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ABSTRACT 
 
 

FUZZY SPATIAL DATA CUBE CONSTRUCTION 
AND ITS USE IN ASSOCIATION RULE MINING 

 
 
 
 

Işık, Narin 

M.S., Department of Computer Engineering 

Supervisor      : Prof. Dr. Adnan Yazıcı 

 

May 2005, 109 pages 
 
 
 
 

The popularity of spatial databases increases since the amount of the spatial data that 
need to be handled has increased by the use of digital maps, images from satellites, 
video cameras, medical equipment, sensor networks, etc. Spatial data are difficult to 
examine and extract interesting knowledge; hence, applications that assist decision-
making about spatial data like weather forecasting, traffic supervision, mobile 
communication, etc. have been introduced. In this thesis, more natural and precise 
knowledge from spatial data is generated by construction of fuzzy spatial data cube 
and extraction of fuzzy association rules from it in order to improve decision-making 
about spatial data. This involves an extensive research about spatial knowledge 
discovery and how fuzzy logic can be used to develop it. It is stated that 
incorporating fuzzy logic to spatial data cube construction necessitates a new method 
for aggregation of fuzzy spatial data. We illustrate how this method also enhances 
the meaning of fuzzy spatial generalization rules and fuzzy association rules with a 
case-study about weather pattern searching. This study contributes to spatial 
knowledge discovery by generating more understandable and interesting knowledge 
from spatial data by extending spatial generalization with fuzzy memberships, 
extending the spatial aggregation in spatial data cube construction by utilizing 
weighted measures, and generating fuzzy association rules from the constructed 
fuzzy spatial data cube. 
 
 
 
 
Keywords: Fuzzy spatial data cube, spatial data cube, fuzzy data cube, fuzzy 
association rules, spatial knowledge discovery. 
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ÖZ 

 
 

BULANIK UZAYSAL VERİ KÜPLERİNİN OLUŞTURULMASI 
VE İLİŞKİ KURALLARININ BULUNMASINDA KULLANILIŞI 

 
 
 
 

Işık, Narin 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi          : Prof. Dr. Adnan Yazıcı 

 
Mayıs 2005, 109 sayfa 

 
 
 
 

Uzaysal veri tabanlarının popülerliği, dijital haritaların, uydu görüntülerinin, video 
kameraların, tıbbi donanımların ve algılayıcı şebekelerin kullanımıyla artmaktadır. 
Uzaysal verilerin incelenmesinin ve onlardan işe yarar bilgi üretiminin zorluğu, onlar 
hakkında daha kolay kararlar alınmasını sağlayacak hava durumu tahmini, trafik 
denetimi, mobil komünikasyon gibi uygulamarı gündeme getirmiştir. Bu tezde, 
uzaysal veriler hakkında karar almayı kolaylaştırmak için, bulanık uzaysal veri küpü 
oluşturarak ve ondan bulanık ilişki kuralları üreterek, uzaysal verilerden daha doğal 
ve güvenilir bilgi üretilmektedir. Bunun için, uzaysal verilerden bilgi ortaya 
çıkarmak ve bunu bulanık mantık ile geliştirmek konularında kapsamlı bir araştırma 
yapılmıştır. Uzaysal veri küplerinde bulanık mantık kullanımı, verilerin bir araya 
toplanması için yeni bir metod gerektirmektedir. Biz bu metodun bulanık genelleme 
kurallarının ve bulanık ilişki kurallarının anlamını nasıl arttırdığını, hava durumu 
kalıplarının araştırıldığı örnek bir çalışma ile de göstermekteyiz. Bu çalışma, uzaysal 
verilerin genellemesini bulanık üyeliklerle geliştirerek; uzaysal veri küplerini 
oluşturururken uzaysal verilerin bir araya toplanmasını ağırlıklı ölçümlerin 
kullanımıyla genişleterek ve oluşturulan bulanık uzaysal veri küpünden bulanık ilişki 
kurallarını çıkararak daha anlaşılır ve daha işe yarar bilgi üretmekte ve uzaysal bilgi 
üretimine katkıda bulunmaktadır. 

 
 
 

 
Anahtar Kelimeler: Bulanık uzaysal veri küpü, uzaysal veri küpü, bulanık veri küpü, 
bulanık ilişki kuralları, uzaysal bilgi üretimi. 
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CHAPTER 1 

 
 

INTRODUCTION 

 
 

Decision support systems (DSSs) are database management systems that run queries 

efficiently to make decisions [2]. They contain concepts of both data warehousing 

and On-line Analytical Processing (OLAP) [1, 2] since they need the knowledge that 

might be missing from operational databases. DSSs are very useful in understanding 

the trends and making predictions and that qualification makes them the focus of the 

database industry. They necessitate historical data that is consolidated from 

heterogeneous sources by data warehouses. 

 

Data warehouses are decision support databases that are maintained separately from 

the operational databases of organizations. They keep the organization-wide 

snapshots (i.e., subject – oriented collection) of data, which are used to improve 

making decisions [2, 3, 4]. They extract useful information from data that does not 

exist in operational databases [10]. Knowledge workers benefit from that extracted 

information since they are interested in the big picture, not the specific details. 

 

Data warehouses support information processing by providing a solid platform of 

consolidated, historical data for analysis. Numerical information is stored in 

multidimensional fashion and analyzed in data warehouses by generating high-level 

aggregates that summarize the numeric values. OLAP corresponds to one class of 

decision-making queries that are run at data warehouses. OLAP operators manipulate 

data along the multiple dimensions. These operators are most frequently used to 

increase or decrease the level of aggregation. 

 

A data warehouse is based on a multidimensional data model that views data in the 

form of a data cube while relational model views data in the form of tables. 



 
 
2 

Conceptual model for OLAP is multidimensional view of data in the warehouse. A 

data cube allows data to be modeled and viewed in multiple dimensions.  

 

In “Fuzzy OLAPs”, OLAP mining and fuzzy data mining are combined to get benefit 

of the fact that fuzzy set theory treats numerical values in more natural way, 

increases the understandability, and extracts more generalizable rules since 

numerical data are interpreted with words [14, 15, 16]. Fuzzy OLAPs are performed 

on fuzzy multidimensional databases in which multidimensional data model of data 

warehouses is extended to manage imperfect and imprecise data (i.e., bad sales) from 

real world and run more flexible queries (i.e., select middle sales). 

 

Furthermore, Kuok et. al. [29], has generated fuzzy association rules by introducing 

significance and certainty factors and proposing methods for computing these 

factors.  

 

Spatial databases are able to store information about the position of individual 

objects in space. On the other hand, many applications that assist decision-making 

about spatial data like weather forecasting, traffic supervision or mobile 

communications necessitate summarized data like general weather patterns according 

to region partitions, number of cars in an area, or phones serviced by a cell. 

Moreover, creation of maps from satellite images and usage of telemetry systems, 

remote sensing systems or medical imaging results in a huge amount of spatial data. 

That causes to difficulties when examining large amounts of spatial data and 

extracting interesting knowledge or characteristic rules from them. Obtaining this 

information from operational (i.e., transactional) spatial databases is quite expensive. 

In that point, spatial data-warehouses and OLAP becomes crucial for spatial 

knowledge discovery. 

 

Regarding spatial data warehouses, Stefanovic et. al. [9] has studied methods for 

spatial OLAP by combining non-spatial OLAP methods and spatial databases. They 
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propose a model for spatial data-warehouses, which has both spatial and non-spatial 

dimensions and measures are regions in space. They also propose a method for 

spatial data cube construction called “object-based selective materialization”. Their 

study is similar to the study of Harinarayan et. al. [10], with the difference being the 

finer granularity of the selected objects. Zhou et. al. [26], has proposed an efficient 

polygon amalgamation method for merging spatial objects. This method was applied 

on the computation of aggregation for spatial measures. Multi-resolution 

amalgamation was proposed by Prasher and Zhou [22], in which dynamic 

aggregation is done for spatial data cube generation. In this method, the resolutions 

of regions are changed in order to keep spatial data at much higher resolutions and by 

amalgamation objects are re-classified into high-level objects that form a new spatial 

layer. Papadias et. al. [25] has proposed a method that combines spatial indexing 

with materialization technique. In this method, aggregated results are stored in the 

spatial index. 

 

On behalf of spatial knowledge discovery, Lu and Han [6] have proposed two 

generalization algorithms for spatial data which are non-spatial data and spatial data 

dominated generalizations. In these algorithms, generalization is done according to 

high level concepts, boundaries of which are sharply defined. In particular, regions 

that have temperature values in interval [10-20] are first generalized to “[10-20] 

temperature regions” and then further to “mild regions”.  

 

In this thesis, spatial data cubes and fuzzy data cubes are tried to be harmonized in 

order to get benefit from the strengths of both of these concepts. Spatial and non-

spatial dimensions and measures considered for spatial OLAP in [9], spatial 

generalization described in [6] and fuzzy association rules asserted in [29] are 

combined in one study and further improved. Better analysis and understanding of 

huge spatial data by using fuzzy set theory for spatial data cubes are aimed. More 

specifically, spatial generalization algorithms, that were previously mentioned [6], 

are enhanced by introducing fuzzy logic in determining high level concepts (i.e., 
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membership values of high level concepts are computed). Moreover, a new 

aggregation method is introduced for fuzzy spatial data cube in which membership 

values of the more significant regions have greater weight for the aggregated region. 

Furthermore, we illustrate how this method is used for fuzzy spatial generalization 

rules and fuzzy association rules. Fuzzy association rule mining is applied over the 

generated fuzzy spatial data cube and computation of significance and certainty 

factors are adapted according to it instead of applying spatial association rules [4] 

which have more complex computation. 

 

This thesis differentiates from the previous studies about spatial knowledge 

discovery in the following ways: 

1. Generalization algorithms in [6] are extended by fuzzy high-level concepts 

and their memberships. Hence, more understandable and meaningful 

generalization rules are extracted due to fuzzy set theory (i.e., generalizations 

like “hot region with %89 reliability” instead of “[20-25] ºC temperature 

region”). 

2. Spatial aggregation in spatial data cube construction is extended by 

calculating fuzzy memberships of dimensions and measures for the 

aggregated cells considering more significant regions with greater weight. 

More accurate generalization rules are extracted at higher levels of 

abstraction. 

3. Deviations in precision values for reliability of characteristics of spatial data 

along time can be tracked. 

4. Each cell in a fuzzy spatial data cube has its own membership for the values 

of fuzzy dimensions and fuzzy measures it satisfies. On the contrary, in fuzzy 

data cube, cells in a slice (i.e., cells that have a common value for one 

dimension) of a fuzzy data cube has the same membership. 

5. Fuzzy hierarchies are handled during fuzzy spatial data cube in order to 

increase the level of abstraction (i.e., level of precise knowledge extracted 

from spatial data). 
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6. In previous studies, spatial association rules were mined from spatial data 

which has a high computational complexity. In the constructed fuzzy spatial 

data cube, more flexible association rules can be discovered by mining fuzzy 

association rules since data is both fuzzy and spatial in order to avoid the 

complexity of spatial association rules. 

 

In the rest of the thesis, first, background is given in Chapter 2 that includes data-

warehousing; OLAP concepts like conceptual data model, database design 

methodology, OLAP servers, data cube, OLAP mining; fuzzy OLAP; spatial OLAP; 

knowledge discovery in spatial data and data mining. The methodology followed in 

fuzzy spatial data cube construction and its application in fuzzy association rule 

mining is explained in Chapter 3. The case-study “Weather Pattern Searching” is 

introduced in Chapter 4. Finally, Chapter 5 includes the final comments and Chapter 

6 draws a number of conclusions that summarizes the study. 
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CHAPTER 2 

 
 

BACKGROUND 

 
 

The increase in size of available spatial data has brought the problem of encountering 

difficulties in knowledge discovery. Construction of spatial data warehouses has 

improved the quality of decision making about such kind of voluminous data. They 

have enabled the summarization and characterization of large sets of spatial objects 

in different dimensions and at different levels of abstraction. The summarized data 

have helped in extracting information and giving business decisions. 

 

On the other hand, fuzzy data cubes that correspond to the multidimensional data 

model of fuzzy data warehouses, have enabled the extraction of relevant knowledge 

in a more human understanding and given results to queries with a certain precision 

about the reliability of that knowledge.  

 

In the following sub-chapters, the concepts of data warehousing are explained in 

more details. It can be easily noticed that these two separate concepts – spatial data 

cubes and fuzzy data cubes – need to be harmonized and handled together in order to 

benefit from the strengths of both of them. 

 

2.1 Data Warehousing 

 

Data warehousing is a collection of decision support technologies like OLAP, data 

mining and powerful statistical capabilities that are used by knowledge workers (i.e., 

executive, manager, analyst) to make better and faster decisions. Inmon (1992) has 

given a formal definition that is also the oldest definition of a data warehouse as 

“subject-oriented, integrated, time-varying, non-volatile collection of data in support 

of management’s decision making process.” (cited in [1, 4, 17, 27]). It is subject-

oriented, since it is organized around major subjects and excludes data that are not 
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useful; it is integrated, since it is cooperated from multiple heterogeneous data 

sources like relational databases and flat files; it is time-variant, since it provides 

infrormation from historical perspective; finally it is non-volatile, since it is 

physically seperated from data transformed from operational environment [4]. The 

terms “decision support system” and “data warehouse” are sometimes used 

interchangeably. Actually, data-warehouses correspond to the database of decision 

support systems. 

 

Data warehousing is applied in manufacturing for order shipment; retail for user 

profiling and inventory management; financial services for claims analysis, risk 

analysis, credit card analysis, and fraud detection; transportation for fleet 

management; telecommunications for call analysis and fraud detection; utilities for 

power usage analysis, and healthcare for outcomes analysis [1]. Data warehouses are 

useful for information processing (querying, basic statistical analysis, reporting), 

analytical processing (OLAP), and data mining (knowledge discovery from hidden 

patterns, associations, classification, prediction) since they provide a solid platform 

of consolidated and historical data for analysis [4]. 

 

Data warehouses and operational (i.e., transactional) databases of an organization are 

maintained separately since they have different functional and performance metrics. 

Warehouses are very large in size and include historical and summarized data since 

they are used to understand the trends or make predictions. Data are consolidated 

from heterogeneous sources and reconciled about the quality, representation, code, 

and format. They access huge amount of data and run complex queries that include 

many scans, joins and aggregations. These queries may be OLAP queries or general 

decision support system queries and are run in parallel. Execution of OLAP queries 

in operational databases would result in an unacceptable performance [1, 2, 4, 20]. 

 

Likewise, multidimensional model of data in a data warehouse facilitates analysis 

and visualization. In order to support the multidimensional data model and OLAP 
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operations, data warehouses have special data organization, access and 

implementation methods different from operational databases. On the whole, these 

are the reasons for separating warehouses and operational databases. They have 

substantial differences [1, 2, 3, 4, 27] and these differences are briefly summarized in 

Table 1: 

 

Table 1: Differences between Data Warehouses and Operational Databases 

 Data Warehouses Operational Databases 

Processing OLAP OLTP 

Operations Rollup, drill-down, etc. Read, update 

Task Types Complex, ad-hoc Structured, repetitive 

Transactions - Short, atomic, isolated 

Data Historical, summarized and 

consolidated, read-only 

Detailed, up-to-date 

Data Structure De-normalized, redundant 

data structure 

Normalized 

Data Access Millions of records A few (tens of) records 

Size Hundreds of GBs to TBs Hundreds of MBs to GBs 

Critical issues Data integration Consistency, recoverability 

Performance 

metric 

Query throughput and 

response time 

Transaction throughput 

Target Market Customer 

Database design Star/Snowflake schema ER, UML 

Users Knowledge worker IT professional 

Function Decision Support Day-to-day operations 

 

In order to build and maintain a data warehouse, some steps should be followed [1, 2, 

3, 4, 27]. Formerly, an OLAP server should be selected according to the database(s) 

that will be used in the data warehouses. Subsequently, an integrated schema and 
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some complex queries should be defined at design time depending on the data 

sources. Next, the architecture of the data warehouse should be defined; integrated 

enterprise warehouse vs. data-marts, centralized vs. decentralized warehouse. An 

integrated enterprise warehouse collects information about all subjects in the 

organization. On the other hand, data-marts are smaller functional warehouses or 

decision support systems that focus on specific subjects and contain homogeneous 

data. The former is complex, time consuming and requires extensive business 

modeling while the other runs faster but may have complex integration. Moreover, 

data warehouses can be built centralized (i.e., central data warehouse with data-

marts) or decentralized (i.e., distributed data warehouses). 

 

 

Figure 1: The Data Warehouse Architecture [1] 

 

Typical data-warehouse architecture is as displayed in Figure 1. It consists of back-

end tools, metadata repository, data warehouse and optional data marts, and front end 

tools. 

 

Back end tools are used in order to extract data from multiple operational databases 

and external sources, clean and transform the data, integrate data according to the 
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defined schema, load data to the data warehouse and refresh data to reflect the  

updates at the sources. 

 

Before running queries on data warehouses, consolidated data is cleaned [1, 2, 3, 4], 

in other words corrected. Since large volumes of data from multiple sources are 

involved, there is a high probability of errors and anomalies. Hence, errors and 

anomalies in data should be detected and corrected. Semantic conflicts and 

inconsistencies like missing entries and invalid values between distinct sources 

should be handled. This involves data migration, data scrubbing and data auditing. 

Data migration is the use of some transformation rules, i.e., replace “last name” with 

“surname”, in order to convert data from legacy or host format to warehouse format. 

Data scrubbing is the usage of domain-specific knowledge to modify data by parsing 

and fuzzy matching, i.e., zip codes, postal addresses. Data auditing is discovering 

rules and relationships in a similar way of data mining.  

 

After data cleaning, data are loaded to the data warehouse [1, 2, 3, 5]. This process 

involves sorting, indexing, summarization, aggregation, integrity constraints 

checking, building derived tables and indices, materializing views, etc. Parallelism is 

used in order to decrease the time consumed during loading. A full load builds a new 

database and is a long batch transaction while an incremental load (refresh) includes 

only updates to the source data, breaks the load into smaller transactions and 

commits periodically. 

 

The front end tools consist of some query tools, report writers, analysis tools, and 

data mining tools [1]. OLAP operations are executed by these front end tools to 

enable the end user to query in terms of domain specific business data. 

 

As well as back and front end tools, a data warehouse manages some metadata that 

describes the integrated data and the integration process [1, 3, 4, 27]. Administrative 

metadata are required to setup and use the warehouse and include information about 
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target tables and their source definitions, front and back end tools, schema 

definitions, derived data, dimensions, hierarchies, queries, reports, data mart location 

and contents, data partitions, data extraction, cleaning, transformation rules, refresh, 

access control, etc. Operational metadata are obtained during operation of the 

warehouse and contain history of migrated data, transformation paths, currency of 

data, usage statistics, error reports, etc. 

 

2.2 OLAP  

 

OLAP is a computing technique for summarizing, consolidating, viewing, applying 

formulae to and synthesizing data according to multiple dimensions in data 

warehouses [14, 16, 18, 20]. OLAP is needed for executing complex queries on huge 

amount of data that are processed on aggregated level, not on individual level of 

records as for OLTP. The main target of introducing OLAP to the literature was fast, 

flexible data summarization and analysis which also involves hierarchical structures 

and simple computation of aggregations. That is why, OLAP applications were 

introduced for users who frequently want a higher-level aggregated view of the data 

to understand the trends and make business decisions like analysts and managers. 

 

That terminology was first introduced by Codd in 1993 (cited in [14]) for the kind of 

technologies that provide means of collecting, storing, and dealing with 

multidimensional data with a view to deploying analysis process. It covers a class of 

technology for access and analysis of multidimensional view of business data [20].  

 

OLAP necessitates a multidimensional data model to facilitate analysis and 

visualization. That model is designed differently from relational data models which 

were designed by entity relationship diagrams. Moreover, OLAP necessitates 

different OLAP servers according to the type of the database on which data-

warehouse is implemented since that will affect the OLAP operations. Furthermore, 

in relational data model, data are stored in tables; but in multidimensional data 
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model, data are stored in n-dimensional spreadsheet (i.e., data cubes). All these 

concepts (i.e., conceptual data model, database design methodology, OLAP servers, 

OLAP operations, data cubes, OLAP mining) are explained in more details in the 

following sub-chapters. 

 

2.2.1 Conceptual data model 

 

The conceptual model in warehouses is represented by the multidimensional view of 

data [1, 2, 3, 4, 5, 14, 15, 20, 25]. That model constitutes the technical basis for the 

calculations and analysis needed for business intelligence. It contains a set of 

dimensions and numeric measures that depends on the dimensions. Dimensions are 

the business perspective of the database and measures are data that are interested. 

Dimensions in a multidimensional view correspond to the fields in a relational 

database, while the measures (i.e., cells) correspond to the records. Numeric 

measures such as sales, budget, revenue, etc. constitute the subject of analysis since 

they numeric values that can be summarized and used to monitor the business. 

 

The multidimensional model can be thought as a multidimensional space in which 

dimensions correspond to the coordinates and measures correspond to the values 

(i.e., cells) uniquely determined by their dimensions or a multidimensional array of 

numeric measures as displayed in Figure 2 below: 

 

 

Figure 2: Multidimensional Data 
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Each dimension can have a set of attributes represented in a dimension table. One of 

these attributes is the key attribute that is used to determine the dimension. Other 

attributes can be used to define hierarchies on the dimension as in Figure 3.a. 

Hierarchies contain levels and enable summarizing specific data in a more general 

sense. For example, the “location” dimension can be organized as “city-country-

region-all” hierarchy as in Figure 3.b. Aggregations are done over the measures by 

dimensions or their hierarchies as depicted in Figure 3.c. Actually, all dimensions 

have at least one higher hierarchical level that is the “all” level. In a dimension table, 

columns that do not participate in a hierarchy are member properties. They can be 

helpful in additional calculations with dimensions if requested in queries. To 

illustrate, derived variables can be calculated by these member properties, i.e., Gross 

Margin = Revenues – Expenses. The derived variables take up no space in the 

database but are computed on the fly; hence, they are useful to reduce the size of the 

database and reduce the consolidation time in spite of the little overhead at run time. 

 

 

 

Figure 3: A Concept Hierarchy for Location Dimension  

 

Numerical measures are classified in three types [4, 9, 12, 25]: 
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• Distributive: Measures computed by dividing data in disjoint sets, 

aggregating separately and combining later, i.e., max, min, count, and sum. 

• Algebraic: Measures that can be expressed in terms of other distributive 

measures, i.e., average, standard deviation. 

• Holistic: Measures that cannot be computed in parts and combined, i.e., 

median, most frequent, and rank. 

 

2.2.2 Database Design Methodology 

 

Relational databases are easily designed by entity relationship diagrams and 

normalization techniques which are inappropriate for multidimensional databases 

since efficiency in querying and loading data is very crucial. On the contrary, 

relational databases can be designed in such a way that they can reflect the 

multidimensional view of data. 

The most common schema type used in relational databases for OLAP is the star 

schema. Star schema has one table per dimension and a fact table that contains the 

key attributes of dimensions and measures as depicted in Figure 4 [1, 3, 4, 5]. 

Hierarchies are not explicitly supported but dimensions are easily browsed by star 

schema. OLAP operations run faster in data-warehouses designed by star-schema 

than they do in data-warehouses designed by the snowflake schema. 

 

Figure 4: The Star Schema 
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Snowflake schemas are very similar to star schemas. But they explicitly represent 

their hierarchies by the normalization of dimensions. Dimension tables are more 

easily maintained according to star schema. On the other hand, they are inefficient 

with respect to star schemas since they need more join operations while running 

OLAP operations [1, 5]. Figure 5 below, depicts how a data-warehouse designed by 

the star-schema in Figure 4 would be reflected in snowflake schema. 

 

 

Figure 5: The Snowflake Schema 

 

2.2.3 OLAP Servers 

 

Data that are either in the warehouse or data marts are stored by OLAP servers [1, 

20]. OLAP servers present the multidimensional view of data and are optimized for 

analysis. There are different OLAP servers depending on the kind of DBMS the data 

warehouse is implemented on, access methods and query processing techniques like 

ROLAP, MOLAP, HOLAP, DOLAP and JOLAP. 

ROLAP (Relational OLAP) stores data in relational databases [1, 2, 3, 4, 5, 15]. 

They are extended relational DBMSs or intermediate servers in front of the relational 

DBMSs. Aggregations are stored in relational database and that requires access to the 

database at each query. ROLAP servers have extensions to SQL (i.e., aggregate 

functions like rank, percentile; reporting features like moving average; multiple 

group-by like roll-up and cube [11], comparisons) and special access and 
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implementation methods to support the multidimensional data model and OLAP 

operations. Mapping of OLAP queries to SQL reduces the efficiency. Standard 

relational query processing is supported with some indexes and pre-computation. ER 

diagrams and normalization techniques are inefficient, so de-normalized schemas 

like star schema or snowflake schema are required. A standard data model is 

adopted. 

MOLAP (Multidimensional OLAP) stores the multidimensional data in special 

structures over which the OLAP operations are directly implemented [1, 2, 3, 4]. 

Special index structures, which are better than ROLAP, are used. Contrarily, the data 

cube has sparse data and that causes poor storage utilization. In order to compensate 

for this fact, two-level storage representation in which, sparse dimensions are 

indexed over dense dimensions is used. Pre-computation is common. OLAP 

operations run more efficiently for small databases. A standard multidimensional 

data model for MOLAP servers is not developed. 

HOLAP (Hybrid OLAP) combines both ROLAP and MOLAP [2, 4, 5]. At the low-

level, relational tables are used while at the high-level array-based multidimensional 

storage is preferred. HOLAP servers are useful to manage large and permanent 

warehouses. 

DOLAP (Directory OLAP) extracts data for manipulation from a relational or 

multidimensional database and access them via an OLAP engine. Small amounts of 

data are stored in files on a user's desktop computer. To date, this is a very popular 

OLAP server, but the growth in the use of Web-based thin clients leads companies 

for solutions that move client OLAP processing to Web-based servers [19]. 

JOLAP (J2EE object-oriented interface to OLAP) is being developed by Java 

community.  A standard set of object classes and methods for business intelligence 

are provided in that interface. JOLAP makes extensive use of the OMG Common 

Warehouse Model (CWM) [19]. 
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2.2.4 OLAP Operations 

 

The most common OLAP operations that manipulate data along dimensions are as 

the following [1, 2, 3, 4, 5, 15, 17]: 

• Roll-up: Increase the level of aggregation or simply apply group-by 

operation on dimensions. The location dimension can be rolled up into city-

country-region-all. 

• Drill-down: Decrease the level of aggregation, increase the level of details. It 

is the converse operation of roll-up. 

• Slice: Selection in dimension values. Summarized data is extracted for a 

given dimension value. Single item is extracted when selection on all 

dimensions is done. 

• Dice: Projection in dimensions. A subcube is extracted. Several slices are 

intersected. Items are compared in a cross-tabulated table. 

• Pivot: Re-orient the multidimensional view, i.e., rotate the axes. Data is 

examined from different angles.  

• Ranking: Sorting. 

• Filtering: Perform selection using some constants. 

• Defining computed attributes. 

 

2.2.5 Data cube 

A data cube is a set of data organized as a multidimensional array of values that 

represents measures over several dimensions. Dimensions can have hierarchies 

defined over them to organize data on more than one level of aggregation.  

Multidimensional data model of warehouses views data in the form of a data cube 

(i.e., n-dimensional spreadsheet) [4, 11, 15, 18], while relational data model views 

data in the form of relations (i.e., tables). Multidimensional and logical view of data 

is presented in data cubes in the former model. The term “multidimensional 
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databases” is sometimes used to refer to “data cubes” [17, 18]. By the use of data 

cubes, data can be modelled and viewed in multiple dimensions. Data cubes are 

suitable for handling hierarchies and aggregations required for data mining. Data 

analysing needs aggregated data extracted to a file or table to make visualization of 

results in graphical way. Data cubes can be successfully used to present data mining 

results to the business analysts. That makes data cubes essential for data analysis and 

data mining. 

 

A data cube should have at least one dimension, at least one measure, and only one 

fact table [5]. Besides the fact table and dimension tables, there are also summary 

tables that contain the pre-aggregated data. A data cube consists of the base data and 

subaggregates [1, 2]. Summary tables are the most focused part of a data cube and 

can be represented as seperate fact tables that use seperate shrunken dimension tables 

or the same fact table can be used by adding a field for the aggregation level and 

using “NULL” or the dummy value “ALL” as the value for attributes other than the 

aggregated ones [1, 11]. In order to reduce response time, most system designers 

consolidate totals and keep them in a relational database as depicted in Table 2 [20].  

 

Table 2: “Sales” Summary Table 

Time Product Location Price Unit Sales 

2004 oven Ankara 33 12 396 

2004 oven Bursa 31 13 403 

2004 oven NULL - 25 799 

2004 refrigerator İstanbul 54 8 432 

2004 refrigerator İzmir 50 6 300 

2004 refrigerator NULL - 14 732 

2004 NULL NULL - 39 1135 

... ... ... ... ... ... 
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A cube also contains members from all hierarchy levels of each dimension [5]. 

Conceptually, the cube contains values for each measure - that are summarized at 

each possible hierarchy level for each dimension - and that can be computed 

dynamically or pre-calculated [5]. 

 

In order to generate the aggregated data displayed in the Table 2 above, the union of 

all possible SQL statements with group by clauses should be computed. Gray et. al. 

[11] has introduced the cube operator that builds a table with all aggregate values.  

 

 

 

Figure 6: Data Cube 

 

A data cube with n dimensions can have 2n cuboids [4, 9, 10, 11] based on all 

possible summarizations of dimensions. These cuboids correspond to points, lines, 

planes, cubes or hyper-cubes beside the core data cube as depicted in Figure 6. n-D 

cuboid is the base cuboid since it contains all dimensions at primitive abstraction 

level since it is the result of applying the group-by operation to all dimensions. That 
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cuboid should be certainly pre-computed since it cannot be constructed from other 

views. 0-D cuboid is the apex cuboid and holds the highest level of summarization 

(i.e., no group-by’s in aggregation). The lattice of cuboids corresponds to the 

summarized data in a data cube (see Figure 7 below). Cuboids except the “n-D 

cuboid” can be computed from each other. The lattice expresses the dependencies 

between the views. A cuboid is determined by which combination of dimensions the 

group-by operator is applied. 

 

 

Figure 7: Cuboids of the Data Cube 

 
When hierarchies are defined over dimensions, the lattice of cuboids becomes  more 

complex since each hierarchy level of the dimensions is individually handled by 

executing the group-by operator for that level [10]. Hierarchies are also assumed to 

be lattices as depicted in Figure 8. 
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Figure 8: The Lattice of Cuboids with Hierarchical Dimensions 

 

Materialization of summary data accelerates queries [1, 2, 4, 5]. In order to 

materialize views (i.e., compute cuboids), first the necessary dimensions are selected 

and then they are joined by the fact table. Deciding about which view to materialize 

depends on the workload characteristics, cost of incremental update, storage 

boudaries and cost of aggregation. Sometimes, the data cube may contain much more 

data than the fact table and this can cause to data explosion which can be avoided by 

not materializing the views but calculating on demand. Most of the research that is 

done about warehouses focuses on materialized views. Many studies are done about 

selection of the views to be materialized. Full, none or partial materialization can be 

done. Materializing all views shortens the query-reponse time but may expose huge 

amount of storage, while not materializing any view requires dynamic computation 

and no extra space. Cuboid-based selective materialization (HRU Greedy algorithm) 

[10] tries to decide which group-bys (i.e., cuboids) will be pre-computed and 

indexed. On the other hand, object-based selective materialization [9] determines 

which cells of cuboids should be materialized. These both methods are important 

studies for partial materialization which try to balance between query-response time 

and storage utilization. 
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There are some studies about efficient methods for cube computation which optimize 

the cube operator that is n-dimensional generalization of the group by operator [11]. 

Agarwal et. al. [12] has proposed some ROLAP-based cubing algorithms in which 

sorting, hashing and grouping operations reorder and cluster related records and 

grouping is done on some subaggregates as a partial grouping step. Previously 

computed aggregates (i.e., intermediate group-bys) are used to compute further 

aggregates. Array-based cubing algorithm, in which arrays are partitioned into 

chunks to make subcubes fit in memory, was proposed by Zhao [13]. This algorithm 

computes aggregates by visiting cells in the order that minimizes access count and 

reduces memory usage [13]. But that multi-way array aggregation works well only 

when number of dimensions is small. Bottom-up computation method was proposed 

by Bayer and Ramarkrishnan (1999) to handle large number of dimensions in multi-

way aggregation [cited in 4]. 

 

2.2.6 OLAP Mining 

 

OLAP mining is the integration of OLAP and data mining [17, 18]. Garbage data are 

gathered in many application areas and OLAP helps to handle this huge amount of 

data and to convert them to useful data. But that is not enough, right set of tools are 

also needed to manage the system and extract the interesting knowledge and use it in 

business environment. That can be achieved by not using OLAP and data mining one 

over the other, but by bridging them together. OLAP mining provides flexible 

mining of interested knowledge since data mining can be performed at 

multidimensional and multi–level abstraction space in a data cube. That can help 

users find the desired knowledge by enabling use of cubing and mining in interleaved 

or integrated way.  

 

Business problems like market analysis and financial forecasting, require query-

centric database schemas that are array oriented and multidimensional since they 

need to retrieve large number of records from very large data sets and summarize 



  
 

23 

them quickly. Data are examined from multiple points of view and that increases the 

need for OLAP in business environment since business problems are expressed in 

multiple dimensions. On the other hand, data analysts need data mining algorithms as 

association, classification, etc. individually or in combination in order to gain insight 

into business and discover interesting patterns and relationships and finally conclude 

in strategic and tactical decisions. 

 

OLAP is retrospective (i.e., historical data is handled) and deductive by nature and it 

is driven by experts, but data mining is proactive (i.e., up-to-date rules are extracted) 

and inductive in nature and is driven by the data itself. These two technologies 

complement each other in business analytics and facilitates the interactive analyze of 

data. Data warehouses can provide data to both OLAP and data mining since both 

technologies require cleansed, consistent and integrated data [18]. Moreover, data 

mining algorithms can be useful to collect more meaningful meta-data model for 

building an OLAP cube. Furthermore, they can help in determining which cuboids 

are to be materialized and optimize the cost and business value of maintaining large 

cubes for different functional areas of the business [18]. 

OLAP mining areas are grouped as pre-processing areas (cube-building stage) and 

post-processing areas (cube- analysis stage). Pre-processing areas involve principal 

component analysis, clustering or association among data mining techniques since 

they can assist in dimension reduction, which is considered when the data cube is 

built. Post-processing of cubes involves modeling or prediction using neural 

networks or fuzzy logic, analysis of interested data using sophisticated statistical 

methods. Mainly, data mining and OLAP are used together when a sub-cube is 

selected by OLAP operations and several data mining algorithms are used to clarify 

various business questions since a data cube presents logically grouped views and 

aggregations at different levels appropriate for these questions [18]. 

Data mining tools need integrated, consistent and cleaned data as in data warehouses. 

Data analysts may select the desired portion of data by OLAP operations like slice 
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and dice and analyze the data at the desired level of abstraction and extract interested 

knowledge. Moreover, using OLAP and data mining concepts together helps users to 

predict what kind of knowledge can be mined by using different data mining tasks 

dynamically. These are the reasons why OLAP and data mining needs to be used 

together. 

 

OLAP mining functions can be described as below [17]: 

• Cubing then mining: By the use of OLAP operations the interested portion 

of the data is selected and the required abstraction level is determined. Then 

the desired data mining process is executed. 

• Mining then cubing: After data mining is performed on the data cube, 

mining results can be analyzed by OLAP operations. 

• Cubing while mining: Initiate cubing operations during mining when similar 

mining operations are performed at multiple granularities like mining 

association rules and drilling down along a dimension. 

• Backtracking: The mining process backtracks a few steps or to a marker and 

explores alternative mining paths. 

• Comparative mining: Alternative data mining processes are compared and 

quality of different algorithms are seen. 

 

An OLAP based mining system, DBMiner, is already developped for 

characterization, association, classification, prediction, clustering and sequencing 

[24]. Furthermore, OLAP vendors are tending to develop an interface for Web 

services messaging between OLAP and data mining applications and include that 

feature in a service provider such as an OLAP engine [19]. 

 

2.3. Fuzzy OLAP 

 

The need to handle imperfect data that are either uncertain or imprecise and run 

flexible queries on warehouses has motivated studies on fuzzy OLAP. Fuzzy OLAP 
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enables the extraction of relevant knowledge in a more natural language and give 

results to the queries with a certain precision about the reliability of the knowledge. 

 

Fuzzy decision trees can be constructed with multidimensional DBMS to deal with 

real world data and perform OLAP based mining [14, 16]. In other words, OLAP 

mining and fuzzy data mining can be combined to increase the understandability of 

the discovered knowledge since fuzzy set theory treats numerical values in more 

natural way. Moreover, it helps to extract more generalizable rules since numerical 

data is manipulated with words.  

 

 

Figure 9: Fuzzy Data Cube 

 
A new model is proposed for fuzzy multidimensional databases from which fuzzy 

summaries are generated like “Most sales are medium: 0.16” in [15, 16]. Here, 0.16 

corresponds to the truth value of the summary. Methods used to generate fuzzy 

summaries are based on algorithms proposed for association rules. Fuzzy set theory 

is also used to represent fuzzy quantifiers like few, most, etc. In this model, domains 

of dimensions are a finite set of elements which consists of fuzzy set label/precise 

value and the degree of confidence/estimated correctness. For example, the domain 

of the dimension “product” can be defined as DomainProduct = {(oven,0.7), 

(television,1), (refrigerator,0.8)}. That means slices of the cube belong to the cube at 

some extent as the slice corresponding to “oven” along production dimension 

belongs to the cube with degree 0.7. Additionally, each cell in the fuzzy cube, 
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belongs to the cube with a degree, i.e., confidence value as displayed in Figure 9 

above. She represents the cube as Product x Location x Time = Sales x [0,1]. The 

measure values are also fuzzified with fuzzy labels and their membership values for 

each cell. 

 

Fuzzy hierarchies are represented to indicate that some values may gradually belong 

to more than one of the defined higher levels like in Figure 10 below [15, 16]. 

 

 

Figure 10: Fuzzy Hierarchies 

 
During aggregation, all membership values (or membership values greater than a 

threshold value) of the cells whose corresponding slices belong to the cube with a 

degree greater than a predefined value are summed in order to compute the degree to 

which the aggregated cell belongs to the cube [15, 16].  

 

While generating summaries like “Q yi are S : τ” where Q is a quantifier, yi is an 

object (i=1,...,n),  S is the summarizer and τ is the degree of truth of the summary, 

arithmetic cummilation of membership values of the summarizer (membership of 

measure values) is computed as τ=µ((1/n)*(∑ µS(yi))) [16]. 

 

2.4. Spatial OLAP 

 

The increase in spatial data and human limitation in analyzing spatial data in detail 

and needs in development of geographical information systems, medical imaging and 

robotics systems make knowledge discovery in spatial databases very crucial [8]. 

This involves introduction of spatial components in relational and object-relational 

databases which necessitates the extension of data warehouses and OLAP for spatial 
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data.  Because spatial OLAP should provide efficient spatial OLAP operations for 

the summarization and characterization of large sets of spatial objects in different 

dimensions and at different levels of abstraction.  Spatial objects should have fast 

and flexible representation for their collective, aggregated and general properties. 

 

In the following sections, knowledge discovery from spatial data and spatial data 

cube construction for spatial data warehouses are explained in more details. 

 

2.4.1 Spatial Knowledge Discovery 

 

Knowledge discovery in spatial databases corresponds to the extraction of interesting 

spatial patterns and features, general relationships between spatial and non-spatial 

data, and other implicit general data characteristics [6, 8]. 

 

Spatial data like maps, images from satellites, video cameras, medical equipment, 

etc. have both non-spatial and spatial components. Non-spatial components 

correspond to the usual data that can be stored in relational databases. Spatial 

components correspond to multi-dimensional data that are stored in spatial data 

structures [8]. 

 

Spatial objects [6, 7, 8, 9, 21] have non-spatial attributes linked to them. Spatial data 

is usually stored as thematic maps. They have two structure-specific representations. 

In raster representation, an attribute value is associated with each pixel as <<x, y>, 

attribute>; while in a vector representation, an object is specified by it geometry and 

associated thematic attributes as <geometry, attribute>.  The geometry of the object 

is represented as a sequence of points. The vector format has advantages over the 

raster format like high accuracy, compactness, and easiness of object identification 

and manipulation. There are also some vendor-specific representations. 
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A generalization-based knowledge discovery mechanism is developed to integrate 

attribute-oriented induction on non-spatial data and spatial merge and generalization 

of spatial data in [6]. Generalization rules that are general data characteristics and/or 

relationships are extracted. Induction is done via ascending the thematic concept 

hierarchies and spatial hierarchies. General data characteristics and relationships 

between spatial and non-spatial attributes are summarized at high levels. For 

example, suppose that a hierarchy is defined as “corn”, “wheat” and “rice” being the 

leaves and “grain” being their parent, regions that grow corn, wheat and rice can be 

generalized as “grain-production-area”. Moreover, regions with precipitation 

measurements between 2.0 and 5.0 can be generalized as “wet-area”.  

 

The corresponding generalization rules are extracted by two generalization 

algorithms depending on which component is first generalized, spatial or non-spatial. 

To extract general knowledge from spatial databases, generalization is performed 

both on spatial and non-spatial data. When one component is generalized, the other 

component is adjusted accordingly as described below [6, 8, 23]. 

 

• Non-Spatial Data Dominated Generalization: 

Input: A spatial database consisting of both non-spatial and spatial data, a 

learning request and a set of concept hierarchies. 

Output: A rule characterizing general properties of spatial object 

Method: Related non-spatial data is collected by a SQL query. Attribute oriented 

induction is applied repeatedly by ascending the concept hierarchy, merging 

identical non-spatial tuples and collecting spatial object pointers. Generalize the 

spatial data by retrieving spatial objects for each generalized non-spatial tuple 

and performing spatial merge possibly for neighbor objects that belong to the 

same generalized tuples. Induction is done until a value for every attribute is 

generalized to the desired level, which is specified by the generalization 

threshold for that attribute. 
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• Spatial Data Dominated Generalization: 

Input: A spatial database consisting both of non-spatial and spatial data, a 

learning-request, a set of concept hierarchies, and a spatial hierarchy. 

Output: A rule characterizing general properties of spatial object 

Method: Related spatial data is collected by a SQL query. Spatial oriented 

induction is applied by ascending the spatial hierarchy, merging identical non-

spatial tuples. Generalization of spatial objects is done until the spatial 

generalization threshold, which is the maximum number of regions in a 

generalized relation, is reached. Generalized relation is a table that contains the 

generalized values (i.e., labels) for attributes. The non-spatial data for each 

generalized spatial object is retrieved and analyzed by attribute-oriented 

induction. Concept hierarchy is climbed and attribute values are changed to 

generalized values and identical tuples are merged.  Generalization threshold 

determines when the generalization process will stop. 

 

These two algorithms were used in GeoMiner system [23, 24], which is a spatial data 

mining system. In that system, a set of characteristic rules are found at multiple 

levels of abstraction from a relevant set of data in a spatial database. 

 

2.4.2 Spatial Data Cube 

 

Spatial data-warehouses enable spatial data analysis and spatial data mining. Spatial 

data-warehouses couples both spatial and non-spatial technologies. Stefanovic et. al. 

[9] have studied methods for spatial OLAP by combining non-spatial OLAP methods 

and spatial databases. They propose a model for spatial data warehouses that has 

both spatial and non-spatial dimensions and measures and a method for spatial data 

cube construction called object-based selective materialization. They extend the data-

warehouse definition of Inmon (1992), cited in [1, 4, 17] to spatial data-warehouse as 

“subject-oriented, integrated, time-variant, and non-volatile collection of both spatial 

and non-spatial data in support of management’s decision-making process”. 
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A spatial data-warehouse may be used to view the weather patterns on a map by 

region, month, and different combinations of temperature and precipitation like “hot 

and wet regions in the Marmara Region”. Spatial objects are summarized and 

characterized in different dimensions and at different level of abstraction by spatial 

OLAP operations in spatial data cubes. 

 

In a spatial data cube both dimensions and measures may contain spatial components 

[4, 9, 27]. Dimensions can be non-spatial, spatial-to-non-spatial, and spatial-to-

spatial. A non-spatial dimension contains non-spatial data (i.e., temperature, 

precipitation), generalization of which is non-spatial (i.e., hot, wet). Spatial-to-non-

spatial dimension has spatial data (i.e., state) and is generalized to non-spatial data 

(i.e., big_state). Spatial-to-spatial dimension has spatial data (i.e., equi-temperature-

region) and all generalized data are spatial (i.e., 0-5_degree_regions). Measures are 

classified as numerical if they have numeric data or spatial if they contain a 

collection of pointers to spatial objects. Spatial measures distinguish a spatial data 

cube from a non–spatial data cube since OLAP operations for spatial dimensions 

would be handled in similar way in the non-spatial data cubes. 

 

 

Figure 11: The Star Schema for Spatial Data Warehouse 

 
Star/snowflake schemas can be used to design spatial data cubes. In the star schema 

shown in Figure 11 above, Region_Name, Time, Temperature and Precipitation are 

the dimensions and region_map, area and count are the measures. Hierarchies for 
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each dimension are shown in Figure 12 and an example for them is depicted in 

Figure 13. Region_map is a spatial measure that contains spatial pointers for the 

regions, area is a numerical measure and contains the sum of the areas of the regions, 

and count is also numerical measure that keeps the count of regions aggregated. 

 

  

Figure 12: Hierarchies for the Star Schema 

 

Numeric values of temperature or precipitation are first generalized to ranges and 

then to more descriptive names as in the example illustrated in Figure 13. 

 

  

Figure 13: Example Data for Hierarchies in Star Schema 

 

The result obtained when a roll-up operation is applied by the use of the hierarchies 

defined as in the Figure 12 above is illustrated in Table 3 below: 
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Table 3: Result of a Roll-Up Operation 

 

 

Different methods for computing spatial data cubes are listed below [4, 9, 27]: 

• On-line aggregation: Pointers to spatial objects are collected and stored in a 

spatial data cube. None of the cuboids are pre-computed. It is expensive and 

slow when data is large. Hence, it needs efficient aggregation techniques. 

Moreover, redundant computation is also possible. 

• Materialization of all cuboids: All possible computations are pre-computed 

and stored. It brings a huge space overhead. That is the method preferred in 

this thesis work in order to simplify the demonstration of fuzzy spatial data 

cube and since the test data is not very large. In this thesis, spatial merge 

operation is not applied during aggregation; only the pointers to the spatial 

objects are collected together.  

• Materialization of cuboids roughly: Rough approximations of spatial 

objects are pre-computed and stored in a spatial data cube. That brings an 

accuracy trade-off. 

• Selective computation:  

o Materialize a part of the cube (some of the cuboids) [10]: Cuboids, which 

are to be pre-computed and stored, are determined by HRU Greedy 

algorithm. 

o Materialize parts of the cuboids [9]: Materialize the frequently used and 

shared spatial objects. Granularity for materialization is not at the cuboids 

level, but at the cell level. Individual cells are examined to see whether a 

group of spatial objects within a cell should be pre-aggregated. 

o Combine spatial indexing with pre-aggregated results [25]: In this 

method, a spatial index is built on the objects of finer granularity in the 

spatial dimension and groupings of the index are used to define a 
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hierarchy. That hierarchy is incorporated to the lattice model to select 

appropriate aggregations for materialization by HRU Greedy algorithm. 

Spatial aggregation is done by traversing the index in a breadth-first 

manner in order to compute efficient group-by queries. 

• Multi-resolution amalgamation [21, 22, 26]: The spatial data cube is 

generated dynamically since aggregations are done dynamically. The 

resolution of a region is changed, in other words precision of spatial data can 

be changed to some extent since most of spatial data are stored at much 

higher resolutions than are necessary for some applications. Multi-resolution 

spatial databases try to support deriving proper level of details on-the-fly. 

Data is stored with the finest available level of detail in the database and the 

multi-resolution database is capable to reduce that level of details according 

to applications. Amalgamation re-classifies objects into higher level objects 

that form a new spatial layer. New geometries generated by amalgamation 

can be used in further spatial analysis. Generalization of spatial data involves 

object selection, object simplification, and operations like tokenization and 

amalgamation. The tokenization operation corresponds to the replacement of 

geometrically small but semantically important objects, like telephone boxes 

and police stations by a token. The amalgamation operation merges the 

similar objects like several neighbor buildings into one large object. Applying 

polygon amalgamation operation finds the boundary of the union of a set of 

polygons. This method is useful for merging spatial objects during 

aggregation. 

 

2.5. Knowledge Discovery and Data Mining 

 

A knowledge discovery process constitutes the following steps: collection of data 

together, cleansing the data and fitting it together, selecting the necessary data, 

crunching and squeezing the data to extract the essence of it and evaluation of the 

output and usage of it [8]. 
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Data mining corresponds to one step of knowledge discovery, which is the extraction 

of implicit information from a large dataset [4, 8]. It is the extraction of interesting 

(non-trivial, implicit, previously unknown and potentially useful) information or 

patterns from data in large databases. But in many sources the terms “data mining” 

and “knowledge discovery in databases” are used interchangeably. Data mining can 

be sub-divided into web mining, text mining, geo-spatial data mining, multimedia 

(sound, video, images) mining. 

 

A data mining system can generate thousands of patterns but only few of them are 

interesting. What makes a pattern interesting is its understandability, validity on new 

or test data with a degree of certainty, usefulness, and ability to validate a hypothesis 

to be confirmed. That is why users should direct what is to be mined. 

 

Data mining has functionalities like characterization (generalization, summarization, 

contrasting data characteristics like dry vs. wet regions), association (correlation and 

causality), classification, prediction, cluster analysis, outlier analysis, and trend and 

evolution analysis. 

 

2.5.1 Association Rules 

 

Association rule mining [4, 8, 18, 29] corresponds to finding frequent patterns, 

associations, correlations, and causal structures among sets of items or objects in 

information repositories. It has application areas in basket data analysis, cross 

marketing, catalog design, loss-leader analysis, clustering, classification, etc. These 

rules may be very helpful in customizing marketing program, advertisement, and 

sales promotion since they are able to tell rules like “People who buy butter and milk 

will also buy bread”. 

 

Association rule mining was first aimed at discovering associations between items in 

transactional databases. Given D = {T1…Tn} a set of transactions and I = {i1…in} a 
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set of items such that any Ti in D is a set of items in I. An association rule is an 

implication A->B where A and B are subsets of Ti given some support and 

confidence thresholds. In other words, an association rule is a rule that correlates the 

presence of one set of items with that of another set of items. The rule has the form 

“Body->Head [support, confidence]” (or “If X is A then Y is B”) where support is 

the probability that a transaction contains the Body and confidence is the conditional 

probability that a transaction having the Body also has the Head.  

Support of “Body->Head” = (# of transactions containing Body                     

(total # of transactions)  

Confidence of “Body->Head” = (# of transactions containing both Body and Head) 

(# of transactions containing Body) 

Association on a data-warehouse requires aggregation to be performed at different 

levels, which can be slow. Since an OLAP cube has pre-computed results (i.e., count 

of tuples), performing association on an OLAP cube is much faster. 

 

In order to find associations, first, all frequent items are found. Frequent items 

correspond to items that are more frequent, i.e., have supports greater than the 

initially determined minimum support. Then, frequent items are combined into item 

sets. After all item sets are found, they are used to produce association rules 

according to the initially defined minimum confidence. While generating association 

rules, the most important thing is to find the frequent item sets. The most famous 

algorithm is the Apriori algorithm that has many variations and improvements on it. 

One problem with the Apriori algorithm is that it misses all item sets with recurrent 

items. 

 

Spatial association rules also have the form “Body->Head [support, confidence]”. 

Here, “Body” and “Head” can be sets of spatial or non-spatial predicates such as [4] 

topological relations (intersects, overlaps, disjoint, etc.), spatial orientations (left_of, 
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west_of, under, etc.), and distance information (close_to, within_distance, etc.). 

Is_a(x, large_town) ^ intersect(x, highway) -> adjacent_to(x, water) [7%, 85%] is an 

example for spatial association rules. 

 

Spatial associations are mined in two steps. In the first step, rough spatial 

computation is done to filter out the irrelevant spatial objects. MBR or R-tree is used 

for rough estimation. In the second step, detailed spatial algorithm is applied to refine 

the mined rules. Algorithm is applied only to the objects that have passed the rough 

spatial association test with a value greater than the minimum support [4]. 

 

Similarly, fuzzy association rules have the form “If X is A then Y is B” where X and 

Y are disjoint sets of attributes and A and B are fuzzy sets that describe X and Y 

respectively [29]. Fuzzy association rules are more understandable to human because 

fuzzy sets handle numerical data better since they soften the sharp boundaries of 

data. The semantics of the rule is when “X is A” is satisfied it can be implied that the 

consequent part “Y is B” is also satisfied. Interesting rules have enough significance 

and high certainty factors. Significance is for the satisfiability of the item-sets and 

certainty is for the satisfiability of the rules. 

 

Table 4: Record Containing Membership Values 

 temperature precipitation area 

 label membership label membership label membership 

t1 Hot 0.9 dry 0.2 large 0.5 

t2 Hot 0.7 dry 0.4 large 0.8 

t3 Hot 0.8 dry 0.3 large 0.2 

… … … … … ... ... 

 

While generating fuzzy association rules, first large item-sets, those with significance 

higher than a user specified threshold, are found. The significance is calculated by 

summing the votes of all records for the specified item-set and by dividing that sum 
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to the count of the records. A vote of the record corresponds to the production of the 

membership values for the fuzzy sets in A that are described for X. For example, if X 

= {temperature, precipitation} and A = {hot, dry}. Suppose that we have the 

following records T = {t1, t2, t3 …} depicted in Table 4. Significance of the rule is 

S(X,A)=(0.9*0.2 + 0.7*0.4 + 0.8*0.3)/3=0.23. 

 

After discovering large item-sets, interesting rules are generated according to the 

certainty factor that is computed as C((X,A),(Y,B))=S(Z,C)/S(X,A) where X ⊂ Z, Y = Z - X 

and A ⊂ C, B = C - A. For the example above, if Y={area} and B={large}, 

C((X,A),(Y,B)) = (( 0.9*0.2*0.5 + 0.7*0.4*0.8 + 0.8*0.3*0.2)/3)/0.23=0.517. 

 

In short, if the rule has enough significance it is determined as one of the large item-

sets. Then, if it also has enough certainty it is specified as one of the interesting 

association rules in the database. 
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CHAPTER 3 

 
 

FUZZY SPATIAL DATA CUBE 

 
 
There is huge amount of spatial data available which are not useful unless knowledge 

is obtained. Especially, GISs need to store, manipulate and analyze voluminous 

amounts of spatial data. For such systems, it is also very probable to couple the 

available data with remotely sensed data so as to facilitate and analyze data timely 

and conclude in site specific decisions. 

 

Spatial data warehouses are very suitable for systems that need to store large 

amounts of spatial data and analyze them like GIS since spatial data warehouses 

integrate different sources together, enable characterization of spatial data, 

summarize data in different dimensions at different levels of abstraction, and 

facilitate discovery of knowledge and decision making. 

 

Equally important, fuzzy data warehouses incorporate fuzzy logic into their 

multidimensional data model and construct fuzzy data cubes in order to increase the 

understandability and nature of the extracted knowledge. They also give results to 

queries with a certain precision about the reliability of that knowledge.  

 

In this thesis, more understandable and precise knowledge generated from spatial 

data by construction of fuzzy spatial data cube and extraction of fuzzy association 

rules from the corresponding cube. In the following sub-chapters, it is illustrated how 

spatial data cubes and fuzzy data cubes can be harmonized together and how this 

benefits to spatial knowledge discovery. 
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3.1 Fuzzy Spatial Data Cube Construction 

 

Data mining discovers nontrivial and interesting knowledge or patterns from data. It 

has functionalities like characterization, comparison, classification, association, 

prediction, cluster analysis and time-series analysis. In this thesis, characterization 

and association aspects are considered over fuzzy spatial data cube to discover 

precise multilevel knowledge from spatial data. 

 

Characterization (i.e., generalization) can be used to generalize task relevant data 

into generalized data cube. Characteristic rules, which are extracted from a 

generalized data cube, summarize general characteristic of user-specified data. 

Similarly, characteristic rules, which are extracted from a fuzzy spatial data cube, can 

summarize the climate data for a region with the extension that they can also present 

the general characteristics of the region’s climate with some precision. The raw data 

for one region can be generalized into concepts like cold (0.9), mild (0.7) and hot 

(0.5) for temperature, and dry (0.28), wet (0.72) for precipitation with the precision 

values that indicates the degree of reliability of the generalization. Sub-regions that 

are described by the same high-level concepts can be aggregated together with a 

recomputed precision which is the subject of this thesis.  

 

Instead of generalizing spatial data to “[20-25] temperature regions”, “[25-30] 

temperature regions” and “[above 30] temperature regions” and then aggregating 

them to “hot regions”; generalizing each spatial datum to “hot region” with the 

precision value for the reliability to that generalization µhot and then aggregating 

them to “hot regions” with a µhot for the aggregated regions is more meaningful and 

natural. Different temperature values will cause to generalizations with different 

precision values. Introducing fuzzy logic to spatial generalizations helps to have 

more smooth generalizations. 
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Association discovers a set of association rules in the form of X1 ^ … ^ Xn -> Y1 ^… 

Ym, at multiple levels of abstraction from the relevant set(s) of data in a database. 

Association rule discovery necessitates the computation of support to find the 

frequent item sets and the computation of confidence to find the interesting rule. 

Computation of these factors requires the count of occurrences of the corresponding 

item set and the count of all item sets. The data cubes facilitate efficient mining of 

association rules since a count cell stores the number of occurrences of the 

corresponding multi-dimensional data values and a dimension count cell stores the 

sum of counts of the whole dimension. These count cells simplifies the calculation of 

support and confidence measures of the association rules. But, in fuzzy data cubes, 

the interesting association rules can be determined according to their significance and 

certainty factors, these reflects the reliability to generalization, instead of support and 

confidence factors which reflect the frequency of the data. 

 

Fuzzy spatial data cube considered in this thesis combines both some features of 

spatial data cube and fuzzy data cube that take place in the literature and also 

differentiates from them at some points. These similarities and differences are 

explained in more details below: 

• In fuzzy spatial generalization rules, besides the spatial generalization (i.e., 

hot), the membership value of the generalization is also computed (i.e., hot 

(0.96)) according to the defined fuzzy labels and membership functions. 

Membership functions can have values in the range [0,1] according to the 

fuzzy set theory, and take as input numeric values such as 20 for 20°C 

temperature. 

• In contrast to spatial data cube construction proposed by Stefanovic [9] in 

which numeric values are first generalized to ranges and then to more 

descriptive names, in fuzzy spatial data cube they are generalized directly to 

their descriptive names (fuzzy labels) with the computation of their 

contribution to the corresponding descriptive names (membership values). 
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• Fuzzy spatial data cubes are very similar to the spatial data cube considering 

their dimensions and measures with the exception that fuzzy generalization 

rules are discovered at multiple levels of abstraction from spatial data by the 

help of defined fuzzy hierarchies. 

• In fuzzy spatial data cubes, measures are also fuzzified (i.e., generalized with 

their precision values) as in fuzzy data cubes. 

• Generalization rules for spatial data are extended for fuzzy spatial data cube  

since generalization is not done only according to the determined 

characteristic but it is done considering both the characteristic and 

membership values for that characteristic of the generalized data. A new 

membership is needed to be calculated for the generalized value in the fuzzy 

spatial data cube for the aggregated regions as illustrated in Table 5 and Table 

6. The membership value of the generalized aggregated region is computed 

by considering the weight of one of the measures according to the context of 

the application. 

 

Table 5: Spatial Generalization 

Region Temperature 

R1 Hot 

R2 Hot 

R3 Hot 

R1, R2, R3 Hot 

 

Table 6: Fuzzy Spatial Generalization 

Region Temperature Temperature Membership 

R1 Hot 0.98 

R2 Hot 0.67 

R3 Hot 0.56 

R1, R2, R3 Hot ? 
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• In Laurent’s study [14, 15, 16] for fuzzy cubes, each slice corresponds to the 

cube with a membership value, i.e., a value of one dimension has the same 

membership value for all the cells in the slice. But in our fuzzy spatial data 

cube each cell has its individual membership value for the corresponding 

dimension value since spatial objects might have common properties but each 

spatial object might have that property with a different degree than other 

spatial objects as displayed in Figure 14 below. 

 

 

 

 

Figure 14: Dimensions and Their Memberships 
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• In Laurent’s study [14, 15, 16]; aggregation is done by computing the degree 

to which the aggregated cell belongs to the cube, as explained in section “2.3 

Fuzzy OLAP”. That is done by computing the arithmetic cummilation of the 

membership values of cells that are being aggregated. On the contrary in our 

study, aggregation is done by multiplying membership values of each cell 

with the weighted value of the tuple, summing these multiplications and 

dividing to the sum of the weighted values. Aggregation of spatial objects in 

fuzzy spatial data cube will be explained in more details in the following 

sections. 

 

With the use of fuzzy spatial data cubes, generalization rules such as “Ankara was 

%80 hot and %78 dry in June, 2003.” can be easily extracted. Moreover, an 

additional generalization rule like “Ankara was %85 hot and %96 dry in June, 2004” 

could help to conclude that the increase in hotness for the regon Ankara has also 

increased dryness of weather, in other words, increase in temperature has decreased 

the precipitation in one year period. Incorporating fuzzy logic in spatial data cubes 

increases the reliability to the generalizations due to the computed precisions and 

helps to identify the deviations in properties of spatial regions through time. 

 

The construction of fuzzy spatial data cube constitutes of the following steps: 

 

3.1.1 Collection of spatial data 

 

In an enterprise spatial data mining system, spatial data, non-spatial data and concept 

hierarchies would be stored separately as in the GeoMiner system [23, 24]. Spatial 

data and spatial concept hierarchies would be stored in spatial databases, and non-

spatial data and relational concept hierarchies would be stored in relational 

databases. But in this study, the spatial and non-spatial input data are read from a file 

in XML format since the size of the test data has been kept feasible, and the concept 

hierarchies are determined according to the user requests. Data have vector 



 
 

44 

representation as depicted in the Figure 15 below. Geometry of objects is specified 

between “<topology>” tags and included between “<geoobject>” tags with the 

associated object attributes. 

 

<geoobjects> 

<geoobject> 

  <time>…</time> 

  <temperature>…</temperature> 

  <precipitation>…</precipitation> 

  <area>…</area> 

  <topology> 

   <point> 

    <x>…</x> 

    <y>…</y> 

   </point> 

   … 

  </topology> 

 </geoobject>    

 … 

</geoobjects> 

Figure 15: Format of data 

 

Data are read from the file into relational tables. In this work, it is assumed that 

multi-dimensional data are mapped on a relational database with a start schema that 

will be further explained in the following steps of fuzzy spatial data cube 

construction. For example, non-spatial attributes are read into a table as in the Figure 

16 below. 
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Figure 16: The Geo-object Table 

 

3.1.2 Determination of Dimensions and Measures 

 

After data is read from the source file, the dimensions and measures that will be 

included in the cube are selected. This is needed because many dimensions may be 

available but only the interested and significant dimensions should be included in the 

cube due to size and performance constraints of the data cube. 

 

Fuzzy membership functions are defined for dimensions and for measures that are 

determined to be fuzzy. In the Geo-object table depicted in Figure 16 above, “id” 

column corresponds for the ids of the geographic objects. The dimensions and 

measures can be chosen among the “time”, “temperature”, “precipitation” and “area” 

columns. In that case, “time”, “temperature” and “precipitation” columns are more 

appropriate for being dimensions while the “area” column is more appropriate for 

being the measure. By such dimension and measure selection, weather patterns can 

be extracted on the map by month (or year), by temperature and by precipitation, and 

it can be easily seen on which regions and areas these patterns are valid. 

 

Fuzzy membership functions are defined by using different types of membership 

functions [28] as displayed in Figure 17 below. 
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a) Triangular   b) Trapezoidal 

 

 

c) Gaussian   d) Bell Shaped 

 

 
e) Sigmoidal    f) S 

 

 
g) Π Shaped 1   h) Π Shaped 2 

 

Figure 17: Membership Function Types 
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In Figure 18.a and Figure 18.b, Gaussian membership functions are depicted for 

temperature and precipitation dimensions. A membership function can also be 

defined for the measure column “area”. 

 

 

a) Membership for temperature dimension 

 

 

b) Membership for precipitation dimension 

Figure 18: The Gaussian membership function 

 

3.1.3 Definition of Fuzzy Hierarchies 

 

After defining the dimensions and measures and identifying their membership 

functions, fuzzy hierarchies can also be defined for dimensions. For example, for the 

temperature dimension, the fuzzy labels “hot”, “cold”, “cool” and “cold” and their 

membership functions can be defined as in Figure 18-a above. Moreover, hot and 

cold regions can be classified to the regions that have the season “summer”, while 

cool and cold regions can be classified to the regions that have the season “winter”. 

A hot region can be classified to a region that have the season summer with the 
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precision 1, while a mild region can be classified to a region that have the season 

summer with the precision 0.85 as the season fuzzy hierarchy depicted in Figure 19 

below. The membership values of fuzzy labels to the upper fuzzy levels on the 

hierarchy are defined as constants. In that case, a mild region with the membership 

value 0.6 that is computed by the Gaussian membership function defined for the 

fuzzy label “mild”, can be classified to a region that has the season winter with the 

membership value 0.6*0.85=0.51. 

 

 

Figure 19: The season fuzzy hierarchy for the temperature dimension 

 

3.1.4 Determination of All Aggregation Types 

 

Before constructing the cube, all combinations of dimensions and their hierarchies (if 

exist) are found to be applied the group-by operator. Each of the cuboids is 

materialized according to each possible group-by expression. Storage penalties are 

not considered in this study; hence all cuboids are calculated and stored. The power 

set, i.e., set of all subsets, of dimensions and their hierarchies are computed as the 

cube operator does in [11]. For the dimensions “temperature” and “precipitation” and 

the hierarchy “season” defined for the temperature dimension, the group-by 

expressions would be found in the steps illustrated in the Figure 20 according to the 

pseudo code given in Figure 21 below. The complexity for that piece of code would 

be O(d*2d*h), d being the size of the dimensions, 2d being the count of the group-by 

expressions and h being the average number of hierarchical levels for dimensions. 
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Figure 20: Group-by Expressions 

 
 

Input: dimensions 

Output: groupByExpressions 

 

1. set groupByExpressions to an empty list 
2. add an empty value to groupByExpressions 
3. for each dimension 
4. get dimensionName of the dimension 
5.   set newExpressions to an empty list 
6.   for each expression in groupByExpressions 
7. set newExpression to appendage of dimensionName to 

expression 

8. add newExpression to newExpressions 

9. get hierarchical values of the dimension 

10. for each hierarchical value of the dimension 

11. get hiearchyName of the hierarchical value 

12. set newExpression to appendage of hiearchyName to 

expression 

13. add newExpression to newExpressions 

14.     end for 
15.   end for 
16.   add newExpressions to groupByExpressions 
17. end for 
 

Figure 21: Pseudo code for determining aggregation types 

 

The spatial data cube will constitute a lattice of cuboids determined by the group-by 

expressions. That lattice will expresses the dependencies between the views, i.e., 

cuboids. Each of the cuboids will be the result of the process of one of these 

expressions. The lattice for the spatial data cube with the dimensions “temperature” 

and “precipitation” and the hierarchy “season” will be as in the Figure 22 below. 
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Figure 22: The lattice of fuzzy spatial data cube 

 

3.1.5 Generalization of Dimensions using Fuzzy Logic 

 

In the next step, dimensions are generalized to their defined fuzzy labels and their 

membership values are computed. For each region, all fuzzy labels defined for each 

dimension are considered and the label with the highest membership value dominates 

the other labels. For example, a region can be “hot” with precision 0.4, “cold” with 

precision 0.1 and “mild” with precision 0.9 considering the temperature dimension as 

in Figure 23 below. 

 

 

Figure 23: Choice of the most appropriate fuzzy set 
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In that case, that region will be considered as “mild” with the precision 0.9 since 

µmild is the highest membership value for the “temperature” fuzzy dimension. 

Furthermore, if there are hierarchies defined over the dimensions, the precision of the 

hierarchical level that the region belongs will be computed by the multiplication of 

the constant defined for the hierarchical value and the precision found for the fuzzy 

label. That induction will continue till the highest level of the hierarchy. For 

example, the “mild” region with precision 0.9 will be classified to a region that has 

the season “summer” with the precision µmild*µsummer=0.9*0.85=0.765 since mild 

was classified to the “summer” hierarchical level with the contribution 0.85 in Figure 

19. The pseudo code for generalization of dimensions is given below in Figure 24. 

The complexity of this piece of code would be O(n*d*h), n being the count of the 

tuples in the database, d being the size of the dimensions and h being the average 

number of hierarchical levels for dimensions. 

 

 
      Input: dimensions, crisp data 

Output: tuples with fuzzified dimensions 

 

1. if at least one of dimensions is fuzzy then 
2.   get the crisp data schema 
3.   for each dimension 
4.     if dimension is fuzzy 
5.       add a new column to the schema for the membership value 
6.       get hierarchical values of the dimension 
7.       for each hierarchical value of the dimension 
8. add a new column to the schema for the membership  

value 

9.       end for 
10.     end if 
11.   end for 
12.   create a new table according to the new schema 
13.   get crisp data 
14.   for each tuple in the crisp data 
15.     for each dimension 
16.       if dimension is fuzzy then 
17.         get fuzzySets of the dimension 
18.         for each fuzzySet 
19. compute the membership value of the tuple to the 

fuzzySet 

20.         end for 
21. set bestFuzzySet to the fuzzySet with max membership 

value 

22.         set bestFuzzyLabel to the fuzzyLabel of bestFuzzySet 
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23.         set bestMemVal to membership value of bestFuzzySet 
24.         copy bestFuzzyLabel to the new table 
25.         copy bestMemVal to the new table 
26.         get hierarchical levels of the dimension 
27.         for each hierarchical level of the dimension 
28. get the hierarchical value of bestFuzzyLabel 

29. get the hierarchical membership of bestFuzzyLabel 

30. set hierMemOfTuple to bestMemVal*( hierarchical 

membership of bestFuzzyLabel) 

31. copy hierarchical value of bestFuzzyLabel to the 

new table 

32. copy hierMemOfTuple to the new table 

33.         end for 
34.       else 
35.         copy dimension value of the tuple to the new table 
36.       end if 
37.     end for 
38.     copy measure values of the tuple to the new table 
39.   end for 
40. end if 
 

Figure 24: Pseudo code for generalization of dimensions 

 

The crisp data taken as input in Figure 16 is now generalized as in Figure 25 below. 

At the beginning the only available data for region r1 was that it had 23 ºC 

temperature, 1.5 gr/cm3 precipitation and 30 km2 area. After the generalization, we 

know that the region is 99% “mild” and it is 84% among regions that has the season 

“summer” and it has 93% wet precipitation. 

 

 

Figure 25: Generalized geo-objects 
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3.1.6 Fuzzy Spatial Aggregation 

 

After determining the fuzzy labels and computing their memberships for dimensions 

and their hierarchies, aggregation can be performed for the regions. Aggregation is 

done in a separate table according to the group-by expressions previously computed. 

Regarding the spatial measures, the aggregation is done by the collection of the 

spatial pointers of the aggregated regions. Spatial aggregation, such as region merge 

or map overlay, may be performed for them, but this is not included in this thesis, 

since that requires additional computation that is out of the research of this thesis. In 

this study, all cuboids are materialized because mining at multiple level of 

abstraction is greatly enhanced when cuboids contain materialized spatial measures. 

 

During determination of dimensions and measures, one of the measures should be 

defined to be the weighted measure since it will be needed during computation of 

aggregations. For example, while aggregating regions into one aggregated region, the 

area can be defined as the weighted measure and if there are some fuzzy dimensions, 

their membership values can be computed by summing the product of each of the 

aggregated membership value with that weighted measure and dividing the sum to 

the summation of the weighted measure (i.e., areas) of all regions that are being 

aggregated. The total area of the accumulated regions will be the total sum of the 

areas of the aggregated regions. The weighted measure is also used in the same way 

while aggregating according to the fuzzy hierarchies. The aggregation done 

according to the group-by expressions is illustrated in the Figure 26 below. 
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Figure 26: Aggregated fuzzy values 

 

For example, there are two regions with “mild” temperature in Figure 25. When 

aggregation is done and “group by temperature” expression is processed these two 

regions will be aggregated into a larger region with the generalization “mild” 

temperature. The membership of that region for the fuzzy label “mild” defined for 

the temperature will be computed as µmild = (0.994*30 + 0.985*50) / (30+50) = 

0.988. The membership of that region for the fuzzy hierarchy “season” will be 

computed in the similar way as µmild = (0.845*30 + 0.837*50) / (30+50) = 0.84. 
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The areas of these two regions will be summed and the pointers referring to them 

will be accumulated for the aggregated larger region as depicted in Figure 26-a 

above. 

 

Here, what makes the use of the area value as the weighted column reasonable is the 

fact that it was defined as the interested measure before constructing the cube with 

the temperature and precipitation dimensions. In other words, in the construction of 

that cube, weather patterns in respect of temperature and precipitation were required 

and these patterns were for being analyzed according to regions and areas they are 

dispersed like “wet and hot regions in July, 2004” or “dry regions in 2004”. 

 

If we were interested in socio-economic patterns we would choose time, average 

income per person, educational attainment as dimensions and population as measure. 

In addition to population, land cover can also be a measure (there may be multiple 

measures to be examined), but the weighted measure should be the population. The 

important point while determining the weighted measure is to choose the measure on 

which dimensions are dependent. If the region R1 has a “high” income per person 

with the precision 0.9 and population 100, while the region R2 has a “high” income 

per person with the precision 0.7 and population 300, and these regions are 

generalized to a region with high income, it sounds reasonable to compute the 

precision of having high income of the generalized region as µhigh = (0.9*100 + 

0.7*300) / (100+300) = 0.75. The mesaures population and land cover for the 

aggregated region would correspond to the summation of the population and the 

summation of the areas of the regions that are aggregated (i.e., R1 and R2). 

 

The pseudo code for fuzzy spatial aggregation is given below in Figure 27. The 

complexity of that algorithm is O(n2*d*h), n being the count of the tuples in the 

database, d being the size of the dimensions and h being the average number of 

hierarchical levels for dimensions. 
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Input: groupByExpressions, measures, tuples with fuzzified 

dimensions 

Output: aggregated tuples with fuzzified dimensions 

 

1. get measures 
2. for each measure 
3.    if measure is weighted 
4.       set weightedColumn the measure 
5.    end if 
6. end for 
7. create new table for aggregation (with the schema for 

generalized dimension) 

8. for each expression in groupByExpressions (“group by 

temperature, precipitation”) 

9. group tuples by that expression and for each sub-group get 

9.1. the summation of production of memberships of 

dimensions in the expression and the value in 

weightedColumn 

9.2. the summation of production of memberships of 

hierarchies of dimensions in the expression and the value 

in weightedColumn 

9.3. count of tuples 

9.4. summation of measures 

10. for each grouped tuple according to the expression (“hot, 

wet”) 

11. get pointers to regions that this tuple is grouped by 

12. for each dimension in the expression 

13. find the aggregated membership by dividing the 

(summation of production of memberships of dimension 

in the expression and the value in weightedColumn) 

to (summation of measures) 

14. get hierarchical levels of the dimension 

15. for each hierarchical level of the dimension 

16. find the aggregated membership by dividing the 

(summation of production of memberships of 

hierarchical level and the value in 

weightedColumn) to (summation of measures) 

17. end for 

18. end for 

19. insert the aggregated tuple in the new table with 

pointers, count of regions, fuzzy labels, aggregated 

memberships of dimensions and hierarchies and summed 

measures. 

20. end for 

21. end for 
 

Figure 27: Pseudo Code for Fuzzy Spatial Aggregation 
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3.1.7 Generalization of Measures using Fuzzy Logic 

 

After the aggregation is done as in Figure 26, the measures still have numerical 

values. As a final step, measures can be fuzzified in a similar way the dimensions 

were fuzzified (if there is any measure that have been defined to be fuzzy) as 

depicted in the Figure 28 below. For each tuple in the aggregated table or cell in the 

cuboids of the cube, all fuzzy labels (“small”, “large”, “mid”) defined for each fuzzy 

measure (i.e., area) are considered and the label with the highest membership value 

dominates the other labels. For example, for the “mild” regions (aggregated regions 

r1 and r2) the precisions for “small”, “large”, “mid” are all computed. Since the 

membership for the fuzzy label “mid” is found to be the highest membership for the 

measure area, that measure is generalized to be “mid” for the mild regions. 

 

 

Figure 28: Fuzzified measures 

 

The pseudo code for generalization of measures is given below in Figure 29. The 

complexity of that piece of code is O(n*m), n being the count of the tuples in the 

aggregated table and m being the count of the measures. 
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Input: measures, aggregated tuples with fuzzified dimensions 

Output: aggregated tuples with fuzzified dimensions and measures 

 

1. if there are any fuzzy measures then 
2. get measures 

3. for each measure 

4. if measure is fuzzy then 

5. insert a new column to the aggregate table for the 

membership of the measure 

6. end if 

7. end for 

8. for each tuple in aggregate table 

9. for each measure 

10. if measure is fuzzy then 

11. get fuzzySets of the measure 

12. for each fuzzySet 

13. compute the membership value of the tuple 

to the fuzzySet 

14. end for 

15. set bestFuzzySet to the fuzzySet with max 

membership value 

 

16. copy fuzzyLabel of bestFuzzySet to aggregate 

table 

17. copy membership of bestFuzzySet to aggregate 

table 

18. end if 

19. end for 

20. end for 

21. end if 
 

Figure 29: Pseudo Code for Generalization of Measures 

 

3.2 Meaning of Values in the Fuzzy Spatial Data Cube 

 

The crisp data that were available at the beginning (see Figure 16) are generalized 

and fuzzified. The meaning of the obtained knowledge can be commented as in 

Table 7 below for each tuple in the table or cell in the cube in Figure 28: 

 

Table 7: Generalizations with respect to dimensions 

Generalizations with respect to temperature (and also season) 

Cool (%98) regions (r6) that have the season winter (%88) cover small (%99) lands. 
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Hot (%85) regions (r3, r4, r5) that have the season summer (%85) cover medium 

sized (%99) lands. 

Mild (%99) regions (r1, r2) that have the season summer (%83) cover medium sized 

(%94) lands. 

Generalizations with respect to season 

Regions (r1, r2, r3, r4, r5) that have the season summer (%85) cover large (%99) 

lands. 

Regions (r6) that have the season winter (%88) cover small (%99) lands. 

Generalizations with respect to temperature (and also season) and precipitation 

Hot (%64) regions (r5) that have the season summer (%64) and dry (%100) 

precipitation cover small (%96) lands. 

Hot (%99) regions (r3) that have the season summer (%99) and fair (%89) 

precipitation cover small (%97) lands. 

Cool (%98) regions (r6) that have the season winter (%88) and wet (%100) 

precipitation cover small (%99) lands. 

Hot (%99) regions (r4) that have the season summer (%99) and wet (%88) 

precipitation cover small (%98) lands. 

Mild (%98) regions (r1, r2) that have the season summer (%84) wet (%97) 

precipitation cover medium sized (%94) lands. 

Generalizations with respect to season and precipitation 

Regions (r5) that have the season summer (%64) and have dry (%100) precipitation 

cover small (%96) lands. 

Regions (r3) that have the season summer (%99) and have fair (%89) precipitation 

cover small (%97) lands. 

Regions (r1, r2, r4) that have the season summer (%89) and have wet (%95) 

precipitation cover medium sized (%98) lands. 

Regions (r6) that have the season winter (%88) and have wet (%100) precipitation 

cover small (%99) lands. 

Generalizations with respect to precipitation 
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Dry (%100) regions (r5) cover small (%96) lands. 

Fair (%89) regions (r3) cover small (%97) lands. 

Wet (%96) regions (r1, r2, r4, r6) cover medium sized (%99) lands. 

 

In the generalizations above, the percentage value (on the right of the fuzzy labels) 

tells to which extent it is possible to rely on the generalized tag. This helps to 

differentiate the precisions of hotness for different regions. Moreover, in the 

generalizations above it is clarified to which regions the word “regions” refers. 

 

These generalizations can be used for dynamic drill-down and roll-up along any 

dimension to explore the desired patterns. The roll-up operation would correspond to 

the spatial generalization with precision value (fuzzy membership value) and the 

drill-down operation would correspond to the spatial specialization with precision 

values in the fuzzy spatial data cube. In other words, roll-up operation corresponds to 

progressive generalization and drill-down operation corresponds to progressive 

deepening. These operations can be performed easily on the generated generalized 

fuzzy spatial data, to see the non-spatial attributes and their precisions of the 

generalized spatial regions and details of the sub-regions. 

 

3.3 Fuzzy Association Rule Generation from Fuzzy Spatial Data Cube 

 

All of the generalization rules obtained in Figure 28 may not always be interesting. 

In order to obtain the interesting knowledge from the fuzzy spatial data cube it would 

be wise to generate fuzzy association rules from them. 

 

In order to remind how fuzzy association rules were generated in [29], the process 

can be briefly summarized as the following. Fuzzy association rules were generated 

by first computing significance of item-sets and selecting those with a higher 

significance than a user specified threshold. Then rules of these selected item-sets 

which have a higher certainty than a user defined certainty are identified as the 
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interesting association rules. The significance of a fuzzy association rule that is going 

to be generated from a relational database was defined as the division of summation 

of all the votes of all tuples the specified item-set occurs to the count of such tuples. 

 

On the other hand, spatial associations were mined in two steps. In the first step, 

spatial association test was done to filter relevant spatial objects with a support 

greater than the minimum support. Next a detailed spatial algorithm was applied to 

refine the mined rules.  

 

Generating association rules from the fuzzy spatial data cube would be very useful, 

since the spatial data has computed precision values for its fuzzy dimensions and 

measures and fuzzy association rule mining is more easily computed than the spatial 

association rule mining. Here, it is assumed that the reliability to generalizations is 

more important than the frequency of the data. Hence, this will help not to miss the 

rules which are not frequent but significant. 

 

In the fuzzy spatial data cube constructed in this study, tuples in which the interested 

item-set occurs are already aggregated to a high-level tuple. Membership values of 

the dimensions of that tuple are more realistic since they are computed by taking the 

weighed measure value in account. Here, the term “item-set” corresponds to values 

of the “group by expression”, i.e., “hot, dry” for “group by temperature, 

precipitation”. In the fuzzy spatial data cube, knowledge that will be obtained by 

these group-by expressions is interested and valuable. 

 

Considering the fuzzy association rule tried to be generated from the data in Table 4 

where X = {temperature, precipitation}, A={hot, dry}, Y={area}, B={large}, the 

significance was computed in [29] as S(X,A) = (0.9*0.2 + 0.7*0.4 + 0.8*0.3) / 3=0.23. 

 

In the fuzzy spatial data cube, there would be an aggregated record for “hot, dry” 

item-set which was going to be obtained by the “group by temperature, precipitation” 
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expression. The membership values of “hot” and “dry” fuzzy labels would be 

computed by taking into account the weighted measure value in the area column as 

described in the “3.1.6 Fuzzy Spatial Aggregation” section above. Hence, the vote of 

only that aggregated record would correspond to the significance of the item-

set/group-by expression which is the multiplication of the membership values of the 

dimensions that take part in the group by clause. 

 

Moreover, the certainty factor of the rule was defined in [29] as C((X,A),(Y,B)) = 

S(Z,C)/S(X,A) )) =  [(0.9*0.2*0.5 + 0.7*0.4*0.8 + 0.8*0.3*0.2) / 3] / 0.23 = 0.517. 

 

Here, the significance of the antecedent and consequent is divided to the significance 

of the antecedent. In fuzzy spatial data cube, dimensions and measures are disjoint 

sets as the item-sets X and Y are defined in [29]. The significance of the antecedent 

and consequent for an association rule in the fuzzy spatial data cube would 

correspond to the multiplication of the membership values of dimensions and 

measures that take part in the rule respectively. Since the significance of rule is the 

multiplication of the membership values of the dimensions, the certainty of the rule 

would correspond to the multiplication of the membership values of measures.  

 

The significance and certainty factors for a fuzzy association rule that would be 

generated from the aggregated data in the fuzzy spatial data cube are: 

Significance = Π(µ(ai)) where ai ⊂ A, 0<i<=|A|, X is a dimension, 

Certainty = Π(µ(bi)) where bi ⊂ B, 0<i<=|B|, Y is a measure. 

 

The fuzzy association rules are generated from the fuzzy spatial data cube, results of 

which were depicted in Figure 26, by the threshold values for the significance and 

certainty as 0.85 and 0.9 respectively as in Table 8 below. Increasing the threshold 

values for significance and certainty factors would decrease the number of the 

generated fuzzy association rules. 
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Table 8: Fuzzy Association Rules 

Cool (0.97) => small (0.99) [0.97,0.99] 

Hot (0.85) => mid (0.99) [0.85,0.99] 

Mild (0.98) => mid (0.94) [0.98,0.94] 

Winter (0.87) => small (0.99) [0.87,0.99] 

Hot (0.99), fair (0.89) => small (0.97) [0.88,0.97] 

Cool (0.97), wet (1.0) => small (0.99) [0.97,0.99] 

Hot (0.99), wet (0.88) => small (0.98) [0.88,0.98] 

Mild (0.98), wet (0.97) => mid (0.94) [0.96,0.94] 

Summer (0.99), fair (0.89) => small (0.97) [0.88,0.97] 

Winter (0.87), wet (1.0) => small (0.99) [0.87,0.99] 

Dry (1.0) => small (0.96) [1.0,0.96] 

Fair (0.89) => small (0.97) [0.89,0.97] 

Wet (0.95) => mid (0.99) [0.95,0.99] 

 

The association rule “hot (0.99), wet (0.88) => small (0.98) [0.88,0.98]” can be 

commented as “Given that an area is hot (0.99) and has wet (0.88) precipitation, it 

can be concluded that it covers small piece of land with the certainty %98 while the 

significance of that area being both hot and wet is %88.” 

 

Furthermore, comparing fuzzy association rules obtained at different times would be 

helpful in determining the deviations seen along time. For example, considering the 

fuzzy association rules “In 2003, hot (0.99), wet (0.84) => small (0.98) [0.83, 0.98]” 

and “In 2004, hot (0.83), wet (0.92) => small (0.7) [0.76, 0.7]”; it can be concluded 

that the degree of hotness of the temperature has decreased in 2004, while the degree 

of wetness of the precipitation has increased and hot and wet areas have enlarged. It 

can also be concluded that the probability of regions being both hot and wet has 

decreased and given that a region is hot and wet it is less probable that it covers small 

area. 
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The algoritmic description of the fuuzy spatial association rule is given below in 

Figure 30. The complexity of that piece of code is O(n*2d), n being the count of the 

tuples in the aggregated table, d being the count of the dimensions and 2d being the 

count of group-by-expressions. 

 

 

Input: threshold significance, threshold certainity, aggregated 

tuples with fuzzified dimensions and measures, 

groupByExpressions 

Output: fuzzy spatial association rules 

 

1. for each tupple in aggregate table 
2. get groupByExpressions 

3. for each expression in groupByExpressions 

4. determine the tupple is aggregated by that expression. 

(membership values for dimensions in the group by 

expression should not be null and the tuple should not 

have dimensions that do not take part in the group by 

expression) 

5. end for 

6. compute the significance 

7. if significance is bigger than the thershold significance 

then 

8. compute the certainity 

9. if certainity is bigger than the thershold certainity 

then 

10. display the rule (according the expression it is 

aggregated) 

11. end if 

12. end if 

13. end for 
 

Figure 30: Pseudo code for generating fuzzy spatial association rules 

 

3.4 Implementation 

 

In this thesis, the fuzzy spatial data cube construction was implemented in Java as a 

Java Applet, in Eclipse 2.1 environment with JRE1.4.2_04 and on Microsoft SQL 

Server 2000 (Enterprise Manager) database. These two environments were combined 

by Microsoft SQL Server Driver for JDBC access. 
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The architecture of the application developed for fuzzy spatial data cube construction 

consists of three components as GUI, business logic, and the database component as 

shown in Figure 31 below.  

 

 

Figure 31: Deployment Diagram 

 

The GUI component consists of Java Swing Panels that are organized as in the 

Figure 32 below. 
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Figure 32: Interfaces 
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The logic component consists of Java files and is displayed in Figure 33 below. 

  

 

Figure 33: The Class Diagram 

 

The database component corresponds to the Microsoft SQL Server 2000 database on 

which geographic objects are stored in the form vector data. Geographic objects, 

crisp data, generalized data, aggregated data and cube reconstruction information are 

stored as depicted in the Figure 34 below: 
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a) Geographic objects 
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data
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b) Crisp, generalized and aggregated data 
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c) Reconstruction info 

Figure 34: Database Design  

 

Some performance metrics for construction of the fuzzy spatial data cube and 

generating fuzzy association rules from it are listed in Table 9 for different sizes of 
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spatial data. Threshold values for significance and certainty are 0.7 and 0.9 

respectively. 

 

Table 9: Performance Metrics 

Metrics Values 

Count of objects 6 50 100 250 500 1000 

Time for fuzzifying dimensions (sec) 0.24 0.49 0.38 0.68 1.45 2.71 

Time for aggregation (sec) 0.57 0.56 0.86 0.94 0.77 1.17 

Time for fuzzifying measures (sec) 0.24 0.21 0.25 0.24 0.90 0.60 

Time for association rules (sec) 0.82 0.30 0.30 0.30 0.50 0.40 

Count of aggregations 15 20 27 27 27 27 

Count of association rules 1 2 5 6 4 3 
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CHAPTER 4 

 
 

CASE-STUDY: “Weather Pattern Searching” 

 
 
A case-study has been implemented in order to illustrate how a fuzzy spatial data 

cube can be constructed and how fuzzy association rules can be generated from it 

according to the implementation details explained in the previous chapter. This case-

study application is illustrated in the following figures. From the start page it is 

possible to construct a new cube, or view the constructed cube and generate 

association rules from it provided that there is a previously constructed cube as in 

Figure 35 below. 

 

 

Figure 35: Start page of the fuzzy spatial data cube construction application 

 

These three scenarios are illustrated in the following sections. 
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4.1. Construction of New Fuzzy Spatial Data Cube 

 

Click “Construct New Cube” button in the start page. In the first step, an input file in 

XML format is selected as in Figure 36 below. In that file geographical objects are 

kept in vector format as in Figure 37. 

 

 

Figure 36: Choice of input file 
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Figure 37: Format of the input file 

 

Next, a summary of the data read from the file is given as in Figure 38 below. 
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Figure 38: Summary of the data read 

 

After data is read, the dimensions and measures are determined according to the 

properties of the geographic data as in Figure 39 below. 
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Figure 39: Candidates for dimensions and measures 

 

While selecting a dimension or measure for the cube, one of the geographic 

properties listed in Figure 39 above is chosen and “Add to Cube” button is pressed. 

A new window as in Figure 40 opens for that property. In that window it is 

determined whether that property is a dimension or measure; whether it is fuzzy or 

not; if it is fuzzy what are the fuzzy labels, membership function types and 

membership function parameters, if it is a measure whether it is weighted or not. A 

fuzzy spatial data cube should have at least one dimension and at least one measure. 

One of the measures must be a weighted measure. 
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Figure 40: Definition of dimensions and measures 

 

If the column that is going to be added to the cube is a fuzzy dimension or fuzzy 

measure, fuzzy sets should be defined for that column. By clicking “Add Fuzzy Set” 

button a new panel will be open for fuzzy set definition as in Figure 41 below. In that 

panel fuzzy label, membership function type, and membership function parameters 

are defined. Multiple fuzzy sets can be defined for a fuzzy column 

(dimension/measure). After all fuzzy sets are defined “Create” button should be 

clicked. 
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Figure 41: Fuzzy set definition 

 

If a hierarchy is going to be defined for a fuzzy dimension the check box “Define 

hierarchy after creation” should be checked before clicking the “Create” button. If 

that check box is checked then a panel for hierarchy definition will open as in Figure 

42. In that panel hierarchy level name is defined. That hierarchy level can have 

multiple hierarchy values each of which should be added by that panel. A 

hierarchical value is defined over the fuzzy sets of the column. Choose the fuzzy 

labels the corresponding hierarchical value is defined over and indicate the 

membership of these fuzzy labels to the hierarchical value and click the “Add Value” 

button. Next, define further hierarchical values over the remaining fuzzy labels as in 

Figure 43. When all hierarchical values are added click the “Create Hierarchy” 

button. If further hierarchies are going to be created over these hierarchical values 

check the “Define further hierarchical values” check box before clicking the “Create 

Hierarchy” button. 
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Figure 42: Hierarchy definition 

 

 
Figure 43: Addition of hierarchy value 
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After dimensions are determined and hierarchies are defined for them and measures 

are identified, click the “Construct Cube” button in the panel displayed in Figure 39 

above. Next, the group-by expressions that will be executed for the fuzzy spatial data 

cube are identified and listed as in Figure 44. 

 

 

Figure 44: Group by expressions 

 

Next, the necessary data, involving only the selected dimensions and measures, is 

listed as in Figure 45 and data is stored in database as in Figure 46. 
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Figure 45: Necessary data for the cube 

 

 

Figure 46: Crisp data in "data" table 

 

Next, columns that are fuzzy dimensions are fuzzified. It is displayed as in Figure 47 

and stored in the database as in Figure 48. 
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Figure 47: Display of generalized data 

 

 

Figure 48: Generalized data in "extendeddata" table 

 

Next, generalized data is aggregated. It is displayed as in Figure 49 and stored in the 

database as in Figure 50. 
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Figure 49: Display of aggregated data 

 

 

Figure 50: Aggregated data in "aggregate" table 
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After data is aggregated, measures that were defined as fuzzy are also generalized 

and displayed as in Figure 51. The aggregated data is modified in the database as in 

Figure 52. 

 

 
Figure 51: Display of generalized measures 

 

 
Figure 52: Aggregated data in "aggregate" table with generalized measures 
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4.2. View Constructed Fuzzy Spatial Data Cube 

 

Click “View Constructed Cube” button in the start page. Next a panel with four 

options will be displayed as in Figure 53 below. It is possible to view the base data, 

aggregated data, dimensions and measures information of the previously constructed 

fuzzy spatial data cube as in Figures 54-57 below. 

 

 

Figure 53: View options for the constructed cube 
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Figure 54: View of fuzzy spatial base data 
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Figure 55: View of fuzzy spatial aggregated data 
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Figure 56: View of dimensions info 

 

 
Figure 57: View of measures info 
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4.3. Finding Association Rules 

 

Click “Find Association Rules” button in the start page. Next, a panel in which 

threshold values for significance and certainty of fuzzy association rules can be 

defined as displayed in Figure 58. 

 

 

Figure 58: Threshold values for significance and certainty factors of fuzzy association rules 

 

Finally, generated fuzzy association rules are displayed as in Figure 59 below. It is 

possible to further enter different values for threshold values of significance and 

certainty in order to find association rules with different significance and certainty. 

 

For example, one of the generated fuzzy association rule is “temperature.cool 

(0.912), precipitation.wet (1.0) => area.small (0.98) [0.912, 0.98]”. That rule tells us 

that if a region has cool temperature and wet precipitation, we can conclude that “this 

region covers a small area with the certainty %98 for that conclusion and 

significance %91 for that region having both cool temperature and wet 

precipitation”. Individual reliabilities for temperature being cool are %91, for 

precipitation being wet is %100, and for area being small is %98. 
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Figure 59: Display of fuzzy association rules 
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CHAPTER 5 

 
 

DISCUSSION 

 
 
Han has done some studies for spatial generalizations included in [6] and Stefanovic 

et. al. have extended these studies by constructing spatial data cubes included in [9]. 

But the generalization in their studies is imprecise as shown in Figure 60 below. For 

example, they have generalizations like “cold and dry regions (A04, T90 …) are 

200,000m2 wide”. Here, the preciseness of hotness and dryness are missing both for 

individual regions on the left in Figure 60 and for the aggregated region on the right 

in Figure 60.  

 

 
Figure 60: Spatial Generalization 

 

Moreover, in Han’s and Stefanovic’s study, the measures are not generalized nor 

their preciseness is computed and indicated. In this thesis, that is also considered. 

 

 
Figure 61: Fuzzy Spatial Generalization 
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This thesis mainly focuses on how preciseness of the generalized values can be 

considered as illustrated in Figure 61 above. Membership values for fuzzy 

dimensions and fuzzy measures of all individual regions and aggregated regions are 

calculated in the fuzzy spatial data cube. Before aggregation is done, spatial data are 

generalized and precision for generalization is calculated. Then, individual regions 

with common generalized values (i.e., hot) are aggregated together. Additional 

calculation is done for the precision of generalized aggregated spatial data. 

 

Laurent et. al. [14, 15, 16] have done some studies for fuzzy OLAP and proposed a 

model for fuzzy multidimensional databases that are used for fuzzy summaries 

generation. In this thesis, fuzzy spatial data cube is constructed; hence the usage of 

spatial data differentiates the construction of such cubes from Laurent’s study at 

some points. In their study, a value can belong gradually to more than one concept, 

i.e., Ankara can be generalized to take part in the east of Turkey with the precision 

0.4 and it can also be generalized to take part in the west of Turkey with the 

precision 0.5. On the other hand, in the fuzzy spatial data cube, a value can be 

generalized to only one fuzzy label, to the label to which it belongs with the highest 

membership. Membership values for all defined fuzzy sets are computed and the 

maximum membership value and its corresponding fuzzy set are considered. That is 

important from the point of hierarchies. It is assumed that a value can be generalized 

to only one upper level since this makes fuzzy spatial generalization rules more 

sensible. For example, all regions could be generalized to hot regions, cold regions 

and mild regions. Some regions would contribute with low precision and some would 

contribute with high precision. Since that is not the desired result for spatial data, 

attributes of regions are generalized to the most appropriate label, i.e., to the label to 

which they fit with the highest membership value. For example, in Figure 61, it is 

supposed that the three sub-regions on the left fit best to the “hot” fuzzy label and 

they are aggregated to the larger region on the right.  
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In Laurent’s study, each slice corresponds to the cube with a membership value, i.e., 

a value of one dimension has the same membership value for all the cells in the slice. 

In other words, in the fuzzy data cube, aggregated cells along one slice and 

individual cells along that slice have the same membership value for one dimension 

value. For example, the slice corresponding to sales done for oven along the 

production dimension can belong to the fuzzy data cube with degree 0.7. But in 

fuzzy spatial data cube each cell has its individual membership value for the 

corresponding dimension value since spatial objects might have common properties 

but each spatial object might have that property with a different degree than other 

spatial objects. Membership values of all cells along a dimension value are 

considered during aggregation in fuzzy spatial data cube. Fuzzy spatial data cube is 

semantically different than fuzzy data cube. 

 

 

Figure 62: Aggregation in fuzzy data cubes 

 
Furthermore, in Laurent’s study, arithmetic average of membership values of cells is 

computed when fuzzy data are summerized. But regarding spatial data, it is not 

reliable to only take the arithmetic average since attributes of the spatial objects 

depend on space (or other issues as population). When aggregation on fuzzy spatial 

data is done it is necessary to take into account the weighted measure (the measure to 

which the other dimensions are dependent) in order to compute the precion of the 

generalized (i., summerized) data. In this thesis, during aggregation, the membership 

of generalization for the aggregated region (right side of Figure 61 above) is 

computed by weighting the membership values of individual regions by the value of 
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the measure indicated to be the weighted-measure. If aggregation in fuzzy spatial 

data cube had been done as it is done in fuzzy data cube, the membership value of 

the aggregated region would be computed as illustrated in Figure 62 below. The way 

of computing the membership value of the aggregated region in fuzzy spatial data 

cube is more realistic, since it will have a value closer to the value of the largest 

region (or most crowded). Taking arithmetic average may cause to some wrong 

deviation as it can be easily concluded by comparing Figure 61 and Figure 62. 

 

Fuzzy spatial data cubes, make it possible to track deviations in precisions of 

characteristic properties of spatial data which was not an issue neither in spatial data 

cubes nor in fuzzy data cubes. For example, comparing generalization rules such as 

“Ankara was %80 hot and %78 dry in June, 2003.” and “Ankara was %85 hot and 

%96 dry in June, 2004” enables seeing deviations in precisions of hotness (%5 

increase) and dryness (%18 increase) values for Ankara between June, 2003 and 

June, 2004. By the help of fuzzy memberships computed for the spatial 

generalizations, it can be concluded that increases in temperature causes to greater 

increases in dryness in Ankara. Changes in spatial characteristics are easily identified 

in fuzzy spatial data cubes and this helps in decision-making about spatial data. 

 

Another important issue is that, fuzzy association rules are generated from the fuzzy 

spatial data cube since the spatial data have precision values for the fuzzy dimensions 

and measures. Computations of significance and certainty factors are modified 

according to the aggregated data in the fuzzy spatial data cube. In previous studies, a 

fuzzy association rule is mined over many tuples in a relational database, but in fuzzy 

spatial data cube it can be mined over one aggregated tuple. Hence, fuzzy association 

rule mining is more feasible in fuzzy spatial data cube than it is in relational 

databases. Additionally, when the reliability to generalizations is more important 

than the frequency of the data in order not to miss the infrequent but significant rules, 

fuzzy association rule mining is more easily computed over spatial data than the 

spatial association rule mining, which has higher computational complexity. 
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CHAPTER 6 

 
 

CONCLUSION 

 
 
Transaction-oriented and analysis-oriented operations have very different response 

times when spatial data is very large. In order to reduce the high response time for 

analysis-oriented operations on spatial data, spatial data warehouses are required. 

Beside the fast response time, spatial data-warehouses are also needed since they 

keep summarized and aggregated spatial data flexibly and provide it to decision 

makers. They are also useful for extracting useful knowledge from detailed spatial 

data. 

 

Spatial data warehouses are useful in answering analytical queries on spatial data. A 

spatial data warehouse can be represented by a star-schema that includes a set of 

dimensions of interest and a fact table that includes the aggregated results for the 

dimensions at the finest granularity. 

 

Instead of keeping numerical data in rows and columns, generalizing that data to 

fuzzy labels and computing the memberships of these labels makes fuzzy OLAPs 

more meaningful and understandable due to fuzzy labels and preciseness due to the 

available membership values. 

 

In this study, the concepts of fuzzy data cubes and spatial data cubes are combined to 

get benefit from both of them. A new method is proposed for the aggregation of the 

fuzzy dimensions and measures and their memberships regarding spatial data. While 

aggregating spatial objects, one of the attributes of the spatial objects is determined 

as the weighted measure, and aggregation of the fuzzy dimensions is done by 

computing the membership value of the aggregated spatial object by summing the 

product of each of the aggregated membership value with that weighted measure and 

dividing that sum to the summation of the weighted measures (i.e., areas) of all 
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aggregated spatial objects. Moreover, in this study, aggregation on fuzzy hierarchies 

is handled, which helps in obtaining higher levels of generalizations. 

 

Data cubes are built for special purposes. That makes the choice of dimensions and 

measures very important. That choice is also very important for fuzzy spatial data 

cubes. Especially the choice of the weighted measure is very crucial since it will be 

considered in the computation of the membership values of the aggregated 

dimensions. 

 

The constructed fuzzy spatial data cube can be used for generating fuzzy association 

rules. The way the aggregation is handled for fuzzy spatial cube in this study 

enhances the generation of fuzzy association rules from transactional databases. 

Computation of the significance and certainty factors is done more easily and more 

realisticly since the memberships of the dimensions for the aggregated spatial objects 

are computed regarding the weighted measure. 

 

To sum up, this study contributes to the computational area by introducing fuzzy 

logic to spatial data cubes and proposing a new method for the aggregation of the 

fuzzy spatial attributes. The obtained generalization rules help in commenting the 

core spatial data and concluding decisions about it. Moreover, it is shown that fuzzy 

spatial data cubes can enhance the generation of fuzzy association rules from spatial 

data which increases the quantity and quality of the knowledge about the spatial data. 

 

Future studies can be done about how fuzzy logic can be used for enhancing 

prediction of unknown and missing spatial data in spatial data cubes, or for 

comparing different classes of data and perform relevance analysis to find attributes 

that best distinguishes different classes, or classify spatial data and construct a model 

and use it to classify new data, or for clustering spatial data to find distribution 

patterns. 
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