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ABSTRACT 

SAFRAN: 
A DISTRIBUTED AND PARALLEL APPLICATION DEVELOPMENT 

FRAMEWORK FOR NETWORKS OF HETEROGENEOUS WORKSTATIONS 
 
 
 

GÖLYERİ, Hamza 
M.Sc., Department of Computer Engineering 

Supervisor: Prof. Dr. Müslim BOZYİĞİT 
 

April 2005, 113 pages 
 
 
 

With the rapid advances in high-speed network technologies and steady decrease in 

the cost of hardware involved, network of workstation (NOW) environments began 

to attract attention as competitors against special purpose, high performance parallel 

processing environments. NOWs attract attention as parallel and distributed 

computing environments because they provide high scalability in terms of computing 

capacity and they have much smaller cost/performance ratios with high availability. 

However, they are harder to program for parallel and distributed applications because 

of the issues involved due to their loosely coupled nature. Some of the issues to be 

considered are the heterogeneity in the software and hardware architectures, 

uncontrolled external loads, network overheads, frequently changing system 

characteristics like workload on processors and network links, and security of 

applications and hosts.  

The general objective of this work is to provide the design and implementation of a 

JavaTM-based, high performance and flexible platform i.e. a framework that will 

facilitate development of wide range of parallel and distributed applications on 
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networks of heterogeneous workstations (NOW). Parallel and distributed application 

developers are provided an infrastructure (consisting of pieces of executable software 

developed in Java and a Java software library) that allows them to build and run their 

distributed applications on their heterogeneous NOW without worrying about the 

issues specific to the NOW environments. 

The results of the extensive set of experiments conducted have shown that Safran is 

quite scaleable and responds well to compute intensive parallel and distributed 

applications. 

Keywords: Distributed and Parallel Computing, Java, Network of Heterogeneous 

Workstations (NOW), Parallel and Distributed Application Development 

Frameworks 
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ÖZ 

SAFRAN: 
HETEROJEN İŞ İSTASYONU AĞLARI İÇİN PARALEL VE DAĞITIK 

UYGULAMA GELİŞTİRME ALTYAPISI 
 
 
 

GÖLYERİ, Hamza 
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Müslim BOZYİĞİT 
 

Nisan 2005, 113 sayfa 
 
 
 

Yüksek hızlı bilgisayar ağları teknolojilerindeki hızlı gelişmelerle birlikte iş 

istasyonları ağı (İİA) ortamları, özel amaçlı, yüksek performanslı paralel bilgisayar 

mimarilerine rakip olarak dikkat çekmeye başladılar. Hesaplama kapasitesi 

bakımından sağladıkları yüksek ölçeklenebilirlik ve sağladıkları çok daha düşük 

fiyat/performans oranlarıyla İİA’lar paralel ve dağıtık bilgi işlem ortamları olarak 

dikkat çekiyorlar. Fakat İİA’ların dağıtık doğalarına bağlı birçok problem, İİA’lar 

üzerinde çalışacak paralel ve dağıtık uygulamaların geliştirilmesini oldukça 

zorlaştırmaktadır. Dikkate alınması gereken önemli noktalardan bazıları yazılım ve 

donanım mimarilerindeki heterojenlik, kontrolsüz ve düzensiz harici yükler, ağ 

iletişimden dolayı oluşan performans düşmeleri, çok sık değişen işlemci ve ağ 

bağlantıları üzerindeki yükler gibi sistem özellikleri ve uygulamaların/iş 

istasyonlarının güvenliğidir. 

Genel olarak bu tez çalışmasının amacı heterojen iş istasyonu ağları üzerinde 

çalıştırılabilecek paralel ve dağıtık uygulamaların geliştirilmesini kolaylaştıracak 

JavaTM tabanlı, yüksek performanslı ve esnek bir uygulama geliştirme platformu ve 
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altyapısı tasarlamak ve gerçekleştirmektir. Paralel ve dağıtık uygulama geliştiricilere 

sunulan (Java ile geliştirilmiş yazılım parçalarından ve bir Java yazılım 

kütüphanesinden oluşan) altyapı, geliştiricilerin bu altyapı üzerine dağıtık ve paralel 

uygulama geliştirip, geliştirdikleri uygulamaları heterojen İİA’lar üzerinde İİA’lar 

gibi dağıtık sistemlere özel sorunlarla ilgilenmeden çalıştırabilmesini sağlamaktadır. 

Yapılan geniş çaplı deneylerin ve testlerin sonuçları göstermektedir ki, Safran 

hesaplama ağırlıklı paralel ve dağıtık uygulamalar için yüksek ölçeklenebilirliğe 

sahiptir ve oldukça başarılıdır. 

Anahtar Kelimeler: Dağıtık ve Paralel Bilgi İşlem, Java, Heterojen İş İstasyonu 

Ağları (İİA), Paralel ve Dağıtık Uygulama Geliştirme Altyapıları 

 vii



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

gÉ Åç Ä|ààÄx á|áàxÜ f|uxÄ ã|à{ ÄÉäx 

 viii



ACKNOWLEDGEMENT 

 

First of all, I would like to express my sincere gratitude and thanks to my thesis 

advisor Prof. Dr. Müslim BOZYİĞİT for his continuous guidance, advice, criticism, 

and insight all throughout this work. 

To my parents, I give my great gratitude for their sustained support and 

encouragement through my life. 

I also would like to express my thanks to my supervisors, fellow workers and friends 

at CyberSoft for their understanding and support. 

Finally to my most loved, Sibel, I would like to offer my regret for the time that I 

would very much like to spent with her but instead that I had to give to this work. 

 

 ix



TABLE OF CONTENTS 

 

ABSTRACT........................................................................................................................... iv

ÖZ........................................................................................................................................... vi

ACKNOWLEDGEMENT.................................................................................................... ix

TABLE OF CONTENTS ...................................................................................................... x

LIST OF FIGURES ............................................................................................................ xiii

LIST OF ABBREVIATIONS ............................................................................................. xv

 
CHAPTER 

1. INTRODUCTION.............................................................................................................. 1

1.1 Background and Motivations .............................................................................. 1

1.2 Objectives .............................................................................................................. 3

1.3 Thesis Layout ........................................................................................................ 5

2. RELATED WORK ............................................................................................................ 7

2.1 SuperWeb, Javelin, JANET (University of California, Santa Barbara) ......... 9

2.2 Charlotte (New York University) ...................................................................... 10

2.3 KnittingFactory (New York University)........................................................... 12

2.4 Ajents (York University, University of Waterloo)........................................... 13

2.5 JavaParty (University of Karlsruhe, Germany) .............................................. 14

2.6 JavaSymphony (University of Vienna) ............................................................. 15

2.7 JavaNOW (DePaul University) ......................................................................... 17

2.8 Discussion ............................................................................................................ 18

3. ARCHITECTURAL CONCEPTS AND DESIGN ....................................................... 20

3.1 Introduction ........................................................................................................ 20
3.1.1 General Requirements ............................................................................................... 20

3.1.2 Assumptions and System Requirements................................................................... 21

3.2 Computational and Programming Models....................................................... 21
3.2.1 The Low-Level Computation Model......................................................................... 22

 x



3.2.2 The High-Level Computation Model........................................................................ 24

3.3 System Architecture ........................................................................................... 26
3.3.1 Overview ..................................................................................................................... 26

3.3.2 Brokers ........................................................................................................................ 28

3.3.3 Hosts ............................................................................................................................ 31

3.3.4 Applications ................................................................................................................ 33

3.4 Logical Design..................................................................................................... 34
3.4.1 Overview ..................................................................................................................... 34

3.4.2 The Java Language and Runtime Environment...................................................... 34

3.4.3 Distributed-Objects Layer......................................................................................... 37

3.4.4 Communication SPI and Implementation Layers ................................................... 38

3.4.5 Dynamic Proxies Layer.............................................................................................. 39

3.4.6 Parallel Application Services..................................................................................... 40

3.4.7 User Applications ....................................................................................................... 41

4. SYSTEM DESIGN AND IMPLEMENTATION DETAILS........................................ 42

4.1 Distributed-Objects Layer ................................................................................. 42
4.1.1 Server Side Objects and Entities............................................................................... 43

4.1.2 Client Side Objects and Entities................................................................................ 44

4.2 Dynamic Proxy Generation ............................................................................... 45

4.3 Pluggable Communication Infrastructure ....................................................... 48

4.4 Parallel Application Services............................................................................. 51
4.4.1 Broker and Host Relations ........................................................................................ 53

4.4.2 Locating Brokers and Automatic Registration........................................................ 54

5. TESTING AND EVALUATON OF SAFRAN.............................................................. 57

5.1 Experiments ........................................................................................................ 57
5.1.1 Test Applications ........................................................................................................ 58

5.1.2 Experimental Setup.................................................................................................... 59

5.1.3 Experiment Configurations ....................................................................................... 60

5.2 Experiment Results ............................................................................................ 61
5.2.1 Real Matrix Multiplication Application Tests ......................................................... 63

5.2.2 Distributed Data Matrix Multiplication Application Tests .................................... 73

5.2.3 Comparison................................................................................................................. 81

5.3 Summary of Test Results ................................................................................... 83

6. CONCLUSION ................................................................................................................ 85

7. FUTURE WORK............................................................................................................. 87

 xi



7.1 High-level Computational and Programming Model...................................... 87

7.2 Low-level Computational and Programming Model....................................... 87

7.3 Security................................................................................................................ 88

7.4 Network Communication Service Implementation ......................................... 88

7.5 Scheduling and Load Balancing........................................................................ 88

REFERENCES..................................................................................................................... 90

 
APPENDICES 

APPENDIX A: INTERFACES PROVIDED BY SAFRAN’S LAYERS ........................ 95

A.1 Communication SPI Layer ................................................................................ 95

A.2 Distributed-Objects Layer ................................................................................. 98

A.3 Dynamic Proxies ............................................................................................... 105

A.4 Parallel Application Services Layer................................................................ 105

APPENDIX B: SOURCE CODE OF THE TEST APPLICATION.............................. 109

 
 
 

 xii



LIST OF FIGURES 

 

Figure 3.1 Architectural organization of entities of a sample Safran system. .......... 27

Figure 3.2 Logical design of Safran’s infrastructure................................................. 35

Figure 4.1 Internal entities of Distributed-Object layer ............................................ 43

Figure 4.2 Distributed-Object layer UML class diagram.......................................... 45

Figure 4.3 Relations between user code and Distributed-Objects layer entities....... 46

Figure 4.4 Dynamic proxy generation infrastructure of Safran. ............................... 47

Figure 4.5 Class diagram for Communication SPI layer .......................................... 49

Figure 4.6 Class diagram of creation of RemoteObjectHost’s ............................. 50

Figure 4.7 Class diagram for creation of ObjectHostingService’s................... 50

Figure 4.8 Class diagram for the infrastructure of Parallel Application Services..... 52

Figure 4.9 Message broadcasting and Broker locating sub-system class diagram ... 56

Figure 5.1 Problem size vs. execution time graph for 1 Host RMMA tests ............. 63

Figure 5.2 Task number vs. execution time graph for 1 Host RMMA tests ............. 64

Figure 5.3 Problem size vs. speedup graph for 1 Host RMMA tests........................ 65

Figure 5.4 Task number vs. speedup graph for 1 Host RMMA tests........................ 65

Figure 5.5 Task number vs. overhead time graph for 1 Host RMMA tests .............. 66

Figure 5.6 Problem size vs. execution time graph for 8 Host RMMA tests ............. 67

Figure 5.7 Task number vs. execution time graph for 8 Host RMMA tests ............. 68

Figure 5.8 Problem size vs. speedup graph for 8 Host RMMA tests........................ 69

Figure 5.9 Task number vs. speedup graph for 8 Host RMMA tests........................ 69

Figure 5.10 Task number vs. maximum speedups achieved for all RMMA tests .... 70

Figure 5.11 Problem size vs. maximum speedups achieved for all RMMA tests .... 71

Figure 5.12 Host number vs. maximum speedups achieved for all RMMA tests .... 72

Figure 5.13 Host number vs. efficiency of Safran for RMMA................................. 72

 xiii



Figure 5.14 Problem size vs. execution time of graph for 1 Host DDMMA tests.... 73

Figure 5.15 Task number vs. execution time graph for 1 Host DDMMA tests ........ 74

Figure 5.16 Task number vs. execution overhead graph for 1 Host DDMMA tests 75

Figure 5.17 Task number vs. execution overhead graph for 1 Host DDMMA tests 75

Figure 5.18 Task number vs. execution overhead graph for 1 Host DDMMA tests 76

Figure 5.19 Problem size vs. execution time graph for 8 Host DDMMA tests ........ 77

Figure 5.20 Task number vs. execution time graph for 8 Host DDMMA tests ........ 77

Figure 5.21 Problem size vs. speedup achieved graph for 8 Host DDMMA tests ... 78

Figure 5.22 Task number vs. speedup achieved graph for 8 Host DDMMA tests ... 79

Figure 5.23 Task number vs. speedup achieved for all DDMMA tests .................... 80

Figure 5.24 Host Number vs. speedup achieved for all DDMMA tests ................... 80

Figure 5.25 Host number vs. maximum speedup achieved for both applications. ... 81

Figure 5.26 Task number vs. maximum speedup achieved for both applications. ... 82

Figure 5.27 Host number vs. maximum efficiency achieved for both applications.. 83

 

 

 
 
 
 

 xiv



LIST OF ABBREVIATIONS 

 

API Application Programming Interface 

CAT Computer Aided Tomography 

CPU Central Processing Unit 

CRCW Concurrent Read Concurrent Write 

DSM Distributed Shared Memory 

HPC High Performance Computing 

HTTP Hyper Text Transfer Protocol 

IP Internet Protocol 

IPC Inter-process Communication 

JVM Java Virtual Machine 

LAN Local Area Network 

MPI Message Passing Interface 

MPP Massively Parallel Processors 

NOW Network of Workstations 

OS Operating System 

PC Personal Computer 

PVM Parallel Virtual Machine 

RMI Remote Method Invocation 

SPI Service Provider Interface 

TCP Transport Control Protocol 

TIES Two-phase Idempotent Execution 

UFS Unix File System 

UML Unified Modeling Language 

  

 

 xv



CHAPTER 1 

1.  INTRODUCTION 

1.1 Background and Motivations 

Although the capacity and performance of computing systems improve at a high rate, 

the computational requirements of some scientific and commercial applications are 

also constantly growing. Many fundamental problems called grand challenge 

problems in science and engineering that have broad economic and scientific 

significance require such massive amounts of computational resources and 

performance that their solution on single or sequential systems is unacceptably slow. 

Moreover, some problems simply cannot be solved sequentially due to the nature of 

the problems themselves. Some of the problems that require high performance and 

excessive computational resources are related to: 

• Earth sciences 

o Numerical weather modeling and forecasting 

o Seismic exploration 

o Oceanography 

• Life sciences 

o Cancer research 

o Drug research 

o CAT (Computer aided tomography) 

• Engineering applications 

o Finite element analysis 

o Computational aerodynamics 

o Particle physics 

o Aerospace applications 
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• Artificial Intelligence 

o Image and speech processing 

o Computer vision 

High Performance Computing (HPC) and Parallel Computing deal with the solution 

of these grand challenge problems. Traditional HPC is based on dedicated 

architectures called Massively Parallel Processors (MPP) and supercomputers that 

consist of large numbers of high performance, tightly coupled processing elements. 

A relatively recent trend is based on connecting low-end individual computing 

systems (such as workstations or PCs) over high-speed computer networks to form 

high-end workstation clusters and network parallel computing systems [21], [22], 

[23], [24]. These solutions are relatively expensive with high cost/performance ratios 

and of limited utility as they are designed and dedicated to limited, specific parallel 

and distributed applications. Moreover, they are available only to limited number of 

researches due to their cost and physical availability, further limiting their utilization. 

Continuous and rapid advances in telecommunication and computer technologies 

(especially in processing power of microprocessors and in communication network 

capacity) combined with steady decrease in costs of these technologies made 

networked computers a commodity. It is observed that for more than a decade the 

processing capacity of microprocessors is doubled every 18 months, and this trend is 

expected to continue for at least another decade. At the same time communication 

network capacity increased exceedingly at the local, metropolitan, national and even 

global level. All these advances allowed almost all institutions build workspaces in 

which people use many computers connected to each other with high-speed 

networks. Also the number of personal computers connected to the worldwide 

computer network i.e. the Internet grew exponentially and reached hundreds of 

millions [25]. 

On the other hand, studies on these widely available networked computer 

environments, especially LANs, have shown that for the most of their operation 

times, the computers in such environments are used for tasks that are not 
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computationally intensive such as file editing, e-mail reading and Web surfing. In 

other words, these systems are idle and doing no computation at all for the most of 

their lifetimes. A typical machine on the average has a 90% idle processor time even 

during peak times of its use [20]. 

All the above discussion i.e. existence of grand challenge problems, widespread use 

of networked computers, and the fact that these systems are idle most of the time 

motivated many recent researches in development of systems for harnessing the 

aggregate idle, under-utilized computational power of these well-networked 

computers to form powerful parallel and distributed computing systems. 

1.2 Objectives 

The main objective of this thesis work is to design and implement a framework 

called Safran (software libraries and supporting infrastructure) that is easy to use (in 

terms of programming, configuration and management) for building distributed and 

parallel applications on a network of heterogeneous workstations. Safran aims to 

allow parallel and distributed application developers to easily utilize aggregated idle 

computational resources of their networked computing systems. The key features of 

the framework will be: 

• Support for Heterogeneity: The framework should have uniform support for 

different software (OS) and hardware (processor, machine, and network) 

architectures. Users of the framework should be totally abstracted from all 

kinds of interoperability problems associated with heterogeneous systems and 

be able to develop and run their applications without needing to deal with any 

heterogeneity related issues. 

• Virtualization: The framework should provide the programmers and 

applications a single virtual parallel machine view of the whole network with 

high levels of location transparency, fault tolerance, reliability, and 

robustness. 

 3



• Adaptability: The runtime system should easily, transparently and 

automatically adapt to the dynamics of a general workstation network. The 

participating machines should be able to easily and transparently join and 

leave the system at any time for any reason including machine and network 

failures or due to workstation owner preferences. The framework should 

shield programmers and applications from dynamically changing properties 

of the system; for example the programmer should not deal with machine 

failures. 

• Transparent Load-Balancing: The framework should provide pluggable 

and configurable (possibly dynamic) load balancing infrastructure transparent 

to the programmer and applications. 

• Accessibility: The services of the framework and runtime system should be 

easily accessible by users from anywhere on the network. For example, the 

programmers should be capable of running their applications on the system 

from any machine on the network. 

• Minimized Overhead: The framework should keep the overhead associated 

with installation, configuration, and management of the software 

infrastructure at a minimum level. For example, new machines should be 

easily and transparently added to a running system. 

• Flexible and Extensible: The framework should be designed in such a 

flexible way that future extensions and modifications to the features and 

services of the framework can be made easily in a pluggable way. 

The framework is made up of two parts: 

1. A software library that provides high level Java APIs that allow developers to 

easily write distributed and parallel applications that they can run on their 

heterogeneous workstation network without having to deal with the system 

level problems. 

2. A set of executable software components (daemons processes on 

workstations, brokerage services etc.) written in Java. These applications 
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form the basic infrastructure of the system and they provide the system level 

services that application developers do not have to deal with. 

The provided APIs will support two different computation and programming models: 

1. A low level, distributed-objects based computation model similar to RMI and 

CORBA but with additional concepts and services like remote object 

creation, object migration etc. In this lower level programming model the 

application programmer is not provided high level services such as automatic 

load balancing, fault tolerance etc. On the other hand, the application 

developer has much more flexibility for developing many types of distributed 

and parallel applications because of the availability of basic, lower level but 

complete set of computational building blocks. 

2. A relatively higher level computation and programming model based on the 

high level concept of distributed computations that are composed of 

independently and parallel executable tasks is provided. In this model, using 

the provided API, application developer explicitly expresses his/her 

computation to the system as a set of sub-computations that can be performed 

in parallel at different nodes of the system. Scheduling and load-balancing 

will be performed by the runtime automatically and transparent to the 

application. In fact, programmer will not be able to control how sub-

computations are mapped to the processing nodes because programs will be 

written for a virtual parallel machine with an unbounded, unknown and 

dynamically changing number of processing nodes. 

1.3 Thesis Layout 

In Chapter 2, we give a survey of some of the previous works with significant 

contribution and that attracted most attention. We also provide a discussion and 

comparison of these works in terms of architecture and supported computation and 

programming models. Chapter 3 makes an introduction to general and high level 

architecture and architectural concepts of Safran such as the abstract computational 
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models it supports, the programming interfaces it provides, and its requirements and 

assumptions about its runtime environment. In Chapter 4, we provide detailed 

information about Safran’s design including the logical layers and abstractions it’s 

composed of, interfaces and interactions of layers, services, sub-systems, logical and 

physical entities provided by each layer etc. Chapter 5 presents the experiments we 

conducted to test and evaluate Safran, and the results we obtained about the 

performance characteristics of Safran. Chapter 6 draws conclusions on the 

effectiveness, strengths and weakness of the system. Finally, Chapter 7 suggests 

some possible future extensions to the design and implementation of Safran. 
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CHAPTER 2 

2.  RELATED WORK 

Starting in early 90’s a large number of researches have attempted to exploit the 

intrinsic parallelism and latent computational power in distributed system such as 

heterogeneous LANs and even the Internet for running intensive computations, 

which were traditionally undertaken with specially designed high-performance MPPs 

and supercomputers. However, these distributed, heterogeneous computing 

environments are much harder to program and maintain for parallel and distributed 

applications because of the issues involved due to their loosely coupled nature. Some 

of the issues to be considered are: the heterogeneity in the software and hardware 

architectures, uncontrolled dynamic execution environment, less efficient network 

communication (high latency, low bandwidth), low reliability, priority for 

workstation ownership, and security and privacy of applications and hosts. 

A large number of software infrastructures and libraries were developed that dealt 

with these issues of loosely coupled network environments to provide services or 

desirable execution environment properties for facilitating development of 

distributed and parallel applications on these system. 

Earlier works like PVM[23] and MPI[21] tried to solve basic heterogeneity problems 

and provided a low level, complete set of explicit message passing primitives for 

communication and coordination of tasks (or distributed processes), and new 

distributed computing constructs like remote process creation and execution.  Some 

other low-level libraries such as Linda [26] derived systems and Agora [1] provided 

Distributed Shared Memory (DSM) based communication facilities. Later works 

were build on these low-level frameworks to provide some other higher level 

facilities like load monitoring, adaptive load balancing, fault tolerance, check-
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pointing, and process migration subsystems for creating high performance, easily 

programmable, reliable frameworks[16][18][19][27][28]. Although these systems 

enabled development of distributed and parallel applications on heterogeneous 

workstation networks, they showed some limitations in achieving a flexible parallel 

and distributed programming environment. Due to the low-level programming 

interface (API) they provide, they are relatively difficult to program. They failed in 

totally shielding the programmer from heterogeneity of the underlying systems. For 

example, programmers needed to develop, compile, maintain and distribute different 

versions of their executable code for each different architecture in the system. Also 

these systems have high setup, configuration and management overhead. Moreover, 

these systems are not automatically, transparently and easily scalable i.e. they are 

usually limited to a single network domain. All in all, these frameworks are not 

flexible in many respects. 

The Java Programming Language[31][32] is rapidly being adopted as one of the 

most important and widely used languages for parallel and distributed application 

development due to the excellent features it offers that are lacking in traditional 

languages such as C, C++ and FORTRAN. Java’s attraction is mainly due to its clear 

and effective solution to the portability and interoperability problem associated with 

heterogeneous machines and operating systems with its standardized virtual machine 

architecture whose implementation is available for almost all systems. A Java 

program once compiled can be run on any system that has a Java Virtual Machine 

(JVM)[33] installed. Moreover its features such as automatic memory management 

(garbage collection), rigid security infrastructure, extensive support for network 

programming, multi-threaded programming, synchronization mechanisms, object 

serialization, and code mobility makes it an excellent choice for distributed, network-

parallel programming. Some other frameworks like Remote Method Invocation 

(RMI)[29][36], Jini[34], and JavaSpaces[30] that are build on standard Java to 

extend platform’s capabilities further simplify development of large scale distributed 

and parallel applications. 
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Recently, significant number of Java-based systems has been developed to support 

distributed and parallel programming on heterogeneous workstation networks and 

even on the Internet. SuperWeb[2], Javelin[3], Janet[4], Charlotte[5], Ajents[7], 

KnittingFactory[6], JavaParty[8], ParaWeb[9], JavaSymphony[10], JPVM[11], 

JavaNOW[12], JAVM[13], ALTAS[14], and Ninflet[15] are some of the works 

carried out in the academia with different properties in terms of objectives, 

architecture, scalability, supported computational model, type of programming model 

provided etc. In the following we give an overview of the most directly related works 

with significant contribution and that attracted most attention. 

2.1 SuperWeb, Javelin, JANET (University of California, 
Santa Barbara) 

Javelin[3], originally a prototype of SuperWeb[2], was reported in 1997 as a Java-

based infrastructure for global computing. The goal of Javelin is to harness the 

Internet’s vast, growing, computational capacity for ultra-large, coarse-grained 

parallel applications. The work that was started with SuperWeb has been continued 

with new versions named Javelin++, Javelin 2.0, Javelin 3.0, CX, JICOS, and 

currently JANET[4], each with improvements in performance, scalability, 

computation and programming model. SuperWeb and the first version of Javelin 

were designed based on Java applets running on web browsers. Starting with 

Javelin++ the system is based on standalone Java applications instead of applets due 

to various limitations of applet-based architecture. 

Although various improvements made, the essential architecture remained almost 

same: The whole system is based on three system entities named clients, brokers, and 

hosts. A client is a process seeking computing resources, a host is a process offering 

computing resources, and a broker is a process that coordinates the allocation of 

computing resources. Hosts offer their resources to the world by registering to the 

brokers. Brokers essentially form a directory of available hosts and they coordinate 

resource consumption across clients and hosts. As the computational model, Javelin 

supports piecework computations (also called master/slave, manager/worker, or bag-
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of-tasks):  adaptively parallel computations that decompose into a set of sub-

computations, each of which is autonomous (does not require communication or 

coordination with other sub-computations), apart from scheduling work and 

communicating results. Parallel matrix multiplication, ray tracing, and Monte Carlo 

simulations are some of good examples of piecework computations. Javelin also 

supports branch-and-bound computations. Javelin achieves scalability and fault-

tolerance by its network-of-brokers architecture and by integrating distributed 

deterministic work stealing with a distributed deterministic eager scheduling 

algorithm. 

2.2 Charlotte (New York University) 

Charlotte[5] is one of the first Java-based frameworks of its kind. Similar to Javelin, 

its architecture is mainly based on Java applets embedded into Web pages. It aims to 

utilize the Web as a parallel meta-computer but it clearly does not scale much and 

experiences bottlenecks due to the limitations of its applet-based architecture. 

Charlotte provides distributed shared memory (DSM) architecture within the 

language, at the data type level i.e. through classes so it does not modify the Java 

Virtual Machine (JVM), nor does it rely on a preprocessor or require any kind of 

external runtime support (ex. OS support). For every basic data type in Java, there is 

a corresponding Charlotte data type implementing its distributed version. The 

consistency and coherence of the distributed data is maintained by the Charlotte 

runtime systems. The provided DSM memory-consistency semantics is Concurrent 

Read, Concurrent Write Common (CRCW-Common) i.e. one or more entities can 

read a shared variable, and one or more entities can write a variable as long as they 

write the same value.  

Charlotte programs are written for a virtual parallel machine with an unbounded 

number of processors sharing a common namespace i.e. the programmer has no 

knowledge of how many machines will execute a computation. The main entities in a 

Charlotte program are   a manager (i.e. a master task) executing serial steps and one 
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or more workers executing parallel steps.  The manager process creates an entry in a 

well-known Web page for the active computation and volunteer users load and 

execute the worker processes as Java applets embedded into web pages by pointing 

their browsers to this page. In essence, the programming model supported by 

Charlotte is master-slave (master-worker, or bag-of-tasks) programming model. The 

computation is first divided into a large number of small computational units, or task. 

Then participating machines pickup and execute a task one at a time until every task 

has been executed. 

Charlotte achieves load balancing and fault masking by implementing two concepts: 

eager scheduling and two-phase idempotent execution (TIES). Eager scheduling 

aggressively assigns and re-assigns tasks until all tasks are completed when the 

number of remaining task becomes less then the available machines. Concurrent 

assignment of tasks to multiple machines prevents slow, un-accessible, or faulty 

machines from slowing down the progress of the computation. Multiple executions 

of a task (which is possible when using eager scheduling) can result in incorrect 

program state. TIES ensures idempotent memory semantics in the presence of 

multiple executions. TIES guarantees correct execution of shared memory by reading 

data from the master and writing it locally in the workers’ memory space. Upon 

completion of a worker the dirty data is written back to the master who invalidates all 

successive writes, thus maintaining only one copy of the resulting data. Moreover 

Charlotte employs dynamic granularity management (bunching) to mask latencies 

associated with the process of assigning tasks to machines. Bunching is achieved by 

assigning a set of task to a single machine at once. The size of bunches is computed 

dynamically based on the number of remaining tasks and number of available 

machines. 

Charlotte has a number of problems. The primary function of the manager is 

scheduling and distributing works. But it is also responsible for communication of 

workers (i.e. it implements the DSM) as all applet-to-applet communication is routed 

through it. So it is a potential bottleneck. Secondly, Charlotte requires that a manager 

run on a host with an HTTP server. If only one machine with an HTTP server is 
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available and if more than one application needs to be running on the system 

concurrently, then multiple managers have to be running on this only machine. In 

this situation such a machine can possibly become a communication bottleneck. 

Moreover multiple assignment and execution of the same task with eager scheduling 

might cause excessive data traffic leading further performance problems. All in all, 

Charlotte does not seem to scale enough to meet its goal of utilizing the Web as a big 

meta-computing platform. 

2.3 KnittingFactory (New York University) 

KnittingFactory[6] is the successor of Charlotte from the same research group. With 

KnittingFactory some of the limitations and deficiencies of Charlotte is eliminated. 

KnittingFactory addresses the following problems: 

• Searching and finding other members of a collaboration session. 

• Ability to run a distributed application on a machine without an HTTP server. 

• Direct communication between applets. 

A distributed registry is implemented based on Web servers and standard Web 

browsers. A registry accepts requests for partners, stores these requests, and deletes 

them again upon request. A user who wants to participate in a distributed 

computation simply points his/her browser to one of these registries. Charlotte 

required that master processes of applications run on a machine with a running HTTP 

server. KnittingFactory factory solves this problem by automatically embedding a 

HTTP server in each application. So now applications can run on any machine. In 

Charlotte, all the communication between applets is routed through the master 

process. KnittingFactory supports direct communications between worker processes 

(applets) by exploiting a non-standard (maybe a bug) property of Sun JVM to pass 

RMI object references between applets. 
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2.4 Ajents (York University, University of Waterloo) 

Ajents[7] is a Java based framework that provides necessary infrastructure for 

building parallel and distributed applications. Unlike many other similar frameworks 

Ajents does not make modifications to the Java language or to the JVM and no 

preprocessors, special compilers, or special stub compilers are required. It is a 

collection of pure Java classes (a library) and servers (also implemented in Java) so it 

runs on any standard compliant JVM. Every host in the system runs a simple 

lightweight server called Ajents Server as a daemon process. 

Ajents greatly simplifies the task of writing distributed applications by providing 

features that are not available in standard Java. Actually it is built on standard Java 

RMI technology but extends the distributed object model of RMI by providing 

support for: 

• Remote Object Creation: While RMI allows local referencing and remote 

method invocation on statically created remote objects, Ajents supports 

dynamic creation and referencing of objects on remote hosts that are running 

Ajents Server. 

• Remote Class Loading:  To be able to instantiate objects on remote hosts or 

to move around objects (i.e. object migration) between remote hosts, Ajents 

transparently loads the binary executable code of the object to the remote 

host. 

• Asynchronous Remote Method Invocation: Java RMI only allows 

invocation of methods on remote objects synchronously (or serially). Ajents 

supports asynchronous RMI i.e. a process can call a method of a remote 

object and continue execution until an arbitrary time when the result of the 

method call is available. 

• Object Migration: Ajents allows migration of objects between 

heterogeneous hosts without a preprocessor, and without modification to the 

virtual machine, compiler or stub compiler. This is implemented using check-
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pointing, rollback and restarting mechanisms. Any object can be migrated 

while it is executing by interrupting its execution, moving the most recent 

check-pointed state of the object and restarting the currently executing 

method.  

The main idea for programming in Ajents environment is to have an Ajents Server 

running on every host in a heterogeneous environment and writing applications in 

Java using the Ajents class library calls to use resources on these servers by creating 

remote objects, invoking their methods, and moving around (migrating) them 

between hosts as necessary. 

Ajents framework does not support transparent dynamic load balancing but of course 

users can implement custom load balancing on top of Ajents framework. Although 

not clearly explained, it has some scheduling mechanism that allows selection of an 

appropriate host to migrate objects. 

Unlike Javelin, Charlotte and KnittingFactory type of frameworks, Ajents does not 

dictate any high level distributed or parallel computation model. Instead, it provides 

relatively low level and complete, easy to use framework for building any kind of 

distributed applications or even higher-level frameworks like Javelin on top of 

Ajents. In another view, it’s simply an extension of distributed object model of RMI 

technology with new distributed programming facilities. 

2.5 JavaParty (University of Karlsruhe, Germany) 

Although Java platform includes RMI technology for distributed programming it is 

not easy and straightforward to write distributed and parallel applications for 

distributed shared memory architectures like clusters of workstations. JavaParty [8] 

transparently adds distributed, remote objects to Java simply by declaration, avoiding 

complexity, disadvantage and programming overhead of socket based, or RMI based 

programming. JavaParty is targeted towards and implemented on clusters of 

workstations. It extends the Java language simply and transparently with a pre-
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processor and a runtime system for distributed parallel programming in 

heterogeneous workstation clusters. 

JavaParty adds the remote keyword to the Java language. The programmer simply 

attributes classes that should be spread across the distributed environment with the 

remote keyword. JavaParty uses a preprocessor, which converts remote classes into 

pure Java code with RMI hooks. The change to the language is designed to simplify 

RMI programming, placing the burden of creating and handling remote proxies upon 

the preprocessor, simplifying the programming task. 

Objects of these remote classes can transparently be created on remote hosts and 

referenced locally as if they are local objects. JavaParty is location transparent i.e. it 

maps created remote objects to hosts transparently. The compiler and runtime system 

deals with locality and communication optimization using pluggable distribution 

strategies. The programmer can only influence distribution and mapping of object to 

hosts by developing and inserting code that directs the strategy’s placement 

decisions. Besides distribution strategies at object creation time, JavaParty monitors 

the interaction of remote objects and if it is appropriate (or is requested by the 

programmer) can schedule object migration between hosts to enhance locality. 

2.6 JavaSymphony (University of Vienna) 

Basically JavaSymphony [10] extends the distributed object framework provided by 

Java RMI Technology with new high level constructs, similar to Ajents and 

JavaParty. 

High-level distributed and parallel programming frameworks that do not provide 

programmer control over locality of data by automatically distributing and migrating 

objects can easily lead to loss of performance as the underlying runtime system has 

little information about the distributed computation. In contrast to most existing 

systems, JavaSymphony provides the programmer with the flexibility to control data 

locality and load balancing by explicitly mapping objects to computing nodes. 
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The key features of JavaSymphony that greatly simplifies performance-oriented 

distributed and parallel programming are: 

• Dynamic Virtual Distributed Architectures 
 The programmer can dynamically define and modify virtual distributed 

architectures that impose a virtual hierarchy on distributed system of physical 

computing nodes. Virtual architectures consist of a set of components: 

computing node, clusters (collection of nodes), sites (collection of clusters), 

and domains (collection of sites). Virtual architectures effect how automatic 

mapping and migration of objects are done for locality and load balancing 

decisions. 

• Access to system parameters 
 JavaSymphony provides access to a large variety of periodically monitored 

system parameters such as CPU load, idle times, available memory, network 

latency and bandwidth, etc. Programmer can use these parameters for load 

balancing decisions. 

• Automatic and User-Controlled Mapping of Objects 
 The programmer can control the creation and mapping of objects to specific 

components of the virtual architectures. If the programmer does not provide 

explicit mapping of objects the JavaSymphony runtime offers automatic 

mapping based on periodically monitored systems parameters. 

• Automatic and User-Controlled Object Migration 
 JavaSymphony supports both automatic and user-controlled migration of 

objects based on periodically monitored systems parameters. 

• Asynchronous, Remote, and One-sided Method Invocation 
 JavaSymphony supports both synchronous and asynchronous remote method 

invocation. Moreover for methods that do not return any value it supports 

one-sided method invocation.  

• Selective Remote Class Loading 
 JavaSymphony automatically loads binary class codes only to the nodes on 

which they are actually needed. This feature can reduce overall memory 

requirements of an application.  
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JavaSymphony has been influenced by Ajents programming model for remote object 

creation, asynchronous remote method invocation and remote class loading. Its most 

significant contributions over Ajents are its support for virtual architectures, one-

sided method invocations and access to system parameters. 

2.7 JavaNOW (DePaul University) 

JavaNOW[12] aims to provide an environment for parallel computing on an ordinary 

network of workstations that is both expressive and reliable. It creates a virtual 

parallel machine similar to the Message Passing Interface (MPI) model, and provides 

distributed shared memory (DSM) similar to Linda memory model but with a 

flexible set of primitive operations. It can be view as a hybrid system of PVM, MPI, 

and Linda. It provides a simple mechanism to start tasks on remote hosts (as found in 

PVM), has a small number of expressive and complete primitives to support 

producer/consumer style communication (as found in Linda) and finally has 

collective operation that can be performed on shared objects (as found in MPI). 

In a JavaNOW system, processes coordinate and communicate through a distributed 

associative shared memory similar to tuple-space model and using PVM and MPI 

like primitives that are build solely on this shared memory model. The Linda like 

DSM is implemented as a totally distributed and load balanced data structure 

(actually a distributed hash-table). So it differs from MPI and PVM in that it does not 

provide direct point-to-point inter-process communication (IPC) primitives but rather 

provides a producer/consumer model of IPC. Mutually exclusive access operations to 

the shared memory make it easy to implement distributed synchronization primitives 

like locks, mutexes, and semaphores. 

JavaNOW does not provide dynamic resource management but requires that the user 

statically specify the list of machines on which the application will run. Also it does 

not provide dynamic load-balancing at work distribution. It just uses a simple 

hashing scheme for load balancing the distributed shared memory. 
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2.8 Discussion 

The presented works generally can be grouped in two according to the computational 

and corresponding programming models they support or dictate: 

• Low-level Frameworks: These kind frameworks provide a lower-level 

programming interface which is usually an extension of Java RMI distributed 

object framework with additional services and features such as remote object 

creation, object migration, asynchronous remote method call etc. They mostly 

aim to extend Java RMI to support and ease the development of general 

distributed applications based on the concept of distributed-objects.  Most of 

them are directly built on Java RMI technology as another layer of library 

(API). As the programming concepts, primitives and elements they provide 

(such as synchronous/asynchronous remote method invocation, remote object 

creation, object migration etc.) are low-level and basic, they do not dictate 

any high-level parallel and distributed computational model and they allow a 

richer variety of distributed and parallel applications to be developed on 

them. On the other hand, they usually do not provide higher level services 

like load balancing, job scheduling, and fault tolerance because of the 

flexibility they provide. Some examples of these low-level frameworks are 

Ajents, JavaParty, and JavaSymphony. 

• High-level Frameworks: These kinds of frameworks provide higher-level 

programming interfaces that correspond to high level parallel and distributed 

computing concepts like parallel applications, tasks, and jobs. For example, 

application programmers are required to express their distributed computation 

as a set of parallel executable sub-computations (usually named as tasks or 

jobs) to the framework using the provided high-level API and the underlying 

infrastructure transparently takes care of execution of sub-tasks and collection 

of results. Because of the layer of abstraction provided to developers, the 

frameworks relieve developers from low-level system problems such as 

dispatching works to remote machines, executing them remotely, and 
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collection of the results. Also such frameworks are able to provide some other 

important services such as scheduling, load balancing, and fault tolerance. On 

the other hand, the users are usually restricted to some single kind of 

computational model as they leave most of the low-level functionality to the 

framework. Some examples of high-level frameworks are SuperWeb, Javelin, 

Janet, and Charlotte. 

Safran provides programming interfaces similar to the ones used in both low-level 

and high-level frameworks. A user application can be written against a low-level API 

similar to Java RMI with the concept of both synchronous and asynchronous method 

invocations on remote objects, creation of objects on remote machines, and migration 

of objects between remote machines. Most important contribution of Safran is its 

easy to use and familiar programming environment. Developers can create remote 

objects on remote machines, call methods on them, migrate them using simple, 

familiar syntax and programming concepts. Using Safran, developers can also 

develop applications using another high-level API, which is similar to the presented 

high-level frameworks but again by providing more clear and easy to use interfaces. 
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CHAPTER 3 

3.  ARCHITECTURAL CONCEPTS AND DESIGN 

In this chapter, we make an introduction to general features and design 

considerations of Safran. We explain the high-level architectural organization and 

architectural concepts of a Safran system. Next, internal architecture and logical 

layering of Safran’s sub-systems are introduced. 

3.1 Introduction 

In this section, an introduction to features and design considerations of Safran is 

made. Technical requirements and expectations from Safran, the abstract 

computational models it supports, the programming interfaces it provides and its 

requirements and assumptions about its runtime environment are explained. 

3.1.1 General Requirements 

The main objective of Safran is to provide an infrastructure that is easy and flexible 

to use in terms of programming, setup, configuration, and management for building 

distributed and parallel applications on a general network of heterogeneous 

workstations. The key features of Safran are: 

• Support for Heterogeneity:  Safran has uniform support for different 

software (OS) and hardware (processor, machine, and network) architectures. 

Users of Safran (usually application programmers) are abstracted from 

interoperability problems associated with heterogeneous systems and are able 

to develop and run their applications without needing to deal with any 

heterogeneity related issues. 
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• Virtualization: For certain kinds of parallel applications, Safran provides the 

programmers and applications with a single virtual parallel machine view of 

the whole network with high levels of location transparency, fault tolerance, 

reliability, and robustness. 

• Adaptability: The runtime system of Safran adapts to the dynamics of a 

general workstation network automatically and transparently. The 

participating machines can easily and transparently join and leave the system 

at any time for any reason including machine and network failures or due to 

workstation owner preferences. The framework shields programmers and 

applications from dynamically changing properties of the system; for 

example the programmer does not need to deal with machine failures. 

• Transparent Load-Balancing: Safran provides load-balancing infrastructure 

and services, which is transparent to the programmer and applications. 

• Accessibility: The services of the Safran runtime are easily accessible by 

users from anywhere on the network. For example, the programmers can run 

their applications on a Safran system from any machine on the network. 

• Minimized Overhead: Safran keeps the overhead minimum associated with 

installation, configuration, and management of the software infrastructure. 

For example new machines can be easily and transparently added to a running 

system. 

3.1.2 Assumptions and System Requirements 

The only key requirement of Safran environment is a standard Java Runtime 

Environment (JRE) of version 1.5 or later. 

3.2 Computational and Programming Models 

Safran provides support for two different kinds of computational models that 

correspond to two different levels of programming models. The one that we named 

as the low-level programming model provides relatively low-level concepts and 
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constructs based on the idea of distributed-objects. The other and primary 

computation model is based on the higher-level concepts of distributed applications 

that can be divided into independent and parallel executable sub-computations. 

3.2.1 The Low-Level Computation Model 

The low-level programming model is supported through a low-level API that 

provides a set of programming concepts and constructs similar to that of distributed-

objects based programming frameworks such as RMI. Besides supporting the 

concept of calling methods on remotely published objects, Safran’s low-level 

programming model introduces new facilities and services that makes distributed-

objects based programming easier than RMI programming. This programming model 

provides the following facilities: 

• Easy creation of objects in the address space of remote processes: 

Developers can create objects on remote machines just with a single system 

call and get back a local reference that allows access to the remote object. No 

manual setup is required for things like registries or name services, or class 

file servers. 

• Exposing local objects to remote access through well-known names: 

Similar to RMI, Safran allows publishing a local object with a well-known 

name so that remote processes can access the object with this well-known 

name. 

• Calling methods on remote objects synchronously or asynchronously: 

Methods on remote objects can be called synchronously just like local 

method calls. Also asynchronous method calls can be made on remote object 

so that results or return values can be retrieved asynchronously without 

serially waiting the execution of the called methods. Moreover, one-way 

method calls, in which the method is called and the caller is not interested in 

the result of method call, can be made easily. 
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• Automatic and transparent creation of dynamic proxies: Whenever a 

remotely exposed object is accessed or an object is created on a remote 

process, a local proxy that provides the same interface as the remote object is 

created dynamically and transparently. As this local proxy object provides the 

same interfaces as the remote object, the developer can call the methods of 

the remote object using the familiar local method call syntax 

(object.methodName(parameters…)). 

• Automatic and transparent dynamic class loading: Class definitions 

(executable, binary Java class files) are automatically and transparently 

transferred to the remote machines whenever they are needed. Application 

developers do not need do anything manually to deploy their binary class 

files. Whenever the class definition (binary class file) of an object is required 

(when an object is created remotely, when an object is migrated to a different 

machine, when a copy of a remote object is retrieved etc.) Safran transfers the 

class definition to the required machine. Users do not need to any manual 

setup to distribute the class files to the distributed machines. 

• Object migration: Developers can move (or migrate) remote objects 

between different machines with simple system calls. Also a local object can 

be moved to a remote machine and it can be accessed remotely later on. 

• Object state check-pointing: State of remote objects can be check-pointed 

by getting an exact, local copy of a remote object. 

The computational model that corresponds to this low-level programming model is 

theoretically equivalent to message-passing type of parallel and distributed 

computing model. Message passing systems like PVM and MPI provide much lower-

level programming interfaces with explicit message passing primitives. On the other 

hand, distributed-objects based systems provide higher-level programming constructs 

and concepts like calling methods on remote objects which theoretically corresponds 

to passing messages to remote processes. But of course, passing messages between 

processes through a remote method call interface is much high-level and easier to use 

than explicit message passing systems like PVM and MPI. So the low-level, 
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distributed-objects based programming model provided by Safran theoretically 

supports the message passing type distributed and parallel computational model i.e. 

theoretically applications that can be developed using explicit message passing 

systems can also be developed using Safran’s low-level programming model. 

3.2.2 The High-Level Computation Model 

The high-level and primary computation model supported by Safran is called 

piecework computations (master-worker, or bag-of-tasks) in which the computation 

is explicitly divided into many sub-computations that can be performed in parallel at 

different nodes of the system. Piecework computations are parallel computations that 

decompose into a set of sub-computations, each of which is autonomous (does not 

require communication or coordination with other sub-computations), apart from 

scheduling work and communicating results. Parallel matrix multiplication, 

distributed ray tracing, and Monte Carlo simulations are some good examples of 

piecework computations. 

The corresponding high-level programming model is provided by an API that allows 

developers express their distributed and parallel computation to Safran as a set of 

independently and parallel executable sub-tasks. Safran executes the sub-tasks on the 

remote nodes of the system in parallel and collects the result and makes them 

available back to developers’ application. Safran has the total control on how and 

where the sub-tasks are executed so it can transparently provide high-level services 

such as load balancing and fault tolerance. 

Note that in this computational model, Safran does not allow communication 

between sub-computations. This limitation is not due to technical difficulties in 

providing communication infrastructure for pieces of a distributed computation. 

Instead, it’s due to the challenging problem that would appear if communication 

were allowed between distributed sub-computations. This problem is the classical 

problem of getting global snapshots of a distributed system. If communication is 

allowed between distributed processes or pieces of a distributed computation, states 
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of communicating processes become dependent on each other. In such systems, if it 

is required to checkpoint the system state for later rollbacks, the whole distributed 

state (all parts of the distributed computation) must be check-pointed at once, 

otherwise later rollbacks yield inconsistent global system states. Safran aims to 

provide fault tolerance by checkpoint-and-rollback protocols. If communication 

between sub-computations were allowed, Safran would need to checkpoint the state 

of the whole distributed computation whenever it needs to checkpoint the state of a 

single sub-computation for later rollbacks. Otherwise the checkpoints would be 

inconsistent and subsequent rollbacks would yield to inconsistent global states. Both 

supporting transparent fault tolerance using checkpoint-rollback and supporting 

communication between sub-computations would require Safran to implement a 

solution to the challenging distributed global system state snapshot problem which is 

out of scope of this thesis work.  

So, in the limited scope of this work, we are either required to support transparent 

fault tolerance by not allowing sub-computations to communicate, or otherwise allow 

sub-computations to communicate but do not provide transparent fault tolerance. 

Safran opts to provide transparent fault tolerance based on checkpoint-and-rollback 

of sub-computation by not allowing communication between them. Future extension 

to Safran might provide communication infrastructure based on shared memory 

abstraction but it is out of scope of Safran’s current design and objectives. 

The high-level programming model of Safran was initially designed as the primary 

and the only programming model. The low-level, distributed-objects based 

programming model of Safran was initially designed as a supporting infrastructure 

for the primary high-level programming interface. In other words, the programming 

model and the API that provides the high-level computational model actually is built 

on the infrastructure that provides the low-level distributed-objects based 

programming model. Later, the infrastructure that was initially designed to just 

internally support the primary programming model was extended to a general-

purpose distributed programming infrastructure and publicly exposed to users of 
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Safran as a general purpose programming model to support more kinds of distributed 

and parallel applications.  

3.3 System Architecture 

In this section high-level, architectural design of Safran that supports the primary 

high-level computational and programming model (as described in detail in Section 

3.2.3) is explained. Physical and logical entities (components) of the system, their 

relations with each other and the subsystems and services they implement are 

detailed. 

3.3.1 Overview 

In Safran there are logically there different system entities. These are named Hosts, 

Brokers, and Applications. Applications act as the clients or users of the whole 

system. They run the central, controlling, serial logic of the distributed and parallel 

computations of users. Hosts provide computational resources (mostly CPU cycles) 

of the physical machines they reside to the Safran system by getting and running 

independently executable parts of Applications. Brokers generally provide brokerage 

services by getting Applications and Hosts meet. Figure 3.1 shows the high level 

logical organization of entities of a sample Safran system. 

These entities form the overall system by implementing or participating in the 

implementation of different subsystems. Note that these entities are logical in that 

they do not represent physical machines that they reside on. For example, on a single 

machine more that one Host might be running or a machine might be hosting both a 

Host and an Application, or even a Broker. On the other hand they are implemented 

as OS processes (usually daemon or service processes) so they are not totally low-

level software abstractions. 
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Figure 3.1 Architectural organization of entities of a sample Safran system. 
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3.3.2 Brokers 

The general, high level and visible service provided by brokers is meeting Hosts and 

Applications. Brokers generally act as registries of Hosts. They are contacted by 

Applications that need Hosts for running different, concurrently executable parts of 

the Applications. So, their main responsibility in the whole system is allocation of 

Hosts to Applications. To fulfill their responsibility effectively, they implement 

subsystems such as host registry, host scheduling and allocation, and load balancing. 

Brokers are implemented as daemon (or service) processes that run in the 

background and they usually do not show user interface elements other than the 

management user interface that is invoked on demand by users of the machines. 

They are generally passive in that they wait for requests for different operations from 

Hosts and Applications and fulfill them. Other than processing requests, they do not 

perform any ongoing intensive processing. Hosts and Applications can contact 

brokers by just knowing the network address (host name or IP address) of the 

machine on which the broker resides because all brokers service at a preconfigured 

fixed port. For example, when a Host or Application wants to contact a broker, 

whom they believe to be residing on the machine A, they request a reference from 

Safran infrastructure to the entity running on the machine A and at the preconfigured 

broker port. They are handled a reference to the found entity (if found) by the Safran 

infrastructure, which actually happens to be a reference to the only Broker residing 

on the machine. Later they communicate with the broker with this reference. An 

important implication of this design is that, unlike Hosts and Applications there can 

be only one Broker running on a single machine. 

Hosts and Brokers can be manually configured to use a specific Broker running on a 

machine at a specific network address. Also they can be configured to automatically 

discover and use the Brokers that are running on their own network. To enable 

automatic discovery of Brokers by Host and Applications, Brokers broadcast 

periodic messages to the network announcing their availability. If configured to 

discover and use a Broker automatically, Hosts and Applications monitor the 
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broadcasted messages from Brokers and when they determine the location (network 

address and port) of a Broker they automatically contact it. This service of automatic 

management of relations between Safran entities greatly improves the setup and 

management procedures of Safran clusters. One can just start Brokers, Hosts and 

Applications on the different machines and all entities can automatically find and 

contact each other. 

The most important subsystem implemented by Brokers is Host registry subsystem. 

Hosts that want to participate in a Safran system contact (either manually or by 

automatic discovery) and register to a broker by providing information (availability, 

machine capacity, and usage policy) about themselves to the broker. Brokers keep a 

list of Hosts registered to them and some detailed information about computational 

capacity of each host. Hosts actively update the information about them either 

periodically or in the case of state changes that are above configured thresholds. The 

aim is to provide brokers as much as up-to-date information, which they use for 

scheduling and load balancing decisions. Also, registered Hosts should notify the 

Broker periodically (for example every one 60 seconds) to inform it that they are 

alive and still servicing. If a Broker does not get a notification from a Host that 

registered to it for some time longer than a configurable timeout value, it 

automatically un-registers and removes it from its list.  

A Broker and Hosts registered to that Broker form a logical Safran Cluster. This 

logical organization does not need to map physical network topology, i.e. Hosts that 

are on totally different physical networks can register to the same Broker to form a 

Cluster. Usually, due to manageability and performance considerations, Hosts 

register to Brokers that are physically more accessible to them. For example, it is 

most common that all Hosts running on the same LAN (Local Area Network) 

register to a single Broker that is also connected to the same LAN. A Cluster is the 

smallest possible complete Safran system but clusters can be connected to each other 

to form larger and high capacity systems. As Brokers are the central entities of 

Safran Clusters, connection and communication between Clusters is handled by 

Brokers. Each Broker can be configured to register to one or more other Brokers to 
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let them know that it (i.e. its cluster) wants to use resources of those other clusters. 

When a Broker registers to another Broker, it starts to receive periodic or updated 

information from that Broker about the cluster it controls. This information is some 

high-level, not much detailed data that gives a general idea to the Broker about the 

other cluster’s overall computational capacity. Brokers use this information about the 

other Brokers they registered when making decisions that effect how they use those 

other Clusters. For example, when a Broker cannot fulfill a Host request of an 

Application itself, it uses the information about the other Brokers it registered when 

choosing the broker it will forward the request. 

The relations and communication between Brokers (i.e. Safran Clusters) is unknown 

and transparent to Host and Applications. Hosts and Applications only communicate 

and depend on the Broker of their own Cluster. This design makes the system 

scalable and easily extensible. Individual Clusters can be combined and connected 

dynamically through Brokers to form larger and more capable systems.  

As mentioned, the sole, main responsibility of Brokers is to allocate Hosts to 

Applications that need these Hosts to run tasks on them. When an Application needs 

to run one of its tasks on a Host, Safran infrastructure contacts the Broker of its 

Cluster and makes a request for an available Host. The Broker first tries to select an 

available Host from the ones that registered to it, i.e. from its own Cluster. If none of 

the registered Hosts is available, it forwards the request to each of the Brokers of the 

other Clusters it knows. This way an Application running in one Cluster can 

transparently use Hosts of other Clusters. In other words, all resources of the network 

of Clusters can be made available to any Application running in any Cluster. 

When a Broker is allocating or scheduling Hosts to Applications it uses the 

information about Hosts that registered to it, other Brokers it registered to, and also 

requirements of the Applications to balance the usage of system resources. So, an 

important part of load balancing subsystem is implemented by Brokers during their 

scheduling or Host allocation decisions. As mentioned, a Broker’s load balancing 

 30



decisions are based on the information collected from Hosts registered to the Broker, 

other Brokers, and Applications that request Hosts from the Broker. 

3.3.3 Hosts 

Hosts are entities that provide computational resources (usually CPU cycles) to a 

Safran system. Similar to Brokers they are implemented as daemon processes. They 

execute as background processes and run Applications’ tasks. More than one Host 

might be residing on the same machine, although usually this is not the case. 

Hosts make available their resources to the Safran system by registering to a Broker. 

At any time, each Host can be registered to only one Broker. Other entities (usually 

Applications) of the system can only contact and access a Host through the Broker it 

registered to. So, when a Host is not registered to a Broker it is totally inaccessible to 

the system. Hosts register to Brokers at their startup. A Host determines and contacts 

the Broker to register either according to the manual user configuration or by 

automatically discovering the Broker. The user who starts the Host agent (process) 

configures whether the Host should use a user specified Broker or should 

automatically find a Broker to register. 

When a Host is registering to a Broker it provides initial, static information about 

itself to the Broker. This information includes indicators about its hosting machine’s 

computation capacity such as physical memory, number of CPU’s, and capacity of 

CPU’s. Later on, it provides dynamically changing information about itself either 

periodically or in case of changes in it state that are beyond some configured 

thresholds. For example, it provides current and 1, 5, 15, and 30 minutes average 

values for available physical memory and CPU utilization. Also it might inform the 

Broker when its available physical memory drops by 10%, or when its CPU 

utilization increases by 50%, or when it is exclusively allocated to an Application. 

The Hosts must also send simple periodic notifications to the Brokers they registered 

to, to let them know that they are still up and running. Otherwise, Brokers will un-
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register the Hosts if they do not get notification from the Hosts for some time longer 

then a configurable timeout period (ex. 30 seconds). 

When an Application needs a Host, it sends a request to a Broker. When a request for 

a Host comes to a Broker either directly from an Application or from the Broker of 

another Cluster, it selects a registered and available (in terms of current status 

information, usage policy and Application requirements) Host and it handles a 

reference of the selected Host to the Application. At this point the Broker is done and 

does not do anything for communication and coordination of the Host and the 

Application. It even does not update its information about the Host because 

whenever the Application starts to use the Host allocated to it, the Host’s status 

information will be changed and the Host will inform the Broker about this change. 

In other words, the broker does not try to actively track the Host it allocated to an 

Application or keep information about its usage. During the Application’s usage of 

the Host, the Host already informs the Broker about its status changes. So the 

Broker’s only responsibility is to allocate a Host to an Application in a load balanced 

manner and leave them alone. It is not directly interested in what is going on between 

the Host and the Application. In this design the responsibility of Brokers is 

minimized and made very specific. It does not keep any state or runtime information 

about running applications, so its failure does not directly effects running 

applications or bring them down. If a Broker crashes when an Application is running 

in its Cluster, the Application does not fail because Brokers does not maintain any 

information about Application. The Application just cannot run new tasks until the 

Broker of the Cluster becomes available again. 

When a Host is allocated to an Application, it is used by that Application exclusively. 

So the same Host cannot be allocated to more then one Application at the same time. 

The reason behind this restriction is the fact that Safran is designed for 

computationally intensive applications so it is assumed that when a Host is allocated 

to an Application the Application uses Host’s all computational capacity. Whenever 

an Application is done with a Host it explicitly frees it and the Host can be allocated 

to other Applications. 

 32



3.3.4 Applications 

Applications are users (i.e. clients, or consumers) of Safran systems and Safran 

resources. Applications are software developed by end-users (developers or 

programmers) using building blocks (software libraries i.e. APIs) provided by Safran 

infrastructure. These applications are the type of applications that are built on the 

high-level programming model of Safran (see Section 3.2.2 and Section 3.4.6). 

Each Application might perform different computations or solve different problems 

but they share a common structure imposed by the underlying Safran infrastructure 

as they all use the same common libraries, APIs, and Safran services. For an 

application to be able to use services or resources of a Safran system effectively, not 

only it must be developed using the provided APIs by Safran, but also it must be 

developed adhering to rules and guidelines that are required but cannot be imposed 

syntactically by the APIs. 

General structure of a Safran application is as follows: First it initializes the Safran 

infrastructure for by making a system API call. Next, it decomposed its computation 

into smaller pieces according to its specific problem that it is trying to solve and 

handles them to Safran. For each piece of sub-work (i.e. a Task), Safran requests a 

Host from the Broker of the Cluster. It dispatches each Task to one Host, execute it 

there and get the result of each. Finally it notifies the Application that the result of 

the executed Task is ready. Application combines the results of sub-tasks locally to 

form the final, combined result of the problem. In another words, the Application 

entity acts as the central, controlling logic of a distributed/parallel computation. It 

decomposes a computation into concurrently executable sub-computations, lets 

Safran execute them in available Hosts in parallel, and finally gets the result of each 

from Safran to compose the result of the whole computation. Most of the plumping 

work such as requests for Hosts, allocation of them, dispatching of tasks to Hosts are 

all handled by the Safran libraries transparently to the programmer i.e. the 

programmer does not need to write code for doing all these. The Safran APIs used by 

the programmer provides the programmer and application a single system image of 
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the whole Safran system, which actually consists of complex networks of Hosts, 

Brokers and the clusters they form. 

Other then being developed on top of Safran libraries using Safran APIs, 

Applications are not constrained in any way. They can be executed on any machine 

that has Safran libraries installed and that has network connection to a machine 

hosting a Broker. On the machine that will execute an Application only the Safran 

libraries are required. There is no need to run any kind of other system service or 

daemon process like a Host, or a Broker. 

3.4 Logical Design 

This section presents an overview of the design of the Safran’s software 

infrastructure in terms of layering of services, and the abstractions each layer 

provides to the others. 

3.4.1 Overview 

General structure of Safran’s infrastructure is depicted in Figure 3.2. The entire 

infrastructure is organized as layers, each of which uses lower-level services of its 

underlying infrastructure and provides higher abstractions to the layers above them. 

The following sections explain the responsibilities and services of each layer. 

3.4.2 The Java Language and Runtime Environment 

As shown in Figure 3.2 Safran is totally built on the Java platform and runs in a Java 

Virtual Machine (JVM). Also the user applications that are built on Safran must be 

developed using the Java Programming Language, so they are also running in the 

JVM. 

The Java platform, which consists of the Java programming language and the Java 

Runtime Environment, has a number of features that greatly facilitates distributed 

system programming. Java’s built in features such as automatic garbage collection, 
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rigid security infrastructure, extensive support for network programming, multi-

threaded programming, synchronization mechanisms, object serialization, reflection, 

code mobility, dynamic class loading and general extensibility mechanisms make it 

an excellent choice for distributed, network-parallel programming. Safran takes 

advantage of many of these built-in features and services of the Java platform to 

produce a system which would be far more difficult to create with other development 

systems. 

 

Figure 3.2 Logical design of Safran’s infrastructure. 

The Java platform consists of a set of open specifications and standards which were 

initially developed by Sun Microsystems Inc. Sun Microsystems and many other 

commercial and non-commercial institutions provide mostly free and sometimes 

open-source implementations of these specifications for many different platforms. 
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The main specifications that define the Java platform are the Java Language 

Specification[31], Java Virtual Machine Specification[33], and the Java Core API 

Specification[35]. 

The Java Language Specification describes the Java programming language as a 

fourth generation, general purpose, high-level, object-oriented programming 

language. When a Java program is compiled, the Java compiler produces binary Java 

class files that contain Java byte-code instead of a native, platform specific 

executable binary. The Java byte-code is a platform independent, assembly like 

language that is design to be interpreted by a virtual machine. Java Virtual Machine 

Specification describes a stack based virtual machine to interpret the Java byte-code. 

There are many virtual machine implementations for many different platforms 

including general purpose operating systems, hand-held devices, and even embedded 

systems implemented as either software or directly in the hardware. A Java virtual 

machine sits on the native system (operating system or hardware) and executes 

standard Java byte-code. So when a Java program is compiled into Java byte-code, 

the same compiled byte-code can be executed without any modification on any 

system that provides a standard Java virtual machine. This capability of being able to 

run the same program in different platforms is referred to as write-once run-

everywhereTM. The Java Runtime Environment (JRE) is a runtime execution 

environment which loads and executes Java programs. JRE consists of the Java 

Virtual Machine and the standard set of core class libraries which are described by 

the Java Core API Specification. Together with the Java Virtual Machine 

Specification, the Java Core API Specification enables the portability and platform 

independence of Java programs. 

The most important feature of the Java Platform for Safran is its support for portable 

and platform independent programs. As Safran is totally built on the Java Platform, it 

is platform independent and can be run on any operating system and machine 

architecture that provides a standard Java Runtime Environment. In other words 

Safran’s support for heterogeneity of the systems it can run on is provided through 

the Java Virtual Machine abstraction. Safran itself does not do much to solve the 

 36



heterogeneity problem: the Java Virtual Machine it runs on already abstracts away 

most of the heterogeneity problems. 

3.4.3 Distributed-Objects Layer 

The layer that we called the Distributed-Objects forms the core and backbone of the 

infrastructure of Safran. This layer provides services and abstractions to upper layers 

for doing distributed (remote) objects based programming. The low-level 

computational model explained in Section 3.2.1 is supported by this layer and the 

corresponding programming model is provided mostly by the upper Dynamic 

Proxies layer. 

The primary user of this layer and its services is Safran itself but the interface of the 

layer is also exposed publicly to user applications that might need some rarely used 

functionality of this layer such as making asynchronous or one-way method calls on 

remote objects. As depicted in the Figure 3.2, application types that are represented 

by User Application Y have direct access to Distributed-Objects layer. In fact, the 

interface and infrastructure provided is complete and general purpose enough that in 

addition to specific end-user applications, some other infrastructures and general 

purpose frameworks can even be built on this layer. 

This layer basically extends the capabilities of RMI, Java’s distributed-objects 

framework, with new distributed-objects based computing concepts and constructs. 

In addition to the functionality of exposing local objects to remote access, it supports 

creation of objects on remote machines, getting references to remote objects, calling 

methods on remote objects synchronously, asynchronously or one-way, check-

pointing and migration of objects, and automatic and transparent distribution 

(dynamic class loading) of class definitions (binary class files) to remote machines. 

The programming interface provided by this layer is fairly low level and is not much 

familiar. For example local references to remote objects are represented by instances 

of class RemoteObjectRef. Access to remote objects (calling methods on them 
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remotely) is provided through the methods of this class. Once an instance of this 

class is obtained, calling methods on the remote object represented by this instance is 

done by calling invokeMethod, invokeMethodAsync, invokeMethodOneWay 

methods of the RemoteObjectRef class on the obtained instance. This programming 

interface is unfamiliar, difficult to use, and prone to errors but it provides all the 

primitives required for building higher level layers on top of it. The layer above, 

named Dynamic Proxies is built on this layer and provides a programming model 

that is much easier to use. 

Although this layer and its programming interface are exposed to user applications, it 

is not intended for general and extensive use by end-user applications. It is mainly 

provided for applications that require access to some rarely needed but important 

functionality. For most of the user applications, some other programming interfaces 

that are much higher-level and much easy to use are provided through the Dynamic 

Proxies and the Parallel Application Services layers, which are built on the 

Distributed-Objects layer. So Distributed-Objects layer is mainly a backbone and 

abstraction for upper layers of Safran itself. 

3.4.4 Communication SPI and Implementation Layers 

The layers named Communication Service Provider Interface (SPI) and the Network 

Communication Service provide pluggable network transport and communication 

infrastructure for the upper Distributed-Objects layer. 

Communication Service Provider Interface layer defines the interface (as a set of 

Java interfaces) that must be implemented and provided by the lower Network 

Communication Service layer. So it decouples the interface which is used by the 

upper Distributed-Objects layer to access to the network from the implementation of 

the network communication mechanism i.e. from the Network Communication 

Service layer. The Distributed-Objects layer has static dependency only to the 

Communication SPI layer and it’s de-coupled and abstracted from the actual 

communication and transport mechanism implementation. 
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This design makes Distributed-Objects layer independent from the network 

communication infrastructure and technology. The Network Communication Service 

layer can be changed without effecting the design and interface of the Distributed-

Objects layer. Different implementations of this layer based on different 

communication and network technologies can be developed and plugged into the 

infrastructure of Safran without affecting any of the upper layers and user 

applications build on them. For example, as part of this work we provide an 

implementation of Safran and in this implementation we chose to use Java RMI 

technology for our network transport and communication mechanism. So our 

implementation of the Network Communication Service layer is based on Java RMI 

technology. Safran’s design is flexible enough that someone else can develop a 

different Network Communication Service layer using some other network 

communication technology (for example network sockets) and can plug it into our 

implementation of Safran without changing any other parts and layers of our 

implementation. Implementation of Safran can integrate with this new Network 

Communication Service layer and can use it transparently. 

3.4.5 Dynamic Proxies Layer 

The Dynamic Proxies layer builds on the Distributed-Objects layer and basically 

improves the programming model and interface provided by this layer. As explained 

in Section 3.2.1 Distributed-Objects layer provides a programming interface that 

includes extensive low-level functionality for doing distributed-objects based 

programming. But the provided programming interface is not familiar and not easy to 

use. Programmers have to deal with instances of classes that locally represent remote 

objects i.e. the distinction between a local object reference and a remote object 

reference is explicit and visible to programmers and programmer must be aware of 

the distinction between a local object and a remote object.  

Dynamic Proxies layer dynamically and transparently generates easy to use proxies 

for remote objects. Programmers program against these proxy objects that provide 

exactly the same public interface as the remote objects. So these proxy objects are 
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used by upper layers to access and call methods of remote objects with the 

convenient and familiar local method call syntax (obj.methodName(parameters)) 

instead of dealing with remote object references that are error prone and difficult to 

use. When a method is called on a proxy object that locally represents a remote 

object, the method call is transparently dispatched to the remote object and the result 

of the method called is returned transparently to the caller. The method call on the 

remote object syntactically seems just like a local method call and remote objects are 

accessed and manipulated just like local objects. 

To sum up, by providing a unified programming interface for interacting with local 

and remote objects, Dynamic Proxies layer makes distributed-objects based 

programming familiar and easy. Besides providing a programming interface to end-

user applications, Dynamic Proxies also provides the infrastructure for the upper 

Parallel Application Services layer .i.e. Parallel Application Services layer is built on 

the Dynamic Proxies (see Figure 3.2). 

3.4.6 Parallel Application Services 

Parallel Application Services layer provides the infrastructure, abstractions and 

programming interface (API) for development of parallel and distributed applications 

based on high level concepts and constructs. The high-level computational model 

that is explained in detail in Section 3.2.2 is implemented in this layer and the 

corresponding programming model is supported by the API provided by this layer to 

user applications. As depicted in the Figure 3.2, application types that are 

represented by User Application X are built on this layer. The architecture and 

entities such as Brokers and Hosts as described in Section 3.2 and subsections is 

totally implemented in this layer. All high level sub-systems and services such as 

host registry, host monitoring, host allocation, and load balancing are implemented in 

this layer. 

The layers and services of Safran that are implemented by Dynamic Proxies, and the 

other lower layers forms a quite general purpose infrastructure and framework 
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(middleware) for building different kinds of distributed applications and systems. 

The Parallel Applications Services layer is built on this general purpose layer as 

another framework to support development of some completely different kind of 

applications based on the high level concepts and computational model it introduces.  

3.4.7 User Applications 

Safran is built on the Java platform. User applications must be developed using the 

Java programming language and the Java APIs provided by Safran for user 

applications. The kinds of applications that can be built on Safran are represented in 

Figure 3.2 as User Application X and User Application Y. These actually 

represent the two main views or two main programming models of Safran presented 

to programmers. 

The primary design requirement of Safran is to support applications of the type 

represented by User Application X. These applications are built based on the high-

level concepts as explained in Section 3.2.2. These kind of applications run on the 

system architecture described in Section 3.3. The kind of applications represented by 

User Application Y is built on the lower-level concepts of distributed-objects as 

explained in Section 3.2.1. These applications do not require the infrastructure and 

architecture explained in Section 3.3. 
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CHAPTER 4 

4.  SYSTEM DESIGN AND IMPLEMENTATION DETAILS 

In this chapter we provide detailed information about the internal design of Safran’s 

4.1 Distributed-Objects Layer 

r, like CORBA and RMI, 

Distributed-Objects layer mainly provides a client-server type programming model 

Note that this classification of processes as clients and servers is based on the roles of 

layers and services. We do not provide complete design specification but instead try 

to give an insight about how Safran is internally architected.  

As explained in Section 3.4.5 Distributed-Objects laye

provides a computational and programming model based on the concept of 

distributed and remote objects. In this section, we provide design details of some 

important features of the Distributed-Objects layer and the layers below it. 

based on remotely accessible objects. In this model, we define Client and Server as 

follows: the processes that are hosting remotely accessible objects are called Servers 

and the processes that access the objects hosted by Servers and call methods on them 

are called Clients. 

the processes at a single time and context during their interaction. The actual and 

physical relation between processes can be symmetric and more complex: at some 

particular time and context a process might be hosting objects that other process 

access (thus it is acting as a server for other processes) and at some other time the 

same process might be accessing remote object in some other process (thus it acting 

as a client for those processes). In other words a single physical process does not 

need to be always acting as a client or a server i.e. it can be acting both as a server 
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and a client at the same time by having a totally symmetric relation with other 

processes. So Distributed-Objects layer and the programming model do not impose 

the classical client-server type programming but in fact it allows arbitrary complex 

interaction between distributed entities. 

Figure 4.1 depicts the main internal entities of Distributed-Objects layer in a server 

and a client process. These are conceptual representations and do not completely 

reflect exact internal implementation. Also note that these entities mostly correspond 

to Java classes and interfaces in Safran’s internal design but they do not belong to the 

public programming interface (API) of the layer i.e. they belong to the internal 

infrastructure of the layer. In the following subsections, we briefly describe these 

entities and their relationship to each other. 

 

Figure 4.1 Internal entities of Distributed-Object layer 

4.1.1 Server Side Objects and Entities 

ed HostingService, which is The server process only creates an entity nam

provided by the Distributed-Objects framework, and just starts it. After the 

HostingService is created and started the process is ready to act as a server. 
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Remote clients can access the server process, create objects on it and can remotely 

call methods on the created objects. 

When the HostingService is created by the server process it internally creates an 

entity named ObjectHost which actually hosts remotely accessible objects with the 

help of another internal entity named ObjectManager which manages the hosted 

objects. ObjectHost provides the actual service of hosting objects and enables the 

access of clients to hosted objects in various ways. For example, client processes can 

create objects in the server process, call methods on them, delete them, and get 

copies of them through ObjectHost. 

4.1.2 Client Side Objects and Entities 

At the client side, access to the server side entity HostingService is made through 

the client side object named ObjectHostingService. ObjectHostingService acts 

as the representative of HostingService in the client process and provides the 

interface for controlling a remote HostingService such as stopping it, getting its 

host name or port number. 

Object named RemoteObjectHost provides client side access to the actual service 

(hosting remote objects) of the server side entity HostingService. In other words, 

it represents the server side entity ObjectHost at the client side by allowing client 

process to create objects on the server, calling methods on them and manipulating 

them in some other ways. 

RemoteObjectRef objects are client side references to remotely hosted objects on the 

server process. For each remote object on the server process that is accessed by the 

client process, one and only one corresponding RemoteObjectRef object is created 

in the client process. Once a RemoteObjectRef object is obtained in the client 

process that references a remote object hosted by a server process, client process’ 

subsequent interaction with the remote object is handled through this 

RemoteObjectRef object. In other words, RemoteObjectRef is the handle and 
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gateway to the real remote object, which allows client process to access the remote 

object and to manipulate it. 

The following figure is the Unified Modeling Language (UML) class diagram for 

major classes and interfaces of the Distributed-Object layer. 

 

Figure 4.2 Distributed-Object layer UML class diagram. 

4.2 Dynamic Proxy Generation 

Users of the Distributed-Objects layer seldom need functionality such as 

synchronous and one-way method calls on remote objects which are provided only 
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through the RemoteObjectRef objects. So, for such functionality users had to use 

complex, error prone, and difficult to use programming interface provided by this 

class. But for the major and extensively used functionality of making normal, 

synchronous method calls on remote objects, users are provided a much easy to use 

API with the help of Java Platform’s dynamic proxy generation service. Figure 4.2 

depicts the relations between user code and runtime entities of the Distributed-

Objects layer in a sample situation. 

 

Figure 4.3 Relations between user code and Distributed-Objects layer entities. 

When a user of Distributed-Objects layer creates an object on a remote process or 

accesses an exported object on a remote process, Distributed-Objects layer internally 

creates a RemoteObjectRef object that references the actual remote object. But the 

user is not given this RemoteObjectRef object. Instead, an instance of a 

dynamically generated proxy class that warps the RemoteObjectRef object is created 

and returned to the user. The created proxy class and its instance provide the exact 

same public interface as the remote object. In other words, the proxy object returned 

to the user implements the same set of Java interfaces that the remote object 

implements. So the user can cast down the proxy object to any of the interface 

supported by the remote object and call methods of the remote object on the proxy 

object. Internally the proxy object dispatches the methods called on it to the 

RemoteObjectRef object it wraps, which in tern dispatches the method calls to the 
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actual remote object through the network. The return value and the result of the 

method calls on the remote object are returned back to the user backwards through 

the same path. Dynamically and transparently generated proxy objects provide some 

level of access and location transparency to the user of the Distributed-Objects layer. 

Users can call methods on remote object as if they were local objects. 

 

Figure 4.4 Dynamic proxy generation infrastructure of Safran.  

Figure 4.4 is the Unified Modeling Language class diagram showing the dynamic 

proxy generation subsystem of Safran. Generation of dynamic proxies is provided 

with the help of Java’s reflection and dynamic proxy generation functionality. First 

Distributed-Objects layer determines the list of Java interfaces implemented by the 

remote object using reflection. Next, it gives this list of interfaces and an 

InvocationHandler to the dynamic proxy API of Java. Java proxy system 

dynamically creates a class in the JVM that implements all of the provided interfaces 

and that dispatches the methods called on it to the provided InvocationHandler. An 

instance of this class is created and returned to the user. Whenever the user calls a 
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method on the proxy object, the method call is dispatched to the 

InvocationHandler of the proxy, which in turn dispatch the method call to the 

wrapped RemoteObjectRef. Finally RemoteObjectRef dispatches the method call 

to the real remote object thought the underlying network and transport mechanism. 

4.3 Pluggable Communication Infrastructure 

Communication Service Provider Interface (SPI) layer basically defines the interface 

that must be provided by different implementations of the lower Network 

Communication Service layer. Distributed-Objects layer has static dependency only 

to this interface definition i.e. it does not have static dependency to the actual 

implementation of the network communication infrastructure. Communication SPI 

provides the infrastructure for decoupling Distributed-Objects layer from the 

underlying network communication mechanism so that the network communication 

and transport technology that underlies Safran can be changed if required. 

Communication SPI layer consist of only four Java interface types that must be 

implemented by the lower Network Communication Service layer. Each interface 

defines the set of methods that must be implemented by the Network Communication 

Service implementations. So each different Network Communication Service 

implementation must at least provide four Java classes each implementing one of the 

Java interface defined by the Communication SPI layer. Figure 4.5 is the UML class 

diagram of the Communication SPI. 
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Figure 4.5 Class diagram for Communication SPI layer 

Distributed-Objects layer has static (compile time) dependency to the Java interfaces, 

not to the actual implementation classes. So the Java classes that implement the 

interfaces and that actually provide the network communication mechanism are 

dynamically found and loaded by Distributed-Objects layer at runtime through a 

configuration file. Distributed-Objects layer’s configuration file mainly contains the 

class names of the actual implementation classes. During initialization, Distributed-

Objects layer reads its configuration file to find out the names of the classes that 

implement the underlying network communication mechanism. Next it loads the 

classes and creates instances of them using Java Reflection API. So the connection 

between the actual implementation of the Network Communication layer and 

Distributed-Objects layer is only the configuration file of the Distributed-Objects 

layer.  
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Figures 4.6 and Figure 4.7 are the UML class diagrams for the parts of Distributed-

Objects layer that enable plug-ability of the underlying communication mechanism. 

 

Figure 4.6 Class diagram of creation of RemoteObjectHost’s 

 

Figure 4.7 Class diagram for creation of ObjectHostingService’s 
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If the underlying Network Communication layer implementation needs to be 

replaced by some other implementation based on some other network transport 

technology, only the configuration file of the Distributed-Objects layer needs to be 

updated. Distributed-Objects layer implementation itself and the upper layers that 

depend on it do not need be changed in any way. So Distributed-Objects layer and 

upper layers are abstracted away from the underlying network communication 

technology and mechanisms in a pluggable way. 

The Safran implementation that we provided with this work uses a Network 

Communication layer implementation based on Java RMI technology. Although the 

Safran implementation we provided runs on Java RMI (due to the Communication 

SPI) Distributed-Object layer, the layers above it and also the end-user applications 

do not have any static dependency to Java RMI. So, some other implementation 

(based on direct network sockets for example) of the Communication Services layer 

can be developed and plugged into our implementation of Safran to replace our Java 

RMI based Communication Services layer without affecting other parts of the Safran 

and applications built on it. 

4.4 Parallel Application Services 

Parallel Application Services layer mainly consists of two parts: 

• A software infrastructure and a set of executable software that form and 

support the Safran system architecture which is explained in Section 3.3. 

• A public software library that users use and program against to develop 

parallel and distributed application on Safran using the computational and 

programming model explained in Section 3.2.2. 

Figure 4.8 is the class diagram showing the major classes that form the infrastructure 

of the Parallel Application Services layer. 
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Figure 4.8 Class diagram for the infrastructure of Parallel Application Services 

HostDaemon and BrokerDaemon are classes that implement the executable daemon 

processes (Hosts and Brokers). They simply create an instance of their corresponding 

agent classes (HostAgent, BrokerAgent), which actually provides almost all of the 

functionality of Hosts and Brokers. HostDaemon and BrokerDaemon are very simple 

executable classes that simply instantiate the functionality that is actually 

implemented in the HostAgent and BrokerAgent classes. HostAgent and 

BrokerAgent classes are publicly exposed classes, so users can actually implement 

their own daemon process instead of using HostDaemon and BrokerDaemon due to 

reasons like providing a better user interface and better integration with their specific 

platform’s capabilities such as operating system’s service or daemon process running 

capabilities. 
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HostAgent and BrokerAgent classes are the actual provider of the Broker and Host 

functionalities explained in Section 3.3 and its sub-sections. 

HostAgent and BrokerAgent communicate through Distributed-Objects layer as 

depicted in Figure 3.2. So Parallel Application Services layer is built on the 

Distributed-Object layer as another framework. BrokerAgent and HostAgent 

interact with each other by exposing remotely accessible objects to one other with the 

help of Distributed-Object layer. The class of the object exported by BrokerAgent is 

BrokerImpl which is accessed by remote HostAgents (and Applications) through 

the Broker interface it implements. In the same way, the class of the object exported 

by HostAgent is HostImpl which is accessed by remote BrokerAgents (and 

Applications) through the Host interface it implements. A HostAgent (or an 

Application) accesses the services of BrokerAgent by getting a Broker reference to 

the BrokerImpl object exported by the BrokerAgent to the Distributed-Object layer 

at a well-known port and with a well-known name. Similarly, a BrokerAgent (or an 

Application) accesses the services of HostAgent by getting a Host reference to the 

HostImpl object exported by the HostAgent to the Distributed-Object layer with a 

well-known name. 

4.4.1 Broker and Host Relations 

As explained in Section 3.3 and its sub-sections, there is a registration relation 

between Hosts and Brokers: A group of Hosts register to a Broker to form a Safran 

cluster. 

The BrokerImpl object which is contained and managed by BrokerAgent keeps a 

list of information about Hosts registered to it. BrokerImpl assumes that the 

network is unreliable (network failures are possible) and Hosts that registered to it 

might fail without any notification. With this assumption of unreliable network and 

possibly failing Hosts, BrokerImpl tries to keep the list of Hosts registered to it as 

up-to-date as possible through the use of a protocol between itself and Hosts. The 

main points of this protocol are as follows: 
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• Whenever a Host registers to a BrokerImpl, Host provides initial 

information about itself to the BrokerImpl during registration. 

• During registration Host agrees to provide periodic notifications to the 

BrokerImpl so that BrokerImpl knows that the Host is still alive and it has 

up-to-date information about the Host. The period of notification is 

determined by the Host (constrained with a configurable minimum value) and 

provided to the BrokerImpl during registration. 

• Other than periodic notifications, Host sends up-to-date information to the 

BrokerImpl that it has registered to whenever its state (capacity, availability 

etc.) changes. 

• When a Host is shutting-down normally, it notifies the BrokerImpl it has 

registered to. 

• BrokerImpl periodically checks the list of Hosts registered to it. If a Host 

did not provided a notification for longer than the period it agreed, it is 

considered inaccessible and dead and it is removed from the list of registered 

Hosts. 

4.4.2 Locating Brokers and Automatic Registration 

Sections 3.3 and 4.4.1 described the relations between entities like Brokers and 

Hosts but did not provided information on how these entities locate each other. Here, 

we explain the infrastructure used by different entities to automatically locate each 

other. 

As explained earlier, Hosts need to register to a Broker to become part of a Safran 

Cluster. Also Applications need to contact a Broker to request Hosts to run Tasks on 

them. Hosts and Applications can be controlled and maintained manually to use a 

specific Broker running at a specific network address. Manual setup, control and 

maintenance become difficult as the number of the entities increases. 
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To enable easy and automatic setup and maintenance of a Safran Cluster, Parallel 

Application Services layer provides the infrastructure to enable Hosts and 

Applications to find and use Brokers automatically. When a Host starts-up it 

automatically locates (if configured to find and register automatically) a Broker and 

registers to it. In the same way, an Application can be configured to automatically 

find the Broker to use. 

This sub-system of automatic discovery of Brokers is based on the TCP/IP 

multicasting technology. TCP/IP multicasting enables a group of hosts to join a 

multicast group and broadcast datagram packets to every member of the group, 

allowing group communication. 

A class named MessageBroadcaster and its helper classes (BroadcastMessage and 

MessageProcessor) form general purpose multicast message broadcasting sub-

system. This sub-system generally allows processes running on the same network 

send broadcast messages to each other without knowing each others network address. 

Message broadcasting sub-system is used by a singleton class named 

BrokerLocator to send and receive broadcast messages about the availability of the 

Brokers such that: 

• When a BrokerAgent is started it registers itself to the BrokerLocator and 

BrokerLocator starts to send periodic broadcast messages to the network 

about the availability of the Broker as long as the Broker runs. 

• When the BrokerAgent is stopped it un-registers itself from the 

BrokerLocator and BrokeLocator sends a message to the network about 

unavailability of the Broker.  

• Hosts that are configured to find and register automatically, listen broadcast 

messages about availability of Brokers with the help of BrokerLocator 

object in their own process. BrokeLocator notifies the HostAgent whenever 

it determines that a new Broker has started or an existing one aborted so that 
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HostAgent automatically registers to a Broker or un-registers when the 

Broker it has registered is stopped. 

• Whenever a HostAgent starts, it broadcasts a message to the network 

announcing that it has started and needs to know the Brokers currently 

running on the network. 

• BrokerLocators reply to the messages of newly started Hosts by 

broadcasting immediately the list of Brokers that registered to them. 

The following figure is the UML class diagram of the classes of that support the 

message broadcasting and Broker locating sub-system of the Parallel Application 

Services layer. 

 

Figure 4.9 Message broadcasting and Broker locating sub-system class diagram 
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CHAPTER 5 

5.  TESTING AND EVALUATON OF SAFRAN 

To test and evaluate Safran’s design and implementation, we conducted an extensive 

set of experiments and we did extensive analysis on the result of these experiments. 

This chapter presents the experiments we conducted, the results we obtained, and our 

analysis and discussions on these results. 

The objectives of these experiments are: 

• End-to-end testing and demonstration of our implementation of Safran with a 

complete application. 

• To determine performance characteristics (speedup, efficiency, overheads) of 

Safran for different sets of applications on different system configurations. 

• To determine the level of convenience of Safran for different sets of 

applications. 

• To find out design and implementation problems and deficiencies. 

5.1 Experiments 

To test Safran and collect data about its performance characteristics, we designed and 

implemented two different test applications. These two applications were run for a 

wide variety of system and application configurations using a test framework. The 

test framework automatically executed both applications several times for different 

configurations, collected performance data for each configuration and saved them to 

files for later analysis. The main data collected is the application completion times 

for each different configuration. Both of the applications are executed serially with 

no relation to Safran to determine serial execution times. Later these execution time 
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data for serial executions and parallel executions for different configurations are 

analyzed to derive different performance information and reach general conclusions 

about performance characteristics of Safran. 

5.1.1 Test Applications 

Two different versions of the same problem are used for experiments and data 

collection: matrix multiplication and distributed data matrix multiplication. 

Real Matrix Multiplication Application (RMMA):  This application gets two 

randomly generated integer matrices A and B as input and calculates the 

multiplication of these matrices. When the application is run, to create T sub-tasks, 

the applications horizontally partitions the first matrix (A) into T sub-matrices each 

having N/T rows (where N is the row number of the first matrix). For each pair of 

matrices consisting of a sub-matrix of A and the whole matrix B, a Task object is 

created and submitted to Safran’s application services. When executed, each Task 

calculates the matrix multiplication of a sub-matrix of A and the second matrix B. 

Safran dispatches all T Tasks to available remote Hosts, remotely executes them and 

get the results back. Note that this partitioning of input matrices for parallel 

computation is by no means a good way and much better algorithms for parallel 

matrix multiplication are available. Our purpose here is not to show the best possible 

way of parallel matrix multiplication on Safran. Instead, we tried to create an 

application that has the characteristics of many other applications, so that we can use 

the results of our experiments for this application to reach general conclusions for the 

set of applications that have similar characteristics. This application is characterized 

of being both computation (CPU) intensive and communication (I/O) intensive. The 

algorithm used by Tasks to multiply two matrices is naïve (of complexity O(n3)). The 

partitioning method used to create the Tasks requires the transmission of second 

matrix (B) as a whole to remote Hosts which makes this version extensively I/O 

intensive. The communication requirement of the application for a T task run is of 

complexity O(Tn2). So, this application is a good representative of both CPU and I/O 

intensive applications. 
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Distributed-Data Matrix Multiplication Application (DDMMA): This 

version is designed as a representative of pure CPU intensive applications. The 

version simulates parallel matrix multiplication operation by using the exact same 

matrix multiplication algorithm that is used by the Real Matrix Multiplication 

Application. The difference is that, the matrix data on which the algorithm operates 

on is not transmitted over the network to the remote Hosts that execute the Tasks. 

Instead, when a Task is dispatched to a remote Host (without matrix data) the matrix 

multiplication algorithm operates on locally generated random matrix data. This way, 

we avoid the communication and network I/O overhead of the Real Matrix 

Multiplication Application but have an application that has exactly the same 

computational characteristics. 

The only difference between Real Matrix Multiplication Application and Distributed 

Data Matrix Multiplication Application is that, one has extensive network I/O 

overhead and the other does not. We could have used some different application 

representing pure CPU bound applications instead of Distributed Data Matrix 

Multiplication Application. But we choose to simulate the matrix multiplication 

algorithm because both Real Matrix Multiplication Application and Distributed Data 

Matrix Multiplication Application have the exact same computational properties 

which enabled us to do meaningful comparison between the results of these two 

applications and clearly see the effects of I/O overhead. 

5.1.2 Experimental Setup 

All the experiments are performed on identically configured Sun Blade 2000 

workstations on a 100 Mbps, general purpose, corporate office LAN. There were 

about 40 of these workstations but at most 10 of them were used during our 

experiments. The workstations (and the network) were not exclusively used for our 

experiments as they are owned by different people and used for different purposes. 

They were running different applications and services as the experiments are 

performed but they were lightly loaded because all the experiments are performed 

after office hours (i.e. they were not being used heavily).  So, the available capacity 
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and load of the workstations used during the experiments were slightly differing 

from each other. Details of the configuration of each of these machines are: 

• Running Sun Solaris OS Release 5.8 

• 1200 MHz Sun UltraSPARC-III+ CPU 

• 1024 MB physical memory 

• 1341 MB virtual (swap) memory on a UFS mount. 

For all experiments Java 2 Runtime Environment (JRE) Standard Edition build 

1.5.0_01-b8 of Sun Microsystems for Sun Solaris OS is used. JVMs are started in the 

client (Java HotSpotTM Client VM) mode with all other startup parameters left default. 

During all experiments each entity of Safran (Broker Agent, Application, and Host 

Agents) is run on a different machine exclusively. 

5.1.3 Experiment Configurations 

Each of the two applications is executed on Safran for a wide range of configurations 

to obtain a detailed understanding of performance characteristic of the platform for 

different kinds of system and application configurations and for different types of 

applications. 

For all experiments involving Safran (parallel executions), only one Broker Agent is 

used. Each entity (Broker Agent, Application, and Host Agents) is executed on its 

own machine exclusively. 

Serial execution experiments are run locally on a single machine with no 

involvement of Safran entities. Computation is done locally in a single process that 

does not use Safran in any way. 

The following table show the matrix of different configurations for which experiment 

conducted. 
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 Serial Execution Parallel Execution 
Host Number 1. Executed locally on a 

single machine without 
involvement of Safran. 

1, 2, 4, 8 

Problem Size 256x256 
384x384 
512x512 
640x640 
768x768 
896x896 
1024x1024 
1152x1152 

256x256 
384x384 
512x512 
640x640 
768x768 
896x896 
1024x1024 
1152x1152 

Task Number 
 

1 (i.e. the computation is 
done as a whole) 

1, 2, 4, 8, 16, 32 

For each different configuration (e.g. 2 Hosts, 8 Tasks, 896x896 Matrix) applications 

are executed 5 times repeatedly and average execution time is calculated. For every 

pair of Host number and Task number result are written to files. For example, the 

contents of the result file of a test with Real Matrix Multiplication Application on 4 

Hosts and for 8 Tasks are as follows: 

Test Name:  Real Matrix Multiplication 
Host No: 4 
Task No: 8 
 
Host No Task No Matrix Size  Execution Time (ms) 
4  8  128   412  
4  8  256   1153  
4  8  384   1927  
4  8  512   3338  
4  8  640   5969  
4  8  768   10022  
4  8  896   14647  
4  8  1024   21750  
4  8  1152   31976 

The results of all experiment are transferred from results files to spreadsheets and 

analyzed, whose results are presented in Section 5.2.  

5.2 Experiment Results 

In this section, we present the results we obtained, the analysis we made on the 

results and conclusions we are led by our analysis. 
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During experiment, the only performance metric collected is the application 

completion time which is the difference between the time the application is 

submitted to the system and the time the system returns back the application as 

completed. Note that this time measure includes both application’s computation time 

as well as the overhead time incurred by system and network communication. We 

analyzed this raw data for various configurations to derive more comprehensible 

performance metrics such as speedup, system efficiency and scalability measures. 

Speedup is the measure of the improvement (i.e. reduction) in an application’s 

execution time when run on more than one machine using parallelization of the 

computation. To be able to calculate speedup values we run both of our applications 

serially on one machine using the same exact algorithms. Then, speedup values are 

calculated as: 

N

serial
N T

T
S =  

where  is the serial execution time of the application and is the execution 

time of the same application on a Safran cluster of N Hosts. 

T serial NT

Another analysis we did is system efficiency analysis which we define as the usage 

percentage of the system’s theoretical computational capacity. For example, on a 4 

Host Safran system, if we are achieving a 3.5 speedup value, then the efficiency of 

the system usage is . So efficient values are calculated as: %5.87100)4/5.3( =⋅

exp  100)/( ⋅= −− ltheoriticaNerimentalNN SSE

Theoretical speedup values are the theoretically maximum speedup values achievable 

on the system and are equal to the number of Host on the system. 

Lastly, we made some theoretical scalability analysis on our results. Scalability is the 

measure of the change in the effectiveness of the system when the size of the 

problem or the size of the system (Host number) is increased. This analysis enabled 

us to deduce whether or not Safran is suitable for much larger applications and for 

configurations for which we were not able to conduct experiments. 
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5.2.1 Real Matrix Multiplication Application Tests 

We run the real matrix multiplication application serially and for 1, 2, 4, and 8 Host 

and for 1, 2, 4, 8, 16, and 32 Task Safran configurations. In the following, we present 

the discussion only for the 1 Host and 8 Host Safran configurations. The analysis for 

the 2 Host and 4 Host configurations will be presented together with the other cases 

in the overall summary section. 

Safran Configuration of 1 Host 

The execution time vs. the problem size graph for the 1 Host and different Task 

numbers case is given Figure 5.1. 

Execution Time by Problem Size (RMMA on 1 Host)
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Figure 5.1 Problem size vs. execution time graph for 1 Host RMMA tests 

The polynomial increase in the execution time is expected and is due to the matrix 

multiplication algorithm used, which is an O(n3) complexity algorithm. Execution 

time also increases as the Task number is increased and for all configuration of Task 

number, it is larger than the serial execution case. This is due to the fact that we do 

not have any parallelization gain (as we have only one Host) but have overheads of 
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the Safran system. The graph suggests that the overhead increases by the Task 

number. The graph in Figure 5.2 more clearly shows the affect of Task number on 

the execution time and overheads, for the same configuration. 

Execution Time by Task Number (RMMA on 1 Host)
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Figure 5.2 Task number vs. execution time graph for 1 Host RMMA tests 

It is clearly seen that the execution time for all matrix sizes increases linearly by the 

Task number. Also note that the rate of increase (slope of the line) in execution time 

gets larger as the matrix size increases. For example, for the 11152x1152 matrix 

case, difference between 1 Task execution time and 32 Task execution time is about 

52 seconds which is the overhead incurred by increasing Task number. We suggest 

that almost all of this overhead is due to network communication. The matrix 

partitioning method we used requires the transmission of whole second matrix with 

each Task over the network. For example, the size of the data transferred for the 

1152x1152 matrix reaches about 334 Mbytes during the execution of the application.  

The following speedup graphs (Figure 5.3 and Figure 5.4) suggest that the matrix 

size (problem size) affects the speedup positively and task number (for 1 Host case) 

affects speedup negatively.  
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Speedup by Problem Size  (RMMA on 1 Host)

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000 1200

Matrix Size

Sp
ee

du
p

1 Task
2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks

  
 

Figure 5.3 Problem size vs. speedup graph for 1 Host RMMA tests 

Speedup by Task Number  (RMMA on 1 Host)
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Figure 5.4 Task number vs. speedup graph for 1 Host RMMA tests 
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Larger matrix sizes produce better speedups because as the problem size increases, 

overhead time gets relatively smaller compared to the execution time (because 

relative increase in the overhead is smaller than the relative increase in the execution 

time).  As explained before, the computational complexity of the application is O(n3) 

and communication requirement complexity is O(Tn2) (the T is Task number). So, as 

the problem size increases the computation time becomes much dominant in the total 

execution time compared to the overhead time incurred by network communication. 

The following graph (Figure 5.5) clearly shows the relation of total overhead to the 

Task number. 

Overhead by Task Number (RMMA on 1 Host)
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Figure 5.5 Task number vs. overhead time graph for 1 Host RMMA tests 

Overhead times are calculated as the difference between the execution time of 1 Host 

Safran configuration and the serial execution. As expected, the overhead time 

increases linearly by the Task number. We obtain these clear linear graphs because 

system overheads other than the communication overhead is negligibly smaller 

compared to the communication overheads incurred by increasing Task number. 
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Safran Configuration of 8 Hosts 

The following two graphs (Figure 5.6 and Figure 5.7) show the variation of 

execution time of RMMA on an 8 Host Safran configuration for different problem 

sizes and Task numbers. 

Execution Time by Problem Size (RMMA on 8 Hosts)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200 400 600 800 1000 1200
Matrix Size

Ex
ec

ut
io

n 
Ti

m
e 

(m
s) 1 Task

2 Tasks
4 Tasks
8 Tasks
16 Tasks
32 Tasks
Serial

 
Figure 5.6 Problem size vs. execution time graph for 8 Host RMMA tests 

It is seen that for Safran configurations of 8 Hosts the optimum value of Task 

number (minimum execution time) for almost all problem sizes is 8, for which the 

whole problem is divided into number of sub-problems that is equal to the machine 

number. Execution time decreases as the Task number increased from 1 to 8, but 

begins to increase after this point (16 and 32 Tasks). This is because dividing the 

problem into more sub-problems does not help further in parallelizing the execution 

as we have limited number of machines (8 in this case). Instead it adds unnecessary 

overhead which increases the total execution time. 

The following graph (Figure 5.7) shows the effect of Task number on the execution 

time. 
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Execution Time by Task Number (RMMA on 8 Hosts)
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Figure 5.7 Task number vs. execution time graph for 8 Host RMMA tests 

The minimum execution time for all sufficiently large problem sizes is achieved with 

the task number equal to the number of Hosts (i.e. 8). After this threshold the 

execution time begins to increase linearly by the Task number because increasing 

Task number does not help in parallelizing the execution but instead adds huge 

network communication overhead. 

The following two graphs (Figure 5.8 and Figure 5.9) show the variation of speedup 

achieved for real matrix multiplication application on an 8 Host Safran configuration 

for different problem sizes and Task numbers. 

Figure 5.8 suggests that the best speedup is achieved when the Task number is equal 

to the Host number.  Speedup improves as the Task number is increased from 1 to 8, 

but begins the decrease for future increase in Task number. Generally, as the size of 

the problem increases the speedup increases and for sufficiently large problem sizes 

it begins to converge to a value. We see this convergence characteristic for 1, 2 and 4 

Task configurations (Figure 5.8) but it is not visible for the 8-Task configuration still 

for the largest problem size (1152x1152) we used. This means that we can expect 

 68



some further improvement in the speedup for 8-Task configuration and for the 

problem sizes larger than 1152x1152. 

Speedup by Problem Size (RMMA on 8 Hosts)
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Figure 5.8 Problem size vs. speedup graph for 8 Host RMMA tests 

Speedup by Task Number (RMMA on 8 Hosts)
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Figure 5.9 Task number vs. speedup graph for 8 Host RMMA tests 
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Figure 5.9 shows how speedup changes by Task number. It’s clearly seen that best 

speedup is achieved at the optimum task number of 8. For larger Task numbers the 

speedup degrades rapidly because more Tasks add huge communication overhead. 

Note that, the rate of degradation in the speedup is bigger for larger problem sizes 

because the cause of this degradation is communication overheads, which totally 

depends on the size of the second matrix (B). 

Summary of the RMMA Tests 

Here we present the overall analysis for all (1, 2, 4, 8 Host) configurations of Safran 

for real matrix multiplication application. 

The Figure 5.10 and Figure 5.11 show how maximum speedups achieved for 1, 2, 4, 

and 8 Host configurations change depending on the Task number and the problem 

size respectively. 
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Figure 5.10 Task number vs. maximum speedups achieved for all RMMA tests 

 70



Figure 5.10 suggests that for each configuration maximum speedup is achieved for 

the Task number that is equal to the Host number.  Larger Task numbers cause 

degradation in the speedup which is proportional to the problem size. Figure 5.11 

suggests that speedup generally improves by the problem size but converges to a 

value for sufficiently larger problems. 
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Figure 5.11 Problem size vs. maximum speedups achieved for all RMMA tests 

Figure 5.12 shows how maximum speedups achieved during all experiment change 

by Host number. It seems that the maximum speedup achievable on a Safran system 

is logarithmical proportional to the Host number. Figure 5.12 suggests that our 

system does not scale very well for the set of applications represented by the real 

matrix multiplication application (i.e. for applications that require massive network 

I/O and communication) because increasing Host number does not produce 

proportional speedup gains. For example, for the 8 Host configuration, the maximum 

speedup achieved is only about 3.69 and (using the experiment results) we 

approximately estimate that for 64 Hosts Safran can archive a speedup value of about 

only 6.4. 
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Maximum Speedup by Host Number
(RMMA, Task No=Host No, Matrix Size:1152x1152)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 1 2 3 4 5 6 7 8

Host No

Sp
ee

du
p

9

 
Figure 5.12 Host number vs. maximum speedups achieved for all RMMA tests 

Figure 5.13 further clarifies the situation. As seen, efficiency of the system drops 

drastically as the number of Hosts increases.  
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Figure 5.13 Host number vs. efficiency of Safran for RMMA 
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To sum up, from our analyses we can conclude that Safran is not much suitable for 

applications that have high data transfer and network I/O requirements. 

5.2.2 Distributed Data Matrix Multiplication Application Tests 

We run the distributed data matrix multiplication application serially and for 1, 2, 4, 

and 8 Host and for 1, 2, 4, 8, 16, and 32 Task Safran configurations. Here we present 

the discussion only for the 1 Host and 8 Host configurations as an example of our 

analysis approach. The analysis for the 2 Host and 4 Host configurations will be 

presented together with the other cases in the overall summary section. 

Safran Configuration of 1 Host 

The execution time vs. the problem size graph for the 1 Host and different Task 

numbers is given Figure 5.14. 
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Figure 5.14 Problem size vs. execution time of graph for 1 Host DDMMA tests 

As seen from Figure 5.14, for sufficiently large problem sizes the overhead of the 

system is quite low even for the configuration of 32 Tasks. Unlike the RMMA, the 
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overhead is mainly due to Safran’s bookkeeping activities. The overhead for the 

configuration of 32 Tasks and the largest problem size is 1267 ms which is about the 

%6.5 of the whole execution time. As the Figure 5.15 shows, the execution time 

(therefore the overhead) is increasing linearly by Task number. The average 

overhead incurred by each Task is about 35 ms which is about %5.7 of the average 

execution time of a Task (604 ms for the 32 Task and 1152x1152 matrix size case). 

As the overhead created by each Task is generally constant, for much larger 

problems (i.e. high granularity Tasks) we can expect this percentage of overhead to 

decrease substantially. For example, for matrix of size 2048x2048, we estimate that 

this percentage of overhead to fall down to about %1.2 of the total execution time.. 
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Figure 5.15 Task number vs. execution time graph for 1 Host DDMMA tests 

The situation is more clearly demonstrated by Figure 5.16. As seen, the overhead 

time is generally increasing linearly by the Task number and rate of increase is 

mostly independent of the problem size.  

 74



Overhead by Task Number (DDMMA on 1 Host)
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Figure 5.16 Task number vs. execution overhead graph for 1 Host DDMMA tests 

These results and our analysis suggest that the overhead of Safran for pure CPU 

intensive applications is low and quite reasonable. 
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Figure 5.17 Task number vs. execution overhead graph for 1 Host DDMMA tests 
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Speedup by Task Number (DDMMA on 1 Host)
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Figure 5.18 Task number vs. execution overhead graph for 1 Host DDMMA tests 

Figure 5.17 and Figure 5.18 show how speedup changes by the problem size and 

Task number respectively. Figure 5.17 suggests that despite the overhead of the 

system, for larger problems quite good speedups can be achieved. As seen in Figure 

5.18, for sufficiently large problem sizes (512x512 and larger) increasing Task 

number does not degrade the speedup very much as each Task adds only a small 

constant overhead. 

Safran Configuration of 8 Hosts 

The following two graphs (Figure 5.19 and Figure 5.20) show the variation of 

execution time of distributed-data matrix multiplication application on an 8 Host 

Safran configuration for different problem sizes and Task numbers. 
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Execution Time by Problem Size (DDMMA on 8 Hosts)
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Figure 5.19 Problem size vs. execution time graph for 8 Host DDMMA tests 
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Figure 5.20 Task number vs. execution time graph for 8 Host DDMMA tests 

As expected, it’s seen that (Figure 5.19) for a configuration of 8 Hosts, execution 

time decreases rapidly as the number of Tasks is increased from 1 to 8 and reaches 

 77



the optimum (minimum) value for 8 Hosts for almost all problem sizes. Further 

increase in the Task number increases the execution time slightly which shows that 

overhead of increased Task number is not very prohibitive. 

Figure 5.20 more clearly shows the change of execution time by Task number. As 

seen, for sufficiently large problem sizes minimum execution times are achieved 

when the Task number is 8. Larger Task numbers increases the execution time, but 

not much excessively. 

The following graphs (Figure 5.21 and Figure 5.22) show how the speedup 

achieved changes by the problem size and the Task number. 
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Figure 5.21 Problem size vs. speedup achieved graph for 8 Host DDMMA tests 

Figure 5.21 suggest that speedup generally improves as the problem size 

(consequently the Task granularity) increases and gradually converges to a value (1, 

2, and 4 Task cases). A speedup value of 6.65 is achieved with 8 Tasks for the 

maximum matrix size but convergence behavior is still not visible for this matrix 

size. So, for the configuration of 8 Hosts we expect some more improvement in the 
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speedup for much larger and high granularity Tasks for which we were not able to 

conduct experiment. Figure 5.22 suggests that the decrease in the speedup due to 

Task numbers larger than the optimum value (8) gets smaller as the application size 

increases. 
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Figure 5.22 Task number vs. speedup achieved graph for 8 Host DDMMA tests 

Summary of  the DDMMA Tests 

Here we present the overall analysis for all (1, 2, 4, 8 Host) configurations of Safran 

for distributed-data matrix multiplication application. 

Figure 5.23 suggests that for each configuration, maximum speedup is achieved for 

the Task number that is equal to the Host number. Larger Task numbers cause 

degradation in the speedup but this degradation is not too much. 
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Speedup by Task Number
(DDMMA, Matrix Size: 1152x1152)
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Figure 5.23 Task number vs. speedup achieved for all DDMMA tests 
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Figure 5.24 Host Number vs. speedup achieved for all DDMMA tests 

Figure 5.24 shows the variation of maximum speedups by the Host number achieved 

during all experiments. It is seen that the maximum speedup achievable on a Safran 
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system is linearly proportional to the Host number which means that Safran is quite 

scaleable for this kind of applications. Assuming that the system maintains its 

scalability characteristics, we roughly estimate (using the experiment results) that for 

64 Hosts Safran can achieve a speedup value of about 51. 

To sum up, from our analyses we can conclude that, Safran is quite suitable for 

applications that do not have much network I/O requirement but that are extensively 

computation bound. 

5.2.3 Comparison 

In this section we present the general comparison of the performance characteristics 

of Safran for the two different applications for which we conducted experiments. 

The following figures (Figure 5.25 and Figure 5.26) generally show how speedup 

changes by Host number and Task number for both applications. 
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Figure 5.25 Host number vs. maximum speedup achieved for both applications. 
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Figure 5.25 clearly shows that Safran scales perfectly for pure CPU bound 

applications represented by the distributed-data matrix multiplication application. 

But for application that have excessive network I/O requirement (represented by real 

matrix multiplication) it is not much suitable because it does not achieve good 

speedup values and it does not scale at all as the number of Hosts is increased. 

In Figure 5.26 the effect of over-dividing the application (large Task number) for the 

two applications is seen. Larger Task number causes rapid drop in the speedup for 

the real matrix multiplication application because each Task adds large network I/O 

overhead to the execution time. For the distributed-data matrix multiplication 

application each Task adds only a small amount of constant overhead independent of 

the application. 
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Figure 5.26 Task number vs. maximum speedup achieved for both applications. 

Figure 5.27 shows how efficiency of the system changes by Host number. As seen, 

the efficiency of the system decreases rapidly for the I/O bound application as the 

number of Host of the system increases. For the pure CPU bound application 

efficiency also drops as the system extends but with a much smaller rate. 
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Maximum Efficiency by Host Number
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Figure 5.27 Host number vs. maximum efficiency achieved for both applications. 

5.3 Summary of Test Results 

From our analysis of all the test results we can reach the following conclusions about 

the performance characteristics of Safran: 

• Safran is more appropriate for applications that require extensive 

computational capacity. The larger the applications’ computation requirement 

(and the granularity of the sub-computations i.e. the Tasks) the better the 

speedups and systems efficiency achieved. 

• Applications that require too much network I/O are not much suitable for 

running on Safran. For such application Safran does not scale very well i.e. 

adding more Hosts does not produce much better speedups. 

• Applications that are pure CPU bound produce quite good speedup and 

efficiency values, so they are quite suitable for running on Safran. For such 

applications Safran scales perfectly i.e. adding more Hosts produce 

proportionally better speedups (i.e. smaller execution time). 
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• To achieve the optimum speedup, the application should be divided into the 

number of Task that is at least equal to the number of Hosts in the system. 

Larger Task numbers generally decreases the speedup and efficiency values 

but the rate of decrease is quite low for pure CPU bound applications. So, 

larger Task numbers is not prohibitive for this kind of applications. To help 

the application developer in deciding the optimum number of Tasks to use, 

Safran provides APIs (ApplicationServices.getAvailableHostNo 

method) that enable the application developer to dynamically determine the 

best-effort estimate of the number of available Hosts in the system. 

Application developers can use this API to determine the Task number to use. 
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CHAPTER 6 

6.  CONCLUSION 

Safran is designed as a framework to support easy development of a wide variety of 

distributed and parallel applications on networks of heterogeneous workstations 

using the Java programming language. The main objective of Safran is to support 

platform independence and heterogeneity and also minimize the overheads related to 

setup and maintenance of the platform as well as making it easy to develop 

applications on the platform. 

Safran supports platform independence and heterogeneity by using the Java Virtual 

Machine abstraction, which already solves these problems as a platform independent 

development and runtime environment. Although we conducted our experiments and 

collected data on a network of Sun workstations, we also the run our test applications 

on a small number of Windows machines just to verify that our system works on 

heterogeneous systems. 

Safran makes it easy to setup and maintain the system by supporting some level of 

automatic setup of the system. Entities named Brokers, Hosts and Applications can 

discover and use each other automatically if required. Compared to other similar 

works, setup and maintenance of Safran is easier. A Host that is started up 

somewhere on the network can automatically find and join a Safran cluster. So, 

Safran keeps the overhead minimum associated with installation, configuration, and 

management of the system. 

Most of the other frameworks we examined support either a low-level programming 

model based on distributed objects or a high-level of programming model for parallel 

applications. Safran provides support for the both programming and computational 
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models. So, Safran enables development of both general distributed applications 

(through its low-level programming model) and parallel applications (through its 

high-level programming model). 

Safran’s high-level programming model provides a virtualization of a network of 

heterogeneous workstations so that applications are written for a virtual, single 

computer that has parallel processing capability. As the applications have a virtual 

single machine view of the network, new machines can transparently join the system 

or existing machines can leave the system dynamically at runtime. The application 

does not have to deal with the dynamically changing properties (machine failures for 

example) of the network. 

Safran’s high level programming model for parallel application development is 

specifically designed for compute intensive, CPU-bound applications with high 

granularity of sub-computations. Our experiments verified that for this kind of 

applications Safran achieves reasonable speedups and scales reasonably as the 

system gets larger. 
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CHAPTER 7 

7.  FUTURE WORK 

This section contains discussions about possible future extensions to Safran that are 

not included in the current design and implementation but might extend the 

capabilities of systems in important ways. Current design is flexible enough so that 

future extension can be built on it without extensive modifications to it. 

7.1 High-level Computational and Programming Model 

As mentioned in Section 3.2.2, currently Safran only supports piecework 

computations type of high-level computational model because it does not allow 

communication of distributed processes. This limits the type of problems that can be 

solved on Safran. To get rid of this limitation and increase the number of problems 

solvable on Safran infrastructure, support for different computational models can be 

added to the system. For example to allow communication of distributed processes a 

shared memory abstraction (possibly based on JavaSpaces[30]) can be provided. This 

solution might eliminate the distributed snapshot problem associated with direct 

point-to-point communication of distributed processes, which is explained in detail in 

Section 3.2.2. 

7.2 Low-level Computational and Programming Model 

The low-level programming model based on the concepts of distributed-objects is 

made easy to use by the help of Dynamic Proxies layer. But some functionality of the 

layer such as making asynchronous and one-way method calls are provided through 

an API that is difficult to use as it’s mainly designed for Safran’s own internal use. 
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The API that provides this kind of functionality can be re-designed to make it more 

easy to use by end-user applications. 

7.3 Security 

Safran’s current design is based on the requirements of a single administrative 

institution. So, security infrastructure is mainly designed based on the assumption 

that all entities are controlled by the same administrative body and they all can trust 

each other. 

Safran’s infrastructure is mainly ready to be extended to support more than one, 

distributed organizations. If Safran would be extended to out of administrative 

boundaries of a single institution, security infrastructure must be re-designed such 

that Broker, Hosts and Applications must be authenticated and authorized by each 

other for different operations. This way clusters formed by totally different 

organizations can be combined to work together without security concerns. 

7.4 Network Communication Service Implementation 

Current implementation of Safran is based on Java RMI technology. RMI requires 

some tight relation between processes and it is difficult to get it work through 

firewalls and proxy servers. Network Communication Service Layer implementation 

can be replaced with a new implementation based on low level network sockets to 

make Safran capable of working through firewalls without difficulty. 

7.5 Scheduling and Load Balancing 

The implementation of Safran we provide makes some too strong assumptions about 

the type of applications that are expected to be run on Safran. The design and 

implementation of the Task scheduling and load balancing infrastructure are mainly 

based on these assumptions. For example, it’s assumed that applications that will run 

on Safran will be mostly computation bound and also Tasks running on Hosts will 

use almost all computation capacity of the Hosts. So, only one Task is allowed to run 
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on a Host exclusively and non-preemptively. While this design produces good results 

for applications and cases for which the assumptions they are based on holds, for 

some other type of applications and scenarios it might not produce good speedup and 

throughput values. In short, the scheduling and load balancing sub-system is quite 

simple and is not designed for wide variety of applications and runtime scenarios. 

The scheduling and load balancing sub-system can be redesigned and implemented 

for different type of applications and for more complex and advanced runtime 

scenarios and requirements. 
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APPENDIX A: INTERFACES PROVIDED BY SAFRAN’S 
LAYERS 

Here we list the programming interface (method signatures and brief documentation) 

provided by layers of Safran to each other and to application developers. 

A.1 Communication SPI Layer 

Communication SPI basically consists of four Java interface definitions. Underlying 

communication service provider implementation must implement these interfaces. 

/* Provides the interface for concrete ObjectHostingService Creator 
 * classes. Together with RemoteObjectHostCreator this interface 
 * provides an extensibility point for Safran's remoting layer's implementation. 
 */ 
public interface ObjectHostingServiceCreator { 
 /** 
  * Creates and returns a new <code>ObjectHostingService</code> that will 
  * service on the local machine and on the given port once started. 
  */ 
 public ObjectHostingService createService(int port) 
  throws ServiceCreationException; 
 
 /** 
  * Gets a new <code>ObjectHostingService</code> referring to the service 
  * running on the given machine and port. 
  */ 
 public ObjectHostingService getService(String hostName, int port) 
  throws ServiceNotFoundException; 
} 

 
/** 
 * Represents a remotely accessible service (which might be running on the local 
 * machine or some remote machine) that hosts remotely accessible objects. 
 */ 
public interface ObjectHostingService { 
 /** 
  * Starts the object hosting service. 
  */ 
 public void start() throws RemotingException; 
 
 /** 
  * Stops the remote object hosting service. All hosted objects are deleted 
  * and the service is not accessible to RemoteObjectHost's anymore. 
  */ 
 public void stop() throws RemotingException; 
 
 /** 
  * Returns the status of this ObjectHostingService. 
  */ 
 public boolean isStarted() throws RemotingException; 
 
 /** 
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  * Gets the IP address or DNS resolvable host name of the machine on 
  * which this ObjectHostingService is running. 
  */ 
 public String getHostName() throws RemotingException; 
 
 /** 
  * Gets the port number on which this ObjectHostingService is running. 
  */ 
 public int getPort() throws RemotingException; 
 
 /** 
  * Gets whether this ObjectHostingService is running in the same 
  * JVM process with the caller of this method. 
  */ 
 public boolean isLocalToProcess() throws RemotingException; 
 
 /** 
  * Gets whether this ObjectHostingService is running on the same 
  * host (machine) as the caller's JVM process is running. 
  */ 
 public boolean isLocalToHost() throws RemotingException; 
} 

 
/** 
 * Provides the interface for concrete RemoteObjectHost Creator classes. 
 * Together with ObjectHostingServiceCreator interface provides 
 * an extensibility point for Safran's remoting layer's implementation. 
 */ 
public interface RemoteObjectHostCreator { 
 /** 
  * Creates and returns an object implementing RemoteObjectHost 
  * interface referring to the ObjectHostingService which is 
  * running on the given host and port number. 
  */ 
 public RemoteObjectHost getObjectHost(String hostName, int port) 
  throws ServiceNotFoundException; 
} 

 
/** 
 * Allows access to services of an object hosting service i.e. ObjectHostingService. 
 */ 
public interface RemoteObjectHost { 
 /** 
  * Creates an new instance of a class on a remote host and gets back the 
  * UUID of the created object. A new instance of the class clazz on the  
  * remote ObjectHostingService referred by this is created using the  
  * constructor of the class that can accept the given array of parameter  
  * types. 
  */ 
 public UUID createObject(Class clazz, Object[] ctorArgs, Class[] paramTypes)  
  throws RemotingException; 
  
 /** 
  * Puts the given object itself (not a copy of it) to the this 
  * RemoteObjectHost and exposes it to remote access with the 
  * given well-known name. 
  */ 
 public UUID exportObject(Object obj, String objectName, UUID exporterID)  
  throws RemotingException; 
 
 /** 
  * Un-exports and removes the remotely accessible object which is previously 
  * exported with the a well-known name to this RemoteObjectHost. 
  */ 
 public void unexportObject(UUID objectID, UUID callerID)    
  throws RemotingException; 
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 /** 
  * Gets the UUID of the hosted object which is exported with the given 
  * well-known name. 
  */ 
 public UUID getExportedObject(String objectName) throws RemotingException; 
 
 /** 
  * Get the well-known name with which the hosted object whose UUID is given. 
  */ 
 public String getExportedObjectName(UUID objectID) throws RemotingException; 
 
 /** 
  * Puts a copy of the local object to the remote ObjectHostingService 
  * referred by this and returns a UUID of the remote object. 
  */ 
 public UUID putObjectCopy(Object obj) throws RemotingException; 
 
 /** 
  * Puts the given object itself (not a copy or clone of it) to the 
  * ObjectHostingService referred by this and returns a UUID 
  * for the object. For this to be possible ObjectHostingService 
  * referred by this must be running in the same JVM as the caller. Otherwise 
  * this method should throw an OperationUnsupportedException. 
  */ 
 public UUID putObject(Object obj) throws RemotingException; 
 
 /** 
  * Gets a cloned copy of the remote object with the given 
  * UUID hosted by the ObjectHostingService referred by this. 
  */ 
 public Object getObjectCopy(UUID objectID) 
  throws ObjectNotFoundException, RemotingException; 
 
 /** 
  * Deletes the remote object with the given UUID hosted by 
  * the ObjectHostingService referred by this. 
  */ 
 public void deleteObject(UUID objectID) 
  throws ObjectNotFoundException, RemotingException; 
 
 /** 
  * Gets the class of the hosted object whose <code>UUID</code> is given. 
  */ 
 public Class getObjectType(UUID objectID) 
  throws ObjectNotFoundException, RemotingException; 
 
 /** 
  * Returns true if the connected object hosting service 
  * (ObjectHostingService) is hosting a valid object with the given ObjectID. 
  */ 
 public boolean objectExists(UUID objectID)throws RemotingException; 
 
 /** 
  * Calls the method with the given name on the remote object whose unique 
  * identifier is given. 
  */ 
 public Object invokeMethod(UUID objectID, String method, Object[] args,  
  Class[] paramTypes) throws ObjectNotFoundException, RemotingException; 
 
 /** 
  * Returns the DNS resolvable host name on which the connected remote object 
  * hosting service (ObjectHostingService) is running. 
  */ 
 public String getHostName() throws RemotingException; 
 
 /** 
  * Returns the port number on which the connected remote object hosting 
  * service (ObjectHostingService) is running. 
  */ 
 public int getPort() throws RemotingException; 
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 /** 
  * Returns <code>true</code> if there is valid connection to the refered 
  * remote object hosting service (ObjectHostingService). 
  */ 
 public boolean isValid(); 
 
 /** 
  * Gets whether the connected remote object hosting service 
  * (ObjectHostingService) is running in the same JVM process with 
  * the caller of this method. 
  */ 
 public boolean isLocalToProcess() throws RemotingException; 
 
 /** 
  * Gets whether the connected remote object hosting service 
  * (ObjectHostingService) is running on the same host (machine) 
  * as the caller's JVM process is running. 
  */ 
 public boolean isLocalToHost() throws RemotingException; 
} 

 
A.2 Distributed-Objects Layer 
/** 
 * Enables creation of ObjectHostingService objects i.e. provides 
 * static methods that return ObjectHostingService objects. 
 */ 
public final class ObjectHostingServiceLocator { 
 /** 
  * Creates and returns a new ObjectHostingService that will service 
  * on the local machine and on default port once started. 
  */ 
  public static ObjectHostingService createService() throws   
  ServiceCreationException; 
 
 /** 
  * Creates and returns a new ObjectHostingService that will service 
  * on the local machine and on the given port once started. 
  */ 
 public static ObjectHostingService createService(int port) 
  throws ServiceCreationException; 
  
 /** 
  * Returns the ObjectHostingService running on the local machine 
  * and on default port. 
  */ 
 public static ObjectHostingService getService() 
  throws ServiceNotFoundException, RemotingException; 
 
 /** 
  * Returns the ObjectHostingService running on the local machine 
  * and on the given port. 
  */ 
 public static ObjectHostingService getService(int port) 
  throws ServiceNotFoundException, RemotingException; 
} 

 
/** 
 * Provides means for initializing and configuring remoting subsystem. 
 * Users of the remoting layer must use static methods of this class 
 * for initializing (and configuring if necessary) remoting subsystem 
 * before being able to doing anything with remoting layer services. 
 */ 
public final class RemotingConfiguration { 
 /** 
  * Returns whether the remoting subsystem is initialized with a call to 
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  * RemotingServices.initialize method. 
  */ 
 public static boolean isInitalized(); 
 
 /** 
  * Configures the remoting subsystem according to the given configuration  
  * file. If ever this method is called it must be called before a call to  
  * RemotingServices.initialize i.e. once the remoting subsystem is  
  * initialized it cannot be reconfigured. 
  */ 
 public static void configure(String configFile) throws IOException; 
 
 /** 
  * Configures the remoting subsystem according to the configuration data from 
  * the given InputStream. If ever this method is called it must be called  
  * before a call to RemotingServices.initialize i.e. once the remoting  
  * subsystem is initialized it cannot be reconfigured. 
  */ 
 public static void configure(InputStream inputStream) throws IOException; 
 
 /** 
  * Returns the currently configured RemoteObjectHostCreator implementation  
  * object. This method cannot be called before the remoting subsystem is  
  * initialized with a call to RemotingServices.initialize method. 
  */ 
 public static int getDefaultRemotingPort(); 
} 

 
/** 
 * This class provides client side services for remoting sub-system. Clients can 
 * create, put, delete, and move objects on and between remote hosts. 
 */ 
public final class RemotingServices { 
 /** 
  * Initializes the remoting subsystem. Users of remoting layer must call this 
  * method before doing anything with the remoting layer. If required remoting 
  * subsystem must be configured using the RemotingConfiguration.configure 
  * method before being initialized. Once the remoting subsystem initialized  
  * it is not possible to configure or reconfigure it. Attempts to do so will 
  * result in an exception being thrown. 
  */ 
 public static void initialize() throws RemotingException; 
 
 /** 
  * Creates an new instance of a class on a remote host and gets back a proxy 
  * to the created object. A new instance of the class clazz on the remote 
  * ObjectHostingService running on the given host and default 
  * remoting port is created using the constructor of the class that can 
  * accept the given array of objects as the arguments. 
  */ 
 public static Object createObject(String hostName, 
  Class clazz, Object[] ctorArgs) throws RemotingException; 
 
 /** 
  * Creates an new instance of a class on a remote host and gets back a proxy 
  * to the created object. A new instance of the class clazz on the remote 
  * ObjectHostingService running on the given host port is 
  * created using the constructor of the class that can accept the given array 
  * of objects as the arguments. 
  */ 
 public static Object createObject(String hostName, int port,  
  Class clazz, Object[] ctorArgs) throws RemotingException; 
 
 /** 
  * Creates an new instance of a class on a remote host and gets back a proxy 
  * to the created object. A new instance of the class clazz on the remote 
  * ObjectHostingService running on the given host and default 
  * remoting port using the constructor of the class that can accept the given 
  * array of parameter types. 
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  */ 
 public static Object createObject(String hostName, Class clazz, 
  Class[] paramTypes, Object[] ctorArgs) throws RemotingException; 
 
 /** 
  * Creates an new instance of a class on a remote host and gets back a proxy 
  * to the created object. A new instance of the class clazz on the remote 
  * ObjectHostingService running on the given host and port using 
  * the constructor of the class that can accept the given array of parameter 
  * types. 
  */ 
 public static Object createObject(String hostName, int port, Class clazz,  
  Class[] paramTypes, Object[] ctorArgs) throws RemotingException; 
 
 /** 
  * Puts the given object itself (not a copy of it) to the 
  * ObjectHostingService running in this JVM and at the default 
  * port and exposes it to remote access with the given well-known name. 
  * Remote clients can access and make method calls on the given object itself 
  * by using RemotingServices.getExportedObject method. 
  */ 
 public static void exportObject(Object obj,  String objectName) 
  throws NameInUseException, ServiceNotFoundException,RemotingException; 
 
 /** 
  * Puts the given object itself (not a copy of it) to the 
  * ObjectHostingService running in this JVM and at the default 
  * port and exposes it to remote access with the given well-known name. 
  * Remote clients can access and make method calls on the given object itself 
  * by using RemotingServices.getExportedObject method. 
  */ 
 public static void exportObject(Object obj, String objectName, int port) 
  throws NameInUseException, ServiceNotFoundException,RemotingException; 
 
 /** 
  * Un-exports and removes the remotely accessible object which is previously 
  * exported with the given well-known name to the ObjectHostingService 
  * running in the local JVM and on the default port. 
  * After call to this method the object that is previously exported with the  
  * given well-known name is no longer accessible to remote clients even if 
  * they acquired a remote reference to it before it is un-exported. 
  */ 
 public static void unexportObject(String objectName)throws RemotingException; 
 
 /** 
  * Un-exports and removes the remotely accessible object which is previously 
  * exported with the given well-known name to the ObjectHostingService 
  * running in the local JVM and on the given port. 
  * After call to this method the object that is previously exported with the  
  * given well-known name is no longer accessible to remote clients even if 
  * they acquired a remote reference to it before it is un-exported. 
  */ 
 public static void unexportObject(String objectName, int port) 
  throws RemotingException; 
 
 /** 
  * Returns a proxy object that can be used to access the remote object 
  * which is hosted by the remote ObjectHostingService running on 
  * the given host and default port and that is exported with the given 
  * well-known name. 
  */ 
 public static Object getExportedObject(String objectName, String hostName)  
  throws RemotingException; 
 
 /** 
  * Returns a proxy object that can be used to access the remote object 
  * which is hosted by the remote ObjectHostingService running on 
  * the given host and given port and that is exported with the given 
  * well-known name. 
  */ 
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 public static Object getExportedObject(String objectName, String hostName,  
  int port) throws RemotingException; 
 
 /** 
  * Creates and returns a proxy object that can be used to remotely call 
  * methods on the given object itself (not it's copy). The returned proxy  
  * object supports the same interfaces that are implemented by the type 
  * of the given object. Method calls on the returned object are dispatched 
  * to the original given object. 
  */ 
 public static Object createCallbackHandle(Object obj) 
  throws RemotingException; 
 
 /** 
  * Puts a copy of the given object to the ObjectHostingService 
  * running on the given host and default port. 
  * An object that allows access to the remotely hosted copy of the 
  * given object is returned. The returned proxy object supports the 
  * same interfaces that are implemented by the type of the given object. 
  */ 
 public static Object putObjectCopyTo(Object obj, String hostName) 
  throws RemotingException; 
 
 /** 
  * Puts a copy of the given object to the ObjectHostingService 
  * running on the given host and port. An object that allows access to the  
  * remotely hosted copy of the given object is returned. The returned proxy  
  * object supports the same interfaces that are implemented by the type of  
  * the given object. 
  */ 
 public static Object putObjectCopyTo(Object obj, String hostName, int port)  
  throws RemotingException; 
 
 /** 
  * Gets a local copy of the remotely hosted object referred by the parameter 
  * remoteObj. 
  */ 
 public static Object getObjectCopy(Object remoteObj)throws RemotingException; 
 
 /** 
  * Moves the remotely hosted object referred by the parameter remoteObj from  
  * its current host to the remote ObjectHostingService running on the given  
  * host and default remoting port. After the remote object is moved all local 
  * references to the remote object is transparently updated so that users of  
  * local references do not need to do anything related to the movement of the 
  * object. 
  */ 
 public static void moveObjectTo(Object remoteObj, String hostName) 
  throws RemotingException; 
 
 /** 
  * Moves the remotely hosted object referred by the parameter 
  * remoteObj from its current host to the remote ObjectHostingService running 
  * on the given host and port. After the remote object is moved all local  
  * references to the remote object is transparently updated so that users of  
  * local references do not need to do anything related to the movement of the 
  * object. 
  */ 
 public static void moveObjectTo(Object remoteObj, String hostName, int port)  
  throws RemotingException; 
 
 /** 
  * Deletes and removes the remotely hosted object referred by the parameter 
  * remoteObj. 
  */ 
 public static void deleteObject(Object remoteObj)throws RemotingException; 
 
 /** 
  * Determines whether the given object refers to a valid/accessible remote 
  * object. 
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  */ 
 public static boolean isValidRemoteObject(Object remoteObj); 
 
 /** 
  * Returns the RemoteObjectRef that enables access to remote 
  * object given as the parameter. If the given parameter is itself an 
  * RemoteObjectRef object, returns it. If else the given parameter 
  * is a proxy object to a remote object, return the RemoteObjectRef 
  * that backs that proxy object. Other wise an exception is thrown. 
  */ 
 public static RemoteObjectRef getRemoteObjectRef(Object remoteObj); 
} 

 

/** 
 * Represents a reference to an object hosted by a remote object hosting service 
 * (ObjectHostingService). In a single VM there is only one 
 * RemoteObjectRef object referring to the same remotely hosted object. 
 */ 
public final class RemoteObjectRef implements Serializable { 
 /** 
  * Invokes the method of the remote object referred by this RemoteObjectRef 
  * with the given name by passing the array of object as the arguments. 
  */ 
 public MethodInvocationResult invokeMethod(String methodName, Object[] args); 
 
 /** 
  * Invokes the method of the remote object referred by this RemoteObjectRef 
  * with the given name by passing the array of object as the arguments. The 
  * method of the object that has the given name and that has a of list  
  * parameter types exactly matching paramTypes array is called. 
  */ 
 public MethodInvocationResult invokeMethod(String methodName, 
  Class[] paramTypes, Object[] args); 
 
 /** 
  * Invokes asynchronously the method of the remote object referred by this 
  * RemoteObjectRef with the given name by passing the array of 
  * object as the arguments. This method immediately returns after setting up 
  * the asynchronous method call without waiting its completion. The status 
  * and result of the asynchronous method call can be queried and accessed 
  * through the returned AyncMethodInvokationResult object. 
  * As the method call takes place asynchronously the parameter validations 
  * are also made asynchronously. So the same exceptions thrown by 
  * invokeMethod method is only thrown when the result of 
  * the method call is accessed asynchronously through the returned 
  * AyncMethodInvokationResult object. 
  */ 
 public AyncMethodInvocationResult invokeMethodAsync( 
  String methodName, Object[] args); 
 
 /** 
  * Invokes asynchronously the method of the remote object referred by this 
  * RemoteObjectRef with the given name by passing the array of 
  * object as the arguments. The method of the object that has the given name 
  * and that has a list parameters types exactly matching 
  * paramTypes array is called. This method immediately returns 
  * after setting up the asynchronous method call without waiting its 
  * completion. The status and result of the asynchronous method call can be 
  * queried and accessed through the returned AyncMethodInvokationResult 
  * object. As the method call takes place asynchronously the parameter 
  * validations are also made asynchronously. So the same exceptions thrown by 
  * invokeMethod(String, Class[], Object[]) method is only thrown when the 
  * result of the method call is accessed asynchronously through the returned 
  * AyncMethodInvokationResult object. 
  */ 
 public AyncMethodInvocationResult invokeMethodAsync(String methodName,  
  Class[] paramTypes, Object[] args); 
 
 /** 
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  * Invokes asynchronously the method of the remote object referred by this 
  * RemoteObjectRef with the given name by passing the array of 
  * object as the arguments with a "fire-and-forget" kind of semantics. This 
  * method immediately returns after setting up the asynchronous method call 
  * without waiting its completion. Nothing (return value, any kind of 
  * exceptions thrown even due to invalid parameter) is returned related to 
  * the result of the method call. Even if the arguments are invalid for the 
  * method call no exception is thrown i.e. the caller will not be able to 
  * know whether the method call completed successfully or even dispatched to 
  * the remote object. 
  */ 
 public void invokeMethodOneWay(String methodName, Object[] args); 
 
 /** 
  * Invokes asynchronously the method of the remote object referred by this 
  * RemoteObjectRef with the given name by passing the array of 
  * object as the arguments with a "fire-and-forget" kind of semantics. The 
  * method of the object that has the given name and that has a list  
  * parameters types exactly matching paramTypes array is called. This method 
  * immediately returns after setting up the asynchronous method call without 
  * waiting its completion. Nothing (return value, any kind of exceptions 
  * thrown even due to invalid parameter) is returned related to the result 
  * of the method call. Even if the arguments are invalid for the method call 
  * no exception is thrown i.e. the caller will not be able to know whether 
  * the method call completed successfully or even dispatched to the remote  
  * object. 
  */ 
 public void invokeMethodOneWay(String methodName, Class[] paramTypes,  
  Object[] args); 
 
 /** 
  * Gets a local copy of the remotely hosted object referred by this 
  * RemoteObjectRef. 
  */ 
 public Object getObjectCopy() throws RemotingException; 
 
 /** 
  * Moves the remotely hosted object referred by this RemoteObjectRef from its 
  * current host to the remote ObjectHostingService running on the given host  
  * and port. After the remote object is moved all local references (including 
  * this one) to the remote object is transparently updated so that users of  
  * local references (RemoteObjectRef objects and transparent proxies) 
  * do not need to do anything related to the movement of the object. 
  */ 
 public void moveTo(String hostName, int port) throws RemotingException; 
 
 /** 
  * Deletes and removes the remotely hosted object referred by this. After a 
  * call to this method any method call on this object results with 
  * ObjectDeletedException being thrown. 
  */ 
 public void delete() throws RemotingException; 
 
 /** 
  * Determines whether this RemoteObjRef refers to a valid and accessible  
  * remotely hosted object. 
  */ 
 public boolean isValid() throws RemotingException; 
 
 /** 
  * Determines whether this RemoteObjRef refers to a remotely hosted object  
  * that is exported with a well known name. 
  */ 
 public boolean isExportedObject() throws RemotingException; 
 
 /** 
  * Returns the <code>Class</code> object representing the type of the remote 
  * object referred by this RemoteObjectRef. 
  * If the class of the remote object is not loaded yet the class is 
  * downloaded from the remote ObjectHostingService and loaded 
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  * into the current class loader. 
  */ 
 public Class getType() throws RemotingException; 
} 

 
/** 
 * Allows access to the result of a method call that is made on a remotely hosted 
 * object. On remote objects method calls are made using invokeMethod methods of the 
 * RemoteObjectRef objects which return MethodInvocationResult objects. 
 */ 
public class MethodInvocationResult { 
 /** 
  * Returns the return value of the remote method call that returned this  
  * object. 
  */ 
 public Object getValue() throws RemotingException; 
 
 /** 
  * Returns whether an exception is thrown during the remote method call that 
  * returned this object. 
  */ 
 public boolean exceptionThrown(); 
 
 /** 
  * Returns the exception that is thrown during the remote method call that 
  * returned this object. 
  */ 
 public Exception getException(); 
} 

 
/** 
 * Allows access to the completion status and result of a method call that is made 
 * asynchronous on a remotely hosted object. On remote objects asynchronous method  
 * calls are made using invokeMethodAsync methods of the RemoteObjectRef 
 * objects which return AyncMethodInvocationResult objects. 
 */ 
public class AyncMethodInvocationResult extends MethodInvocationResult { 
 /** 
  * Returns the completion status of the asynchronous remote method call 
  * that returned this object. 
  */ 
 public boolean isCompleted(); 
 
 /** 
  * Returns the return value of the asynchronous remote method call that 
  * returned this object. This method blocks until the asynchronous method  
  * call is either completed successfully or resulted with an exception being  
  * thrown. 
  */ 
 public Object getValue() throws RemotingException; 
 
 /** 
  * Returns whether an exception is thrown during the asynchronous remote  
  * method call that returned this object. 
  * This method blocks until the asynchronous method call is either completed 
  * successfully or resulted with an exception being thrown. 
  */ 
 public boolean exceptionThrown(); 
 
 /** 
  * Returns the exception that is thrown during the asynchronous remote method 
  * call that returned this object. 
  * This method blocks until the asynchronous method call is either completed 
  * successfully or resulted with an exception being thrown. 
  */ 
 public Exception getException(); 
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 /** 
  * This method blocks the caller until the asynchronous method call that 
  * returned this object is either completed successfully or resulted with 
  * an exception being thrown. 
  */ 
 public void waitForCompletion(); 
} 

 
A.3 Dynamic Proxies 
/** 
 * Helper class that provides services related to dynamic proxy classes and objects. 
 * Proxy object provides the same interfaces as the remotely hosted object so 
 * once they are obtained they can be cast down to any interface of the remote 
 * object for which they act as the proxy. Client can make remote method calls 
 * on remotely hosted object through the proxy instances as if the method call is 
 * a local (in VM) method call. So the proxy objects provides access, location and 
 * migration transparency for remotely hosted objects. 
 * / 
public final class ProxyHelper { 
 /** 
  * Generates a transparent dynamic proxy object to the remotely hosted object 
  * referred by the given RemoteObjectRef. The returned object implements the  
  * same interfaces implemented by the remote object referred by the given  
  * RemoteObjectRef. So the returned object can be cast down to any interface  
  * supported by the remote object. 
  */ 
 public static Object generateProxy(RemoteObjectRef remoteObjRef) 
  throws RemotingException; 
 
 /** 
  * Determines whether the given object is a dynamic proxy instance for a 
  * RemoteObjectRef object. 
  */ 
 public static boolean isProxy(Object obj); 
 
 /** 
  * Returns the RemoteObjectRef for which the given object acts 
  * as a proxy. Clients can use this method to get a reference to a 
  * RemoteObjectRef for low-level operations. 
  */ 
 public static RemoteObjectRef getRemoteObjectRef(Object proxy); 
} 

 
A.4 Parallel Application Services Layer 
/** 
 * Provides the entry point of the Application Services as static methods for 
 * initializing the sub-system, running applications, and doing some configuration. 
 */ 
public final class ApplicationServices { 
 /** 
  * Initialized the Application Services system. Before doing anything with 
  * the Application Services system the user application should call this 
  * method. 
  */ 
 public static void initialize(); 
 
 /** 
  * Submits the given Application to the system for asynchronous execution. 
  * The method does NOT block until all the Tasks of the given Application 
  * is executed. The method returns when the <code>run</code> methods of the 
  * given Application finishes. 
  */ 
 public static void runApplication(Application app); 
 
 /** 
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  * This method blocks and does not return until all the tasks of the given 
  * application are completed (either successfully or with error). 
  */ 
 public static void waitForCompletion(Application app); 
 
 /** 
  * Cancel all the Task of the given application that are submitted to the 
  * system but that are not returned back to the Application yet. 
  */ 
 public static void cancelApplication(Application app); 
 
 /** 
  * Gets the list of Brokers that Application Services is configured to use 
  * to find Hosts to run Tasks on. This list contains Brokers that are: 
  * 1. Configured to be used using Application Services configuration  
  *    mechanism. 
  * 2. Automatically discovered broker if configured to use them. 
  * 3. Programmatically configured to be used using addBroker and setBroker  
  * methods. 
  */ 
 public static String[] getBrokers(); 
 
 /** 
  * Gets the list of host names of Brokers that are automatically located by 
  * Application Services. Note that this list of broker may or may not being 
  * used by Application Services depending on the configuration of Application 
  * Services (See methods enableUseOfDiscoveredBrokers and 
  * isUsingDiscoveredBrokers). 
  */ 
 public static String[] getDiscoveredBrokers(); 
 
 /** 
  * Adds the given Broker to the end of the list of Brokers that will be used 
  * to find Hosts to run Tasks on. 
  */ 
 public static boolean addBroker(String brokerHostName); 
 
 /** 
  * Adds the given Broker to the list of Brokers (at the given position) that 
  * will be used to find Hosts to run Tasks on. 
  */ 
 public static void addBroker(int i, String brokerHostName); 
 
 /** 
  * Removes the given Broker from the list of Brokers that will be used to 
  * find Hosts to run Tasks on. 
  */ 
 public static boolean removeBroker(String brokerHostName); 
 
 /** 
  * Configures Application Services to use or not to use automatically 
  * discovered Brokers. 
  */ 
 public static void enableUseOfDiscoveredBrokers(boolean useDiscoveredBrokes); 
 
 /** 
  * Returns true if Application Services is configured to use automatically  
  * discovered Brokers. Otherwise returns false. 
  */ 
 public static boolean isUsingDiscoveredBrokers(); 
 
 /** 
  * Returns the total number of Hosts that are believed (by the Brokers they 
  * are registered to) to be available for running Task. Note that this number 
  * is the not exact and is a best estimate. 
  */ 
 public static int getAvailableHostNo(); 
 
 /** 
  * Returns the total number of Hosts that are believed (by the Brokers they 
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  * are registered to) to be available for running Task. Note that this number 
  * is the not exact and is a best estimate. 
  */ 
 public static int getTotalHostNo(); 
} 

 
/** 
 * Abstract base class for all user applications. Applications that will be run 
 * on Application Services must inherit this class and must at least provide the 
 * implementation of the abstract method <code>run</code>. 
 */ 
public abstract class Application { 
 /** 
  * Application implementers sub-classes this class and implement this 
  * method in the minimum. Generally, in this method the user creates  
  * instances of Tasks of its application and submit them to the system using  
  * one of runTask, runTasks, or runTaskSynch methods of this class. 
  */ 
 public abstract void run(); 
 
  
 /** 
  * This method does nothing by default. It should be overridden and 
  * implemented by Application implementers that want to receive notification 
  * when a Task of their application completes successfully. 
  */ 
 public void onTaskCompleted(Task task); 
 
 /** 
  * This method does nothing by default. It should be overridden and 
  * implemented by Application implementers that want to receive notification 
  * when a Task of their application stops with an error (exception). 
  */ 
 public void onTaskStopped(Task task); 
 
 /** 
  * This method does nothing by default. It should be overridden and 
  * implemented by Application implementers that want to receive notification 
  * when a Task of their application reports progress. 
  */ 
 public void onTaskProgressed(Task task); 
 
 /** 
  * Submits the given Task to the Safran system for asynchronous execution. 
  */ 
 protected final void runTask(Task task); 
 
 /** 
  * Submits the given Tasks to the Safran system for asynchronous execution. 
  */ 
 protected final void runTasks(Task[] tasks); 
 
 /** 
  * Submits the given Tasks to the Safran system for synchronous execution. 
  * The method blocks until the Task get executed at some Host and its result 
  * (either successful or error) retrieved. 
  * Application's taskCompleted, taskProgressed, and taskStopped are NOT  
  * called by the system for the given Task. 
  */ 
 protected final void runTaskSynch(Task task); 
 
 /** 
  * Cancels the Tasks (which must belong to this application) that is 
  * submitted to the system but whose result is not returned to the 
  * Application yet. 
  */ 
 protected final void cancelTask(Task task); 
 
 /** 

 107



  * Cancels all the Tasks of this application that are submitted to the system 
  * but whose results are not returned to the Application yet. 
  */ 
 protected final void cancelAllTasks(); 
} 

 
/** 
 * Abstract base class for all user Task objects. User writing applications that 
 * will be run on Application Services must provide at least one class inheriting 
 * from this class and must at least provide the implementation of the abstract 
 * methods run and copyFrom. 
 */ 
public abstract class Task implements Serializable { 
 /** 
  * Application developers must implement the application specific Task 
  * execution logic in this method. When the Task is dispatched to a remote 
  * Host for remote execution, this method is called by the remote Host. 
  */ 
 public abstract void run(TaskExecutionContext context); 
 
 ** 
  * Task implementers must provide an implementation of this method. The  
  * method should set the internal, application specific state (members) of  
  * the Task object to the state of the given Task object. Functioning of the  
  * framework depends on the correct implementation of this method so  
  * applications developer must take extra care in implementing this method.  
  */ 
 public abstract void copyFrom(Task task); 
 
 /** 
  * Marks this Task as being completed successfully. 
  */ 
 public final void setCompletedWithSuccess(); 
 
 /** 
  * Marks this Task of being completed with the given exception being thrown. 
  */ 
 public final void setCompletedWithError(Throwable t); 
 
 /** 
  * Gets whether the execution of this Task completed on a remote Host 
  * (either successfully or with error). 
  */ 
 public final boolean isCompleted(); 
 
 /** 
  * Gets whether the execution of this Task completed on a remote Host with 
  * error. 
  */ 
 public final boolean isCompletedWithError(); 
} 

 
/** 
 * Enables interaction of Task with their execution context while they are running  
 * on remote Hosts. 
 */ 
public interface TaskExecutionContext { 
 /** 
  * While executing, Task can call this method on safe points of its execution 
  * to request from the system to checkpoint its state for systems fault  
  * tolerance and recovery operation. 
  */ 
 void checkpointTask(); 
} 
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APPENDIX B: SOURCE CODE OF THE TEST 
APPLICATION 

Here we present the source code of the real matrix multiplication application that we 

used for our experiments (explained in Section 5.1.1) as example of parallel 

application built on Safran. 

Matrix.java 

package safran.tests.apps.realmatrix; 
 
import java.util.Random; 
 
public class Matrix implements java.io.Serializable { 
 private static Random random = new Random(System.currentTimeMillis()); 
 
 int rowNo, colNo; 
 int matrixData[][]; 
 
 
 public Matrix(int rowNo, int colNo) { 
  this.rowNo = rowNo; 
  this.colNo = colNo; 
  matrixData = new int[rowNo][colNo]; 
 } 
 
 public void initializeRandom() { 
  for (int r=0; r<rowNo; r++) { 
   for(int c=0; c<colNo; c++) { 
    matrixData[r][c] = random.nextInt(10); 
   } 
  } 
 } 
 
 public Matrix[] getSubMatrices(int count) { 
  if (count<=0 || count>rowNo || rowNo%count!=0) { 
   throw new IllegalArgumentException("This matrix  
   cannot be divided in "+count+" sub-matrices."); 
  } 
 
  Matrix[] results = new Matrix[count]; 
  int rowPerSubmatrix = 
    (int)Math.ceil((double)rowNo/count); 
  for (int i=0; i<count; i++) { 
   Matrix tmpMatrix = new Matrix(rowPerSubmatrix, 
        colNo); 
   for (int j=0; j<rowPerSubmatrix; j++) { 
    tmpMatrix.matrixData[j]=  
    this.matrixData[i*rowPerSubmatrix+j]; 
   } 
   results[i] = tmpMatrix; 
  } 
 
  return results; 
 } 
 
 public static Matrix multiply(Matrix m1, Matrix m2) { 
  if (m1.colNo!=m2.rowNo) { 
   throw new IllegalArgumentException("Row number of  
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    the seconds matrix must be equal to the  
    column number of the first matrix."); 
  } 
 
  Matrix result = new Matrix(m1.rowNo, m2.colNo); 
  for (int r=0; r<m1.rowNo; r++) { 
   for (int c=0; c<m2.colNo; c++) { 
    int tmpVal = 0; 
    for (int i=0; i<m1.colNo; i++) { 
     tmpVal +=  
    m1.matrixData[r][i]*m2.matrixData[i][c]; 
    } 
    result.matrixData[r][c] = tmpVal; 
   } 
  } 
 
  return result; 
 } 
} 

 
MMApp.java 

package safran.tests.apps.realmatrix; 
 
import safran.applications.*; 
 
public class MMApp extends Application { 
 int taskCount; 
 Matrix m1, m2; 
 
 public MMApp(Matrix m1, Matrix m2, int taskCount) { 
  this.m1 = m1; 
  this.m2 = m2; 
  this.taskCount = taskCount; 
 } 
 
 public void run() { 
  Matrix[] m1SubMatrices = m1.getSubMatrices(taskCount); 
  for (int i=0; i<taskCount; i++) { 
   MMTask task = new MMTask("RealMTask#"+i,  
    m1SubMatrices[i], m2); 
   this.runTask(task); 
  } 
 } 
 
 public void taskCompleted(Task task) { 
  System.out.println("TASK COMPLETED Task: "+task); 
 } 
 
 public void taskProgressed(Task task) { 
  System.out.println("TASK PROGRESSED Task: "+task); 
 } 
 
 public void taskStopped(Task task) { 
  System.out.println("TASK STOPPED Task: "+task); 
 } 
} 

 
MMTask.java 

package safran.tests.apps.realmatrix; 
 
import safran.applications.*; 
 
public class MMTask extends Task { 
 String taskName; 
 Matrix m1, m2, result; 
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 public MMTask(String name, Matrix m1, Matrix m2) { 
  if (m1.colNo!=m2.rowNo) { 
   throw new IllegalArgumentException("Given matrices  
    cannot be multiplied."); 
  } 
 
  this.taskName = name; 
  this.m1 = m1; 
  this.m2 = m2; 
 
  result = new Matrix(m1.rowNo, m2.colNo); 
 } 
 
 public void copyFrom(Task task) { 
  MMTask remoteTask = (MMTask)task; 
  this.result = remoteTask.result; 
 } 
 
 public void run(TaskExecutionContext context) { 
  result=  Matrix.multiply(m1, m2); 
 } 
 
 public Matrix getResult() { 
  return result; 
 } 
 
 public String toString() { 
  return taskName; 
 } 
} 

 
TestRunner.java 

package safran.tests; 
 
import safran.applications.ApplicationServices; 
import safran.tests.apps.realmatrix.*; 
import safran.tests.apps.datalessmatrix.*; 
 
import java.util.Date; 
import java.text.SimpleDateFormat; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.io.File; 
import java.util.logging.LogManager; 
import java.io.ByteArrayInputStream; 
 
 
/** 
 * The executable entry point of test code. Runs all tests. 
 */ 
public class TestRunner { 
 private final int REPEAT_NO = 5; 
 
 long start, end; 
 String fileSep, newLine, currentDir; 
 SimpleDateFormat dateFormat; 
 
 public TestRunner() throws IOException { 
  start = 0; 
  end = 0; 
  fileSep = System.getProperty("file.separator"); 
  newLine = System.getProperty("line.separator"); 
  currentDir = System.getProperty("user.dir"); 
  dateFormat = new SimpleDateFormat("yyyyMMdd_HHmmss"); 
 } 
 
 public static void main(String args[]) throws Exception { 
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  TestRunner tests = new TestRunner();     
  tests.runTests(); 
 } 
 
 public void runTests() throws Exception { 
  runLocalRealMatrixTests(); 
  ApplicationServices.initialize(); 
  ApplicationServices.enableUseOfDiscoveredBrokers(true); 
  runRealMatrixTests(); 
 } 
 
 public void runLocalRealMatrixTests() throws IOException { 
  int taskNo = 1; 
  int hostNo = 0; 
  String dirName = fileSep+"LRMT"+fileSep+"H#"+hostNo; 
  String fileName = "T#"+taskNo; 
  FileWriter resultFile = createFile(dirName, fileName); 
 
  resultFile.write("Test Name:\tLocal Real Matrix Test"+newLine); 
  resultFile.write("Host No:\t"+hostNo+newLine); 
  resultFile.write("Task No:\t"+taskNo+newLine+newLine); 
  resultFile.write("Task No\tMatrix Size (nxn)\tLocal Time"+newLine); 
 
  final int minMatrixSize = 128; 
  final int maxMatrixSize = 1152; 
  final int sizeIncrement = 128; 
  for (int matrixSize=minMatrixSize;  
   matrixSize<=maxMatrixSize;  
   matrixSize+=sizeIncrement) { 
   System.out.println("Running test for Size: "+matrixSize); 
   Matrix m1 = new Matrix(matrixSize, matrixSize); 
   Matrix m2 = new Matrix(matrixSize, matrixSize); 
   m1.initializeRandom(); 
   m2.initializeRandom(); 
 
   long localTime = 0; 
   for (int repeat=0; repeat<REPEAT_NO; repeat++) { 
    System.gc(); 
    start = System.currentTimeMillis(); 
    Matrix result=Matrix.multiply(m1, m2); 
    end = System.currentTimeMillis(); 
    localTime += (end-start); 
   } 
   localTime /= REPEAT_NO;     
   resultFile.write(taskNo + "\t" + matrixSize + "\t" + localTime 
+ "\t" + newLine); 
   resultFile.flush(); 
  } 
 
  resultFile.write(newLine); 
  resultFile.close(); 
 } 
 
 public void runRealMatrixTests() throws IOException { 
  int totalHostNo = ApplicationServices.getTotalHostNo(); 
  while (totalHostNo<=0) { 
   totalHostNo = ApplicationServices.getTotalHostNo(); 
  } 
 
  final int minTaskNo = 32; 
  final int maxTaskNo = 32; 
  final int taskNoMultiply = 2; 
  for (int taskNo=minTaskNo; 
   taskNo<=maxTaskNo; taskNo*=taskNoMultiply) { 
   totalHostNo = ApplicationServices.getTotalHostNo(); 
 
   String dirName = fileSep+"RRMT"+fileSep+"H#"+totalHostNo; 
   String fileName = "T#"+taskNo; 
   FileWriter resultFile = createFile(dirName,  fileName); 
   resultFile.write("Test Name:\t Remote Real Matrix Test" + 

 112



newLine); 
   resultFile.write("Host No:\t"+totalHostNo+newLine); 
   resultFile.write("Task No:\t"+taskNo+newLine+newLine); 
   resultFile.write("Host No\tTask No\tMatrix Size (nxn)\tRemote 
Time (ms)" + newLine); 
 
   final int minMatrixSize = 128; 
   final int maxMatrixSize = 1152; 
   final int sizeIncrement = 128; 
   for (int matrixSize=minMatrixSize;  
    matrixSize<=maxMatrixSize;  
    matrixSize+=sizeIncrement) { 
    Matrix m1 = new Matrix(matrixSize, matrixSize); 
    Matrix m2 = new Matrix(matrixSize, matrixSize); 
    m1.initializeRandom(); 
    m2.initializeRandom(); 
 
    long remoteTime = 0; 
    for (int repeat=0; repeat<REPEAT_NO;  
     repeat++) { 
     MMApp theApp = new MMApp(m1, m2, taskNo); 
     System.gc(); 
     start = System.currentTimeMillis(); 
           
   ApplicationServices.runApplication(theApp); 
   ApplicationServices.waitForCompletion(theApp); 
     end = System.currentTimeMillis(); 
     remoteTime += (end-start); 
    } 
    remoteTime /= REPEAT_NO; 
 
      
   resultFile.write(totalHostNo + "\t" + taskNo + "\t" + 
matrixSize+"\t"+ remoteTime+"\t"+newLine); 
    resultFile.flush(); 
   } 
   resultFile.close(); 
  } 
 } 
 
 private FileWriter createFile(String subDir, String prefix)  
  throws IOException { 
  String dirName = "Data" + subDir; 
  File dir  = new File(currentDir, dirName); 
  dir.mkdirs(); 
 
  String fileName = dateFormat.format(new Date()); 
  fileName = prefix + "_" + fileName + ".txt"; 
 
  File file  = new File(dir, fileName); 
  FileWriter writer = new FileWriter(file, false); 
  return writer; 
 } 
} 
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