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ABSTRACT 

DESIGN AND ANALYSIS OF TRANSFER ALIGNMENT 
ALGORITHMS 

 

 

YÜKSEL, Yiğiter 

M.S., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. Mübeccel Demirekler 

 

February 2005, 169 Pages 

 

 

Transfer Alignment is the process of simultaneously initializing and 

calibrating a weapon inertial navigation system (INS) using data from host 

aircraft’s navigation system. In general, this process is accomplished by 

calculating the difference of navigation solutions between aircraft and weapon 

INSs to form observations which are then used in a Kalman filter to generate 

desired estimates. Numerous techniques about the problem of transfer alignment 

exist in the literature. In this thesis, those techniques that can be applied in the 

presence of elastic motion of aircraft wing were analyzed. Several transfer 

alignment algorithms each of which process different measurement types were 

designed and implemented. In order to evaluate the performance of implemented 

algorithms under realistic conditions, a transfer alignment simulation environment 

was developed. Using this simulation environment, the advantages and 

disadvantages of each algorithm were analyzed and the dependence of transfer 

alignment performance on Kalman filter system model, aircraft maneuvers and 

alignment duration were investigated. 

 

Keywords: Transfer Alignment, In-motion Alignment, Inertial Navigation 
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ÖZ 

YÖNELİM AKTARIMI ALGORİTMALARININ TASARIM VE 
ANALİZİ 

 

 

YÜKSEL, Yiğiter 

Yüksek Lisans., Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. Mübeccel Demirekler 

 

Şubat 2005, 169 Sayfa 

 

Yönelim aktarımı, uçağın seyrüsefer sistemi çıktılarını kullanarak 

mühimmat üzerindeki ataletsel seyrüsefer sistemine ilk değer atama ve sistemin 

kalibrasyonunun eş zamanlı yapılması işlemidir. Genel olarak bu işlem, uçağın ve 

mühimmatın seyrüsefer sonuçları arasındaki farktan bir ölçüm oluşturulması ve bu 

ölçümün Kalman süzgecinde işlenmesiyle gerçekleştirilir. Konuyla ilgili 

kaynaklarda, aktarım yönlendirme ile ilgili birçok teknik ortaya konmuştur. Bu 

tezde, uçak kanadının elastiki hareketinin mevcut olduğu durumlarda 

uygulanabilecek aktarım yönlendirme teknikleri incelenmiştir. Farklı ölçüm 

çeşitlerini işleyebilen birçok Kalman filtresi tasarlanmıştır. Tasarlanan Kalman 

filtrelerinin performanslarını gerçekçi bir ortamda sınayabilmek için, bir yönelim 

aktarımı benzetim ortamı geliştirilmiştir. Geliştirilen benzetim ortamı kullanılarak, 

her bir yönelim aktarımı algoritmasının başarımı analiz edilmiş ve Kalman filtresi 

sistem ve ölçüm modeli, uçak manevrası ve algoritma uygulama süresinin 

yönelim aktarımı algoritmaları performansı üzerindeki etkileri incelenmiştir. 

 

Anahtar Kelimeler: Yönelim Aktarımı, Ataletsel Seyrüsefer, Hareket 

Halinde İlklendirme 
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CHAPTER I 

1INTRODUCTION 

Inertial navigation is the process of calculating position, velocity and 

attitude (PVA) of the system by continuously integrating system acceleration and 

rotation rate measured by inertial measurement unit (IMU) (Titterton (1997), 

Savage (2000)).  

Inertial navigation systems (INS) can be classified into two groups 

according to their IMU placements. In strapdown inertial navigation systems, IMU 

is directly mounted on the vehicle rather than on a gimbaled platform which is 

used to isolate IMU from vehicle rotations. Currently, strapdown systems are used 

in almost every kind of navigation process (Savage (2000)). Therefore, in the 

scope of this study, only strapdown inertial navigation systems are considered. 

For an inertial navigation system to start operation, an initial PVA solution 

has to be supplied to the system. Any error in the initial PVA solution causes the 

navigation system to produce erroneous outputs as soon as system starts 

operation. Furthermore, due to the structure of strapdown algorithms, these 

initialization errors cause the navigation errors to grow so fast that, in a very short 

period of time, the navigator outputs become totally useless. 

Therefore, in the past, the initialization problem of inertial navigators was 

studied extensively. As initial attitude errors cause the navigation errors to 

increase much rapidly than initial velocity and position errors, studies was 

especially focused on determining correct initial attitude of the system.  

In the literature, solution methods to initialization problems are classified in 

to two groups according to the system’s being in motion or stationary during 

initialization process (Savage (2000), Titterton (1997)). These groups are called 

as; 

i. Ground Alignment 

ii. In Motion Alignment / Transfer Alignment 

Ground alignment is the initialization of the system during which the 

system is stationary. In this method, initial velocity is taken to be zero without 
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considering the environmental disturbances. Initial position is provided by some 

external aiding such as GPS or manually by means of a known position. To 

initialize attitude, several different techniques can be implemented, among which 

gyrocompass is the most preferred method. In the gyrocompass technique, 

horizontal attitude is determined by comparing local gravity vector with 

accelerometer outputs, and azimuth angle is calculated by comparing the Earth’s 

rotation rate with the gyroscope outputs. On the other hand, as the accuracy of 

initial attitude obtained by this technique is insufficient due to the IMU errors, the 

initial attitude solution should be revised by employing additional estimation 

techniques such as zero velocity or known position updates (Savage (2000)).  

In-motion alignment is the common name of initialization methods which 

are employed during the motion of the system. In this case, as the system 

undergoes an arbitrary movement during initialization, it is not possible to assign 

initial values without an aid of some external reference source. Therefore, the 

essential part of in-motion alignment is the process of transfer of navigation 

information (especially attitude information) from a reference source to the 

navigation system. Hence, these techniques are also called as “Transfer 

Alignment” (TA) in order to emphasize the basic property of transfer of alignment 

information. 

There are lots of situations where the need for transfer alignment occurs. 

Especially, when a small system with an inertial navigator is to be carried and 

deployed by an aircraft, the initialization of small system’s navigator is 

accomplished by utilizing transfer alignment algorithms. A typical example of this 

is the JDAM (Joint Direct Attack Munitions) type guided munitions (Klotz (1998)). 

Prior to the launch of the ammunition, a transfer alignment procedure is utilized in 

order to initialize the navigation system and calibrate the inertial measurement 

unit of the ammunition’s navigator. At the end of this transfer alignment process, 

the ammunition’s inertial navigator become ready to operate for sufficiently long 

time without a need for any external aiding. 

From the papers written in the mid-60s, it can be inferred that, initial 

studies on transfer alignment problem were started during the NASA’s space 

mission programs. In order to initialize service module’s inertial navigator system, 

main INS outputs (the INS that is used throughout boost powered flight) were 

need to be processed by some form of transfer alignment algorithms (Baziw 
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(1972)). Later efforts on this subject were mainly focused on utilization of transfer 

alignment algorithms on aircraft’s avionics systems. To transfer information 

between different sensors that are located apart from each other, the relative 

orientation of each sensor cluster must be determined which is also accomplished 

by implementation of transfer alignment procedures (Harris (1977)). 

With the reduction of cost of good quality IMUs after 80s, almost every 

kind of guided weapon was utilized with some form of inertial navigator. At first, 

inertial navigators were implemented to meet the requirements of long range mid 

course guidance phase such as in Penguin missiles (Hallingstad (1989)). 

However, with the increase of low cost IMU performance, it became possible to 

use inertial navigators as the main source of guidance information including 

terminal guidance phase. JDAM is one of the typical examples, which guarantees 

success of its mission with its inertial navigator outputs only. 

Today, not having an electronic counter measure, inertial navigators 

became an indispensable part of modern guided munitions. Hence, it is 

increasingly necessary to be able to design low cost INSs which operate longer 

durations and more accurately without any aid from external sources. To achieve 

these aims within the allowed cost limits, it is essential to estimate and correct 

(calibrate) any error that effects the INS performance before the system starts to 

operate. This essential task is also accomplished by transfer alignment 

algorithms. Therefore, although the initial motivation in the development of 

transfer alignment algorithms is to just initialize inertial navigator systems, today, 

a successful algorithm must be able to accomplish calibration of IMU during the 

motion of the system as well. 

In the literature, several methods have been proposed for the solution of 

transfer alignment problem. The diversity of the solutions stems from the fact that, 

different arguments are considered as the primary point of interest in the design of 

algorithms. Some solutions focus on decreasing the total duration required to 

complete transfer alignment procedures, whereas others may focus on increasing 

the final estimation accuracy. On the other hand, regardless of whatever the main 

objective is, all algorithms depend on the method of comparing two or more 

common vectors obtained from master and slave navigation systems (there are 

also some primitive methods which depend on mechanical structures such as 

optical bore sight etc, however in the scope of this study these methods are 
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completely ignored). In master/slave configurations, master refers to the system 

which provides reference navigation values such as velocity, attitude, acceleration 

and slave refers to the system to be aligned and calibrated. The reference values 

obtained from master system are usually assumed to be almost errorless. Hence 

any difference between master and slave system navigation outputs is a 

measurement of error that exists in the slave system.  By processing these 

measurements, transfer alignment algorithms can generate estimates about 

navigation errors and IMU calibration parameters of slave navigator. 

Theoretically all kind of navigation outputs such as velocity, attitude 

position, acceleration, and rotation rate can be used for comparison in transfer 

alignment algorithms as long as those values can be obtained both from master 

and slave systems. Therefore, transfer alignment algorithms are classified and 

named according to the type of vectors compared to form measurements. For 

instance, “velocity matching technique” denotes the class of transfer alignment 

algorithms which process measurements formed using velocity differences and 

“attitude matching” refers to algorithms which use attitude differences, etc. In 

addition to these methods, it is also possible to calculate measurements by 

comparing more than one vector at the same time such as in “velocity and attitude 

matching” method (Spalding, 1992), (Shortelle 1995)) or by using preprocessed 

form of basic vector types like in “integrated velocity matching” method (Stovall 

(1996), (Ross, 1994), (Kain, 1989)). 

1.1 THESIS OBJECTIVES 

One of the main objectives of this study is to provide both qualitative and 

quantitative comparison between different transfer alignment algorithms. As 

explained above, several transfer alignment algorithms can be developed by 

using different measurement structures. Analyzing the performance of these 

structures under different conditions, it was aimed to explore the advantages and 

disadvantages of each method with respect to each other. 

In this study, the transfer alignment algorithms were designed and 

evaluated by considering air to ground guided munitions applications. Therefore, it 

was assumed that aircraft’s main navigator serves as master navigation system 

and ammunition’s inertial navigation system is the slave system to be calibrated 

and aligned to the aircraft master navigator. The environmental conditions that 
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both master and slave systems are exposed to during the transfer alignment 

procedure and location of slave with respect to the master system were also 

adjusted according to a fighter aircraft configuration. Furthermore, the transfer 

alignment trajectory was specified by using maneuver definitions that only an 

aircraft can perform. 

In this thesis, transfer alignment methods were evaluated by primarily 

considering the resultant error estimation performance that can be achieved. 

Therefore, the total duration required to complete the transfer alignment 

procedure was regarded only as a secondary factor during the design of 

algorithms.  

1.2 ORGANIZATION OF THE THESIS 

The performance of transfer alignment algorithms is highly dependent to 

inertial systems qualifications and environmental conditions including flight 

trajectory followed during transfer alignment procedure. Therefore, in order to 

make a comparison between different methods, it is necessary to define a 

complete simulation environment that is used to assess algorithm performances. 

Hence, this thesis is divided into two major parts. The first part, which consists of 

Chapter 2 to 3, was devoted to developing a computer simulation environment.  

In Chapter 2, the physical structure and specifications of inertial navigation 

systems that were used in this study was described. Also, the mathematical 

models of error sources that effect the operation of these inertial navigation 

systems were derived. 

In Chapter 3, trajectory generation program used in the simulation 

environment was explained. Also, the vibration models which were used 

throughout in this study were presented in this chapter. 

The second part of this thesis was devoted to developing, analyzing and 

comparing different transfer alignment algorithms. This part consists of Chapter 4 

and 5.  

In Chapter 4, five different transfer alignment algorithms were developed 

and the performances of these algorithms under different conditions were 

compared. Also, the structure of complete transfer alignment simulation 

environment which is used to assess the algorithm performances is presented in 

this chapter. 
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In chapter 5, the transfer alignment algorithms that are based on velocity 

matching methods were analyzed in detail. Furthermore, the effects of the 

trajectory that the system follows during transfer alignment algorithms were 

discussed in the same chapter. 

Chapter 6 concludes the thesis. 
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CHAPTER II 

2INERTIAL NAVIGATION SYSTEM 

Inertial navigation is the process of calculating position, velocity and 

attitude (PVA) of the system with respect to a known reference frame by using 

inertially measurable units such as acceleration and rotation rate. This process is 

accomplished by utilizing Newton’s law of classical mechanics. In simple words, 

given the initial PVA, by continuously integrating the acceleration and rotation rate 

of the system, instantaneous PVA is calculated. Therefore, an inertial navigation 

system (INS) can be considered as being composed of two basic parts;  

i. An inertial measurement unit (IMU) to sense linear and rotational 

motion (acceleration / rotation rates) 

ii. A processor to properly integrate IMU outputs 

The biggest problem of this approach is the complexity of designing an 

inertial measurement unit which is capable of sensing total acceleration and 

rotation rate acting on the system with a sufficient accuracy. Basically, IMU is the 

main part of an INS in determining the overall system performance and price. The 

very high cost of good quality IMUs forces system designers to develop an inertial 

navigation system by using an IMU which are just enough (if not at all) to provide 

sufficient accuracy. Therefore, navigation system designer first has to decide 

which kind of IMU to use, and then optimize the rest of design process by 

considering that specific IMU. 

In this chapter, the inertial navigation system that was used as slave 

navigator throughout the study will be introduced. The errors on selected slave 

IMU types and their effects on slave INS outputs will be described. The general 

slave INS structure and its frame of reference mechanizations will be outlined. 

It is not the aim of this chapter to derive and/or explain all the theory 

related with inertial navigation systems. Rather, this chapter focuses on 

introducing the system structure and corresponding navigation equations used 

throughout the study. 
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2.1 SLAVE NAVIGATION SYSTEM STRUCTURE 

In this study, it is assumed that slave system has an inertial navigator with 

the structure presented in Figure 2-1. 

 

 

Figure 2-1 : Structure of Slave Inertial Navigation System 

 

As seen from the above figure, initial navigation solution is provided to the 

slave system using master navigation system output. This kind of initialization is 

called as “one shot transfer alignment”. For a typical configuration, as the two 

systems are located apart from each other, output of master system can not be 

transferred to the slave directly. The effect of separation should be corrected 

before the transfer. This compensation process is called as lever arm 

compensation. It is apparent that, accuracy of lever arm compensation process 

puts a lower limit to the accuracy of initialization. Although, with this technique, 

velocity and position of slave system can be initialized with negligible errors, 

resultant attitude accuracy can not be sufficient for almost any mission. Therefore, 

some additional techniques are needed to be incorporated in order to increase 

initial attitude accuracy. In fact, this is one of the main reasons why transfer 

alignment algorithms are very curicial for this kind of systems. 

In the above system, which is used as slave INS throughout this study, the 

navigation computer is mechanized in local level navigation frame of reference 

with the x, y, z coordinate axes pointing north, east, and down directions 
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respectively (NED frame). For this system, the following navigation equations are 

used (Titterton (1997)): 
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These equations have the following properties: 

i. System position is defined as Latitude (L), Longitude (l) and Height (h) 

and updated using the same variables. 

ii. System velocity is defined with respect to earth and is defined in NED 

frame. 

iii. The attitude information is updated in Body to NED Frame Direction 

Cosine Matrix (DCM), and presented to the user with the associated 

Euler Angles. 

The Inertial Measurement Unit (IMU) provides velocity and angle 

increments at 600Hz. Therefore, navigation computer can execute equations (2.1) 

to (2.3) at 600Hz. But, considering the conning environment generated by aircraft 

structure and environmental conditions, 6 sample coning and sculling algorithms 

were also implemented by reducing the computation frequency of navigation 

computer to 100Hz. The implemented conning algorithm is taken from Ignagni 

(1996) (Algorithm 6). According to this algorithm, total compensated angle 

increment between T and T+0.01 seconds (which is called major interval) is 

computed using the following equation: 
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where nδα  correspond to coning compensation term among nth minor 

interval (0.005 second duration in a major interval) which is calculated as: 
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and each “α ” corresponds to an uncompensated angle increment 

(gyroscope raw angle increment output) during a specific time increment 

represented in the following figure: 

 

 

Figure 2-2 : Angle increments used in conning algorithm 

 

Sculling algorithm was also derived based on above conning algorithm 

using the equivalency rule shown in Roscoe (2001). A brief analysis and 

derivation of coning and sculling algorithms was also presented in Appendix A. 

During the transfer alignment procedure, position of slave INS can be 

easily updated using master INS position solution. So, by periodically correcting 

slave’s position solution using master’s position, instability in vertical channel can 

be avoided. Therefore, for position calculations, instead of using special 

integration rules like “scrolling algorithm” (Savege (2000)) or “trapezoid rule”, just 

simple Euler integration was implemented during transfer alignment procedure. 

2.2 NAVIGATION SYSTEM ERRORS 

Navigation computer of an INS is essentially a differential equation solver. 

The corresponding equations, which are given from (2.1) to (2.3), represent a 

nonlinear, time varying system. As shown in Koyaz (2003), this system is unstable 

in the sense of Liapunov. Therefore, every disturbance that affects the system 

causes the output errors to grow unbounded. The rate at which errors grow 

determined by the source of error and the trajectory that system follows. 

For the INS systems, major error sources can be classified into 3 groups: 

i. IMU Errors (Input Errors) 

ii. Initialization Errors (Initial state Errors) 
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iii. Computation Errors 

In the subsequent subsections, each of the above errors is explained 

regarding to the slave INS system that is under consideration. 

2.2.1 Slave IMU Errors 

In the literature more than 20 different types errors are defined for IMU 

outputs. However, for the system point of view, most of these errors are out of 

concern. This is because, during the field use of an IMU, combined effect of most 

of the errors can not be separated by just observing the raw IMU outputs. To 

localize each error sources, some specialized test methodologies (like Allen 

variance tests) should be incorporated and obviously this is not possible during 

the active operation. 

Therefore, in this study, actual IMU errors are grouped according to their 

effects on raw IMU outputs. Errors which represent similar output characteristics 

are modeled using just a single model based on dominant error source belonging 

to that group. For instance, quantization error of sensors was ignored and their 

effects on sensor outputs were represented by adjusting random walk variance in 

constructing models. This is because, it is impossible to distinguish these two 

errors by using sensor outputs recorded at a constant rate. 

The list of IMU errors and their mathematical models with related 

parameter values that are used in this study are represented in Table 2-1. The 

error parameters were adjusted in such a way that, the modeled IMU represents a 

generic commercial grade IMU which consists of MEMS accelerometers and fiber 

optic gyroscopes. In Table 2-1, repeatability errors represent so called day to day 

random bias components. It is assumed that, the value of this bias component 

does not change during the active operation. On the other hand, instability errors 

represent the varying nature of error components. The “ n ” in the model equations 

denotes disturbances in the form of white noise. 

Using the error definitions given in Table 2-1, the relation between true 

and actual IMU outputs can be represented as follows: 
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In the above equations, a~  and ω~  represent the actual IMU outputs 

whereas . a  and ω  denotes true values. 

 

Table 2-1 : List of IMU errors that are used in this study 

Name Mathematical Model Parameter Value 

Acc. Bias 

Repeatability 
0=BRa&δ  Bias Repeatability : 1.5mg (1σ) 

Acc. Bias 

Instability BSBSBS naa +−= δ
τ

δ 1
&  

Bias Instability at steady state : 

0.2mg (1σ) 

Time Constant : 60sec. 

Acc. Scale Factor 

Rep. 
0=SFRa&δ  

Scale Factor Repeatability : 500 

ppm (1σ) 

Acc. Random 

Walk ARWRW na =δ  (White Noise) 
Standard Deviation of WN : 

250µg/√s  

Gyro. Drift Rep. 0=DRg&δ  
Rate Drift Repeatability : 10deg/h 

(1σ) 

Gyro. Drift 

Instability DSdSDS ngg +−= δ
τ

δ 1
&  

Drift Instability at steady state : 

0.35deg/h (1σ) 

Time Constant : 100sec. 

Gyro. SF. Rep. 0=SFRg&δ  
Scale Factor Repeatability : 

500ppm (1σ) 

Angle Random 

Walk GRWRW ng =δ  (White Noise) 
Standard Dev. of WN  : 

0.1°/hr/√Hz 

 

 

Although it was assumed that fiberoptic gyroscopes were used in the IMU 

assembly, the gyroscope scale factor nonlinearities were not considered in this 

study. Furthermore, despite of the fact that temperature, misalignment and “g / g2” 

dependent errors are extremely important, they were also ignored because of the 

following 2 reasons: 

i. It was assumed that IMU compensation algorithms reduce the effect 

of these errors to an acceptable level. 
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ii. The inclusion of the empirical models which were derived for these 

errors makes overall system analysis unnecessarily complex. 

As a matter of fact, deriving an equivalent simplified IMU error model form 

a huge IMU error list is also another challenging problem which is closely related 

with reduction of order problem. Usually, in practice, the errors that cannot be 

estimated by the estimation algorithms are eliminated and their effects on IMU 

outputs are handled by adjusting other dominant IMU error model parameters. On 

the other hand, in the scope of this thesis, no special study was conducted to 

derive a simplified error model, and the errors given in Table 2-1 are assumed to 

be the exact error model of IMU. 

2.2.2 Initialization Errors 

As mentioned before, initial PVA values for slave navigation computer is 

calculated by compensating the lever arm effect on the solution provided by 

master navigator. In order to initialize slave navigation system without error, 

however, following information must also be supplied to lever-arm compensator: 

i. Instantaneous lever arm vector. 

ii. Instantaneous orientation of slave with respect to master. 

iii. Instantaneous velocity of slave with respect to master. 

Due to the non-rigid structure of the aircraft, it is impossible to determine 

the instantaneous values of the above information accurately. Therefore, 

calculated initial values for slave system contain errors.  

The exact reason for these initialization errors and corresponding 

mathematical models will be described and derived at Chapter 3 and Chapter 4. 

However, for the error analysis purposes presented at Chapter 2.3.2, it is 

assumed that initial PVA error of slave is the sum of error on master navigator 

outputs and error induced during lever arm compensation process. During straight 

flight of the aircraft, error induced by the lever arm compensation process is equal 

to the error on nominal lever arm information which has the following 1σ 

uncertainty values including flexure effect of aircraft wing: 
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Table 2-2 : Errors on nominal lever arm values provided by mission computer 

X axes 15 cm (1σ) 

Y axes 15 cm (1σ) 
Uncertainties in the position of 

slave with respect to master 
Z axes 30 cm (1σ) 

Roll 20 mrad (1σ) 

Pitch 20 mrad (1σ) 
Uncertainties in the orientation of 

slave with respect to master 
Yaw 10 mrad (1σ) 

 

 

It is assumed that master navigator outputs contain jitter type errors. 

Therefore, during initialization, these errors are also directly transferred to the 

slave INS. In this study, it is assumed that jitter errors of master navigator have 

the standard deviation values presented in Table 2-3. 

 

Table 2-3 : Standard deviation of master navigation system errors 

Master Velocity Error Std. Dev.  0.05 m/s (1σ) (for each axes) 

Master Rotation Rate Std. Dev. 1.7453e-004 rad/sec (1σ) 

Master Attitude Error Std. Dev 3.4907e-004 rad (1σ) 

 

2.2.3 Computational Errors 

The discrete and quantized nature of navigation processors tends to 

produce computational errors on navigation solution. This situation arises 

especially in the high vibratory environment. The importance of this kind of error 

depends on the fact that this error can neither be estimated nor compensated. 

Therefore this error puts a lower limit in the accuracy of inertial navigation system.  

For the real implementation (when real IMU increments are used), with the 

use of appropriate conning and sculling algorithms and sufficient processing 

frequency, computational errors can be reduced to very low level. However, one 

should be very careful when designing a simulation environment in computer. In a 

computer simulator implementation, calculating simulated velocity and angle 

increments instead of acceleration and rotation rate can be very difficult under 
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vibration environment. Usually, this difficulty is overcome by simply taking Euler 

integration of calculated acceleration and rotation rate to obtain associated 

increments. However, such an operation causes computation errors to grow 

significantly. Therefore, when developing a simulation environment in computer, 

this point should always be considered, and necessary precautions should be 

taken to reduce the effect of computational errors during simulations. In Chapter 3 

and 4, the measures that are used to reduce the computational errors in the 

simulations performed in this study are described. 

2.3 NAVIGATION SYSTEM ERROR ANALYSIS 

In this section, effects of above errors on the navigation system outputs 

are described. To achieve this, first linear error propagation models for the 

navigation system is introduced. Then, the effectiveness of these error 

propagation equations is verified by “Monte Carlo” Analysis (MC Analysis). At the 

end, the sensitivity of error propagation models to the perturbation on nominal 

trajectory is presented using simulation results. 

2.3.1 Linear Error Propagation Models 

Linear error propagation models are derived basically by linearizing the 

navigation equations (Equation 2.1 – 2.3) around a nominal trajectory. In this 

study, errors are defined in such a way that resultant error propagation models 

turns out to be what is known as “Φ - Formulation” in the literature (Titterton, 

(1997)). 

2.3.1.1 Attitude Error Propagation 

Let ϕ = [δα δβ δγ] represents the Euler angles which define the orientation 

of erroneous navigation Frame with respect to true navigation frame. In this case, 

for small angles, the relation between true and erroneous transformation matrices 

turns out to be as follows: 

[ ] n
b

n
b CC Φ−Ι=

~
       (2.8) 

where 
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For the above error relation, error propagation equation can be found as 

(Titterton (1997)): 
b
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in C δωδωϕωϕ −+×−=&       (2.10) 

where ” b
ibδω ” represents the total gyro output error which is equal to 

“ ωω −~ ” given in Equation (2.7) and “ n
inδω ” represents the total error in earth and 

transport rate calculations. Ignoring position errors, n
inδω  can be expressed as 

follows: 
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“ n
inω ” can be calculated as follows: 
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2.3.1.2 Velocity Error Propagation 

Velocity error is defined as: 

vvv −= ~δ         (2.15) 

For this definition error propagation equation becomes (Titterton (1997)): 
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In the above equation, “ baδ ” represents total accelerometer which is equal 

to “ aa −~ ” given in Equation (2.6). 
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2.3.1.3 Position Error Propagation 

Position errors are defined as follows: 

hhhLLL δδδ +=+=+=
~~~

lll    (2.17) 

For these definitions, error propagation equations for position became 

(Titterton (1997)): 
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2.3.2 Verification of Linear Error Propagation Models 

The above error propagation models are derived depending on the 

assumption that errors are small (product of two error terms are negligible). For a 

typical inertial navigation system, however, errors build up in time and evidently 

ruin the above assumption. Therefore, in order to verify that above propagation 

models are valid during transfer alignment procedure, MC analyses are performed 

to compare the true and predicted error variances. 

MC analysis is performed on a typical pre-launch path of an aircraft. The 

trajectory consists of three coordinated turns with a bank angle of approximately 

30 degrees each followed a by level and straight flight segment. Total duration of 

flight is taken to be 120 seconds. The generation of this trajectory is described in 

Chapter 3. 

At each trial in Monte Carlo analysis, erroneous IMU outputs are 

processed by the navigation system whose initial conditions also have errors. The 

errors are generated using the models presented above. After 5000 trials, 

variance of the difference between the navigation system output and true 

trajectory is calculated and the result is compared with the variance computed by 

linear error propagation models. 
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The following table represents the maximum percent difference between 

true error variances and variance calculated by linear error propagation models 

when the initial attitude uncertainty is 20mrad in horizontal and 10mrad in vertical. 

 

Table 2-4 : Maximum percent difference between true and estimated error variances 
when initial attitude uncertainty is 20mrad in horizontal and 10mrad in vertical 

 Max % Difference 

Height Error Variance 13.95576 

North Velocity Error Variance 1.434847 

East Velocity Error Variance 0.732525 

Down Velocity Error Variance 16.64879 

Roll Error Variance 0.689604 

Pitch Error Variance 0.468076 

Yaw Error Variance 0.174904 

 

 

As seen in the above table, except vertical channel, linear error 

propagation models are very successful in calculating the true error variances. In 

the vertical channel, however, linear models become insufficient due to the 

relatively big initial horizontal attitude uncertainties which violate small error 

assumption. On the other hand, even with the simplest estimation algorithm, it is 

possible to reduce the initial horizontal attitude uncertainties below 2mrad within 

in very small period of time. Therefore, in practice, it will be enough for the linear 

error propagation models to track actual error variance under the initial attitude 

error uncertainty of 2mrad in horizontal and 10mrad in vertical. Under this new 

condition when the above MC analysis was performed again, it was seen that 

maximum difference between calculated and true error variances of down velocity 

and height errors reduces to 1.403% and 1.214% respectively.  

Above result implies that, just reducing the initial horizontal attitude 

uncertainty below 2mrad level, it is assured that linear error propagation models 

can track true error variances very successfully. Therefore, even if an open loop 

Kalman filter structure is implemented, at the beginning of the transfer alignment 

procedure, attitude uncertainties have to be reduced by some feedback 

mechanism. 
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Another point that needs to be verified is the sensitivity of linear error 

propagation models to the nominal trajectory values. In the calculation of above 

results, true trajectory values are used as nominal values for the propagation 

models. However, in a typical Kalman filter application for inertial navigation 

systems, nominal trajectory is taken to be the outputs of the inertial navigation 

system. This means that, some erroneous navigation values are used as nominal 

trajectory. In order to prove that this action does not have any effect of the filter 

performance, one has to show that linear error propagation models are insensitive 

to the variations in nominal trajectory.  

In order to show this, error variance is recalculated using error models 

which are linearized among a trajectory whose position and velocity values are 

perturbated by 10 percent and horizontal and vertical attitude values are 

perturbated with 2mrad and 10mrad (attitude differences are kept in this level in 

order to satisfy small angle assumption). The maximum percentage difference 

between computed error variances calculated using true and erroneous 

trajectories is presented in the following table. 

 

 

Table 2-5 : Maximum percent difference between computed error variances 
calculated using true and erroneous trajectories 

 Max % Difference 

Height Error Variance 0.206334 

North Velocity Error Variance 1.253082 

East Velocity Error Variance 0.37991 

Down Velocity Error Variance 0.257211 

Roll Error Variance 0.074917 

Pitch Error Variance 0.074015 

Yaw Error Variance 0.002848 

 

 

Above results show that error variance values are highly insensitive to the 

arbitrary change in nominal position and velocity values. This is also true for 

attitude values as long as change in attitude values is limited by small angle 

assumption. 
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On the other hand, the same situation does not exist for the instantaneous 

acceleration and rotation rates. As seen in equation (2.12) and (2.18) these 

values are required in the calculation of error variances. However, when the 

above analysis is preformed by just increasing these nominal values %1, it is 

observed that as much as 10% error is occurred on calculated variances. So, 

linear error propagation models are highly sensitive to the changes in 

instantaneous acceleration and rotation rates. 

Therefore, in the discretization of propagation models, maximum 

frequency content of acceleration and rotation rates should be used as the basis 

for the determination of step size. Also, in the calculation of nominal trajectory 

values, instead of raw IMU outputs, the IMU outputs which are corrected 

(calibrated) by the estimation algorithms should be used. 
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CHAPTER III 

3KINEMATICS OF MASTER AND SLAVE SYSTEMS 
AND CHARACTERIZATION OF VIBRATION 

ENVIRONMENT 

Kinematics is a branch of mechanics that concern with the geometry of 

motion without reference to masses or forces acting on the system. It is a 

collection of vector/matrix methods to describe positions, velocities, and 

accelerations of particles and rigid bodies as viewed from various reference 

frames without regard to forces causing the motion (Junkins (2003)). 

The base of kinematics depends on the knowledge of position and 

orientation of the system. The rest of the kinematic variables such as velocity, 

angular rate, acceleration etc can be derived by taking time derivative of position 

and orientation of the system with respect to some fixed or moving frame.  

These properties of kinematics make it an indispensable tool in the design 

and analysis of navigation systems. In fact, the navigation equations presented in 

the Chapter 2 are just a simple application of kinematics to calculate position and 

orientation of the system with respect to earth by using the knowledge of 

acceleration and rotation rate of the system with respect to inertial space. 

Apart from this fact, kinematics is also important from the point of view of 

transfer alignment for the following two reasons: 

First of all, transfer alignment is a maneuver dependent process. 

Therefore, in order to verify the algorithms, it is essential to be able to calculate 

total acceleration and rotation rate of the system which follows a predetermined 

path. These kinematics calculations are called as trajectory generation. 

Secondly, during the transfer alignment procedure, the outputs of master 

INS have to be transformed to slave frame of reference before being used in 

estimation algorithms. This process is called lever arm compensation. In order to 

perform this operation, the kinematics relations between master and slave 

systems should be derived. 
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In Chapter 3.1 and 3.2, the kinematics equations used for the above tasks 

are derived. In the first section the method used in generation of the trajectory that 

master INS follows is explained. After that, kinematic relations between master 

and slave systems’ PVA solutions and IMU outputs are presented. 

In the rest of this chapter, the vibration environment that a slave INS is 

exposed to during transfer alignment process is presented. As indicated above, 

the lever arm compensation is an essential part of transfer alignment algorithms. 

However, in order to perform an accurate lever arm compensation it is required to 

characterize the relative motion of slave with respect to master navigation system. 

Due to the non rigid structure of the aircraft, the slave inertial navigation system 

continuously vibrates during the captive flight. Therefore, in order to perform 

realistic simulations it is necessary to utilize some vibration models that generate 

the relative motion of slave with respect to master navigator. In Chapter 3.3, the 

vibration models used in this study are presented. Furthermore, in Chapter 3.4, 

the effect of vibration environment on the theoretical inertial navigation 

performance of slave system is briefly introduced. 

3.1 TRAJECTORY GENERATION 

One of the essential properties of transfer alignment algorithms designed 

for the guided munitions is the special maneuver of the aircraft defined for that 

algorithm. During the transfer alignment, by forcing the aircraft to make some 

special maneuvers, the observability of the navigation system errors are 

enhanced (Rehee (2004)). Therefore, every transfer alignment algorithm should 

be assessed under some maneuver conditions. In the computer environment, 

simulating a maneuver consists of simultaneous calculation of the PVA of the 

system and the associated accelerations and rotation rates occurred on the 

system. This procedure is called as Trajectory Generation (TG). 

In general, trajectory generators consist of 2 basic parts called as shaping 

and regeneration (Savage (2000)). Trajectory shaping lets user define a trajectory 

that the system follows, whereas regeneration function calculates PVA solutions 

and accelerations - rotation rates that an IMU connected to the system measures. 

As a matter of fact, developing a trajectory generator that reflects the real 

word environment in a realistic manner can be very complicated. Such a 

generator designed for an aircraft should include effects of environmental 



23 

conditions, maneuver induced vibrations, loading conditions (which also vary due 

to fuel consumption, weapon release etc.), and involves implementation of aircraft 

control mechanism. 

On the other hand, as shown in previous section, the error propagation 

models are highly insensitive to the PVA solutions. Therefore, for the transfer 

alignment point of view, developing a simple generator that generates a nominal 

trajectory suffices. After that solution is obtained, in order to represent the effect of 

vibration induced motion, a vibration model outputs are added to that solution. 

Moreover, despite of the fact that a fighter aircraft is capable of performing 

a variety of different maneuver, in the design of TA maneuver, the designer has to 

confine himself only a very small subset of possible maneuvers because of 

general operational concept of aircrafts. In general, only the selection of bank 

angle and heading change parameters are left to the designers (these parameters 

have also some strict upper limits). Therefore, it will be enough for a trajectory 

generator developed for TA procedure to just simulate level flight and coordinated 

turn commands. 

Because of the above reasons, instead of a highly complicated one, 

development of a simple and flexible trajectory generator was preferred. In this 

study, the generator described in Musick (1976) was used as a base. The same 

methodology given in Musick (1976) was used in deriving the PVA solution, 

however a completely different trajectory shaping function was implemented. 

In the next section, kinematic equations used in trajectory generator are 

described. In the derivation of equations the following assumptions were made: 

i. IMU is at the center of gravity (CG) of aircraft and aligned with the 

body axes of aircraft. 

ii. The maneuvers are performed with zero angle of attack 

iii. During the horizontal turns, no altitude change occurs. 

iv. Total acceleration acting on the system at y-z plane is always lies 

along “z” axis. (Coordinated turn requirement) 

v. Velocity of the system lies only along x axes of the aircraft body frame 

and system can accelerate / decelerate only on this axes.  

The trajectory is generated for the master INS system. The transformation 

of these results to the slave system and inclusion of vibration environment will be 

described at Chapter 4. 
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In the following discussions, trajectory generation task is divided into two 

major parts: 

i. Trajectory Regeneration 

ii. Trajectory Shaping 

Trajectory shaping function is responsible for generating first and second 

time derivatives of Euler angles for the system performing a used defined motion. 

By using that information, trajectory regeneration part calculates the rest of the 

navigation parameters. 

3.1.1 Trajectory Regeneration Function 

Most of the equations derived in this section are taken from Musick (1976). 

Therefore for more general treatment on the issue, it is suggested to resort that 

study. 

Assume that initial PVA (entered by the user) and time derivative of Euler 

angles which defines the rotation from body to NED frame (supplied by the 

trajectory shaping function) are known. In this case, rotation rate of master IMU 

with respect to NED frame (defined also in NED frame) can be found as follows: 
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where parenthesis represents the element of vector “ n
nbω ” 

By using “ n
nbω ”, time derivative of direction cosine matrix which transform 

body frame to NED frame can be calculated as follows: 
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Using transport theorem (Junkins (2003)), time derivative of velocity with 

respect to ECEF frame defined in NED frame can be written as: 

( ) n
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n
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b
e

n
b

n
e vSvCv ω+= &&        (3.3) 

In the above equation “ b
ev& ” represent the derivative of velocity of the 

system with respect to ECEF frame defined in body frame. If it is assumed that 

velocity lies along only x-axes and system can accelerate only on this axis, then: 
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“ A ” denotes the acceleration of the system along its path which should 

also be supplied by the user. “ TotalV& ” represent the total velocity of the system with 

respect to ECEF frame and equals to: 
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Time derivative of positions can be calculated as follows: 
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After specifying initial PVA point, time derivative of Euler angles and path 

acceleration, above set of equations can be used to calculate the PVA solution of 

the system along its trajectory. To do so, first Equation (3.1) is used to find 

rotation rates in NED frame, after than Equation (3.2) is used to update DCM. 

Finally, by using Equation (3.3) and (3.6) velocity and position variables are 

updated (see Figure 3-1). 

On the other hand, the trajectory generator also has to compute the IMU 

outputs of the system which follows the above calculated trajectory. This process 

can be accomplished as follows: 

Rotation rate of master IMU with respect to inertial frame defined in body 

frame can be written as: 
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“ n
nbω ” is calculated using Equation. (3.1). Also “ n

inω ” can be calculated as 

follows: 
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In order to calculate slave IMU outputs using master IMU outputs, the time 

derivative of “ b
ibω ” will also be required in Chapter 4. This parameter can be 

calculated as follows: 
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As seen from Equation. (3.13), if the second time derivative of Euler 

angles is also supplied with the inputs, it is possible to calculate continuously 

differentiable rotation rate which is very advantageous in terms of reducing 

computational errors arise from the discrete nature of computer programs. 

Accelerometers sense the sum of change in velocity with respect to inertial 

frame and the gravitational force. Velocity with respect to inertial frame can be 

calculated in NED frame using transport theorem as follows: 
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Differentiate above equation with respect to time again: 

( ) ( ) ( ) ( )[ ]e
e

e
ie

e
e

ee
ie

e
ie

e
e

e
ie

b
e

b
i vSvrSSvSCv ωωωω +++= &&    (3.15) 

Using transport theorem e
ev&  can be written in terms of n

ev&  as follows: 
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Substituting Equation (3.16) in (3.15) and rearranging terms, following 

equation is obtained: 
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where n
ieω  is the rotation rate of Earth defined in NED frame. Therefore it 

is equal to “ [ ]Tn
eC 00Ω ” (see Equation (2.13)). 

Accelerometer output is equal to the sum of above equation and (minus) 

gravity. Therefore: 
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The term in the last parenthesis is called as blump-bob gravity and can be 

calculated using WGS-84 gravity model. By simply denoting it as “ g “, master IMU 

accelerometer output can be calculated as follows: 
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Using Equation (3.7) and (3.19), gyroscope and accelerometer outputs of 

master IMU can be calculated.  

Therefore, continuously solving Equation (3.2), (3.3), (3.6), (3.7) and (3.19) 

sequentially in a loop, the PVA solution and respective IMU outputs of a system 

which follows a predetermined path characterized by time derivative of Euler 

angles and path acceleration can be calculated. A simplified flow diagram of 

Trajectory Regeneration function is represented in the following figure. 

 

 

Figure 3-1 : Simplified flow diagram of Trajectory Regeneration function 
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In the above figure, the calculation of intermediate variables such as “ n
ieω ” 

or “ g ”, which are just a function of instantaneous position, velocity and attitude, 

are not shown explicitly.  

The only assumption in trajectory regeneration equations is that, total 

velocity of the system lies along its “x” axes of body frame, and this constraint is 

satisfied by the equations implicitly. Therefore, whatever input is used, the 

program generates a consistent set of outputs regardless of whether this kind of 

motion can be realizable or not. That realizable motion definition should be 

provided by the trajectory shaping function which is described in the next section. 

3.1.2 Trajectory Shaping Function 

As shown above, for the trajectory regenerator to function properly, 

following inputs should be supplied to it: 

i. Time derivative of roll rate (φ& ) 

ii. Time derivative of pitch rate (θ& ) 

iii. Time derivative of yaw rate (ψ& ) 

iv. Acceleration along its “x” axes (A) 

For the overall trajectory simulator to simulate the flight of an aircraft, 

these inputs should be adjusted in such a way that they represent an actual 

maneuver of an aircraft. On the other hand, for the transfer alignment point of 

view, it is not required to simulate all kind of maneuvers that an aircraft can 

perform. This is because, as the transfer alignment maneuvers have to be 

completed in hostile territory, only very simple maneuvers such that level flight or 

coordinated turn can be realized during transfer alignment procedures. Therefore, 

it will be enough for the trajectory simulator to generate following motions: 

i. Level Flight 

ii. Vertical Turn 

iii. Coordinated Turn 

In the following sections, calculation of associated time derivatives of Euler 

angles occurred on an aircraft that performs the above maneuvers is described. 

As the axial acceleration (A) does not affect the type of maneuver, it can be 

adjusted to any value as long as it does not exceed the limit of the aircraft. 
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3.1.2.1 Level Flight 

During the level flight, aircraft does not rotate with respect to NED frame. 

Therefore: 

0
0
0

=
ψ
θ
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&

&

&

        (3.19) 

3.1.2.2 Vertical Turn 

During the vertical turn, only the derivative of pitch angle can take some 

nonzero value. A positive value corresponds to nose up, and so makes the 

aircraft climb, whereas negative values create a dive. 

During the vertical turn, roll angle and derivative of azimuth angle should 

be strictly zero. Otherwise, the change in pitch angle corresponds to an 

unrealizable motion for an aircraft. It should also be noted that for 90° pitch angle, 

infinite number of Euler angle sequences yields same DCM matrix. Therefore, 90° 

pitch angle causes a divide by zero error which should also be avoided when 

specifying inputs. 

3.1.2.3 Coordinated Turn 

A coordinated turn means that, aircraft first has to bank in order to change 

heading. As it is assumed that aircraft does not change altitude, during the 

heading change the sum of centrifugal acceleration and gravity should lie along 

the z axis of aircraft. 

To satisfy above constraint, total centrifugal acceleration acting on the 

system should be as follows: 

( ) ( )φθ tancosgan =        (3.20) 

In order to achieve above centrifugal acceleration, the rate of heading 

change during the turn should be equal to (Musick (1976)): 

( )
TotalV

g φψ tan
=&         (3.21) 

As seen in Equation (3.21), for the coordinated turn without altitude loss, 

the rate of heading change is a function of only roll angle and total velocity. On 
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the other hand, change in velocity for an aircraft is not preferred. Therefore, the 

most important parameter in determining the heading change rate is the total 

bank angle during the turn. 

Furthermore, in order to generate slave INS trajectory (which is described 

in Chapter 4), the second time derivative of Euler angles is also required. As the 

ψ&  is completely determined by roll angle during coordinated turn, ψ&&  should also 

be determined by φ  and φ& . By taking time derivative of Equation (3.21), ψ&&  can 

be calculated as follows: 
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φφ
φ

ψ &&&      (3.22) 

In the application of coordinated turn maneuver, three consecutive phase 

of heading change occurs for a single turn. For instance, suppose that, it is 

desired to perform a heading change with a 30° bank angle. In the first phase, the 

aircraft starts to bank until the bank angle reaches to 30 degrees. In this period, 

the rate of heading change increases as the bank angle increase. In the second 

phase, aircraft changes its heading with a constant rate. At the last stage, aircraft 

returns to level flight and during which the rate of heading change decreases as 

the bank angle decrease and finally reaches to 0 bank angle. 

Hence, in order to perform a specified heading change exactly, the change 

in all of three stages should be calculated separately. In Musick (1976), this 

problem is solved by calculating the results analytically. In order to find an 

analytical solution, it was assumed that, roll rate is constant during the maneuver. 

However this solution has two drawbacks: 

i. There is no such constant roll rate for an aircraft 

ii. Constant roll rate implies a jump from 0 to that specified level, which 

causes a significant artificial computational error in the discrete time 

calculations. 

In order to avoid above problems, instead of dealing with analytical 

solutions, the following structure is implemented to generate roll rate and time 

derivative of roll rate: 
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Figure 3-2 : Diagram of roll rate generator 

 

As seen from the above structure, roll rate is generated with a feedback 

structure. The input to the structure is the roll angle of the system in the form of 

step and ramp functions. The differentiability of the outputs provides minimizing 

computational errors in the trajectory generator.  

The feedback gains are adjusted so that system represents the real 

response of an aircraft. In order to determine these coefficients, a recorded roll 

angle history of a real test flight is used. To simulate this flight test segment, input 

data shown in Figure 3-3 is constructed. 
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Figure 3-3 : Roll Angle Input to the system 
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As seen from the above figure, in the input the change in roll angles is 

represented as a ramp function with a slope of 15°/sec. This is because of two 

reasons. First of all, in the designed structure there is a direct coupling between 

input and “Roll Angle Acc”. Therefore, any step in the input, causes the roll angle 

acceleration output not to be continuous which leads to computational errors in 

generating trajectory. Secondly, during the real flight, the roll rate is determined by 

the pilots, and the recorded data shows that it is generally preferred to roll with a 

rate of approximately 15°/sec. 

The feedback gains are adjusted with trials depending on experience. Best 

results are obtained with K1=1.7 and K2=1.3, which corresponds to unity steady 

state gain. Comparison of simulated roll angle with these coefficients and real roll 

angle history recorded during flight test is represented in Figure 3-4. 
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Figure 3-4 : Comparison of simulated and real roll angle histories 

 

As shown in the Figure 3-4, the designed roll rate generator structure is 

successful enough to follow real data. The difference in the last roll is due to the 

fact that, in order to make total net heading change 0°, a slower bank-to-turn was 

performed at the last segment. 
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The comparisons of recorded and simulated IMU outputs are presented at 

Figure 3-5 and Figure 3-6.  
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Figure 3-5 : Comparison of real and simulated gyroscope outputs 
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Figure 3-6 : Comparison of real and simulated North-East-Down Accelerations 
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As seen from these figures, trajectory generator is fairly successful in 

generating IMU outputs for an aircraft which performs coordinated turn maneuver. 

On the other hand, there is an apparent difference in the vertical acceleration. 

(Note that acceleration outputs are compared in NED frame instead of body 

frame). This is because, in generating trajectory, it was assumed that weight and 

lift vectors are always equal so that aircraft can complete its maneuvers without 

any altitude change. However, recorded flight data showed that, this is generally 

not true for an aircraft. Any roll change causes the aircraft to lose or gain altitude 

which cause some additional acceleration to appear in vertical channel. Moreover, 

in the trajectory generator, it was assumed that the angle between “x” axes of 

aircraft body and total velocity vector is zero. But recorded data shows that, 

during maneuvers this angle can take values between 0 to 7 degrees which also 

contributes the difference between simulated and real data. 

3.2 KINEMATIC RELATIONS BETWEEN MASTER AND SLAVE 

In a typical transfer alignment application, the reference system (master) 

and the system to be aligned (slave) are located apart from each other on the 

aircraft. Hence, during the flight, two navigation systems undergo different motion 

and their outputs are different from each other. For the master navigation system 

to be used as a reference for slave system, the outputs of master should be 

compensated for the difference arise from physical separation. This process is 

known as lever arm compensation.  

In this section, kinematic relations between master and slave navigation 

systems that are located apart from each other are derived. 

3.2.1 Velocity Relation 

Let “r” represents the relative position of slave with respect to master. 

Then, relative position of master and slave systems can be represented in inertial 

frame of coordinates as follows: 
ii

S
i
M rRR +=         (3.23) 
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The navigation systems that are under consideration define velocity with 

respect to earth. Therefore, above relation should be handled in Earth Centered 

Earth Fixed Frame (ECEF). 
ee

M
e
S rRR +=         (3.24) 

Take the time derivative of both sides: 
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e
e

M
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S +=        (3.25) 

For a fighter aircraft the maximum separation between master and slave 

systems is 15 meters. For this distance, the navigation frame of reference (NED 

Frame) defined for the 2 systems can be considered to be same. Therefore, 

above relation can be written in navigation frame as follows: 
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The lever arm vector “r” can be defined in master’s body frame of 

reference. Hence; 
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Take the derivative explicitly: 
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Rearranging the above equation, the relation for velocities is found to be 

as follows: 
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In the above derivations all parameters related with lever arm vector are 

defined in master’s body frame of reference. In some circumstances, it is not 

possible to get these values from master navigation system. For such a situation, 

Equation (3.30) should be revised by defining “r” in slave’s body frame of 

reference. In this case, Equation (3.30) takes the following form: 
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Due to the much better navigation accuracy of master system and 

considering the time origin consistency of parameters used in equations, Equation 

(3.30) is always preferred to the Equation. (3.31), whenever possible. 

In the above equations, “ dtdr ” term represents the relative velocity of 

slave with respect to master due to non-rigid structure of the wing excited by 

vibration and flexural motion. In order to prevent this term directly appear on the 

velocity relation, the following velocity formulation can also be used instead on 

equation (3.30). 

In equation (3.27) define “ er ” in navigation frame of reference. Hence; 

dt
rdC
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ne
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e

n
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n
S +=       (3.32) 

Perform the differentiation and rearrange the terms; 
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The usefulness of above equation comes from the fact that, it directly 

defines the integral of velocity differences in terms of readily calculated quantities. 

This point will further be investigated in Chapter 5. 

3.2.2 Attitude Relation 

As indicated in the above section, navigation frame of reference for the 

two locations can be considered to be same. Therefore, the relation between 

body to NED Frame direction cosine matrices defined for the master and slave 

system can be represented as follows: 
M
S

n
M

n
S CCC =         (3.34) 

It should be noted that, “ M
SC ” direction cosine matrix represents the 

relative orientation of slave with respect to master system. Because of structural 

flexure and vibration of wing, however, the value of this matrix changes 

dynamically which is governed by the following differential equation: 
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M
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M
S CSC ω=&        (3.35) 
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3.2.3 Acceleration Relation 

In order to find the acceleration relations defined in inertial reference of 

frame, inertial position vectors should be differentiated twice. This process can be 

accomplished as follows: 

The position of slave can be defined as follows 
Mi

M
i
M

i
S rCRR +=        (3.36) 

Differentiate the both sides of above equation; 
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To obtain the acceleration, take the derivative of above equation again; 
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After performing indicated differentiations and rearranging the resultant 

term, the following equation is obtained: 

( ){ }MMM
iM

MM
iM

MM
iM

M
iM

i
M

i
M

i
S rrrrCaa &&&& +×+×+××+= ωωωω 2  (3.39) 

An accelerometer defines the accelerations in its body frame of reference. 

Hence, to obtain the relation between accelerometer outputs located at master 

and slave positions, above equation should be multiplied with “ S
iC ” DCM: 
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As seen from the above equation, the relation between 2 accelerometers 

depends on “ r& ” and “ r&& ”, both of which is a function of vibratory motion of the 

wing. Therefore, the most effected term from vibration turns out to be acceleration 

of the slave system. 

3.2.4 Rotation Rate Relation 

Rotation rates are vectorial quantities. Therefore, rotation rate relation of 

master and slave systems can be found by using simple vector addition as 

follows: 

Let “ M
MSω ” represent the rotation rate of slave with respect to master 

defined in master’s body frame of reference, then 
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3.2.5 Position Relation 

The relation between latitude, longitude and height of the master and slave 

systems can be calculated with a lever arm defined in master frame of reference 

as follows: 
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3.3 CHARACTERIZATION OF VIBRATION ENVIRONMENT 

As seen from the previous section, in order to perform accurate lever arm 

compensation it is necessary to know the relative motion of slave with respect to 

master navigation system. However, in practice, it is not possible to calculate this 

relative motion during the captive flight. Hence, the effect of relative motion 

appears as a noise in the lever arm compensation process which limits the 

effectiveness of any kind of transfer alignment algorithm. As a matter of fact, 

transfer alignment is the process of transferring navigation values obtained form 

master navigator to the slave navigator in the presence of unknown relative 

motion. In an aircraft configuration, that relative motion mostly induced by the non 

rigid structure of the aircraft wing and is one of the most critical factors that 

determine the overall estimation performance of any transfer alignment algorithm. 

Therefore, every transfer alignment algorithm should be assessed under a 

realistic vibration environment. 

On the other hand, the realistic characterization of the vibration 

environment is a very challenging problem. Usually it is not possible to derive 

mathematical models which can reflect the vibration environment of an aircraft for 

real flight conditions. From the related literature, it can be inferred that several 

studies were conducted on this issue. However, except the general guidelines 

about their methodology, none of the results were published open so far. The two 

most explicit works in the literature are Kain (1989) and Spalding (1992). 

However, they are also lack of completeness. In the related papers, generally, the 

effect vibration and flexure on acceleration and rotation rates are represented 
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using third order Markov models with different system parameters which are 

claimed to be determined using some sort of test data. 

In this theses study, the vibration models presented in Appendix B are 

utilized. These models represent the effect of vibration on acceleration and 

rotation rate values as stochastic system outputs. In this approach, the very low 

frequency structural changes due to the change in loading is named as flexure, 

and characterized by deterministic models. Considering the short operation 

duration, the errors on these models are taken to be in the form of random 

constants (or very nearly random constant) (refer to Chapter 4.4). On the other 

hand, the high frequency vibration effects are characterized by using stochastic 

models which represent the vibration induced acceleration and rotation rates. 

Therefore, in order to specify the effect of vibration on slave acceleration and 

rotation rate, slave IMU outputs are calculated in two separate steps. In the first 

step, theoretical slave IMU outputs which are connected to the master navigator 

via a rigid structure are calculated. By summing the outputs of vibration models 

with these rigidly connected IMU outputs, theoretical acceleration and rotation 

rates sensed by a slave inertial measurement unit under vibration environment is 

obtained. By processing those IMU outputs with navigation algorithms, theoretical 

PVA solution of a slave navigator can also be calculated under vibration 

environment. 

As shown in Figure 3-7, the vibration induced acceleration and rotation 

rates are modeled as a sum of appropriate number of Markov processes. In an 

INS structure, accelerometer outputs are integrated twice whereas gyroscope 

outputs are integrated only once. Therefore, in order to have stable integrals, 

vibration on acceleration and rotation rate is modeled by using third and second 

order Markov processes respectively. 

In Figure 3-7, the model used to generate vibration induced acceleration 

on “x” axes of slave body frame of reference is shown.  
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Figure 3-7 : Vibration model for X axis acceleration 

 

In the above figure, U1(t) and U2(t) represent independent zero mean unity 

variance white Gaussian noises, whereas H1(s) and H2(s) represent shaping filters 

with the following form: 
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      (3.43) 

Y(t) denotes the output of the system which is assumed to have the same 

power spectral density characteristics as the vibration induced acceleration on the 

“x” axes. Therefore in the simulation environment Y(t) is used as the vibration 

induced acceleration on “x” axes. 

For each axes, similar structures as shown in Figure 3-7, is used to 

generate vibration induced acceleration and rotation rates. However, for each 

axes, the shaping filters have different characteristics. This is because, at each 

axes the spectra of vibration induced motion appears to group around different 

major (center) frequencies. Therefore for each axes different filter coefficients and 

different number of filters are used to generate vibration induced motion. 

The structure and filter parameters of vibration induced acceleration and 

rotation rate models for all three axes used in this study are presented in 

Appendix B. It should be noted that, the models presented in Appendix B also 

contains the effect of a theoretical mechanical isolator. 

On the other hand, the most important deficiency of the models utilized in 

this study is their inability to model low frequency components accurately. The 

models presented in Appendix B were derived by using a real test data based on 

some acceleration and rotation rate sensors outputs. Therefore the models 



41 

cannot represent low frequency vibration effects as good as they represent high 

frequency effects.  

This can easily be seen from the fact that it is possible to construct 2 

different models with almost same PSD shape but with different second integral 

statistics. This can be shown by changing the smallest pole of derived models. 

For example the poles of H1(s) defined for “x” axes vibration induced acceleration 

are as follows (see Appendix B): 

p1=-51.7943 +46.8018i 

p2=-51.7943 -46.8018i 

p3=-3.4014 

Let (p3) is replaced by “-0.0.05”. If the numerator is kept constant, then 

H1(s) becomes: 

( )
24.3654873.6103.59s

 6.1424
23

2
'
1 +++

=Η
ss

ss     (3.44) 

In this case the maximum difference between the squared magnitudes of 

transfer functions reduces to below 10 percent after 3Hz and below 1 percent 

after 7Hz. On the other hand, when excited by unity variance white noise, steady 

state standard deviations of second integrals of model outputs turn out to be as 

follows: 

σ = 0.00047377 (For the original H1(s)) 

σ’= 0.012604 (For the modified H1(s)) 

As seen from the above results, by adjusting smallest pole of transfer 

function, it is possible to adjust steady state variance of second integrals of model 

outputs without disturbing original model PSD. Therefore, it is possible to 

generate a variety of different vibration induced acceleration models which has 

same PSD characteristics but have different first and second integral 

characteristics. This shows that, the models utilized in this study are not able to 

model vibration induced displacement and velocity effects very accurately. 

On the other hand, it should be noted that the above procedure can be 

used to incorporate the knowledge of maximum position deflection information to 

the obtained acceleration models. However, in the scope of this study, it is 

preferred to handle the effect of vibration induced displacement as a part of 

displacement induced by flexure effects and therefore modeled as random 

constants (refer to Chapter 4.4). 
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3.4 ANALYSIS OF VIBRATION DEPENDENT ERRORS 

Under vibration environment, some additional error effects appear in 

inertial navigation systems. These errors can be grouped as follows: 

i. Instrument Errors 

ii. Algorithmic Errors 

Instrument errors arise due to the fact that, inertial sensors’ dynamic 

responses can change under vibration environment. In addition to this, sensor 

errors which are a function of product of two inertial measurements (such as 

anisoelastic bias error for gyroscopes and vibro-pendulous error for 

accelerometers) cause to an additional bias/drift error under oscillatory motion. 

Therefore, during the captive flight, error characteristic of slave IMU 

system will be different from the free flight during which system exposes to lower 

vibration than captive flight. Any estimation algorithm that is used to estimate net 

bias error during captive flight will converge to a different result with respect to 

free flight conditions. This phenomenon especially occurs for accelerometers and 

called as vibration rectification. Therefore, after the transition from captive to free 

flight, the quality of estimation algorithm results become worse than what is 

calculated. 

On the other hand, the complete treatment of this issue is out of scope of 

this thesis. In this study (where necessary), this point is simply accounted by 

artificially increasing error variances of estimated values after the transition to free 

flight. 

Algorithmic errors mainly consist of errors occur during strapdown 

calculations due to the imperfect discretization of computational elements. On the 

other hand, the inclusion of coning and sculling algorithms greatly reduces the 

effect of these errors. An extremely detailed analysis of vibration environments on 

the algorithmic computations is presented in Savage (2000). Therefore, in this 

study, only the performance of selected coning and sculling algorithms (shown in 

Chapter 2) under the vibration environment derived in previous section is 

presented using the results given in Savage (2000). 

In Appendix A, it is shown that, the total and algorithmic coning and 

sculling errors can be calculated using power spectral densities of rotation rates 
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and accelerations acting on the system. When Equation (A-34) and (A-35) was 

evaluated using PSD of x and z axis gyroscope output models presented in 

Appendix B with “1/600” second increment period and “1/200” computational 

interval, the total coning error during “1/100” second was found to be 

0.0452°/hour, whereas total algorithm error was found to be 1.1243e-006°/hour. 

Although, the total coning error is found to be less than expected, the ratio 

between true and algorithmic error indicates that, the implemented coning 

compensation algorithm are very successful to compensate net gyro drift occur 

due to the coning environment. 

Similar calculations are also carried to find numerical values for sculling 

errors under the environment characterized with the vibration models presented in 

Appendix B. To this extent, x axes gyroscope output and z axes accelerometer 

outputs were used in the calculations with “1/600” sec increment period and 

“1/200” computational interval. Using Equation (A-36) and (A-37) total sculling 

error and algorithm error during “1/100” second was found to be 9.4003e-

005m/s^2 and 3.7529e-009m/s^2 respectively. Again, these results verify that, net 

bias effect appear due to the sculling motion can be greatly reduced by 

implementing sculling compensation algorithms.  

Comparing the effect of coning and sculling errors, it can be seen that, 

under vibration environment conning errors are more dominant than sculling 

errors, and the effect of these errors can be greatly reduced by the addition of 

conning/sculling compensation algorithms. However, it should be noted that, 

instrument errors for accelerometers which are excited under vibration can be 

much higher than sculling errors. Therefore, in the design of estimation algorithm, 

the effect of vibration on instrument errors should always be considered. 
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CHAPTER IV 

4DESIGN OF TRANSFER ALIGNMENT ALGORITHMS 

4.1 INTRODUCTION 

As explained in Chapter 1, the main function of transfer alignment 

algorithms is to estimate both slave IMU calibration parameters and slave INS 

PVA solution errors during the captive flight of the slave. This is achieved by 

comparing similar vectors obtained from master and slave navigation systems 

outputs. As it is assumed that master navigator is almost errorless, any difference 

between master and slave systems outputs is an indication of slave system 

errors.  

On the other hand, not all errors of slave system are directly coupled with 

navigation outputs. For instance, it is not possible to calculate gyroscope drift 

errors by just using the velocity differences between the two systems. This is 

because, drift errors generates attitude errors and this attitude error generates a 

velocity error. In order to estimate those indirect errors, an estimation algorithm 

which can process the observed differences for sufficiently long time is necessary.  

The most significant factor that affects the design of such an estimation 

algorithm is the selection of vector types that are compared. The choice of vector 

type specifies the overall structure of any estimation algorithm. Therefore, transfer 

alignment algorithms are classified according to the type of vectors compared to 

generate an estimate. According to this criterion, transfer alignment algorithms 

can be classified as follows: 

i. Acceleration / Rotation Rate Matching 

i. Velocity Matching 

ii. Integrated Velocity Matching 

iii. Attitude Matching 

iv. Velocity and Attitude Matching 

v. Position Matching 
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Each of the above groups is named according to the type of the 

observation vectors used in the estimation algorithms. In the following sections, 

each of the above methods is described separately except position matching 

method. This is because, in real systems, due to the GPS aided and barometric 

damped nature of position calculations, there are big variations between samples 

of position outputs of master navigator. Therefore, it is not possible to use position 

vectors directly as observation in estimation algorithms. Furthermore, both the 

integrated velocity matching and position matching methods are conceptually very 

similar methods. So the analysis of integrated velocity matching method also 

provides sufficient information about effectiveness of position matching method. 

Thus, in this study, position matching method is not considered. 

In the literature, there are also some less utilized algorithms such as 

doubly integrated velocity matching (Stovall (1996)) or velocity and rotation rate 

matching methods (Rogers (1991)). However, because of the reasons stated in 

the following sections, it is not possible to implement these techniques for real 

systems. Therefore, in this study they are not considered alone and their 

effectiveness are analyzed in the scope of other methods. 

In almost all kind of transfer alignment procedures, Kalman filters are used 

as the primary method of estimation. This is because, Kalman Filters are optimal 

filters and they constitute a general framework for all kind of recursive filters 

including deterministic recursive least square filters (Haykin (2002)). Therefore, in 

the following discussions, for each kind of method the Kalman Filter structures are 

presented first and the performance of each method is compared by using 

Kalman filter estimates which utilize corresponding matching method. 

The application of a generic Kalman filter in a typical transfer alignment 

problem is represented in the following figure. 
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Figure 4-1 : Application of a Kalman filter in transfer alignment problem 

 

As indicated in Chapter 1, in this study, the transfer alignment algorithms 

are designed by considering air to ground guided munitions applications. 

Therefore, it is assumed that aircraft’s main navigator serves as master navigation 

system, whereas ammunition’s inertial navigator serves as the slave system. As 

these two systems are located apart from each other on the aircraft, a lever arm 

correction should be made on the master navigator output before a comparison is 

made. As shown in Figure 4-1, the difference between the slave and corrected 

master navigator outputs are processed by the Kalman filter to generate 

estimates about the error on slave PVA solution, slave IMU calibration parameters 

and the lever arm vector between master and slave systems. In some 

applications, lever arm vector can be known accurately prior to start of transfer 

alignment procedures, and therefore estimation of lever arm vector is not 

necessary for every application. 

Kalman filters require a mathematical propagation model for the states 

they try to estimate. On the other hand, as the navigation equations are nonlinear, 

they cannot be used as propagation models. Therefore, Kalman filter system 

model is obtained by linearizing the navigation equations around a nominal 

trajectory. This form of Kalman filter is called as extended Kalman filter. These 

linearized equations model the propagation of errors about the given nominal 

trajectory. Hence extended Kalman filters are used to estimate the amount of 

errors on states instead of the states itself (Brown, (1997)). The structure and 

computational steps of this type of Kalman filters are summarized in Appendix C. 
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As show in Figure 4-1, the nominal trajectory used by the Kalman filter is 

supplied by the slave INS. Therefore, Kalman filter is used to estimate errors of 

slave INS. Furthermore, together with the navigation errors, as it is also required 

to estimate IMU calibration parameters and lever arm errors, the propagation 

models for these variables should be augmented to the Kalman filter system 

model too. In Chapter 2, it was explained how to linearize navigation equations 

and augment IMU models to these linearized equations. In the following table a 

summary of the states and the corresponding propagation models used in a 

typical transfer alignment Kalman filter are presented. 

 

 

Table 4-1 : Summary of system states used in Kalman filter 

Name of State Error Propagation Model 
North, East, Down Vel. 
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The states shown in Table 4-1 constitutes the common states used in all 

transfer alignment methods listed above. Together with these states, some 

additional states are also augmented to the above system model depending on 

the matching method used in transfer alignment procedure.  
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In order to asses the performance of each implemented algorithm under 

different error and environmental characteristics a transfer alignment simulation 

environment is developed. The simulation environment is capable of generating 

both theoretically true and erroneous navigation values for master and slave 

navigation systems of an aircraft which follows a predetermined path. By 

processing the erroneous slave navigation values with the transfer alignment 

algorithms and by comparing the algorithm results with the theoretically true 

navigation values the performance of each algorithm is evaluated. Furthermore, 

by performing Monte Carlo analysis using the simulation environment, the 

sensitivity of each algorithm to the several unmodelled environmental factors is 

also characterized. 

In Chapter 4.1, the structure of developed simulation environment is 

presented. In the rest of this chapter, each transfer alignment method listed above 

is derived and explained one by one. 

4.2 TRANSFER ALIGNMENT SIMULATION ENVIRONMENT 

As shown in Chapter 2, navigation equations have non – linear and time 

varying nature which makes the error equations obtained from them highly 

complicated to derive analytical relations. Moreover, there are lots of 

environmental error sources that cannot be modeled as simple mathematical 

models. Therefore, usually it is not possible to make a theoretically true 

covariance analysis. 

Hence, Monte Carlo analysis turns out to be an important tool to assess 

the real performance of developed transfer alignment algorithms. Using Monte 

Carlo analysis, not only the performance of the filters is evaluated but also, the 

sensitivity of the filter to unmodeled/unexpected error sources can also be 

discovered. Therefore, Monte Carlo analyses are indispensable tools in the 

development of transfer alignment algorithms. 

On the other hand, in order to perform a Monte Carlo analysis, a 

simulation environment in which all kind of error sources are accurately modeled 

and included in the simulation is required. Furthermore, this simulation 

environment must be able to generate true navigation values as well. Therefore, 

developing a simulation environment can be even much harder than developing 

the transfer alignment algorithm itself. 
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In this section, the main components of the implemented simulation 

environment used in this study are explained. In the following figure, the general 

structure of simulation environment is presented. 

 

 

 

Figure 4-2 : Block Diagram of Transfer Alignment Simulation Environment 

 

 

The function of each block can be summarized as follows: 

i. Command Generator Module 

This module is the trajectory shaping part of trajectory generator. Using 

the system shown in Figure 3-2 and Equation (3.21), it generates required Euler 

angle derivatives that comply with the desired trajectory shape supplied by the 

user. 

ii. Master Trajectory Generator Module 
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Using Equation (3.2), (3.3), (3,6), (3.7) and (3,19) and Euler angles 

derivatives provided by Command Generator module (refer to Figure 3-1), it 

generates master system’s true position, velocity and attitude solution as well as 

corresponding IMU outputs for master IMU. 

iii. Separation Induced Dynamics Module 

Using Equation (3.30), (3.34), (3.40), (3.41) and (3.42), it transforms the 

navigation solutions and IMU outputs defined for master system to the slave 

system. During these transformations, this block assumes that master and slave 

systems are connected via a rigid structure (omits the effect of “ MSrr ω,, &&& ”). 

iv. Vibration Models Module 

This block simulates the relative motion of slave with respect to master 

(vibration of slave).  In order to perform this operation, it uses stochastic models 

presented in Appendix B. As explained before, these models represent the effect 

of vibration on acceleration and rotation rates. Thus, transfer functions defined for 

the vibration models were converted to the state space representation in 

controllable form so that, each state in state space form corresponds to vibration 

induced acceleration, velocity and displacement for third order models and 

rotation rate and angle increment for second order models. Therefore, this module 

is capable of generating the instantaneous values of “ Dynr ”, “ r& ”, “ r&& ”, “ m
msω ”. “ Dynr ” 

is the integral of “ r& ” which represents the dynamical changing component of lever 

arm vector (for more information refer to Chapter 4.4), whereas “ r&& ” denotes the 

vibration induced acceleration. “ m
msω ” correspond to vibration induced rotation rate 

of slave with respect to master. 

v. Non Rigid Lever Arm Module 

Using the random variable values provided by Vibration Models module, it 

adds the effect of vibration on the slave system’s navigation outputs by inserting 

the values of “ Dynr ”, “ r& ”, “ r&& ”, “ m
msω ” in Equation (3.30), (3.35), (3.40) and (3.41). It 

should be noted that the lever arm vector “ r ” appear in these equation can be 

calculated using Equation (4.25) (refer to Chapter 4.4). 

As explained in Chapter 2, implemented navigation system uses velocity 

and angle increments to calculate instantaneous PVA solutions. To calculate the 

velocity increment (integral of raw accelerometer output) in “1/600” second 

duration, Equation (3.40) should be integrated as follows: 
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Otherwise, if “u ” is calculated using just multiplying Equation (3.40) with 

“1/600” seconds, the computational error induced by numerically integrating 

acceleration values can change error characteristics of generated IMU outputs so 

much that simulation environment produces unreliable results. 

vi. Slave IMU Error Module 

This module adds error to the generated true slave IMU outputs according 

to the Equation (2.6) and (2.7). The error definitions are given in Table 2-1. 

vii. Slave INS Module 

This module calculates the position, velocity and attitude of slave system 

by processing erroneous slave IMU outputs supplied by slave INS module and 

erroneous initial values supplied by initialization module. 

viii. Initialization Errors Module 

This module calculates initial position, velocity and attitude of slave system 

using erroneous lever arm and relative orientation values. This initialization can 

be represented as follows: 
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where Mr~  and M
SC~  represents the erroneous lever arm and relative 

orientation values. It is assumed that, mission computer of aircraft can supply 

these values with an accuracy specified by the standard deviation values shown 

in Table 2-2. Therefore this module adds error on correct lever arm and relative 

orientation values which comply with these specifications and supply this 

information to Lever-arm Compensator Module. 
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 “ n
MV~ ” and “ n

MC~ ” denotes the instantaneous velocity and attitude outputs of 

master navigator. It was assumed that these instantaneous values have jitter type 

errors with standard deviation values presented in Table 2-3  (these errors are 

generated in Master INS Error Module). 

It should be noted that, Equation (4.4), (4.5) and (4.6) constitutes the 

sufficient equations required to complete one-shot transfer alignment procedure 

described in Chapter 2.1. As seen from these equations, even if a perfect master 

navigator is used, due to the errors on lever arm and relative orientation values, 

initial values of slave navigator become erroneous.  

ix. Master Navigator Errors Module 

This module adds EGI errors on generated master solution and IMU 

outputs. The errors added to the master outputs are selected to be white Gausian 

noise with variance values given in Table 2-3.  

In this simulation structure, the effect of environmental conditions on 

master’s solutions was totally ignored and their effects were considered as a part 

of master INS errors. This is because, modeling such effects can be extremely 

complex, and therefore is assumed to be out of scope of this thesis. 

x. Lever Arm Compensator 

Using erroneous lever arm vector and relative orientation information 

supplied by the initialization module, it calculates the lever arm compensation on 

master navigation outputs. The compensated master navigator outputs are then 

used as reference values for Transfer Alignment Filter. 

xi. Measurement Module 

This module calculates the observations such as velocity or attitude 

differences which are then used in transfer alignment filter. The calculations of 

observations for each transfer alignment method are described in following 

sections. 

xii. Transfer Alignment Filter 

The estimation process of Slave INS and IMU errors is accomplished in 

this module. Although not represented in the figure, the estimated error values are 

used to correct related navigation states in a close loop structure. 

xiii. Filter Results Assessment 

By comparing true and estimated error values, this module evaluates the 

performance of implemented transfer alignment filter structure. 
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In the following sections, the performance of each transfer alignment 

algorithms is evaluated using the above simulation environment. The nominal 

maneuver for each simulation is taken to be a C-shaped maneuver which last for 

100sec and consist of consecutive straight flight and horizontal coordinated turn 

maneuvers. The aircraft velocity during these maneuvers is adjusted to be 

approximately 210m/s. The roll angle profile of the maneuver is presented in the 

following figure. 
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Figure 4-3 : Roll angle profile used in algorithm performance assessment 
simulations. 

 

4.3 ACCELERATION / ROTATION RATE MATCHING METHOD 

As the name implies, in this method, master and slave systems’ IMU 

outputs are compared to form an observation. The comparison results are used 

as measurement in a Kalman filter structure to find misalignment between the two 

systems. The misalignment angles between two systems are dynamically 

changing due to the random vibration and flexure. Therefore, first, it is necessary 

to derive differential equation that governs the change in the misalignment angle. 

Let the master to slave transformation be represented by the following 

Euler angles which is defined in slave body frame of reference with the rotation 

order of z,y,x: 
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The relation between the derivative of these Euler angles and rotation rate 

of master with respect to slave can be found as follows (Titterton, (1997)): 
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If it is assumed that Euler angles are small such that “ Ε≈Εsin ” and 

“ 1cos ≈Ε ”, then by neglecting higher order terms, Equation (4.8) can be written 
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Using small angle assumption, master to slave transformation matrix can 

be written as follows: 

( ) ( )
0

0
0

αβ
αγ
βγ

−
−

−
+Ι=Ε+Ι=Ε SC S

M     (4.11) 

Inserting Equation (4.11) into (4.9) and combining (4.9) with (4.10) and 

after rearranging the terms following equation can be obtained: 
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where ( )•ω  represents the corresponding vector element. 

Equation (4.12) defines the differential equation that governs change in the 

Euler angles between master and slave systems. The last term in the right hand 

side of equation represents the deterministic input function. In case of Euler 

angles between two systems being not small, the above equation can also be 

used by first transferring master rotation rate to a nominal frame of reference. 
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In a Kalman filter structure, Equation (4.12) should be continuously solved 

by using the observed master and slave rotation rate. Therefore Equation (4.12) 

should be written as: 
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where S
iS

S
iS

S
iS δωωω +=~  represents observed slave rotation rate, S

iSδω  

represents slave gyroscope’s errors (it is assumed that master IMU is errorless) 

and M represent an operator which convert its arguments to the matrix shown in 

Equation (4.12).  

Equation (4.13) defines the propagation model for the misalignment angle 

“E”. The aim is to implement a Kalman filter to estimate “E”. The measurement for 

such a filter can be calculated using acceleration and/or rotation rate outputs of 

master and slave IMUs. By employing small angle assumption in Equation (3.40), 

the difference between master and slave systems can be represented as follows: 
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“ Compaδ ” represents lever arm compensation error which is equal to  
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Equation (4.14) represents a measurement equation that defines the 

relationship between E and acceleration differences between master and slave 

systems. 

On the other hand, measurement for Kalman filter based on rotation rate 

differences can be formed using Equation (3.41) and (4.11) as follows: 
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Using the observed variables, Equation (4.17) can be written as: 
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where “ S
iS

S
iS δωω ,~ ” represents observed slave rotation rate and 

corresponding gyroscope error, and “ S
MSω ” represents rotation rate of slave with 
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respect to master.  Equation (4.18) defines the relationship between master and 

slave rotation rate difference and misalignment angle. 

In order to asses performance of acceleration/rotation rate matching 

method, a Kalman filter with the system equation given in Equation (4.13) and 

measurement equations shown in (4.14) and (4.18) is formed. Although the 

vibration related terms “ S
MSω ” and “ M

MComp
a “ in Equations (4.14) and (4.18) 

represents correlated noises they are not augmented to the Kalman filter system 

model and considered as a part of measurement noise. Furthermore, none of the 

gyroscope and accelerometer errors other than random walk (refer to Table 2-1) 

is excited in simulation environment. Therefore Saδ  and S
iSδω  consist of only 

white noises and considered as a part of measurement noise also. Finally, it is 

assumed that known lever arm vector “r” is almost errorless. Both update and 

propagation routines of the Kalman filter is run at 100Hz (for the definition of 

update and propagation routines refer to Appendix C). 

Three different measurement structures are assessed with the designed 

Kalman filter. In the first structures, only accelerometer outputs are used as 

measurement (Equation (4.14)). In the second case, only rotation rates are used 

(Equation (4.18)) and in the third case both accelerations and rotation rates are 

used at the same time (In a sequential Kalman filter structure). The covariance 

estimates of the Kalman filter for each case are represented in Figure 4-4, Figure 

4-5 and Figure 4-6.  The average of standard deviations obtained in the last 10 

seconds of each structure is summarized in Table 4-2. 

 

Table 4-2 : Misalignment error standard deviation estimates comparison for 
accelerometer/rotation rate matching method 

 
Roll Error SD 

(mrad) 

Pitch Error SD 

(mrad) 

Yaw Error SD 

(mrad) 

Acceleration 10 0.9 0.784 

Rotation Rate 0.774 0.481 0.484 

Acc. & Rot. 

Rate 
0.62604 0.42644 0.42110 
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Figure 4-4 : Roll misalignment angle standard deviation estimate 
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Figure 4-5 : Pitch misalignment angle standard deviation estimate 
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Figure 4-6 : Yaw misalignment angle standard deviation estimate 

 

As seen from above figures, even in the optimal situation the 

accelerometer/rotation rate matching technique is not sufficient to estimate 

misalignment angles with a desired accuracy. Best results are obtained with the 

utilization of acceleration and rotation rates at the same time; however, its roll 

error estimation performance is also fall behind requirements which is estimated 

to be less than 0.4mrad. 

In addition to the insufficient estimation performance, the most important 

drawback of this technique is the requirement for very high speed propagation of 

state equations. For the Kalman filter to work properly, Equation (4.13) has to be 

solved accurately in discrete time. In order to discretize Equation (4.13) with 

sufficient accuracy, master rotation rate (which is used as input in the equation) 

must be obtained at least 100Hz. However, for a standard mux-bus structure of 

most aircraft, it is not possible to acquire data from aircraft avionics at that 

frequency. Therefore, the applicability of this method is only limited to some 

special data bus setups. 

On the other hand, the need to solve Equation (4.13) comes from the 

requirement of estimating dynamical change in misalignment angle. If it is 

assumed that the amount of dynamical change can be neglected, then the 

estimation problem can be reduced to estimating a constant parameter. In this 

case, the problem can be handled by just solving the measurement equations 
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given in Equation (4.14) and (4.18) in a least square sense to obtain constant 

misalignment angle “E”. In the past, a number of study was conducted to solve 

Equation (4.14) and (4.18) by using deterministic least square algorithms (Boch 

(1989), Setterlend 1972)). However, the problem in this approach is that, until the 

first maneuver of the aircraft, observation equations constitute an 

underdetermined system which increases the complexity of recursive least square 

algorithms. Furthermore, if only acceleration measurements are used, regardless 

of whether aircraft performs a coordinated turn or not, observation equation for 

acceleration measurement stays always underdetermined which prevents the 

estimation of azimuth misalignment error. This situation can be shown as follows: 

Suppose that a misalignment estimate is formed by using just 2 different 

observations. One of the observations is obtained at initial time (t0), and the other 

estimate is obtained in a later time. In this case, a simple estimation can be 

formed by using pseudoinverse as follows : 

( ) zTT ΥΥΥ=Ε
−1

       (4.19) 

where for acceleration match Y and z correspond to  
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and for both acceleration and rotation rate match Y and z correspond to 
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In the above equations “ 0t ” corresponds to initial time. In the following 

figure the change in smallest eigenvalue of “ ( )ΥΥT ” with respect to “ 1t ” is 

presented for only acceleration and for both rotation rate and acceleration 

measurements. 
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Figure 4-7 : Comparison of smallest eigenvalues of only acceleration measurement 
and both acceleration and rotation rate measurements. 

 

As seen from the above figure, in acceleration and rotation rate matching 

technique, the occurrence of roll rate is very crucial in azimuth misalignment 

estimate. This is verified by the fact that, each local maximum (eigenvalue 

increase) in the Figure 4-7 corresponds to the roll rate occurrence during the 

maneuver of the aircraft (refer to Figure 4-3 for maneuver definition). In the only 

acceleration measurement case the maximum value of minimum eigenvalue turns 

out to be in the order of 3e-5, which in effect represents a singular matrix. 

The reason for the insufficiency of acceleration measurements comes from 

the fact that, during the coordinated turn, the net acceleration occurring on the y 

axes of the master’s body frame of reference is zero. Therefore, the maneuvers 

can not produce an acceleration both in x and y axes, which prevents the 

estimation of azimuth misalignment. On the other hand, as shown in Chapter 3, 

even during the coordinated turn maneuver in real time, aircraft undergoes a 

vertical motion, which creates “y” axes acceleration. Therefore, it is expected that 

performance of this technique can be much better in real environment. 

One of the biggest advantages of this type of filter is its robustness to 

almost any kind of modeling error. 3 more states representing gyroscope drift 

repeatability errors were augmented to the simplest filter structure presented 

above, and that 6 state Kalman filter was run under the simulation environment 
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where all error sources were excited (all kind of IMU errors presented in Table 2-1 

and lever arm errors are applied). The only modification made on the filter 

structure was to multiply measurement covariance matrix of Kalman filter with 4 to 

compensate the suboptimal effects in filter structure. The results of this highly 

suboptimal filter structure reveal that, Kalman filter was still able to continue to 

estimate misalignment errors without diverging. Monte Carlo analysis showed that 

the total degradation in estimation of misalignment angle for the suboptimal filter 

was in the order of 0.4mrad. In the following figure, the real error variance of 

misalignment angles calculated by Monte Carlo simulations based on suboptimal 

Kalman filter structure which uses both acceleration and rotation rate as 

measurement is presented. 
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Figure 4-8 : Standard deviations estimates of misalignment errors obtained by 
Monte Carlo analysis based on suboptimal Kalman filter structure 

 

In the above filter configuration, together with misalignment states 

gyroscope drift errors were also augmented to the Kalman Filter system model. 

This is because, Monte Carlo analysis showed that if the drift errors are not 

augmented to the system model, then the suboptimal Kalman filter tends to 

diverge for long operation durations. Therefore, although the inclusion of drift 

models does not increase overall estimation performance, they should be used 

together with misalignment states. On the other hand, it should be noted that, for 
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tactical grade IMUs, which has approximately 1°/sec drift error, such inclusion of 

drift errors is not necessary as that amount of drift error does not corrupt the 

measurements as much as in the case of gyroscopes with 10°/sec drift error. 

In order to see that, whether this technique is capable of estimating any 

IMU calibration parameter, all IMU and lever arm models presented in Table 4-1 

were augmented to the Kalman filter system model. When the Kalman filter was 

run under these conditions, it was observed that this transfer alignment method is 

not capable of producing acceptable IMU calibration parameter estimation 

performance (the estimation performance was twice worse than the estimation 

performance of velocity matching method). In Boch (1989), it is proposed to slow 

down filter update rate in order to support estimation of calibration parameters. 

However, even this technique did not contribute to the estimation performance of 

Kalman filter at all. In Harris (1977), it is suggested to augment system models 

with vibration related terms such as “ S
MSω ” in Equation (4.18). However, as also 

explained by Harris (1977), there is no guarantee that more complex filters 

depending on less accurate models such as vibration effects can increase filter 

performance. Even if such a performance increase is obtained with these 

techniques, it is possible that Kalman filter can diverge in real time operation due 

to the vibration modeling errors. 

Another disadvantage of this method is that, when all IMU models are 

utilized in Kalman filter system model, the Kalman filter become highly sensitive to 

any error in misalignment model presented in Equation (4.13). As explained 

above, in order to track dynamical misalignment changes during flight, very high 

frequency Kalman filter update rate should be utilized. With such high frequency 

update rate, any erroneous misalignment model quickly disturbs IMU calibration 

parameter estimates. On the other hand, when update frequency is reduced, filter 

cannot estimate misalignment changes and therefore cannot estimate IMU 

calibration parameters either. Therefore, in order to estimate any IMU calibration 

parameter with this method, a very accurate misalignment model is required. 

As a result, despite the simplicity and robustness of the filter structure, the 

estimation performance of this filter turns out to be insufficient. Especially, its lack 

of ability to estimate any calibration error parameter makes the filter very useless 

for advanced transfer alignment needs. 
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4.4 VELOCITY MATCHING METHOD 

In this transfer alignment technique, master and slave velocities are 

compared via a Kalman filter structure. However, before the comparison is made, 

the velocity obtained from aircraft should be compensated for lever arm effect. As 

the lever arm compensation errors act like IMU errors in the measurement, the 

correctness of lever arm compensation process is highly crucial in the estimation 

of calibration parameters (Boch (1989)). 

A typical structure of a transfer alignment filter which uses velocity match 

technique is represented in the following figure. 

 

 

Figure 4-9 : Structure of transfer alignment filter which uses velocity match method 

 

As seen from the above figure, measurements for the Kalman filter are 

formed using slave and compensated aircraft velocities. The lever arm 

compensation on master velocity output is calculated using Equation (3.30) as 

follows: 
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M rCVV ×−+= )( ωω      (4.22) 

As seen from Equation (4.22), it is assumed that, rotation rate and lever 

arm vector are also supplied by master INS along with the velocity information. If 

those variables cannot be obtained from master INS, than lever arm 

compensation process can be accomplished using variables obtained from slave 
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INS by utilizing Equation (3.31). However, as indicated in Stovall (1993), use of 

slave supplied values can decrease the performance of the filter. 

By subtracting the slave velocity from compensated master velocity, an 

observation for the Kalman filter can be calculated as follows: 

( )[ ] S
MM

ie
M
iM

n
MMObs VrCVz ~~~~ −×−+= ωω     (4.23) 

In Equation (4.23), the variables with “~” on top represent erroneous 

values (the values that are actually supplied by the master and slave systems). 

The relation between true and erroneous value can be represented as  xxx δ+=~  

where xδ  denotes error on the corresponding variable. 

In order to process this observation in a Kalman filter, a measurement 

model that relates the system states with the observation is required. Using 

Equation (3.30), a measurement equation for the observation given in (4.23) can 

be written in terms of error values as follows: 
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In Equation (4.24) SVδ  and Mrδ  represents the error on slave velocity and 

lever arm vecotrs. If it is assumed that only these two variables are modeled in 

system model of Kalman filter then the remaining terms constitute the 

measurement noise. Hence measurement noise can be represented as follows: 
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M rSCVrC δωδυ ~−+= &      (4.25) 

The first term in RHS of Equation (4.25) represents the lever arm 

compensation error due to the elastic motion of aircraft structure (vibration term). 

The last two terms in RHS represents the error in master INS outputs. These 

master INS errors were accepted to be in the form of white noise with standard 

deviations given in Table 2-3 and errors in master supplied attitude information 

was ignored. 

The estimation of slave navigation errors, slave IMU parameters and lever 

arm errors was performed using an extended Kalman filter with a closed loop 

feedback structure (refer to Appendix C). The model given in Table 4-1 was 

implemented as the Kalman filter system model. Therefore the system model was 

composed of the following 27 states: 
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i. 3 states for slave velocity error each represents north, east and down 

velocity errors. The error propagation models for these states are 

shown in Equation (2.16). 

ii. 3 states for slave attitude error. The error propagation models for 

these states are shown in Equation (2.10) 

iii. 3 states for slave’s accelerometer bias repeatability  

iv. 3 states for slave’s accelerometer scale factor repeatability  

v. 3 states for slave’s gyroscope drift repeatability 

vi. 3 states for slave’s gyroscope scale factor repeatability 

vii. 3 states for slave’s accelerometer bias instability  

viii. 3 states for slave’s gyroscope drift instability 

ix. 3 states for static lever arm error 

The propagation models and stochastic properties for IMU error states 

were summarized in Table 4-1 and Table 2-1. As seen from Table 4-1, lever arm 

errors were modeled as random constants in the system model. On the other 

hand, due to the elastic nature of aircraft structure, the lever arm between master 

and slave system continuously changes. Therefore, it would be more realistic to 

model the lever arm vector as the sum of two vectors one of which represents the 

static and the other represents the dynamic component of lever arm. This can be 

represented as follows: 

0=

+=

Stat

DynStat
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rrr
&

        (4.26) 

However, in the Kalman filter, only the static lever arm component is 

modeled as random constant and the effect of dynamic lever arm is ignored in the 

system model. This is because for two reasons. First of all, it is expected that 

steady state standard deviation of dynamic lever arm component does not exceed 

5 cm. Therefore, the effect of dynamical lever arm errors on lever arm 

compensation process would not be too much. Secondly, as shown in Chapter 3 

and Appendix B, to model the dynamical lever arm component, it is required to 

augment at least 9 states to the Kalman filter system model.  However, the 

accuracy of these models is not sufficient to represent vibration dependent 

displacement during real flight conditions. Therefore considering the increased 

computational complexity as well as unreliable modeling problems, it is preferred 



66 

to consider the effect of dynamical lever arm error as a part of measurement 

noise. 

Hence, replacing Equation (4.26) in Equation (4.24) and (4.25), the 

following revised measurement equations are obtained: 

( ) υδωδ ++−= M
Stat

M
EM

N
MSMeas rSCVz ~      (4.26) 

( ) ( ) M
iM

M
Stat

n
M

n
M

M
Dyn

M
eM

M
Dyn

n
M rSCVrrC δωδωυ ~~ −+×−= &    (4.27) 

As can be seen in Equation (4.27), with the utilization of new 

measurement equation, Kalman filter estimates only the error on static lever arm 

component. Furthermore, because of the effects of “ M
Dynr& ” and “ M

Dynr ”, 

measurement noise contains correlated noise components. Although these errors 

contradicts with the Kalman filter white measurement noise constraint, because of 

the reasons stated above, those correlated noise terms was handled as white 

noise processes in the Kalman filter’s measurement model. The variances of 

these components were taken to be same as the steady state variance of 

vibration models presented in Appendix B. 

As seen from Table 4-1, slave position errors were not modeled in Kalman 

filter. This is because; lever arm compensation for position can be performed with 

an accuracy of at worst 30cm. Therefore, instead of adding position states, it was 

preferred to directly update position states of INS by the position information 

supplied by master INS so that processing load of filter hardware could be 

reduced. 

In the following figures attitude and bias errors standard deviation 

estimates of the Kalman filter which uses Velocity match technique with an update 

rate of 1Hz is presented. 
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Figure 4-10 : Attitude error standard deviation estimate of Kalman filter 
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Figure 4-11 : Accelerometer bias repeatability error standard deviation estimates of 
Kalman filter 
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Figure 4-12 : Gyroscope drift repeatability error standard deviation estimates of 
Kalman filter 

 

As seen from the above figures, velocity match technique is highly 

successful in estimating both attitude and calibration error parameters. Filter can 

reduce the attitude error in the order of 0.45 mrad level as well as it reduces the 

bias error to 0.4 mg level. Also, above figures roughly reveals the relationship 

between aircraft maneuver and estimation performance of the filters. For instance, 

as shown in Figure 4-10, error in azimuth angle can not be observed until the 

aircraft banks to turn. 

A complete performance analysis of this filter structure will be presented at 

the next chapter. Therefore, no more result about this technique is presented in 

this section. 

4.5 INTEGRATED VELOCITY MATHCING METHOD 

As shown in Equation (4.27), vibration induced velocity directly appear as 

measurement noise in velocity match technique. Therefore the level of vibration 

has a limiting effect on the estimation performance of the filter. Moreover, as the 

bandwidth of the vibration is much higher than the filter update rate, basically it is 

not possible to reduce the effect of vibration on filter efficiency by augmenting the 

vibration models to the Kalman filter’s system model. Hence, if the measurements 
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can be separated from the effect of vibration induced velocity, estimation 

performance of the Kalman filter will increase. 

Integrated velocity match technique is a direct consequence of above 

reasoning. In this technique, the velocity measurements are integrated in order to 

reduce the effect of vibration induced velocity, before the measurements are 

processed by Kalman filter. In this method, integration operation acts as a low 

pass filter such that it can eliminate the high frequency vibration motion from 

measurements. 

On the other hand, the effectiveness of this method should not be 

overestimated. As a matter of fact, Kalman filter is an optimal estimator. 

Therefore, it is not possible to increase the estimation performance by performing 

a linear operation on measurements. This statement is true only if system and 

measurement noises satisfy white noise property, however, as explained before, 

vibration induced motion is a correlated process. In fact, this property of 

measurement error makes it possible to increase estimation performance by 

integrating measurements. 

To derive an analytical reasoning for above the statements can be 

extremely tedious. Some derivations depending on continuous time Kalman filter 

formulation with suboptimal gain may be possible, but analytically solving 

continuous time Ricatti equation with a suboptimal gain seems not possible. 

Therefore, it was preferred to present effectiveness of integration concept with the 

following simple example. 

Suppose it is desired to estimate the velocity of a system which has only 

one degree of freedom by observing some noisy velocity measurement or integral 

of that measurement. That problem can be represented as follows: 
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Figure 4-13 : System which is used to verify integration approach 

 

In the above figure, “a” represents the acceleration in the form of white 

noise process with PSD level of 0.1(m/s2)2, “rv,yv” represents velocity 

measurement noise, and velocity observation. The integral of observation is 

called as “p”. Note that, “p” represents the erroneous position of the system as 

well (the position which is calculated using velocity observation). Finally, “rp“ 

denotes the error arise from the discrete time integration of velocity observation 

and “yp” denotes velocity integral observations. 

For the above system 3 different Kalman filter structures are formed. “KF 

VM” uses velocity observation, whereas, “KF IVM” uses integral of velocity 

observation to estimate actual velocity of the system. “KF VM Opt” also uses 

velocity observations, however it always satisfy Kalman filter system and 

measurement model assumptions (optimal Kalman filter structure for the system). 

The estimation errors for the Kalman filters are represented as “evm”, “evm opt” and 

“eivm”.  

First of all, it should be noted that, if measurement noises are white and 

Kalman filter structures are implemented in continuous time, then the steady state 

values of velocity estimation error variances will be as follows: 

vae RN
vm
=2σ        (4.28) 
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( )vpaae RRNN
ivm

+= 22σ       (4.29) 

where Na represents PSD level of input acceleration, and Rv and Rp 

denotes PSD level of white measurement errors. As seen from Equation (4.29) if 

Rp is zero (if no error occurs in the integration of velocity measurements) than the 

steady state error variances of both Kalman filters become equal as expected. 

Above system was run in several different configurations to compare the 

estimation performance of “KF VM” and “KF IVM”. In the first configuration, rp was 

set to zero, and a white noise process with a PSD level of 0.01(m/sec2)2 was 

applied as rv. During the discretization of the system, it was assumed that 

measurement errors were averaged such that: 

TRR

TRR

p
Disc
p

v
Disc
v

∆=

∆=
        (4.30) 

where ∆T corresponds to observation interval. When both Kalman filters 

were run at 1Hz update rate, the following estimation error standard deviation 

estimates were obtained. 
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Figure 4-14 : Comparison of SD estimates of Kalman filters which uses velocity and 
integrated velocity measurements 

 

As seen from the above figure, with this configuration VM filter performs 

better than IVM filter. However as the update frequency increases, both standard 
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deviation estimates converge to the strait black line which represents the 

theoretical standard deviation estimate of a continuous time Kalman filter 

estimate. This example also shows the implicit suboptimality of the continuous 

time Kalman filters which arise from the fact that white noise processes are not 

realizable. 

In the second configuration, rp was again set to zero, however, a second 

order Markov process which has the following PSD was applied as the velocity 

observation noise: 
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Steady state variances of this process can be calculated as follows: 
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Parameters of this process are adjusted to be as follows: 
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which corresponds to following steady state variances: 
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In this configuration, suboptimal Kalman filters were implemented such 

that they handled correlated measurement noises as if they were white noise 

sequences with standard deviation equal to 2
vibvσ  for “KF VM” and 2

vibdσ  for “KF 

IVM”. As a matter of fact, this is the point where the importance of correlatedness 

of measurement errors appears. As given in Equation (4.33), the steady state 

variance of integral of correlated noise is 21 β  of noise itself. Therefore, in this 

system, each integrated measurement has 1/2500 times less uncertainty than the 

measurement itself, which under some circumstances provides an increase in the 

estimation performance of the filter. 
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In Figure 4-15, the comparison of standard deviation estimates of Kalman 

filter and real error standard deviations obtained using Monte Carlo simulations is 

presented for both “KF VM” and “KF IVM” which were run at 1Hz update rate. 
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Figure 4-15 : Comparison of real and Kalman filter error estimate standard 
deviations 

 

As seen from the above figure, although the measurement noises are 

correlated, Kalman filter still performs as if it were optimal. Also note that, “KF VM” 

filter still produce better estimates than “KF IVM” filter. 

In the third configuration, excitation power of velocity measurement noise 

(Nv) was increased 600 times, and the rest was kept same as the previous 

configuration. Standard deviations of estimation errors obtained using this 

configuration is shown Figure 4-16. 
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Figure 4-16 : Comparison of real and Kalman filter error estimate standard 
deviations 

 

In the second subplot in Figure 4-16 (SD estimates for VM), the standard 

deviation estimate of Kalman filter was obtained using the optimal Kalman Filter 

structure; however, the real error standard deviation was obtained by Monte Carlo 

simulations using suboptimal Kalman filter outputs (“evm”). Therefore, this figure 

suggests, under the specified conditions, “KF VM” filter can still works as if it were 

optimal. The reason for this is the selected 1Hz update rate of Kalman filters. The 

coefficients shown in Equation (4.33) correspond to a bandpass process whose 

center frequency is around 10Hz. Therefore 1Hz sample of this process becomes 

relatively uncorrelated and representing this sample in Kalman filter as a white 

noise sequence turns out to be a very good approximation. 

In the first subplot of Figure 4-16 (SD estimates for IVM), the standard 

deviation estimate of “KF IVM” filter and real standard deviation of error calculated 

with Monte Carlo simulations using “eivm” were presented. Comparing this figure 

with the second one, it can be seen that, “KF IVM” filter performs much better 

than “KF VM” filter. 

At a first glance, the result presented in Figure 4-16 seems to be violating 

the optimality of Kalman Filter. However, it should be noted that, in order to keep 
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integration error at negligible levels, the integration of measurements was 

performed at 500Hz and thus Rp is set to zero. On the other hand, both “KF VM” 

and “KF IVM” were run at 1Hz. Therefore, as a matter of fact, “KF IVM” filter 

incorporates 500 observations in one update period whereas “KF VM” filter uses 

just single observation. If the frequency of measurement integration process is 

decreased, than an additional error component on integrated measurements 

starts to appear which has to be handled in Kalman filter structure properly. Monte 

Carlo simulations showed that for this specified system, integration frequency can 

be reduced to 100Hz safely by just using an artificial measurement error (Rp) in 

the Kalman filter formulations. However below 100Hz, in order to prevent 

divergence of estimates, this integration error should also be modeled by 

augmenting additional states in the Kalman Filter system model. 

The power of integrated measurement approach comes from the fact that, 

even if suboptimal Kalman filter structure is used, it can present near optimal 

performance. To show this, same system used in above analysis (Figure 4-13) 

was used again. However this time, optimal Kalman filter (“KF VM opt”) was run at 

100 Hz. Also integration of measurements was performed at 100Hz and “KF IVM” 

was run using these integrated measurements at 20Hz. A small artificial (Rp) was 

added to KF IVM formulations in order to compensate integration errors. The 

comparison of standard deviation of errors is represented in the following figure. 
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Figure 4-17 : Comparison of SD obtained using “KF VM”, “KF IVM” and “KF VM 
Opt” 

 

As seen from the above figure, suboptimal Kalman filter which process 

integrated measurements at 20Hz can perform almost same with the optimal 

Kalman filter which uses velocity observations at 100Hz. In the figure, results of 

“KF VM” filter are also presented. As can be seen from this figure, at 100Hz, 

suboptimal filter’s standard deviation estimate and real standard deviation 

obtained using Monte Carlo simulations substantially differed which was due to 

the unmodelled correlated nature of velocity measurement noise. 

On the other hand, it should be noted that, integration errors, which was 

modeled as white measurement noise, may cause “KF IVM” to diverge for long 

operation durations. Therefore, for Kalman filters using integrated measurements, 

integration errors should be handled very carefully. 

In a typical transfer alignment algorithm, every velocity measurement is 

contaminated with some form of correlated noise. As can be seen from Equation 

(4.27), especially vibration induced velocity and dynamic displacement error add 

significant amount of correlated error which causes problems for high Kalman 

Filter update rates. Moreover, as unmoldelled lever arm errors behave like IMU 
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errors, during the maneuver of aircraft it distorts the calibration parameter 

estimation very much. 

In order to avoid divergence problems, one can reduce the filter update 

rate. However, this causes the estimation performance of filter to decrease. On 

the other hand, as shown above, measurement integration method can be very 

effective under correlated measurement noise. Therefore, in the literature, 

integrated velocity matching method has also been frequently employed in the 

design of transfer alignment algorithms. 

Basically two different integrated velocity matching method can be 

implemented. In the first method, the observation used in velocity matching 

technique, which is given in Equation (4.22), is directly integrated. In this 

approach, three new states representing integrated measurements are 

augmented to the Kalman filter system model. This can be shown as follows: 

Let the original Kalman filter model be as follows: 

vHxy
BuAxx

+=
+=&

        (4.34) 

Then in the integrated measurement approach, the system model turns 

out to be as follows: 
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      (4.35) 

In Equation (4.35), theoretically there should not be any measurement 

error. However, as described before, to model the effect of integration error, an 

artificial measurement error is also utilized in the measurement model. 

The structure of this kind of transfer alignment filter can be represented as 

in the following figure. 
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Figure 4-18 : The structure of transfer alignment filter which uses integrated 
velocity matching technique 

 

As seen from the above figure, the compensated velocity differences are 

integrated in this method. However, the compensation process involves 

dynamically changing terms such as rotation rate of master. Therefore, in order to 

keep integration error at acceptable levels, it is required to perform integration 

operation very frequently. 

In order to reduce the need for frequent integration, the method is modified 

such that, integral of velocities are computed before lever arm compensation is 

made (Savage, (2000)). The structure of this modified integrated velocity 

matching method is shown in Figure 4-19.  
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Figure 4-19 : The structure of Kalman filter which uses integrated velocity 
measurements 

 

In this method, the direct difference between master and slave velocities is 

integrated (without any lever arm compensation). As shown in Equation (3.33) this 

difference corresponds to the following: 

( ) nnn
en

n
M

n
S rrSVV &+=− ω       (4.36) 

Therefore the integral of velocity difference can be represented as: 

( ) ( ) ( ) ( )∫∫
∆∆

+−∆=−
T
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T

n
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n
S dtrSrTrdtVV

00

0 ω    (4.37) 

Using Equation (4.37) an observation can be computed as follows: 

( ) ( ) ( )[ ] ( )∫∫
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n
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n
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T
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M
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00

~~0~~~~ ω  (4.38) 

Using the same state structure shown in Table 4-1, and lever arm model 

given in Equation (4.25), a measurement model for the above observation can be 

constructed as follows: 

( ) ( ) ( )[ ] Integ
M
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N
M

N
M

T
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M
N

s
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N
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M
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N
M

N
M rrCTCrCTC

0

ˆ0ˆˆ0ˆˆ δδδυ  (4.40) 

Equation (4.39) represents the measurement model and Equation (4.40) 

represents the measurement error (measurement noise). The last term in 
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Equation (4.39) ( Integυ ) corresponds to fictitious integration error. As shown in 

Equation (4.38), observations are calculated by integrating velocities. As this 

integration is performed in discrete time, an unavoidable integration error occurs 

in real time implementation. In order to represent this error, a fictitious noise 

component is added to the measurement model. In the following discussions, it is 

assumed that the amount of this additional error is negligible and thus completely 

ignored. However, in Chapter 5, the effect of this error is analyzed in detail. 

In deriving above measurement models, it is assumed that, the product of 

two error terms are negligible, and Dynr  does not change much in single 

observation duration. 

As seen from Equation (4.39), the measurement equation in this method 

contains integral of velocity errors differences (the first term in the right hand side 

of Equation (4.39)). Therefore, it is required to augment this integral as a new 

state in Kalman filter’s system model. However, it should be noted that, this new 

state does not represent the integral of velocity error. Instead it represents the 

error in integral of difference between slave and master system velocities. Thus, 

denoting this new state as “ i ”, the propagation model of “ i ” can be represented 

as follows: 
N

M
N

s VVi δδ −=&        (4.41) 

As stated before, error on master supplied information is assumed to be in 

the form of white noise. Therefore, “ N
MVδ ”, which represents the error on master 

velocity, is handled as a white process noise for the “ i ” state. As the integration of 

measurements starts at the same time filter starts to operate, neglecting data 

synchronization errors, the initial uncertainty of “ i ” state is taken to be zero (Refer 

to Savage (2000) for a detailed explanation about the calculation of initial 

uncertainty of “ i ” state). 

With the augmentation of Equation (4.41) to the states defined in Table 

4-1, the number of states modeled in the Kalman filter system model for 

integrated velocity match technique increases to 30. 

The last term in Equation (4.40) represents the cross product of lever arm 

vector error and the rotation rate of Navigation frame of reference with respect to 

Earth. As this rotation rate is very small, the effect of that error term can simply be 

ignored. 
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Comparing Equation (4.40) and Equation (4.27), it can be seen that, in 

Equation (4.40) instead of vibration induced velocity term there is only vibration 

induced displacement term. As a matter of fact, this is the point where benefits of 

integrated velocity matching technique come from. 

In the following figures attitude bias and drift errors standard deviation 

estimates of the Kalman filter which uses integrated velocity match technique with 

an update rate of 1Hz is presented. The integral of measurements are calculated 

at 20Hz. 
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Figure 4-20 : Attitude error SD estimates of the Kalman filter which uses integrated 
velocity match technique 
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Figure 4-21 : Bias repeatability error SD estimation of Kalman filter which uses 
integrated velocity measurements. 
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Figure 4-22 : Gyroscope drift error repeatability SD estimations of Kalman filter 
which uses integrated velocity measurements 

 

Comparing Figure 4-10 and Figure 4-11 with Figure 4-20 and Figure 4-21, 

it can be seen that estimation performance of integrated velocity match technique 
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is better than velocity match technique under the specified conditions. However, it 

should be noted that, in the above calculations it was implicitly assumed that 20 

Hz integration frequency is sufficient. The more detailed treatment of the results 

and comparison of this technique with velocity match method under different 

conditions will be presented at the next chapter. 

4.6 ATTITUDE MATCHING METHOD 

In a typical transfer alignment application, it is possible to obtain attitude of 

the master system along with the velocity information. Therefore, it is usually 

desirable to use attitude information as another source of measurement in 

Kalman filter structure. 

In order to asses the effect of attitude measurements in estimation 

performance, first, a Kalman filter which uses only attitude information as 

measurement is constructed. For this filter, observations are obtained using the 

following equation: 
M
n

S
M

n
Sobs CCCz ~~

=        (4.42) 

Using the state variables used in Kalman filter, a measurement model for 

the above observation can be constructed as follows: 

Combine Equation (2.8) with (4.42) 

[ ] M
n

S
M

n
Sobs CCCz ~

Φ−Ι=       (4.43) 

Let the relation between slave and master transformation matrices are as 

follows: 

( )[ ]eSCC M
S

M
S +Ι=

~
       (4.44) 

where “e” represents the error on slave to master transformation matrix. In 

other words, it represents the small Euler angles which define the transformation 

from slave erroneous body frame of coordinates to the slave true body frame 

defined on slave erroneous body frame of coordinates. 

Then using Equation (3.34) and (4.44), the following relation is obtained: 

( ) M
n

S
M

n
S

M
n

S
M

n
S CCeSCCCC ~~

−Ι=      (4.45) 

Replace (4.45) in (4.43): 

[ ] ( )[ ]M
n

S
M

n
Sobs CCeSCz ~

−ΙΦ−Ι=      (4.46) 
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Neglecting the product of error terms, Equation (4.46) can be written as 

follows: 

( )[ ]Φ+−Ι= M
n

S
M

n
Sobs CCeSCz ~

     (4.47) 

Assume that 

( ) ( ) S
n

n
S

S
n

n
S CeSCCeSC =

~
      (4.48) 

Then, using similarity transformation, measurement equation in vector 

form can be obtained as follows: 

ϕ+== eC
z
z
z

z N
S

obs

obs

obs

meas

)2,1(
)1,3(
)3,2(

      (4.49) 

where, indices inside the parenthesis represent the corresponding element 

of “ obsz ”. As seen from Equation (4.49), in order to implement attitude 

measurements in Kalman filter, the error in slave to master transformation matrix 

(‘e’) has to be modeled and added to Kalman filter’s system model. 

If the nominal master to slave transformation matrix “ S
MC~ ” is assumed to 

be constant, then, in a deterministic sense, the propagation model of ‘e’ can be 

derived by utilizing Equation (4.8), where in this case “ [ ]Tzyx ωωω ” in Equation 

(4.8) corresponds to the following: 

[ ] ( )[ ] S
iS

M
iM

S
M

S
SS

T
zyx CeS ωωωωωω −+Ι==

~
~     (4.50) 

On the other hand, as stated in the Chapter 4.3, due to the insufficient 

transmission rate of aircraft avionics, usually it is not possible to solve Equation 

(4.8) with a sufficient rate. Furthermore, the rotation rate supplied by the slave will 

be erroneous which also affects the solution. Hence, it is not possible to solve 

Equation (4.8) with sufficient accuracy. Therefore, in Kalman filter 

implementations, it is preferred to use pure stochastic processes to model the 

error in slave to master transformation matrices. 

To evaluate the performance of Kalman filter which uses only attitude 

measurements, first of all, the filter was assessed under the rigid aircraft body 

assumption. According to this assumption, there is no relative motion between 

master and slave, and therefore the orientation of slave with respect to master 

stays constant throughout the flight and can be modeled as random constant in 

Kalman filter system model. Thus, the following model should be augmented to 
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the system model given in Table 4-1 in order to process attitude measurements in 

Kalman filter. 

0=e&          (4.51) 

In the above model, ‘e’ represents the error on master to slave 

transformation matrix which is defined in Equation (4.44). The initial uncertainty of 

‘e’ was taken to be the same as initial relative orientation error given in Table 2-2. 

The error standard deviation estimates of this filter structure (which has 30 

states including ‘e’) are presented in the following figures. 
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Figure 4-23 : Kalman filter’s standard deviation estimate of attitude error states 
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Figure 4-24 : Kalman filter’s standard deviation estimate of velocity error states 
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Figure 4-25 : Kalman filter’s standard deviation estimate of gyroscope drift errors 
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Figure 4-26 : Kalman filter’s standard deviation estimate of gyroscope scale factor 
errors. 

 

As seen from Figure 4-24, by using only attitude measurements, it is not 

possible to estimate velocity errors. This is because, the effect of velocity errors 

on attitude errors are too weak. As shown in Equation (2.10), velocity error excites 

attitude error via only “ n
inδω ” term, which is calculated by dividing the velocity with 

the radius of Earth. Therefore, in this method, the effect of velocity errors on 

attitude errors can not be separated from other major source of attitude errors.  

 Furthermore, because of this insufficiency in estimating velocity errors, 

the accelerometer calibration parameters can not estimated either. On the other 

hand, as can be seen from Figure 4-25 and Figure 4-26, using attitude 

measurements gyroscope calibration parameters can be estimated quite 

successfully. 

As shown in Figure 4-23, until the first maneuver of aircraft, attitude errors 

cannot be estimated. This is because; attitude observation method is the same as 

the initialization method of attitude. This can be shown as follows: 

Initial attitude of slave is calculated as follows: 

( ) ( ) M
S

n
M

n
S CCC ~00~

=        (4.52) 

Replace Equation (4.44) in (4.52); 
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Replace Equation (2.8) in (4.53): 

( )( )[ ] ( ) ( ) ( )( )[ ]0000 eSCCS n
S

n
S +Ι=−Ι ϕ     (4.54) 

Rearrange (4.54); 

( ) ( ) ( )000 eC n
S−=ϕ        (4.55) 

where “ϕ ” represents the initial attitude error and “ e ” represents the initial 

misalignment error. Initial covariance matrix of Kalman filter’s attitude and 

misalignment states are adjusted using Equation (4.55). Therefore, this shows 

that, during the initialization of state covariance matrix, attitude and misalignment 

states are not initialized separately but rather, “ ( ) ( ) ( )000 eC N
S+ϕ ” is initialized to 

be as zero. Thus, unless N
SC  changes (which requires the aircraft to perform a 

maneuver) attitude error and misalignment states cannot be estimated separately. 

Another disadvantage of only attitude matching method is the highly 

nonlinear structure of observation equation (Equation (4.42)). To obtain a 

measurement relation from the given observation, small angle assumptions are 

utilized several times, which in some instances may not be true. For instance, 

assume that initial misalignment error is [20 25 10]mrad. Regarding the initial 

misalignment variances presented in Table 2-2, the likelihood of encountering 

these values is considerably high. Assuming the initial attitude of slave system is 

[0 0 0.5236] rad, then the error in linearizing the observation equation can be 

approximated as follows: 

( ) eCCeCCeulerdcmerr n
S

S
n

n
SMeas −= )(2     (4.56) 

where “e“ is initial misalignment error and C(e) is real direction cosine 

matrix calculated using “e”. Using the above angle values, measurement error can 

be found as errMeas = [2.8e-6, 0.8e-6, 0.1738e-3]. As seen from this result, 

measurement error can be too high to simply ignore. Especially, as this error has 

a bias like characteristic, this amount of error can easily destroy the gyroscope 

calibration parameter estimates of Kalman filter.  

The effect of this measurement error on filter performance can easily be 

observed by comparing the Kalman filter standard deviation estimate with that of 

real standard deviation of z gyroscope drift estimation error which is obtained by 

Monte Carlo analysis. In Figure 4-27 this comparison is presented. As seen from 

this figure, after the aircraft starts its maneuver, the difference between estimated 

and real standard deviations grows. During the first strait flight segment, no 
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difference is observed. This is because, due to the initialization and measurement 

calculation methods, no measurement error occurs until the aircraft performs a 

maneuver. 

 

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-5 SD Comparison of Z Gyroscope Drift Errors

R
ad

/S
ec

Sec

Real SD
Kalman SD Est.

Real SD 

Kalman SD Est. 

 

Figure 4-27 : Comparison of standard deviation estimate of Kalman Filter with that 
of real standard deviation of z gyroscope drift estimation error 

 

In order to avoid this, for only attitude match method, initial misalignment 

error standard deviations are reduced to [5 5 10] mrad.  

To see the effect of wing vibration on attitude match method, vibration 

models were activated again in the simulation environment. In this case, due to 

the wing flexure and vibration effects, misalignment errors can no longer be 

represented as only random constants. Along with random constant, additional 

states should be augmented to Kalman filter system model in order to represent 

the dynamically varying component of misalignment angles. 

To represent dynamically changing components, following model was 

used for misalignment angle: 

vibFlexStatTot eeee ++=       (4.57) 

where “eTot” represents total misalignment error. “eStat” denotes the total 

error arise from the mechanical mismatch such as mounting misalignments or so. 

Therefore it can be modeled as random constant. 
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“eFlex” represents the low frequency large amplitude misalignment due to 

flexure of wing and “eVib” represents high frequency small amplitude misalignment 

arise from vibration of wing. In order to model these components usually Markov 

processes which are at least second order are utilized in Kalman filter system 

model. However, such an approach requires at least 12 states to be augmented 

to Kalman filter, which increase the computational complexity very much. 

Therefore, in this study a simpler approach was implemented. In this approach, 

“eFlex” component was modeled as a random walk process. Process noise of 

random walk component was calculated by performing Monte Carlo analysis. This 

procedure can be summarized as follows; in the simulation environment, by 

performing Monte Carlo trials, the variance of change in Euler angles (which 

defines master to slave orientation) due to the non rigid structure was calculated 

with respect to time, and this variance versus time curve was fitted to a straight 

line. The slope of this line was used as process noise for random walk 

component. For the vibration models shown in Appendix B, the variance of 

process noise was found to be approximately “14e-10” (rad/sec)^2 for 1 second 

samples. 

On the other hand “eVib” is modeled as white noise. This is because, for 1 

second Kalman filter update time, observations for vibration induced motion 

become essentially uncorrelated, and hence cannot be estimated. Therefore, the 

effect of “eVib” was modeled as a part of measurement noise in Kalman filter. The 

variance of this component is assumed to be “8.7e-009” (rad/sec)^2 which is 

close to the steady state variance of rotational vibration model shown in Appendix 

B. 

Regarding to the above modifications, the following six states are 

augmented to the Kalman filter system model given in Table 4-1 (note that 

Equation (4.58) and (4.59) represents vector variables): 

0=State&         (4.58) 

FlexFlex ne =&         (4.59) 

where Flexn  represents system disturbance in the form of white noise with 

a power spectral level of “14e-10” (rad/sec)^2/Hz. Also to consider the new states, 

the measurement model given in Equation (4.49) is modified as follows: 

( ) υϕ +++= FlexStat
N
Smeas eeCz      (4.60) 
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Vibe=υ         (4.61) 

Since “eVib” was modeled as white noise, Equation (4.61) represents the 

measurement noise with a variance “8.7e-009” (rad/sec)^2. 

The estimation performance of this Kalman filter structure was evaluated 

by performing Monte Carlo analysis. In the following figures, the comparison of 

Kalman filter standard deviation estimates and real error standard deviations 

calculated using Monte Carlo trials are presented. 
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Figure 4-28 : Comparison of real standard deviation and Kalman filter standard 
deviation estimate for Z gyroscope drift error 
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Figure 4-29 : Comparison of real standard deviation and Kalman filter standard 
deviation estimate for X gyroscope drift error. 
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Figure 4-30 : Real standard deviations of gyroscope scale factor errors obtained 
using Monte Carlo trials. 
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Figure 4-31 : Real standard deviations of attitude error estimates obtained using 
Monte Carlo trials 

 

As seen from Figure 4-28, by reducing initial uncertainty of misalignment 

angles, the error occur on gyroscope calibration parameters estimates during 

aircraft maneuvers can be prevented.  

Also, by comparing Figure 4-29, Figure 4-30, Figure 4-31 with Figure 4-25, 

Figure 4-26 and Figure 4-23, it can be seen that the flexing nature of 

misalignment angles causes the attitude, gyroscope drift and scale factor error 

estimates to degrade. Therefore, true modeling of misalignment angles is highly 

crucial in the implementation of this method. Any error on the model of “eFlex” can 

either degrade the estimation performance (for models with high uncertainty) or in 

long term cause the filter to diverge due the wrong standard deviation estimate 

(for models with low uncertainty). This situation is depicted in Figure 4-32 and 

Figure 4-33. In these figures, the real standard deviations obtained by Monte 

Carlo trials and standard deviation estimates of Kalman filter for azimuth error and 

z gyroscope scale factor errors are compared when process noise for “eFlex” state 

is reduced to “14e-12” in the Kalman filter system model. 
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Figure 4-32 : Comparison of real standard deviation obtained by Monte Carlo trials 
and Kalman filter standard deviation estimate for Z gyroscope scale factor error 
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Figure 4-33 : Comparison of real standard deviation obtained by Monte Carlo trials 
and Kalman filter standard deviation estimate for azimuth error 

 

As shown in the above figures, both the gyroscope calibration parameters 

and attitude error estimates can easily be disrupted by errors in “eFlex” models. 
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Therefore, in real time applications, special attention has to be given to accurate 

modeling of misalignment changes due to the flexure effect. 

4.7 VELOCITY AND ATTITUDE MATCHING METHOD 

As shown in previous section, by using only attitude measurements it is 

not possible to estimate accelerometer calibration parameters. Furthermore, 

attitude matching method is not guaranteed to work for high initial misalignment 

errors. On the other hand, by comparing Figure 4-31 with Figure 4-10, it can be 

seen that in the attitude match method, attitude errors can be estimated faster 

and better than velocity match method. Also, attitude measurements enhance the 

estimation of gyroscope calibration parameter estimates. Thus, in order to get the 

advantage of both types of methods in a single filter structure, both velocity and 

attitude observations should be processed in a Kalman filter at the same time. 

This technique is called attitude and velocity matching method. 

The implementation of this method is as almost same as the previous 

methods. As the attitude and velocity observation noises are almost uncorrelated, 

these two observations can be processed in Kalman filter in a sequential manner 

in order to prevent grow of code mass in the real time implementation. 

For the Kalman filter structure using attitude and velocity match methods, 

Equation (4.22) and (4.49) constitutes the observation equations. Measurement 

equation for velocity observations is also same as Equation (4.26). However, a 

slight modification is made for the attitude measurement and related Kalman filter 

states. As shown in Equation (4.57), total misalignment between master and slave 

systems can be represented as the sum of static, flexure and vibration 

components. On the other hand, as stated before, static component is modeled 

as a random constant whereas flexure component modeled as random walk. 

Therefore, it is possible to combine these two components and model them as a 

single state in Kalman filter system model. This new state is also modeled as 

random walk, but with an initial variance equal to the sum of dynamic and flexure 

components initial variances. This new misalignment state can be represented as 

follows: 

Flexne =&         (4.62) 

[ ] [ ] [ ]T
FlexFlex

T
StatStat

T eeeeee Ε+Ε=Ε      (4.63) 
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Hence, together with the states presented in Table 4-1, total number of 

states for attitude and velocity match method can be reduced to 30. In this case, 

the measurement equation for the attitude observations can be represented as 

follows: 

( ) υϕ ++= eCz N
Smeas        (4.64) 

Vibe=υ         (4.65) 

In the following figures, the standard deviation estimates of Kalman filter 

which process velocity and attitude information in a sequential manner are 

presented. It should be noted that, although not shown below, those results were 

also verified with Monte Carlo simulations. 
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Figure 4-34 : Kalman Filter SD estimate of velocity error for attitude and velocity 
match method 
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Figure 4-35 : Kalman Filter SD estimate of attitude error for attitude and velocity 
match method. 
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Figure 4-36 : Kalman Filter SD estimate of accelerometer bias error for attitude and 
velocity match method. 
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Figure 4-37 : Kalman Filter SD estimate of accelerometer scale factor error for 
attitude and velocity match method. 
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Figure 4-38 : Kalman Filter SD estimate of gyroscope drift error for attitude and 
velocity match method 
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Figure 4-39 : Kalman Filter SD estimate of gyroscope scale factor error for attitude 
and velocity match method 

 

As shown in Figure 4-35, although attitude observations were utilized, 

initial misalignment variances were adjusted to be [20 20 10]mrad. This is 

because, with the utilization of velocity together with attitude observations, 

horizontal tilt errors can be reduced to under 5mrad within a very short period of 

time, even if aircraft does not perform a maneuver. Therefore, errors due the 

nonlinearity of observation do not affect the system performance as in the only 

attitude match method. 

The superiority of attitude and velocity match over only velocity match is 

represented in the following figures. In these figures, standard deviation estimates 

of two Kalman filters, one of which uses only velocity observation and the other 

uses both velocity and attitude observations are compared. 
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Figure 4-40 : Kalman filter standard deviation estimates of roll angle error for 
“velocity match” and “velocity and attitude match” methods 
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Figure 4-41 : Kalman filter standard deviation estimates for azimuth error for 
“velocity match” and “velocity and attitude match” methods 

 



101 

0 20 40 60 80 100 120
0

0.005

0.01

0.015
Z Acc. Bias Error SD Estimate of Kalman Filter

Sec

m
/s

ec
2

VM
AVM

0 20 40 60 80 100 120
420

440

460

480

500
Z Acc. Scale Factor Error SD Estimate of Kalman Filter

Sec

P
P

M

VM
AVM

VM 

AVM 

VM 

AVM 

 

Figure 4-42 : Kalman filter standard deviation estimates for Z accelerometer bias 
and scale factor errors for “velocity match” and “velocity and attitude match” 

methods 
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Figure 4-43 : Kalman filter standard deviation estimates for Z gyroscope drift and 
scale factor errors for “velocity match” and “velocity and attitude match” methods 

 



102 

As seen from the above results, processing attitude and velocity 

observations at the same time enhance estimation performance of the Kalman 

filter both in terms of duration and accuracy. As the time required for the Kalman 

filter to reach a steady state (especially for the attitude error states) are extremely 

important for most weapon systems (especially for the air to air munitions), this 

method is the most preferred technique utilized in applications requiring rapid 

transfer alignment. 

On the other hand, the most important drawback of this technique is its 

sensitivity to modeling errors of misalignment states. As stated above, any error in 

misalignment models causes the Kalman filter error variance estimates to be 

substantially erroneous (See Figure 4-32 and Figure 4-33). For long operation 

durations, such a situation may cause the filter to diverge. However, modeling the 

flexure effect correctly can be extremely difficult. As shown in Roger (1996), for an 

F16, the flexure on the aircraft wing can reach to 3mrad under the maneuver with 

30°-40° bank angle and return to 0° when aircraft completes its maneuver. This 

proves the fact that; along with many other parameters, flexural misalignment is a 

function of aircraft bank angle. Therefore fitting a generic stochastic model for 

misalignment without considering the maneuver of aircraft can lead to very 

erroneous results. In the past some studies about relating the aircraft maneuver 

with the stochastic models which represent flexural misalignment was published. 

For instance in Spalding (1992), flexure is modeled with third order Markov 

processes and the effective correlation time of the process is adjusted using the 

aircraft rotation rate. Even if such approaches are sufficient to consider the effect 

of aircraft maneuver on misalignment, it is not possible to model all the effects 

leading to spontaneous alignment changes such as weapon release, whether 

condition change etc. using stochastic models. 

Therefore, for attitude observations, there is always a risk of occurring 

modeling errors which degrade the filter performance too much. On the other 

hand, the azimuth difference between master and slave systems is not affected 

much by the wing flexure effect as the roll and pitch differences do. Therefore, as 

suggested in Reiner (1996), instead of using all attitude information, by using just 

attitude difference in “yaw” axes, a measurement which is less sensitive to flexure 

can be formed. This method can be implemented as follows: 
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In Equation (4.42) the observation is formed in such a way that, a linear 

combination of misalignment angles appears in measurement model (see 

Equation (4.49)). However, in this method, the aim is to use just the misalignment 

in “yaw” axes. Therefore, instead of Equation (4.42), the following observation is 

used: 
M
S

n
M

S
nobs CCCz ~~

=        (4.66) 

In this case, a measurement model for only “yaw” misalignment can be 

constructed as follows: 

( )( )1,3)2,1( ϕS
Nzobsmeas Cezz +==      (4.67) 

where ze represents the total misalignment in yaw axes. 

As only “yaw” misalignment appears in measurement model, in the 

Kalman filter system model only this variable is modeled as a state with the 

following propagation model (see Equation (4.62)): 

zFlexz ne =&         (4.68) 

where zFlexn  represents the “z” component of Flexn . 

Therefore, together with the states shown in Table 4-1, total state number 

of Kalman filter turns out to be 28 (note that in attitude and velocity match method 

total state number was 30). 

In the following figures, the standard deviation estimates of 3 Kalman 

filters are compared. In the first structure, a Kalman filter which process velocity 

and “yaw” misalignment angle measurements was implemented using the method 

described above. The other two structures corresponded to Kalman filters which 

were in the form of “velocity match” and “velocity and attitude match” structures 

explained in previous sections. 
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Figure 4-44 : Kalman filter azimuth error standard deviation estimate comparisons 
for “velocity match” (VM) method, “attitude and velocity match” (AVM) method and 

“velocity and yaw misalign match” method. 
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Figure 4-45 : Kalman filter Z gyroscope drift error standard deviation estimate 
comparisons for “velocity match” (VM) method, “attitude and velocity match” 

(AVM) method and “velocity and yaw misalign match” method. 
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Figure 4-46 : Kalman filter X accelerometer bias error standard deviation estimate 
comparisons for “velocity match” (VM) method, “attitude and velocity match” 

(AVM) method and “velocity and yaw misalign match” method. 

 

As seen from the above figures, by using only yaw misalignment 

observations together with velocity observations, filter performance can be 

enhanced with respect to only velocity match method in terms of both accuracy 

and duration.  

The most important advantage of utilizing attitude observations (both for 

three and single axis measurements) in Kalman filter is their ability to limit the 

azimuth error increase during the level and straight flight of the aircraft. As seen 

from Figure 4-44 after the aircraft completes its maneuvers and starts straight 

flight segment (which corresponds to approximately after 90th seconds), the 

azimuth error begins to increase in Kalman filters which use only velocity 

observations. This is because, during straight flight, azimuth error and velocity 

observations become almost uncoupled, and hence no azimuth error estimates 

can be calculated. However, if the misalignment in “yaw” axes can be estimated 

before last straight flight segment, then the azimuth error grow will also be 

bounded by the grow of “yaw” axis misalignment error. This situation is 

represented in Figure 4-47. In this figure, azimuth error standard deviation 

estimates of the previous three Kalman structures are presented for a 25 minutes 
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trajectory. In this trajectory, after 90th seconds, the aircraft totally undergoes a 

level and straight flight. 
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Figure 4-47 : Kalman filter azimuth error standard deviation estimate comparisons 
for “velocity match” (VM) method, “attitude and velocity match” (AVM) method and 

“velocity and yaw misalign match” method. 

 

As seen from the above figure, the utilization of attitude information in 

Kalman filter measurements greatly reduces the azimuth error increase during the 

level and straight flight segment. For velocity match method, the increase in 

azimuth error mainly characterized by the gyroscope residual drift and gyroscope 

random walk error after the transfer alignment maneuvers are completed. 

However, with the utilization of attitude information, that increase can be limited 

by the model used for misalignment states. In the Kalman filter structures used in 

above simulations, misalignment states were modeled as random walk 

components (see Equations (4.62) and (4.68)). Therefore, in filter structures 

where attitude observations are used, the azimuth error increase was mainly 

characterized by the process noise variance used in misalignment models. It 

should be noted that, if a stable model were used for misalignment states, then 

the azimuth error increase could also be bounded above for Kalman filters which 

utilize attitude observations.  
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As seen from above explanations, the accurate modeling of misalignment 

states is extremely important in Kalman filter structures which use attitude 

observations. However, in order to derive an accurate model for the effect of 

flexure and vibration on the misalignment states, lots of flight tests have to be 

conducted to determine aircraft structural properties. As the developed vibration 

models were not able to model those effects accurately, in this study techniques 

which use attitude observations are not considered any more. 

On the other hand, it should be noted that, misalignment modeling error 

basically distorts calibration parameter estimates of Kalman filter. Therefore; if the 

main objective of the designed transfer alignment algorithm is to estimate attitude 

errors in a shortest time without considering calibration parameter estimates, then 

velocity and attitude matching method would still be the optimal solution for these 

kinds of problems. However, in the scope of this study, the robustness of transfer 

alignment algorithms in estimating calibration parameters are evaluated as more 

important than reducing the total transfer alignment duration. Hence, in Chapter 5, 

only velocity and integrated velocity techniques are studied further without 

considering methods which also utilize attitude observations. 
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CHAPTER V 

5ANALYSIS OF TRANSFER ALIGNMENT 
ALGORITHMS BASED ON VELOCITY 

OBSERVATIONS 

As shown in Chapter 4, Kalman filters which process velocity based 

observations turn out to be most appropriate transfer alignment structures in 

terms of satisfying following objectives: 

i. Algorithms are not affected much from flexure and vibration 

environment. 

ii. Algorithms can estimate the IMU calibration parameters and attitude 

errors fairly well. 

In this chapter, the effectiveness and performance of transfer alignment 

algorithms based on velocity and integrated velocity matching methods under 

several conditions will be assessed by simulations. The change in estimation 

performance under different Kalman filter configurations will also be evaluated. 

In the following analysis, it was assumed that, maximum rate of data 

supplied by master navigation system is 20Hz. Therefore, both maximum update 

rate for Kalman filter (refer to Appendix C for the definition of update rate) and 

integration frequency for the integrated velocity match technique was limited to 

20Hz.  

In the following explanations, the Kalman filter performances are evaluated 

using their standard deviation estimates even for configurations which are not 

optimal. It should be noted that, even if not shown explicitly, those estimates were 

also verified by Monte Carlo simulations. In the simulations, the maneuver defined 

in Figure 4-3 was used as the nominal trajectory unless otherwise is stated. 
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5.1 COMPARISION OF VELOCITY AND INTEGRATED 
VELOCITY MATCHING METHODS 

As shown in Chapter 4, in velocity matching method, compensated 

velocity differences between master and slave systems are used as observation 

for Kalman filter, whereas in integrated velocity matching method the integral of 

direct difference of velocities are used. In this section, the estimation 

performances of Kalman filters which use these methods are compared. 

In the following figures, the standard deviation estimates of 3 different 

Kalman filters are presented. The filter configurations are as follows: 

i. Configuration I (VM – 1Hz): In this configuration a Kalman filter which 

process velocity observations at 1Hz using velocity match technique 

was implemented. 

ii. Configuration II (VM – 10Hz): In this configuration a Kalman filter 

which process velocity observations at 10Hz using velocity match 

technique was implemented. 

iii. Configuration III (IVM – 1Hz): In this configuration a Kalman filter 

which process integrated velocity observations at 1Hz using 

integrated velocity match technique was implemented. The integration 

of velocity differences was performed at 20Hz. Integration error was 

assumed to be in the form of white noise with variance equals to 4e-5 

(m^2) (“ Integυ ” term in Equation (4.39)) 
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Figure 5-1 : Kalman filter standard deviation estimates for east velocity error 
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Figure 5-2 : Kalman filter standard deviation estimates for azimuth error 

 



111 

0 20 40 60 80 100 120
250

300

350

400

450

500
Kalman Filter SD Estimate of Y Acc. Scale Factor Error

P
P

M

Sec

VM - 1Hz
VM - 10Hz
IVM - 1Hz

VM - 1Hz 

VM - 10Hz 

IVM - 1Hz 

 

Figure 5-3 : Kalman filter standard deviation estimates for Y accelerometer scale 
factor error 
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Figure 5-4 : Kalman filter standard deviation estimates for Z gyroscope scale factor 
error. 
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As shown in above figures, integrated velocity match technique calculates 

better estimates for all states. This is expected, because, as shown in Chapter 4, 

under unmodeled correlated measurement noise, Kalman filter with low update 

rate can generate better estimates with integrated measurements. Moreover, it 

should be noted that the Kalman filter which uses velocity match technique at 

10Hz is able to show similar performance with integrated velocity match technique 

at 1Hz. 

On the other hand, unfortunately, 20Hz is a critical lower limit for the 

integration of measurements. As shown in Chapter 4, measurement integration 

errors are represented as white noise in Kalman filter measurement equation (see 

Equation (4.39)). However, at 20Hz, significant amount of integration error occurs 

at the integral of measurements which can not be modeled by simple stochastic 

models. This is shown at Figure 5-5. In this figure, the difference between integral 

of North velocity of master system calculated at 20Hz and 600Hz with Euler 

integration method is presented. 
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Figure 5-5 : The difference between integral of North velocity calculated at 20Hz and 
600Hz with Euler method. 

 

As shown in the above figure, 20Hz is insufficient to take integral of 

velocities. On the other hand, as shown in Equation (4.38), observations are 
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calculated by taking the integral of velocity differences between master and slave 

system. Therefore, it is not needed to take integrals of master and slave velocities 

separately at different rates. If the integral of both velocities are calculated at the 

same rate, then approximately same amount of error occurs on both integrals and 

by taking the difference between integrals, integrations errors can be eliminated. 

To show this, the mean and variance of following error component is calculated 

by using Monte Carlo simulations: 

( ) ( )
Hz

MS

Hz

MS dtVVdtVVerr
60020

∫∫ −−−=     (6.1) 

where, superscripts over bars represents discrete time integration 

frequency (Integral operators are implemented with Euler method in discrete 

time). In the Monte Carlo simulations, real slave velocities under vibration 

environment are used. In the following figure, the change of mean and standard 

deviation of North component of above error term (Equation (6.1)) with respect to 

time is presented. 
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Figure 5-6 : The mean and standard deviation of North Component of integration 
error 

 

By comparing Figure 5-5 and Figure 5-6, it can be seen that, by taking the 

integral of velocities at the same rate, we can reduce the integration error. 

However, still an error with a non-zero mean occurs on measurement, which 
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cannot be represented by stochastic models. Thus, this error with non-zero mean 

directly contradicts with the Kalman filter’s white measurement noise assumption, 

and therefore can distort the error estimation in an unpredicted way. To show how 

this kind of error effects the estimation,  the Monte Carlo simulation results of the 

same Kalman filter defined as configuration III is represented in the following 

figures. In the figures, ‘SD of error’ and ‘Mean of error’ denotes the real mean and 

variance of error calculated using Monte Carlo trials, whereas ‘Kalman filter SD 

est.’ denotes the Kalman filter standard deviation estimate of corresponding error 

state. 
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Figure 5-7 : Monte Carlo results for down velocity error estimate of the Kalman filter 
which uses IVM method. 
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Figure 5-8 : Monte Carlo results for X gyroscope scale factor error estimate of the 
Kalman filter which uses IVM method. 
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Figure 5-9 : Monte Carlo results for azimuth error estimate of Kalman filter which 
uses IVM method 
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Figure 5-10 : Monte Carlo results for X accelerometer bias error estimate of Kalman 
filter which uses IVM method. 
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Figure 5-11 : Monte Carlo results for X axes lever arm static error estimate of 
Kalman filter which uses IVM method 
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Figure 5-12 : Monte Carlo results for integral of velocity difference estimate of 
Kalman filter which uses IVM method 

 

As shown in above figures, the measurement integration errors at 20Hz 

cause the Kalman filter estimates to have errors which are not zero mean. 

Especially, integral of velocity difference state and static lever arm estimates turns 

out to be highly erroneous (see Figure 5-11 and Figure 5-12). Furthermore, as 

shown in Figure 5-10 and Figure 5-8 some of the IMU calibration parameter 

estimates are also disturbed. However, as presented in Figure 5-9, attitude 

estimates are not distorted much. 

On the other hand, it should be noted that, real error variances calculated 

by Monte Carlo simulations and Kalman filter’s standard deviation estimates were 

perfectly matched to each other. This shows that, the errors on estimates are truly 

result of measurement noise with non-zero mean. Therefore, if somehow integral 

of measurements can be computed correctly, than, despite of the suboptimalities, 

Kalman filter structure using integrated velocity match method will work very well. 

This is presented in Figure 5-13. In this figure same Kalman filter structure (IVM – 

1Hz) described above was also used, however, this time integral of velocity 

differences was calculated at 150Hz. In the following figure, Monte Carlo 

simulation result for x gyroscope scale factor error estimate is presented. 
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Figure 5-13 : Monte Carlo results for X Gyroscope scale factor error estimate of 
Kalman filter which uses IVM method (integrals are calculated at 150 Hz). 

 

Comparing Figure 5-13 with Figure 5-8, it can be seen that, by calculating 

integral of velocity difference with a sufficient rate, the mean error on estimates 

can be corrected. Also note that, with the faster integration frequency, better 

estimates can be obtained. (Compare the final error standard deviation estimates 

obtained at Figure 5-8 and Figure 5-13 which are 91 and 83 PPM respectively). 

This is because; it was assumed that, the noise at master navigation system 

velocity output ( N
MVδ ) is always a white sequence with a variance of 0.05m/sec 

independent of sampling rate. Therefore, with more frequent measurement 

integration the effect of this master velocity noise on the integral of velocity 

difference state (refer to Equation (4.41)) can also be reduced and hence, better 

estimates can be calculated. 

In summary, above results show that, although integrated velocity match 

technique is generally better than velocity match technique, 20Hz integration 

frequency is insufficient. Furthermore, considering the transmission errors and 

data latency/synchronization errors on mux-bus structure, it is expected that 

during real time implementation integration errors will be much higher than shown 

in Figure 5-6. Also this integration error will increase as the aircraft performs more 

dynamic maneuver. Therefore, it is concluded that integrated velocity match 

technique is not applicable with master navigators which have 20Hz output rate. 
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Hence, in the rest of this study, main analyses are focused on just velocity 

matching method. 

5.2 EFFECT OF KALMAN FILTER UPDATE RATE 

As stated before, it is assumed that master navigation system can provide 

its output with a rate up to 20Hz. Therefore, theoretically it is possible to process 

all these information as observations in a Kalman filter which has an update rate 

of 20Hz. In this section, the effect of update rate on estimation performance of 

transfer alignment Kalman filter is presented. 

To evaluate how update rate effects Kalman filter estimates, a Kalman 

filter which uses velocity match method was run with 1Hz, 2Hz, 5Hz, 10Hz and 

20Hz update rates (the structure of the Kalman filter was the same as described 

in Chapter 4.4). In the following figures, the standard deviation estimates of the 

Kalman filters are presented. 
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Figure 5-14 : Effect of update rate on Kalman filter azimuth error standard deviation 
estimate 
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Figure 5-15 : Effect of update rate on Kalman filter Y accelerometer scale factor 
error standard deviation estimate 

 

As shown in Figure 5-14 and Figure 5-15, as the filter update rate 

increases, Kalman filter can produce better estimates. This is also true for all 

other filter states which are not shown here. However, it should be noted that, 

while performing above simulations, it is assumed that, measurement noise on 

master supplied information has always a constant variance which does not 

change with sampling rate (for instance n
MVδ  is assumed to have same stochastic 

properties for all transmission frequency). 

On the other hand, as shown in Chapter 4, as the filter update rate 

increases, Kalman filter estimates become more vulnerable to unmodeled 

correlated measurement noises. Considering the Kalman filter structure based on 

velocity matching method described in Chapter 4, there are 3 major source of 

correlated measurement noise. These are: 

i. Vibration induced velocity difference between master and slave (the 

effect of “ r& ”). 

ii. Lever arm correction error due to simplified lever arm models (the 

effect of “ rδ ”). 

iii. Correlated noise on master supplied information (the effect of 

correlated “ n
MVδ ”). 
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In the implemented Kalman filter structures, the effect of vibration induced 

velocity is considered as purely white noise and handled as a part of 

measurement noise although it is not white. However, considering the power 

spectral properties of vibration induced acceleration models shown in Appendix B, 

it can be seen that, this approximation does not affect the estimation performance 

much. 

In contrary to this, it is expected that the models which are used to 

represent lever arm error can be erroneous. As shown in Chapter 3.3 the vibration 

models are not sufficient to accurately characterize vibration induced 

displacement effects. Therefore, as shown in Chapter 4, lever arm errors were 

simply modeled as random constants without prior sufficient information. 

However, it is expected that, during the maneuvers of aircraft, the wing structure 

may flex and a random change in lever arm vector may appear. Such an 

unmodelled change in lever arm causes correlated noises to appear on 

measurements which can disturb the Kalman filter estimations very much. 

To show how lever arm modeling errors can affect estimation 

performance, error estimations of two Kalman filter structures both of which uses 

velocity match technique were compared. In the first Kalman filter, the static lever 

arm errors were again modeled as random constants. Since, static lever arm 

errors were also generated as random constants in the simulation environment, 

this filter represented the optimal case. In the second Kalman filter structure, the 

states representing the static lever arm errors were deleted, and their effect was 

represented as white measurement noise with a variance proportional to the roll 

rate of master system in the measurement model of the Kalman filter. In the 

simulation environment, the standard deviations shown in Table 2-2 were used to 

generate static lever arm errors. Both Kalman filter structures were run at 1Hz and 

10Hz respectively. In the following figures, the Monte Carlo simulation results and 

Kalman filter standard deviation estimates are presented. In the figures, ‘VM’ 

represents the Kalman filter in which static lever arm errors are modeled as 

random constants, whereas ‘VMSub’ represents the Kalman filter in which static 

lever arm errors were not included as states in the filter’s system model. Real 

standard deviations were obtained using Monte Carlo simulations based on 

‘VMSub’ filter structures. 
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Figure 5-16 : Comparison of standard deviation estimates for Z accelerometer bias 
error obtained using Kalman filters with 1Hz update rate. 

 

 

0 20 40 60 80 100 120
100

150

200

250

300

350

400

450

500

550
Comparison of SD Estimates of X Gyro Scale Factor Err.

P
P

M

sec

Real SD
VMSub - 1Hz
VM - 1Hz

VMSub - 1Hz 

VM - 1Hz 

Real SD 

 

Figure 5-17 : Comparison of standard deviation estimates for X gyroscope scale 
factor error obtained using Kalman filters with 1Hz update rate. 
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Figure 5-18 : Comparison of standard deviation estimates for Z accelerometer bias 
error obtained using Kalman filters with 10Hz update rate. 
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Figure 5-19 : Comparison of standard deviation estimates for X gyroscope scale 
factor error obtained using Kalman filters with 10Hz update rate 
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Comparing Figure 5-16 and Figure 5-17 with Figure 5-18 and Figure 5-19, 

it can be seen that, at 1Hz the unmodeled static lever arm errors does not 

degrade the filter performance much. This is also verified with Monte Carlo 

simulations. Although there is a small difference between Kalman filter estimated 

error standard deviations and real error standard deviations obtained with Monte 

Carlo simulations, these differences are not too big to cause divergence. 

On the other hand, when the filter update rate is increased to 10Hz, the 

unmodeled static lever arm errors become very significant and totally disturb the 

Kalman filter IMU calibration parameter estimates. Furthermore, as shown in 

Figure 5-18 and Figure 5-19, at 10Hz update rate, Kalman filter cannot estimate 

the real error standard deviations which in long term probably cause divergence in 

filter structure. 

As stated before, due to the maneuver of the aircraft, flexure effect causes 

changes in lever arm vector which cannot be easily represented by stochastic 

models. If, for some reason, it is required to run Kalman filter with high update 

rate, the error caused by mismodeled lever arm state, will degrade the filter 

performance and probably will cause the filter to diverge. 

A simple way of reducing the effect of lever arm modeling errors on 

estimation performance of Kalman filters which uses velocity match technique is 

the implementation of Schmidt-Kalman filter. In the Schmidt – Kalman filters, the 

states that are not of primary interest are considered but not actually implemented 

in the filter (Schmidt (1966), Brown (1997)). The lever arm errors are estimated 

not because they are required for slave navigation system, but because they are 

coupled with navigation states in measurement equations. As they cannot be 

modeled accurately, the Kalman filter estimates about them are not reliable. 

Therefore, Schmidt – Kalman filter is an appropriate solution for handling lever 

arm errors. 

In the implementation of Schmidt Kalman filter, the only modification is 

made to the Kalman gain. Static lever arm errors are also modeled as random 

constants (no reduction is made to the number of states used). However, after an 

optimal Kalman gain is computed, gain that corresponds to the lever arm errors 

are zeroed and this new gain is used to calculate feedback and new covariance 

matrix value. As a suboptimal gain is utilized, in the calculation of covariance of 

updated estimates, Joseph Form (Brown (19997) of covariance update is used. 
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In the following figures standard deviation of errors calculated by a 

Schmidt Kalman filter which uses velocity match technique at 10Hz is presented. 
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Figure 5-20 : Comparison of standard deviation estimates for Z accelerometer bias 
error obtained using Schmidt Kalman filter which uses velocity match method with 

10Hz update rate 
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Figure 5-21 : Comparison of standard deviation estimates for X gyroscope scale 
factor error obtained using Schmidt Kalman filter which uses velocity match 

method with 10Hz update rate 
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As shown in above figures, Schmidt Kalman filters work perfectly. 

Although the filter structure is totally suboptimal, the filter can function as if it were 

optimal. It should be noted that, in this structure lever arm errors are not 

estimated at all, however their effects are handled so cleverly that they cannot 

degrade the filter estimation performance. This shows that, even if the lever arm 

changes during the maneuvers, that change did not effect the filter operation. 

Therefore, filter sensitivity to lever arm errors for high update rates can be 

reduced. 

5.3 EFFECT OF AIRCRAFT MANEUVERS ON KALMAN FILTER 
ESTIMATES 

As can be seen from error propagation models presented in Chapter 2, 

propagation of the errors is affected by the motion that the system follows. This 

dependence of error propagation to the system’s motion can be revealed by 

examining the existence of navigation parameters (position, velocity, attitude, 

acceleration, rotation rate) in the propagation models given in Equation (2.10) and 

(2.16). Although all of the navigation parameters exist as a coefficient in the error 

models, the models are not sensitive to the variations of these parameters except 

the instantaneous acceleration of the system which has a great impact on the way 

the error builds up in time (see Chapter 2). Therefore, by forcing the system to be 

exposed some specific accelerations, it is possible to change the error 

propagation characteristic in such a way that errors become observable in a 

shorter period of time. 

The above phenomenon is also utilized during transfer alignment 

procedures. By forcing the system to perform some predetermined maneuvers, it 

is possible to modify the structure of observable space defined by the system 

model of the Kalman filter so that Kalman filter estimation performance can be 

enhanced (Rehee (2004)). 

In the past, several studies about the relation between the aircraft 

maneuvers and the observability of the system models were published. 

Especially, in Itzhack (1980), Porat (1981), Itzhack (1988) and Meskin (1991), 
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profound results were derived. On the other hand, most of the studies that 

published so far on this issue have the following deficiencies: 

i. In these studies, it was aimed to figure out the analytical relations 

between aircraft maneuvers and system observability. However, in 

order to derive analytical solutions, a number of assumptions were 

made which limits the usefulness of the solutions for real systems. 

ii. The real time application constraints (such as the aircraft maneuver 

ability) were not considered in these studies. 

Therefore, in this study, it was preferred to follow a heuristic method. On 

the other hand, in order to reduce total number of simulations, results published in 

previous studies were also utilized very frequently. 

In a theoretical sense, it is possible to define infinitely many kind of 

maneuver for the aircraft. However, for the real time operation, the following 

constraints have to be considered in defining the maneuver for long duration 

transfer alignment procedures: 

i. A controlled axial acceleration is not realizable. 

ii. Maneuvers requiring altitude change is not practical. 

iii. Heading changes are performed with bank-to-turn maneuvers. In 

order to prevent the maneuver to impose additional load to the pilots, 

the maximum bank angle should be not exceed 60°. 

iv. Total duration of maneuver is the most important factor that 

determines the applicability of the maneuver during real operation 

conditions. 

Considering the above constraints, in this study only the maneuvers that 

consist of just coordinated turns were investigated. Also, the maximum duration of 

transfer alignment procedure was limited to 150sec. On the other hand, this limit 

does not represent the maximum duration that the transfer alignment algorithms 

should run. Rather, it represents the total duration for the specific maneuver. After 

this predetermined maneuver is completed, the algorithms may continue to run 

until the separation of the slave from the main system. The time between the end 

of the maneuvers and release of the system should be determined by considering 

the accuracy of the IMU error models used in Kalman filter. For less accurate IMU 

models, this duration have to be limited in order to prevent any kind of divergence 

during operation. 
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As a first step in determining the structure of maneuver, the acceleration 

and rotation rate profiles occur on slave IMU system during coordinated turns are 

investigated. In the following figure, the acceleration outputs of a slave IMU that is 

nominally aligned with aircraft body axes is presented under the coordinated turn 

maneuver characterized by the roll angle profile shown in Figure 5-22. 

 

0 10 20 30 40 50 60 70
-40

-30

-20

-10

0

10

20

30

40
Roll Angle Profile

D
eg

Sec

 

Figure 5-22 : Roll angle profile 
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Figure 5-23 : Acceleration profile during coordinated turn 
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As seen from Figure 5-23, the sum of centrifugal acceleration and gravity 

appears at only “z” axes during coordinated turn. Only a small amount of 

additional acceleration appears on “x” and “y” axes which occur due to the roll 

angle change. However this amount of acceleration is not sufficient to estimate 

accelerometer scale factor errors. Therefore, in order to be able to estimate these 

errors, it is necessary to locate slave IMU in such a way that its body axes should 

not coincide with aircraft body axes. A good choice for slave orientation with 

respect to aircraft body axes would be [45 45 0]°. However, in this study, 

considering other implementation issues, the relative orientation was taken to be 

[52 3 0]°. 

In order to figure out the relations between aircraft maneuvers and error 

estimates, lots of covariance analyses were conducted with different maneuver 

definitions and filter system models. As the system model is highly complicated 

and most of the errors are coupled with each other, it was not possible to derive 

exact relations. However, with these simulations it was possible to gain valuable 

insights about the error estimates and motion relations which are presented in the 

following paragraphs. 

In Bar-Itzhack (1980 - a) and Porat (1981), it was claimed that under 

certain conditions, just a single bank-to-turn maneuver is better than any other 

maneuvers which consist of several bank-to-turns in the same duration. However 

the covariance analysis shows that, this is not true for the system used in this 

study. In Figure 5-24, the azimuth error standard deviation estimates of Kalman 

filter which uses velocity match method along two different maneuvers are 

presented. In the first maneuver, the aircraft performs just a single 30 degrees 

bank-to-turn for 70 seconds whereas in the second maneuver 4 consecutive 

bank-to-turns are performed with 30 or -30 degrees bank angles successively 

without any intermediate level flight segment. 
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Figure 5-24 : Azimuth error standard deviation estimates of Kalman filter 

 

As seen from Figure 5-24, more than one bank-to-turn maneuver produces 

better results. It should be noted that, this result does not contradict with the 

results presented in Porat (1981). This is because, in that study, it was claimed 

that, their results hold only if the gyroscope drift errors are small. However, the 

gyroscope drift error standard deviation used in this study is 400 times bigger than 

the value used in the corresponding paper (See Table 2-1). 

Covariance analysis showed that, generally, drift and bias errors are 

estimated better when there is no horizontal component of acceleration. However, 

without any horizontal acceleration it is not possible to estimate azimuth and scale 

factor errors as well as lever arm errors. Therefore both level flight and bank-to-

turn maneuvers are highly crucial during transfer alignment procedure. In fact this 

is one of the reasons why multiple bank-to-turns turn out to better than single 

bank-to-turn maneuver. This is because, between different bank angles (in the 

above case between 30 and -30 degrees) the roll angle reduces to zero 

momentarily, and during that period of time bias and drift estimates can be 

enhanced which increase the overall estimation performance during heading 

change portion of the maneuver. 

As explained in Chapter 3, a heading change with coordinated turn 

maneuver consists of 2 different stages. In the first stage, the roll angle is 
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increased from zero to the desired bank angle. This stage can also be seen in 

Figure 5-22. Between tenth and fourteenth seconds, bank angle gradually 

increases from 0 to 30 degrees. During this stage, the rate of heading change 

also increases as the roll angle increases. Also, additional centrifugal acceleration 

appears on slave system due to the relative motion of slave with respect to 

master system. In the second stage, heading change is performed under constant 

bank angle. In this stage the only centrifugal acceleration appears due to the turn 

of the aircraft as a rigid body. The simulation results show that, the first stage of 

coordinated turn does not affect the overall estimation performance of Kalman 

filter. Several simulations are performed with different roll rates, however no 

significant improvement can be obtained. 

On the other hand, it is found that bank angle is highly crucial in defining 

the maneuver. Any increase in the bank angle also increases the estimation 

performance of the filter. In the following figures, “x” and “z” axes accelerometer 

bias estimates of Kalman filter which uses velocity match technique are presented 

for different maneuvers. Each of the maneuvers has the same roll angle profile 

presented in Figure 5-22 but with different bank angles. 
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Figure 5-25 : X axes accelerometer bias standard deviation estimates of Kalman 
filter under maneuvers with different bank angles 
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Figure 5-26 : Z axes accelerometer bias standard deviation estimates of Kalman 
filter under maneuvers with different bank angles 

 

As seen from the above figures, under higher bank angles, Kalman filter 

can calculate better estimates. However as indicated before, maximum bank 

angle is usually limited by the aircraft and real time operational constraints. 

Furthermore, the above results were obtained with the assumption that, the 

vibration induced on the aircraft does not change with the change in bank angle. 

However, during real time operation it is expected that any increase in the bank 

angle also cause the vibration level to increase and this vibration will certainly 

decrease the overall estimation performance. Therefore, in the remaining part of 

this study, 45 degree was used as the maximum bank angle during coordinated 

turns. 

Considering the above results, it is inferred that a suitable maneuver 

should be composed of 2 basic motions. The first motion is level and straight flight 

and the second one is bank-to-turn maneuver with 45 degree bank angle. 

Therefore, constructing an optimal maneuver definition problem reduces to 

determining: 

i. How many bank-to-turn and level flight segment should be used 

ii. In what order they should be used 

iii. What the duration of each segment should be. 
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In order to find a satisfactory answer to above questions, the estimation 

performance of Kalman Filter which uses velocity match technique with 4 different 

maneuvers were compared. The roll angle profiles of each of the maneuvers are 

presented in the following figures. 
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Figure 5-27 : Roll angle profiles for different maneuvers used to assess Kalman 
filter performance 

 

As seen from the above figures, the successive bank angles were 

adjusted such that each has an opposite sign. This is because for two reasons. 

First of all, covariance analysis showed that instead of repeating same bank 

angle, changing the signs improves the estimation performance. Secondly, 

alternating bank angle sign decrease the total heading change which is preferable 

for the real time operations. 

The names of the maneuvers come from the similarity of latitude – 

longitude profiles of the aircraft to the corresponding letter. This situation is 

represented in the following figure. In this figure, the latitude – longitude profiles of 

the aircraft which performs the associated maneuver are shown.  
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Figure 5-28 : Latitude – Longitude profile of the aircraft which performs the 
corresponding maneuver 

 

In the following figures, standard deviation estimates of a Kalman filter 

which uses velocity match technique under the above maneuvers are presented. 

In each figure, a reference value for corresponding states is also shown. That 

reference value was obtained by running transfer alignment algorithm for 2500 

seconds under a maneuver which consists of successive 200 seconds bank-to-

turn maneuvers and 200 seconds level flight started with 200 seconds level flight 

segment (in order to be able to show the reference values in the same figures, the 

time axes of reference value is scaled by 10). The reference represents a 

practical limit where the transfer alignment algorithms should converge in a limited 

150 second interval. Therefore, in a given period of time, if any state approaches 

that limit, then it is inferred that corresponding maneuver is sufficient for 

estimating the error states and maneuver definitions are revised by just 

considering the error states that cannot approach the limit.  

Although maneuvers shown in Figure 5-27 are completed in 150 seconds, 

simulations are performed for 250 second duration. In the last 100 seconds, 
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aircraft also continues to perform level and straight flight. This is because, it is 

expected that, after the transfer alignment maneuvers completed, the aircraft 

continues to perform mostly level flight until it arrives the release point. Therefore, 

together with the transfer alignment duration, it would be more realistic to consider 

the effect of post alignment duration also in the design of maneuvers. 
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Figure 5-29 : Pitch error standard deviation estimate 
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Figure 5-30 : Azimuth error standard deviation estimates 
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Figure 5-31 : X accelerometer bias repeatability error standard deviation estimate 
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Figure 5-32 : Y accelerometer scale factor repeatability error standard deviation 
estimate 
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Figure 5-33 : X gyroscope drift repeatability error standard deviation estimate 
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Figure 5-34 : Z axes gyroscope drift repeatability error standard deviation estimate 
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Figure 5-35 : X axes gyroscope scale factor error standard deviation estimate 
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As seen from the above figures “C” and “S” maneuvers turn out to be the 

best maneuver in terms of improving Kalman filter estimates. Among them “C” 

maneuver seems to be better than “S” especially in estimating gyroscope 

calibration parameter estimates. However, in terms of accelerometer calibration 

parameter estimates, they show similar performances. Furthermore, both “S” and 

“C” type maneuvers enhance the accelerometer calibration parameters estimates 

better than “Weave” type maneuvers which consist of more bank-to-turn motions. 

This reveals the fact that, performing unnecessary amount of bank-to-turn 

maneuvers successively can even reduce the total estimation performance of a 

Kalman filter.  

In Chapter 5, it is shown that during the level flight segment (after the 

transfer alignment maneuvers), the azimuth error increases rapidly due to the 

residual gyroscope errors on “z” axes (refer to Figure 4-47). However, it should be 

noted that, this azimuth error can easily be estimated with any kind of bank-to-turn 

maneuvers. This situation can also be seen in Figure 5-30. At that figure, with the 

start of first bank-to-turn maneuver the azimuth angle is rapidly estimated. So, 

even if azimuth error gets bigger when the aircraft approaches to the release 

point, that error can be quickly estimated with a simple and rapid bank-to-turn 

maneuver prior to launch. 

Therefore, it is concluded that, the optimum maneuver for transfer 

alignment procedure is composed of an “S” or “C” type maneuver which is 

performed to estimate IMU calibration parameters in friendly territory and a rapid 

heading change maneuver with no constraints to reestimate azimuth alignment 

error just before the launch of the slave system. 

On the other hand, it should be noted that, for the transfer alignment point 

of view, the number of bank-to-turn and level flight segments during the maneuver 

is more important than the duration of each segment. Therefore, the total duration 

of transfer alignment maneuvers can be reduced with a little degradation in 

estimation performance. This is shown in the following figures. In these figures, 

the Kalman filter standard deviation estimates are presented for “C” maneuver 

which last for both 100 and 150 seconds. Simulations were again run for 250 

seconds, in order to see the effect of post transfer alignment period on estimation 

performance. 
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Figure 5-36 : Azimuth error standard deviation estimates 
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Figure 5-37 : X axes accelerometer bias error standard deviation estimate 
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Figure 5-38 : Y axes accelerometer bias error standard deviation estimate 
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Figure 5-39 : Y Axes gyroscope drift error standard deviation estimate 

 

As seen from the above figures, the total duration of transfer alignment 

maneuvers can be reduced without sacrificing Kalman filter estimation 

performance much. It should also be noted that, maximum bank angle is a more 

effective parameter than the total duration of maneuver. Therefore, it is also 
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possible to reduce total alignment time without reducing estimation performance 

by increasing the total bank angle. 

In the related literature, wing rock maneuver is also suggested as another 

maneuver that can be applied during transfer alignment procedures. However, 

since this maneuver is mainly used for rapid transfer alignment procedures where 

attitude measurement is also included in observation model, in this study it was 

not considered. 
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CHAPTER VII 

6CONCLUSIONS & FUTURE WORKS 

The main objective of this study was to form a general framework in the 

design and analysis of transfer alignment algorithms. Although, many forms of 

transfer alignment procedures are extensively used especially in military aircrafts, 

a complete treatment of this problem has not been published openly before. In the 

literature, there are a number of papers that deal with the several aspects of this 

problem. However, none of the studies provides quantitative results that can be 

used as a basis for comparison with other methods. Moreover, most of the studies 

are far behind being complete and usually the information given in the published 

text is not enough to repeat the procedure to assess the performance of 

suggested algorithms. 

Therefore, in this study, first of all, a simulation environment which can be 

used to assess estimation performance of different algorithms was developed. In 

order to implement a realistic simulation environment, the vibration models 

presented in Appendix B were utilized in the simulations. On the other hand, as 

the vibration models are not very accurate, these models are not augmented to 

the Kalman filter system model for any of the transfer alignment methods 

implemented in this study. 

In this study five different transfer alignment algorithms were developed 

separately. By comparing estimation performances of these different algorithms, 

the advantages and disadvantages of each method were analyzed. Together with 

performance evaluations, the ease of each algorithm from the point of view of real 

time implementation was also presented. As far as the writer knows, this is the 

first study that such a comprehensive comparison is made. 

For algorithms that use velocity based observations, a detailed analysis 

was also presented. The effect of update intervals and lever arm errors on 

algorithm performances was evaluated by simulations. The implementation of 

Schmidt-Kalman filters to reduce the effect of erroneous lever arm errors was also 

described. 
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The effect of maneuver on the performance of transfer alignment 

procedure was also investigated. Depending on the implementation constraints 

and previously published results, several candidate transfer alignment maneuvers 

were formed and their performances were evaluated using covariance 

simulations. The simulations verified that, an optimum maneuver for transfer 

alignment procedure should consist of both bank-to-turn and level flight segments. 

Furthermore, the number of bank-to-turns should not exceed 3 for 150 seconds 

transfer alignment duration. 

The comparison between different transfer alignment methods showed 

that, it is not possible to achieve a single method which performs well in every 

condition. Every method implemented in this study has some unique properties 

which make it superior than others under some conditions. Therefore, before 

designing a transfer alignment algorithm, it is necessary to define the constraints 

and environmental conditions first, and then develop an algorithm that performs 

best at these predetermined conditions. 

6.1 RECOMMENDED FUTURE WORKS 

In the scope of this study, real time implementation problems which 

require implementation specific solutions were not analyzed. One of the most 

important of such problems is the data synchronization with master and slave 

systems. In digital systems, synchronization of two systems with separate clocks 

is always a problem. It is very likely that, the data send by the master navigator, 

reaches to the slave system with some latency. Furthermore, there is always an 

uncertainty about the amount of latency that these reference values have. 

Therefore, depending on the application, it may be necessary to model and 

include these data (measurement) latency effects in the Kalman filter structures 

(Itzhack (1985), Oshman, (2001)).  

Another real time implementation problem is the error in the master 

navigator outputs. Usually, during the transfer alignment procedure, the master 

navigator solutions which are blended with aiding mechanism such as GPS or 

altimeter are used as reference values. However, it is very hard to model errors 

on such kind of blended outputs. Furthermore, due to the blending mechanism, it 

is also possible that some jumps at the master navigator output values occur from 

sample to sample which can totally destroy the error estimates of slave in an 
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unpredicted way (Groves (2003), Grooves (2002)). Therefore, some special 

precautions have to be taken in order to prevent the use of such kind of erroneous 

reference values in Kalman filters. 

Another important concept that is not considered in this study is the 

analysis of the effect of error models on transfer alignment performance. In this 

study, some error models were put forward first and all analysis were conducted 

using these models. However it is apparent that, the estimation performance of 

transfer alignment Kalman filter depends on the stochastic properties of these 

models. This is especially true for stability errors of IMU. Since these types of 

errors have flat spectral properties, estimation of these errors is harder than IMU 

repeatability errors, and usually puts a lower limit in the estimation of IMU 

calibration parameters. Therefore, it is crucial to analyze the dependence of 

transfer alignment Kalman filter estimation performance to the change of error 

characteristics. 

In addition to this, it is also necessary to analyze the sensitivity of the 

Kalman filter to the inaccurate system models. As stated in previous chapters, the 

IMU errors and aircraft structure parameter characteristics are subject to change 

during real time operation. For instance, IMU bias errors can change depending 

on the total vibration that the system exposes to (refer to Chapter 3). With 

constant error models, it is not possible to handle such change in error 

characteristics. Therefore, if Kalman filter is sensitive to these kinds of modeling 

errors, it is possible that the filter can diverge during real time operation. In this 

study, only some simple Monte Carlo analysis were performed to observe the 

sensitivity of Kalman filter to the aircraft structure models such as lever arm and 

relative orientation states (refer to Chapter 4 & 5). However, in order to avoid any 

divergence problem, it is necessary to conduct more systematic sensitivity 

analysis on all error models. Furthermore, as an alternative to the method 

presented in this thesis, it is also suggested implementing and evaluating the 

effectiveness of Kalman filters based on multiple models. It is expected that, 

multiple model Kalman filter will be less sensitive to inaccurate models. 

Throughout this study, comments regarding to the system operation are 

basically formed by observations. The relationships between reason and results 

are inferred by performing several simulations and observing the relationship 

between the results. Therefore, most of the conclusions presented in this study 
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are lack of solid theoretical and analytical reasoning. For instance, the superiority 

of integrated velocity match technique over velocity match technique is verified by 

using a highly simplified system definition. However, such an approach is 

incapable of explaining under what conditions integration of measurements are 

better than using raw measurements. In order to specify such conditions, it is 

necessary to analytically analyze the effect of measurement integration on sub-

optimal Kalman filter structures. 

Another point that needs a theoretical analysis is the dependence of 

Kalman filter estimation performance on the aircraft maneuvers. In this study, this 

effect was examined by performing some covariance analysis. However, 

theoretical reasoning can provide more insight about the aircraft maneuver and 

state estimation relation. 

In the related literature, aircraft maneuver and state estimation relation is 

usually described by using observability properties of the system model (Itzhack 

(1980-a), Porat (1981), Itzhack (1988), Meskin (1991), (Rehee (2004)). However, 

error model of a navigation system is a time varying system. Therefore, unless the 

observability is defined over some specified duration, the results of such an 

observability analysis become totally useless due to the time varying nature of the 

system and random system disturbances. In other words, it is not useful to 

estimate some initial states which are not correlated with the current state values. 

Hence, in order to define a suitable observability analysis period, some further 

studies are required. 
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APPENDIX A 

ASUMMARY OF CONING AND SCULLING 
ALGORITHMS 

In this appendix, the basic motivation behind the utilization of coning and 

sculling algorithms and implementation of these algorithms to strapdown inertial 

navigators are shown. Furthermore, error calculations of coning and sculling 

algorithms are also derived at the end of this appendix. 

On the other hand, it should be noted that, the results of algorithmic error 

derivations for coning and sculling algorithms were not tested using a real test 

setup at all and hence, the assumptions made in the derivations were not verified. 

Therefore, it is possible that, there may be some difference between real and 

computed results. 

A.1 CONING ALGORITHM 

In a conventional strapdown inertial navigation system, the direction 

cosine matrix is updated using the following method: 

( )X
YX

Y
X

Y
X SCC ω=&        (A-1) 

where Y
XC  represents the transformation matrix from X frame to Y frame 

and X
YXω  represents the rotation rate of X with respect Y and defined in X. (For 

notational simplification “ X
YXω ” will be denoted simply as “ω ” for the rest of this 

appendix). In this method Equation (A-1) is solved as follows: 

( ) ( )
( )[ ]∫

=

t

nt

dS

n
Y
X

Y
X etCtC

ττω

     (A-2) 

By reformulating the exponential term using the Taylor series expansion 

and skew-symmetric property of integrand, the above equation can be solved In 

discrete time using the angle increments supplied by gyroscopes as follows 

(Titterton (1997)): 
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( ) ( ) ( ) ( )( ) ( ) ( )( )
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⎬
⎫

⎩
⎨
⎧ −

++Ι= ttSttStCtC nn
Y
X

Y
X ,cos1,sin 2 α

σ
σα

σ
σ

ω

ω

ω

ω  (A-3) 

where; 

“ ( ) ( )∫=
t

t
n

n

dtt ττωα , ” is the gyroscope angle increment output between t 

and t+∆T and “ ( )2222
zyx ααασω ++= ” the magnitude of total rotation during that 

period. It should be noted that, the term inside the parenthesis corresponds to a 

transformation matrix which relates the orientation of x from t to tn which can be 

represented as “ ( )ttC n , ”. Therefore, given that “ ( )n
Y
X tC ” is given, the calculation 

of “ ( )tCY
X ” reduces to the calculation of “ ( )ttC n , ”. 

On the other hand, in the above approach, the change of direction of the 

coordinate system where the rotation rates are defined is totally ignored. In 

Equation (A-2), it is implicitly assumed that the rotation rate “ω ” is defined with 

respect to a constant coordinate frame which is not true as the orientation of X 

changes during motion. As “ nttT −=∆ ” gets smaller, the change of orientation of 

X frame become negligible and thus the accuracy of this approach increases. 

However, computing Equation (A-3) with sufficiently high frequency is usually not 

possible and because of this the well known phenomenon of non-commutativity of 

finite rotations occurs (Bortz (1971)). 

In order to avoid this effect, the attitude information is updated using the 

rotation vector concept. “Rotation vector” defines an axis of rotation and a 

magnitude for that rotation about the rotation vector itself (Savage (2000)). As the 

rotation vector is the eigenvector of corresponding direction cosine matrix with an 

eigenvalue of 1, its components on the coordinate system axes are same for both 

base and transformed coordinate systems. Therefore, if the differential equation 

governing the change of rotation vector with respect to time can be derived, then 

that differential equation can be solved without considering the rotation of base 

coordinate system. 

In the literature this concept was first published in Bortz (1971). In the 

corresponding paper, by using some geometrical reasoning, the differential 

equation governing the rotation vector was derived and the relation between the 

direction cosine matrix and rotation vector was calculated. In later studies such as 

Savage (1984) and Ignagni (1994) these relations were also derived using several 
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other approaches. According to above studies, the differential equation of rotation 

vector that defines the orientation of X at time “t” with respect to time “tn” can be 

shown as follows: 

( ) ( ) ( )tttttt nnn ,,, αδωφ && +=       (A-4) 

where “ ( )ttn ,φ ” represents the rotation vector which defines the rotation of 

X at time “t” with respect to time “tn”, “ ( )ttn ,ω ” represents the inertialy measurable 

rotation rate of X (for instance, gyroscope rotation rate outputs) and “ ( )ttn ,αδ & ” is 

called as the non-inertially measurable angular motion which can be calculated as 

follows (Savage (1984)): 

( ) ( ) ( )
( )

( ) ( )( )
( )( ) ( ) ( ) ( )( )ttttt
t
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t
ttttt nnnn ωαα
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σσ

σ
ωααδ
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11,
2
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 (A-5) 

In practical implementations, the last term in right hand side of Eq (A-5) is 

usually ignored. Hence, rotation vector “ ( )tφ ” can be calculated as follows: 

( ) ( ) ( ) ( ) ττωταττωφ dtdtt
t

t
n

t

t
n

nn

∫∫ ⎟
⎠
⎞

⎜
⎝
⎛ ×+= ,

2
1,     (A-6) 

Once the rotation vector is calculated using (A-6), then the corresponding 

direction cosine matrix can be calculated as follows (Savage (1984)): 

( ) ( ) ( )( ) ( ) ( )( )ttSttSttC nnn ,
cos1

,
sin

, 2 φ
σ

σ
φ

σ
σ

φ

φ

φ

φ −
++Ι=   (A-7) 

where ( )2222
zyx φφφσφ ++= . 

As seen from Equation (A-6) and (A-7), if the rotation rate and its integral 

stays in the same direction (such as in the case of rotation rate along a single 

axes), then Equation (A.6) becomes direct integral of rotation rate and thus 

Equation (A-7) becomes equivalent to exponential term in Equation (A-2). 

Therefore the effect of non-commutative rate vector appears if it least 2 rotation 

rate which are out of phase is applied on two different axes. Such a motion can be 

represented as follows: 

( ) ( ) jtbita
rr

ΩΩ+ΩΩ= sincosω      (A-8) 

Above motion definition is called as pure conning motion. Therefore the 

last term in Equation (A-6), which is also shown below, is also called as conning 

correction.  
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2
1,      (A-9) 

The error which occurs due to not accounting this effect is called as 

conning error. 

The importance of this effect comes from the fact that, in vibration 

environment every axes of inertial measurement unit sense a random rotational 

vibration. These random vibrations inevitably cause motions such as defined in 

Equation (A-8) to occur. Therefore, in vibration environment calculating conning 

effect become highly crucial. 

Several different digital algorithms which can be utilized to solve equation 

(A-9) using gyroscope’s angle increment outputs in discrete time were published 

in the past. Some of them are Ignagni (1990), Ignagni (1996), Savage (1984) 

Savage (2000). In the literature, these algorithms are called as coning 

compensation algorithms or simply coning algorithms. 

In the corresponding papers, the coning algorithms are derived using a 

simple optimization procedure. The basic method in deriving a coning algorithm 

can be summarized as follows: 

First of all, under the motion definition given in Equation (A-8), the exact 

analytical solution of equation (A-9) is solved for “ nttT −=∆ ” period. As shown in 

Ignagni (1996), this is equal to: 

( ) ( ) kTTabTtt nn

r
⎟
⎠
⎞

⎜
⎝
⎛

Ω
Ω∆

−∆Ω=∆+
sin

2
,δα     (A-10) 

It should be noted that, if any coning compensation term were not included 

in the computations, then the effect of Equation (A-10) would be totally ignored, 

and the result would be highly detrimental for large amplitude high frequency 

oscillations. For instance suppose that at each axes, the amplitude of rotational 

motion is 1mrad with a frequency of 50Hz. If the attitude is computed at 600Hz, 

then a net drift of 1.4deg/hour occurs. (In other words, under the rotation rate 

given in Equation (A-8), the system rotates about z axis but without coning 

compensation, INS algorithm can not track this rotation accurately). 

After calculating the exact value, the aim is to find an approximation to this 

exact value by using limited number of gyroscope outputs. To do so, it is assumed 

that a fixed number of (call it as m) gyroscope outputs in the form of angle 

increment can be obtained within ∆T period. Using these “m” outputs, a general 
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form to calculate coning correction is established with undetermined coefficients. 

In different studies, different basic forms were utilized. In this study, it is assumed 

that in a single interval, 3 successive gyroscope outputs can be obtained and 

hence the following structure which is published in Ignagni (1996) is used: 

Lets ( )knα  represents the kth angle increment among 3 outputs in nth 

interval. Then the form of coning correction term between [ ]Ttt nn ∆+,  can be 

represented as follows: 

( ) ( ) ( ) ( ) ( )[ ] ( )32132, 431211 nnnnnnn kkkkTtt αααααδα ×+++=∆+ −− (A-11) 

Finally, an unconstrained optimization algorithm with respect to 

coefficients is run to minimize the difference between the exact analytical solution 

shown in (A-10) and the Equation (A-11). 

In ∆T period, the difference between (A-10) and (A-11) can be shown as 

follows: 
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where tδ  represents the time between 2 successive gyroscope outputs, 

and Ω  represents the coning frequency given in (A-8). 

In Ignagni (1996), the coefficients that minimize (A-12) were calculated to 

be as follows: 

840
1207,

420
157,

40
1,

420
1

4321 ===−= kkkk    (A-13) 

In the literature, several other algorithms each of which uses different 

basic forms and different number of gyroscope outputs were published. Each of 

the derived algorithms has different error characteristics under coning and benign 

environments. 

The extension of algorithm (A-11) to span more than one interval is also 

straightforward. Suppose that, within 2∆T period a total of 6 successive 

gyroscope outputs can be obtained in the form of angle increments. Then 

Equation (A-9) can be rewritten as: 
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By rearranging the above term, the following equation is obtained: 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ττωταττωτα

ααδα

dtdTt

TtTtTttTtt

Tt

t
n

Tt

Tt
n

nnnnnn

n

n

n

n

∫∫
∆+∆+

∆+

×+×∆++

∆+∆+×∆+=∆+

,
2
1,

2
1

2,,
2
12,

2
 (A-15) 

The last two integrals in the right hand side of Equation (A-13) can be 

calculated by using the coning compensation algorithms shown in (A-11). As the 

first term can be calculated exactly, the total error in these calculation is just the 

twice of the error defined in (A-12). In Chapter 2, this form of coning 

compensation algorithm was used in attitude update equation. 

A.2 SCULLING ALGORITHM 

Sculling algorithms are used in velocity update equations in order to 

reduce the computational error arise from high frequency motion components. As 

seen from Equation (2.2), the velocity update equations involve the solution of the 

following integral term: 
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nn

dftCtCdfCttv ττττττ ,,   (A-16) 

For small “ φσ ” Equation (A-7) can be simplified as follows: 

( ) ( )( )ttSttC nn ,, φ+Ι=       (A-17) 

Replacing (A-17) in (A-16), following equation is obtained: 
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By directly applying integration by part rule to the last term in the 

parenthesis and rearranging the terms, Equation (A-18) can be rewritten as 

follows (Savage (1984)): 

( ) ( ) ( ) ( ) ( ) ( ){ }ttvttvtCttutCttv nScullnRotn
N
Bnn

N
Bn ,,,, ∆+∆+=∆  (A-19) 
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where 

( ) ( )∫=
t

t

B
n

n

dfttu ττ,        (A-20) 

( ) ( )ttuttv nnRot ,,
2
1

×=∆ φ       (A-21) 

( ) ( ) ( ) ( )[ ] ττωττφ dttuftv
t

t
nnScull

n

∫ ×+×=∆ ,,
2
1

   (A-22) 

Equation (A-21) and (A-22) are called as rotation compensation and 

sculling effects respectively. By using accelerometer and gyroscope increment 

outputs, Equation (A-20) and (A-21) can be computed easily. However, a digital 

algorithm which can compute Equation (A-21) in discrete time is required. In the 

literature, several methods for calculating Equation (A-21) were published 

(Savage (1984), Savage (2000)). In these methods, again a similar methodology 

used in calculating coning algorithms is utilized. However, in this case, the error is 

defined under the following motion definition: 

( )[ ]
( )[ ]0sin0

00cos
φ

ω
+Ω=

ΩΩ=
tbacc

ta
      (A-23) 

This motion definition is called as sculling motion, and therefore the 

algorithms that are used to compute Equation (A-21) is called as sculling 

algorithms. As seen from Equation (A-22), the effect of sculling term can be 

excited most if acceleration and a rotation rate which are out of phase are applied 

in different axes. 

However in this study, the method proposed in Roscoe (2001) is 

implemented to derive a sculling algorithm. In Roscoe (2001), a general 

equivalency between coning and sculling algorithms is derived. This equivalency 

defined in corresponding paper can be summarized as follows: 

Let A(x1) represent the following term: 

( ) ( ) ( )∫ ×=
t

t
nx

n

dxtxA τττα 1,1 1       (A-24) 

where 

( ) ( )∫=
t

t
nx

n

dxtt ττα 1,1        (A-25) 

Then,  
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( ) ( ) ( ) ( )∫ ×+×=
t

t
nxnx

n

xtxtB τταττα 1,2, 21     (A-26) 

can be calculated as follows: 

( ) ( ) ( )2121 xAxAxxAB −−+=      (A-27) 

Therefore if any digital integral algorithm is computed for A(x1), then the 

same algorithm can also be used to compute B as well. 

When the above idea is utilized for the coning and sculling algorithms, 

sculling algorithm can easily be developed by just using the digital algorithm 

developed for coning compensation. This can be shown as follows: 

Equation (A-11) defines a digital algorithm to compute the (A-9). Let’s call 

this algorithm as “ ( )xC ” (Note that, ( )ωC  represents the coning compensation 

term). Then the sculling term which is represented in Eq (A-21) can be calculated 

as follows: 

( ) ( ) ( )fCCfCvScull −−+=∆ ωω      (A-28) 

It should be noted that, although in Equation (A-28) the inputs to the 

algorithms are represented as rotation rate and acceleration, as shown in 

Equation (A-11), the real inputs are the increment type outputs of gyroscopes and 

accelerometers. 

To find total algorithmic error under pure sculling environment defined in 

Equation (A-23), similar procedures used in calculating coning algorithm errors 

can be used. Under the motion defined by Equation (A-23), the exact value of 

sculling term given in Equation (A-22) can be found as follows: 
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Using the same motion definition, the difference between the implemented 

sculling algorithm shown in Equation (A-28) (which is based on coning algorithm 

given in Equation (A-11) and the exact solution during ∆T period is found to be as 

follows: 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )
( ) ( ) ⎪

⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Ω−Ω−+
Ω−−−

Ω+−−+
Ω−−Ω−

Ω
=

ttkk
tkkk

tkkk
tkktk

aberr A
scull

δδ
δ

δ
δδ

5.1sin2
2sin2

3sin5.02
4sin25sin

34

423

312

211

lg   (A-30) 



158 

where tδ  represent the time between 2 successive gyroscope outputs, 

and Ω  represents the coning frequency given in (A-28). The values of coefficients 

are the same as the coefficients derived for conning algorithm which are defined 

at Equation (A-13). 

 

A.3 TOTAL ALGORITHM ERROR UNDER GENERAL MOTION 

To find the total effect of complete vibration environment on INS 

algorithms and to evaluate the effectiveness of the implemented coning and 

sculling algorithms Equation (A-10), (A-12), (A-29) and (A-30) should be 

evaluated using the power spectral densities obtained using the flight test data 

(refer to Chapter 4). As shown in Savage (2000), a net bias effect can be 

observed only if two frequencies contributing to the environment are same. In 

other words, no conning/sculling error occurs as a result of rotations/accelerations 

acting on the system with different frequencies. Therefore, it will be enough to 

consider each frequency component in power spectral densities separately and 

then aggregate the total errors. 

To evaluate the conning effect on a single axis, power spectral densities of 

rotation rates acting on different axes can be used. The total power on a single 

axis can be assumed to be generated from sum of sine functions each has a 

power equal to the power contained under the region of 1Hz band of 

corresponding spectra with the same starting frequency of that band. 

Thus the rotation rate on any axes can be represented as follows: 
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where each “a” is equal to  
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Using discrete test data (which has a sample frequency of Fs), each “a” in 

Equation (A-33) can also be computed as follows: 

Fs
nPSD

n
a Fs

n
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*4
2
1
π

=       (A-33) 
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where PSDFs represents power spectral density of corresponding rotation 

rate calculated using Fs point periodogram (same as MATLAB build in function 

PSD). 

If the same process is applied to rotation rate sensed by another axis, and 

if it is assumed that the phase difference between rotation rates acting on the 

different axes are always 90°, then total coning error appear on the perpendicular 

axes (without any coning compensation algorithm) can be found as 
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2
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2
   (A-34) 

where, “a” and “b” represents coefficients of sine functions used to 

represent rotation rates sensed by 2 different axes, and “∆T” corresponds to 

compensation period. 

The same approach can also be utilized to find total conning algorithm 

error. In this case, using Equation (A-12) algorithm error can be calculated as 

follows: 

( ) ( )( ) ( ){ }∑ −−−=
n

nn
ATotal

conn tntnkbaerr δπδπ 25.125sin1
lg_ LL  (A-35) 

Similar calculations can also be utilized to find numerical values for 

sculling errors under the environment characterized by flight test results. To do 

so, rotation rate in one axes and acceleration in another axes should be used. 

Accelerometer output is also represented using Equation (A-31) and sine function 

coefficients for accelerometer outputs are calculated using the following equation: 
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In this case total and algorithmic errors can be calculated as follows: 
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( ) ( ) ( )( ) ( ){ }∑ −−−=
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π

25.125sin
2 1

lg_ LL  (A-37) 

where an and bn represent sine function coefficients for accelerometer and 

rotation rates, δt represents IMU output period and ∆T represents the 

computation interval. 

It should be noted that in deriving Equations (A-34), (A-35) and (A-36), (A-

37) it is implicitly assumed that ∆T=3 δt. Also, if multiple computational intervals 



160 

are used such as in Equation (A-15), then the errors are also multiplied with the 

ratio of total interval to computational interval. 

 

 



161 

APPENDIX B 

BVIBRATION MODELS 

In this appendix, the vibration models that are presented in Yuksel (2005) 

are summarized. 

In this study, the continuous time models vibration models utilized for each 

axes is converted to state space representation by using the following controllable 

canonical form: 

Let  

( )
CBsAss

sNsH
+++

= 23

2

      (B.1) 

and 

( ) ( ) ( )tnthta ∗=        (B.2) 

where n is a zero mean unity variance white Gaussian noise. Assume that, 

av =&  and vd =& , then in the state space form, the system defined in Equation 

(B.2) can be represented as follows: 
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0
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−−−

=
&
&

&

     (B.3) 

Note that output is also equal to state “a”. Therefore if it is assumed that 

“a” represents vibration induced acceleration of any system then the other two 

states directly represent the vibration induced velocity and displacement. 

If (B.1) has only negative poles than the system defined in (B.3) reaches to 

steady state. At the steady state, the covariance matrix of states satisfies the 

following Lyapunov equation: 

0=+Σ+Σ QFF T        (B.4) 

where “F” represents system matrix of (B.3), Σ  refers to covariance matrix 

of states and “Q” refers to power spectral density of “ nN ”. 
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All shaping filters used in vibration models have negative poles. Therefore, 

Equation (B.4) can be used to calculate the steady state variance of vibration 

induced acceleration velocity and displacement. 

 

B.1 X AXES LINEAR VIBRATION MODEL 

Number and form of 

shaping filter used 
2 - ( )

CBsAss
sNs

+++
=Η 23

2

 

First model 

coefficients 

√N1 = 6.1424 (m/s^2) 

A1 = 106.99 

B1 = 5225.4 

C1 = 16575 

Lyapunov equation 

solution for first 

model (state order: 

acc, vel, disp) 

0.18172 3.2765e-018 -3.4776e-005 

3.2765e-018 3.4776e-005 -1.7051e-023 

-3.4776e-005 -1.7051e-023 2.2446e-007 
 

Second model 

coefficients 

√N2 = 5.5298 (m/s^2) 

A2 = 429.43 

B2 = 45218 

C2 = 8.8952e+006 

Lyapunov equation 

solution for second 

model (state order: 

acc, vel, disp) 

0.0657 1.0421e-019 -1.4529e-006 

1.0421e-019 1.4529e-006 -3.4328e-023 

-1.4529e-006 -3.4328e-023 7.0143e-011 
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PSD figure of 

vibration model 

between 0-200Hz 
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B.2 Y AXES LINEAR VIBRATION MODEL 

Number and form 

of shaping filter 

used 
2 - ( )

CBsAss
sNs

+++
=Η 23

2

 

First model 

coefficients 

√N1 = 13.2483 (m/s^2) 

A1 = 134.59 

B1 = 3966.1 

C1 = 14077 

Lyapunov equation 

solution for first 

model (state order: 

acc, vel, disp) 

0.66971 -6.0532e-018 -0.00016886 

-6.0532e-018 0.00016886 -2.2089e-021 

-0.00016886 -2.2089e-021 1.6145e-006 
 

Second model 

coefficients 

√N2 = 4.8894 (m/s^2) 

A2 = 242.31 

B2 = 57740 

C2 = 8.9125e+006 

Lyapunov equation 0.13591 -2.7011e-019 -2.3538e-006 
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solution for second 

model (state order: 

acc, vel, disp) 

-2.7011e-019 2.3538e-006 -1.0686e-021 

-2.3538e-006 -1.0686e-021 6.3993e-011 
 

PSD figure of 
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B.3 Z AXES LINEAR VIBRATION MODEL 

Number and form of 

shaping filter used 
2 - ( )

CBsAss
sNs

+++
=Η 23

2

 

First model 

coefficients 

√N1 = 24.797 (m/s^2) 

A1 = 142.11 

B1 = 2255.9 

C1 = 9120.1 

Lyapunov equation 

solution for first 

model (state order: 

acc, vel, disp) 

2.2268 1.4697e-017 -0.00098708 

1.4697e-017 0.00098708 -6.5227e-020 

-0.00098708 -6.5227e-020 1.5381e-005 
 

Second model 

coefficients 
√N2 = 18.514 (m/s^2) 
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A2 = 305.01 

B2 = 56302 

C2 = 8.9081e+006 

Lyapunov equation 

solution for second 

model (state order: 

acc, vel, disp) 

1.1675 -3.7892e-018 -2.0735e-005 

-3.7892e-018 2.0735e-005 1.3235e-022 

-2.0735e-005 1.3235e-022 7.0998e-010 
 

PSD figure of 

vibration model 
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B.4 ROLL AXES ROTATIONAL VIBRATION MODEL 

Number and form of 

shaping filter used 
2 - ( )

BAss
sNs
++

=Η 2  

First model 

coefficients 

√N1 = 0.05010646 (Rad/s) 

A1 = 38.662981 

B1 = 3818.1879 

Lyapunov equation 

solution for first 

model (state order: 

Rot. Rate, Angle.) 

3.24685017e-005 5.170525063e-023 

5.17052506e-023 8.503641601e-009 
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Second model 

coefficients 

√N2 = 0.050368 (Rad/s) 

A2 = 90.467983 

B2 = 95106.782 

Lyapunov equation 

solution for second 

model (state order: 

Rot. Rate, Angle 

Inc.) 

1.402157066e-005 -3.90782759e-024 

-3.90782759e-024 1.474297655e-010 
 

PSD figure of 

vibration model 
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B.5 PITCH & YAW AXES ROTATIONAL VIBRATION MODEL 

Number and form of 

shaping filter used 
3 - ( )

BAss
sNs
++

=Η 2  

First model 

coefficients 

√N1 = 0.020301594 (Rad/s) 

A1 = 30.5243766 

B1 = 2049.94463 

Lyapunov equation 

solution for first 

model (state order: 

Rot. Rate, Angle 

6.751239523e-006 2.0033280460e-025 

2.003328046e-025 3.29337651e-009 
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Inc.) 

Second model 

coefficients 

√N2 = 0.0105172 (Rad/s) 

A2 = 10.1528081 

B2 = 6816.42742 

Lyapunov equation 

solution for first 

model (state order: 

Rot. Rate, Angle 

Inc.) 

5.447427403e-006 -9.819235677e-025 

-9.819235677e-025 7.991616517e-010 
 

Second model 

coefficients 

√N3 = 0.05214237  (Rad/s) 

A3 = 132.1782843 

B3 = 84933.76592 

Lyapunov equation 

solution for second 

model (state order: 

Rot. Rate, Angle 

Inc.) 

1.02846982932e-005 -6.007333565e-024 

-6.0073335654e-024 1.2109080742e-010 
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APPENDIX C 

CKALMAN FILTER STRUCTURE USED IN 
TRANSFER ALIGNMENT ALGORITHMS 

Let the system model of the Kalman Filter is represented as follows: 
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The system given in Equation (C-1) is in continuous time. In order to 

implement a discrete time Kalman filter, the system model is discretized as 

follows: 
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 (C-2) 

 

In Equation (C-2), T∆  represents the discretization period. It corresponds 

to maximum duration, in which assumptions utilized in Equation (C-2) hold. 

Therefore, conversion from continuous to discrete time equations should be 

performed at least once in T∆  period regardless of Kalman filter update cycle. 

The computations regarding to this discretization process is called as propagation 
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routine and the maximum duration that this routine is calculated ( T∆ ) is called as 

propagation period. 

In this study, Kalman Filters are implemented in the following structure: 

 

 

Figure C-1 : General structure of an Extended Kalman Filter 

 

In Figure C-1 “zk“ represents the new measurement obtained at time “tk“. 

Using this measurement Kalman filter calculates an error estimate by using 

Kalman gain which is computed using states covariance matrix Pk and 

measurement covariance matrix Rk. The calculation of operations shown in Figure 

C-1 is called as update routine and the maximum period that this routine is 

processed is called as update period.  

 


