

SAFRAN:
A DISTRIBUTED AND PARALLEL APPLICATION

DEVELOPMENT FRAMEWORK FOR NETWORKS OF HETEROGENEOUS
WORKSTATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HAMZA GÖLYERİ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

APRIL 2005

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan ÖZGEN
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ayşe KİPER
Head Of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Müslim BOZYİĞİT
Supervisor

Examining Committee Members

Prof. Dr. Payidar GENÇ (METU, CENG)

Prof. Dr. Müslim BOZYİĞİT (METU, CENG)

Prof. Dr. Semih BİLGEN (METU, EEE)

Dr. Atilla ÖZGİT (METU, CENG)

Dr. Cevat ŞENER (METU, CENG)

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Hamza GÖLYERİ

 iii

ABSTRACT

SAFRAN:
A DISTRIBUTED AND PARALLEL APPLICATION DEVELOPMENT

FRAMEWORK FOR NETWORKS OF HETEROGENEOUS WORKSTATIONS

GÖLYERİ, Hamza
M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Müslim BOZYİĞİT

April 2005, 113 pages

With the rapid advances in high-speed network technologies and steady decrease in

the cost of hardware involved, network of workstation (NOW) environments began

to attract attention as competitors against special purpose, high performance parallel

processing environments. NOWs attract attention as parallel and distributed

computing environments because they provide high scalability in terms of computing

capacity and they have much smaller cost/performance ratios with high availability.

However, they are harder to program for parallel and distributed applications because

of the issues involved due to their loosely coupled nature. Some of the issues to be

considered are the heterogeneity in the software and hardware architectures,

uncontrolled external loads, network overheads, frequently changing system

characteristics like workload on processors and network links, and security of

applications and hosts.

The general objective of this work is to provide the design and implementation of a

JavaTM-based, high performance and flexible platform i.e. a framework that will

facilitate development of wide range of parallel and distributed applications on

 iv

networks of heterogeneous workstations (NOW). Parallel and distributed application

developers are provided an infrastructure (consisting of pieces of executable software

developed in Java and a Java software library) that allows them to build and run their

distributed applications on their heterogeneous NOW without worrying about the

issues specific to the NOW environments.

The results of the extensive set of experiments conducted have shown that Safran is

quite scaleable and responds well to compute intensive parallel and distributed

applications.

Keywords: Distributed and Parallel Computing, Java, Network of Heterogeneous

Workstations (NOW), Parallel and Distributed Application Development

Frameworks

 v

ÖZ

SAFRAN:
HETEROJEN İŞ İSTASYONU AĞLARI İÇİN PARALEL VE DAĞITIK

UYGULAMA GELİŞTİRME ALTYAPISI

GÖLYERİ, Hamza
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Prof. Dr. Müslim BOZYİĞİT

Nisan 2005, 113 sayfa

Yüksek hızlı bilgisayar ağları teknolojilerindeki hızlı gelişmelerle birlikte iş

istasyonları ağı (İİA) ortamları, özel amaçlı, yüksek performanslı paralel bilgisayar

mimarilerine rakip olarak dikkat çekmeye başladılar. Hesaplama kapasitesi

bakımından sağladıkları yüksek ölçeklenebilirlik ve sağladıkları çok daha düşük

fiyat/performans oranlarıyla İİA’lar paralel ve dağıtık bilgi işlem ortamları olarak

dikkat çekiyorlar. Fakat İİA’ların dağıtık doğalarına bağlı birçok problem, İİA’lar

üzerinde çalışacak paralel ve dağıtık uygulamaların geliştirilmesini oldukça

zorlaştırmaktadır. Dikkate alınması gereken önemli noktalardan bazıları yazılım ve

donanım mimarilerindeki heterojenlik, kontrolsüz ve düzensiz harici yükler, ağ

iletişimden dolayı oluşan performans düşmeleri, çok sık değişen işlemci ve ağ

bağlantıları üzerindeki yükler gibi sistem özellikleri ve uygulamaların/iş

istasyonlarının güvenliğidir.

Genel olarak bu tez çalışmasının amacı heterojen iş istasyonu ağları üzerinde

çalıştırılabilecek paralel ve dağıtık uygulamaların geliştirilmesini kolaylaştıracak

JavaTM tabanlı, yüksek performanslı ve esnek bir uygulama geliştirme platformu ve

 vi

altyapısı tasarlamak ve gerçekleştirmektir. Paralel ve dağıtık uygulama geliştiricilere

sunulan (Java ile geliştirilmiş yazılım parçalarından ve bir Java yazılım

kütüphanesinden oluşan) altyapı, geliştiricilerin bu altyapı üzerine dağıtık ve paralel

uygulama geliştirip, geliştirdikleri uygulamaları heterojen İİA’lar üzerinde İİA’lar

gibi dağıtık sistemlere özel sorunlarla ilgilenmeden çalıştırabilmesini sağlamaktadır.

Yapılan geniş çaplı deneylerin ve testlerin sonuçları göstermektedir ki, Safran

hesaplama ağırlıklı paralel ve dağıtık uygulamalar için yüksek ölçeklenebilirliğe

sahiptir ve oldukça başarılıdır.

Anahtar Kelimeler: Dağıtık ve Paralel Bilgi İşlem, Java, Heterojen İş İstasyonu

Ağları (İİA), Paralel ve Dağıtık Uygulama Geliştirme Altyapıları

 vii

gÉ Åç Ä|ààÄx á|áàxÜ f|uxÄ ã|à{ ÄÉäx

 viii

ACKNOWLEDGEMENT

First of all, I would like to express my sincere gratitude and thanks to my thesis

advisor Prof. Dr. Müslim BOZYİĞİT for his continuous guidance, advice, criticism,

and insight all throughout this work.

To my parents, I give my great gratitude for their sustained support and

encouragement through my life.

I also would like to express my thanks to my supervisors, fellow workers and friends

at CyberSoft for their understanding and support.

Finally to my most loved, Sibel, I would like to offer my regret for the time that I

would very much like to spent with her but instead that I had to give to this work.

 ix

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ... vi

ACKNOWLEDGEMENT.. ix

TABLE OF CONTENTS .. x

LIST OF FIGURES .. xiii

LIST OF ABBREVIATIONS ... xv

CHAPTER

1. INTRODUCTION.. 1

1.1 Background and Motivations .. 1

1.2 Objectives .. 3

1.3 Thesis Layout .. 5

2. RELATED WORK .. 7

2.1 SuperWeb, Javelin, JANET (University of California, Santa Barbara) 9

2.2 Charlotte (New York University) .. 10

2.3 KnittingFactory (New York University)... 12

2.4 Ajents (York University, University of Waterloo)... 13

2.5 JavaParty (University of Karlsruhe, Germany) .. 14

2.6 JavaSymphony (University of Vienna) ... 15

2.7 JavaNOW (DePaul University) ... 17

2.8 Discussion .. 18

3. ARCHITECTURAL CONCEPTS AND DESIGN ... 20

3.1 Introduction .. 20
3.1.1 General Requirements ... 20

3.1.2 Assumptions and System Requirements... 21

3.2 Computational and Programming Models... 21
3.2.1 The Low-Level Computation Model... 22

 x

3.2.2 The High-Level Computation Model.. 24

3.3 System Architecture ... 26
3.3.1 Overview ... 26

3.3.2 Brokers .. 28

3.3.3 Hosts .. 31

3.3.4 Applications .. 33

3.4 Logical Design... 34
3.4.1 Overview ... 34

3.4.2 The Java Language and Runtime Environment.. 34

3.4.3 Distributed-Objects Layer... 37

3.4.4 Communication SPI and Implementation Layers ... 38

3.4.5 Dynamic Proxies Layer.. 39

3.4.6 Parallel Application Services... 40

3.4.7 User Applications ... 41

4. SYSTEM DESIGN AND IMPLEMENTATION DETAILS.. 42

4.1 Distributed-Objects Layer ... 42
4.1.1 Server Side Objects and Entities... 43

4.1.2 Client Side Objects and Entities.. 44

4.2 Dynamic Proxy Generation ... 45

4.3 Pluggable Communication Infrastructure ... 48

4.4 Parallel Application Services... 51
4.4.1 Broker and Host Relations .. 53

4.4.2 Locating Brokers and Automatic Registration.. 54

5. TESTING AND EVALUATON OF SAFRAN.. 57

5.1 Experiments .. 57
5.1.1 Test Applications .. 58

5.1.2 Experimental Setup.. 59

5.1.3 Experiment Configurations ... 60

5.2 Experiment Results .. 61
5.2.1 Real Matrix Multiplication Application Tests ... 63

5.2.2 Distributed Data Matrix Multiplication Application Tests 73

5.2.3 Comparison... 81

5.3 Summary of Test Results ... 83

6. CONCLUSION .. 85

7. FUTURE WORK... 87

 xi

7.1 High-level Computational and Programming Model...................................... 87

7.2 Low-level Computational and Programming Model....................................... 87

7.3 Security.. 88

7.4 Network Communication Service Implementation ... 88

7.5 Scheduling and Load Balancing.. 88

REFERENCES... 90

APPENDICES

APPENDIX A: INTERFACES PROVIDED BY SAFRAN’S LAYERS 95

A.1 Communication SPI Layer .. 95

A.2 Distributed-Objects Layer ... 98

A.3 Dynamic Proxies ... 105

A.4 Parallel Application Services Layer.. 105

APPENDIX B: SOURCE CODE OF THE TEST APPLICATION.............................. 109

 xii

LIST OF FIGURES

Figure 3.1 Architectural organization of entities of a sample Safran system. 27

Figure 3.2 Logical design of Safran’s infrastructure... 35

Figure 4.1 Internal entities of Distributed-Object layer .. 43

Figure 4.2 Distributed-Object layer UML class diagram.. 45

Figure 4.3 Relations between user code and Distributed-Objects layer entities....... 46

Figure 4.4 Dynamic proxy generation infrastructure of Safran. 47

Figure 4.5 Class diagram for Communication SPI layer .. 49

Figure 4.6 Class diagram of creation of RemoteObjectHost’s 50

Figure 4.7 Class diagram for creation of ObjectHostingService’s................... 50

Figure 4.8 Class diagram for the infrastructure of Parallel Application Services..... 52

Figure 4.9 Message broadcasting and Broker locating sub-system class diagram ... 56

Figure 5.1 Problem size vs. execution time graph for 1 Host RMMA tests 63

Figure 5.2 Task number vs. execution time graph for 1 Host RMMA tests 64

Figure 5.3 Problem size vs. speedup graph for 1 Host RMMA tests........................ 65

Figure 5.4 Task number vs. speedup graph for 1 Host RMMA tests........................ 65

Figure 5.5 Task number vs. overhead time graph for 1 Host RMMA tests 66

Figure 5.6 Problem size vs. execution time graph for 8 Host RMMA tests 67

Figure 5.7 Task number vs. execution time graph for 8 Host RMMA tests 68

Figure 5.8 Problem size vs. speedup graph for 8 Host RMMA tests........................ 69

Figure 5.9 Task number vs. speedup graph for 8 Host RMMA tests........................ 69

Figure 5.10 Task number vs. maximum speedups achieved for all RMMA tests 70

Figure 5.11 Problem size vs. maximum speedups achieved for all RMMA tests 71

Figure 5.12 Host number vs. maximum speedups achieved for all RMMA tests 72

Figure 5.13 Host number vs. efficiency of Safran for RMMA................................. 72

 xiii

Figure 5.14 Problem size vs. execution time of graph for 1 Host DDMMA tests.... 73

Figure 5.15 Task number vs. execution time graph for 1 Host DDMMA tests 74

Figure 5.16 Task number vs. execution overhead graph for 1 Host DDMMA tests 75

Figure 5.17 Task number vs. execution overhead graph for 1 Host DDMMA tests 75

Figure 5.18 Task number vs. execution overhead graph for 1 Host DDMMA tests 76

Figure 5.19 Problem size vs. execution time graph for 8 Host DDMMA tests 77

Figure 5.20 Task number vs. execution time graph for 8 Host DDMMA tests 77

Figure 5.21 Problem size vs. speedup achieved graph for 8 Host DDMMA tests ... 78

Figure 5.22 Task number vs. speedup achieved graph for 8 Host DDMMA tests ... 79

Figure 5.23 Task number vs. speedup achieved for all DDMMA tests 80

Figure 5.24 Host Number vs. speedup achieved for all DDMMA tests 80

Figure 5.25 Host number vs. maximum speedup achieved for both applications. ... 81

Figure 5.26 Task number vs. maximum speedup achieved for both applications. ... 82

Figure 5.27 Host number vs. maximum efficiency achieved for both applications.. 83

 xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

CAT Computer Aided Tomography

CPU Central Processing Unit

CRCW Concurrent Read Concurrent Write

DSM Distributed Shared Memory

HPC High Performance Computing

HTTP Hyper Text Transfer Protocol

IP Internet Protocol

IPC Inter-process Communication

JVM Java Virtual Machine

LAN Local Area Network

MPI Message Passing Interface

MPP Massively Parallel Processors

NOW Network of Workstations

OS Operating System

PC Personal Computer

PVM Parallel Virtual Machine

RMI Remote Method Invocation

SPI Service Provider Interface

TCP Transport Control Protocol

TIES Two-phase Idempotent Execution

UFS Unix File System

UML Unified Modeling Language

 xv

CHAPTER 1

1. INTRODUCTION

1.1 Background and Motivations

Although the capacity and performance of computing systems improve at a high rate,

the computational requirements of some scientific and commercial applications are

also constantly growing. Many fundamental problems called grand challenge

problems in science and engineering that have broad economic and scientific

significance require such massive amounts of computational resources and

performance that their solution on single or sequential systems is unacceptably slow.

Moreover, some problems simply cannot be solved sequentially due to the nature of

the problems themselves. Some of the problems that require high performance and

excessive computational resources are related to:

• Earth sciences

o Numerical weather modeling and forecasting

o Seismic exploration

o Oceanography

• Life sciences

o Cancer research

o Drug research

o CAT (Computer aided tomography)

• Engineering applications

o Finite element analysis

o Computational aerodynamics

o Particle physics

o Aerospace applications

 1

• Artificial Intelligence

o Image and speech processing

o Computer vision

High Performance Computing (HPC) and Parallel Computing deal with the solution

of these grand challenge problems. Traditional HPC is based on dedicated

architectures called Massively Parallel Processors (MPP) and supercomputers that

consist of large numbers of high performance, tightly coupled processing elements.

A relatively recent trend is based on connecting low-end individual computing

systems (such as workstations or PCs) over high-speed computer networks to form

high-end workstation clusters and network parallel computing systems [21], [22],

[23], [24]. These solutions are relatively expensive with high cost/performance ratios

and of limited utility as they are designed and dedicated to limited, specific parallel

and distributed applications. Moreover, they are available only to limited number of

researches due to their cost and physical availability, further limiting their utilization.

Continuous and rapid advances in telecommunication and computer technologies

(especially in processing power of microprocessors and in communication network

capacity) combined with steady decrease in costs of these technologies made

networked computers a commodity. It is observed that for more than a decade the

processing capacity of microprocessors is doubled every 18 months, and this trend is

expected to continue for at least another decade. At the same time communication

network capacity increased exceedingly at the local, metropolitan, national and even

global level. All these advances allowed almost all institutions build workspaces in

which people use many computers connected to each other with high-speed

networks. Also the number of personal computers connected to the worldwide

computer network i.e. the Internet grew exponentially and reached hundreds of

millions [25].

On the other hand, studies on these widely available networked computer

environments, especially LANs, have shown that for the most of their operation

times, the computers in such environments are used for tasks that are not

 2

computationally intensive such as file editing, e-mail reading and Web surfing. In

other words, these systems are idle and doing no computation at all for the most of

their lifetimes. A typical machine on the average has a 90% idle processor time even

during peak times of its use [20].

All the above discussion i.e. existence of grand challenge problems, widespread use

of networked computers, and the fact that these systems are idle most of the time

motivated many recent researches in development of systems for harnessing the

aggregate idle, under-utilized computational power of these well-networked

computers to form powerful parallel and distributed computing systems.

1.2 Objectives

The main objective of this thesis work is to design and implement a framework

called Safran (software libraries and supporting infrastructure) that is easy to use (in

terms of programming, configuration and management) for building distributed and

parallel applications on a network of heterogeneous workstations. Safran aims to

allow parallel and distributed application developers to easily utilize aggregated idle

computational resources of their networked computing systems. The key features of

the framework will be:

• Support for Heterogeneity: The framework should have uniform support for

different software (OS) and hardware (processor, machine, and network)

architectures. Users of the framework should be totally abstracted from all

kinds of interoperability problems associated with heterogeneous systems and

be able to develop and run their applications without needing to deal with any

heterogeneity related issues.

• Virtualization: The framework should provide the programmers and

applications a single virtual parallel machine view of the whole network with

high levels of location transparency, fault tolerance, reliability, and

robustness.

 3

• Adaptability: The runtime system should easily, transparently and

automatically adapt to the dynamics of a general workstation network. The

participating machines should be able to easily and transparently join and

leave the system at any time for any reason including machine and network

failures or due to workstation owner preferences. The framework should

shield programmers and applications from dynamically changing properties

of the system; for example the programmer should not deal with machine

failures.

• Transparent Load-Balancing: The framework should provide pluggable

and configurable (possibly dynamic) load balancing infrastructure transparent

to the programmer and applications.

• Accessibility: The services of the framework and runtime system should be

easily accessible by users from anywhere on the network. For example, the

programmers should be capable of running their applications on the system

from any machine on the network.

• Minimized Overhead: The framework should keep the overhead associated

with installation, configuration, and management of the software

infrastructure at a minimum level. For example, new machines should be

easily and transparently added to a running system.

• Flexible and Extensible: The framework should be designed in such a

flexible way that future extensions and modifications to the features and

services of the framework can be made easily in a pluggable way.

The framework is made up of two parts:

1. A software library that provides high level Java APIs that allow developers to

easily write distributed and parallel applications that they can run on their

heterogeneous workstation network without having to deal with the system

level problems.

2. A set of executable software components (daemons processes on

workstations, brokerage services etc.) written in Java. These applications

 4

form the basic infrastructure of the system and they provide the system level

services that application developers do not have to deal with.

The provided APIs will support two different computation and programming models:

1. A low level, distributed-objects based computation model similar to RMI and

CORBA but with additional concepts and services like remote object

creation, object migration etc. In this lower level programming model the

application programmer is not provided high level services such as automatic

load balancing, fault tolerance etc. On the other hand, the application

developer has much more flexibility for developing many types of distributed

and parallel applications because of the availability of basic, lower level but

complete set of computational building blocks.

2. A relatively higher level computation and programming model based on the

high level concept of distributed computations that are composed of

independently and parallel executable tasks is provided. In this model, using

the provided API, application developer explicitly expresses his/her

computation to the system as a set of sub-computations that can be performed

in parallel at different nodes of the system. Scheduling and load-balancing

will be performed by the runtime automatically and transparent to the

application. In fact, programmer will not be able to control how sub-

computations are mapped to the processing nodes because programs will be

written for a virtual parallel machine with an unbounded, unknown and

dynamically changing number of processing nodes.

1.3 Thesis Layout

In Chapter 2, we give a survey of some of the previous works with significant

contribution and that attracted most attention. We also provide a discussion and

comparison of these works in terms of architecture and supported computation and

programming models. Chapter 3 makes an introduction to general and high level

architecture and architectural concepts of Safran such as the abstract computational

 5

models it supports, the programming interfaces it provides, and its requirements and

assumptions about its runtime environment. In Chapter 4, we provide detailed

information about Safran’s design including the logical layers and abstractions it’s

composed of, interfaces and interactions of layers, services, sub-systems, logical and

physical entities provided by each layer etc. Chapter 5 presents the experiments we

conducted to test and evaluate Safran, and the results we obtained about the

performance characteristics of Safran. Chapter 6 draws conclusions on the

effectiveness, strengths and weakness of the system. Finally, Chapter 7 suggests

some possible future extensions to the design and implementation of Safran.

 6

CHAPTER 2

2. RELATED WORK

Starting in early 90’s a large number of researches have attempted to exploit the

intrinsic parallelism and latent computational power in distributed system such as

heterogeneous LANs and even the Internet for running intensive computations,

which were traditionally undertaken with specially designed high-performance MPPs

and supercomputers. However, these distributed, heterogeneous computing

environments are much harder to program and maintain for parallel and distributed

applications because of the issues involved due to their loosely coupled nature. Some

of the issues to be considered are: the heterogeneity in the software and hardware

architectures, uncontrolled dynamic execution environment, less efficient network

communication (high latency, low bandwidth), low reliability, priority for

workstation ownership, and security and privacy of applications and hosts.

A large number of software infrastructures and libraries were developed that dealt

with these issues of loosely coupled network environments to provide services or

desirable execution environment properties for facilitating development of

distributed and parallel applications on these system.

Earlier works like PVM[23] and MPI[21] tried to solve basic heterogeneity problems

and provided a low level, complete set of explicit message passing primitives for

communication and coordination of tasks (or distributed processes), and new

distributed computing constructs like remote process creation and execution. Some

other low-level libraries such as Linda [26] derived systems and Agora [1] provided

Distributed Shared Memory (DSM) based communication facilities. Later works

were build on these low-level frameworks to provide some other higher level

facilities like load monitoring, adaptive load balancing, fault tolerance, check-

 7

pointing, and process migration subsystems for creating high performance, easily

programmable, reliable frameworks[16][18][19][27][28]. Although these systems

enabled development of distributed and parallel applications on heterogeneous

workstation networks, they showed some limitations in achieving a flexible parallel

and distributed programming environment. Due to the low-level programming

interface (API) they provide, they are relatively difficult to program. They failed in

totally shielding the programmer from heterogeneity of the underlying systems. For

example, programmers needed to develop, compile, maintain and distribute different

versions of their executable code for each different architecture in the system. Also

these systems have high setup, configuration and management overhead. Moreover,

these systems are not automatically, transparently and easily scalable i.e. they are

usually limited to a single network domain. All in all, these frameworks are not

flexible in many respects.

The Java Programming Language[31][32] is rapidly being adopted as one of the

most important and widely used languages for parallel and distributed application

development due to the excellent features it offers that are lacking in traditional

languages such as C, C++ and FORTRAN. Java’s attraction is mainly due to its clear

and effective solution to the portability and interoperability problem associated with

heterogeneous machines and operating systems with its standardized virtual machine

architecture whose implementation is available for almost all systems. A Java

program once compiled can be run on any system that has a Java Virtual Machine

(JVM)[33] installed. Moreover its features such as automatic memory management

(garbage collection), rigid security infrastructure, extensive support for network

programming, multi-threaded programming, synchronization mechanisms, object

serialization, and code mobility makes it an excellent choice for distributed, network-

parallel programming. Some other frameworks like Remote Method Invocation

(RMI)[29][36], Jini[34], and JavaSpaces[30] that are build on standard Java to

extend platform’s capabilities further simplify development of large scale distributed

and parallel applications.

 8

Recently, significant number of Java-based systems has been developed to support

distributed and parallel programming on heterogeneous workstation networks and

even on the Internet. SuperWeb[2], Javelin[3], Janet[4], Charlotte[5], Ajents[7],

KnittingFactory[6], JavaParty[8], ParaWeb[9], JavaSymphony[10], JPVM[11],

JavaNOW[12], JAVM[13], ALTAS[14], and Ninflet[15] are some of the works

carried out in the academia with different properties in terms of objectives,

architecture, scalability, supported computational model, type of programming model

provided etc. In the following we give an overview of the most directly related works

with significant contribution and that attracted most attention.

2.1 SuperWeb, Javelin, JANET (University of California,
Santa Barbara)

Javelin[3], originally a prototype of SuperWeb[2], was reported in 1997 as a Java-

based infrastructure for global computing. The goal of Javelin is to harness the

Internet’s vast, growing, computational capacity for ultra-large, coarse-grained

parallel applications. The work that was started with SuperWeb has been continued

with new versions named Javelin++, Javelin 2.0, Javelin 3.0, CX, JICOS, and

currently JANET[4], each with improvements in performance, scalability,

computation and programming model. SuperWeb and the first version of Javelin

were designed based on Java applets running on web browsers. Starting with

Javelin++ the system is based on standalone Java applications instead of applets due

to various limitations of applet-based architecture.

Although various improvements made, the essential architecture remained almost

same: The whole system is based on three system entities named clients, brokers, and

hosts. A client is a process seeking computing resources, a host is a process offering

computing resources, and a broker is a process that coordinates the allocation of

computing resources. Hosts offer their resources to the world by registering to the

brokers. Brokers essentially form a directory of available hosts and they coordinate

resource consumption across clients and hosts. As the computational model, Javelin

supports piecework computations (also called master/slave, manager/worker, or bag-

 9

of-tasks): adaptively parallel computations that decompose into a set of sub-

computations, each of which is autonomous (does not require communication or

coordination with other sub-computations), apart from scheduling work and

communicating results. Parallel matrix multiplication, ray tracing, and Monte Carlo

simulations are some of good examples of piecework computations. Javelin also

supports branch-and-bound computations. Javelin achieves scalability and fault-

tolerance by its network-of-brokers architecture and by integrating distributed

deterministic work stealing with a distributed deterministic eager scheduling

algorithm.

2.2 Charlotte (New York University)

Charlotte[5] is one of the first Java-based frameworks of its kind. Similar to Javelin,

its architecture is mainly based on Java applets embedded into Web pages. It aims to

utilize the Web as a parallel meta-computer but it clearly does not scale much and

experiences bottlenecks due to the limitations of its applet-based architecture.

Charlotte provides distributed shared memory (DSM) architecture within the

language, at the data type level i.e. through classes so it does not modify the Java

Virtual Machine (JVM), nor does it rely on a preprocessor or require any kind of

external runtime support (ex. OS support). For every basic data type in Java, there is

a corresponding Charlotte data type implementing its distributed version. The

consistency and coherence of the distributed data is maintained by the Charlotte

runtime systems. The provided DSM memory-consistency semantics is Concurrent

Read, Concurrent Write Common (CRCW-Common) i.e. one or more entities can

read a shared variable, and one or more entities can write a variable as long as they

write the same value.

Charlotte programs are written for a virtual parallel machine with an unbounded

number of processors sharing a common namespace i.e. the programmer has no

knowledge of how many machines will execute a computation. The main entities in a

Charlotte program are a manager (i.e. a master task) executing serial steps and one

 10

or more workers executing parallel steps. The manager process creates an entry in a

well-known Web page for the active computation and volunteer users load and

execute the worker processes as Java applets embedded into web pages by pointing

their browsers to this page. In essence, the programming model supported by

Charlotte is master-slave (master-worker, or bag-of-tasks) programming model. The

computation is first divided into a large number of small computational units, or task.

Then participating machines pickup and execute a task one at a time until every task

has been executed.

Charlotte achieves load balancing and fault masking by implementing two concepts:

eager scheduling and two-phase idempotent execution (TIES). Eager scheduling

aggressively assigns and re-assigns tasks until all tasks are completed when the

number of remaining task becomes less then the available machines. Concurrent

assignment of tasks to multiple machines prevents slow, un-accessible, or faulty

machines from slowing down the progress of the computation. Multiple executions

of a task (which is possible when using eager scheduling) can result in incorrect

program state. TIES ensures idempotent memory semantics in the presence of

multiple executions. TIES guarantees correct execution of shared memory by reading

data from the master and writing it locally in the workers’ memory space. Upon

completion of a worker the dirty data is written back to the master who invalidates all

successive writes, thus maintaining only one copy of the resulting data. Moreover

Charlotte employs dynamic granularity management (bunching) to mask latencies

associated with the process of assigning tasks to machines. Bunching is achieved by

assigning a set of task to a single machine at once. The size of bunches is computed

dynamically based on the number of remaining tasks and number of available

machines.

Charlotte has a number of problems. The primary function of the manager is

scheduling and distributing works. But it is also responsible for communication of

workers (i.e. it implements the DSM) as all applet-to-applet communication is routed

through it. So it is a potential bottleneck. Secondly, Charlotte requires that a manager

run on a host with an HTTP server. If only one machine with an HTTP server is

 11

available and if more than one application needs to be running on the system

concurrently, then multiple managers have to be running on this only machine. In

this situation such a machine can possibly become a communication bottleneck.

Moreover multiple assignment and execution of the same task with eager scheduling

might cause excessive data traffic leading further performance problems. All in all,

Charlotte does not seem to scale enough to meet its goal of utilizing the Web as a big

meta-computing platform.

2.3 KnittingFactory (New York University)

KnittingFactory[6] is the successor of Charlotte from the same research group. With

KnittingFactory some of the limitations and deficiencies of Charlotte is eliminated.

KnittingFactory addresses the following problems:

• Searching and finding other members of a collaboration session.

• Ability to run a distributed application on a machine without an HTTP server.

• Direct communication between applets.

A distributed registry is implemented based on Web servers and standard Web

browsers. A registry accepts requests for partners, stores these requests, and deletes

them again upon request. A user who wants to participate in a distributed

computation simply points his/her browser to one of these registries. Charlotte

required that master processes of applications run on a machine with a running HTTP

server. KnittingFactory factory solves this problem by automatically embedding a

HTTP server in each application. So now applications can run on any machine. In

Charlotte, all the communication between applets is routed through the master

process. KnittingFactory supports direct communications between worker processes

(applets) by exploiting a non-standard (maybe a bug) property of Sun JVM to pass

RMI object references between applets.

 12

2.4 Ajents (York University, University of Waterloo)

Ajents[7] is a Java based framework that provides necessary infrastructure for

building parallel and distributed applications. Unlike many other similar frameworks

Ajents does not make modifications to the Java language or to the JVM and no

preprocessors, special compilers, or special stub compilers are required. It is a

collection of pure Java classes (a library) and servers (also implemented in Java) so it

runs on any standard compliant JVM. Every host in the system runs a simple

lightweight server called Ajents Server as a daemon process.

Ajents greatly simplifies the task of writing distributed applications by providing

features that are not available in standard Java. Actually it is built on standard Java

RMI technology but extends the distributed object model of RMI by providing

support for:

• Remote Object Creation: While RMI allows local referencing and remote

method invocation on statically created remote objects, Ajents supports

dynamic creation and referencing of objects on remote hosts that are running

Ajents Server.

• Remote Class Loading: To be able to instantiate objects on remote hosts or

to move around objects (i.e. object migration) between remote hosts, Ajents

transparently loads the binary executable code of the object to the remote

host.

• Asynchronous Remote Method Invocation: Java RMI only allows

invocation of methods on remote objects synchronously (or serially). Ajents

supports asynchronous RMI i.e. a process can call a method of a remote

object and continue execution until an arbitrary time when the result of the

method call is available.

• Object Migration: Ajents allows migration of objects between

heterogeneous hosts without a preprocessor, and without modification to the

virtual machine, compiler or stub compiler. This is implemented using check-

 13

pointing, rollback and restarting mechanisms. Any object can be migrated

while it is executing by interrupting its execution, moving the most recent

check-pointed state of the object and restarting the currently executing

method.

The main idea for programming in Ajents environment is to have an Ajents Server

running on every host in a heterogeneous environment and writing applications in

Java using the Ajents class library calls to use resources on these servers by creating

remote objects, invoking their methods, and moving around (migrating) them

between hosts as necessary.

Ajents framework does not support transparent dynamic load balancing but of course

users can implement custom load balancing on top of Ajents framework. Although

not clearly explained, it has some scheduling mechanism that allows selection of an

appropriate host to migrate objects.

Unlike Javelin, Charlotte and KnittingFactory type of frameworks, Ajents does not

dictate any high level distributed or parallel computation model. Instead, it provides

relatively low level and complete, easy to use framework for building any kind of

distributed applications or even higher-level frameworks like Javelin on top of

Ajents. In another view, it’s simply an extension of distributed object model of RMI

technology with new distributed programming facilities.

2.5 JavaParty (University of Karlsruhe, Germany)

Although Java platform includes RMI technology for distributed programming it is

not easy and straightforward to write distributed and parallel applications for

distributed shared memory architectures like clusters of workstations. JavaParty [8]

transparently adds distributed, remote objects to Java simply by declaration, avoiding

complexity, disadvantage and programming overhead of socket based, or RMI based

programming. JavaParty is targeted towards and implemented on clusters of

workstations. It extends the Java language simply and transparently with a pre-

 14

processor and a runtime system for distributed parallel programming in

heterogeneous workstation clusters.

JavaParty adds the remote keyword to the Java language. The programmer simply

attributes classes that should be spread across the distributed environment with the

remote keyword. JavaParty uses a preprocessor, which converts remote classes into

pure Java code with RMI hooks. The change to the language is designed to simplify

RMI programming, placing the burden of creating and handling remote proxies upon

the preprocessor, simplifying the programming task.

Objects of these remote classes can transparently be created on remote hosts and

referenced locally as if they are local objects. JavaParty is location transparent i.e. it

maps created remote objects to hosts transparently. The compiler and runtime system

deals with locality and communication optimization using pluggable distribution

strategies. The programmer can only influence distribution and mapping of object to

hosts by developing and inserting code that directs the strategy’s placement

decisions. Besides distribution strategies at object creation time, JavaParty monitors

the interaction of remote objects and if it is appropriate (or is requested by the

programmer) can schedule object migration between hosts to enhance locality.

2.6 JavaSymphony (University of Vienna)

Basically JavaSymphony [10] extends the distributed object framework provided by

Java RMI Technology with new high level constructs, similar to Ajents and

JavaParty.

High-level distributed and parallel programming frameworks that do not provide

programmer control over locality of data by automatically distributing and migrating

objects can easily lead to loss of performance as the underlying runtime system has

little information about the distributed computation. In contrast to most existing

systems, JavaSymphony provides the programmer with the flexibility to control data

locality and load balancing by explicitly mapping objects to computing nodes.

 15

The key features of JavaSymphony that greatly simplifies performance-oriented

distributed and parallel programming are:

• Dynamic Virtual Distributed Architectures
 The programmer can dynamically define and modify virtual distributed

architectures that impose a virtual hierarchy on distributed system of physical

computing nodes. Virtual architectures consist of a set of components:

computing node, clusters (collection of nodes), sites (collection of clusters),

and domains (collection of sites). Virtual architectures effect how automatic

mapping and migration of objects are done for locality and load balancing

decisions.

• Access to system parameters
 JavaSymphony provides access to a large variety of periodically monitored

system parameters such as CPU load, idle times, available memory, network

latency and bandwidth, etc. Programmer can use these parameters for load

balancing decisions.

• Automatic and User-Controlled Mapping of Objects
 The programmer can control the creation and mapping of objects to specific

components of the virtual architectures. If the programmer does not provide

explicit mapping of objects the JavaSymphony runtime offers automatic

mapping based on periodically monitored systems parameters.

• Automatic and User-Controlled Object Migration
 JavaSymphony supports both automatic and user-controlled migration of

objects based on periodically monitored systems parameters.

• Asynchronous, Remote, and One-sided Method Invocation
 JavaSymphony supports both synchronous and asynchronous remote method

invocation. Moreover for methods that do not return any value it supports

one-sided method invocation.

• Selective Remote Class Loading
 JavaSymphony automatically loads binary class codes only to the nodes on

which they are actually needed. This feature can reduce overall memory

requirements of an application.

 16

JavaSymphony has been influenced by Ajents programming model for remote object

creation, asynchronous remote method invocation and remote class loading. Its most

significant contributions over Ajents are its support for virtual architectures, one-

sided method invocations and access to system parameters.

2.7 JavaNOW (DePaul University)

JavaNOW[12] aims to provide an environment for parallel computing on an ordinary

network of workstations that is both expressive and reliable. It creates a virtual

parallel machine similar to the Message Passing Interface (MPI) model, and provides

distributed shared memory (DSM) similar to Linda memory model but with a

flexible set of primitive operations. It can be view as a hybrid system of PVM, MPI,

and Linda. It provides a simple mechanism to start tasks on remote hosts (as found in

PVM), has a small number of expressive and complete primitives to support

producer/consumer style communication (as found in Linda) and finally has

collective operation that can be performed on shared objects (as found in MPI).

In a JavaNOW system, processes coordinate and communicate through a distributed

associative shared memory similar to tuple-space model and using PVM and MPI

like primitives that are build solely on this shared memory model. The Linda like

DSM is implemented as a totally distributed and load balanced data structure

(actually a distributed hash-table). So it differs from MPI and PVM in that it does not

provide direct point-to-point inter-process communication (IPC) primitives but rather

provides a producer/consumer model of IPC. Mutually exclusive access operations to

the shared memory make it easy to implement distributed synchronization primitives

like locks, mutexes, and semaphores.

JavaNOW does not provide dynamic resource management but requires that the user

statically specify the list of machines on which the application will run. Also it does

not provide dynamic load-balancing at work distribution. It just uses a simple

hashing scheme for load balancing the distributed shared memory.

 17

2.8 Discussion

The presented works generally can be grouped in two according to the computational

and corresponding programming models they support or dictate:

• Low-level Frameworks: These kind frameworks provide a lower-level

programming interface which is usually an extension of Java RMI distributed

object framework with additional services and features such as remote object

creation, object migration, asynchronous remote method call etc. They mostly

aim to extend Java RMI to support and ease the development of general

distributed applications based on the concept of distributed-objects. Most of

them are directly built on Java RMI technology as another layer of library

(API). As the programming concepts, primitives and elements they provide

(such as synchronous/asynchronous remote method invocation, remote object

creation, object migration etc.) are low-level and basic, they do not dictate

any high-level parallel and distributed computational model and they allow a

richer variety of distributed and parallel applications to be developed on

them. On the other hand, they usually do not provide higher level services

like load balancing, job scheduling, and fault tolerance because of the

flexibility they provide. Some examples of these low-level frameworks are

Ajents, JavaParty, and JavaSymphony.

• High-level Frameworks: These kinds of frameworks provide higher-level

programming interfaces that correspond to high level parallel and distributed

computing concepts like parallel applications, tasks, and jobs. For example,

application programmers are required to express their distributed computation

as a set of parallel executable sub-computations (usually named as tasks or

jobs) to the framework using the provided high-level API and the underlying

infrastructure transparently takes care of execution of sub-tasks and collection

of results. Because of the layer of abstraction provided to developers, the

frameworks relieve developers from low-level system problems such as

dispatching works to remote machines, executing them remotely, and

 18

collection of the results. Also such frameworks are able to provide some other

important services such as scheduling, load balancing, and fault tolerance. On

the other hand, the users are usually restricted to some single kind of

computational model as they leave most of the low-level functionality to the

framework. Some examples of high-level frameworks are SuperWeb, Javelin,

Janet, and Charlotte.

Safran provides programming interfaces similar to the ones used in both low-level

and high-level frameworks. A user application can be written against a low-level API

similar to Java RMI with the concept of both synchronous and asynchronous method

invocations on remote objects, creation of objects on remote machines, and migration

of objects between remote machines. Most important contribution of Safran is its

easy to use and familiar programming environment. Developers can create remote

objects on remote machines, call methods on them, migrate them using simple,

familiar syntax and programming concepts. Using Safran, developers can also

develop applications using another high-level API, which is similar to the presented

high-level frameworks but again by providing more clear and easy to use interfaces.

 19

CHAPTER 3

3. ARCHITECTURAL CONCEPTS AND DESIGN

In this chapter, we make an introduction to general features and design

considerations of Safran. We explain the high-level architectural organization and

architectural concepts of a Safran system. Next, internal architecture and logical

layering of Safran’s sub-systems are introduced.

3.1 Introduction

In this section, an introduction to features and design considerations of Safran is

made. Technical requirements and expectations from Safran, the abstract

computational models it supports, the programming interfaces it provides and its

requirements and assumptions about its runtime environment are explained.

3.1.1 General Requirements

The main objective of Safran is to provide an infrastructure that is easy and flexible

to use in terms of programming, setup, configuration, and management for building

distributed and parallel applications on a general network of heterogeneous

workstations. The key features of Safran are:

• Support for Heterogeneity: Safran has uniform support for different

software (OS) and hardware (processor, machine, and network) architectures.

Users of Safran (usually application programmers) are abstracted from

interoperability problems associated with heterogeneous systems and are able

to develop and run their applications without needing to deal with any

heterogeneity related issues.

 20

• Virtualization: For certain kinds of parallel applications, Safran provides the

programmers and applications with a single virtual parallel machine view of

the whole network with high levels of location transparency, fault tolerance,

reliability, and robustness.

• Adaptability: The runtime system of Safran adapts to the dynamics of a

general workstation network automatically and transparently. The

participating machines can easily and transparently join and leave the system

at any time for any reason including machine and network failures or due to

workstation owner preferences. The framework shields programmers and

applications from dynamically changing properties of the system; for

example the programmer does not need to deal with machine failures.

• Transparent Load-Balancing: Safran provides load-balancing infrastructure

and services, which is transparent to the programmer and applications.

• Accessibility: The services of the Safran runtime are easily accessible by

users from anywhere on the network. For example, the programmers can run

their applications on a Safran system from any machine on the network.

• Minimized Overhead: Safran keeps the overhead minimum associated with

installation, configuration, and management of the software infrastructure.

For example new machines can be easily and transparently added to a running

system.

3.1.2 Assumptions and System Requirements

The only key requirement of Safran environment is a standard Java Runtime

Environment (JRE) of version 1.5 or later.

3.2 Computational and Programming Models

Safran provides support for two different kinds of computational models that

correspond to two different levels of programming models. The one that we named

as the low-level programming model provides relatively low-level concepts and

 21

constructs based on the idea of distributed-objects. The other and primary

computation model is based on the higher-level concepts of distributed applications

that can be divided into independent and parallel executable sub-computations.

3.2.1 The Low-Level Computation Model

The low-level programming model is supported through a low-level API that

provides a set of programming concepts and constructs similar to that of distributed-

objects based programming frameworks such as RMI. Besides supporting the

concept of calling methods on remotely published objects, Safran’s low-level

programming model introduces new facilities and services that makes distributed-

objects based programming easier than RMI programming. This programming model

provides the following facilities:

• Easy creation of objects in the address space of remote processes:

Developers can create objects on remote machines just with a single system

call and get back a local reference that allows access to the remote object. No

manual setup is required for things like registries or name services, or class

file servers.

• Exposing local objects to remote access through well-known names:

Similar to RMI, Safran allows publishing a local object with a well-known

name so that remote processes can access the object with this well-known

name.

• Calling methods on remote objects synchronously or asynchronously:

Methods on remote objects can be called synchronously just like local

method calls. Also asynchronous method calls can be made on remote object

so that results or return values can be retrieved asynchronously without

serially waiting the execution of the called methods. Moreover, one-way

method calls, in which the method is called and the caller is not interested in

the result of method call, can be made easily.

 22

• Automatic and transparent creation of dynamic proxies: Whenever a

remotely exposed object is accessed or an object is created on a remote

process, a local proxy that provides the same interface as the remote object is

created dynamically and transparently. As this local proxy object provides the

same interfaces as the remote object, the developer can call the methods of

the remote object using the familiar local method call syntax

(object.methodName(parameters…)).

• Automatic and transparent dynamic class loading: Class definitions

(executable, binary Java class files) are automatically and transparently

transferred to the remote machines whenever they are needed. Application

developers do not need do anything manually to deploy their binary class

files. Whenever the class definition (binary class file) of an object is required

(when an object is created remotely, when an object is migrated to a different

machine, when a copy of a remote object is retrieved etc.) Safran transfers the

class definition to the required machine. Users do not need to any manual

setup to distribute the class files to the distributed machines.

• Object migration: Developers can move (or migrate) remote objects

between different machines with simple system calls. Also a local object can

be moved to a remote machine and it can be accessed remotely later on.

• Object state check-pointing: State of remote objects can be check-pointed

by getting an exact, local copy of a remote object.

The computational model that corresponds to this low-level programming model is

theoretically equivalent to message-passing type of parallel and distributed

computing model. Message passing systems like PVM and MPI provide much lower-

level programming interfaces with explicit message passing primitives. On the other

hand, distributed-objects based systems provide higher-level programming constructs

and concepts like calling methods on remote objects which theoretically corresponds

to passing messages to remote processes. But of course, passing messages between

processes through a remote method call interface is much high-level and easier to use

than explicit message passing systems like PVM and MPI. So the low-level,

 23

distributed-objects based programming model provided by Safran theoretically

supports the message passing type distributed and parallel computational model i.e.

theoretically applications that can be developed using explicit message passing

systems can also be developed using Safran’s low-level programming model.

3.2.2 The High-Level Computation Model

The high-level and primary computation model supported by Safran is called

piecework computations (master-worker, or bag-of-tasks) in which the computation

is explicitly divided into many sub-computations that can be performed in parallel at

different nodes of the system. Piecework computations are parallel computations that

decompose into a set of sub-computations, each of which is autonomous (does not

require communication or coordination with other sub-computations), apart from

scheduling work and communicating results. Parallel matrix multiplication,

distributed ray tracing, and Monte Carlo simulations are some good examples of

piecework computations.

The corresponding high-level programming model is provided by an API that allows

developers express their distributed and parallel computation to Safran as a set of

independently and parallel executable sub-tasks. Safran executes the sub-tasks on the

remote nodes of the system in parallel and collects the result and makes them

available back to developers’ application. Safran has the total control on how and

where the sub-tasks are executed so it can transparently provide high-level services

such as load balancing and fault tolerance.

Note that in this computational model, Safran does not allow communication

between sub-computations. This limitation is not due to technical difficulties in

providing communication infrastructure for pieces of a distributed computation.

Instead, it’s due to the challenging problem that would appear if communication

were allowed between distributed sub-computations. This problem is the classical

problem of getting global snapshots of a distributed system. If communication is

allowed between distributed processes or pieces of a distributed computation, states

 24

of communicating processes become dependent on each other. In such systems, if it

is required to checkpoint the system state for later rollbacks, the whole distributed

state (all parts of the distributed computation) must be check-pointed at once,

otherwise later rollbacks yield inconsistent global system states. Safran aims to

provide fault tolerance by checkpoint-and-rollback protocols. If communication

between sub-computations were allowed, Safran would need to checkpoint the state

of the whole distributed computation whenever it needs to checkpoint the state of a

single sub-computation for later rollbacks. Otherwise the checkpoints would be

inconsistent and subsequent rollbacks would yield to inconsistent global states. Both

supporting transparent fault tolerance using checkpoint-rollback and supporting

communication between sub-computations would require Safran to implement a

solution to the challenging distributed global system state snapshot problem which is

out of scope of this thesis work.

So, in the limited scope of this work, we are either required to support transparent

fault tolerance by not allowing sub-computations to communicate, or otherwise allow

sub-computations to communicate but do not provide transparent fault tolerance.

Safran opts to provide transparent fault tolerance based on checkpoint-and-rollback

of sub-computation by not allowing communication between them. Future extension

to Safran might provide communication infrastructure based on shared memory

abstraction but it is out of scope of Safran’s current design and objectives.

The high-level programming model of Safran was initially designed as the primary

and the only programming model. The low-level, distributed-objects based

programming model of Safran was initially designed as a supporting infrastructure

for the primary high-level programming interface. In other words, the programming

model and the API that provides the high-level computational model actually is built

on the infrastructure that provides the low-level distributed-objects based

programming model. Later, the infrastructure that was initially designed to just

internally support the primary programming model was extended to a general-

purpose distributed programming infrastructure and publicly exposed to users of

 25

Safran as a general purpose programming model to support more kinds of distributed

and parallel applications.

3.3 System Architecture

In this section high-level, architectural design of Safran that supports the primary

high-level computational and programming model (as described in detail in Section

3.2.3) is explained. Physical and logical entities (components) of the system, their

relations with each other and the subsystems and services they implement are

detailed.

3.3.1 Overview

In Safran there are logically there different system entities. These are named Hosts,

Brokers, and Applications. Applications act as the clients or users of the whole

system. They run the central, controlling, serial logic of the distributed and parallel

computations of users. Hosts provide computational resources (mostly CPU cycles)

of the physical machines they reside to the Safran system by getting and running

independently executable parts of Applications. Brokers generally provide brokerage

services by getting Applications and Hosts meet. Figure 3.1 shows the high level

logical organization of entities of a sample Safran system.

These entities form the overall system by implementing or participating in the

implementation of different subsystems. Note that these entities are logical in that

they do not represent physical machines that they reside on. For example, on a single

machine more that one Host might be running or a machine might be hosting both a

Host and an Application, or even a Broker. On the other hand they are implemented

as OS processes (usually daemon or service processes) so they are not totally low-

level software abstractions.

 26

Figure 3.1 Architectural organization of entities of a sample Safran system.

 27

3.3.2 Brokers

The general, high level and visible service provided by brokers is meeting Hosts and

Applications. Brokers generally act as registries of Hosts. They are contacted by

Applications that need Hosts for running different, concurrently executable parts of

the Applications. So, their main responsibility in the whole system is allocation of

Hosts to Applications. To fulfill their responsibility effectively, they implement

subsystems such as host registry, host scheduling and allocation, and load balancing.

Brokers are implemented as daemon (or service) processes that run in the

background and they usually do not show user interface elements other than the

management user interface that is invoked on demand by users of the machines.

They are generally passive in that they wait for requests for different operations from

Hosts and Applications and fulfill them. Other than processing requests, they do not

perform any ongoing intensive processing. Hosts and Applications can contact

brokers by just knowing the network address (host name or IP address) of the

machine on which the broker resides because all brokers service at a preconfigured

fixed port. For example, when a Host or Application wants to contact a broker,

whom they believe to be residing on the machine A, they request a reference from

Safran infrastructure to the entity running on the machine A and at the preconfigured

broker port. They are handled a reference to the found entity (if found) by the Safran

infrastructure, which actually happens to be a reference to the only Broker residing

on the machine. Later they communicate with the broker with this reference. An

important implication of this design is that, unlike Hosts and Applications there can

be only one Broker running on a single machine.

Hosts and Brokers can be manually configured to use a specific Broker running on a

machine at a specific network address. Also they can be configured to automatically

discover and use the Brokers that are running on their own network. To enable

automatic discovery of Brokers by Host and Applications, Brokers broadcast

periodic messages to the network announcing their availability. If configured to

discover and use a Broker automatically, Hosts and Applications monitor the

 28

broadcasted messages from Brokers and when they determine the location (network

address and port) of a Broker they automatically contact it. This service of automatic

management of relations between Safran entities greatly improves the setup and

management procedures of Safran clusters. One can just start Brokers, Hosts and

Applications on the different machines and all entities can automatically find and

contact each other.

The most important subsystem implemented by Brokers is Host registry subsystem.

Hosts that want to participate in a Safran system contact (either manually or by

automatic discovery) and register to a broker by providing information (availability,

machine capacity, and usage policy) about themselves to the broker. Brokers keep a

list of Hosts registered to them and some detailed information about computational

capacity of each host. Hosts actively update the information about them either

periodically or in the case of state changes that are above configured thresholds. The

aim is to provide brokers as much as up-to-date information, which they use for

scheduling and load balancing decisions. Also, registered Hosts should notify the

Broker periodically (for example every one 60 seconds) to inform it that they are

alive and still servicing. If a Broker does not get a notification from a Host that

registered to it for some time longer than a configurable timeout value, it

automatically un-registers and removes it from its list.

A Broker and Hosts registered to that Broker form a logical Safran Cluster. This

logical organization does not need to map physical network topology, i.e. Hosts that

are on totally different physical networks can register to the same Broker to form a

Cluster. Usually, due to manageability and performance considerations, Hosts

register to Brokers that are physically more accessible to them. For example, it is

most common that all Hosts running on the same LAN (Local Area Network)

register to a single Broker that is also connected to the same LAN. A Cluster is the

smallest possible complete Safran system but clusters can be connected to each other

to form larger and high capacity systems. As Brokers are the central entities of

Safran Clusters, connection and communication between Clusters is handled by

Brokers. Each Broker can be configured to register to one or more other Brokers to

 29

let them know that it (i.e. its cluster) wants to use resources of those other clusters.

When a Broker registers to another Broker, it starts to receive periodic or updated

information from that Broker about the cluster it controls. This information is some

high-level, not much detailed data that gives a general idea to the Broker about the

other cluster’s overall computational capacity. Brokers use this information about the

other Brokers they registered when making decisions that effect how they use those

other Clusters. For example, when a Broker cannot fulfill a Host request of an

Application itself, it uses the information about the other Brokers it registered when

choosing the broker it will forward the request.

The relations and communication between Brokers (i.e. Safran Clusters) is unknown

and transparent to Host and Applications. Hosts and Applications only communicate

and depend on the Broker of their own Cluster. This design makes the system

scalable and easily extensible. Individual Clusters can be combined and connected

dynamically through Brokers to form larger and more capable systems.

As mentioned, the sole, main responsibility of Brokers is to allocate Hosts to

Applications that need these Hosts to run tasks on them. When an Application needs

to run one of its tasks on a Host, Safran infrastructure contacts the Broker of its

Cluster and makes a request for an available Host. The Broker first tries to select an

available Host from the ones that registered to it, i.e. from its own Cluster. If none of

the registered Hosts is available, it forwards the request to each of the Brokers of the

other Clusters it knows. This way an Application running in one Cluster can

transparently use Hosts of other Clusters. In other words, all resources of the network

of Clusters can be made available to any Application running in any Cluster.

When a Broker is allocating or scheduling Hosts to Applications it uses the

information about Hosts that registered to it, other Brokers it registered to, and also

requirements of the Applications to balance the usage of system resources. So, an

important part of load balancing subsystem is implemented by Brokers during their

scheduling or Host allocation decisions. As mentioned, a Broker’s load balancing

 30

decisions are based on the information collected from Hosts registered to the Broker,

other Brokers, and Applications that request Hosts from the Broker.

3.3.3 Hosts

Hosts are entities that provide computational resources (usually CPU cycles) to a

Safran system. Similar to Brokers they are implemented as daemon processes. They

execute as background processes and run Applications’ tasks. More than one Host

might be residing on the same machine, although usually this is not the case.

Hosts make available their resources to the Safran system by registering to a Broker.

At any time, each Host can be registered to only one Broker. Other entities (usually

Applications) of the system can only contact and access a Host through the Broker it

registered to. So, when a Host is not registered to a Broker it is totally inaccessible to

the system. Hosts register to Brokers at their startup. A Host determines and contacts

the Broker to register either according to the manual user configuration or by

automatically discovering the Broker. The user who starts the Host agent (process)

configures whether the Host should use a user specified Broker or should

automatically find a Broker to register.

When a Host is registering to a Broker it provides initial, static information about

itself to the Broker. This information includes indicators about its hosting machine’s

computation capacity such as physical memory, number of CPU’s, and capacity of

CPU’s. Later on, it provides dynamically changing information about itself either

periodically or in case of changes in it state that are beyond some configured

thresholds. For example, it provides current and 1, 5, 15, and 30 minutes average

values for available physical memory and CPU utilization. Also it might inform the

Broker when its available physical memory drops by 10%, or when its CPU

utilization increases by 50%, or when it is exclusively allocated to an Application.

The Hosts must also send simple periodic notifications to the Brokers they registered

to, to let them know that they are still up and running. Otherwise, Brokers will un-

 31

register the Hosts if they do not get notification from the Hosts for some time longer

then a configurable timeout period (ex. 30 seconds).

When an Application needs a Host, it sends a request to a Broker. When a request for

a Host comes to a Broker either directly from an Application or from the Broker of

another Cluster, it selects a registered and available (in terms of current status

information, usage policy and Application requirements) Host and it handles a

reference of the selected Host to the Application. At this point the Broker is done and

does not do anything for communication and coordination of the Host and the

Application. It even does not update its information about the Host because

whenever the Application starts to use the Host allocated to it, the Host’s status

information will be changed and the Host will inform the Broker about this change.

In other words, the broker does not try to actively track the Host it allocated to an

Application or keep information about its usage. During the Application’s usage of

the Host, the Host already informs the Broker about its status changes. So the

Broker’s only responsibility is to allocate a Host to an Application in a load balanced

manner and leave them alone. It is not directly interested in what is going on between

the Host and the Application. In this design the responsibility of Brokers is

minimized and made very specific. It does not keep any state or runtime information

about running applications, so its failure does not directly effects running

applications or bring them down. If a Broker crashes when an Application is running

in its Cluster, the Application does not fail because Brokers does not maintain any

information about Application. The Application just cannot run new tasks until the

Broker of the Cluster becomes available again.

When a Host is allocated to an Application, it is used by that Application exclusively.

So the same Host cannot be allocated to more then one Application at the same time.

The reason behind this restriction is the fact that Safran is designed for

computationally intensive applications so it is assumed that when a Host is allocated

to an Application the Application uses Host’s all computational capacity. Whenever

an Application is done with a Host it explicitly frees it and the Host can be allocated

to other Applications.

 32

3.3.4 Applications

Applications are users (i.e. clients, or consumers) of Safran systems and Safran

resources. Applications are software developed by end-users (developers or

programmers) using building blocks (software libraries i.e. APIs) provided by Safran

infrastructure. These applications are the type of applications that are built on the

high-level programming model of Safran (see Section 3.2.2 and Section 3.4.6).

Each Application might perform different computations or solve different problems

but they share a common structure imposed by the underlying Safran infrastructure

as they all use the same common libraries, APIs, and Safran services. For an

application to be able to use services or resources of a Safran system effectively, not

only it must be developed using the provided APIs by Safran, but also it must be

developed adhering to rules and guidelines that are required but cannot be imposed

syntactically by the APIs.

General structure of a Safran application is as follows: First it initializes the Safran

infrastructure for by making a system API call. Next, it decomposed its computation

into smaller pieces according to its specific problem that it is trying to solve and

handles them to Safran. For each piece of sub-work (i.e. a Task), Safran requests a

Host from the Broker of the Cluster. It dispatches each Task to one Host, execute it

there and get the result of each. Finally it notifies the Application that the result of

the executed Task is ready. Application combines the results of sub-tasks locally to

form the final, combined result of the problem. In another words, the Application

entity acts as the central, controlling logic of a distributed/parallel computation. It

decomposes a computation into concurrently executable sub-computations, lets

Safran execute them in available Hosts in parallel, and finally gets the result of each

from Safran to compose the result of the whole computation. Most of the plumping

work such as requests for Hosts, allocation of them, dispatching of tasks to Hosts are

all handled by the Safran libraries transparently to the programmer i.e. the

programmer does not need to write code for doing all these. The Safran APIs used by

the programmer provides the programmer and application a single system image of

 33

the whole Safran system, which actually consists of complex networks of Hosts,

Brokers and the clusters they form.

Other then being developed on top of Safran libraries using Safran APIs,

Applications are not constrained in any way. They can be executed on any machine

that has Safran libraries installed and that has network connection to a machine

hosting a Broker. On the machine that will execute an Application only the Safran

libraries are required. There is no need to run any kind of other system service or

daemon process like a Host, or a Broker.

3.4 Logical Design

This section presents an overview of the design of the Safran’s software

infrastructure in terms of layering of services, and the abstractions each layer

provides to the others.

3.4.1 Overview

General structure of Safran’s infrastructure is depicted in Figure 3.2. The entire

infrastructure is organized as layers, each of which uses lower-level services of its

underlying infrastructure and provides higher abstractions to the layers above them.

The following sections explain the responsibilities and services of each layer.

3.4.2 The Java Language and Runtime Environment

As shown in Figure 3.2 Safran is totally built on the Java platform and runs in a Java

Virtual Machine (JVM). Also the user applications that are built on Safran must be

developed using the Java Programming Language, so they are also running in the

JVM.

The Java platform, which consists of the Java programming language and the Java

Runtime Environment, has a number of features that greatly facilitates distributed

system programming. Java’s built in features such as automatic garbage collection,

 34

rigid security infrastructure, extensive support for network programming, multi-

threaded programming, synchronization mechanisms, object serialization, reflection,

code mobility, dynamic class loading and general extensibility mechanisms make it

an excellent choice for distributed, network-parallel programming. Safran takes

advantage of many of these built-in features and services of the Java platform to

produce a system which would be far more difficult to create with other development

systems.

Figure 3.2 Logical design of Safran’s infrastructure.

The Java platform consists of a set of open specifications and standards which were

initially developed by Sun Microsystems Inc. Sun Microsystems and many other

commercial and non-commercial institutions provide mostly free and sometimes

open-source implementations of these specifications for many different platforms.

 35

The main specifications that define the Java platform are the Java Language

Specification[31], Java Virtual Machine Specification[33], and the Java Core API

Specification[35].

The Java Language Specification describes the Java programming language as a

fourth generation, general purpose, high-level, object-oriented programming

language. When a Java program is compiled, the Java compiler produces binary Java

class files that contain Java byte-code instead of a native, platform specific

executable binary. The Java byte-code is a platform independent, assembly like

language that is design to be interpreted by a virtual machine. Java Virtual Machine

Specification describes a stack based virtual machine to interpret the Java byte-code.

There are many virtual machine implementations for many different platforms

including general purpose operating systems, hand-held devices, and even embedded

systems implemented as either software or directly in the hardware. A Java virtual

machine sits on the native system (operating system or hardware) and executes

standard Java byte-code. So when a Java program is compiled into Java byte-code,

the same compiled byte-code can be executed without any modification on any

system that provides a standard Java virtual machine. This capability of being able to

run the same program in different platforms is referred to as write-once run-

everywhereTM. The Java Runtime Environment (JRE) is a runtime execution

environment which loads and executes Java programs. JRE consists of the Java

Virtual Machine and the standard set of core class libraries which are described by

the Java Core API Specification. Together with the Java Virtual Machine

Specification, the Java Core API Specification enables the portability and platform

independence of Java programs.

The most important feature of the Java Platform for Safran is its support for portable

and platform independent programs. As Safran is totally built on the Java Platform, it

is platform independent and can be run on any operating system and machine

architecture that provides a standard Java Runtime Environment. In other words

Safran’s support for heterogeneity of the systems it can run on is provided through

the Java Virtual Machine abstraction. Safran itself does not do much to solve the

 36

heterogeneity problem: the Java Virtual Machine it runs on already abstracts away

most of the heterogeneity problems.

3.4.3 Distributed-Objects Layer

The layer that we called the Distributed-Objects forms the core and backbone of the

infrastructure of Safran. This layer provides services and abstractions to upper layers

for doing distributed (remote) objects based programming. The low-level

computational model explained in Section 3.2.1 is supported by this layer and the

corresponding programming model is provided mostly by the upper Dynamic

Proxies layer.

The primary user of this layer and its services is Safran itself but the interface of the

layer is also exposed publicly to user applications that might need some rarely used

functionality of this layer such as making asynchronous or one-way method calls on

remote objects. As depicted in the Figure 3.2, application types that are represented

by User Application Y have direct access to Distributed-Objects layer. In fact, the

interface and infrastructure provided is complete and general purpose enough that in

addition to specific end-user applications, some other infrastructures and general

purpose frameworks can even be built on this layer.

This layer basically extends the capabilities of RMI, Java’s distributed-objects

framework, with new distributed-objects based computing concepts and constructs.

In addition to the functionality of exposing local objects to remote access, it supports

creation of objects on remote machines, getting references to remote objects, calling

methods on remote objects synchronously, asynchronously or one-way, check-

pointing and migration of objects, and automatic and transparent distribution

(dynamic class loading) of class definitions (binary class files) to remote machines.

The programming interface provided by this layer is fairly low level and is not much

familiar. For example local references to remote objects are represented by instances

of class RemoteObjectRef. Access to remote objects (calling methods on them

 37

remotely) is provided through the methods of this class. Once an instance of this

class is obtained, calling methods on the remote object represented by this instance is

done by calling invokeMethod, invokeMethodAsync, invokeMethodOneWay

methods of the RemoteObjectRef class on the obtained instance. This programming

interface is unfamiliar, difficult to use, and prone to errors but it provides all the

primitives required for building higher level layers on top of it. The layer above,

named Dynamic Proxies is built on this layer and provides a programming model

that is much easier to use.

Although this layer and its programming interface are exposed to user applications, it

is not intended for general and extensive use by end-user applications. It is mainly

provided for applications that require access to some rarely needed but important

functionality. For most of the user applications, some other programming interfaces

that are much higher-level and much easy to use are provided through the Dynamic

Proxies and the Parallel Application Services layers, which are built on the

Distributed-Objects layer. So Distributed-Objects layer is mainly a backbone and

abstraction for upper layers of Safran itself.

3.4.4 Communication SPI and Implementation Layers

The layers named Communication Service Provider Interface (SPI) and the Network

Communication Service provide pluggable network transport and communication

infrastructure for the upper Distributed-Objects layer.

Communication Service Provider Interface layer defines the interface (as a set of

Java interfaces) that must be implemented and provided by the lower Network

Communication Service layer. So it decouples the interface which is used by the

upper Distributed-Objects layer to access to the network from the implementation of

the network communication mechanism i.e. from the Network Communication

Service layer. The Distributed-Objects layer has static dependency only to the

Communication SPI layer and it’s de-coupled and abstracted from the actual

communication and transport mechanism implementation.

 38

This design makes Distributed-Objects layer independent from the network

communication infrastructure and technology. The Network Communication Service

layer can be changed without effecting the design and interface of the Distributed-

Objects layer. Different implementations of this layer based on different

communication and network technologies can be developed and plugged into the

infrastructure of Safran without affecting any of the upper layers and user

applications build on them. For example, as part of this work we provide an

implementation of Safran and in this implementation we chose to use Java RMI

technology for our network transport and communication mechanism. So our

implementation of the Network Communication Service layer is based on Java RMI

technology. Safran’s design is flexible enough that someone else can develop a

different Network Communication Service layer using some other network

communication technology (for example network sockets) and can plug it into our

implementation of Safran without changing any other parts and layers of our

implementation. Implementation of Safran can integrate with this new Network

Communication Service layer and can use it transparently.

3.4.5 Dynamic Proxies Layer

The Dynamic Proxies layer builds on the Distributed-Objects layer and basically

improves the programming model and interface provided by this layer. As explained

in Section 3.2.1 Distributed-Objects layer provides a programming interface that

includes extensive low-level functionality for doing distributed-objects based

programming. But the provided programming interface is not familiar and not easy to

use. Programmers have to deal with instances of classes that locally represent remote

objects i.e. the distinction between a local object reference and a remote object

reference is explicit and visible to programmers and programmer must be aware of

the distinction between a local object and a remote object.

Dynamic Proxies layer dynamically and transparently generates easy to use proxies

for remote objects. Programmers program against these proxy objects that provide

exactly the same public interface as the remote objects. So these proxy objects are

 39

used by upper layers to access and call methods of remote objects with the

convenient and familiar local method call syntax (obj.methodName(parameters))

instead of dealing with remote object references that are error prone and difficult to

use. When a method is called on a proxy object that locally represents a remote

object, the method call is transparently dispatched to the remote object and the result

of the method called is returned transparently to the caller. The method call on the

remote object syntactically seems just like a local method call and remote objects are

accessed and manipulated just like local objects.

To sum up, by providing a unified programming interface for interacting with local

and remote objects, Dynamic Proxies layer makes distributed-objects based

programming familiar and easy. Besides providing a programming interface to end-

user applications, Dynamic Proxies also provides the infrastructure for the upper

Parallel Application Services layer .i.e. Parallel Application Services layer is built on

the Dynamic Proxies (see Figure 3.2).

3.4.6 Parallel Application Services

Parallel Application Services layer provides the infrastructure, abstractions and

programming interface (API) for development of parallel and distributed applications

based on high level concepts and constructs. The high-level computational model

that is explained in detail in Section 3.2.2 is implemented in this layer and the

corresponding programming model is supported by the API provided by this layer to

user applications. As depicted in the Figure 3.2, application types that are

represented by User Application X are built on this layer. The architecture and

entities such as Brokers and Hosts as described in Section 3.2 and subsections is

totally implemented in this layer. All high level sub-systems and services such as

host registry, host monitoring, host allocation, and load balancing are implemented in

this layer.

The layers and services of Safran that are implemented by Dynamic Proxies, and the

other lower layers forms a quite general purpose infrastructure and framework

 40

(middleware) for building different kinds of distributed applications and systems.

The Parallel Applications Services layer is built on this general purpose layer as

another framework to support development of some completely different kind of

applications based on the high level concepts and computational model it introduces.

3.4.7 User Applications

Safran is built on the Java platform. User applications must be developed using the

Java programming language and the Java APIs provided by Safran for user

applications. The kinds of applications that can be built on Safran are represented in

Figure 3.2 as User Application X and User Application Y. These actually

represent the two main views or two main programming models of Safran presented

to programmers.

The primary design requirement of Safran is to support applications of the type

represented by User Application X. These applications are built based on the high-

level concepts as explained in Section 3.2.2. These kind of applications run on the

system architecture described in Section 3.3. The kind of applications represented by

User Application Y is built on the lower-level concepts of distributed-objects as

explained in Section 3.2.1. These applications do not require the infrastructure and

architecture explained in Section 3.3.

 41

CHAPTER 4

4. SYSTEM DESIGN AND IMPLEMENTATION DETAILS

In this chapter we provide detailed information about the internal design of Safran’s

4.1 Distributed-Objects Layer

r, like CORBA and RMI,

Distributed-Objects layer mainly provides a client-server type programming model

Note that this classification of processes as clients and servers is based on the roles of

layers and services. We do not provide complete design specification but instead try

to give an insight about how Safran is internally architected.

As explained in Section 3.4.5 Distributed-Objects laye

provides a computational and programming model based on the concept of

distributed and remote objects. In this section, we provide design details of some

important features of the Distributed-Objects layer and the layers below it.

based on remotely accessible objects. In this model, we define Client and Server as

follows: the processes that are hosting remotely accessible objects are called Servers

and the processes that access the objects hosted by Servers and call methods on them

are called Clients.

the processes at a single time and context during their interaction. The actual and

physical relation between processes can be symmetric and more complex: at some

particular time and context a process might be hosting objects that other process

access (thus it is acting as a server for other processes) and at some other time the

same process might be accessing remote object in some other process (thus it acting

as a client for those processes). In other words a single physical process does not

need to be always acting as a client or a server i.e. it can be acting both as a server

 42

and a client at the same time by having a totally symmetric relation with other

processes. So Distributed-Objects layer and the programming model do not impose

the classical client-server type programming but in fact it allows arbitrary complex

interaction between distributed entities.

Figure 4.1 depicts the main internal entities of Distributed-Objects layer in a server

and a client process. These are conceptual representations and do not completely

reflect exact internal implementation. Also note that these entities mostly correspond

to Java classes and interfaces in Safran’s internal design but they do not belong to the

public programming interface (API) of the layer i.e. they belong to the internal

infrastructure of the layer. In the following subsections, we briefly describe these

entities and their relationship to each other.

Figure 4.1 Internal entities of Distributed-Object layer

4.1.1 Server Side Objects and Entities

ed HostingService, which is The server process only creates an entity nam

provided by the Distributed-Objects framework, and just starts it. After the

HostingService is created and started the process is ready to act as a server.

 43

Remote clients can access the server process, create objects on it and can remotely

call methods on the created objects.

When the HostingService is created by the server process it internally creates an

entity named ObjectHost which actually hosts remotely accessible objects with the

help of another internal entity named ObjectManager which manages the hosted

objects. ObjectHost provides the actual service of hosting objects and enables the

access of clients to hosted objects in various ways. For example, client processes can

create objects in the server process, call methods on them, delete them, and get

copies of them through ObjectHost.

4.1.2 Client Side Objects and Entities

At the client side, access to the server side entity HostingService is made through

the client side object named ObjectHostingService. ObjectHostingService acts

as the representative of HostingService in the client process and provides the

interface for controlling a remote HostingService such as stopping it, getting its

host name or port number.

Object named RemoteObjectHost provides client side access to the actual service

(hosting remote objects) of the server side entity HostingService. In other words,

it represents the server side entity ObjectHost at the client side by allowing client

process to create objects on the server, calling methods on them and manipulating

them in some other ways.

RemoteObjectRef objects are client side references to remotely hosted objects on the

server process. For each remote object on the server process that is accessed by the

client process, one and only one corresponding RemoteObjectRef object is created

in the client process. Once a RemoteObjectRef object is obtained in the client

process that references a remote object hosted by a server process, client process’

subsequent interaction with the remote object is handled through this

RemoteObjectRef object. In other words, RemoteObjectRef is the handle and

 44

gateway to the real remote object, which allows client process to access the remote

object and to manipulate it.

The following figure is the Unified Modeling Language (UML) class diagram for

major classes and interfaces of the Distributed-Object layer.

Figure 4.2 Distributed-Object layer UML class diagram.

4.2 Dynamic Proxy Generation

Users of the Distributed-Objects layer seldom need functionality such as

synchronous and one-way method calls on remote objects which are provided only

 45

through the RemoteObjectRef objects. So, for such functionality users had to use

complex, error prone, and difficult to use programming interface provided by this

class. But for the major and extensively used functionality of making normal,

synchronous method calls on remote objects, users are provided a much easy to use

API with the help of Java Platform’s dynamic proxy generation service. Figure 4.2

depicts the relations between user code and runtime entities of the Distributed-

Objects layer in a sample situation.

Figure 4.3 Relations between user code and Distributed-Objects layer entities.

When a user of Distributed-Objects layer creates an object on a remote process or

accesses an exported object on a remote process, Distributed-Objects layer internally

creates a RemoteObjectRef object that references the actual remote object. But the

user is not given this RemoteObjectRef object. Instead, an instance of a

dynamically generated proxy class that warps the RemoteObjectRef object is created

and returned to the user. The created proxy class and its instance provide the exact

same public interface as the remote object. In other words, the proxy object returned

to the user implements the same set of Java interfaces that the remote object

implements. So the user can cast down the proxy object to any of the interface

supported by the remote object and call methods of the remote object on the proxy

object. Internally the proxy object dispatches the methods called on it to the

RemoteObjectRef object it wraps, which in tern dispatches the method calls to the

 46

actual remote object through the network. The return value and the result of the

method calls on the remote object are returned back to the user backwards through

the same path. Dynamically and transparently generated proxy objects provide some

level of access and location transparency to the user of the Distributed-Objects layer.

Users can call methods on remote object as if they were local objects.

Figure 4.4 Dynamic proxy generation infrastructure of Safran.

Figure 4.4 is the Unified Modeling Language class diagram showing the dynamic

proxy generation subsystem of Safran. Generation of dynamic proxies is provided

with the help of Java’s reflection and dynamic proxy generation functionality. First

Distributed-Objects layer determines the list of Java interfaces implemented by the

remote object using reflection. Next, it gives this list of interfaces and an

InvocationHandler to the dynamic proxy API of Java. Java proxy system

dynamically creates a class in the JVM that implements all of the provided interfaces

and that dispatches the methods called on it to the provided InvocationHandler. An

instance of this class is created and returned to the user. Whenever the user calls a

 47

method on the proxy object, the method call is dispatched to the

InvocationHandler of the proxy, which in turn dispatch the method call to the

wrapped RemoteObjectRef. Finally RemoteObjectRef dispatches the method call

to the real remote object thought the underlying network and transport mechanism.

4.3 Pluggable Communication Infrastructure

Communication Service Provider Interface (SPI) layer basically defines the interface

that must be provided by different implementations of the lower Network

Communication Service layer. Distributed-Objects layer has static dependency only

to this interface definition i.e. it does not have static dependency to the actual

implementation of the network communication infrastructure. Communication SPI

provides the infrastructure for decoupling Distributed-Objects layer from the

underlying network communication mechanism so that the network communication

and transport technology that underlies Safran can be changed if required.

Communication SPI layer consist of only four Java interface types that must be

implemented by the lower Network Communication Service layer. Each interface

defines the set of methods that must be implemented by the Network Communication

Service implementations. So each different Network Communication Service

implementation must at least provide four Java classes each implementing one of the

Java interface defined by the Communication SPI layer. Figure 4.5 is the UML class

diagram of the Communication SPI.

 48

Figure 4.5 Class diagram for Communication SPI layer

Distributed-Objects layer has static (compile time) dependency to the Java interfaces,

not to the actual implementation classes. So the Java classes that implement the

interfaces and that actually provide the network communication mechanism are

dynamically found and loaded by Distributed-Objects layer at runtime through a

configuration file. Distributed-Objects layer’s configuration file mainly contains the

class names of the actual implementation classes. During initialization, Distributed-

Objects layer reads its configuration file to find out the names of the classes that

implement the underlying network communication mechanism. Next it loads the

classes and creates instances of them using Java Reflection API. So the connection

between the actual implementation of the Network Communication layer and

Distributed-Objects layer is only the configuration file of the Distributed-Objects

layer.

 49

Figures 4.6 and Figure 4.7 are the UML class diagrams for the parts of Distributed-

Objects layer that enable plug-ability of the underlying communication mechanism.

Figure 4.6 Class diagram of creation of RemoteObjectHost’s

Figure 4.7 Class diagram for creation of ObjectHostingService’s

 50

If the underlying Network Communication layer implementation needs to be

replaced by some other implementation based on some other network transport

technology, only the configuration file of the Distributed-Objects layer needs to be

updated. Distributed-Objects layer implementation itself and the upper layers that

depend on it do not need be changed in any way. So Distributed-Objects layer and

upper layers are abstracted away from the underlying network communication

technology and mechanisms in a pluggable way.

The Safran implementation that we provided with this work uses a Network

Communication layer implementation based on Java RMI technology. Although the

Safran implementation we provided runs on Java RMI (due to the Communication

SPI) Distributed-Object layer, the layers above it and also the end-user applications

do not have any static dependency to Java RMI. So, some other implementation

(based on direct network sockets for example) of the Communication Services layer

can be developed and plugged into our implementation of Safran to replace our Java

RMI based Communication Services layer without affecting other parts of the Safran

and applications built on it.

4.4 Parallel Application Services

Parallel Application Services layer mainly consists of two parts:

• A software infrastructure and a set of executable software that form and

support the Safran system architecture which is explained in Section 3.3.

• A public software library that users use and program against to develop

parallel and distributed application on Safran using the computational and

programming model explained in Section 3.2.2.

Figure 4.8 is the class diagram showing the major classes that form the infrastructure

of the Parallel Application Services layer.

 51

Figure 4.8 Class diagram for the infrastructure of Parallel Application Services

HostDaemon and BrokerDaemon are classes that implement the executable daemon

processes (Hosts and Brokers). They simply create an instance of their corresponding

agent classes (HostAgent, BrokerAgent), which actually provides almost all of the

functionality of Hosts and Brokers. HostDaemon and BrokerDaemon are very simple

executable classes that simply instantiate the functionality that is actually

implemented in the HostAgent and BrokerAgent classes. HostAgent and

BrokerAgent classes are publicly exposed classes, so users can actually implement

their own daemon process instead of using HostDaemon and BrokerDaemon due to

reasons like providing a better user interface and better integration with their specific

platform’s capabilities such as operating system’s service or daemon process running

capabilities.

 52

HostAgent and BrokerAgent classes are the actual provider of the Broker and Host

functionalities explained in Section 3.3 and its sub-sections.

HostAgent and BrokerAgent communicate through Distributed-Objects layer as

depicted in Figure 3.2. So Parallel Application Services layer is built on the

Distributed-Object layer as another framework. BrokerAgent and HostAgent

interact with each other by exposing remotely accessible objects to one other with the

help of Distributed-Object layer. The class of the object exported by BrokerAgent is

BrokerImpl which is accessed by remote HostAgents (and Applications) through

the Broker interface it implements. In the same way, the class of the object exported

by HostAgent is HostImpl which is accessed by remote BrokerAgents (and

Applications) through the Host interface it implements. A HostAgent (or an

Application) accesses the services of BrokerAgent by getting a Broker reference to

the BrokerImpl object exported by the BrokerAgent to the Distributed-Object layer

at a well-known port and with a well-known name. Similarly, a BrokerAgent (or an

Application) accesses the services of HostAgent by getting a Host reference to the

HostImpl object exported by the HostAgent to the Distributed-Object layer with a

well-known name.

4.4.1 Broker and Host Relations

As explained in Section 3.3 and its sub-sections, there is a registration relation

between Hosts and Brokers: A group of Hosts register to a Broker to form a Safran

cluster.

The BrokerImpl object which is contained and managed by BrokerAgent keeps a

list of information about Hosts registered to it. BrokerImpl assumes that the

network is unreliable (network failures are possible) and Hosts that registered to it

might fail without any notification. With this assumption of unreliable network and

possibly failing Hosts, BrokerImpl tries to keep the list of Hosts registered to it as

up-to-date as possible through the use of a protocol between itself and Hosts. The

main points of this protocol are as follows:

 53

• Whenever a Host registers to a BrokerImpl, Host provides initial

information about itself to the BrokerImpl during registration.

• During registration Host agrees to provide periodic notifications to the

BrokerImpl so that BrokerImpl knows that the Host is still alive and it has

up-to-date information about the Host. The period of notification is

determined by the Host (constrained with a configurable minimum value) and

provided to the BrokerImpl during registration.

• Other than periodic notifications, Host sends up-to-date information to the

BrokerImpl that it has registered to whenever its state (capacity, availability

etc.) changes.

• When a Host is shutting-down normally, it notifies the BrokerImpl it has

registered to.

• BrokerImpl periodically checks the list of Hosts registered to it. If a Host

did not provided a notification for longer than the period it agreed, it is

considered inaccessible and dead and it is removed from the list of registered

Hosts.

4.4.2 Locating Brokers and Automatic Registration

Sections 3.3 and 4.4.1 described the relations between entities like Brokers and

Hosts but did not provided information on how these entities locate each other. Here,

we explain the infrastructure used by different entities to automatically locate each

other.

As explained earlier, Hosts need to register to a Broker to become part of a Safran

Cluster. Also Applications need to contact a Broker to request Hosts to run Tasks on

them. Hosts and Applications can be controlled and maintained manually to use a

specific Broker running at a specific network address. Manual setup, control and

maintenance become difficult as the number of the entities increases.

 54

To enable easy and automatic setup and maintenance of a Safran Cluster, Parallel

Application Services layer provides the infrastructure to enable Hosts and

Applications to find and use Brokers automatically. When a Host starts-up it

automatically locates (if configured to find and register automatically) a Broker and

registers to it. In the same way, an Application can be configured to automatically

find the Broker to use.

This sub-system of automatic discovery of Brokers is based on the TCP/IP

multicasting technology. TCP/IP multicasting enables a group of hosts to join a

multicast group and broadcast datagram packets to every member of the group,

allowing group communication.

A class named MessageBroadcaster and its helper classes (BroadcastMessage and

MessageProcessor) form general purpose multicast message broadcasting sub-

system. This sub-system generally allows processes running on the same network

send broadcast messages to each other without knowing each others network address.

Message broadcasting sub-system is used by a singleton class named

BrokerLocator to send and receive broadcast messages about the availability of the

Brokers such that:

• When a BrokerAgent is started it registers itself to the BrokerLocator and

BrokerLocator starts to send periodic broadcast messages to the network

about the availability of the Broker as long as the Broker runs.

• When the BrokerAgent is stopped it un-registers itself from the

BrokerLocator and BrokeLocator sends a message to the network about

unavailability of the Broker.

• Hosts that are configured to find and register automatically, listen broadcast

messages about availability of Brokers with the help of BrokerLocator

object in their own process. BrokeLocator notifies the HostAgent whenever

it determines that a new Broker has started or an existing one aborted so that

 55

HostAgent automatically registers to a Broker or un-registers when the

Broker it has registered is stopped.

• Whenever a HostAgent starts, it broadcasts a message to the network

announcing that it has started and needs to know the Brokers currently

running on the network.

• BrokerLocators reply to the messages of newly started Hosts by

broadcasting immediately the list of Brokers that registered to them.

The following figure is the UML class diagram of the classes of that support the

message broadcasting and Broker locating sub-system of the Parallel Application

Services layer.

Figure 4.9 Message broadcasting and Broker locating sub-system class diagram

 56

CHAPTER 5

5. TESTING AND EVALUATON OF SAFRAN

To test and evaluate Safran’s design and implementation, we conducted an extensive

set of experiments and we did extensive analysis on the result of these experiments.

This chapter presents the experiments we conducted, the results we obtained, and our

analysis and discussions on these results.

The objectives of these experiments are:

• End-to-end testing and demonstration of our implementation of Safran with a

complete application.

• To determine performance characteristics (speedup, efficiency, overheads) of

Safran for different sets of applications on different system configurations.

• To determine the level of convenience of Safran for different sets of

applications.

• To find out design and implementation problems and deficiencies.

5.1 Experiments

To test Safran and collect data about its performance characteristics, we designed and

implemented two different test applications. These two applications were run for a

wide variety of system and application configurations using a test framework. The

test framework automatically executed both applications several times for different

configurations, collected performance data for each configuration and saved them to

files for later analysis. The main data collected is the application completion times

for each different configuration. Both of the applications are executed serially with

no relation to Safran to determine serial execution times. Later these execution time

 57

data for serial executions and parallel executions for different configurations are

analyzed to derive different performance information and reach general conclusions

about performance characteristics of Safran.

5.1.1 Test Applications

Two different versions of the same problem are used for experiments and data

collection: matrix multiplication and distributed data matrix multiplication.

Real Matrix Multiplication Application (RMMA): This application gets two

randomly generated integer matrices A and B as input and calculates the

multiplication of these matrices. When the application is run, to create T sub-tasks,

the applications horizontally partitions the first matrix (A) into T sub-matrices each

having N/T rows (where N is the row number of the first matrix). For each pair of

matrices consisting of a sub-matrix of A and the whole matrix B, a Task object is

created and submitted to Safran’s application services. When executed, each Task

calculates the matrix multiplication of a sub-matrix of A and the second matrix B.

Safran dispatches all T Tasks to available remote Hosts, remotely executes them and

get the results back. Note that this partitioning of input matrices for parallel

computation is by no means a good way and much better algorithms for parallel

matrix multiplication are available. Our purpose here is not to show the best possible

way of parallel matrix multiplication on Safran. Instead, we tried to create an

application that has the characteristics of many other applications, so that we can use

the results of our experiments for this application to reach general conclusions for the

set of applications that have similar characteristics. This application is characterized

of being both computation (CPU) intensive and communication (I/O) intensive. The

algorithm used by Tasks to multiply two matrices is naïve (of complexity O(n3)). The

partitioning method used to create the Tasks requires the transmission of second

matrix (B) as a whole to remote Hosts which makes this version extensively I/O

intensive. The communication requirement of the application for a T task run is of

complexity O(Tn2). So, this application is a good representative of both CPU and I/O

intensive applications.

 58

Distributed-Data Matrix Multiplication Application (DDMMA): This

version is designed as a representative of pure CPU intensive applications. The

version simulates parallel matrix multiplication operation by using the exact same

matrix multiplication algorithm that is used by the Real Matrix Multiplication

Application. The difference is that, the matrix data on which the algorithm operates

on is not transmitted over the network to the remote Hosts that execute the Tasks.

Instead, when a Task is dispatched to a remote Host (without matrix data) the matrix

multiplication algorithm operates on locally generated random matrix data. This way,

we avoid the communication and network I/O overhead of the Real Matrix

Multiplication Application but have an application that has exactly the same

computational characteristics.

The only difference between Real Matrix Multiplication Application and Distributed

Data Matrix Multiplication Application is that, one has extensive network I/O

overhead and the other does not. We could have used some different application

representing pure CPU bound applications instead of Distributed Data Matrix

Multiplication Application. But we choose to simulate the matrix multiplication

algorithm because both Real Matrix Multiplication Application and Distributed Data

Matrix Multiplication Application have the exact same computational properties

which enabled us to do meaningful comparison between the results of these two

applications and clearly see the effects of I/O overhead.

5.1.2 Experimental Setup

All the experiments are performed on identically configured Sun Blade 2000

workstations on a 100 Mbps, general purpose, corporate office LAN. There were

about 40 of these workstations but at most 10 of them were used during our

experiments. The workstations (and the network) were not exclusively used for our

experiments as they are owned by different people and used for different purposes.

They were running different applications and services as the experiments are

performed but they were lightly loaded because all the experiments are performed

after office hours (i.e. they were not being used heavily). So, the available capacity

 59

and load of the workstations used during the experiments were slightly differing

from each other. Details of the configuration of each of these machines are:

• Running Sun Solaris OS Release 5.8

• 1200 MHz Sun UltraSPARC-III+ CPU

• 1024 MB physical memory

• 1341 MB virtual (swap) memory on a UFS mount.

For all experiments Java 2 Runtime Environment (JRE) Standard Edition build

1.5.0_01-b8 of Sun Microsystems for Sun Solaris OS is used. JVMs are started in the

client (Java HotSpotTM Client VM) mode with all other startup parameters left default.

During all experiments each entity of Safran (Broker Agent, Application, and Host

Agents) is run on a different machine exclusively.

5.1.3 Experiment Configurations

Each of the two applications is executed on Safran for a wide range of configurations

to obtain a detailed understanding of performance characteristic of the platform for

different kinds of system and application configurations and for different types of

applications.

For all experiments involving Safran (parallel executions), only one Broker Agent is

used. Each entity (Broker Agent, Application, and Host Agents) is executed on its

own machine exclusively.

Serial execution experiments are run locally on a single machine with no

involvement of Safran entities. Computation is done locally in a single process that

does not use Safran in any way.

The following table show the matrix of different configurations for which experiment

conducted.

 60

 Serial Execution Parallel Execution
Host Number 1. Executed locally on a

single machine without
involvement of Safran.

1, 2, 4, 8

Problem Size 256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Task Number

1 (i.e. the computation is
done as a whole)

1, 2, 4, 8, 16, 32

For each different configuration (e.g. 2 Hosts, 8 Tasks, 896x896 Matrix) applications

are executed 5 times repeatedly and average execution time is calculated. For every

pair of Host number and Task number result are written to files. For example, the

contents of the result file of a test with Real Matrix Multiplication Application on 4

Hosts and for 8 Tasks are as follows:

Test Name: Real Matrix Multiplication
Host No: 4
Task No: 8

Host No Task No Matrix Size Execution Time (ms)
4 8 128 412
4 8 256 1153
4 8 384 1927
4 8 512 3338
4 8 640 5969
4 8 768 10022
4 8 896 14647
4 8 1024 21750
4 8 1152 31976

The results of all experiment are transferred from results files to spreadsheets and

analyzed, whose results are presented in Section 5.2.

5.2 Experiment Results

In this section, we present the results we obtained, the analysis we made on the

results and conclusions we are led by our analysis.

 61

During experiment, the only performance metric collected is the application

completion time which is the difference between the time the application is

submitted to the system and the time the system returns back the application as

completed. Note that this time measure includes both application’s computation time

as well as the overhead time incurred by system and network communication. We

analyzed this raw data for various configurations to derive more comprehensible

performance metrics such as speedup, system efficiency and scalability measures.

Speedup is the measure of the improvement (i.e. reduction) in an application’s

execution time when run on more than one machine using parallelization of the

computation. To be able to calculate speedup values we run both of our applications

serially on one machine using the same exact algorithms. Then, speedup values are

calculated as:

N

serial
N T

T
S =

where is the serial execution time of the application and is the execution

time of the same application on a Safran cluster of N Hosts.

T serial NT

Another analysis we did is system efficiency analysis which we define as the usage

percentage of the system’s theoretical computational capacity. For example, on a 4

Host Safran system, if we are achieving a 3.5 speedup value, then the efficiency of

the system usage is . So efficient values are calculated as: %5.87100)4/5.3(=⋅

exp 100)/(⋅= −− ltheoriticaNerimentalNN SSE

Theoretical speedup values are the theoretically maximum speedup values achievable

on the system and are equal to the number of Host on the system.

Lastly, we made some theoretical scalability analysis on our results. Scalability is the

measure of the change in the effectiveness of the system when the size of the

problem or the size of the system (Host number) is increased. This analysis enabled

us to deduce whether or not Safran is suitable for much larger applications and for

configurations for which we were not able to conduct experiments.

 62

5.2.1 Real Matrix Multiplication Application Tests

We run the real matrix multiplication application serially and for 1, 2, 4, and 8 Host

and for 1, 2, 4, 8, 16, and 32 Task Safran configurations. In the following, we present

the discussion only for the 1 Host and 8 Host Safran configurations. The analysis for

the 2 Host and 4 Host configurations will be presented together with the other cases

in the overall summary section.

Safran Configuration of 1 Host

The execution time vs. the problem size graph for the 1 Host and different Task

numbers case is given Figure 5.1.

Execution Time by Problem Size (RMMA on 1 Host)

0

20000

40000

60000

80000

100000

120000

140000

0 200 400 600 800 1000 1200

Matrix Size

Ex
ec

ut
io

n
Ti

m
e

(m
s)

1 Task
2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks
Serial

Figure 5.1 Problem size vs. execution time graph for 1 Host RMMA tests

The polynomial increase in the execution time is expected and is due to the matrix

multiplication algorithm used, which is an O(n3) complexity algorithm. Execution

time also increases as the Task number is increased and for all configuration of Task

number, it is larger than the serial execution case. This is due to the fact that we do

not have any parallelization gain (as we have only one Host) but have overheads of

 63

the Safran system. The graph suggests that the overhead increases by the Task

number. The graph in Figure 5.2 more clearly shows the affect of Task number on

the execution time and overheads, for the same configuration.

Execution Time by Task Number (RMMA on 1 Host)

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20 25 30 35

Task No

Ex
ec

ut
io

n
Ti

m
e

(m
s) 128x128

256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Figure 5.2 Task number vs. execution time graph for 1 Host RMMA tests

It is clearly seen that the execution time for all matrix sizes increases linearly by the

Task number. Also note that the rate of increase (slope of the line) in execution time

gets larger as the matrix size increases. For example, for the 11152x1152 matrix

case, difference between 1 Task execution time and 32 Task execution time is about

52 seconds which is the overhead incurred by increasing Task number. We suggest

that almost all of this overhead is due to network communication. The matrix

partitioning method we used requires the transmission of whole second matrix with

each Task over the network. For example, the size of the data transferred for the

1152x1152 matrix reaches about 334 Mbytes during the execution of the application.

The following speedup graphs (Figure 5.3 and Figure 5.4) suggest that the matrix

size (problem size) affects the speedup positively and task number (for 1 Host case)

affects speedup negatively.

 64

Speedup by Problem Size (RMMA on 1 Host)

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000 1200

Matrix Size

Sp
ee

du
p

1 Task
2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks

Figure 5.3 Problem size vs. speedup graph for 1 Host RMMA tests

Speedup by Task Number (RMMA on 1 Host)

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30 35

Task No

Sp
ee

du
p

128x128
256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Figure 5.4 Task number vs. speedup graph for 1 Host RMMA tests

 65

Larger matrix sizes produce better speedups because as the problem size increases,

overhead time gets relatively smaller compared to the execution time (because

relative increase in the overhead is smaller than the relative increase in the execution

time). As explained before, the computational complexity of the application is O(n3)

and communication requirement complexity is O(Tn2) (the T is Task number). So, as

the problem size increases the computation time becomes much dominant in the total

execution time compared to the overhead time incurred by network communication.

The following graph (Figure 5.5) clearly shows the relation of total overhead to the

Task number.

Overhead by Task Number (RMMA on 1 Host)

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35

Task No

O
ve

rh
ea

d
(m

s)

128x128
256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Figure 5.5 Task number vs. overhead time graph for 1 Host RMMA tests

Overhead times are calculated as the difference between the execution time of 1 Host

Safran configuration and the serial execution. As expected, the overhead time

increases linearly by the Task number. We obtain these clear linear graphs because

system overheads other than the communication overhead is negligibly smaller

compared to the communication overheads incurred by increasing Task number.

 66

Safran Configuration of 8 Hosts

The following two graphs (Figure 5.6 and Figure 5.7) show the variation of

execution time of RMMA on an 8 Host Safran configuration for different problem

sizes and Task numbers.

Execution Time by Problem Size (RMMA on 8 Hosts)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200 400 600 800 1000 1200
Matrix Size

Ex
ec

ut
io

n
Ti

m
e

(m
s) 1 Task

2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks
Serial

Figure 5.6 Problem size vs. execution time graph for 8 Host RMMA tests

It is seen that for Safran configurations of 8 Hosts the optimum value of Task

number (minimum execution time) for almost all problem sizes is 8, for which the

whole problem is divided into number of sub-problems that is equal to the machine

number. Execution time decreases as the Task number increased from 1 to 8, but

begins to increase after this point (16 and 32 Tasks). This is because dividing the

problem into more sub-problems does not help further in parallelizing the execution

as we have limited number of machines (8 in this case). Instead it adds unnecessary

overhead which increases the total execution time.

The following graph (Figure 5.7) shows the effect of Task number on the execution

time.

 67

Execution Time by Task Number (RMMA on 8 Hosts)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 5 10 15 20 25 30 35
Task No

Ex
ec

ut
io

n
Ti

m
e

(m
s) 128x128

256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1552

Figure 5.7 Task number vs. execution time graph for 8 Host RMMA tests

The minimum execution time for all sufficiently large problem sizes is achieved with

the task number equal to the number of Hosts (i.e. 8). After this threshold the

execution time begins to increase linearly by the Task number because increasing

Task number does not help in parallelizing the execution but instead adds huge

network communication overhead.

The following two graphs (Figure 5.8 and Figure 5.9) show the variation of speedup

achieved for real matrix multiplication application on an 8 Host Safran configuration

for different problem sizes and Task numbers.

Figure 5.8 suggests that the best speedup is achieved when the Task number is equal

to the Host number. Speedup improves as the Task number is increased from 1 to 8,

but begins the decrease for future increase in Task number. Generally, as the size of

the problem increases the speedup increases and for sufficiently large problem sizes

it begins to converge to a value. We see this convergence characteristic for 1, 2 and 4

Task configurations (Figure 5.8) but it is not visible for the 8-Task configuration still

for the largest problem size (1152x1152) we used. This means that we can expect

 68

some further improvement in the speedup for 8-Task configuration and for the

problem sizes larger than 1152x1152.

Speedup by Problem Size (RMMA on 8 Hosts)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 200 400 600 800 1000 1200
Matrix Size

Sp
ee

du
p

1 Task
2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks

Figure 5.8 Problem size vs. speedup graph for 8 Host RMMA tests

Speedup by Task Number (RMMA on 8 Hosts)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 5 10 15 20 25 30 35
Task No

Sp
ee

du
p

128x128
256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Figure 5.9 Task number vs. speedup graph for 8 Host RMMA tests

 69

Figure 5.9 shows how speedup changes by Task number. It’s clearly seen that best

speedup is achieved at the optimum task number of 8. For larger Task numbers the

speedup degrades rapidly because more Tasks add huge communication overhead.

Note that, the rate of degradation in the speedup is bigger for larger problem sizes

because the cause of this degradation is communication overheads, which totally

depends on the size of the second matrix (B).

Summary of the RMMA Tests

Here we present the overall analysis for all (1, 2, 4, 8 Host) configurations of Safran

for real matrix multiplication application.

The Figure 5.10 and Figure 5.11 show how maximum speedups achieved for 1, 2, 4,

and 8 Host configurations change depending on the Task number and the problem

size respectively.

Maximum Speedup by Task Number
(RMMA, Matrix Size:1152x1152)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 5 10 15 20 25 30 35

Task No

Sp
ee

dp
up

1 Hosr
2 Hosts
4 Hosts
8 Hosts

Figure 5.10 Task number vs. maximum speedups achieved for all RMMA tests

 70

Figure 5.10 suggests that for each configuration maximum speedup is achieved for

the Task number that is equal to the Host number. Larger Task numbers cause

degradation in the speedup which is proportional to the problem size. Figure 5.11

suggests that speedup generally improves by the problem size but converges to a

value for sufficiently larger problems.

Maximum Speedup by Problem Size
(RMMA, Task No=Host No)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 200 400 600 800 1000 1200

Matrix Size

Sp
ee

du
p

1 Hosts
2 Hosts
4 Hosts
8 Hosts

Figure 5.11 Problem size vs. maximum speedups achieved for all RMMA tests

Figure 5.12 shows how maximum speedups achieved during all experiment change

by Host number. It seems that the maximum speedup achievable on a Safran system

is logarithmical proportional to the Host number. Figure 5.12 suggests that our

system does not scale very well for the set of applications represented by the real

matrix multiplication application (i.e. for applications that require massive network

I/O and communication) because increasing Host number does not produce

proportional speedup gains. For example, for the 8 Host configuration, the maximum

speedup achieved is only about 3.69 and (using the experiment results) we

approximately estimate that for 64 Hosts Safran can archive a speedup value of about

only 6.4.

 71

Maximum Speedup by Host Number
(RMMA, Task No=Host No, Matrix Size:1152x1152)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 1 2 3 4 5 6 7 8

Host No

Sp
ee

du
p

9

Figure 5.12 Host number vs. maximum speedups achieved for all RMMA tests

Figure 5.13 further clarifies the situation. As seen, efficiency of the system drops

drastically as the number of Hosts increases.

Maximum Efficiency by Host Number
(RMMA, Task No=Host No)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

Host No

%
 o

f I
de

al
 S

pe
ed

up

Figure 5.13 Host number vs. efficiency of Safran for RMMA

 72

To sum up, from our analyses we can conclude that Safran is not much suitable for

applications that have high data transfer and network I/O requirements.

5.2.2 Distributed Data Matrix Multiplication Application Tests

We run the distributed data matrix multiplication application serially and for 1, 2, 4,

and 8 Host and for 1, 2, 4, 8, 16, and 32 Task Safran configurations. Here we present

the discussion only for the 1 Host and 8 Host configurations as an example of our

analysis approach. The analysis for the 2 Host and 4 Host configurations will be

presented together with the other cases in the overall summary section.

Safran Configuration of 1 Host

The execution time vs. the problem size graph for the 1 Host and different Task

numbers is given Figure 5.14.

Execution Time by Problem Size (DDMMA on 1 Host)

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000 1200
Matrix Size

Ex
ec

ut
io

n
Ti

m
e

(m
s) 1 Task

2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks
Serial

Figure 5.14 Problem size vs. execution time of graph for 1 Host DDMMA tests

As seen from Figure 5.14, for sufficiently large problem sizes the overhead of the

system is quite low even for the configuration of 32 Tasks. Unlike the RMMA, the

 73

overhead is mainly due to Safran’s bookkeeping activities. The overhead for the

configuration of 32 Tasks and the largest problem size is 1267 ms which is about the

%6.5 of the whole execution time. As the Figure 5.15 shows, the execution time

(therefore the overhead) is increasing linearly by Task number. The average

overhead incurred by each Task is about 35 ms which is about %5.7 of the average

execution time of a Task (604 ms for the 32 Task and 1152x1152 matrix size case).

As the overhead created by each Task is generally constant, for much larger

problems (i.e. high granularity Tasks) we can expect this percentage of overhead to

decrease substantially. For example, for matrix of size 2048x2048, we estimate that

this percentage of overhead to fall down to about %1.2 of the total execution time..

Execution Time by Task Number (DDMMA on 1 Host)

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

Task No

Ex
ec

ut
io

n
Ti

m
e

(m
s)

128x128
256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Figure 5.15 Task number vs. execution time graph for 1 Host DDMMA tests

The situation is more clearly demonstrated by Figure 5.16. As seen, the overhead

time is generally increasing linearly by the Task number and rate of increase is

mostly independent of the problem size.

 74

Overhead by Task Number (DDMMA on 1 Host)

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35

Task No

O
ve

rh
ea

d
(m

s)
128x128
256x256
384x384
512x512
640x640
Series6
896x896
1024x1024
1152x1152

Figure 5.16 Task number vs. execution overhead graph for 1 Host DDMMA tests

These results and our analysis suggest that the overhead of Safran for pure CPU

intensive applications is low and quite reasonable.

Speedup by Problem Size (DDMMA on 1 Host)

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000 1200

Matrix Size

Sp
ee

du
p

1 Task
2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks

Figure 5.17 Task number vs. execution overhead graph for 1 Host DDMMA tests

 75

Speedup by Task Number (DDMMA on 1 Host)

0

0,2

0,4

0,6

0,8

1

1,2

0 5 10 15 20 25 30 35

Task No

Sp
ee

du
p

128x128
256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Figure 5.18 Task number vs. execution overhead graph for 1 Host DDMMA tests

Figure 5.17 and Figure 5.18 show how speedup changes by the problem size and

Task number respectively. Figure 5.17 suggests that despite the overhead of the

system, for larger problems quite good speedups can be achieved. As seen in Figure

5.18, for sufficiently large problem sizes (512x512 and larger) increasing Task

number does not degrade the speedup very much as each Task adds only a small

constant overhead.

Safran Configuration of 8 Hosts

The following two graphs (Figure 5.19 and Figure 5.20) show the variation of

execution time of distributed-data matrix multiplication application on an 8 Host

Safran configuration for different problem sizes and Task numbers.

 76

Execution Time by Problem Size (DDMMA on 8 Hosts)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 200 400 600 800 1000 1200

Matrix Size

Ex
ec

ut
io

n
Ti

m
e

(m
s) 1 Task

2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks
Serial

Figure 5.19 Problem size vs. execution time graph for 8 Host DDMMA tests

Execution Time by Task Number (DDMMA on 8 Hosts)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35

Task No

E
xe

cu
tio

n
Ti

m
e

(m
s)

128x128
256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1152

Figure 5.20 Task number vs. execution time graph for 8 Host DDMMA tests

As expected, it’s seen that (Figure 5.19) for a configuration of 8 Hosts, execution

time decreases rapidly as the number of Tasks is increased from 1 to 8 and reaches

 77

the optimum (minimum) value for 8 Hosts for almost all problem sizes. Further

increase in the Task number increases the execution time slightly which shows that

overhead of increased Task number is not very prohibitive.

Figure 5.20 more clearly shows the change of execution time by Task number. As

seen, for sufficiently large problem sizes minimum execution times are achieved

when the Task number is 8. Larger Task numbers increases the execution time, but

not much excessively.

The following graphs (Figure 5.21 and Figure 5.22) show how the speedup

achieved changes by the problem size and the Task number.

Speedup by Problem Size (DDMMA on 8 Hosts)

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

Matrix Size

Sp
ee

du
p

1 Task
2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks

Figure 5.21 Problem size vs. speedup achieved graph for 8 Host DDMMA tests

Figure 5.21 suggest that speedup generally improves as the problem size

(consequently the Task granularity) increases and gradually converges to a value (1,

2, and 4 Task cases). A speedup value of 6.65 is achieved with 8 Tasks for the

maximum matrix size but convergence behavior is still not visible for this matrix

size. So, for the configuration of 8 Hosts we expect some more improvement in the

 78

speedup for much larger and high granularity Tasks for which we were not able to

conduct experiment. Figure 5.22 suggests that the decrease in the speedup due to

Task numbers larger than the optimum value (8) gets smaller as the application size

increases.

Speedup by Task Number (DDMMA on 8 Hosts)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

Task No

Sp
ee

du
p

128x128
256x256
384x384
512x512
640x640
768x768
896x896
1024x1024
1152x1552

Figure 5.22 Task number vs. speedup achieved graph for 8 Host DDMMA tests

Summary of the DDMMA Tests

Here we present the overall analysis for all (1, 2, 4, 8 Host) configurations of Safran

for distributed-data matrix multiplication application.

Figure 5.23 suggests that for each configuration, maximum speedup is achieved for

the Task number that is equal to the Host number. Larger Task numbers cause

degradation in the speedup but this degradation is not too much.

 79

Speedup by Task Number
(DDMMA, Matrix Size: 1152x1152)

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

Task No

Sp
ee

du
p

1 Host
2 Hosts
4 Hosts
8 Hosts

Figure 5.23 Task number vs. speedup achieved for all DDMMA tests

Maximum Speedup by Host Number
(DDMMA, Task No=Host No, Matrix Size:1152x1152)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

Host No

Sp
ee

du
p

9

Figure 5.24 Host Number vs. speedup achieved for all DDMMA tests

Figure 5.24 shows the variation of maximum speedups by the Host number achieved

during all experiments. It is seen that the maximum speedup achievable on a Safran

 80

system is linearly proportional to the Host number which means that Safran is quite

scaleable for this kind of applications. Assuming that the system maintains its

scalability characteristics, we roughly estimate (using the experiment results) that for

64 Hosts Safran can achieve a speedup value of about 51.

To sum up, from our analyses we can conclude that, Safran is quite suitable for

applications that do not have much network I/O requirement but that are extensively

computation bound.

5.2.3 Comparison

In this section we present the general comparison of the performance characteristics

of Safran for the two different applications for which we conducted experiments.

The following figures (Figure 5.25 and Figure 5.26) generally show how speedup

changes by Host number and Task number for both applications.

Maximum Speedup by Host Number

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

Host No

Sp
ee

du
p

Real Matrix
Multiplication

Distributed-
Data Matrix
Multiplication

Figure 5.25 Host number vs. maximum speedup achieved for both applications.

 81

Figure 5.25 clearly shows that Safran scales perfectly for pure CPU bound

applications represented by the distributed-data matrix multiplication application.

But for application that have excessive network I/O requirement (represented by real

matrix multiplication) it is not much suitable because it does not achieve good

speedup values and it does not scale at all as the number of Hosts is increased.

In Figure 5.26 the effect of over-dividing the application (large Task number) for the

two applications is seen. Larger Task number causes rapid drop in the speedup for

the real matrix multiplication application because each Task adds large network I/O

overhead to the execution time. For the distributed-data matrix multiplication

application each Task adds only a small amount of constant overhead independent of

the application.

Maximum Speedup by Task Number

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35
Task No

Sp
ee

du
p

Real Matrix
Multiplication

Distributed-
Data Matrix
Multiplication

Figure 5.26 Task number vs. maximum speedup achieved for both applications.

Figure 5.27 shows how efficiency of the system changes by Host number. As seen,

the efficiency of the system decreases rapidly for the I/O bound application as the

number of Host of the system increases. For the pure CPU bound application

efficiency also drops as the system extends but with a much smaller rate.

 82

Maximum Efficiency by Host Number

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9

Host No

%
 o

f I
de

al
 S

pe
ed

up Real Matrix
Multiplication

Distributed-
Data Matrix
Multiplication

Figure 5.27 Host number vs. maximum efficiency achieved for both applications.

5.3 Summary of Test Results

From our analysis of all the test results we can reach the following conclusions about

the performance characteristics of Safran:

• Safran is more appropriate for applications that require extensive

computational capacity. The larger the applications’ computation requirement

(and the granularity of the sub-computations i.e. the Tasks) the better the

speedups and systems efficiency achieved.

• Applications that require too much network I/O are not much suitable for

running on Safran. For such application Safran does not scale very well i.e.

adding more Hosts does not produce much better speedups.

• Applications that are pure CPU bound produce quite good speedup and

efficiency values, so they are quite suitable for running on Safran. For such

applications Safran scales perfectly i.e. adding more Hosts produce

proportionally better speedups (i.e. smaller execution time).

 83

• To achieve the optimum speedup, the application should be divided into the

number of Task that is at least equal to the number of Hosts in the system.

Larger Task numbers generally decreases the speedup and efficiency values

but the rate of decrease is quite low for pure CPU bound applications. So,

larger Task numbers is not prohibitive for this kind of applications. To help

the application developer in deciding the optimum number of Tasks to use,

Safran provides APIs (ApplicationServices.getAvailableHostNo

method) that enable the application developer to dynamically determine the

best-effort estimate of the number of available Hosts in the system.

Application developers can use this API to determine the Task number to use.

 84

CHAPTER 6

6. CONCLUSION

Safran is designed as a framework to support easy development of a wide variety of

distributed and parallel applications on networks of heterogeneous workstations

using the Java programming language. The main objective of Safran is to support

platform independence and heterogeneity and also minimize the overheads related to

setup and maintenance of the platform as well as making it easy to develop

applications on the platform.

Safran supports platform independence and heterogeneity by using the Java Virtual

Machine abstraction, which already solves these problems as a platform independent

development and runtime environment. Although we conducted our experiments and

collected data on a network of Sun workstations, we also the run our test applications

on a small number of Windows machines just to verify that our system works on

heterogeneous systems.

Safran makes it easy to setup and maintain the system by supporting some level of

automatic setup of the system. Entities named Brokers, Hosts and Applications can

discover and use each other automatically if required. Compared to other similar

works, setup and maintenance of Safran is easier. A Host that is started up

somewhere on the network can automatically find and join a Safran cluster. So,

Safran keeps the overhead minimum associated with installation, configuration, and

management of the system.

Most of the other frameworks we examined support either a low-level programming

model based on distributed objects or a high-level of programming model for parallel

applications. Safran provides support for the both programming and computational

 85

models. So, Safran enables development of both general distributed applications

(through its low-level programming model) and parallel applications (through its

high-level programming model).

Safran’s high-level programming model provides a virtualization of a network of

heterogeneous workstations so that applications are written for a virtual, single

computer that has parallel processing capability. As the applications have a virtual

single machine view of the network, new machines can transparently join the system

or existing machines can leave the system dynamically at runtime. The application

does not have to deal with the dynamically changing properties (machine failures for

example) of the network.

Safran’s high level programming model for parallel application development is

specifically designed for compute intensive, CPU-bound applications with high

granularity of sub-computations. Our experiments verified that for this kind of

applications Safran achieves reasonable speedups and scales reasonably as the

system gets larger.

 86

CHAPTER 7

7. FUTURE WORK

This section contains discussions about possible future extensions to Safran that are

not included in the current design and implementation but might extend the

capabilities of systems in important ways. Current design is flexible enough so that

future extension can be built on it without extensive modifications to it.

7.1 High-level Computational and Programming Model

As mentioned in Section 3.2.2, currently Safran only supports piecework

computations type of high-level computational model because it does not allow

communication of distributed processes. This limits the type of problems that can be

solved on Safran. To get rid of this limitation and increase the number of problems

solvable on Safran infrastructure, support for different computational models can be

added to the system. For example to allow communication of distributed processes a

shared memory abstraction (possibly based on JavaSpaces[30]) can be provided. This

solution might eliminate the distributed snapshot problem associated with direct

point-to-point communication of distributed processes, which is explained in detail in

Section 3.2.2.

7.2 Low-level Computational and Programming Model

The low-level programming model based on the concepts of distributed-objects is

made easy to use by the help of Dynamic Proxies layer. But some functionality of the

layer such as making asynchronous and one-way method calls are provided through

an API that is difficult to use as it’s mainly designed for Safran’s own internal use.

 87

The API that provides this kind of functionality can be re-designed to make it more

easy to use by end-user applications.

7.3 Security

Safran’s current design is based on the requirements of a single administrative

institution. So, security infrastructure is mainly designed based on the assumption

that all entities are controlled by the same administrative body and they all can trust

each other.

Safran’s infrastructure is mainly ready to be extended to support more than one,

distributed organizations. If Safran would be extended to out of administrative

boundaries of a single institution, security infrastructure must be re-designed such

that Broker, Hosts and Applications must be authenticated and authorized by each

other for different operations. This way clusters formed by totally different

organizations can be combined to work together without security concerns.

7.4 Network Communication Service Implementation

Current implementation of Safran is based on Java RMI technology. RMI requires

some tight relation between processes and it is difficult to get it work through

firewalls and proxy servers. Network Communication Service Layer implementation

can be replaced with a new implementation based on low level network sockets to

make Safran capable of working through firewalls without difficulty.

7.5 Scheduling and Load Balancing

The implementation of Safran we provide makes some too strong assumptions about

the type of applications that are expected to be run on Safran. The design and

implementation of the Task scheduling and load balancing infrastructure are mainly

based on these assumptions. For example, it’s assumed that applications that will run

on Safran will be mostly computation bound and also Tasks running on Hosts will

use almost all computation capacity of the Hosts. So, only one Task is allowed to run

 88

on a Host exclusively and non-preemptively. While this design produces good results

for applications and cases for which the assumptions they are based on holds, for

some other type of applications and scenarios it might not produce good speedup and

throughput values. In short, the scheduling and load balancing sub-system is quite

simple and is not designed for wide variety of applications and runtime scenarios.

The scheduling and load balancing sub-system can be redesigned and implemented

for different type of applications and for more complex and advanced runtime

scenarios and requirements.

 89

REFERENCES

[1] R. Bisani and A. Forin, Multilanguage Parallel Programming of

Heterogeneous Machines. IEEE Trans. Computers, Vol. 37, No. 8: pp.
930-945, Aug 1988.

[2] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman, Super Web:
Towards a Global Web-based Parallel Computing Infrastructure. 11th
International Parallel Processing Symposium, pp. 100-106, April 1997.

[3] B. Christiansen, P. Cappello, M.F. Ionescu, M.O. Neary, K. Schanuser.
And D. Wu. Javelin: Internet Based Parallel Computing Using Java.
Concurrency: Practice and Experience, Vol. 9, No. 11, pp. 1139-1160,
November 1997.

[4] P. Cappello, Janet's Abstract Distributed Service Component. In
Proceedings of 15th IASTED Int. Conf. on Parallel and Distributed
Computing and Systems, pp. 751 - 756, Marina del Rey, California,
November 2003.

[5] Baratloo, M. Karaul, Z. Kedem, P. Wijckoff, Charlotte: Metacomputing
on the Web. Future Generation Computer Systems, Vol. 15, pp. 559-570,
1999.

[6] A. Baratloo, M. Karaul, H. Karl, and Z. Kedem. KnittingFactory: An
infrastructure for distributed Web applications. TR1997-748, New York
University, 1997.

[7] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an environment for
parallel, distributed and mobile Java applications. ACM 1999 Java
Grande Conference, pp. 15–24, 1999.

 90

[8] M. Philippsen, M. Zenger. JavaParty: Transparent Remote Objects in
Java. Concurrency: Practice and Experience, Vol. 9 No. 11, pp. 1225-
1242, 1997.

[9] T. Brecht, H. Sandhu, J. Talbott, and M. Shan. ParaWeb: Towards
World-Wide Supercomputing. In Proceedings of the 7th ACM SIGOPS
European Workshop, pp. 181-188, September 1996.

[10] T. Fahringer. JavaSymphony: A system for development of locality-
oriented distributed and parallel Java applications. In Proceedings of the
IEEE International Conference on Cluster Computing, pp. 145-152,
2000.

[11] A. J. Ferrari, JPVM: Network Parallel Computing in Java. Technical
Report CS-97-29, Dept. of Comp. Sci., University of Virginia,
Charlottesville, VA 22903, USA.

[12] G. K. Thiruvathukal, P. M. Dickens and S. Bhatti, Java on Networks of
Workstations (JavaNOW): A Parallel Computing Framework Inspired
by Linda and the Message Passing Interface (MPI). DePaul University,
JHPC Research Laboratory, School of CTI.

[13] L. F. Lau, A. L. Ananda, G. Tan, W. F. Wong, JAVM: Internet-based
Parallel Computing Using Java. School of Computing, National
University of Singapore.

[14] J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer, ATLAS: An
Infrastructure for Global Computing. In Proceedings of the 7th ACM
SIGOPS European Workshop: Systems Support for Worldwide
Applications, pp. 165-172, 1996.

[15] H. Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, and U.
Nagashima. Ninflet: A Migratable Parallel Objects Framework using
Java. In Proceedings of ACM 1998 Workshop on Java for High-
Performance Network Computing, pp. 151-159, February 1998.

 91

[16] C. H. Cap and V. Stumpen, Efficient parallel computing in distributed
workstation environments. Parallel Computing Vol. 19, pp. 1221-1234,
1993.

[17] G. Cabillic and I. Puaut, Stardust: An Environment for Parallel
Programming on Networks of Heterogeneous Workstations. Journal of
Parallel and Distributed Computing, Vol. 40, pp. 65-80, 1997.

[18] Michal Cierniak, M. Javed Zaki and Wei Li, Compile Time Scheduling
Algorithms for a Heterogeneous Network of Workstations. The
Computer Journal, Vol. 40, No. 6, pp. 356-372, July 1997.

[19] A. Weinrib and S. Shenker, Adaptive Load Sharing in Large
Heterogeneous Systems. In Proceedings of the IEEE INFO COM, pp.
986-994. 1988.

[20] Yan Gu, B.S. Lee, Wentong Cai, Evaluation of Java Thread Performance
on Two Different Multithreaded Kernels. Operating Systems Review,
Vol. 33, No. 1, pp. 34-46, 1999.

[21] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard Version 1.1, Research Report, June 1995.

[22] Message Passing Interface Forum. MPI-2: Extension to the Message-
Passing Interface Standard, Research Report, July 1997.

[23] V. S. Sunderam, PVM: A Framework for Parallel Distributed
Computing. Journal of Concurrency: Practice and Experience, Vol. 2,
No. 4, pp. 315-339, December 1990.

[24] M. Hamdi, Y. Pan, B. Hamidzadeh, and F.M. Lim, Potentials and
Limitations of Parallel Computing on a Cluster of Workstations.
Proceedings 1997 International Conference on Parallel & Dist. Systems
pp. 572-577, 1997.

 92

[25] O. Larson, M. Feig and L. Johnsson, Sommet Computing Experiences
For Scientific Applications. Parallel Processing Letters, Vol.9 No.2, pp.
243-252, 1999.

[26] Ahuja, Sudhir, Carriero, and Gelernter, Linda and Friends. IEEE
Computer, Vol.19, No.8, pp. 26-34 August 1986.

[27] P. Dasgupta, Z. Kedem, and M. Rabin. Parallel Processing On Networks
of Workstations: A Fault-Tolerant High Performance Approach. In
Proceedings of 15th IEEE International Conf. on Distributed Computing
Systems, pp. 467-474, 1995.

[28] V. Sunderam, J. Dongarra, A. Geist, and R. Manchek, The PVM
Concurrent Computing System: Evolution, Experiences, and Trends.
Parallel Computing, Vol.20, pp.293-311, June 1992.

[29] W. Grosso, Java RMI, O’Reilly, October 2001

[30] Sun Microsystems, Javaspaces Specification.
http://www.javasoft.com/products/javaspaces/specs/index.html (1998).

[31] J. Gosling, B. Joy, and G. Steel, The Java Language Specification.
Addison Wesley Developers Press, Sunsoft Java Series, 1996.

[32] J. Gosling and H. McGilton, The Java Language Environment. Technical
Report, Sun Microsystems, http://java.sun.com, October1995.

[33] T. Linholm and F. Yellin. The Java Virtual Machine Specification,
Addison Wesley, 1999.

[34] M. Stang and S. Whinston. Enterprise Computing with Jini Technology.
In Issue of IT Professional, IEEE Computer Society, Vol.3, No.1, pp. 33-
38, February 2001.

 93

[35] Sun Microsystems Inc., Palo Alto, CA, Java Platform API Specification
Version 1.5, 2004.

[36] Sun Microsystems Inc., Palo Alto, CA, Java Remote Method Invocation
Specification JDK 1.2, 1998.

 94

APPENDIX A: INTERFACES PROVIDED BY SAFRAN’S
LAYERS

Here we list the programming interface (method signatures and brief documentation)

provided by layers of Safran to each other and to application developers.

A.1 Communication SPI Layer

Communication SPI basically consists of four Java interface definitions. Underlying

communication service provider implementation must implement these interfaces.

/* Provides the interface for concrete ObjectHostingService Creator
 * classes. Together with RemoteObjectHostCreator this interface
 * provides an extensibility point for Safran's remoting layer's implementation.
 */
public interface ObjectHostingServiceCreator {
 /**
 * Creates and returns a new <code>ObjectHostingService</code> that will
 * service on the local machine and on the given port once started.
 */
 public ObjectHostingService createService(int port)
 throws ServiceCreationException;

 /**
 * Gets a new <code>ObjectHostingService</code> referring to the service
 * running on the given machine and port.
 */
 public ObjectHostingService getService(String hostName, int port)
 throws ServiceNotFoundException;
}

/**
 * Represents a remotely accessible service (which might be running on the local
 * machine or some remote machine) that hosts remotely accessible objects.
 */
public interface ObjectHostingService {
 /**
 * Starts the object hosting service.
 */
 public void start() throws RemotingException;

 /**
 * Stops the remote object hosting service. All hosted objects are deleted
 * and the service is not accessible to RemoteObjectHost's anymore.
 */
 public void stop() throws RemotingException;

 /**
 * Returns the status of this ObjectHostingService.
 */
 public boolean isStarted() throws RemotingException;

 /**

 95

 * Gets the IP address or DNS resolvable host name of the machine on
 * which this ObjectHostingService is running.
 */
 public String getHostName() throws RemotingException;

 /**
 * Gets the port number on which this ObjectHostingService is running.
 */
 public int getPort() throws RemotingException;

 /**
 * Gets whether this ObjectHostingService is running in the same
 * JVM process with the caller of this method.
 */
 public boolean isLocalToProcess() throws RemotingException;

 /**
 * Gets whether this ObjectHostingService is running on the same
 * host (machine) as the caller's JVM process is running.
 */
 public boolean isLocalToHost() throws RemotingException;
}

/**
 * Provides the interface for concrete RemoteObjectHost Creator classes.
 * Together with ObjectHostingServiceCreator interface provides
 * an extensibility point for Safran's remoting layer's implementation.
 */
public interface RemoteObjectHostCreator {
 /**
 * Creates and returns an object implementing RemoteObjectHost
 * interface referring to the ObjectHostingService which is
 * running on the given host and port number.
 */
 public RemoteObjectHost getObjectHost(String hostName, int port)
 throws ServiceNotFoundException;
}

/**
 * Allows access to services of an object hosting service i.e. ObjectHostingService.
 */
public interface RemoteObjectHost {
 /**
 * Creates an new instance of a class on a remote host and gets back the
 * UUID of the created object. A new instance of the class clazz on the
 * remote ObjectHostingService referred by this is created using the
 * constructor of the class that can accept the given array of parameter
 * types.
 */
 public UUID createObject(Class clazz, Object[] ctorArgs, Class[] paramTypes)
 throws RemotingException;

 /**
 * Puts the given object itself (not a copy of it) to the this
 * RemoteObjectHost and exposes it to remote access with the
 * given well-known name.
 */
 public UUID exportObject(Object obj, String objectName, UUID exporterID)
 throws RemotingException;

 /**
 * Un-exports and removes the remotely accessible object which is previously
 * exported with the a well-known name to this RemoteObjectHost.
 */
 public void unexportObject(UUID objectID, UUID callerID)
 throws RemotingException;

 96

 /**
 * Gets the UUID of the hosted object which is exported with the given
 * well-known name.
 */
 public UUID getExportedObject(String objectName) throws RemotingException;

 /**
 * Get the well-known name with which the hosted object whose UUID is given.
 */
 public String getExportedObjectName(UUID objectID) throws RemotingException;

 /**
 * Puts a copy of the local object to the remote ObjectHostingService
 * referred by this and returns a UUID of the remote object.
 */
 public UUID putObjectCopy(Object obj) throws RemotingException;

 /**
 * Puts the given object itself (not a copy or clone of it) to the
 * ObjectHostingService referred by this and returns a UUID
 * for the object. For this to be possible ObjectHostingService
 * referred by this must be running in the same JVM as the caller. Otherwise
 * this method should throw an OperationUnsupportedException.
 */
 public UUID putObject(Object obj) throws RemotingException;

 /**
 * Gets a cloned copy of the remote object with the given
 * UUID hosted by the ObjectHostingService referred by this.
 */
 public Object getObjectCopy(UUID objectID)
 throws ObjectNotFoundException, RemotingException;

 /**
 * Deletes the remote object with the given UUID hosted by
 * the ObjectHostingService referred by this.
 */
 public void deleteObject(UUID objectID)
 throws ObjectNotFoundException, RemotingException;

 /**
 * Gets the class of the hosted object whose <code>UUID</code> is given.
 */
 public Class getObjectType(UUID objectID)
 throws ObjectNotFoundException, RemotingException;

 /**
 * Returns true if the connected object hosting service
 * (ObjectHostingService) is hosting a valid object with the given ObjectID.
 */
 public boolean objectExists(UUID objectID)throws RemotingException;

 /**
 * Calls the method with the given name on the remote object whose unique
 * identifier is given.
 */
 public Object invokeMethod(UUID objectID, String method, Object[] args,
 Class[] paramTypes) throws ObjectNotFoundException, RemotingException;

 /**
 * Returns the DNS resolvable host name on which the connected remote object
 * hosting service (ObjectHostingService) is running.
 */
 public String getHostName() throws RemotingException;

 /**
 * Returns the port number on which the connected remote object hosting
 * service (ObjectHostingService) is running.
 */
 public int getPort() throws RemotingException;

 97

 /**
 * Returns <code>true</code> if there is valid connection to the refered
 * remote object hosting service (ObjectHostingService).
 */
 public boolean isValid();

 /**
 * Gets whether the connected remote object hosting service
 * (ObjectHostingService) is running in the same JVM process with
 * the caller of this method.
 */
 public boolean isLocalToProcess() throws RemotingException;

 /**
 * Gets whether the connected remote object hosting service
 * (ObjectHostingService) is running on the same host (machine)
 * as the caller's JVM process is running.
 */
 public boolean isLocalToHost() throws RemotingException;
}

A.2 Distributed-Objects Layer
/**
 * Enables creation of ObjectHostingService objects i.e. provides
 * static methods that return ObjectHostingService objects.
 */
public final class ObjectHostingServiceLocator {
 /**
 * Creates and returns a new ObjectHostingService that will service
 * on the local machine and on default port once started.
 */
 public static ObjectHostingService createService() throws
 ServiceCreationException;

 /**
 * Creates and returns a new ObjectHostingService that will service
 * on the local machine and on the given port once started.
 */
 public static ObjectHostingService createService(int port)
 throws ServiceCreationException;

 /**
 * Returns the ObjectHostingService running on the local machine
 * and on default port.
 */
 public static ObjectHostingService getService()
 throws ServiceNotFoundException, RemotingException;

 /**
 * Returns the ObjectHostingService running on the local machine
 * and on the given port.
 */
 public static ObjectHostingService getService(int port)
 throws ServiceNotFoundException, RemotingException;
}

/**
 * Provides means for initializing and configuring remoting subsystem.
 * Users of the remoting layer must use static methods of this class
 * for initializing (and configuring if necessary) remoting subsystem
 * before being able to doing anything with remoting layer services.
 */
public final class RemotingConfiguration {
 /**
 * Returns whether the remoting subsystem is initialized with a call to

 98

 * RemotingServices.initialize method.
 */
 public static boolean isInitalized();

 /**
 * Configures the remoting subsystem according to the given configuration
 * file. If ever this method is called it must be called before a call to
 * RemotingServices.initialize i.e. once the remoting subsystem is
 * initialized it cannot be reconfigured.
 */
 public static void configure(String configFile) throws IOException;

 /**
 * Configures the remoting subsystem according to the configuration data from
 * the given InputStream. If ever this method is called it must be called
 * before a call to RemotingServices.initialize i.e. once the remoting
 * subsystem is initialized it cannot be reconfigured.
 */
 public static void configure(InputStream inputStream) throws IOException;

 /**
 * Returns the currently configured RemoteObjectHostCreator implementation
 * object. This method cannot be called before the remoting subsystem is
 * initialized with a call to RemotingServices.initialize method.
 */
 public static int getDefaultRemotingPort();
}

/**
 * This class provides client side services for remoting sub-system. Clients can
 * create, put, delete, and move objects on and between remote hosts.
 */
public final class RemotingServices {
 /**
 * Initializes the remoting subsystem. Users of remoting layer must call this
 * method before doing anything with the remoting layer. If required remoting
 * subsystem must be configured using the RemotingConfiguration.configure
 * method before being initialized. Once the remoting subsystem initialized
 * it is not possible to configure or reconfigure it. Attempts to do so will
 * result in an exception being thrown.
 */
 public static void initialize() throws RemotingException;

 /**
 * Creates an new instance of a class on a remote host and gets back a proxy
 * to the created object. A new instance of the class clazz on the remote
 * ObjectHostingService running on the given host and default
 * remoting port is created using the constructor of the class that can
 * accept the given array of objects as the arguments.
 */
 public static Object createObject(String hostName,
 Class clazz, Object[] ctorArgs) throws RemotingException;

 /**
 * Creates an new instance of a class on a remote host and gets back a proxy
 * to the created object. A new instance of the class clazz on the remote
 * ObjectHostingService running on the given host port is
 * created using the constructor of the class that can accept the given array
 * of objects as the arguments.
 */
 public static Object createObject(String hostName, int port,
 Class clazz, Object[] ctorArgs) throws RemotingException;

 /**
 * Creates an new instance of a class on a remote host and gets back a proxy
 * to the created object. A new instance of the class clazz on the remote
 * ObjectHostingService running on the given host and default
 * remoting port using the constructor of the class that can accept the given
 * array of parameter types.

 99

 */
 public static Object createObject(String hostName, Class clazz,
 Class[] paramTypes, Object[] ctorArgs) throws RemotingException;

 /**
 * Creates an new instance of a class on a remote host and gets back a proxy
 * to the created object. A new instance of the class clazz on the remote
 * ObjectHostingService running on the given host and port using
 * the constructor of the class that can accept the given array of parameter
 * types.
 */
 public static Object createObject(String hostName, int port, Class clazz,
 Class[] paramTypes, Object[] ctorArgs) throws RemotingException;

 /**
 * Puts the given object itself (not a copy of it) to the
 * ObjectHostingService running in this JVM and at the default
 * port and exposes it to remote access with the given well-known name.
 * Remote clients can access and make method calls on the given object itself
 * by using RemotingServices.getExportedObject method.
 */
 public static void exportObject(Object obj, String objectName)
 throws NameInUseException, ServiceNotFoundException,RemotingException;

 /**
 * Puts the given object itself (not a copy of it) to the
 * ObjectHostingService running in this JVM and at the default
 * port and exposes it to remote access with the given well-known name.
 * Remote clients can access and make method calls on the given object itself
 * by using RemotingServices.getExportedObject method.
 */
 public static void exportObject(Object obj, String objectName, int port)
 throws NameInUseException, ServiceNotFoundException,RemotingException;

 /**
 * Un-exports and removes the remotely accessible object which is previously
 * exported with the given well-known name to the ObjectHostingService
 * running in the local JVM and on the default port.
 * After call to this method the object that is previously exported with the
 * given well-known name is no longer accessible to remote clients even if
 * they acquired a remote reference to it before it is un-exported.
 */
 public static void unexportObject(String objectName)throws RemotingException;

 /**
 * Un-exports and removes the remotely accessible object which is previously
 * exported with the given well-known name to the ObjectHostingService
 * running in the local JVM and on the given port.
 * After call to this method the object that is previously exported with the
 * given well-known name is no longer accessible to remote clients even if
 * they acquired a remote reference to it before it is un-exported.
 */
 public static void unexportObject(String objectName, int port)
 throws RemotingException;

 /**
 * Returns a proxy object that can be used to access the remote object
 * which is hosted by the remote ObjectHostingService running on
 * the given host and default port and that is exported with the given
 * well-known name.
 */
 public static Object getExportedObject(String objectName, String hostName)
 throws RemotingException;

 /**
 * Returns a proxy object that can be used to access the remote object
 * which is hosted by the remote ObjectHostingService running on
 * the given host and given port and that is exported with the given
 * well-known name.
 */

 100

 public static Object getExportedObject(String objectName, String hostName,
 int port) throws RemotingException;

 /**
 * Creates and returns a proxy object that can be used to remotely call
 * methods on the given object itself (not it's copy). The returned proxy
 * object supports the same interfaces that are implemented by the type
 * of the given object. Method calls on the returned object are dispatched
 * to the original given object.
 */
 public static Object createCallbackHandle(Object obj)
 throws RemotingException;

 /**
 * Puts a copy of the given object to the ObjectHostingService
 * running on the given host and default port.
 * An object that allows access to the remotely hosted copy of the
 * given object is returned. The returned proxy object supports the
 * same interfaces that are implemented by the type of the given object.
 */
 public static Object putObjectCopyTo(Object obj, String hostName)
 throws RemotingException;

 /**
 * Puts a copy of the given object to the ObjectHostingService
 * running on the given host and port. An object that allows access to the
 * remotely hosted copy of the given object is returned. The returned proxy
 * object supports the same interfaces that are implemented by the type of
 * the given object.
 */
 public static Object putObjectCopyTo(Object obj, String hostName, int port)
 throws RemotingException;

 /**
 * Gets a local copy of the remotely hosted object referred by the parameter
 * remoteObj.
 */
 public static Object getObjectCopy(Object remoteObj)throws RemotingException;

 /**
 * Moves the remotely hosted object referred by the parameter remoteObj from
 * its current host to the remote ObjectHostingService running on the given
 * host and default remoting port. After the remote object is moved all local
 * references to the remote object is transparently updated so that users of
 * local references do not need to do anything related to the movement of the
 * object.
 */
 public static void moveObjectTo(Object remoteObj, String hostName)
 throws RemotingException;

 /**
 * Moves the remotely hosted object referred by the parameter
 * remoteObj from its current host to the remote ObjectHostingService running
 * on the given host and port. After the remote object is moved all local
 * references to the remote object is transparently updated so that users of
 * local references do not need to do anything related to the movement of the
 * object.
 */
 public static void moveObjectTo(Object remoteObj, String hostName, int port)
 throws RemotingException;

 /**
 * Deletes and removes the remotely hosted object referred by the parameter
 * remoteObj.
 */
 public static void deleteObject(Object remoteObj)throws RemotingException;

 /**
 * Determines whether the given object refers to a valid/accessible remote
 * object.

 101

 */
 public static boolean isValidRemoteObject(Object remoteObj);

 /**
 * Returns the RemoteObjectRef that enables access to remote
 * object given as the parameter. If the given parameter is itself an
 * RemoteObjectRef object, returns it. If else the given parameter
 * is a proxy object to a remote object, return the RemoteObjectRef
 * that backs that proxy object. Other wise an exception is thrown.
 */
 public static RemoteObjectRef getRemoteObjectRef(Object remoteObj);
}

/**
 * Represents a reference to an object hosted by a remote object hosting service
 * (ObjectHostingService). In a single VM there is only one
 * RemoteObjectRef object referring to the same remotely hosted object.
 */
public final class RemoteObjectRef implements Serializable {
 /**
 * Invokes the method of the remote object referred by this RemoteObjectRef
 * with the given name by passing the array of object as the arguments.
 */
 public MethodInvocationResult invokeMethod(String methodName, Object[] args);

 /**
 * Invokes the method of the remote object referred by this RemoteObjectRef
 * with the given name by passing the array of object as the arguments. The
 * method of the object that has the given name and that has a of list
 * parameter types exactly matching paramTypes array is called.
 */
 public MethodInvocationResult invokeMethod(String methodName,
 Class[] paramTypes, Object[] args);

 /**
 * Invokes asynchronously the method of the remote object referred by this
 * RemoteObjectRef with the given name by passing the array of
 * object as the arguments. This method immediately returns after setting up
 * the asynchronous method call without waiting its completion. The status
 * and result of the asynchronous method call can be queried and accessed
 * through the returned AyncMethodInvokationResult object.
 * As the method call takes place asynchronously the parameter validations
 * are also made asynchronously. So the same exceptions thrown by
 * invokeMethod method is only thrown when the result of
 * the method call is accessed asynchronously through the returned
 * AyncMethodInvokationResult object.
 */
 public AyncMethodInvocationResult invokeMethodAsync(
 String methodName, Object[] args);

 /**
 * Invokes asynchronously the method of the remote object referred by this
 * RemoteObjectRef with the given name by passing the array of
 * object as the arguments. The method of the object that has the given name
 * and that has a list parameters types exactly matching
 * paramTypes array is called. This method immediately returns
 * after setting up the asynchronous method call without waiting its
 * completion. The status and result of the asynchronous method call can be
 * queried and accessed through the returned AyncMethodInvokationResult
 * object. As the method call takes place asynchronously the parameter
 * validations are also made asynchronously. So the same exceptions thrown by
 * invokeMethod(String, Class[], Object[]) method is only thrown when the
 * result of the method call is accessed asynchronously through the returned
 * AyncMethodInvokationResult object.
 */
 public AyncMethodInvocationResult invokeMethodAsync(String methodName,
 Class[] paramTypes, Object[] args);

 /**

 102

 * Invokes asynchronously the method of the remote object referred by this
 * RemoteObjectRef with the given name by passing the array of
 * object as the arguments with a "fire-and-forget" kind of semantics. This
 * method immediately returns after setting up the asynchronous method call
 * without waiting its completion. Nothing (return value, any kind of
 * exceptions thrown even due to invalid parameter) is returned related to
 * the result of the method call. Even if the arguments are invalid for the
 * method call no exception is thrown i.e. the caller will not be able to
 * know whether the method call completed successfully or even dispatched to
 * the remote object.
 */
 public void invokeMethodOneWay(String methodName, Object[] args);

 /**
 * Invokes asynchronously the method of the remote object referred by this
 * RemoteObjectRef with the given name by passing the array of
 * object as the arguments with a "fire-and-forget" kind of semantics. The
 * method of the object that has the given name and that has a list
 * parameters types exactly matching paramTypes array is called. This method
 * immediately returns after setting up the asynchronous method call without
 * waiting its completion. Nothing (return value, any kind of exceptions
 * thrown even due to invalid parameter) is returned related to the result
 * of the method call. Even if the arguments are invalid for the method call
 * no exception is thrown i.e. the caller will not be able to know whether
 * the method call completed successfully or even dispatched to the remote
 * object.
 */
 public void invokeMethodOneWay(String methodName, Class[] paramTypes,
 Object[] args);

 /**
 * Gets a local copy of the remotely hosted object referred by this
 * RemoteObjectRef.
 */
 public Object getObjectCopy() throws RemotingException;

 /**
 * Moves the remotely hosted object referred by this RemoteObjectRef from its
 * current host to the remote ObjectHostingService running on the given host
 * and port. After the remote object is moved all local references (including
 * this one) to the remote object is transparently updated so that users of
 * local references (RemoteObjectRef objects and transparent proxies)
 * do not need to do anything related to the movement of the object.
 */
 public void moveTo(String hostName, int port) throws RemotingException;

 /**
 * Deletes and removes the remotely hosted object referred by this. After a
 * call to this method any method call on this object results with
 * ObjectDeletedException being thrown.
 */
 public void delete() throws RemotingException;

 /**
 * Determines whether this RemoteObjRef refers to a valid and accessible
 * remotely hosted object.
 */
 public boolean isValid() throws RemotingException;

 /**
 * Determines whether this RemoteObjRef refers to a remotely hosted object
 * that is exported with a well known name.
 */
 public boolean isExportedObject() throws RemotingException;

 /**
 * Returns the <code>Class</code> object representing the type of the remote
 * object referred by this RemoteObjectRef.
 * If the class of the remote object is not loaded yet the class is
 * downloaded from the remote ObjectHostingService and loaded

 103

 * into the current class loader.
 */
 public Class getType() throws RemotingException;
}

/**
 * Allows access to the result of a method call that is made on a remotely hosted
 * object. On remote objects method calls are made using invokeMethod methods of the
 * RemoteObjectRef objects which return MethodInvocationResult objects.
 */
public class MethodInvocationResult {
 /**
 * Returns the return value of the remote method call that returned this
 * object.
 */
 public Object getValue() throws RemotingException;

 /**
 * Returns whether an exception is thrown during the remote method call that
 * returned this object.
 */
 public boolean exceptionThrown();

 /**
 * Returns the exception that is thrown during the remote method call that
 * returned this object.
 */
 public Exception getException();
}

/**
 * Allows access to the completion status and result of a method call that is made
 * asynchronous on a remotely hosted object. On remote objects asynchronous method
 * calls are made using invokeMethodAsync methods of the RemoteObjectRef
 * objects which return AyncMethodInvocationResult objects.
 */
public class AyncMethodInvocationResult extends MethodInvocationResult {
 /**
 * Returns the completion status of the asynchronous remote method call
 * that returned this object.
 */
 public boolean isCompleted();

 /**
 * Returns the return value of the asynchronous remote method call that
 * returned this object. This method blocks until the asynchronous method
 * call is either completed successfully or resulted with an exception being
 * thrown.
 */
 public Object getValue() throws RemotingException;

 /**
 * Returns whether an exception is thrown during the asynchronous remote
 * method call that returned this object.
 * This method blocks until the asynchronous method call is either completed
 * successfully or resulted with an exception being thrown.
 */
 public boolean exceptionThrown();

 /**
 * Returns the exception that is thrown during the asynchronous remote method
 * call that returned this object.
 * This method blocks until the asynchronous method call is either completed
 * successfully or resulted with an exception being thrown.
 */
 public Exception getException();

 104

 /**
 * This method blocks the caller until the asynchronous method call that
 * returned this object is either completed successfully or resulted with
 * an exception being thrown.
 */
 public void waitForCompletion();
}

A.3 Dynamic Proxies
/**
 * Helper class that provides services related to dynamic proxy classes and objects.
 * Proxy object provides the same interfaces as the remotely hosted object so
 * once they are obtained they can be cast down to any interface of the remote
 * object for which they act as the proxy. Client can make remote method calls
 * on remotely hosted object through the proxy instances as if the method call is
 * a local (in VM) method call. So the proxy objects provides access, location and
 * migration transparency for remotely hosted objects.
 * /
public final class ProxyHelper {
 /**
 * Generates a transparent dynamic proxy object to the remotely hosted object
 * referred by the given RemoteObjectRef. The returned object implements the
 * same interfaces implemented by the remote object referred by the given
 * RemoteObjectRef. So the returned object can be cast down to any interface
 * supported by the remote object.
 */
 public static Object generateProxy(RemoteObjectRef remoteObjRef)
 throws RemotingException;

 /**
 * Determines whether the given object is a dynamic proxy instance for a
 * RemoteObjectRef object.
 */
 public static boolean isProxy(Object obj);

 /**
 * Returns the RemoteObjectRef for which the given object acts
 * as a proxy. Clients can use this method to get a reference to a
 * RemoteObjectRef for low-level operations.
 */
 public static RemoteObjectRef getRemoteObjectRef(Object proxy);
}

A.4 Parallel Application Services Layer
/**
 * Provides the entry point of the Application Services as static methods for
 * initializing the sub-system, running applications, and doing some configuration.
 */
public final class ApplicationServices {
 /**
 * Initialized the Application Services system. Before doing anything with
 * the Application Services system the user application should call this
 * method.
 */
 public static void initialize();

 /**
 * Submits the given Application to the system for asynchronous execution.
 * The method does NOT block until all the Tasks of the given Application
 * is executed. The method returns when the <code>run</code> methods of the
 * given Application finishes.
 */
 public static void runApplication(Application app);

 /**

 105

 * This method blocks and does not return until all the tasks of the given
 * application are completed (either successfully or with error).
 */
 public static void waitForCompletion(Application app);

 /**
 * Cancel all the Task of the given application that are submitted to the
 * system but that are not returned back to the Application yet.
 */
 public static void cancelApplication(Application app);

 /**
 * Gets the list of Brokers that Application Services is configured to use
 * to find Hosts to run Tasks on. This list contains Brokers that are:
 * 1. Configured to be used using Application Services configuration
 * mechanism.
 * 2. Automatically discovered broker if configured to use them.
 * 3. Programmatically configured to be used using addBroker and setBroker
 * methods.
 */
 public static String[] getBrokers();

 /**
 * Gets the list of host names of Brokers that are automatically located by
 * Application Services. Note that this list of broker may or may not being
 * used by Application Services depending on the configuration of Application
 * Services (See methods enableUseOfDiscoveredBrokers and
 * isUsingDiscoveredBrokers).
 */
 public static String[] getDiscoveredBrokers();

 /**
 * Adds the given Broker to the end of the list of Brokers that will be used
 * to find Hosts to run Tasks on.
 */
 public static boolean addBroker(String brokerHostName);

 /**
 * Adds the given Broker to the list of Brokers (at the given position) that
 * will be used to find Hosts to run Tasks on.
 */
 public static void addBroker(int i, String brokerHostName);

 /**
 * Removes the given Broker from the list of Brokers that will be used to
 * find Hosts to run Tasks on.
 */
 public static boolean removeBroker(String brokerHostName);

 /**
 * Configures Application Services to use or not to use automatically
 * discovered Brokers.
 */
 public static void enableUseOfDiscoveredBrokers(boolean useDiscoveredBrokes);

 /**
 * Returns true if Application Services is configured to use automatically
 * discovered Brokers. Otherwise returns false.
 */
 public static boolean isUsingDiscoveredBrokers();

 /**
 * Returns the total number of Hosts that are believed (by the Brokers they
 * are registered to) to be available for running Task. Note that this number
 * is the not exact and is a best estimate.
 */
 public static int getAvailableHostNo();

 /**
 * Returns the total number of Hosts that are believed (by the Brokers they

 106

 * are registered to) to be available for running Task. Note that this number
 * is the not exact and is a best estimate.
 */
 public static int getTotalHostNo();
}

/**
 * Abstract base class for all user applications. Applications that will be run
 * on Application Services must inherit this class and must at least provide the
 * implementation of the abstract method <code>run</code>.
 */
public abstract class Application {
 /**
 * Application implementers sub-classes this class and implement this
 * method in the minimum. Generally, in this method the user creates
 * instances of Tasks of its application and submit them to the system using
 * one of runTask, runTasks, or runTaskSynch methods of this class.
 */
 public abstract void run();

 /**
 * This method does nothing by default. It should be overridden and
 * implemented by Application implementers that want to receive notification
 * when a Task of their application completes successfully.
 */
 public void onTaskCompleted(Task task);

 /**
 * This method does nothing by default. It should be overridden and
 * implemented by Application implementers that want to receive notification
 * when a Task of their application stops with an error (exception).
 */
 public void onTaskStopped(Task task);

 /**
 * This method does nothing by default. It should be overridden and
 * implemented by Application implementers that want to receive notification
 * when a Task of their application reports progress.
 */
 public void onTaskProgressed(Task task);

 /**
 * Submits the given Task to the Safran system for asynchronous execution.
 */
 protected final void runTask(Task task);

 /**
 * Submits the given Tasks to the Safran system for asynchronous execution.
 */
 protected final void runTasks(Task[] tasks);

 /**
 * Submits the given Tasks to the Safran system for synchronous execution.
 * The method blocks until the Task get executed at some Host and its result
 * (either successful or error) retrieved.
 * Application's taskCompleted, taskProgressed, and taskStopped are NOT
 * called by the system for the given Task.
 */
 protected final void runTaskSynch(Task task);

 /**
 * Cancels the Tasks (which must belong to this application) that is
 * submitted to the system but whose result is not returned to the
 * Application yet.
 */
 protected final void cancelTask(Task task);

 /**

 107

 * Cancels all the Tasks of this application that are submitted to the system
 * but whose results are not returned to the Application yet.
 */
 protected final void cancelAllTasks();
}

/**
 * Abstract base class for all user Task objects. User writing applications that
 * will be run on Application Services must provide at least one class inheriting
 * from this class and must at least provide the implementation of the abstract
 * methods run and copyFrom.
 */
public abstract class Task implements Serializable {
 /**
 * Application developers must implement the application specific Task
 * execution logic in this method. When the Task is dispatched to a remote
 * Host for remote execution, this method is called by the remote Host.
 */
 public abstract void run(TaskExecutionContext context);

 **
 * Task implementers must provide an implementation of this method. The
 * method should set the internal, application specific state (members) of
 * the Task object to the state of the given Task object. Functioning of the
 * framework depends on the correct implementation of this method so
 * applications developer must take extra care in implementing this method.
 */
 public abstract void copyFrom(Task task);

 /**
 * Marks this Task as being completed successfully.
 */
 public final void setCompletedWithSuccess();

 /**
 * Marks this Task of being completed with the given exception being thrown.
 */
 public final void setCompletedWithError(Throwable t);

 /**
 * Gets whether the execution of this Task completed on a remote Host
 * (either successfully or with error).
 */
 public final boolean isCompleted();

 /**
 * Gets whether the execution of this Task completed on a remote Host with
 * error.
 */
 public final boolean isCompletedWithError();
}

/**
 * Enables interaction of Task with their execution context while they are running
 * on remote Hosts.
 */
public interface TaskExecutionContext {
 /**
 * While executing, Task can call this method on safe points of its execution
 * to request from the system to checkpoint its state for systems fault
 * tolerance and recovery operation.
 */
 void checkpointTask();
}

 108

APPENDIX B: SOURCE CODE OF THE TEST
APPLICATION

Here we present the source code of the real matrix multiplication application that we

used for our experiments (explained in Section 5.1.1) as example of parallel

application built on Safran.

Matrix.java

package safran.tests.apps.realmatrix;

import java.util.Random;

public class Matrix implements java.io.Serializable {
 private static Random random = new Random(System.currentTimeMillis());

 int rowNo, colNo;
 int matrixData[][];

 public Matrix(int rowNo, int colNo) {
 this.rowNo = rowNo;
 this.colNo = colNo;
 matrixData = new int[rowNo][colNo];
 }

 public void initializeRandom() {
 for (int r=0; r<rowNo; r++) {
 for(int c=0; c<colNo; c++) {
 matrixData[r][c] = random.nextInt(10);
 }
 }
 }

 public Matrix[] getSubMatrices(int count) {
 if (count<=0 || count>rowNo || rowNo%count!=0) {
 throw new IllegalArgumentException("This matrix
 cannot be divided in "+count+" sub-matrices.");
 }

 Matrix[] results = new Matrix[count];
 int rowPerSubmatrix =
 (int)Math.ceil((double)rowNo/count);
 for (int i=0; i<count; i++) {
 Matrix tmpMatrix = new Matrix(rowPerSubmatrix,
 colNo);
 for (int j=0; j<rowPerSubmatrix; j++) {
 tmpMatrix.matrixData[j]=
 this.matrixData[i*rowPerSubmatrix+j];
 }
 results[i] = tmpMatrix;
 }

 return results;
 }

 public static Matrix multiply(Matrix m1, Matrix m2) {
 if (m1.colNo!=m2.rowNo) {
 throw new IllegalArgumentException("Row number of

 109

 the seconds matrix must be equal to the
 column number of the first matrix.");
 }

 Matrix result = new Matrix(m1.rowNo, m2.colNo);
 for (int r=0; r<m1.rowNo; r++) {
 for (int c=0; c<m2.colNo; c++) {
 int tmpVal = 0;
 for (int i=0; i<m1.colNo; i++) {
 tmpVal +=
 m1.matrixData[r][i]*m2.matrixData[i][c];
 }
 result.matrixData[r][c] = tmpVal;
 }
 }

 return result;
 }
}

MMApp.java

package safran.tests.apps.realmatrix;

import safran.applications.*;

public class MMApp extends Application {
 int taskCount;
 Matrix m1, m2;

 public MMApp(Matrix m1, Matrix m2, int taskCount) {
 this.m1 = m1;
 this.m2 = m2;
 this.taskCount = taskCount;
 }

 public void run() {
 Matrix[] m1SubMatrices = m1.getSubMatrices(taskCount);
 for (int i=0; i<taskCount; i++) {
 MMTask task = new MMTask("RealMTask#"+i,
 m1SubMatrices[i], m2);
 this.runTask(task);
 }
 }

 public void taskCompleted(Task task) {
 System.out.println("TASK COMPLETED Task: "+task);
 }

 public void taskProgressed(Task task) {
 System.out.println("TASK PROGRESSED Task: "+task);
 }

 public void taskStopped(Task task) {
 System.out.println("TASK STOPPED Task: "+task);
 }
}

MMTask.java

package safran.tests.apps.realmatrix;

import safran.applications.*;

public class MMTask extends Task {
 String taskName;
 Matrix m1, m2, result;

 110

 public MMTask(String name, Matrix m1, Matrix m2) {
 if (m1.colNo!=m2.rowNo) {
 throw new IllegalArgumentException("Given matrices
 cannot be multiplied.");
 }

 this.taskName = name;
 this.m1 = m1;
 this.m2 = m2;

 result = new Matrix(m1.rowNo, m2.colNo);
 }

 public void copyFrom(Task task) {
 MMTask remoteTask = (MMTask)task;
 this.result = remoteTask.result;
 }

 public void run(TaskExecutionContext context) {
 result= Matrix.multiply(m1, m2);
 }

 public Matrix getResult() {
 return result;
 }

 public String toString() {
 return taskName;
 }
}

TestRunner.java

package safran.tests;

import safran.applications.ApplicationServices;
import safran.tests.apps.realmatrix.*;
import safran.tests.apps.datalessmatrix.*;

import java.util.Date;
import java.text.SimpleDateFormat;
import java.io.FileWriter;
import java.io.IOException;
import java.io.File;
import java.util.logging.LogManager;
import java.io.ByteArrayInputStream;

/**
 * The executable entry point of test code. Runs all tests.
 */
public class TestRunner {
 private final int REPEAT_NO = 5;

 long start, end;
 String fileSep, newLine, currentDir;
 SimpleDateFormat dateFormat;

 public TestRunner() throws IOException {
 start = 0;
 end = 0;
 fileSep = System.getProperty("file.separator");
 newLine = System.getProperty("line.separator");
 currentDir = System.getProperty("user.dir");
 dateFormat = new SimpleDateFormat("yyyyMMdd_HHmmss");
 }

 public static void main(String args[]) throws Exception {

 111

 TestRunner tests = new TestRunner();
 tests.runTests();
 }

 public void runTests() throws Exception {
 runLocalRealMatrixTests();
 ApplicationServices.initialize();
 ApplicationServices.enableUseOfDiscoveredBrokers(true);
 runRealMatrixTests();
 }

 public void runLocalRealMatrixTests() throws IOException {
 int taskNo = 1;
 int hostNo = 0;
 String dirName = fileSep+"LRMT"+fileSep+"H#"+hostNo;
 String fileName = "T#"+taskNo;
 FileWriter resultFile = createFile(dirName, fileName);

 resultFile.write("Test Name:\tLocal Real Matrix Test"+newLine);
 resultFile.write("Host No:\t"+hostNo+newLine);
 resultFile.write("Task No:\t"+taskNo+newLine+newLine);
 resultFile.write("Task No\tMatrix Size (nxn)\tLocal Time"+newLine);

 final int minMatrixSize = 128;
 final int maxMatrixSize = 1152;
 final int sizeIncrement = 128;
 for (int matrixSize=minMatrixSize;
 matrixSize<=maxMatrixSize;
 matrixSize+=sizeIncrement) {
 System.out.println("Running test for Size: "+matrixSize);
 Matrix m1 = new Matrix(matrixSize, matrixSize);
 Matrix m2 = new Matrix(matrixSize, matrixSize);
 m1.initializeRandom();
 m2.initializeRandom();

 long localTime = 0;
 for (int repeat=0; repeat<REPEAT_NO; repeat++) {
 System.gc();
 start = System.currentTimeMillis();
 Matrix result=Matrix.multiply(m1, m2);
 end = System.currentTimeMillis();
 localTime += (end-start);
 }
 localTime /= REPEAT_NO;
 resultFile.write(taskNo + "\t" + matrixSize + "\t" + localTime
+ "\t" + newLine);
 resultFile.flush();
 }

 resultFile.write(newLine);
 resultFile.close();
 }

 public void runRealMatrixTests() throws IOException {
 int totalHostNo = ApplicationServices.getTotalHostNo();
 while (totalHostNo<=0) {
 totalHostNo = ApplicationServices.getTotalHostNo();
 }

 final int minTaskNo = 32;
 final int maxTaskNo = 32;
 final int taskNoMultiply = 2;
 for (int taskNo=minTaskNo;
 taskNo<=maxTaskNo; taskNo*=taskNoMultiply) {
 totalHostNo = ApplicationServices.getTotalHostNo();

 String dirName = fileSep+"RRMT"+fileSep+"H#"+totalHostNo;
 String fileName = "T#"+taskNo;
 FileWriter resultFile = createFile(dirName, fileName);
 resultFile.write("Test Name:\t Remote Real Matrix Test" +

 112

newLine);
 resultFile.write("Host No:\t"+totalHostNo+newLine);
 resultFile.write("Task No:\t"+taskNo+newLine+newLine);
 resultFile.write("Host No\tTask No\tMatrix Size (nxn)\tRemote
Time (ms)" + newLine);

 final int minMatrixSize = 128;
 final int maxMatrixSize = 1152;
 final int sizeIncrement = 128;
 for (int matrixSize=minMatrixSize;
 matrixSize<=maxMatrixSize;
 matrixSize+=sizeIncrement) {
 Matrix m1 = new Matrix(matrixSize, matrixSize);
 Matrix m2 = new Matrix(matrixSize, matrixSize);
 m1.initializeRandom();
 m2.initializeRandom();

 long remoteTime = 0;
 for (int repeat=0; repeat<REPEAT_NO;
 repeat++) {
 MMApp theApp = new MMApp(m1, m2, taskNo);
 System.gc();
 start = System.currentTimeMillis();

 ApplicationServices.runApplication(theApp);
 ApplicationServices.waitForCompletion(theApp);
 end = System.currentTimeMillis();
 remoteTime += (end-start);
 }
 remoteTime /= REPEAT_NO;

 resultFile.write(totalHostNo + "\t" + taskNo + "\t" +
matrixSize+"\t"+ remoteTime+"\t"+newLine);
 resultFile.flush();
 }
 resultFile.close();
 }
 }

 private FileWriter createFile(String subDir, String prefix)
 throws IOException {
 String dirName = "Data" + subDir;
 File dir = new File(currentDir, dirName);
 dir.mkdirs();

 String fileName = dateFormat.format(new Date());
 fileName = prefix + "_" + fileName + ".txt";

 File file = new File(dir, fileName);
 FileWriter writer = new FileWriter(file, false);
 return writer;
 }
}

 113

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Background and Motivations
	Objectives
	Thesis Layout

	RELATED WORK
	SuperWeb, Javelin, JANET (University of California, Santa Ba
	Charlotte (New York University)
	KnittingFactory (New York University)
	Ajents (York University, University of Waterloo)
	JavaParty (University of Karlsruhe, Germany)
	JavaSymphony (University of Vienna)
	JavaNOW (DePaul University)
	Discussion

	ARCHITECTURAL CONCEPTS AND DESIGN
	Introduction
	General Requirements
	Assumptions and System Requirements

	Computational and Programming Models
	The Low-Level Computation Model
	The High-Level Computation Model

	System Architecture
	Overview
	Brokers
	Hosts
	Applications

	Logical Design
	Overview
	The Java Language and Runtime Environment
	Distributed-Objects Layer
	Communication SPI and Implementation Layers
	Dynamic Proxies Layer
	Parallel Application Services
	User Applications

	SYSTEM DESIGN AND IMPLEMENTATION DETAILS
	Distributed-Objects Layer
	Server Side Objects and Entities
	Client Side Objects and Entities

	Dynamic Proxy Generation
	Pluggable Communication Infrastructure
	Parallel Application Services
	Broker and Host Relations
	Locating Brokers and Automatic Registration

	TESTING AND EVALUATON OF SAFRAN
	Experiments
	Test Applications
	Experimental Setup
	Experiment Configurations

	Experiment Results
	Real Matrix Multiplication Application Tests
	Distributed Data Matrix Multiplication Application Tests
	Comparison

	Summary of Test Results

	CONCLUSION
	FUTURE WORK
	High-level Computational and Programming Model
	Low-level Computational and Programming Model
	Security
	Network Communication Service Implementation
	Scheduling and Load Balancing

	REFERENCES
	APPENDIX A: INTERFACES PROVIDED BY SAFRAN’S LAYERS
	A.1 Communication SPI Layer
	A.2 Distributed-Objects Layer
	A.3 Dynamic Proxies
	A.4 Parallel Application Services Layer

	APPENDIX B: SOURCE CODE OF THE TEST APPLICATION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

