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ABSTRACT 

 

 

PARAMETER EXTRACTION AND IMAGE ENHANCEMENT  

FOR CATADIOPTRIC OMNIDIRECTIONAL CAMERAS 

 

 

BAŞTANLAR, Yalın 

M.Sc., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Yasemin YARDIMCI 

 

April 2005, 114 pages 

  

In this thesis, catadioptric omnidirectional imaging systems are analyzed in detail. 

Omnidirectional image (ODI) formation characteristics of different camera-mirror 

configurations are examined and geometrical relations for panoramic and perspective 

image generation with common mirror types are summarized. 

A method is developed to determine the unknown parameters of a hyperboloidal-

mirrored system using the world coordinates of a set of points and their 

corresponding image points on the ODI. A linear relation between the parameters of 

the hyperboloidal mirror is determined as well. Conducted research and findings are 

instrumental for calibration of such imaging systems. 
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The resolution problem due to the up-sampling while transferring the pixels from 

ODI to the panoramic image is defined. Enhancing effects of standard interpolation 

methods on the panoramic images are analyzed and edge detection-based techniques 

are developed for improving the resolutional quality of the panoramic images. Also, 

the projection surface alternatives of generating panoramic images are evaluated. 

Keywords: Omnidirectional camera, catadioptric camera, panoramic vision, camera 

calibration, interpolation 
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ÖZ 

 

 

KATADİOPTRİK TÜMYÖNLÜ KAMERALAR İÇİN  

PARAMETRE ÇIKARIMI VE İMGE İYİLEŞTİRMESİ 

 

 

BAŞTANLAR, Yalın 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Yasemin YARDIMCI 

 

Nisan 2005, 114 sayfa 

 

Bu tezde, katadioptrik tümyönlü görüntüleme sistemleri detaylı olarak incelenmiştir. 

Farklı kamera-ayna konfigürasyonları için tümyönlü imge oluşum özellikleri ve 

panoramik ve perspektif görüntü oluşumu için geometrik bağıntılar özetlenmiştir. 

Bir hiperbolik aynalı görüntüleme sisteminin bilinmeyen parametrelerinin çıkarımı 

için bir nokta setinin gerçek dünya koordinatlarını ve tümyönlü imge üzerindeki 

eşleniklerini kullanan bir yöntem geliştirilmi ştir. Ayrıca, hiperbolik ayna 

parametreleri arasında doğrusal bir ilişki tespit edilmiştir. Yapılan araştırma ve 

buluntular bu tür görüntüleme sistemlerinin kalibrasyonu için önem taşımaktadır. 
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Tümyönlü görüntüden panoramik görüntüye geçiş sırasında yaşanan 

üstörneklemeden kaynaklanan çözünürlük problemi tanımlanmıştır. Standart 

aradeğerleme yöntemlerinin panoramik imgeler üzerindeki iyileştirme etkileri 

incelenmiş ve çözünürlük kalitesini artırmak amacıyla kenar sezimi tabanlı teknikler 

geliştirilmi ştir. Ayrıca, panoramik görüntü oluşumu için projeksiyon yüzeyi 

alternatifleri değerlendirilmiştir.  

Anahtar Kelimeler: Tümyönlü kamera, panoramik kamera, katadioptrik kamera, 

kamera kalibrasyonu, aradeğerleme 
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CHAPTER 1 
 
 

Introduction 
 
 
 
 
1.1 Panoramic Vision Background 

Enlarged field of view has always been an important goal for imaging. The word 

‘panorama’ is a combination of two Greek words; ‘pan’ meaning ‘all’ and ‘horama’ 

meaning ‘sight’. First attempts to generate a panoramic view were in the form of 

paintings in the late 1700’s. Sketches are transferred on round canvas to create 

realistic wide images of landscapes. Attempts for photographic panorama were made 

at late 1800’s, in which a number of photographs taken at different directions are 

attached each other in order to create a full panorama. More historical information is 

given in Benosman [1]. 

Technological development put forward modern ways to achieve the large fields of 

view such as using special lenses (ex: fisheye lens) or special mirrors together with 

the cameras. The method of capturing multiple images and stitching them together to 

create panoramas is still used [2 - 6] and it possesses the advantage of providing high 

resolution in some applications, however considerable amount of post-processing is 

needed for real-time applications. 

Today, the term ‘omnidirectional’ is used for the cameras that are capable of sensing 

the light rays coming from all directions. Fish-eye lenses also have extended field of 

views up to a hemisphere and are used for omnidirectional viewing [7]. However, 

they usually fail to satisfy a fixed viewpoint, which makes the construction of 
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perspective images difficult. In addition, to capture a hemispherical view, the fish-

eye lens must be quite complex and large and hence expensive.  

Most of the omnidirectional cameras are catadioptric systems which means they use 

combinations of mirrors and lenses. The term ‘catadioptrics’ comprises ‘catoptrics’; 

the science of reflecting surfaces (mirrors) and ‘dioptrics’; the science of refracting 

elements (lenses). Rees [8] is the first to patent a catadioptric omnidirectional 

capturing system using a hyperboloidal mirror and a normal perspective camera in 

1970. Since then, geometric properties of the mirrors and image formation with 

varying mirror-lens combinations are extensively studied [9-15]. 

1.2 Rationale of the Study 

In the last few years, number of applications of omnidirectional viewing significantly 

increased due to the increase in the speed of processing and ease of device 

production. Application fields include surveillance, teleconferencing, advertising in 

real estate, tourism, robot navigation and virtual environment construction. 

An omnidirectional viewing device ideally has the capability of viewing 360º in all 

directions. It is not practical to produce a ‘true’ omnidirectional sensor, therefore 

manufactured cameras usually provide 360º horizontal view and a sufficient field of 

vertical view. Nowadays, considerable amount of effort is spent on the design of 

mirrors with enlarged vertical field of views, increased resolution and decreased 

imaging errors [16 - 26]. In parallel, calibration work is performed in order to 

increase the accuracy of the applications and broaden the usage of catadioptric 

sensors [27 - 36]. 

Catadioptric omnidirectional cameras are widely used for research purposes as well. 

Study fields, which have already been using normal-view cameras extended their 

scope in a way to involve these cameras. Example studies are in the fields of object 

detection [37], tele-presence [38 - 40], robot navigation [41 - 43], stereo systems 

[44], super-resolution [45 - 47], optical flow estimation [48, 49], reconstruction and 

modeling [50-55]. 
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Within this context, to have the best output from the omnidirectional sensors study 

on the geometries and the calibration parameters of the mirror-lens combinations has 

undeniable importance. Achieving more realistic representations of the real world 

would increase the effectiveness of these devices.  

1.3 Approach 

In this thesis, omnidirectional images obtained through catadioptric camera systems 

are inspected in detail. Omnidirectional image formation characteristics of different 

camera-mirror configurations are examined and generated panoramic images are 

analyzed. Succeeding work is based on the observed problems and held in three main 

topics (study areas); inspection of mirror reflections and extraction of imaging 

system parameters using omnidirectional images, panoramic projection alternatives 

and enhancement of generated panoramas. 

1.4 Road Map 

In Chapter 2, catadioptric omnidirectional image formation background is given in 

order to introduce the reader to the geometrical properties of catadioptric sensors.  

Chapter 3 provides, firstly the previous work on the calibration of catadioptric 

omnidirectional systems and then our study to determine the parameters of 

hyperboloidal mirrors from omnidirectional images. 

Chapter 4 presents the work held in this thesis concerning the analysis of resolutional 

properties of omnidirectional mirror types and panoramic projection alternatives.  

Chapter 5 presents the work held in this thesis in order to enhance the regions of 

panoramic images having low quality due to the resolutional deficiency. 

Chapter 6 concludes the thesis by summarizing the overall study, evaluating the 

results and discussing further work possible in this area.  
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CHAPTER 2 
 
 

Catadioptric Omnidirectional Image Formation 
 
 
 
 
2.1 Image Formation Basics 

Omnidirectional image formation in a catadioptric system is visualized in Figure 2.1. 

Light rays coming from the world point, P(X,Y,Z), are reflected at the mirror surface 

and go through the lens of the camera in order to take place in the image plane. A 

typical omnidirectional sensor (mirror-lens combination) is shown in Figure 2.2.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2: A typical 
omnidirectional sensor 

(www.remotereality.com) 

 

Figure 2.1: Omnidirectional image formation with  
a catadioptric omnidirectional imaging system 
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The result is an omnidirectional image (Figures 2.3 and 2.5). Then, panoramic image 

(Figure 2.4) and perspective projection (Figure 2.6) are obtained by applying 

geometric conversion to the omnidirectional image (ODI).  

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 2.4: Panoramic image generated from the omnidirectional image (ODI) in Figure 2.3 
 

 
 

 

 

 

 

 

 
 

Figure 2.3: Omnidirectional image (ODI), obtained through a hyperboloidal mirror 
generated on the image plane of a regular camera (courtesy of Czech Technical Univ.) 

Figure 2.6: Perspective image 
generated from Figure 2.5 

Figure 2.5: An omnidirectional image obtained 
through a paraboloidal mirror [22] 
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2.2 Omnidirectional Mirror Design 

2.2.1 Single-viewpoint Phenomenon 

Catadioptric omnidirectional sensors are mainly divided into two categories: ‘Single-

viewpoint’ and ‘Non single-viewpoint’. ‘Single-viewpoint’ means that the 

omnidirectional image is formed by the light rays that are targeting a single point. 

For instance, in the mirror shown in Figure 2.7, light rays coming from the world 

points A, B and C and targeting the focal point (single viewpoint) of the 

hyperboloidal mirror are reflected on the mirror surface so that they will pass through 

the pinhole (camera center). This single viewpoint acts a virtual pinhole through 

which the scene is viewed as it occurs in regular cameras. However, for the system 

shown in Figure 2.8, directions of the light rays that are used for image formation do 

not intersect at a certain point as in the single-viewpoint case, therefore a single point 

through which the scene can be viewed cannot be defined. Single viewpoint 

constraint provides quick conversion of geometrically correct panoramic and 

perspective images because they are generated as seen from the mentioned 

viewpoint.  
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Figure 2.8: Directions of light rays in a 
non single-viewpoint system 

Figure 2.7: Directions of light rays in a 
single-viewpoint system 
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Projection surfaces are defined in a way that this viewpoint will be the virtual 

pinhole of a regular camera. Doing so, perspective images can be generated using the 

standard camera-viewpoint geometry. 

2.2.2 Single-viewpoint Analysis of Mirror Types 

Baker and Nayar [10] inspected in detail the geometries of single viewpoint mirrors. 

Since the cross sectional profiles of the mirrors of omnidirectional sensors does not 

change around the rotational axis for 360°, the cross sections of the mirror types of 

catadioptric sensors are examined in this paper.  

Planar mirrors have single viewpoint (Figure 2.9). Although a planar mirror cannot 

be an omnidirectional viewer by itself, several planar mirrors (e.g. 4 mirrors for a 

square-based pyramid system), and a camera for each, can come together to 

constitute a single viewpoint omnidirectional viewer [56].  

In conical mirrors, the pinhole of the camera must be located at the apex of the cone 

to be a single viewpoint (Figure 2.10). This means that only the rays that graze the 

mirror surface enter the pinhole of the mirror, which is a problem that cannot be 

solved practically. Therefore, the conical mirror is not proper to be used as a single 

viewpoint catadioptric sensor. 
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Figure 2.9: Planar mirror geometry 
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In spherical mirrors, the center of the sphere can be considered as viewpoint. 

However, all light rays targeting this viewpoint would be reflected back and diverge. 

Therefore, an effective pinhole does not occur outside the mirror making the sphere a 

non single-viewpoint mirror (Figure 2.11). 

Ellipsoidal mirrors have single viewpoint property (Figure 2.12). Ellipse is a 

geometrical shape that has two focal points. Light rays coming from the world point 

and passing through one of the focal points (effective viewpoint) are reflected at the 

inner ellipse surface so that they will pass through the other focal point (effective 

pinhole). However, ellipsoidal mirrors should be used in concave form to behave as a 

single viewpoint system. This causes the field of view to be restricted to one 

hemisphere, which is not very desirable. Objects should be placed below the 

horizontal level of the camera to be seen in the omnidirectional image. 

 

 

 

 

 

 

 

 

Figure 2.10: Conical mirror geometry 

 

 

 

 

 

 

Figure 2.11: Spherical mirror geometry 
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Hyperboloidal mirrors have single viewpoint and the rays targeting that viewpoint 

are reflected so that they pass through an effective pinhole (Figure 2.13). The 

mentioned viewpoint and pinhole are located at the two focal points of the hyperbola, 

which is the cross sectional profile of the hyperboloidal mirror. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.12: Ellipsoidal mirror image formation geometry 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Hyperboloidal mirror image formation geometry 
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Paraboloidal mirrors also have single viewpoint (the focal point of parabola), but the 

rays targeting that viewpoint are reflected orthogonally, which requires the use of a 

telecentric lens to collect the parallel rays (Figure 2.14). 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 2.14: Paraboloidal mirror image formation geometry 

 

2.2.3 Use of Non Single-viewpoint Mirrors 

Although single-viewpoint mirrors are desirable for efficient projection generation, 

non single-viewpoint mirrors may be preferred to achieve uniform resolution and 

wider field of view and/or ease of manufacturing. Use of spherical and conical 

mirrors is shown in Figure 2.15.  

In addition to the mirrors that do not satisfy single-viewpoint constraint, also an 

incorrectly aligned system could cause non single-viewpoint. When an imaging 

system does not maintain a single viewpoint, a locus of viewpoints is formed, called 

a caustic. Each pixel in the image maps to a point on the caustic surface (Figure 

2.16). Swaminathan et al. [13] examined these viewpoint loci with regard to field of 

view, resolution and other geometric properties. 
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Figure 2.15: Usage geometry of non single-viewpoint mirrors; a) spherical b) conical 
 

 

 

 

 

 

 

 

 

Ishiguro [18] approached the issue from practical point of view and evaluated the 

most common mirror types (spherical, conical, hyperboloidal and paraboloidal) 

including economic and practical advantages and disadvantages. Hyperboloidal and 

paraboloidal mirrors have the advantage of being single viewpoint, however, 

manufacturing cost of spherical and conical mirrors are very low. Spherical mirrors 

are suitable for acquiring images of objects under the omnidirectional camera system 

and focusing on a spherical mirror by a viewer camera is easier when compared to 
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Figure 2.16: Caustic formation in non single-viewpoint mirrors 
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other mirror types because its bottom part typically has a larger radius of curvature. 

Considering the material that the mirror is made of, it is stated that the standard 

process of making mirrors from glass and aluminum coating is difficult and costly. In 

case machines are available for precise finishing of metals, brass and chrome can be 

used instead of glass and aluminum respectively. He also suggests using a black 

needle along the mirror-camera axis in order to prevent the internal reflections of the 

transparent cylinder that holds the mirror.  

2.2.4 Complex Mirror Systems 

Current studies on omnidirectional mirror design aims to create different mirror 

surfaces and reflective systems that consist of more than one mirror.  

Nayar and Peri [21] worked on folded mirror systems that use multiple mirrors in 

order to obtain smaller omnidirectional devices with wider views. Two mirrored 

systems that are geometrically equivalent to single mirror systems are summarized. 

They consist of a combination of planar, paraboloidal, hyperboloidal and elliptic 

mirrors. It is mentioned that although geometrically equivalent with the single mirror 

systems, folded systems may have reduced optical aberrations since a convex and a 

concave mirror compensate the curvature of each other. 

Nayar [22] examined field of view of the paraboloidal mirror system. A hemisphere 

is visible when the paraboloid is cut at the level of focal point of the mirror. In order 

to obtain a true omnidirectional (360° x 360°) viewer, two omnidirectional viewers 

can be placed back-to-back such that their focal points coincide. If only a single 

mirror is used, it is possible to increase the vertical viewing angle by cutting the 

paraboloid at a higher level. 

Single mirrors have non-uniform resolutions. Due to the curvature of the mirror, 

regions in the omnidirectional mirror do not cover equal amount of area in the scene. 

Conroy and Moore [25] derived mirror surfaces that are resolution invariant 

vertically, so that adjacent pixels in omnidirectional image correspond to the real 

world points that are vertically equi-distant from each other. In this paper, stereo 

omnidirectional systems are also introduced. They are constructed by two coaxial, 
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axially symmetric mirror profiles. Proposed mirror has two lobes with different sizes 

and these two mirror lobes are attached in a way that smaller mirror will be at the top 

(vertex) of the larger one. 

Swaminathan et al. [26] presented a linear method to determine the mirror shape that 

meets a designer’s requirements. The requirements are specified as a map from 

pixels to scene points which they call ‘image to scene map’. 

Hicks and Bajcsy [17] exhibited a mirror design that views wide horizontal area 

under the mirror and reflects an undistorted (perspective) omnidirectional image of 

this area. However, resultant mirror design is not proper for vertical regions. 

Gaspar et al. [20] summarizes the constant horizontal, vertical and angular resolution 

issues that are studied earlier and combines these definitions in a mirror. The surface 

of the mirror is manufactured so that it will achieve uniform resolution when used 

with a specific log-polar camera. 

2.3 Panoramic and Perspective Image Generation 

In this section, image generation with most commonly used single-viewpoint 

mirrors; paraboloidal and hyperboloidal mirror is explained in detail. Also, 

projection geometry of the spherical mirror (a commonly used non single-viewpoint 

mirror type) is explained. 

2.3.1 Paraboloidal Mirrors 

Parabola is a geometrical shape formed by points, which are equi-distant from a line 

( l ) and a point ( p, focal point) as shown in Figure 2.17.  

 

 

 

 

 

Figure 2.17: Demonstration of parabola 
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Paraboloid is a quadratic surface whose cross section is a parabola. Paraboloidal 

mirror has one parameter that defines the surface profile, h, the horizontal distance 

from focal point to the mirror surface: 

h

rh
z

2

22 −= . (2.1) 

In this expression, z is the vertical coordinate and r is the horizontal coordinate. In a 

paraboloid, 22 yxr +=  and for a radially symmetric paraboloid as in mirrors, x=y. 

Peri and Nayar [57] summarized panoramic and perspective image generation in 

systems with paraboloidal mirrors. Light rays coming from the world points and 

targeting the mirror focal point are reflected orthogonal on the mirror surface. Then, 

these rays go through the telecentric lens to form the omnidirectional image. For the 

sake of simplicity, in Figure 2.18, omnidirectional image plane is represented as a 

circle having the same diameter with the paraboloidal mirror. This image plane (and 

the telecentric lens) is independent of projection surface and can be at any elevation 

since the light rays are reflected orthogonally.  

 

 

 

 

 

 

 

 

 
Figure 2.18: Cylindrical (panoramic) projection with paraboloidal mirror 
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Panoramic image can be defined as the scene projected to a focal point-centered 

cylinder around the mirror (Figure 2.18), therefore ‘cylindrical projection’ term is 

widely used.  

To find the intensity value of a pixel in the cylindrical (panoramic) projection, 

corresponding pixel coordinates in the omnidirectional image (x, y) are:  

S

SSSS

X
ZYXZ

h
x ⋅

+++
=

222
 S

SSSS

Y
ZYXZ

h
y ⋅

+++
=

222
 (2.2) 

where, h is the parameter of the paraboloid and XS,YS,ZS are the 3D coordinates of the 

pixel in the projection. For a pixel of panoramic image at mth row and nth column: 

mZS = , θsin⋅= RX S , θcos⋅= RYS , 
L

n πθ 2⋅=  

R is the radius of the cylinder, L is the width of the panoramic image and θ is the 

radial angle (azimuth) around the rotational axis of the mirror. 

Perspective (rectilinear) image is formed when a planar projection surface is defined 

(Figure 2.19). In perspective view, all straight lines in the scene are rendered straight 

and all forms are represented distortion-free as in the regular camera images. To find 

the intensity value of a pixel in the perspective projection, corresponding pixel 

coordinates in the omnidirectional image (x, y) are: 

S
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+++
=

222
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DnmZ

h
y ⋅

+++
=

222
 (2.3) 

where, h is the parameter of the paraboloid, D is the distance from the focal point to 

the horizontal center of the projection surface and XS,YS,ZS are the 3D coordinates of 

the pixel in the projection. For a pixel of perspective image at mth row and nth 

column: 

mZS = , θsin22 ⋅+= nDX S , θcos22 ⋅+= nDYS  

and θ is the radial angle (azimuth) around the rotational axis of the mirror. 
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Figure 2.19: Perspective projection with paraboloidal mirror 

For both panoramic and perspective projection geometries explained above, the 

projection surface is assumed to start at the elevation of the mirror focal point, 

otherwise Zs will not be equal to m. 

2.3.2 Hyperboloidal Mirrors 

Hyperbola is a geometrical shape formed by points such that the difference of whose 

distances from the two focal points (foci) is constant (Equation 2.4). Hyperboloidal 

mirror has two parameters that define the surface profile, which are c (half the 

distance between two focal points) and b (half the distance between two arcs of 

hyperbola as shown in Figure 2.20. Also, c is the hypotenuse (c2 = a2 + b2) of such a 

right triangle that prolongation of the hypotenuse forms an asymptote for the 

hyperbolic arc. 
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 (2.4) 

In this expression, z is the vertical coordinate and r is the horizontal coordinate. In a 

hyperboloid, 22 yxr +=  and for radially symmetric hyperboloids as mirrors, x=y. 
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Figure 2.21: Hyperboloidal mirror projection geometry 
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Yamazawa et al. [15] used an omnidirectional viewing system with a hyperboloidal 

mirror and Onoe et al. [38] described panoramic image generation in that system 

(Figure 2.21). Perspective (rectilinear) projections can be performed using the same 

projection geometry. 

Light rays coming from the world points and targeting the mirror focal point are 

reflected so that they pass through the other focal point of the hyperbola. If θ is the 

radial angle (azimuth) around the rotational axis of the mirror, the pixel coordinates 

of the projected point (x, y) in the omnidirectional image are given by:  

θ
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y  (2.5) 
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where, b and c are the parameters of the paraboloidal mirror, R is the distance from 

the focal point to the center of projection surface, f is the focal distance of the 

camera, XS,YS,ZS are the 3D coordinates of the pixel in the projection surface, γm is 

the angle between horizontal axis of the mirror and light ray coming from the world 

point, γc is the angle between image plane and light ray coming in the camera. 

2.3.3 Spherical Mirrors 

Spherical mirrors are not single-viewpoint systems as discussed earlier, i.e. there is 

not a single point according to which conversion angles and light rays can be 

modeled. However, knowing the size of the mirror and calculating the locations on 

the mirror surface where each light ray is reflected, panoramic and perspective image 

generation can still be performed (Figure 2.22). 

At the outer boundary of the omnidirectional image, the light ray is tangent to the 

spherical mirror surface and the angle α gets its maximum value:  








= −

d

g1
max sinα  (2.6) 



  
19 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 2.22: Spherical mirror projection geometry 
 

Other geometrical relations in a spherical mirror projection are: 
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Elevation of the point on the projection surface can be written as: 
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where, γcos⋅= ge    and    γsin⋅= gt . 

From Equation 2.8 we obtain 
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To find the location of the point in the omnidirectional image we should determine α. 

We can find α by solving the Equation 2.10 for the [0, αmax] interval. Equation 2.10 is 

the combination of Equations 2.7 and 2.9 both of which are equal to β and is written 

in terms of α only. 
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Then, the location of the image point is: 

x = u · sin θ y = u · cos θ (2.11) 

Where, αtan⋅= fu    and  θ  is the azimuth angle.
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CHAPTER 3 
 
 

Calibration of Catadioptric Omnidirectional Cameras 
 
 
 

3.1 Camera Calibration Overview 

Camera calibration is the task for determining the parameters of an imaging system 

which relate the coordinates of the points in the scene to the locations of the pixels in 

the image [58]. Solving a calibration problem requires a set of conjugate pairs; 

matches of feature points between views and scene. These matches must be correct 

when true parameters are employed. When a single camera is considered, the 

calibration problems can be discussed in two main categories; exterior calibration 

and interior calibration. 

Exterior calibration is to determine the relationship between image plane coordinates 

(x,y) and world (scene) coordinates (X,Y,Z). The parameters used for this relation 

(translation and rotation) are called extrinsic parameters. Each image point (x,y) 

defines not a point in the world but a ray starting from the center of projection. In 3D 

coordinate system of camera, image points actually have coordinates (x,y,f), where f 

is the distance from image plane to the center of projection (camera constant). 

Interior calibration is to determine the internal geometry of the camera. The 

parameters aimed to be determined are called intrinsic parameters, which are; 

- camera constant: the distance from image plane to the center of projection 

- principal point: the location of the origin of the image plane coordinate system 

- lens distortion coefficients corresponding to changes in image plane coordinates 

due to the optical imperfections of the camera 
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- aspect ratio is given by the ratio of center-to-center distances between pixels in  

x and y directions (this may be obtained from the specifications of the camera) 

- scale factors: distortions in the aspect ratio caused by timing problems in digital 

electronics  

For the basic method of camera calibration, exterior calibration problem is solved 

first. We can use initial approximations for intrinsic parameters to get a mapping. 

Once we know (approximate) where the projected points should be, we can use 

projected locations (x,y) and measured locations (x',y') to correct the intrinsic 

parameters.  

Another method (affine method) for camera calibration combines the exterior and 

interior calibration problems. Uncorrected image coordinates to true image 

coordinates are modeled by an affine transformation in the image plane. This affine 

transformation accounts for camera constant error, translation, rotation, skew error 

(due to non-orthogonality of camera sensor) and differential scaling (unequal spacing 

of sensor rows and columns) errors. It does not include lens distortions. 

For increased accuracy more equations than unknowns can be used and an 

overdetermined set of equations is solved using non-linear regression, which is called 

non-linear method for camera calibration. 

3.2 Calibration of Catadioptric Omnidirectional Systems 

Calibration techniques of catadioptric omnidirectional cameras are similar to the 

calibration techniques of regular cameras with the difference that the light rays are 

reflected from a mirror, which brings complexity to the conversion of world 

coordinates to camera coordinates. When a single viewpoint mirror is used, because 

the world points are modeled as seen from this single viewpoint, the directions of the 

light rays coming into the camera can easily be calculated. If the catadioptric system 

is non single-viewpoint, then the modeling is cumbersome.  

Because catadioptric cameras include reflective elements for image formation, when 

compared to regular cameras the number of parameters that have to be determined 
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during a calibration problem increases. The curvature parameters of the mirror and 

the distance between the mirror and the camera are additional parameters. If we have 

a catadioptric system specially produced for our work, we know the mirror-lens 

parameters and the only reason for calibration may be to determine the possible 

deviations of these parameters. If we use a catadioptric system sold on the market, 

we may not even know the parameters because most of the suppliers do not provide 

them with the product. They usually provide a software which is able to convert the 

omnidirectional images to cylindrical and normal perspective images. But the 

provided conversion software performs only predefined tasks. For instance, an 

omnidirectional camera system produced for teleconferencing provides projections 

of certain regions in order to show the faces of the people sitting around a table. If 

you want to use the same system for tele-presence or virtual navigation then you 

need to know the system parameters. This fact increases the importance of the study 

on calibration of catadioptric systems. 

The following paragraphs introduce the reader to the previous work on catadioptric 

camera calibration. A summary is given in Table 3.1 as well.  

Geyer and Daniilidis [27] used user-supplied points along straight lines (or a dot 

calibration pattern) for catadioptric camera calibration. Their experiments are held 

with a paraboloidal-mirrored camera. The only requisite is the detection of two sets 

of parallel lines in one image. If the pixel aspect ratio is equal to 1, the reflections of 

these parallel lines on the omnidirectional image are circles. If not, elliptical arcs are 

obtained instead of circular arcs and the ratio of principal axes of the ellipse directly 

reveals the aspect ratio. The vanishing points of these circles are adequate to reveal 

image principal point and the parabola parameter (h). 

Geyer and Daniilidis [28] improved their calibration method for paraboloidal 

mirrors, which uses straight lines in a way that detecting 3 straight lines in the image 

is adequate to apply the calibration algorithm. They propose a closed-form solution 

for parabola parameter (h), principal point and aspect ratio for skewless cameras and 

a polynomial root solution in the presence of skew. 
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Geyer and Daniilidis [29] stated that calibration of a catadioptric projection is 

possible with only two line images if the mirror is not paraboloidal (three line images 

are needed for paraboloidal case as stated in [28]). Foci of ellipses that line images 

form reveal the foci of the hyperbola. Techniques are not shown experimentally. 

They also mentioned that every single-viewpoint catadioptric system is equivalent to 

central projection to a sphere followed by projection from a point on the sphere to the 

main projection surface. They added that the catadioptric projections have duals and 

the mapping between a projection and its dual returns the foci of a conic shape of 

line image. Details of these propositions can be found in [29]. 

On the other hand, Kang [30] proposed two techniques for paraboloidal mirrors 

requiring no calibration pattern. First one assumes the maximum vertical viewing 

angle of the mirror is known a priori. He matches the bounding circle of the ODI 

with the maximum vertical viewing angle. The output is the paraboloidal parameter; 

h. Second technique is based on the consistency of points tracked across an image 

sequence. The unknowns which are the paraboloidal parameter (h), aspect ratio, 

image skew and the location of the principal point are estimated by using the least-

median error metric. 

Orghidan et al. [31] presented a technique for calibration of a hyperboloidal mirror-

camera system. In this technique, camera intrinsic parameters and mirror parameters 

are found by non-linear minimization based on Levenberg-Marquard and a set of 

known object points. This set of 3D coordinates of object points is obtained via a 

laser emitter and another hyperbolic mirror which reflects the laser rays to the view 

area of the hyperbolic mirror of the camera whose parameters are to be determined.  

The proposed design for locating coordinates of the points in the scene is not easy to 

establish. Precise alignment of the system is required and locations of mirrors and 

parameters of the mirror of the laser projector are assumed to be known. Errors in 

positions will affect the accuracy of the determined object coordinates. The intrinsic 

parameters included in the minimization are aspect ratio and principal point. Aspect 

ratio may usually be determined from the specifications of the camera used and 



  
25 

principal point can also be determined from geometrical relationships of the reflected 

laser rays if laser projection system is established precise enough to be used for 

locating 3D coordinates. 

Cauchois et al. [32] proposed a calibration technique for a system with a conical 

mirror. Proposed technique consists of two stages. First, using a 2D calibration 

pattern located on the top of the cone, intrinsic parameters (scale factors, camera 

constant and principal point location) of the camera and the distance from the cone to 

the camera coordinate system is estimated according to the position error values of 

reflected calibration points on the image. In the second stage, two perpendicular 

planes in the scene are used as calibration patterns. Intrinsic parameters estimated in 

the first stage are used as initial values in the second stage. Extrinsic parameters 

(parameter of the cone, rotation matrix, translation vector) are obtained and intrinsic 

parameter estimates are improved. 

Derrien and Konolige [33] developed a method to approximate a single-viewpoint 

for spherical mirrors. This method assigns a single viewpoint and performs the 

conversion as if all the incoming rays are targeting this point. Inevitably, resultant 

images are distorted but the authors show that this distortion is about 1-2%. 

Fiala and Basu [34], performs calibration and feature extraction for a stereo non 

single-viewpoint catadioptric sensor. Mirror of the proposed imaging system 

comprises two lobes in order to provide a stereo panoramic view. The main axes of 

both mirror lobes are collinear with the camera’s optical axis. Thus, using the 

common points in the two (one inside the other) omnidirectional images of the same 

scene, they obtain the focal length of the camera, distances to the two mirror centers 

and the radii of the mirrors. Since, the mirror type used is spherical, there is no 

additional mirror parameter. Usage of a non single-viewpoint mirror type causes not 

being able to determine a projection center, which makes the task of locating the 

scene points harder. However, authors have overcome this handicap by using only 

horizontal and vertical lines in the scene while comparing two omnidirectional 

images. Horizontal line segments are extracted using the Panoramic Hough 

Transform. 
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Goncalves and Araujo [35] studied the recovery of a mirror shape described by the 

conic expression: x1
2+x2

2+Ax3
2+Bx3=C, when the intrinsic parameters of the camera 

and 3D coordinates of 3 world points are given. Also a good initial value of the 

unknown parameters is required. Solving the differential equation, parameters in the 

mirror surface equation are estimated with errors below 2%. 

Fabrizio et al [36] worked on a calibration technique, which can be generalized to all 

catadioptric mirrors. It is assumed that surface parameters of the mirror are known. 

Given these parameters, the proposed method does not require any calibration pattern 

and it uses only one image. First of all, outer and inner boundaries of the 

omnidirectional image are determined using an edge detection technique. It is 

mentioned that these boundaries may not be circles if camera and mirror are not 

perfectly aligned. Using relationship between image pixels and the coordinates of the 

reflectance points on the mirror surface, camera focal point is determined. Also, 

CCD camera orientation (exterior calibration) parameters are estimated by 

minimizing the least square error. 

Epipolar geometry of stereo catadioptric omnidirectional systems is extensively 

described by Svoboda et al [9]. 

Table 3.1: The previous work on catadioptric camera calibration 

Paper Mirror 
type 

Required 
information 

Technique used Output 

Geyer 
and 
Dani.[27] 

Parab. 2 sets of 
parallel lines in 
the scene 

Geometric relationships 
between the images of 
given lines 

aspect ratio, principal 
point, parabola 
parameter 

Geyer 
and 
Dani.[28] 

Parab. 3 straight lines 
in the scene 

Geometric relationships 
(Technique described in 
[27], shown experimentally) 

parabola parameter, 
principal point and 
aspect ratio for 
skewless cameras 

Geyer 
and 
Dani.[29] 

All 2 lines in the 
scene (except 
paraboloidal) 

Geometric relationships 
(Not shown experimentally) 

principal point, mirror 
parameters 

Kang 
[30]  - 
1st  

Parab. Bounding circle 
of ODI, vertical 
viewing angle  

Already known relations 
 

parabola parameter 

Kang 
[30]  - 
2nd  

Parab. Consistency of 
points tracked 
across an image 
sequence 

Least-median error metric 
with the error between 
image pairs 

parabola parameter, 
aspect ratio, image 
skew, principal point 
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Table 3.1: The previous work on catadioptric camera calibration (cont.) 

Paper Mirror 
type 

Required 
information 

Technique used Output 

Orghidan 
et al. [31] 

Hyperb. Additional laser 
camera-hyperb. 
mirror system 

Object coordinates are 
determined by locating the 
laser ray points in the ODI. 
Non-linear minimization 
based on Levenberg-
Marquard for conjugate pairs 

scale factors, principal 
point, translation vector 
between camera and 
mirror system, 
hyperbola parameters  

Cauchois 
et al. [32] 

Conical A 2D and a 3D 
calibration 
pattern for two 
stages 

To estimate intrinsic 
parameters, mean value 
error and 2D calib. pattern.  
To find extrinsic parameters 
and to finalize intrinsic 
parameters 3D calib. pattern 

scale factor, camera 
constant, principal 
point,  
translation vector, 
rotation matrix, mirror 
parameters 

Fiala 
and 
Basu 
[34] 

Spher. 
with 
two 
lobes 

Stereo 
panoramic 
image 

Locating the image of 
points in the both 
omnidirectional images 

camera constant, radii 
of the mirrors, distance 
between camera and 
mirror  

Goncalv. 
and 
Araujo 
[35] 

All 
 

Intrinsic 
parameters, 
coordinates of 3 
world points 

A good initial value is 
determined, DAE is solved 

parameters in the 
general equation of 
conic reflectors: 
x1

2+x2
2+Ax3

2+Bx3=C 

Fabrizio 
et al. 
[36] 

All Parameters of 
the mirror, a set 
of conjuate 
pairs 

Using mirror parameters 
camera constant is 
determined. Extrinsic 
parameters are obtained by 
error minimization between 
conjugate pairs. 

camera constant, 
extrinsic parameters 
 

 

3.3 Inspecting the Reflections of Different Mirror Types 

3.3.1 Reflection Simulations  

We performed MATLAB simulations to observe the effects of mirror shapes and 

their parameters in the omnidirectional images. We simulated a catadioptric 

omnidirectional camera placed in the middle of the ceiling of a virtual room with 

certain objects located inside (Figure 3.1). We generated the reflection of 

paraboloidal, hyperboloidal and spherical mirror surfaces and compared the 

omnidirectional images gathered through these mirror types (Figure 3.2). 

In Figure 3.2, mirror parameters are selected so that the outer circles of the 

omnidirectional images (image of the ceiling boundary) will coincide with each other. 

This approach revealed the effects of curvature differences between mirror types. 
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Figure 3.1: Virtual room created by MATLAB 

  

 

 

 

 

 

 

 

 

Figure 3.2: Reflection simulations of paraboloidal, hyperboloidal and spherical mirror 
surfaces (solid line: paraboloidal and hyperboloidal, dashed line: spherical) 

Reflections of the hyperboloidal and paraboloidal mirrors are not identical but they 

can be made visually very close if their parameters are selected appropriately. 

Reflection of the spherical mirror however, is significantly different; the region 

under the mirror (when mirror surface looks down) covers a wider area in the 

omnidirectional image (ODI). The region in the three dimensional space at the same 

elevation with the mirror is represented by a narrower area in the ODI. 
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To visualize the small difference between the reflections of paraboloidal and 

hyperboloidal mirror in Figure 3.2, two dimensional reflection simulations are 

generated (Figures 3.3 and 3.4) with the same parameters. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3: A reflection example by paraboloidal mirror (to be compared with 3.4) 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3.4: A reflection example by hyperboloidal mirror (to be compared with 3.3) 
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World points are equi-distant and are located at a certain distance from the optical 

axis of the catadioptric system and corresponding image points are located at (r) from 

the optical axis. Images of same size (diameter) are obtained by both mirror types by 

changing their parameters. Although the size is same, the locations of internal points 

differ. The distance ratio of each point with respect to its neighbor (%) is obtained as 

well. These ratios are not same due to the different curvatures of mirrors, concluding 

that these two reflections do not resemble each other by a scale factor. 

To observe the effect of mirror parameters on the omnidirectional images, two 

dimensional reflection simulations are generated for different paraboloidal, 

hyperboloidal and spherical mirror profiles. Figures 3.5-3.7 represent the locations of 

image points of objects that are equi-distant in the scene. 

In Figure 3.5, two paraboloidal mirror reflections with different paraboloid 

parameters (h) are compared. Although the locations of pixels in the ODI are 

different, the ratio of these locations in the two reflections remains same for every 

point.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: Effect of paraboloidal mirror parameter (h) on the ODI 
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In other words, for the two ODIs obtained through two paraboloidal mirrors having 

h=5 and h=12, location of a pixel in one image is 5/12 of the location in the other 

image. The location of pixels and the mentioned ratio is given in Table 3.2. Thus, we 

conclude that the two ODIs resemble each other by a scale factor. 

Table 3.2: The ratio of pixel locations in the two ODIs 

Locations in the scene -80 -60 -40 -20 0 20 40 60 80 

Pixel location in the 
ODI, h=5 units 

0.763 0.866 1 1.18 1.434 1.81 2.403 3.385 5 

Pixel location in the 
ODI, h=12 units 

1.831 2.079 2.4 2.833 3.442 4.345 5.767 8.124 12 

Ratio (for h=5/h=12) 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 0.417 

 

In Figure 3.6, reflections of hyperboloidal mirrors with different parameters are 

compared. Effect of mirror parameters (b and c) and camera focal distance (f) can be 

observed from this figure. Trying with different parameter sets we saw that the same 

reflection can be obtained by more than one parameter sets. These reflections do not 

resemble each other by a scale factor since the mirror curvature changes. Only 

camera focal distance (f) has a linear relationship, i.e. if the mirror parameters remain 

same, change in the f value creates a scale difference.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: Effect of hyperboloidal mirror parameters (b,c) and focal distance (f) on the ODI 
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In Figure 3.7, reflections of two spherical mirrors with different radii (g) are 

compared. The distance between the camera and the mirror (d) and the focal distance 

(f) are included in the comparison as well. The mirror profile has one parameter 

(radius), however the distance between the camera and the mirror affects the resultant 

image as well, because the light rays are not reflected orthogonally as in the 

paraboloidal case. Therefore, these reflections do not resemble each other by a scale 

factor. Only f has a linear relationship as in the hyperboloidal case, i.e. if other 

parameters remain same, change in the f value creates a scale difference. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Effect of spherical mirror radius (g), camera-mirror distance (d)  
and camera focal distance (f) on the ODI 

 

3.3.2 Conclusions  

• The curvatures of paraboloidal and hyperboloidal mirrors are different from each 

other, thus the reflections are not the same. However, when the sizes of the 

resultant omnidirectional images are adjusted so that they are equal and the 

mirror parameters are selected appropriately, the difference between the images 

are not large enough to be noticed visually.   
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• Paraboloidal mirror’s surface equation has only one parameter. Because the light 

rays that form the image are reflected orthogonally from the mirror and are 

collected by a telecentric lens, the distance between the mirror and the camera 

does not affect the omnidirectional image. These two facts conclude that, two 

ODIs taken with different size of paraboloidal mirrors resemble each other by a 

scale factor. 

• Hyperboloidal mirror’s surface equation has two parameters. Thus, unlike the 

paraboloidal mirror both scale and curvature may change. By employing 

different parameter sets we saw that the same reflection can be obtained by more 

than one parameter set. The relation between these two surface parameters is 

shown experimentally in section 3.4.1 and mathematically in section 3.4.3. 

• In systems with hyperboloidal mirrors, the distance between the camera and the 

mirror is important. However, because it is related to the one of the surface 

parameters, this distance value is not taken into account as a third parameter of 

the mirror-lens system. 

• Spherical mirror’s surface equation has one parameter (the radius). However, the 

reflections do not resemble each other by a scale factor as in the paraboloidal 

mirror, since the distance between the camera and the mirror affects the resultant 

image and has to be taken into account as a second parameter.  

• We did not study the conical mirror case, but we expect it to be similar to the 

spherical mirror case. This is because the conical mirror also has one surface 

parameter (the slope) and the distance between the camera and the mirror affects 

the resultant image. 

 

3.4 Determining the Parameters of Hyperboloidal Mirror from ODIs 

In order to determine the parameters of the hyperboloidal mirror, the real world 

coordinates of the objects and the pixels in the omnidirectional image are matched. 

In this way, mirror parameters (b and c) and focal distance (f) in the equation below 
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are sought for. Equation 3.1 is a modified version of Equation 2.5 in a way that 

X,Y,Z coordinates of world points are used instead of projection angles γm and γc : 
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where, x and y are the x axis coordinate and y axis coordinate of the point in the 

image plane respectively. 

3.4.1 Error Calculation for Different Mirror Parameter Sets 

Assuming the focal distance of the camera and world coordinates are known, we 

should be able to match the points in the image and real world coordinates (conjugate 

pairs). For a given pair set of x values and world coordinates, total squared error for 

n pairs will be: 
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Error relationship for y-axis can be written in the same way between y values and 

world coordinates. While calculating the total error, effective viewpoint of the mirror 

is taken as the origin of the coordinate system. 

The virtual room was simulated by a hyperboloidal mirror with parameters: 

b=32.369 units and c=40 units whose focal point is located at the origin. Camera 

focal distance (f) is taken as 30 units. A square in this virtual room (e.g. a painting on 

the wall) is created with dimensions 800x800 units. If the unit is taken as one 

millimeter, the created square will be 80cm.x80cm in the real world. 160 points are 

selected from the square created, 40 from each edge, so that the distances between 

them will be equal. The locations of the image points of these scene points in the 

omnidirectional image are calculated using the parameters given above. As a result, 

matching the 3D scene coordinates of the points and their 2D image coordinates we 

obtained 160 conjugate pairs. Using this conjugate pair set, we have calculated the 

total squared error value (Equation 3.2) in terms of the mirror parameters (b,c). 
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Figure 3.8 is the total squared error value graph obtained for a range of hyperboloidal 

mirror parameters (b & c). This graph has a valley shape enlarging towards the 

origin. Original (b,c) pair is represented by a star. The white line in the graph 

represents the solution set, which means that more than one pair of (b,c) makes the 

error minimum as will be discussed in Section 3.4.2. Figure 3.9 is a 3D view of this 

error surface for a smaller (b,c) range. 

 

 

 

 

 

 

 

 
 
 

Figure 3.8: Total error values for b[3,60]-c[3,60] range,  
star: the original (b,c) pair (32.369,40), line: the solution set  

 

 

 

 

 

 
 
 

 

Figure 3.9: 3D view of Figure 3.8 for b=[30,35] - c=[38,43] range 

b 

c 
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3.4.2 Optimization to Determine the Mirror Parameters (b,c) 

An optimization algorithm is used in order to find a proper (b,c) pair. To obtain b and 

c, Equation 3.2 is minimized by the ‘steepest descent’ method as explained in [59]. 

At each step, (b,c) pair is increased in the direction of gradient. Error value is 

checked and scale factor is employed to regulate the step size. 

The optimization algorithm mentioned above is run with the conjugate pair set used 

in Section 3.4.1, which is composed of 160 points calculated while generating the 

ODI. Optimization steps are indicated in Figure 3.10. Each different initial guess of 

the optimization algorithm gave us a different (b,c) pair and in all those pairs the 

ratio b/c is the same (slope of the white line). We generated 2D reflection simulations 

using the estimated parameters to see whether they give the same reflection with the 

original parameter set. Figure 3.11 is the reflection generated with the parameters 

found by the optimization shown in Figure 3.10 and gives exactly the same result 

with Figure 3.4 which was generated by the original (b,c) pair. 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.10: Visualization of the optimization, star: the original (b,c) pair (32.369,40), 
circles: the (b,c) pairs given initially and found at each iteration, line: the solution set 

b 

c 
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Figure 3.11: Hyperboloidal mirror reflection generated with the parameters found by 
optimization, to be compared with original reflection (Figure 3.4) 

 
3.4.3 Linear Relationship between Mirror Parameters 

From Equation 3.1, it is inferred that a linear relationship exists between 

hyperboloidal mirror parameters b and c. In fact, 
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Derivation of Equation 3.3 from Equation 3.1 is given in Appendix A. When one of 

the two parameters is given, the other can be determined using Equation 3.3. This 

explains the line in Figure 3.10. 

3.4.4 Using Mirror Parameter Ratio (b/c) as One Parameter 

We included the camera focal distance, f, in the unknown parameter set in addition to 

b and c. However, we realized that the optimization can not be efficiently performed 

if we want to determine the parameters more precisely. Since there is an infinite 

number of optimum (b,c) pairs, the estimated values of b and c tend to decrease to 

make the squared error equation smaller. This also prevents the progress of f value, 
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because error decreases as b and c decreases regardless of the value of f. Therefore, 

we modified our total error function so that it will include the relationship between b 

and c (shown in Section 3.4.2) and take the b/c ratio as one parameter, k: 
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Figure 3.12 is the total error value graph obtained for a range of new unknown 

parameters (k & f). This graph has also a valley shape, but total error is not equal to 

zero at the origin. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.12: Total error values for k[0.6,1]-f[20,40] range, 

star: the original (k,f) values (0.809225,30) 
 

For the same virtual room, four different sets of point conjugate pairs are created. 

Estimation of b and c are repeated for the cases below: 

A) 100 points are randomly selected so that their 3D coordinates will be inside 

the virtual room. The 2D coordinates on the ODI corresponding to the 

selected 3D points are computed exactly.  

B) 100 points are randomly selected so that their 3D coordinates will be inside 

the virtual room, but this time the corresponding 2D coordinates on the ODI 

are perturbed to mimic measurement errors. The perturbations are modeled as 

f 

k 
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samples from a Gaussian distribution with mean zero and standard deviation 

0.0125 along x and y directions. The value 0.0125 in the scale of Figure 3.2 

corresponds to 0.5 pixel standard deviation in a 512x512 pixel image. The 

explained procedure of creating 100 conjugate pairs is repeated 100 times and 

average values for k and f are recorded. 

C) The procedure in Case A is repeated for 20 selected points.  

D) The procedure in Case B is repeated for 20 selected points. Again, 100 trials 

are performed and average values for k and f are recorded. 

This time, optimization is performed using Gauss-Newton least square minimization 

algorithm as explained in [59]. It is more powerful than the steepest descent 

algorithm used previously. For each iteration, error value is checked and scale factor 

is employed to regulate the step size. Norm of the current step is selected as the 

stopping condition. Calculation functions of total squared error, residual vector and 

jacobian matrix and Gauss-Newton optimization subroutine written in MATLAB are 

given in Appendix B. Optimization is performed for each of the above mentioned 

four cases with the same initial values. Results are given in Table 3.3. In this table, ko 

and fo indicate the original values of k and f, k and f indicate the average values of k 

and f estimated over 100 trials.  

Table 3.3: Results of the optimization for k (b/c ratio) and f (focal distance) 

 Original Initial Case A   
(100 points, 

exact) 

Case B   
(100 points, 

noisy) 

Case C    
(20 points, 

exact) 

Case D    
(20 points, 

noisy) 

k  0.809225 0.72 0.809225 0.809438 0.809225 0.811254 

f  30 37 30.0000 30.1461 30.0000 30.9551 

RMSe in x - 5.483 0 0.0072 0 0.0153 

RMSe in y - 5.483 0 0.0072 0 0.0153 

MAD for k - 0.089225 0 0.00669 0 0.02087 

MAD for f - 7.0 0 1.1829 0 4.3598 

# iterations - - 276 181.5 286 206.5 

Error @ k , f  - - 4.3E-20 1.0E-6 3.3E-20 7.5E-6 

Error @ ko , fo - - 6.8E-26 1.3E-6 2.1E-26 8.6E-3 
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Mean absolute deviations of estimated k and f values compared to original values are 

given in the table as MAD for k and f. To compare the success of the optimization 

for each case we simulated the ODIs with the estimated parameters. In this 

simulation, image points of 4 checkerboards (100 points totally) on each wall of the 

virtual room are compared with the reflection of the original parameters. The ‘root 

mean square error’ (RMSe) between the locations of the simulated image points and 

the original image point locations are included in the table. Also, average number of 

iterations and total square errors with estimated and original k,f values are given. 

As expected, the optimization with calculated points gave perfect results. Increasing 

the number of points used has a positive impact when the perturbed feature points are 

used as in Cases B and D. The reflections with results of Case A and Case C are the 

same with the original pair’s reflection, whereas in Case D the RMSe is 0.0153 

which corresponds to 0.60 pixel for a 512x512 pixel image and in Case B the RMSe 

is 0.0072 which corresponds to 0.28 pixel for a 512x512 pixel image. However, we 

see that these errors are not distinguishable by eye when we look at the 

omnidirectional images. 

3.4.5 Determining Parameters Using Calibration Pattern 

We tried to determine the parameters when the world coordinates of the objects are 

not known but the relationship between the points in a calibration pattern are known. 

For the calibration pattern, we used a square meshed into slices with equal thickness 

as shown in Figure 3.13. The square having dimensions of 200x200 cm. and divided 

into 64 equal squares is located at one of the walls of the virtual room (Figure 3.14).  

In the previous optimization performed with known object 3D coordinates, there 

were two unknowns (k, f). In the optimization using calibration pattern we have three 

additional unknowns: the 3D coordinates of the calibration pattern’s reference corner 

(Xc, Yc and Zc). Since the relative distances between the corner points are known, all 

3D coordinates are written in terms of Xc, Yc and Zc (Figure 3.13). 

Similar to the optimization performed with known 3D coordinates, four different sets 

of point conjugate pairs are selected to compare the optimization performances: 
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A) 81 corner points in Figure 3.13 are selected and the 2D coordinates on the 

ODI corresponding to the selected 3D corner points are computed exactly. 

B) 81 corner points in Figure 3.13 are selected but this time the corresponding 

2D coordinates on the ODI are perturbed to mimic the measurement errors. 

The perturbations are modeled as samples from a Gaussian distribution with 

mean zero and standard deviation 0.0125 along x and y directions. The value 

0.0125 in the scale of Figure 3.14 corresponds to 0.5 pixel standard deviation 

a 512x512 pixel image. 

C) The procedure in Case A is repeated for the 25 circled corners in Figure 3.13.  

D) The procedure in Case B is repeated for the 25 circled corners in Figure 3.13. 

 

 

 

 

 

 

Figure 3.13: Calibration pattern used for parameter optimization: 
All 81 corner points are used for optimization Cases A and B,  

25 circled corner points are used for optimization Cases C and D. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: ODI obtained from the virtual room including calibration pattern 

calibration 
pattern 

2000 mm. 
250 mm. 

reference corner 
(Xc, Yc, Zc) 

(Xc, Yc, Zc+1500) 

(Xc, Yc+500, Zc+2000) 
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Table 3.4: Results of the optimization with the calibration pattern 

 

Results are shown in Table 3.4. The ‘root mean square error’ (RMSe) value for Case 

B (81 corners, noised) is 0.0098 which corresponds to 0.39 pixel error in a 512x512 

pixel image. In Case D (25 corners, noised) RMSe is 0.0101 corresponding to 0.40 

pixel error in a 512x512 pixel image. According to these values it can be said that 

there is not much efficiency difference between 81 noisy points and 25 noisy points, 

however when the differences between the original parameters (ko, fo) and the 

estimated ones (k , f ) are considered, we see that estimated values in Case B (81 

noisy points) are closer to the original values than Case D (25 noisy points). 

We observed that inital values affect the performance of the optimization when noisy 

coordinates are used. For the same data, if we start from another point different 

results may be obtained. Thus, we conclude that optimization should also be tested 

with different calibration patterns having different size, shape and location. 

3.4.6 Conclusions 

We found out that for every 'b', there is such a 'c' that gives the same reflection with 

another (b,c) pair. As a result, if we are given an omnidirectional image taken with a 

hyperboloidal mirror and if we know the real world locations of the objects seen in 

 Original Initial Case A     
(81 points, 

exact) 

Case B    
(81 points, 

noisy) 

Case C     
(25 points, 

exact) 

Case D     
(25 points, 

noisy) 

k  0.809225 0.78 0.809225 0.796219 0.809225 0.784088 

f  30 28 30.0000 28.6300 30.0000 26.5850 

X  
1500 1480 1500.00 1501.34 1500.00 1503.01 

Y  0 -30 0.00 -0.39 0.00 0.85 

Z  -2500 -2520 -2500.00 -2504.80 -2500.00 -2502.95 

RMSe in x - 0.0600 0 0.0098 0 0.0101 

RMSe in y - 0.0600 0 0.0098 0 0.0101 

# iterations - - 6611 2593 6613 1848 

Error @ k , f  - - 1.0E-27 7.9E-7 1.0E-27 4.4E-6 

Error @ ko , fo   1.0E-32 2.0E-6 1.0E-32 9.7E-3 
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the image, we are able to find the b/c ratio of the hyperboloidal mirror with a 

performance depending on the method of measurement of the locations of points in 

the omnidirectional image and the number of points used for the optimization. 

Parameter extraction method that is used can be evaluated as an alternative to the 

work of Orghidan et al [31]. Their proposed design for locating coordinates of the 

points in the scene depends on a laser emitter and requires precise alignment of 

components of the imaging system.  

We also tried our parameter extraction method with a calibration pattern. The 3D 

coordinates of a corner of this calibration pattern is estimated. Since, we assumed 

that the pattern is located on the wall in our virtual room, its alignment is known and 

coordinates of all points in the pattern can be written in terms of the corner point. An 

enhancement to this optimization may be using a calibration pattern of which the 

alignment is not known.  

We also observed that the size, shape and location of the calibration pattern may 

affect the results. A calibration pattern especially for omnidirectional cameras can be 

designed. 

The work presented in this chapter is performed with simulated reflections from a 

hyperboloidal mirror. The developed method can be tested with a real 

omnidirectional system in the future. In a real system, additional parameters such as 

sensor aspect ratio, image skew and lens distortions should be determined. 
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CHAPTER 4 
 
 

Resolution of Panoramic Images 
 
 
 
 
In this chapter, resolutional properties of the panoramic images (panoramas) that are 

generated from the omnidirectional images are examined. In Section 4.1, the blurring 

problem encountered in panoramic projections is defined and the effect of 

hyperboloidal, paraboloidal and spherical mirror profiles on this problem is analyzed. 

In Section 4.2, different projection surface alternatives for the panoramic projections 

are evaluated regarding their advantages and disadvantages for the problem defined 

in Section 4.1. 

4.1 Resolution Analysis 

4.1.1 Previous Work on Mirror Analysis 

An expression for the resolution of the single-viewpoint catadioptric sensors is 

obtained by Baker and Nayar [10]. This expression is used to compare the 

resolutional properties of a mirror type with respect to the planar mirror. It is showed 

that resolution decreases as we move from the vertex to the edge of the mirror. Also, 

‘defocus blurring function’ for a lens and mirror combination is derived and effects 

of ellipsoidal, hyperboloidal and paraboloidal mirrors are analyzed.   

Nayar [22] found out that the resolution from the vertex (the bottom of the mirror) to 

the fringe (point having the same elevation with the focal point) of a paraboloidal 

mirror increases by a factor of 4. He advises using non-uniform resolution sensors to 

compensate this effect or to use larger detector array. 



  
45 

 
Figure 4.1: An ODI sample [22] 

4.1.2 The Resolution Problem 

In the panoramic images converted from 

the omnidirectional images (ODI), we 

observe lower image quality at the bottom 

or top of the panoramas depending on the 

location of the camera. This is because the 

number of pixels in the ODI feeding 

panoramic image is less as we move to the 

inner parts of ODI. Thus, the bottom (or 

top) of the panoramic image has lower 

sampling frequency and image quality 

decreases resulting in blurry regions.  

To visualize the problem, pixels in the ODI (Figure 4.1) are placed at the panoramic 

image (Figure 4.2) by forward mapping. The white pixels in Figure 4.2 do not have a 

match in the ODI. In normal panoramic projection generation (backward mapping), 

these white pixels will be filled by interpolation of the neighboring pixels. 

 

 

 

 
 

Figure 4.2: Panorama generated from Figure 4.1 by forward mapping 

4.1.3 Analysis of Data Distribution during Panorama Generation 

4.1.3.1 Spherical Mirrors  

In Figure 4.3, an omnidirectional photo obtained through a spherical mirror is given. 

The panorama generated from this ODI is shown in Figure 4.4, which is converted 

by forward mapping in order to visualize the missing information. The pixels at the 

outer boundary of the ODI are assumed to be images of objects which are at the same 

horizontal level with center of the mirror’s sphere.  
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Figure 4.3: An ODI obtained through 
spherical mirror (Courtesy of Czech 
Technical Univ.) 

As indicated in the previous section, we 

observe missing information at the bottom 

of the panorama due to the decrease in 

size in the ODI towards center.  

Moreover, the upper parts of the panorama 

also have missing information but this 

time the reason is not the smaller area in 

the ODI but the increasing curvature of 

the spherical mirror towards the peripheral 

section. 

 

 

 

 

 
 

Figure 4.4: Panorama generated from Figure 4.3 by forward mapping 

 
The ODI in Figure 4.3 is divided into three concentric circles with equal thickness 

and the white lines in Figure 4.4 represent the borders of these circles. MATLAB 

simulations are performed to observe the scattering ratios of the peripheral and 

central sections of the spherical mirror. In Figure 4.5, three sections in different gray 

tones from top to bottom represent the outer, middle and inner one-third regions in 

the ODI respectively. The result of a 2D analysis concerning spherical mirror 

reflection is shown at Figure 4.6. The small squares in the image plane represent the 

pixels in the ODI along the radius and they are selected to be equidistant from each 

other. Elevations of the corresponding points in the panoramic image are represented 

as circles. We observe that as we move up on the spherical mirror (go away from the 

center in the ODI), representation of the 3D scene gets better. However, when we 

reach the elevation of the mirror the angles between the light rays increase. This 
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results in lower resolution. Thus, we can conclude that spherical mirror is not 

suitable for objects located higher than itself. 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 4.5: MATLAB simulation shows the scattering ratios of the peripheral (top) 
and central (bottom) sections of the spherical mirror 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.6: Spherical mirror reflection simulation 
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Figure 4.7: An ODI obtained by a 
paraboloidal mirror [22] 

4.1.3.2 Paraboloidal Mirrors 

In Figure 4.7, an ODI obtained through a 

paraboloidal mirror is given. The 

panorama generated from this ODI is 

shown in Figure 4.8, which is converted 

by forward mapping in order to visualize 

the missing information. We observe 

missing information at the bottom of the 

panorama due to the decrease in size in 

the ODI towards the center as expected. 

However, we do not observe the 

problem at the upper part as in the 

spherical mirror case. 

The curvature of the paraboloidal mirror is different from the spherical one in a way 

that the slope of the mirror surface at the periphery is always finite. Thus, as we 

move up the angles between the light rays do not increase as in the spherical mirror. 

 

 

 

 

 
Figure 4.8: Panorama generated from Figure 4.7 by forward mapping 

The ODI (Figure 4.7) is divided into three concentric circles with equal thickness and 

the white lines in Figure 4.8 represent the borders of these circles. The scattering 

ratios of the peripheral and central sections are shown in Figure 4.9. In this figure, 

three sections in different gray tones from top to bottom represent the outer, middle 

and inner one-third regions in the ODI respectively. The result of a 2D analysis 

concerning paraboloidal mirror reflection is shown at Figure 4.10. We observe that 

as we move up (go away from the center in the ODI), the angles between the light 
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rays always decrease. Thus, we can conclude that paraboloidal mirror is more 

suitable for visualizing objects higher than itself when compared to spherical mirror. 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4.9: MATLAB simulation shows the scattering ratios of the peripheral (top) 
and central (bottom) sections of the paraboloidal mirror 

  

 

 

 

 

 

 

 

 

 

 
Figure 4.10: Paraboloidal mirror reflection simulation 
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Figure 4.11: An ODI obtained by a 
hyperboloidal mirror (Courtesy of 
Kazumasa Yamazawa) 

4.1.3.3 Hyperboloidal Mirrors 

In Figure 4.11, an ODI obtained through 

a hyperboloidal mirror is given. The 

panorama generated from this ODI is 

shown in Figure 4.12, which is converted 

by forward mapping in order to visualize 

the missing information. We observe 

missing information only at the bottom of 

the panorama due to the decrease in size 

in the ODI towards center as in the 

paraboloidal case.  

 

 

 

 

Figure 4.12: Panorama generated from Figure 4.11 by forward mapping 
 

 

 

 

 

 

 

 
 

 
Figure 4.13: MATLAB simulation shows the scattering ratios of the peripheral (top) 

and central (bottom) sections of the hyperboloidal mirror 
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The scattering ratios of the peripheral and central sections of the hyperboloidal 

mirror are shown in Figures 4.13 and 4.14. Results of the simulations and 

conclusions are similar to the paraboloidal mirror case. 

 

 

 

 

 

 

 

 

 

 
Figure 4.14: Hyperboloidal mirror reflection simulation 

4.1.4 ‘Vertical Field of View’ Analysis 

4.1.4.1 Paraboloidal Mirrors 

The slope of the surface of a paraboloid increases as we move away from the center 

(along the radius). The relationship between the radius and the slope is: 

h

hr
z

2

22 −=  (4.1) 

Slope; 
h

r

dr

dz =  (4.2) 

where z is the vertical coordinate axis, r is the horizontal coordinate axis of the 

mirror surface and h is the parameter of parabola. Although, it is observed that the 

slope goes to infinity as r goes to infinity, in real life applications the dimensions of a 

mirror should be restricted. We analyzed how big mirrors we need in order to 

observe the objects in higher elevations.  
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Figure 4.15: Paraboloidal reflection (h=3cm.) 

In Figure 4.15, we see the reflection simulation of a paraboloidal mirror with the 

parameter h=3 cm. The positions of the regularly spaced points in the scene (circles) 

and corresponding pixels in the omnidirectional image are shown. The position of a 

pixel in the image along the radius is represented by ‘r’ and the maximum vertical 

viewing angle (positive above horizontal) is represented by ‘t’. We see that when the 

maximum viewing angle is 48 degrees above horizontal the corresponding mirror 

radius is around 7.8 cm, which makes the diameter 15.6 cm. This size can be 

considered as the maximum size to be carried, used and protected practically. To 

view 75 degrees above horizontal we would need a mirror with 45 cm diameter and 

160 cm height which is impractical. Another important conclusion is that the inner 

one-third of the ODI will contain the information of the objects below the elevation 

of the mirror. This is the area that contains least amount of information and partly 

covered by the image of camera itself. Thus, such a mirror will not be useful to 

observe below the horizontal level of the mirror only. To view objects below the 

mirror level, paraboloidal mirrors with higher values of ‘h’ should be selected.  
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4.1.4.2 Hyperboloidal Mirrors 

The maximum slope of the surface of a hyperboloid is the slope of the asymptotes of 

the hyperbola (b/a) as shown in Equation 4.4. This relationship is derived from the 

formula of the hyperbola (Equation 4.3). The slope defined in Equation 4.4 is shown 

graphically in Figure 4.16. 

1
2

2

+⋅=
a

r
bz  where,  22 bca −=  (4.3) 

Slope; 
a

b

dr

dz =  (4.4) 

 

Where, z is the vertical coordinate and r is the horizontal coordinate of the mirror 

surface and a and b are the parameters of the hyperbola. For a hyperboloidal mirror 

(c = 25cm., b = 24cm., a = 7cm.), the positions of the regularly spaced points in the 

scene (circles) and corresponding pixels in the image are shown in Figure 4.17. The 

position of a pixel in the image along the radius is represented by ‘r’ and the 

maximum vertical viewing angle (positive above horizontal) is represented by ‘t’. 

We see that when the maximum viewing angle is 70 degrees above horizontal the 

corresponding mirror diameter is about 55 cm, which is impractical. When we 

consider a mirror having a maximum vertical viewing angle of 50 degrees, 

corresponding mirror size will be around 15 cm, which can be considered as 

maximum size to be used.  

 

 

 

 

 

 

 

 

Figure 4.16: The maximum slope of the hyperbola (b/a = 4/3) 

a 

b c 
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Similar to the paraboloidal case, the inner one-third of the ODI will contain the 

information of the objects below the elevation of the mirror. Thus, such a 

hyperboloidal mirror will not be useful to observe the objects below the horizontal 

level of the mirror. To view objects below the mirror level, hyperboloidal mirrors 

with lower values of ‘b/a’ should be selected. 

 

 

 

 

 

 

 

 

 

 
Figure 4.17: Hyperboloidal mirror reflection, c = 25cm., b = 24cm., a = 7cm. 

4.2 Projection Surface Alternatives 

The panoramic images generated by the single viewpoint catadioptric 

omnidirectional systems can be defined as projections, viewpoint of which is the 

focal point of the mirror. All the objects in the scene are viewed as seen from this 

viewpoint. However, the dimensions of the objects viewed in a panoramic image 

depend on the projection surface used to convert the omnidirectional image to the 

panoramic projection. We have examined four projection methods (surfaces); 

cylindrical, conical, spherical, mixed by experiments held for a virtual bathroom 

shown at Figure 4.18. In Figure 4.19, the omnidirectional image used for projections 

is shown. We also generated the panoramic images of the ODI in Figure 4.1 using 

the mentioned projection surface alternatives to evaluate the results on a real image.  
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Figure 4.18: Virtual bathroom (tiled with 25x25 faiences) used for projection analysis 
 
 

 

 

 

 
  
 
 
 
 

Figure 4.19: The ODI used for projections 
 

4.2.1 Cylindrical Projection  

In this method the projection surface is represented as the surface of a cylinder where 

the viewpoint is located at the central axis of the cylinder (Figure 4.20). As we move 

up on the surface of the cylinder, same amount (length) of the surface have narrower 

angles (x1=x2, β<α). Normal cameras see x1 smaller than x2 since their projections 

are angle-based as our eyes. However, in cylindrical projection equal distances on 

the cylinder surface are represented equally on the projection.  
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In Figure 4.22, thickness of faience rows remain same as we move down on the wall, 

however our eyes would see the faiences near the bottom smaller compared to the 

ones at the top.  

 

 

 

 

 

 

 
 

Figure 4.20: Cylindrical projection 
 

Another problem in the cylindrical 

projection occurs when the real world 

does not have a wall-like shape as the 

cylindrical surface has. Problem is 

visualized in Figure 4.21 and can be 

observed in Figure 4.22, the floor 

faiences covers wider area in the image. 

From the two equal distances in the 

cylindrical projection surface (x1=x2), x1 

is represented by 3 faiences, whereas x2 

is represented by 1.5 faiences. 

 
In Figure 4.23, panoramic image generated from Figure 4.1 by cylindrical projection 

is shown. As can be observed, the table occupies a wide area in the image because it 

is close to the mirror. 
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Figure 4.22: Panorama of the bathroom generated by cylindrical projection (540x942) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.23: Panorama of the Figure 4.1 generated by cylindrical projection (540x942) 
 

4.2.2 Conical Projection  

In this method, the projection surface is a cone, where the viewpoint is located at the 

center of the bottom circle of the cone (Figure 4.24). As we move up on the conical 

surface, the angle corresponding to the equal distances on the surface becomes 

greater first, but then it starts to get smaller (x1=x2=x3, α<β>γ). Same lengths in the 

conical surface will have the same height at the resultant projection. 
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Figure 4.24: Conical projection 

 

 

 

Figure 4.25: Panorama of the bathroom generated by conical projection (181x942) 

 

 

 

Figure 4.26: Panorama of the Figure 4.1 generated by conical projection (181x942) 

Panoramic image of the bathroom generated by conical projection is shown in Figure 

4.25. Although it is not angle-based the resultant image is closer to what our eyes 

see. Faiences on the wall cover smaller areas as we move down. In Figure 4.26, 

panoramic image generated from Figure 4.1 by conical projection is shown. The area 

in the image occupied by the table is reasonable. 
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4.2.3 Spherical Projection 

In this method the projection surface is represented as the surface of a sphere where 

the viewpoint is located at the center of the sphere (Figure 4.27). Same length of the 

surface has same projection angles (x1=x2, α=β) as regular cameras and our eyes see. 

Thus, in spherical projection, vertical distribution of the pixels is angle based. 

Panoramic images of the virtual bathroom and Figure 4.1 generated by spherical 

projection are shown in Figures 4.28 and 4.29 respectively. 

 

 

 

 

 

 

 
 
 
 

Figure 4.27: Spherical projection 
 
 

 
 
 
 
 
 

Figure 4.28: Panorama of the bathroom generated by spherical projection (196x942) 
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Figure 4.29: Panorama of the Figure 4.1 generated by spherical projection (196x942) 
 

 
  

 
 
 
 

Figure 4.30: Photographic representation of the spherical projection surface (on the right) 
generated from an ODI (on the left), [48] 

 
 
Although not directly related to the issue of projection surface analysis, Daniilidis et 

al. [48] suggested using a sphere as the underlying domain of the image processing 

for catadioptric omnidirectional images. According to their work, applying operators 

(e.g. gaussian filter) on a spherical surface and using samples from the 

omnidirectional image produces better results than applying operators directly on the 

omnidirectional image. Photographic representation of the spherical projection 

surface is given in Figure 4.30. 

4.2.4 Mixed Method for Projection 

In this method, projection surface is not defined as a certain geometric shape but 

designed to be exactly parallel to the shape of the environmental real world. It aims 

to represent the equal lengths in the real world equally in the projection. In Figure 

4.31, the real world is assumed to be the bathroom, midpoint of which coincides with 

the focal point of the mirror. 

Because the method does not work angle-based, distances on the projection surface 

does have a direct relationship with the projection angles (x1=x2, α≠β). Thus, the 

resultant projection is different from what human eye and regular cameras see. 
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Panoramic image of the bathroom generated by mixed projection method is shown in 

Figure 4.32. We could not generate the panorama from Figure 4.1 by mixed 

projection since we do not know the size of the room and the locations of the objects 

viewed. 

 

 

  

 

 

 

 

 

 

Figure 4.31: Mixed method for projection 

 

 

 

 
 
 
 

Figure 4.32: Panorama of the bathroom projected mixed method (282x942) 
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4.2.5 Conclusions 

By modifying the projection surface we can manipulate the panoramic images. 

Cylindrical projection constitutes an unappealing view for the objects imaged 

towards the center of the ODI. Mixed method is not successful as well because it 

creates an unrealistic representation, i.e. it conflicts what our eyes see. Conical and 

spherical projections create appealing panoramic images since they generate realistic 

vertical representations. Unfortunately, horizontal widening for the regions towards 

the center of the ODI is a problem that cannot be solved because in these regions 

smaller circumferences have to be represented as whole rows of the panoramic 

image.  

It can be said that, spherical projection should be preferred since it has an angle-

based vertical representation like regular cameras; therefore it suits best to our eyes 

best. However, most of the current panoramic imaging applications use cylindrical 

projection. It requires less computational cost and when a high cylindrical 

representation is not especially desired the low-quality regions can be cut from the 

panorama.
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CHAPTER 5 
 
 

Panoramic Image Enhancement 
 
 
 
 
In Chapter 4, resolutional properties of omnidirectional images were examined and 

the blurring problem was defined. This occurs in the panoramic images due to the 

lack of information while transferring pixels from ODI to the panoramic image. 

Several techniques that we have used and developed to solve this blurring problem 

are presented in this chapter.  

5.1 Standard Interpolation Methods 

While generating new images, to guarantee that a value is generated for every pixel 

in the output image, we must use the inverse transformation to determine the position 

in the input image from which a value must be sampled. This is known as the 

‘backward mapping’. In the following paragraphs widely used interpolation methods 

are described using the backward mapping. 

5.1.1 Nearest-neighbor (zero-order) Interpolation 

In the nearest-neighbor method, for each pixel in the image to be generated, the 

corresponding location in the input image is determined. The intensity value of the 

pixel that is nearest to the determined location is assigned as the intensity value of 

the pixel in the output image. This is the simplest method we used to obtain an 

intensity value. 
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5.1.2 Bilinear (first-order) Interpolation 

In the bilinear interpolation method, the intensity value of the pixel in the output 

image is filled with the four pixels in the surrounding of the corresponding location 

in the input image. Calculation of intensity values with bilinear interpolation is given 

in Equation 5.1 and geometry for omnidirectional case in shown in Figure 5.1. 

The intensity value of point to be estimated (x,y) can be defined in [60] as:  

I (x,y) =  I (x0,y0) + [ I(x1, y0) – I(x0, y0)] · ∆x + [ I(x0, y1) – I(x0, y0)] · ∆y  

 + [ I(x1, y1) + I(x0,y0) – I(x0, y1) – I(x1, y0)] · ∆x · ∆y  (5.1) 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1: Image generation from omnidirectional image with bilinear interpolation 

 

5.1.3 Bicubic (third-order) Interpolation  

In the bicubic interpolation method, the intensity value of the pixel in the output 

image is filled with the 16 neighbor pixels of the corresponding location in the input 

image. Bicubic interpolation technique, as described by Bourke [61], is given in 

Figure 5.2 and Equation 5.2. 
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Figure 5.2: Pixel neighborhood in input image used for bicubic interpolation 
 
 
The intensity value of point to be estimated (x,y) can be defined as: 
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where, m and n is the 4x4 grid span around (x,y) and R is the cubic weighting 

function given below: 
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5.2 Image Enhancement Effects of Standard Interpolation Methods 

To overcome the problem described in section 4.1.2, we first analyzed the 

enhancement effects of nearest-neighbor, bilinear, bicubic and cubic spline 

interpolation methods. Performances of these four interpolation methods were 

compared by a series of computations performed on checkerboard test patterns.  

Nearest neighbor is the simplest interpolation method to be used for geometric 

conversions, but not the most effective. Bilinear interpolation is a popular method 

among many application fields. Bicubic interpolation is also very effective, but not 

(x,y) 

∆y 

∆x 

(x0,y0) 
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preferred often because of its higher computational cost. Cubic spline is also a well-

known method, usually used for approximation problems. Employment of spline 

interpolation in our tests is performed by using ‘csape’ function of the MATLAB. 

This function is defined as ‘cubic spline interpolation with end conditions’, in which 

first and second degree continuity is enforced.  

5.2.1 Bilinear and Bicubic Interpolation Comparison with Noisy Images 

First, enhancement performances of bilinear and bicubic are compared with each 

other. Interpolation performed on checkerboards, having different cell size and 

contrast. These images are exposed to different amount of gaussian or salt & pepper 

noise. Gaussian noise amount is manipulated by its variance. In salt & pepper noise, 

the intensity values of some pixels (amount is defined as percentage and pixels 

selected randomly) are changed to 0 (black) or 255 (white). In Figures 5.3 and 5.4 

two examples of generated checkerboards are given. 

 

 

 

 

 

 

 

 

 

Comparison of enhancement performance is done on the basis of intensity value 

differences between original and interpolated images. In other words, the most 

effective interpolation method is the one that gives the minimum intensity difference 

between the original image and interpolated image. For an m x n image, intensity 

difference is defined as: 

Figure 5.3: Noised checkerboard 10x10, 
initial intensity values: [50,200], 
Gaussian noise (mean=0, variance=0.04) 

Figure 5.4: Noised checkerboard 5x5, 
initial intensity values: [50,200],  
Salt-pepper noise (%15)  
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X and X0 are the original and noisy image respectively, (i,j) is the location of the 

pixel of which the intensity value is measured. Resultant differences of the test are 

given in Table 5.1. Enhancement effects in flat surfaces and edges are separated in 

Table 5.2.  

Intensity values along a typical row of the checkerboard are graphed in order to 

visualize the enhancement effects. Sample graphs are given in Figures 5.5 - 5.11. 

Gaussian variances 0.01 vs. 0.04 graphs and contrast dif. 50-200 vs. 80-170 graphs 

are also obtained. 

Table 5.1:  Total intensity differences between original and interpolated images 

Contrast and noise information Bilinear 
interpolation 

Bicubic 
interpolation 

Noisy image 

    

Gaussian noise ε ε ε 

Contrast; [50-200] Variance; 0.01 262893 255488 287953 

Contrast; [80-170] Variance; 0.01 210639 197651 288152 

Contrast; [100-150] Variance; 0.01 177258 160011 286547 

Contrast; [50-200] Variance; 0.04 364780 342129 519920 

Contrast; [80-170] Variance; 0.04 338164 303402 560086 

Contrast; [100-150] Variance; 0.04 322654 282094 575617 
    

Salt & pepper noise ε ε ε 

Contrast; [50-200] Percentage; 0.05 210803 229872 93845 

Contrast; [80-170] Percentage; 0.05 151360 159589 87055 

Contrast; [50-200] Percentage; 0.15 346686 348393 267495 

Contrast; [80-170] Percentage; 0.15 287821 278998 267255 

Contrast; [50-200] Percentage; 0.25 476247 462282 456240 

Contrast; [80-170] Percentage; 0.25 403304 377769 458140 

Contrast; [50-200] Percentage; 0.35 589788 560205 633050 

Contrast; [80-170] Percentage; 0.35 499420 458589 627065 

* All computations done with 10x10 checkerboard 119x119 pixel images 
* Pixel intensity value range: [0,255] 
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Table 5.2:  Total intensity differences separated into flat regions and edges 

Contrast and noise 
information 

Bilinear 
interpolation 

Bicubic 
interpolation 

Noisy image 

Gaussian noise ε flat ε edge ε flat ε edge ε flat ε edge 

Contr; [50-200] Variance; 0.01 
Decrease of error after interpol. 

102839 
45% 

156514 
-64% 

89057 
52% 

163085 
-72% 

187544 95386 

Contr; [80-170] Variance; 0.01 
Decrease of error after interpol. 

104498 
45% 

103188 
-8% 

90071 
52% 

104933 
-10% 

188322 95535 

Contr; [100-150] Variance; 0.01 
Decrease of error after interpol. 

102325 
46% 

72199 
23% 

88510 
53% 

69090 
27% 

188141 93964 

Contr; [50-200] Variance; 0.04 
Decrease of error after interpol. 

180140 
46% 

179690 
-3% 

155713 
54% 

182093 
-4% 

335476 175577 

Contr; [80-170] Variance; 0.04 
Decrease of error after interpol. 

199147 
46% 

133410 
28% 

171665 
54% 

127245 
31% 

366050 184566 

Contr; [100-150] Variance; 0.04 
Decrease of error after interpol. 

204491 
46% 

113015 
40% 

175895 
54% 

101552 
46% 

377381 188742 

* Size of the flat surface is 8x8 out of 10x10 checkerboard. 
* Minus sign in ‘decrease of error’ means error is increased. 
* All computations done with 10x10 checkerboard 119x119 pixel images. 
* Pixel intensity value range: [0,255] 
 

 

 

 

 
 
 
 
 
 
 
 
 

 
 

Figure 5.5: Intensity values along a horizontal line segment of an interpolated checkerboard, 
Square size:10x10, Contrast: [80,170], Gaussian var: 0.04 
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Figure 5.6: Local intensity values taken from Figure 5.5 

 

 
 
 
 
 
 

 

 

 

 

 

 
Figure 5.7: Local intensity values taken from Figure 5.5 
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Figure 5.8: Intensity values along a horizontal line segment of an interpolated checkerboard, 
Square size:10x10, Contrast: [80,170], Gaussian var: 0.01 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Local intensity values taken from Figure 5.8 
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Figure 5.10: Local intensity values taken from Figure 5.8 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.11: Local intensity values taken from Figure 5.8 
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5.2.2 Further Analysis Including Cubic Spline and Nearest Neighbor 
Methods 

When the results of bilinear and 

bicubic interpolation for real 

omnidirectional images are 

compared, it is not possible to detect 

the difference between the images 

visually. An omnidirectional image 

(ODI) obtained by a hyperboloidal 

mirror is given in Figure 5.12. 

Figures 5.13 and 5.14 are the 

panoramic images generated from 

this ODI by bilinear and bicubic 

interpolation respectively.  

 

 

 

 

 

 
Figure 5.13: Panoramic image generated from the ODI in Fig. 5.12 by bilinear interpolation 

 

 

 

 

 

 
Figure 5.14: Panoramic image generated from the ODI in Fig. 5.12 by bicubic interpolation 

 

 

Figure 5.12: Omnidirectional image 
obtained by a hyperboloidal mirror 
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Concluding that the bilinear and bicubic interpolation methods do not produce 

‘visually different’ results, ‘nearest neighbor’ and ‘cubic spline’ methods are 

included in the inspection and examined both visually and by pixel intensity analysis. 

Cubic spline method is employed by using ‘csape’ function of the MATLAB. 

Panoramic images generated from the ODI in Figure 5.12 by cubic spline and nearest 

neighbor methods are given in Figures 5.15 and 5.16 respectively. The resultant 

image created by cubic spline is visually the same with the resultant images of 

bilinear and bicubic interpolation. However, the panoramic image created by nearest 

neighbor method is obviously different. Quadrangles occurred in the upper part of 

the image instead of blurring occurred when the other methods are employed.  

Intensity value graphs showing the results of all four methods employed are 

generated. Sample graphs are given in Figures 5.17 and 5.18, original checkerboard 

and noisy image intensity values are not depicted for the sake of simplicity. Intensity 

value of 1 corresponds to 200 for [0,255] gray scale range. 

  

 

 

 

 
Figure 5.15: Panoramic image generated from the ODI in Fig. 5.12 by cubic spline method 

 

 

 

 

 

 

Figure 5.16: Panoramic image generated from the ODI in Fig. 5.12 by nearest neigh. method 
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Figure 5:17: Intensity values of a noised checkerboard image interpolated by cubic spline, 
nearest neighbor, bilinear and bicubic interpolation methods. Sample local view. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5:18: Intensity values of noised checkerboard image interpolated by cubic spline, 

nearest neighbor, bilinear and bicubic interpolation methods. Sample local view. 
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5.2.3 Effects of Interpolation Methods for Upsampled Images 

To implement the upsampling occurring while transferring pixels from the ODI to 

the panoramic image and results in blurring in panoramic images (explained in 

Section 4.1.2), interpolation tests are held with enlarged checkerboards as well. In 

Figures 5.19 - 5.22, checkerboards of which cell size are enlarged from 3x3 to 15x15 

with different interpolation methods. Intensity values along a row of these upsampled 

checkerboards are transferred into graphs in order to visualize the enhancement 

effects. Sample graphs are given in Figures 5.27 - 5.30.  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.19: Checkerboard upsampled by 
bilinear interpolation 

 
 

Figure 5.20: Checkerboard upsampled by 
bicubic interpolation 

 
 

Figure 5.21: Checkerboard upsampled by 
cubic spline method  

 
 

Figure 5.22: Checkerboard upsampled by 
nearest neighbor method  
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Upsampling is also performed for 45º rotated checkerboards in order to observe the 

effects of change in edge alignment. Figures 5.23 - 5.26, checkerboards of which cell 

size are enlarged from 12x12 to 60x60 with different interpolation methods. Visual 

effects may differ according to the edge alignment as in the case of nearest neighbor 

method. Although result of this method is seem to be good for an orthogonal 

checkerboard (Figure 5.22), for a rotated checkerboard pixel-wide jumps are 

enlarged and the result is not appealing (Figure 5.26). Moreover, the result of bicubic 

interpolation (Figure 5.24) is better than the result of bilinear interpolation (Figure 

5.23) since it reduces better the one pixel-wide jump effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.23: 45º Rotated checkerboard 
upsampled by bilinear interpolation 

 
 

Figure 5.24: 45º Rotated checkerboard 
upsampled by bicubic interpolation 

 
 

Figure 5.25: 45º Rotated checkerboard 
upsampled cubic spline method 

 
 

Figure 5.26: 45º Rotated checkerboard 
upsampled by nearest neighbor method 
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Figure 5.27: Intensity values of a checkerboard upsampled 5 times by nearest  
neighbor, cubic spline, bilinear and bicubic interpolation methods  

(cell size is enlarged from 3x3 to 15x15) 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.28: Local intensity values taken from Figure 5.27 

 

 



  
78 

 

 

 

 

 

 

 

 

 

 

Figure 5.29: Intensity values of a noised checkerboard upsampled 3 times by nearest 
neighbor, cubic spline, bilinear, bicubic interpolation methods, sample local view 

(cell size is enlarged from 5x5 to 15x15 and added Gaussian noised variance is 0.01) 

 

 

 

 

 

 

 

 

 

 

Figure 5.30: Intensity values of a noised checkerboard upsampled 3 times by nearest 
neighbor, cubic spline, bilinear, bicubic interpolation methods, sample local view 

(cell size is enlarged from 5x5 to 15x15 and added Gaussian noised variance is 0.01) 
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5.2.4 Results 

The bilinear interpolation, bicubic interpolation, nearest neighbor and cubic spline 

methods are compared by a series of computations performed on checkerboards, 

having different cell size and contrast. These images are exposed to gaussian and salt 

& pepper noises and enlarged to implement the upsampling effect. Panoramic images 

generated by these methods are also created from omnidirectional images to examine 

the visual differences.  

Gaussian noise: 

• Both bilinear and bicubic interpolation improved the gaussian noised images. 

Total error in image was decreased by both methods. 

• Images embedded in Gaussian noise with high variance improved more when 

compared to the ones with low variance. In other words, error decrease is greater. 

• Gaussian noised images having low contrast improved more when compared to 

the ones having high contrast. High contrast results in overshoots in the edge 

regions. 

• Decrease of error, after bicubic interpolation is slightly larger than the one after 

bilinear interpolation. Therefore, it can be said that overall performance of 

bicubic interpolation is higher. 

• In images, having high contrast and noised with a low variance gaussian noise, 

the improvement of interpolation occurs only at the flat surfaces. For these 

images, bicubic interpolation smoothes the high intensity differences at edges 

more than the bilinear interpolation does, which results in edge blurring.  

• When the contrast gets lower and variance of noise increases both flat surfaces 

and edges are improved. For those images, the performance of bicubic 

interpolation is higher both at flat surfaces and edges. 

• The computational complexity of bicubic interpolation is significantly higher 

than bilinear interpolation. Increase in performance does not seem to be worth 

that computational complexity. 
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Salt & pepper noise: 

• Neither of the methods is good in small amounts of salt & pepper noise. Error 

increases after interpolations, because while smoothening noise, interpolation 

also affects the uncorrupted samples. Nonlinear interpolation techniques could 

perform better. 

• In large amount of salt & pepper noise (>= 25%), both interpolations improved 

the noisy images. Total error in image was decreased by both methods. 

• When interpolations have enhancing effect, i.e. noise is >=25%, overall 

performance of bicubic interpolation is higher. However, its disadvantages (high 

computational effort and edge smoothening) stand still. 

• Noisy images with low contrast improved more when compared to the ones 

having high contrast.  

Image upsampling: 

• Bicubic interpolation smoothes the sharp edges and it does not provide any 

advantage in flat surfaces when compared to bilinear interpolation. If the 

smoothing effect visually enhances the image as in the rotated checkerboard case, 

bicubic interpolation may be used. Otherwise, bilinear interpolation should be 

preferred to preserve sharp edges. 

• In noisy image upsampling, bicubic interpolation has the advantage of smoothing 

the noises in flat surfaces, however, disadvantage of blurring edges remains. 

• Nearest neighbor may only be preferred for synthetic images with sharp 

orthogonal edges, which is a very rare case. It causes the 'ladder' effect (step by 

step blurring) in photographic images and does not provide an appealing view. 

• Cubic spline method performs good job when passing the edges, however it 

causes undulation on the flat surfaces for a period after passing the edge. 

Overall conclusion would be that there is not a considerable visual difference 

between images obtained by bilinear, bicubic and spline methods and none of them 

could provide a direct solution to the blurring problem defined in 4.1.2. When their 

overall efficiencies and computational efforts are considered, bilinear interpolation 

should be preferred and another solution to the blurring problem should be searched. 
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5.3 Feature-Based Image Enhancement Techniques 

Observing the effects of standard interpolation methods we have concluded that the 

feature-based techniques have higher potential to overcome the blurring problem 

encountered in the panoramic images.   

5.3.1 Detecting High Intensity Difference and Sharpening the Edge Pass 

In this method, the panoramic image is scanned horizontally and vertically and the 

pixel intensity values are recorded for a predefined array length (e.g. 12 pixels). If 

the intensity difference along this array exceeds a certain threshold (e.g. 64 gray 

levels), then the pixel values are reorganized so that the edge pass length will be 

shorter. Process is visualized in the below Figure 5.31. The algorithm implemented 

using Java is given in Appendix C. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
  
 
 
 
 

 

For a cylindrical panorama, the output of the algorithm is compared with the original 

panoramic image (Figures 5.32 and 5.33). The result is not satisfactory. It is hard to 

define an array length and a threshold value that works for the whole image. We 

included some modifications of the main algorithm to overcome this problem. In 

Figure 5.31: Pixel intensity values in the panoramic image along the edge pass  
 ; in initial panoramic image   ; in sharpened image 

Pixel number 

Shortened edge pass length 

Edge pass length in the panoramic image 

Intensity 
value 
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particular, we changed the buffer size as we move in the panorama in the vertical 

direction. As the sampling rate gets lower the buffer size is increased to account for 

increased edge-pass length in the panorama. We also checked the intensity values in 

the buffer and modified the edge-pass shortening if these values do not increase or 

decrease regularly (for example if the intensity increases rapidly first and then goes 

same within the defined buffer size).  

Another observed problem is the following: the decision for shortening the edge pass 

is given at each row independently causing edge shifts. As a result, the boundaries of 

the features in the image are sometimes ribbed. This effect increases when the 

boundaries of the features in the panoramic image are not straight or distorted during 

the conversion from the omnidirectional image. 

Algorithm is also applied to the spherical panorama (Figures 5.34 and 5.35) of the 

same omnidirectional image, which was used for Figures 5.32 and 5.33.  As explained 

in Section 4.2.3, in spherical panoramas vertical distribution of the pixels is angle 

based similar to the human eye. Thus panoramas generated by spherical model are 

more condensed and appealing than the cylindrical model. On the other hand, 

horizontal widening for the regions towards the center of the ODI is a problem that is 

not yet solved. In fact, it can be said that blurring in spherical panoramas is caused by 

horizontal upsampling and for spherical panoramas only horizontal sharpening has 

importance. However, as can be observed in Figures 5.34 and 5.35, the problems 

mentioned in the previous paragraph remain.   

We also tried sharpening the ODI before generating the panoramic image. However, 

because the edge pass length in the ODI is already about two-three pixels sharpening 

the ODI was not effective. 
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Figure 5.32: A flu region of a cylindrical panorama (bilinear interpolation) 

Figure 5.33: Sharpening algorithm is applied to the cylindrical panorama in Figure 5.32 
vertical buffer size=8, horizontal buffersize=8; vertical threshold=60; horizontal threshold=70 
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5.3.2 Edge Detection-Based Interpolation 

5.3.2.1 Previous Work on Feature-Based Interpolation Methods 

An orientation adaptive technique is explained by Gerek and Cetin [62]. In this 

technique, for every 4-pixel neighborhood first the intensity value differences in 

horizontal, vertical and diagonal directions are calculated and the direction with the 

least intensity difference is determined. Then the image is upsampled and the 

intensity values of the new pixels are defined as the average of the pixel values in the 

direction found in the previous step.  

In another technique proposed by Hong et al. [63], again the horizontal, vertical and 

diagonal edge prototypes are employed and pixels used for the calculation of the new 

pixel values are selected in this manner as in [62]. However, this time the values of 

Figure 5.34: A flu region of a spherical panorama (bilinear interpolation) 

Figure 5.35: Sharpening algorithm is applied to the spherical panorama in Figure 5.34 
vertical buffer size=6, horizontal buffersize=8; vertical threshold=60; horizontal threshold=70 
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new pixels are not determined by arithmetic mean but by utilizing bilinear 

interpolation. In the 4-pixel neighborhood, for the intensity values of the non-

selected pixels, values of the selected pixels are re-employed to fulfill the 

requirement of bilinear interpolation method. Finally, Gaussian low pass filters are 

applied to eliminate the blocking artifacts and discontinuities in the image. 

Jiang and Moloney [64] proposed another direction adaptive interpolation method in 

which the weights of the neighboring pixels in the calculation of new pixel’s 

intensity are defined dependent to the gradient angle. When the intensity gradient is 

high in a certain direction interpolation of pixels in that particular direction is 

avoided, whereas pixels in the orthogonal direction are more heavily interpolated.  

In another feature-based method described in Ramanarayanan et al. [65] after the 

edges are detected they are represented by cubic splines and the image is divided into 

regions according to this information. Then, bilinear interpolation is employed using 

only the pixels in the same region. 

5.3.2.2 Developed and Tested Edge Detection-Based Methods 

We have developed a technique similar to [65] with the difference that detected 

edges are not combined with splines. Our implementation is based on Canny edge 

detection algorithm, which compares the resultant gradient vector with a threshold to 

define an edge. It also uses a lower threshold value. Gradients greater than this lower 

threshold are defined as edges only if they are neighbors of the edges of primary 

threshold. The directions of the detected edges are recorded as well. 

In this technique, standard bilinear interpolation is used unless an edge is detected in 

the selected 4-pixel neighborhood. In the mentioned gradient-based interpolation 

techniques [62-64] however, the developed algorithm is used for the whole image 

regardless of the occurrence of an edge. For the edge detected pixel neighborhoods, 

the four corners used for the interpolation are selected or unselected according to the 

directions in which edges are located, which gives us 16 different edge schemes. 

Some examples to the edge schemes are given in Figure 5.36. To fulfill the 

requirement of bilinear interpolation method, values of the selected pixels are re-

employed instead of the intensity values of the non-selected pixels in the 4-pixel 
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neighborhood. The developed algorithm is implemented in Java and works well on 

synthetic images (Figure 5.37).  

 

 

 

 

 

 

 

Figure 5.36: Example schemes for selecting the pixels for interpolation,  
shaded areas: the regions that are interpolated using pixels only in the area, arrows: the edges 

(high intensity differences),  p: the location of which the intensity value to be determined 

 

 

 

 

 

 

 

 

 

 

Figure 5.37: A snapshot of the Java application constructed to implement the  
edge detection-based enhancement algorithm (up-left: input ODI, up-right: bilinear,  

down-left: detected edges, down-right: enhanced) 
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Figure 5.38: Visual result of the edge detection-based enhancement algorithm 

(top: panoramic image generated by standard bilinear interpolation,  
bottom: panoramic image generated by feature-based method) 

However, for photographic omnidirectional images the results are not satisfactory 

(Figure 5.38). The main reasons are: 

1) When the detected edges are not orthogonal or 45º inclined, because of the pixel 

leaps along the edge, the zig-zags are observed in the resultant image  (Figure 5.39). 

When the images are upsampled these zig-zags get larger. In the Ramanarayanan’s 

method, simple synthetic images are used and edges are modeled with splines. 

However, it is difficult to generate spline edges in photographic images. 
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Figure 5.39: A snapshot from the edge detection-based enhancement Java application.  

18º inclined checkerboard is upsampled to test the algorithm (up-left: inclined checkerboard, 
down-left: detected edges, down-right: upsampled & enhanced checkerboard) 

 

2) When the edge pass is not sharp (such as different gray levels/tones) the 

determined edge thickness may not be one pixel (Figure 5.40). Sometimes, in order 

to catch the intensity differences in all directions we need ‘thick’ edges. As a result, 

such multi-layer edges result in thick layers in the resultant image and a thick and 

multi-layer transition occurs. 

In Figure 5.41, there exist thin lines of gray pixels at the intersections of white and 

black regions in the input image (up-left). Some edges detected by edge detection 

algorithm are double-layered (down-left). This is the reason of the gray areas in some 

regions of the output (panoramic) image (down-right). In Figure 5.38, effects of this 

multi-layer phenomenon on the photographic panoramic images can be observed. 

Thick-layered transitions are observed because of the detected multi-layer edges. 
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Figure 5.40: Multi-layer edge detection phenomenon, left: different gray levels  
neighboring in the ODI are represented, right: detected multi-layer edges 

 
 

 

 

 

 

 

 

 

 

Figure 5.41: A snapshot from the edge detection-based enhancement Java application. 
A synthetic ODI is input. (up-left: input ODI, down-left: detected multiplayer edges,  

down-right: enhanced panoramic image) 

Even though we decrease the detected edge pass length to one pixel in the edge 

detection algorithm, because the actual edge will be thicker the rest of the area will 

remain blurred. As an example, in Figure 5.42 the detected edges (down-left) are thin 

when compared to the edge detection used for Figure 5.38. For this reason, in the 

panoramic image at down-right of Figure 5.42 sharpened partially. Sharpening at the 

edge of the book is not continuous. 

x1 x2 x3 x4 

Edge 1 Edge 2 Edge 3 



  
90 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

 
Figure 5.42: A snapshot from the edge detection-based enhancement Java application.  

(up-left: input ODI, up-right: panoramic image generated by standard bilinear interpolation, 
down-left: detected edges, down-right: panoramic image generated by feature-based method) 

 
 

We added blurring to the enhancement algorithm and obtain a more appealing view 

(Figure 5.43) when compared with the result in Figure 5.38. 

We also tried our algorithm with a spherical panoramic image (Figure 5.44). As the 

vertical distribution is more condensed in the spherical panoramas, enhancement is 

needed mainly in the horizontal direction. Blurring added resultant image is given in 

Figure 5.45. 
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Figure 5.43: Blurring added to the enhancement algorithm,  
to be compared with the image at the bottom of Figure 5.38 

 
 

We have tested the method described in [62] for our problem. In this method, for 

every 4-pixel neighborhood, gradient vectors in horizontal, vertical and diagonal 

directions are calculated and direction in which the least intensity difference occurred 

is recorded. Intensity values of the pixels in the generated panoramic image are 

defined as the average of the pixels on the same side of the possible edge (Figure 

5.46), i.e. pixels in the recorded direction. When we look at the resultant image 

(Figure 5.47), we observe diamond-like boxes as if it is crystallized. The boundaries 

of these boxes are very sharp. Because the intensity value of the generated pixel is 

given as the arithmetic mean of the two neighboring pixels, the calculated intensity 

value does not change until the next neighborhood where the intensity value changes 

suddenly. Together with the upsampling, this phenomenon shows itself as constant-

intensity value regions. 
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Figure 5.44: Result of the edge detection-based enhancement for spherical panorama  

(top: spherical panoramic image generated by standard bilinear interpolation,  
bottom: spherical panoramic image generated by feature-based method) 

 
 
 
 
 
 
 
 

 
 

Figure 5.45: Blurring added to the enhancement algorithm,  
to be compared with the image at the bottom of Figure 5.44 

 

 

 

 

 

Figure 5.46: Interpolation scheme of the method described in [62], I[p] = (I[x1]+I[x 2]) / 2,  
p: the location of which the intensity value to be determined, 

shaded area: the region that is interpolated using black pixels 

p p 
x1 x2 x3 
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Figure 5.47: A snapshot of the Java application constructed to test the direction-adaptive 
interpolation technique described in [62] 

 

To overcome the sudden pixel value changes, after determining edge orientations we 

used a modified bilinear interpolation as explained in [63]. In bilinear interpolation 

the distances to the corners of the interpolation mask are included in the calculation, 

therefore sudden pixel value changes are decreased. To fulfill the requirement of 

bilinear interpolation method, values of the selected pixels are re-employed instead of 

the intensity values of the non-selected pixels in the 4-pixel neighborhood. A small 

amount of blurring is also added to the algorithm by smoothing the transitions 

between different calculation regions within the same 4-pixel neighborhood. 

The result is given in Figure 5.48. Sharpness between the different intensity value 

areas is decreased but could not be totally alleviated because there still occurs 

considerable intensity changes between the adjacent interpolation areas and the 
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different calculation regions within one area. Result of the same algorithm on the 

spherical panoramic image is given in Figure 5.49. 

More successful results are not expected with this algorithm since only four types of 

edges (vertical, horizontal and diagonals) are employed. The algorithm that we 

presented previously is able to define more edge schemes and only needs to check 

the edge direction  in the regions of detected edges. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Figure 5.48: A snapshot of the Java application constructed to test a direction-adaptive 

interpolation similar to the one explained in [63] 
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Figure 5.49: Result of the direction-adaptive interpolation for spherical panorama,  
to be compared with Figure 5.48 

5.3.2.3 Conclusions 

We observe thick layers in the resultant panoramic image due to the upsampling 

applied during image generation. This problem could be solved by considering the 

edges globally rather than locally. When the edges are described only by local 

information in a neighborhood of four pixels the edge orientations and locations are 

quantized to very few levels. If we were to consider a wider area, better 

representation of the edge would be obtained at the expense of higher computational 

load. 

At the lower parts of the panoramic image considerable amount of upsampling 

(approx. 8-10 times) occurs. In the previous work examined, research is made with 

images upsampled 2 to 5 times. Therefore, these artifacts are not as annoying as in 

our experiments.  

When the detected edges are not orthogonal or 45º inclined, the zig-zags are 

observed in the resultant image due to the pixel leaps along the edge because edge 
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can not be defined as a perfect line. Together with the upsampling these zig-zags are 

amplified. Using splines while determining the edges would be a solution to this 

problem as explained in [65]. However, it is difficult to keep track of control points 

in large photographic images, as there will inevitably be multiple edges. The 

examples presented in [65] were synthetic images. 

Lastly, edge transitions typically do not occur in single pixels in photographic 

images. They rather manifest themselves as a continuum of gray levels, resulting in 

multiple layers in the upsampled image. Thinning the edges to a one-pixel width 

would not solve the problem because the neighborhood of the edge will remain 

blurred. 

Using spherical panoramic images instead of cylindrical ones as input improves the 

result automatically since the spherical panoramas are more condensed in vertical 

direction and only horizontal direction needs improvement. 

As a conclusion, we developed and tested several techniques for our blurring 

problem. Because of the high upsampling rate and information loss around the center 

and it becomes very difficult to determine where the actual edge is located. We 

believe that more modifications in the mentioned techniques will not be able to 

improve the result further. Hybrid methods combining different techniques 

(including the mentioned ones) or knowledge-based methods like using the 

knowledge of edges in the image such as tables and shelves may be able to enhance 

the images further.  
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CHAPTER 6 
 
 

Conclusions 
 
 

 
 
In this thesis, catadioptric omnidirectional imaging systems are analyzed from 

different points of view. Application areas and studies on such imaging systems are 

investigated and state-of-the-art is summarized. 

Geometrical properties of common mirror types used in catadioptric systems and 

image formation through these systems are examined in Chapter 2. Geometrical 

relations for panoramic and perspective image generation with different mirror types 

are summarized. One can easily implement viewing applications of described 

systems using the provided information. 

6.1 Findings and Application Areas 

Reflections of paraboloidal, hyperboloidal and spherical mirrors are simulated and 

the omnidirectional images gathered through these mirror types are compared. 

Paraboloidal mirror’s surface equation has one parameter and light rays targeting the 

mirror focal point are reflected orthogonally and collected by a telecentric lens. 

These two facts conclude that ODIs taken with different paraboloidal mirrors 

resemble each other by a scale factor. Hyperboloidal mirror’s surface equation has 

two parameters. Thus, unlike the paraboloidal mirror both scale and curvature may 

change by manipulating these two parameters. Spherical mirror has one parameter 

(the radius), which changes the size of the mirror. But ODIs taken with different 

spherical mirrors do not resemble each other by a scale factor because the distance 

between the mirror and the camera affects the resultant image as well. 



  
98 

A method is developed to determine the unknown parameters of a system with a 

hyperboloidal mirror using the world coordinates of a set of objects and their 

corresponding image coordinates on the ODI. A linear relation between the 

parameters of the hyperboloidal mirror (b and c) is determined. It is observed that as 

long as the b/c ratio is conserved, changing b or c does not affect the reflection. This 

ratio is used as one parameter for the optimizations. We are able to estimate the b/c 

ratio and camera focal length (f) with a performance depending on the noise of image 

point readings and the number of points used for the optimization. 

We also tried our parameter extraction method with a calibration pattern. The 3D 

coordinates of a corner of this calibration pattern are estimated. We assumed that the 

alignment of the pattern is already known to express the coordinates of all points in 

the pattern in terms of the reference corner point. 

As explained in the first chapter, applications of catadioptric omnidirectional 

cameras are spreading and systems with more than one mirror or multi-camera 

systems are already being used. Using such systems requires a well-settled 

knowledge on the calibration issues. Conducted research and findings in this thesis 

are instrumental for calibration of such imaging systems. 

In Chapter 4, resolutional properties of the panoramic images (panoramas) that are 

generated from the omnidirectional images are examined. In Section 4.1, the blurring 

problem encountered in panoramic projections is defined and the effect of 

hyperboloidal, paraboloidal and spherical mirror profiles on this problem is analyzed.  

Different projection surface alternatives for the panoramic projections are evaluated 

as well. By modifying the projection surface we can manipulate the panoramic 

images. Cylindrical projection gives an unappealing view for the objects imaged 

towards the center of the ODI. Conical and spherical projections create appealing 

panoramic images since they generate realistic vertical representations. It can be said 

that, spherical projection should be preferred since it has an angle-based vertical 

representation like regular cameras; therefore it suits our eyes best. However, most of 

the current panoramic imaging applications use cylindrical projection. It has lower 
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computational load and when a high cylindrical representation is not especially 

desired the low-quality regions can be cut from the panorama. 

Concerning the enhancement of panoramic images, the effects of standard 

interpolation methods are evaluated first. The bilinear interpolation, bicubic 

interpolation, nearest neighbor and cubic spline methods are compared by a series of 

computations performed on checkerboards, having different cell size and contrast. 

These images are exposed to gaussian and salt & pepper noises and enlarged to 

implement the upsampling effect. Panoramic images generated by these methods are 

also created from omnidirectional images to examine the visual differences. Results 

showed that there is not a considerable visual difference between images obtained by 

bilinear, bicubic and spline methods and none of them could provide a direct solution 

to the ‘blurring problem’. When their overall efficiencies and computational efforts 

are considered, bilinear interpolation should be preferred and another solution to the 

blurring problem should be searched. 

To enhance the panoramic images blurred due to the high upsampling rate, several 

feature-based techniques are developed and tested. One major problem observed is 

the zig-zags due to the pixel leaps along the edge because edge can not be defined as 

a perfect line. Using splines while determining the edges would be a solution to this 

problem, however, it is difficult to keep track of control points in large photographic 

images, as there will inevitably be multiple edges. The second major problem can be 

defined as the edge transitions typically do not occur in a single pixel in 

photographic images. They rather manifest themselves as a continuum of gray levels, 

resulting in multiple layers in the upsampled image. 

Using spherical panoramic images instead of cylindrical ones as input improves the 

result automatically since the spherical panoramas are more condensed in vertical 

direction and only horizontal direction needs improvement. 

Enhancing the panoramic images can be useful for application areas based on 

presentation and display purposes. Appealing panoramas could be obtained with 

fewer images and/or less computational cost. 
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6.2 Limitations and Future Work 

The parameter extraction method for the systems with a hyperboloidal mirror is 

developed with simulated reflections from a hyperboloidal mirror. It does not include 

all parameters of a real imaging system. In a real system, additional parameters such 

as sensor aspect ratio, image skew and lens distortions should be determined. 

Therefore the presented method may not work as expected and testing it for a real 

omnidirectional system is an important part of future work.  

In the part where optimization is performed with a calibration pattern, it is assumed 

that the alignment of the pattern is known. An extention to this may be using a 

calibration pattern alignment of which is not known. We also observed that the size, 

shape and location of the calibration pattern may affect the results. A calibration 

pattern especially for omnidirectional cameras can be designed in the future. 

Developed and evaluated edge-detection based techniques for panoramic image 

enhancement are not very successful, but they can constitute a base for future work. 

Because of the information loss due to the high upsampling rate in the panoramic 

images, it becomes very difficult to determine where the actual edge is located. We 

believe that more modifications in the mentioned techniques will not be able to 

improve the results significantly. Hybrid methods combining different techniques 

(including the mentioned ones) or knowledge-based methods like using the 

knowledge of edges in the image such as tables and shelves may be able to enhance 

the images further.  

Catadioptric imaging is a new area and standard image processing techniques are 

often inadequate for these systems. Specialized algorithms have to be developed for 

catadioptric omnidirectional imaging systems. 
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APPENDIX A 
 
 

Derivation of Linear Relationship between Mirror Parameters 
 
 
We modified Equation 3.1 by writing one of these parameters (b) in terms of the 

other parameter (c); 
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APPENDIX B 
 
 

Optimization Algorithm for Parameters k and f 
 
 
Below subroutine is written in MATLAB and used for the determination of the 

hyperboloidal mirror parameter k (which is equal to b/c as defined in Section 3.4.4) 

and camera focal length (f) when a number conjugate pairs (world coordinates X,Y,Z 

and corresponding image coordinates x,y) are provided. It uses Gauss-Newton 

method for optimization. Also total squared error value is checked at each step, if 

error is not decreased step size is made smaller by a scale factor. Calculation 

functions of total squared error, residual vector and jacobian matrix are given after 

the optimization subroutine. 

 
 
gaussnewton.m 
------------------- 
% This subroutine is to determine the hyperboloidal mirrored omnidirectional system  
% parameters: k and f.  
% It uses three other subroutines: totalerror.m, residual.m and jacobian.m 
 

function u = gaussnewton(k,f,X,Y,Z,x,y) 

% here, k and f are the initial guesses of unknown parameters 
% X,Y,Z,x,y are the real world and image coordinate values of conjugate pairs 
 
u=[k; f];  % initial values to be iterated 
e(1)=totalerror(u(1),u(2),X,Y,Z,x,y);   % error calculation for initial values 
eps=1;  % this variable is used for stop value of iteration loop 
i=1;   % counter for error array 
format long; 

r=residual(u(1),u(2),X,Y,Z,x,y);     % residual vector for initial values 
j=jacobian(u(1),u(2),X,Y,Z,x,y);    % jacobian matrix for initial values 
 
while eps > 10^(-20) % when step size decreases to this value iteration stops 
     
   i=i+1;    % iteration is incremented 
    m=0.5;    % scale factor used for regulating the step size 
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    s=(-1)*(j'*j)^(-1)*(j'*r'); % direction of the step (Gauss-Newton) 
     
    while eps > 10^(-20) % if error is not decreased step size is made smaller 
      step = s*m;  % step is calculated 
        unew=u+snew; % pair is modified and new error is calculated 
        e(i)=totalerror(unew(1),unew(2),X,Y,Z,x,y);  % error with current values  
        if e(i) < e(i-1) 

             break   % if error is decreased this step is completed 
       else 

   m=m/2;  % if error is not decreased size of step is halved 

eps=sqrt(snew(1)^2 + snew(2)^2);   % norm of the step is calculated 
       end; 

   end; 

     
    u=unew;   % new (b,c) pair at the end of iteration step 
 
   r=residual(u(1),u(2),X,Y,Z,x,y);     % residual vector is modified 
   j=jacobian(u(1),u(2),X,Y,Z,x,y);    % jacobian matrix is modified 
 

end; 

----------------------- 
 

 

totalerror.m 
----------------------- 

% This function is to determine the total error for given parameters k and f 
% according to a number of given conjugate pair coordinates (X,Y,Z,x,y) 

 

function e = totalerror(k,f,X,Y,Z,x,y) 

[piksv,piksh] = size(x); % size of the conjugate pair set is determined 

 
for a=1:piksh 

 

    errx(a)= ( x(a) - ( f*X(a)*(k^2-1) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)) ) ); 

    erry(a)= ( y(a) - ( f*Y(a)*(k^2-1) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)) ) ); 

    evx=errx(a)^2;  % square of the error for x coordinates is calculated 

    evy=erry(a)^2;  % square of the error for y coordinates is calculated 

 

end; 

 

e=(sum(evx)+sum(evy))/(2*piksh); % mean of error is calculated 
---------------------- 
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residual.m 
------------------ 
% This function is to construct the residual vector 
 
function r = residual(k,f,X,Y,Z,x,y) 

[piksv,piksh] = size(x); % size of the conjugate pair set is determined 

 

for a=1:piksh 

    rx(a) = ( x(a) - ( f*X(a)*(k^2-1) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)) ) ); 

    ry(a) = ( y(a) - ( f*Y(a)*(k^2-1) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)) ) ); 

end; 
 

r=[rx ry];  % residual vector is constructed 
--------------------- 
 
 
jacobian.m 
------------------ 
% This function is to construct the jacobian matrix 
 

function j = jacobian(k,f,X,Y,Z,x,y) 

[piksv,piksh] = size(x); % size of the conjugate pair set is determined 

 

for a=1:piksh 

  

 % dr/dk component; ath row 1st column 
 jx(a,1)= (-f*X(a)*2*k) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)) + (f*X(a)*(k^2-

1)*(Z(a)*2*k-2*sqrt(X(a)^2+Y(a)^2+Z(a)^2))) / 

(Z(a)*(k^2+1) - 2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2))^2 ; 

 jy(a,1)= (-f*Y(a)*2*k) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)) + (f*Y(a)*(k^2-

1)*(Z(a)*2*k-2*sqrt(X(a)^2+Y(a)^2+Z(a)^2))) / 

(Z(a)*(k^2+1) - 2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2))^2 ; 

  

 % dr/df component; ath row 2nd column 
 jx(a,2)= (-X(a)*(k^2-1)) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)); 

 jy(a,2)= (-Y(a)*(k^2-1)) / (Z(a)*(k^2+1) - 

2*k*sqrt(X(a)^2+Y(a)^2+Z(a)^2)); 

 

end; 
 

j=[jx; jy];  % jacobian matrix is constructed 
--------------------- 
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APPENDIX C 
 
 

Algorithm for Sharpening the Edge Pass 
 
 
In this algorithm, the panoramic image is scanned horizontally and vertically and the 

pixel intensity values are recorded for a predefined array length (buffer). If the 

intensity difference along this array exceeds a certain threshold, then the pixel values 

are reorganized so that the edge pass length will be shorter. This method is 

implemented by using the Java algorithm given below. 

Sharpen.java 
------------------------------------ 
import javax.swing.JOptionPane; 

 

public class Sharpen { 

 

 int verBuffersize;  // these variables are assumed to be created elsewhere 
 int horBuffersize; 

 int[][] verBuffer; 

 int[][] horBuffer; 

 int verThres; 

 int horThres; 

 IntRGBImage rgbOut5; 

 

 public Sharpen(IntRGBImage rgbIn) { 

 

verBuffersize=Integer.parseInt(Sharpening.txtVerBuffersize.getText()); 

horBuffersize=Integer.parseInt(Sharpening.txtHorBuffersize.getText()); 

verThres=Integer.parseInt(Sharpening.txtVerThreshold.getText()); 

horThres=Integer.parseInt(Sharpening.txtHorThreshold.getText()); 

      

 // initialize the vertical buffer 

 verBuffer=new int[verBuffersize][3]; 

 for (int a=0;a<3;a++) 

 for (int b=0;b<verBuffersize;b++) 

      verBuffer[b][a]=0; 
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 // initialize the horizontal buffer 

 horBuffer=new int[horBuffersize][3]; 

 for (int a=0;a<3;a++) 

 for (int b=0;b<horBuffersize;b++) 

  horBuffer[b][a]=0; 

 } 

 

 //this method is to sharpen the lower part of a panoramic image 

 public IntRGBImage sharpenLow(){   

      

     int[] verAverage=new int[verBuffersize]; 

     int[] horAverage=new int[horBuffersize];      

     int counter=0; 

     int loopSize=0; 

         int instantOrder=0; 

     boolean giderekBuyuyor; 

     boolean giderekKuculuyor; 

           

     // Vertical sharpening 

     for (int i=0;i<rgbOut5.Width;i++) 

     for (int j=0;j<rgbOut5.Height;j++){ 

               

     // transfer of buffer elements  

     for (int a=0;a<3;a++) 

  for (int b=(verBuffersize-1);b>0;b--)        

    verBuffer[b][a]=verBuffer[b-1][a];  

             

     verBuffer[0][0]=(rgbOut5.Data[j*rgbOut5.Width+i] >> 16) & 0xff; 

               verBuffer[0][1]=(rgbOut5.Data[j*rgbOut5.Width+i] >> 8) & 0xff; 

               verBuffer[0][2]=(rgbOut5.Data[j*rgbOut5.Width+i]) & 0xff; 

                    

                // initialization of average array 

                for (int k=0;k<verBuffersize;k++) 

                verAverage[k]=(verBuffer[k][0]+verBuffer[k][1]+verBuffer[k][2])/3; 

                 

                counter=counter+1; 

                loopSize=verBuffersize-1; 

                giderekBuyuyor=true; 

                giderekKuculuyor=true; 

                 

                while (loopSize>0){ 

                 if ((Math.abs(verAverage[0]-verAverage[loopSize])>verThres) &&  
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(j>loopSize)&&(counter>(loopSize))&& 

(j>(0.35*rgbOut5.Height+0.6*rgbOut5.Height* 

(loopSize/verBuffersize))) ){ 

 

                  for (int k=0;k<loopSize;k++){ 

                 if (verAverage[k]>=verAverage[k+1]){ 

                   continue; 

                 }else{ 

                   giderekBuyuyor=false; 

                 } 

                  } 

                  for (int k=0;k<loopSize;k++){ 

                 if (verAverage[k]<=verAverage[k+1]){ 

                   continue; 

                 }else{ 

                   giderekKuculuyor=false; 

                 } 

                  } 

                  if (giderekBuyuyor || giderekKuculuyor){ 

                 for (int k=1;k<=loopSize;k++){ 

                   if (k<((loopSize+1)/2-1)){ 

                    instantOrder=(int)(k*0.4); 

                   } else if (k>((loopSize+1)/2)){ 

                    instantOrder=(int)(k+(loopSize-k)*0.6); 

                   } else { 

                    instantOrder=(k); 

                   } 

                   rgbOut5.Data[(j-k)*rgbOut5.Width+i]=0xFF000000  

| (verAverage[instantOrder]<< 16) |  

(verAverage[instantOrder]<< 8) |  

(verAverage[instantOrder]); 

                 } 

                  } 

                } 

                loopSize=loopSize-1; 

               } 

     }     

 

      

 // Horizontal sharpening 
    counter=0; 

     instantOrder=0; 
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     for (int j=0;j<rgbOut5.Height;j++) 

     for (int i=0;i<rgbOut5.Width;i++){ 

               

     //transfer of buffer elements  

     for (int a=0;a<3;a++) 

       for (int b=(horBuffersize-1);b>0;b--)        

        horBuffer[b][a]=horBuffer[b-1][a]; 

             

      horBuffer[0][0]=(rgbOut5.Data[j*rgbOut5.Width+i] >> 16) & 0xff; 

                horBuffer[0][1]=(rgbOut5.Data[j*rgbOut5.Width+i] >> 8) & 0xff; 

                horBuffer[0][2]=(rgbOut5.Data[j*rgbOut5.Width+i]) & 0xff; 

                    

                //initialization of average array 

                for (int k=0;k<horBuffersize;k++) 

                 horAverage[k]=(horBuffer[k][0]+horBuffer[k][1]+horBuffer[k][2])/3; 

             

      counter=counter+1; 

                loopSize=horBuffersize-1; 

                giderekBuyuyor=true; 

                giderekKuculuyor=true; 

                 

                while (loopSize>0){ 

if ((Math.abs(horAverage[0]-horAverage[loopSize])>horThres)&& 

(j>loopSize)&&(counter>(loopSize))&& 

(j>(0.35*rgbOut5.Height+0.6*rgbOut5.Height* 

(loopSize/horBuffersize))) ){ 

 

                  for (int k=0;k<loopSize;k++){ 

                   if (horAverage[k]>=horAverage[k+1]){ 

                    continue; 

                   }else{ 

                    giderekBuyuyor=false; 

                   } 

                  } 

                  for (int k=0;k<loopSize;k++){ 

                   if (horAverage[k]<=horAverage[k+1]){ 

                    continue; 

                   }else{ 

                    giderekKuculuyor=false; 

                   } 

                  } 

                  if (giderekBuyuyor || giderekKuculuyor){ 

                 for (int k=1;k<=loopSize;k++){ 
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                   if (k<((loopSize+1)/2-1)){ 

                    instantOrder=(int)(k*0.4); 

                   } else if (k>((loopSize+1)/2)){ 

                    instantOrder=(int)(k+(loopSize-k)*0.6); 

                   } else { 

                    instantOrder=(k); 

                   } 

                   rgbOut5.Data[j*rgbOut5.Width+(i-k)]=0xFF000000  

| (horAverage[instantOrder]<< 16) |  

(horAverage[instantOrder]<< 8) |  

(horAverage[instantOrder]); 

                 } 

                  } 

                 } 

                 loopSize=loopSize-1; 

                } 

     }     

 

     return rgbOut5; 

    } 

   


