869.05 - - 1869.05 4 2705.11 - - 2705.11

50 1815.52 - - 1815.52 5 3040.29 - - 3040.29

51 2364.26 - - 2364.26 31 3221.19 - - 3221.19

52 1600.74 - - 1600.74 32 2809.13 - - 2809.13

53 1639.21 - - 1639.21 33 3288.23 - - 3288.23

54 1611.00 - - 1611.00 34 2929.66 - - 2929.66

55 2031.71 - - 2031.71 35 2242.64 - - 2242.64

56 2444.79 - - 2444.79 16 3652.51 11413.9 0.00 3640.63

57 2822.08 - - 2822.08 17 4158.24 - - 4158.24

58 2325.74 - - 2325.74 18 3592.83 - - 3592.83

59 2421.72 - - 2421.72 19 2923.44 - - 2923.44

60 2726.10 - - 2726.10 20 4210.04 - - 4210.04

61 2948.37 - - 2948.37 36 3218.06 - - 3218.06

62 2388.69 - - 2388.69 37 3202.54 - - 3202.54

63 2765.01 - - 2765.01 38 3755.65 - - 3755.65

64 2539.12 - - 2539.12 39 3229.05 - - 3229.05

65 2454.52 - - 2454.52 40 3273.34 - - 3273.34

66 3045.04 - - 3045.04 26 3758.91 28427.0 0.00 3733.70

67 3639.85 - - 3639.85 27 3354.74 8119.0 0.00 3354.74

68 3075.65 - - 3075.65 28 3655.15 19071.7 0.00 3549.33

69 3476.68 - - 3476.68 29 3660.51 23605.5 0.00 3645.96

70 3401.50 - - 3401.50 30 4017.30 35784.1 0.00 3947.71

71 3964.52 - - 3964.52 41 3442.34 13079.8 0.00 3430.02

72 3561.53 - - 3561.53 42 3926.71 24564.7 0.00 3910.75

73 4431.01 - - 4431.01 43 3714.66 15478.4 0.00 3690.26

74 3926.11 - - 3926.11 44 3049.08 - - 3049.08

75 3155.77 - - 3155.77 45 3674.80 35345.8 0.00 3598.29

76 4058.46 24099.6 0.00 3992.83

77 3317.44 9709.2 0.00 3317.44

78 4779.35 109064.3 0.00 4667.45

79 5074.30 23287.6 0.00 4998.03

80 3793.34 9305.7 0.00 3793.34

81 5156.68 17797.3 0.00 5150.04

82 4568.39 21175.1 0.00 4489.33

83 4702.02 10634.6 0.00 4665.45

84 4426.91 14610.1 0.00 4423.78

85 3895.34 15106.6 0.00 3870.14

7 
x 
3

8 
x 
3
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x 
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2
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x 
4

6 
x 
5

* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
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Table G.2 Detailed Results of Experiments on HK Instances with MBS = 0.1 * 

 

inst# Opt. sol. CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t IGap% DU% ULP%

46 1977.72 7.0 1977.72 1977.72 0.00 86 0 1157.41 0.3 41.5 0.0 70.9

47 1810.80 4.6 1810.80 1810.80 0.00 42 0 1059.91 0.2 41.5 0.0 70.8

48 1662.24 4.8 1662.24 1662.24 0.00 83 0 955.01 0.3 42.5 0.0 74.1

49 1869.05 5.2 1869.05 1869.05 0.00 78 0 1106.54 0.2 40.8 0.0 68.9

50 1815.52 4.8 1815.52 1815.52 0.00 75 0 1044.41 0.2 42.5 0.0 73.8

51 2364.26 5.4 2364.26 2364.26 0.00 62 0 1351.89 0.2 42.8 0.0 74.9

52 1600.74 4.3 1600.74 1600.74 0.00 52 0 905.41 0.2 43.4 0.0 76.8

53 1639.21 4.5 1639.21 1639.21 0.00 102 0 957.15 0.2 41.6 0.0 71.3

54 1611.00 3.7 1611.00 1611.00 0.00 33 0 991.58 0.3 38.4 0.0 62.5

55 2031.71 4.0 2031.71 2031.71 0.00 52 0 1295.26 0.3 36.2 0.0 56.9

56 2444.79 45.6 2444.79 2444.79 0.00 988 0 950.85 0.6 61.1 0.0 157.1

57 2822.08 133.8 2822.08 2822.08 0.00 2926 0 1077.49 0.7 61.8 0.0 161.9

58 2325.74 23.5 2325.74 2325.74 0.00 382 0 907.17 0.7 61.0 0.0 156.4

59 2421.72 37.4 2421.72 2421.72 0.00 646 0 862.15 0.6 64.4 0.0 180.9

60 2726.10 116.1 2726.10 2726.10 0.00 3037 0 1030.69 0.5 62.2 0.0 164.5

61 2948.37 32.5 2948.37 2948.37 0.00 683 0 1202.51 0.5 59.2 0.0 145.2

62 2388.69 29.3 2388.69 2388.69 0.00 522 0 955.18 0.6 60.0 0.0 150.1

63 2765.01 39.7 2765.01 2765.01 0.00 693 0 1012.49 0.6 63.4 0.0 173.1

64 2539.12 43.3 2539.12 2539.12 0.00 675 0 943.08 0.6 62.9 0.0 169.2

65 2454.52 58.6 2454.52 2454.52 0.00 1363 0 920.75 0.7 62.5 0.0 166.6

66 3045.04 191.8 3045.04 3045.04 0.00 3291 0 856.53 1.2 71.9 0.0 255.5

67 3639.85 2384.3 3639.84 3639.85 0.00 46754 1 1069.86 1.2 70.6 0.0 240.2

68 3075.65 587.3 3075.65 3075.65 0.00 11111 0 798.75 1.1 74.0 0.0 285.1

69 3476.68 2197.6 3476.66 3476.68 0.00 41798 1 981.82 1.0 71.8 0.0 254.1

70 3401.50 541.1 3401.47 3401.50 0.00 8266 1 967.22 1.1 71.6 0.0 251.7

71 3964.52 1359.3 3964.52 3964.52 0.00 25930 0 1074.78 1.1 72.9 0.0 268.9

72 3561.53 370.0 3561.53 3561.53 0.00 6535 0 993.78 1.2 72.1 0.0 258.4

73 4431.01 939.0 4430.97 4431.01 0.00 17171 1 1192.30 1.0 73.1 0.0 271.6

74 3926.11 4239.6 3926.11 3926.11 0.00 111932 1 1057.80 1.0 73.1 0.0 271.2

75 3155.77 209.5 3155.77 3155.77 0.00 3621 0 1019.36 1.0 67.7 0.0 209.6

76 3992.83 limit 3492.34 4058.46 13.95 89274 54043 978.77 2.2 75.5 1.6 314.7

77 3317.44 limit 3116.64 3317.44 6.05 106257 31606 751.38 1.8 77.4 0.0 341.5

78 4667.45 limit 3691.79 4779.35 22.76 80911 58228 1020.20 1.8 78.1 2.4 368.5

79 4998.03 limit 4407.30 5074.30 13.14 134837 79536 1155.34 2.2 76.9 1.5 339.2

80 3793.34 limit 3552.08 3793.34 6.36 117537 33481 914.55 2.0 75.9 0.0 314.8

81 5150.04 limit 4557.60 5156.68 11.62 93696 51666 1173.14 2.1 77.2 0.1 339.6

82 4489.33 limit 4075.60 4568.39 10.79 70170 40175 1120.48 1.8 75.0 1.8 307.7

83 4665.45 limit 4327.81 4702.02 7.96 96529 36171 1151.75 1.6 75.3 0.8 308.2

84 4423.78 limit 4000.40 4426.91 9.63 90359 43833 1051.37 2.2 76.2 0.1 321.1

85 3870.14 limit 3541.22 3895.34 9.09 112541 57465 856.46 1.7 77.9 0.7 354.8
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Table G.2 (continued) 

 

inst# Opt. sol. CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t IGap% DU% ULP%

1 2633.32 339.4 2633.32 2633.32 0.00 3961 0 967.57 1.5 63.3 0.0 172.2

2 3210.22 681.0 3210.22 3210.22 0.00 8069 0 1172.35 1.4 63.5 0.0 173.8

3 3012.42 373.7 3012.42 3012.42 0.00 6948 0 1077.56 1.5 64.2 0.0 179.6

4 2705.11 491.9 2705.11 2705.11 0.00 6185 0 995.35 1.8 63.2 0.0 171.8

5 3040.29 368.2 3040.29 3040.29 0.00 4484 1 1146.76 1.9 62.3 0.0 165.1

31 3221.19 304.3 3221.19 3221.19 0.00 3726 0 1267.59 1.4 60.6 0.0 154.1

32 2809.13 423.0 2809.13 2809.13 0.00 4394 0 1089.74 1.4 61.2 0.0 157.8

33 3288.23 657.5 3288.21 3288.23 0.00 8088 2 1149.20 1.9 65.1 0.0 186.1

34 2929.66 164.5 2929.66 2929.66 0.00 1772 0 1150.34 1.4 60.7 0.0 154.7

35 2242.64 241.2 2242.64 2242.64 0.00 2576 0 851.75 1.5 62.0 0.0 163.3

16 3640.63 limit 3363.39 3652.51 7.92 65553 25543 1360.57 4.0 62.6 0.3 168.5

17 4158.24 6380.0 4158.20 4158.24 0.00 54576 7 1428.61 3.9 65.6 0.0 191.1

18 3592.83 1889.2 3592.80 3592.83 0.00 16284 1 1244.85 4.6 65.4 0.0 188.6

19 2923.44 1856.4 2923.44 2923.44 0.00 12837 0 1087.04 6.1 62.8 0.0 168.9

20 4210.04 6712.1 4210.01 4210.04 0.00 71397 5 1499.18 3.1 64.4 0.0 180.8

36 3218.06 3763.6 3218.03 3218.06 0.00 35545 3 1141.58 5.1 64.5 0.0 181.9

37 3202.54 3143.0 3202.54 3202.54 0.00 28266 1 1148.32 4.4 64.1 0.0 178.9

38 3755.65 2572.1 3755.63 3755.65 0.00 21430 4 1427.86 4.6 62.0 0.0 163.0

39 3229.05 3343.9 3229.02 3229.05 0.00 28434 3 1167.43 4.9 63.8 0.0 176.6

40 3273.34 4707.6 3273.33 3273.34 0.00 41686 1 1196.46 4.7 63.4 0.0 173.6

26 3733.70 limit 3211.15 3758.91 14.57 38575 22991 1369.51 9.6 63.3 0.7 174.5

27 3354.74 limit 3229.11 3354.74 3.74 31718 6447 1261.67 8.2 62.4 0.0 165.9

28 3549.33 limit 3085.17 3655.15 15.59 25856 16174 1215.41 9.6 65.8 3.0 200.7

29 3645.96 limit 3170.09 3660.51 13.40 33416 20118 1311.70 10.4 64.0 0.4 179.1

30 3947.71 limit 3283.02 4017.30 18.28 41615 25149 1432.31 8.2 63.7 1.8 180.5

41 3430.02 limit 3100.39 3442.34 9.93 31149 14022 1248.60 8.6 63.6 0.4 175.7

42 3910.75 limit 3407.68 3926.71 13.22 33340 19939 1395.75 9.9 64.3 0.4 181.3

43 3690.26 limit 3288.65 3714.66 11.47 33131 16949 1329.30 8.8 64.0 0.7 179.4

44 3049.08 5573.6 3049.06 3049.08 0.00 29251 1 1087.81 8.3 64.3 0.0 180.3

45 3598.29 limit 3031.66 3674.80 17.50 31462 21268 1252.42 11.1 65.2 2.1 193.4

7 
x 
3

MIP LPR

8 
x 
3

9 
x 
3

 

 * LB, UB and Gap (%) refer to the final values of the lower bound, upper bound and  the corresponding gap, respectively at the  
                 end of the time limit.
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APPENDIX H  
 

EXPERIMENTS ON HK INSTANCES WITH MBS = 0.025 

 

Table H.1 Solutions of HK Instances with MBS = 0.025 * 
 

inst#
Best sol.        

at the end of 
time limit

Extended CPU            
Final Gap%     
at the end of 
extended time

Best sol. inst#
Best sol.        

at the end of 
time limit

Extended CPU            
Final Gap%     
at the end of 
extended time

Best sol.

46 1977.72 - - 1977.72 1 2633.32 - - 2633.32

47 1810.80 - - 1810.80 2 3210.22 - - 3210.22

48 1662.24 - - 1662.24 3 3012.42 - - 3012.42

49 1869.05 - - 1869.05 4 2705.11 - - 2705.11

50 1815.52 - - 1815.52 5 3040.29 - - 3040.29

51 2364.26 - - 2364.26 31 3221.19 - - 3221.19

52 1600.74 - - 1600.74 32 2809.13 - - 2809.13

53 1639.21 - - 1639.21 33 3288.23 - - 3288.23

54 1611.00 - - 1611.00 34 2929.66 - - 2929.66

55 2031.71 - - 2031.71 35 2242.64 - - 2242.64

56 2444.79 - - 2444.79 16 3640.63 - - 3640.63

57 2822.08 - - 2822.08 17 4158.24 - - 4158.24

58 2325.74 - - 2325.74 18 3592.83 - - 3592.83

59 2421.72 - - 2421.72 19 2923.44 - - 2923.44

60 2726.10 - - 2726.10 20 4210.04 16242.1 0.00 4210.04

61 2948.37 - - 2948.37 36 3218.06 - - 3218.06

62 2388.69 - - 2388.69 37 3202.54 - - 3202.54

63 2765.01 - - 2765.01 38 3755.65 - - 3755.65

64 2539.12 - - 2539.12 39 3229.05 - - 3229.05

65 2454.52 - - 2454.52 40 3273.34 - - 3273.34

66 3045.04 - - 3045.04 26 3733.70 35462.9 0.00 3733.70

67 3639.85 - - 3639.85 27 3405.97 11938.8 0.00 3354.74

68 3075.65 - - 3075.65 28 3549.33 8059.5 0.00 3549.33

69 3476.68 - - 3476.68 29 3721.70 22448.7 0.00 3645.96

70 3401.50 - - 3401.50 30 4082.90 47147.2 0.00 3947.71

71 3964.52 - - 3964.52 41 3446.47 11413.6 0.00 3430.02

72 3561.53 - - 3561.53 42 4007.49 63276.6 0.00 3910.75

73 4431.01 - - 4431.01 43 3690.26 13095.2 0.00 3690.26

74 3926.11 - - 3926.11 44 3049.08 - - 3049.08

75 3155.77 - - 3155.77 45 3598.29 13079.4 0.00 3598.29

76 4017.88 15607.5 0.00 3992.83

77 3354.01 15821.3 0.00 3317.44

78 4792.45 90263.0 0.00 4667.45

79 5061.07 16560.2 0.00 4998.03

80 3793.34 - - 3793.34

81 5156.68 17349.7 0.00 5150.04

82 4500.74 18393.2 0.00 4489.33

83 4702.02 10883.7 0.00 4665.45

84 4502.35 19174.5 0.00 4423.78

85 3910.79 8934.4 0.00 3870.14

6 
x 
2

7 
x 
3

6 
x 
3

8 
x 
3

6 
x 
4

9 
x 
3

6 
x 
5

* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
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Table H.2 Detailed Results of Experiments on HK Instances with MBS = 0.025 * 

 

inst# Opt. sol. CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t IGap% DU% ULP%

46 1977.72 4.7 1977.72 1977.72 0.00 91 0 1157.41 0.2 41.5 0.0 70.9

47 1810.80 4.5 1810.80 1810.80 0.00 37 0 1059.91 0.2 41.5 0.0 70.8

48 1662.24 5.3 1662.24 1662.24 0.00 105 0 955.01 0.2 42.5 0.0 74.1

49 1869.05 4.7 1869.05 1869.05 0.00 62 0 1106.54 0.2 40.8 0.0 68.9

50 1815.52 4.0 1815.52 1815.52 0.00 50 0 1044.41 0.2 42.5 0.0 73.8

51 2364.26 4.4 2364.26 2364.26 0.00 66 0 1351.89 0.3 42.8 0.0 74.9

52 1600.74 4.5 1600.74 1600.74 0.00 51 0 905.41 0.4 43.4 0.0 76.8

53 1639.21 5.1 1639.21 1639.21 0.00 91 0 957.15 0.3 41.6 0.0 71.3

54 1611.00 3.6 1611.00 1611.00 0.00 42 0 991.58 0.3 38.4 0.0 62.5

55 2031.71 3.4 2031.71 2031.71 0.00 64 0 1295.26 0.3 36.2 0.0 56.9

56 2444.79 35.9 2444.77 2444.79 0.00 596 1 950.85 0.7 61.1 0.0 157.1

57 2822.08 114.3 2822.08 2822.08 0.00 2297 0 1077.49 0.8 61.8 0.0 161.9

58 2325.74 21.5 2325.74 2325.74 0.00 307 0 907.17 0.6 61.0 0.0 156.4

59 2421.72 39.0 2421.72 2421.72 0.00 617 0 862.15 0.6 64.4 0.0 180.9

60 2726.10 80.9 2726.10 2726.10 0.00 1868 0 1030.69 0.6 62.2 0.0 164.5

61 2948.37 55.0 2948.37 2948.37 0.00 921 0 1202.51 0.6 59.2 0.0 145.2

62 2388.69 32.8 2388.69 2388.69 0.00 564 0 955.18 0.6 60.0 0.0 150.1

63 2765.01 44.5 2765.01 2765.01 0.00 974 0 1012.49 0.8 63.4 0.0 173.1

64 2539.12 34.8 2539.12 2539.12 0.00 464 0 943.08 0.7 62.9 0.0 169.2

65 2454.52 72.0 2454.52 2454.52 0.00 1352 0 920.75 0.7 62.5 0.0 166.6

66 3045.04 399.5 3045.04 3045.04 0.00 7824 0 856.53 1.2 71.9 0.0 255.5

67 3639.85 3646.7 3639.83 3639.85 0.00 75741 5 1069.86 1.0 70.6 0.0 240.2

68 3075.65 1027.9 3075.64 3075.65 0.00 16535 1 798.75 1.0 74.0 0.0 285.1

69 3476.68 2217.7 3476.66 3476.68 0.00 43576 2 981.82 1.0 71.8 0.0 254.1

70 3401.50 794.8 3401.48 3401.50 0.00 12342 2 967.22 1.0 71.6 0.0 251.7

71 3964.52 1452.8 3964.48 3964.52 0.00 38710 3 1074.78 1.0 72.9 0.0 268.9

72 3561.53 790.0 3561.53 3561.53 0.00 12147 0 993.78 0.9 72.1 0.0 258.4

73 4431.01 996.1 4431.01 4431.01 0.00 17162 0 1192.30 1.0 73.1 0.0 271.6

74 3926.11 1929.0 3926.08 3926.11 0.00 34600 2 1057.80 0.9 73.1 0.0 271.2

75 3155.77 172.6 3155.77 3155.77 0.00 2494 0 1019.36 0.9 67.7 0.0 209.6

76 3992.83 limit 3642.97 4017.88 9.33 73395 36020 978.77 2.2 75.5 0.6 310.5

77 3317.44 limit 2991.66 3354.01 10.80 80221 41443 751.38 2.0 77.4 1.1 346.4

78 4667.45 limit 3825.52 4792.45 20.18 75770 52946 1020.20 2.3 78.1 2.7 369.8

79 4998.03 limit 4450.91 5061.07 12.06 83224 44344 1155.34 1.9 76.9 1.3 338.1

80 3793.34 4996.5 3793.31 3793.34 0.00 67761 6 914.55 2.2 75.9 0.0 314.8

81 5150.04 limit 4666.70 5156.68 9.50 75823 36045 1173.14 2.0 77.2 0.1 339.6

82 4489.33 limit 4035.87 4500.74 10.33 79585 38757 1120.48 1.6 75.0 0.3 301.7

83 4665.45 limit 4350.66 4702.02 7.47 96930 41229 1151.75 1.8 75.3 0.8 308.2

84 4423.78 limit 3988.64 4502.35 11.41 118005 66277 1051.37 2.1 76.2 1.8 328.2

85 3870.14 limit 3683.34 3910.79 5.82 93295 26280 856.46 1.5 77.9 1.1 356.6

6 
x 
2

6 
x 
4

6 
x 
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Table H.2 (continued) 

 

inst# Opt. sol. CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t IGap% DU% ULP%

1 2633.32 274.1 2633.32 2633.32 0.00 2837 0 967.57 1.5 63.3 0.0 172.2

2 3210.22 480.5 3210.22 3210.22 0.00 6891 0 1172.35 1.3 63.5 0.0 173.8

3 3012.42 670.6 3012.42 3012.42 0.00 12083 0 1077.56 1.4 64.2 0.0 179.6

4 2705.11 1139.0 2705.11 2705.11 0.00 15138 0 995.35 1.5 63.2 0.0 171.8

5 3040.29 383.7 3040.29 3040.29 0.00 4801 0 1146.76 1.6 62.3 0.0 165.1

31 3221.19 316.1 3221.19 3221.19 0.00 3669 0 1267.59 1.8 60.6 0.0 154.1

32 2809.13 247.0 2809.13 2809.13 0.00 2179 0 1089.74 1.7 61.2 0.0 157.8

33 3288.23 466.4 3288.23 3288.23 0.00 7392 0 1149.20 2.0 65.1 0.0 186.1

34 2929.66 265.2 2929.63 2929.66 0.00 3175 1 1150.34 1.8 60.7 0.0 154.7

35 2242.64 415.9 2242.62 2242.64 0.00 5170 1 851.75 1.8 62.0 0.0 163.3

16 3640.63 4487.0 3640.61 3640.63 0.00 29741 1 1360.57 4.5 62.6 0.0 167.6

17 4158.24 4179.0 4158.24 4158.24 0.00 36517 0 1428.61 4.9 65.6 0.0 191.1

18 3592.83 2916.1 3592.83 3592.83 0.00 19067 0 1244.85 4.4 65.4 0.0 188.6

19 2923.44 3450.7 2923.44 2923.44 0.00 24416 0 1087.04 3.6 62.8 0.0 168.9

20 4210.04 limit 3777.66 4210.04 10.27 49095 23498 1499.18 4.7 64.4 0.0 180.8

36 3218.06 3016.6 3218.04 3218.06 0.00 29013 2 1141.58 5.1 64.5 0.0 181.9

37 3202.54 2745.1 3202.52 3202.54 0.00 18751 1 1148.32 3.7 64.1 0.0 178.9

38 3755.65 1188.4 3755.65 3755.65 0.00 9227 0 1427.86 5.2 62.0 0.0 163.0

39 3229.05 2812.1 3229.02 3229.05 0.00 18285 1 1167.43 4.2 63.8 0.0 176.6

40 3273.34 3180.5 3273.33 3273.34 0.00 24771 1 1196.46 5.0 63.4 0.0 173.6

26 3733.70 limit 3140.68 3733.70 15.88 22695 15494 1369.51 9.7 63.3 0.0 172.6

27 3354.74 limit 3091.46 3405.97 9.23 23708 11042 1261.67 8.6 62.4 1.5 170.0

28 3549.33 limit 3386.75 3549.33 4.58 27064 5610 1215.41 8.7 65.8 0.0 192.0

29 3645.96 limit 3200.12 3721.70 14.01 29987 17709 1311.70 8.8 64.0 2.1 183.7

30 3947.71 limit 3285.09 4082.90 19.54 29978 20998 1432.31 10.0 63.7 3.4 185.1

41 3430.02 limit 3160.68 3446.47 8.29 34879 13797 1248.60 9.1 63.6 0.5 176.0

42 3910.75 limit 3219.77 4007.49 19.66 51146 36372 1395.75 7.2 64.3 2.5 187.1

43 3690.26 limit 3321.33 3690.26 10.00 32556 13589 1329.30 10.1 64.0 0.0 177.6

44 3049.08 6055.5 3049.07 3049.08 0.00 24020 1 1087.81 8.1 64.3 0.0 180.3

45 3598.29 limit 3330.07 3598.29 7.45 37418 16071 1252.42 9.8 65.2 0.0 187.3

8 
x 
3

9 
x 
3

7 
x 
3

MIP LPR

 

 *  LB, UB and Gap (%) refer to the final values of the lower bound, upper bound and  the corresponding gap, respectively at the  

                 end of the time limit. 
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APPENDIX I  
 

EXPERIMENTS ON HK INSTANCES WITH MBS = 0.25 

 

Table I.1 Solutions of HK Instances with MBS = 0.25 * 
 

inst#
Best sol.        

at the end of 
time limit

Extended CPU            
Final Gap%     
at the end of 
extended time

Best sol. inst#
Best sol.        

at the end of 
time limit

Extended CPU            
Final Gap%     
at the end of 
extended time

Best sol.

46 1977.72 - - 1977.72 1 2633.32 - - 2633.32

47 1810.80 - - 1810.80 2 3210.22 - - 3210.22

48 1662.24 - - 1662.24 3 3012.42 - - 3012.42

49 1869.05 - - 1869.05 4 2705.11 - - 2705.11

50 1815.52 - - 1815.52 5 3040.29 - - 3040.29

51 2364.26 - - 2364.26 31 3221.19 - - 3221.19

52 1600.74 - - 1600.74 32 2809.13 - - 2809.13

53 1639.21 - - 1639.21 33 3288.23 - - 3288.23

54 1611.00 - - 1611.00 34 2929.66 - - 2929.66

55 2031.71 - - 2031.71 35 2242.64 - - 2242.64

56 2444.79 - - 2444.79 16 3640.63 - - 3640.63

57 2822.08 - - 2822.08 17 4178.72 13416.0 0.00 4158.24

58 2325.74 - - 2325.74 18 3592.83 - - 3592.83

59 2421.72 - - 2421.72 19 2923.44 - - 2923.44

60 2726.10 - - 2726.10 20 4224.34 23155.6 0.00 4210.04

61 2948.37 - - 2948.37 36 3218.06 - - 3218.06

62 2388.69 - - 2388.69 37 3202.54 - - 3202.54

63 2765.01 - - 2765.01 38 3755.65 - - 3755.65

64 2539.12 - - 2539.12 39 3229.05 - - 3229.05

65 2454.52 - - 2454.52 40 3273.34 - - 3273.34

66 3254.18 - - 3254.18 26 3764.59 22710.2 0.00 3733.70

67 3777.81 9108.0 0.00 3777.81 27 3354.74 13087.2 0.00 3354.74

68 3373.48 - - 3373.48 28 3564.66 11813.2 0.00 3549.33

69 3794.04 8187.8 0.00 3794.04 29 3660.51 15838.9 0.00 3645.96

70 3543.03 - - 3543.03 30 4008.59 34499.6 0.00 3947.71

71 4292.75 - - 4292.75 41 3430.02 9822.2 0.00 3430.02

72 3865.97 - - 3865.97 42 3973.20 23257.0 0.00 3910.75

73 4727.42 - - 4727.42 43 3720.47 26583.1 0.00 3690.26

74 4218.58 - - 4218.58 44 3049.08 - - 3049.08

75 3391.61 - - 3391.61 45 3650.37 18901.8 0.00 3598.29

76 5776.91 174389.6 25.48 5637.14

77 5155.98 95620.4 23.94 4733.06

78 6604.82 7200.0 43.10 6604.82

79 7409.43 228218.9 20.57 6979.24

80 6674.06 57354.4 36.20 6436.21

81 7656.04 183566.2 26.71 6984.18

82 6094.26 47682.0 31.14 6094.26

83 7086.17 172692.1 24.98 6856.32

84 6551.95 7200.0 44.19 6551.95

85 5928.75 7200.0 42.91 5928.75

8 
x 
3

6 
x 
4

9 
x 
3
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x 
3

* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
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Table I.2 Detailed Results of Experiments on HK Instances with MBS = 0.25 * 

 

inst# Opt. sol. CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t IGap% DU% ULP%

46 1977.72 5.8 1977.72 1977.72 0.00 86 0 1157.41 0.2 41.5 0.0 70.9

47 1810.80 5.2 1810.80 1810.80 0.00 48 0 1059.91 0.3 41.5 0.0 70.8

48 1662.24 5.1 1662.24 1662.24 0.00 103 0 955.01 0.4 42.5 0.0 74.1

49 1869.05 6.0 1869.05 1869.05 0.00 92 0 1106.54 0.2 40.8 0.0 68.9

50 1815.52 3.7 1815.52 1815.52 0.00 38 0 1044.41 0.3 42.5 0.0 73.8

51 2364.26 4.7 2364.26 2364.26 0.00 57 0 1351.89 0.3 42.8 0.0 74.9

52 1600.74 4.2 1600.74 1600.74 0.00 53 0 905.41 0.3 43.4 0.0 76.8

53 1639.21 5.1 1639.21 1639.21 0.00 85 0 957.15 0.2 41.6 0.0 71.3

54 1611.00 3.9 1611.00 1611.00 0.00 35 0 991.58 0.3 38.4 0.0 62.5

55 2031.71 4.6 2031.71 2031.71 0.00 57 0 1295.26 0.3 36.2 0.0 56.9

56 2444.79 44.8 2444.79 2444.79 0.00 807 0 950.85 0.5 61.1 0.0 157.1

57 2822.08 111.2 2822.08 2822.08 0.00 2942 0 1077.49 0.5 61.8 0.0 161.9

58 2325.74 26.3 2325.74 2325.74 0.00 469 0 907.17 0.7 61.0 0.0 156.4

59 2421.72 33.4 2421.72 2421.72 0.00 725 0 862.15 0.8 64.4 0.0 180.9

60 2726.10 69.0 2726.10 2726.10 0.00 1498 0 1030.69 0.5 62.2 0.0 164.5

61 2948.37 43.2 2948.37 2948.37 0.00 639 0 1202.51 0.6 59.2 0.0 145.2

62 2388.69 27.6 2388.69 2388.69 0.00 497 0 955.18 0.6 60.0 0.0 150.1

63 2765.01 49.0 2765.01 2765.01 0.00 964 0 1012.49 0.5 63.4 0.0 173.1

64 2539.12 33.8 2539.12 2539.12 0.00 601 0 943.08 0.7 62.9 0.0 169.2

65 2454.52 48.2 2454.52 2454.52 0.00 973 0 920.75 0.6 62.5 0.0 166.6

66 3254.18 1130.2 3254.17 3254.18 0.00 22671 1 881.33 1.5 72.9 0.0 269.2

67 3777.81 limit 3580.60 3777.81 5.22 140747 36731 1085.40 1.4 71.3 0.0 248.1

68 3373.48 2211.8 3373.48 3373.48 0.00 41036 0 812.15 1.3 75.9 0.0 315.4

69 3794.04 limit 3659.56 3794.04 3.54 135895 20816 1016.51 1.3 73.2 0.0 273.2

70 3543.03 741.8 3543.02 3543.03 0.00 10302 1 977.00 1.3 72.4 0.0 262.6

71 4292.75 3981.4 4292.75 4292.75 0.00 89083 1 1075.57 1.5 74.9 0.0 299.1

72 3865.97 1192.1 3865.95 3865.97 0.00 18964 3 997.59 1.6 74.2 0.0 287.5

73 4727.42 2211.2 4727.38 4727.42 0.00 31800 3 1195.86 1.3 74.7 0.0 295.3

74 4218.58 4065.7 4218.55 4218.58 0.00 68010 2 1128.86 1.3 73.2 0.0 273.7

75 3391.61 675.6 3391.61 3391.61 0.00 11098 0 1023.07 1.7 69.8 0.0 231.5

76 5637.14 limit 3388.99 5776.91 41.34 61110 36440 1024.41 3.7 81.8 2.5 463.9

77 4733.06 limit 3044.84 5155.98 40.95 67574 49180 803.56 3.4 83.0 8.9 541.6

78 6604.82 limit 3758.09 6604.82 43.10 74700 53345 1144.13 3.0 82.7 0.0 477.3

79 6979.24 limit 4555.49 7409.43 38.52 67823 43033 1233.71 3.4 82.3 6.2 500.6

80 6436.21 limit 3570.99 6674.06 46.49 93667 71567 992.44 3.5 84.6 3.7 572.5

81 6984.18 limit 4294.48 7656.04 43.91 80170 62881 1304.17 3.5 81.3 9.6 487.0

82 6094.26 limit 3753.61 6094.26 38.41 82306 55730 1206.44 3.2 80.2 0.0 405.1

83 6856.32 limit 4182.14 7086.17 40.98 75060 47498 1225.01 3.3 82.1 3.4 478.5

84 6551.95 limit 3656.66 6551.95 44.19 83294 65495 1199.89 3.7 81.7 0.0 446.0

85 5928.75 limit 3384.53 5928.75 42.91 75616 59246 942.81 3.6 84.1 0.0 528.8

MIP LPR
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Table I.2 (continued) 

 

inst# Opt. sol. CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

LPR LPR t IGap% DU% ULP%

1 2633.32 389.1 2633.30 2633.32 0.00 3702 1 967.57 1.8 63.3 0.0 172.2

2 3210.22 406.9 3210.22 3210.22 0.00 4554 0 1172.35 1.7 63.5 0.0 173.8

3 3012.42 544.5 3012.42 3012.42 0.00 7530 0 1077.56 1.8 64.2 0.0 179.6

4 2705.11 423.5 2705.11 2705.11 0.00 6138 0 995.35 1.7 63.2 0.0 171.8

5 3040.29 414.9 3040.29 3040.29 0.00 4944 0 1146.76 1.7 62.3 0.0 165.1

31 3221.19 310.7 3221.19 3221.19 0.00 3194 0 1267.59 2.1 60.6 0.0 154.1

32 2809.13 478.1 2809.13 2809.13 0.00 4804 0 1089.74 2.0 61.2 0.0 157.8

33 3288.23 555.2 3288.23 3288.23 0.00 7878 0 1149.20 1.8 65.1 0.0 186.1

34 2929.66 235.7 2929.66 2929.66 0.00 2709 0 1150.34 1.7 60.7 0.0 154.7

35 2242.64 227.5 2242.64 2242.64 0.00 2766 0 851.75 2.1 62.0 0.0 163.3

16 3640.63 3951.0 3640.61 3640.63 0.00 32760 2 1360.57 3.7 62.6 0.0 167.6

17 4158.24 limit 3790.14 4178.72 9.30 53268 25157 1428.61 4.4 65.6 0.5 192.5

18 3592.83 4190.9 3592.81 3592.83 0.00 29604 4 1244.85 5.7 65.4 0.0 188.6

19 2923.44 2334.9 2923.42 2923.44 0.00 15404 1 1087.04 3.9 62.8 0.0 168.9

20 4210.04 limit 3674.27 4224.34 13.02 55608 32041 1499.18 3.9 64.4 0.3 181.8

36 3218.06 3608.4 3218.03 3218.06 0.00 32992 2 1141.58 3.4 64.5 0.0 181.9

37 3202.54 2663.9 3202.53 3202.54 0.00 19519 2 1148.32 4.6 64.1 0.0 178.9

38 3755.65 1460.3 3755.65 3755.65 0.00 14847 0 1427.86 4.0 62.0 0.0 163.0

39 3229.05 2635.6 3229.03 3229.05 0.00 27926 2 1167.43 4.4 63.8 0.0 176.6

40 3273.34 3774.9 3273.31 3273.34 0.00 31576 2 1196.46 4.0 63.4 0.0 173.6

26 3733.70 limit 3270.65 3764.59 13.12 28406 16633 1369.51 10.0 63.3 0.8 174.9

27 3354.74 limit 3012.05 3354.74 10.22 27981 12274 1261.67 8.5 62.4 0.0 165.9

28 3549.33 limit 3209.55 3564.66 9.96 34904 15433 1215.41 8.8 65.8 0.4 193.3

29 3645.96 limit 3251.42 3660.51 11.18 30832 14684 1311.70 9.7 64.0 0.4 179.1

30 3947.71 limit 3407.06 4008.59 15.01 31179 18440 1432.31 9.2 63.7 1.5 179.9

41 3430.02 limit 3227.26 3430.02 5.91 30612 10825 1248.60 7.3 63.6 0.0 174.7

42 3910.75 limit 3377.56 3973.20 14.99 36322 21069 1395.75 9.4 64.3 1.6 184.7

43 3690.26 limit 3171.79 3720.47 14.75 37122 23810 1329.30 9.3 64.0 0.8 179.9

44 3049.08 2702.3 3049.08 3049.08 0.00 14135 0 1087.81 8.7 64.3 0.0 180.3

45 3598.29 limit 3165.43 3650.37 13.28 45096 26400 1252.42 10.7 65.2 1.4 191.5

7 
x 
3

MIP LPR

8 
x 
3

9 
x 
3

 

   * If the optimal solution is not known for the instance, the best known solution is given instead in underlined form.   

             LB, UB and Gap (%) refer to the final values of the lower bound, upper bound and  the corresponding gap, respectively at the  
                    end of the time limit. 
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APPENDIX J  
 

STATISTICAL SIGNIFICANCE TESTS FOR THE EFFECT OF N AND K ON CPU 

 

 
  Below we present the results of one-way ANOVA tests for testing the effect of the 

number of items (N) and the number of time periods (K) on the MIP solution time (CPU) of 

the experiment instances (HK) under MBS=0.1 setting. The residual plots are also provided 

alongside ANOVA outcomes. Since the data classes do not show the same amount of 

variability, we have also performed the analysis on transformed data. The analysis of 

transformed data shows that both K and N are significant for CPU at 0.01 confidence level.  

(Note: 0.01(3,36) 4.39F = ) 

 

Effect of the Number of Items (N) on Solution Time (CPU)   
 
 
 
 
One-way ANOVA: CPU versus N 

 
Analysis of Variance for CPU      

Source     DF        SS        MS        F        P 

N           3 2.899E+09 966254644    32.28    0.000 

Error      36 1.077E+09  29930119 

Total      39 3.976E+09 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  -----+---------+---------+---------+- 

6          10        56        38   (---*---)  

7          10       404       166   (----*---)  

8          10      4578      2934        (----*---)  

9          10     20905     10540                             (---*----)  

                                   -----+---------+---------+---------+- 

Pooled StDev =     5471                 0      8000     16000     24000 

 

 

 

Residuals vs Fits for CPU 

 

 

 
 
 
 
One-way ANOVA: CPU^(1/3) versus N 

 
Analysis of Variance for CPU^(1/3 

Source     DF        SS        MS        F        P 

N           3    61.033    20.344   166.33    0.000 

Error      36     4.403     0.122 

Total      39    65.436 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  ----+---------+---------+---------+-- 

6          10    1.9115    0.1872   (-*-)  

7          10    2.6896    0.1920           (-*-)  

8          10    3.9850    0.3932                        (-*-)  

9          10    5.1450    0.5125                                   (-*--)  

                                   ----+---------+---------+---------+-- 

Pooled StDev =   0.3497              2.0       3.0       4.0       5.0 

 

Residuals vs Fits for CPU^(1/3) 
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Effect of the Number of Time Periods (K) on Solution Time (CPU)   

 
 
One-way ANOVA: CPU versus K 

 
Analysis of Variance for CPU      

Source     DF          SS          MS        F        P 

K           3   4.708E+09   1.569E+09     7.02    0.001 

Error      36   8.042E+09   223394835 

Total      39   1.275E+10 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  -------+---------+---------+-------- 

2          10         5         1   (-----*-----)  

3          10        56        38   (-----*-----)  

4          10      1302      1296   (------*-----)  

5          10     25479     29865                    (-----*-----)  

                                   -------+---------+---------+-------- 

Pooled StDev =    14946                   0     15000     30000 

 

Residuals vs Fits for CPU 

 

 

 
 
 
 
One-way ANOVA: CPU^(1/3) versus K 

 
Analysis of Variance for CPU^(1/3 

Source     DF        SS        MS        F        P 

K           3    87.865    29.288   148.75    0.000 

Error      36     7.088     0.197 

Total      39    94.954 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  ----+---------+---------+---------+-- 

2          10    1.2973    0.0389   (-*-)  

3          10    1.9115    0.1872       (-*-)  

4          10    3.1008    0.5453               (-*-)  

5          10    5.1811    0.6736                             (-*)  

                                   ----+---------+---------+---------+-- 

Pooled StDev =   0.4437              1.5       3.0       4.5       6.0 

 

 

Residuals vs Fits for CPU^(1/3) 

 

 
 

 
One-way ANOVA: CPU^(1/4) versus K 

 
Analysis of Variance for CPU^(1/4 

Source     DF        SS        MS        F        P 

K           3   1.09105   0.36368   230.16    0.000 

Error      36   0.05689   0.00158 

Total      39   1.14793 

                                   Individual 95% CIs For Mean 

                                   Based on Pooled StDev 

Level       N      Mean     StDev  -+---------+---------+---------+----- 

2          10    1.0671    0.0079  (-*-)  

3          10    1.1749    0.0280          (*-)  

4          10    1.3235    0.0581                    (*-)  

5          10    1.5068    0.0458                                (*-)  

                                   -+---------+---------+---------+----- 

Pooled StDev =   0.0398           1.05      1.20      1.35      1.50 

 

 

 
 

Residuals vs Fits for CPU^(1/4) 
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APPENDIX K  
 

k-NEAREST EXPERIMENTS ON HK INSTANCES WITH MBS = 0.1 

 

Table K.1 Solutions of HK Instances for k-Nearest 80% * 

 

inst#
Best sol.        

at the end of 
time limit

Extended CPU            Best sol. inst#
Best sol.        

at the end of 
time limit

Extended CPU            Best sol.

46 1977.72 - 1977.72 1 2633.32 - 2633.32

47 1810.80 - 1810.80 2 3210.22 - 3210.22

48 1662.24 - 1662.24 3 3012.42 - 3012.42

49 1869.05 - 1869.05 4 2705.11 - 2705.11

50 1815.52 - 1815.52 5 3040.29 - 3040.29

51 2364.26 - 2364.26 31 3221.19 - 3221.19

52 1600.74 - 1600.74 32 2809.13 - 2809.13

53 1639.21 - 1639.21 33 3288.23 - 3288.23

54 1611.00 - 1611.00 34 2929.66 - 2929.66

55 2031.71 - 2031.71 35 2242.64 - 2242.64

56 2444.79 - 2444.79 16 3640.63 - 3640.63

57 2822.08 - 2822.08 17 4158.24 - 4158.24

58 2325.74 - 2325.74 18 3592.83 - 3592.83

59 2421.72 - 2421.72 19 2923.44 - 2923.44

60 2760.85 - 2760.85 20 4224.16 8580.5 4210.04

61 2948.37 - 2948.37 36 3218.06 - 3218.06

62 2388.69 - 2388.69 37 3202.54 - 3202.54

63 2765.01 - 2765.01 38 3755.65 - 3755.65

64 2539.12 - 2539.12 39 3229.05 - 3229.05

65 2454.52 - 2454.52 40 3273.34 - 3273.34

66 3045.04 - 3045.04 26 3749.13 50175.7 3733.70

67 3639.85 - 3639.85 27 3354.74 8085.3 3354.74

68 3075.65 - 3075.65 28 3549.33 - 3549.33

69 3476.68 - 3476.68 29 3663.56 14845.8 3645.96

70 3401.50 - 3401.50 30 3999.82 22462.5 3947.71

71 3964.52 - 3964.52 41 3504.01 15505.1 3430.02

72 3561.53 - 3561.53 42 3910.75 12169.7 3910.75

73 4431.01 - 4431.01 43 3842.22 16861.0 3690.26

74 3926.11 - 3926.11 44 3049.08 - 3049.08

75 3155.77 - 3155.77 45 3604.26 20310.1 3598.29

76 4017.88 9421.3 3992.83

77 3317.44 9093.9 3317.44

78 4762.10 48853.8 4667.45

79 5014.53 10075.0 4998.03

80 3793.34 - 3793.34

81 5222.06 38387.8 5150.04

82 4489.33 12260.4 4489.33

83 4702.02 12214.8 4665.45

84 4423.78 8237.6 4423.78

85 3870.14 - 3870.14

7 
x 
3

8 
x 
3

9 
x 
3

6 
x 
3

6 
x 
2

6 
x 
4

6 
x 
5

 
* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
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Table K.2 Solutions of HK Instances for k-Nearest 60% * 

 

inst#
Best sol.        

at the end of 
time limit

Extended CPU            Best sol. inst#
Best sol.        

at the end of 
time limit

Extended CPU            Best sol.

46 1977.72 - 1977.72 1 2633.32 - 2633.32

47 1810.80 - 1810.80 2 3210.22 - 3210.22

48 1705.29 - 1705.29 3 3012.42 - 3012.42

49 1869.05 - 1869.05 4 2705.11 - 2705.11

50 1815.52 - 1815.52 5 3040.29 - 3040.29

51 2364.26 - 2364.26 31 3221.19 - 3221.19

52 1600.74 - 1600.74 32 2809.13 - 2809.13

53 1701.60 - 1701.60 33 3288.23 - 3288.23

54 1611.00 - 1611.00 34 2929.66 - 2929.66

55 2202.58 - 2202.58 35 2242.64 - 2242.64

56 2511.47 - 2511.47 16 3640.63 - 3640.63

57 2833.96 - 2833.96 17 4158.24 - 4158.24

58 2325.74 - 2325.74 18 3592.83 - 3592.83

59 2421.72 - 2421.72 19 2923.44 - 2923.44

60 2760.85 - 2760.85 20 4275.28 - 4275.28

61 2948.37 - 2948.37 36 3218.06 - 3218.06

62 2388.69 - 2388.69 37 3202.54 - 3202.54

63 2765.01 - 2765.01 38 3755.65 - 3755.65

64 2539.12 - 2539.12 39 3229.05 - 3229.05

65 2489.87 - 2489.87 40 3273.34 - 3273.34

66 3045.04 - 3045.04 26 3747.57 14780.3 3733.70

67 3639.85 - 3639.85 27 3354.74 8677.5 3354.74

68 3075.65 - 3075.65 28 3549.33 8757.3 3549.33

69 3476.68 - 3476.68 29 3722.20 14860.2 3645.96

70 3401.50 - 3401.50 30 4037.01 43559.7 4010.12

71 4045.76 - 4045.76 41 3446.47 13570.9 3430.02

72 3561.53 - 3561.53 42 3925.68 19090.3 3910.75

73 4431.01 - 4431.01 43 3690.26 - 3690.26

74 3926.11 - 3926.11 44 3049.08 - 3049.08

75 3155.77 - 3155.77 45 3688.94 10855.3 3598.29

76 3992.83 - 3992.83

77 3390.58 8797.5 3390.58

78 4810.48 10826.7 4782.12

79 4998.03 7937.8 4998.03

80 3793.34 9196.2 3793.34

81 5156.68 10683.8 5150.04

82 4489.33 - 4489.33

83 4665.45 7665.8 4665.45

84 4588.87 13522.5 4423.78

85 4013.97 9851.3 3945.26

9 
x 
3

6 
x 
5

6 
x 
2

7 
x 
3

6 
x 
3

8 
x 
3

6 
x 
4

 

 

 

 

 

 

 
 

* Shaded cells indicate solutions with non-zero solution gaps. Best sol. refers to the best known solution for the instance. 
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Table K.3 Solutions of HK Instances for k-Nearest 40% * 
 

inst#
Best sol.        

at the end of 
time limit

Extended CPU            Best sol. inst#
Best sol.        

at the end of 
time limit

Extended CPU            Best sol.

46 2316.35 - 2316.35 1 2741.28 - 2741.28

47 1810.80 - 1810.80 2 3349.07 - 3349.07

48 1885.09 - 1885.09 3 3034.00 - 3034.00

49 2036.99 - 2036.99 4 2944.37 - 2944.37

50 1926.94 - 1926.94 5 3226.52 - 3226.52

51 2364.26 - 2364.26 31 3333.78 - 3333.78

52 1600.74 - 1600.74 32 2809.13 - 2809.13

53 1701.60 - 1701.60 33 3435.41 - 3435.41

54 1611.00 - 1611.00 34 2929.66 - 2929.66

55 2247.74 - 2247.74 35 2242.64 - 2242.64

56 2539.65 - 2539.65 16 3640.63 - 3640.63

57 2915.93 - 2915.93 17 4158.24 - 4158.24

58 2325.74 - 2325.74 18 3838.10 - 3838.10

59 2724.46 - 2724.46 19 3011.86 - 3011.86

60 2899.27 - 2899.27 20 4543.96 - 4543.96

61 2948.37 - 2948.37 36 3218.06 - 3218.06

62 2388.69 - 2388.69 37 3202.54 - 3202.54

63 2765.01 - 2765.01 38 3755.65 - 3755.65

64 2539.12 - 2539.12 39 3229.05 - 3229.05

65 2497.49 - 2497.49 40 3273.34 - 3273.34

66 3391.78 - 3391.78 26 3733.70 - 3733.70

67 3668.09 - 3668.09 27 3354.74 - 3354.74

68 3297.11 - 3297.11 28 3549.33 - 3549.33

69 3824.79 - 3824.79 29 3645.96 - 3645.96

70 3401.50 - 3401.50 30 4010.12 - 4010.12

71 4045.76 - 4045.76 41 3430.02 - 3430.02

72 3561.53 - 3561.53 42 3910.75 - 3910.75

73 4611.30 - 4611.30 43 3712.33 - 3712.33

74 3926.11 - 3926.11 44 3049.08 - 3049.08

75 3749.06 - 3749.06 45 3598.29 - 3598.29

76 4282.70 - 4282.70

77 3434.96 - 3434.96

78 4967.64 - 4967.64

79 5119.16 - 5119.16

80 3793.34 - 3793.34

81 5273.43 - 5273.43

82 4489.33 - 4489.33

83 4885.54 - 4885.54

84 4423.78 - 4423.78

85 4211.81 - 4211.81

6 
x 
5

6 
x 
3

8 
x 
3

6 
x 
4

9 
x 
3

6 
x 
2

7 
x 
3

* Best sol. refers to the best known solution for the instance. Since all instances were solved with the time limit, the entries 

in the first and third columns are all equal for this setting. 
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Table K.4 Detailed Results for k-Nearest Experiments on HK Instances * 

inst# CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU% CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU% CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU%

46 4.0 1977.72 1977.72 0.0 78 0 0.0 3.6 1977.72 1977.72 0.00 67 0 0.0 1.0 2316.35 2316.35 0.00 24 0 17.1

47 3.6 1810.80 1810.80 0.0 38 0 0.0 3.5 1810.80 1810.80 0.00 40 0 0.0 3.1 1810.80 1810.80 0.00 48 0 0.0

48 4.8 1662.24 1662.24 0.0 83 0 0.0 4.2 1705.29 1705.29 0.00 105 0 2.6 3.3 1885.09 1885.09 0.00 46 0 13.4

49 5.2 1869.05 1869.05 0.0 95 0 0.0 4.0 1869.05 1869.05 0.00 73 0 0.0 3.0 2036.99 2036.99 0.00 57 0 9.0

50 4.1 1815.52 1815.52 0.0 60 0 0.0 3.5 1815.52 1815.52 0.00 55 0 0.0 2.8 1926.94 1926.94 0.00 17 0 6.1

51 4.1 2364.26 2364.26 0.0 39 0 0.0 4.2 2364.26 2364.26 0.00 69 0 0.0 2.0 2364.26 2364.26 0.00 27 0 0.0

52 4.7 1600.74 1600.74 0.0 91 0 0.0 4.1 1600.74 1600.74 0.00 57 0 0.0 2.5 1600.74 1600.74 0.00 35 0 0.0

53 4.6 1639.21 1639.21 0.0 79 0 0.0 3.3 1701.60 1701.60 0.00 75 0 3.8 2.3 1701.60 1701.60 0.00 38 0 3.8

54 4.1 1611.00 1611.00 0.0 63 0 0.0 3.1 1611.00 1611.00 0.00 40 0 0.0 3.5 1611.00 1611.00 0.00 32 0 0.0

55 3.1 2031.71 2031.71 0.0 33 0 0.0 3.7 2202.58 2202.58 0.00 61 0 8.4 2.3 2247.74 2247.74 0.00 30 0 10.6

56 38.6 2444.79 2444.79 0.0 709 0 0.0 37.3 2511.47 2511.47 0.00 707 0 2.7 12.8 2539.65 2539.65 0.00 206 0 3.9

57 80.8 2822.08 2822.08 0.0 1793 0 0.0 36.7 2833.96 2833.96 0.00 985 0 0.4 22.5 2915.93 2915.93 0.00 543 0 3.3

58 23.7 2325.74 2325.74 0.0 345 0 0.0 18.9 2325.74 2325.74 0.00 347 0 0.0 11.2 2325.74 2325.74 0.00 130 0 0.0

59 41.6 2421.72 2421.72 0.0 1045 0 0.0 35.1 2421.72 2421.72 0.00 754 0 0.0 14.3 2724.46 2724.46 0.00 343 0 12.5

60 64.9 2760.85 2760.85 0.0 1368 0 1.3 55.8 2760.85 2760.85 0.00 1339 0 1.3 24.5 2899.27 2899.27 0.00 721 0 6.4

61 33.6 2948.37 2948.37 0.0 632 0 0.0 36.2 2948.37 2948.37 0.00 751 0 0.0 12.6 2948.37 2948.37 0.00 274 0 0.0

62 17.9 2388.69 2388.69 0.0 321 0 0.0 21.0 2388.69 2388.69 0.00 396 0 0.0 12.8 2388.69 2388.69 0.00 167 0 0.0

63 34.3 2765.01 2765.01 0.0 601 0 0.0 30.6 2765.01 2765.01 0.00 772 0 0.0 26.9 2765.01 2765.01 0.00 643 0 0.0

64 22.8 2539.12 2539.12 0.0 403 0 0.0 28.0 2539.12 2539.12 0.00 620 0 0.0 10.2 2539.12 2539.12 0.00 222 0 0.0

65 46.4 2454.52 2454.52 0.0 1112 0 0.0 33.4 2489.87 2489.87 0.00 811 0 1.4 15.9 2497.49 2497.49 0.00 378 0 1.8

66 212.7 3045.04 3045.04 0.0 3187 0 0.0 220.4 3045.04 3045.04 0.00 5097 0 0.0 62.4 3391.78 3391.78 0.00 1989 0 11.4

67 1698.4 3639.85 3639.85 0.0 43782 2 0.0 866.2 3639.83 3639.85 0.00 18951 1 0.0 128.6 3668.09 3668.09 0.00 2766 0 0.8

68 492.4 3075.65 3075.65 0.0 8285 0 0.0 408.7 3075.62 3075.65 0.00 9259 1 0.0 178.2 3297.11 3297.11 0.00 3488 0 7.2

69 2082.6 3476.65 3476.68 0.0 40967 4 0.0 1082.1 3476.68 3476.68 0.00 17745 1 0.0 84.4 3824.79 3824.79 0.00 1718 0 10.0

70 451.7 3401.50 3401.50 0.0 8080 0 0.0 163.2 3401.50 3401.50 0.00 3815 0 0.0 79.7 3401.50 3401.50 0.00 1939 0 0.0

71 703.5 3964.52 3964.52 0.0 17711 0 0.0 97.7 4045.76 4045.76 0.00 2918 0 2.0 106.8 4045.76 4045.76 0.00 2699 0 2.0

72 276.7 3561.53 3561.53 0.0 4705 0 0.0 370.2 3561.50 3561.53 0.00 6194 1 0.0 80.0 3561.53 3561.53 0.00 2077 0 0.0

73 840.7 4430.98 4431.01 0.0 16673 1 0.0 657.4 4431.01 4431.01 0.00 11685 0 0.0 133.7 4611.30 4611.30 0.00 2615 0 4.1

74 864.3 3926.11 3926.11 0.0 17934 0 0.0 561.4 3926.11 3926.11 0.00 13306 0 0.0 301.1 3926.11 3926.11 0.00 6092 0 0.0

75 108.3 3155.75 3155.77 0.0 1868 1 0.0 107.6 3155.77 3155.77 0.00 1659 0 0.0 212.3 3749.06 3749.06 0.00 5163 0 18.8

k-Nearest 40%k-Nearest 80% k-Nearest 60%

6 
x 
2

6 
x 
4

6 
x 
3
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Table K.4 (continued) 

inst# CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU% CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU% CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU%

76 limit 3814.44 4017.88 5.1 82522 23227 0.6 5573.0 3992.81 3992.83 0.00 77526 2 0.0 247.1 4282.70 4282.70 0.00 5913 0 7.3

77 limit 3163.82 3317.44 4.6 96012 24512 0.0 limit 3207.03 3390.58 5.41 111143 28948 2.2 885.0 3434.96 3434.96 0.00 23291 1 3.5

78 limit 3860.24 4762.10 18.9 118150 84517 2.0 limit 4540.20 4810.48 5.62 131999 49138 3.1 277.7 4967.64 4967.64 0.00 6945 1 6.4

79 limit 4706.06 5014.53 6.2 73861 25249 0.3 limit 4809.38 4998.03 3.77 95715 17672 0.0 1799.6 5119.16 5119.16 0.00 21896 0 2.4

80 5245.3 3793.34 3793.34 0.0 62987 2 0.0 limit 3545.63 3793.34 6.53 96502 28699 0.0 997.9 3793.34 3793.34 0.00 14973 0 0.0

81 limit 4350.20 5222.06 16.7 84321 54139 1.4 limit 4807.91 5156.68 6.76 148297 52335 0.1 764.5 5273.43 5273.43 0.00 14428 0 2.4

82 limit 4118.39 4489.33 8.3 94142 40353 0.0 1224.6 4489.32 4489.33 0.00 26347 2 0.0 518.4 4489.33 4489.33 0.00 9116 0 0.0

83 limit 4272.75 4702.02 9.1 93939 38000 0.8 limit 4539.37 4665.45 2.70 130506 17654 0.0 493.0 4885.54 4885.54 0.00 9645 0 4.7

84 limit 4249.40 4423.78 3.9 95334 21030 0.0 limit 4045.65 4588.87 11.84 104626 55971 3.7 954.7 4423.78 4423.78 0.00 15983 0 0.0

85 7142.8 3870.11 3870.14 0.0 78587 5 0.0 limit 3691.44 4013.97 8.04 88312 35621 3.7 100.4 4211.81 4211.81 0.00 2077 0 8.8

1 288.3 2633.32 2633.32 0.0 3883 0 0.0 273.7 2633.32 2633.32 0.00 2740 0 0.0 52.5 2741.28 2741.28 0.00 717 0 4.1

2 583.7 3210.19 3210.22 0.0 8002 1 0.0 380.0 3210.22 3210.22 0.00 6719 0 0.0 111.4 3349.07 3349.07 0.00 1549 0 4.3

3 347.3 3012.42 3012.42 0.0 4845 0 0.0 289.8 3012.42 3012.42 0.00 4051 0 0.0 46.1 3034.00 3034.00 0.00 687 0 0.7

4 367.6 2705.09 2705.11 0.0 5171 1 0.0 406.0 2705.11 2705.11 0.00 3578 0 0.0 45.5 2944.37 2944.37 0.00 846 0 8.8

5 689.6 3040.29 3040.29 0.0 8057 0 0.0 321.0 3040.29 3040.29 0.00 3745 0 0.0 97.0 3226.52 3226.52 0.00 1497 0 6.1

31 330.7 3221.19 3221.19 0.0 4110 0 0.0 200.2 3221.19 3221.19 0.00 2856 0 0.0 88.4 3333.78 3333.78 0.00 939 0 3.5

32 422.9 2809.13 2809.13 0.0 5589 0 0.0 338.4 2809.13 2809.13 0.00 3615 0 0.0 34.4 2809.13 2809.13 0.00 411 0 0.0

33 1170.1 3288.21 3288.23 0.0 16402 1 0.0 300.0 3288.23 3288.23 0.00 4341 0 0.0 118.7 3435.41 3435.41 0.00 1339 0 4.5

34 147.3 2929.65 2929.66 0.0 1570 1 0.0 152.6 2929.66 2929.66 0.00 1885 0 0.0 55.4 2929.66 2929.66 0.00 953 0 0.0

35 235.0 2242.64 2242.64 0.0 2891 0 0.0 176.6 2242.64 2242.64 0.00 2534 0 0.0 51.7 2242.64 2242.64 0.00 690 0 0.0

16 2449.5 3640.63 3640.63 0.0 29199 0 0.0 2161.9 3640.61 3640.63 0.00 24216 1 0.0 1214.7 3640.63 3640.63 0.00 13708 0 0.0

17 6559.4 4158.22 4158.24 0.0 65933 2 0.0 6613.8 4158.23 4158.24 0.00 64537 1 0.0 1706.8 4158.24 4158.24 0.00 14517 0 0.0

18 2658.8 3592.83 3592.83 0.0 26369 0 0.0 1077.0 3592.83 3592.83 0.00 10519 1 0.0 287.6 3838.10 3838.10 0.00 3525 0 6.8

19 1752.4 2923.44 2923.44 0.0 12562 1 0.0 1170.1 2923.44 2923.44 0.00 10055 0 0.0 1035.8 3011.85 3011.86 0.00 7610 1 3.0

20 limit 4027.91 4224.16 4.7 54183 14373 0.3 2817.5 4275.26 4275.28 0.00 20988 1 1.5 362.1 4543.96 4543.96 0.00 4476 0 7.9

36 2441.6 3218.06 3218.06 0.0 27232 0 0.0 1997.3 3218.03 3218.06 0.00 19549 1 0.0 862.3 3218.06 3218.06 0.00 10941 0 0.0

37 2548.3 3202.52 3202.54 0.0 21648 1 0.0 1332.2 3202.54 3202.54 0.00 11102 0 0.0 744.7 3202.54 3202.54 0.00 8056 0 0.0

38 1462.4 3755.65 3755.65 0.0 14040 0 0.0 823.9 3755.65 3755.65 0.00 5881 0 0.0 687.8 3755.65 3755.65 0.00 7504 0 0.0

39 1749.8 3229.05 3229.05 0.0 16448 0 0.0 2435.8 3229.05 3229.05 0.00 21487 0 0.0 1425.6 3229.05 3229.05 0.00 11650 0 0.0

40 2104.4 3273.32 3273.34 0.0 19667 1 0.0 3103.5 3273.34 3273.34 0.00 24751 0 0.0 1410.0 3273.34 3273.34 0.00 12451 0 0.0

k-Nearest 80% k-Nearest 60% k-Nearest 40%

8 
x 
3

6 
x 
5

7 
x 
3
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Table K.4 (continued) 

inst# CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU% CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU% CPU LB UB Gap (%)
Total 
Nodes

Rem. 
Nodes

DU%

26 limit 3123.74 3749.13 16.7 42679 26579 0.4 limit 3255.12 3747.57 13.14 36522 17826 0.4 3114.9 3733.70 3733.70 0.00 15416 0 0.0

27 limit 3231.60 3354.74 3.7 32789 6827 0.0 limit 3156.32 3354.74 5.91 35836 9308 0.0 3470.3 3354.73 3354.74 0.00 15045 1 0.0

28 6228.5 3549.31 3549.33 0.0 37494 1 0.0 limit 3337.45 3549.33 5.97 32651 8443 0.0 1868.1 3549.33 3549.33 0.00 7230 0 0.0

29 limit 3223.22 3663.56 12.0 27679 13477 0.5 limit 3233.16 3722.20 13.14 42229 21218 2.1 3503.9 3645.95 3645.96 0.00 22682 1 0.0

30 limit 3414.86 3999.82 14.6 41325 22619 1.3 limit 3396.83 4037.01 15.86 49200 31612 2.3 1754.8 4010.12 4010.12 0.00 9321 0 1.6

41 limit 3023.15 3504.01 13.7 37174 20631 2.2 limit 3067.13 3446.47 11.01 48849 23127 0.5 2126.2 3430.01 3430.02 0.00 14046 1 0.0

42 limit 3589.89 3910.75 8.2 30445 13478 0.0 limit 3454.60 3925.68 12.00 35051 18797 0.4 1526.7 3910.74 3910.75 0.00 12685 1 0.0

43 limit 3238.11 3842.22 15.7 31970 18982 4.1 4849.9 3690.25 3690.26 0.00 35458 2 0.0 2977.6 3712.33 3712.33 0.00 20127 0 0.6

44 limit 3049.07 3049.08 0.0 14998 1 0.0 4871.8 3049.07 3049.08 0.00 25208 1 0.0 1486.4 3049.08 3049.08 0.00 9345 0 0.0

45 limit 3155.59 3604.26 12.5 40692 21417 0.2 limit 3301.35 3688.94 10.51 36882 16835 2.5 4461.3 3598.26 3598.29 0.00 27549 2 0.0

k-Nearest 80% k-Nearest 60% k-Nearest 40%

9 
x 
3

 

     
 

*  LB, UB and Gap (%) refer to the final values of the lower bound, upper bound and the corresponding solution gap, respectively at the end of the time limit. 

      DU% is computed according to the formula  (UB-opt)/opt x 100, where opt refers to the optimal solution value of the instance without any item changeover restrictions. 
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APPENDIX L  
 

THE TWO-STEP HEURISTIC APPROACH (TSH) 

 

 
  As it is, the integrated lot sizing and scheduling problem with sequence dependent 

changeovers is difficult, because several decisions which are linked together need to be 

made simultaneously. The solution of this model can be approximated by a two-step 

heuristic (TSH) which decomposes the problem into lot sizing (LSM) and sequencing (SM) 

steps and solves them in an iterative manner (Koçlar and Süral, 2004).   

 

Description of the Approach 

 

  In this section, we base our discussion of the TSH on a simple version of the lot 

sizing and sequencing problem, which assumes that an item can be produced at most once 

in a period and minimum batch sizes cannot be split between periods. The production, setup 

and changeover variables are defined over time periods (not positions), as follows: 

 

Xjt:  Quantity of item j produced in period t 

       1, If item j is set up in period t                                                 (Setup Variable) 

 0, Otherwise 

      1, If there is a changeover from item i to item j          (Changeover Variable) 

                 in period t     

        0, Otherwise 

 

  The remaining decision variables and problem parameters are used exactly as in the 

original GLSP formulation.  

  On the next page, we present a non-linear formulation of the problem, which has a 

nested structure. The link between the lot sizing and sequencing steps is established through 

setup costs and setup times, where: 

 

( )tf Y = cost of the optimal TSP tour among the items assigned to period t 

( )g t = ( )tg Y = setup time required by the optimal TSP tour in period t 

Yjt: 

ijtZ : 
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Minimize 
, ,

( )i it t t i it t
i t t i t t

h I COO CPX f Y+ + +∑ ∑ ∑ ∑  

Subject to   ( 1)i t it it itI X I d− + − =     ,i t∀  

      it it itX M Y≤      ,i t∀      

( )i it i t t
i

PX C O g Y≤ + −∑    t∀  

it i itX mY≥     ,i t∀  

t t tO Cγ≤     t∀  

(0,1)itY ∈     ,i t∀  

All other variables are non-negative. 

 

For each time period t, the function ( )tf Y  can be defined mathematically by: 

 

( )tf Y =Minimize  ij ijt
ij

SC Z∑    

                                      
0|

N

jit it
j j i

Z Y
= ≠

=∑     1,...,i N∀ =     

                                       
0|

N

ijt it
j j i

Z Y
= ≠

=∑     1,...,i N∀ =     

 0
0

1
N

it
i

Z
=

=∑    

 0
0

1
N

i t
i

Z
=

=∑  

 1
N

ijt
ij SxS

Z S
∈

≤ −∑     ( ),2tS N Y S N⊆ ≤ ≤    

 (0,1)ijtZ ∈     ,i j∀  

 

where 
t-1 t(  item ,first item )

,

( ) ( )t ij ijt last
i j

g Y g t ST Z ST= = +∑  

 

  The TSH approach is approximation to this non-linear model. It considers the two 

levels in the nested framework separately as two linked models for lot sizing (LSM) and 

sequencing (SM), respectively.  
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  For the solution, an iterative procedure is employed. The TSH procedure initially 

starts off with zero setup costs and times for all items and solves the lot sizing problem to 

meet demands subject to capacity limitations and minimum batch sizes. The LSM solves 

the lot sizing problem without considering setups. The corresponding Y variables are used 

as inputs in the second model (SM), which is solved for each time period to determine the 

optimal TSP tour among the items selected for production by the first model. Using lifted 

MTZ constraints for subtour elimination, the SM problem for each period is solved 

sequentially in order to be able to take into consideration the setups between periods. In 

doing so, node zero is assumed to represent the initial setup state in each period and the 

setup costs associated with variable Z0j are calculated accordingly,  

i.e., ST0j = ST(first item in the period, j) 

  In this way, the sequencing decision will be made given the initial setup state each 

period as opposed to the option of solving each period independently. Then, the setup cost 

and time information obtained by the solution of the SM for each period is fed back to the 

LSM. The actual cost of the solution at each iteration is equal to the objective function of 

the LSM and all SM’s added together.   

  In the subsequent steps, the setup time required by the lot sizing solution is 

deducted from the available capacities in the LSM and the model is resolved. In these 

consecutive runs, the LSM faces reduced capacity and it may be obliged to shift the 

production of some items to other periods with some inventory carrying in order to offset 

the effect of setups, which is the basic tradeoff in a lot sizing model. Note that with the use 

of overtime option, we avoid the possibility of hitting a capacity infeasible solution for the 

LSM in any step.  

  The algorithm is designed to stop with a feasible solution whenever the capacity 

required by a solution (including production and setup requirements) does not exceed the 

remaining available capacity determined by the LSM. If the algorithm does not stop after a 

certain number of iterations, a feasible solution can easily be obtained by charging extra 

overtime penalty for each period with excess capacity requirements, as long as they do not 

violate overtime limits. To be more precise; 

 

Exceedt: ∑ +−−
i

ttiti tgCOXP )(  

 

    

at the end of the LSM solution  
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where Exceedt  indicates the amount by which the total requirement of an iteration solution 

(with production and setup times) exceeds the actual period capacity plus the overtime 

determined at the LSM step. If this quantity is negative, it means that the LSM and SM 

decisions are compatible, i.e., the sequencing scheme does not require additional overtime, 

and the algorithm stops with a feasible solution. Otherwise, if Exceedt  is positive, then 

extra overtime needs to be assigned with additional cost, provided that it is within limits. 

As long as Exceedt  remains positive, the algorithm continues by changing the capacity 

levels in the LSM and recomputing sequences. However, at any intermediate stage with 

positive excess quantities, one may find a converted feasible solution with the following 

objective function value: 

 Obj.Func=Obj.Funciteration + ( )t t
t

CO Exceed∑  

 

Rudimentary Experiments 

 

  A few rudimentary experiments were conducted to gain more insight about the 

working logic of the TSH and to evaluate its performance. 

  For these tests, we have mainly used the data from the study by Trigeiro et al. 

(1989) with some modifications and additions. Some of these are: 

 

� Two data sets with size 6x7 and 6x15 were used. 20 instances were generated from 

each.  

� The given sequence independent setup cost and time parameters were transformed 

into sequence dependent data as follows: For each item, a deviation quantity was 

generated within the range (0%,25%) of the mean using unbiased uniform random 

variates. Then, two realizations of data were obtained by increasing and decreasing 

the mean by the generated deviation quantity, respectively. The data generated in 

this way were randomly ordered among items to avoid bias.  

� The overtime cost for all periods was taken to be the maximum setup cost among 

all items and the minimum batch size of each item was taken as its minimum non-

zero demand through the planning horizon. 
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  If we examine the typical behaviour of the heuristic solution, we observe that there 

are three solution cases: 

� The procedure starts off with a very high solution value with excessive use of 

overtime, which is reduced iteratively. A feasible solution is obtained at the last 

iteration. (The most common case) 

� TSH enters a loop (the solution value displays zigzagging behaviour), and the best 

converted feasible solution is one of the solutions inside the loop. 

� TSH enters a loop and the best converted feasible solution is one of the solutions 

obtained prior to entering the loop. 

  Once in a loop, TSH continuously fluctuates between a set of previously obtained 

solutions. Therefore, in our experiments we have a set a limit of 10 iterations in order to 

stop continuous loops. In the experiments, we compared the best TSH solutions with the 

best upper bound obtained by the simplified GLSP within a 0.5 hour time limit (UB). The 

original data set as well as a restricted version (with a 10% reduction in period capacities) 

was used for the tests. The results are shown in Table L.1 below. 

 

 Table L.1 TSH Results under Original and Reduced Capacities * 
 

Gap
Time 
(sec)

Iter# Gap
Time 
(sec)

Iter# Gap
Time 
(sec)

Iter# Gap
Time 
(sec)

Iter#

1 13.0 0.1 2 16.0 0.1 2 21 10.5 0.3 2 338.8 1.7 15

2 -10.4 0.3 5 120.0 0.2 3 22 528.3 0.5 4 419.4 0.5 4

3 64.2 0.1 2 89.6 0.1 2 23 -18.9 0.2 2 199.7 1.4 15

4 -1.4 0.1 2 741.3 1.1 15 24 18.4 1.4 10 352.9 2.2 15

5 49.7 0.1 2 116.7 0.1 2 25 -23.6 0.2 2 129.5 0.2 2

6 7.0 0.1 2 1021.3 1.1 15 26 9.1 0.3 2 721.0 0.4 3

7 21.3 0.1 2 14.9 0.3 4 27 2.8 0.3 2 399.3 0.5 3

8 40.3 0.8 10 72.1 0.1 2 28 233.9 1.3 10 368.1 1.5 15

9 10.6 0.1 2 168.5 1.2 15 29 1.9 0.2 2 249.4 1.9 15

10 1.5 0.1 2 1.7 0.1 2 30 308.8 1.2 10 195.1 1.8 15

11 7.4 0.1 2 142.2 1.2 15 31 9.9 0.1 2 176.1 0.3 2

12 -10.3 0.0 1 30.3 0.2 2 32 -21.1 0.2 2 310.6 0.4 2

13 -5.3 0.2 2 222.2 1.6 15 33 -2.2 0.1 1 123.7 1.9 15

14 14.3 0.1 1 333.5 7.7 15 34 -7.1 0.1 1 180.7 4.0 15

15 -1.1 0.0 1 180.0 1.3 15 35 -2.8 0.2 1 116.8 5.5 15

16 -72.1 0.1 1 31.4 0.2 2 36 8.7 0.1 1 149.1 0.3 2

17 -4.6 0.1 2 60.0 0.2 2 37 4.3 0.2 2 317.1 1.9 15

18 23.2 0.1 2 106.9 0.1 2 38 23.5 17.9 10 437.6 0.6 3

19 4.5 0.2 2 156.4 0.1 2 39 -0.1 0.2 2 103.7 0.5 3

20 -5.1 0.1 1 -79.7 0.2 2 40 -8.1 0.1 1 23.5 0.2 2

21.4 190.8 96.7 265.6
-13.8 -79.7 -10.5 -

1.4 8.80.1 2.3 0.8 6.7  Aver.   Aver.

10% Red. Cap.Original

6x
7

Inst

Original

Inst

6x
15

10% Red. Cap.

1.2 3.5
 

   * Shaded cells indicate that TSH entered a loop. The iteration limit is 10 for these tests.  
                 Gap= (TSH-UB)/UB%. The averages have been computed separately for instances with positive and negative gaps. 
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  The results indicate that the heuristic is able to find feasible solutions in very small 

solution times, however, the quality of the solutions is arguable. For small instances with 

normal capacity, the TSH yielded lower solution values compared with the UB of GLSP in 

8 of the 20 instances and the average gap for these instances is -13.8%. For the remaining 

instances, TSH solutions were worse than GLSP by 21.4% on the average. For larger 

instances and when the capacity is restricted, the performance of the heuristic sharply 

deteriorates. There are only a few instances where TSH gave better results than the GLSP. 

Moreover, the number of instances with looping behaviour increases under the case with 

tight capacity restriction. It can be said that the instances with loops usually yield worse 

solutions compared with the GLSP (i.e., they have positive gaps). Therefore, we understand 

that looping is a severe drawback of this algorithm and one must find ways of detecting and 

eliminating this behaviour in order to improve heuristic performance.  

  In its crudest form, TSH is a myopic heuristic that usually yields fast but poor 

quality solutions. Substantial effort is needed for the adjusting the iteration solutions using 

improvement steps to make it comparable with the GLSP. Among these improvement 

possibilities that are open for further examination is the adjustment of minimum batch sizes 

to allow splitting between periods if capacity is restrictive, the elimination of the cases 

where minimum batch sizes are needlessly forced to be produced twice over period 

boundaries etc. Alternatively, one can find ways of incorporating capacity limitations 

within the SM stage. In this way, the TSP’s will be solved under some consideration of the 

available capacity and the link between capacity consumption decisions in both models can 

be established more closely.  

 


