

A GIS DOMAIN FRAMEWORK UTILIZING JAR LIBRARIES AS
COMPONENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EBRU ÖZDOĞRU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE

IN
COMPUTER ENGINEERING

MAY 2005

 ii

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen
 Director

I certified that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Ayşe Kiper
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ali Hikmet Doğru
 Supervisor

Examining Committee Members

Assoc.Prof. Dr. Volkan Atalay (CENG, METU)

Assoc.Prof. Dr. Ali Doğru (CENG, METU)

Assoc.Prof. Dr. Onur Demirörs (Informatics, METU)

Assoc.Prof. Dr. Nihan K.Çiçekli (CENG, METU)

Dr. Meltem Turhan Yöndem (CENG, METU)

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Ebru Özdoğru

Signature :

 iv

 ABSTRACT

A GIS DOMAIN FRAMEWORK UTILIZING JAR LIBRARIES AS COMPONENTS

Özdoğru, Ebru

M. S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Hikmet Doğru

May 2005, 133 pages

A Component Oriented Software Engineering (COSE) modeling environment is

enhanced with the capability to import executable components and deliver

applications through their composition. For this purpose, an interface layer that

utilizes JAR libraries as components has been developed. Also, Domain Engineering

process has been applied to Geographical Information Systems (GIS) domain and

utilized towards converting the environment to a development framework. The

interface layer imports JAR libraries into the COSECASE tool, which is a graphical

tool supporting COSE approach and COSE Modeling Language (COSEML). As a

result, systems can be designed using abstractions and then implemented by

corresponding deployed components. Imported code is made available to the

COSECASE environment through this interface layer. Also, Domain Analysis,

Domain Design, and Domain Implementation phases of Domain Engineering process

have been applied to the GIS domain. Components developed in this Domain

Implementation phase have been imported into COSECASE. A simple GIS

application has been designed and generated through the interface layer of

COSECASE for demonstration purposes.

Keywords: Component Oriented Software Engineering, Component Oriented,

Component Based Development, Software Component, Domain Engineering,

Application Engineering, Java Bean Components.

 v

 ÖZ

JAR KÜTÜPHANELERİNİ BİLEŞEN OLARAK KULLANAN BİR CBS ALAN
ÇERÇEVESİ

Özdoğru, Ebru

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Danışman: Doç. Dr. Ali Hikmet Doğru

May 2005, 133 sayfa

Bir Bileşen Yönelimli Yazılım Mühendisliği (BYYM) modelleme ortamına,

çalıştırılabilir bileşenleri dışarıdan aktarma ve bu bileşenlerin birleştirilmesi yolu ile

uygulama geliştirilme yeteneği eklendi. Bu amaçla, JAR kütüphanelerini bileşen

olarak kullanmayı sağlayan bir arayüz katmanı geliştirildi. Ayrıca, Coğrafi Bilgi

Sistemleri (CBS) alanı üzerinde Alan Mühendisliği süreci uygulandı ve böylelikle

modelleme ortamından bir geliştirme çerçevesi olarak yararlanıldı. Arayüz katmanı,

JAR kütüphanelerinin BYYM yaklaşımı ve Bileşen Yönelimli Yazılım Mühendisliği

Modelleme Dili (COSEML)‘ni destekleyen grafiksel bir editor olan COSECASE aracı

içerisinden kullanılmasını sağlamaktadır. Sonuç olarak, sistemler, soyut bileşenler ile

tasarlanır ve sonrasında soyutlamalara karşılık gelen var olan bileşen kodları ile

gerçekleştirilir. Bileşen kodları, COSECASE’te bu arayüz katmanı sayesinde

kullanılabilir. Ek olarak, Alan Mühendisliği sürecinin, Alan Analizi, Alan Tasarımı ve

Alan Uygulaması evreleri CBS alanına uygulandı. Alan Uygulaması evresinde

geliştirilmiş bileşenler COSECASE’e kullanılmak üzere yüklendi. Gösterim amaçlı,

basit bir CBS uygulaması, COSECASE’in arayüz katmanı kullanılarak tasarlandı ve

kod üretildi.

Anahtar Kelimeler: Bileşen Yönelimli Yazılım Mühendisliği, Bileşen Yönelim,

Bileşen Yönelimli Uygulama Geliştirme, Yazılım Bileşeni, Alan Mühendisliği,

Uygulama Mühendisliği, Java Bean Bileşenleri.

 vi

To My Minoş

For being always with me…

 vii

 ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Ali Hikmet Doğru, for his

guidance and encouragement throughout the research. To my family, I offer sincere

thanks for their emotional support.

 viii

 TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ.. v

ACKNOWLEDGEMENTS... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES... x

LIST OF FIGURES .. xi

CHAPTER 1 .. 1

1. INTRODUCTION... 1

1.1. Reuse in Software Development .. 2

1.2. Motivation for Domain Engineering... 3

1.3. Motivation for using COSEML and COSECASE Tool 4

1.4. Organization of the Thesis.. 4

CHAPTER 2 .. 6

2. BACKGROUND... 6

2.1. Software Components... 6

2.2. Software Reuse ... 8

2.3. Component Based Software Engineering (CBSE) 9

2.4. Domain Engineering (DE).. 10

2.4.1. Domain Analysis ... 12

2.4.2. Domain Design.. 17

2.4.3. Domain Implementation.. 18

2.4.4. Application Engineering.. 19

2.5. Java Archive (JAR) Library Files... 20

2.6. Java Beans Technology .. 21

 ix

2.7. Bean Development Kit (BDK) and BeanBox Testing Application 26

2.8. COSE Modeling Language (COSEML) and COSECASE....................... 27

CHAPTER 3 .. 31

3. APPLICATION OF DOMAIN ENGINEERING PROCESS TO
GEOGRAPHICAL INFORMATION SYSTEMS (GIS) DOMAIN AND
DOMAIN FRAMEWORK.. 31

3.1. Domain Analysis for GIS Domain.. 32

3.2. Domain Design for GIS Framework... 36

3.3. Components for GIS Framework Domain Implementation...................... 41

CHAPTER 4 .. 58

4. INTERFACE LAYER TO UTILIZE JAR LIBRARIES AS COMPONENTS 58

4.1. Importing Beans into COSECASE Tool and System Design................... 58

4.2. Experimental Results .. 71

4.3. Evaluation of Other Related Work ... 74

CHAPTER 5 .. 76

5. CONCLUSION ... 76

5.1. Work Conducted... 76

5.2. Comments ... 77

5.3. Future Work.. 78

REFERENCES .. 79

APPENDIX A.. 83

GIS FRAMEWORK DESIGN .. 83

APPENDIX B.. 103

DETAILED DEFINITION OF DEVELOPED BEAN CLASSES IN GIS
DOMAIN FRAMEWORK .. 103

 x

 LIST OF TABLES

TABLE

1. COSEML symbols and their meanings... 29

2. Results of the experiments by using the interface layer.................................. 72

3. Results of the experiments by coding the application..................................... 72

4. Comparison of the values of interface layer / coding manually...................... 73

 xi

 LIST OF FIGURES

FIGURES

5. Domain Analysis phase in Domain Engineering process 13

6. Domain Analysis activity and sub-activities... 15

7. Feature Model in FODA ... 17

8. Domain Design phase in Domain Engineering process.................................. 18

9. Domain Implementation phase in Domain Engineering process 19

10. Software Development Based on Domain Engineering.................................. 20

11. Event Handling in Java ... 22

12. Java Beans and JAR Packages .. 25

13. Bean Development Kit (BDK).. 27

14. Graphical symbols in COSEML ... 28

15. A Feature Model for the GIS Domain .. 35

16. Using a component library within the GIS Domain Framework 36

17. Setting configuration file in GIS framework .. 38

18. GIS Domain Framework design ... 39

19. Communication between the BeanMap and the BeanTool components in the
GIS Domain Framework ... 47

20. Communication between the BeanMap and the BeanLayerVector components
in the GIS Domain Framework ... 48

21. Communication between the BeanMap and the BeanLayerRaster components
in the GIS Domain Framework ... 49

22. Communication between the BeanMap and the BeanLayerAnalysis
components in the GIS Domain Framework ... 50

23. Communication between the BeanMap and the BeanLayerSymbolsFont
components in the GIS Domain Framework ... 51

24. Communication between the BeanMap and the BeanLayerSymbolsGeometry
components in the GIS Domain Framework ... 52

 xii

25. Communication between the BeanMap and the BeanLayerSymbolsDrawing
components in the GIS Domain Framework ... 53

26. Communication between the BeanMap and the BeanLayerSymbolsImage
components in the GIS Domain Framework ... 54

27. Communication between the BeanMap and the BeanCoordinateConverter
components in the GIS Domain Framework ... 55

28. An example of using configuration file with the BeanMap component 56

29. Component and Interface Symbols in COSEML.. 59

30. Conceptual Layers in the Framework ... 59

31. Importing existing bean components into COSECASE.................................. 60

32. Using JAR files as components in the COSECASE 62

33. Icons of Imported Bean Component in COSECASE...................................... 63

34. Bean Components from JAR libraries in COSECASE................................... 64

35. Beans in COSECASE ... 65

36. Properties Dialog Box in COSECASE ... 68

37. Parameters Dialog Box in COSECASE.. 69

38. Beans Menu in COSECASE... 71

 1

 CHAPTER 1

INTRODUCTION

The goal of this thesis is to provide the ability to compose applications out of

existing software components. This ability is facilitated by enhancing a modeling tool.

The graphical models created in the COSECASE environment accommodated

abstractions as well as the representation of executable components but the tool did

not contain such components.

This work resulted in the capability to import existing code that can be treated

as a set of complying components. A key concept in the composition of components

towards an executable system is the interfaces. These structures assume the task of

connecting components. However, the logical model offered by COSEASE needs

compatibility with executable components for the sake of consistency and operability.

The main effort in the implementation related part of this thesis was exerted for the

automatic construction of COSEML compatible interfaces. Once imported code is

presented in the modeling screens as components and interfaces, system integration

can be handled by semi-automatic connections among the methods and events of the

components.

As the application field, the Geographical Information Systems (GIS) was

selected. Repeated efforts in production of such systems in the defence industry were

noticed and familiarity with this field helped in this selection.

Component libraries make more sense in a restricted application domain.

Naturally, Domain orientation provides the context for the efficient use of a set of

components whose functionality and meaning is more specific, in a domain. Applying

Domain Engineering (DE) was an intermediate step towards providing a functional

environment: the GIS Domain was modeled and supporting elements were developed

for the framework infrastructure. This preliminary work included a domain model and

a set of components.

 2

All the mentioned approaches are actually manifestations of the reuse concept

in software engineering. This is a concept that eases many difficulties related with

developing new code.

1.1. Reuse in Software Development

Complexity of software systems has increased extremely during the last decade.

As software systems become more complicated, they tend to be rather error prone.

Many projects take many years and cost millions of dollars. Furthermore, significant

portions of the system are still under development with none of the original

developers. Technical knowledge is partitioned among individuals that address the

scope of the project. The software community quite unanimously sees that the reuse of

existing software assets is the key to overcome these problems. A high degree of

software reuse offers possibilities for reducing development efforts and improving

software quality. Meanwhile, there exist various methods and tools to support the

development and management of very large and complex software systems.

Several approaches have been introduced to enable different kinds of reuse, e.g.

source code in the form of modules, functions, classes, or components and other

artifacts related to analysis, design, and architectures. The reuse of architecture

artifacts is closely connected with the application of patterns [1]. In the 1970s,

modules were introduced as reusable software entities. However, those modules have

to be adapted by editing the source code [2]. In the 1980s, object-oriented

programming introduced the concept of “class” as a basic unit of reuse [3] [12].

Inheritance associated with object-orientation is a powerful mechanism to adapt code,

but object-orientation has failed to support high reuse levels. Abstraction, which has

become increasingly popular through object-oriented development methodologies, is

one way to deal with the complexities of large system development. Late 1990s have

been the prime time for software components and component-based software

engineering was introduced. The problem with components is that the bigger the

component, the more specialized it tends to be. On the other hand, small components

are not efficient in terms of reuse because of the development overhead. It is easier to

write a specialized component for each software product.

The term Commercial Off-The-Shelf (COTS) components means reusable

components sold in the marketplace. Customers and system contexts for such COTS

components are not known a priori and may differ very much from each other.

 3

Reuse expands the development context from a single project to multiple

projects. Therefore, domain engineering is very popular in terms of reusability

considering this point. Areas organized around classes of systems or parts of systems

are called domains [4]. Product families are scoped based on commonalities between

the products in an organization. A software product line is a “group of products” in a

specific problem domain. For similar software products, software development based

on product lines is connected with expectations for enhancements in reusability,

adaptability, flexibility, and control of complexity and performance of software. These

products can be developed from a common set of assets. Domain Engineering is the

iterative process of definition, design, and development of related set of systems in a

domain. It uses the principle of abstraction to reduce complexity [4]. It can provide the

essential continuity across sub-systems and time, and concentrates on providing

reusable solutions for families of systems. In the range of a specific problem domain,

software product lines are derived from predefined architectures consisting of

common and variable parts. Variable parts can be changed or adapted to satisfy the

special needs of an application [1].

Systematically grouping reusable software components stored in a software

repository is called classification. This process requires combining the knowledge of

the components in the repository with the knowledge about the application domain

where these components are going to be used. Common characteristics of the

components are grouped and organized into a structure. The repository can easily

understand this structure. Although classification methods have been researched for a

long time, there are no accepted standards for classifying components [5] [6].

Therefore, the key difficulty in classification is organizing the overall repository.

Many projects of a military company include a GIS part to show activities in the

tactical area. Not to develop GIS applications in every project from scratch, systematic

reuse of components stored in a component library that is commercially available is

needed in the organization. In this study, we will show how reusable components in

the form of Java Archive (JAR) libraries can be made run-time components and used

to develop applications easier.

1.2. Motivation for Domain Engineering

GIS functions constitute an important element of military applications. Maps

are displayed, zoom operations are done etc. A lot of effort is spent to develop GIS

 4

applications in such projects from scratch. Projects in the organization are developed

on both Unix and Windows platforms and a discipline is needed to develop GIS

applications easier, in shorter time, and at a lower cost. In this study, GIS is selected as

the domain and analysis phase of domain engineering is applied to the GIS domain.

Experts in this organization collected their requirements. A component library, “Map-

Objects Java (MOJ)” commercially available in the market, was found useful for most

of the projects. A more flexible way is needed. This library has existing code as JAR

archive files. To build GIS applications easier, an interface layer is developed to

utilize JAR archive files as components.

1.3. Motivation for using COSEML and COSECASE Tool

COSECASE is used to design a system with component-oriented approach.

This tool provides graphical modeling of systems with logical and physical component

representations. Components and connectors are selected by using shapes on the

toolbar. Properties, methods, and events are entered into component interfaces

manually. Lacking of executable components in COSECASE tool leads to developing

an interface layer to utilize JAR libraries as components. JAR libraries including Java

Beans that are deployed by companies are used. Beans in these libraries are shown as

components on the toolbar. By such a way, existing component codes can be used in

designing system. Properties, methods, in and out events of these existing components

are shown as the interface of the component. In addition, applications can be

generated and executed through the tool.

1.4. Organization of the Thesis

The focus of the thesis is to develop an interface layer to utilize JAR libraries as

components and using this interface layer to design systems with existing components.

Code generation for the application and execution of the application is enabled within

COSECASE that is based on COSE approach. Although this layer is used to import all

JAR libraries that include Java Beans, a simple Domain Engineering process has been

applied to GIS domain to develop JAR libraries that include Java Beans. This interface

layer is used in Application Engineering, which uses assets from Domain Engineering

process. Beyond this introductory chapter, the thesis is organized as follows: In

Chapter 2, necessary background on software reusability and components, component-

based methodology, domain engineering, Java Beans and JAR libraries are included.

Chapter 3 describes the Domain Engineering process applied to the GIS domain.

 5

Domain Analysis is conducted with a feature model of the domain as suggested by the

Feature Oriented Domain Analysis (FODA) methodology. Domain Design and

architecture of the domain is presented. Components developed in Domain

Implementation phase and domain framework are explained. In chapter 4, interface

layer that is developed to utilize JAR libraries as components for COSECASE is

presented. This interface layer is used in Application engineering process to generate

applications in the domain. Chapter 5 concludes, and presents work that has been

conducted in the thesis and further work. Framework design is modeled with Unified

Modeling Language (UML). Documentation for the design is represented in Appendix

A. Components and framework developed in Domain Implementation phase are given

in detail in Appendix B.

 6

 CHAPTER 2

BACKGROUND

2.1. Software Components

Software components in software are similar with Integrated Circuits (ICs) in

electronics. They are "black boxes" that encapsulate functionality and provide services

based on a protocol. The protocol is a contract between the developer of the

component and its user. It defines that how the component will behave in various

circumstances.

There are so many definitions about software components in the literature:

A software component is any standard, reusable, and previously implemented

unit that has a function in a well-defined architecture and can be replaceable [7].

A component is encapsulated, distributable, and executable piece of software

that provides and receives services through well-defined interfaces [9].

Software components are binary units of independent production, acquisition

and deployment that interact to form a functioning system [4].

All the definitions above are based on the reusability of software components.

Software components provide specific functionality that can be reused in different

places. Any software component conforming to the same protocol can be replaced

with another one performing the same function. Programmers can then connect

software components together to create different applications, just as electrical

engineer wires together components to create an electronical device. Writing

applications with software components instead of writing a traditional program is

analogous to wiring together ICs to build an electronical device instead of using

discrete components or rolling our own inductors. Software reusability has long been

a holy grail of software engineering and a major goal of object-oriented programming.

Software components are designed to be reusable, even interchangeable. Since,

 7

components are previously implemented and tested, the system becomes more

reliable.

Software components hide implementation, conform to interfaces, and

encapsulate data, just like classes do in object-oriented languages. Almost all software

components are also classes, but their difference from classes is that components

conform to a defined software component protocol.

Components interact with each other by using their interfaces. An interface is a

set of operations, which can be invoked by other components. Understandable

specifications of the involved syntactic and behavioral interfaces are needed. A

component framework supports components conforming to certain standards, and

regulates the interaction between components. A well-defined conceptual framework

is required as a reliable foundation.

Although components are typically viewed as corresponding to a compilation

unit, their level of granularity may distinguish them. Architectural level components

correspond to subsystems or other independent units. At the code level, when

compared to objects, components are larger, targeted more towards the user than the

developer, conform to industry-standard interfaces, and are distributed in binary rather

than source code form. Another key attribute that helps to distinguish components

from other development artifacts is that they are separable from their original context.

Thus, components are usable in other contexts.

The correlation of component concepts with marketplace concepts defines the

term “Commercial Off-The-Shelf” (COTS). If components are to be sold as separate

products, they need to be generalized to enable reuse in different contexts.

“Components are viable only if the investment in their creation is returned as a result

of their deployment” [4]. The cost-effectiveness of component production depends on

the reusability of the produced software components. Generalization in the usage of

components brings some inconsistencies. There is an inherent mismatch between the

ability to easily replace components and the interests of COTS software vendors [10].

COTS components should be reusable in as many contexts as possible, and the

adaptation costs for customers should be low. COTS products are very important for

large system development. These systems are created by integration of COTS products

from different sources. COTS-based system development is an act of composition and

is shaped by realities of the COTS marketplace [11] [12]. This strategy considers

 8

system definitions and marketplace simultaneously. On the other hand, traditional

system development firstly identifies requirements, and then defines architecture, and

then implements the system. Therefore organizations must learn COTS-based system

development to crate large systems.

2.2. Software Reuse

Software Reuse is the practice of using existing software components –building

blocks- to develop new applications. The idea of developing software once and using

it for a variety of different requirements has been a driving force of software

engineering methods for a long time. It is easier to reuse the artifacts than it is to

develop software from scratch. To develop software by using existing components, it

must be known what the components do. Reusable software elements can be code

segments, executable programs, requirements, knowledge, design and architectures,

test data and test plans, or software tools.

Software reuse is the practice of developing new applications from existing

software. This offers the potential to reduce the time, cost and effort needed to develop

and maintenance high-quality software [5]. It plays a vital role in enhancing

productivity, maintainability, portability, quality, and standarts of software products.

The two primary techniques with software reusability are the compositional and

generative techniques. Compositional techniques relate to creation of new software

from existing components retrieved from a reusability library [13]. In the generative

technique, reusable components are built into a tool. Much of the work of selecting,

customizing, and composing the components is automated [6]. The generative

techniques are an extension of the compositional approach. Compositional techniques

are more fundemental, since basic components must be well understood to be

incorporated into such a tool [14].

Software reuse can be practiced vertically or horizontally. Reusing components

within a single domain –an area– is called as vertical reuse. On the other hand,

horizontal reuse is the reuse of software components across different domains [5].

Opportunistic and systematic approaches are two basic forms of software reuse.

In opportunistic reuse, new software is developed from existing systems, but they are

modified to meet the requirements of the new software. In systematic reuse, new

applications are developed from software that has been designed and developed to

 9

reuse specially for other similar applications. Multi-project activities are generally

carried out continuously over longer periods of time in an organization. Systematic

reuse, the reuse of other software products, such as system designs and architectures,

can increase the benefits of software reuse. This is called as “higher-level reuse”

because system architecture is independent of code or language.

In the following sections, two software engineering methods related to these

two approaches are introduced.

2.3. Component Based Software Engineering (CBSE)

In the 1980s, object-oriented development methodologies that deal with the

complexities of large system development became popular. These methodologies

introduced “class” as basic unit of reuse. On the other hand, in the late 1990s,

“software components” and “component based software engineering” were introduced

in the concept of reusability.

Object-Oriented Techniques have been considered a powerful means of solving

software crisis through their high reusability and maintainability. However, Object-

Oriented Programming (OOP) has not brought many benefits, since they have not

provided interoperability of components at the binary/runtime level. The paradigm for

software development methods is shifting from OOP to Component-Based

Development (CBD) and Component Based Software Engineering (CBSE) [15].

Software development through the planned integration of pre-existing software

components is called CBD, CBSE, or simply componentware.

CBSE means developing systems by integrating pre-existing components. In

development concepts, there are two basic corresponding approaches. In the top-down

approach, customer requirements are taken into account. The system is decomposed

continually into smaller parts until the level of detail is sufficient for an

implementation with the help of existing components. On the other hand, in the

bottom-up approach, existing reusable components are combined into higher-level

components continually to meet the users’ requirements. Since requirements are not

taken into account early in the bottom-up approach; the top-down approach is practical

in most cases. However, if all the requirements are not known or they are inconsistent

it becomes impractical [16].

 10

The research on object-oriented technology and its intensive use by the industry

have led to the development of component-oriented development. Rather than being

an alternative to object-orientation, component technology extends the initial concept

of objects. It stresses the desire for independent pieces of software that can be reused

and combined in different ways to implement different software systems. It's clear that

a strong movement toward component-oriented design and implementation. Some

enterprises dictate, for example, that every Java class be designed and implemented as

a Java Beans component which compromizes to Java Bean specification. In these

enterprises, programming groups exchange and share their software developments as

Beans—they use each other's work in a plug-and-play application development

setting.

While developing a system, firstly the requirements are analyzed. Secondly,

system architecture is designed. Lastly, basic components are evolved. Components

are combined to build the designed system architecture. In development process, after

designing the system and identifying basic components, making a component or

buying it is the main issue. If the available components meet the users’ requirements,

they are used. On the other hand, if they can be customized and adaptation cost of

these components is less than building them from scratch, they are adapted.

Three major component architectures have been developed in the last years.

Java Beans, ActiveX Controls and the CORBA Component Model intend to provide

an infrastructure that will allow the construction of complex applications.

2.4. Domain Engineering (DE)

The development context is expanded from a single project to multiple projects

by reuse organization in a company. This organization is responsible for the

coordination of the company’s component repository.

A domain denotes a set of functional areas that exhibit similar functionality

within systems. Within a domain, systems share many requirements. The acquired

knowledge when building subsequent systems or components in the same domain is

important for an organization. By reusing the assets developed by using the acquired

domain knowledge in the development of new products, the organization will be able

to deliver the new products in a shorter time and at a lower cost.

 11

Domain Engineering is the activity of collecting, organizing,

and storing past experience in building systems or parts of systems in

a particular domain in the form of reusable assets (i.e. reusable

workproducts), as well as providing an adequate means for reusing

these assets (i.e. retrieval, qualification, dissemination, adaptation,

assembly, etc.) when building new systems [17].

Domain Engineering is the part of software engineering that concentrates on

general solutions for families of software systems with similar requirements and

capabilities. While the traditional software engineering concentrates on satisfying the

requirements for a single system, domain engineering concentrates on providing

reusable solutions for families of systems. Domain Engineering addresses multi-

system scope development [17].

Product families are scoped based on commonalities between the products in an

organization. A software product line is a set of software systems that share common

software architecture and a set of reusable components. In contrast to one system

development at a time, strategic reuse is important. The core asset developers create

these assets, such as the business case, requirements, software architecture. These

assets change over time. This can cause problems in product production. [23] explains

that changes can be managed in product lines. Software product line methods try to

develop prefabricating software for multiple applications by providing configurable

components. The ultimate goal of these methods is to create products efficiently. The

product developers use the core assets to develop the products. When systems in the

product line are known, software product line study begins by developing the core

assets. This approach is called a proactive approach. Producing any product within the

scope becomes a matter of assembling those assets. In some cases, software product

line study begins with a few existing products. These products are used to generate the

product line core assets. This approach is called a reactive approach. When the future

is undefined, reactive product line approach is used to achieve flexibility [24].

Domain Engineering has three process components: Domain Analysis, Domain

Design and Domain Implementation. The results of Domain Engineering are used in

Application Engineering that develops software products from software assets.

 12

2.4.1. Domain Analysis

The systematic discovery and exploitation of commonality across

related software systems are fundamental technical requirement for

achieving successful software reuse. We define domain analysis as a

process by which information used in developing software systems is

identified, captured, and organized with the purpose of making it reusable

when creating new system [18].

Domain Analysis is a technic that meets this requirement. When the future

requirements of multi-project applications are unknown, the risk of developing

inappropriate software is high. This risk is reduced by Domain Analysis. An important

difference of the domain analysis process from normal requirements engineering is the

distinction of requirements into commonalities and variabilities. This is done in order

to identify the common parts of a family of systems in a domain. These candidates are

required for efficient reuse. Therefore, it is important to define the scope of the

domain narrow enough in order to identify a large set of common requirements, which

is the prerequisite of efficient domain engineering. Since it generalizes common

features in similar application areas for identification of common objects and

operations and describing their relations, experts in the software community generally

agree that domain analysis is at the “heart of reuse” [5].

Components that result from domain analysis are better suited for

reusability because they capture the essential functionality required in that

domain; thus, developers find them eaiser to include in new systems. We

beleive that domain analysis is a key factor in the success of reusability

[19].

Domain analysis activities consist of selection of a domain and analyzing

concepts, properties, and solutions of the domain. Collected domain information and

existing domain knowledge are used to get a model of the domain. The output of this

process is domain the model, which can be reused. This domain model represents

common and variable properties and dependencies between these properties in the

domain.

These activities identify reuse opportunities and determine the common

requirements of a family of systems in a domain. Identification, abstraction, and

 13

encapsulation of objects in a particular domain are conducted [18]. The product of this

phase is a domain model. Figure 2.1 represents inputs and output of domain design

activities. Domain design activities look for a documented solution to the problem

specified in a domain model.

Figure 2.1 Domain Analysis phase in Domain Engineering process

(Adapted from [27])

There are several research efforts in software engineering that are explicitly

called domain analysis. A chronology is described in [18] and [20]. There are a large

number of Domain Analysis and Domain Engineering methods. One of them,

Feature-Oriented Domain Analysis, deserves special attention, since it is the most

mature and best-documented method. In [21] and [22], this method is used with

Domain Engineering process and analysis phase is documented. The method is breifly

described in the following section.

Domain Analysis activity consists of three sub-activities to model the domain.

These representations form a reference model for the systems in the domain: Context

Analysis is an activity to be used to provide the boundaries of the domain. Domain

Modeling represented in Figure 2.2 is an activity whose products describe the problem

solved by the software in the domain. These products provide features of the domain,

the domain dictionary and documentation of entities in the domain. Architecture

Modeling is a phase that represents the structure of implementations in software. The

- Boundary
- Commonalities

and

Differences

- Understanding

- Representation

Inputs
- Existing domain

knowledge

-Information

modeling techniques

Output
- Domain model

 14

architecture model provides mappings with the domain model and guides the

development of libraries of reusable components. Domain analysis methods provide

specific representations to document the results of each of the domain analysis

activities.

 15

Domain Context Analysis (scope of domain)

Domain Model

(representation of
problems in domain)

Architectures
(representations of

solutions in domain)

Create reusable sources
components, designs etc.

New
Application

New
Application

Figure 2.2 Domain Analysis activity and sub-activities

 16

Feature-Oriented Domain Analysis (FODA):

The Software Engineering Institute at Carnegie Mellon University developed

the Feature Oriented Domain Analysis (FODA) approach in 1990 [20]. It is based on

identifying features of an application family. These features describe both system

commonalities as well as differences within the domain and they relate to users. They

present the characteristic of the domain. Feature models describe properties

distinguishing between common and variable requirements. These features are, in

essence, the requirements implemented for each of the systems in the domain.

Two basic phases that characterize the FODA process are FODA Context

Analysis and FODA Domain Modeling. FODA Context Analysis defines the

boundaries of a domain for analysis. The context model is used to determine that the

application is within the domain of available domain products. FODA Domain

Modeling provides a description of the problem space in the domain. Commonalities

and differences of the systems in the domain are analyzed. Thus, a number of models

representing different aspects of the problems are produced.

The three main tasks of domain modeling phase in FODA are feature modeling,

information analysis, and operational analysis.

Feature modeling produces a hierarchical tree diagram in which features are

typically one-word terms. Variability is modelled by permitting features to be

mandatory, alternative and/or optional modeling elements those are represented in

Figure 2.3. The feature model can be used by the requirements analyst to negotiate the

capabilities of the application with the user, if the application is within the domain.

Composition rules can also be defined between features.

 17

A pplication

M andotary
F eature

O ptional
F eature

A lternativ e
F eature 1

A lternativ e
F eature 2

Figure 2.3 Feature Model in FODA

Information analysis defines the data requirements of the applications family.

The output of this task is a combination of entity-relationship diagrams, class

diagrams, and structure charts. The information model can be used by a requirements

analyst to acquire knowledge about the entities in the domain and their

interrelationships.

Operational analysis identifies data flow of the applications of a family. The

product of this stage includes data flow diagrams, class interaction diagrams and state

transition diagrams. The operational model provides the requirements analyst with an

understanding of the domain. The operational model provides the analyst with issues

and decisions that cause functional differences between the applications.

2.4.2. Domain Design

Domain Design activities look for a documented solution for the problem

specified in a domain model. The process of developing a design model from the

products of domain analysis and the knowledge gained from the study of software

requirement/design reuse is called as Domain Design in Domain Engineering. The key

point here is to capture a generic architecture that supports the reuse of components

for the systems in the domain. This design model is a framework used in domain

implementation phase to develop reusable components. In Domain Design, the domain

model generated in domain analysis is used and architecture of the domain is

generated. Therefore, the product of this phase is framework reusable software

architecture. Figure 2.4 represents inputs, activities and outputs of this phase.

 18

Figure 2.4 Domain Design phase in Domain Engineering process

(Adapted from [27])

2.4.3. Domain Implementation

In Domain Implementation, components are implemented for the domain.

Reusable components integrating the framework are constructed during the phase of

domain implementation. This is the compositional approach of Domain Engineering.

In the generative approach, Domain Engineering produces Domain Specific

Languages (DSLs), which can be used as application generators to construct a family

of applications in such a domain. Knowledge of the domain and design patterns are

encoded in DSLs [25] [26]. In domain implementation, design model constructed in

the domain design phase is used to develop components. Thus, the output of this phase

is reusable components and DSLs. Figure 2.5 represents inputs, activities and outputs

of this phase.

- Generic designs
- Coordination models

- Partitioning strategies

- Representation

Inputs
- Domain model

- Software system

architecture

Output
- Design model

 19

Figure 2.5 Domain Implementation phase in Domain Engineering process

(Adapted from [27])

By making a reuse analysis in multiple projects of candidate components, the

potential reuse degree of the component can be estimated. These components may be

found by examining single in-house projects by domain analysis or by assessing the

properties of components that are commercially available. In order to be usable in a

multi-project context, in-house components are first tried for adaptation and

generalization [16].

2.4.4. Application Engineering

An Application Engineering process develops software products from software

assets created by a domain engineering process. The results of Domain Engineering

are reused during application engineering, i.e. the process of building a particular

system in the domain. Figure2.6 illustrates the relations between the domain

engineering and the application development. Every new application is based on the

architecture developed within the domain design activities. Domain engineering and

application engineering are complementary interacting processes that comprise a

model-based, reuse-oriented software production system [27]. In the application

engineering process, during the requirements analysis for new systems, the customer

requirements (features) are selected from the domain model. New customer needs not

covered by a domain model are new requirements and those requirements require

custom development. Therefore, Domain Engineering is a living process of creating

and maintaining the reuse infrastructure. Finally, we assemble the application by using

- Identify reusable
components

- Develop

component library

Inputs
- Compiler tools

- Coding standarts

- Design model

Outputs
- Domain-specific

languages

- Application

generaors

- Reusable components

 20

the existing reusable components or using custom-developed components if they cost

less according to the reusable architecture.

Figure 2.6 Software Development Based on Domain Engineering

 (Adapted from [17])

2.5. Java Archive (JAR) Library Files

Well-designed object-oriented software is decomposed into a multitude of

classes. Normally in Java, each class is stored as a separate file having a .class

extension. This is a problem when it comes to distributing programs. In addition to

pure program files (the .class files), any non-trivial Java program also requires extra

resource files: images, help files, configuration files, and so on.

 21

The purpose of Java Archive (JAR) files is to pack more than one file into an

archive. They are made easily by using the JAR Command-line tool. It is a Java-

specific compression and decompression utility. Its main purpose is to take a list of

files and compress them into a single JAR archive, or take a JAR archive and extract

the compressed files from it. The JAR file format is compatible with the popular ZIP

file format. The main difference between a plain ZIP file and a JAR file is that the

JAR file format explicitly requires that the first file entry should be a file describing

the contents of the JAR file. This file needs to have the following path: META-

INF/MANIFEST.MF tree.

2.6. Java Beans Technology

Java Beans is the software component standard and architecture for the Java

language platform [29]. They combine the benefits of Java (e.g., cross-platform

development and execution) with the benefits of components (e.g., code reuse). A Java

Bean is a reusable platform-neutral software component and reused everywhere. A

Java Beans component conforms to a communication and configuration protocol, as

prescribed by the Java Beans specification. The Java Beans Specification is the

document that describes what a Java class must do to be considered a "Bean", how to

use the classes and interfaces in the Java [28]. Three fundamental aspects of a Java

Beans component as defined by the specification are events, properties, and methods.

To make a class into a component, the programmer must add functionality to

the class. Java Beans turns classes into software components by providing several new

features. Some of these features are specific to Beans. Others, like serialization, can

apply to any class, Bean or otherwise. It is crucial to the understanding and use of

Beans. Programmers can depend on any class that advertises itself as a Bean to

conform to the rules set out in the specification. If it doesn't conform, the contract has

been broken and the Bean is defective. Therefore, a Bean is a Java class that abides by

a few relatively simple rules and design patterns:

• Bean Creation: Beans must have null constructors.

• Event Handling and Bean Communication: Beans

communicate with each other by raising and listening to

events, so they must define event interactions.

• Persistance-Serilialization: Beans must have persistence

mechanisms.

 22

• Packaging: Beans must be easy and efficient to distribute.

• Introspection and BeanInfo: Beans must provide mechanisms

that enable a visual development tool to work out what

methods and events the Beans have.

Bean Creation

Beans can be resurrected from a persistent data stream. If we are sure that a

bean is not of a saved version, it can be instantiated just like an object instantiation:

XBean aBean = new XBean ();

On the other hand, in a normal case, instantiate method is used. This method

gives the system's infrastructure the chance to use a template-serialized Bean. Using

this instantiate method creates a Bean using the default constructor. It restores its state

data to the way it was when it was stored. This defines a null constructor:

XBean aBean = (XBean) Beans.instantiate (null,"XBean");

Event Handling and Bean Communication

Beans communicate with other software components by a way of firing and

receiving events. This mechanism can be thought as the pins of an IC in the

electronics world. Some pins are for output just like event firing, while others are for

input just like event receiving. The mechanism is represented in Figure 2.7.

Event Source
Bean

Event Listener
Bean

Event e

fireEvent() receiveEvent(Event e)

Figure 2.7 Event Handling in Java

 23

In a Java Beans based system, event-based communication is an active process

for the event source and a passive process for the listener. A bean should fire events

when it wishes to transfer anything to the outside world. On the event receiving side,

if a bean wishes to receive information from the outside world it should be a listener

for some event type. Beans are source objects in this mechanism. Typically, a Bean

does its work and, then sends notifications to all registered targets. Interested parties

register with the source object for event notifications and perform their own operations

in response to these events.

An event can only be heard by a listener if:

• Listener implements the EventListener interface

• Listener tells the Event source that it is interested in hearing about the event by

registering itself using an addEventListener () call

In many cases, a Java Beans component will function as a source for certain

types of events, yet be capable of registering as a target for events produced by other

components.

Persistence – Serialization

A persistence mechanism allows a Bean or a collection of Beans to be saved in

a file. To provide persistence, beans use Java serialization mechanisms. In Java

serialization, all the member variables of an object can be made persistent by the Java

run-time. Bean creator implements the java.io.Serializable interface to provide

persistence.

Packaging Beans

A single Java bean is usually composed of at least three files. Those files

correspond to:

• Α Βean class.

• An associated BeanInfo class.

• An iconic representation for the bean; that is, a GIF file.

 24

Because beans are supposed to be complete and inseparable entities, having

beans composed of several files can cause a lot of problems if a file gets lost or

corrupted or simply stored in the wrong place. Therefore, a Bean is packaged by

putting it into a JAR file. The JAR can contain not only the Bean's own class file but

also other classes that the Bean uses, icons, graphics, internationalized text, and

HTML-format help files.

JAR files holding Java Beans use beans-specific pairs. When a JAR file is used

to distribute beans, each bean needs an additional attribute-value pair in the

MANIFEST.MF file:

Java-Bean: True

If this additional line is not present, the bean will not be visible to the tool or

application that processes the JAR file. JAR tool knows nothing about Java Beans;

hence it does not add this line by default.

Introspection and BeanInfo

Process of discovering an object's characteristics is called introspection. The

Java Beans framework provides a class that is called Introspector. An Introspector

object assists in discovering a Bean's configurable characteristics. It provides

functionality to discover information about a Bean from a complementary Bean

configuration class that optionally accompanies each Bean. This complementary,

support class is called the bean-info class. The Java Beans framework provides the

interface BeanInfo, which describes the services that a bean-info class implements. An

Introspector object manipulates and makes available a Bean's configuration services in

a general-purpose manner using the BeanInfo interface. A Bean publishes its

configuration support via methods in its bean-info class. A Bean analyzer then

instantiates the bean-info class and queries the appropriate method during the Bean

configuration process.

The Java Beans standard is a low-level software component standard tailored to

Java. As such, it concentrates on how Java software components, informally called

beans, should present their black box interface to the outside world, and more

specifically toward tools and designers who rely on beans for their applications. All

Java Beans present a black box interface that consists of properties, event-firing

outputs, and plain public methods that can be called on a bean. Because beans are

 25

meant to be software components, their design and implementation should begin with

the fundamental assumption that a bean can be deployed in any application

environment.

Bean-Info classes explicitly control the set of properties, events, and methods

that a bean exports. If a class XBeanInfo accompanies any bean class X, then bean

environments recognize this as a formal relationship. Bean X is said to have an

associated BeanInfo class. BeanInfo class associates either 16 by 16 or 32 by 32 pixel

color or black-and-white icons with a bean. All this can be achieved by implementing

the BeanInfo interface, in a class ending with -BeanInfo. Figure 2.8 illustrates the

relation between Java Bean component, Bean Info and JAR files:

P ro p e rtie s

E v e n ts

M e th o d s

J a v a B e a n
C o m p o n e n t

B e a n In fo

J a r P a c k a g e

Figure 2.8 Java Beans and JAR Packages

Using lists of properties is not always the best way to handle customizing

Beans. Some Beans are too complex to be easily manipulated in this way. Sometimes

the developer who uses the Java Beans architecture simply needs total freedom to

 26

design a property editor for one or more, possibly specialized, properties. In this case,

the Java Beans framework allows the developer to design and register a custom,

graphical object, as a collection of Graphical User Interface (GUI) components in a

container (panel). A Beans developer can embed a property sheet into the Bean itself,

and the Integrated Development Environment (IDE) then uses this "customizer" to

customize the Bean.

There is some additional overhead in designing classes as Beans. For example,

the fundamental Bean requirement of a no-argument constructor implies that some

programmers must change their design habits, or in some environments, no-argument

methods must be provided to connect Beans together graphically, whereas in

traditional source code-level method invocation has no limits.

Java beans are also tool-friendly in that they are only used at design-time;

aspects such as a bean palette icon, an explicit description of the bean’s interface. The

tool, Bean Development Kit, can test Java Beans. In the next section, contents of the

BDK tool are presented.

2.7. Bean Development Kit (BDK) and BeanBox Testing
Application

Bean Development Kit (BDK) is a reference environment to develop and test

beans. JavaSoft produces the BDK. Bean-Box is the environment that we can drop our

beans and exercise them in various ways. The smaller ToolBox window represents a

bean palette from which we can pick any bean to work with, as if from a physical box

full of components. The ToolBox window is where the BeanBox application lists all

the beans that you may select for use within Java Beans-based application. The last

window called PropertySheet lists the currently selected bean’s properties and their

values. These environments are illustrated in Figure 2.9.

To test the beans, JAR file of the bean is copied to the JARs directory under

BDK directory. When the tool is run, beans are loaded and shown on the ToolBox

palette. Beans are dropped on to the BeanBox canvas. More beans can be put on this

canvas and linked together. Source beans and listener beans are connected and their

behaivours are tested.

 27

Figure 2.9 Bean Development Kit (BDK)

BDK also includes some bean archive files in the JAR directory. Source codes

of these beans can be examined.

2.8. COSE Modeling Language (COSEML) and COSECASE

For the component oriented software engineering, COSE Modeling Language

(COSEML) has been designed and a tool (COSECASE) has been developed. A

detailed definition of the modeling language and the tool can be found in [8].

Graphical representations of the modeling elements are shown in Figure 2.10.

 28

Package Function

Data Control

Connector

Abstractions

Components
Component

interface1
interface2

.

.

Component

properties

methods

events in

events out

 with single interface

interface

properties

methods

events in

events out

Connector

Figure 2.10 Graphical symbols in COSEML

System is designed in two levels in COSEML: abstraction level and

implementation level. Therefore, the model can simultaneously contain abstraction

level and implementation level components. Abstract level includes Package, Data,

Function, and Control abstractions. “Packages” are represented by Unified Modeling

Language’s (UML) package symbol. Data, Function, and Control abstractions can be

included in a Package. Implementation level constructs are mainly “components”. A

Component corresponds to the existing implemented component code. Each

component has interfaces to represent its properties, methods, and events. A

component represents its services by its interfaces. Therefore, an Interface is the

connection point of a component and services requested from a component are

invoked through this interface.

Table 1 presents all graphical symbols in COSEML with further details.

 29

Table 1 COSEML symbols and their meanings.

Symbol Explanation

Package: Package is for organizing part-whole relations. A container that wraps system-

level entities and functions etc. at a decomposition node. Can contain further package,

data, function, and control elements. Also can own one port(s) of one or more

connectors. Can be implemented by a component. The contained elements are within the

scope of a package; they do not need connectors for intra-package communication.

Function: Function abstractions represent a system-level function. Can contain further

function, data, and package elements. Can own connector ports. Can be implemented by

a component.

Data: Data abstractions represent a system-level entity. Can contain further data,

function, and package elements. Can own connector ports. Has its internal operations.

Can be implemented by a component.

Control: Control abstractions correspond to a state machine within a package. Meant for

managing the event traffic at the package boundary, to affect state transitions, as well as

triggering other events. Can be represented by a component.

Connectors: Connectors represent data and control flows across the system modules.

Cannot be contained in one module because two ports will be used by different modules.

Ports correspond to interfaces at components level.

Component: A Component corresponds to the existing implemented component codes.

Contains one or more interfaces. Can contain other components. Can represent package,

data, function, or control abstraction.

Interface: An Interface is the connection point of a Component. Services requested

from a component have to be invoked through this interface. A port on a connector plugs

into an interface.

Represents Relation: A Represents relation indicates that an abstraction will be

implemented by a component.

Event Link: An Event link is connected between the output event of one interface and

the input event of another. The destination end can have arrows corresponding to the

synchronization type.

Method Link: A Method link is connected between two interfaces to represent a

method call. Arrow indicates message direction.

 Composition and Inheritance Relation: UML class diagram relations are utilized.

Diamond: Composition, Triangle: Inheritance.

 30

In [7] a process model, COSE Process Model is presented for component-

oriented development. This model represents a complete, consistent, and clear guide to

software developers to develop component oriented software systems. COSE Process

Model building activity uses top-down approach to iteratively decompose the system

into nearly independent partitions as mentioned in [16]. These partitions are

represented with corresponding software components. System development is done by

integration rather than coding from scratch. This provides both concurrency and

manageability in system development. Since the problem is divided into relatively

small sub problems, the model provides both concurrency and manageability in

system development.

 31

 CHAPTER 3

APPLICATION OF DOMAIN ENGINEERING

PROCESS TO GEOGRAPHICAL INFORMATION

SYSTEMS (GIS) DOMAIN AND DOMAIN

FRAMEWORK

Geographical Information Systems (GIS) in general correspond to geographical

data. Much of current progress in GIS is towards making it easier for users to

construct maps. Geographic data is thought as layers of information underneath the

computer screen [30]. Therefore, a GIS can present many layers of different

information. One layer could be made up of all the roads in an area and another one

could represent all the lakes in the same area. GIS is used for every specialization of

the defense industry in many nations around the world. All projects in a military

company have a GIS part to show activity in the tactical area. A lot of effort is spent to

develop GIS applications in such projects. In order not to develop GIS applications

from scratch, a framework is intended to be developed, which utilizes reusable

components.

In this part of the thesis, a Domain Engineering process has been applied to GIS

domain, which is a general-purpose environment, for use in an organization:

1. Requirements were collected for the GIS domain and existing domain

knowledge was collected from the experts.

2. Domain was simply analyzed and a feature model of the domain was

developed for the Domain Analysis phase of the process.

3. Architecture model of the domain was constructed for the Domain

Design phase of the process.

 32

4. Components were implemented int the Domain Implementation phase

of the process. Reusable components integrating the framework were

constructed during this phase. These components were found by

examining single in-house projects by domain analysis, or by coding, or

by assessing the properties of components commercially available in

the market. These components were made as Java Bean components

and packaged into Java Archive (JAR) files for deployment. In the

following sections, these processes are mentioned in a detailed manner.

Components developed are used for Application Engineering process that

develops software products from software assets created by a domain engineering

process. These components are imported into COSECASE to enhance the tool for GIS

application designs. To import these components into COSECASE, an interface layer

was developed. Next chapter is adapted for implementation of this issue.

3.1. Domain Analysis for GIS Domain

GIS Domain framework offers some services GIS part of the product line of the

company needs. These services meet all the requirements of the applications in the

domain. These functions are:

1. Applications will be developed on both Unix and Windows platforms.

Therefore, components will be developed by a language, which runs on

both platforms. This language is selected as Java. JavaBeans will be

used to develop components.

2. GIS Applications will use multi-layered structure. More than one layer

will be shown on the screen at a time.

- Layers can be added to the map and removed from the map

dynamically.

- Visibility of the layers can be changed at runtime.

- Raster data can be shown on a layer.

- Vector data can be shown on a layer.

- Symbols specific to the application can be shown on a layer.

 33

3. Custom GIS operations can be achieved easily. These operations

include:

- Zoom In / Out operations: These operations are used to zoom in or

zoom out layers. Operations are processed according to some

criteria:

� By using scale

� By selecting a rectangular area

� By entering ratio

- Pan Operations: These operations are used to pan the layers.

Operations are processed according to some criteria:

� By selecting a point on the layers

� By specifying direction and distance

4. Analysis operations can be conducted on the layers by using 3D data

formats. 3D formatted files will be in Digital Elevation Model (DEM)

format. These operations are:

- Distance: This operation is used to measure the distance between

points.

- Altitude: This operation is used to measure the altitude of a point.

- Visibility: This operation is used to analyse visibility of a point.

Painting the visible points on a layer will show result of the

analysis.

- Profile: This operation is used to process profile analysis of

selected points. The result of the operation will be shown on a

window. This window will be embedded in the GIS component

library.

5. Military Symbology can be displayed on the layers.

 34

- Symbols specific to the application can be displayed on a layer.

These symbols can be in the form of:

� Geometrical shapes: These shapes are point, line,

rectangle, ellipse, polygon, and polyline.

� Fonts: Fonts can be displayed in different sizes.

� Pictures.

- Symbols shown on the layer can be selected. Selected shapes will

be shown in another color. Drawing color and selection color can

be set by the application.

- Symbols can be moved around in a layer.

6. Conversion between coordinate systems: Basically, two types of

coordinate systems will be used. Conversion between these coordinate

systems will be conducted. In the future, other conversion mechanisms

related to different coordinate systems will be added to the library.

Currently supported coordinate systems are:

- Universal Transversal Merkator (UTM)

- Geographic

7. Getting real world coordinates from the map: Component library will

read real world coordinates from the map.

8. Getting and setting scale of the map: Scale of the map can be set and

get by the applications.

9. Getting and setting extent of the map: Extent of the map can be set and

get by the applications.

10. A component library commercially available in the market will be used

to handle basic GIS operations. This library can be changed according

to performance problems. In the feature dependency of this component

library will be minimized.

 35

11. Different raster maps will be loaded automatically according to map

scale. For example, when the current map scale is between 1/350.000

and 1/700.000, raster maps with 1/500.000 scale will be loaded.

Basically eight-type raster map scale is used and these maps are loaded

automatically.

After these requirements and domain knowledge were collected from domain

experts and the product line, domain was modelled by using Feature Oriented Domain

Analysis (FODA) feature model. This model is shown in Figure 3.1.

GIS Application

Map Layout

Raster
Map

Vector
Map

Symbology

Analysis

Coordinate
Conversion

Font
Symbols Image

Symbols

Geometric
Symbols

Distance Visibility

Altitude Profile

UTM

Geographic
Show Symbol

Layer

Symbol
Selection

Selection
Mode

Selection
Color

Symbol
Operations

Add Remove Move

Tools

Zoom In

Zoom Out

Pan

Zoom To Scale

GIS Component
Library

Platform

Windows Unix

Figure 3.1 A Feature Model for the GIS Domain

Some composition rules were defined on the feature model:

 36

- “Tools” requires “Map Layout”

- “Analysis” requires “Map Layout”

- “Coordinate Conversion” requires “Raster Map Layout”

3.2. Domain Design for GIS Framework

In Domain Design, the domain model generated in domain analysis is used and

architecture for the domain is generated. This GIS framework covers the requirements

of the GIS application domain in the company. It defines most of the component

structures that are used in GIS applications to meet application requirements. One of

the requirements obtained from the domain analysis phase is making use of a GIS

component library that is commercially available in the market. This library should be

changed according to any specific application without changing and compiling the

components in the framework. To solve this problem, a class called “driver” and an

eXtended Markup Language (XML) - based file are used. Figure 3.2 illustrates the

mechanism.

Framework Driver Classes
Component

Library free or
commercially

available

XML based
configuration file

Figure 3.2 Using a component library within the GIS Domain Framework

 37

This driver class implements required methods by using methods of the

component library. GIS Domain framework does not initially know about the driver

class. The GIS framework represents interfaces to be implemented for the driver

classes. Developer of the driver class implements these driver interfaces by methods

of the component library and inserts the name of the driver class to the XML based

configuration file. Structure of the configuration file is shown below for a coordinate

converter component:

The name of the driver class implementing related driver interface is read from

the configuration file by components in the framework. Driver class is loaded at

runtime by using Java Reflection package. Components always call methods of the

driver interfaces represented in the framework after loading the driver class. The

process of loading a driver class by the framework at runtime is shown in Figure 3.3.

Setting the new configuration file changes the component library at run time.

<ConfigurationFile>

 <BeanCallDefinitions>

 <BeanName>CoordinateConversion</BeanName>

 <BeanDriverClass> GISFramework.MOJDriverCoordinateConversion</BeanDriverClass>

 </BeanCallDefinitions>

</ConfigurationFile>

 38

Figure 3.3 Setting configuration file in GIS framework

 : XML based
Configuration file

 : Application a bean extends from :
AbstractBean

a class implementing driver
interface : DriverClass

setConfigurationFile(String)

Name of the
configuration file

readBeanName()

openConfigurationFile()

beanName

readConfigurationDriverClassName()

configurationClassName

loadClass(configurationClassName)

reads name of class
from Xml file and
loads it at runtime

 39

Domain architecture was constructed in this phase. GIS Framework was

designed considering the issues mentioned above. Interfaces for beans, beans and

interfaces for driver classes were designed. Figure 3.4 shows this architecture and

detailed descriptions about the elements of the architecture are given below. In

additiond, class diagrams were modeled with UML and sequence charts of

components were modeled in Rational Rose tool. This documentation is placed in

Appendix B.

Driver Classes

GIS Component Library

 GIS Domain Framework

Applications in GIS Domain

Driver Interfaces

Configuration
File

(XML)

Map Manager Symbology Manager

Analysis
Manager

Coordinate
Conversion

ManagerRaster
Map

Vector
Map

Fonts
(Military
Fonts)

Geometric
Symbols

Image
Symbols

Tracking
Symbols

Figure 3.4 GIS Domain Framework design

 40

Projects in the company are developed on both Unix and Windows platforms.

To meet multiplatform requirements, the component libraray was developed by using

Pure Java.

Components of this architecture are mentioned below in a detailed manner:

Commercially Available Components: In the projects that include GIS

applications, all requirements were met by using appropriate component library from

the market and in-house codes formerly developed by software engineers in the

company.

Driver Interfaces: Company does not want to depend on a specific component

library from the market. Since, performance of the component library may not be good

enough in some circumtances. In such a case, company wants to achieve the capability

to change the component library or to use its own components doing the same work.

Therefore, storing the component library, e.g. Map Objects Java, to codes in the

framework, and compiling the framework is not a good solution. Flexibility in using

component library is another requirement of the GIS domain framework. To find a

resulotion for this requirement, the framework offers some interfaces called “driver

interfaces”. With such an approach, components in the framework allways call the

functions in these driver interfaces defined statically.

Driver Classes: Classes will implement “driver interfaces” by using the

functions of the selected component library, for example Map Objects Java. The

classes implementing the driver interfaces are developed by using the methods of the

selected component library once for each component library. Hence, a project can use

any component library, or projects on the domain can use a different component

library at any time. In addition, changing component library does not require changing

and compiling the framework. Therefore, when the component library is changed,

there is no need to recompile the framework. Driver classes are loaded at runtime. The

name of the driver class implementing the selected component library is given to the

framework by the application. Framework reads the configuration file and loads the

class at runtime. An application can change the component library at runtime.

XML Based Configuration File: This file contains some application specific

properties. Firstly, this file includes the name of the driver class. Then, it includes

component specific properties, such as paths of the maps.

 41

Map Manager: This is an abstraction for the designers. Its task is to show raster

and vector maps. Raster and Vector beans are handled in this part of the architecture.

Symbology Manager: This is an abstraction for the designers. Its task is to

show layers on which symbols are shown. Layers showing figures that include fonts,

pictures, geometric shapes and tracking symbols are managed in this part of the

architecture.

Analysis Manager: Its task is to make analysis operations and show analysis

results. This manager refers to the analysis bean.

Coordinate Conversion Manager: Executes coordinate conversion operations.

This manager refers to coordinate conversion bean.

3.3. Components for GIS Framework Domain
Implementation

In Domain Implementation, components were implemented for the domain.

Components have been developed as Java Beans in this framework. Therefore, this

framework consists of Java Beans as components to meet requirements in the domain

and is based on interfaces, drivers, beans and communication of beans by listener and

event mechanism in Java. These components have been identified by examining in-

house projects by domain analysis, or by coding, or by assessing the properties of

components in the component market. These components have been developed as Java

Beans and packaged into JAR libraries for deployment and have been tested by Bean

Development Kit (BDK) tool.

A naming convention is used in developing elements in the framework for code

generation puposes. All elements of the framework conform to this naming

convention. It simplifies the understanding of the element types, such as abstract

classes, listeners, and beans from the name. In addition, events of the beans and code

generation mentioned in the next section are conducted simply by this mechanism.

This naming convention is as below. The first three are naming convention rules for

the base classes and others are rules and names of the beans included in the

framework.

1. All abstract classes are named “AbstractBean + Name” in the framework.

 42

a. “AbstractBean” class is an abstract class for all bean classes. They are

inherited from this class. It contains implementation of some common

functions that a bean must have.

b. “AbstractBeanLayer” class is abstract class for all layer beans. They

are inherited from this class. It contains implementation of some

common functions that a layer bean must have.

c. “AbstractBeanLayerSymbols” class is abstract class for all symbol

layer beans. It contains implementation of some common functions

that a symbol layer bean must have.

2. All interfaces for the abstract classes are named “InterfaceBean + Name” in

the framework.

a. “InterfaceBean” is the interface for AbstractBean class in the

framework.

b. “InterfaceBeanLayer” is the interface for AbstractBeanLayer class in

the framework.

c. “InterfaceBeanLayerSymbols” is the interface for

AbstractBeanLayerSymbols class in the framework.

3. All exception classes for abstract classes are named as “ExceptionBean +

Name” in the framework.

a. “ExceptionBean” is the exception for AbstractBean abstract class.

b. “ExceptionBeanLayer” is the exception for AbstractBeanLayer

abstract class.

c. “ExceptionBeanLayerSymbols” is the exception for

AbstractBeanLayerSymbols abstract class.

4. All non-abstract bean classes are named “Bean + Name” in the framework.

The names for non-abstract bean are as follows:

a. BeanMap

b. BeanTool

 43

c. BeanLayerVector

d. BeanLayerRaster

e. BeanLayerAnalysis

f. BeanLayerSymbolsFont

g. BeanLayerSymbolsGeometry

h. BeanLayerSymbolsDrawing

i. BeanLayerSymbolsImage

j. BeanTrackingFontLayer

k. BeanTrackingGeometriesLayer

l. BeanTrackingImagesLayer

m. BeanCoordinateConverter

5. All interface classes are named “Interface + Name” in the framework. The

names for interfaces of beans are as follows:

a. InterfaceMap

b. InterfaceTool

c. InterfaceLayerVector

d. InterfaceLayerRaster

e. InterfaceLayerAnalysis

f. InterfaceLayerSymbolsFont

g. InterfaceLayerSymbolsGeometry

h. InterfaceLayerSymbolsDrawing

i. InterfaceLayerSymbolsImage

j. InterfaceCoordinateConverter

 44

6. All exception classes for beans are named “Exception + Name”. The names

for exceptions classes are as follows:

a. ExceptionMap

b. ExceptionTool

c. ExceptionLayerVector

d. ExceptionLayerRaster

e. ExceptionLayerAnalysis

f. ExceptionLayerSymbolsFont

g. ExceptionLayerSymbolsGeometry

h. ExceptionLayerSymbolsDrawing

i. ExceptionLayerSymbolsImage

j. ExceptionCoordinateConverter

7. All listener classes are named as “Listener + Name”. In addition, the

methods of subscribing and unsubscribing listeners are named as “add +

ListenerName (ListenerName) + Listener” and “remove + ListenerName

(ListenerName) + Listener”. This naming convention is convenient to the

naming conventions of Java Beans.

a. ListenerMap: The class that implements this interface listens to the

Map bean.

i. Subscribing listener to the map bean:

addListenerMapListener(ListenerMap x)

ii. Unsubscribing listener from the map bean:

removeListenerMapListener (ListenerMap x)

b. ListenerTool: The class that implements this interface listens to the

Tool bean.

 45

i. Subscribing listener to the tool bean:

addListenerToolListener(ListenerTool x)

ii. Unsubscribing listener from the tool bean:

removeListenerToolListener (ListenerTool x)

c. ListenerLayerVector: The class that implements this interface listens

to the Vector Layer bean.

i. Subscribing listener to the vector layer bean:

addListenerLayerVectorListener (ListenerLayerVector x)

ii. Unsubscribing listener from the vector layer bean:

removeListenerLayerVectorListener (ListenerLayerVector x)

d. ListenerLayerRaster: The class that implements this interface class to

the Raster Layer bean.

i. Subscribing listener to the raster layer bean:

addListenerLayerRasterListener (ListenerLayerRaster x)

ii. Unsubscribing listener from the raster layer bean:

removeListenerLayerRasterListener (ListenerLayerRaster x)

e. ListenerLayerAnalysis: The class that implements this interface

listens to the Analysis Layer bean.

i. Subscribing listener to the analysis layer bean:

addListenerLayerAnalysisListener (ListenerLayerAnalysis x)

ii. Unsubscribing listener from the analysis layer bean:

removeListenerLayerAnalysisListener(ListenerLayerAnalysis

x)

8. All driver interfaces that are deployed are named Driver + Name. The names

for driver interfaces are as follows:

a. Driver

b. DriverMap

 46

c. DriverTool

d. DriverLayerVector

e. DriverLayerRaster

f. DriverLayerAnalysis

g. DriverLayerSymbolsFont

h. DriverLayerSymbolsGeometry

i. DriverLayerSymbolsDrawing

j. DriverLayerSymbolsImage

k. DriverCoordinateConverter

Beans communicate with each other by using listeners and events. Outside

world uses services in these beans by invoking methods of these beans. Beans register

themselves with other beans to be informed when an action happens or some action is

requested from the source bean by using listener interfaces. Java Bean Components in

the framework are explained below:

a. BeanMap: Describes functionalities of the “map” component in this

framework. It implements “InterfaceMap” interface that must be

implemented by beans written as the map component in this framework.

A Map Bean is the core bean in this framework. All other beans are added to

the Map Bean. Beans that want to listen to Map Bean implement

ListenerMap interface to be notified with the events occurring in the bean.

They register themselves with the Map Bean automatically, when they are

added to the Map Bean. Map Bean notifies its listeners when the scale of the

map changes and coordinate unit of the map is set. A Map Bean listens to the

Tool, Raster Layer, Vector Layer, Analysis Layer, and Coordinate Converter

beans. Therefore, the Map Bean implements listener interfaces of these

beans, which are “ListenerTool”, “ListenerLayerRaster”,

“ListenerLayerVector”, “ListenerLayerAnalysis”, and

“ListenerCoordinateConverter”. When these beans are added to the Map

Bean, it registers itself with these beans automatically.

 47

b. BeanTool: Describes functionalities of the “tool” component in this

framework. It implements “InterfaceTool” interface that must be

implemented by the Tool Bean in this framework. Beans that want to listen

to Tool Bean implement “ListenerTool” interface to be notified with the

events occurred in this bean. Tool Bean notifies its listeners when zoom,

pan, distance and unsetting requests are taken place. Figure 3.5 illustrates the

registration mechanism of the Tool Bean with the Map Bean that is the core

bean in this framework.

Figure 3.5 Communication between the BeanMap and the BeanTool components in

the GIS Domain Framework

c. BeanLayerVector: Describes functionalities of the “vector layer” component

in this framework. It implements “InterfaceLayerVector” interface that must

 : Application

 : BeanMap

 : BeanTool

BeanMap registers to
BeanTool to be notified
when the operation is
completed.

1: create Map Bean
3: add Tool Bean

2: create Tool Bean

4: subscribe

5: operationCompletedEvent

 48

be implemented by beans written as Vector Layer Bean in this framework.

Beans that want to listen to the Vector Layer Bean implement

“ListenerLayerVector” interface to be notified with the events occurred in

the bean. When Vector Layer Bean is added to map bean, it registers itself

with the Map Bean automatically. The Vector Layer Bean notifies its

listeners when visibility of the vector map is set from outside. Figure 3.6

illustrates the registration mechanism of the Vector Layer Bean with the

Map Bean that is the core bean in this framework.

Figure 3.6 Communication between the BeanMap and the BeanLayerVector

components in the GIS Domain Framework

d. BeanLayerRaster: Describes functionalities of the “raster layer” component

in this framework. It implements “InterfaceLayerRaster” interface that must

be implemented by beans written as Raster Layer Bean in this framework.

Raster map management is done in this bean. Raster Layer Bean manages

showing raster layers according to the scale of the map of which paths are

included in the configuration file. For example, if the scale of the map is

375000, raster maps with scale of 1/500000 are shown. Beans that want to

 : Application

 : BeanMap : BeanLayerVector

1: create Map Bean
3: add Vector Layer Bean

2: create Vector Layer Bean
4: show Vector Layer

 49

listen to Raster Layer Bean implement “ListenerLayerRaster” interface to

be notified with the events occurred in this bean. Raster Layer Bean is a

listener of Map Bean in this framework. When Raster Layer Bean is added

to Map Bean, it registers itself with Map Bean and Map Bean also registers

itself with Raster Layer Bean automatically. Raster Layer Bean notifies its

listeners, when visibility of raster map is set from outside, and raster maps

are loaded according to the new scale. Figure 3.7 illustrates the registration

mechanism of the Raster Layer Bean with the Map Bean that is the core

bean in this framework.

Figure 3.7 Communication between the BeanMap and the BeanLayerRaster

components in the GIS Domain Framework

 : Application

 : BeanMap

 : BeanLayerRaster

BeanMap
subscribes to
BeanLayerRaster to
be notified when
the raster map path
is managed.

BeanLayerRaster
subscribes to
BeanMap to be
notified when the map
scale is changed.

1: create Map Bean
3: add Raster Layer Bean

8: zoom map (etc.)

2: create Raster Layer Bean
6: show Raster Layer

4: subscribe
7: RasterLayerPathManagedEvent

5: subscribe
9: MapScaleChangedEvent

 50

e. BeanLayerAnalysis: Describes functionalities of the “analysis layer”

component in this framework. It implements “InterfaceLayerAnalysis”

interface that must be implemented by bean written as Analysis Layer Bean

in this framework. Beans that want to listen to Analysis Layer Bean

implement “ListenerLayerAnalysis” interface to be notified with the events

occurred in the bean. When Analysis Layer Bean is added to Map Bean,

Map Bean registers itself with Analysis Layer Bean automatically. Analysis

Layer Bean notifies its listeners when a pixel coordinate is selected by a

mouse click in the outside world to request conversion of these pixel

coordinates to world coordinates. Figure 3.8 illustrates the registration

mechanism of the Analysis Layer Bean with the Map Bean that is the core

bean in this framework.

Figure 3.8 Communication between the BeanMap and the BeanLayerAnalysis

components in the GIS Domain Framework

 : Application

 : BeanMap

 : BeanLayerAnalysis

BeanMap subscribes to
BeanLayerAnalysis to
be notified when the
analysis is completed.

1: create Map Bean
3: add Analysis Layer Bean

2: create Analysis Layer Bean
5: doAnalysisRequest (e.g., visibility analysis)

4: subscribe

6: analysisCompletedEvent

 51

f. BeanLayerSymbolsFont: Describes functionalities of the “font symbols

layer” component in this framework. It implements

“InterfaceLayerSymbolsFont” interface that must be implemented by the

Font Symbols Layer Bean in this framework. Figure 3.9 illustrates the

registration mechanism of the Font Symbols Layer Bean with the Map Bean

that is the core bean in this framework.

Figure 3.9 Communication between the BeanMap and the BeanLayerSymbolsFont

components in the GIS Domain Framework

g. BeanLayerSymbolsGeometry: Describes functionalities of the “geometry

layer” component in this framework. It implements

“InterfaceLayerSymbolsGeometry” interface that must be implemented by

beans written as Geometry Symbols Layer Bean in this framework. Figure

3.10 illustrates the registration mechanism of the Geometry Symbols Layer

Bean with the Map Bean that is the core bean in this framework.

 : Application

 : BeanMap : BeanLayerSymbolsFont

1: create Map Bean
3: add Font Layer Bean

2: create Font Layer Bean
4: add new symbol

 52

Figure 3.10 Communication between the BeanMap and the

BeanLayerSymbolsGeometry components in the GIS Domain Framework

h. BeanLayerSymbolsDrawing: Describes functionalities of the “drawing

layer“ component in this framework. It implements

“InterfaceLayerSymbolsDrawing” interface that must be implemented by

the Drawing Symbols Layer Bean in this framework. Figure 3.11 illustrates

the registration mechanism of the Drawing Symbols Layer Bean with the

Map Bean that is the core bean in this framework.

 : Application

 : BeanMap : BeanLayerSymbolsGeometry

1: create Map Bean
3: add Geometry Symbols Layer Bean

2: create Geometry Symbols Layer Bean
4: add new symbols

 53

Figure 3.11 Communication between the BeanMap and the

BeanLayerSymbolsDrawing components in the GIS Domain Framework

i. BeanLayerSymbolsImage: Describes functionalities of the “image symbols

layer” component in this framework. It implements the

“InterfaceLayerSymbolsFont” interface that must be implemented by the

Image Symbols Layer Bean in this framework. Figure 3.12 illustrates the

registration mechanism of the Image Symbols Layer Bean with the Map

Bean that is the core bean in this framework.

 : Application

 : BeanMap : BeanLayerSymbolsDrawing

1: create Map Bean
3: add Drawing Layer Bean

2: create Drawing Layer Bean
4: addNewSymbolsByMouseClickEvent

5: selectSymbolByMouseClickEvent

 54

Figure 3.12 Communication between the BeanMap and the BeanLayerSymbolsImage

components in the GIS Domain Framework

j. BeanTrackingFontLayer, BeanTrackingGeometriesLayer, and

BeanTrackingImagesLayer: These components are the tracking forms of the

BeanLayerSymbolsFont, BeanLayerSymbolsGeometry, and the

BeanLayerSymbolsImage beans.

k. BeanCoordinateConverter: Describes functionalities of the coordinate

converter component in this framework. It implements the

“InterfaceCoordinateConverter” interface that must be implemented the

Coordinate Converter Bean in this framework. Beans that want to listen to

Coordinate Converter Bean, implement “ListenerCoordinateConverter”

interface to be notified with the events occurred in this bean. The

Coordinate Converter Bean is a listener of the Map Bean in this framework.

When the Coordinate Converter Bean is added to the Map Bean, it registers

itself with the Map Bean and the Map Bean also registers itself with the

Coordinate Converter Bean automatically. The Coordinate Converter Bean

notifies its listeners when a request arrives for conversion of pixel

coordinates of a selected point. Figure 3.13 illustrates the registration

mechanism of the Coordinate Converter Bean with the Map Bean that is the

core bean in this framework.

 : Application

 : BeanMap : BeanLayerSymbolsImage

1: create Map Bean
3: add Image Layer Bean

2: create Image Layer Bean
4: add new symbol

 55

Figure 3.13 Communication between the BeanMap and the BeanCoordinateConverter

components in the GIS Domain Framework

Component libraries that are currently being used in the projects and other

component libraries in the market were examined. It was found that Map Objects Java

(MOJ) from ESRI meets most of the requirements in the applications. Therefore, most

of the requirements in the domain will be covered by implementing MOJ software. In

addition to MOJ, the codes that were written previously have been collected,

converted into components and added to the component library. The codes developed

in other languages have been re-written in Java. New components were developed for

the requirements that are not covered by any component. Figure 3.14 illustrates that

BeanMap uses “ConfBeanMap.xml” configuration file to read the name of the driver

class implemented by MOJ and called “MOJMap”. Application sets configuration file

for BeanMap and uses this bean.

 : Application

 : BeanMap

 : BeanCoordinateConverter

BeanCoordinateConverter
subscribes to BeanMap to
be notified when the
current map coordinates
are calculated.

BeanMap subscribes to
BeanCoordinateConverter
to be notified when
the conversion is
requested.

1: create Map Bean
3: add Coordinate Converter Bean

2: create Coordinate Converter Bean
6: coordinate conversion request

4: subscribe
7: coordinateConversionEvent

5: subscribe
8: currentMapCoordinatesEvent

 56

Figure 3.14 An example of using configuration file with the BeanMap component

MOJMap
implements
DriverMap by
usingfunctions
of component
library sold in
the market

 : Application ConfBeanMap.xml :
XML bas...

 : BeanMap : Component
Library free or so...

MOJMap (implementing)
: DriverMap

setConfigurationFile("ConfBeanMap.xml")

MOJMap is
loaded

getMapComponent()

getMapComponent()

showMapComponent()

:Component

openConfigurationFile()

readBeanName()

"Map"
Map is read from
configuration file

readConfigurationDriverClassName()

"MOJDriver.MOJDriverMap"

loadClass("MOJDriver.MOJDriverMap")

required function call

 57

To show the flexibility in using component library, two component libraries

commercially available have been used. One of them was MOJ and the other was

OpenMap that is an opensource library. In addition, to validate changeability for usage

of component library mechanism of the framework, two driver classes have been

implemented by using OpenMap. The configuration files have been filled for these

two drivers. Different applications have been run that utilize the component library

commercially available, MOJ and OpenMap without modifying any code but only

adapting the configuration files for the components. Furthermore, to test the

changibality at runtime, application can modify the component library by changing

configuration file. Two configuration files are shown below for using MOJ and

OpenMap. “MOJDriver.MOJDriverMap” and “OMDriver.OMDriverMap” classes

implement the DriverMap interface in the framework.

<ConfigurationFile>

 <BeanCallDefinitions>

 <BeanName>MOJMap</BeanName>

 <BeanDriverClass>MOJDriver.MOJDriverMap</BeanDriverClass>

 </BeanCallDefinitions>

</ConfigurationFile>

<ConfigurationFile>

 <BeanCallDefinitions>

 <BeanName>OMMap</BeanName>

 <BeanDriverClass>OMDriver.OMDriverMap</BeanDriverClass>

 </BeanCallDefinitions>

</ConfigurationFile>

 58

 CHAPTER 4

INTERFACE LAYER TO UTILIZE JAR

LIBRARIES AS COMPONENTS

4.1. Importing Beans into COSECASE Tool and System
Design

An Application Engineering process develops software products from software

assets created by a domain engineering process. This chapter of the thesis presents the

interface layer that has been developed adapting external components to a design tool.

This interface layer is used to access Java Archive (JAR) libraries that include Java

Beans. JAR libraries are hence made available for use in the design tool as

components, extending the tool for development beyond design. These executable

components are used in designing applications with the Component Oriented Software

Engineering (COSE) approach. In addition, components mentioned in the previous

chapter have been imported into the COSECASE and used to design and generate an

application.

The component-oriented modeling tool (COSECASE) has been developed to

design a system with respect to the COSE approach [8]. System is designed by

deploying copies of the icons on the toolbar. The component icon symbolizes existing

components. Each component has interfaces to represent its properties, methods, and

events as shown in Figure 4.1. An Interface is the connection point of a component;

services requested from a component are invoked through this interface. Using the

tool, a designer places component and interface icons on the drawing panel. A

properties panel is opened for an icon by clicking the right mouse button on the icon.

By using the properties panel, name of the component, its interfaces, properties,

methods, and in/out events are entered. Using the previous version of the tool, system

design had to be carried out manually.

 59

 Component

interface1
interface2

.

.

Component

properties

methods

events in

events out

 with single interface

interface

properties

methods

events in

events out

Figure 4.1 Component and Interface Symbols in COSEML

After the enhancement, COSECASE can be used as a GIS framework. Now it is

possible to model the decomposition of logical-level components. Then, existing

components and new components can be linked to those abstract components. Finally,

method-level connections can be defined using the interfaces. Figure 4.2 shows the

layers in the enhanced tool.

Figure 4.2 Conceptual Layers in the Framework

Abstract Components

Existing & Designed Components

Interfaces / Method Connections

Executable Code in JAR Files

 60

To design a system using the COSECASE tool with increased leverage, existing

executable components must be used. These components must be imported into the

tool. Their properties, methods and events must be shown when these components are

carried to the workspace. The interface layer developed for the thesis work assumes

that the JAR libraries include Java Beans and beaninfo classes. A menu operation that

is used to import JAR files into the tool is placed in the COSECASE. After selecting

JAR files by using this menu option, bean-info of the beans in the JAR file are read. A

screen from the COSECASE for this operation is shown in Figure 4.3:

Figure 4.3 Importing existing bean components into COSECASE

The name of the bean, properties, methods, and in/out events of the component

are obtained from the bean-info structure. In addition, the icon for the Java Bean is

 61

retrieved from the bean-info, icon file is copied from the JAR library, and the icon is

shown on the toolbar of COSECASE. In Figure 4.4, a sequence diagram illustrates

usage of these JAR files as components in COSECASE:

 62

Figure 4.4 Using JAR files as components in the COSECASE

 : User
 : Menu in

COSECASE
 : File Selection Dialog in

COSECASE
 : Interface

Layer
 : T oolBar in
COSECASE

 : Drawing Panel in
COSECASE

 : Jar Fi le : Properties Panel
in COSECASE

Read BeanInfo structures from Jar fi les

BeanInfo structures

add Beans

show Jar files

select Jar files

add beans(Jar files)

show Bean icons

select Bean icon to design a system

draw Bean on the panel for design

get Bean properties, methods, and events

find out in events and out events in BeanInfo structures

properties, methods, in events, and out events of the Bean

draw an interface and a component shape

fill in the component shape by assets of the Bean

configure appl ication

configure (paths for component l ibrary)

generate appl ication

generate code

open properties panel of the shape

open(properties, methods, and events)

Connect beans with methods of the Bean

relations between Beans

 63

Bean icons represent the imported executable components on the toolbar. By

pressing over a bean icon and then dragging the component to the drawing panel of

the tool, the component shape representing the bean is shown. Figure 4.5 shows the

screen from the COSECASE tool for this operation:

Figure 4.5 Icons of Imported Bean Component in COSECASE

A component and an interface for that component are drawn on the panel. This

interface presents the name of the bean, as read from the bean-info. Properties,

methods, image, and in/out events of the component retrieved from the bean info are

shown on the interface of the component. For example, if xbean is included in the JAR

library, the corresponding component and the interface are shown in Figure 4.6:

 64

 xbean

interface1
.
.

Ixbean

properties

methods

events in

events out

Figure 4.6 Bean Components from JAR libraries in COSECASE

A system can be designed by using these imported executable components.

System is decomposed into smaller parts. When the parts are small enough to

correspond to the imported components, they are selected and placed in the system

design. A simple example is shown in Figure 4.7. The system consists of the BeanMap

and the BeanTool components in the figure.

 65

Figure 4.7 Beans in COSECASE

The Java Beans bean-info structure includes information about properties,

methods, parameter types of the methods, bean image, and events that are fired by the

bean. The Reflection package in Java is used to load a class at runtime. Name of the

bean class is retrieved at runtime. While importing a bean in a JAR file into

COSECASE, the bean and bean-info classes are loaded by using the reflection

package, since information about the bean class is not known statically. Therefore,

classes are loaded dynamically. Properties, methods, image and parameter types are

obtained from the beaninfo and names of these items are shown on the panel. The

sequence for loading bean components dynamically is presented below:

theBeanClasses [classNo] = Class.forName(“theBeanName”);

theBeans [classNo] = theBeanClasses[classNo].newInstance();

 66

theBeanInfoClass [classNo] = theBeanName.concat("BeanInfo");

theBeanInfos [classNo]=Introspector.getBeanInfo(theBeanClasses[classNo]);

Image beanImage = theBeanInfos [classNo].getIcon (16);

properties = theBeanInfos[classNo].getPropertyDescriptors();

methods = theBeanInfos[classNo].getMethodDescriptors();

In COSEML and COSECASE, a component has two types of events: events

that component receives and events that component fires. On the other hand, bean-info

includes information about bean events that are fired by the bean. This structure

corresponds to “out-events” in COSEML. Therefore, to find “in-events” that a Java

Bean gets, the developed interface layer searches all the listener types that the bean

implements and then gets the methods of those listener interfaces by using the

reflection package again.

There are two ways for locating the “out-events” for the bean. One of them is

getting events fired from the bean-info by using the Introspector package of Java:

eventsSet = theBeanInfos[classNo].getEventSetDescriptors();

The other is using listeners as mentioned above. This process is conducted by

using naming conventions in Java. For example, to add a listener called XYZ, the bean

includes addXYZListener(XYZ) method. This interface layer searches all

add<ListenerType>Listener methods in the bean and gets the methods for all the

listener types that can be added to the bean. In this way, methods that are used to add

listeners to the bean are searched and listeners that can be added to the bean are

obtained. The Listener class is loaded by the reflection utility and the methods of the

listener are accessed. The methods of these listeners are “out-events” for the bean,

since those methods are called from the bean. This way, gathering “in-events” and

“out-events” becomes standardized way. The pseudocode describing this operation is

shown below:

 67

It is assumed that all listeners implement the "java.util.EventListener" interface.

To find out events that a bean receives, all the interfaces that bean implements are

searched. If an interface implements "java.util.EventListener", it means that the

interface is a listener. Therefore, the methods of this listener are “in-events” for the

bean, since the bean implements this interface. The pseudocode describing this

operation is shown below:

for all methods {

 if (method name.startsWith("add") && method name.endsWith("Listener")) {

 get parameter types of the method as listener class type

 }

 for all retrieved parameter types {

 load listener class

 get methods of listener class

hold names of these methods as out-event names

 }

}

for all interface classes that a bean implements

call getInEvents function for the interface

//__

public void getInEvents(Class _interfaceClass, java.util.Vector methInNames) {

if this interface is not “java.util.EventListener”

for all interfaces that this interface implements

 call getInEvents function for the interface recursively

get the methods of the interfaces as in-events

 68

All the interfaces of the bean are searched recursively in the “getInEvents”

function until "java.util.EventListener" is reached. When it is reached, names of the

methods in the listeners are marked as “in-events”.

In the previous version of COSECASE, properties of the components are shown

on the properties dialog by clicking the right button of the mouse on the component

icon. This dialog box shows the name, properties, methods, and the in/out events for

the component. The current version of the tool automatically displays such values

when existing imported component is used, since these values are read from the bean-

info record. Figure 4.8 shows the properties panel for BeanMap bean in COSECASE.

“Use In Generation” check box is marked when the codes for the selected method be

generated. “Configuration Method” check box is marked when the selected method

will be used for setting configuration file.

Figure 4.8 Properties Dialog Box in COSECASE

 69

Parameter types of the methods are also read from the bean-info record. By

using this utility of the bean-info, another dialog box showing types of the parameters

are shown for the methods. In this dialog box, user can enter values for the parameters

of which types are shown. Unfortunately, there is no way to give an apprpriate name

to the parameters from the bean-info. Therefore, only the types of the parameters are

shown on the dialog box. The values entered in this dialog box are used in code

generation. Figure 4.9 shows the Parameters Dialog Box:

Figure 4.9 Parameters Dialog Box in COSECASE

Semi-autamated code generation and application execution utilities are also

added to COSECASE. By using the information in the properties dialog box, code

generation is done by the tool. Users select methods that will be used in code

generation by ckecking the “Use In Generation” checkbox. Figure 4.9 shows this

condition. If a method is signed to be used in code generation, parameters dialog box

shown in Figure 4.9 is opened and the user is requested to enter values for the

parameters. While generating the code, tool looks for the signature of the method. If

the method is signed for code generation, the code is generated for the method by

 70

using the values entered in the parameters dialog box. Generated code is written in a

file named as “Application1.java” in the COSECASE directory. This file is a simple

Java source file that includes the frame panel class. This Java file is compiled during

the generation time and packaged in a JAR file. A “bat file” is also generated in the

generation time by the tool. This file includes necessary information to run the

generated code. Application generation is done by running

“Runtime.getRuntime().exec(cmd)” command from the tool. Sometimes, this utility

does not work because of the deficiency of Java in this command.

In the previous section, a GIS domain framework is represented and

components of this framework are packaged as JAR libraries. A GIS application was

designed by using COSECASE tool and existing components in the domain by

importing these JAR libraries into COSECASE in this thesis. Figure 4.10 illustrates

this simple application design in COSECASE. The icons on the toolbar represent the

bean components. A GIS application is designed by clicking on these component

icons and dragging these components on the panel. The executable code is provided

by the JAR libraries. A configuration part is added to the menu, since this domain

framework uses component library commercially available. Path of the component

library is configured from this menu. When the “generate button” is pressed,

executable code is generated for the application by using the parameters entered on the

property dialog. When “run application button” is pressed, the application is executed.

 71

Figure 4.10 Beans Menu in COSECASE

4.2. Experimental Results

Three simple applications were generated by using the interface layer and also

by coding them manually for experimental purposes. One of the applications had 2,

another had 3, and the last one had 4 components, which were implemented as a result

of Domain Implementation phase as described in Chapter 3. Every application was

generated more than one time through coding and also by integration through the

developed framework. Average generation times in minutes, sizes of the applications

in kilobytes (KB), and the number of lines in the generated applications were

measured for each case. The experimental efficiency metrics are reported as KB per

minutes and lines per minutes. The results of using the interface layer are given in

Table 2, and the results corresponding to coding the application manually are given in

Table 3.

 72

Table 2 Results of the experiments by using the interface layer

COSECASE with the interface layer

Average

Number of

components

used in the

applications

Time

(min)

Size

(KB)

Lines of

Code
KB / min Lines / min

2 3 2.7 57 0.9 19

3 3.7 3.1 63 0.8 17

4 4 3.3 67 0.8 16.8

Table 3 Results of the experiments by coding the application.

Coding the application manually

Average

Number of

components

used in the

applications

Time

(min)

Size

(KB)

Lines of

Code
KB / min Lines / min

2 6 2.8 56 0.5 9.3

3 7 2.9 60 0.4 8.6

4 8 3.3 63 0.4 7.8

 73

The results of using the interface layer and coding the application manually

were compared. It was noticed that application generation by using the interface layer

is 2 times faster and more efficient than coding the application manually. The

comparison results are given in Table 4.

Table 4 Comparison of the values of interface layer / coding manually

Number of

components used

in the applications

KB/min values:

through

framework/

through coding

lines/min values

through

framework/

through coding

2 1.8 2

3 2 2

4 2 2.1

Besides these experimental results, using the interface layer has some

advantages experimented while generating those simple applications:

1. One selection, one mouse-click, or one input is used to generate one

line of code in the interface layer. On the other hand, this line of code

needs to be entered manually for coding the application.

2. Since the imported components are used through the interface layer,

the names of the components are retrieved from the source code of

 74

these components. Therefore, the generated code becomes more

standard in comparison to the coding the application alternative. Even

for the case where different persons generate the same design at

different times; the generated code remains similar.

3. It was noticed that more errors were produced while coding the

application manually. In addition, finding the error and correcting it

takes more time.

4. With the interface layer the design and the code of the application are

kept in the same environment. Therefore, changing the code of the

application means changing some parameters or settings just in the

design.

4.3. Evaluation of Other Related Work

Software development based on frameworks including pre-fabricated

components is a way to improve productivity in Software Engineering. Developing

software by composing the components in a framework and generating applications

automatically is an important issue. A lot of efforts have been spent on this issue.

Different approaches are introduced in [31], [32], [33]. In [31] components

from different sources can be imported into the framework. An eXtended Markup

Language (XML)-based file defines the construction of the component. These

components are re-constructed as JavaBeans in the framework by manipulating this

XML-based file. Composition of components is handled in a Graphical User Interface

(GUI)-based environment by using the properties of the JavaBeans manually.

Relations defined graphically are inserted into an XML-based file in generation time.

Java source code is generated from this file. This approach supports the using of the

executable components from different sources with the help of XML-based file in the

system design. Whereas this approach requires knowledge about the properties,

methods, and events of the components to import them into the framework, we

proposed using of JAR files including JavaBeans and bean info structures in our

framework. Using the beaninfo structures in our approach directly generates Java

source code. Although there is no need to know the assets of the components to import

 75

them to the framework, only JAR files including JavaBeans can be imported to the

framework. This is a disadvantage in comparison to the work described in [31].

To compose the components some structural relations including plugs are

defined in [32]. A structural relation consists of two or more plugs containing a set of

interfaces. Components are attached to these plugs by implementing the interfaces that

is represented by the plugs. Components are composed in a GUI-based environment

again. Pre-defined structural relations bring some overhead to the composition of two

components. All the three studies including our study above are using a GUI-based

environment to compose components. Therefore, code is generated semi-automatically

since components are integrated manually. Full-automated code generation is still an

open point in our study.

In [33], a new algorithmic approach is introduced to integrate components. A

component is modeled with data, function and, control elements. The control elements

define the interaction of the services between the components. The components are

integrated by using the adapter components that solves the mismatches between the

integrating parts. Automatic and dynamic generation of the adapter components at

runtime makes the approach valuable. Also a meta-semantic language is introduced to

define the components and the integration of them. These specifications are then

translated into the generation of the adapters. Integrating components and full

automatic code generation is thought as a future work in our study.

As a summary, it can be said that our approach is somewhat comparable to

similar attempts. We found ours to be more practical especially in the applied GIS

domain. Less code writing and less information requirement on the definition of

components is favored over the disadvantage of the limited input format that is jar

files.

 76

 CHAPTER 5

CONCLUSION

An interface layer has been developed that uses Java Archive (JAR) libraries to

locate deployed components and imports them into to the COSECASE tool. This

interface layer retrieves properties, methods, and in/out events of these components

from the existing codes. Such elements are re-organized as COSEML structures that

are component interfaces. Organizations deploy their Java Bean components as JAR

libraries. Therefore, systems can be developed by using executable components in

COSECASE in the form of JAR libraries. In addition, semi-automated code

generation and application execution is enabled by selecting methods of the

components that will be used in code generation and entering values for the

parameters of the methods.

The cornerstone of the enhanced tool is using deployed components in system

development, code generation for the application, and execution of the application

within COSECASE. There is no need to enter properties, methods, in/out events for

the existing components in COSECASE, since these items are obtained from the

components automatically. Components are imported from JAR libraries and dragged

into the drawing panel of the tool for composing systems.

5.1. Work Conducted

In the thesis, requirements for the GIS domain have been collected from the

product line of the company for domain engineering process. Existing domain

knowledge and existing codes have been collected from the experts. Domain has been

analyzed, boundaries of the domain have been determined and domain has been

simply modeled by using Feature Oriented Domain Analysis (FODA). Domain

Architecture has been modeled with Unified Modeling Language (UML) and

components have been developed. Components were developed in three ways:

 77

1- Existing Java codes in the organization have been converted to components

directly.

2- Existing codes in other languages were first converted to Java and then

converted to components.

3- Components were developed from scratch, if there was no existing code for

the corresponding requirement.

These components were developed as beans. Bean-info classes for the beans

have also been written. Java Bean components have been packaged into “JAR files“

for deployment. For the second part of the thesis, COSECASE has been debugged.

Errors in the tool have been corrected. An interface layer has been developed for the

tool to import JAR libraries and to use these libraries as components. Beans contained

in JAR libraries have been integrated with the component mechanism in COSECASE.

A new mechanism has been added to the tool to show parameter types for the

parameters of the methods for these bean components. Semi-automated code

generation and application execution mechanisms have been added to the tool.

5.2. Comments

Although an example application has been generated for the thesis work, no real

experiments have been conducted in the industry yet. Also, to assess the added value

of this work, a set of three smaller applications were developed and comparisons were

conducted by applying alternative approaches on this set. This limited experience,

however, was very valuable. Experimental results show that application generation by

using the interface layer is 2 times faster and more efficient than coding the

application manually. After satisfying the author for the validity of the approach, it

was noticed in a defense related engineering organization. Consequently, proposed

framework approach is now planned by the organization to be adopted as a method for

developing GIS applications. With the developed tool set, it will be possible to

achieve a domain engineering framework that will compose components into

applications. This goal does not seem to require too much extra effort. A prototype

framework has already been developed.

 78

5.3. Future Work

For Java Bean components imported into the COSCASE, one component shape

and only one interface shape are currently being displayed on the drawing panel. This

interface shape includes information about the services of the component that is

recovered from the bean-info. On the other hand, one component can also have more

than one interface in COSEML. Therefore, an intelligent mechanism that generates

different interfaces from the bean-info can be developed in the future. Semi-automated

code generation has been realized in this thesis. Methods that will be used in code

generation are selected in the tool manually and then codes for these methods are

generated. On the other hand, there is no automated mechanism that finds relations

among components. Hence, such a mechanism would enhance the abilities in the

integration of components.

 79

 REFERENCES

[1] Ilka Philippow, Detlef Streitferdt, Matthias Riebisch, “Design Pattern Recovery

in Architectures for Supporting Product Line Development and Application”,

Modelling Variability for Object-Oriented Product Lines edited by M. Riebisch,

J. O. Coplien, D, Streitferdt (Eds.). BookOnDemand Publ. Co., Norderstedt, pp.

42-57, 2003.

[2] D.L. Parnas, P.C. Clements, and D.M. Weiss, “Enhancing Reusability with

Information Hiding”, IEEE Tutorial Software Reusability edited by Peter

Freeman, IEEE Computer Society Press, IEEE Catalog #EH0256-8, ISBN 0-

8186-0750-5, pp. 83-90, 1987.

[3] Bertrand Meyer, “Eifell: Reusability and Reliability”, IEEE Tutorial Software

Reuse: Emerging Technology edited by Will Tracz, IEEE Computer Society

Press, IEEE Catalog #EH0278-2, ISBN 0-8186-0846-3, pp. 216-228, 1990.

[4] Clements Szyperski, “Component Software Beyond Object Oriented

Programming”, Addison-Wesley, 1998.

[5] “Software Reuse, Major Issues Need To Be Resolved Before Benefits Can Be

Achieved”, United States General Accounting Office, January 1993.

[6] Ruben Prieto Diaz, Gerald A. Jones, “Breathing New Life into Old Software”,

IEEE Tutorial Software Reuse: Emerging Technology edited by Will Tracz,

IEEE Computer Society Press, IEEE Catalog #EH0278-2, ISBN 0-8186-0846-

3, pp. 152-160, 1990.

[7] Vedat Bayar, A Process Model for Component Oriented Software

Development, M.S. Thesis, Middle East Technical University, November 2001.

[8] Aydın Kara, A Graphical Editor for Component Oriented Modeling, M.S.

Thesis, Middle East Technical University, April 2001.

 80

[9] Jim Q. Ning, “A Component Model Proposal”, International Workshop on

Component-Based Software Engineering, pp. 13-16, Los Angeles, CA, USA,

17-18 May 1999.

[10] Kurt C. Wallnau, “On Software Components and Commercial ("COTS")

Software”, International Workshop on Component-Based Software

Engineering, pp. 213-218, Los Angeles, CA, USA, 17-18 May 1999.

[11] Tricia Oberndorf, Lisa Brownsword, Carol A. Sledge, “An Activity Framework

for COTS-Based Systems”, Technical Report, Software Engineering Institute,

October 2000.

[12] Cecilia Albert, Lisa Brownsword, “Evolutionary Process for Integrating COTS-

Based Systems (EPIC): An Overview”, Technical Report, Software Engineering

Institute, July 2002.

[13] Gail E. Kaiser, David Garlan “Melding Software Systems from Reusable

Building Blocks”, IEEE Tutorial Software Reuse: Emerging Technology edited

by Will Tracz, IEEE Computer Society Press, IEEE Catalog #EH0278-2, ISBN

0-8186-0846-3, pp. 267-274, 1990.

[14] Geral Jones, “Methodology/Environment Support for Reusability”, IEEE

Tutorial Software Reuse: Emerging Technology edited by Will Tracz, IEEE

Computer Society Press, IEEE Catalog #EH0278-2, ISBN 0-8186-0846-3, pp.

190-193, 1990.

[15] Oh-Cheon Kwon, Seok-Jin Yoon and Gyu-Sang Shin, “Component-Based

Development Environment: An Integrated Model of Object-Oriented

Techniques and Other Technologies”, International Workshop on Component-

Based Software Engineering, pp. 47-53, Los Angeles, CA, USA, 17-18 May

1999.

[16] D. Ansorge, K. Bergner, B. Deifel, N. Hawlitzky, C. Maier, B. Paech, A.

Rausch, M. Sihling, V. Thurner, S. Vogel, “Managing Componentware

Development –Software Reuse and the V-Modell Process”, Proceedings of the

11
th
 International Conference on Advanced Information Systems Engineering,

pp 134-148, 14-18 June 1999.

 81

[17] K. Czarnecki and U. Eisenecker, “Generative Programming: Methods,

Techniques, and Applications”, Addison-Wesley 1999.

[18] Rubén Prieto-Díaz, “DOMAIN ANALYSIS: AN INTRODUCTION”, ACM

SIGSOFT Software Engineering Notes, pp. 47-54, April 1990.

[19] Rubén Prieto-Díaz, “Domain Analysis for Reusability”, Proceedings of

COMPSAC’87, pp. 23-29, 1987.

[20] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, A. Spencer

Peterson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study”,

Technical Report, Software Engineering Institute, November 1990.

[21] Sholom G. Cohen, Jay L. Stanley, Jr., A. Spencer Peterson, Robert W. Krut, Jr.,

“Application of Feature-Oriented Domain Analysis to the Army Movement

Control Domain”, Technical Report, Software Engineering Institute, June 1992.

[22] Robert Kurt, Nathan Zalman, “Domain Analysis Workshop Report for the

Automated Prompt Response System Domain”, Technical Report, Software

Engineering Institute, May 1996.

[23] John D. McGregor, “The Evolution of Product Line Assets”, Technical Report,

Software Engineering Institute, June 2003.

[24] Paul C. Clements, Linda M. Northrop, “Salion, Inc.: A Software Product Line

Case Study”, Technical Report, Software Engineering Institute, November

2002.

[25] Rosario Girardi and Carla Gomes de Faria, “A Generic Ontology for the

Specification of Domain Models”, Proceedings of 1
st
 Workshop Component

Engineering Methodology, pp. 41-50, 24 September 2003, Erfurt, Germany.

[26] Thomas Cleenewerck, “Component-based DSL Development”, Proceedings of

GPCE03 Conference, Lecture Notes in Computer Science 2830, pp. 245–264,

Springer- Verlag, 2003.

[27] Carnegie Mellon University Software Engineering Institute (SEI), “Domain

Engineering”, http://www.sei.cmu.edu/domin_engineering/domain_emg.html,

March 2005.

 82

[28] Mark Johnson, “A Walking tour of Java Beans by Mark Johnson”, Java World

http://www.javaworld.com/javaworld/jw-08-1997/jw-08-beans.html, February

2005.

[29] Laurance Vanhelsuwe, “Mastering in Java”,

http://www.javaolympus.com/freebooks/FreeJavaBooks.jsp, October 2004.

[30] Esri GIS and Mapping Software, “Geography Matters”, White Paper

http://www.esri.com/library/whitepapers/pdfs/geomatte.pdf, September 2002.

[31] Vaclav Cechticky, Philippe Chevalley, Alessandro Pasetti, Walter

Schaufelberger, “A Generative Approach to Framework Instantiation”,

Proceedings of the 2
nd
 International Conference on Generative Programming

and Component Engineering, pp. 267–286, Springer- Verlag, September 2003.

[32] Theo Dirk Meijler, Serge Demeyer, Robert Engel, “Automated Support for

Software Development with Frameworks”, Proceedings of the 6
th
 European

Conference held jointly with the 5
th
 ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ACM SIGSOFT Software

Engineering Notes, Volume 22 Issue 6, pp. 123–127, November 1997.

[33] L.K. Jololian, F.J. Kurfess, M.M. Tanik, “Data, Functıon, And Control As

Elements Of Component-Integratıon”, Integrated Design and Process

Technology, IDPT-2003, pp. 194–204, June 2003.

 83

 APPENDIX A

GIS FRAMEWORK DESIGN

A.1. Use Case Diagram

Application
GIS Operations

Component Library free
or sold in market

XML based Configuration file

<<creates>>

<<uses>>

DriverClass implementing
DriverInterface

<<uses>>

<<reads>>

<<uses>>

<<uses>>

<<uses>>

 84

A.2. Framework Design (Class Package Diagram)

Map Manager Symbology
Manager

Analysis
Manager

Coordinate
Conversion Manager

Application

showMapComponent()

(from Use Case View)

XML based Configuration file
(from Use Case View)

Component Library free or sold in
market

(from Use Case View)

Tool Manager

Basic Data Structures

Implemented
Driver Classes

 85

A.3. Basic Data Structures in the Framework

Abstract
Classes

Events Listeners Exceptions

Driver InterfacesBeans

Interfaces

 86

Listeners

ListenerCoordinateConverter

getCurrentMapCoordinateAction(_coordinateEvent : EventCoordinateConversion)

<<Interface>>

ListenerLayerAnalysis

pixelToWorldRequestEvent(_event3D : Event3D)
extentToBoundRequestEvent(_isExt : boolean)

<<Interface>>

ListenerLayerRaster

rastersManaged(_rastersManagedEvent : EventRasterLayerManaged)
showRasterAction()

<<Interface>> ListenerLayerVector

showVectorLayer(_vectorLayerEvent : EventVectorLayer)
vectorLayerVisibilityChanged(_vectorLayerEvent : EventVectorLayer)

<<Interface>>

ListenerMap

mapScaleChanged(_mapZoomedEvent : EventMapScaleChanged)
setMapCoordinateAction(_coordinateEvent : EventCoordinateConversion)

<<Interface>>

ListenerTool

toolOK(ok : boolean)
zoomEventAction(_toolEvent : EventTools)
zoomInEventAction(_toolEvent : EventTools)
zoomOutEventAction(_toolEvent : EventTools)
panEventAction(_toolEvent : EventTools)
measureDistanceEventAction()

<<Interface>>

 87

Interfaces

InterfaceTool

addListenerToolListener(_listener : ListenerTool)
removeListenerToolListener(_listener : ListenerTool)

zoom()
zoomIn()

zoomOut()
pan()

measureDistance()
unsetTool()

InterfaceBean

setConfigurationFile(_configurationFile : String) : void
getConfigurationFile(_configurationFile : String) : String

setBeanName(_beanName : String)
getBeanName() : String

setIconPath(_iconPath : String)
getIconPath(_iconPath : String) : String

ListenerMap
(from Listeners)

InterfaceCoordinateConverter

getCoordinates(_x : int, _y : int, _2CoordinateSystem : int) : Object
addListenerCoordinateConverterListener(_listener : ListenerCoordinateConverter)

removeListenerCoordinateConverterListener(_listener : ListenerCoordinateConverter)

 88

InterfaceMap

getMapComponent() : Component
addToolBean(_toolBean : InterfaceTool)

removeToolBean(_toolBean : InterfaceTool)
addLayer(_layerItem : InterfaceBeanLayer)

removeLayer(_layerItem : InterfaceBeanLayer)
addListenerMapListener(_listener : ListenerMap)

addCoordinateBean(_coordinateBean : InterfaceCoordinateConverter)
removeCoordinateBean(_coordinateBean : InterfaceCoordinateConverter)

redrawMap()
setMapScale(_scale : double)

getMapScale() : double
paintMap(_color : Color)

zoomXTimes(_times : double)
zoomToMapScale(_times : double)

panToLeft(_degree : double)
panToRight(_degree : double)
panToSouth(_degree : double)
panToNorth(_degree : double)

panALittle(_isLR : boolean, _RN : int, _degree : double)
returnToPreviousRegion()

returnToInitialRegion()
setMapExtent(_extent : java.awt.Rectangle)

getMapExtent() : java.awt.Rectangle
setMapUnit(_unit : int)

getMapUnit() : int
setCoordinateSystem(_coordinateSystem : int)

getCoordinateSystem() : int
getCurrentCoordinates(_x : int, _y : int)

pan()
measureDistance()

ListenerLayerRaster
(from Listeners)

ListenerTool
(from Li steners)

ListenerLayerVector
(from Listeners)

ListenerLayerAnalysis
(from Listeners)

ListenerCoordinateConverter
(from Listeners)

 89

InterfaceBeanLayerSymbols

InterfaceBeanLayerSymbolsTracking

setUpdateTime(_updateMiliseconds : int)
getUpdateTime() : int

showLayer()

InterfaceBeanLayer

getLayerComponent() : Component

InterfaceLayerVector

showVectorMap(_name : String) : boolean
setVisibility(_name : String, _visibility : boolean)

addListenerLayerVectorListener(_listener : ListenerLayerVector)
removeListenerLayerVectorListener(_listener : ListenerLayerVector)

InterfaceBeanLayer

getLayerComponent() : Component
ListenerMap
(from Listeners)

InterfaceLayerRaster

addListenerLayerRasterListener(_listener : ListenerLayerRaster)
removeListenerLayerRasterListener(_listener : ListenerLayerRaster)

showRasterMaps()
setVisibility(_action : boolean)

 90

InterfaceBeanLayer

getLayerComponent() : Component

ListenerMouseEv
ent

(from Listeners)

InterfaceLayerAnalysis

NONE : int
ALTITUDE : int
PROFILE : int

VISIBILITY : int
DISTANCE : int

setAnalysisMode(_mode : int)
getAnalysisMode() : int

InterfaceBeanLayerSymbols

setDrawingColor(_color : Color)
getDrawingColor() : Color

setSelectedEnabled(_enabled : Boolean)
isSelectedEnabled() : Boolean

setSelectionColor(Color)
getSelectionColor() : Color

InterfaceBeanLayer

getLayerComponent() : Component

ListenerMouseEv
ent

(from Listeners)

 91

InterfaceBeanLayerSymbols

InterfaceBeanLayerSymbolsImage

addNewSymbol(_id : int, _name : String, _x : double, _y : double)
removeSymbol(_id : int)

removeAll()
changeLocation(_id : int, _x : double, _y : double)

changeType(_id : int, _name : String)
draw(_id : int)

drawAll()

InterfaceBeanLayerSymbolsFont

addNewSymbol(_id : int, _name : String, _x : double, _y : double)
removeSymbol(_id : int)

removeAll()
changeLocation(_id : int, _x : double, _y : double)

changeType(_id : int, _name : String)
draw(_id : int)

drawAll()

 92

InterfaceBeanLayerSymbols

InterfaceBeanLayerSymbolsGeometry

setFilled(_isFilled : boolean)
isFilled() : boolean

addCircle(_id : int, _center : java.awt.Point, _radius : double)
addEllipse(_id : int, _center : java.awt.Point, _width : double, _height : double)

addPoint(_id : int, _point : java.awt.Point)
addPolygon(_id : int, _points : java.util.Vector)
addPolyline(_id : int, _points : java.util.Vector)

addCorridor(_id : int, _point1 : java.awt.Point, _point2 : java.awt.Point, _point3 : java.awt.Point, _point4 : java.awt.Point)
addRectangle(_id : int, _point1 : java.awt.Point, _point2 : java.awt.Point)

changeLocation(_id : int, _x : double, _y : double)
removeGeometry(_id : int)

drawGeometry(_id : int)
draw()

InterfaceBeanLayerSymbolsDrawing

setDrawingModeSetted(_isDrawingModeSetted : boolean)
isDrawingModeSetted() : boolean

setCurrentDrawingMode(_currentDrawingMode : int)
getCurrentDrawingMode() : int

 93

Driver Interfaces

Driver

DriverMap
DriverLayer DriverCoordinat

eConverter DriverTool

DriverLayerRaster
DriverLayerVect

or
DriverLayerAnal

ysis
DriverLayerSym

bols

DriverLayerSymbolsFont DriverLayerSym
bolsGeometry

DriverLayerSymb
olsImage

DriverLayerSymb
olsDrawing

 94

Abstract Classes

InterfaceBean

(from Interfaces)

AbstractBean

confFileName : String
beanName : String
iconPath : String

setConfigurationFile(_configurationFile : String) : void
getConfigurationFile(_configurationFile : String) : String
setConfigurationDriverClass()
setBeanName(_beanName : String)
getBeanName() : String
setIconPath(_iconPath : String)
getIconPath(_iconPath : String) : String
readConfigurationFile()

AbstractBeanLayer

getLayerComponent() : Component

InterfaceBeanLayer

(from Interfaces)

AbstractBeanLayerSymbols

setDrawingColor(_color : Color)
getDrawingColor() : Color
setSelectedEnabled(_enabled : Boolean)
isSelectedEnabled() : Boolean
setSelectionColor(Color)
getSelectionColor() : Color

InterfaceBeanLayer
Symbols

(from Interfaces)

 95

Beans

SymbolsCoordinate
Systems

AbstractBean
(from Abstract Classes)

BeanCoordinateConverter BeanMap BeanTool

InterfaceCoordinate
Converter

(from Interfaces)

InterfaceMap

(from Interfaces)

InterfaceTool

(from Interfaces)

AbstractBeanLayer
(from Abstract Classes)

BeanLayerRaster
BeanLayerVector

InterfaceLayerRast
er

(from Interfaces)

InterfaceLayerVect
or

(from Interfaces)

BeanLayerAnalysis

InterfaceLayerAnalysis
(from Interfaces)

 96

AbstractBeanLayerSymbols
(from Abstract Classes)

BeanLayerSymbolsFont
BeanLayerSymbols

Geometry
BeanLayerSymbolsImage

InterfaceBeanLayer
SymbolsFont
(from Interfaces)

InterfaceBeanLayer
SymbolsGeometry

(from Interfaces)

InterfaceBeanLayer
SymbolsImage

(from Interfaces)

BeanLayerSymbolsDrawing

InterfaceBeanLayer
SymbolsDrawing

(from Interfaces)

BeanLayerSymbolsF
ontTracking

InterfaceBeanLayer
SymbolsTracking

(from Interfaces)

BeanLayerSymbolsGeom
etryTracking

InterfaceBeanLayer
SymbolsTracking

(from Interfaces)

 97

B.4. Sequence Diagrams of Interactions between Components

This section includes sequence diagrams that show interactions between the

developed beans for the GIS Domain Framework.

Interaction between BeanMap and BeanTool Components

 : Application ConfBeanTool.xml :
XML bas...

 : BeanMap : BeanTool MOJDriverTool :
DriverTool

 : Component Library
free or sold in market

setConfigurationFile(String)

setBeanName(String)

setConfigurationDriverClass()

addToolBean(InterfaceTool)

addListenerToolListener(ListenerTool)

zoom()

fireZoomEvent()

getZoomTool()

zoomEventAction(EventTools)

run()

getOK(Object)

getOK(Object)

toolOK(boolean)

MOJDriverTool
uses MOJ
functions

 98

Interaction between BeanMap and BeanLayerVector Components

MOJDriverVectorLayer :
DriverLayerVector

 : Application ConfBeanVectorLay
er.xml : XML bas...

 : BeanMap :
BeanLayerVector

addLayer(InterfaceBeanLayer)

setConfigurationFile("ConfBeanVectorLayer.xml")

readConfigurationFile()

setBeanName(String)

setConfigurationDriverClass()

getVectorFiles()

subscribeVectorLayer(InterfaceLayerVector)

addListenerLayerVectorListener(ListenerLayerVector)

showVectorMap(String)
A vector map file in the
directory given in xml file
(e.g., countries.shp)

getLayerComponent()

:Component

getLayerComponent()

:Component

read configuration file

values in the file

 99

Interaction between BeanMap and BeanLayerRaster Components

MOJDriverRasterLayer :
DriverLayerRaster

 : Application : XML based
Configuration file

 : BeanMap :
BeanLayerRaster

MOJ : Component Library
free or sold in market

setConfigurationFile(String)

setBeanName(String)

setConfigurationDriverClass()

readConfigurationFile()

setMapPaths()

addLayer(InterfaceBeanLayer)

subscribeRasterBean(InterfaceLayerRaster)

addListenerLayerRasterListener(ListenerLayerRaster)

showRasterMaps()

setVisibility(boolean)

:Component

getLayerComponent()

getLayerComponent()

:Component

MOJDriverRasterLayer
uses MOJ functions

read configuration file

values in the file

 100

Interaction between BeanMap and BeanLayerSymbolsFont Components

 :
DriverLayerSymbolsFont

 : Application : XML based
Configuration file

 : BeanMap :
BeanLayerSymbolsFont

setConfigurationFile(String)

readConfigurationFile()

setBeanName(String)

setConfigurationDriverClass()

getFontFile()

setFontType(java.awt.Font)

getLayerComponent()

addLayer(InterfaceBeanLayer)

addNewSymbol(int, String, double, double, String)

draw(int)

Instantiates a
symbol item

drawTheSymbol(OneFontLayerItem)

draw(String, java.awt.Point, java.awt.Color)

:Component

getLayerComponent()

:Component

read configuration file

values in the configuration file

 101

Interaction between BeanMap and BeanCoordinateConverter Components

MOJDriverCoordinateConversion :
DriverCoordinateConverter

 : Application : XML based
Configuration file

 : BeanMap :
BeanCoordinateConverter

MOJ : Component Library
free or sold in market

getConfigurationFile(String)

readConfigurationFile()

setBeanName(String)

setConfigurationDriverClass()

addCoordinateBean(InterfaceCoordinateConverter)

addListenerCoordinateConverterListener(ListenerCoordinateConverter)

getCurrentCoordinates(int, int)

getCoordinates(int, int, int)

setCoordinateSystem(int)

getCurrentMapCoordinateAction(EventCoordinateConversion)

readConfigurationFile

values in the file

for example
UTM

Geo2UTM(double, double)

corresponding coordinate object

 102

Interaction between BeanMap and BeanLayerAnalysis Components

 : Application : XML based
Configuration file

 : BeanMap :
BeanLayerAnalysis

 :
DriverLayerAnalysis

getLayerComponent()

addLayer(InterfaceBeanLayer)

setConfigurationFile(String)

readConfigurationFile()

setBeanName(String)

setConfigurationDriverClass()

setDirectory()

setAllFile(java.util.Vector)

subscribe3DBean(InterfaceLayerAnalysis)

addListenerLayerAnalysisListener(ListenerLayerAnalysis)

setAnalysisMode(int)

mouseClicked(java.awt.event.MouseEvent)

queryHeight(java.awt.Point)

doProfileAnalysis(java.util.Vector)

doVisibilityAnalysis(int, int, double, int)

queryDistance(java.util.Vector)

:Component

read configuration file

values in the configuration file

getLayerComponent()

:Component

 103

 APPENDIX B

DETAILED DEFINITION OF DEVELOPED BEAN
CLASSES IN GIS DOMAIN FRAMEWORK

B.1. Interfaces for Abstract Classes

InterfaceBean

Description: This is an interface that describes methods, which a bean in this

framework must implement

Methods:

setConfigurationFile(String _configurationFile) throws ExceptionBean: A bean

must implement this function to set configuration file which a bean must read.

String getConfigurationFile() throws ExceptionBean: A bean must implement

this function to get configuration file name.

setBeanName(String _beanName) throws ExceptionBean: A bean must

implement this function to set bean name.

String getBeanName() throws ExceptionBean: A bean must implement this

function to get bean name.

setIconPath(String _iconPath) throws ExceptionBean: A bean must implement

this function to set bean icon path.

String getIconPath() throws ExceptionBean: A bean must implement this

function to get bean icon path.

 104

InterfaceBeanLayer

Description: This is an interface that must be implemented by a layer bean in

this framework. It offers a function, getLayerComponent, which a layer bean in this

framework must have.

Methods:

java.awt.Component getLayerComponent() throws ExceptionBeanLayer: A

layer bean must implement this function to get layer component.

InterfaceBeanLayerSymbols

Description: This is an interface that must be implemented by a symbol layer

bean in this framework. Because of being a layer, which is used to show symbols, this

interface is extended from InterfaceBeanLayer. This interface also extended from

ListenerMouseEvent listener to be notified by mouse events.

Methods:

setColor(java.awt.Color _color) throws ExceptionBeanLayerSymbols: A

symbols layer bean must implement this function to set symbol drawing color.

java.awt.Color getColor(): A symbols layer bean must implement this function

to get symbol drawing color.

setSelectedEnabled (boolean _enabled): A symbols layer bean must implement

this function to set mouse selection property enabled.

boolean getSelectedEnabled ():A symbols layer bean must implement this

function to get mouse selection property.

setSelectionColor(java.awt.Color _color): A symbols layer bean must

implement this function to set symbol selection color.

java.awt.Color getSelectionColor():A symbols layer bean must implement this

function to get symbol selection color.

 105

InterfaceBeanLayerSymbolsTracking

Description: This is an interface that must be implemented by a tracking

symbol layer bean in this framework. Because of being a layer, which is used to show

symbols, this interface is extended from InterfaceBeanLayerSymbols. This interface

also extended from Runnable interface to move objects.

Methods:

setUpdateTime(int _updateMiliseconds) throws ExceptionBeanLayer: This

method is used to set the refresh time for the objects on the layer.

getUpdateTime() throws ExceptionBeanLayer: This method is used to get the

refresh time for the objects on the layer.

 showLayer() throws ExceptionBeanLayer: this method is used to start moves

of the objects on the layer.

B.2. Abstract Classes

AbstractBean

Description: This class describes general bean class. It implements

InterfaceBean interface. All beans in this framework are childeren of AbstractBean

class. This class implements all generic functions for the beans. A bean includes a

Driver object. This object means an instance of driver class implementing Driver

interface by using functions of a component library. This class read an XML based

configuration file that includes specific properties for the bean. Application gives this

file to AbstractBean class by using the function of this class.

AbstractBeanLayer

Description: This class describes general layer bean class. It implements

InterfaceBeanLayer interface and extended from AbstractBean, which is core class for

all beans in this framework. All layer beans in this framework are childeren of

AbstractBeanLayer class. This class implements all generic functions for the layer

beans. A layer bean includes a DriverLayer object. This object means an instance of

driver class implementing DriverLayer interface by using functions of a component

library.

 106

AbstractBeanLayerSymbols

Description: This class describes general layer bean on which symbols are

shown. It implements InterfaceBeanLayerSymbols interface and extended from

AbstractBeanLayerSymbols, which is core class for layer beans in this framework. All

symbol layer beans in this framework are childeren of AbstractBeanLayerSymbols

class. This class implements all generic functions for the symbol layer beans.

B.3. Listeners

ListenerMap

Description: Beans that want to know events happened in Map bean implement

this listener.

Methods:

mapScaleChanged: This event is used to notify changes in scale of the Map

bean. If a zoom in/out action happens, the scale of the map changes.

setMapCoordinateAction: This event is used to notify listeners about setting

map coordinate action is happened.

ListenerTool

Description: Beans that want to know about events occured in Tool Bean

implement this listener.

Methods:

 toolOK: Used to notify listeners about finishing tool action.

 zoomEventAction: Used to notify listeners about zoom event action is

occurred.

 zoomInEventAction : Used to notify listeners about zoom in event action is

occurred.

 zoomOutEventAction : Used to notify listeners about zoom out event action is

occurred.

 panEventAction : Used to notify listeners about pan event action is occurred.

 107

 measureDistanceEventAction: Used to notify listeners about pan event action is

occurred.

ListenerLayerVector

Description: Beans that want to know about events occured in Vector Layer

Bean implement this interface.

Methods:

showVectorLayer: Used to notify listeners about showing vector layer.

vectorLayerVisibilityChanged: Used to notify listeners about changing visibility

of vector layer.

ListenerRasterLayer

Description: Beans that want to know about events occured in Raster Layer

Bean implement this interface.

Methods:

rastersManaged: Used to notify listeners about determination of showing raster

layer directory according to map scale.

showRasterAction: Used to notify listeners about showing raster layer.

ListenerLayerAnalysis

Description: This listener is used to listen events occured in analysis layer.

Methods:

pixelToWorldRequestEvent: Used to notify listeners about converting pixel

coordinates to world coordinates event.

ListenerCoordinateConverter

Description: This listener is implemented by beans that want to know about

events occured in Coordinate converter bean.

Methods:

 108

getCurrentMapCoordinateAction: Used to notify listeners about event finishing

conversion of current map coordinates

B.4. Interfaces

InterfaceMap

Description: This is an interface class for BeanMap. Beans written for Map

component in this framework must implement this interface. A Map bean works with

Tool, Layer (Raster layer, Vector layer, Analysis layer, Symbols layer), and

Coordinate Conversion beans. Therefore, InterfaceMap presents functions to add

these beans. In addition a map bean listens some of these beans to make some actions

according to the results of events occurred in these beans. Map bean must listen to

these beans. Therefore, InterfaceMap extends the listeners of these layers.

A Map bean is the core bean in the framework. To use other beans in the

framework, firstly these beans must be added to map bean. Therefore, InterfaceMap

declares addToolBean, removeToolBean, addLayer, removeLayer,

addCoordinateBean, and removeCoordinateBean functions.

Methods:

getMapComponent: A Map bean must implement getMapComponent() to get

map component of used component library.

addListenerMapListener(ListenerMap _listener): A Map bean must implement

this function to add beans that want to listen events occurred in map bean.

removeListenerMapListener(ListenerMap _listener): A Map bean must

implement this function to remove beans that want to listen events occurred in map

bean.

addToolBean(InterfaceTool _toolBean): A Map bean must implement this

function to add Tool bean that implements InterfaceTool interface.

removeToolBean(InterfaceTool _toolBean): A Map bean must implement this

function to remove Tool bean that implements InterfaceTool interface..

addLayer(InterfaceBeanLayer _layerItem): A Map bean must implement this

function to add any Layer bean that implements InterfaceBeanLayer interface.

 109

removeLayer(InterfaceBeanLayer _layerItem): A Map bean must implement

this function to remove any Layer bean that implements InterfaceBeanLayer interface.

addCoordinateBean(InterfaceCoordinateConverter _coordinateBean): A Map

bean must implement this function to add any Coordinate Converter bean that

implements InterfaceCoordinateConverter interface.

removeCoordinateBean(InterfaceCoordinateConverter _coordinateBean): A

Map bean must implement this function to remove any Coordinate Converter bean that

implements InterfaceCoordinateConverter interface.

redrawMap: A Map bean must implement this function to redraw map bean and

all layers registered to map bean.

setMapScale: A Map bean must implement this function to set scale of map

bean.

getMapScale: A Map bean must implement this function to get scale of map

bean.

paintMap: A Map bean must implement this function to paint map bean with the

specified color.

zoomXTimes: A Map bean must implement this function to zoom map by

specified times.

zoomToMapScale: A Map bean must implement this function to zoom map to

specified scale.

panToLeft: A Map bean must implement this function to pan map to left by

specified degree.

panToRight: A Map bean must implement this function to pan map to right by

specified degree.

panToSouth: A Map bean must implement this function to pan map to south by

specified degree.

panToNorth: A Map bean must implement this function to pan map to north by

specified degree.

 110

returnToPreviousRegion: A Map bean must implement this function to return

map extent to previous.

setMapExtent: A Map bean must implement this function to set map extent

getMapExtent: A Map bean must implement this function to get map extent

returnToInitialRegion: A Map bean must implement this function to set initial

map extent.

setMapUnit: A Map bean must implement this function to set map unit.

getMapUnit: A Map bean must implement this function to get map unit.

setCoordinateSystem(int _coordinateSystem) throws ExceptionMap: A Map

bean must implement this function to set coordinate system of map.

int getCoordinateSystem():A Map bean must implement this function to get

coordinate system of map.

Object getCurrentCoordinates(int _x, int _y) throws ExceptionMap: A Map

bean must implement this function to get world coordinates of pixel coordinate in

coordinate system of map.

InterfaceTool

Description: This is an interface that must be implemented by a tool bean in this

framework. It offers functions, which a tool bean in this framework must have. This

interface presents addListenerToolListener and removeListenerToolListener functions,

which a tool bean must implement to add and remove Listeners that implements

ListenerTool correspondingly.

Methods:

addListenerToolListener(ListenerTool _listener): A Tool bean must implement

this function to add beans that want to listen events occurred in tool bean.

removeListenerToolListener(ListenerTool _listener): A Tool bean must

implement this function to remove beans that want to listen events occurred in tool

bean.

 111

zoom: A tool bean must implement this function to set zoom in/out tool and

zoom in/out map while clicking the mouse.

zoomIn: A tool bean must implement this function to set zoom in tool and zoom

in map.

zoomOut: A tool bean must implement this function to set zoom out tool and

zoom out map.

pan: A tool bean must implement this function to set pan tool and pan map.

measureDistance: A tool bean must implement this function to set distance tool

and measure distance between selected points selected by clicking mouse.

unsetTool: A tool bean must implement this function to unset selected tool.

InterfaceLayerVector

Description: This is an interface that must be implemented by a vector layer

bean in this framework must implement. Because of being used as interface of vector

layer bean, this interface is extended from InterfaceBeanLayer interface. It offers

functions, which a vector layer bean in this framework must have. A vector layer bean

must implement addListenerLayerVectorListener and

removeListenerLayerVectorListener methods to add and remove Listeners that

implements ListenerLayerVector correspondingly.

Methods:

addListenerLayerVectorListener(ListenerLayerVector _listener): A Vector

Layer bean must implement this function to add beans that want to listen events

occurred in vector layer bean.

removeListenerLayerVectorListener(ListenerLayerVector _listener): A Vector

Layer bean must implement this function to remove beans that want to listen events

occurred in vector layer bean.

showVectorMap(String _name) throws ExceptionLayerVector: A Vector Layer

bean must implement this function to show vector map named as “_named” in the

layer.

 112

setVisibility(String _name, boolean _visibility) throws ExceptionLayerVector:

A Vector Layer bean must implement this function to set visibility of vector map

named as “_named” in the layer to given “_visibility” parameter.

InterfaceLayerRaster

Description: This is an interface, which a raster layer bean in this framework

must implement. Because of being used as interface of raster layer bean, this interface

is extended from InterfaceBeanLayer. It offers functions, which a raster layer bean in

this framework must have. A raster layer bean must implement

addListenerLayerRasterListener and removeListenerLayerRasterListener functions to

add and remove Listeners that implements ListenerLayerRaster correspondingly. A

raster layer should listen map-based events to be notified when the scale of the map

changes. Therefore, this interface is also extended from ListenerMap to be registered

to map bean.

Methods:

addListenerLayerRasterListener(ListenerLayerRaster _listener) throws

ExceptionLayerRaster: A Raster Layer bean must implement this function to add

beans that want to listen events occurred in raster layer bean.

removeListenerLayerRasterListener(ListenerLayerRaster _listener) throws

ExceptionLayerRaster: A Raster Layer bean must implement this function to remove

beans that want to listen events occurred in raster layer bean.

showRaster() throws ExceptionLayerRaster: A Raster Layer bean must

implement this function to show raster maps in the directory given in the XML based

configuration file.

setVisibility(boolean _action) throws ExceptionLayerRaster: A Raster Layer

bean must implement this function to set visibility of raster maps in the directory

given in the XML based configuration file given “_visibility” parameter.

InterfaceLayerSymbolsGometry

Description: This is an interface that must be implemented by a geometry layer

bean in this framework. Because of being used as interface of geometry layer bean,

which is a bean for showing symbols in the framework, this interface is extended from

 113

InterfaceBeanLayerSymbols that is extended from InterfaceBeanLayer. This layer is

also extended from ListenerMouseEvent to capture mouse-clicked events to select a

geometry item. The interface offers functions, which a geometry layer bean in this

framework must have.

Methods:

setIsFiiled(boolean _isFilled) throws ExceptionLayerSymbolsGeometry: A

Geometry Layer bean must implement this function to set filled geometric symbol

type to draw filled geometric symbol.

getIsFiiled():A Geometry Layer bean must implement this function to get state

of filled geometric symbol type.

addCircle(int _id,java.awt.Point _center,double _radius)throws

ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement this

function to add circular geometric symbol to the layer.

addEllipse(int _id, java.awt.Point _center, double _width, double _height)

throws ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement

this function to add elliptic geometric symbol to the layer.

addPoint(int _id, java.awt.Point _point) throws

ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement this

function to add point symbol to the layer.

addPolygon(int _id, java.util.Vector _points) throws

ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement this

function to add polygon symbol to the layer.

addPolyline(int _id, java.util.Vector _points) throws

ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement this

function to add polyline symbol to the layer.

addCorridor(int _id, java.awt.Point _point1, java.awt.Point

_point2,java.awt.Point _point3, java.awt.Point _point4) throws

ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement this

function to add corridor symbol to the layer.

 114

addRectangle(int _id, java.awt.Point _point1, java.awt.Point _point2) throws

ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement this

function to add rectangle symbol to the layer.

changeLocation(int _id, double _x, double _y) throws

ExceptionLayerSymbolsGeometry: A Geometry Layer bean must implement this

function to change location of a symbol identified with _id to given _x, _y coordinate.

removeGeometry(int _id) throws ExceptionLayerSymbolsGeometry: A

Geometry Layer bean must implement this function to remove a symbol identified

with _id.

drawGeometry(int _id) throws ExceptionLayerSymbolsGeometry: A Geometry

Layer bean must implement this function to draw the symbol, which is added to the

layer previously, identified with _id.

drawAll() throws ExceptionLayerSymbolsGeometry: A Geometry Layer bean

must implement this function to draw all the symbols added to the layer previously.

InterfaceLayerSymbolsDrawing

Description: This is an interface, which a drawing layer bean in this framework

must implement. Because of being used as interface of drawing layer bean which is a

bean for drawing and showing geometric symbols in the framework, this interface is

extended from InterfaceLayerSymbolsGeometry.

final static int NONE = -1;

final static int POINT = 0;

Fields:

final static int LINE = 1;

final static int POLYLINE = 2;

final static int CIRCLE = 3;

final static int ELLIPSE = 4;

final static int RECTANGLE = 5;

 115

final static int POLYGON = 6;

Methods:

setIsDrawingModeSetted(boolean _isDrawingModeSetted): A Drawing Layer

bean must implement this function to set mode to drawing.

getIsDrawingModeSetted():A Drawing Layer bean must implement this

function to get drawing mode.

clearShapes() throws ExceptionLayerSymbolsDrawing: A Drawing Layer bean

must implement this function to clear all the drawed symbols in the layer.

setCurrentDrawingMode(int _currentDrawingMode) throws

ExceptionLayerSymbolsDrawing: A Drawing Layer bean must implement this

function to set current drawing mode to one of the fields given above.

InterfaceLayerSymbolsFont

Description: This is an interface, which a font layer bean in this framework

must implement. Because of being used as interface for font layer bean that is used to

show symbols in the layer, this interface is extended from

InterfaceBeanLayerSymbols. The interface offers functions, which a font layer bean in

this framework must have.

Methods:

addNewSymbol(int _id, String _name, double _x, double _y) throws

ExceptionLayerSymbolsFont: A Font Layer bean must implement this function to add

a symbol identified with “_id” and “_name” parameter which is defined with a font in

the XML based configuration file.

removeSymbol(int _id) throws ExceptionLayerSymbolsFont: A Font Layer

bean must implement this function to remove a symbol identified with “_id” added to

layer previously.

removeAll() throws ExceptionLayerSymbolsFont: A Font Layer bean must

implement this function to remove all the symbols added to layer previously.

 116

changeLocation(int _id, double _x, double _y) throws

ExceptionLayerSymbolsFont: A Font Layer bean must implement this function to

change location of a symbol identified with _id to given _x, _y coordinate.

draw(int _id) throws ExceptionLayerSymbolsFont: A Font Layer bean must

implement this function to draw the symbol, which is added to the layer previously,

identified with _id.

drawAll() throws ExceptionLayerSymbolsFont: A Font Layer bean must

implement this function to draw all the symbols added to the layer previously.

InterfaceLayerSymbolsImage

Description: This is an interface that must be implemented by an image layer

bean in this framework. Because of being used as interface for image layer bean,

which is used to show symbols in the layer, this interface is extended from

InterfaceBeanLayerSymbols. The interface offers functions, which an image layer

bean in this framework must have.

Methods:

addNewSymbol(int _id, String _name, double _x, double _y) throws

ExceptionLayerImage: An Image Layer bean must implement this function to add a

symbol identified with “_id” and “_name” parameter which is defined with a font in

the XML based configuration file.

removeSymbol(int _id) throws ExceptionLayerImage: An Image Layer bean

must implement this function to remove a symbol identified with “_id” added to layer

previously.

removeAll() throws ExceptionLayerImage: An Image Layer bean must

implement this function to remove all the symbols added to layer previously.

changeLocation(int _id, double _x, double _y) throws ExceptionLayerImage:

An Image Layer bean must implement this function to change location of a symbol

identified with _id to given _x, _y coordinate.

 117

draw(int _id) throws ExceptionLayerImage: An Image Layer bean must

implement this function to draw the symbol, which is added to the layer previously,

identified with _id.

drawAll() throws ExceptionLayerImage: An Image Layer bean must implement

this function to draw all the symbols added to the layer previously.

InterfaceLayerAnalysis

Description: This is an interface that must be implemented by an analysis layer

bean in this framework. Because of being used as interface for analysis layer bean, this

interface is extended from InterfaceBeanLayer. It offers functions, which an analysis

layer bean in this framework must have. An analysis layer bean must implement

addListenerLayerAnalysisListener and removeListenerLayerAnalysisListener

methods to add and remove ListenerLayerAnalysis correspondingly. An analysis layer

bean is extended from ListenerMouseEvent listener to be notified about mouse events.

Fields:

public final static int NONE = 0;

public final static int ALTITUDE = 1;

public final static int PROFILE = 2;

public final static int VISIBILITY = 3;

public final static int DISTANCE = 4;

Methods:

addListenerLayerAnalysisListener(ListenerLayerAnalysis listener) throws

ExceptionLayerAnalysis: An Analysis Layer bean must implement this function to

add beans that want to listen events occurred in analysis layer bean.

removeListenerLayerAnalysisListener(ListenerLayerAnalysis listener) throws

ExceptionLayerAnalysis: An Analysis Layer bean must implement this function to

remove beans that want to listen events occurred in analysis layer bean.

setAnalysisMode(int _mode) throws ExceptionLayerAnalysis: An Analysis

Layer bean must implement this function to set analysis mode one of the fields above.

 118

InterfaceCoordinateConverter

Description: This is an interface, which coordinate converter bean in this

framework must implement. A coordinate converter bean must implement

addListenerCoordinateConverterListener and removeListenerCoordinateConverter

Listener methods to add and remove Listeners that implements

ListenerCoordinateConverter correspondingly. A coordinate converter bean should

listen to map based events. Therefore, this interface is also extended from

ListenerMap. The interface offers functions, which a coordinate converter bean in this

framework must have.

Fields:

public static final int GEO = 1;

public static final int UTM = 2;

Methods:

addListenerCoordinateConverterListener(ListenerCoordinateConverter listener)

throws ExceptionCoordinateConverter: A Coordinate Converter bean must implement

this method to add beans that want to listen events occurred in coordinate converter

bean.

removeListenerCoordinateConverterListener(ListenerCoordinateConverter

listener) throws ExceptionCoordinateConverter: A Coordinate Converter bean must

implement this method to remove beans that want to listen events occurred in

coordinate converter bean.

Object getCoordinates(int _x, int _y, int _2CoordinateSystem) throws

ExceptionCoordinateConverter: A Coordinate Converter bean must implement this

method to get coordinates of given pixel coordinates (_x and _y) in given

_2CoordinateSystem coordinate system.

B.5. Driver Interfaces

Driver

Description: This is an interface which a driver class written to use component

library in this framework implements.

 119

DriverMap

Description: This interface is used to supply requested functions by using

component library function and implemented by a class. The map bean at runtime

reads the implementing class and functions are invoked.

Fields:

final static int NONE = -1;

final static int DEGREE = 0;

final static int METER = 1;

final static int FEET = 2;

Methods:

java.awt.Component getMapComponent() throws ExceptionDriver: This

function is implemented to get map component by using component library functions.

int addLayer(java.awt.Component _layer) throws ExceptionDriver: This

function is implemented to add layer component to map component by using

component library functions.

removeLayer(java.awt.Component _layer) throws ExceptionDriver: This

function is implemented to remove layer component from map component by using

component library functions.

setLayerVisibility(java.awt.Component _layer, boolean _visible) throws

ExceptionDriver: This function is implemented to set visibility of layer component to

_visible by using component library functions.

java.awt.Point transformToWorld(int _x, int _y) throws ExceptionDriver: This

function is implemented to get world coordinates of pixel coordinates by using

component library functions.

redrawMap() throws ExceptionDriver: This function is implemented to redraw

map and layer components by using component library functions.

 120

double getMapScale() throws ExceptionDriver: This function is implemented to

get scale of map component by using component library functions.

paintMap(java.awt.Color _color) throws ExceptionDriver: This function is

implemented to paint map component by using component library functions.

zoomXTimes(double _times) throws ExceptionDriver: This function is

implemented to zoom map by specified times by using component library functions.

zoomToMapScale(double _scale) throws ExceptionDriver: This function is

implemented to zoom map to specified scale by using component library functions.

addTool(Object _tool) throws ExceptionDriver: This function is implemented to

add tool object to map component by using component library functions.

panToRegionWithDegree(boolean _isLR, int _RN, double _degree) throws

ExceptionDriver: This function is implemented to pan map to left/right, south/north

with _degree by using component library functions.

setUnit(int _unit) throws ExceptionDriver: This function is implemented to set

map component unit by using component library functions.

returnToPreviousRegion() throws ExceptionDriver: This function is

implemented to set map component extent to previous extent by using component

library functions.

returnToInitialRegion() throws ExceptionDriver: This function is implemented

to set map component extent to initial extent by using component library functions.

setCurrentMapExtent(java.awt.Rectangle _region) throws ExceptionDriver:

This function is implemented to set map component extent to given region parameter

by using component library functions.

java.awt.Rectangle currentMapExtent() throws ExceptionDriver: This function

is implemented to get map component extent by using component library functions.

java.awt.Rectangle currentMapBounds() throws ExceptionDriver: This function

is implemented to get map component bounds by using component library functions.

 121

addListenerMouseListener(java.awt.event.MouseListener ml): This function is

implemented to add mouse event listener to map component by using component

library functions.

addListenerMouseMotionListener(java.awt.event.MouseMotionListener ml):

This function is implemented to add mouse motion event listener to map component

by using component library functions.

DriverLayer

Description: This is an interface which a driver class written to use layers in

component library implements. This interface is extended from Driver interface.

Methods:

java.awt.Component getLayerComponent() throws ExceptionDriver: This

function is implemented by the driver class implementing this interface. The driver

class implements this function by using component library functions.

DriverTool

Description: This interface is used to supply requested functions of tool by

using component library function and implemented by a class. The map bean at

runtime reads the implementing class and functions are invoked.

Methods:

boolean getOK(Object _toolClass) throws ExceptionDriver: This function is

implemented to finish tool action by using component library functions.

Object getZoomInTool() throws ExceptionDriver: This function is implemented

to get zoom in tool object by using component library functions.

Object getZoomTool() throws ExceptionDriver: This function is implemented

to get zoom tool object by using component library functions.

Object getZoomOutTool() throws ExceptionDriver: This function is

implemented to get zoom out tool object by using component library functions.

Object getPanTool() throws ExceptionDriver: This function is implemented to

get pan tool object by using component library functions.

 122

Object getDistanceTool() throws ExceptionDriver: This function is

implemented to get distance tool object by using component library functions.

DriverCoordinateConverter

Description: This interface is used to supply requested functions of coordinate

converter class by using component library function and implemented by a class. The

map bean at runtime reads the implementing class and functions are invoked.

Methods:

Geo2UTM(double _longitude, double _latitude) throws ExceptionDriver: This

function is implemented to convert Geographic coordinate to UTM coordinate by

using component library functions.

double getRight() throws ExceptionDriver: This function is implemented to get

right part of UTM coordinate by using component library functions.

double getUp() throws ExceptionDriver: This function is implemented to get up

part of UTM coordinate by using component library functions.

int getRefMeridyen()throws ExceptionDriver: This function is implemented to

get reference meridian part of UTM coordinate by using component library functions.

int getDilimGen()throws ExceptionDriver: This function is implemented to get

piece part of UTM coordinate by using component library functions.

UTM2Geo(double _right, double _up, int _ref_meridyen, int _dilim_gen)

throws ExceptionDriver: This function is implemented to convert UTM coordinate to

Geographic coordinate by using component library functions.

double getLatitude()throws ExceptionDriver: This function is implemented to

get latitude part of Geographic coordinate by using component library functions.

double getLongitude()throws ExceptionDriver: This function is implemented to

get longitude part of Geographic coordinate by using component library functions.

 123

DriverLayerAnalysis

Description: This is an interface which a driver class written to use analysis

functions in component library implements. This interface is extended from

DriverLayer interface.

Methods:

setFiles(java.util.Vector _vectorFiles) throws ExceptionDriver: This function is

implemented to set files which include elevation values.

boolean doVisibilityAnaysis(java.awt.Point _point1, java.awt.Point _point2,

ouble _scaleX, double _scaleY, nt basAci, int bitAci, double yaricap, int

antennaHeight) throws ExceptionDriver: This function is implemented to analyse

visibility of a point by using component library functions.

java.util.Vector computeProfile(java.util.Vector _points) throws

ExceptionDriver: This function is implemented to compute profile between given

_points parameter by using component library functions.

int queryHeight(double _x, double _y) throws ExceptionDriver : This function

is implemented to query height of the point(_x, _y) by using component library

functions.

double queryDistance(java.awt.Point _point1, java.awt.Point _point2) throws

ExceptionDriver: This function is implemented to query distance between two points

by using component library functions.

DriverLayerRaster

Description: This is an interface which a driver class written to use raster layer

functions in component library implements. This interface is extended from

DriverLayer interface.

Methods:

setMapFile(String _mapFile): This function is implemented to set raster map

file by using component library functions.

 124

DriverLayerVector

Description:

This is an interface which a driver class written to use vector layer functions in

component library implements. This interface is extended from DriverLayer interface.

Methods:

setMapFile(String _mapFile): This function is implemented to set vector map

file by using component library functions.

DriverLayerSymbolsGeometry

Description: This is an interface which a driver class written to use geometry

layer functions in component library implements. This interface is extended from

DriverLayer interface.

Methods:

setColor(java.awt.Color _color) throws ExceptionDriver: This function is

implemented to set color of symbols by using component library functions.

isFiiled(boolean _isFilled) throws ExceptionDriver: This function is

implemented to draw filled symbols by using component library functions.

drawPOINT(int _x1, int _y1) throws ExceptionDriver : This function is

implemented to draw point symbols by using component library functions.

drawLINE(int _x1, int _y1, int _x2, int _y2) throws ExceptionDriver: This

function is implemented to draw line symbols by using component library functions.

drawPOLYLINE(java.util.Vector _points) throws ExceptionDriver: This

function is implemented to draw polyline symbols by using component library

functions.

drawCIRCLE(int _x, int _y, int _radius) throws ExceptionDriver : This function

is implemented to draw circle symbols by using component library functions.

 125

drawELLIPSE(int _x, int _y, int _width, int _height) throws ExceptionDriver:

This function is implemented to draw ellipse symbols by using component library

functions.

drawRECTANGLE(int _x1, int _y1, int _x2, int _y2) throws ExceptionDriver:

This function is implemented to draw rectangle symbols by using component library

functions.

drawPOLYGON(java.util.Vector _points) throws ExceptionDriver: This

function is implemented to draw polygon symbols by using component library

functions.

removeFromList(int _index) throws ExceptionDriver: This function is

implemented to draw remove symbols from layer by using component library

functions.

DriverLayerSymbolsDrawing

Description: This is an interface which a driver class written to use drawing

layer functions in component library implements. This interface is extended from

DriverLayerSymbolsGeometry and ListenerMouseEvent interface.

Fields:

final static int MODENONE = -1;

final static int MODEPOINT = 0;

final static int MODELINE = 1;

final static int MODEPOLYLINE = 2;

final static int MODECIRCLE = 3;

final static int MODEELLIPSE = 4;

final static int MODERECTANGLE = 5;

final static int MODEPOLYGON = 6;

Methods:

 126

setDrawingMode(int _drawmode) throws ExceptionDriver: This function is

implemented to set drawing mode to one of the fields above by using component

library functions.

clearShapes()throws ExceptionDriver: This function is implemented to clear all

drawing geometry symbols from layer by using component library functions.

DriverLayerSymbolsFont

Description: This is an interface which a driver class written to use font layer

functions in component library implements. This interface is extended from

DriverLayer interface.

Methods:

setFontType(java.awt.Font _fontType) throws ExceptionDriver: This function

is implemented to set font symbols by using component library functions.

changeLocation(int _index, java.awt.Point point)throws ExceptionDriver: This

function is implemented to change location of symbols identified by _index to point

coordinate by using component library functions.

clear(int _index) throws ExceptionDriver: This function is implemented to

remove symbol identified by _index from layer by using component library functions.

clearAll() throws ExceptionDriver: This function is implemented to remove all

symbols by using component library functions.

draw(String _symbol, java.awt.Point point, java.awt.Color _color throws

ExceptionDriver: This function is implemented to draw symbol identified by _symbol

at point location with color parameter by using component library functions.

changeColor(int _index, java.awt.Color _color)throws ExceptionDriver: This

function is implemented to change color of symbol identified by _index by using

component library functions.

 127

DriverLayerSymbolsImage

Description: This is an interface which a driver class written to use image layer

functions in component library implements. This interface is extended from

DriverLayer interface.

Methods:

setBorderWidthHeight(int _width, int _height) throws ExceptionDriver: This

function is implemented to set width and height of image symbols by using

component library functions.

clear(int _index)throws ExceptionDriver: This function is implemented to

remove symbol identified by _index from layer by using component library functions.

clearAll()throws ExceptionDriver: : This function is implemented to remove all

symbols by using component library functions.

int draw(java.awt.Image _image, java.awt.Point point, java.awt.Color _color)

throws ExceptionDriver: This function is implemented to draw symbol identified by _

image at point location with color parameter by using component library functions.

changeLocation(int _index, java.awt.Point point) throws ExceptionDriver: This

function is implemented to change location of symbols identified by _index to point

coordinate by using component library functions.

B.6. Beans

BeanMap

Description: Map Bean describes functionalities of map component in this

framework. It implements InterfaceMap interface and extended from AbstractBean

class that is core class for beans in this framework. A map bean includes a DriverMap

object. This object means a driver implementing DriverMap interface by using

functions of the selected component library. A map bean uses specified methods in

this DriverMap interface to implement the functions declared in InterfaceMap bean.

Communication with other beans: A map bean is the core bean in this

framework. All other beans are added to the map bean. Beans are added to/ removed

 128

from BeanMap by using addToolBean/ removeToolBean, addLayer/ removeLayer,

addCoordinateBean/ removeCoordinateBean.

Beans that want to listen to map bean implement ListenerMap interface to be

notified with the events occurred in the bean. Raster Layer and Coordinate Converter

beans want to listen to map bean in this framework. Therefore, they implement

ListenerMap interface. They register themselves to map bean when they are added to

the map bean automatically. In addition, when a new bean that wants to listen to map

bean can be registered to map bean by using addListenerMapListener and removed

removeListenerMapListener methods. Map bean notifies its listeners when the scale of

the map changes and coordinate unit of the map is setted.

A map bean listens to Tool, Raster Layer, Vector Layer, and Analysis Layer

and Coordinate Converter beans. Therefore, the map bean implements listeners of

these beans, which are ListenerTool, ListenerLayerRaster, ListenerLayerVector,

ListenerLayerAnalysis, ListenerCoordinateConverter listener interfaces

correspondingly. When these beans are added to the map bean, map bean registers

itself to these beans automatically.

BeanTool

Description: Tool Bean describes functionalities of tool component in this

framework. It implements InterfaceTool interface and extended from AbstractBean

class that is core class for beans in this framework. This bean has a thread, which

checks the completion of tool bean’s work. A tool bean includes a DriverTool object.

This object means a driver class implementing DriverTool interface by using functions

of a selected component library. A tool bean uses specified methods in this DriverTool

object. Tool bean calls these functions in driver class.

Communication with other beans: Beans that want to listen to tool bean

implement ListenerTool interface to be notified with the events occurred in the bean.

These beans subscribe to and unsubscribe from tool bean by using

addListenerToolListener and removeListenerToolListener methods correspondingly.

Map bean is a listener of tool bean. Therefore, it implements ListenerTool interface.

When tool bean is added to map bean, map bean register itself to tool bean

automatically.

 129

Tool bean notifies its listeners when zoom, pan, distance and unsetting requests

are done from the outside world.

BeanLayerAnalysis

Description: Analysis Layer Bean describes functionalities of analysis layer

component in this framework. It implements InterfaceLayerAnalysis interface and

extended from AbstractBeanLayer class that is core class for layer beans in this

framework. An analysis layer bean includes a DriverLayerAnalysis object. This object

means a driver implementing DriverLayerAnalysis interface by using functions of a

component library. An analysis layer bean uses specified methods in this

DriverLayerAnalysis object. Analysis Layer bean calls these functions in driver class.

Communication with other beans: Beans that want to listen to analysis layer

bean implement ListenerLayerAnalysis interface to be notified with the events

occurred in the bean. These beans subscribe to and unsubscribe from tool bean by

using addListenerLayerAnalysisListener and removeListenerLayerAnalysisListener

methods correspondingly. Map bean is a listener of analysis layer bean. Therefore, it

implements ListenerLayerAnalysis interface. When analysis layer bean is added to

map bean, map bean register itself to analysis layer bean automatically.

Analysis layer bean notifies its listeners when a pixel coordinate is selected by a

mouse click in the outside world to request conversion of these pixels to world

coordinates.

BeanLayerRaster

Description: Raster Layer Bean describes functionalities of raster layer

component in this framework. It implements InterfaceLayerRaster interface and

extended from AbstractBeanLayer class that is core class for layer beans in this

framework. A raster layer bean includes a DriverLayerRaster object. This object

means a driver implementing DriverLayerRaster interface by using functions of a

component library. A raster layer bean uses specified methods in this

DriverLayerRaster object. Raster Layer bean calls these functions in driver class.

Raster Layer bean manages showing raster layers according to the scale of the

map. For example if the scale of the map is 375000, raster maps with scale of

1/500000 are shown.

 130

Communication with other beans: Beans that want to listen to raster layer bean

implement ListenerLayerRaster interface to be notified with the events occurred in the

bean. These beans subscribe to and unsubscribe from tool bean by using

addListenerLayerRasterListener and removeListenerLayerRasterListener methods

correspondingly. Map bean is a listener of raster layer bean. Therefore, it implements

ListenerLayerRaster interface. Raster Layer bean is a listener of map bean in this

framework. When raster layer bean is added to map bean, raster layer bean register

itself to map bean and map bean register itself to analysis layer bean automatically.

Raster layer bean notifies its listeners when visibility of raster map is set from

outside, and raster maps are loaded according to the new scale.

BeanLayerVector

Description: Vector Layer Bean describes functionalities of vector layer

component in this framework. It implements InterfaceLayerVector interface and

extended from AbstractBeanLayer class that is core class for layer beans in this

framework. A vector layer bean includes a DriverLayerVector object. This object

means a driver implementing DriverLayerVector interface by using functions of a

component library. A vector layer bean uses specified methods in this

DriverLayerVector object. Vector Layer bean calls these functions in driver class.

Communication with other beans: Beans that want to listen to vector layer

bean implement ListenerLayerVector interface to be notified with the events occurred

in the bean. These beans subscribe to and unsubscribe from tool bean by using

addListenerLayerVectorListener and removeListenerLayerVectorListener methods

correspondingly. Map bean is a listener of vector layer bean. Therefore, it implements

ListenerLayerVector interface. When vector layer bean is added to map bean, vector

layer bean register itself to map bean automatically.

Vector layer bean notifies its listeners when visibility of vector map is set from

outside.

BeanLayerSymbolsDrawing

Description: Symbols Drawing Layer Bean describes functionalities of drawing

layer component in this framework. It implements InterfaceLayerSymbolsDrawing

interface and extended from BeanLayerSymbolsGeometry class framework. A

 131

drawing layer bean includes a DriverLayerSymbolsDrawing object. This object means

a driver implementing DriverLayerSymbolsDrawing interface by using functions of a

component library. A raster layer bean uses specified methods in this

DriverLayerSymbolsDrawing object. Drawing Layer bean calls these functions in

driver class.

BeanLayerSymbolsGeometry

Description: Geometry Layer Bean describes functionalities of geometry layer

component in this framework. It implements InterfaceLayerSymbolsGeometry

interface and extended from AbstractBeanLayerSymbols class that is core class for

layer beans on which symbols are shown in this framework. A geometry layer bean

includes a DriverLayerSymbolsGeometry object. This object means a driver

implementing DriverLayerSymbolsGeometry interface by using functions of a

component library. A geometry layer bean uses specified methods in this

DriverLayerSymbolsGeometry object. Raster Layer bean calls these functions in

driver class.

BeanLayerSymbolsFont

Description: Font Symbols Layer Bean describes functionalities of font

symbols layer component in this framework. It implements

InterfaceLayerSymbolsFont interface and extended from AbstractBeanLayerSymbols

class that is core class for layer beans on which symbols are shown in this framework.

A font layer bean includes a DriverLayerSymbolsFont object. This object means a

driver implementing DriverLayerSymbolsFont interface by using functions of a

component library. A font layer bean uses specified methods in this

DriverLayerSymbolsFont object. Font symbols layer bean calls these functions in

driver class.

BeanLayerSymbolsImage

Description: Image Symbols Layer Bean describes functionalities of image

symbols layer component in this framework. It implements

InterfaceLayerSymbolsFont interface and extended from AbstractBeanLayerSymbols

class that is core class for layer beans on which symbols are shown in this framework.

An image layer bean includes a DriverLayerSymbolsImage object. This object means

a driver implementing DriverLayerSymbolsImage interface by using functions of a

 132

component library. An image layer bean uses specified methods in this

DriverLayerSymbolsImage object. Image symbols layer bean calls these functions in

driver class.

BeanCoordinateConverter

Description: Coordinate converter bean describes functionalities of coordinate

converter component in this framework. It implements InterfaceCoordinateConverter

interface and extended from AbstractBean class that is core class for beans in this

framework. A coordinate converter bean includes a DriverCoordinateConverter object.

This object means a driver implementing DriverCoordinateConverter interface by

using functions of a component library. A coordinate converter bean uses specified

methods in this DriverCoordinateConverter object.

Communication with other beans: Beans that want to listen to coordinate

converter bean implement ListenerCoordinateConverter interface to be notified with

the events occurred in the bean. These beans subscribe to and unsubscribe from tool

bean by using addListenerCoordinateConverterListener and

removeListenerCoordinateConverterListener methods correspondingly. Map bean is a

listener of coordinate converter bean. Therefore, it implements ListenerLayerRaster

interface. Coordinate converter bean is a listener of map bean in this framework.

When coordinate converter bean is added to map bean, coordinate converter bean

register itself to map bean and map bean register itself to coordinate converter bean

automatically.

Coordinate converter bean notifies its listeners when request for conversion of

pixel coordinates of a selected point into the requested coordinate system is done.

BeanLayerSymbolsFontTracking

Description: Tracking Font Symbols Layer Bean describes functionalities of

tracking font symbols layer component in this framework. It is extended from

BeanLayerSymbolsFont class that is a layer bean on which font symbols are shown.

Font symbols on this layer move in a period of time and implements

InterfaceBeanLayerSymbolsTracking interface. Therefore, this bean has a function

that is used to set this time interval.

 133

BeanLayerSymbolsGeometryTracking

Description: Tracking Geometry Symbols Layer Bean describes functionalities

of tracking geometry symbols layer component in this framework. It is extended from

BeanLayerSymbolsGeometry class that is a layer bean on which geometry symbols

are shown and implements InterfaceBeanLayerSymbolsTracking interface. Geometric

symbols on this layer move in a period of time. Therefore, this bean has a function that

is used to set this time interval.

BeanLayerSymbolsImageTracking

Description: Tracking Image Symbols Layer Bean describes functionalities of

tracking image symbols layer component in this framework. It is extended from

BeanLayerSymbolsImage class that is a layer bean on which image symbols are

shown and implements InterfaceBeanLayerSymbolsTracking interface. Image

symbols on this layer moves in a period of time. Therefore, this bean has a function

that is used to set this time interval.

