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ABSTRACT

AN INTERACTIVE APPROACH FOR MULTI-CRITERIA SORTING
PROBLEMS

Keser, Burak
M. Sc., Department of Industrial Engineering

Supervisor: Prof. Dr. Murat Kéksalan

April 2005

This study is concerned with a sorting problem; plecement of alternatives into
preference classes in the existence of multipleertai An interactive model is
developed to address the problem, assuming thatdéwésion maker has an
underlying utility function which is linear. A rese methodology, Even-Swaps,
which is based on value tradeoff is utilized in tim®del for both making an
estimation of the underlying utility function ancergerating possible dominance
among the alternatives on which it is performedn¥&x combinations, dominance
relations, weight space reduction, Even-Swaps airméctd decision maker
placements are utilized to place alternatives iefggence classes. The proposed
algorithm is experimented with randomly generatiéeriaative sets having different
characteristics.

Keywords: multiple criteria decision making, sogireven swaps
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COK KRITER ALTINDA SIRALAMA PROBLEMLER 1 iCiN
ETKILESIML i BIR YAKLA SIM

Keser, Burak
Yuksek Lisans, Endustri Mihend@liBolumu

Tez YoOneticisi: Prof. Dr. Murat Koksalan

Nisan 2005

Bu calsma, alternatiflerin ¢ok kriter altinda tercih slarfna yerlgtiriimesi ile
ilgilidir. Karar vericinin gizli fayda fonksiyonunu dasrusal oldgu varsayilarak,
etkilesimli bir yontem gelstirilmi stir. Deger 6dunlgmeleri Uzerine kurulu yeni bir
metodoloji olan Ek-Takas yonteminden, hem Kkarar vericinin gizli fayda
fonksiyonunu tahminlemek hem de Uzerinde uyguianalternatifler arasinda olasi
bir baskinlik ilgkisi olusturmak Uzere faydalanilgtir. Alternatifleri tercih
siniflarina yerlgtirmek icin konveks kombinasyonlar, baskinlkskisi, agirlik
uzay! daraltiimasi, gTakas ve karar vericinin @goudan yerlgtirmelerinden
faydalaniimgtir. Onerilen algoritma, rastsal gturulmus farkh karakterdeki

alternatif kimeleriyle denenstir.

Anahtar Kelimeler: ¢ok kriterli karar verme, sinala, g-takas



To my lovely family

Vi



ACKNOWLEDGMENTS

I would like to thank my thesis supervisor Prof.. Ddurat Kdksalan for his

continuous support, guidance and patience throughgwork.

| am also thankful to Onur Akiy Cenk Giray, Bulut Aslan, Umit S6nmez, Engin

Akyurek, and Gizem Karsli.

Finally my dear family; Elif, Remziye and Uzeyir &ar; this work would not be

possible without their support.

vii



TABLE OF CONTENTS

I Y o 15 1 il
ABSTRACT ..ttt ermm ettt b e et e et e e ea e e nnae e iv
O Z ettt aaa et be et ettt v
ACKNOWLEDGMENTS . ...c.tiiiiiitite ettt smmeniee ettt e et e et e e eeeneeas Vii
TABLE OF CONTENTS ...t e e eeeees viii
LIST OF FIGURES. ...t e e e e ee e e X
LIST OF TABLES ...ttt et s e e e et e e e e e e enneennnnnes Xi
1. INTRODUCTION ...t eem e 1
1.1 Problem Definition...........oooiiiiiiiiiiieieeeee e 1
1.2 LILEratUre SUIVEY ......ceviiiiiiiiiiee e mmeee ettt ee e e e e et e e e e e e e e e anne 3
1.3 EVEN - SWAPS. ..ot 7
1.4 Even - SWapS EXAMPIE .....oeiiiiiiiiiiiiiiee e 9
1.5 The Evolution of the algorithm...........ccceee o, 12
2. DEVELOPMENT OF THE MODEL......cccoovvviiiiiiiiiieiiieeeees 13
2.1 Some Notation and ASSUMPLIONS.......ccoicccccceeeeeeeeeeeeeeeeeeeeeeveas 13
2.2 EVEN SWaPS ... iiiiiiiiiiiii et e st a et e e e et e e et e e e 14
2.2.1 Selecting the alternatives for the even swap.........ccccccouvueeee 15
2.2.2 Performing the EVeNn-Swap ..........covveeeeeeieeiiiiiiiiiiieeeeeieeeiiiis 15
2.2.3 Even-Swap on more than two Criteria............oooccvvvviiveeeeennn. 17
2.2.4 Estimating the utility function using the BvBwap................... 19
2.3 Alternative SeleCtion...............uueeimmeeeeeeeeee e 22
2.4 Determining Best and Worst ClasSes.....coccccceuieiiiiiiiiiiiiiieeeeeeeeee, 24
2.5 Convex Combination ChECK ................ e e e eeiieeee e 25
2.6 Utilizing LPs for best and Worst ClasSes ccoooo.....cooovvviivvieeiieiiiiiiiiins 28
2.7 Finding equivalent dummy POiNtsS ..........cceeeuiiimieeieieeeen e 29
2.8 Decision maker placement...............eeeeiieriiiiiiiiiiiieeeee e 31
3. THE ALGORITHM ...couii e 33
3.1 Summary of the AlGOrthm ...............et e 33

viii



3.2 The AIGOrthMm......ccooiiiiiiiieecee s 34
4. AUTOMATED APPROACH AND EXPERIMENTATION 58

4.1 Development of the Automation and User Screens....................... 58

4.2 EXPEriMENTAtiON .......uuviiiiiiiiiieee e eeeeee et 62
5. SUMMARY AND CONCLUSION ......ccoiiiiiiiiiiiiieeeeeeie 70
REFERENGCES ... et 73
APPENDIX A — Detailed flow of the algorithm ...................... A-1
APPENDIX B — EXperimentation .............ccccoeevmmeineeeeeeeeennennn. B-1



Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.

LIST OF FIGURES

An overall flow of the Even-Swap framewor.............cccoeevvvvvviiiiiiiinnnnns 8
Even-Swap example - graphical representaf the swap................... 17
Even-Swap on more than two Criteria............ccccvvviieeeiiiieeeen 19
Graphical representation of the example...........cccccceiiiiiiiiiiiee, 27
Step 6 shown graphically ... 31

Graphical representation of dominancevegight space reduction ....... 32
Flow of the initialization Phase... .. cccoieeeiiiiiiieee s 33

Flow of the "placing alternatives phase'...........cccccccciiiiiiiiiiininnnn, 34
Example - Alternatives graphically re@ed..............ccccceeiieieeeeeennn. 43

Example - Final status represented ggafn.............ccccvvveeiiiiiinnnnnnn. 56
Inserting number of alternatives to tesidered...............ccccvvvvieeeenen. 59
Inserting the conSIStENCY INAEX.......cuuiriiiiiiiiiiiiiiiiiiieeeee e 59
EVEN SWaP SCrEEN .....ouviiiiiii ettt e 60
DM PlaCemMENT .....ceveiiiiieiiiii ettt e e 61
Consistency index Not Valid......cccceeveeiiiiiiiiiiieeeeeeeeeeeeeee 61
Swap done in the wrong direCtion ...........coovvvvviiiiiviiiiieiiiiiiinans 2.6
DM placed the alternative to a Wron@€la.........ccoooevveeeiieeeeeeieeeeee 62
Averages with differing alternative SEES .............ccccvveeeeeiiieeennnnnns 65
Averages with differing consistency MER...........cccccevviiiiiniiiiieennenn. 66
Results for 20 alterNatives ......ccccccveeiiiiiiiiiiieeeeeeeeie e 67
Results for 50 alternatives .......ccccccuvvveeiiiiiieeeiieeeee e 68

Results for 100 alterNatiVES .....cccveeirnieieeeeee et eeeens 69



LIST OF TABLES

Table 1. Real world applications of classificataomd sorting problems................... 2
Table 2. Even Swap Example - Consequence Table.........ccccccoiiiiiiiiiiiiiennnenn. 10
Table 3. Even-Swap Eample - Eliminated AlternabyeDominance..................... 10
Table 4. Even-Swap Example - A Criterion and Alggive Eliminated................. 11
Table 5. Even-Swap Example - Eliminated Alternative.............ccccccccveeeinnnnns 11
Table 6. Even-Swap Example - Final Table .........cccccooiiiiiiiiiiiieeeee 12
Table 7. Even-Swap example - alterNatiVes .. coceeeeeevveeiiiieiiiiieiieeeeeeeeeeeeeee 16.
Table 8. Even-Swap example - the SWap ......ccceeeeeviiiiiiiiiieee e 16.
Table 9. Decisions for different values of decisuamiables ..................ccccccceennns 26
Table 10. Example - List of alternatives and tlogiteria values............................ 43
Table 11. Example - Current status of the alteveat(1)...............ccccvvvviiiieieeenennn. 48
Table 12. Example - Current status of the alteveat(2)...............ccccvvviiiieiinennnn, 55
Table 13. Example - Final StatUS .........cut oo 55
Table 14. Example - Means of placements .....ccccceeevvviiviiiiiiiiiiiiiiciiee e 7.5
Table 15. Run codes and RUN PArameters..........ccvvuiiiiiiiiiiieiiieeeeeeeeeeeeeenn 63.
Table 16. Run ReSUItS SUMMAIY ..........iiiiie e 64

Xi



CHAPTER 1

INTRODUCTION

1.1 Problem Definition

The problem considered in this study is a multiecida decision making

(MCDM), problem where the decision maker (DM) irdento group a set of
alternatives into preference classes. The apprdacaloped in this study will be
more suitable for problems where the alternativeiséarge, and the number of

criteria to consider is small.

The placement of alternatives into predefined elsss groups is referred to as
classification or sorting problems depending ontiwbethe groups are nominal or
ordinal. The problem of sorting / classification shaaumerous practical
applications, some of which are listed below (Zapdis, C., Doumpos, M.,
2002)

* Medicine: performing medical diagnosis through ttlassification of
patients into diseases groups on the basis of symetoms (Stefanowski
and Slowinski, 1998; Tsumoto, 1998; Belacel, 20Wichalowski et al.,
2001).

» Pattern recognition: examination of the physicarelteristics of objects
or individuals and their classi-fication into apprate classes (Ripley,
1996; Young and Fu, 1997; Nieddu and Patrizi, 2008jter recognition
is one of the best examples in this field.

* Human resources management: assignment of persorioehppropriate
occupation groups according to their qualificatigilon et al., 1967;
Gochet et al., 1997).



* Production systems management and technical diegnosnitoring the
operation of complex production systems for faukgdosis purposes
(Nowicki et al., 1992; Catelani and Fort, 2000; skeal., 2000).

* Marketing: customer satisfaction measurement, amalyof the
characteristics of different groups of customemsyeatopment of market
penetration strategies, etc. (Dutka, 1995; Siskas ,€1998).

 Environmental and energy management, ecology: sisalyand
measurement of the environmental impacts of diffeenergy policies,
investigation of the efficiency of energy policies the country level
(Diakoulaki et al., 1999; Rossi et al., 1999; Fimdn et al., 2000).

* Financial management and economics: business datediction, credit
risk assessment for firms and consumers, stock uatrah and
classification, country risk assessment, bond gategtc. (Altman et al.,
1981; Slowinski and Zopounidis, 1995; Zopounidi898; Doumpos and
Zopounidis, 1998; Greco et al., 1998; Zopounidialgt1999a,b).

Below table (Zopounidis, C., Doumpos, M., 2002) whosome real-world

applications of classification / sorting problenialfle 1). Some of these studies
use real-world data for illustrative purposes irmdesrto present the practical
applicability of classification and sorting theony real-world data sets. Other
studies use real-world data for performance eviaoabf selected methods
originating from the developed methods with exgtmethods, most commonly

originating from the field of statistics.

Table 1. Real world applications of classification andorting problems

Application Area Studies

Business failure prediction Mahmood and Lawren@S8T7), Gupta et al. (1990

Slowinski and Zopounidis (1995), Gehrlein and
Wagner (1997b), Greco et al. (1998), Zopounjdis
and Dimitras (1998), Zopounidis and Doumpos
(1999), Zopounidis et al. (1999b), Konno and
Kobayashi (2000)




Application Area Studies

Credit cards assessment Lam et al. (1996), Zopueidl. (1998)

Country risk evaluation Doumpos and Zopounidis (200

Ecology Rossi et al. (1999), Flinkman et al. (2000)

Educational administration Choo and Wedley (198&jn et al. (1993)

Energy planning Diakoulaki et al. (1999)

Medicine Stefanowski and Slowinski (1998), Bela(2000),
Michalowski et al. (2001)

Personnel management Gochet et al. (1997)

Portfolio  selection andZopounidis et al. (1999a), Nakayama and Kagaku

management (1998), Doumpos et al. (2000)
R&D project evaluation Jacquet-Lagreze (1995)
Technical diagnosis Nowicki et al. (1992)
Venture capital] Stam (1990)

investments

This broad range of application domain lead resesaecto develop different
approaches for constructing sorting/classificationodels. The approach
developed in this study is an interactive methodhictv utilizes Even-Swap
method, weight space reduction techniques and dom@relations. The use of
Even-Swap method in the study is slightly differéom it is original use, where
the original method aims to find the best alten®in a given alternative set by
interacting with the DM.

1.2 Literature Survey

Considering a set of alternatives described by mbau of criteria; different
problems are considered in the literature. One,clvhis more frequently
addressed, is to identify the best alternative edect a limited set of the best
alternatives (this problem is also referred as “ttice problem”). Another

problem is to construct a rank ordering of theraléves from best to the worst



ones (this problem is also referred as “the rankirablem”). One other problem
is to classify or sort the alternatives into grqupkere the groups may either have
a preference relation or not (this problem is alseferred as “the

classification/sorting problem”).

The problem of identifying the most preferred aitgive among a number of
alternatives where each alternative is defineddweal criteria is well studied in
the literature. The studies of Keeney and Raif@/@) and Green and Srinivasan
(1978) attempt to solve this problem by fitting tdity function that explains the
preferences of the decision maker (DM), and thewlifig the alternative that

performs best according to the fitted utility fuonct

Another approach for finding most preferred altéiuea had been interactive

approach. Interactive approaches typically assumatethe DM has an underlying
utility function. However, the exact form of theiliy function is assumed to be

unknown to both the DM and the analyst. The DM xpeeted to be consistent
with his/her underlying utility function while exgssing his/her preferences. For
the case where the underlying utility function ssamed to be linear, Zionts
(1981) and Koksalan (1984) developed interactiye@gches. Several interactive
approaches have been developed for the quasi-o®ngahty function case

(Korhonen et al. 1984, Kdksalan et al. 1984, Kdksalnd Taner 1992, Malakooti
1989); Koksalan and Sagala (1995) also developedpanoach for the general

monotone utility function case.

Korhonen (1998) developed a visual interactive apphn that makes no
assumption on the underlying utility function ofettdM. Koksalan and Oden
(1989) and Koksalan and Rizi (2001) have also dagpedl visual interactive
approaches and utilized graphical aids in theieradtive approaches. A more
recent review of the multi-criteria literature isopided by Jacquet-Lagreze and
Siskos (2001).

The problem of constructing a rank ordering ofdhernatives from has also been

4



a problem of interest. Assuming that the attribiitage been measured at least on
an ordinal scale, Korhonen and Soimaa (1981) attémfind a complete rank
ordering of alternatives. Malakooti (1989) usessiig@ncave non-linear multi-
attribute utility functions to rank multiple criiaralternatives, and shown that pair
comparison questions can be used to generatelpaftirmation on the weights.
Another type of problem is the assignment of alitiwes into predefined groups,
which is referred to as classification or sortimglgems. While both classification
and sorting refer to the assignment of a set efrditives into predefined groups,
they differ with respect to the way that the growpe defined. Classification
refers to the case where the groups are definachmminal way. On the contrary,
sorting refers to the case where the groups atiaatkin an ordinal way starting
from those including the most preferred alternativ@ those including the least

preferred alternatives.

Earlier work on classification can be traced bazkrisher (1936), whose work
was on the linear discriminant analysis. Some o#iatistical approaches was
developed following Fisher (Bliss 1934, Berkson 49¥IcFadden 1974), which

was later on criticized for their statistical asgtiions (Altman et al. 1981).

Recent research on developing classification amtingomodels is mainly based
on operations research and artificial intelligen€empared to other approaches,
multi-criteria decision aiding research (MCDA) doe®mt focus solely on
developing automatic procedures for analyzing aistieg data set in order to
construct a classification/sorting model. MCDA @&®hers also emphasize on the
development of efficient preference modeling methogies that will enable the
decision analyst to incorporate the decision makpréferences in the developed

classification/sorting model (Zopounidis, C., DowspM., 2002).

Outranking relation and utility function are the showidely used criteria
aggregation models in MCDA literature, which aresoalemployed for
classification and sorting purposes. The most wideled sorting method based
on outranking relations is the ELECTRE TRI methodu (1992, Roy and

5



Bouyssou 1993). An alternative approach for outiramkrelation, the utility
theory framework, is used in UTADIS for sorting pases (Jacquet-Lagreze
1995, Zopounidis and Doumpos 1999).

Koksalan and Ulu (2001, 2003), developed an intemacprocedure for
partitioning the alternatives into preference aassegarding different forms of
utility functions of the DM. Dominance, weight sameduction and direct DM

placement techniques are used to place alternatives

More recently significant research has been corduah the use of the rough set
approach as a methodology of preference modelimgyiti-criteria decision
problems (Greco et al. 1999, 2000). The rough apmations of decision classes
involve dominance relation, instead of indisceritiprelation considered in the
basic rough sets approach. They are built of rateralternatives given in the
sorting example. Decision rules derived from theggeroximations constitute a
preference model. Also, the dominance-based roegapproach is able to deal
with sorting problems involving both criteria arejular attributes (whose
domains are not preference ordered), (Greco €@02), and missing values in

the evaluation of reference alternatives (Gread.e1999, 2000Db).

The use of neural networks is another interestimgr@ach that can be used for
preferential modeling purposes in multi-criteriaasdification and sorting

problems. Neural networks enable the modeling ghlyi complex non-linear

behaviors of decision-makers. Main disadvantagéhefneural networks is that,
the results of a neural networks are difficult merpret in terms of the given
inputs to the network. The major advantage on ttieerohand is that, neural
networks can be used to assess utility functionhowt posing any assumptions
or restrictions on their particular structure oogerties. Arhcer and Wang (1993)
showed that neural networks can provide an efficreachanism for preference

modeling in sorting problems.

It is important to note that, the development afisien support systems that will

6



enable decision-makers to take advantage of thebddjes that the classification
and sorting approaches provide. Several multiftaitdecision support systems
have been developed over the past decade implergeviC DA classification and
sorting methods. The most characteristic are thBIBA system developed by
Stam and Ungar (1995), the PREFDIS system of Zap@aiand Doumpos
(2000a), the ELECTRE TRI-Assistant system of Moasset al. (2000), the
ROSE system of Predki et al. (1998) and the 4eMktes of Greco et al.
(1999a) (Zopounidis, C., Doumpos, M., 2002).

1.3 Even Swaps

Even Swaps (Hammond et al. 1998, 1999) is a mutera decision making

method based on value trade-offs which are ca#ledn swapsPerforming

sensible trade-offs is one of the most importand afficult challenges in

decision making (Keeney and Raiffa 1976; Keeney2200he even swaps
method is developed in order to fill the gap ofacleeasy-to-use and rational
trade-off methodology. It provides a practical wafymaking trade-offs among
any set of objectives across a range of altermatikas a form of bartering that
forces the decision maker to think about the vati®ene objective in terms of
another. The even swap method does not argue tttabvides a mechanism
which makes complex decisions easy, but what itsdomvide is a reliable

mechanism for making trades and consistent framewowhich to make them.

In an even swap, the value of an alternative in attrdbute is changed and this
change is compensated with a preferentially eqaélevchange in some other
attribute. The new alternative with these revisalli@s is equally preferred to the
initial one and thus it can be used instead. Thedithe method is to carry out
even swaps that make either attributes irrelevantthe sense that all the
alternatives have equal values on this attributeal@rnatives dominated, in the
sense that some other alternative is at least ad gse this alternative on every
attribute. Such attributes and alternatives canelminated, and the process

continues until one alternative, i.e. the mostgmefd one, remains.
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The main requirement for using the Even Swaps noethido understand the idea
of an even swap. The decision maker (DM) does metlrio have a mathematical
background to use the method. Hammond et al. (19989) emphasize on the
practical aspects of the process, and let the DN¥b¢as on the most important

work of decision making: deciding the real valudtm/her.

The general flow of the even swap framework is ed in Figure 1:

Problem Initialization Make an Even Swap
* Determine alternatives and crite
Eliminate Dominated to perform even swapn them
Alternatives <

v

+ Determine the reauired char
Eliminate Irrelevant +
Attributes

Assess the required change on the
YES other criterion focompensation

- y
| Perform the swe

More than one remaining
alternative?

NO

v

Most preferred alternatiy
found

Figure 1. An overall flow of the Even-Swap framewok

At the problem initialization step, a consequeratde is constructed in order to
have a clear picture of the alternatives and tbeirsequences for each criterion.

The important thing when constructing consequelddes is to use consistent



terms for each criterion. Once the consequencéds imftonstructed and criterion
values for each alternative is mapped, look foraspmities to eliminate one or
more alternatives. If an alternative A is bettarttalternative B in some criteria
and not worse than B in all other criteria, altéive B can be eliminated from
consideration (alternative B is dominated by aléme A). Another issue is to
eliminate irrelevant criteria with an obvious tendtevery alternative is rated
equally on a given criterion, that criterion canigpeored while making decisions.
Now, the challenge is to choose the most propen-ewap to perform among
numerous choices. This selection shall be madeiaenirsg the information that
will be provided after the swap. Even-swaps thah ¢ead to a possible

“dominance” or “irrelevant criteria” shall be prefed.

Determining the relative value of different critarivalues is hard. The originators
of the even-swap approach, Hammond, Keeney andfaRajfuoted some

suggestions to make sound trade-offs (Hammond &08B, 1999).

There are few reported applications of even-swajise literature; where one of
them is on strategy selection in a rural entergiisganus et al. 2001) and another
one on environmental planning (Gregory and Welli2@@1). Despite of the
simplicity of the method, the lack of use may be tlwinsufficient computational
help provided. Recently Mustajoki and Hamalained0@ developed a decision
support system for even swap approach, which ipatgdby Preference
Programming. Preference programming is a framevi@rknodeling incomplete

information within multi-attribute value theory.

1.4 Even —Swap Example
To illustrate the above discussed methodology, allsexample is given below.
The problem is about selecting a second-hand cangra number of alternatives.
Alternatives are evaluated on three criteria (afrse, there should be more, but
three of them are selected for simplicity), these a

» Age of the car (given by model year)

* Mileage of the car (given in kilometers)

9



* Price of the car (in YTL.)

Model year of the car is a higher the better typéeron. But the last two,

mileage and price are lower the better.

The alternatives are selected from a popular das saeb-site from Turkey. The

alternatives and their values on three criteria given in Table 2 (this is the

consequence table for the DM):

Table 2. Even Swap Example - Consequence Table

Toyota Peugeot Opel Honda Ford

Corolla GL | 206 XR Corsa Swin¢ | Civic HB Fiesta
Model | 1999 2000 1999 2000 2000
Mileage | 77000 km 55000 km 91000 km 130000 km 64000 kr
Price 14500 YTL | 16000 YTL | 15750 YTL| 14750 YTL 15000 YTL

Now, we will look for opportunities to eliminate err more alternatives by

dominance. It can be observed that, “Opel” is datgid by both “Ford” and

“Toyota”, so it can be eliminated for further cathsiation, (see Table 3).

Table 3. Even-Swap Eample - Eliminated Alternativdoy Dominance

Toyota Peugeot pel Honda Ford

Corolla GL | 206 XR Co&sa Sying | Civic HB Fiesta
Model | 1999 2000 199%( 2000 2000
Mileage | 77000 km | 55000 km 91}60 N 130000 km | 64000 km
Price 14500 YTL | 16000 YTL 750 YT 14750 YTL | 15000 YTL

Now, we will perform an even-swap on “Toyota” arsk ahe DM “How much

will you increase the price, for an increase inftiadel from 1999 to 2000?”. The
DM says “l will increase the price from 14500 YT 15250 YTL". The new
consequence table is given below (Table 4), theppea values are highlighted.

10



All alternatives score the same on “Model” critexigo this alternative is now
irrelevant and can be eliminated; furthermore, “Gt@y is now dominated by
“Ford”, so it can be eliminated from the alternatset, these are also shown in
Table 4.

Table 4. Even-Swap Example - A Criterion and Altermative Eliminated

J oyota Peugeot Honda Ford
Cyyolla gL | 206 XR Civic HB Fiesta
Model |20 2006 00— 2000

Mileage | 77 N 55000 km 130000 km 64000 km
Price 5250 YT | 16000 YTL | 14750 YTL| 15000 YTL

The consequence table is reduced to a much srf@iterthan the original table.
But, three alternatives are left, so we need meaps and propose the DM
another one on “Ford”: “How much will you increabe price, for a decrease in
the mileage from 64000 to 55000?”. The DM says ifl iwcrease the price from
15000 YTL to 15500 YTL". Now, “Peugeot” is domindtey “Ford” and

eliminated for further consideration (Table 5).

Table 5. Even-Swap Example - Eliminated Alternative

Vi

eugeot Honda Ford
208 X Civic HB Fiesta
Mileage SSWm 130000 km | 55000 km
Price 000 Y‘N\ 14750 YTL | 15500 YTL
! \

Two alternatives are left, one more swap is reguyitiee following question is
asked to DM, for performing an even-swap on “Hondelbw much will you
increase the price, for a decrease in the mileage 130000 to 55000?”. The DM
says “l will increase the price from 14750 YTL t65D0 YTL". Finally “Honda”

is dominated by “Ford”, and eliminated. This regedord” to be the preferred
alternative for the DM (Table 6).

11



Table 6. Even-Swap Example - Final Table

A Ford
Fiesta
Mileage 55000 km
Price 15500 YTL

1.5 The Evolution of the algorithm

This study is based on different approaches deedlapthe field of multi-criteria
decision making and sorting problems literatured aroposes a new interactive
approach for multi-criteria sorting problems. Theight space reduction ideas
generated in Kéksalan and Ulu (2001, 2003) ar&zed| but LPs used for weight
space reduction are different in order to be mofcient. Even-Swaps
methodology (Hammond et al. 1998, 1999) is inclugtethe algorithm both for
eliciting information from the DM and for placine alternatives. Even-Swaps
approach is originally proposed for selecting testhalternative among a set of
alternatives, however, in this study it is used gorting a set of alternatives to

preference classes.

The following chapter discusses the approachedaes® in each step of the
proposed algorithm. The third chapter presentslterithm step by step, and
illustrates a manual example. The fourth chapteoduces the developed
automation for the algorithm, and presents somdteesvhich are obtained by
using the algorithm. The final chapter gives a sanynof the study, presents
some conclusions and proposes some possible fararke which can be

performed as extensions to this study.
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CHAPTER 2

DEVELOPMENT OF THE MODEL

This chapter discusses the approach developedcim sap of the algorithm. A

detailed flow of the algorithm is given in Appendix

The proposed algorithm is two phased, the ini@ion phase and then the
selecting alternatives phase. At the initializatmhrase an initial estimation of the
DM'’s underlying utility function is made, using theformation gained from an
Even-Swap which is proposed to DM by selecting @i@rnatives from the
alternative set. At the placing alternatives phas#ally an alternative is selected
to be placed, among the set of unplaced alterrativide algorithm tries to place
the selected alternative into a preference clas®reusing dominance relations,
convex combinations or weight space reduction teghles. If the alternative
cannot be placed, an Even-Swap is performed onltemative for swapping to a
dummy alternative, which can be placed by convexnlmpations. If the
alternative has not been placed yet, the DM is cagkeplace the alternative
among the range of possible preference classelwhiod sections discusses all

the approaches developed in the algorithm.

2.1 Some Notation and Assumptions

Following list defines some notation that will bged in this study,
« iMalternative that is to be placed in preferenceselass represented as

X

o Xy =(Xi1, X500 X 50X ,) Wherex ; is the score of the" alternative

13



inthe j™ criterion
+ C isthei"class that the alternatives can be placeinbeing the “best”

class andC, being the “worst”, where there exiktlasses.

Other notation will be introduced when they areirded in the flow of the

algorithm.

The model assumes that the DM has a linear ufilibgtion. That is, the utility of

alternative X, is given by:
U (X;) =ZAjUj(Xi,j)
i

whereU(x ;) is the criterion score oK; on criterion j, and /A, is the weight of

criterion j .

It is assumed that the DM is consistent with his/fesponses and can place
alternatives consistently whenever s/he | asked Qther assumption is that, at
least one of the criteria is ordinal and continudliss assumption is required to

enable performing the swap on that criterion. Thedeh assumes thad;s —
criteria weights- are not known, and tries to gateean estimated region fol; s

using DM'’s responses.

A consistency indexga , is used when evaluating the Even-Swap information
This is for evaluating the DM’s swap response withi precision bound, the

discussions on thig value will be given in the following sections.

2.2 Even Swaps

At the initialization phase of the approach, anre@avap is performed. The intent
of the Even-Swap is to have an idea about the DiMderlying utility function.
This early information on the utility function priokes the infrastructure for the

latter steps. Following sections discuss: the seleof the alternatives that will
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be taken into consideration when performing the rESwap, performing the
Even-Swap, and the case when there exists more tthancriteria for the
alternatives.

2.2.1 Selecting the alternatives for the even swap

Two alternatives will be selected to perform theeEswap. Selecting the
alternatives is crucial since we want to make tbst luse of the DM’s response
while performing the swap. The original Even-Swagtmoedology is utilized for
generating possible dominance relationships amdtagnatives which do not
dominate each other. So, the selected alternaskia not be dominating each
other. Another concern in alternative selectiorths ease of the swap. If the
criterion values of the alternatives are too fawill be hard for the DM to make
such a big swap, and as the size of the swap seseshe size of the error may

increase.

The two alternatives are selected among the atfeesan such a way that
i. they do not dominate each other
ii. they have the smallest Euclidean distance

The selected alternatives are presented to the DM.

2.2.2 Performing the Even-Swap

The Even-Swap will be performed with the motivatidiscussed in section 1.3.
Following steps will be followed while performinige swap:

« Take one of the selected alternatives as the besk if the base
alternative); the swap will be performed on theeotalternative (swapped
alternative).

» Select one of the criteria (call it fixed criterjoend equate the value of the
swapped alternative on that criterion to that efllase alternative.

* Ask the DM, how much he/she wants to swap on theratriterion, which

is not fixed, to compensate the change on the fexaerion.
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Even swap is illustrated on a two criteria example:

Assume that we have two alternatives A and B hathegollowing scores on two

criteria (Table 7):

Table 7. Even-Swap example - alternatives

Alternative A

Alternative B

Criterion 1

45

60

Criterion 2

78

58

Let the DM make a swap on alternative A, and adteve B is selected as the base
alternative. Then, we equate the first criteriotugaof alternative A to that of

alternative B, and ask the DM how much he/she lkngito decrease on criterion

2 value, to compensate the increase in criteriffable 8):

Table 8. Even-Swap example - the swap

Alternative A

Alternative AWarred

Criterion 1

45

» 60

Criterion 2

78

> 277

Say the DM is willing to decrease the value of ¢keond criterion from 78 to 65,
to compensate the increase in the first criterremf45 to 60. So the alternative
As"ePPedpacomes (60, 65). Initially no dominance relatians apparent between
alternatives A and B. However, now alternativ&®**“dominates alternative B.

So, A B. This example is show graphically in Figure 2.

16



even-swap
80
.
Alt. A~~<_
75 - ~~o
Even-Swap
70 A
~ Y Alt. A
= e swapped
o ‘\A
65 *
60
Alt. B
.
55 ‘ ‘ : :
40 45 50 55 60 65
crit1

Figure 2. Even-Swap example - graphical representatn of the swap

2.2.3 Even-Swap on more than two criteria

As discussed in section 1.3. the Even-Swap methatiginally proposed to be
performed on two criteria. However, we use the apg@h for comparing two
alternatives, and alternatives can have more tharctiteria. For that reason, the
method is expanded to enable the comparison pes8bl alternatives having
more than two criteria. This is done by performaomsecutive swaps. The idea is

illustrated on a four criteria example below:

lllustration:

Let X;and X;be the selected alternatives, having the criterialues
respectively: X; = (X1, % 2, X3, % 4) @andX; =(X;;,X;,,X; 3, X; 4 )- Let X; be the
fixed alternative and the Even-Swap be performe& pnThe following steps

will be used:

» Initially choose the first criterion to be the ftkeriterion
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+ Equate the first criterion value of; to that of X;

« Swap the second criterion value &, to compensate the change in the
first criterion, say the swapped valuexs,

+ Equate the second criterion valueXf, that isx; ,, to that of X,

« Swap the third criterion value oK; to compensate the change in the
second criterion, say the swapped valugis

e Continue in the same manner

The approach discussed above is pictured in Fi@urevhere dashed squares

represent the Even-Swaps, arrows representingithpss X;°, X, X, are all
equivalent alternatives X , which are generated after the Even-Swaps.

In lec, the DM chooses the valu€j. such that, in the first two criteria, the DM
is indifferent between X ,,X;,) and (x,, X°j2). Then the DM chooses®; s
such that s/he is indifferent betweex {, X, ,, X; ;) and (X, ,,x%;3). Finally,
the DM choose x%4 such that X, = (X 11X 2, X5, %, ) and
X = (%1, % 2% 3, X°1,4) . It would be beneficial to leave the easier swafhe last

step, since all the changes on the other criteitide/compensated by this swap.
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1
X X1 X% 2 X3 X 4

2
X X1 X - X%j3 Xja

' s
X, Xi1 Xia [|Xiz | Xja

Figure 3. Even-Swap on more than two criteria

2.2.4 Estimating the utility function using the Eve-Swap

An LP is constructed, in order to make an estinmatid the DM’s underlying
utility function, using the information obtainedom the swaps made in the
previous step. In fact the Even-Swap implies addiratio relationship between
the weights of the criteria on which it is perfodnéiowever, the developed LP
evaluates this direct relationship within a comsisy interval, depending on the
precision of the DM; the size of the interval candhanged.

There are two constraints coming from each perfdrieen-Swap and one from
the implied preference relationship after the swapbese constraints are

elaborated below:

Constraints obtained from the swap:

Assume that the DM performs the swap on alternatiaad the Even-Swap will
be performed on criterion 1 and criterion 2, whboth criteria are higher the
better type. The values of the alternative on tlpegeof criteria which the swap is

performed arex , and x; ,. Again assume that the DM makes a swap feomto
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X2, to compensate the change for going fromm to x%:. Where, if X, is
greater thanx®i1, x, shall be smaller thaxii>; and if x;, is smaller thanx®.,

X, shall be greater thai 2, that is the swap shall be performed in the revers

direction. By this swap, the DM implies the followi ratio between the weights

of criterion 1 and 2 (for simplicity ; is used instead ofi( X ; )):

A Xsi,l_Xi,l

2
A Xiz2=X%2

However, as mentioned above, the response of theiDb®valuated within a
consistency interval. Letr represent the consistency index for the DM’s iexpbli

ratio on the criterion weights. Then, the relatlipsbecomes:

Xii1—X i A Xii1—X i
il SI 1 S—ZS (1+0') il SI 1
Xiz2=Xi2 A Xiz=Xi2

(1-a)

This relationship gives two constraints for the weight spac

Xsi,l_X i1

A@+a) .
Xi2—X'2

~1,20

and

Xsi,l_X il
Xi2 —Xsi,z

A, -Ad-a) >0

Constraints obtained from the preference relatiortlze initial alternatives:
After the swap a dominance relation appears betweeswapped alternative and
the base alternative, since all but one of theegatvalues are equalized. That

unequal criterion value determines the directiothefdominance.

Let’'s assume that, the criterion value of the svealpglternative is higher than that
of the base alternative. Then the swapped altematiominates the base
alternative. Since the swapped alternative is asduto have the same utility

value with its original state and all the internagdialternatives generated during
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the Even-Swap (when there exist more than twor@jteall these alternatives are
preferred to the base alternative. Then, correspgndonstraints are added to
constrain the weight space. If the swapped altemas dominated by the base

alternative, all preference relations are reversed.

The preference relation is represented with”“or “<”. For all implied
preference relation the following constraint is edd

/1(Xq —X,)ze where X, > X,

With the constraints generated from the performeenESwap, the following

initial model is developed to define the weightsp#or a two criteria example:

max &

st.

PN RAL IR ALY I

Xi2=X'i.2

X%i1—Xi1

A-Ald-a)———=¢

2~ A )Xi,z_Xsi,Z

MX =X, )z OX, - X,

2 A =1

2120

20

All the constraint are written to be greater thanadue of £, which is to be
maximized, to force the LP to find a weight set ethis most distant to the
nearest bound.

Solving the LP, an estimated weight set of thesddtis obtained, which will be
used in the following stages of the approach. Bank when a new preference
relation is implied by DM placement, a new consiras added to the model, and

the estimated criterion weights are recalculated.
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2.3 Alternative Selection

The model utilizes some set of rules to selecttternative that will be treated in
the algorithm for placing it in a preference clad#ternative selection is very
crucial for the performance of the algorithm, silmcgood selection of alternatives
will reduce the DM’s effort. To provide such a goselection, the model uses the
estimated utility function, obtained from the ialty performed Even-Swap, and
some set of rules. The rules for alternative selecire given below:
1. If the bounds for all preference classes aredabhed
The bounds for the preference classes are detetmisiag the estimated
utility function. For a preference class, among ftreviously placed
alternatives to that class, the one having thedsghstimated utility is the
upper bound for that preference class, and the haweng the lowest
estimated utility is the lower bound. For the befss, if only one
alternative is placed previously, than that defirnbs lower bound,
similarly if only one alternative is placed in theorst class than that
defines the upper bound for that class. If onéneffollowing conditions is
satisfied, there is no way of determining all tloeihds for the problem.
i. No alternatives placed in the best class:
ii. No alternatives placed in the worst class
iii. Less than two alternatives placed in an intediate class
1. No alternatives placed in that intermediatesclas
2. One alternative is placed in that intermedissc
Initially number of alternatives in each class adcalated, considering the
number of all alternatives and the number of pefee classes, and
assuming there is approximately equal number dadrratives in each
class. Then the alternatives are sorted accordintpe estimated utility
function. This sorting will give an estimated graup of the alternatives.
Finally, following decisions are made for the alt&ive selection, for the
above stated cases:

i. Select the alternative which has the minimumnesied

22



2.

utility value in the “estimated best class” (notkatt

“estimated best class” term is used, since noralteres are

actually placed in this class yet, the selectiobased on

the sorting made using estimated utility function)

Select the alternative which has the maximurtineged

utility value in the “estimated worst class”

Again the selection will be based on the estied sorting

of the alternatives

a)

b)

Select the alternative having the maximum
estimated utility value, among the estimated set of
alternatives for that intermediate class, this
alternative is expected to form the upper bound
for that class.

Select the alternative having the minimum
estimated utility value, among the estimated set of
alternatives for that intermediate class, this
alternative is expected to form the lower bound
for that class. (note that if there is only one
alternative actually placed in that class, that
alternative will be forming the upper bound for

that class since the algorithm tries to place the
alternatives having higher estimated utility values
first)

If the bounds for all preference classes afiaeld

The unplaced alternatives, which are out of bouddfined by the
estimated utility values, have precedence whercsetethe alternative to
place. So, once the bounds for all alternativesdafened, the algorithm

searches for the existence of alternatives whiehoart of the estimated

If there exists some alternatives that fall ofithe defined

estimated boundaries, among those alternativesctstie

one which is most distant from the closest boundary
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terms of estimated utility. The reason for selertime most
distant alternative is to maximize the benefit dfe t
information that will be obtained from the placemehthat
alternative. The bound defined by estimated asitiis
enlarged to the maximum extent possible by eittecipg
that alternative to the better class or the wolassc

ii. If there are no alternatives falling outsidee tlestimated
boundaries, select the alternative which is closesthe

closest boundary.

2.4 Determining Best and Worst Classes

Along the execution of the algorithm, the best amist possible classes that the
selected alternative can belong to, are utilizdte htent is to narrow down the
range of possible classes that the alternative peaplaced, and whenever best
possible class is the same as the worst possiass,cthe algorithm places the

alternative to that class.

Initially, best class index for all alternativessist to 1 and worst class index for all
alternatives is set tb (number of classes). Then, as alternatives arecglac

preference classes, going over the previously glatternatives, alternatives that
are dominated by the selected alternative are IsedrcAmong the dominated
alternatives set, ones that have the smallest tldsex (lower the index, better the
class), determines the worst class that selectedhative may belong to, and it
will be denoted by,". Similar approach is followed for determining thest

class that the selected alternative may belon@aing over the previously placed
alternatives, the alternatives that dominate tHectsd alternative are searched.
Among the dominating alternatives set, ones thae hthe largest class index

(higher the index, worse the class), determinesbiés class that the selected

alternative may belong to, and it is denotediy
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The alternative set is traced to identify dominamedationships. For each
alternative, set of dominating alternatives and afetlominated alternatives are
constructed. These sets are useful when the diteeria placed in the *iclass

" class (worst class). If the alternative is plagedhe f' class,

(best class) o
then all the alternatives dominating that altenreatian be safely placed to the 1
class. Similarly if the alternative is placed ireth class, then all the alternatives

dominated by that alternative can be safely plaoghet™ class.
2.5 Convex Combination Check

If the selected alternative can be expressed asoraveg combination of
alternatives belonging to the same class, thesdlected alternative also belongs

to that class. The following LPs are used to dewilether the selected alternative

is a convex combination, wheXg is the selected alternative aij is the class
under consideration.e;, e, are vectors such thag =[£1,...,£1,..£1,] and

e, = [52,...,52,..52,] , Whereg, and &, are scalars.

LP1

max &,
s.t.

DX =X, ~€ =0

X;0C,

2 H=1

M =20

LP2

max &,
S.t.

X, = D X -e,20

X;0C,

2t =1

=0
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Starting from the best class that the selectednaiteee may belong to, the above
LPs are solved. By looking at the valuesspfand &,a decision is made about the
class that the selected alternative shall belondf teither £, or &, is zero, that
means the selected alternative can be expressadcasvex combination, so it
belongs t&, . If both ¢, and &, are greater than zero, that means there exist two
convex combinations where the first one dominabesselected alternative, and
the other is dominated by the selected alternasioghe alternative belongs @.

If & is greater than zero but, is smaller than zero, that means there exist some
convex combinations that dominates the selecteernaltive, but no convex
combination is dominated by the selected altereato this is the best class that
the alternative may belong to. If,is greater than zero bw, is smaller than
zero, that means there exist some convex combirstitat are dominated by the
selected alternative, but no convex combination idatas the selected

alternative; so this is the worst class that therahtive may belong to. If botk,
and &, are smaller than zero, that means there are neegaombinations either

dominating or dominated by the selected alternatiVhis result gives no
information on the possible class of the selectedtrative. All this discussion is

summarized in the below table.

Table 9. Decisions for different values of decision vables

&

<0 =0 >0

<0 Noinfo | X,0C, | X2 =C,

£, -0 X, 0C, | x.0C, | x,.Oc,

>0 | x¥= X, 0c, | x.0Oc,

t

Going over all classes that the selected alteraatiay belong to, the alternative is

either placed or its best or worst possible cladex is updated.
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Figure 4 provides a two dimensional graphical eXdentp the above discussion.
Suppose that, alternatives 1, 2 and 3 belong tednee class (say, claBs and
other alternatives are evaluated with above LPs:
 As it can be observed graphically alternative 4 banrepresented as a
convex combination of alternatives 1, 2 and 3. fBoalternative 4, both
g >0 ande¢, >0 and alternative 4 also belongs to class
» For alternative 5¢, >0 and ¢, <0, that means clagsis the best possible
class alternative 5 can belong to.
* For alternative 6,6, <0 and &, >0, that means clask is the worst
possible class alternative 6 can belong to.
* For alternatives 7 and 8, both <0 and &, <0, and no information
provided.
» For alternatives on the lines bounding the shadgibn, eithers; =0 and
&, =0, that can be expressed as a convex combinatidarnative 9 is

such an alternative, and it also belongs to dlass

crit 2
|

| &t 1

Figure 4. Graphical representation of the example

27



2.6 Utilizing LPs for best and worst classes

As mentioned above, the algorithm tries the nartio&vrange of possible classes
that the selected alternative can be placed in. Swuolar LPs are used to check
the possibility of the placement of the selectadrahtive in preference classes
with respect to the defined weight space. The agpesl LPs are similar to those
developed by Koksalan and Ulu (2003), where eaehredtive in a certain class is
considered separately. Here all alternatives itassds considered in one LP. The
reasoning behind this is that, to decide whetherdlass is the worst/best class
that the selected alternative can belong to thbmuld not exist any feasible
weight set that makes the selected alternative edloetter than “all” alternatives
in that certain class.

Starting with the initial utility estimation, weighspace is defined. New
constraints are added (weight space will be reduoeeither of the following
cases:
* whenever a preference relation is implied by annEse/ap
* whenever an alternative is placed to a class, hecktare alternatives in
worse classes which that alternative is not dormigatThis implies a
preference relation. If there exist some altermtiin better classes which
are not dominating that alternative, this will alsaply a preference

relation.

The following LP is used for determining the besass that the selected
alternative may belong to with respect to the dmfineight space wher&”
represents the defined weight space.

max &

s.t.

A (X, -X,)ze OX,0C,
A0S
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The above LP is solved for each claSs starting from the worst possible class

until the worst possible class the selected altermanay belong to. I <0or the

LP is infeasible, it is concluded that there iswight set in the defined weight

space which makes the selected alternatkje, better than all alternatives in that
class under consideration. So, the class is mdtkbd the best class that, may

belong to X . If the LP is feasible, consider the next class.

A Similar approach is followed to determine the starlass. The following LP is

constructed for that purpose:

max &

s.t.

A (X, -X,)=0 OX, OC,
A0S

The above LP is solved for each cl&sstarting from the best possible class until

the worst possible class the selected alternatae lpelong to. Ife <Oor the LP
is infeasible, it is concluded that there is nogheiset in the defined weight space

which makes the selected alternatiXg, worse than all alternatives in that class
under consideration. So, the class is marked ttheevorst class thaX, may

belong toX," . If the LP is feasible, consider the next besssla

Whenever, X’ = X" the selected alternative can safely be placedhat t

preference class.

2.7 Finding equivalent dummy points

As mentioned in Section 2.5 if the selected altéveacan be expressed as a
convex combination of alternatives belonging to Hamne class, that selected

alternative also belongs to that class. The foll@niP is constructed in order to
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check for a dummy point that dominates a convexkioation of alternatives of a
class, and is dominated by another convex combimatf the same class and
equivalent to the selected alternative in termestimated utility value. Since the
dummy point is both dominating and dominated by tdifferent convex

combinations, it will be a member of that class.

maxé&

St.

Aest(Xaum = X) =0
Z/‘Ii Xi=Xgum2 €
X{0C,

Xgm™ 2 BX 2

X, 0C,

2H=1
2.8=1

u=20820X,,20=20

Figure 5 shows an example of the case where tg &in be used. Here, the
“dummy” alternative can be expressed as a convexogmtion of alternatives 1,
2 and 3, which belong to same class. And usingetitienated utility function, it
can be said that alternative 5 and the “dummy’radtive has the same utility
value. The DM is asked to perform an even-swapli@nrative 5, to come around
the “dummy alternative”. If the swapped point cdspebe expressed as a convex
combination — it is expected because of the estichatility function — we can

place alternative 5 in the same class.
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crit 2
|

crit 1

Figure 5. Step 6 shown graphically

Starting from the best class that the selectednaiteee may belong to, the above
LP is solved. If a feasible dummy point can be fhuan Even-Swap will be

performed on the selected alternative, to genaxatevapped alternative around
the dummy point. Since the dummy alternative waldomember of that class, the
swapped alternative is a close candidate to be mbee But before placing

dominance relations with the convex combinationi & checked, since the
dummy point is found using the estimated weightsth® swapped point can be
slightly different.

2.8 Decision maker placement

If the selected alternative cannot be placed toedepence class with one of the

above procedures, then the DM will be asked to eplee alternative to a

preference class betweet)" and X .

Let the DM place the alternative to a preferencassl If there exists some
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alternative X, belonging to a worse class but not dominatedXyy, a constraint
will be added to the weight space indicatiXg >~ X, that isA(X, —X,)20. If
there exists some alternativ, belonging to a better class but not dominating
X, , a constraint will be added to the weight spaakcating X, > X,, that is
A(X, - X,)=0. (Koksalan, M.M., Ulu, C., 2003).

Figure 6, is a graphical example of how dominanu weight space reduction is
utilized for alternative placements (Koksalan, M.Mlu, C., 2003). Suppose, DM
places X, to the worst class, the alternatives in the dasremangle are
dominated by X, , and they also belong to the worst class. Assumg it is
known by weight space reduction constraints thapeslof the DM’s underlying
utility function lies betweenl, and|,. Then, the alternatives which are marked

with a “*”, will also belong to same class by weigipace reduction.

crit 2
T
]
[ ]
[ ]
1
[ ]
1
[ ]
]
[ ]
[ ]
1
[ ]
]
[ ]
[ ]
1
[ ]
1
[ ]
]
[ ]
[ ]
1
[ ]
]
1

*

- - - - -

B L T

critl

Figure 6. Graphical representation of dominance and eight space reduction
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CHAPTER 3

THE ALGORITHM

3.1 Summary of the Algorithm

The algorithm used for sorting can be divided imto phases:

* initialization

* placing alternatives
At the “initialization phase” two alternatives aselected from the alternative set
and an Even-Swap is performed on them. Utilizing itiformation coming from
the Even-Swap, constraints are generated and anaést of the DM’s utility
function is made. An overall flow of the initializan phase is given in Figure 7

(for the detailed flow, look at Appendix A):

Select two Perform an Generate constrair Estimate the
alternatives ——» Even-Swapn | — P & define weight |—»{ utility function
them space

Figure 7. Flow of the initialization phase

At the “placing alternatives phase”, first the aitive to be placed is selected
among the unplaced alternatives. Then accordimptoinance relations, best and
worst classes for the alternatives are determifié@. next step is to check the
selected alternative for convex combinations of gheference classes. Then
utilizing generated LPs and the reduced weight esppossible range of classes
that the selected alternative may belong to isoweed down. Then an equivalent
dummy alternative, which belongs to a preferen@ss;lin terms of estimated

utility is searched and an even swap on the selegiternative is performed to
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come around the dummy alternative. Whenever ibis\dl that the possible best
and worst classes are the same for the selectrdatiive, during the execution of
the steps of the algorithm, the alternative is @tato that class. If this does not
happen, DM is asked to place the alternative tlasscamong the range of classes
that the alternative may belong to. An overalWflof the “placing alternatives

phase” is given in Figure 8 (for the detailed fldagk at Appendix A):

Select an Determine best Check for Search for
alternative to ——p» and worst classi ——P» convex P best class wit
place by dominance combinations WSR
o T .
i Place using | Ask the DM tc Find an Search for
i dominance — place |4— equivalent |@——— worstclass
. ! dummy point with WSR

Figure 8. Flow of the "placing alternatives phase"

3.2 The Algorithm

INITIALIZATION

Step 0.
Define X to be the set of all alternatives, and let thezen lalternatives, define
each asX,. Then X ={X,, X,,...,X,}.

Define the j™criterion value of the alternativéX, as x ., and let there b

i,j
criteria, thenX; = (X 1, X 550X jreeeXip )

Let X be the index of the best class thgt can belong to;X,” be the index of
the worst class thaX, can belong to; an, be the index of the class thxt,
belongs to, when it is placed.

Let C, be the set of alternatives that belong iftclass; and let there be t

preference classes whef® represents the “best” class a@jrepresents the
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“worst”.

Go to next step.

Stepl.
Select two alternatives from the alternative setAiong the alternative pairs
which do not dominate each other, the closest ionerms of Euclidean distance

is selected. Let the selected alternativesXyeand X, .

Go to next step.

Step 2.
Ask the DM to perform Even-Swap on the selectectradttives. Let the

alternative to be swapped b€, . If criteriak andl are considered, equate thé
criterion value of X, to that of X, , and ask the DM how much s/he wants to

swap on thd™ criterion. Let the DM swap from, , to X% .

Xq,k -=> Xr,k(qu-k)

X == >2(n)

After this swapX, becomes X; = (X1, X ak, Xal,.....%, ,) . Perform all the
swaps on all criteria. FinallyX, becomes X®; =(X%1,...,x°qx, X%ql,....,.X%a,p)

where all criterion values except the last are ktuthat of X, ’s.

Go to next step.

Step 3.

One of X°; or X, dominates the other depending on the value of thst
criterion. LetX®;, dominate X, , write a preference constraint betwey and

X, to constrain the weight space:

Xq = X,
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Write couple of constraints for each swap performesing previously defined
consistency indexr :

qu,l —Xql

A@Q+a) .
X gk = X'qk

-1, 20

and

qu,l —Xql

X gk — qu,k

A=A @Q-a) >0

Step 4.

Solve the following LP, and find an estimate of BM’s utility function.
max &
st.

XSi,I = Xi)

A@+a) .
Xik — Xk

-A2¢
For each swap performed

A=A l-a) 22 5 e

Xik —Xik
MX =X, )z OX, - X,
Z/‘,— =1
A=20
=20

Go to next phase.
PLACING ALTERNATIVES

Step 5. (initializing all alternatives)

Initially equate all best possible class indexesalbalternatives to best class, that

is X, =1; and equate all worst possible class indexes If@ltarnatives to worst

class, that isX‘kN =t. Equate all class indexes for all alternativezdm, XkC =0

that means they do not belong to any class yet.
Go to next step.
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Step 6. (select one alternative)
Select an alternative among those currently unglacet the selected alternative
be X,.

Go to next step.

Step 7. (decide best and worst classes)
Look for the set of alternatives that dominite let D{ X,} denote the set of

alternatives dominating, . Looking at the class indexeX{ ) of all alternatives

in the dominating set, assign the highest clasexras the best possible class

index of X, ; X? =maximumclassndexin D{ X, } .

Look for the set of alternatives that are domindigc, , let D{X,} denote the
set of alternatives that are dominated ¥y. Looking at the class indexeX{)

of all alternatives in the dominating set, assiym lbwest class index as the worst
possible class index ok, ; X,' =minimumclassndexin D{X,}.

If X2 =X/ =y, then placeX, to class. Go to Step13

Go to next step.

Step 8.(convex combination check)

Starting from clas¥X’ to X' solve the following LP couple to check whether
X, can be expressed as a convex combination of attees that belong to same

class.
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LP1 (wheree, = [51,...,51,..51,])

max &
S.t.

DX =X, ~€ =0

X;0C,

2 H =1

=0

LP2 (wheree, = [52,...,52,..52,])

max &,
Ss.t.

X, = > X, -e,20

X;0C,

2H=1

M =20

If both £, and &, are positive for clasg then placé&, to classy, go to Step 13. If

either &, or &, is equal to zero, again plagg to classy, and go to Step 13.

If £ >0 and¢, <0 for class y, then equate best possible class inflex, toy,
X2 =y, if £ <0 ande&, >0 for class y, then equate worst possible classiode
X, toy, Xr’ =y, if both £ <0 and &, <0 for class y, this gives no information;

go on with the next class.

If there are less than two previously placed adtbwes in a class under

consideration, skip that class and consider thé nex
When all classes are considered go to next step.

Step 9. (check for best class with WSR)
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Starting from the worst class that, can belong taX,’, solve the following LP

for all possible classes, whe®eepresenting the weight space.

LP3

max &

s.t.

AX -X,)ze 0OX,0C,
A0S

If the problem is infeasible as <0 in the optimal solution, then classs the best
class thatX, can belong to, that iX? =i, terminate this step. IK? = XY =,
then placeX, to classy, go to Step 13. IiX2 # X, go to Step 10.

If the problem is feasible and >0in the optimal solution, go on with the next
worst class, loop this step till the class justobefthe best possible cla¥s, + , 1

is considered.

If there are no previously placed alternative inlass under consideration, skip

that class and consider the next.

When all classes are considered go to Step 10.

Step 10. (check for worst class with WSR)
Starting from the best class thxt can belong taX.’, solve the following LP for

all possible classes, wheBaepresenting the weight space.

LP4

max &

st.

A(X, - X,)=e OX,0C,
A0S

If the problem is infeasible oe <0 in the optimal solution, then clagsgs the

worst class thatX, can belong to, that isX‘szi, terminate this step. If
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X2 =X/ =y, then placeX, to classy, go to Step 13. IfX} # X", go to Step
10.

If the problem is feasible and >0in the optimal solution, go on with the next
best class, loop this step till the class just leetbe worst possible class,’ — , 1

is considered.

If there are no previously placed alternative inlass under consideration, skip

that class and consider the next.
When all classes are considered go to Step 11.

Step 11. <find a dummy equivalent alternative>

Starting from the best possible class tixgt can belong to, solve the following

LP.

LPS

max&

st.

Aesi(Xgum = X, ) =0
Z:Ui K= Kom 2 €

X,0C,

xdum_ Zﬁx| 2

X 0C,

Z/Ji =1
> 1

U208 20X,,,2020

dum

If a feasible dummy poin¥,,,, can be found for clags perform an Even-Swap

on X, to compare withX That is step-by-step equatiXg’s criterion values

dum*

to that of X, 'S, and performing the swap. After the Even-Swagckhthe

dum
swapped point;, if it can be expressed as convex combination hef t
alternatives of the class under considerationpgstép 8.
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If no feasible solution can be found, consider rile&t best class. Loop this step

till all possible classes are considered.

If there are less than two previously placed adiBwmes in a class under

consideration, skip that class and consider thé nex

When all classes are considered and no feasihdi@olobtained, go to next step.

Step 12. (ask DM to place)
Ask the DM to placeX,to a preference class among the range of claXgeso
X, . If the DM chooses class go to Step 13.

Go to next step.

Step 13. (assignments, placement by dominance, upedest & worst classes)
Assign X, to classy, that iX{ =y.
If the alternative is placed directly by the demisimaker: add a constraint to the

weight space showing, > X, that isA(X, - X,) =0, for all X, belonging to a

worse class and not dominated Ky . Update the estimated utility function.

If the alternative is placed directly by the demisimaker: add a constraint to the

weight space showing, > X, , that isA(X, - X,) 20, for all X, belonging to a

better class and not dominating, . Update the estimated utility function.

If y=1, that is the best class, then all alternativesidatimgX,, D{X.,}, shall

also belong to class 1; place those alternativedass 1. Recursively, the set of
alternatives that are dominating these alternatsres| also be in class 1, check

dominating sets for all placed alternatives.

If y=t, that is the worst class, then all alternativest thre dominated by, ,
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D{X,}, shall also belong to clasg place those alternatives to class

Recursively, the set of alternatives that are dateih by these alternatives shall

also be in clast check sets of dominated alternatives for all gdbalternatives.

If yis an intermediate class, the best possible ataex for the set of alternatives
that are dominated by, shall be at least (lower the better) equay;tdf there
exist some alternatives having best possible dladex lower thany, in the

dominated alternatives set, equate their index that isX® =y.

Again, if y is an intermediate class, the worst possible dladsx for the set of

alternatives that are dominating, shall be at most (higher the worse) equaf;to
if there exist some alternatives having best ptessitass index lower thay in

the dominating alternatives set, equate their indgxthat isX" =vy.

If all the alternatives are placed, exit the altion and present the preference

classes to the DM. If there are some unplacednalties left, go to Step 6.

An Example

The algorithm is illustrated on an example, with&@rnatives having values on
two criteria. Assume that more is better in boiteca. The DM tries to sort these
20 alternatives in three preference classes. Theistency index is selected to be,
a = 005. The alternatives are presented in Figure 9, hadatternative IDs and

criterion values are tabulated in Table 10.

While executing the algorithm for this example, tegitings are made to simulate
DM'’s responses:

+ a linear underlying utility function otU(X;)=0.7* X, +03* X, is

set, and DM’s responses are declared accordingly.
» DM’s boundaries between preference classes ati&eéhe following:
o If U(X;)>0.650 then placeX; to class 1,X; OC,

o If 0.250<U(X,)<0.650 then placeX; to class 2,X; C,
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o If U(X;)=<0.250 then placeX; to class 3 X, OC,

1.2000

1.0000

0.8000

0.6000

crit.2

0.4000

0.2000

0.0000 -
0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000
crit.1

Figure 9. Example - Alternatives graphically represated

Table 10. Example - List of alternatives and their dteria values

0.1717 0.4979 0.3957 0.8499

0.8292 0.7750 0.0942 0.1718

0.0871 0.1286 0.5979 0.6971

0.7129 0.5627 0.1362 0.3332

0.0440 0.2792 0.8576 0.7886

0.4681 0.0143 0.0821 0.6767

0.8454 0.7674 0.0373 0.3582

0.8860 0.3096 0.3130 0.4497

0.2425 0.1729 0.1013 0.7660

0.6970 0.9681 0.9571 0.7373

Step 1.
Euclidean distance between all alternatives areutzted, the closest alternatives
which are not dominating each other are alternatizeand 7. These two

alternatives are selected for initial Even-Swap.
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Step 2.

An Even-Swap will be performed on alternative Ba®2, 0.7750) and alternative
7 (0.8454, 0.7674). Let the swap be performed tamradtive 2. For alternative 2:
Crit 1: 0.8292-> 0.8454

Crit 2: 0.7750> ?

Assume that asking the DM to make the swap to cosgie the change, the
following response is taken: “the increase in thst fcriterion from 0.8292 to
0.8454 is equal to a decrease in the second ontéom 0.7750 to 0.7372"

Step 3.
Then, alternative2 becomes (0.8454, 0.7372), and this swapped alieenis

dominated by alternative 7. Then it can be said ¥a is preferred t,, and

following constraint can be written:
X, =X,

Following two constraints can be generated fromsWwap performed and using

the consistency index:

X27X2 ) >0 which gives0.4504, ~ 4, 20

A, L+ 005)
X 22 —=X"22

and

X32,1 —X 21

X 22— st,z

A, = A, @1- 005 >0 which givesA, —-0.4074, 20

Step 4.
The following LP will be solved to make an estirnatiof the DM’s criteria

weights:
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maxé&

st.

04504, -4, 2 ¢

A,—04071, 2¢

AMX,=X,)ze for X, = X,

> A=1
A20
20

Initial estimated weights are found to bg:= 0.7075and A, = 0.2925.

Step 5.

All best possible class indexes are equalized {oXf =1 for all i), all worst
possible class indexes are equalized toX3' 3 for all i) and all class indexes

are equalized to zero, since no alternatives haee placed yetX° = for alli).

Step 6.
Alternative 4 is selected to be placed. Sincehalgreference classes are initially
empty, none of the steps give results till Stepth®;algorithm steps forward to

Step 12 (DM placement).

Step 12.
The DM is asked to place,, and he places(, to class 1. Step forward to Step

13.

Step 13.

X7 =1, and all alternatives dominatinyg, will also be placed in class 1, these
are alternatives 2, 7, 15, 20. TheX; = XJ =X5=X5 = . 3elect a new

alternative and continue. Step forward to Step 6.
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Step 6.

Alternative 13 is selected to be placed. Since spraérence classes are empty,
none of the steps give results till Step 12; tlgo@dhm steps forward to Step 12
(DM placement).

Step 12.
The DM is asked to place,, and he placeX,; to class 2. Step forward to Step

13.

Step 13.

X5 =2, update possible worst class indexes for all wggaalternatives
dominating X,, to class 2, there is only oXg,, X,* =2. Update possible best
class indexes for all unplaced alternatives dorashdty X,, to class 2, there are
10 alternatives dominated by Xizs

XP =X =X = XE =X = X5 =X = X5 =X = X5 =2.

Since X,, is not dominated byX, but in a worse class, a preference relation is
implied, X, > X,;, and the following constraint is added to weighace:

A(X,=X;5)=20

Solving the LP for estimated utility function agaiith the new constraint, it is
seen that the estimated weights do not changectSalenew alternative and

continue. Step forward to Step 6.

Step 6.

Alternative 16 is selected to be placed. Since spraterence classes are empty,
none of the steps give results till Step 12; tlgo@dhm steps forward to Step 12
(DM placement).
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Step 12.
The DM is asked to place, and he placeX,, to class 2. Step forward to Step

13.

Step 13.

X5 =2, update possible worst class indexes for all wggaalternatives
dominating X,; to class 2, there are two unplaced dominatingrrateves,
X}y = X{3 =2. Update possible best class indexes for all ueplaaternatives
dominated by X,; to class 2, there are 2 alternatives dominated Xy,

alternatives 5 and 17, but their worst class indeatready 2, no update required.

Since X4 is not dominated byX, but in a worse class, a preference relation is
implied, X, > X4, and the following constraint is added to weighace:

A(X, = X,) =0

Solving the LP for estimated utility function agaiith the new constraint, it is
seen that the estimated weights do not changectSaleew alternative and

continue. Step forward to Step 6.

Step 6.

Alternative 9 is selected to be placed. Since spre¢erence classes are empty
none of the steps give results till Step 12; tigo@dhm steps forward to Step 12
(DM placement).

Step 12.
The DM is asked to place,, and he places(, to class 3. Step forward to Step

13.
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Step 13.

Xs =3, and all alternatives dominated by, shall also be placed in class 3,

these are alternatives 3 and 12. Th¥f,= X5= . 3

Since X, is not dominated byX,, but in a worse class, a preference relation is
implied, X, > X,, and the following constraint is added to weighdce:

A(Xys—X4) 20

Solving the LP for estimated utility function agawith the new constraint, it is

seen that the estimated weights do not change.

Currently 10 alternatives are placed, and the #lguorstatus is shown in Table

11, highlighted alternatives are placed:

Table 11. Example - Current status of the alternative (1)

Alternative 1D class ‘ best worst Alternative 1D class best worst

1 0 2 3 11 0 1 2
2 1 1 1 12 3 3 3
3 3 3 3 13 2 2 2
4 1 1 1 14 0 2 3
5 0 2 3 15 1 1 1
6 0 2 3 16 2 2 2
7 1 1 1 17 0 2 3
8 0 1 3 18 0 2 3
9 3 2 3 19 0 1 2
10 0 1 2 20 1 1 1
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classes
1 ‘ 2 ‘ 3

13 3
16 9
12

NN

Select a new alternative and continue. Step foru@@tep 6.

Step 6.
Alternative 8 is selected to be placed.

Step 7.
Xg =1land Xy’ =3.

Step 8.

Starting from best class that, can belong to, that is class 1; convex combination
check will be performed, by solving LP1 and LP2r Bee first class LP1 gives
£ >0 and LP2 givese, <0; this impliesX? = 1 For the second class, both
& <0 and ¢, <0; no information gained. For the third class<0 and ¢, >0;

this implies X3’ = 3

Step forward to next step.

Step 9.

Starting from worst class thaX, can belong to, that is class 3; LP3 will be
solved. For both class 3 and 2 LP3 gives feasibte @ositive solutions; so, no

updates toX. . Step forward to next step.
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Step 10.

Starting from best class tha¢, can belong to, that is class 1; LP4 will be solved
For class 1, LP4 gives a feasible solution, butO; so the worst class thaX,
can belong to is updated,’ =1.

Now, Xg = X' =1, then placeX, to class 1. Go to Step 13.

Step 13.

Xs =1, no updates needed for best and worst possibs dhalexes of other

alternatives due to dominance relations.

Select a new alternative and continue. Step foru@f@tep 6.

Step 6.
Alternative 11 is selected to be placed.

Step 7.
X5 =1and X, =2.

Step 8.
Starting from best class thak,, can belong to, that is class 1; convex
combination check will be performed, by solving L&id LP2. For the first class

LP1 gives& <0 and LP2 gives, <0; no information gained. For the second

class, bothe, <0 ande, >0; this impliesX,] = 2.

Step 9.

Starting from worst class thaX,, can belong to, that is class 2; LP3 will be
solved. For both class 2 LP3 gives feasible salytiute <0; so the best class
that X,, can belong to is update = 2.
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Now, X;;, = X, =2, then placeX,, to class 2. Go to Step 13.

Step 13.

Xy; =2, update possible best class indexes for all ueplaalternatives
dominated byX,, to class 2, there is only one unplaced alternatominated by
X,,, alternative 19X =2.

Now, X, = X;5 = 2, then placeX,, to class 2.X,, will be placed to class 2.

Go to Step 13 to place alternative 19.

Step 13.

X5 =2, no updates required for best and worst possillexes of classes.

Select a new alternative and continue. Step foru@ftep 6.

Step 6.
Alternative 10 is selected to be placed.

Step 7.
Xp=landX;j = 2

Step 8.

Starting from best class thak,, can belong to, that is class 1; convex

combination check will be performed, by solving L&id LP2. For the first class

LP1 gives¢, <0 and LP2 givess, <0; no information gained. For the second
class,& <0 and g, >0; this implies X)j = 2

Step forward to next step.

Step 9.

Starting from worst class thaX,, can belong to, that is class 2; LP3 will be
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solved. Solving for both class 2, LP3 gives feasiibsitive solution, so no update

to X Go to Step 10.

Step 10.

Starting from best class that,, can belong to, that is class 1; LP4 will be solved
For class 1, LP4 gives a feasible solution, butO; so the worst class that,,
can belong to is updatex,; =1.

Now, X = X,y =1, then placeX,, to class 1. Go to Step 13.

Step 13.
X5 =1, no updates required for best and worst possgildlexes of classes, and no

preference relations implied. Select a new altéreand continue. Step forward
to Step 6.

Step 6.
Alternative 14 is selected to be placed.

Step 7.
Xj =2 and X} =3.

Step 8.

Starting from best class thaX,, can belong to, that is class 2; convex
combination check will be performed, by solving L&1d LP2. For class 2 LP1
gives € >0 and LP2 givese, <0; this implies X;; =2. For the second class,
£ <0 andg, >0; this implies X}; =3.

Step forward to next step.

Step 9.

Starting from worst class thaX,, can belong to, that is class 3; LP3 will be
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solved. For class 3 LP3 gives feasible solutiorteu0; so the best class that
X,, can belong to is updated,, = 3.

Now, X = X;} =3, then placeX,, to class 3. Go to Step 13.

Step 13.
X4 =3, no updates required for best and worst possildlexes of classes.

Select a new alternative and continue. Step foru@f@tep 6.

Step 6.

Alternative 1 is selected to be placed.

Step 7.
X2 =2 and X}" =3.

Step 8.

Starting from best class that, can belong to, that is class 2; convex combination
check will be performed, by solving LP1 and LP2r Elass 2 LP1 giveg, >0

and LP2 givese, <0; this implies X;> =2. For class 3¢ <0 and &, >0; this
implies X}¥ =3.

Step forward to next step.

Step 9.

Starting from worst class thaX,; can belong to, that is class 3; LP3 will be

solved. For class 3 LP3 gives feasible positivetsm, so no update oX’.

Step 10.

Starting from best class that, can belong to, that is class 2; LP4 will be solved
For class 1, LP4 gives a feasible solution, but0O; so the worst class thaX,

can belong to is updated,” =2. Now, X =X} =2, then placeX, to class 2.
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Go to Step 13.

Step 13.

X. =2, no updates required for best and worst posgildlexes of classes.

Currently 16 alternatives are placed, and the dlguor status is shown in the

below table, highlighted alternatives are placed:
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Table 12. Example - Current status of the alternative (2)

Alternative ID‘ class ‘ best worst Alternative ID  class  best = worst

1 2 2 2 11 2 2 2
2 1 1 1 12 3 3 3
3 3 3 3 13 2 2 2
4 1 1 1 14 3 3 3
5 0 2 3 15 1 1 1
6 0 2 3 16 2 2 2
7 1 1 1 17 0 2 3
8 1 1 1 18 0 2 3
9 3 2 3 19 2 2 2
10 1 1 1 20 1 1 1

classes
2

13 3
4 16
11 12
15 19 14
20 1
8
10

Remaining four alternatives are also placed by htegpace reductionX, and
X,, are placed to class X, and X,, are placed to class 2. The final placements
are given in the below table (Table 13), and shgvaphically in Figure 10.

Table 13. Example - Final status

classes
2

13 3
4 16
11 12

15 19 14
20 1 5

10 18
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1.2000

1.0000

11, 0.857g
0.8292 0.7886
207%Q¢
08454 508
0.7674

0.8000 +

0.9571
0.7373

0.6000

crit.2

18 0.3130
0.4497
0.4000

0.2000

L 0092 g 7.
z .. 0.1718(:Iass§0.1 9
0.0871
0.1286
6 04681
0.0000 & -~ ‘
0.40\)0/

T
0.0000 0.2000 0.6000 0.8000 1.0000

crit.l

1.2000

Figure 10. Example - Final status represented grapbally

Below table shows how the alternatives are placeeight space reduction
(WSR), dominance (DOM) or DM placement (DM). 9 @aents are made by
WSR, 7 placements are by DOM and 4 by DM placemdnt®king at the

alternatives that are placed by DM, it is obsertlemt these are the alternatives
which constitute the boundary for the classes, t®ves the effectiveness of
selecting alternatives for placement technique;oéiler alternatives are placed

either by WSR or DOM. Only one even-swap is requirehich was at the

initialization phase of the algorithm.
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Table 14. Example - Means of placements

Alternative | Class ID | Alternative | Class ID | Alternative Class
ID ID ID ID
8 1 2 1 4 1
11 2 7 1 13 2
10 1 15 1 16 2
14 3 20 1 9 3
1 2 3 3
6 2 12 3
18 2 19 2
17 3 5 3
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CHAPTER 4

AUTOMATED APPROACH AND EXPERIMENTATION

An automation of the proposed algorithm is devetbfwme bi-criteria problems in
order to provide an infrastructure for DMs to impknt the algorithm. The
developed automation is also used to test and pierthe behavior of the
algorithm to problems with certain characteristicBhe extension of the
automation to more than two criteria problems mesult in longer run-times to

execute and some complications especially dealitiyEwven-Swaps.

4.1 Development of the Automation and User Screens

The automation is developed using Visual Basic viitB Excel, and utilizes
Excel Solver for the LPs in the algorithm. The m@itgives are read from a
worksheet and model parameters - number of aligasato be considered and the
consistency index - are taken interactively. Thélofang snapshots show
interaction screens; Figure 11 for inserting numifealternatives and Figure 12
for inserting consistency index.
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MNumber of alternatives

X)

Insert Mumber of Alternatives | 100

OF

Figure 11. Inserting number of alternatives to be condiered

X]

Concistency Index

Insert Consistency index 0.05

o] 4

Figure 12. Inserting the consistency index

Two other interaction points with the DM are:

» Performing the Even-Swap : Step 2 at the initiglraphase and Step

11 at the placing alternatives phase.

» Placing alternatives directly : Step 12 at the iplgalternatives phase.
The first one requires DM to perform even swaps.eWdver an Even-Swap is
required, the screen shown in Figure 13 appearsaskslthe DM the decrease or
increase in the value of one criterion to compenshe change in the other
criterion. The criteria values for the both altdiviss, and the change in the other

criterion is presented to the DM, and s/he is etqubto make the swap.
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Even Swap
EYEN SWAP
alt, ID Criterion 1 Criterion 2
Alternative & 4 0,975 0,785
Altermative B 40 00,9595 08013

Alternative B
The increase in Firsk crikerion

fram 10,9595 ko 0,975

Is equal ko the decrease in second criterion

from 0,8013 to

0]4

Figure 13. Even Swap Screen

If none of the former steps can place the seleatiuinative, the algorithm asks
the DM to place the alternative to a class in betwis possible best and worst
classes. These best and worst possible class mdaxeé the criteria values of the

alternative is presented to the DM in the screeswshin Figure 14, and s/he is

expected to place the alternative in one class.
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DM Placement

DM PLACEMENT

Alkernative ID 23
Zrit1 walue 0,8131
Zrit2 walue 0,3521

The best class this alternative can be placed ko is class 1

The worst class this alternative can be placed tois 3

Place this alkernative to class: | |

Submit

£

Figure 14. DM Placement

Entering correct info is crucial, so some checks done in order to reject

erroneous data entry, error messages appear wleerofothe following cases

occur:
» Consistency index not between 0 and 1. (Figure 15)

* When swap is done in the wrong direction. (Figusg 1

* When DM tries to place the alternative out of tlmesented best and

worst possible class indexes bound. (Figure 17)

The following error messages appear, and the dtgorcontinues when the error

is corrected.

Microsoft Excel

Entered consistency index walue must be between 0 and 1

Figure 15. Consistency index not valid
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Microsoft Excel

I Infeasible!!! Infeasibility maw be caused by swap made in the wrong direction, ktry again

Figure 16. Swap done in the wrong direction

Microsoft Excel

Selected class is not in boundaries! Try Again!

Figure 17. DM placed the alternative to a wrong clss

4.2 Experimentation

The proposed algorithm is experimented with theettgped automation, in order
to analyze the behavior of the algorithm to altéuea sets with different
characteristics. Four different parameters can dmsidered when testing the
algorithm:

* number of classes: this parameter is fixed at 3 dibrruns, the
implementation may be extended to handle more etadmit currently
it places alternatives to three preference classes

» number of alternatives: three different sizes tdrahtive sets are used,
sets with 20, 50 and 100 alternatives are congidere

* weights of the utility function: two different wehg) sets are used,
“weightl / weight2” ratio of the first one is 0.780and the other one is
0.1/0.9.

» consistency index value, alpha: three differentsgiancy indexes are
used, these are; 0.05, 0.15 and 0.30.

The following table summarizes the runs made, whitkir run codes and run

parameters (Table 15):
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Table 15. Run codes and Run parameters

Run001 3 20 0,7/0,3 0.05
Run002 3 20 0,7/0,3 0.15
Run003 3 20 0,7/0,3 0.30
Run004 3 20 0,1/0,9 0.05
Run005 3 20 0,1/0,9 0.15
Run006 3 20 0,1/0,9 0.30
Run007 3 50 0,7/0,3 0.05
Run008 3 50 0,7/0,3 0.15
Run009 & 50 0,7/0,3 0.30
Run010 3 50 0,1/0,9 0.05
Run011 3 50 0,1/0,9 0.15
Run012 & 50 0,1/0,9 0.30
Run013 3 100 0,7/0,3 0.05
Run014 3 100 0,7/0,3 0.15
Run015 & 100 0,7/0,3 0.30
Run016 3 100 0,1/0,9 0.05
Run017 3 100 0,1/0,9 0.15
Run018 3 100 0,1/0,9 0.30

During the runs, the DM’s responses for direct @haents and Even-Swaps are
given using the underlying utility function of tHeM. It is assumed that all
preference classes are approximately of the saree Bhree different alternative
sets of sizes 20 alternatives, 50 alternativesl®fdalternatives are used, whose
criteria values are randomly generated. The alteasets and their criteria
values are given in Appendix B. How each alterreatsvplaced - either by convex
combinations, weight space reduction, Even-Swap®ctd DM placement or
dominance - is tracked and documented. Result8 nfres are given in Appendix

B. The Following table (Table 16) summarizes trsults obtained from all runs.
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Table 16. Run Results Summary

Number of alternatives placed with different tools

# of # of. _ Utility . Alpha
Classes | Alternatives | (weightl/ weight2) Co%%?r:/:t)i(on WSR ‘ e e — Dominance
Run001 3 20/0,7/0.3 0.05 8 4 8
Run002 3 201 0,7/0,3 0.15 7 1 4 8
Run003 3 201 0,7/0,3 0.30 1 5 2 4 8
Run004 3 2010,1/0,9 0.05 5 4 11
Run005 3 20/0,1/0,9 0.15 5 4 11
Run006 3 20/0,1/0,9 0.30 5 4 11
Run007 3 50 |0,7/0,3 0.05 5 18 5 22
Run008 3 50]0,7/03 0.15 4 15 4 5 22
Run009 3 50]0,7/0,3 0.30 7 9 6 7 21
Run010 3 50/101/0,9 0.05 6 14 4 26
Run011 3 50|0,1/0,9 0.15 6 14 4 26
Run012 3 50|0,1/0,9 0.30 6 10 3 5 26
Run013 3 100 | 0,7/0,3 0.05 32 18 8 4 38
Run014 3 100 | 0,7/0,3 0.15 24 22 3 6 45
Run015 3 100 | 0,7/0,3 0.30 35 9 16 6 34
Run016 3 100/ 0,1/0,9 0.05 21 30 0 6 43
Run017 3 100 | 0,2/0,9 0.15 21 29 1 6 43
Run018 3 100 | 0,2/0,9 0.30 28 25 2 6 39
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Some graphs are plotted using the above tabulatsdlts, to enable the
interpretation of the results graphically. The aggs are taken by grouping the
runs according to “number of alternatives”, andurgg18 is plotted. This figure
shows the average percent of the cases an aliernistiplaced by a certain

placement method.

Averages

100%

90%

80%

70%

& Dominance

B DM Placement

B Even Swaps

WSR

0 Convex Combination

60%+

50%

40%

30%+

20%

10%—

0%

20 50 100

Figure 18. Averages with differing alternative setizes

By looking at the alternatives placed by direct PMcement, we can observe a
decreasing trend. The average percent for Even-Swapeases as the number of
alternatives considered increases, however, if une gp the average percentages
for DM placement and Even-Swaps the following dasimeg trend can be
observed; 22.50%, 14.33% and 10.67% for alternaidte of sizes 20, 50 and 100
respectively. Thus, we can conclude that with laajeernative sets the algorithm

requires relatively less DM effort.

Another observation from this graph is that, thecest of alternatives that are

placed by WSR decreases whereas the percent aiaites that are placed by
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convex combinations increases as the size incre@bscan be due to increasing
number of convex combination relationships amorigaliernatives with the

increase in the number of alternatives.

The consistency index is set at the beginning efalgorithm; the information
coming from the Even-Swaps is evaluated within thage defined by this
consistency index. The average percentages foratgfacing the alternatives,
under different consistency indexes are plotte&igure 19. As expected, when
the consistency index increases, the required Dddtimcreases, if we sum up the
average percentages for DM placement and Even-Sthap®llowing increasing
trend can be observed; 12.67%, 14.50% and 20.38%ofwsistency index values
of 0.05, 0.15 and 0.30 respectively.

Averages - Consistency Index

100%

90%

80% 15.33%

70%

O Dominance

@ DM Placement

B Even Swaps

WSR

O Convex Combination

60%

50%

40%

30%

20%

10%

0%

0.05 0.15 0.30

Figure 19. Averages with differing consistency indexe

The results are grouped according to the numbexdtefnatives considered, and
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three graphs are plotted for alternative sets zdss0, 50 and 100. Figure 20
illustrates the runs for the alternative set havR@ alternatives. The most
interesting observation from this graph is thatmbar of alternatives that are
placed by direct DM placement stays constant atith, different utility functions
and consistency indexes. These four alternativesha ones that constitute the
boundaries for preference classes; one for thedgesg, one for the worst and two
for the middle class. The step for placing therad@ve by an Even-Swap is
invoked only three times; the reasoning behind ihithat, since the number of
alternatives dealt is small, the case when itasifde to perform an Even-Swap is
less probable. Another observation from Figure 2@hiat, for runs using the
utility function weight ratio “0.1/0.9”, (these atlee runs 4, 5 and 6) the results are

stable for different consistency indexes.

20 Alternatives

100%~

90%

80%+

70%

609% O Dominance

B DM Placement
B Even Swaps
WSR

O Convex Combination

50%

40%

30%

20%

10%

Run001 Run002 Run003 Run004 Run005 Run006

Figure 20. Results for 20 alternatives

Figure 21 and Figure 22, summarize the runs foarkd 100 alternatives. It can be
observed that; as the consistency index incretisesjumber of DM placements
and number of placements by Even-Swaps increasksreas the number of
alternatives that are placed by either WSR or coneembination relations

decreases. The results are more stable with thetha use utility function with
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weights 0.1 and 0.9 for criterion 1 and criteriome8pectively than the runs that

use weights 0.7 and 0.3.

Although we double the size of the alternativefsan 50 to 100, we observe just
a slight increase in the number of placements naidectly by the DM, so
relatively it is decreasing.

50 Alternatives

100%

90%

80%

70%

60% O Dominance

@ DM Placement
B Even Swaps
WSR

0 Convex Combination

50%

40%+

30%

20%

Run007 Run008 Run009 Run010 Run011 Run012

Figure 21. Results for 50 alternatives
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100 Alternatives

100%

90%

80%

70%

60% O Dominance

@ DM Placement
B Even Swaps
WSR

0 Convex Combination

50%

40%

30%

20%

Run013 Run014 Run015 Run016 Run017 Run018

Figure 22. Results for 100 alternatives

The algorithm requires some computational effounsr with alternative sets
having 100 alternatives, required execution of P8 on the average. Run 15,
with 0.7/0.3 utility weight ratio and 0.30 consisty index, required execution of

348 LPs. It takes couple of minutes to completera r
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CHAPTER 5

SUMMARY AND CONCLUSION

An interactive model for the problem of sortingeaftatives to preference classes

in the existence of multiple criteria is proposedhis study.

It is assumed that the DM’s underlying utility fuion is linear; the model tries to
generate an estimated region for the criteria weigising DM’s responses and
place the alternatives to preference classes aitilzing weight space reduction

or dominance wherever possible.

A two-phased approach is proposed for the problem.first phase initializes the
placement algorithm, starts with the selection wb talternatives from the
alternative set and an even swap is performed esetltwo alternatives. Then,
utilizing the information gained from this swap, a&stimation of the DM’s
underlying utility function is made. This is dong the help of an LP which

constrains the weight space of the DM.

With the estimated utility function, the algorithsteps forward to second phase.
This phase loops until all alternatives in the erefce set are placed to a
preference class. The first step in this phasseliscting an alternative placement.
Then, by looking at dominance relations with forlygplaced alternatives, its
possible best and worst classes are determined, Kieg checked whether the
selected alternative can be expressed as a coovebirtation of alternatives that

are already assigned to a given class. This chedomducted for all possible
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classes the selected alternative may belong to.nWhes proved that the
alternative can be expressed as a convex comhinafi@lternatives of a given
class, it is placed to that class. Otherwise, tiiermation gained is utilized and
the algorithm tries to place the alternative usiejght space reduction with two
LPs. If this cannot be possible, the next stetteefind an equivalent dummy
point —in terms of estimated utility value- whichncbe expressed as a convex
combination of the alternatives of a class. Therwn swap is performed on the
selected alternative to swap around the dummyreitiee, and it is expected that
the swapped alternative can also be expressed esneex combination of
alternatives in that class. If no feasible dumntgraktive can be found, then the
selected alternative is presented to the DM, andhkeis asked to place the

alternative to one of the possible preference elss

In each step of the algorithm; whenever informat®gathered from the DM, the
weight space is updated accordingly. The weightepa reduced during the
execution of the algorithm. So, although not guteed, it is expected and
observed that the DM’s estimated utility functiomproves as the algorithm
iterates. As more alternatives are placed to peefsr classes, the algorithm
becomes more effective. That is, as the number l@rnatives placed by

dominance and weight space reduction increasesetigred DM involvement

for placements decreases.

At the last step of the algorithm the DM is askeddirectly place the selected
alternative to a preference class. But before skep, if appropriate, the DM is
asked to place the alternative by performing annES@ap using the dummy
alternative approach. In some cases, performing:tsm-swap can be harder than
directly placing the alternative. That depends anynfactors: the characteristic
of the problem, scaling of the criteria, numbercoteria to be considered, the
DM’s value judgments, the amount of the swap reglietc. For example if the
number of criteria to be considered is five, the D& to make four iterations to
perform the Even-Swap; s/he would rather prefegaty placing the alternative.

However, evaluating the criteria and making theg@iaent may also be difficult,
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especially when the number of criteria is large.

The algorithm appears to be more effective espggciahen the number of
alternatives in the alternative set is large and tlumber of criteria to be
considered is not too many. Without a proper meisnant would be hard for the
DM to consider and place too many alternatives; rttoglel provides automatic
placements by making inferences. The problem vathrhany criteria is due to
the increase in the number of swaps required.

An automated approach for the proposed algorithrdereloped. Utilizing the
automation, the model is solved with various aléiie sets having different

characteristics, and the results are discussetiapter 4.

Possible Future Work

It was assumed that, the DM is consistent withhleis/responses; it will be
interesting to analyze cases when there existmgistency, beyond the amount
considered by the consistency index. In the same th& consistency index,

can be defined dynamically as a function of DM'spenses.

A real life application of the algorithm can be foemed; the possible application
areas are listed in the literature survey section.

The Even-Swaps method is originally proposed fadifig the best alternative
among a small number of alternatives, howeverizing the ideas developed in
this study it can be possible to use the methdahtbthe best alternative among a
large number of alternatives, which is a speciaecaf the sorting problem
studied in this thesis.
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APPENDIX A — Detailed flow of the algorithm

Initializing Phase

Step 0. Initialize the problem

‘ Take number of alternatives

L]

‘ Take the consistency index ‘

v

‘ Read all alternatives ‘

v

‘ Initialize preference classes

h J

Step 1. Select two alternatives

dominate each other

v

‘ Calculate Euclidean distances

L]

‘ Find the minimum Euclidean distance

Y

Select the pair having the minimum
distance

v

Step 2. Perform Even-Swap

‘ Identify alternative pairs which do not

‘ Equate two alternatives on one criterion

v

‘ Perform the swap on the other criterion

v

Step 3. Define the weight space

Generate two constraints from the swap,
using consistency index

Generate one constraint from the
implied preference

v

Step 4. Estimate the utility function

Solve the generated LP, to find the mid-
point of the weight space

v

‘ Take the solution as the estimated utility ‘

function

A-1



Placing Alternatives Phase

Step 5. Initialize alternatives.

Set all best class indexes to 1
Set all worst class indexes to t

Setall class indexes to 0 (not placed)

Step 6. Select an altemative to place
Identify unplaced alternatives

Identify those, which are out of bounds

NG alteratives out 0
bounds

‘Select the one, which is far from the
nearest boundary

Select the one, which is closest to the
nearest boundan

Step 7. Decide best and worst classes
Look for the class indexes dominating
alternatives, which are placed

Set the smallest class index as the best
class index of the selected alterative

I |

Start from the worst possible class
Solve LP3

Step 9. Check for best class with WSR

[
Infeasible” or E <= 0

YES

A4
Set best possible class index to the
class

ATl classes except the best, are
nsidered

YES.

NO
top this st
siop s step Consider the next worst class I—

ck whether

Look for the class indexes dominated
alternatives, which are placed

Set the largest class index as the worst
class index of the selected alternative

|
\/

Step 8. Convex Combination check

Solve LP1 to obtain E1
Solve LP2 to obtain E2

Check whether
El=E2 =

I
I
I
I
I
I
I
I
I
I
I
I
I
-
I
I
I
I
I
I

OR
E1>0 ; E2>0

Check whether |
E1<0 ; E2>0 —

he
st class index = worst class in

NO

Go to next step

Solve LP4

Step 10. Check for worst class with WSR

Start from the best possible class

It
“Infeasible” or E <= 0

stop this step

Step 11. Find a dummy equivalent altemative:

it
Infeasible”

NO

Perform an Even-Swap (o come around
dur

mmy altermative

Al classes are considered?

Bhed point can be expresses

y

Step 13. Place the alternative

Set class index to current class

There exists unplaced alteratives

For each altemative in a better class, but not
dominating, add a preference constraint to
weight space

For each alternative in aworse class, but not
dominated, add a preference constraint to
weight space

f————

a convex combination?

Go to next step

Y

Step 12. Ask DM to place the alternative

‘Ask DM to place the alternative to a clas:
in between best and worst classes




APPENDIX B — Experimentation

Experimentation with 20 alternatives:

Alternative Criterion 1 Criterion 1
ID value value
1 0.1717 0.4979
2 0.8292 0.7750
3 0.0871 0.1286
4 0.7129 0.5627
5 0.044 0.2792
6 0.4681 0.0143
7 0.8454 0.7674
8 0.886 0.3096
9 0.2425 0.1729
10 0.6970 0.9681
11 0.3957 0.8499
12 0.0942 0.1718
13 0.5979 0.6971
14 0.1362 0.3332
15 0.8576 0.7886
16 0.0821 0.6767
17 0.0373 0.3582
18 0.313 0.4497
19 0.1013 0.7660
20 0.9571 0.7373
Class1 Class2 Class3
Alt Alt Alt
ID Critl Crit2 ID Critl Crit2 ID Critl Crit2
2 |0.8292 | 0.775 1] 0.1717 | 0.4979 3 | 0.0871 | 0.1286
4 | 0.7129 | 0.5627 6 | 0.4681 | 0.0143 5| 0.044 | 0.2792
7 | 0.8454 | 0.7674 11 | 0.3957 | 0.8499 9 | 0.2425 | 0.1729
8 | 0.886 | 0.3096 13 | 0.5979 | 0.6971 12 | 0.0942 | 0.1718
10 | 0.697 | 0.9681 16 | 0.0821 | 0.6767 14 | 0.1362 | 0.3332
15 | 0.8576 | 0.7886 18 | 0.313 | 0.4497 17 | 0.0373 | 0.3582
20 | 0.9571 | 0.7373 19 | 0.1013 | 0.766
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1
*
0.9
0.8 - P
*
0.7 - ]
0.6
* e Class 1
0.5 ] u Class 2
- Class 3
0.4
0.3 *
0.2
0.1
0 , |}
0 0.2 0.4 0.6 0.8 1
RUN 1:
# of Alternatives 20
Consistency Index 0.05
Underlying Utility Function 0.7/0.3
(weight 1 / weight 2)
# of Classes 3
Convex WSR Even DM Placement Dominance
Combination SIVETS
1 4 2
6 9 3
8 13 5
10 16 7
11 12
14 15
17 19
18 20
8 4 8
RUN 2.
# of Alternatives 20
Consistency Index 0.15
Underlying Utility Function 0.7/0.3
(weight 1 / weight 2)
# of Classes 3

Convex DM Placement Dominance
Combination




RUN 3:

Run Parameters |

Convex
Combination

# of Alternatives 20
Consistency Index 0.30
Underlying Utility Function 0.7/0.3
(weight 1 / weight 2)

# of Classes 3

DM Placement

Dominance

1 5

RUN 4:

Run Parameters |

Convex
Combination

# of Alternatives 20
Consistency Index 0.05
Underlying Utility Function 0.1/0.9
(weight 1 / weight 2)

# of Classes 3

DM Placement

Dominance

RUN 5:

(weight 1 / weight 2)

# of Alternatives 20
Consistency Index 0.15
Underlying Utility Function 0.1/0.9
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# of Classes 3

Convex WSR ‘ Even DM Placement ‘ Dominance
Combination SIVETS
4 13 1
6 14 2
8 17 3
9 19 5
20 7
10
11
12
15
16
18
5 4 11
RUN 6:

# of Alternatives 20
Consistency Index 0.30
Underlying Utility Function 0.1/0.9
(weight 1 / weight 2)
# of Classes 3
Convex WSR ‘ Even DM Placement ‘ Dominance
Combination SIWETS
4 13 1
6 14 2
8 17 3
9 19 5
20 7
10
11
12
15
16
18
5 4 11
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Experimentation with 50 alternatives:

Alternative | Criterion 1 Criterion 1 Alternative | Criterion 1 Criterion 1
ID value value ID value value
1 0.3900 0.3296 26 0.3129 0.6086
2 0.1763 0.0446 27 0.1698 0.7177
3 0.1925 0.3864 28 0.1126 0.665
4 0.9750 0.7850 29 0.1379 0.1646
5 0.6266 0.1859 30 0.4732 0.1023
6 0.9751 0.8548 31 0.9704 0.7103
7 0.4504 0.3621 32 0.8698 0.0837
8 0.2843 0.4652 33 0.9333 0.2587
9 0.1218 0.3370 34 0.5299 0.958
10 0.6526 0.9496 35 0.6433 0.5016
11 0.2514 0.3081 36 0.9242 0.653
12 0.2035 0.8757 37 0.2897 0.8537
13 0.8618 0.3790 38 0.7000 0.9630
14 0.8026 0.3312 39 0.7228 0.6429
15 0.3876 0.5087 40 0.9595 0.8013
16 0.6889 0.6848 41 0.7171 0.8152
17 0.7401 0.3371 42 0.3404 0.8831
18 0.0472 0.0847 43 0.0084 0.5419
19 0.3137 0.2180 44 0.5986 0.1639
20 0.8961 0.0827 45 0.6055 0.1965
21 0.0523 0.7838 46 0.7369 0.7613
22 0.7899 0.9992 47 0.5571 0.6226
23 0.8131 0.3521 48 0.2759 0.1641
24 0.9899 0.6320 49 0.2366 0.9427
25 0.4817 0.8905 50 0.8195 0.472

Class1 Class2 Class3
Alt Alt Alt
ID Critl Crit2 ID Critl Crit2 ID Critl Crit2

4| 0.975| 0.785 5 | 0.6266 | 0.1859 1 0.39 | 0.3296

6 | 0.9751 | 0.8548 7 | 0.4504 | 0.3621 2 | 0.1763 | 0.0446
10 | 0.6526 | 0.9496 12 | 0.2035 | 0.8757 3| 0.1925 | 0.3864
13 | 0.8618 | 0.379 14 | 0.8026 | 0.3312 8 | 0.2843 | 0.4652
16 | 0.6889 | 0.6848 15 | 0.3876 | 0.5087 9| 0.1218 | 0.337
22 | 0.7899 | 0.9992 17 | 0.7401 | 0.3371 11 | 0.2514 | 0.3081
23 | 0.8131 | 0.3521 20 | 0.8961 | 0.0827 18 | 0.0472 | 0.0847
24 | 0.9899 | 0.632 25 | 0.4817 | 0.8905 19 | 0.3137 | 0.218
31 | 0.9704 | 0.7103 32 | 0.8698 | 0.0837 21 | 0.0523 | 0.7838
33 | 0.9333 | 0.2587 34 | 0.5299 | 0.958 26 | 0.3129 | 0.6086
36 | 0.9242 | 0.653 35 | 0.6433 | 0.5016 27 | 0.1698 | 0.7177
38 0.7 | 0.963 37 | 0.2897 | 0.8537 28 | 0.1126 | 0.665
39 | 0.7228 | 0.6429 42 | 0.3404 | 0.8831 29 | 0.1379 | 0.1646
40 | 0.9595 | 0.8013 44 | 0.5986 | 0.1639 30 | 0.4732 | 0.1023
41 | 0.7171 | 0.8152 45 | 0.6055 | 0.1965 43 | 0.0084 | 0.5419
46 | 0.7369 | 0.7613 47 | 0.5571 | 0.6226 48 | 0.2759 | 0.1641
50 | 0.8195 | 0.472 49 | 0.2366 | 0.9427
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RUN 7:

Run Parameters |

Convex
Combination

# of Alternatives 50
Consistency Index 0.05
Underlying Utility Function 0.7/0.3
(weight 1 / weight 2)

# of Classes 3

Even
Swaps

DM Placement

Dominance

B-6




[ 5 [ 18 ] | 5 | 22 |

RUN 8:

# of Alternatives 50
Consistency Index 0.15
Underlying Utility Function 0.7/0.3
(weight 1 / weight 2)

# of Classes 3

Convex Even DM Placement Dominance
Combination SIETS

4 15 4 5 22

RUN 9:

# of Alternatives 50

Consistency Index 0.30

Underlying Utility Function 0.7/0.3

(weight 1 / weight 2)

# of Classes 3

Convex Even m Dominance
_Combination . Swaps |

1 10 5 7 2
17 22 12 16 3
25 30 14 20 4
35 32 15 23 6
37 33 34 26 8
42 38 45 44 9
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47 39 49 11
41 13
46 18
19
21
24
27
28
29
31
36
40
43
48
50
7 9 6 7 21
RUN 10:
# of Alternatives 50
Consistency Index 0.05
Underlying Utility Function 0.1/0.9
(weight 1 / weight 2)
# of Classes 3

Convex DM Placement Dominance
Combination

B-8



47
48
50
6 14 4 26
RUN 11:
# of Alternatives 50
Consistency Index 0.05
Underlying Utility Function 0.1/0.9
(weight 1 / weight 2)
# of Classes 3

Convex Even DM Placement Dominance
Combination Swaps

6 14 4 26
RUN 12:
# of Alternatives 50
Consistency Index 0.05
Underlying Utility Function 0.1/0.9
(weight 1 / weight 2)
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# of Classes 3

Convex WSR Even DM Placement ‘ Dominance
Combination SIVETS

8 9 3 1 2
15 10 27 7 4
17 12 33 14 5
25 21 16 6
26 24 36 11
37 28 13
34 18

42 19

43 20

49 22

23

29

30

31

32

35

38

39

40

41

44

45

46

47

48

50

6 10 3 5 26
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Experimentation with 100 alternatives:

Alternative Criterion 1 Criterion 1 Alternative Criterion 1 Criterion 1
ID value value ID value value
1 0.832473245 | 0.955980422 51 0.992663346 | 0.921394289
2 0.947412859 | 0.895050087 52 0.15805215 | 0.224635798
3 0.753019334 | 0.49822847 53 0.441496201 | 0.359501055
4 0.614207422 | 0.313134137 54 0.14552186 | 0.871191621
5 0.3424168 0.501686154 55 0.381511131 | 0.184240931
6 0.08671645 | 0.27104183 56 0.032140635 | 0.641507591
7 0.853584041 | 0.113141229 57 0.864506978 | 0.457378111
8 0.260190032 | 0.37133937 58 0.534361588 | 0.121757557
9 0.537626481 | 0.135279453 59 0.17648324 | 0.992295065
10 0.241000145 | 0.790835886 60 0.453230764 | 0.541160228
11 0.073750323 | 0.010561168 61 0.390657796 | 0.945923677
12 0.513245474 | 0.932553728 62 0.861542781 | 0.127758741
13 0.795130693 | 0.821487671 63 0.422980653 | 0.929919058
14 0.189861305 | 0.041740431 64 0.304323174 | 0.94639595
15 0.839206625 | 0.144101518 65 0.96922068 | 0.765952414
16 0.059594292 | 0.432333708 66 0.927623558 | 0.629982704
17 0.486867394 | 0.160671516 67 0.402291509 | 0.271459831
18 0.735999703 | 0.166290046 68 0.116232643 | 0.218325976
19 0.464406083 | 0.345865531 69 0.732117643 | 0.39074074
20 0.143466196 | 0.956707613 70 0.33869598 | 0.676134621
21 0.192836693 | 0.036797936 71 0.544549909 | 0.529443227
22 0.060492734 | 0.603855139 72 0.235980527 | 0.873259861
23 0.310464731 | 0.672643931 73 0.776084535 | 0.49642373
24 0.285450622 | 0.24737219 74 0.137548599 | 0.588775218
25 0.621882788 | 0.653604652 75 0.076118645 | 0.572746004
26 0.722183838 | 0.262613704 76 0.772543958 | 0.149830007
27 0.778799285 | 0.340517335 77 0.365535945 | 0.691822652
28 0.799103113 | 0.432074287 78 0.13984392 | 0.601592939
29 0.202996158 | 0.612900643 79 0.618469837 | 0.455577213
30 0.836595514 | 0.508538558 80 0.203597813 | 0.435135888
31 0.415871906 | 0.568507938 81 0.745445192 | 0.680887682
32 0.48931535 | 0.527788795 82 0.228557863 | 0.209255101
33 0.777378849 | 0.625081627 83 0.878099092 | 0.305676716
34 0.848999086 | 0.137990519 84 0.022508035 | 0.262350081
35 0.231353816 | 0.416213454 85 0.262733829 | 0.751476624
36 0.337151451 | 0.843661416 86 0.520259 0.463249447
37 0.375724187 | 0.810093271 87 0.674965013 | 0.784149458
38 0.198571633 | 0.137345423 88 0.042721452 | 0.343153696
39 0.383331991 | 0.080726606 89 0.778707712 | 0.323776414
40 0.914814546 | 0.027321941 90 0.899764948 | 0.019489158
41 0.604987791 | 0.540104749 91 0.802880389 | 0.614349849
42 0.796419794 | 0.580064143 92 0.299628367 | 0.741196774
43 0.850124341 | 0.021273596 93 0.861517464 | 0.504841037
44 0.282483332 | 0.139310251 94 0.174336644 | 0.255147571
45 0.480130608 | 0.377300004 95 0.371507941 | 0.015617171
46 0.574024729 | 0.674663997 96 0.790817614 | 0.587568157
47 0.708192047 | 0.086445481 97 0.831112809 | 0.718197646
48 0.365422299 | 0.19239134 98 0.570222766 | 0.630412933
49 0.023728097 | 0.686680671 99 0.369114938 | 0.496737817
50 0.244962971 | 0.102200394 100 0.289137679 | 0.673427969

B-11




Placements

Class 1 Class 2 Class 2
AltID | Critl Crit2 Alt ID | Critl Crit2 Alt ID | Critl Crit2

1] 0.8325 | 0.956 4 0.6142 | 0.3131 5| 0.3424 | 0.5017
2| 0.9474 | 0.8951 9 0.5376 | 0.1353 6| 0.0867 | 0.271
3| 0.753 | 0.4982 10 0.241 | 0.7908 8| 0.2602 | 0.3713
7 | 0.8536 | 0.1131 18 0.736 | 0.1663 11 | 0.0738 | 0.0106
12 | 0.5132 | 0.9326 19 0.4644 | 0.3459 14 | 0.1899 | 0.0417
13 | 0.7951 | 0.8215 23 0.3105 | 0.6726 16 | 0.0596 | 0.4323
15 | 0.8392 | 0.1441 26 0.7222 | 0.2626 17 | 0.4869 | 0.1607
25 | 0.6219 | 0.6536 31 0.4159 | 0.5685 20 | 0.1435 | 0.9567
27 | 0.7788 | 0.3405 32 0.4893 | 0.5278 21| 0.1928 | 0.0368
28 | 0.7991 | 0.4321 36 0.3372 | 0.8437 22 | 0.0605 | 0.6039
30 | 0.8366 | 0.5085 37 0.3757 | 0.8101 24 | 0.2855 | 0.2474
33 | 0.7774 | 0.6251 41 0.605 | 0.5401 29 0.203 | 0.6129
34| 0.849 | 0.138 45 0.4801 | 0.3773 35| 0.2314 | 0.4162
40 | 0.9148 | 0.0273 47 0.7082 | 0.0864 38 | 0.1986 | 0.1373
42 | 0.7964 | 0.5801 53 0.4415 | 0.3595 39 | 0.3833 | 0.0807
43 | 0.8501 | 0.0213 58 0.5344 | 0.1218 44 | 0.2825 | 0.1393
46 | 0.574 | 0.6747 59 0.1765 | 0.9923 48 | 0.3654 | 0.1924
51 | 0.9927 | 0.9214 60 0.4532 | 0.5412 49 | 0.0237 | 0.6867
57 | 0.8645 | 0.4574 61 0.3907 | 0.9459 50 0.245 | 0.1022
62 | 0.8615 | 0.1278 63 0.423 | 0.9299 52 | 0.1581 | 0.2246
65 | 0.9692 | 0.766 64 0.3043 | 0.9464 54 | 0.1455 | 0.8712
66 | 0.9276 0.63 70 0.3387 | 0.6761 55 | 0.3815 | 0.1842
69 | 0.7321 | 0.3907 71 0.5445 | 0.5294 56 | 0.0321 | 0.6415
73 | 0.7761 | 0.4964 72 0.236 | 0.8733 67 | 0.4023 | 0.2715
81 | 0.7454 | 0.6809 76 0.7725 | 0.1498 68 | 0.1162 | 0.2183
83 | 0.8781 | 0.3057 77 0.3655 | 0.6918 74 | 0.1375 | 0.5888
87 | 0.675 | 0.7841 79 0.6185 | 0.4556 75| 0.0761 | 0.5727
89 | 0.7787 | 0.3238 85 0.2627 | 0.7515 78 | 0.1398 | 0.6016
90 | 0.8998 | 0.0195 86 0.5203 | 0.4632 80 | 0.2036 | 0.4351
91 | 0.8029 | 0.6143 92 0.2996 | 0.7412 82 | 0.2286 | 0.2093
93 | 0.8615 | 0.5048 98 0.5702 | 0.6304 84 | 0.0225 | 0.2624
96 | 0.7908 | 0.5876 99 0.3691 | 0.4967 88 | 0.0427 | 0.3432
97 | 0.8311 | 0.7182 100 0.2891 | 0.6734 94 | 0.1743 | 0.2551
95 | 0.3715 | 0.0156
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RUN 13:

Run Parameters

# of Alternatives 100

Consistency Index 0.05

Underlying Utility Function (weight 1 / 0.7/0.3

weight 2)

# of Classes 3

Convex Even DM Placement Dominance
Combination Swaps

28 57 100 16
29 59 21
30 61 22
31 62 24
32 63 35
33 64 36
34 66 37
41 72 38
42 83 39
53 90 44
54 93 48
60 49
67 50
69 51
70 52
71 55
73 56
77 65
79 68
85 74
86 75
89 78
91 80
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92 81
96 82
84
87
88
94
95
97

32 18 8 4 38
* 291 LPs Executed

RUN 14:
# of Alternatives 100
Consistency Index 0.15
Underlying Utility Function (weight 1 / 0.7/0.3
weight 2)
# of Classes 3
Convex WSR Even Swaps DM Placement Dominance
Combination
26 19 100 16
27 25 21
28 33 22
29 42 24
30 47 31
34 58 32
35 59 36
41 61 37
45 63 38
53 64 39
54 69 40
73 72 44
79 81 48
80 87 49
85 89 50
86 90 51
96 91 52
97 55
99 56
57
60
62
65
66
68
70
71
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74
75
77
78
82
83
84
88
92
93
94
95
98
24 22 3 6 45

* 261 LPs Executed

RUN 15

# of Alternatives 100

Consistency Index 0.30

Underlying Utility Function (weight 1 / weight 0.7/0.3

2)

# of Classes 3

Convex WSR Even Swaps DM Placement Dominance
Combination
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81 74
85 75
86 77
87 78
89 82
91 84
92 88
96 94
97 95
99 98
100
35 9 16 6 34

* 348 LPs Executed

RUN 16:

# of Alternatives 100

Consistency Index 0.05

Underlying Utility Function (weight 1 / weight 0.1/0.9

2)

# of Classes 3

Dominance

Convex WSR Even Swaps DM Placement
Combination

B-16




80

55

83

58

85

65

93

66

100

68

69

71

73

79

82

84

86

89

90

91

94

95

97

21 30 0 6

43

* 250 LPs Executed

RUN 17

# of Alternatives 100
Consistency Index 0.15
Underlying Utility Function (weight 1 / weight 0.1/ 0.9
2)

# of Classes 3

Dominance

Convex WSR Even Swaps DM Placement
Combination
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92 59 44
98 62 45
99 70 47
72 48

75 50

77 51

80 52

83 55

85 58

93 65

100 66

68

69

71

73

79

82

84

86

89

90

91

94

95

97

21 28 1 6 43

* 255 LPs Executed

RUN 18:

# of Alternatives 100

Consistency Index 0.30

Underlying Utility Function (weight 1 / weight 0.1/0.9

2

#)of Classes 3

Convex WSR Even Swaps DM Placement Dominance
Combination

5 8 26 4 1
12 10 49 42 2
19 15 56 3
25 16 83 6
32 18 88 7
33 20 96 9
35 22 11
36 23 13
37 29 14
45 30 17
46 31 21
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53 34 24
57 40 27
60 41 28
61 54 38
63 59 39
64 62 43
67 70 44
71 72 47
74 75 48
76 77 50
78 80 51
81 85 52
86 93 55
87 100 58
92 65
98 66
99 68
69
73
79
82
84
89
90
91
94
95
97
28 25 39

* 257 LPs Executed
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