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abstract

INVERSE PROBLEMS FOR A SEMILINEAR HEAT

EQUATIONS WITH MEMORY

Kaya, Müjdat

Ph.D, Department of Mathematics

Supervisor: Prof. Dr. A. Okay Çelebi

Co-Supervisor: Prof. Dr. Varga Kalantarov

May 2005, 79 pages

In this thesis, we study the existence and uniqueness of the solutions of

the inverse problems to identify the memory kernel k and the source term h,

derived from

θt − k0∆θ +

∫ t

−∞
k∆θds+ pg(θ) = h, Ω× R+, Ω ⊂ Rn,

θ = 0, x ∈ ∂Ω, t > 0

θ(., 0) = θ0, x ∈ Ω.

First, we obtain the structural stability for k, when p = 1 and the coefficient

p, when g(θ) = θ.

To identify the memory kernel, we find an operator equation after employ-

ing the half Fourier transformation. For the source term identification, we

make use of the direct application of the final overdetermination conditions.

Keywords: Structural stability, inverse problem, final overdetermination con-

dition, memory kernel, source term, Paley-Wiener representation.

iv



öz

HAFIZALI YARI DOĞRUSAL ISI DENKLEMİ İÇİN

TERS PROBLEMLER

Kaya, Müjdat

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. A. Okay Çelebi

Ortak Tez Yöneticisi: Prof. Dr. Varga Kalantarov

Mayıs 2005, 79 sayfa

Bu çalışmada

θt − k0∆θ +

∫ t

−∞
k∆θds+ pg(θ) = h, Ω× R+, Ω ⊂ Rn

θ = 0 x ∈ ∂Ω, t > 0

θ(., 0) = θ0, x ∈ Ω

denkleminden hafıza çekirdeği k ve kaynak terim h nin belirlenmesi için elde

edilen ters problemlerin çözümlerinin varlığı ve tekliği gösterilmiştir. Öncelikle,

yukarıdaki direk problemin çözümünün p = 1 için k’ ya ve g(θ) = θ için p’ ye

sürekli bağımlılığı incelenmiştir.

Hafıza çekirdeği k’ yı belirleme problemi yarı Fourier dönüşümü kullanılarak

bir operatör denkleme çevirilmiştir. Kaynak terim h yi belirmek için son karar

verme şartları kullanılmıştır.

Anahtar Kelimeler: Yapısal kararlılık, ters problem, son karar verme şartı,

hafıza çekirdeği, kaynak terimi, Paley- Wiener gösterimi.
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Uğurlu, Ahmet Önal.
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chapter 1

INTRODUCTION AND

PRELIMINARIES

1.1 Introduction

Two problems are called inverses of one another if the formulation of each

needs all or partial solution of the other [26]. For some historical reasons, one

of these problems may have been studied deeply while the other is newer. The

former problem is called the direct and the latter the inverse problem. As

primitive illustrative examples, we give the following two problems.

1. Find a polynomial P (x) of degree n with zeros x1, · · · , xn.

This problem is the inverse of the direct problem of finding zeros x1, · · · , xn

of a given polynomial P (x) of degree n. In this example, the solution of the

inverse problem is trivial, i.e., P (x) = C(x− x1) · · · (x− xn), C 6= 0. Since C

is arbitrary, solution is not unique.

2. Find a rule of the sequence if some terms a1, · · · , ak are given.

This is the inverse to the direct problem of finding the terms of the sequence

with the given rule.

The origin of theory of inverse problems may be found in 19thand 20th cen-

turies. They include the problems of equilibrium figures for the rotating fluid,

the kinematic problems in seismology, the inverse Sturm-Liuville problem, etc.

Newton’s problem of discovering forces making planets move in accordence
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with Kepler’s laws was one of the first inverse problems in dynamics of me-

chanical sytems which was solved [32].

The theory of inverse problems for differential equations is being developed

to solve problems of mathematical physics. In the study of direct problems, the

solution of a given differential equation is derived by means of supplementary

conditions. Whereas, in the inverse problems, the form of the equation is

known but the equation is not known exactly. To determine the corresponding

equation and its solution, some additional conditions, which are not given

for the direct problem, must be imposed. The following example [32] will be

helpful to understand the nature of inverse problems more clearly. Let us

consider the non-homogeneous heat equation, where u(x, t)

ut(x, t) = uxx(x, t) + f(x), 0 < x < π, 0 < t < T (1.1)

u(x, 0) = 0, 0 < x < π, (1.2)

u(0, t) = u(π, t) = 0 0 ≤ t ≤ T (1.3)

is to be determined. This is a well known example of an initial-boundary

value problem. If f(x) in (1.1) is specified as a square integrable function in

L2(0, π), it is a direct problem whose solution u(x, t) ∈ W 2,1
2,0 ((0, π) × (0, T ))

may be obtained uniquely, for every T, T > 0.

Assume that we want to find u(x, t) and f(x) satisfying (1.1)-(1.3). Now,

the new problem is closely related to the direct problem, but it is clearly dif-

ferent. So the problem of finding u(x, t) and f(x) is an inverse problem of

(1.1)-(1.3). We may observe here that, we have one more unknown, namely

f(x) in the case of inverse problem. To find a unique solution we need addi-

tional condition. To determine u(x, t) and f(x) satisfying (1.1)-(1.3) in which

f(x) appears as another unknown function. We impose the additional infor-
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mation

u(x, T ) = ϕ(x), ϕ ∈ W 2
2 (0, π). (1.4)

to find a unique solution [32]. First, consider the solution

u(x, t) =
∞∑

k=1

∫ t

0

fkexp{−k2(t− τ)}dτ sin kx (1.5)

=
∞∑

k=1

fkk
−2[1− exp{−k2t}] sin kx, (1.6)

of the direct problem, which can be obtained by Fourier method, where fk =

2
π

∫ π

0
f(x) sin kxdx are the Fourier coefficients of the known function f(x) ∈

L2(0, π). But in the case of the inverse problem, f(x) is not known and there-

fore, to determine the Fourier coefficients fk becomes an important task. For

this purpose, replacing t by T in (1.6) and using (1.4), we get

ϕ(x) =
∞∑

k=1

fkk
−2(1− exp{−k2T}) sin kx. (1.7)

Then, (1.7) gives the Fourier-sine expansion of ϕ, which implies that

ϕk =
2

π

∫ π

0

ϕ(x) sin(kx)dx = fkk
−2(1− exp{−k2T})

and that

fk = k2(1− exp{−k2T})−1ϕk. (1.8)

Hence, f(x) is expressible as

f(x) =
∞∑

k=0

k2(1− exp{−k2T})−1ϕk sin kx (1.9)
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which leads formally to

u(x, t) =
∞∑

k=1

(1− exp{−k2T}−1(1− exp{−k2t})ϕk sin kx (1.10)

on the substitution of (1.8) into (1.6). The series expansion (1.9) of f(x) needs

a convergence analysis. Since the system {sin kx}∞k=1 is complete in L2(0, π),

it is known from Parseval’s identity that

||f ||22,Ω =
∞∑

k=1

2

π
k4(1− exp{−k2T})−2ϕ2

k

implying the inequality

∞∑
k=1

2

π
k4(1− exp{−k2T})−2ϕ2

k ≤
2

π
(1− exp{−T})−2

∞∑
k=1

k4ϕ2
k. (1.11)

Obviously, the boundedness of the sum

∞∑
k=1

k4ϕ2
k <∞.

is required for the existence of f(x). Thus, we have just deduced that the

existence of a solution of this inverse problem depends on the proper choice of

ϕ in (1.4).

A generalization of the problem in (1.1) - (1.4) may be given as follows:

Find the functions u ∈ W 2,1
2,0 (QT ) and f ∈ L2(Ω) satisfying

ut(x, t)− (Lu)(x, t) = f(x)h(x, t), (x, t) ∈ QT (1.12)

u(x, 0) = 0, x ∈ Ω, (1.13)

u(x, t) = 0, (x, t) ∈ ST , (1.14)
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subject to the final overdetermination condition

u(x, T ) = ϕ(x), x ∈ Ω, (1.15)

where L is a given uniformly elliptic operator; h, ϕ are given functions, Ω ⊂ Rn

and QT = Ω × (0, T ). If f(x) ∈ L2(Ω) is known, then (1.12) - (1.14) will be

a direct problem and it has a unique solution u ∈ W 2,1
2,0 (QT ). If f(x) is also

unknown, it is an inverse problem and we may solve it by using the condition

(1.15). To show the existence and uniqueness of the solution of (1.12)-(1.15),

we convert the problem to an operator equation. If we substitute t by T in

(1.12) and use (1.15), we get

ut(x, T )− (Lϕ)(x) = f(x)h(x, T ). (1.16)

Solving (1.16) for f we obtain

f(x) =
1

h(x, T )
[ut(x, T )− (Lϕ)(x)]. (1.17)

This may be written in the form

f = Af + Ψ (1.18)

by defining

(Af)(x) :=
1

h(x, T )
[ut(x, T )], x ∈ Ω (1.19)

and

Ψ(x) :=
−1

h(x, T )
(Lϕ)(x), x ∈ Ω. (1.20)

In this particular case, if h is choosen so that |h(x, T )| ≥ δ > 0 for x ∈ Ω, it is

5



easy to see that

A : L2(Ω) → L2(Ω).

Thus, we have corresponded the operator equation (1.18) to the problem(1.12)-

(1.15). That is if we can solve (1.18) for f , then we may substitute this function

in (1.12)-(1.14) to get a direct problem which has a unique solution. But let

us note that f should be chosen so that u satisfies the final overdetermination

condition (1.15). The uniqueness of (u, f) is carried out in the usual way, for

example see [32].

Inverse problems in partial differential equations may be classfied accord-

ing to the underlying partial differential equations, namely, inverse elliptic

problems, inverse hyperbolic problems and inverse parabolic problems [32].

Inverse elliptic problems are investigated for the coefficient identification

[6, 10] and the boundary identification [27].

Inverse hyperbolic problems are studied to determine the coefficients [2, 11,

24], the source terms [28, 41] and memory kernels appearing in the equations

[24]. Likewise , there are many studies on inverse parabolic problems to identify

the coefficients [1, 4, 20, 30, 38], the source terms [3, 12, 29], the memory

kernels [5, 7, 8] and the boundary of the domain [19, 37].

Past history of most models leading to parabolic differential equations con-

taining memory term is represented by some integrals. So, solving inverse

problems in order to determine the kernel of these integrals are meaningful

jobs. Since , we have studied an inverse problem with memory in our thesis,

we mention some of the articles in detail up to an extend. The first study

we will summarize is due to Colombo and Lorenzi [7] on the memory kernel

depending on time and space variables.

They have dealt with identification problems related to open bounded sets

of cylindrical domains Ω = Ω1×Ω2, Ω1 and Ω2 being, some intervals in R
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and a smooth enough domain in Rn. They studied the existence and uniqueness

of

u : [0, T ]× Ω → R and h : [0, T ]× Ω2 → R

satisfying

Dtu(t, x, y) = B1(x,Dx)u(t, x, y) +B2(y,Dy)u(t, x, y)

+

∫ t

0

h(t− s, x)[B1(x,Dx)u(s, x, y)

+ B2(y,Dy)u(s, x, y)]ds+ f(t, x, y) (1.21)

for (t, x, y) ∈ [0, T ]× Ω1 × Ω2,

subject to

u(0, x, y) = u0(x, y), (x, y) ∈ Ω1 × Ω2 (1.22)

u(t, x, y) = 0, t ∈ [0, T ], (x, y) ∈ (∂Ω1 × Ω2) ∪ (Ω1 × ∂Ω2) (1.23)

and the final overdetermination condition

∫
Ω2

φ(y)u(t, x, y)dy = g(t, x), (t, x) ∈ [0, T ]× Ω1, (1.24)

where

f : [0, T ]× Ω → R, u0 : Ω → R, g : [0, T ]× Ω1 → R

and φ : Ω2 → R are known functions.

The corresponding abstract version of the above problem studied by Colombo

and Lorenzi is determining u : [0, T ] → X and H : [0;T ] → L(X) satisfying

u′(t) = (B1 +B2)u(t)+

∫ t

0

H(t−s)(B1 +B2)u(s)ds+f(t), t ∈ [0, T ] (1.25)

u(0) = u0, (1.26)
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and the final overdetermination condition

Φ(u(t)) = G(t), t ∈ [0, T ]. (1.27)

They have assumed that f : [0, T ] → X is a known function, u0 ∈ X is a given

element, B1 : D(B1) ⊂ X → X, B2 : D(B2) ⊂ X → X are closed linear

operators, Φ is a known bounded linear operator in L(X;L(X)) and

G : [0, T ] → L(X) is a given operator valued function. They proved that (1.25)

- (1.27) has a unique solution (u,H) ∈ U2+σ,p(B2, B1 +B2)×W σ,p((0, T );K),

where U s,p(B2, B1 + B2) = [W s,p((0, T );D(B2)) ∩W s−1,p(0, T );D((B1 + B2 −

µI)(B2 − µI))] and K is a subalgebra of L(X) ∩ L(D(B1) ∩ D(B2)).

We will mention the article by Favini and Lorenzi [15] as the second example

for the inverse problem to determine memory kernel k depending on time

variable and the underlying equation is a singular integro-differential equation.

The memory kernel k satisfies the following integro-differential equation in the

complex Banach space X

Mu′(t, x) + Lu(t, x) =

∫ t

0

k(t− s)L1u(s, x)ds+ f(t), 0 ≤ t ≤ τ (1.28)

u(0) = u0 (1.29)

and the final overdetermination condition

Φ[Mu(t, x)] = g(t), 0 ≤ t ≤ τ (1.30)

where Φ is a given linear continuous functional and

f ∈ C1([0, τ ];X), g ∈ C2([0, τ ]; R), u0 ∈ D(L) (1.31)

are known functions. Favini and Lorenzi proved, under suitable conditions
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that the problem (1.28)-(1.30) has a unique solution (u, k) in C1([0, τ ];D(L))×

C([0, τ ]), if L,L1,M are closed linear operators from X into itself ( M is not

necessarily invertible ) and the domains of L,L1,M satisfy D(L) ⊆ D(L1) ∩

D(M),

The inverse problem we will study in this thesis is based on the direct

problem given by Giorgi, Pata and Marzocchi [16]. The differential equations

appearing in our inverse problem is different from the problems given in [7,

15]. They have employed the semigroup theory and smooth functions in their

investigations, but we discuss our problem in Sobolev spaces. Naturally, we

need some other techniques to derive our results. In [16], the authors studied

the problem satisfying

θt(x, t)− k0∆θ(x, t) +

∫ t

−∞
k(t− s)∆θ(x, s)ds+ g(θ) = h(x, t),Ω× R+(1.32)

θ(x, t) = 0 x ∈ ∂Ω, t > 0 (1.33)

θ(x, 0) = θ0(x) x ∈ Ω, (1.34)

where Ω ⊂ Rn, θ : Ω× R → R is the temperature variation field relative to

equilibrium reference value, k : R+ → R is heat flux memory kernel and k0 is

instanteneous conductivity. (1.32) may be written as

θt(x, t)−k0∆θ(x, t)+

∫ t

0

k(t−s)∆θ(x, s)ds+g(θ) = h(x, t)−
∫ 0

−∞
k(t−s)∆θ(x, s)ds.

The presence of the term h(x, t)−
∫ 0

−∞ k(t−s)∆θ(x, s)ds in the above equation

causes that the system (1.32)-(1.34) is non-autonomous. Since the system is

non-autonomous, the family of operators mapping the initial value θ0 into the

solution θ(x, t) of (1.32)-(1.34) does not match the usual semigroup properties.

For this reason, a different formulation is given. In order to get this new form,
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they define new variables

θt(x, s) = θ(x, t− s), s ≥ 0

and

ηt(x, s) =

∫ s

0

θt(x, τ)dτ =

∫ t

t−s

θ(x, τ)dτ, s ≥ 0.

Assuming k(∞) = 0, change of variables and integration by parts yield

∫ t

−∞
k(t− s)∆θ(s)ds = −

∫ ∞

0

k′(s)∆ηt(s)ds. (1.35)

Defining µ(s) = −k′(s) and using (1.35), it is possible to write (1.32)-(1.34) in

the following form

θt(x, t)− k0∆θ(x, t) −
∫ ∞

0

µ(s)∆ηt(x, s)ds+ g(θ) = h(x, t), Ω× R+(1.36)

ηt
t(x, s) = θ(x, t)− ∂

∂s
ηt(x, s) on Ω× R+ × R+, (1.37)

θ(x, t) = ηt(x, s) = 0, x ∈ ∂Ω t, s > 0, (1.38)

θ(x, 0) = θ0(x), x ∈ Ω, (1.39)

η0(x, s) = η0(x, s) x ∈ Ω, s > 0, (1.40)

where, the term η0(x, s) =
∫ 0

−s
θ(x, τ)dτ is the initial integrated past history

of θ and assumed to vanish on ∂Ω.

When h is independent of time, the new system (1.36)-(1.40) is autonomous

dynamical system with respect to the unknown pair (θ(x, t), ηt(x, s)). Hence,

the asymptotic behaviour can be studied by the methods in the framework

of the semigroup theory. Therefore, Giorgi, Pata and Marzocchi restricted

themselves to (1.36)-(1.40). For simplicity, they assumed that the nonlinear

10



part of the heat supply g : R → R as a polynomial of odd degree with positive

leading coefficient, i.e., g is of the form

g(θ) =

2p∑
k=1

g2p−kθ
k−1, g0 > 0, p ∈ N. (1.41)

The authors also supposed that, the constant k0 and the term µ in (1.36)

satisfy the following hypothesis:

(C1) k0 > 0,

(C2) µ ∈ C1(R+) ∩ L1(R+), µ(s) > 0, µ′(s) ≤ 0, ∀s ∈ R+,

(C3) µ′(s) + δµ(s) ≤ 0, ∀s ∈ R+ and some δ > 0.

By(C2) and (C3), it is easy to see that µ(s) is allowed to have the form

µ(s) =
e−δs

sγ
, 0 ≤ γ < 1.

It is possible to write (1.36)-(1.40) in a compact form. First we denote

z(x, t) = (θ(x, t), ηt(x, s)),

z0 = (θ0, η0)

and set

Lz = (k0∆θ +

∫ ∞

0

µ(s)∆ηt(s)ds, θ − η′) (1.42)

and

G(z) = (h− g(θ), 0), (1.43)
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then the problem (1.36) - (1.40) takes the form

zt = Lz + G(z), (1.44)

z(x, t) = 0, x ∈ ∂Ω, t > 0 (1.45)

z(x, 0) = z0. (1.46)

In this article, the authors proved that if h(x, t) ∈ L2(R+, L2(Ω)), (1.41) and

(C1)− (C2) are satisfied z0 = (θ0, η0) ∈ H, where H := L2(Ω)×L2
µ(R+, H+

0 ),

then there exists a unique function z = (θ, ηt) with

θ ∈ L∞([0, T ], L2) ∩ L2([0, T ], H1
0 ) ∩ L2p([0, T ], L2p), ∀T > 0 (1.47)

η ∈ L∞([0, T ], L2
µ(R+, H1

0 )) ∀T > 0 (1.48)

such that

zt = Lz + G(z) (1.49)

in the weak sense and

z(x, t)|t=0 = z0.

They also showed that

z ∈ C([0, T ],H), ∀T > 0

and the mapping

z0 7−→ z(t) ∈ C(H,H), ∀t ∈ [0, T ].

Furthermore, if z0 ∈ V := H1
0 (Ω)× L2

µ(R+, H2 ∩H1
0 ), then it is proved that
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θ ∈ L∞([0, T ], H1
0 ) ∩ L2([0, T ], H2 ∩H1

0 ) ∩ L2p([0, T ], L2p), ∀T > 0 (1.50)

η ∈ L∞([0, T ], L2
µ(R+, H2 ∩H1

0 )) ∀T > 0 (1.51)

and

z ∈ C([0, T ],V), ∀T > 0.

In the third chapter of this article, they have shown that the solution of

the problem (1.43)-(1.45) has absorbing sets in H and V , i.e.

lim
t→∞

||z(t)||2H = lim
t→∞

(||θ(t)||2 +

∫ ∞

0

µ(s)||∇ηt(s)||2ds) ≤ ρ2
H.

and

lim
t→∞

||z(t)||2V = lim
t→∞

(||∇θ(t)||2 +

∫ ∞

0

µ(s)||∆ηt(s)||2ds) ≤ ρ2
V .

The outline of this thesis is the following.

In Chapter 1, some definitions, basic facts and the functional inequalities which

are used during this thesis are given.

In Chapter 2, we prove that the problem (1.44)-(1.46) when g(θ) is replaced

by p(x)θ has a unique solution z = (θ, η) such that

θ ∈ L∞([0, T ], L2(Ω)) ∩ L2([0, T ], L2(Ω) ∩H1
0 (Ω)), ∀T > 0

η ∈ L∞([0, T ], L2
µ(R+, H1

0 (Ω))), ∀T > 0.

In Section 2.3, we show that the solution of the above problem continuously

depends on the fuction p and the memory kernel µ.
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Chapter 3 is devoted to define an inverse problem to identify the memory

kernel µ appearing in the equation (1.44)-(1.46) when g(θ) is replaced by p(x)θ.

We prove that the corresponding inverse problem has a unique solution (z, µ).

Chapter 4 includes two inverse problems for coefficient identification of the

above problem when p(x) = 1. In section 4.2, we show the inverse problem of

recovering the evolution oh the source term of the form h = H(t)M(x, t) has

a unique solution (z,H). In sections 4.3 and 4.4, we prove that the inverse

problem of recovering a source term of the form h = K(x)M(x, t)with two

different final overdetermination conditions has a unique solution (z,K).
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1.2 Some definitions and basic facts

In this section, we will give some definitions and auxiliary facts that will

be used.

Definition 1.1. Let Ω be a domain in Rn and p ≥ 1 be a real number. We

denote by Lp(Ω) the class of all measurable functions u, defined on Ω for which

∫
Ω

|u(x)|pdx <∞ if 1 ≤ p <∞

and

sup
Ω
|u(x)| <∞, a.e. x ∈ Ω if p = ∞.

Lp(Ω) is a Banach space with the norm

||u||p :=

(∫
Ω

|u(x)|pdx
)1/p

<∞ if 1 ≤ p <∞

and

||u||∞ := ess sup
Ω

|u(x)| if p = ∞,

where

ess sup
Ω
|u(x)| := inf{M : |u(x)| ≤M,a.e. x ∈ Ω}.

For p = 2, L2(Ω) is a Hilbert space with the inner product

(u, v) :=

∫
Ω

u(x)v(x)dx, u, v ∈ L2(Ω).

Definition 1.2. A sequence {xn} in a normed space X is said to be strongly

convergent (or convergent in the norm) if there exists an x ∈ X such that

lim
n→∞

||xn − x||X = 0.
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Definition 1.3. Let X be a normed space. Then the set of all bounded linear

functionals on X constitutes a normed space with the norm defined by

||f ||X = sup
x∈X

||x||=1

|f(x)|

which is called the dual space of X and is denoted by X∗.

Definition 1.4. A sequence {xn} in a normed space X is said to be weakly

convergent if there is an x ∈ X such that for every f ∈ X∗,

lim
n→∞

f(xn) = f(x).

Definition 1.5. Let {fn} be a sequence of bounded linear functionals in a

normed space X∗. Then weak* convergence of {fn} means that there is an

f ∈ X∗ such that fn(x) → f(x) as n→∞ for all x ∈ X.

For simplicity, we indicate xn → x for convergence in norm, xn ⇀ x for weak

convergence and xn
∗
⇀ for weak* convergence.

Definition 1.6. Let X be a Banach Space and X∗ be its dual space. If u ∈ X

and u∗ ∈ X∗, then we write 〈u∗, u〉 to define the real number u∗(u). The symbol

〈·, ·〉 denotes the pairing of X∗ and X.

Definition 1.7. Let X denote a real Banach space with the norm || · ||X . The

space Lp((0, T ), X) consists of all measurable functions u : (0, T ) → X with

||u||Lp((0,T ),X) ≡
(∫ T

0

||u(·, t)||pXdt
)1/p

<∞ if 1 ≤ p <∞

and

||u||L∞((0,T ),X) ≡ ess sup
0≤t≤T

||u(·, t)||X <∞ if p = ∞.
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In this thesis, ||.|| denotes the L2 norm of the given function, on the given

set.

Definition 1.8. The space C([0, T ];X) consists of all continuous functions

u : [0, T ] → X such that

||u||C([0,T ];X) ≡ max
0≤t≤T

||u(·, t)||X <∞.

Definition 1.9. The support of a function u defined on Ω is the closure of the

set of points where u(x) is nonzero.

Definition 1.10. Let Ω be a non-empty open set in Rn. A function f defined

on Ω is called a test function if f ∈ C∞(Ω) and there is a compact set K ⊂ Ω

such that the support of f lies in K. The set of all test functions on Ω is

denoted by D(Ω) = C∞0 (Ω).

Let α be an n-tuple of non-negative integers αi, we set

|α| =
n∑

i=1

αi

and

Dαu =
∂|α|u

∂xα1
1 ∂x

α2
2 · · · ∂xαn

n

.

The n-tuple α is called a multi-index.

Definition 1.11. A distribution F is a linear mapping F : C∞0 (Ω) → R such

that F (vj) → 0 for every sequence {vj} ⊂ C∞0 (Ω) with support in a fixed

compact set K ⊂ Ω and whose derivatives Dαvj → 0 uniformly in K, as

j → ∞. If F and Fj are distribution in Ω, then Fj → F as distributions

provided Fj(v) → F (v) for every v ∈ C∞0 (Ω). The support of a distribution F

in Ω is the smallest (relatively) closed set K ⊂ Ω such that F (v) = 0 whenever
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v ∈ C∞0 (Ω \K).

The set of all distributions on D(Ω) is denoted by D′(Ω).

Definition 1.12. Given a real (measurable) function u ∈ Ω, we will write

u ∈ Lp
loc(Ω)

to mean u ∈ Lp(Ω′) for any bounded domain Ω′ with (Ω′) ⊂ Ω.

Definition 1.13. Suppose that u, v ∈ L1
loc(Ω) and α is a multi-index. We say

that v is the αth weak or distributional partial derivative of u and write

Dαu = v,

provided that ∫
Ω

uDαϕdx = (−1)|α|
∫

Ω

vϕdx

for all test functions ϕ ∈ C∞0 (Ω).

Definition 1.14. Let u ∈ L1((0, T ), X). We say v ∈ L1((0, T ), X) is the weak

derivative of u and write

u′ = v

provided that ∫ T

0

u(t)φ′(t) = −
∫ T

0

v(t)φ(t)dt

for all scalar functions φ ∈ C∞0 (0, T ).

Definition 1.15. Given u ∈ Lp((0, T ), X), the function v(t) with values in

X0 ⊃ X is called the derivative of u(t) in the distributional sense and is denoted

by

v(t) = ∂tu(t),
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if ∫ T

0

〈v(t), φ(t)〉dt = −
∫ T

0

〈u(t), ∂tφ(t)〉dt

for all φ ∈ C∞0 ([0, T ], X∗
0 ) where X∗

0 is the dual space of X0 and 〈·, ·〉 is the

duality pairing between X0 and X∗
0 . C∞0 ((0, T ), X0) is the space of functions

from C∞((0, T ), X) with compact support.

Definition 1.16. (The Sobolev Space) Let k be a non-negative integer and let

1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω) is defined by

W k,p(Ω) = {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω) for all |α| ≤ k}.

In W k,p(Ω), we define a norm by

||u||k,p :=

(∑
|α|≤k

||Dαu||pp
)1/p

if 1 ≤ p <∞

and

||u||k,∞ := max
0≤|α|≤k

||Dαu||∞ if p = ∞.

For p = 2, we define an inner product by

(u, v)k :=
∑
|α|≤k

∫
Ω

Dαu(x)Dαv(x)dx.

We also use the notation Hk(Ω) for W k,2(Ω) and L2(Ω) for W 0,2(Ω).

Definition 1.17. By W k,p
0 (Ω), we denote the closure of C∞0 (Ω) in W k,p(Ω).

Because of the definition 1.17, u ∈ W k,p
0 (Ω) if and only if there is a sequence

of functions um ∈ C∞0 (Ω) such that um → u in W k,p(Ω).

Definition 1.18. Let 1 < p, q <∞ such that 1
p

+ 1
q

= 1. Then the dual space

of W k,p
0 (Ω) is denoted by W−k,q(Ω).

19



W−k,q(Ω) is the Banach space with the norm

||u||−k,q := sup{|〈u, v〉 : v ∈ W k,p
0 (Ω), ||v||k,p ≤ 1}

where 〈·, ·〉 denote the duality pairing between W−k,q(Ω) and W k,p
0 (Ω).

Definition 1.19. Let X and Y be normed spaces such that X ⊂ Y. Then we

say that, X is continuously imbedded into Y if there exists a positive constant

C > 0 such that ||u||Y ≤ C||u||X , for all u ∈ X. Furthermore, we say that X

is compactly imbedded into Y if it is continuously imbedded and each bounded

sequence in X is precompact in Y .

Theorem 1.20. (Sobolev’s inequality) [13] Assume that Ω is a bounded, open

subset of Rn. Suppose u ∈ W 1,p
0 (Ω) for some 1 ≤ p < n. Then we have the

estimate

||u||q ≤ C||Du||p

for 1 ≤ q ≤ np
n−p

, the constant C depends on p, q, n and Ω.

Theorem 1.21. (Rellich-Kondrasov) [25] Let Ω ⊂ Rn be a bounded open set

of class C1. Then the following embeddings are compact.

(i) if p < n, W 1,p(Ω) → Lq(Ω), 1 ≤ q < np
n−p

,

(ii) if p = n, W 1,n(Ω) → Lq(Ω), 1 ≤ q <∞,

(iii) if p > n, W 1,p(Ω) → C(Ω).

If Ω is any bounded domain, the above mentioned theorem is valid for

W 1,p
0 (Ω).

Definition 1.22. [33] For 0 < p < ∞, Hp(Π) is the class of holomorphic

functions F on Π such that

||F ||p = sup
y>0

(∫ ∞

−∞
(F (x+ iy)|pdx

)1/p

<∞,
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where Π := {z : Imz > 0}, where z = x+ iy, x, y ∈ Rn. Here H denotes the

Hardy class.

If p ≥ 1, then Hp(Π) is a Banach space with the above norm. Moreover,

H2(Π) is an Hilbert space. The inner product in H2(Π) is given by

〈F,G〉2 =

∫ ∞

−∞
F (x)G(x)dx.

F (z) and G(z) are any functions in H2(Π) and F (x) and G(x) are their bound-

ary functions.

The functions {
π−1/2

z + i

(
z − i

z + i

)n}∞
0

form an orthonormal basis for H2(Π).

Definition 1.23. (Paley-Wiener Representation)[33] For any given f ∈ L2(0,∞),

define

F (z) =
1√
2π

∫ ∞

0

eitzf(t)dt, z ∈ Π.

Then the mapping U : f → F is an isometry from L2(0,∞) onto H2(Π). Its

inverse U−1 : F → f can be calculated in this way. Let f ∈ L2(0,∞) and

F ∈ H2(Π), and assume that F = Uf . If F (t) is the boundary function of

F (z), then

l.i.m.A→∞
1√
2π

∫ A

−A

eixtF (t)dt =

 f(x) , x > 0,

0 , x < 0.

Moreover, for any y > 0,

l.i.m.A→∞
1√
2π

∫ A

−A

eixtF (t+ iy)dt =

 e−yxf(x) , x > 0,

0 , x < 0,
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where l.i.m. stands for limit in the mean and indicates that convergence is in

the metric of L2(0,∞).

In this work, 〈·, ·〉2,m and || · ||2,m, m = 1, 2 denote the inner product and

norm of H1
0 and H2 ∩H1

0 , respectively.

We use the notation 〈·, ·〉2,1 = 〈∇·,∇·〉 and 〈·, ·〉2,2 = 〈∆·,∆·〉.

For µ ∈ C1(R+)∩L1(R+), µ(s) ≥ 0, µ′(s) ≤ 0, ∀s ∈ R+, L2
µ(R+, L2)

denotes the Hilbert Space of funtcions ϕ : R+ → L2(Ω) endowed with the inner

product

〈ϕ1, ϕ2〉µ =

∫ ∞

0

µ(s)〈ϕ1(s), ϕ2(s)〉ds.

and ||ϕ||µ denotes the corresponding weighted norm. We introduce the fol-

lowing inner products 〈·, ·〉m,µ and corresponding norms 〈·, ·〉m,µ(m = 1, 2) on

L2
µ(R+, H1

0 ) and L2
µ(R+, H2 ∩H1

0 ) as

〈·, ·〉1,µ = 〈∇·,∇·〉µ and 〈·, ·〉2,µ = 〈∆·,∆·〉µ.

As in [16], we introduce the Hilbert Spaces

H = L2(Ω)× L2
µ(R+, H1

0 )

and

V = H1
0 (Ω)× L2

µ(R+, H2 ∩H1
0 ),

respectively endowed with the inner produets

〈w1, w2〉H = 〈ψ1, ψ2〉+ 〈ϕ1, ϕ2〉1,µ

and

〈w1, w2〉V = 〈ψ1, ψ2〉2,1 + 〈ϕ1, ϕ2〉2,µ
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where wi = (ψi, ϕi) ∈ H or V for i = 1, 2.

The norm on H is

||(ψ, ϕ)||2H = ||ψ||2 +

∫ ∞

0

µ(s)||∇ϕ(s)||2ds.

1.3 Inequalities

We will also make use of the following functional and algebraic inequalities

in this thesis.

1) Cauchy’s inequality with ε.

ab ≤ εa2 +
b2

4ε
∀a, b > 0, ε > 0.

2) Cauchy - Schwarz inequality. Let H be a Hilbert space associated with the

inner product (.,.) and norm ||u|| = (u, u)1/2. Then

|(u, v)| ≤ ||u||.||v||, ∀u, v ∈ H.

3) Poincaré inequality

λ0(Ω)||v||2 ≤ ||∇v||2 λ0 > 0,∀v ∈ H1
0

and

γ0(Ω)||∇v||2 ≤ ||∆v||2 λ0 > 0,∀v ∈ H2 ∩H1
0

4) Young’s inequality with ε.

ab ≤ εap + C(ε)bq (a, b > 0, ε > 0) for C(ε) =
(εp)−q/p

q
.
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chapter 2

RELATED DIRECT PROBLEM

2.1 Introduction

In this chapter, we will introduce the direct problem whose related inverse

problem will be studied in Chapter 3. We will assume a particular linear part

p(x)θ(x, t), p(x) ≥ 0, instead of the nonlinear part of heat supply g : R → R

in (1.36). This form of the problem is slightly different from the problem in

(1.36)-(1.40). For the completeness of the discussions, we need the existence

and uniqueness of solutions the new problem defined by

θt(x, t) − k0∆θ(x, t)−
∫ ∞

0

µ(s)∆ηt(x, s)ds+ p(x)θ(x, t) = h(x, t),Ω× R+(2.1)

ηt
t(x, s) = θ(x, t)− ∂

∂s
ηt(x, s) on Ω× R+ × R+ (2.2)

θ(x, t) = ηt(x, s) = 0, x ∈ ∂Ω, t, s > 0, (2.3)

θ(x, 0) = θ0(x), x ∈ Ω, (2.4)

η0(x, s) = η0(x, s), x ∈ Ω, s > 0. (2.5)

The term η0(x, s) =
∫ 0

−s
θ(x, τ)dτ is the initial integrated past history of θ and

assumed to vanish on ∂Ω. We denote

z(x, t) = (θ(x, t), ηt(x, s))

z0 = (θ0, η0)
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and set

Lz = (k0∆θ(x, t) +

∫ ∞

0

µ(s)∆ηt(s)ds, θ(x, t)− η
′
(x, t− s)), (2.6)

G(z) = (h(x, t)− p(x)θ(x, t), 0). (2.7)

Thus, (2.1)-(2.5) takes the compact form

zt(x, t) = Lz + G(z), (2.8)

z(x, t) = 0, x ∈ ∂Ω, t > 0, (2.9)

z(x, 0) = z0, x ∈ Ω. (2.10)

2.2 Existence and Uniqueness of Solution

Theorem 2.1. Suppose that h ∈ L2(R+, L2(Ω)), p(x) ≥ 0, p ∈ L∞(Ω)

and z0 = (θ0, η0) ∈ H. Then there exists a unique function z = (θ, η) with

θ ∈ L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1
0 (Ω)), ∀T > 0 (2.11)

η ∈ L∞([0, T ], L2
µ(R+, H1

0 (Ω))), ∀T > 0 (2.12)

such that

zt = Lz + G(z) (2.13)

is satisfied in the weak sense, and z|t=0 = z0.

If we assume that z0 ∈ V, then

θ ∈ L∞([0, T ], H1
0 (Ω)) ∩ L2([0, T )], H2(Ω) ∩H1

0 (Ω)), ∀T > 0,(2.14)

η ∈ L∞([0, T ], L2
µ(R+, H2(Ω) ∩H1

0 (Ω))), ∀T > 0. (2.15)

Proof. We will give the proof by the standart Faedo-Galerkin Method. To use
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this method, we need orthonormal bases of L2(Ω) and L2
µ(R+, H1

0 (Ω)).

We recall that there exists a smooth orthonormal basis {wi}∞j=1 of L2(Ω)

which is orthogonal in H1
0 (Ω). We will take a complete set of normalized

eigenfunctions ωj for −∆ in H1
0 (Ω), that is −∆ωj = νjωj, where νj are the

eigenvalues corresponding to the eigenfunctions ωj. We will select an ortho-

normal basis {ζj}∞j=1 of L2
µ(R+, H1

0 (Ω)) which also belongs to D(R+, H1
0 (Ω)).

Here, we recall that D(I,X) is the space of infinitely many differentiable func-

tions with compact support in I ⊂ R. We will complete the proof in five

steps.

Step 1 (Faedo-Galerkin Scheme). We fix a finite time interval (0, T ),

T > 0. Given an integer n, denote by Pn, Qn the projections of H1
0 (Ω) and

L2
µ(R+, H1

0 ) on the subspaces

Span {w1, · · · , wn} ⊂ H1
0 (Ω) and Span {ζ1, · · · , ζn} ⊂ L2

µ(R+, H1
0 (Ω))

respectively. We want to find a function zn = (θn, ηn) of the form

θn(t) =
n∑

j=1

an
j (t)ωj and ηt

n(s) =
n∑

j=1

bnj (t)ζj(s)

satisfying

〈∂tzn, (ωk, ζi)〉H = 〈Lzn, (ωk, ζj)〉H + 〈G(zn), (ωk, ζi)〉H.

subject to zn |t=0= (Pnθ0, Qnη0), where θ0 = θ(0, x) and η0 = η0(x, s). By

(2.6) and (2.7), this equation may be written as

〈∂tzn, (ωk, ζi)〉H = 〈(k0∆θn +

∫ ∞

0

µ(s)∆ηt(s)ds, θn − η
′

n), (ωk, ζi)〉H

+ 〈(h− p(x)θn, 0), (ωk, ζi)〉 (2.16)

zn |t=0 = (Pnθ0, Qnη0)
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for a.e. t ≤ T, for every k, j = 0, · · · , n, . We denote the zero vectors in Span

{w1, · · · , wn} and Span{ζ1, · · · , ζn}by ω0 and ζ0, respectively.

Taking (ωk, ζ0) and (ω0, ζk) for (ωk, ζi) in (2.16) we get

d

dt
an

k = −k0νka
n
k + 〈

∫ ∞

0

µ(s)∆ηt
n(s)ds, ωk〉+ 〈h, ωk〉 − 〈p(x)θn, ωk〉(2.17)

d

dt
bnk =

n∑
j=1

an
j 〈ωj, ζk〉1,µ −

n∑
j=1

bnj 〈ζ ′j, ζk〉1,µ. (2.18)

If we use the divergence theorem to the second term in the right hand side of

(2.17), we get

〈
∫ ∞

0

µ(s)∆ηt
n(s)ds, ωk〉 =

n∑
j=1

bnj 〈ζj, ωk〉1,µ.

Employing this identity in (2.17), we end up with a system of ordinary differ-

ential equations with respect to the unknown functions an
k(t) and bnk(t), of the

form

d

dt
an

k = −k0νka
n
k + 〈h, ωk〉 − 〈p(x)θn, ωk〉 −

n∑
j=1

bnj 〈ζj, ωk〉1,µ (2.19)

d

dt
bkk =

n∑
j=1

an
j 〈ωj, ζk〉1,µ −

n∑
j=1

bnj 〈ζ ′j, ζk〉1,µ (2.20)

subject to initial condition

an
k(0) = 〈θ0, ωk〉 (2.21)

bnk(0) = 〈η0, ζk〉1,µ. (2.22)

According to standart existence theory for ordinary differential equations, we

have a continuous solution of (2.19)-(2.22) on some interval (0, Tn). we may

observe here that in fact Tn = +∞.
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Step 2 (Energy estimates). Now, we will look for energy estimate for

the sequence (θn, ηn).

We multiply the equation (2.19) by ak and (2.20) by bk we get

1

2

d

dt
(an

k)2 = −k0νk(a
n
k)2 −

n∑
j=1

bnj 〈ζj, ωka
n
k〉1,µ + 〈h, ωka

n
k〉

− 〈p(x)θn, ωkak〉 (2.23)

1

2

d

dt
(bnk)2 =

n∑
j=1

an
j 〈ωj, ζkb

n
k〉1,µ −

n∑
j=1

bnj 〈ζ ′j, ζkbnk〉1,µ. (2.24)

Since H is a Hilbert space, the paralellogram law holds. Thus, ||zn||2H =∑n
k=1(a

n
k)2 +

∑n
k=1(b

n
k)2. Summing over k the equations in (2.23) and (2.24),

we get

1

2

d

dt
||zn||2H = 〈k0∆θn, θn〉+ 〈h, θn〉 − 〈p(x)n, θn〉 − 〈ηt

n, θn〉1,µ

+ 〈ηt
n, θn〉1,µ − 〈η

′t
n , θn〉1,µ.

This equation can be written as

1

2

d

dt
||zn||2H = 〈(k0∆θn +

∫ ∞

0

µ(s)∆ηt(s)ds, θn − η′n), (θn, ηn)〉H

+ 〈(h− p(x)θn, 0), (θn, ηn)〉H (2.25)

= −k0||∇θn||2L2(Ω) − 〈η′n, ηn〉1,µ + 〈h, θn〉 − 〈p(x)θn, θn〉.(2.26)

The application of the Schwarz inequality in the third and the fourth term

in the right hand side of (2.26) and the definition of the inner product in the

sense of L2(Ω) yields the estimate

〈h, θn〉 − 〈p(x)θn, θn〉 ≤ ||h||||θn|| −
∫

Ω

p(x)|θn|2dx. (2.27)
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Using (2.27) in (2.26) we get the bound

1

2

d

dt
||zn||2H ≤ −k0||∇θn||2 − 〈η′n, ηn〉1,µ + ||h||||θn|| −

∫
Ω

p(x)|θ|2dx. (2.28)

Integration by parts and the condition (C2) on µ(s) given in Section 1.1 imply

that, the second term in the right hand side of (2.28) satisfies that

〈η′n, ηn〉1,µ = −
∫ ∞

0

µ′(s)||∇ηn||2ds ≥ 0. (2.29)

Employing the inequality (2.29) in (2.28) and recalling that p(x) ≥ 0, we get

1

2

d

dt
||zn||2H + k0||∇θn||2 ≤ ||h||||θn||. (2.30)

The application of the Young’s inequality with ε to the term at the right hand

side of (2.30) yields the estimate

||h||||θn|| ≤
1

4ε
||h||2 + ε||θn||2. (2.31)

Using Poincaré inequality for ||θn||2 in (2.31), we end up with

||h||||θn|| ≤
1

4ε
||h||2 + ελ0||∇θn||2. (2.32)

Substituting (2.32) in (2.30) we get

d

dt
||zn||2H + 2(k0 − ελ0)||∇θn||2 ≤

1

2ε
||h||2. (2.33)

The integration of (2.33) over (0, t) for t ∈ (0, T ), leads the estimate

||zn||2H + 2(k0 − ελ0)

∫ t

0

||∇θn(τ)||2dτ ≤ ||z0||2H +
1

2ε
||h||2T,
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or

||θn||2 +

∫ ∞

0

µ(s)||∇ηn||2ds ≤ ||z0||2H +
1

2ε
||h||2T.

The above inequality for gives that

θn is bounded in L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1
0 (Ω)) (2.34)

ηn is bounded in L∞([0, T ], L2
µ((R+, H1

0 (Ω))). (2.35)

We observe that the bounds are independent of n as we have expected.

Step 3 (Passage to limit)(2.34) and (2.35) shows that there exists a

subsequence of (θn, ηn), which will be denoted by the same indices, satisfying

θn ⇀ θ weakly-star in L∞([0, T ], L2(Ω)) (2.36)

θn ⇀ θ weakly in L2([0, T ], H1
0 (Ω)) (2.37)

ηn ⇀ η weakly-star in L∞([0, T ], L2
µ(R+, H1

0 (Ω))). (2.38)

For a fixed integer m, choose a function

u = (σ, ξ) ∈ D((0, T ), H1
0 (Ω))×D((0, T ),D(R+, H1

0 (Ω))) of the form

σ(t) =
m∑

j=1

ãj(t)ωj and ξt(s) =
m∑

j=1

b̃j(t)ζj(s)

where {ãj}m
i=j and {b̃j}m

i=j are given functions in D((0, T )). Then (2.16) holds

with (σ(t), ξt) replaced by (ωk, ζj), i.e,

〈∂tzn, (σ(t), ξt)〉H = 〈(k0∆θn +

∫ ∞

0

µ(s)∆ηt(s)ds, θn − η
′

n)(σ(t), ξt)〉H

+ 〈(h− p(x)θn, 0)(σ(t), ξt)〉H. (2.39)
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By the definition of the inner product in the sense of H, by (2.39) we get

〈∂tzn, (σ(t), ξt)〉H = 〈(k0∆θn, σ(t)〉L2(Ω) + 〈
∫ ∞

0

µ(s)∆ηt
n(s)ds, σ(t)〉L2(Ω)

+ 〈θn, ξ
t〉1,µ − 〈η

′

n, ξ
t〉1,µ + 〈h− p(x)θn, σ(t)〉L2(Ω).(2.40)

If we use (2.36)-(2.38), we may pass to the limit as n tends to ∞ except for

the term

〈η′n, ξt〉1,µ =

∫ ∞

0

µ(s)〈∇η′ ,∇ξt〉L2(Ω)ds.

We denote 〈〈·, ·〉〉 the duality mapping, between H1
µ(R+, H1

0 (Ω)) and its dual

space. For f ∈ H1
µ(R+, H1

0 (Ω)) and g in its dual space

〈〈f, g〉〉 =

∫ ∞

0

µ(s)〈∇f,∇g〉L2(Ω)ds.

Using this definition of the duality map, we observe that

〈〈ϕ′ , ξ〉〉 = −
∫ ∞

0

µ
′
(s)〈∇ϕ,∇ξt(s)〉L2(Ω)ds−

∫ ∞

0

µ(s)〈∇ϕ,∇ξ′(s)〉L2(Ω)ds

(2.41)

for ϕ ∈ H1
µ(R+, H1

0 (Ω)) and ξ is in its dual space. Indeed, the identity

(2.41) may be adopted for every ϕ ∈ L2
µ(R+, H1

0 (Ω)), if ξ ∈ H1
µ(R+, H1

0 (Ω)) ∩

L2(µ′

µ
)2(R+, H1

0 (Ω)). Thus, we may compute the limit of 〈η′n, ξt〉1,µ as n→∞,

and we get

∂tzn → zt in D′((0, T ), H1
0 (Ω))×D′((0, T ),D(R+, H1

0 (Ω))).
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Integrating (2.39) over (0, T ) and passing to limits we get

∫ T

0

〈z, ut〉Hdt =

∫ T

0

[k0〈∇θ,∇σ〉+ 〈η, σ〉1,µ − 〈θ, ξ〉1,µ + 〈〈η′, ξ〉〉

− 〈h, σ〉]dt+

∫ T

0

p(x)θσdxdt. (2.42)

So the limit of the sequnce zn = (θn, ηn) is the solution of our problem.

Step 4 (Uniqueness of the solution). Suppose that there are two

functions z1 = (θ1, η1) and z2 = (θ2, η2) satisfying (2.2), i.e,

z1
t = (θ1, η1)t = (k0∆θ1 +

∫ ∞

0

µ(s)∆ηt
1(s)ds+ h− p(x)θ1, θ1 − η′1) (2.43)

and

z2
t = (θ2, η2)t = (k0∆θ2 +

∫ ∞

0

µ(s)∆ηt
2(s)ds+ h− p(x)θ2, θ2 − η′2) (2.44)

with the initial conditions z1
0 = z2

0 = z0. If we set θ̃ := θ1 − θ2, η̃ := η1 − η2

and z̃ := z1 − z2, subtraction of (2.44) from (2.43) gives

z̃t = (k0∆θ̃ +

∫ ∞

0

µ(s)∆η̃ − p(x)θ̃, θ̃ − η̃′). (2.45)

The inner product of z̃t and z̃ in the sense of H gives

1

2

d

dt
||z̃||2H = −k0||∇θ̃||2 −

∫ ∞

0

µ(s)〈∇η̃,∇θ̃〉ds− 〈p(x)θ̃, θ̃〉+ 〈∇θ̃,∇η̃〉µ

−
∫ ∞

0

µ(s)
d

ds
||∇η̃||2ds. (2.46)

We know that
∫∞

0
µ(s)〈∇η̃,∇θ̃〉ds = 〈∇θ̃,∇η̃〉µ. The cancellations of these
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terms in (2.46) gives

1

2

d

dt
||z̃||2H = −k0||∇θ̃||2 − 〈p(x)θ̃, θ̃〉 −

∫ ∞

0

µ(s)
d

ds
||∇η̃||2ds.

Keeping in mind that

−k0||∇θ̃||2 ≤ 0, −〈p(x)θ̃, θ̃〉 ≤ 0

and

−
∫ ∞

0

µ(s)
d

ds
||∇η̃||2ds =

∫ ∞

0

µ
′
(s)||∇η̃||2 ≤ 0,

we end up with the following inequality

d

dt
||z̃||2 ≤ 0. (2.47)

This differential inequality yields that

||z̃(t)||2 ≤ ||z̃(0)||2. (2.48)

Since z̃(0) = z1
0 − z2

0 = 0, (2.48) implies that z̃(t) is identically zero, which

implies uniqueness of the solution.

Step 5 (Further regularity). At this step, we investigate that, under

some appropriate assumptions, the solution of the problem (2.1)-(2.5) is in a

more smooth space. we write the equation (2.8) in the form

θt(x, t) − k0∆θ(x, t)−
∫ ∞

0

µ(s)∆µt(s)ds+ p(x)θ(x, t) = h(x, t)(2.49)

ηt
t(x, s) = θ(x, t)− ηt

s(x, s). (2.50)

Our aim is to find an upper bound for ||z||2V . For this end, we multiply (2.49)
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by −∆θ in L2(Ω) and the Laplacian of (2.50) by ∆η in L2
µ(Ω) to get

1

2

d

dt
||∇θ||2 + k0||∆θ||2 +

∫ ∞

0

µ(s)〈∆ηt,∆θ〉L2(µ)

= 〈p(x)θ − h,∆θ〉L2(µ) (2.51)

1

2

d

dt
||∆ηt||2µ = 〈∆θ,∆ηt〉µ − 〈∆ηt

s,∆η〉µ. (2.52)

Addition of (2.51) and (2.52) results in

d

dt
||z||2ν + 2k0||∆θ||2 + 2〈η′, η〉2,µ = 2〈p(x)θ − h,∆θ〉. (2.53)

We observe that 〈η′, η〉2,µ = −
∫∞

0
µ
′
(s)||∆η(s)||2ds is positive. Using this fact

and using the triangle inequality for the term in the right hand side of (2.53)

gives the estimate

d

dt
||z||2ν + 2k0||∆θ||2 ≤ 2

∫
Ω

|p(x)||θ∆θ|dx+ 2

∫
Ω

|h||∆θ|dx. (2.54)

The application of Young’s inequality with ε for the terms in the right hand

side of the inequality (2.54) yields

d

dt
||z||2V + 2k0||∆θ||2 ≤

1

2ε
||h||2 + 2ε||∇θ||2

+ 2ε1||p||L∞(Ω)||∇θ||2 +
||p||L∞(Ω)

2ε1
||θ||2. (2.55)

If we use Poincaré inequality for the last term in the right hand side of (2.55),

we get the estimate,

d

dt
||z||2V + (2k0 − 2ε− 2ε1||p||L∞(Ω) −

||p||L∞(Ω)

2ε1
λ0γ0)||∇θ||2

≤ 1

2ε
||h||2. (2.56)
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The integration of (2.56) over (0, t), 0 ≤ t ≤ T , gives the following inequality

||z(t)||2V +

∫ t

0

(2k0 − 2ε− 2ε1||p||L∞(Ω) −
||p||L∞(Ω)

2ε1
λ0γ0)||∇θ||2

≤ 1

2ε

∫ T

0

||h||2dt+ ||z0||2ν . (2.57)

If we choose ε and ε1 so that the coefficient of ||∇θ||2 in (2.57) is positive, the

bound we get in (2.57)shows that

θ ∈ L∞([0, T ], H1
0 (Ω)) ∩ L2([0, T ], H2(Ω) ∩H1

0 (Ω))

η ∈ L∞([0, T ], L2
µ(R+, H2(Ω) ∩H1

0 (Ω))).

2.3 Some properties for the structural stabil-

ity of the equation

In this section, we will investigate the continuous dependence of the solu-

tions of (2.8)-(2.10) on the coefficient p and the memory kernel µ. We will

start with the continous dependence on p(x).

Theorem 2.2. The solution of the problem (2.8)-(2.10) depends continuously

on p(x).

Proof. To show continuous dependence on p(x), we will consider two solutions

z1 and z2 of (2.8)-(2.10) for two different choices for p(x), i.e., p1(x) and p2(x)
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with the respective initial conditions z1
0 andz2

0 , where z1
0 = z2

0 :

z1
t (x, t) = (k0∇θ1(x, t) +

∫ ∞

0

µ(s)∇ηt
1(x, s)ds

+ h(x, t)− p1(x)θ1(x, t), θ1(x, t)− ηt
1
′(x, s)) (2.58)

z2
t (x, t) = (k0∇θ2(x, t) +

∫ ∞

0

µ(s)∇ηt
2(x, s)ds

+ h(x, t)− p2(x)θ2(x, t), θ2(x, t)− ηt
2
′(x, s)) (2.59)

Subtracting (2.59) from (2.58), and setting z̃ := z1 − z2, θ̃ := θ1 − θ2, η̃ :=

η1 − η2, p̃ := p1 − p2, we get

z̃t(x, t) = (k0∆θ̃(x, t) +

∫ ∞

0

µ(s)∆η̃t(x, s)ds− p1(x)θ̃(x, t)

− p̃(x)θ2(x, t), θ̃(x, t)− η̃t′(x, s)). (2.60)

Taking the inner product of z̃t with z̃ in the sense of H, (2.60) gives

1

2

d

dt
||z̃||2H + k0||∇θ̃||2 + 〈p1θ̃, θ̃〉+ 〈η̃′, η̃〉1,µ = −〈p̃θ2, θ̃〉. (2.61)

Since 〈p1θ̃, θ̃〉 ,k0||∇θ̃||2 and 〈η̃′, η̃〉1,µ are positive , (2.61) becomes

1

2

d

dt
||z̃||2H ≤ |〈p̃θ2, θ̃〉|. (2.62)

We need an estimate for

|〈p̃θ2, θ̃〉| = |
∫

Ω

p̃(x)θ2(x)θ̃(x)dx|. (2.63)
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The application of Hölder’s inequality in (2.63) gives

|〈p̃(x)θ2(x), θ̃(x)〉| ≤
∫

Ω

|p̃(x)θ2(x)|θ̃(x)|dx

≤
(∫

Ω

(p̃(x)θ2(x))
2dx

)1/2(∫
Ω

(θ̃(x))2dx

)1/2

≤ ||p̃||1/2
L∞(Ω).||θ2||.||θ̃||. (2.64)

Using Young’s inequality for the right hand side of (2.64) we get

|〈p̃(x)θ2(x), θ̃(x)〉| ≤ ||p̃||1/2
L∞(Ω).||θ2||.||θ̃|| ≤

1

2
||θ̃||2 +

1

2
||p̃||L∞(Ω).||θ2||2. (2.65)

Substitution of (2.65) in (2.62) yields

1

2

d

dt
||z̃||2H ≤

1

2
||θ̃||2 +

1

2
||p̃||L∞(Ω).||θ2||2. (2.66)

Since ||θ̃||2 ≤ ||z̃||2H, we may write (2.66) as

d

dt
||z̃||2H − ||z̃||2H ≤ ||p̃||L∞(Ω).||θ2||2. (2.67)

Using Gronwall’s inequality, we get

||z̃(t)||2H ≤ eT ||p̃||L∞(Ω)

∫ T

0

||θ2(τ)||2dτ, 0 ≤ t ≤ T. (2.68)

From (2.68), we deduce that ||z̃(t)||H → 0 as ||p̃||L∞(Ω) → 0. This gives the

continuous dependendce on p(x).

We will show the continous dependence of the solution of the problem

(2.8)-(2.10) on µ for a general nonlinearity g(θ(x, t)) instead of p(x)θ(x, t). We

write g(θ(x, t)) in the place of p(x)θ(x, t) in (2.8)-(2.10) and we get the problem

(1.44)-(1.46). Now, let us show the continuous dependence of the solution of
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the equation (1.44)-(1.46) on µ.

Theorem 2.3. The solution of the direct problem ( 1.44 ) - (1.46) continously

depends on the memory µ if µ ∈ C1(0,∞)∩L∞[0,∞)∩L1(0,∞) and g(θ(x, t))

as in (1.41).

Proof. Let z1 and z2 be two solutions corresponding to µ1 and µ2 respectively;

z1,t(x, t) = (k0∆θ1(x, t) +

∫ ∞

0

µ1(s)∆η
t
1(x, s)ds

+ h(x, t)− g(θ1(x, t)), θ1(x, t)− ηt
1
′(x, s)), (2.69)

z2,t(x, t) = (k0∆θ2(x, t) +

∫ ∞

0

µ2(s)∆η
t
2(x, s)ds

+ h(x, t)− g(θ2(x, t)), θ2(x, t)− ηt
2
′(x, s)). (2.70)

Let us form the difference of (2.69) and (2.70). Defining the new variables

z̃ := z1 − z2, θ̃ := θ1 − θ2, η̃ := η1 − η2 and µ̃ := µ1 − µ2, we have

z̃t(x, t) = (k0∆θ̃(x, t) +

∫ ∞

0

µ̃(s)∆ηt
2(x, s)ds+

∫ ∞

0

µ1(s)∆η̃
t(x, s)ds

− (g(θ1(x, t))− g(θ2(x, t))), θ̃(x, t)− η̃t′(x, s)). (2.71)

Multiplying both sides of the above equation by z̃ = (θ̃, η̃) in the sense of H

with the weight function µ1(s), we find

1

2

d

dt
||z̃||2H = −k0||∇θ̃(., t)||2 − 〈ηt

2(x, s), θ̃(x, t)〉1,µ̃

− 〈g(θ1(x, t))− g(θ2(x, t)), θ̃(x, t)〉 − 〈η̃t′(x, s), η̃t(x, s)〉1,µ1 .(2.72)

Our aim is to find an upper bound for ||z̃||2H depending on µ̃. To this end, we
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will estimate the right hand side of (2.72). From [16], we know that

−〈g(θ1(x, t))− g(θ2(x, t)), θ̃(x, t)〉 ≤ C || θ̃(., t) ||2 ,

C depending on g and 〈η̃t′(x, s), η̃〉1,µ1 ≥ 0. If we use these facts in (2.72), we

get

1

2

d

dt
||z̃(., t)||2H + k0||∇θ̃(., t)||2 ≤ −〈ηt

2(x, s), θ̃(x, t)〉1,µ̃ + C||θ̃(., t)||2. (2.73)

By the Poincaré’s inequality for the second term at the left hand side of (2.73)

we get

1

2

d

dt
||z̃(., t)||2H + λ0k0||θ̃(., t)||2 − C||θ̃(., t)||2 ≤ −〈ηt

2(x, s), θ̃(x, t)〉1,µ̃ (2.74)

or

1

2

d

dt
||z̃(., t)||2H + (λ0k0 − C)||θ̃(., t)||2 ≤ −〈ηt

2(x, s), θ̃(x, t)〉1,µ̃. (2.75)

If the function g is chosen so that C satisfies λ0k0 − C ≥ 0, we find

1

2

d

dt
||z̃(., t)||2H ≤ −〈ηt

2(x, s), θ̃(x, t)〉1,µ̃. (2.76)

Now, let us study the right hand side of the equation (2.76). By the definition

of 〈., .〉1,µ̃ we get

〈ηt
2(x, s), θ̃(x, t)〉1,µ̃ =

∫ ∞

0

µ̃(s)

∫
Ω

∇ηt
2(x, s)∇θ̃(x, t)dxds (2.77)

so

|〈ηt
2(x, s), θ̃(x, t)〉1,µ̃| ≤

∫ ∞

0

|µ̃(s)|||∇ηt
2(., s)||||∇θ̃(., t)||ds. (2.78)
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Since an absorbing ball in V := H1
0 × L2

µ(R+, H2 ∩H1
0 ) exists [16], there is an

R for every t ∈ [0,∞) depending on h satisfying

||∇θ̃(., t)|| ≤ R. (2.79)

Employing (2.79) in (2.78), we get

|〈ηt
2(x, s), θ̃(x, t)〉1,µ̃ ≤ R

∫ ∞

0

|µ̃(s)|||∇ηt
2(., s)||ds. (2.80)

The right hand side of (2.80) may be written as

R

∫ ∞

0

|µ̃(s)|||∇ηt
2(., s)||ds = R

∫ ∞

0

|µ̃(s)|1/2|µ̃(s)|1/2||∇ηt
2(., s)||ds

≤ R

(∫ ∞

0

|µ̃(s)|ds
)1/2(∫ ∞

0

|µ̃(s)|||∇ηt
2(., s)||2ds

)1/2

. (2.81)

Substituting (2.81) in (2.76), we end up with

d

dt
||z̃(., t)||H ≤ R

(∫ ∞

0

|µ̃(s)|ds
)1/2(∫ ∞

0

|µ̃(s)|||∇ηt
2(., s)||2ds

)1/2

. (2.82)

Solving the differential inequality, we get the following bound for ||z̃(., t)||H:

||z̃(., t)||H ≤ R

∫ ∞

0

|µ̃(s)|ds
∫ t

0

(∫ ∞

0

|µ̃(s)|||∇ητ
2 (., s)||2ds

)1/2

dτ. (2.83)

It is trivial that ||z̃(., t)||H tends to zero as |µ̃(s)| approaches to 0. This proves

the continuous dependence of the solution z on µ.
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chapter 3

THE INVERSE PROBLEM

FOR MEMORY KERNEL

IDENTIFICATION

3.1 Introduction

In this chapter, firstly we will define an inverse problem to identify the

memory kernel µ. Secondly, we will prove that this inverse problem has a

unique solution.

3.2 The identification of memory kernel

In Chapter 2, we have proved that if h ∈ L2(R+;L2(Ω)), p ∈ L∞(Ω),

z0 = (θ0, η0) ∈ H are given and the conditions (C1), (C2), (C3) on µ are satis-

fied then the problem

θt(x, t) = k0∆θ(x, t) +

∫ ∞

0

µ(s)∆ηt(x, s)ds+ h(x, t)− θ(x, t) on Ω× R+(3.1)

ηt
t(x, s) = θ(x, t)− η′(x, t− s) on Ω× R+ × R+ (3.2)

z(x, t) = 0, x ∈ ∂Ω, t > 0, (3.3)

z(x, 0) = z0, x ∈ Ω, s > 0 (3.4)
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has a unique solution z(x, t) = (θ(x, t), η(x, t− s)) where

θ ∈ L∞([0, T ], L2(Ω)) ∩ L2([0, T )], H1
0 (Ω)), ∀T > 0

η ∈ L∞([0, T ], L2
µ(R+, H1

0 (Ω))), ∀T > 0.

We can easily check that this problem is well-posed for the unknown functions

θ, η. In this section, we want to identify µ(s) besides θ(x, t) and ηt(x, s) ap-

pearing in the problem (3.1)-(3.4). It means that, we have one more unknown

function. Thus, the new problem we are interested in is ill-posed and is called

as an inverse problem for µ. It is clear that in this inverse problem θ(x, t) and

ηt(x, s) can not be determined uniquely with the conditions (3.3) and (3.4). To

solve this ill-posed problem uniquely, we must impose additional appropriate

constraints on θ(x, t) and η(x, t−s) which are called as final overdetermination

conditions. We propose

∫
Ω

θ(x, t)ϕ(x)dx = A(t) (3.5)

and ∫
Ω

η(x, t− s)ϕ(x)dx = B(t− s), (3.6)

as the final overdetermination conditions, where A(t), B(t− s) and ϕ ∈ D(Ω)

will be determined later.

In order to identify µ(s), θ(x, t) and ηt(x, s) in (3.1)-(3.6), we will follow the

technique given earlier in the study of the inverse problem (1.12)-(1.15). That

is, we will convert the inverse problem (3.1)-(3.6) to an operator equation for µ

and we will show that this operator equation has a fixed point. Using this value

of µ we find a direct problem for θ and η. In order to get the operator equation,

we will use Paley-Wiener representation (half Fourier transformation) given

in Section 1.2. Let us recall that for any f ∈ L2(0,∞), the half Fourier
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transformation is defined by

f̂(z) =
1√
2π

∫ ∞

0

eitzf(t)dt, z ∈ Π (3.7)

where Π = {(x, y) : y ≥ 0}. The mapping given by (3.7) is an isometry from

L2(0,∞) onto H2(Π).

(i) The operator Equation.

Since h(x, t) in (3.1) has the property that h(x, t) ∈ L2(R+, L2(Ω)), we can

compute the half Fourier transformation of (3.1):

θ̂t(x, t) = k0∆θ̂(x, t) +
̂

[

∫ ∞

0

µ(s)∆η(x, t− s)ds] + ĥ(x, t)− θ̂(x, t). (3.8)

If we multiply each term in (3.8) by ϕ(x) and integrate over Ω, we find

Â′(t) =
k0√
2π

∫ ∞

0

∫
Ω

eitz∆θ(x, t)ϕ(x)dxdt

+

∫
Ω

̂[∫ ∞

0

µ(s)∆η(x, t− s)ds

]
ϕ(x)dx

+ β̂(t)− Â(t), (3.9)

using (3.5) and (3.6) where, β̂(t) :=
∫

Ω
ĥ(x, t)ϕ(x)dx. We need to study the

integrant of the second term in the right hand side of (3.9):

̂[∫ ∞

0

µ(s)∆η(x, t− s)ds

]
=

1√
2π

∫ ∞

0

∫ ∞

0

eitzµ(s)∆η(x, t− s)dt ds. (3.10)
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Let us use the substitution ξ := t− s in (3.10) ; then

̂[∫ ∞

0

µ(s)∆η(x, t− s)ds

]
=

1√
2π

∫ ∞

0

∫ ∞

−s

e(ξ+s)izµ(s)∆η(x, ξ)dξds(3.11)

=
1√
2π

∫ ∞

0

∫ ∞

0

eiszeiξzµ(s)∆η(x, ξ)dξds

+
1√
2π

∫ ∞

0

∫ 0

−s

eiszeiξzµ(s)∆η(x, ξ)dξds.(3.12)

Using (3.7), the first term in (3.12) is

1√
2π

∫ ∞

0

∫ ∞

0

eiszeiξzµ(s)∆η(x, ξ)dξds =
√

2πµ̂(s)∆η̂(x, ξ) (3.13)

and the second term is

1√
2π

∫ ∞

0

∫ 0

−s

eiszeiξzµ(s)∆η(x, ξ)dξds =
1√
2π

∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξz∆η(x, ξ)dξds.

(3.14)

If we use (3.13) and (3.14) in (3.9) we get

Â′(t) = −Â(t) + β̂(t) + k0

∫
Ω

∆θ̂(x, t)ϕ(x)dx+
√

2πµ̂(s)

∫
Ω

∆η̂(x, ξ)ϕ(x)dx

+
1√
2π

∫
Ω

ϕ(x)

∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξz∆η(x, ξ)dξds dx. (3.15)

Solving (3.15) for µ̂(s), we get

µ̂(s) =
Â′(t) + Â(t)− β̂(t)− k0

∫
Ω

∆̂θ(x, t)ϕ(x)dx
√

2π
∫

Ω
∆̂η(x, ξ)ϕ(x)dx

−
1√
2π

∫
Ω
ϕ(x)

∫∞
0
eiszµ(s)

∫ 0

−s
eiξz∆η(x, ξ)dξdsdx

√
2π
∫

Ω
∆̂η(x, ξ)ϕ(x)dx

· (3.16)
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On the other hand, the half Fourier transform of (3.2) is

̂ηt(x, t− s) = θ̂(x, t)− ̂η′(x, t− s). (3.17)

By the definition , the term on the left hand side of (3.17) is

̂ηt(x, t− s) =

∫ ∞

0

e−itzηt(x, t− s)dt. (3.18)

Integration by parts in (3.18) yields

̂ηt(x, t− s) =
1√
2π

[−η0(x, s)− iz

∫ ∞

0

eitzη(x, t− s)dt]. (3.19)

The second term in the right hand side of (3.17) gives

̂η′(x, t− s) =
1√
2π

∫ ∞

0

eitz ∂

∂s
(η(x, t− s))dt

=
1√
2π

∂

∂s

(∫ ∞

0

eitzη(x, t− s)dt

)
. (3.20)

Substituting (3.19) and (3.20) in (3.17); and then multiplying the resulting

equation with ϕ(x) in the sense of L2, we get

−1√
2π

∫
Ω

η0(x, s)ϕ(x)dx − iz√
2π

∫ ∞

0

eitzB(t− s)dt

= Â(t)− 1√
2π

∂

∂s
(

∫ ∞

0

eitzB(t− s)dt). (3.21)

This equality gives a relatipn between A(t) and B(t− s).

(ii) The equivalence of The Inverse Problem and The Operator Equa-

tions

First, we assume that the inverse problem (3.1)-(3.6) has a solution

(θ(x, t), η(x, t− s), µ(s)). By following the steps for getting µ̂(s), we reach the
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operator equations (3.16) and (3.21).

Secondly, we assume that (3.16) and (3.21) are satisfied by a function µ(s).

If we substitute this µ(s) in (3.1), we get the direct problem (3.1)-(3.4), which

has a unique solution (θ(x, t), η(x, t − s)) by Theorem 2.1. Now we have to

show that the solution (θ(x, t), η(x, t− s)) satisfies the final overdetermination

conditions (3.5) and(3.6). To show that (3.5) is satisfied we transform (3.1) to

get

θ̂t(x, t) = k0∆̂θ(x, t) +
̂

[

∫ ∞

0

µ(s)∆η(x, t− s)ds] + ĥ(x, t)− θ̂(x, t). (3.22)

Multipliying (3.22) by ϕ(x) and integrating over Ω we get

∫
Ω

θ̂t(x, t)ϕ(x)dx = k0

∫
Ω

∆̂θ(x, t)ϕ(x)dx+
√

2π

∫
Ω

µ̂(s)∆̂η(x, ξ)ϕ(x)dx

+
1√
2π

∫
Ω

ϕ(x)

∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξz∆η(x, ξ)dξdsdx

+ β̂(t)−
∫

Ω

θ̂(x, t)ϕ(x)dx, (3.23)

where β̂(t) =
∫

Ω
ĥ(x, t)dx. Since µ(s) satisfies (3.16), we have the identity

Â′(t) + Â(t)− β̂(t)− k0

∫
Ω

∆̂θ(x, t)ϕ(x)dx

− 1√
2π

∫
Ω

ϕ(x)

∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξz∆η(x, ξ)dξds dx

=
√

2π

∫
Ω

µ̂(s)∆̂η(x, ξ)ϕ(x)dx. (3.24)

Subtracting (3.24) from (3.23) we find

∫
Ω

θ̂t(x, t)ϕ(x)dx− Â′(t) = −
∫

Ω

θ̂(x, t)ϕ(x)dx+ Â(t), (3.25)
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or ∫
Ω

[
θ̂t(x, t) + θ̂(x, t)

]
ϕ(x)dx = Â′(t) + Â(t). (3.26)

Using the definition of half Fourier transformation we can write (3.26) as

∫
Ω

1√
2π
ϕ(x)

∫ ∞

0

eitz[θt(x, t) + θ(x, t)]dtdx =
1√
2π

∫ ∞

0

eitz[A′(t) + A(t)]dt,

(3.27)

or

∫ ∞

0

eitz

((∫
Ω

ϕ(x) [θt(x, t) + θ(x, t)] dx

)
− [A′(t) + A(t)]

)
dt = 0. (3.28)

From (3.28) we deduce that

∫
Ω

ϕ(x) [θt(x, t) + θ(x, t)] dx− [A′(t) + A(t)] = 0, a.e t ∈ [0,∞) (3.29)

If we define

u(t) :=

∫
Ω

ϕ(x)θ(x, t)dx− A(t), (3.30)

(3.29) becomes

ut(t) + u(t) = 0, for a.e.t ∈ [0,∞) (3.31)

which has the solution u(t) = u(0)e−t. If we impose

A(0) =

∫
Ω

θ0(x)ϕ(x)dx

as a compatibility condition on A(t), then u(0) = 0 by (3.30). Hence, u(t) will

be the trivial solution of (3.31), which gives

A(t) =

∫
Ω

θ(x, t)ϕ(x)dx, (3.32)

showing that the final overdetermination condition (3.5) is satisfied.
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Secondly, we will show that (θ(x, t), η(x, t−s)) satisfies the condition (3.6).

We recall that, using the substitution η(x, t− s) =
∫ t

t−s
θ(x, τ)dτ , the problem

(1.32)-(1.34) takes the form (1.36)-(1.40). By the definition of B(t − s) and

A(t), we get that

B(t− s) =

∫
Ω

ϕ(x)η(x, t− s)dx =

∫
Ω

ϕ(x)

∫ t

t−s

θ(x, τ)dτdx

=

∫ t

t−s

∫
Ω

ϕ(x)θ(x, τ)dxdτ =

∫ t

t−s

A(x, τ)dτ.

This argument shows that B(t − s) is determined uniquely by A(t). Hence,

the second final overdetermination condition (3.6)is satisfied.

Since the inverse problem (3.1)-(3.6) and the couple of the operator equa-

tions (3.16),(3.21) are equivalent, we need to show the existence of a µ̂(s)

satisfying (3.16) and (3.21).

(iii) The Existence of The Solution of The Operator Equations

We will show that the operator equation (3.16)have a solution µ̂(s). Before

starting to study on the existence, we will try to write the equation (3.16) in

a compact form. From now on, the function ϕ(x) in (3.5) will be specified as

a solution of the eigenvalue problem

−∆ϕ(x) = λϕ(x), x ∈ Ω, (3.33)

ϕ(x) = 0, x ∈ ∂Ω. (3.34)

for the smallest eigenvalue λ. With this choice of ϕ(x),

the term −k0

∫
Ω

∆̂θ(x, t)ϕ(x)dx in (3.16) becomes

−k0

∫
Ω

∆̂θ(x, t)ϕ(x)dx = k0λ

∫
Ω

θ̂(x, t)ϕ(x) = k0λÂ(t)
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and the term
∫

Ω
∆̂η(x, ξ)ϕ(x)dx becomes

∫
Ω

∆̂η(x, ξ)ϕ(x)dx = −λ
∫

Ω

η̂(x, ξ)ϕ(x)dx = −λB̂(ξ).

Utilizing these identities, the operator equation (3.16) takes the form

µ̂(s) =
Γ̂(t)− λ√

2π

∫∞
0
eiszµ(s)

∫ 0

−s
eiξzB(ξ)dξds

−λ
√

2πB̂(ξ)
(3.35)

where

Γ̂(t) := Â′(t) + Â(t)− β̂(t) + k0λÂ(t). (3.36)

We may represent µ̂(s) as

µ̂(s) = N(z)− 1

2πB̂(ξ)

[∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξzB(ξ)dξds

]
(3.37)

or

µ(s) := (N(z))−1 + (Tµ)(s), (3.38)

where

N(z) :=
Γ̂(t)

−λ
√

2πB̂(ξ)
, (3.39)

(N(z))−1 is the inverse of N(z) with respect to the half Fourier transformation

and

̂(Tµ)(s) :=

[
−1

2πB̂(ξ)

∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξzB(ξ)dξds

]
. (3.40)

The Fixed point Argument

Now, we will show that the operator equation (3.40) has a fixed point in a

certain set. Since the operator T is linear, we will use the following fixed point

theorem.

Theorem 3.1. Suppose that
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(i) We are given an operator T : M ⊆ X → M , i.e., M is mapped into itself

by T ;

(ii) M is a closed nonempty set in a complete metric space (X, d);

(iii) T is contractive, i.e.,

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈M and for a fixed k, 0 ≤ k < 1.

Then, T has exactly one fixed point on M .

Proof. See, [40].

Now, we have to construct a set M satisfying the conditions of Theorem

3.1.

We observe that, the conditions (C2) and (C3) given in Chapter 1.1 are

satisfied for the value of µ(s) = e−αs, (α > 0), and the direct problem (3.1)-

(3.4) is uniquely soluble. Using this fact, we will start with the set

S := {e−αs : s ∈ [0,∞), for all α > ε > 0} ∪ {0}. (3.41)

We define the set M as

M :=

{
µ : µ =

n∑
i=1

aiρi, ρi ∈ S, n is finite or infinite, ai > 0

}
, (3.42)

which is a closed subset of L2(0,∞).

The Operator T is from M into M

Now, we will show that the operator T is from M into M . For this end, we

will fix µ in M and try to show that the image of µ(s) under T will be an ele-

ment of M . Any element µ of M is written as µ =
∑n

j=1 ajρj, ρj ∈ S, ∀j, .

We can easily show that
∫∞

0
(e−αjs)2ds ≤ ∞, for all αj > 0. Hence , e−αjs ∈

50



L2(0,∞). Since L2(0,∞) is a vector space, any linear combinations of e−αjs

is an element of L2(0,∞). In particular µ(s) ∈ L2(0,∞). Therefore, µ(s) is

transformable into H2(Π). The half Fourier transformation of e−αjs is

ê−αjs =

∫ ∞

0

e−izse−αjsds =
1

αj − iz
.

Since the half Fourier transformation is linear, the transformation of µ(s) will

be of the form

µ̂(s) =
l∑

j=1

aj
1

αj − iz
. (3.43)

From (3.40), we know that

T̂ (µ) =
−1

2πB̂(ξ)

[∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξzB(ξ)dξds

]

and

B̂(ξ)T̂ (µ) :=
−1

2π

[∫ ∞

0

eiszµ(s)

∫ 0

−s

eiξzB(ξ)dξds

]
. (3.44)

Since µ(s) ∈ M, µ(s) =
∑`

j=1 aje
−αjs. We want to show that T (µ) ∈ M .

We have proved that, the transformation of any element in M is of the form

(3.43), so if T (µ) ∈M , then

T̂ (µ) =
n∑

j=1

bj
1

βj − iz
. (3.45)

Writing (3.45) in (3.44), we get

−1

2π

∫ ∞

0

eisz

(∑̀
j=1

aje
−αjs

)∫ 0

−s

eiξzB(ξ)dξds =
1√
2π

(
B̂(ξ)

m∑
j=1

bj
βj−iz

)
. (3.46)
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The left hand side of (3.46) may be written in the form

− 1

2π

∑̀
j=1

aj

∫ ∞

0

eisztj(s, z)ds,

where tj(s, z) = e−αjs
∫ 0

−s
eiξzB(ξ)dξ. Using the basis of H2(Π), we can write

the left hand side of (3.46) as

−1

2(π)3/2

∑̀
j=1

aj

∞∑
n=0

kjn
(z − i)n

(z + i)n+1
=

−1

2(π)3/2

∞∑
n=0

(∑̀
j=1

ajkjn

)
(z − i)n

(z + i)n+1

=
∞∑

n=0

Kn(l)
(z − i)n

(z + i)n+1
,

where Kn(l) = −1
2(π)3/2

∑`
j=1 ajkjn.

By the same way, the right hand side of (3.46), may be written also

1√
2π3/2

∞∑
n=0

gn
(z − i)n

(z + i)n+1

∞∑
n=0

( m∑
j=1

bjhjn

)
(z − i)n

(z + i)n+1
, (3.47)

where gn’s are Fourier coefficients of B̂(ξ) and hjn’s are Fourier coefficients

of
bj

βj−iz
with respect to the basis of H2(Π). Substituting 1√

2π3/2

∑m
j=1 bjhjn =

Fn(m), the equation (3.47) becomes

1√
2π3/2

∞∑
n=0

gn
(z − i)n

(z + i)n+1

∞∑
n=0

( m∑
j=1

bjhjn

)
(z − i)n

(z + i)n+1

=
∞∑

n=0

n∑
k=0

gkFn−k(m)
(z − i)n

(z + i)n+1
.

Sustituting these in (3.46), we have

∞∑
n=0

Kn(l)
(z − i)n

(z + i)n+1
=

∞∑
n=0

n∑
k=0

gkFn−k(m)
(z − i)n

(z + i)n+1
,
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or
n∑

k=0

gkFn−k(m) = Kn(l).

This equality shows that, we can find proper Fourier coeffcients of the function

in (3.45) for suitably chosen B(ξ). So, we deduce that the operator T is from

M into M .

The operator T is a Contraction Mapping

Now, we will show that, T is a contraction mapping. For this end, we

need to estimate L2(0,∞) norm of T . Since, the half Fourier transform is an

isometry from L2(0,∞) onto H2(Π), we will estimate H2(Π) norm of T̂ (µ).

By the definition of H2(Π) norm, we have

||T̂ (µ1)−T̂ (µ2)||2H2(Π) =
1

4(π)2
sup
y>0

∫ ∞

−∞

∣∣∣∣∣
∫∞

0
eisz(µ1(s)− µ2(s))

∫ 0

−s
eiξzB(ξ)dξds

B̂(ξ)

∣∣∣∣∣
2

dx.

(3.48)

Substituting g(z, s) :=
∫ 0

−s
eiξzB(ξ)dξ in (3.48), it becomes

||T̂ (µ1)− T̂ (µ2)||2H2(Π) =
1

4(π)2
sup
y>0

∫ ∞

−∞

∣∣∣∣∣
∫∞

0
eisz(µ1(s)− µ2(s))g(z, s)ds

B̂(ξ)

∣∣∣∣∣
2

dx.

(3.49)

The term in the right hand side of (3.49) satisfies the inequality

1

4(π)2
sup
y>0

∫ ∞

−∞

∣∣∣∣∣
∫∞

0
eiszµ(s)g(z, s)ds

B̂(ξ)

∣∣∣∣∣
2

dx

≤ 1

4(π)2
sup
y>0

∫ ∞

−∞

sups∈(0,∞) |g(z, s)|2

|B̂(ξ)|2
|µ̂(s)|2dx

≤ 1

4(π)2

(
sup
z∈Π

sups∈(0,∞) |g(z, s)|2

|B̂(ξ)|2

)
sup
y>0

∫ ∞

−∞
|µ̂(s)|2dx

=
1

4(π)2

(
sup
z∈Π

sups∈(0,∞) |g(z, s)|2

|B̂(ξ)|2

)
||µ̂(s)||2H2(Π). (3.50)
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Using (3.50) in (3.49), we find that

||T̂ (µ1)− T̂ (µ2)||2 ≤
1

4(π)2

(
sup
z∈Π

sups∈(0,∞) |g(z, s)|2

|B̂(ξ)|2

)
||µ̂(s)||2H2(Π). (3.51)

The equation (3.51) shows that if B(ξ) satisfies the property that

1

4(π)2

(
sup
z∈Π

sups∈(0,∞) |g(z, s)|2

|B̂(ξ)|2

)
< 1,

then the operator T is a contraction mapping.

The operator T and the set M satisfy the conditions given in the Theorem

3.1. So, Using this theorem, we prove that there exist a unique µ satisfying

(3.37). Hence the inverse problem (3.1)-(3.4) with the final overdetermination

conditions (3.5),(3.6) has a unique solution (z, µ).
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chapter 4

TWO INVERSE PROBLEMS

FOR THE SOURCE TERM

IDENTIFICATION

4.1 Introduction

In this chapter, recovering of the evolution of a source term and recovering

a source term depending on x of the problem (3.1)-(3.4) with zero boundary

and initial conditions will be studied.

4.2 Recovering the Evolution of The Source

Term

We will consider the problem

θt(x, t)− k0∆θ(x, t)−
∫ ∞

0

µ(s)∆η(x, t− s)ds+ θ(x, t) = H(t)M0(x, t)(4.1)

ηt(x, t− s) = θ(x, t)− ηs(x, t− s) (4.2)

z(x, 0) = 0 x ∈ Ω (4.3)

z(x, t) = 0 x ∈ ∂Ω t, s > 0, (4.4)
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where z(x, t) = (θ(x, t), η(x, t− s)) and the final overdetermination conditions

are

∫
Ω

θ(x, t)ϕ1(x)dx = A(t), (4.5)∫
Ω

η(x, t− s)ϕ1(x)dx = B(t− s), (4.6)

where ϕ1(x) ∈ D(Ω).

Definition 4.1. A pair of functions (z(x, t), H(t)) is said to be a generalized

solution of the inverse problem (4.1)-(4.6) if z ∈ H, H ∈ L2(0,∞) and all of

the relations (4.1) - (4.6) are satisfied.

To show the existence of the solution defined above, we will construct a

linear operator equation under the assumptions

A ∈ L∞[0,∞), (4.7)

B ∈ L∞[0,∞), with respect to t and

B ∈ L2
µ(R+) with respect to s, (4.8)

ϕ1 ∈ D(Ω) (4.9)

and

M0 ∈ L∞(Ω× [0,∞)). (4.10)

For this construction, first, we multiply (4.1) by ϕ1(x), integrate over Ω to get

∫
Ω

θt(x, t)ϕ1(x)dx − k0

∫
Ω

θ(x, t)∆ϕ1(x)dx−
∫ ∞

0

µ(s)

∫
Ω

η(x, t− s)∆ϕ1(x)dxds

+

∫
Ω

θ(x, t)σ(x)dx = H(t)

∫
Ω

M0(x, t)ϕ1(x)dx. (4.11)
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We employ (4.5) in (4.11) to find

A′(t) + A(t)− k0

∫
Ω

θ(x, t)∆ϕ1(x)dx −
∫ ∞

0

µ(s)

∫
Ω

η(t− s)∆ϕ1(x)dxds

= H(t)

∫
Ω

M0(x, t)ϕ1(x)dx. (4.12)

Solving (4.12) for H(t), we find

H(t) =
A′(t) + A(t)∫

Ω
M0(x, t)ϕ1(x)dx

− 1∫
Ω
M0(x, t)ϕ1(x)dx

×
[
k0

∫
Ω

θ(x, t)∆ϕ1(x)dx+

∫ ∞

0

µ(s)

∫
Ω

η(t− s)∆ϕ1(x)dxds

]
. (4.13)

We set

G(t) := −
∫

Ω

M0(x, t)ϕ1(x)dx, (4.14)

ψ(t) := −A
′(t) + A(t)

G(t)
(4.15)

and

(TH)(t) =
1

G(t)

[
k0

∫
Ω

θ(x, t)∆ϕ1(x)dx+

∫ ∞

0

µ(s)

∫
Ω

η(x, t− s)∆ϕ1(x)dxds

]
.

(4.16)

Thus, one of the relation between H and z = (θ, η) may be specified as a linear

operator

T : L2(0,∞) → L2(0,∞)

with values

H(t) = (TH)(t) + ψ(t). (4.17)

If we multiply (4.2) by ϕ1(x), integrate over Ω and employ (4.5),(4.6), we get

Bt(t− s) = A(t)−Bs(t− s) (4.18)
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Theorem 4.2. The inverse problem (4.1)-(4.6)is soluble if and only if the

operator equations (4.17),(4.18) are soluble.

Proof. If the inverse problem (4.1)-(4.6) has a solution then all of the relations

(4.1) - (4.6) hold. We follow the steps to get (4.17),(4.18). So, (4.17), (4.18)

are soluble.

To prove the ” only if ” part, we assume that (4.17) has a solution H(t).

We substitute this H(t) in the equation (4.1), then (4.1)-(4.4) becomes a direct

problem for (θ(x, t), ηt(x, s)) which has a unique solution by Theorem 2.1. So

we need only to show that the solution of the direct problem (4.1) - (4.4)

satisfies the final overdetermination conditions (4.5)-(4.6). To this end, let

∫
Ω

θ(x, t)ϕ1(x)dx = A1(t) (4.19)

and ∫
Ω

η(x, t− s)ϕ1(x)dx = B1(t− s). (4.20)

Multiplying (4.1) by σ(x), integrating over Ω and employing (4.19), we get

A′1(t) − k0

∫
Ω

θ(x, t)∆ϕ1(x)dx−
∫ ∞

0

µ(s)

∫
Ω

η(x, t− s)∆ϕ1(x) + A1(t)

= H(t)

∫
Ω

M0(x, t)ϕ1(x)dx. (4.21)

Since (4.17) is satisfied, we have also

A′(t) − k0

∫
Ω

θ(x, t)∆ϕ1(x)dx−
∫ ∞

0

µ(s)

∫
Ω

η(x, t− s)∆ϕ1(x) + A(t)

= H(t).

∫
Ω

M0(x, t)ϕ1(x)dx. (4.22)

58



If we subtract (4.22) from (4.21), we get

(A1 − A)′(t) + (A1 − A)(t) = 0. (4.23)

The differential equation (4.23) implies that (A1 − A)(t) = (A1 − A)(0)e−t.

Since (A1 − A)(0) = 0, we conclude that A1 = A.

For the second final overdetemination conditions, we must remember that

η(x, t− s) =

∫ t

(t−s)

θ(x, τ)dτ. (4.24)

By(4.20), we have B1(t − s) =
∫

Ω
η(x, t − s)ϕ1(x)dx. Using (4.24) in this

equality we have

B1(t− s) =

∫
Ω

∫ t

(t−s)

θ(x, τ)dτϕ1(x)dx

=

∫ t

(t−s)

A1(x, τ)dτ.

Since A1 = A, we have then,

B1(t− s) =

∫ t

(t−s)

A(x, τ)dτ = B(t− s).

We have shown that, to solve the inverse problem (4.1)-(4.6), is equaivalet

to find a fixed point of (4.17)-(4.18). Now, we will show that the operator

equation (4.17) has a fixed point.

Theorem 4.3. If G ∈ L∞(0,∞) and |G(t)| > δ > 0, ∀t ∈ [0,∞) and if

M0 ∈ L∞(Ω× R+) satisfying

1

δ

|Ω|
2
√
εα

(
||M0||L∞(Ω×R+)

)(
k0||∆ϕ1||L∞(Ω) + ||∇ϕ1||L∞(Ω)(µ̃)1/2

)
≤ 1,
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where µ̃ =
∫∞

0
µ(s)ds, then (4.17) has a unique solution H(t).

Proof. Our aim is to show the existence of the solution of (4.17) by using the

contraction mapping principle since T is linear.

Now, we will estimate the L2(0,∞) norm of T .

Using (4.16) and keeping in mind that |G(t)| > δ, ∀t ∈ [0,∞), we get

||T (H)||L2(0,∞) =

|| 1

G(t)

[
k0

∫
Ω

θ(x, t)∆ϕ1(x)dx+

∫ ∞

0

µ(s)

∫
Ω

η(t− s)∆ϕ1(x)dxds

]
||L2(0,∞)

≤ δ−1||k0

∫
Ω

θ(x, t)∆ϕ1(x)dx+

∫ ∞

0

µ(s)

∫
Ω

η(t− s)∆ϕ1(x)dxds||L2(0,∞)

≤ δ−1

(
||k0

∫
Ω

θ(x, t)∆ϕ1(x)dx||L2(0,∞)

+||
∫ ∞

0

µ(s)

∫
Ω

η(x, t− s)∆ϕ1(x)dxds||L2(0,∞)

)
. (4.25)

First, we estimate

||k0

∫
Ω

θ(x, t)∆ϕ1(x)dx||2L2(0,∞).

By definition, we have

||
∫

Ω

θ(x, t)∆ϕ1(x)dx||2L2(0,∞) =

∫ ∞

0

(∫
Ω

θ(x, t)∆ϕ1(x)dx

)2

dt. (4.26)

We will study only the integrand

(∫
Ω
θ(x, t)∆ϕ1(x)dx

)2

.

(∫
Ω

θ(x, t)∆ϕ1(x)dx

)2

≤
(
||∆ϕ1(x)||L∞(Ω)

∫
Ω

θ(x, t)dx

)2

= ||∆ϕ1||2L∞(Ω)(

∫
Ω

θ(x, t)dx)2. (4.27)

By Hölder’s inequality, the second term in the right hand side of (4.27) satisfy
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the following inequality

(

∫
Ω

θ(x, t)dx)2 ≤ (

∫
Ω

(θ(x, t))2dx)(

∫
Ω

dx) = ||θ(., t)||2L2(Ω)|Ω|. (4.28)

Using (4.28) and (4.27) in (4.26), we end up with

||
∫

Ω

θ(x, t)∆ϕ1(x)dx||2L2(0,∞) ≤ ||∆ϕ1||2L∞(Ω)|Ω|
∫ ∞

0

||θ(., t)||2L2(Ω)dt. (4.29)

We may estimate ||θ||L2((0,∞),L2(Ω)), using

||θ(., t)||L2(Ω) ≤ ||z(t)||H ≤
1

2
√
εα
||h(t)||L2(Ω) =

1

2
√
εα
||H(t)M0(., t)||L2(Ω),

(4.30)

where α := min{(2k0λ0 + 2 − ε), δ}, λ0 is Poincaré inequality multiple, ε is

Young’s inequality multiple and δ as in C2.

We start with the following identity

||θ||2L2((0,∞),L2(Ω)) =

∫ ∞

0

||θ(., t)||2L2(Ω)dt (4.31)

Using (4.30) in (4.31), we get

||θ||L2((0,∞),L2(Ω)) ≤ ||z||L2((0,∞),H) ≤
1

2
√
εα
||HM0||L2((0,∞),L2(Ω))

=
1

2
√
εα

(∫ ∞

0

∫
Ω

(H(t)M0(x, t))
2dxdt

)1/2

≤
(

sup
x∈Ω,t∈(0,∞)

(M0(x, t))
2|Ω| 1

4εα
||H||2L2(0,∞)

)1/2

= ||M0||L∞(Ω×(0,))|Ω|1/2 1

2
√
εα
||H||L2(0,∞). (4.32)
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If we employ (4.27) and (4.32) in (4.26), we get

||k0

∫
Ω

θ(x, t)∆ϕ1(x)dx||L2(0,∞) ≤

k0||∆ϕ1(x)||L∞(Ω)
|Ω|

2
√
εα

(||M0||L∞(Ω×(0,∞)))
2||H||L2(0,∞). (4.33)

Next, we estimate

||
∫ ∞

0

µ(s)

∫
Ω

η(x, t− s)∆ϕ1(x)dxds||2L2(0,∞)

= ||
∫ ∞

0

µ(s)

∫
Ω

∇η(x, t− s)∇ϕ1(x)dxds||2L2(0,∞) (4.34)

=

∫ ∞

0

(∫ ∞

0

µ(s)

∫
Ω

∇η(x, t− s)∇ϕ1(x)dxds

)2

dt. (4.35)

We will study the integrand of (4.35)

(∫ ∞

0

µ(s)

∫
Ω

∇η(x, t− s)∇ϕ1(x)dxds

)2

≤

||∇ϕ1||2L∞(Ω)

(∫ ∞

0

µ(s)

∫
Ω

∇η(x, t− s)dxds

)2

. (4.36)

The term

(∫∞
0
µ(s)

∫
Ω
∇η(x, t− s)dxds

)2

in (4.36) may be estimated as

(∫ ∞

0

µ(s)

∫
Ω

∇η(x, t− s)dxds

)2

=

(∫ ∞

0

(µ(s)1/2)(µ(s)1/2)

∫
Ω

∇η(x, t− s)dxds

)2

≤
[
(

∫ ∞

0

µ(s)ds)1/2(

∫ ∞

0

µ(s)(

∫
Ω

∇η(x, t− s)dx)2ds)1/2

]2

= µ̃

(∫ ∞

0

µ(s)(

∫
Ω

∇η(x, t− s)dx)2ds

)
≤ µ̃|Ω|

∫ ∞

0

µ(s)||∇η(., t− s)||2L2(Ω)ds ≤ µ̃|Ω|||z(t)||2H, (4.37)
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where µ̃ =
∫∞

0
µ(s)ds. Using (4.37) in (4.35), we conclude that

||
∫ ∞

0

µ(s)

∫
Ω

∇η(x, t− s)∇ϕ1(x)dxds||L2(0,∞)

≤ ||∇ϕ1||L∞(Ω)(µ̃)1/2|Ω|1/2||z(t)||H. (4.38)

We recall that

||HM0||L2((0,∞),L2(Ω) =

(∫ ∞

0

∫
Ω

(H(t)M0(x, t))
2dxdt

)1/2

≤
(

(||M0||L∞(Ω×(0,∞)))
2|Ω| 1

4εα

)1/2

||H||L2(0,∞).

Using this inequality in (4.30), we find

||z||L2(0,∞),H ≤
|Ω|1/2

2
√
εα

(
(||M0||L∞(Ω×(0,∞)))

)
||H||L2(0,∞) (4.39)

If we employ (4.39) in (4.38), we get that

||
∫ ∞

0

µ(s)

∫
Ω

∇η(x, t− s)∇ϕ1(x)dxds||L2(0,∞)

≤ ||∇ϕ1||L∞(Ω)(µ̃)1/2|Ω|1/2 |Ω|1/2

2
√
εα

(
||M0||L∞(Ω×(0,∞))

)
||H||L2(0,∞).(4.40)

We use (4.33) and (4.40) in (4.25) to end up with

||(TH)(t)|| ≤ 1

δ

(
k0||∆ϕ1||L∞(Ω)

|Ω|
2
√
εα

(
||M0||L∞(Ω×(0,∞))

)
+ ||∇ϕ1||L∞(Ω)(µ̃)1/2 |Ω|

2
√
εα

(
||M0||L∞(Ω×(0,∞))

)
||H||L∞(0,∞). (4.41)

Since, we assumed that, M0 satisfies

1

δ

|Ω|
2
√
εα

(
||M0||L∞(Ω×(0,∞))

)(
k0||∆ϕ1||L∞(Ω) + ||∇ϕ1||L∞(Ω)(µ̃)1/2

)
< 1,
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then the operator T will be contraction mapping, therefore it will have a unique

fixed point which is H.

4.3 Recovering a Source Term of The Form

K(x)M0(x, t).

We will consider the inverse problem of recovering K(x) satisfying

θt(x, t)− k0∆θ(x, t)−
∫ ∞

0

µ(s)∆η(t− s)ds+ θ(x, t) = K(x)M0(x, t)(4.42)

ηt(x, t− s) = θ(x, t)− ηs(x, t− s), x ∈ Ω, t, s > 0 (4.43)

z(x, 0) = 0 x ∈ Ω (4.44)

z(x, t) = 0 x ∈ ∂Ω, t, s > 0 (4.45)

where z(x, t) = (θ(x, t), η(x, t−s)) and the final over determination conditions

θ(x, T ) = γ(x) (4.46)

η(x, T − s) = β(x, s). (4.47)

Definition 4.4. A pair of functions (z,K) is said to be generalized solution of

the inverse problem (4.42)-(4.47) if z ∈ H, K ∈ L2(Ω) and all of the relations

(4.42)-(4.47) are satisfied.

We will show the existence and uniqueness of the solution defined above

by reducing the problem (4.42)-(4.47) in to an operator equation for K(x). To

this end, we assume that

γ ∈ H1
0 (Ω), β ∈ L2

µ((0,∞), H1
0 ), (4.48)
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and

M0 ∈ L∞(Ω× (0,∞)). (4.49)

First, we replace t by T in (4.42) and get

θt(x, T )−k0∆θ(x, T )−
∫ ∞

0

µ(s)∆η(T−s)ds+θ(x, T ) = K(x)M0(x, T ). (4.50)

Employing (4.46) and (4.47) in (4.50), we end up with

θt(x, T )− k0∆γ(x)−
∫ ∞

0

µ(s)∆β(x, s)ds+ γ(x) = K(x)M0(x, T ). (4.51)

If we solve (4.51) for K(x), we find

K(x) =
−k0∆γ(x)−

∫∞
0
µ(s)∆β(x, s)ds+ γ(x)

M0(x, T )
+

θt(x, T )

M0(x, T )
· (4.52)

Setting

Φ(x) =
−k0∆γ(x)−

∫∞
0
µ(s)∆β(x, s)ds+ γ(x)

M0(x, T )
, (4.53)

and

(AK)(x) :=
θt(x, T )

M0(x, T )
, (4.54)

the correspondence between z = (θ, η) and K(x) may be given as

K(x) = Φ(x) + (AK)(x). (4.55)

Second, we again replace t by T in (4.43) and get

ηt(x, T − s) = γ(x)− ηs(x, T − s), x ∈ Ω, s > 0 (4.56)

A is a linear operator from L2(Ω) to L2(Ω) if M0(x, T ) > δ > 0, ∀x ∈ Ω .

Theorem 4.5. Assume that the constant k0 in (4.42) is such that − 1
k0

is not
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an eigenvalue for ∆ in Ω. Then, the inverse problem (4.42)-(4.47) is soluble

if and only if the operator equations(4.55),(4.56) are soluble.

Proof. If the inverse problem (4.42)-(4.47) is soluble, we follow the steps to

get (4.55) and (4.56). Hence, we conclude that (4.55),(4.56) are soluble.

Now, we assume that (4.55) and (4.56) have a solution K(x). If we substi-

tute this value of K(x) in (4.42), we get a direct problem (4.42)-(4.45) which

has a unique solution (θ(x, t), ηt(x, s)) by Theorem 2.1. The problem is whether

this solution (θ(x, t), ηt(x, s)) satisfies (4.46),(4.47) or not.

By the discussions in Chapter 1.1, we know that, the problem (4.42)-(4.45)

is equivalent to

θt(x, t)− k0∆θ(x, t)−
∫ t

−∞
k(t− s)∆θ(s)ds+ θ(x, t) = K(x)M0(x, t) (4.57)

subject to the conditions

θ(x, t) = 0 x ∈ ∂Ω, t > 0 (4.58)

θ(x, 0) = 0 x ∈ Ω. (4.59)

Then, (4.57) gives

θt(x, T )− k0∆θ(x, T )−
∫ T

−∞
k(T − s)∆θ(s)ds+ θ(x, T ) = K(x).M0(x, T ).

(4.60)

Since (4.55) holds, (4.51) must hold. Because of the equivalence of the prob-

lems given above (4.51) takes the form

θt(x, T )− k0∆γ(x)−
∫ T

−∞
k(T − s)∆θ(s)ds+ γ(x) = K(x).M0(x, T ). (4.61)
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Subtracting (4.61) from (4.60), we find

k0∆(γ(x)− θ(x, T ))− (γ(x)− θ(x, T )) = 0. (4.62)

Since γ(x)|∂Ω = θ(x)|∂Ω, (4.62) has homogeneous boundary conditions. We

assumed that − 1
k0

is not an eigenvalue for ∆ in Ω then (ϕ(x) − θ(x, T )) = 0

showing that θ(x, t) satisfies (4.46).

Theorem 4.6. Assume that M0(x, t) ∈ L∞(Ω×(0,∞)), |M0t| ∈ L1((0,∞)L∞(Ω))

and |M0(x, T )| > δ > 0,∀x ∈ Ω. If M0t satisfies the inequality

1

2
√
εα

1

δ
||K||

(∫ ∞

0

sup
x∈Ω

|M0t(x, t)|dt
)1/2

< 1,

then K(x) = Φ(x) + AK has a unique solution in L2(Ω).

Proof. Since the operator A is linear, we use contraction mapping principle

for the proof. We estimate L2(Ω) norm of A as follows: First, we differentiate

(4.42) and (4.43) to get

θtt(x, t)− k0∆θt(x, t)−
∫ ∞

0

µ(s)∆ηt(t− s)ds+ θt(x, t) = ht(x, t) (4.63)

ηtt(x, t− s) = θt(x, t)− ηst(x, t− s), x ∈ Ω, t, s > 0 (4.64)

We multiply (4.63) by θt(x, t) in the sense of L2(Ω) and get

1

2

d

dt
||θt(t)||2 + k0||∇θt(t)||2 + 〈∇ηt,∇θt〉µ + ||θt(t)||2 = 〈ht, θt〉. (4.65)

And we multiply (4.64) by −∆η(x, t− s) in the sense of L2
µ to get

1

2

∫ ∞

0

µ(s)
d

dt
||∇ηt||2ds− 〈∇ηt,∇θt〉µ −

1

2

∫ ∞

0

µ
′
(s)||∇ηt||2ds = 0 (4.66)
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We add (4.65) and (4.66) to find

1

2

d

dt
||zt(t)||2H+k0||∇θt(t)||2+||θt(t)||2−

1

2

∫ ∞

0

µ
′
(s)||∇ηt||2ds = 〈ht, θt〉. (4.67)

Using the fact µ
′
+δµ ≤ 0, δ > 0 in (4.67), multiplying the resulting inequal-

ity by 2 and using Schwarz inequality for the term in the right hand side of

(4.67), we end up with

d

dt
||zt(t)||2H + 2k0||∇θt(t)||2 + 2||θt(t)||2 + δ

∫ ∞

0

µ(s)||∇ηt||2ds ≤ ||ht|||θt|||

(4.68)

If we use Poincaré inequality for the second term in the left hand side of (4.68),

we find

d

dt
||zt(t)||2H + 2k0λ0||θt(t)||2 + 2||θt(t)||2 + δ

∫ ∞

0

µ(s)||∇ηt||2ds ≤ ||ht||||θt||

(4.69)

Using Young’s inequality with ε in the right hand side of (4.69), we may write

it in the following form

d

dt
||zt(t)||2H+(2k0λ0 +2− ε)||θt(t)||2 +δ

∫ ∞

0

µ(s)||∇ηt||2ds ≤
1

4ε
||ht||2. (4.70)

We set α := min{(2k0λ0 + 2− ε), δ} to write (4.70) as

d

dt
||zt(t)||2H + α||zt(t)||2H ≤

1

4ε
||ht||2. (4.71)

Solving the differential inequality (4.71), we find

||zt(t)||2H ≤
1

4εα
||ht||2L2(R+,L2(Ω)). (4.72)
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We know that

||ht||2L2(R+,L2(Ω)) =

∫ ∞

0

||ht(t)||2dt =

∫ ∞

0

||K(.)M0t(., t)||2dt. (4.73)

Using (4.73) in (4.72), we get the the following estimate

||zt(t)||2H ≤
1

4εα
||K||2

∫ ∞

0

sup
x∈Ω

|M0t(x, t)|dt. (4.74)

By (4.54), we deduce that

||(AK)(x)|| ≤ 1

2
√
εα

1

δ
||K||

(∫ ∞

0

sup
x∈Ω

|M0t(x, t)|dt
)1/2

. (4.75)

Since, we assumed that M0t satisfies

1

2
√
εα

1

δ

(∫ ∞

0

sup
x∈Ω

|M0t(x, t)|dt
)1/2

< 1,

we get that, the operator A is a contraction mapping and it will have a unique

fixed point K.

4.4 Recovering a Source Term of The Form

K(x).M0(x, t)using integral

final overdetermination condition

We will consider the problem (4.42)-(4.45) with the final overdetermination

conditions of the type ∫ T

0

θ(x, t)ϕ2(t)dt = γ(x) (4.76)
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and ∫ T

0

η(x, t− s)ϕ2(t)dt = β(x, s), (4.77)

where ϕ2(t) ∈ D(0, T ). We will covert the inverse problem (4.42)-(4.45) with

(4.76)-(4.77) to an operator equation. To this end, first we multiply (4.42)

with ϕ2(t), integrate over (0, T ) and employ (4.76)-(4.77) to get

∫ T

0

θt(x, t)ϕ2(t)dt− k0∆γ(x)−
∫ ∞

0

µ(s)∆β(x, s)ds+ γ(x) = K(x)M(x),

(4.78)

where

M(x) =

∫ T

0

M0(x, t)ϕ2(t)dt, (4.79)

assuming M(x) > δ > 0. We solve (4.78) for K(x) and find

K(x) =
−k0∆γ(x)−

∫∞
0
µ(s)∆β(x, s)ds+ γ(x)

M(x)
+

∫ T

0
θt(x, t)ϕ2(t)dt

M(x)
. (4.80)

We set

Φ(x) :=
k0∆γ(x)−

∫∞
0
µ(s)∆β(x, s)ds+ γ(x)

M(x)
(4.81)

(PK)(x) :=

∫ T

0
θt(x, t)ϕ2(t)dt

M(x)
(4.82)

The correspondence between z = (θ, η) and K(x) may be given as follows;

K(x) = Φ(x) + (PK)(x), (4.83)

where P is a linear operator from L2(Ω) to L2(Ω) if M(x) > δ > 0,∀x ∈ Ω.

Second, we multiply (4.43) by ϕ2(t) and integrate over (0, T ) , employ (4.76)
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and get identity

∫ T

0

ηt(x, t− s)ϕ2(t)dt = γ(x)−
∫ T

0

ηs(x, t− s)ϕ2(t)dt (4.84)

Theorem 4.7. Assume that the constant k0 in (4.42) is such that − 1
k0

is

not an eigenvalue for ∆ in Ω. Then, the inverse problem (4.42)-(4.45) with

(4.76),(4.77) is soluble if and only if the operator equations(4.83),(4.84)are

soluble.

Proof. If the inverse problem (4.42)-(4.45) with (4.76),(4.77) is soluble, then

we follow the steps to get the operator equations (4.83),(4.84). Hence , we

deduce that the operator equations are soluble.

For the ”only if” part, we assume that (4.83), (4.84) has a solution K(x),

if we substitute this value of K(x) in (4.42), we get the direct problem (4.42)-

(4.47) which has a unique solution (θ(x, t), ηt(x, s)) by Theorem 2.1.

We have the some problem as in the proof of Theorem 4.5. The problem

is whether this solution (θ(x, t), ηt(x, s)) satisfies (4.76), (4.77) or not. By the

discussions in Chapter 1.1, the problem (4.42)-(4.45) is equivalent to (4.57)-

(4.59). Let us use this equivalence, if we multiply (4.57) by ϕ2(t) and integrate

over (0, T ), we get

∫ T

0

θt(x, t)ϕ2(t)dt − k0

∫ T

0

∆θ(x, t)ϕ2(t)dt−
∫ T

0

ϕ2(t)

∫ t

−∞
k(t, s)∆θ(x, s)ds

+

∫ T

0

θ(x, t)ϕ2(t)dt = K(x)

∫ T

0

M0(x, t)ϕ2(t)dt (4.85)

Since (4.83) has a solution, it satisfies

∫ T

0

θt(x, t)ϕ2(t)−k0∆ϕ(x)−
∫ ∞

0

µ(s)∆β(x, s)ds+γ(x) = K(x).

∫ T

0

M0(x, t)ϕ2(t)dt

(4.86)

Because of the equivalence of (4.42)-(4.45) and (4.57)-(4.59), (4.86) takes the
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form

∫ T

0

θt(x, t)ϕ2(t)dt − k0∆γ(x)−
∫ T

0

ϕ2(t)

∫ t

−∞
k(t− s)∆θ(x, s)ds+ ϕ(x)

= K(x).

∫ T

0

M0(x, t)ϕ2(t)ds (4.87)

Subtracting (4.87) from (4.85), we get

−k0[∆(

∫ T

0

θ(x, t)ϕ2(t)dt− γ(x))] + [

∫ T

0

θ(x, t)ϕ2(t)dt− γ(x)] = 0. (4.88)

Since
∫ T

0
θ(x, t)ϕ2(t)dt|∂Ω = γ(x)|∂Ω, the equation (4.88) has homogeneous

boundary condition. We assumed that − 1
k0

is not an eigenvalue for ∆ in

Ω, then the equation (4.88) has only the trivial solution. Hence, γ(x) =∫ T

0
θ(x, t)ϕ2(t)dt, which shows that θ(x, t) satisfies (4.76).

Theorem 4.8. Assume that |M(x)| > δ > 0, M0t ∈ L1((0,∞), L∞(Ω)).

If M0t satisfies the inequality

1

2
√
εα

1

δ
ϕ̃2

(∫ ∞

0

sup
x∈Ω

|Mt(x, t)|dt
)1/2

< 1,

where ϕ̃2
2 =

∫ T

0
ϕ2(τ)

2dτ, then the operator equation (4.83) has a unique so-

lution K(x) in L2(Ω).

Proof. For the proof, we use contracting mapping principle. Thus, we need to

estimate L2(Ω) norm of (PK)(x). By the definition of (PK)(x), we have

||(PK)||2 = ||
∫ T

0
θt(x, t)ϕ2(t)dt

M(x)
||2. (4.89)
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Since M(x) > δ > 0, (4.89) satisfies the following inequality ;

||(PK)||2 ≤ 1

δ2
||
∫ T

0

θt(x, t)ϕ2(t)dt||2 =
1

δ2

∫
Ω

(∫ T

0

θt(x, τ)ϕ2(τ)dτ

)2

dx.

(4.90)

If we apply Hölder’s inequality for the integrand of the last term of (4.90)

||(PK)(x)||2 ≤ 1

δ2
ϕ̃2

2

∫ T

0

||θt(t)||2dt ≤
1

δ2
ϕ̃2

2||z(t)||H, (4.91)

where ϕ̃2
2 =

∫ T

0
ϕ2(τ)

2dτ. Using (4.72) in (4.91), we get

||(PK)(x)|| ≤ 1

2
√
εα

1

δ
ϕ̃2||K||

(∫ ∞

0

sup
x∈Ω

|M0t(x, t)|dt
)1/2

. (4.92)

Since, M0t satisfies that

1

2
√
εα

1

δ
ϕ̃2

(∫ ∞

0

sup
x∈Ω

|M0t(x, t)|dt
)1/2

< 1,

then the operator P is a contraction mapping and it will have a unique fixed

point K.

Remark: The results of Chapter 4 are also valid, if we take the governing

differential equation as

θt(x, t)− k0∆θ(x, t)−
∫ ∞

0

µ(s)∆η(x, t− s)ds+ g(θ(x, t)) = h(x, t)(4.93)

ηt(x, t− s) = θ(x, t)− ηs(x, t− s) (4.94)

z(x, 0) = 0 x ∈ Ω (4.95)

z(x, t) = 0 x ∈ ∂Ω t, s > 0, (4.96)

where z(x, t) = (θ(x, t), η(x, t− s)) and g(θ) as in (1.41).
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