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ABSTRACT

INVERSE PROBLEMS FOR A SEMILINEAR HEAT
EQUATIONS WITH MEMORY

Kaya, Mijdat
Ph.D, Department of Mathematics
Supervisor: Prof. Dr. A. Okay Celebi
Co-Supervisor: Prof. Dr. Varga Kalantarov

May 2005, 79 pages

In this thesis, we study the existence and uniqueness of the solutions of
the inverse problems to identify the memory kernel k& and the source term h,

derived from

t
0, — koAO + / kAOds +pg(0) =h, QxR QCR"
f = 0, 2€090 t>0
9(,0) = 90, x € Q.

First, we obtain the structural stability for k£, when p = 1 and the coefficient
p, when g(0) = 6.

To identify the memory kernel, we find an operator equation after employ-
ing the half Fourier transformation. For the source term identification, we

make use of the direct application of the final overdetermination conditions.

Keywords: Structural stability, inverse problem, final overdetermination con-

dition, memory kernel, source term, Paley-Wiener representation.
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OZ

HAFIZALI YARI DOGRUSAL ISI DENKLEMI ICIN
TERS PROBLEMLER

Kaya, Mijdat
Doktora, Matematik Bolimii
Tez Yoneticisi: Prof. Dr. A. Okay Celebi
Ortak Tez Yoneticisi: Prof. Dr. Varga Kalantarov
May1s 2005, 79 sayfa

Bu caligmada

t
0, — koAO + / kAOds + pg(0) =h, QO xRT, QCR"

—00

0 = 0 xred, t>0
0(,0) = 6, T€Q

denkleminden hafiza ¢ekirdegi k ve kaynak terim A nin belirlenmesi i¢in elde
edilen ters problemlerin ¢oziimlerinin varhg ve tekligi gosterilmistir. Oncelikle,
yukaridaki direk problemin ¢éziimiiniin p = 1 igin &’ ya ve g(f) = 0 i¢in p’ ye
siirekli bagimliligi incelenmigtir.

Hafiza ¢ekirdegi £’ y1 belirleme problemi yar1 Fourier dontigiimi kullanilarak
bir operator denkleme gevirilmigtir. Kaynak terim 7 yi belirmek i¢in son karar

verme sartlar: kullanilmigtir.

Anahtar Kelimeler: Yapisal kararlilik, ters problem, son karar verme sarti,

hafiza c¢ekirdegi, kaynak terimi, Paley- Wiener gosterimi.
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CHAPTER 1

INTRODUCTION AND
PRELIMINARIES

1.1 Introduction

Two problems are called inverses of one another if the formulation of each
needs all or partial solution of the other [26]. For some historical reasons, one
of these problems may have been studied deeply while the other is newer. The
former problem is called the direct and the latter the inverse problem. As
primitive illustrative examples, we give the following two problems.

1. Find a polynomial P(z) of degree n with zeros x1,- -, z,.

This problem is the inverse of the direct problem of finding zeros xy,--- , x,
of a given polynomial P(x) of degree n. In this example, the solution of the
inverse problem is trivial, i.e., P(z) = C(x — x1) -+ (x — x,), C # 0. Since C
is arbitrary, solution is not unique.

2. Find a rule of the sequence if some terms aq, - -- ,a; are given.

This is the inverse to the direct problem of finding the terms of the sequence
with the given rule.

The origin of theory of inverse problems may be found in 19**and 20" cen-
turies. They include the problems of equilibrium figures for the rotating fluid,
the kinematic problems in seismology, the inverse Sturm-Liuville problem, etc.

Newton’s problem of discovering forces making planets move in accordence



with Kepler’s laws was one of the first inverse problems in dynamics of me-
chanical sytems which was solved [32].

The theory of inverse problems for differential equations is being developed
to solve problems of mathematical physics. In the study of direct problems, the
solution of a given differential equation is derived by means of supplementary
conditions. Whereas, in the inverse problems, the form of the equation is
known but the equation is not known exactly. To determine the corresponding
equation and its solution, some additional conditions, which are not given
for the direct problem, must be imposed. The following example [32] will be
helpful to understand the nature of inverse problems more clearly. Let us

consider the non-homogeneous heat equation, where u(x,t)

u(z,t) = ug(zr,t)+ flz), O0<z<m 0<t<T (1.1)
u(z,0) = 0, 0<ax<m, (1.2)
u(0,t) = u(mt)=0 0<t<T (1.3)

is to be determined. This is a well known example of an initial-boundary
value problem. If f(x) in (1.1) is specified as a square integrable function in
L?(0,7), it is a direct problem whose solution u(z,t) € ng((o,w) x (0,7))
may be obtained uniquely, for every T, T > 0.

Assume that we want to find u(z,t) and f(x) satisfying (1.1)-(1.3). Now,
the new problem is closely related to the direct problem, but it is clearly dif-
ferent. So the problem of finding u(z,t) and f(z) is an inverse problem of
(1.1)-(1.3). We may observe here that, we have one more unknown, namely
f(z) in the case of inverse problem. To find a unique solution we need addi-
tional condition. To determine u(z,t) and f(z) satisfying (1.1)-(1.3) in which

f(z) appears as another unknown function. We impose the additional infor-



mation

u(z, T) = (), 0 € W5(0,7). (1.4)

to find a unique solution [32]. First, consider the solution

u(x,t) = Z/o frexp{—K*(t — 7)}dr sin kx (1.5)

= > fik 21 — exp{—k*t}] sin kz, (1.6)

k=1

of the direct problem, which can be obtained by Fourier method, where f, =
2 [ f(x) sinkazdx are the Fourier coefficients of the known function f(z) €
L?(0,7). But in the case of the inverse problem, f(z) is not known and there-
fore, to determine the Fourier coefficients f, becomes an important task. For

this purpose, replacing ¢t by 7" in (1.6) and using (1.4), we get
o(x) = Z fek™2(1 — exp{—k>T}) sin k. (1.7)
k=1

Then, (1.7) gives the Fourier-sine expansion of ¢, which implies that

oK = 2 /07r o(x)sin(kx)dr = frk ?(1 — exp{—k>T})

™

and that
fe = K2 (1 — exp{—k’T}) "1 (1.8)

Hence, f(z) is expressible as

flz) = Z k(1 — exp{—Kk*T}) oy sin kx (1.9)



which leads formally to

= Z(l — exp{—K*T} (1 — exp{—k*t})pp sin kx (1.10)

k=1

on the substitution of (1.8) into (1.6). The series expansion (1.9) of f(x) needs

a convergence analysis. Since the system {sinkx}%2,

it is known from Parseval’s identity that

is complete in L?(0, ),

0 9 -
1fle =) —kH(1 = exp{=K"T}H) 5
k=1

implying the inequality

> 2

k=1

>1Il\>

Y1 — exp{—k*T}) 297 < %(1 —exp{-T})"

Obviously, the boundedness of the sum

Z ko7 < o0.
k=1

Zk‘*@k. (1.11)

is required for the existence of f(x). Thus, we have just deduced that the

existence of a solution of this inverse problem depends

@ in (1.4).

on the proper choice of

A generalization of the problem in (1.1) - (1.4) may be given as follows:

Find the functions u € WQQOI(QT) and f € L*(Q) satisfying

w(z,t) — (Lu)(z,t) = f(x)h(z,t), (x,t) € Qr (1.12)
u(z,0) = 0, x € Q, (1.13)
u(z,t) = 0, (x,t) € Sr, (1.14)



subject to the final overdetermination condition
u(z, T) = ¢(x), x €, (1.15)

where L is a given uniformly elliptic operator; h, ¢ are given functions, 2 C R"
and Qr = Q x (0,7). If f(x) € L*(Q) is known, then (1.12) - (1.14) will be
a direct problem and it has a unique solution u € VV22 0 (Qr). If f(x) is also
unknown, it is an inverse problem and we may solve it by using the condition
(1.15). To show the existence and uniqueness of the solution of (1.12)-(1.15),
we convert the problem to an operator equation. If we substitute ¢t by 7T in

(1.12) and use (1.15), we get

ue(x, T) = (Lep) () = f(x)h(z, T). (1.16)

Solving (1.16) for f we obtain

fx) = [u(, T) = (L) (@)]. (1.17)

This may be written in the form

f=Af+U (1.18)
by defining
(Af)(z) = h(; D), ze9 (1.19)
and
W(z) = h(;lT) (L)), zeq. (1.20)

In this particular case, if h is choosen so that |h(xz,T)| > 6 > 0 for x € Q, it is



easy to see that

Thus, we have corresponded the operator equation (1.18) to the problem(1.12)-
(1.15). That is if we can solve (1.18) for f, then we may substitute this function
in (1.12)-(1.14) to get a direct problem which has a unique solution. But let
us note that f should be chosen so that u satisfies the final overdetermination
condition (1.15). The uniqueness of (u, f) is carried out in the usual way, for
example see [32].

Inverse problems in partial differential equations may be classfied accord-
ing to the underlying partial differential equations, namely, inverse elliptic
problems; inverse hyperbolic problems and inverse parabolic problems [32].

Inverse elliptic problems are investigated for the coefficient identification
[6, 10] and the boundary identification [27].

Inverse hyperbolic problems are studied to determine the coefficients [2, 11,
24], the source terms [28, 41] and memory kernels appearing in the equations
[24]. Likewise , there are many studies on inverse parabolic problems to identify
the coefficients [1, 4, 20, 30, 38|, the source terms [3, 12, 29], the memory
kernels [5, 7, 8] and the boundary of the domain [19, 37].

Past history of most models leading to parabolic differential equations con-
taining memory term is represented by some integrals. So, solving inverse
problems in order to determine the kernel of these integrals are meaningful
jobs. Since , we have studied an inverse problem with memory in our thesis,
we mention some of the articles in detail up to an extend. The first study
we will summarize is due to Colombo and Lorenzi [7] on the memory kernel
depending on time and space variables.

They have dealt with identification problems related to open bounded sets

of cylindrical domains € = Q; x 5, 7 and €2, being, some intervals in R



and a smooth enough domain in R". They studied the existence and uniqueness

of
w:[0,T] x Q—R and h:[0,7T] x Qs — R

satisfying

Dywu(t,z,y) = Bi(x,Dy)u(t,z,y)+ Ba(y, Dy)u(t, z,y)
+ /t h(t — s,x)[Bi(x, Dy)u(s, x,y)
+ gg(y,Dy)u(s,x,y)]ds + f(t,z,y) (1.21)
for (¢t,z,y) €[0,T] x Q1 x Qo,

subject to
u(0,z,y) = uo(x,y), (x,y) € Y x Qy (1.22)
U,(t,ﬂf, y) = O, t e [O, T], (ZE, y) S (an X QQ) U (Ql X 892) (123)

and the final overdetermination condition

) d(y)u(t, z,y)dy = g(t,x), (t,z) € [0,T] x 4, (1.24)

where

f:0TIxQ—->R, u:Q—R, g¢:[0,7]xQ —R

and ¢ : {2y — R are known functions.
The corresponding abstract version of the above problem studied by Colombo

and Lorenzi is determining u : [0, 7] — X and H : [0;T] — L(X) satisfying
¢
u'(t) = (By +Bg)U(t>+/ H(t—5)(B1+ Bo)u(s)ds+ f(t), te€[0,7] (1.25)
0

u(0) = uy, (1.26)



and the final overdetermination condition
O(u(t)) = G(t), te[0,7]. (1.27)

They have assumed that f : [0,7] — X is a known function, ug € X is a given
element, By : D(B;) C X — X, By : D(B;) C X — X are closed linear
operators, ® is a known bounded linear operator in £(X; £(X)) and

G :[0,T] — L(X) is a given operator valued function. They proved that (1.25)
- (1.27) has a unique solution (u, H) € U*"?(By, By 4+ By) x W?((0,T); K ),
where U*P(By, By + By) = [W*?((0,T); D(B)) N W 12(0,T); D((By + By —
wul)(By — pl))] and K is a subalgebra of £(X) N L(D(By) ND(By)).

We will mention the article by Favini and Lorenzi [15] as the second example
for the inverse problem to determine memory kernel £ depending on time
variable and the underlying equation is a singular integro-differential equation.
The memory kernel k satisfies the following integro-differential equation in the

complex Banach space X

Mu'(t,z) + Lu(t,z) = /tk(t — s)Lyu(s,x)ds + f(t), 0<t <7 (1.28)
u(0) = g (1.29)

and the final overdetermination condition
O[Mu(t,z)] =g(t), 0<t<r (1.30)
where @ is a given linear continuous functional and
fec'(0,7);X), geC*[0,7];R), wuo€ D(L) (1.31)

are known functions. Favini and Lorenzi proved, under suitable conditions



that the problem (1.28)-(1.30) has a unique solution (u, k) in C*([0, 7]; D(L)) %
C([0,7)), if L, L1, M are closed linear operators from X into itself ( M is not
necessarily invertible ) and the domains of L, Ly, M satisfy D(L) C D(Ly) N
D(M),

The inverse problem we will study in this thesis is based on the direct
problem given by Giorgi, Pata and Marzocchi [16]. The differential equations
appearing in our inverse problem is different from the problems given in |7,
15]. They have employed the semigroup theory and smooth functions in their
investigations, but we discuss our problem in Sobolev spaces. Naturally, we
need some other techniques to derive our results. In [16], the authors studied

the problem satisfying

Op(z,t) — koAb (z,t) + /t k(t — s)AB(x, s)ds + g(0) = h(z,t),Q x R{1.32)

Bat) = 0 xe€dQ, t>0 (1.33)
0(z,0) = Oy(z) xe€Q, (1.34)

where Q C R", 60 :Q xR — R is the temperature variation field relative to
equilibrium reference value, k : Rt — R is heat flux memory kernel and k is

instanteneous conductivity. (1.32) may be written as

Ot(x,t)—koAH(:v,t)—l-/tk(t—s)AH(:v,s)ds—l—g(@) = h(x,t)—/o k(t—s)AO(zx, s)ds.

The presence of the term h(z,t)— f?oo k(t—s)Af(z, s)ds in the above equation
causes that the system (1.32)-(1.34) is non-autonomous. Since the system is
non-autonomous, the family of operators mapping the initial value 6, into the
solution 6(z,t) of (1.32)-(1.34) does not match the usual semigroup properties.

For this reason, a different formulation is given. In order to get this new form,



they define new variables
0'(x,s) = 0(z,t — s), s>0

and
s t
nt(x,s):/ Qt(:z:,T)dT:/ O(z,7)dr, s>0.
0 t—s

Assuming k(oo) = 0, change of variables and integration by parts yield

/ " k(= ) AB(s)ds = — /0 K () At (5)ds. (1.35)

—00

Defining u(s) = —k'(s) and using (1.35), it is possible to write (1.32)-(1.34) in

the following form

O;(x,t) — koAb(x,t) — /000 p(s)An'(x, s)ds + g(0) = h(x,t), Q x R{1.36)

ni(x,s) = O(z,t)— %nt(x,s) on ) x RT x RT, (1.37)
O(x,t) = n'(z,8)=0, €I t,s>0, (1.38)
0(z,0) = 0O(x), ze€, (1.39)

n’(z,s) = no(z,s) 1€Q, s>0, (1.40)

where, the term 7°(z, s) = ffs O(z,7)dr is the initial integrated past history

of § and assumed to vanish on 9f).

When h is independent of time, the new system (1.36)-(1.40) is autonomous
dynamical system with respect to the unknown pair (0(x,t),n'(x,s)). Hence,
the asymptotic behaviour can be studied by the methods in the framework
of the semigroup theory. Therefore, Giorgi, Pata and Marzocchi restricted

themselves to (1.36)-(1.40). For simplicity, they assumed that the nonlinear

10



part of the heat supply ¢ : R — R as a polynomial of odd degree with positive

leading coefficient, i.e., g is of the form

2p
9(0) = gspit, g0>0, peN. (1.41)
k=1

The authors also supposed that, the constant kg and the term p in (1.36)
satisfy the following hypothesis:

(CY) ko > 0,

(Ca)  peC'RY)NLYRT), u(s)>0, p(s) <0,  VseRY,

(Cs) W (s)+ou(s) <0, VseRT and some d > 0.
By(Cy) and (Cs), it is easy to see that u(s) is allowed to have the form

, 0<~y<1L

It is possible to write (1.36)-(1.40) in a compact form. First we denote

2(x,t) = (0(x, 1), 1 (x, 5)),

20 = (6o, 70)
and set
Lz = (koA + /OOO wu(s)An'(s)ds, 6—n') (1.42)
and
G(z) = (h—g(0),0), (1.43)

11



then the problem (1.36) - (1.40) takes the form

2z = Lz+G(2), (1.44)
z(x,t) = 0, z€0Q, t>0 (1.45)
2(x,0) = z. (1.46)

In this article, the authors proved that if h(x,t) € L*(R*, L?(Q)), (1.41) and
(C1) — (Cy) are satisfied 29 = (6p,7m0) € H, where H := L*(Q) x L2 (R*, Hy ),

then there exists a unique function z = (0, n") with
6 € L>=([0,T),L*) N L*([0,T], Hy) N L*([0, T], L*), VT >0 (1.47)

ne L>([0,T), L2(R", Hy)) VT >0 (1.48)

such that
2= Lz+G(z) (1.49)

in the weak sense and

2(2,1)]t=0 = 2o.

They also showed that
z € C([0,T), H), VT >0
and the mapping
20— 2(t) € C(H, H), vt € [0,T].

Furthermore, if 2y € V := Hj(Q) x L>(R*, H*> N Hy), then it is proved that

12



0 € L>([0,T], H)) N L*([0,T], H> N HY) N L*([0,T), L*), VT >0 (1.50)

ne L>([0,T], L2(RT, H* N Hy)) VT >0 (1.51)

and

2z € C([0,T],V), VT > 0.

In the third chapter of this article, they have shown that the solution of
the problem (1.43)-(1.45) has absorbing sets in H and V, i.e.

Jim (01 = Jim (101 + [ () 1V(5) ) < g

and

Jim =01 = Jim (IV0)1E + [ n(ollar ()] ds) < .

The outline of this thesis is the following.
In Chapter 1, some definitions, basic facts and the functional inequalities which
are used during this thesis are given.

In Chapter 2, we prove that the problem (1.44)-(1.46) when ¢(#) is replaced

by p(x)f has a unique solution z = (6, 1) such that

0 c L>=([0,T], L*(Q)) N L*([0,T], L*(Q) N H3(Q)), VT >0
n € L=([0,T),L:(R", Hy(Q))), VT > 0.

In Section 2.3, we show that the solution of the above problem continuously

depends on the fuction p and the memory kernel pu.

13



Chapter 3 is devoted to define an inverse problem to identify the memory
kernel p appearing in the equation (1.44)-(1.46) when g() is replaced by p(x)#.
We prove that the corresponding inverse problem has a unique solution (z, ).

Chapter 4 includes two inverse problems for coefficient identification of the
above problem when p(x) = 1. In section 4.2, we show the inverse problem of
recovering the evolution oh the source term of the form h = H(t)Mx,t) has
a unique solution (z, H). In sections 4.3 and 4.4, we prove that the inverse
problem of recovering a source term of the form h = K(x)Mx,t)with two

different final overdetermination conditions has a unique solution (z, K).

14



1.2 Some definitions and basic facts

In this section, we will give some definitions and auxiliary facts that will

be used.

Definition 1.1. Let Q be a domain in R™ and p > 1 be a real number. We

denote by LP(QY) the class of all measurable functions u, defined on 2 for which
/ lu(x)|Pdr < oo if  1<p<o
Q

and

sup |u(z)| < oo, ae. x €] if  p=oc.
Q
LP(Q2) is a Banach space with the norm
1/p
ull, == </ |u(x)|pdx> < 00 if 1<p<o
Q

and

ulloo = esssup Ju(z)| i p= oo,
Q

where

esssup |u(z)| ;= inf{M : Ju(z)| < M,a.e. z € Q}.
Q

For p =2, L*(Q) is a Hilbert space with the inner product

(u,v) := /Qu(x)v(m)dx, u,v € L*(9).

Definition 1.2. A sequence {x,} in a normed space X is said to be strongly

convergent (or convergent in the norm) if there exists an x € X such that

lim ||z, —z||x = 0.
n—oo

15



Definition 1.3. Let X be a normed space. Then the set of all bounded linear

functionals on X constitutes a normed space with the norm defined by

fllx = sup [f(2)]

zeX

ll=[|=1
which 1s called the dual space of X and is denoted by X*.
Definition 1.4. A sequence {x,} in a normed space X is said to be weakly
convergent if there is an x € X such that for every f € X*,

lim f(x,) = f(x).

n—oo

Definition 1.5. Let {f,} be a sequence of bounded linear functionals in a
normed space X*. Then weak™ convergence of {f,} means that there is an
f € X* such that f,(x) — f(x) asn — oo for all x € X.

For simplicity, we indicate z,, — z for convergence in norm, z,, — x for weak

*
convergence and x,, — for weak™ convergence.

Definition 1.6. Let X be a Banach Space and X* be its dual space. If u € X
and u* € X* then we write (u*,u) to define the real number u*(u). The symbol

(-,+) denotes the pairing of X* and X.

Definition 1.7. Let X denote a real Banach space with the norm ||-||x. The
space LP((0,T), X) consists of all measurable functions u: (0,T) — X with

T 1/p
w|| e (o,m),x) = (/ ||u(-,t)||§(dt) <oo if 1<p<oo
0

and

|[wl|Loe(0,1),x) = ess sup ||u(-,t)|[x < oo if p=oc.
0<t<T
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In this thesis, ||.|| denotes the L? norm of the given function, on the given

set.

Definition 1.8. The space C([0,T]; X) consists of all continuous functions
u:[0,T] — X such that

lulleqoix) = max Jlul, t)llx < oo.

Definition 1.9. The support of a function u defined on €2 is the closure of the

set of points where u(x) is nonzero.

Definition 1.10. Let 2 be a non-empty open set in R™. A function f defined
on § is called a test function if f € C*(Q) and there is a compact set K C Q
such that the support of f lies in K. The set of all test functions on €1 is
denoted by D(2) = C5°(Q).

Let a be an n-tuple of non-negative integers «;, we set

n
al = _a
i=1

and
olely
[e5] a2 °
0x" 0y - - - Qxon

D% =
The n-tuple « is called a multi-index.

Definition 1.11. A distribution F' is a linear mapping F : C3°(Q2) — R such
that F(vj) — 0 for every sequence {v;} C C§(Q) with support in a fized
compact set K C Q and whose derivatives D*v; — 0 uniformly in K, as
Jj — oo. If F and F; are distribution in Q, then F; — F as distributions
provided Fj(v) — F(v) for every v € C3°(Q). The support of a distribution F
in Q) is the smallest (relatively) closed set K C Q such that F(v) = 0 whenever

17



veCR(NN\ K).
The set of all distributions on D(£2) is denoted by D'(Q).

Definition 1.12. Given a real (measurable) function u € §, we will write
u E LlpOC(Q>

to mean u € LP(QY) for any bounded domain € with (V) C Q.

Definition 1.13. Suppose that u,v € L}, (Q) and « is a multi-index. We say

loc

that v is the o' weak or distributional partial derivative of u and write
D% = v,

provided that

/uDacpdx:(—l)|°‘/vg0dm
Q Q

for all test functions p € C§(Q).

Definition 1.14. Let u € L*((0,T), X). We sayv € L*((0,T), X) is the weak

deriwative of u and write

provided that
T T
| utwo® == [ wwotar
0 0
for all scalar functions ¢ € C§°(0,T).

Definition 1.15. Given u € LP((0,T'), X), the function v(t) with values in

Xo D X is called the derivative of u(t) in the distributional sense and is denoted

by
v(t) = Owu(t),

18



/O (o(t), d(t))dt = / (ult), ()t

for all ¢ € C§°([0,T], X§) where X is the dual space of Xy and (-,-) is the
duality pairing between Xo and X§. C§°((0,T), Xo) is the space of functions
from C>((0,T), X) with compact support.

Definition 1.16. (The Sobolev Space) Let k be a non-negative integer and let
1 < p < o0o. The Sobolev space W*P(Q) is defined by

WhP(Q) = {u € LP(Q)|D% € LF(R) for all |a| < k}.

In W*P(Q2), we define a norm by

1/p
|l |p == (Z HDQUH£> if 1<p<oo

la| <k

and

||ul|k,00 == max ||D%|| if p= 0.
0<|e|<k

For p = 2, we define an inner product by

(u,v)) = Z /QDau(x)Dav(x)d:U.

| <k
We also use the notation H*(2) for W*2(Q) and L?*(Q) for W2(Q).

Definition 1.17. By W/P(Q), we denote the closure of C°(Q) in WE?(Q).
Because of the definition 1.17, u € W{?(Q) if and only if there is a sequence

of functions u,, € C°(Q) such that u,, — u in W*P(Q).

Definition 1.18. Let 1 < p,q < oo such that % + é = 1. Then the dual space
of WiP(Q) is denoted by W=r1(Q).
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W=k4(Q) is the Banach space with the norm
k?
[|ull kg := sup{[{u, v) : v € Wg™(Q), |v][ep < 1}

where (-, -) denote the duality pairing between W=54(Q) and W?(Q).

Definition 1.19. Let X and Y be normed spaces such that X C Y. Then we
say that, X is continuously imbedded into Y if there exists a positive constant
C > 0 such that ||ully < C||u||x, for allu € X. Furthermore, we say that X
18 compactly imbedded into Y if it is continuously imbedded and each bounded

sequence in X 1s precompact in Y .

Theorem 1.20. (Sobolev’s inequality) [13] Assume that S is a bounded, open
subset of R™. Suppose u € Wol’p(Q) for some 1 < p < n. Then we have the

estimate

|ully < C|[Dul|,
forl1 <gq< n"—i, the constant C' depends on p,q,n and €.

Theorem 1.21. (Rellich-Kondrasov) [25] Let @ C R™ be a bounded open set
of class C'. Then the following embeddings are compact.

(i) if p<n, WH(Q)—L(Q), 1<q¢<2,
(ii) if p=n, W'(Q) — LI(Q), 1<q< oo,
(i) if p >n, WWP(Q) — C(Q).

If Q is any bounded domain, the above mentioned theorem is walid for

W,P(Q).
Definition 1.22. [33] For 0 < p < oo, HP(II) is the class of holomorphic

functions F on 11 such that

00 1/p
HFIIp:sup(/ (F(erz'y)\pdx) <
y>0

—00
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where I := {z : Imz > 0}, where z =x + iy, x,y € R". Here H denotes the
Hardy class.

If p > 1, then HP(II) is a Banach space with the above norm. Moreover,
H?(I0) is an Hilbert space. The inner product in H?(II) is given by

(F,G)s = /_OO F(z)G(z)dx.

F(2) and G(z) are any functions in H?(II) and F'(z) and G(z) are their bound-

U2\
(=)

form an orthonormal basis for H?(II).

ary functions.

The functions

Definition 1.23. (Paley-Wiener Representation)[33] For any given f € L?(0, 00),
define

1 .
F(z)=— e f(t)dt, =z €l
0= == [ e
Then the mapping U : f — F is an isometry from L?(0,00) onto H*(II). Its
inverse U™ : ' — f can be calculated in this way. Let f € L*(0,00) and

F € H?*(II), and assume that FF = Uf. If F(t) is the boundary function of
F(z), then

1 A x) , x>0,
Lim. g oo——= e E(t)dt = f@)
VamJ-a 0 , x<0O.

Moreover, for any y > 0,

1 A e v f(x) , x>0,
Limm.aoo—— e (t + iy)dt =
V2T /—A 0 <0
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where l.i.m. stands for limit in the mean and indicates that convergence is in
the metric of L?(0, 00).

In this work, (-, )2.m and || - ||2m, m = 1,2 denote the inner product and
norm of H} and H? N H{, respectively.

We use the notation (-, )91 = (V-,V:) and (-, )o2 = (A, A-).

For yp € CY(RY)NLY(RY), pu(s) >0, p/'(s) <0, VseR', L2(R" L?)
denotes the Hilbert Space of funtcions ¢ : RT™ — L?*(€) endowed with the inner

product

(p1,02)p = /000 1(8){p1(8), pa(s))ds.

and ||p]|, denotes the corresponding weighted norm. We introduce the fol-
lowing inner products (-, ), , and corresponding norms (-, )., ,(m = 1,2) on

L2 (R*, Hy) and L2(R*, H*> N Hp) as
(e =V Vo) and - (o = (A A,
As in [16], we introduce the Hilbert Spaces
H = L*(Q) x L(R", Hy)

and

V = HH(Q) x LA(R*, H?* N HY),

respectively endowed with the inner produets

(Wi, wa)y = (Y1, 92) + (P1, V2) 1,1

and

(w1, wa)y = (Y1, V2)21 + (@1, V2)2,4
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where w; = (¢, ;) € Hor V for i =1,2.

The norm on H is

1, )l = 11¥11* + /Ooo w(s)|IVip(s)[[*ds.

1.3 Inequalities

We will also make use of the following functional and algebraic inequalities
in this thesis.

1) Cauchy’s inequality with €.

2

b
ab§6a2—|—4—€ VYa,b > 0,e > 0.

2) Cauchy - Schwarz inequality. Let H be a Hilbert space associated with the

inner product (.,.) and norm ||u|| = (u,u)'/2. Then
|(w, )| < [lull-f[oll, Vw0 € H.
3) Poincaré inequality
Xo(Q)[[o]P < [|[Vol? Ao >0,V € Hy

and

Yo (Q)[|Vo]* < [|Av|]? o >0,Yv € H*N Hy
4) Young’s inequality with e.

(ep) ™"

ab < ea” 4+ C(e)b? (a,b>0, €>0)for Ce) = .
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CHAPTER 2

RELATED DIRECT PROBLEM

2.1 Introduction

In this chapter, we will introduce the direct problem whose related inverse
problem will be studied in Chapter 3. We will assume a particular linear part
p(z)0(z,t), p(xr) >0, instead of the nonlinear part of heat supply g : R — R
in (1.36). This form of the problem is slightly different from the problem in
(1.36)-(1.40). For the completeness of the discussions, we need the existence

and uniqueness of solutions the new problem defined by

o0

O0i(z,t) — koAbB(z,t) — i w(s)An'(x, s)ds + p(x)0(z, t) = h(x,t), Q2 XRL)
ni(z,s) = 0(z,t)— % f(z,5)  onQxRYxR* (2.2)
O(z,t) = n'(z,s) =0, 2€dQ,  t.s>0, (2.3)
0(x,0) = Op(z), z€Q, (2.4)
n’(z,s) = no(z,s), reQ, s>0. (2.5)

The term n°(z, s) = ffs O(x,7)dr is the initial integrated past history of 6 and

assumed to vanish on 9€). We denote

z(z,t) = (0(x,1), Wt(% s))

20 = (90, 770)
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and set

Lz = (koAb(z,t)+ /000 w(s)Ant(s)ds, 0z, t) —n (x,t—s)), (2.6)
G(z) = (h(z,t)—p(x)i(z,t), 0). (2.7)

Thus, (2.1)-(2.5) takes the compact form

zi(z,t) = Lz4G(z), (2.8)
2(xz,t) = 0, x € 011, t >0, (2.9)
2(z,0) = 2, x €. (2.10)

2.2 Existence and Uniqueness of Solution

Theorem 2.1. Suppose that h € L*(RT,L*(Q)), p(z) >0, p € L>(NQ)

and zo = (0o, m0) € H. Then there exists a unique function z = (0,n) with

0 € L>([0,T],L*(Q)) N L*([0,T], Hy(2)), VT >0 (2.11)
n e L=([0,T], L2(R*, Hy())), VT >0 (2.12)

such that
2z =Lz +G(2) (2.13)

is satisfied in the weak sense, and z|—g = zo.

If we assume that zg € V, then

6 € L>([0,T], Hy(2)) N L*([0,T)], H*(2) N Hy(K2)), VT > 0(2.14)
n o€ L®([0,T], L(RY, H*(Q) N Hy(Q))), VT >0. (2.15)

Proof. We will give the proof by the standart Faedo-Galerkin Method. To use
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this method, we need orthonormal bases of L*(€2) and L2 (R, Hj(9)).

We recall that there exists a smooth orthonormal basis {w;}52, of L*(2)
which is orthogonal in H}(Q2). We will take a complete set of normalized
eigenfunctions w; for —A in Hg(Q), that is —Aw; = v;w;, where v; are the
eigenvalues corresponding to the eigenfunctions w;. We will select an ortho-
normal basis {;}32, of L2(R*, Hj(Q)) which also belongs to D(R*, Hg(f2)).
Here, we recall that D(I, X) is the space of infinitely many differentiable func-
tions with compact support in I C R. We will complete the proof in five
steps.

Step 1 (Faedo-Galerkin Scheme). We fix a finite time interval (0,7),
T > 0. Given an integer n, denote by P,, @, the projections of H}(Q) and
L2(R*, Hy) on the subspaces
Span {wy,--- ,w,} C Hy(Q) and Span {{1,---, ¢} € L2 (RT, Hy(2))

respectively. We want to find a function z, = (6,,7,) of the form

Ou(t) =) af(the;  and  n(s) = Zb?(t)Cj(S)

Jj=1

satisfying

(Orzn, (Wr, G = (L2n, (s G+ (G (20), (kG

subject to 2, |i—o= (Pn.fo, Quno), where 8y = 0(0,2) and ny = 1°(z,s). By
(2.6) and (2.7), this equation may be written as

(Orzn, Wiy Gy = (koD + /OOO w(s)Ant(s)ds, 0, — 1), (Wi, G))x
+ {(h = p(2)0,,0), (Wi, G)) (2.16)

Zn ‘t:O = (Pneo, QnTIO)
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for a.e. t < T, for every k,7 =0,--- ,n,. We denote the zero vectors in Span
{wy,- -+ ,w,} and Span{(y, - -, (. }by wp and (y, respectively.
Taking (wy, (o) and (wp, (x) for (wk, ;) in (2.16) we get

ok = ko + ([ A ()5 + () — ()0 o2 17)

%b” = Za (Wi G, Zb" ¢, G (2.18)

If we use the divergence theorem to the second term in the right hand side of

(2.17), we get

([ nts) 5. o) Zb (G,
0

Employing this identity in (2.17), we end up with a system of ordinary differ-
ential equations with respect to the unknown functions a}(¢) and b7 (), of the

form

Eaﬁ = —kovay + (h,wr) — (p(x)b,, wi) Zb” CGrwen,y, (2.19)

d k - n

ZUo= D WG, Zb (¢ )i (2:20)
j=1

subject to initial condition

ap(0) = (0, wg) (2.21)

be(0) = (10, G- (2.22)

According to standart existence theory for ordinary differential equations, we
have a continuous solution of (2.19)-(2.22) on some interval (0,7,,). we may

observe here that in fact 7}, = +o0.
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Step 2 (Energy estimates). Now, we will look for energy estimate for
the sequence (6,,,1,).
We multiply the equation (2.19) by aj and (2.20) by by we get

1d
5%(6&32 — —k()Vk ak Zb Cjawkak 1# <h)wka/7]:>
- (p(l’)@mwkak) (2.23)
1d n
5%@2)2 = Y ap(w; Gbin, Zb” G (2.24)
7j=1

Since H is a Hilbert space, the paralellogram law holds. Thus, |[|z,|[7, =
Sor_(ap)? + >0 (b1 Summing over k the equations in (2.23) and (2.24),

we get

1d

Szl B = (o6, 60) + (1 60) = (b, B0) — {1 B

+ <77fw€n>l,u - <777/~f79n>1,u

This equation can be written as

1d 00 ,
sl = (A, + [ pe) A s)as, 6, =), O

+ <(h - p(m)é’n, 0)7 (Qna 77n)>H (2.25)
- —k0||v9n||%2(9) - <77;L77]n>1,,u + <h7€n> - <p(l’)6n,9n>(226)

The application of the Schwarz inequality in the third and the fourth term
in the right hand side of (2.26) and the definition of the inner product in the

sense of L?*(Q) yields the estimate

(s On) = (P(x)0n, 0n) < [[][[160]| = /Qp(x)IHn\de- (2.27)
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Using (2.27) in (2.26) we get the bound

1d
5 g7 ll2nllh < =Kol [VOn[[* = (s ma) 1 + 1[16n]| - /QP(iU)W!de- (2.28)

Integration by parts and the condition (C3) on u(s) given in Section 1.1 imply
that, the second term in the right hand side of (2.28) satisfies that

(s )1 = — / ()| Val2ds > 0. (2.20)
0

Employing the inequality (2.29) in (2.28) and recalling that p(z) > 0, we get

1d

5l B+ kol V812 < [[A1]160] (2:30)

The application of the Young’s inequality with € to the term at the right hand
side of (2.30) yields the estimate

[AI1116n]] < 4i€||h||2+6||9n||2- (2.31)
Using Poincaré inequality for ||6,]]? in (2.31), we end up with
[AI116n]] < 4l€||h||2+€)\0||ven||2- (2.32)
Substituting (2.32) in (2.30) we get
d 2 2 _ 1 2
EHanIHJr?(k‘o—€>\0)||V‘9n|| < 2—€||h|| - (2.33)
The integration of (2.33) over (0,t) for t € (0,7, leads the estimate

t
1
1zl 3 + 2(ko — EAo)/o [IV0n(7)IIPdr < lz0ll5 + 5 AIRIPT,
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or

o 1
1611 +/0 NIVl [Pds < Jlzoll7 + 5 [IBIIPT.
The above inequality for gives that

0, is bounded in  L*([0,T], L*(2)) N L*([0,T], Hy(Q))  (2.34)
M is bounded in  L([0,T7, L2 ((R*, Hy(2))). (2.35)

We observe that the bounds are independent of n as we have expected.
Step 3 (Passage to limit)(2.34) and (2.35) shows that there exists a

subsequence of (6, 7,), which will be denoted by the same indices, satisfying

0, — 0 weakly-star in  L>([0, T], L*(Q2)) (2.36)
0, — 0 weakly in L*([0,T), Hy () (2.37)
Nn — 1N weakly-star in ~ L>([0,T], L2(R*, Hy(Q))).  (2.38)

For a fixed integer m, choose a function

u=(0,£) € D((0,T),H} () x D((0,T), D(RT, H}(2))) of the form

o(t) = Zdj(t)wj and  &'(s) = bi(1)¢(s)

j=1

where {a;}i~; and {l;j}?:j are given functions in D((0,7")). Then (2.16) holds
with (o(t), ") replaced by (wy, ¢j), i.e,

<atzm (O(t)a gt»H = <(k0A0n + Am M(S)Ant(s)d87 Qn - U%)(U(t)a §t)>H
+ (b= p(2)0n,0)(0(t), ")) (2.39)
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By the definition of the inner product in the sense of H, by (2.39) we get

(Orzm, (0(8), ) = ((kolAbn, (1)) 120 + </OOO p(s)An;,(s)ds, o(t))r2(0)

(00, €10 — (10 €)1+ (B = D()00, (1)) 12() - (2.40)

If we use (2.36)-(2.38), we may pass to the limit as n tends to oo except for

the term

0 = [ W)V ) s

We denote ((-,-)) the duality mapping, between H,(R*, Hj(Q)) and its dual
space. For f € H,(R*, Hj(Q)) and g in its dual space

Using this definition of the duality map, we observe that

(e, €)= / 1 (5)(Vip, VE'()) 1@y ds — / H(s)(Vip, VE (5)) 2y ds
0 0
(2.41)
for ¢ € HL(R™, Hj(2)) and & is in its dual space. Indeed, the identity
(2.41) may be adopted for every ¢ € L2(R*, Hj(Q)), if £ € H(RT, Hj(2)) N
L2(%)2(R+, H}(9)). Thus, we may compute the limit of (n,, &), as n — oo,

and we get

Oizn — 2z in D'((0,T), Hy(Q)) x D'((0,T), D(RT, Hy())).
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Integrating (2.39) over (0,7") and passing to limits we get

/0 (o)t = / k(0,0 + (1, 01 — (0.E01 + ((7,€))

— (h,o)]dt + /T p(x)fodzdt. (2.42)

So the limit of the sequnce z, = (0,,7,) is the solution of our problem.
Step 4 (Uniqueness of the solution). Suppose that there are two
functions 2! = (61, m1) and 22 = (04, 1,) satisfying (2.2), i.e,

2= (O = (koA + / w(s) A (s)ds + h— p(x)0r, 6 — 1)) (2.43)
0
and

2 = (B, m0)r = (koA + / u(s)A(s)ds + h— pl(e)fa, Oy — 1) (2.44)

with the initial conditions zé = 28 = zp. If we set 0= 01— 0, i =11 — 1o

and Z := 2! — 22, subtraction of (2.44) from (2.43) gives

z = (koA + /0 h w(s)Af — p(x),0 — 7). (2.45)

The inner product of Z; and Z in the sense of H gives

1d, . o . - -
sl = —RlIVAIR — [ u(s) (Vi V)ds — (p0)6.) + (98, Vi,
o O (2.46)

i p(s) |Vl ds. :

We know that [ u(s)(V1, Vl)ds = (VO,V7),. The cancellations of these
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terms in (2.46) gives

Ld

_ . 00 d
MV 2 o - ~12
5 7121 = Rl A1 = (p@)d.6) = [ (o) 119,

Keeping in mind that
—kol[VO|* <0, —(p(x)8,6) <0

and
[e.e] d R oo , R
- [ we g vilPas = [l <o
0 s 0

we end up with the following inequality
d 2
—I|z]]? < 0. 2.47
ZJ? < (2.47)
This differential inequality yields that
IZ@11F < [12(0)]*. (2.48)

Since Z(0) = 2} — 22 = 0, (2.48) implies that Z(t) is identically zero, which
implies uniqueness of the solution.

Step 5 (Further regularity). At this step, we investigate that, under
some appropriate assumptions, the solution of the problem (2.1)-(2.5) is in a

more smooth space. we write the equation (2.8) in the form

Oi(z,t) — koAO(x,t) — /000 w(s)Au'(s)ds + p(x)0(x,t) = h(x,t)(2.49)

ni(z,s) = 0(x,t) —n'(x,s). (2.50)

Our aim is to find an upper bound for ||z||3. For this end, we multiply (2.49)
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by —Af in L*(Q) and the Laplacian of (2.50) by A7 in L2(Q) to get

LUvolr + kollAg)? + / () (A, A6) 12

th
1d
5%“ N5 = (A, An"), — (Ank, An),. (2.52)

Addition of (2.51) and (2.52) results in
d 2 2 !

We observe that (1, = — J57 1 (s)||An(s)||?ds is positive. Using this fact
and using the triangle mequahty for the term in the right hand side of (2.53)

gives the estimate
d
Gl + 2kll86P <2 [ p(olloneldo +2 [ hllagi. (250
Q Q

The application of Young’s inequality with € for the terms in the right hand
side of the inequality (2.54) yields

d 2 2 1 2 2
- <
SIAR + 2kl|A0)® < |hl? + 26 V0]

[Pl

+ 261l VO 4+ P2

SR (2.55)

If we use Poincaré inequality for the last term in the right hand side of (2.55),

we get the estimate,

d PllLee
Lielly + (2ky - 2€ — 2erlpllimiey — LIy 00y )
€1
1
hll2. 2.56
< il (2.56)
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The integration of (2.56) over (0,t), 0 <t <T, gives the following inequality

t ol o
IO+ [ (2h = 26 = 2l ~ 2o A VO
0

1 T
< oo [ eIt + ol 257)
€Jo

If we choose € and €; so that the coefficient of ||[V]||? in (2.57) is positive, the
bound we get in (2.57)shows that

0 € L>([0,T], Hy(2)) N L*([0, T], H*(Q) N Hy ()
n o€ L([0,T), L2(R*, H*(Q) N HY(Q))).

2.3 Some properties for the structural stabil-
ity of the equation

In this section, we will investigate the continuous dependence of the solu-
tions of (2.8)-(2.10) on the coefficient p and the memory kernel u. We will

start with the continous dependence on p(z).

Theorem 2.2. The solution of the problem (2.8)-(2.10) depends continuously

on p(z).

Proof. To show continuous dependence on p(z), we will consider two solutions

21 and 23 of (2.8)-(2.10) for two different choices for p(x), i.e., p1(x) and po(z)
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with the respective initial conditions 2§ andz3 , where z} = 22

2 (x,t) = (koV, (x,t) /000 w(s)Vni(x, s)ds
h(l", t) — D ($>91 ($, t)> 91 (:L” t) - 775/(95» S)) (258)
| o), syis

h(z,t) — po(z)0o(x,t), Ox(x,t) —nb/(x,5)) (2.59)

+

+
2(x,t) = (koVy(x,t) +
4

Subtracting (2.59) from (2.58), and setting 7 := 2! — 22, 0 :=0; — 0y, 7 :=

M — N2, P:=p1— P2, we get

Zx,t) = (koAO(z,t) + /000 w(s)Aft(z, 8)ds — py(x)0(z, t)

— p(x)bs(z, 1), é(m,t) —7"(z, s)). (2.60)

Taking the inner product of Z, with Z in the sense of H, (2.60) gives

1d

2dt||2|’31 + kol VO [* + (p10,0) + (M1 = —(pha, 6). (2.61)

Since (p16,8) ,ko||VA||* and (i, 7)1, are positive , (2.61) becomes

1d, . o«
5 77 |11 < (962, 0)1. (2.62)
We need an estimate for
(592.0)| = | [ Po)6ale)io)d. (2.63)
0
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The application of Holder’s inequality in (2.63) gives

[(P(2)02(),0(x))] < /Q [5(x)0s() 0 (x)|da

< ([ wpenyas) " ([dzar) "
< 1112 0 11021111611 (2.64)

Using Young’s inequality for the right hand side of (2.64) we get
. = . = 1.5 L.
[(P()0a(2), ()| < [[BI]12 - l16211-116]] < SO + S lIpll@)-[16:]”. (2.65)

Substitution of (2.65) in (2.62) yields

——112112, < =|16]1% + =||B|| oo (.| 1622 2.66
5 1l < S0P + S 1Al ee-1 162 (2.66)

Since ||6]% < ||2]|3,, we may write (2.66) as

d . ) i
T2l = 112115 < (18110 110 (2.67)

Using Gronwall’s inequality, we get
T
OB < lpllimio) [ NPar. 0<e<T. (208)
0

From (2.68), we deduce that ||Z(¢)||x — 0 as |[p||z~@) — 0. This gives the

continuous dependendce on p(x). O

We will show the continous dependence of the solution of the problem
(2.8)-(2.10) on p for a general nonlinearity g(6(x,t)) instead of p(z)0(x,t). We
write g(0(x,t)) in the place of p(z)0(z,t) in (2.8)-(2.10) and we get the problem

(1.44)-(1.46). Now, let us show the continuous dependence of the solution of
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the equation (1.44)-(1.46) on p.

Theorem 2.3. The solution of the direct problem ( 1.44 ) - (1.46) continously
depends on the memory p if p € C*(0,00)NL>®[0,00)NL' (0, 00) and g(0(z,t))
as in (1.41).

Proof. Let z; and z3 be two solutions corresponding to u; and sy respectively:;

z14(z,t) = (koAby(z,t) —1—/000 1 (8)Ant (z, s)ds
+ h(l‘, t) - 9(91<x7 t))v 91(15, t) - 775’(95, 3))’ (2'69)

2o4(z,t) = (koAby(z,1t) +/OOO po(8)Ans(x, s)ds
+ h(l‘, t) - 9(02<I’ t))7 92(1‘, t) - 775/(*757 8)) (270)

Let us form the difference of (2.69) and (2.70). Defining the new variables

Zi=2z1 — 2o, 5:201—92, n:=mn—mny and [ := p; — lo, we have

S(ed) = (oAb t) + / " () Az, s)ds + / " () A7z, 5)ds

— (g(Ou(, 1) = g(ba(x, 1)), O(a, 1) — i (, 5)). (2.71)

Multiplying both sides of the above equation by z = (QN, 7) in the sense of H
with the weight function p;(s), we find

1d . ~ -
§£HZ||% = —kollVOC I = (n3(x, 5),0(x, 1)1z

Our aim is to find an upper bound for ||Z||3, depending on fi. To this end, we
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will estimate the right hand side of (2.72). From [16], we know that

~(9(0(x, 1)) — g(ba(x,1)), 0z, ) < C 1 0(. 1) I,

C depending on g and (7"(x, s), 7)1, > 0. If we use these facts in (2.72), we
get

5 ECOIR + kol VO, 1)I[P < —(nh(, s),0(x, t)a + CllOC, B[P (2.73)

By the Poincaré’s inequality for the second term at the left hand side of (2.73)

we get
5= EC D[+ Aokl 0,117 = CHOC O < —(mi (. 5), 0z, )1 (2.74)

or

1d

5 77 FC DIl + (ko — ONOC P < —(ma(x, ), 0z, 1),z (2.75)

If the function g is chosen so that C satisfies A\gkg — C' > 0, we find
SIEC D5 < —(mh(, ), 0(2, )15 (2.76)

Now, let us study the right hand side of the equation (2.76). By the definition

of (.,.)1,; we get

<77§(x,3),9~(x,t)>17ﬂ:/Ooo/l(s)AVné(x,s)Vé(m,t)dxds (2.77)

SO

[0S, 5), 0(z, )14 < /OOO ()05, $)[VE(.. )] ds. (2.78)
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Since an absorbing ball in V := Hj x L7 (R*, H* N Hy) exists [16], there is an

R for every t € [0,00) depending on h satisfying
V(.. t)|| < R. (2.79)
Employing (2.79) in (2.78), we get
(05, 8), 0, ), < R/OOO ()| V(. 5)]|ds. (2.80)
The right hand side of (2.80) may be written as

R / A IV 8)lds = R / ) 21 i() 2t )]s

<& ([ ) 1/2( ik 7 (281)

Substituting (2.81) in (2.76), we end up with

%Hz(.,t)lln < R(/Ow\ﬂ(s)lds>l/2(/ooo |/l(s)||]Vn§(.,5)||2d5>1/2. (2.82)

Solving the differential inequality, we get the following bound for ||Z(.,)||x:

I Olhe< & [ latolas [ ( s P Yo sy

It is trivial that ||Z(.,t)||» tends to zero as |fi(s)| approaches to 0. This proves

the continuous dependence of the solution z on pu.
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CHAPTER 3

THE INVERSE PROBLEM
FOR MEMORY KERNEL
IDENTIFICATION

3.1 Introduction

In this chapter, firstly we will define an inverse problem to identify the
memory kernel p. Secondly, we will prove that this inverse problem has a

unique solution.

3.2 The identification of memory kernel

In Chapter 2, we have proved that if h € L*(RT; L*(Q)), p e L>(Q),
20 = (6o, m0) € H are given and the conditions (C4), (Cy), (C3) on p are satis-
fied then the problem

0;(x,t) = koAO(x,t) + /00 w(s)An'(z, s)ds + h(z,t) — 0(x,t) on Q x R*(3.1
ni(x, s) zﬁ(x,t)—n'(x,?f—s) on Q x Rt x R (3.2
z(x,t) =0, x€0Q, t>0, (3.3
2(x,0) =29, x€Q, s$>0 (3
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has a unique solution z(z,t) = (6(z,t),n(x,t — s)) where

0 < L>=([0,T], L*()) N L*([0,7)], Hy (), VT >0
n € L=([0,T],L:(R", Hy(Q))), vT > 0.

We can easily check that this problem is well-posed for the unknown functions
6,7n. In this section, we want to identify u(s) besides 6(z,t) and n(x,s) ap-
pearing in the problem (3.1)-(3.4). It means that, we have one more unknown
function. Thus, the new problem we are interested in is ill-posed and is called
as an inverse problem for u. It is clear that in this inverse problem 6(z,t) and
n'(x, s) can not be determined uniquely with the conditions (3.3) and (3.4). To
solve this ill-posed problem uniquely, we must impose additional appropriate
constraints on 6(x,t) and n(z,t—s) which are called as final overdetermination

conditions. We propose

/Q 0z, ) p(x)dz = A(t) (3.5)

and

/Qn(x, t —s)p(z)dr = B(t —s), (3.6)

as the final overdetermination conditions, where A(t), B(t — s) and ¢ € D(Q)
will be determined later.

In order to identify pu(s),0(z,t) and n'(x, s) in (3.1)-(3.6), we will follow the
technique given earlier in the study of the inverse problem (1.12)-(1.15). That
is, we will convert the inverse problem (3.1)-(3.6) to an operator equation for u
and we will show that this operator equation has a fixed point. Using this value
of pu we find a direct problem for  and 7. In order to get the operator equation,
we will use Paley-Wiener representation (half Fourier transformation) given

in Section 1.2. Let us recall that for any f € L%*(0,00), the half Fourier
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transformation is defined by

/\

f(2) e f(t) zell (3.7)

vl

where I = {(z,y) : y > 0}. The mapping given by (3.7) is an isometry from
L*(0,00) onto HZ(II).

(i) The operator Equation.
Since h(x,t) in (3.1) has the property that h(x,t) € L*(RT, L*(2)), we can

compute the half Fourier transformation of (3.1):

—
—

0u(1,8) = koAO(z, 1) + /0 " (s) At — $)ds) + h(e 1) — B(e ). (3.8)

If we multiply each term in (3.8) by ¢(z) and integrate over €2, we find

At = \/2_/ / e bz, t)p(x)dwdt
s)An(z,t — s)ds|p(x)dx
+[&[/Oi()n(’t )is|tz)
+ ) — A1), (3.9)
using (3.5) and (3.6) where, ﬁ = fQ x)dx. We need to study the

integrant of the second term in the right hand side of (3.9):

—

Uooou(s)An(x,t—s)ds} :\/%/OOO /0°° () An(e - s)dt ds. (310)
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Let us use the substitution £ :=t — s in (3.10) ; then

—

{/000 p(s)An(x,t — s)ds} = € () Ay (i, €)dEdB.11)

e’sze’&p (s)An(x,&)dEds

= L
.
=/

\\\

S5 s-

emezgz,u (s)An(z,£)dEd3.12)

Using (3.7), the first term in (3.12) is

—

= / / ¢ u(s) Az, €)deds = VITHB) AN E)  (3.13)

and the second term is

NG / / €% e u(s) Ar(x, §)dds = —— NeT / / ZeifZAn(a:,g)dgds.

(3.14)
If we use (3.13) and (3.14) in (3.9) we get
m = —Z(?)—i—ﬂ/t\ +k0/A(9/:C\,t)<p(x)dx+\/%/L/(;)/An(/x,\§)<p(:c)dx
Q
0
N zsz i€z
+ \/%/ / /_se An(zx,&)dEds dx. (3.15)
Solving (3.15) for ,u/(;), we get
)~ MO+ AWD - 50 o fo A6 )pla)ds
\/ﬁfﬂ An x,&)p(x)dr
G dae@) [ eus) [ sei&A”(””’f)dgde%- (3.16)

Var fQ An(e.&)pl)da
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On the other hand, the half Fourier transform of (3.2) is
m(z,t — ) =0(x,t) —n'(z,t —s). (3.17)

By the definition , the term on the left hand side of (3.17) is

—

m(z,t—s) = / e "n,(z,t — s)dt. (3.18)
0

Integration by parts in (3.18) yields

Th(;t\— s) = L[—770(:16, s) —iz /000 e n(x,t — s)dt). (3.19)

V2
The second term in the right hand side of (3.17) gives
1 * 4 0
(,t—s) = —— e —(n(x,t —s))dt
W= = o= [ e -9

_ \/LQ_W% (/Ooo et (a, t — s)dt) | (3.20)

Substituting (3.19) and (3.20) in (3.17); and then multiplying the resulting

equation with ¢(x) in the sense of L?, we get

-1 1z R
— x,s)p(x)dr — e B(t — s)dt
— [ s — —= ["empa—

TR 1 > itz
= (/0 Bt — )db). (3.21)

QJ|Q>

S

This equality gives a relatipn between A(t) and B(t — s).
(ii) The equivalence of The Inverse Problem and The Operator Equa-
tions

First, we assume that the inverse problem (3.1)-(3.6) has a solution

—

(O(x,t),n(z,t — s), u(s)). By following the steps for getting p(s), we reach the
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operator equations (3.16) and (3.21).

Secondly, we assume that (3.16) and (3.21) are satisfied by a function pu(s).
If we substitute this p(s) in (3.1), we get the direct problem (3.1)-(3.4), which
has a unique solution (6(x,t),n(z,t — s)) by Theorem 2.1. Now we have to
show that the solution (6(z,t), n(x,t — s)) satisfies the final overdetermination
conditions (3.5) and(3.6). To show that (3.5) is satisfied we transform (3.1) to
get

—
—_— —

0;(x,t) = koAb (x,t) + [/ p(s)An(z,t — s)ds] + h(z,t) — H(/x\,t) (3.22)
0
Multipliying (3.22) by ¢(x) and integrating over £ we get

/Q b Dp(x)dr = ko / AB(z, )p(z)dz + V2r / 7(5) A € pla) da

1 OO 152 ‘ £z
+ E/ng(x)/o e pu(s) /_865 An(x, &)dEdsdx
+ ﬁ/(?)—/gmgo(x)dx, (3.23)

—_

where 3(t) = [, f@daz. Since p(s) satisfies (3.16), we have the identity
A0+ A0 = 50~ ko | A0 t)p(a)ds
Q

[e'e] 0
- o= e [ e [ et gasds aa

—

= \/%/Q;L/(;)An(x,f)gp(x)dx. (3.24)

Subtracting (3.24) from (3.23) we find

/ b D () d — (D) = — / (o De(n)ds + A0, (3.25)
Q Q
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or

/Q (6:1) + 00.1)) () = 2(0) + QD). (3.26)

Using the definition of half Fourier transformation we can write (3.26) as

/Q \/%_W@(x) /O " e 0,2, t) + 0o, D) did = \/%_W /O T A + AL,
(3.27)

or

/ T gits (( / o(x) [0:(x, ) + 0(x, t)] dm) —[A'(t) + A(t)]) dt = 0. (3.28)
0 Q
From (3.28) we deduce that

/Q o) (042, 1) + 0z, )] dz — [A'() + A1)] =0, acte[0,00)  (3.29)

If we define
u(t) == /ng(x)e(:v,t)dx — A(t), (3.30)

(3.29) becomes
u(t) + u(t) =0, for a.e.t € [0, 00) (3.31)

which has the solution u(t) = u(0)e~". If we impose

A(0) = / 6o (1) o) dx

as a compatibility condition on A(t), then u(0) = 0 by (3.30). Hence, u(t) will

be the trivial solution of (3.31), which gives

A(t) = /Q 0z, 1) (x)dz, (3.32)

showing that the final overdetermination condition (3.5) is satisfied.
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Secondly, we will show that (6(z,t), n(x,t—s)) satisfies the condition (3.6).
We recall that, using the substitution n(x,t — s) ft (x,7)dr, the problem
(1.32)-(1.34) takes the form (1.36)-(1.40). By the definition of B(t — s) and
A(t), we get that

B(t—s) = / o(x)n(z,t — s)d = /Q o(z) /tjse(x,T)dex

t
= / / O(x, T dxdT—/ Az, T)dr.
t—s t—s

This argument shows that B(t — s) is determined uniquely by A(t). Hence,
the second final overdetermination condition (3.6)is satisfied.

Since the inverse problem (3.1)-(3.6) and the couple of the operator equa-
tions (3.16),(3.21) are equivalent, we need to show the existence of a u/(;)
satisfying (3.16) and (3.21).

(iii) The Existence of The Solution of The Operator Equations

We will show that the operator equation (3.16)have a solution ;L/(;) Before

starting to study on the existence, we will try to write the equation (3.16) in

a compact form. From now on, the function ¢(x) in (3.5) will be specified as

a solution of the eigenvalue problem

—Ap(x) = Ip(x), z€Q, (3.33)
plx) = 0, ze€dN. (3.34)

for the smallest eigenvalue A. With this choice of ¢(z),
the term —Fky [, A?(-x\,t)go(m)dm in (3.16) becomes

—k:O/QAQ(:E,t)gp(x)dx = k:o)\/gﬁ(x () = ko/\A( )
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and the term [ Am)go(x)dx becomes

| 8@ Ds@rde = =2 [ e Dpla)de = -ABE).
Utilizing these identities, the operator equation (3.16) takes the form

— T(t) = A= e u(s) [7, ¢ B(§)deds

p(s) = BWT (3.35)
where
T(1) == A'(8) + A1) — B(E) + koAA(L). (3.36)
We may represent ,u/(;) as
/; = N(z)— ! Ooeisz s ' e'¢* s
00 = NG = o [Tt [ eomaen] @
u(s) = (N(2)) " + (Tu)(s), (3.38)
where —
()
NG) = —— 3.39
= (339)
(N(2))"" is the inverse of N(z) with respect to the half Fourier transformation
and
Tu)(s) = ! Ooeisz s Oeig‘ZB d ds] . :
T = | [ ) [ < ieri (3.40)

The Fixed point Argument
Now, we will show that the operator equation (3.40) has a fixed point in a
certain set. Since the operator T is linear, we will use the following fixed point

theorem.

Theorem 3.1. Suppose that
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(i) We are given an operator T : M C X — M, i.e., M is mapped into itself
by T
(i) M is a closed nonempty set in a complete metric space (X,d);

(iii) T is contractive, i.e.,
d(Tz,Ty) < kd(z,y)

for all x,y € M and for a fired k, 0<k < 1.
Then, T has exactly one fized point on M.

Proof. See, [40]. O

Now, we have to construct a set M satisfying the conditions of Theorem
3.1.

We observe that, the conditions (Cs) and (C3) given in Chapter 1.1 are
satisfied for the value of u(s) = e **, (a > 0), and the direct problem (3.1)-
(3.4) is uniquely soluble. Using this fact, we will start with the set

S:={e*:5€0,00), foralla>e>0}U{0}. (3.41)
We define the set M as
M = {,u D= Zaipi, pi € S, nis finite or infinite, a; > O} , (3.42)
i=1

which is a closed subset of L?(0,00).
The Operator T is from M into M

Now, we will show that the operator T is from M into M. For this end, we
will fix g in M and try to show that the image of u(s) under 7" will be an ele-
ment of M. Any element p of M is written as u = Z?Zl a;p;, p; €S, Vj,.

We can easily show that [°(e=**)%ds < oo, for all o; > 0. Hence ,e%* €
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L?(0,00). Since L%*(0,00) is a vector space, any linear combinations of =%

is an element of L?*(0,00). In particular u(s) € L*(0,00). Therefore, u(s) is

transformable into H?(IT). The half Fourier transformation of e~%* is

— o0 » e 1
oS — e BT S g — — .
0 Qy; — 12

Since the half Fourier transformation is linear, the transformation of u(s) will

be of the form

=D 4———. (3.43)

J=1

From (3.40), we know that

T = ——— [ | e [ 0 eifZB@déds}

2rB(§) Lo —s
and
BT (p) = ;—; { /O e () / 0 eifZB(f)dfds} . (3.44)

Since p(s) € M, p(s) = Zf L a;e”%°. We want to show that T'(u) € M.
We have proved that, the transformation of any element in M is of the form

(3.43), so if T'(u) € M, then

Zb] @ — (3.45)

Writing (3.45) in (3.44), we get

1 o l 0 m
2 . elsz(Zaje_o‘j‘(”)/_s e**B(¢)déds = —— ( Zﬁj ZZ). (3.46)

J=1
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The left hand side of (3.46) may be written in the form

i~ x
- aj/ e"*t;(s, z)ds
T o

where (s, 2) = e~%* fi)s e* B(£)d¢. Using the basis of H?(II), we can write
the left hand side of (3.46) as

-1 ! > (z —i)" s —iyn
2(m)3/2 Z a; Z Kin T i)”“ 3/2 Z <Z a; ]n) T

where K, () = T Z?:l a;kjn.
By the same way, the right hand side of (3.46), may be written also

[e.o]

1 zZ—1 z—1
Vo 20 éﬂmz(z“ﬂn) S @D

where g,’s are Fourier coefficients of B({) and hj,’s are Fourier coefficients
of 5
F,.(m), the equation (3.47) becomes

with respect to the basis of H?(II). Substituting f 575 01 Diltjn

o0

1 (=) )”
\/573/2 Z:g (z+z”+1 Z(th]n) n+1
- Z kz;ng" kT ZZ_,__ZQH

n=0

Sustituting these in (3.46), we have

(z—14)" = (=)
Z Z+Zn+1 Z gk nk Z+Z)n+1’

=0 n=0 k=0
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or

S" geFuoi(m) = K (0).

This equality shows that, we can find proper Fourier coeffcients of the function
in (3.45) for suitably chosen B(&). So, we deduce that the operator 7" is from
M into M.
The operator T is a Contraction Mapping

Now, we will show that, T" is a contraction mapping. For this end, we
need to estimate L?*(0,00) norm of T Since, the half Fourier transform is an
isometry from L?(0,00) onto H?*(IT), we will estimate H*(II) norm of T/(;)
By the definition of H?(IT) norm, we have

S e (i (s) — pa(s)) [°, € B(€)deds

—_— o ——— 1 o0
||T(:U’1)_T(,U/2)||%{2(H) == W sup/

y>0 J—o0o

B(¢)
(3.48)

Substituting ¢(z, s) := fi)s e®*B(£)d¢ in (3.48), it becomes

fooo "% (1 (s) — pa(s))g(z, s)ds ?

e 1 o0
T - T 2 2 = —5 Su / —— d$
|| (;ul) (MQ)”H IT) 4(7T)2 y>Ig - B(f)
(3.49)
The term in the right hand side of (3.49) satisfies the inequality
9] X isz 2
1 Iy €7 u(s)g(z, s)ds
5 Sup — dx
A)? >0 J o B(€)
1 ° su s [eS) Z,8 2
< I Sup/ Prctoo) W g,
Um* oo |BE)P
1 SUDP e (0.00) |9(2, 8)|? ©
< e (s Mooz B oy [
AP \ser B >0 J oo
1 SUPse(0,00) |g(za S)|2 N2
= sup — 5 . 3.50
4(71')2 (zEH |B(£)|2 H:u( )HHQ(H) ( )

23
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Using (3.50) in (3.49), we find that

=, N 7N 1 SUPse(0,00) ‘9(27 S)|2 R
T (1) — T(pa)|]? < s S ()1 o2 -
A e BOP o

The equation (3.51) shows that if B(&) satisfies the property that

1 SUP4e(0.00) |9(2, 9)|?
1 (o )
A \sen B

then the operator T' is a contraction mapping.

(3.51)

The operator T and the set M satisfy the conditions given in the Theorem

3.1. So, Using this theorem, we prove that there exist a unique p satisfying

(3.37). Hence the inverse problem (3.1)-(3.4) with the final overdetermination

conditions (3.5),(3.6) has a unique solution (z, ).
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CHAPTER 4

TWO INVERSE PROBLEMS
FOR THE SOURCE TERM
IDENTIFICATION

4.1 Introduction

In this chapter, recovering of the evolution of a source term and recovering
a source term depending on x of the problem (3.1)-(3.4) with zero boundary

and initial conditions will be studied.

4.2 Recovering the Evolution of The Source
Term

We will consider the problem

,1)(4.1)
n(x,t —s) =0(x,t) —ns(x,t — s) (4.2)
2(z,0)=0 ze€ (4.3)
2(z,t) =0 €0 t,s>0, (4.4)
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where z(x,t) = (0(x,t),n(xz,t — s)) and the final overdetermination conditions

are

/Q Oz, o1 (x)dr = A(t), (4.5)

/Qn(x,t —s)p1(z)der = B(t—s), (4.6)

where ¢, (z) € D(Q).

Definition 4.1. A pair of functions (z(z,t), H(t)) is said to be a generalized
solution of the inverse problem (4.1)-(4.6) if z € H, H € L*(0,00) and all of
the relations (4.1) - (4.6) are satisfied.

To show the existence of the solution defined above, we will construct a

linear operator equation under the assumptions

A€ Ly[0,00), (4.7)

B € Lo[0,00), with respect to ¢t and

2 .
B e L;(R") with respect to s, (4.8)
v1 € D(Q) (4.9)
and
My € Loo(© x [0, 00)). (4.10)

For this construction, first, we multiply (4.1) by ¢1(x), integrate over 2 to get

/Q 0,(z, )1 (z)dz — ko /Q 0(z,t)Apy (z)dx — /O " (s) / n(z,t — 8) Ay (a)dads

+ /Qﬁ(x,t)a(x)dx—H(t)/QMO(x,t)wl(I)dx. (4.11)
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We employ (4.5) in (4.11) to find

[e.9]

O(z, ) Apy(z)der — / u(s)/n(t—s)Agpl(x)dxds

() + A(t) — ko / O [
—HE /Q Mo(z, )y (2)dz.  (4.12)

Q

Solving (4.12) for H(t), we find

AW AR 1
B fQ Mo(x,t)<p1(x)d:r; fQ M0<5U,t)g01(l')dx

X [ko/gﬁ(x,t)Agol(x)dx—i—/Ooou(s)/gfr](t—s)Agol(:c)d:cds . (4.13)

H(t)

We set
G(t) = —/QMO(x,t)gol(x)da:, (4.14)
(t) = _% (4.15)
and
(TH)(t) = Git) [ko/ﬂé(w,t)Agol(x)dx + /000 w(s) /Qn(x,t — $)Ap;(x)dxds|.

(4.16)
Thus, one of the relation between H and z = (6, 7) may be specified as a linear

operator

T : L*(0,00) — L*(0, 00)

with values

H(t) = (TH)(t) +¥(1). (4.17)

If we multiply (4.2) by ¢;(x), integrate over 2 and employ (4.5),(4.6), we get

Bi(t—s) = A(t) — By(t — s) (4.18)
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Theorem 4.2. The inverse problem (4.1)-(4.6)is soluble if and only if the
operator equations (4.17),(4.18) are soluble.

Proof. If the inverse problem (4.1)-(4.6) has a solution then all of the relations
(4.1) - (4.6) hold. We follow the steps to get (4.17),(4.18). So, (4.17), (4.18)

are soluble.

2

To prove the ” only if 7 part, we assume that (4.17) has a solution H (t).

We substitute this H(t) in the equation (4.1), then (4.1)-(4.4) becomes a direct
problem for (6(x,t),n*(x,s)) which has a unique solution by Theorem 2.1. So
we need only to show that the solution of the direct problem (4.1) - (4.4)

satisfies the final overdetermination conditions (4.5)-(4.6). To this end, let

/Q 0z, 1)1 (x)dz = Ay (1) (4.19)

and

/Qn(x, t —s)pi(z)dr = By(t — s). (4.20)

Multiplying (4.1) by o(x), integrating over 2 and employing (4.19), we get

A — K / (e, t) A () dr — / () / 0ot — 5)Apu(a) + A1)

= H(t)/QMO(x,t)gpl(:L‘)dx. (4.21)

Since (4.17) is satisfied, we have also

@) = ko [ oanda@dr = [ u) [ alet- 980 (@) + A

Q
= H(t)./QMo(x,t)cpl(x)dx. (4.22)
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If we subtract (4.22) from (4.21), we get
(A —A)'(t)+ (A — A)(t) = 0. (4.23)

The differential equation (4.23) implies that (A; — A)(t) = (41 — A)(0)e™.
Since (A; — A)(0) = 0, we conclude that A; = A.

For the second final overdetemination conditions, we must remember that

n(z,t —s) = /( O(x,7)dr. (4.24)

t—s)

By(4.20), we have By(t —s) = [,n(x,t — s)¢1(z)dz. Using (4.24) in this

equality we have

Bit—s) = /Q /(t t_g)@(a:,T)dTgol(x)dx
_ /(t Ay (2, 7)dr

t—s)
Since A; = A, we have then,
t
Bi(t—s) :/ Az, 7)dr = B(t — 5).
(t—s)
[

We have shown that, to solve the inverse problem (4.1)-(4.6), is equaivalet
to find a fixed point of (4.17)-(4.18). Now, we will show that the operator

equation (4.17) has a fixed point.

Theorem 4.3. If G € L, (0,00) and |G(t)] > § > 0, Vt € [0,00) and if
My € Loo(Q x RY) satisfying

1
Z Mol 7o kallA o \v4 - N2 <
S22 /e (H OHL (QxR+))( OH 901HL (Q)+|| %01HL (Q)(N) s 1,
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where [i = [ p(s)ds, then (4.17) has a unique solution H(t).

Proof. Our aim is to show the existence of the solution of (4.17) by using the
contraction mapping principle since 7' is linear.
Now, we will estimate the L?(0,00) norm of 7.

Using (4.16) and keeping in mind that |G(t)| > 6, V¢ € [0,00), we get

IT(H)[|2(0,00) =
1

Hm{ko/ge(x,t)Acpl(x)dx—i—/Ooou(s)/g)n(t—s)Acpl(x)dﬁds I 22(0,00)
< 5[k, /Q 0, 1) Aoy () dar + /0 u(s) /Q 0t — §) A (2)drds| 120
< 51(y|ko | 0801 @)zl

HI[ 00 [ et = )8 e)sl o ) (4.25)

First, we estimate

ko / 0, 6) Aoy ()| 2o e

By definition, we have

[ /Q 0(,8) Ay ()| 2o o) = /0 oo( /Q Q(x,t)Agpl(x)dx)th. (4.26)

2
We will study only the integrand <fQ 6(x, t)A@ﬂx)dx) :

( /Q Q(x,t)Aapl(x)dx)2

IN

(HA(Pl(x)HLoo(Q)A@(m,t)dx)
8o [ O ar. (@2

By Hélder’s inequality, the second term in the right hand side of (4.27) satisfy

60



the following inequality

( / (. 1)) < ( / (6(x. 1)) / ar) = 00 D] el (4.28)

Using (4.28) and (4.27) in (4.26), we end up with

I / 0(,£) Aoy (1) 20y < (A1 |2 e / 160, 8)[Zaoydt. (4.29)

We may estimate ||0]|2((0,00),22()), USIng

1
(., )| 120 < t < ——=I|h(@®)||r2() = Hit 2
160G DIz < [[2()]ln < 2@” QIIEI) \/—H ()Mo (., || 20
(4.30)
where o := min{(2ko\o + 2 — €),0}, Ag is Poincaré inequality multiple, € is
Young’s inequality multiple and ¢ as in C.

We start with the following identity

16122 0.0 2260 = / 10 )220yt (4.31)

Using (4.30) in (4.31), we get

1
10 22(0,00),220) < 2] 22((0,00) 1) < THHMOHLQ((O,OO),LQ(Q))

— 2@(/ / t)My(z, 1) )dedt> v

1/2
< (s (o )0l 1A

z€0,t€(0,00)

= || Mol| 2 @x (o[ (4.32)

1
\/aHHHLQ(O,oo)'
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If we employ (4.27) and (4.32) in (4.26), we get

ko / 6(z, 1) A1 (2)de||12(000) <
Q
0
2 /ea

kol |A@1 ()] 2= (@) (1Mol @x 0000 |1 H | £2(0,00)- (4-33)

Next, we estimate

[ / u(s) / 0.t — 5) Ay (x)dds| g
0

= H/O u(s)/gVn(x,t—S)Vgol(az)dxds]\%g(o’oo) (4.34)

_ /0 °°< /0 () /Q Vn(a:,t—s)Vgol(x)dxds>2dt. (4.35)

We will study the integrand of (4.35)

([ o) [Tt s>wl<x>d:cds)2s
N Y T IS

2
The term <f000 w(s) Jo Vn(z,t — s)dxds) in (4.36) may be estimated as

(/0 H 3)/QV17(:13,15_ 5)d$d3>2
(/OOO(M(S)I/2)(M<S>1/2> /Q Vit = S)dxds) 2
A

M S)dS)l/Q(/OOO u(s)(/Q Vi, t — s)dm)st)l/Qr

- u()(/Vn(mt—S)dw)d>

< #IQI/ IVt = )72 ds < AlQl20)]% (4.37)

<
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where i = [ p(s)ds. Using (4.37) in (4.35), we conclude that

H/ ,u(s)/QVn(x,t—S)Vgol(x)dxdsHLz(o’oo)
0
< IVl ooy () 21912 |2() - (4.38)

We recall that
1/2
|| H Mo||2((0,00),L2(02 (/ / t)Moy(z,t)) dxdt)
1\ /2
< (<|1Monm (000’ m\—) 1H |00

Using this inequality in (4.30), we find

|Q|1/2
[12[] 220,000, < N (Mo |z (@x 0.000)) ) [ || 22(0,00) (4.39)

If we employ (4.39) in (4.38), we get that

H/ u(s)/QVn(x,t—S)le(x)dxdsHLz(O,oo)
0

|1/
NG || Mol| Lo @x (0,00)) ) I || 22(0,00)(4-40)

< IVl lzoee () 219025 =

We use (4.33) and (4.40) in (4.25) to end up with

Q
Il < 3 (Rl lamorg 2 (1l oo
o 12

b 9 llm @5 (10l ntom im0y (401

Since, we assumed that, M, satisfies

2]

(HMOHL“(QX(O,oo))) (k’OHA%HLw(Q) + ||V901||L°°(Q)(ﬂ)1/2) <1,

| =
[\
3
Q
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then the operator T' will be contraction mapping, therefore it will have a unique

fixed point which is H. n

4.3 Recovering a Source Term of The Form
K(QT)M()(ZU, t)

We will consider the inverse problem of recovering K (x) satisfying

Op(z,t) — koAb (z,t) — /OOO pu(s)An(t —s)ds + 0(x,t) = K(x)My(z,t§4.42)
)

n(x,t —s) =0(x,t) —ns(z,t —s), z€Q, t,s>0 (4.43
2(z,0) =0 r € (4.44)
z(x,t) =0 xred, t,s>0 (4.45)

where z(z,t) = (0(x,t),n(z,t —s)) and the final over determination conditions

0(x,T) = ~(x) (4.46)
n(maT_S) = 6(1'73)' (447)
Definition 4.4. A pair of functions (z, K) is said to be generalized solution of

the inverse problem (4.42)-(4.47) if z € H, K € L*(2) and all of the relations
(4.42)-(4.47) are satisfied.

We will show the existence and uniqueness of the solution defined above
by reducing the problem (4.42)-(4.47) in to an operator equation for K (z). To

this end, we assume that

v € HL(R), 3 e L2((0,00), Hy), (4.48)
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and

My € L®(Q x (0, 00)).

First, we replace ¢ by T in (4.42) and get

Op(z, T)—koAD(x, T)—/Ooo p(s)An(T—s)ds+0(x, T) = K(x)Mo(z,T).

Employing (4.46) and (4.47) in (4.50), we end up with

(2. T) — koA (x) - / " u(5)AB(, s)ds + 1(x) = K(2)Mo(a, T).

If we solve (4.51) for K(z), we find

K(z) = M, (:13, ) Mo(z,T)
Settin
° B(z) = —koAy(x) — [77 pu(s)AB(x, s)ds + y(z)
v M, (:U,T) ’
and
0 (z,T)
(AK)(z) == m»

the correspondence between z = (6,7) and K (x) may be given as

K(x) = ®(z) + (AK)(x).

Second, we again replace t by T in (4.43) and get

nt(%T_S):7($)_775(1'7T—5)7 era 5>0

A is a linear operator from L?*(Q) to L*(Q) if My(x,T) > 6 > 0,

—ko Ay (z fo s)AB(x, s)ds +vy(x)  O(x,T) _

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

Vo e ).

Theorem 4.5. Assume that the constant ko in (4.42) is such that —% s not
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an eigenvalue for A in Q. Then, the inverse problem (4.42)-(4.47) is soluble
if and only if the operator equations(4.55),(4.56) are soluble.

Proof. If the inverse problem (4.42)-(4.47) is soluble, we follow the steps to
get (4.55) and (4.56). Hence, we conclude that (4.55),(4.56) are soluble.
Now, we assume that (4.55) and (4.56) have a solution K (x). If we substi-
tute this value of K (z) in (4.42), we get a direct problem (4.42)-(4.45) which
has a unique solution (6(x,t),n'(x, s)) by Theorem 2.1. The problem is whether
this solution (6(x,t),n'(x, s)) satisfies (4.46),(4.47) or not.
By the discussions in Chapter 1.1, we know that, the problem (4.42)-(4.45)

is equivalent to
Op(z,t) — koAl (z,t) — /t k(t — s)Al(s)ds + 0(x,t) = K(x)My(z,t) (4.57)

—0o0

subject to the conditions

Bet) = 0 2€d >0 (4.58)
6(z,0) = 0 x €. (4.59)
Then, (4.57) gives
0,(2, T) — koAO(z, T) — /T k(T — $)A0(s)ds + 0(x, T) = K (). Mo(x,T).
- (4.60)

Since (4.55) holds, (4.51) must hold. Because of the equivalence of the prob-

lems given above (4.51) takes the form
T

Oi(x,T) — koAvy(x) — / k(T — s)AfB(s)ds + v(x) = K(x).My(z,T). (4.61)

—0o0
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Subtracting (4.61) from (4.60), we find
koA(y(z) = 0(2,T)) = (v(z) = 6(2,T)) = 0. (4.62)

Since v(x)|sn = 0(x)|aq, (4.62) has homogeneous boundary conditions. We

assumed that —% is not an eigenvalue for A in  then (p(z) — 0(z, 7)) =0

showing that 6(x,t) satisfies (4.46). O

Theorem 4.6. Assume that My(x,t) € Loo(2%(0,00)), [Mo] € L*((0,00) Loo(£2))
and |My(z,T)| > 6 > 0,Vx € Q. If My satisfies the inequality

1 0 1/2
K sup | Mo (x, t)|dt <1,
e L ey

then K(x) = ®(x) + AK has a unique solution in L*(2).

Proof. Since the operator A is linear, we use contraction mapping principle
for the proof. We estimate L*(2) norm of A as follows: First, we differentiate

(4.42) and (4.43) to get

O, 1) — koA (1) — / () Anu(t — 8)ds + 0y, 1) = hu(z, ) (4.63)
0
Ne(r,t —8) = Op(x,t) —nu(x,t —s), z€Q, t,5>0 (4.64)

We multiply (4.63) by 6;(x,t) in the sense of L*(Q) and get

NP + Rl DO + (T V), + 1001 = (B0, (4.65)

And we multiply (4.64) by —An(z,t — s) in the sense of L to get

1

o d T[>,
3 [ GRS = (V0,980 ~ 5 [ W 9)ITnlPds =0 (1.0
0 0
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We add (4.65) and (4.66) to find

1 [,
——||Zt(t)!ﬁﬁko\\V9t(t)!|2+!|0t(t)\\2—§/0 p ()IIVmel[Pds = (e, 0). (4.67)

Using the fact p' +6u <0, § > 0in (4.67), multiplying the resulting inequal-
ity by 2 and using Schwarz inequality for the term in the right hand side of
(4.67), we end up with

d o0
Ol + 2k VOO + 2116, ()] + 5/0 p(s)|[V el *ds < || |64
(4.68)
If we use Poincaré inequality for the second term in the left hand side of (4.68),

we find

d o
217+ 2koXol|0(DI1” + 216 (D)]* + 5/ ()| [Vne|[Pds < [[he[]164]]
0
(4.69)
Using Young’s inequality with € in the right hand side of (4.69), we may write

it in the following form
d 2 2 = 2 1 2
— 20+ (koo +2 =100 +0 i IVl PPds < - [lh][*. (4.70)

We set a := min{(2koAo + 2 — €),d} to write (4.70) as

d 1
@1l + allz@) < Il (4.71)

Solving the differential inequality (4.71), we find

1
@I < el e sz (472)
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We know that

[ / ha(6)| Pt = / 1K () Mo, )]t

Using (4.73) in (4.72), we get the the following estimate

[|2e(0)3; < e HKH2/ sup | Moy (x, t)|dt.
0 x€Q

By (4.54), we deduce that

(AR) ()| < ——||K||(/wigg!MOt(x,tﬂdt)l/Q,

=90

Since, we assumed that My, satisfies

1 1/ [ 1/2
- My, (. 1)|dt 1
2@5(/0 ilelg! ot(z,1)] ) <1,

(4.73)

(4.74)

(4.75)

we get that, the operator A is a contraction mapping and it will have a unique

fixed point K.

]

4.4 Recovering a Source Term of The Form

K(x).My(z,t)using integral

final overdetermination condition

We will consider the problem (4.42)-(4.45) with the final overdetermination

conditions of the type

| ttepaterie =10
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and

A n(z.t — 8)pa(t)dt = B(z, ), (4.77)

where p5(t) € D(0,7). We will covert the inverse problem (4.42)-(4.45) with
(4.76)-(4.77) to an operator equation. To this end, first we multiply (4.42)
with oo(t), integrate over (0,7") and employ (4.76)-(4.77) to get

/0 O (z,t)po(t)dt — koAy(x) — /OOO w(s)AB(x, s)ds + vy(x) = K(x)M(x),

(4.78)
where .
x) = /0 Moy(z,t)pa(t)dt, (4.79)
assuming M (z) > 6 > 0. We solve (4.78) for K (z) and find
K(z) = 2 — M<x)A6 v, 8)ds +9() | Jo Qt(;@a?(t)dt. (4.80)
We set
O(z) = folr(@) = Jy” ”Ezgﬁ(x’s)dﬁﬂﬂ (4.81)
@mmzzﬁﬂﬂxﬁw (4.82)

The correspondence between z = (0, 7) and K (x) may be given as follows;

K(z) = ®(z) + (PK)(z), (4.83)

where P is a linear operator from L?*(Q) to L*(Q) if M(z) > § > 0,Vx € Q.
Second, we multiply (4.43) by ¢2(t) and integrate over (0,7) , employ (4.76)
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and get identity

/0 ne(x,t — $)po(t)dt = y(z) — /0 ns(z,t — s)pa(t)dt (4.84)

Theorem 4.7. Assume that the constant ko in (4.42) is such that —% is
not an eigenvalue for A in Q. Then, the inverse problem (4.42)-(4.45) with
(4.76),(4.77) is soluble if and only if the operator equations(4.83),(4.84)are

soluble.

Proof. If the inverse problem (4.42)-(4.45) with (4.76),(4.77) is soluble, then
we follow the steps to get the operator equations (4.83),(4.84). Hence , we
deduce that the operator equations are soluble.

For the "only if” part, we assume that (4.83), (4.84) has a solution K(z),
if we substitute this value of K(z) in (4.42), we get the direct problem (4.42)-
(4.47) which has a unique solution (6(z,t),n*(z,s)) by Theorem 2.1.

We have the some problem as in the proof of Theorem 4.5. The problem
is whether this solution (6(x,t),n(z, s)) satisfies (4.76), (4.77) or not. By the
discussions in Chapter 1.1, the problem (4.42)-(4.45) is equivalent to (4.57)-
(4.59). Let us use this equivalence, if we multiply (4.57) by ¢2(t) and integrate
over (0,7), we get

/OTet(xj)sog(t)dt — k:o/OTAQ(x t)po(t)dt — /T¢2()/t k(t, 5)A0(z, )ds

N /OTe(x Doalt) /Moxtgog Ndt (4.85)

Since (4.83) has a solution, it satisfies

T 0
[ 800k [ 33w a() = i), [ e et
0 0
(4.86)
Because of the equivalence of (4.42)-(4.45) and (4.57)-(4.59), (4.86) takes the
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form

/0 O(x,t)pa(t)dt — koAfy(x)—/O gpg(t)/t k(t — s)Af(z, s)ds + p(x)

—00
S

~ K@) /O Mo(z, ) ()d (4.87)

Subtracting (4.87) from (4.85), we get
koA / 0(c, t)palt)dt — ()] + | / 6(c, )palt)dt — (x)] = 0. (4.88)

Since fOTG(a:,t)gog(t)dt\ag = 7(z)|sq, the equation (4.88) has homogeneous
boundary condition. We assumed that —k—lo is not an eigenvalue for A in
2, then the equation (4.88) has only the trivial solution. Hence, y(z) =

fOT 0(z,t)pa(t)dt, which shows that 0(x,t) satisfies (4.76). O

Theorem 4.8. Assume that |M(z)| > § > 0, My € L'((0,00), Loo(9)).
If My satisfies the inequality

11 oo 1/2
- M, t)|dt <1
2@5902(/0 itelg! t(x,t)] ) :

where py? = fOT ©o(7)2dT, then the operator equation (4.83) has a unique so-

lution K (z) in L*(Q).

Proof. For the proof, we use contracting mapping principle. Thus, we need to

estimate L?*(Q2) norm of (PK)(z). By the definition of (PK)(z), we have

et(xa t)(p2<t)dt | ’2

Iy = |2

(4.89)
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Since M(z) > § > 0, (4.89) satisfies the following inequality ;

1 T 1 T 2
1P < 51 [ st tveatoal = 5 [ ([ oo aa(riar ) do
0 0
(4.90)
If we apply Holder’s inequality for the integrand of the last term of (4.90)

1, (T 1
PRI < 356 [ IR < SOl (491
~2 T 2 . .
where @y* = [ @a(7)%dr. Using (4.72) in (4.91), we get

0 1/2
IPR@I < 5=l KU [ swplitatenlar) . (a2

Since, My, satisfies that

1 1 %) 1/2
= M, t)|dt <1
2\/55902(/0 ilelg| 0t<x7 )| ) )

then the operator P is a contraction mapping and it will have a unique fixed

point K. O

Remark: The results of Chapter 4 are also valid, if we take the governing

differential equation as

0,(2,t) — ko A0 (. 1) — /0 T (s) At — s)ds + g(0(z,1)) = h(x, £)(4.93)
mi(t— 5) = 0@, 1) — na(w,t — s) (4.94)
H(2,0)=0 z€Q (4.95)
Ao ) =0 z€dQ 5> 0, (4.96)

where z(x,t) = (0(z,t),n(x,t — s)) and g(0) as in (1.41).
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