
 
 
 
 
 
 
 

DEPLOYING AND INVOKING SECURE WEB SERVICES OVER JXTA 
FRAMEWORK 

 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 

BY 
 
 
 

�LHAM� GÖRGÜN 
 
 
 
 
 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR  
THE DEGREE OF MASTER OF SCIENCE 

 
IN 

 
COMPUTER ENGINEERING 

 
 
 
 
 

DECEMBER 2004 



 

Approval of the Graduate School of Natural and Applied Sciences 
 
 
 
 
  

  
Prof. Dr. Canan Özgen
      Director 

 
 
I certify that this thesis satisfies all the requirements as a thesis for the degree 
of Master of Science. 
 
 
 
 
 

 
Prof. Dr. Ay�e Kiper 
Chair of Department 

 
 
 
 
This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 
 
 
 
 
 

       Prof. Dr. Asuman Do�aç 
       Supervisor 

 
Examining Committee Members  
 
Assoc. Prof. Dr. Nihan K. Çiçekli  (METU, CENG)     

Prof. Dr. Asuman Do�aç                (METU, CENG) 

Assoc. Prof. Dr. �. Hakkı Toroslu  (METU, CENG) 

Assoc. Prof. Dr. Ali Do�ru            (METU, CENG) 

Bülent Kunaç                                        (Tepe Tech.) 



 iii

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained 
and presented in accordance with academic rules and ethical conduct. I 
also declare that, as required by these rules and conduct, I have fully cited 
and referenced all material and results that are not original to this work. 
 
 
 
     Name, Last  name:   �lhami Görgün 
  

 
Signature              : 

 
 
 

 
 
 

 

 
 



 iv 

 
 
 
 
 

ABSTRACT 
 
 

DEPLOYING AND INVOKING SECURE WEB SERVICES OVER JXTA 
FRAMEWORK 

 
 
 

Görgün, �lhami 

                          M.Sc., Department of Computer Engineering 

                               Supervisor      : Prof. Dr. Asuman Do�aç 

 

December 2004, 113 pages 
 
 
 
 
Web services introduce a new paradigm for distributed computing, and the 

technology that it introduces constructs a new type of Web application. Web 

services can be described as any software that makes its discovery and 

invocation available over the Internet, and uses a standardized XML messaging 

system. 

 

The term peer-to-peer refers to a class of decentralized systems enabling the 

access of shared resources available on peers that are acting both as client and 

as server.  

 

In this work, a peer-to-peer approach is used to expoit Web service 

technologies by providing Web service security for JXTA peer-to-peer 

networks. JXTA is a network programming environment that has particularly 

been designed for the peer-to-peer platform. 

 



 v 

In order to achieve the goal of secure Web services, the specifications “WS-

Security”, “XML Key Management Specification”, “WS-Trust” and “WS-

SecurityPolicy” are exploited. “WS-Security” is primarily a specification for an 

XML-based security metadata container, and is a building block for the 

specifications “WS-Trust” and “WS-SecurityPolicy”. “WS-Trust” defines the 

process of how to acquire security tokens. Within the peer-to-peer network that 

is proposed with this work, a peer is dedicated to act as a “trusted third party” 

and to manage the processes for incorporating the security of public-key 

infrastructure, which is defined by “XML Key Management Specification”. In 

addition, the same peer is dedicated to manage to acquire security tokens, 

which is defined by “WS-Trust”. As for “WS-SecurityPolicy”, Web service 

invoking peers conform to this specification that specifies how to define 

security assertions stating Web service provider’s preferences and 

requirements. 

 

This work realizes and achieves the necessity of bringing together the 

technologies mentioned above in order to propose an architecture of secure 

SOAP messaging for Web service invocation in peer-to-peer environment that 

is provided by the JXTA framework. 

 

The work presented in this thesis is realized as a part of the SATINE project 

funded by the European Commission. 

 

Keywords: Security, Web service, Peer-to-peer, JXTA 
 
 

 
 
 
 
 
 
 
 
 



 vi 

 
 
 
 

 
ÖZ 

 
 

JXTA ÇATISI �Ç�N GÜVENL� A� SERV�SLER� YAYILMASI VE 
KULLANILMASI 

 
 
 
 

Görgün, �lhami 

                              Y. Lisans, Bilgisayar Mühendisli�i Bölümü 

                        Tez Yöneticisi          : Prof. Dr. Asuman Do�aç 

 
Aralık 2004, 113 sayfa 

 
 
 

 
A� servisleri da�ıtık çalı�ma için yeni bir görü� tanıtmaktadır ve tanıttıkları 

teknoloji yeni a� uygulama tekni�i in�a etmektedir. A� servisleri, Internet 

üzerinden bulunmalarını ve kullanılmalarını mümkün kılan herhangi bir 

yazılım parçası olarak tanımlanabilir ve standartla�mı� XML mesajla�ma 

sistemini kullanmaktadır. 

 

E�ler-arası terimi, hem alıcı hem de sunucu olarak davranan e�lerin payla�ılmı� 

kaynaklarına ula�ımı mümkün kılan merkezile�tirilmemi�  sistemler sınıfını 

tanımlamaktadır.  

 

Bu çalı�mada, JXTA e�ler-arası a�ları için a� servisi güvenli�i sa�layarak a� 

servisi teknolojilerinden faydalanabilmek için e�ler-arası yakla�ımı 

kullanılmaktadır. JXTA, özellikle e�ler-arası platformu için tasarlanmı� bir a� 

programlama ortamıdır. 

 



 vii 

A� servisleri için güvenli�i sa�layabilmek için “WS-Security”, “XML Key 

Management Specification”, “WS-Trust” ve “WS-SecurityPolicy” 

tanımlamaları kullanılmaktadır. “WS-Security” temelde XML tabanlı yardımcı 

güvenlik veri içeri�i için tanımlamadır ve “WS-Trust” ve “WS-SecurityPolicy” 

tanımlamaları için temel ta� olu�turmaktadır. “WS-Trust” güvenlik jetonlarına 

ula�ma sürecini belirtmektedir. Bu çalı�ma ile tanıtılan e�ler-arası a� içerisinde 

bir e�, “güvenilir üçüncü sistem” olarak davranmak ve “XML Key 

Management Tanımlaması” ile belirtilen public-key mekanizmasının güvenli�i 

ile ilgili süreçleri yerine getirmek i�lemlerine adanmı� durumdadır. Buna ek 

olarak, aynı e�, güvenlik jetonlarına ula�ma i�lemini yerine getirmektedir. 

“WS-SecurityPolicy” tanımlamasına gelince ise, a� servis kullanan e�ler, a� 

servis sa�layan e�lerin tercihlerini ve gereksinimlerini belirten bu tanımlamaya 

uymaktadırlar. 

 

Bu çalı�ma, JXTA çatısının imkan verdi�i e�ler-arası ortamında a� 

servislerinin kullanımı için, güvenli SOAP mesajla�ma mimarisi tanıtma amacı 

için yukarıda bahsedilen teknolojileri biraraya getirmektedir. 

 

Bu çalı�ma, Avrupa Komisyonu tarafından desteklenen SATINE projesinin bir 

parçası olarak gerçekle�tirilmi�tir. 

 

Anahtar Kelimeler: Güvenlik, A� servisi, E�ler-arası, JXTA 
 



 viii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

To My Family



 ix 

 
 
 
 
 
 

ACKNOWLEDGMENTS 
 
 
 
I would like to thank my supervisor Asuman Do�aç for all her guidance, 

advice, encouragement and support during this study.  

 

I would like to thank each member of SRDC team for their technical guidance 

and support during this study.  

 

I would like to thank Yıldıray Kabak, Gökçe Banu Laleci and Ümit Lütfü 

Altıntakan for their technical assistance and support throughout this study.  

 

Finally, I would like to thank my family, especially to my fiancee and to my 

mother, for all their patience and support. 

 
 
 



 x 

 
 
 

TABLE OF CONTENTS 
 
 
 
ABSTRACT.......................................................................................................iv 
 
ÖZ.......................................................................................................................vi 
 
ACKNOWLEDGMENTS..................................................................................ix 
 
TABLE OF CONTENTS....................................................................................x 
 
CHAPTER 
 

1. INTRODUCTION.....................................................................................1 
 
2. ENABLING TECHNOLOGIES...............................................................4 

 
2.1 Peer-to-peer Computing.................................................................4 
 
2.2 JXTA Framework..........................................................................8 
 
2.3 Web Services...............................................................................12 
 
 2.3.1     Extensible Markup Language (XML).............................14 
 
 2.3.2     Simple Object Access Protocol (SOAP).........................15 
 
 2.3.3     Web Services Description Language (WSDL)................15 
 
 2.3.4     Universal, Description, Discovery, and 
                      Integration (UDDI)..........................................................16 
 
 2.3.5     ebXML............................................................................16 
 
2.4 Web Services Security..................................................................18 
 
 2.4.1     XML Encryption.............................................................18 
 
 2.4.2     XML Signature................................................................21 
 
 2.4.3     WS-Security....................................................................26 

 



 xi 

 2.5 XML Key Management Specification (XKMS).......................27 
 
 2.6 WS-Trust...................................................................................29 
 
 2.7 WS-SecurityPolicy....................................................................33 
 

3. SECURE WEB SERVICES IN  
      PEER-TO-PEER ENVIRONMENT.....................................................38 

 
3.1 Descriptions of Peers in PeerGroup-1..........................................40 
 
3.2 Descriptions of Peers in PeerGroup-2..........................................44  
 
3.3 Descriptions of Peers in PeerGroup-3..........................................47 

 
3.3.1 XML Key Management Service.......................................47 
 
3.3.2    Security Token Management Service...............................50 

 
4. SECURE WEB SERVICE INVOCATION OVER 

JXTA FRAMEWORK..........................................................................53 
 
            4.1    Design and Implementation of the System...................................54 
 
            4.2    Example Walkthrough..................................................................56 
 
      5.   THE SATINE PROJECT INTEGRATION..........................................73 
 
            5.1    SATINE Network Security...........................................................77 
 
      6.   RELATED WORK................................................................................86 
 
      7.   CONCLUSION AND FUTURE WORK..............................................88 

 
REFERENCES..................................................................................................90 
 
APPENDICES 

 
A. DESCRIPTION FILES  OF THE WEB SERVICES............................93 
 
B. FORMATS OF SOAP MESSAGES FOR 

WEB SERVICES INVOCATION......................................................110 
 
 



 xii 

 
 
 
 

LIST OF TABLES 
 
 
 
 
TABLES   
 
2.1 Security Policy Assertions defined by WS-SecurityPolicy.....................35 
 
3.2 Peer-to-peer Network Elements...............................................................38 
 
 



 xiii

 
 
 
 

LIST OF FIGURES 
 
 
 
 
FIGURES  
 
1.1 An Overall Architecture of the System.....................................................2 
 
2.1 The Client/Server Model...........................................................................5 
 
2.2 A P2P Network…………………………………………………………..6 
 
2.3    Target Architecture of P2P Framework………………….……………....8 
 
2.4    The Peer-to-Peer Model………………………………………………….9 
 
2.5    Logical Layers of JXTA………………………………………………...11 
 
2.6    Web Services Operational Model……………………………………….13 
 
2.7    Components of XML Signature………………………………………...24 
 
2.8    Typical Message Flow………………………………………………….27 
 
2.9    Web Services Specifications……………………………………………30 
 
2.10 Security Token Service Model………………………………………….32 
 
2.11  Policy Overview………………………………………………………...34 
 
3.1   Interaction Diagram within the P2P Network…………………………...40 
 
4.1   Architecture of the Peer-to-peer System………………...………………54 
 
4.2   Authentication for Peer-to-peer System…………………………………57 
 
4.3   XML Key Management and Security Token Service Peer……………...57 
 
4.4   Secure Web Service Invoking Peer……………………………………...58 
 
4.5   Constructed SOAP Message…………………………………………….59 



 xiv 

 
4.6   Resultant SOAP Message after Encryption……………………………...61 
 
4.7   Resultant SOAP Message after Adding Digital Signature.……………...63 
 
4.8   Resultant SOAP Message after Adding Username Token Information....66 
 
4.9   Received Secure SOAP Message………………………………………..68 
 
4.10 Digital Signature Verification…………………………………………...70 
 
4.11 Resultant SOAP Message after Decryption.…………………………….71 
 
4.12 Security Token Validation…………………………………………….…72 
 
5.1   General Architecture…………………………………………………….74 
 
5.2   General Architecture Deployment Diagram…………………….……….76 
 
 
 



 1 

 
 
 
 

CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

Peer-to-peer systems introduce a class of decentralized systems enabling the 

access of shared resources available on peers that are acting both as client and 

as server. The shared resources include computing power, data (storage and 

content),  and network bandwidth. These features of peer-to-peer computing 

facilitate distributed computing, data/content sharing, communication and 

collaboration, or platform services.  

 

Peer-to-peer computing is increasingly receiving attention in research, product 

development and investment. Peer-to-peer systems provide the advantages of 

improved scalability and reliability, resource aggregation and interoperability, 

increased autonomy, and dynamism. 

 

Web services are autonomous platform-independent computational elements 

that can be described, published, discovered, orchestrated, and programmed 

using XML artefacts for the purpose of developing distributed interoperable 

applications. Well-accepted standards like Web Services Description Language 

(WSDL) and Simple Object Access Protocol (SOAP) make it possible to 

dynamically invoke Web services.  

 

Despite the promise, Web services have lacked the mechanism for 

implementing security, which is a crucial aspect to enable Web services 

techbology to become more popular and common. In order to overcome this 

issue, specifications like WS-Security, WS-Trust, WS-Policy, and WS-



 2 

SecurityPolicy have emerged. The aim of this work is to bring together the 

technologies introduced by peer-to-peer computing and Web services by 

providing a secure Web service invoking mechanism in a peer-to-peer network. 

In this work, a peer-to-peer network architecture which provides secure Web 

service implementation conforming to the standards WS-Security, WS-Trust, 

WS-SecurityPolicy and XML Key Management Specification is implemented. 

The overall system architecture is denoted in Figure 1.1. 

 

 
Figure 1.1. An Overall Architecture of the System 

 

Within this work, in order to achieve peer-to-peer network creation and 

implementation, JXTA technology is exploited. JXTA technology is a network 

programming and computing platform that is designed to solve a number of 

problems in modern distributed computing, particularly in the area of peer-to-

peer computing. The JXTA project has been initiated by Sun Microsystems and 

has been designed with the participation of a number of experts from academic 

institutions and industry. 

 

The focus of this thesis is on defining an architecture to provide secure Web 

services for peer-to-peer systems, which has gained an increasing popularity. In 

Web Service 
Providing peer 

Web Service 
Invoking peer 

secure SOAP messaging 

XKMS & Security Token 
Services peer 

Public Key management 

Security Token management 

Public Key location 
Security Token validation 



 3 

this work, JXTA framework is exploited for the peer-to-peer network 

implementation. JXTA framework has introduced its own security mechanism 

[22], which provides whole message integrity and confidentiality only among 

the communicating peer pairs, and exploits the technology Transport Layer 

Security (TLS). For the Web services technology, a more complex mechanism 

is required in order to involve all the peers (Web service providing and 

invoking peers) within the peer-to-peer network by conforming to the well-

accepted specifications introduced for Web services security. 

 

The thesis work contributes to the SATINE project [24, 25, 26, 27, 28], which 

is developed within the Sixth Framework Programme of European 

Commission. The objective of the project is to develop a secure semantic-based 

interoperability framework for exploiting Web service platforms in conjunction 

with peer-to-peer networks in the travel industry. 

 

The thesis is organized as follows: Chapter II describes the technologies that 

enable this work, namely, peer-to-peer computing, JXTA Framework, Web 

Services, Web Services Security, XML Key Management Specification, Web 

Services Trust, and Web Services Security Policy. Chapter III describes how 

the mechanism for performing secure Web services in peer-to-peer systems is 

achieved. Chapter IV describes the building blocks for the implementation of 

the introduced system, and presents a sample walkthrough for demonstrational 

purpose. Chapter V describes the integration of the thesis work to the SATINE 

project. Chapter VI summerizes the related work. Chapter VII concludes the 

thesis and presents the future work. 

 

 
 



 4 

 
 
 
 

CHAPTER II 
 
 
 

ENABLING TECHNOLOGIES 
 
 
 

In this chapter, the technologies that enable this work are described. Initially, 

peer-to-peer computing, and JXTA technology that provides the framework to 

implement peer-to-peer computing are introduced in Section 2.1 and Section 

2.2. Later in the section, Web services and the standards related with Web 

servives that are exploited in this work are introduced. 

 

2.1. Peer-to-peer Computing 

 

Peer-to-Peer (P2P) computing refers to the exchange of data between two 

computers. The P2P architecture allows to develop a decentralized application 

design where each computer, independent of software and hardware platforms, 

can access shared resources available on other peers.  

 

In a typical client/server computing model, the communication between the 

computers on a network is through a centralized server. The server controls the 

flow of data and information between the client computers. Alternatively, P2P 

allows to share resources independently, without going through a central 

server. In P2P computing, numerous computers are interconnected with each 

other to share resources directly; and in a P2P application, multiple peers 

perform specific roles in communicating with each other.  

 

The P2P computing model has several advantages over the centralized model. 

These advantages include effective utilization of network resources, dynamic 



 5 

nature of the network, and security and integrity of data. The distributed 

architecture offers interoperability among network devices. P2P is based on the 

concept of an equal participation of peers allowing resource sharing and 

collaboration among the integral parts of a distributed system design.  

 

The following figure denotes the client/server model where client computers 

are connected with the Internet and the Web Server through HTTP: 

 

 
Figure 2.1. The Client/Server Model 

 

In P2P computing model, the participating computers can work as clients as 

well as servers. A peer computer acts as a client but has an additional layer of 

software that allows it to act as a server. For example, a peer computer 

responds to the requests of other peers. These requests could be for retrieval or 

storage of information, a computation to be performed, or simply an exchange 

Internet 

File/HTML 
document 

HTML 
Document 

Server 

HTTP 

Files 

FTP 



 6 

of messages. In this way, a peer can directly interact with other computers on 

the network without the need of a central server. The following figure denotes 

a sample P2P network: 

 

 
Figure 2.2. A P2P Network 

 

In a P2P network, collaboration between the peer computers and resource 

sharing help in increasing productivity and reducing costs through efficient use 

of the available resources.  

 

The SETI@Home project is a good example of how P2P applications can 

leverage unused resources and gain access to vast storage and computational 

power. This project comprises about 2.4 million users from over 200 countries 

who contribute the idle cycles on their computers to process data for Search for 

Extra Terrestrial Intelligence (SETI). Napster introduced another concept of 

distributed file sharing and file storage. In the Napster model, individual 

computer nodes connect with each other to copy MP3 files. Replication of 

content and information is useful because the client does not have to depend on 

a centralized server for the required data. Every node or peer can be used as a 

Internet 



 7 

repeater to retransmit data once it reaches the node. In this way, Napster users 

can have access to several terabytes of storage and bandwidth at no extra cost.  

 

With new advances in P2P technologies, many new concepts have been 

introduced. Enterprises are considering P2P as a viable option for cost 

reduction and efficient resource management. Companies, such as SUN and 

Groove networks, have taken up many innovative projects. With XML 

becoming the de facto standard for Web data, enterprises would be able to use 

Web Services in P2P applications for performing several business-to-business 

(B2B) related tasks. For example, buyers can use P2P networks to search for 

and find supplier and product details. This would help in direct B2B 

transactions and eliminate the need for intermediaries. SUN has taken initiative 

in promoting P2P by introducing JXTA, a collection of low-level protocols for 

developing P2P applications. According to SUN, JXTA can facilitate 

interoperability between a range of devices, such as personal computers, cell 

phones and other wireless devices.  

 

The P2P model is significant in enterprises because it promises the following 

benefits: 

• Overall cost of processing can be brought down and productivity can be 

increased. 

• Value added services could be offered in business-to-business (B2B) 

and business-to-customer (B2C) transactions.  

 

In the last years, there has been a rapid increase in the development of new P2P 

technologies and standards, which are particularly targeting interoperability. 

The most significant way to achieve interoperability is through a common 

infrastructure. A common platform reduces the efforts needed to develop 

applications for different platforms and interfaces. Project JXTA is a set of 

low-level protocol that allows programmers to develop efficient P2P 

applications. New generations of wireless devices embedded with JXTA are to 



 8 

deliver a significant level of interoperability. Figure 2.3. denotes the aimed P2P 

framework where applications and devices are interoperable:  

 

 
Figure 2.3. Target Architecture of P2P Framework 

 

Finally, it is worth noting that issues such as security and trust need to be 

addressed in order to make the best use of P2P applications and to develop a 

standard platform for application developers, which constitute the target of this 

work, particularly for the exploitation of Web service technology within P2P 

network.  

 

2.2. JXTA Framework 

 

The project JXTA introduces a set of protocols, which enables peer-to-peer 

communication among computers and software components. JXTA is a 

network programming and computing platform that is designed to solve a 

number of problems in modern distributed computing, particularly in the area 

of peer-to-peer computing.  

 



 9 

Project JXTA has originally been initiated by Sun Microsystems and designed 

with the participation of a number of experts from academic institutions and 

industry. The project has defined the following objectives based on the 

advantages of peer-to-peer systems: 

• Interoperability: compatible P2P systems and participation among 

P2P systems. 

• Platform Independence: independent of programming languages, 

development environments, or deployment platforms. 

• Ubiquity: implementable on every device with a digital heartbeat, 

including sensors, consumer electronics, PDA’s, network routers, 

desktop computers, and storage systems. 

 

JXTA defines a set of protocols that enable computers connected in parallel to 

communicate with each other. Computers connected in parallel contain entities, 

called peers. That is, a peer is an entity that can speak the protocols required of 

a peer.  

 

In a peer-to-peer model, each peer or entity in a parallel network has an ID. 

User-defined entities or a peer group represent a collection of peers. A unique 

ID also identifies a peer group. A peer can belong to multiple peer groups and 

can discover other entities dynamically. JXTA supports three types of 

communication in a peer-to-peer model, unicast, secure, and broadcast pipe.  

The following figure denotes the peer-to-peer model using the JXTA protocol:  

 

 
Figure 2.4. The Peer-to-Peer Model 

Peer 
2 

Peer 
3 

Peer 
1 

JXTA  
protocol 



 10

JXTA defines peer group as a virtual entity that speaks the set of peer group 

protocols. Typically, a peer group is a collection of cooperating peers 

providing a common set of services. There is a special group, called the World 

Peer Group, which includes all JXTA peers. 

 

JXTA exploits pipes as communication channels for sending and receiving 

messages. Pipes are asynchronous and unidirectional. Thus, there are input and 

output pipes between the peers. Pipes are also virtual, that is, an endpoint of a 

pipe can be bound to one or more peer endpoints. 

 

JXTA has defined the following six protocols that provide the mechanisms 

described above: 

• Peer Discovery Protocol: enables a peer to find advertisements on 

other peers, and can be used to find any of the peer, peer group, or 

advertisements. This protocol is the default discovery protocol for all 

peer groups, including the World Peer Group. 

• Peer Resolver Protocol: enables a peer to send and receive generic 

queries to search for peers, peer groups, pipes, and other information.  

• Peer Information Protocol: allows a peer to learn about the 

capabilities and status of other peers. 

• Peer Membership Protocol: allows a peer to obtain group 

membership requirements, to apply for membership and receive a 

membership credential along with a full group advertisement, to update 

an existing membership or application credential, and to cancel a 

membership or an application credential. 

• Pipe Binding Protocol: allows a peer to bind a pipe advertisement to a 

pipe endpoint, thus indicating where messages actually go over the 

pipe. In some sense, a pipe can be viewed as an abstract, named 

message queue that supports a number of abstract operations such as 

create, open, close, delete, send, and receive.  



 11

• Peer Endpoint Protocol: allows a peer to ask a peer router for 

available routes for sending a message to a destination peer. 

 

JXTA supports the management of peer-to-peer communication of individual 

peers and peer groups, and enables communications among peers using pipes 

and eXtensible Markup Language (XML) documents. Figure 2.5. denotes the 

logical layers of JXTA, which support peer-to-peer communication:  

 

 
Figure 2.5. Logical Layers of JXTA 

 

The Core layer consists of element peers, peer groups, entity names, and 

protocols, such as discovery, communication, and monitoring. This layer is the 

primary layer of the JXTA solution and also provides functionalities of the 

JXTA Peer-to-Peer (P2P) solution in the services or applications layers.  

The Services layer performs network functions, such as communication 

between two peers or software components. This layer provides functionalities, 

such as sharing resources and documents on a peer and authenticating peers. 

     JXTA Community Service 

The Peer-to-Peer Network 

Groups Pipes Monitor 

Security 

    JXTA Community Application Sun JXTA Application 

Sun JXTA Service 

JXTA Core 

JXTA Services 

JXTA Application 

JXTA Shell 

Peer Commands 



 12

Services are built on top of the JXTA Core layer. These services provide the 

specific capabilities required by different P2P applications.  

The Application layer is built above the Services layer. The system introduced 

witin this work has been developed in this layer.  

 

2.3. Web Services 

 

Web services are self-describing and modular applications that provide 

services over the Internet through programmable interfaces and using Internet 

protocols for the purpose of providing ways to find, subscribe, and invoke 

those services. Web services are autonomous platform-independent 

computational elements that can be described, published, discovered, 

orchestrated, and programmed using XML artefacts for the purpose of 

developing massively distributed interoperable applications. 

 

Web services have been described as the new phase of the Internet. The 

emergence of Web services introduces a new paradigm for enabling the 

exchange of information across the Internet based on open Internet standards 

and technologies. Using industry standards, Web services encapsulate 

applications and publish them as services. These services deliver XML-based 

data for use on the Internet, which can be dynamically located, subscribed, and 

accessed using a wide range of computing platforms, handheld devices, 

appliances, and so on. Due to the flexibility of using open standards and 

protocols, it also facilitates Enterprise Application Integration (EAI), business-

to-business (B2B) integration, and application-to-application (A2A) 

communication across the Internet and corporate intranet. In organizations with 

heterogeneous applications and distributed application architectures, the 

introduction of Web services standardizes the communication mechanism and 

enables interoperability of applications based on different programming 

languages residing on different platforms.  

 



 13

Based on XML standards, Web services can be developed as loosely coupled 

application components using any programming language, any protocol, or any 

platform. This facilitates delivering business applications as a service 

accessible to anyone, anytime, at any location, and using any platform.  

 

As mentioned, Web services are implemented based on open standards and 

technologies specifically exploiting XML. The XML-based standards and 

technologies, such as Simple Object Access Protocol (SOAP); Universal 

Description, Discovery, and Integration (UDDI); Web Services Definition 

Language (WSDL); and Electronic Business XML (ebXML), are commonly 

used as building blocks for Web services, which will be described in the 

following sections.  

 

Web services operations can be conceptualized as a simple operational model 

(Figure 2.6.). Operations are described as involving three distinct roles and 

relationships that define the Web services providers and users.  

 

 
Figure 2.6. Web Services Operational Model 

 

These roles and relationships are defined as follows:  

Service 
Broker 

Service 
Provider 

Service 
Requestor 

Invoke 
Service 

Register 
Service 

Discover 
Service 



 14

• Service Provider: The service provider is responsible for developing 

and deploying the Web services. The provider also defines the services 

and publishes them with the service broker.  

• Service Broker: The service broker (also commonly referred to as a 

service registry) is responsible for service registration and discovery of 

the Web services. The broker lists the various service types, 

descriptions, and locations of the services that help the service 

requesters find and subscribe to the required services.  

• Service Requestor: The service requestor is responsible for the service 

invocation. The requestor locates the Web service using the service 

broker, invokes the required services, and executes it from the service 

provider.  

 

The five core Web services standards and technologies for building and 

enabling Web services are XML, SOAP, WSDL, UDDI, and ebXML. An 

overview of each is presented in the following sections.  

 

2.3.1. Extensible Markup Language (XML) 

 

In February 1998, the Worldwide Web Consortium (W3C) officially endorsed 

the Extensible Markup Language (XML) as a standard data format. XML uses 

Unicode, and it is structured self-describing neutral data that can be stored as a 

simple text document for representing complex data and to make it readable. 

Today, XML is the de facto standard for structuring data, content, and data 

format for electronic documents. It has already been widely accepted as the 

universal language lingua franca for exchanging information between 

applications, systems, and devices across the Internet.  

 

In the core of the Web services model, XML plays a vital role as the common 

wire format in all forms of communication. XML also is the basis for other 

Web services standards.  



 15

 

2.3.2. Simple Object Access Protocol (SOAP) 

 

SOAP is a standard for a lightweight XML-based messaging protocol. It 

enables an exchange of information between two or more peers and enables 

them to communicate with each other in a decentralized, distributed application 

environment. Like XML, SOAP also is independent of the application object 

model, language, and running platforms or devices. SOAP is endorsed by W3C 

and key industry vendors like Sun Microsystems, IBM, HP, SAP, Oracle, and 

Microsoft. These vendors have already announced their support by 

participating in the W3C XML protocol-working group. The ebXML initiative 

from UN/CEFACT also has announced its support for SOAP.  

 

In the core of the Web services model, SOAP is used as the messaging protocol 

for transport with binding on top of various Internet protocols such as HTTP, 

SMTP, FTP, and so on. SOAP uses XML as the message format, and it uses a 

set of encoding rules for representing data as messages. Although SOAP is 

used as a messaging protocol in Web services, it also can operate on a 

request/response model by exposing the functionality using SOAP/RPC based 

on remote procedural calls. SOAP also can be used with J2EE-based 

application frameworks.  

 

2.3.3. Web Services Description Language (WSDL) 

 

The Web Services Description Language (WSDL) standard is an XML format 

for describing the network services and its access information. It defines a 

binding mechanism used to attach a protocol, data format, an abstract message, 

or set of endpoints defining the location of services.  

 

In the core of the Web services model, WSDL is used as the metadata language 

for defining Web services and describes how service providers and requesters 



 16

communicate with one another. WSDL describes the Web services 

functionalities offered by the service provider, where the service is located, and 

how to access the service. Usually the service provider creates Web services by 

generating WSDL from its exposed business applications. A public/private 

registry is utilized for storing and publishing the WSDL-based information.  

 

2.3.4. Universal Description, Discovery, and Integration (UDDI) 

 

Universal Description, Discovery, and Integration, or UDDI, defines the 

standard interfaces and mechanisms for registries intended for publishing and 

storing descriptions of network services in terms of XML messages. It is 

similar to the yellow pages or a telephone directory where businesses list their 

products and services. Web services brokers use UDDI as a standard for 

registering the Web service providers. By communicating with the UDDI 

registries, the service requestors locate services and then invoke them.  

 

In the core Web services model, UDDI provides the registry for Web services 

to function as a service broker enabling the service providers to populate the 

registry with service descriptions and service types and the service requestors 

to query the registry to find and locate the services. It enables Web applications 

to interact with a UDDI-based registry using SOAP messages. These registries 

can be either private services within an enterprise or a specific community, or 

they can be public registries to service the whole global business community of 

the Internet. The UDDI working group includes leading technology vendors 

like Sun Microsystems, IBM, HP, SAP, Oracle, and Microsoft.  

 

2.3.5. ebXML 

 

ebXML defines a global electronic marketplace where enterprises find one 

another and conduct business process collaborations and transactions. It also 

defines a set of specifications for enterprises to conduct electronic business 



 17

over the Internet by establishing a common standard for business process 

specifications, business information modeling, business process collaborations, 

collaborative partnership profiles, and agreements and messaging. ebXML is 

an initiative sponsored by the United Nations Center for Trade Facilitation and 

Electronic Business (UN/CEFACT) and the Organization for the Advancement 

of Structured Information Standards (OASIS). Popular standards organizations 

like Open Travel Alliance (OTA), Open Application Group, Inc. (OAGI), 

Global Commerce Initiative (GCI), Health Level 7 (HL7, a healthcare 

standards organization), and RosettaNet (an XML standards committee) also 

have endorsed it.  

 

In the Web services model, ebXML provides a comprehensive framework for 

the electronic marketplace and B2B process communication by defining 

standards for business processes, partner profile and agreements, registry and 

repository services, messaging services, and core components. It complements 

and extends with other Web services standards like SOAP, WSDL, and UDDI. 

In particular:  

• ebXML Business Process Service Specifications (BPSS) enable 

business processes to be defined.  

• ebXML CPP/CPA enables business partner profiles and agreements to 

be defined, and it provides business transaction choreography.  

• ebXML Messaging Service Handler (MSH) deals with the transport, 

routing, and packaging of messages, and it also provides reliability and 

security, a value addition over SOAP.  

• ebXML registry defines the registry services, interaction protocols, and 

message definitions, and ebXML repository acts as storage for shared 

information. The ebXML registries register with other registries as a 

federation, which can be discovered through UDDI. This enables UDDI 

to search for a business listing point to an ebXML Registry/Repository.  

• ebXML Core components provide a catalogue of business process 

components that provide common functionality to the business 



 18

community. Examples of such components are Procurement, Payment, 

Inventory, and so on. 

 

 

2.4. Web Services Security 

 

Web services security proposes a standard set of SOAP extensions that can be 

used when building secure Web services to implement integrity and 

confidentiality. This set of extensions are referred as the “Web Services 

Security Language” or “WS-Security”.  

 

WS-Security exploits the XML security technologies as the building bocks. 

XML-Encryption and XML-Digital Signature, which constitute the basis for 

XML security, are explained in the following sections. 

 

2.4.1. XML Encryption 

 

There are particular difficulties in dealing with hierarchical data structures, like 

XML, and with subsets of data with varying requirements as to confidentiality, 

access authority, or integrity. In addition, the application of standard security 

controls differentially to XML documents is not at all straightforward.  

 

An XML document, like any other, can be encrypted in its entirety and sent 

securely to one or more recipients. This is a common function of Secure 

Sockets Layer (SSL) or Transport Layer Security (TLS), for example, but what 

is much more interesting is how to handle situations where different parts of 

the same document need different treatment. A valuable benefit of XML is that 

a complete document can be sent as one operation and then held locally, thus 

reducing network traffic. But this then raises the question of how to control 

authorized viewing of different groups of elements. In order to examplify with 

a possible scenario, a merchant may need to know a customer's name and 



 19

address but does not need to know the various details of any credit card being 

used any more than the bank needs to know the details of the goods bought. A 

researcher may need to be prevented from seeing personal details on medical 

records while an administrator may need exactly those details but should be 

prevented from viewing medical history; a doctor or nurse, in turn, may need 

medical details and some, but not all, personal material. 

Cryptography now does far more than merely concealing information. Message 

digests confirm text integrity, digital signatures support sender authentication, 

and related mechanisms are used to ensure that a valid transaction cannot later 

be repudiated by another party.  

 

One of the strengths of XML language is that searching is clear and 

unambiguous: The Document Type Definition (DTD) or schema provides 

information as to the relevant syntax. If a document subsection, including tags, 

is encrypted as a whole, then the ability to search for data relevant to those tags 

is lost. Further, if the tags are themselves encrypted, then, being known, they 

may be useful as material for mounting plain text attacks against the 

cryptography employed. 

 

XML Encryption is a specification that has been introduced by W3C. XML 

Encryption specifies a process for encrypting data and representing the result in 

XML. The data may be arbitrary data (including an XML document), an XML 

element, or XML element content. The result of encrypting data is an XML 

Encryption element which contains or references the cipher data.  

 

The core element in the XML encryption syntax is the EncryptedData element 

which, with the EncryptedKey element, is used to transport encryption keys 

from the originator to a known recipient, and derives from the EncryptedType 

abstract type. Data to be encrypted can be arbitrary data, an XML document, an 

XML element, or XML element content; the result of encrypting data is an 

XML encryption element that contains or references the cipher data. When an 



 20

element or element content is encrypted, the EncryptedData element replaces 

the element or content in the encrypted version of the XML document. When it 

is arbitrary data that is being encrypted, the EncryptedData element may 

become the root of a new XML document or it may become a child element. 

When an entire XML document is encrypted, then the EncryptedData element 

may become the root of a new document. Further, EncryptedData cannot be the 

parent or child of another EncryptedData element, but the actual data encrypted 

can be anything including existing EncryptedData or EncryptedKey elements. 

 

In order to examplify the mechanism that XML Encryption introduces, if the 

following XML document is intended to be encrypted to conceal information 

on payment mechanisms: 

 
       <?xml version='1.0'?> 
       <PaymentInfo xmlns='http://example.org/paymentv2'> 
         <Name>John Smith<Name/> 
         <CreditCard Limit='5,000' Currency='USD'> 
           <Number>4019 2445 0277 5567</Number> 
           <Issuer>Bank of the Internet</Issuer> 
           <Expiration>04/02</Expiration> 
         </CreditCard> 
       </PaymentInfo>  

 

The resultant XML document becomes as follows: 

 
       <?xml version='1.0'?> 
       <PaymentInfo xmlns='http://example.org/paymentv2'> 
         <Name>John Smith<Name/> 
 <EncryptedData               
Type='http://www.w3.org/2001/04/xmlenc#Element' 
          xmlns='http://www.w3.org/2001/04/xmlenc#'> 
             
<CipherData><CipherValue>A23B45C56</CipherValue></CipherData> 
         </EncryptedData> 
       </PaymentInfo>  

 

In yet other cases, it might be necessary to conceal some sensitive content, 

which may result in the following XML document: 
       <?xml version='1.0'?>  
       <PaymentInfo xmlns='http://example.org/paymentv2'> 
         <Name>John Smith<Name/> 
         <CreditCard Limit='5,000' Currency='USD'> 



 21

           <Number> 
             <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#' 
              Type='http://www.w3.org/2001/04/xmlenc#Content'> 
                 <CipherData><CipherValue>A23B45C56</CipherValue> 
                 </CipherData> 
             </EncryptedData> 
           </Number> 
           <Issuer>Bank of the Internet</Issuer> 
           <Expiration>04/02</Expiration> 
         </CreditCard> 
       </PaymentInfo>  

 

2.4.2. XML Signature 

 

Digital signatures provide end-to-end message integrity guarantees, and can 

also provide authentication information about the originator of a message. In 

order to be most effective, the signature must be part of the application data, so 

that it is generated at the time the message is created, and it can be verified at 

the time the message is ultimately consumed and processed.  

 

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) also provide 

message integrity (as well as message privacy), but these mechanisms only do 

this while the message is in transit. Once the message has been accepted by the 

server (or, more generally, the peer receiver), the SSL protection must be 

"stripped off" so that the message can be processed.  As a more subtle point, 

SSL and TLS only work between the communication endpoints.  

 

An XML signature defines a series of XML elements that can be embedded in, 

or otherwise affiliated to, any XML document. It allows the receiver to verify 

that the message has not been modified from what the sender intended.  

 

XML Signature specifies XML syntax and processing rules for creating and 

representing digital signatures. XML Signatures can be applied to any digital 

content (data object), including XML. An XML Signature may be applied to 

the content of one or more resources.  

 



 22

Indeed, XML Signature is a method of associating a key with referenced data 

(octets); it does not normatively specify how keys are associated with persons 

or institutions, nor the meaning of the data being referenced and signed. 

Consequently, while this specification is an important component of secure 

XML applications, it itself is not sufficient to address all application 

security/trust concerns, particularly with respect to using signed XML (or other 

data formats) as a basis of human-to-human communication and agreement.  

Prior to explaining the format and the mechanism that XML Signature 

introduces, the following paragraph details the process of achieving digital 

signatures: 

 

A digital signature provides an integrity check on some content. If a single byte 

of the original content has been modified, then the signature fails to verify. The 

first step for creating a digital signature is to ''hash'' the message. A 

cryptographic hash takes an arbitrary stream of bytes and converts it to a single 

fixed-size value known as a digest. A digest is a one-way process: it is 

''computationally infeasible'' to recreate a message from the hash, or to find two 

different messages which produce the same digest value.  

 

If  a message M is generated, and a digest is created, (written as H(M), for "the 

hash of M"), and the receiver gets M and H(M), the receiver can create his/her 

own digest H'(M), and if the two digest values match, it is assured that the 

receiver gets what has originally been sent. In order to protect M against 

modification, it is only needed to protect H(M) from being modified.  

 

There are two common approaches to prevent H(M) from being modified. The 

first method is to mix a shared secret into the digest. In other words, to create 

H(S+M). When the receiver gets the message, the receiver uses his/her own 

copy of S to create H'(S+M). This new digest is called an HMAC, or Hashed 

Messsage Authentication Code.   

 



 23

Another method to protect the digest is to use public-key cryptography. In 

public-key cryptography, there are two keys, a private key, known only to the 

holder, and a public key, accessible to anyone who wants to communicate with 

the key holder. In public-key cryptography, anything encrypted with the private 

key can be decrypted with the public key, and vice versa. Using this method, a 

digest is generated, H(M), and encrypted it with sender’s private key, 

{H(M)}private-key, which is the signature. When the receiver gets the 

message, M, the receiver generates the digest, H'(M), and decrypts the 

signature using the sender’s public key, getting the H(M) that has been 

generated by the sender. If H(M) and H'(M) are the same, then it is assured 

that M is the same. Further, it is known that whoever has the private key is the 

sender of the message.  

 

XML signatures are digital signatures designed for use in XML transactions. 

The standard defines a schema for capturing the result of a digital signature 

operation applied to arbitrary (but often XML) data.  

 

A fundamental feature of XML Signature is the ability to sign only specific 

portions of the XML tree rather than the complete document. This will be 

relevant when a single XML document may have a long history in which the 

different components are authored at different times by different parties, each 

signing only those elements relevant to itself. This flexibility will also be 

critical in situations where it is important to ensure the integrity of certain 

portions of an XML document, while leaving open the possibility for other 

portions of the document to change. Consider, for example, a signed XML 

form delivered to a user for completion. If the signature is over the full XML 

form, any change by the user to the default form values invalidates the original 

signature.  

 

The components of XML Signature is denoted in the following figure: 

 



 24

 
Figure 2.7. Components of XML Signature 

 

The top-level Signature element covers information about what is being signed, 

the signature, and the keys used to create the signature. 

 

In XML signatures, each referenced resource is specified through a Reference 

element and its digest (calculated on the identified resource and not the 

Reference element itself) is placed in a DigestValue child element. The 

DigestMethod element identifies the algorithm that is used to calculate the 

digest. Reference elements are collected with their associated digests within a 

SignedInfo element.  

 

The CanonicalizationMethod element indicates the algorithm that is used to 

canonize the SignedInfo element. Different data streams with the same XML 

information set may have different textual representations, such as differing as 

to whitespace. In order to help prevent inaccurate verification results, XML 

information sets must first be canonized before extracting their bit 

representation for signature processing. The SignatureMethod element 

identifies the algorithm used to produce the signature value.  

<Signature> 
      <SignedInfo> 
            (CanonicalizationMethod) 
            (SignatureMethod) 
            (<Reference (URI=)? > 
                  (Transforms)? 
                  (DigestMethod) 
                  (DigestValue) 
            </Reference>)+ 
      </SignedInfo> 
      (SignatureValue) 
      (KeyInfo)? 
      (Object)* 
</Signature> 
 

Each resource to be signed has its own 
<Reference> element, identified by the URI 
attribute. 

The <Transform> element specifies an ordered list of 
processing steps that were applied to the referenced 
resource‘s content before it was digested. 

The <DigestValue> element carries the value of the 
digest of the referenced resource. 

The <SignatureValue> element carries the 
value of the encrypted digest of the 
<SignedInfo> element. 

The <KeyInfo> element indicates the key to be used 
to validate the signature. Possible forms for 
identification include certificates, key names, and 
key agreement algorithms and information. 



 25

The digest of the SignedInfo element is calculated, that digest is signed, and 

the signature value is put in a SignatureValue element.  

 

If the keying information is to be included, it is placed in a KeyInfo element.  

The SignedInfo, SignatureValue, and KeyInfo elements are placed into a 

Signature element. The Signature element comprises the XML signature.  

 

The following is a sample XML signature document: 

 

<?xml version="1.0" encoding="UTF-8"?> 
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"> 
<SignedInfo Id="foobar"> 
<CanonicalizationMethod  
  Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/> 
<SignatureMethod  
  Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" 
/>  
<Reference 
URI="http://www.abccompany.com/news/2000/03_27_00.htm"> 
<DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" /> 
<DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>  
</Reference> 
<Reference  
  URI="http://www.w3.org/TR/2000/WD-xmldsig-core-
20000228/signature-example.xml"> 
<DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
<DigestValue>UrXLDLBIta6skoV5/A8Q38GEw44=</DigestValue>  
</Reference> 
</SignedInfo> 
<SignatureValue>MC0E~LE=</SignatureValue> 
<KeyInfo> 
<X509Data> 
<X509SubjectName>CN=Ed Simon,O=XMLSec 
Inc.,ST=OTTAWA,C=CA</X509SubjectName> 
<X509Certificate> 
MIID5jCCA0+gA...lVN 
</X509Certificate> 
</X509Data> 
</KeyInfo> 
 
</Signature>  

 

 

 



 26

2.4.3. WS-Security 

 

Web Services Security (WS-Security) describes enhancements to SOAP 

messaging to provide quality of protection through message integrity, message 

confidentiality, and single message authentication. These mechanisms can be 

used to accommodate a wide variety of security models and encryption 

technologies.    

 

WS-Security is flexible and is designed to be used as the basis for the 

construction of a wide variety of security models, such as Public Key 

Infrastructure (PKI). Specifically WS-Security provides support for multiple 

security tokens, multiple trust domains, multiple signature formats, and 

multiple encryption technologies.  

 

WS-Security provides three main mechanisms:  

• security token propagation,  

• message integrity, and  

• message confidentiality.  

These mechanisms by themselves do not provide a complete security solution. 

Instead, WS-Security is a building block that can be used in conjunction with 

other Web service extensions and higher-level application-specific protocols to 

accommodate a wide variety of security models and encryption technologies. 

WS-Security specifies the methods to embed security within the SOAP 

message itself, and addresses: authentication, signatures, and encryption.  

 

WS-Security addresses concerns related with security by leveraging existing 

standards and specifications, such as XML Encryption, XML Signature, and 

XML Canonicalization. This avoids the necessity to define a complete security 

solution within WS-Security. What WS-Security adds to existing specifications 

is a framework to embed these mechanisms into a SOAP message.  

 



 27

WS-Security defines a SOAP Header element to carry security-related data. If 

XML Signature is used, this header can contain the information defined by 

XML Signature that conveys how the message is signed, the key that is used, 

and the resulting signature value. Likewise, if an element within the message is 

encrypted, the encryption information such as that conveyed by XML 

Encryption can be contained within the WS-Security Header element. WS-

Security does not specify the format of the signature or encryption. Instead, it 

specifies how one would embed the security information laid out by other 

specifications within a SOAP message. WS-Security is primarily a 

specification for an XML-based security metadata container.  

 

Figure 2.8. depicts a fairly common message flow:  

 

 
Figure 2.8. Typical Message Flow 

 

2.5. XML Key Management Specification (XKMS) 

 

The XML Key Management Specification (XKMS) defines processes and 

formats that enable XML-aware applications to incorporate the security of 

public-key infrastructure (PKI).  

 

XKMS defines two classes of PKI functions:  

Web Service Client Security Token Service 

Web Service 
5. Receive Response 

4. Validate Tokens 
3. Sign and send message 
to Web service 

1. Send request for tokens 
(may be non-Web service  
related) 

2. Get tokens to add to 
SOAP message 



 28

• Public key lifecycle management (registration, revocation and, 

renewal),  

• Validation and location of cryptographic keys.  

 

XKMS provides an alternative approach to developers implementing PKI-

enabled applications. Public Key Infrastructure (PKI) is essential for enabling 

trust in digital communications.  

 

PKI enables to digitally sign documents, and then to verify those signatures. 

PKI also enables to encrypt and decrypt documents. However, complex and 

expensive infrastructure is required to perform these seemingly simple tasks. 

Many hours must be spent by developers integrating applications, such as e-

mail clients or ERP systems, with a PKI. And once one ERP or e-mail client is 

PKI-enabled, it does not necessarily function with another PKI-enabled ERP or 

another e-mail client.  

 

XKMS solves the problem of complexity by enabling client applications to 

delegate processing to server-based services. With XKMS, PKI complexity is 

hidden in the infrastructure, making it easy to integrate cryptographic trust 

services into more applications. At the same time, XKMS simplifies and 

standardizes the interface between a client application and a PKI. Standards-

based interfaces make interoperable PKI feasible. In other words, XKMS 

makes it possible simply to "plug in" to a trust service that enables applications 

to easily perform cryptographic functions. 

 

With XKMS, trust functions reside in servers accessible via easily programmed 

XML transactions. XKMS also enables increased interoperability between 

XKMS systems by combining XML with PKI.  

 

Incorporating digital signatures or encryption functionality into applications 

help in gaining the following benefits when XKMS is used:  



 29

• Developers can integrate authentication, digital signature, and 

encryption services, such as revocation status checking into 

applications doing away with the constraints and complications 

associated with proprietary PKI software toolkits.  

• XKMS provides a pure XML, developer-friendly syntax. By avoiding 

the introduction of PKI toolkits on the client side, the trust 

infrastructure permits developers to work in a simple XML 

environment.  

• XKMS enables rapid implementation of trust with standard XML 

toolkits. The only client logic beyond traditional XML parsing runtimes 

is cryptographic support for XML digital signatures and XML 

encryption.  

• XKMS does not require proprietary plug-ins to support enterprise PKI.  

• XKMS reduces delays in PKI deployment, as it moves the complexity 

of PKI and trust processing from client-side to server-side components.  

 

2.6. WS-Trust  

 

The Web Services Security (WS-Security) roadmap describes mechanism for 

addressing security within a Web service environment. It defines a 

comprehensive Web service security model that supports, integrates, and 

unifies several popular security models, mechanisms, and technologies 

(including both symmetric and public key technologies) in a way that enables a 

variety of systems to securely interoperate in a platform- and language-neutral 

manner. It describes scenarios that show how the specifications like WS-Trust 

and WS-SecurityPolicy might be used together.  

 

Figure 2.9. denotes the WS-Security specification as the building block for the 

specifications WS-Trust and WS-SecurityPolicy. 

 



 30

 
Figure 2.9. Web Services Specifications 

 

WS-Trust describes the model for establishing both direct and brokered trust 

relationships including third parties and intermediaries. This specification 

defines extensions that build on WS-Security to provide a framework for 

requesting and issuing security tokens, and to broker trust relationships.  

 

WS-Security defines the basic mechanisms for providing secure messaging. 

WS-Trust uses these base mechanisms and defines additional primitives and 

extensions for security token exchange to enable the issuance and 

dissemination of credentials within different trust domains. 

 

WS-Trust defines extensions to WS-Security that provide:  

• Methods for issuing, renewing, and validating security tokens.  

• Ways to establish, assess the presence of, and broker trust relationships.  

 

Using these extensions, applications can engage in secure communication 

designed to work with the general Web services framework, including WSDL 

service descriptions, UDDI businessServices and bindingTemplates, and SOAP 

messages. To achieve this, WS-Trust introduces a number of elements that are 

used to request security tokens and broker trust relationships. 

 

SOAP Foundation 

WS Security 

WS-Policy WS-Trust WS-Privacy 

WS- 
SecureConversatio

n 

WS-Federation WS-
Authorization 



 31

The goal of WS-Trust is to enable applications to construct trusted SOAP 

message exchanges. This trust is represented through the exchange and 

brokering of security tokens. WS-Trust provides a protocol agnostic way to 

issue, renew, and validate these security tokens.  

 

WS-Trust intends to provide a flexible set of mechanisms that can be used to 

support a range of security protocols; that is, WS-Trust intentionally does not 

describe explicit fixed security protocols.  

 

The Web service security model defined in WS-Trust is based on a process in 

which a Web service can require that an incoming message prove a set of 

claims (e.g., name, key, permission, capability, etc.). If a message arrives 

without having the required proof of claims, the service ignores or rejects the 

message. A service can indicate its required claims and related information in 

its policy as described by WS-SecurityPolicy specification.  

 

The model introduced by WS-Trust is illustrated in the Figure 2.10., which 

denotes that any requestor may also be a service, and that the Security Token 

Service is a Web service; that is, it may express policy and require security 

tokens.  

 



 32

 
Figure 2.10. Security Token Service Model 

 

WS-Trust defines what requests to a security token service look like and how 

responses are sent back. The interaction relies on two elements: 

RequestSecurityToken and RequestSecurityTokenResponse. The basic idea is 

to send a SOAP message containing a RequestSecurityToken as its body, then 

get back a SOAP message containing a RequestSecurityTokenResponse, 

complete with the new security token.  

A sample body of the response returned by the security token service might 

look like: 

 

<s:Body> <wsse:RequestSecurityTokenResponse> <wsse:RequestedSecurityToken> 

<wsse:BinarySecurityToken ValueType="wsse:X509v3" 

EncodingType="wsse:Base64Binary"> KkFPle ... </wsse:BinarySecurityToken> 

</wsse:RequestedSecurityToken> </wsse:RequestSecurityTokenResponse> </s:Body>  

 

 

 

 

Claims 

Requester 
Policy 

Security  
Token 

Claims 

Security  
Token 

Service 

Policy 

Security  
Token 

Claims 

Web 
Service 

Policy 

Security  
Token 



 33

2.7. WS-SecurityPolicy 

 

The Web Services Policy Framework (WS-Policy) provides a general purpose 

model and corresponding syntax to describe and communicate the policies of a 

Web Service.  

 

WS-Policy defines a base set of constructs that can be used and extended by 

other Web Services specifications to describe a broad range of service 

requirements, preferences, and capabilities.  

 

In order to successfully integrate with a nontrivial Web service, the service's 

XML contract along with any additional requirements, capabilities, and 

preferences, also referred to as policies, must fully be understood. For example, 

just knowing that a service supports WS-Security is not enough information to 

enable successful integration. The client needs to know if the service actually 

requires WS-Security. If so, it also needs to know what security tokens it is 

capable of processing (such as UsernameToken, or certificates), and which one 

it prefers. The client must also determine if the service requires signed 

messages. And if so, it must determine what token type must be used for the 

digital signatures. And finally, the client must determine when to encrypt the 

messages, which algorithm to use, and how to exchange a shared key with the 

service. Trying to integrate with a service without understanding these details 

is a stab in the dark.  

 

A standard policy framework would make it possible for developers to express 

the policies of services in a machine-readable way. Web services infrastructure 

could be enhanced to understand certain policies and enforce them at runtime. 

For example, a developer could write a policy stating that a given service 

requires Kerberos tokens, digital signatures, and encryption. Other developers 

could use the policy information to reason about whether it can use the service. 

Plus, the infrastructure could enforce these requirements without requiring the 



 34

developer to write a single line of code. So not only would a policy framework 

provide an additional description layer, it would also offer developers a more 

declarative programming model.  

 

Microsoft, IBM, BEA, and SAP has released a specification called the Web 

Services Policy Framework (WS-Policy) to fill the need for a generic policy 

framework. WS-Policy defines a generic model and syntax for describing and 

communicating the policies of a Web service.  

 

WS-Policy defines a general framework that can be used and extended by other 

Web services specifications to describe a broad range of Web services policies. 

WS-Policy defines a policy to be a collection of one or more policy assertions 

(Figure 2.11.).  

 

 
Figure 2.11. Policy Overview 

 

A policy assertion represents an individual preference, requirement, capability, 

or other general characteristic. There are two additional specifications that 

define standard sets of policy assertions that can be used within a policy 

expression. The Web Services Policy Assertions Language (WS-

PolicyAssertions) specification defines a set of general message assertions and 

the Web Services Security Policy Language (WS-SecurityPolicy) specification 

defines a set of common security-related assertions.  

 

Policy 

Policy 

Policy 

Web 
Service 

Policy 

Subject 

Policy Attachment 



 35

The WS-Policy specification defines the general model and syntax for policy 

expressions and policy assertions, but stops short of specifying how policies 

are located or attached to a Web service.  

 

A policy assertion represents an individual preference, requirement, capability, 

or other characteristic and is the basic building block of a policy expression. A 

policy assertion is represented by an XML element with a well-known name 

and meaning, typically defined by another specification like WS-

SecurityPolicy.  

 

A policy expression simply contains a set of policy assertion elements as 

follows:  

<wsp:Policy xmlns:wsp="..." xmlns:wsu="..." wsu:Id="..." Name="..." TargetNamespace="..." 

> <Assertion wsp:Usage="..." wsp:Preference="..." /> <Assertion wsp:Usage="..." 

wsp:Preference="..." /> <Assertion wsp:Usage="..." wsp:Preference="..." /> ... </wsp:Policy>  

 

WS-SecurityPolicy specification defines a set of security-related policy 

assertions (Table 2.1.). These assertions allow to specify the types of security 

tokens, signature formats, and encryption algorithms supported, required, or 

rejected by a given subject.  

 

The SecurityToken element is used to describe what security tokens are 

required and accepted by a Web service. It can also be used to express a Web 

Service's policy on security tokens that are included when the service sends out 

a message (e.g., as a reply message).  

 

<SecurityToken wsp:Preference="..." wsp:Usage="..." > <TokenType>...</TokenType> 

<TokenIssuer>...</TokenIssuer> <Claims>...Token type-specific claims...</Claims> ... 

(TokenType-specific details) </SecurityToken>  

 

 

 



 36

Table 2.1. Security Policy Assertions defined by WS-SecurityPolicy 

Policy Assertion Policy Assertion Description 

wsse:SecurityToken specifies a type of security token defined in WS-

Security 

wsse:Integrity specifies a signature format defined in WS-

Security 

wsse:Confidentiality specifies an encryption format defined in WS-

Security 

wsse:Visibility specifies portions of a message that MUST be 

able to be processed by an intermediary or 

endpoint 

wsse:SecurityHeader specifies how to use the Security header defined 

in WS-Security 

wsse:MessageAge specifies the acceptable time period before 

messages are declared “stale” and discarded 

 

The Integrity element is used to indicate a required signature format. The 

schema outline for Integrity, an assertion about an integrity requirement, is as 

follows:  

<Integrity wsp:Preference="..." wsp:Usage="..."> <Algorithm Type="..." URI="..." 

wsp:Preference="..."/> <TokenInfo> <SecurityToken>...</SecurityToken>      </TokenInfo> 

<Claims>...</Claims> <MessageParts Dialect="..." Signer="..."> ... </MessageParts> 

<Integrity>  

 

The Confidentiality element is used to indicate a required encryption format. 

The schema outline for this element is as follows:  

 

<Confidentiality wsp:Preference="..." wsp:Usage="..."> <Algorithm Type="..." URI="..." 

wsp:Preference="..."/> <KeyInfo> <SecurityToken .../> <SecurityTokenReference .../> ... 

</KeyInfo> <MessageParts Dialect="..."> ... </MessageParts> </Confidentiality>  

 



 37

Some intermediaries may require that parts of the message be visible to them. 

That is, they either need to be passed in the clear (unencrypted), or there must 

be an encryption binding for the intermediary. The Visibility element is used to 

indicate portions of a message that MUST be able to be processed by an 

intermediary or endpoint.  The schema outline for this element is as follows:  

 

<Visibility wsp:Usage="..."> <MessageParts Dialect="..."> ... </MessageParts> </Visibility>  

 

 



 38

 

 
 

 
CHAPTER III 

 
 
 

SECURE WEB SERVICES IN PEER-TO-PEER ENVIRONMENT 
 
 
 

In this chapter, the approach and the mechanisms that are pursued in this work 

in order to provide and invoke secure Web services in peer-to-peer 

environment are descibed. 

 

For this purpose, the specifications like WS-Security, WS-Trust, WS-

SecurityPolicy, and XML Key Management Specification are exploited in 

addition to JXTA framework that has been benefitted from for peer-to-peer 

network implementation. 

 

A peer-to-peer network, over JXTA framework, that consists of at least three 

peers is introduced in this work. The functionalities and responsibilities of the 

peers within this network are defined in Table 3.1. 

 

Considering the peer groups that are described in Table 3.1., the 

demonstrational peer-to-peer network covers three peers, which is adequate to 

justify the proposed architecture. 

 

 

 

 

 

 



 39

Table 3.1. Peer-to-peer Network Elements 

Peer-to-peer 

Network 

Groups 

Functionality 

PeerGroup-1 - provides Web service to be invoked by peer-2 
- processes secure SOAP message by decrypting 

and/or verifying digital signature 
- validates token information available in the SOAP 

message  
- invokes XML Key Management Web service, that is 

provided by peer-3, to locate the public key 
information 

- invokes security token Web service, that is provided 
by peer-3, to locate and validate token information 

- invokes XML Key Management Web service, that is 
provided by peer-3, to locate the secret key 

PeerGroup-2 - invokes Web service provided by peer-1 

- provides the capability of constructing the SOAP 
message from the scratch by parsing the WSDL file 
for the Web service of peer-1 

- encrypts the depicted element of the constructed 
SOAP message with the secret key that is located by 
invoking the XML Key Management Web service 
provided by peer-3 

- digitally signs the depicted element of the 
constructed SOAP message with the private key that 
is kept by peer-2 

- adds the token information, that is located by 
invoking the security token Web service provided by 
peer-3, to the constructed SOAP message 

- performs secure invocation of Web service provided 
by peer-1 

PeerGroup-3 - provides XML Key Management Web service for 
peer-1 and peer-2 

- provides security token Web service for peer-1 and 
peer-2 

 

The interaction among the peers belonging to the peer groups described in 

Table 3.1 is depicted in Figure 3.1, which also denotes the overall architecture 

of the introduced peer-to-peer network. 

 



 40

The three peer groups that constitute the basis for the peer-to-peer network 

architecture proposed in this work are described in the following sections. 

 

 

 

 
Figure 3.1. Interaction Diagram within the P2P Network 

 

3.1. Description of Peers in PeerGroup-1 

 

The peers of PeerGroup-1 conform to the specifications described by SOAP, 

WSDL, XKMS, WS-Trust, WS-Security, and WS-SecurityPolicy in order to 

provide secure Web service implementation. These peers process the security 

token information, encryption and the digital signatures prior to evaluating the 

response of their services. 

 

secure SOAP messaging 

Peer of 
PeerGroup-3 

register public key 

request security token 
validate security token (2) 

Peer of 
PeerGroup-2 

Peer of 
PeerGroup-1 

public key (2) private key (2) public key (1) private key (1) 

public key (2) 
secret key (1-2) public key (1) 

locate public key (2) 



 41

The Web Services Description Language (WSDL) files for the Web services 

provided by the peers of this group are assumed to be available for the peers of 

PeerGroup-2 within the peer-to-peer network.  

 

In addition, the security policy assertions (WS-SecurityPolicy) files for the 

Web services provided by the peers of this group are assumed to be available 

for the peers of PeerGroup-2 within the peer-to-peer network. The following 

assertions examplify a possible content of such a file that conforms to the 

specification WS-SecurityPolicy: 

 

<wsp:Policy xmlns:wsp="..." xmlns:wsse="...">  

 <wsse:SecurityToken wsp:Usage="wsp:Rejected">  

  <wsse:TokenType>wsse:Kerberosv5ST</wsse:TokenType>  

 </wsse:SecurityToken>  

 <wsse:SecurityToken wsp:Usage="wsp:Required">  

  <wsse:TokenType>wsse:UsernameToken</wsse:TokenType>  

 </wsse:SecurityToken>  

 <wsse:SecurityToken wsp:Usage="wsp:Optional">  

  <wsse:TokenType>wsse:UsernameToken</wsse:TokenType>  

 </wsse:SecurityToken>  

 <wsse:Integrity wsp:Usage="wsp:Required">  

  <wsse:Algorithm Type="wsse:AlgSignature" />  

  <MessageParts> xxx </MessageParts> 

 </wsse:Integrity>  

 <wsse:Confidentiality wsp:Usage="wsp:Required">  

  <wsse:Algorithm Type="wsse:AlgEncryption" />  

  <MessageParts> yyy </MessageParts> 

 </wsse:Confidentiality>  

</wsp:Policy>  

 

The XML Key management specification is exploited by the peers of 

PeerGroup-1 in order to locate the public key information, which is required 

for the verification of digital signature available in the SOAP message, by 

invoking the XML Key Management Web service provided by the peers of 



 42

PeerGroup-3. It is assumed that the WSDL file for this XML Key Management 

service is available for the peers of this group. The following SOAP message 

examplifies a possible content of a SOAP message that requests the location of 

a public key information and conforms to the XML Key Management 

Specification:   

 

<?xml version="1.0" encoding="UTF-8"?> 

 

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"> 

   <SOAP-ENV:Body> 

      <k:Locate xmlns:k="http://www.xkms.org/schema/xkms-2001-01-20"> 

         <k:TransactionID>c41696b0-1f14-11d6-b840-

3beb2501bc66</k:TransactionID> 

         <k:Query> 

            <d:KeyInfo xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 

               

<d:KeyName>http://xkms.verisign.com/key?company=VeriSign&amp;department=X

KMS Test&amp;CN=N100055 

XKMSTEST&amp;issuer_serial=85dfd14e8c4ecb4adeec353ca4c7b196</d:KeyName

> 

            </d:KeyInfo> 

         </k:Query> 

         <k:Respond> 

            <k:string>KeyName</k:string> 

            <k:string>KeyValue</k:string> 

            <k:string>X509Chain</k:string> 

         </k:Respond> 

         <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 

            <ds:SignedInfo> 

               <ds:CanonicalizationMethod 

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 

               <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-

sha1"/> 

               <ds:Reference URI="#xpointer(/k:Locate)"> 

                  <ds:Transforms> 



 43

                     <ds:Transform 

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 

                     <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-

c14n-20010315"/> 

                  </ds:Transforms> 

                  <ds:DigestMethod 

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 

                  

<ds:DigestValue>YVwLOtUSstnIDPvFQXOZbg+ifC4=</ds:DigestValue> 

               </ds:Reference> 

            </ds:SignedInfo> 

            

<ds:SignatureValue>GuzjcpjLjSH1doWh6cdz16HZeY3F7z0OvU5J8TR7kG13Zdo2b

L9f/BI3tJmCQz32T+R1MBxY 

hJ4zX3gKlfKwRQ==</ds:SignatureValue> 

            <ds:KeyInfo> 

               <ds:KeyValue> 

                  <ds:RSAKeyValue> 

                     

<ds:Modulus>uabFEH3e0QBcQPbo3ixRGZ+GpJqaUjs+P4+JzhmIXmhI0SmpM1iw

910Egu1IO6y0lze6g6KU 

ob7LSrO4/bIBHQ==</ds:Modulus> 

                     <ds:Exponent>Aw==</ds:Exponent> 

                  </ds:RSAKeyValue> 

               </ds:KeyValue> 

            </ds:KeyInfo> 

         </ds:Signature> 

      </k:Locate> 

   </SOAP-ENV:Body> 

</SOAP-ENV:Envelope>  

 

The specification WS-Trust is exploited by the peers of PeerGroup-1 in order 

to locate the token information, which is required for the validation of security 

token information available in the SOAP message, by invoking the security 

token Web service provided by the peers of PeerGroup-3. The following SOAP 

message examplifies a possible content of a SOAP message that requests the 



 44

location of username token information and conforms to the specification WS-

Trust:  

 

<?xml version="1.0" encoding="utf-8"?> 

<s:Envelope  

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"> 

 <s:Body> 

  <wsse:RequestSecurityToken> 

   <wsse:TokenType>wsse:UserName</wsse:TokenType> 

   <wsse:RequestType>wsse:ReqIssue</wsse:RequestType> 

   <wsse:Base> 

    <wsse:Reference URI="#peer2"/> 

   </wsse:Base> 

  </wsse:RequestSecurityToken> 

 </s:Body> 

</s:Envelope>  

 

3.2. Description of Peers in PeerGroup-2  

 

The peers of PeerGroup-2 conform to the specifications described by SOAP, 

WSDL, XKMS, WS-Trust, WS-Security, and WS-SecurityPolicy in order to 

perform the secure invocation of the Web service provided by the peers of 

PeerGroup-1.  

 

The Web Services Description Language (WSDL) files for the Web services 

provided by the peers of PeerGroup-1 are assumed to be available for the peers 

of this group. Hence, these peers enable the capability of providing a user 

interface to construct the related SOAP messages from the scratch by parsing 

the related WSDL files, which is to be demonstrated in more detail in the next 

chapter. 

 



 45

Having constructed the SOAP messages with the capability mentioned above, 

these peers achieve the insertion of digital signatures on the depicted SOAP 

message elements conforming to the specification WS-Security. Similarly, the 

peers of PeerGroup-2 achieve the encryption of the depicted SOAP message 

elements conforming to the specification WS-Security.  

 

The XML Key management specification is exploited by the peers of 

PeerGroup-2 in order to locate the secret key information, which is required for 

the encryption of the depicted SOAP message elements, by invoking the 

security token Web service provided by the peers of PeerGroup-3. It is 

assumed that the WSDL file for this security token service is available for the 

peers of this group. The following SOAP message examplifies a possible 

content of a SOAP message that requests the location of a secret key 

information for the connection between the peers of PeerGroup1 and the peers 

of PeerGroup2:  

 

<?xml version="1.0" encoding="utf-8"?> 

<s:Envelope  

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"> 

 <s:Body> 

  <RequestSecretKey> 

   <Party1>peer1</Party1> 

   <Party2>peer2</Party2> 

  </RequestSecretKey> 

 </s:Body> 

</s:Envelope>  

 

The peers of PeerGroup-2 achieve the insertion of digitally signature, that is 

applied to the constructed SOAP message, by using the private keys of these 

peers. The sample content of how the private keys are stored by these peers can 

be denoted as follows: 



 46

 

<?xml version="1.0" encoding="UTF-8"?> 
<ds:KeyInfo 
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
    <ds:KeyValue> 
        <xkms:RSAKeyPair 
xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20"> 
 
            
<xkms:Modulus>AM2EJMuJrLtDGDDO3d56SoWqEXcvWJFXGAKrmexdnbd
xgskTeHYat7993HzrvCUQsNg1U3LV 
                
0jEceHawgNCUB+sDV3pFYrrzK0vzkvdtHrILC+6ucztLeYx8NhVU9hXIt
5bqiQxOD4P/YRW0 
LNSU55mX0bJIYybSqW/DqeWoXJrX</xkms:Modulus> 
            
<xkms:PublicExponent>AQAB</xkms:PublicExponent> 
 
            
<xkms:PrivateExponent>A7dM9wUxQ12ONWu4JUquyEXv9Oi9QDuD6qB
xsw1qSaPayon4lqIbCnJbJ0MX7s+jcvVb4eqt 
                
10d9gh/k5GCY2AWtOtiTnFrpuPgIo91JZKNc8YuiVy/3ZZTvhE6T5fVVT
9rgcsGuIpc+YUPr 
iKHUvuylKEyTjc2A5DlqvwwErcE=</xkms:PrivateExponent> 
 
            
<xkms:P>APxlVVXNqDp42Y1MWlp1DDpw4fLnjPPT/9X/+T1S7HWnZQyeb
eKoGI9Tke73687msbDr2aST c09tN4L0HY9L8qE=</xkms:P> 
 
            
<xkms:Q>ANBzb4Ji99H0y3VEQlrDJ+t79eycI13JE5k6YMVIvlZ2Hz9IP
ZvRplVFW4Xzw4lutC93rlrS 3B1VVqWarVxPknc=</xkms:Q> 
 
            
<xkms:DP>AObVPqCEwJEJqd5isFf+qLpiNyPSxcTSZS8xNp/xUTWhbPeH
hfQ/zIZ45gTqVY4ayvSGH702 5cUEnDp2TPqbeUE=</xkms:DP> 
 
            
<xkms:DQ>afUTjIKEGAxH037z/7DNvOyQ8EnZzFVmie/busykO8zlS0SM
VIU3+IY95JQpI9XK74n1baNb UenMFnfOgWrNNw==</xkms:DQ> 
 
            
<xkms:QINV>AKnDNGMZJtCrdmzEoCrURRQDBlkOEBIj3OvQFuZijopGhx
ILXQHTpmucEpdaIFNH4sXfiYi8 oOAGJKTqNJzeeUI=</xkms:QINV> 
        </xkms:RSAKeyPair> 
    </ds:KeyValue> 
</ds:KeyInfo>  

 

In addition, the security policy assertions (WS-SecurityPolicy) files for the 

Web services provided by the peers of PeerGroup-1 are assumed to be 

available for the peers of this group, because the WS-SecurityPolicy 



 47

specification does not currently address the specifying how these security 

policies are located or attached to a Web service. The peers of this group apply 

the encryption and/or digital signature operations conforming to the security 

assertions that are defined in WS-SecurityPolicy files assumed to be available, 

like the WSDL files.  

 

3.3. Description of Peers in PeerGroup-3 

 

The peers of PeerGroup-3 provide two key services for the other two peer 

groups. The two services are:  

• XML Key Management Service, and 

• Security Token Service.  

 

These two Web services are detailed in the following subsections. 

 

3.3.1. XML Key Management Service 

 

XML Key Management service conforms to the XML Key Management 

Specification (XKMS), which defines processes and formats that enable XML-

aware applications to incorporate the security of public-key infrastructure 

(PKI).  

 

XML Key Management service performs the following functions as a service 

for the peers of other two peer groups:  

• Public key lifecycle management (registration, revocation and, 

renewal),  

Following is a sample content of a SOAP message that requests the 

revocation of a specified public key information: 

<?xml version="1.0" encoding="UTF-8"?> 

 



 48

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"> 

   <SOAP-ENV:Body> 

      <k:Register xmlns:k="http://www.xkms.org/schema/xkms-2001-01-20"> 

         <k:Prototype Id="refId_1"> 

            <k:TransactionID>cde285f0-1f14-11d6-b840-

3beb2501bc66</k:TransactionID> 

            <k:Status>Invalid</k:Status> 

            <d:KeyInfo xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 

               <d:KeyValue xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 

                  <d:RSAKeyValue>                     

<d:Modulus>rlc2VJ+acRniqpF8dh5N2qyUYOkne5C257v5Rme13KGl4B7S

mAa340uBBicdx2RkfyHpW0q3Nm/iY7h8UY1+Cw==</d:Modulus> 

                     <d:Exponent 

xmlns:d="http://www.w3.org/2000/09/xmldsig#">AQAB</d:Exponent> 

                  </d:RSAKeyValue> 

               </d:KeyValue> 

            </d:KeyInfo> 

            <k:PassPhrase>SxbPA0qih0NsrYU8ji+gWOhwy7c=</k:PassPhrase> 

         </k:Prototype> 

         <k:AuthInfo> 

            <k:AuthUserInfo/> 

         </k:AuthInfo> 

         <k:Respond> 

            <k:string>KeyName</k:string> 

            <k:string>KeyValue</k:string> 

         </k:Respond> 

      </k:Register> 

   </SOAP-ENV:Body> 

</SOAP-ENV:Envelope>  

 

• Validation and location of cryptographic keys.  

Following is a sample content of a SOAP message that requests the 

validation of a specified public key information:   

<?xml version="1.0" encoding="UTF-8"?> 

 



 49

<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"> 

   <SOAP-ENV:Body> 

      <k:Validate xmlns:k="http://www.xkms.org/schema/xkms-2001-01-20"> 

         <k:Query> 

            <k:TransactionID>cb618060-1f14-11d6-b840-

3beb2501bc66</k:TransactionID> 

            <k:Status>Indeterminate</k:Status> 

            <d:KeyInfo xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 

               <d:KeyValue xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 

                  <d:RSAKeyValue> 

                     

<d:Modulus>rlc2VJ+acRniqpF8dh5N2qyUYOkne5C257v5Rme13KGl4B7S

mAa340uBBicdx2RkfyHpW0q3Nm/iY7h8UY1+Cw==</d:Modulus> 

                     <d:Exponent 

xmlns:d="http://www.w3.org/2000/09/xmldsig#">AQAB</d:Exponent> 

                  </d:RSAKeyValue> 

               </d:KeyValue> 

            </d:KeyInfo> 

         </k:Query> 

         <k:Respond> 

            <k:string>KeyName</k:string> 

            <k:string>KeyValue</k:string> 

            <k:string>ValidityInterval</k:string> 

            <k:string>KeyUsage</k:string> 

            <k:string>Status</k:string> 

            <k:string>X509Chain</k:string> 

         </k:Respond> 

         <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 

            <ds:SignedInfo> 

               <ds:CanonicalizationMethod 

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 

               <ds:SignatureMethod 

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 

               <ds:Reference URI="#xpointer(/k:Validate)"> 

                  <ds:Transforms> 



 50

                     <ds:Transform 

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 

                     <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-

xml-c14n-20010315"/> 

                  </ds:Transforms> 

                  <ds:DigestMethod 

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 

                  

<ds:DigestValue>nM21iuKLqO0yUcdT5vYybfyDofA=</ds:DigestValue> 

               </ds:Reference> 

            </ds:SignedInfo> 

            

<ds:SignatureValue>ttGw0FexCEJjzNbws29NbCU2oqdUpPOsFGasXZ4M

X3ZQKLEgV35DG9hmJdenxSGLFOvVulEv 

sTLPKIU+0tEhSQ==</ds:SignatureValue> 

            <ds:KeyInfo> 

               <ds:KeyValue> 

                  <ds:RSAKeyValue> 

                     

<ds:Modulus>uabFEH3e0QBcQPbo3ixRGZ+GpJqaUjs+P4+JzhmIXmhI0S

mpM1iw910Egu1IO6y0lze6g6KU 

ob7LSrO4/bIBHQ==</ds:Modulus> 

                     <ds:Exponent>Aw==</ds:Exponent> 

                  </ds:RSAKeyValue> 

               </ds:KeyValue> 

            </ds:KeyInfo> 

         </ds:Signature> 

      </k:Validate> 

   </SOAP-ENV:Body> 

</SOAP-ENV:Envelope>  

 

With the functionalities described above, XML Key Management service 

provides an interface for implementing Public Key Infrastructure (PKI), which 

is essential for enabling trust in digital communications. Thus, the peers of this 

group behave as a trusted third party for the peers of PeerGroup-1 and 

PeerGroup-2. 



 51

 

3.3.2. Security Token Management Service 

 

Security token service conforms to the specification WS-Trust, which defines 

extensions built on WS-Security to provide a framework for requesting and 

issuing security tokens, and to broker trust relationships.  

 

Security token service performs the following functions as a service for the 

peers of other two peer groups:  

• location of security tokens, 

Following is a sample content of a SOAP message that represents the 

response for the request of username token information: 

 

<?xml version="1.0" encoding="utf-8"?> 

<s:Envelope  

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"> 

 <s:Body> 

   <wsse:RequestSecurityTokenResponse> 

    <wsse:RequestedSecurityToken> 

      <wsse:UserNameToken  

     <wsse:Username>peer2</wsse:Username>  

     <wsse:Password>peer2</wsse:Password> 

      </wsse:UserNameToken> 

    </wsse:RequestedSecurityToken> 

   </wsse:RequestSecurityTokenResponse> 

 </s:Body> 

</s:Envelope>  

 

• validation of security tokens. 

Following is a sample content of a SOAP message that represents the 

validation request of username token information:  

<?xml version="1.0" encoding="utf-8"?> 



 52

<s:Envelope  

 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  

 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"> 

 <s:Body> 

  <wsse:RequestSecurityToken> 

   <wsse:TokenType>wsse:UserName</wsse:TokenType> 

   <wsse:RequestType>wsse:ReqIssue</wsse:RequestType> 

   <wsse:Base> 

    <wsse:Reference URI="#peer2"/> 

   </wsse:Base> 

  </wsse:RequestSecurityToken> 

 </s:Body> 

</s:Envelope>  

 

With the functionalities described above, security token service provides an 

interface for implementing security token management. Thus, the peers of this 

group behave as a trusted third party for the peers of PeerGroup-1 and 

PeerGroup-2.  

 

 

 

 

 



 53

 

 
 

 
CHAPTER IV 

 
 
 
SECURE WEB SERVICE INVOCATION OVER JXTA FRAMEWORK 
 
 
 

Within the scope of this thesis work, the implementation of peer-to-peer 

network and the communication among the peers of the peer groups decsribed 

in the previous chapter have been achieved by using the JXTA framework.  

 

The JXTA framework requires the implementation of the JXTA protocol stack 

so that the peers conforming to these protocols become JXTA peers. The peers 

of PeerGroup-1, PeerGroup-2, and PeerGroup-3 imply to be JXTA peers with 

their implementations conforming to the protocols defined by JXTA 

framework.  

 

The JXTA framework facilitates the following operations to be exploited 

within the implementation of this work: 

• authentication of each peer prior to operating to perform their 

functionalities, and this feature is exploited by the peers of PeerGroup-

1, PeerGroup-2 and PeerGroup-3. 

• creation of  peer-to-peer network that is introduced by this work and is 

composed of the peers of PeerGroup-1, PeerGroup-2 and PeerGroup-3. 

• bidirectional pipe implementation between the peers of PeerGroup-1, 

PeerGroup-2 and PeerGroup-3 in pairs, which provides the invocation 

of the Web services introduced within this work. 

 



 54

The following section provides the details of the developed prototype and 

presents an example walkthrough of the system introduced. 

 

4.1. Design and Implementation of the System 

 

Figure 4.1. denotes the execution flow of how secure Web service invocation is 

achieved in the peer-to-peer network introduced. 

 

 
Figure 4.1. Architecture of the Peer-to-peer System 

 

Considering the architecture above, the following operations are performed 

sequentially to achieve secure Web service invocation provided by the peer of 

PeerGroup-1: 

1. the peer of PeerGroup-2 sends the request for the location of the secret 

key generated for the peer1-peer2 communication to the peer of PeerGroup-3. 

2. the peer of PeerGroup-3 sends the generated secret key to the peer of 

PeerGroup-2. 

3. the peer of PeerGroup-2 encrypts the constructed SOAP message with 

the secret key, adds the digital signature computed with its private key, adds 

the username-password security token, and sends the final SOAP message to 

the peer of PeerGroup-1. 

 
 
 

Web Service Invoking 
Peer of 

PeerGroup-2 

XKMS & 
Security Token Service 

Peer of 
PeerGroup-3 

Web Service Providing 
Peer of 

PeerGroup-1 6. Verify signature&decrypt 
and send response 

4.  Validate token 

3. Encrypt&Sign and send  
message to Web service 

2. Get secret key  
for peer-1 and peer-2 

5. Locate  secret& public 
  key for     peer-2 

1. Send request for  
locating secret key 



 55

4. the peer of PeerGroup-1 sends the request for the validation of 

username-passwords security token information belonging to the peer of 

PeerGroup-2 to the peer of PeerGroup-3. 

5. the peer of PeerGroup-1 sends the request for the location of the public 

key belonging to the peer of PeerGroup-2 to the peer of PeerGroup-3, and 

sends the request for the location of the secret key generated for the peer1-

peer2 communication to the peer of PeerGroup-3. 

6. the peer of PeerGroup-1 first verifies the digital signature available in 

the SOAP message with the located public key, then decrypts the SOAP 

message with the located secret key. 

 

The demonstrational implementation of the introduced system is realized by 

using the technologies of JXTA framework, WSDL, SOAP, and implementing 

the introduced system with J2SE (Java-2 Standard Edition). 

 

The WSDL descriptions of the sample service to be invoked in a secure 

manner and the services introduced within this work with the formats of the 

SOAP messages related with these services are presented in Appendix-A and 

Appendix-B.  

 

For the purpose of processing the WSDL files of the sample service provided 

by the peer of PeerGroup-2, processing the services related to the specifications 

of WS-Trust and XKMS, and the policy file holding the security assertions of 

the peer of PeerGroup-2 in the form of the specification WS-SecurityPolicy, 

the Xerces XML parser of Apache is used. 

 

The implementation of the WS-Security specification used by the peers of 

PeerGroup-1 and the peers of PeerGroup-2 is achieved by exploiting and 

extending the open source implementation of XML Security specifications 

provided by the TrustGateway API (application programming interface) by 

VeriSign [23]. This API provides a programming interface to apply digital 



 56

signature and encryption operations on the DOM (Document Object Model) 

representation of the XML documents conforming to the specifications of 

XML Encryption and XML Digital Signature. This API has been extended to 

provide a programming interface to apply the security token, digital signature 

and encryption constructs conforming to the specification of WS-Security, and 

to achieve symmetric secret key and asymmetric key pairs (public and private 

keys) generation. The security component of J2SE (Java-2 Standard Edition) 

has been used for the purposes of key generation. The mechanism of 

processing the security assertions stored in the WS-SecurityPolicy compliant 

files has also been provided in this extended programming interface.  

 

The development of the graphical user interfaces for the protypes of the peers 

of PeerGroup-1 and PeerGroup-2 has been achieved by using Java Swing 

components. 

 

For the purpose of exchanging the SOAP messages regarding the XKMS and 

security token services provided by the peer of PeerGroup-3, and regarding the 

sample service provided by the peer of PeerGroup-1, the JXTA framework has 

been used by its programming interface for bidirectional pipes. 

 

4.2. Example Walkthrough 

 

In order to demonstrate the execution of the system developed, three JXTA 

peers, each of which represents a peer of the peer groups introduced within this 

work, constitute the sample system. These three peers execute and construct 

the peer-to-peer network on the same system for demonstrational purpose. 

 

All three peers perform the authentication process as denoted in Figure 4.2., 

which is facilitated by JXTA framework. 

 



 57

 
Figure 4.2. Authentication for Peer-to-peer System 

 

The peer of PeerGroup-3 executes continuously in order to provide the XML 

Key Management service and security token service for the other two peers. 

Figure 4.3. denotes the execution of this peer. 

 

 
Figure 4.3. XML Key Management and Security Token Service Peer 

 

This peer starts two pipe connections for the other two peers, which is 

facilitated by the JXTA framework. These two pipe connections are advertised 

to the corresponding peers with the following pipe advertisement structure of 

the JXTA framework: 

<!DOCTYPE jxta:PipeAdvertisement> 
 
<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org"> 
 <Id> 
  urn:jxta:uuid-
59616261646162614A757874614D504725184FBC4E5D498AA0919F662
E40028B04 
 </Id> 



 58

 <Type> 
  JxtaUnicast 
 </Type> 
 <Name> 
  PipeExample 
 </Name> 
</jxta:PipeAdvertisement> 

The peer of PeerGroup-2 provides the user interface, denoted in Figure 4.4., in 

order to construct the SOAP message for the invocation of the Web service that 

the peer of PeerGroup-1 provides. 

 

 
Figure 4.4. Secure Web Service Invoking Peer 

 

The left part seen in Figure 4.4. is dedicated to the hierarchical view of the 

WSDL file of the sample Web service provided by the peer of PeerGroup-1, 

which reveals the granularity and the types of input parameter information. The 

sample Web service requires six input parameters denoted with “part” nodes on 

the WSDL view for an Order Request as seen in Figure 4.4.  

 

Selecting each “part” node on the WSDL view and entering the required 

information conforming to the required parameter type information denoted in 



 59

the middle part of Figure 4.4., the SOAP message is constructed on the right 

part of Figure 4.4. packed in the “soap:Body” element. Figure 4.5. denotes the 

constructed SOAP message: 

 

 
Figure 4.5. Constructed SOAP Message 

The constructed SOAP message is: 

<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope 
    soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
    xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
    <soap:Header/> 
    <soap:Body> 
        <item_name xsi:type="xsd:string">JXTA Book</item_name> 
        <price xsi:type="xsd:string">1000 $</price> 
        <card_name xsi:type="xsd:string">Visa</card_name> 
        <expiration xsi:type="xsd:string">10/04</expiration> 
        <card_number xsi:type="xsd:string">1111 2222 3333 4444</card_number> 
        <card_limit xsi:type="xsd:string">10000 $</card_limit> 
    </soap:Body> 
</soap:Envelope> 

 

In order to conceal the credit card number information, which is one of the 

input parameters of the “Order Request” service, firstly, the secret key 



 60

information is requested from the peer of PeerGroup-3, which is running 

continuously to respond. The secret key request message is: 

<?xml version="1.0" encoding="utf-8"?> 
<s:Envelope  
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 
 
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  
 
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
> 
 <s:Body> 
  <RequestSecretKey> 
   <Party1>peer1</Party1> 
   <Party2>peer2</Party2> 
  </RequestSecretKey> 
 </s:Body> 
</s:Envelope> 

 

The secret key response message created by the peer of PeerGroup-3 is: 

<?xml version="1.0" encoding="utf-8"?> 
<s:Envelope  
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 
 
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  
 
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
> 
 <s:Body> 
  <ResponseSecretKey> 
   <Party1>peer1</Party1> 
   <Party2>peer2</Party2> 

     <SecretKey>Rz_Õ,|pÖkµÈsÜµñ¿‰ ?ÂßŠm^</SecretKey> 
  </ResponseSecretKey> 
 </s:Body> 
</s:Envelope> 

 

Selecting the “card_number” node on the SOAP message view, the constructed 

SOAP message is encrypted on the “card_number” element with the received 

secret key information after checking the security policy assertions stored in 

the WS-SecurityPolicy compliant file if this action is allowed by the service 

provider. Figure 4.6. denotes the encryption applied to the constructed SOAP 

message to conceal the credit card number information: 



 61

 
Figure 4.6. Resultant SOAP Message after Encryption 

 

The following is the content of the security policy file for the Web service 

provided by the peer of PeerGroup-1: 

<wsp:Policy xmlns:wsp="..." xmlns:wsse="...">  
 <wsse:SecurityToken wsp:Usage="wsp:Rejected">  
  <wsse:TokenType>wsse:Kerberosv5ST</wsse:TokenType>  
 </wsse:SecurityToken>  
 <wsse:SecurityToken wsp:Usage="wsp:Required">  
  <wsse:TokenType>wsse:UsernameToken</wsse:TokenType>  
 </wsse:SecurityToken>  
 <wsse:Integrity wsp:Usage="wsp:Required">  
  <wsse:Algorithm Type="wsse:AlgSignature" />  
  <MessageParts> /soap:Body </MessageParts> 
 </wsse:Integrity> 
 <wsse:Confidentiality wsp:Usage="wsp:Required">  
  <wsse:Algorithm Type="wsse:AlgEncryption" />  

<MessageParts> /soap:Body/card_number 
</MessageParts> 

 </wsse:Confidentiality>  
</wsp:Policy> 

 

The resultant SOAP message after encryption is: 

<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope 
    soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
    xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 



 62

    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
    <soap:Header/> 
    <soap:Body> 
        <item_name xsi:type="xsd:string">JXTA Book</item_name> 
        <price xsi:type="xsd:string">1000 $</price> 
        <card_name xsi:type="xsd:string">Visa</card_name> 
        <expiration xsi:type="xsd:string">10/04</expiration> 
        <xenc:EncryptedData 
            Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 
            <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/> 
            <xenc:CipherData> 
 
                
<xenc:CipherValue>wLdVyjsa1XWta8OIFdOd05PIFfBQINZG500jibVHO+XwBqLExe4WN
cQPZVLJjXTljRoItvsm 
                    
JaFzOOf7fm3NvZ+M8UATgo6vPLkE88ebrIQv0a3YPNHajyFykIrJOgfDp++9QFRcdOyHU
mS+ 
                    
3n1w2xhofrw4GGKW+/jIYB8AkobpofcUX9OMv/ZuLxDurmxjDfR4q7ndmRg8XRVPBUT
NTSNh 
                    
kcxZyJVMKDRUKy/CLhaElmI5Jn2IFkwh2orDgfZJUyo5cYS+GFtjcZVz7cPOAXdKzIz+6U
76 jIIdfWo4usD59ldFil3/Kg==</xenc:CipherValue> 
            </xenc:CipherData> 
        </xenc:EncryptedData> 
        <card_limit xsi:type="xsd:string">10000 $</card_limit> 
    </soap:Body> 
</soap:Envelope> 
 

In order to add digital signature to the SOAP message for enabling message 

integrity and non-repudiation of this peer, selecting the “soap:Body” node on 

the SOAP message view, the constructed SOAP message is extended with the 

digital signature obtained on the “soap:Body” element with the private key 

information of this peer after checking the security policy assertions stored in 

the WS-SecurityPolicy compliant file if this action is allowed by the service 

provider. Figure 4.7. denotes the SOAP message after applying the digital 

signature to the whole SOAP message content to avoid any modification:  

 



 63

 
Figure 4.7. Resultant SOAP Message after Adding Digital Signature 

 

The resultant SOAP message after adding digital signature is: 

<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope 
    soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
    xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
    <soap:Header/> 
    <soap:Body> 
        <item_name xsi:type="xsd:string">JXTA Book</item_name> 
        <price xsi:type="xsd:string">1000 $</price> 
        <card_name xsi:type="xsd:string">Visa</card_name> 
        <expiration xsi:type="xsd:string">10/04</expiration> 
        <xenc:EncryptedData 
            Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 
            <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/> 
            <xenc:CipherData> 
                
<xenc:CipherValue>wLdVyjsa1XWta8OIFdOd05PIFfBQINZG500jibVHO+XwBqLExe4WN
cQPZVLJjXTljRoItvsm             
JaFzOOf7fm3NvZ+M8UATgo6vPLkE88ebrIQv0a3YPNHajyFykIrJOgfDp++9QFRcdOyHU
mS+                    
3n1w2xhofrw4GGKW+/jIYB8AkobpofcUX9OMv/ZuLxDurmxjDfR4q7ndmRg8XRVPBUT
NTSNh 



 64

                    
kcxZyJVMKDRUKy/CLhaElmI5Jn2IFkwh2orDgfZJUyo5cYS+GFtjcZVz7cPOAXdKzIz+6U
76 jIIdfWo4usD59ldFil3/Kg==</xenc:CipherValue> 
            </xenc:CipherData> 
        </xenc:EncryptedData> 
        <card_limit xsi:type="xsd:string">10000 $</card_limit> 
        <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
            <ds:SignedInfo> 
                <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/> 
                <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 
                <ds:Reference URI=""> 
                    <ds:Transforms> 
                        <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/> 
                        <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/> 
                    </ds:Transforms> 
                    <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
                    <ds:DigestValue>7u8LlBJH4v/d2PnCZ4K+UM/IOAk=</ds:DigestValue> 
                </ds:Reference> 
            </ds:SignedInfo> 
            
<ds:SignatureValue>HiLFR9IJL4idhw1ddKLG9ZseUnmrNqgKYy3ubVAhB3qJNF+s8qwNq
+uU7FnlCk+Dp+U/CFpV 
                
WakpfuOJntTSfiFBLziPCpRdFr/T54EbkRSbsMm5kvAhA96aiajooLJZnwmq4gADo1GGarus 
gQlI4U9DPs3cVEhqhhLLj+OqSQA=</ds:SignatureValue> 
        </ds:Signature> 
    </soap:Body> 
</soap:Envelope> 
 

To provide the security token information in the SOAP message, firstly, the 

username-password token information is requested from the peer of 

PeerGroup-3, which is running continuously to respond. The request message 

for the username-password token information is: 

<?xml version="1.0" encoding="utf-8"?> 
<s:Envelope  
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"> 
 <s:Body> 
  <wsse:RequestSecurityToken> 
   <wsse:TokenType>wsse:UserName</wsse:TokenType> 
   <wsse:RequestType>wsse:ReqIssue</wsse:RequestType> 
   <wsse:Base> 
    <wsse:Reference URI="#peer2"/> 
   </wsse:Base> 
  </wsse:RequestSecurityToken> 
 </s:Body> 
</s:Envelope> 



 65

The token information response message created by the peer of PeerGroup-3 

is: 

<?xml version="1.0" encoding="utf-8"?> 
<s:Envelope  
 xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" 
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"  
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"> 
 <s:Body> 
   <wsse:RequestSecurityTokenResponse> 
    <wsse:RequestedSecurityToken> 
      <wsse:UserNameToken  
     <wsse:Username>ilhami</wsse:Username>  
     <wsse:Password>ilhami78</wsse:Password> 
      </wsse:UserNameToken> 
    </wsse:RequestedSecurityToken> 
   </wsse:RequestSecurityTokenResponse> 
 </s:Body> 
</s:Envelope> 

 

The constructed SOAP message is extended with the received secret key 

information by adding this information on the “soap:Header” element of the 

SOAP message view after checking the security policy assertions stored in the 

WS-SecurityPolicy compliant file if this action is allowed by the service 

provider. Figure 4.8. denotes the resultant SOAP message content after 

inserting security token information which is achieved by username-password 

information mechanism:  

 



 66

 
Figure 4.8. Resultant SOAP Message after Adding Username-Password Token 

Information 

 

The final SOAP message is: 

<?xml version="1.0" encoding="UTF-8"?> 
<soap:Envelope 
    soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
    xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
    <soap:Header> 
        <Security> 
            <UserNameToken> 
                <UserName>ilhami</UserName> 
                <Password>ilhami78</Password> 
            </UserNameToken> 
        </Security> 
    </soap:Header> 
    <soap:Body> 
        <item_name xsi:type="xsd:string">JXTA Book</item_name> 
        <price xsi:type="xsd:string">1000 $</price> 
        <card_name xsi:type="xsd:string">Visa</card_name> 
        <expiration xsi:type="xsd:string">10/04</expiration> 
        <xenc:EncryptedData 
            Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"> 
            <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/> 



 67

            <xenc:CipherData> 
<xenc:CipherValue>YstBEwHRXKXx2VboMrzwENXPqAJgA52by9dxVkJ5q5FlTNf0QPm6
e0dYW1QbY7LfK9danRQf 
5j4xyXG7YSPKyWCycJlzYw+J1YOVKX7xxSCb2KrvMsVPenHO+bZwPDRmYj8Ra3IcpX
TkcoGw 
mQ+Pal6UBuYcB3cRuM5u7WL6Hvsj50sXJ0tlpzzpDgWBW6RpG1i9P51905ECmTZhoqyQ
rZ8m      
XtXxfwbZN4iQRWdSVlZRjLboKACVY5PQMktD8V9JspCHXR1ZRBIHvKdockhnix2+/LA
h0tOn LzpHf9bh6aAn9jmkI38U/A==</xenc:CipherValue> 
            </xenc:CipherData> 
        </xenc:EncryptedData> 
        <card_limit xsi:type="xsd:string">10000 $</card_limit> 
        <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
            <ds:SignedInfo> 
                <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/> 
                <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 
                <ds:Reference URI=""> 
                    <ds:Transforms> 
                        <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"/> 
                        <ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/> 
                    </ds:Transforms> 
                    <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
                    <ds:DigestValue>1L365M10r20brde/TTozz/YAMTc=</ds:DigestValue> 
                </ds:Reference> 
            </ds:SignedInfo>   
<ds:SignatureValue>RFBtZs6QbJvlj0nQK7urx8XKTfoKL+0/I4F3HEBYufqoFHuT1SPjpQP
AqnXiui2wpjbXkOiO 
GkjY3M1FsiFW6v3Bdl9ejNEaryhsZimJSS3Tmlu2U0ZI8JQL4pXYUsZrx78Wv5zRWH2Prv
XW HCsGub1JsB2LVGGmikDHswKWxRI=</ds:SignatureValue> 
        </ds:Signature> 
    </soap:Body> 
</soap:Envelope> 
 

The peer of PeerGroup-1 provides the user interface, denoted in Figure 4.9., in 

order to process the security information available in the SOAP message 

received from the peer of PeerGroup-2 by initially checking the obedience of 

the security policies.  



 68

 
Figure 4.9. Received Secure SOAP Message 

 

Figure 4.10. denotes the process for verifying the digital signature applied to 

the received message by the peer of PeerGroup-2. 

 

Prior to the verification of the digital signature, the public key information for 

the peer of PeerGroup-2 is located by requesting this key content from the peer 

of PeerGroup-3. The public key information location request message is: 

<?xml version="1.0" encoding="UTF-8"?> 
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"> 
<SOAP-ENV:Body> 

<k:Locate xmlns:k="http://www.xkms.org/schema/xkms-2001-
01-20"> 



 69

<k:TransactionID>c41696b0-1f14-11d6-b840-
3beb2501bc66 

</k:TransactionID> 
  <k:Query> 

 <d:KeyInfo 
xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 

   <d:KeyName>peer2</d:KeyName> 
   </d:KeyInfo> 
  </k:Query> 
  <k:Respond> 
   <k:string>KeyName</k:string> 
   <k:string>KeyValue</k:string> 
  </k:Respond> 
 </k:Locate> 
</SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 

 

The public key information response message created by the peer of 

PeerGroup-3 is: 

<?xml version="1.0" encoding="UTF-8"?> 
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">" 
<SOAP-ENV:Body> 

<k:LocateResult 
xmlns:k=\"http://www.xkms.org/schema/xkms-2001-01-20\"> 

<k:TransactionID>c41696b0-1f14-11d6-b840-
3beb2501bc66</k:TransactionID> 

<Result>Success</Result> 
  <Answer> 
  <KeyInfo 
xmlns="http://www.w3.org/2000/09/xmldsig#"> 
   <KeyName>peer2</KeyName> 
   <RetrievalMethod 
Type="http://service.xmltrustcenter.org/XKMS" 
URI="XKMSpeer:xkms/Acceptor.nano"/> 
   <d:KeyValue 
xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 
    <d:RSAKeyValue>            
<d:Modulus>zYQky4msu0MYMM7d3npKhaoRdy9YkVcYAquZ7F2dt3GCyRN4dhq3
v33cfOu8JRCw2DVTctXSMRx4drCA0JQH6wNXekViuvMrS/OS920esgsL7q5zO0t
5jHw2FVT2Fci3luqJDE4Pg/9hFbQs1JTnmZfRskhjJtKpb8Op5ahcmtc= 
</d:Modulus> 
<d:Exponent xmlns:d="http://www.w3.org/2000/09/xmldsig#">AQAB 
</d:Exponent> 
    </d:RSAKeyValue> 
   </d:KeyValue> 
  </KeyInfo> 
 </LocateResult> 
</SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 

 

 



 70

 
Figure 4.10. Digital Signature Verification 

 

Figure 4.11. denotes the process for decrypting the encrypted SOAP message 

element that has been applied to the credit card number information in the 

received message by the peer of PeerGroup-2. 

 

Prior to decryption, the secret key information, that has been created by the 

peer of PeerGroup-3 for the connection established between the peer of 

PeerGroup-1 and the peer of PeerGroup-2, is located by requesting this key 

content from the peer of PeerGroup-3. 

 



 71

 
Figure 4.11. Resultant SOAP Message after Decryption 

 

Figure 4.12. denotes the process for validating the username security token 

information inserted to the received message by the peer of PeerGroup-2. 

 

Prior to the validation of the security token, the username token information for 

the peer of PeerGroup-2 is located by requesting from the peer of PeerGroup-3.  

 

 

 

 



 72

 
Figure 4.12. Security Token Validation 

 

 

 



 73

 

 
 

 
CHAPTER V 

 
 
 

THE SATINE PROJECT INTEGRATION 
 
 
 

The thesis work is realized as a part of the SATINE project which is funded by 

the  European Commission [24, 25, 26, 27, 28].  

 

The SATINE project is aiming to develop a semantic-based interoperability 

framework for the tourism industry. The framework provides tools and 

mechanisms for publishing, discovering and invoking Web services through 

their semantics in peer-to-peer networks, thus exploiting the synergies between 

these two technologies. By means of the SATINE tools and infrastructure, 

tourism companies, such as hotel chains, rent-a-car agencies and airline 

companies, are able to: 

• wrap their applications with Web services,  

• enrich those services with semantic descriptions, 

• publish them on the P2P network. 

 

Service requestors, such as travel agencies, are able to discover services based 

on their semantics, invoke them, combine simple travel services to complex 

ones. 

 

In order to be compliant with industry standards the Open Travel Alliance 

(OTA) specifications are considered for the messages exchanged between the 

trading partners. However OTA compliance is not enforced. Rather the 

automated mapping of messages and functionalities are supported through the 



 74

use of appropriate ontologies. The infrastructure to be developed especially 

addresses the difficulties of smaller companies in announcing their services.  

 

The SATINE architecture provides a framework which is based on P2P 

networks integrated with Service Registries. The architecture shown in Figure 

5.1 enables searching, publishing, and invoking travel Web services in a 

distributed environment.  

 
Figure 5.1. General Architecture 



 75

The network consists of three layers. The core layer is the super peer network 

which is named as SATINE P2P Network. Super peers are responsible for 

keeping the semantic routing tables and routing the messages which may be 

queries, advertisements, Web Service invocation/result messages and some 

other entities in the network. Super peers are connected each other via Super 

Peer interface. The second layer is the peer network. Peers represent the users 

of the SATINE architecture. This layer includes applications to help users in 

integrating their business to SATINE, get connected with Super Peer Network 

and to advertise and search services in SATINE.  

 

Each peer is a travel service provider or requestor. Peers are connected to the 

lower layer which is super peer network, with PeerGateway interface. Every 

ingoing or outgoing function from/to peer is realized with use of this interface. 

Peers are able to wrap some Service Registries or Web Services and inform the 

remaining of the network from them.  

 

Applications to wrap a Registry or a Web Service are included in the Peer 

Network Layer. The set of wrapped sources which are the Registries and Web 

Services defines the outmost layer. The Web Services may be already existing 

Web Services or some Web Service constructed with the tools provided by 

SATINE. Via the tools that will be provided it will be possible to wrap existing 

resources such as databases as Web Services.  

 

Each peer in the system, including super peers, has a central peer repository in 

order to keep the temporary or persistent information for that peer. The 

information about the wrapped sources, semantic information about the peer 

such as the ontologies, and ontology mapping definitions, semantic routing 

tables are all examples for the set of information to be kept in central peer 

repositories. Peer repositories are totally different than business Service 

Registries/Repositories. Peer repositories are ordinary databases where 



 76

information specific to a peer is kept in tables. Figure 5.2 shows the 

deployment diagram for this architecture.  

 

 
Figure 5.2. General Architecture Deployment Diagram 

 

The Web Services and Registries in SATINE are advertised semantically to the 

network when wrapped by a peer in the system. As the ontologies are the core 

components for a semantic based architecture, the advertisements of Web 

Services or Registries are annotated with ontologies. The ontologies are 

previously deployed to the system. Applications in Peer Network Layer create 

the advertisements and pass the advertisements to the Super Peer Network. 

Super Peers update their semantic routing tables using these advertisements. 

SATINE supports advertisements and queries in more than one ontologies.  

 

Instead of a single global ontology, it supports more than one global ontologies 

in the system, and provides way to map and translate semantically overlapping 

entities between these ontologies.  Tools to design mapping and applications to 



 77

translate between ontology instances are provided in Peers. Translation 

mechanism provides translation services to whole SATINE platform, which 

may be used by Peers or Super Peers. The system also provides the evolution 

of the ontologies via again mappings and translations.  

 

5.1. SATINE Network Security  

 

As this thesis work is realized as a part of the SATINE project, the architecture 

introduced with this work achieves the introduction of security implementation 

for the P2P and Peer networks proposed with the SATINE project. 

 

The functionalities of the super peers that constitute the SATINE P2P Network 

are extended to act as the peers of PeerGroup-3, introduced within this work, 

for the purpose of providing the XML Key Management and Security Token 

Management services. Thus, the super peers introduced with the SATINE 

project have also been dedicated to provide additional services of XKMS and 

WS-Trust. 

 

Similarly, the functionalities of the peers that constitute the SATINE Peer 

Network are extended to act as the peers of PeerGroup-1 and PeerGroup-2, 

introduced within this work, for the purpose of providing and invoking Web 

services in a secure manner. This integration is achieved through the WS-

Security programming interface provided by this thesis work, including the 

generation of asymmetric key pairs (public and private keys), the processing of 

security assertions stored in WS-SecurityPolicy compliant files, and adding the 

encryption and digital signature information on the specified element nodes of 

the constructed messages. 

 

The security mechanism is integrated to the SATINE network as follows: 

• Each peer of the SATINE Peer Network creates its own public and 

private key pairs at start-up by the provided programming interface, and 



 78

sends the created public key to the trusted super peer of the SATINE 

P2P Network, which is extended to provide XKMS service, conforming 

to XKMS-registerPublicKeyRequest message. The sample structure of 

the generated public-private key pairs through the provided 

programming interface are as follows: 

Public Key: 
<?xml version="1.0" encoding="UTF-8"?> 
<d:KeyInfo xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 
 <d:KeyName>Public Key</d:KeyName> 
 <d:KeyValue xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 
  <d:RSAKeyValue> 
  
 <d:Modulus>6L0B+NFIEDo5hwzQ+cggEZsFOlYYEtgj5jA8iItUc8AMI0kwqII8I3nv
AlEcOOcvUxBWPfcgghK1HDBYG15KX8zNaK84MMF3i9gqZSP1lewUKSO6bmnRaN
u2TBmpspvDGEalvBWEgnBFZgfIsTJhIOhMCbWRZyqAPPlrsqnP2Mc=</d:Modulus> 
   <d:Exponent 
xmlns:d="http://www.w3.org/2000/09/xmldsig#">AQAB</d:Exponent> 
  </d:RSAKeyValue> 
 </d:KeyValue> 
</d:KeyInfo> 
 
Private Key: 
 
<?xml version="1.0" encoding="UTF-8"?> 
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
 <ds:KeyValue> 
  <xkms:RSAKeyPair xmlns:xkms="http://www.xkms.org/schema/xkms-
2001-01-20"> 
  
 <xkms:Modulus>AOi9AfjRSBA6OYcM0PnIIBGbBTpWGBLYI+YwPIiLVHPADC
NJMKiCPCN57wJRHDjnL1MQVj33IIIStRwwWBteSl/MzWivODDBd4vYKmUj9ZXsF
Ckjum5p0WjbtkwZqbKbwxhGpbwVhIJwRWYHyLEyYSDoTAm1kWcqgDz5a7Kpz9jH
</xkms:Modulus> 
   <xkms:PublicExponent>AQAB</xkms:PublicExponent> 
  
 <xkms:PrivateExponent>ALbjsCUC8Iov9vz1SVK/vNOY6ibJeOl2B9/fj/IM6zR6eg9
QeHgyv2dxbix36KGeqkWv1NWk2VrdsIySQOpg0jeuapODYeXAYWLU2u2mxK+C32f
ovbyVrA17r6MYbr9qQCm1h+V8Tfa2O04X/Kj6MOELqpWBUM9NRdGuKEi2Fvph</x
kms:PrivateExponent> 
  
 <xkms:P>APVTE0tjJc2jZh5/YVi9z0dVZiECTok777bC0j/UXtZj44gT+QNNu7xGXr
oNccGE3k31o+PQ9MlXEopW8DA0Tis=</xkms:P> 
  
 <xkms:Q>APLduLfaU376Sa7xK9SruaRVPwDcpNdVux57vl58oLH80pxmzHSFTQ4
O9B6dHplalXRm0NAcG0yirdL8Y1xH7dU=</xkms:Q> 
  
 <xkms:DP>AKR1QrQBDXCjn2vGfN3esLvjVgm+4CNDmNluFUBRABq87+VjbkV
2sOnwSsRzCtVuWxDsISgyBkeLJZSz32SRS+0=</xkms:DP> 
  
 <xkms:DQ>ANi5uWP/pXDzgxtlRfrTf6dBFyb6vvMWIxQR0xDYYEJU3dEJ/zuf1OJ
Nv9Ut2qd46VPliEOeQVJC/aEA7t3jpj0=</xkms:DQ> 



 79

  
 <xkms:QINV>AzcyEebjvHjDUhxoRo+cD7kX0aOkIVEmU6QNfQZNq6ExIkXrEf4
6vFDfD/Dfv9ZjvY1JkJCu8GUSsRfx6xGIww==</xkms:QINV> 
  </xkms:RSAKeyPair> 
 </ds:KeyValue> 
</ds:KeyInfo> 
• The Web service invoking peer of the SATINE Peer Network requests 

the secret key information from the trusted super peer of the SATINE 

P2P Network, which is extended to provide XKMS service, for the 

session with the Web service providing peer of the SATINE Peer 

Network. The sample 24-bytes secret key generated through the 

provided programming interface is: 

Rz�Õ,|pÖkµÈsÜµñ¿‰ ?ÂßŠm^ 

• The trusted super peers of the SATINE P2P Network store the public 

key information of the peers of the SATINE Peer Network, and 

generate and store the secret key information by the provided 

programming interface for the Web service invoking sessions of the 

peers of the SATINE Peer Network. 

• The Web service invoking peer of the SATINE Peer Network inserts 

the encryption data based on the secret key information and the digital 

signature to the constructed Web service message by the provided 

programming interface. Encryption and signing operations are 

performed according to the security policies of the Web service 

providing peer of the SATINE Peer Network, and the provided 

programming interface is used for this operation. The sample security 

policy file that is processed to perform encryption and digital signature 

can be denoted as: 

<wsp:Policy xmlns:wsp="..." xmlns:wsse="...">  
 <wsse:Integrity wsp:Usage="wsp:Required">  
  <wsse:Algorithm Type="wsse:AlgSignature" />  
  <MessageParts>/InvokeMessage</MessageParts> 
 </wsse:Integrity>  
 <wsse:Confidentiality wsp:Usage="wsp:Required">  
  <wsse:Algorithm Type="wsse:AlgEncryption" />  
  <!-- 
MessageParts>/InvokeMessage/Instance/rdf:RDF/a:Airport</Message
Parts --> 
 
 <MessageParts>/InvokeMessage/Instance</MessageParts> 



 80

 </wsse:Confidentiality>  
</wsp:Policy>  

According to the policy assertions above, the original invoke message is to 

be encrypted on the “/InvokeMessage/Instance/rdf:RDF/a:Airport” 

element, and the digital signature applied on the element 

“/InvokeMessage” is to be added to the resultant message after encryption. 

As the following sample invoke message denotes, the messages exchanged 

are in the form of RDF (Resource Description Framework) data: 

<?xml version="1.0" encoding="UTF-8"?> 
<InvokeMessage> 
 <Instance> 
  <rdf:RDF xml:base="file:/C:/codes/satine/docs/map/OTA1.rdf" 
  
 xmlns:a="http://www.srdc.metu.edu.tr/~yildiray/ontology/OTADomainOntology_v3.r
dfs#" 
   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
   <a:BookingRequest rdf:ID="a1" 
    a:bookingFlightNo="4437" 
    a:time="050904"> 
    <a:hasCompany rdf:resource="#a2"/> 
    <a:bookingProperties rdf:resource="#a4"/> 
    <a:bookingTo rdf:resource="#a9"/> 
    <a:bookingFrom rdf:resource="#a11"/> 
    <a:hasPassenger rdf:resource="#a13"/> 
   </a:BookingRequest> 
   <a:Company rdf:ID="a2" 
    a:name="TK"> 
    <a:contact rdf:resource="#a3"/> 
   </a:Company> 
   <a:Contact rdf:ID="a3" 
    a:address="METU" 
    a:email="yildiray@srdc.metu.edu.tr" 
    a:phone="2102076" 
    a:fax="2101004"> 
   </a:Contact> 
   <a:Booking rdf:ID="a4" 
    a:bookingClass="Y" 
    a:designCode=""> 
    <a:inCabin rdf:resource="#a5"/> 
   </a:Booking> 
   <a:Cabin rdf:ID="a5" 
    a:cabinType=""> 
    <a:hasSeat rdf:resource="#a6"/> 
   </a:Cabin> 
   <a:Seat rdf:ID="a6"> 
    <a:assignedTo rdf:resource="#a7"/> 
   </a:Seat> 
   <a:Person rdf:ID="a7" 
    a:personName="YILDIRAY"> 
    <a:contactInfo rdf:resource="#a8"/> 



 81

   </a:Person> 
   <a:Contact rdf:ID="a8" 
    a:address="" 
    a:email="" 
    a:phone="" 
    a:fax=""> 
   </a:Contact> 
   <a:City rdf:ID="a9" 
    a:cityname="IST"> 
    <a:hasAirport rdf:resource="#a10"/> 
   </a:City> 
   <a:Airport rdf:ID="a10" 
    a:airportCode="IST"> 
   </a:Airport> 
   <a:City rdf:ID="a11" 
    a:cityname="PAR"> 
    <a:hasAirport rdf:resource="#a12"/> 
   </a:City> 
   <a:Airport rdf:ID="a12" 
    a:airportCode="ORY"> 
   </a:Airport> 
   <a:Person rdf:ID="a13" 
    a:personName="KABAK"> 
    <a:contactInfo rdf:resource="#a14"/> 
   </a:Person> 
   <a:Contact rdf:ID="a14" 
    a:address="" 
    a:email="" 
    a:phone="" 
    a:fax=""> 
   </a:Contact> 
  </rdf:RDF> 
 </Instance> 
 <OwlsURI> 
 </OwlsURI> 
 <WsdlURI>http://www.srdc.metu.edu.tr/~yildiray/amadeus3.wsdl</WsdlURI> 
</InvokeMessage> 
 

The resultant secure message achieved after applying the operations of 

encryption and digital signature on the elements defined in the security 

policy file is as follows: 

<InvokeMessage> 
 <Instance> 
  <rdf:RDF xml:base="file:/C:/codes/satine/docs/map/OTA1.rdf" 
xmlns:a="http://www.srdc.metu.edu.tr/~yildiray/ontology/OTADomainOntology_v3.rdfs#
" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
   <a:BookingRequest a:bookingFlightNo="4437" a:time="050904" 
rdf:ID="a1"> 
    <a:hasCompany rdf:resource="#a2"/> 
    <a:bookingProperties rdf:resource="#a4"/> 
    <a:bookingTo rdf:resource="#a9"/> 
    <a:bookingFrom rdf:resource="#a11"/> 



 82

    <a:hasPassenger rdf:resource="#a13"/> 
   </a:BookingRequest> 
   <a:Company a:name="TK" rdf:ID="a2"> 
    <a:contact rdf:resource="#a3"/> 
   </a:Company> 
   <xenc:EncryptedData 
Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"><xenc:EncryptionMethod 
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>AmHYIwsuAPAw4PCao2qSkn1Dg95zSsh
35WcBnpUr3uaXb2w0VrD4eFcWc0M1ztB4BECfWal6 
     
 1PUdjRpnu3eG68j+twDMG442iRJf0o/gNLCm1iiKXIFA+I+cvV8AzS0rTP3dLHum/
D9cg16l 
     
 L7ANRrXrd7s9gMV8+C9jEO7DLy1F1gL7mSHJ2FbUInsoPn0yXdU0B/2x+HKT37
vxENHCl93t 
     
 CJnZFsLy0lK9yyJ7rBbC7azJX5zK/irQJEEoCjVM47vE478Df0uhdFr+HmmQ4GpA
SzuagKER 
     
 FWDp0Ao2Sg+0NKO0rby7ca+K2EMWWJW5GFJQVVleEkJ3i+Guc1BXh4lFuIJK
o/bol8vbpJct 
      vH8=</xenc:CipherValue> 
    </xenc:CipherData> 
   </xenc:EncryptedData> 
   <a:Booking a:bookingClass="Y" a:designCode="" rdf:ID="a4"> 
    <a:inCabin rdf:resource="#a5"/> 
   </a:Booking> 
   <a:Cabin a:cabinType="" rdf:ID="a5"> 
    <a:hasSeat rdf:resource="#a6"/> 
   </a:Cabin> 
   <a:Seat rdf:ID="a6"> 
    <a:assignedTo rdf:resource="#a7"/> 
   </a:Seat> 
   <xenc:EncryptedData 
Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"><xenc:EncryptionMethod 
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>BPm8kR5gKyHkFPylh5g6l6dab3qQwM+
5/GZbQ164R55EulovtQ9Ytkeu8UKwR0UqHy0ojGmf 
     
 pvrQwVkpFrucfMtdc1vP+I9eTC6TR55og6RbmbJ/uaNq+6VMt5zJhNCMtMT7hJ4O
T6VAgHAS 
     
 OSEXzUES80pZuKNuONaH8RsM+29MHk9gYIAU0bIVzKaOaQBFShgQ5PnZL65
sIQxyiiITUKwx 
     
 zs5UolQCvHfocWoCsx14ew73h/sx8SsRLkAEbIZbPi5YZ/MNT7SbWd6pWBmSOZ
5EYsIdI6XO 
     
 V00N3fxUmiYOJKrZuXoR/J9bcgdLWcx+hg4boPuPKHA=</xenc:CipherValue> 
    </xenc:CipherData> 
   </xenc:EncryptedData> 



 83

   <xenc:EncryptedData 
Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"><xenc:EncryptionMethod 
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>wFHE/G4oQT1x9nxgSZsFBL2bJX6ssbw
MZPo6CLxos5+WfWuOgdizPPFvENyd70cVbV+3jCPO 
     
 OLkVj2wWOGcClbUhV9umbviW8GL14XoaXLAg48QD3/uwz0sE6kiOu3GzqTHy
QRmZ/d6pYjP3 
     
 2fqPXmx58Xi9SKXCiFnKPA7cYsinZ+o9n20SPk8uDgmAkslxHhOq/5tDU5ZsuFeR
FLpa1THf 
     
 +fNXwjD5yxu+8wK/NktIFj/qV1uzcZgqyPYAxuJU7yBoNxGdGUif7Yi+/Efo3DhTtc
0baoAU 
     
 6e6VDnb3aSqC4u3hxxaD0Q==</xenc:CipherValue> 
    </xenc:CipherData> 
   </xenc:EncryptedData> 
   <a:City a:cityname="IST" rdf:ID="a9"> 
    <a:hasAirport rdf:resource="#a10"/> 
   </a:City> 
   <a:Airport a:airportCode="IST" rdf:ID="a10"> 
   </a:Airport> 
   <a:City a:cityname="PAR" rdf:ID="a11"> 
    <a:hasAirport rdf:resource="#a12"/> 
   </a:City> 
   <a:Airport a:airportCode="ORY" rdf:ID="a12"> 
   </a:Airport> 
   <xenc:EncryptedData 
Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"><xenc:EncryptionMethod 
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>XXLatS7QOEZWnE/nbdt36MVpw45b/Hb
Oik7aKt2uM86C3RQjeNEJPD0Oabd5CKYHwTBch5lE 
     
 j+zFtAZCd+HJPY3AxpVQ7Crm/lNjGzZrwIhggUBzwEvpTMsTsgEaCj9gmEPcy7Jo
ygWd999Z 
     
 e3xK22SMT9moifvfJw0ZEDWEIufBzbfJKgqb1+IqzbyXnUKYfcypIV2NDvhRMTq
ypQO2XV1k 
     
 6tkzZpyVVBE4kN9VfAZ5W0KNEklg/nHADiYFZ66ltE5poK7EOJoBoW68p3/6fiH
XvbnCynbU 
     
 hLa3aYjmWcud1CRwvgjRz9uLJmMbF32XmLv9SpeiGZA=</xenc:CipherValue> 
    </xenc:CipherData> 
   </xenc:EncryptedData> 
   <xenc:EncryptedData 
Type="http://www.w3.org/2001/04/xmlenc#Element" 
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"><xenc:EncryptionMethod 
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>lnQSWIZuEd0isesE7waiTEeRcBpFDNIlo
2THHh2SnVVamEaPc78nqFFnZgn5ox74uxJ5jnYO 



 84

     
 1YC2nbJ0jV3DVqVkqvn27UMUx1y2F5Q6Lc7ldY0B83H9R3m7k4XKK+UVt0w0z
okd5olrAQQ+ 
     
 g4xJFOLmJDxhWaJHyLHRPi6/ufV0LXXfNl0Rwzbf9ppBW3Q7cPEXSE0fMm9BN
CKy0JSFNFtb 
     
 imN4ibzef038NYFSmtCPilwIhwLt98UOdbYv/wF5RESFPHLhOKvDSIBimDJEDj
MtKhpkvRyf 
     
 tOBpiR+fi2I6M0Q/NV4Hvw==</xenc:CipherValue> 
    </xenc:CipherData> 
   </xenc:EncryptedData> 
  </rdf:RDF></Instance><OwlsURI> 
 </OwlsURI> 
 <WsdlURI>http://www.srdc.metu.edu.tr/~yildiray/amadeus3.wsdl</WsdlURI> 
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
  <ds:SignedInfo> 
   <ds:CanonicalizationMethod 
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 
   <ds:SignatureMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/> 
   <ds:Reference URI=""> 
    <ds:Transforms> 
     <ds:Transform 
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/> 
     <ds:Transform 
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 
    </ds:Transforms> 
    <ds:DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
   
 <ds:DigestValue>Hk2vomCsc+G7h8kBFZdUx/qTuHU=</ds:DigestValue> 
   </ds:Reference> 
  </ds:SignedInfo> 
 
 <ds:SignatureValue>PKxFIVRKw0GM7rblaVuUmgEd0uO5n1HF9laSuEHWcEy64
MsdhYu45qQ2QQZNh4QmCKf5AaUw 
  
 4UiqbU16umex+KZGn2rkicc/rHMuAh46UlEIdpHarmJ+neYwmC65EncEXbA65/+b
Cuh1ni/J 
   pzxpJP3OTK1mwFNTPJr6DVwFGJ8=</ds:SignatureValue> 
 </ds:Signature> 
</InvokeMessage> 
• Having received the secure Web service message, the Web service 

providing peer of the SATINE Peer Network requests the secret key 

information from the trusted super peer of the SATINE P2P Network, 

which is extended to provide XKMS service, for the session with the 

Web service invoking peer of the SATINE Peer Network, and requests 



 85

the public key information of the same peer conforming to XKMS-

locatePublicKeyRequest message.  

• The Web service providing peer of the SATINE Peer Network verifies 

the digital signature based on the public key information, and decrypts 

the encrypted data based on the security key information by the 

provided programming interface. 

• Having executed the Web service, the Web service providing peer of 

the SATINE Peer Network constructs the Web service response 

message, and inserts the encryption data based on the same secret key 

information as the one requested and inserts the digital signature based 

on its own private key information by the provided programming 

interface. 

• The Web service invoking peer of the SATINE Peer Network verifies 

the digital signature based on the public key information, and decrypts 

the encrypted data based on the security key information so that this 

peer can reach the Web service execution result in a secure manner. 

 

 



 86

 

 

 

 

CHAPTER VI 

 

 

 

RELATED WORK 

 

 

 

Web services security is an important research and development area, and 

several building blocks and standards have been proposed for this topic.  

 

 [23] proposes such a mechanism that is achieved over the Internet. This 

mechanism, introduced by VeriSign, performs XML Key Management 

Specification interface as a Web service built on the protocol http (hyper-text 

transfer protocol) and provides a framework for the implementation of WS-

Security. 

 

JXTA framework has introduced its own security mechanism [22], which 

provides whole message integrity and confidentiality only among the 

communicating peer pairs, and exploits the technology Transport Layer 

Security (TLS). Hence, the security mechanism introduced by the JXTA 

framework does not provide a solution required for the exploitation of Web 

services. For the Web services technology, a more complex mechanism is 

required in order to involve all the peers (Web service providing, invoking and 

intermediary peers) within the peer-to-peer network by conforming to the well-

accepted specifications introduced for Web services security.  



 87

[14] presents the description of a proposed strategy for addressing security 

within a Web service environment. The proposed architecture is benefitted in 

this thesis work in order to bring together the security token management and 

XML Key Management services by delegating these responsibilities to a group 

of peers acting as a trusted third party for the other peers. 

 

[8], [9], and [10] describe the structures that the XML security technology 

relies on. These descriptions are exploited within the thesis work to achieve the 

implementation of the framework that provides the programming interface of 

WS-Security to be used by the peers. 

 



 88

 

 

 

 

CHAPTER VII 

 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

In order to be able to exploit the Web service technology to its full potential, 

the specifications related with Web services security should be used in Web 

service implementations. 

 

In this thesis, realizing the increasing popularity of peer-to-peer computing and 

the efforts of Project JXTA to provide solutions for peer-to-peer networks, a 

peer-to-peer approach for providing secure Web service implementation is 

proposed. For this purpose, the specifications WS-Security, WS-Trust, WS-

SecurityPolicy, and XML Key Management Specification are exploited, and 

brought together with the JXTA framework in order to achieve the introduced 

system. 

 

The thesis work is realized as a part of the SATINE project funded by the 

European Commission. The objective of the project is to develop a secure 

semantic-based interoperability framework for exploiting Web service 

platforms in conjunction with peer-to-peer networks for the travel industry. 

This thesis work contributes to the project by enabling the deployment and 

invocation of Web services in a secure manner in peer-to-peer networks, which 

is one of the aims of the SATINE project. 



 89

There exists a number of issues left as future work, which are: 

• The mechanism for distributing the security policy files of Web service 

providing peers among the Web service invoking peers, which is also 

currently missing in the specification WS-SecurityPolicy. 

• Providing the mechanism and implementation of reliable SOAP 

messaging among the Web service providing and Web service invoking 

peers, which is defined by the WS-Reliability specification. 

• Extending the introduced system to conform to the other specifications 

built on the specification WS-Security, which are WS-Privacy defining 

the preferences and practices of Web services, WS-SecureConversation 

enabling the SOAP messaging to act like a connection-based approach 

so that repeating the authentication and policy negotiation is not 

required for every SOAP message, WS-Authorization defining how 

Web services manage authorization policies, and WS-Federation 

enabling associations between security domains. 



 90

 

 

 

 

REFERENCES 

 

[1] World Wide Web Consortium, http://www.w3.org 

[2] Web Service Description Language (WSDL), March 2001, 

http://www.w3.org/TR/wsdl 

[3] Simple Object Access Protocol (SOAP), June 2003, 

http://www.w3.org/TR/SOAP 

[4] Universal Description, Discovery, and Integration (UDDI), 

http://www.uddi.org 

[5] Project JXTA, http://www.jxta.org 

[6] Milojicic D., Kalogeraki V., Lukose R., Nagaraja K., Pruyne J., Richard 

B., Rollins S., Xu Z., “Peer-to-peer Computing”, HP Laboratories Palo 

Alto, March 2002 

[7] Li Gong, “JXTA: A Network Programming Environment”, Sun 

Microsystems, June 2001 

[8] Simon E., Madsen P., Adams C., “An Introduction To XML Digital 

Signatures”, August 2001 

[9] Mactaggart M., “Enabling XML Security”, IBM DeveloperWorks, 

September 2001 

[10] Salz R., “Understanding XML Digital Signature”, Microsoft 

Corporation, July 2003 

[11] Seely S., “Understanding WS-Security”, Microsoft Corporation, 

October 2002 

[12] Atkinson B., Della-Libera G., Hada S., Hondo M., Hallam-Baker P., 

Kaler C., Klein J., LaMacchia B., Leach P., Manferdelli J., Maruyama 

H., Nadalin A., Nagaratnam N., Prafullchandra H., Shewchuk J., Simon 



 91

D., “Web Services Security Version 1.0”, IBM & Microsoft & 

VeriSign, April 2002 

[13] Geer D., “Taking Steps To Secure Web Services”, IEEE Computer, 

October 2003 

[14] Joint white paper, “Security In a Web Services World: A Proposed 

Architecture and Roadmap”, IBM Corporation & Microsoft 

Corporation, April 2002 

[15] Anderson S., Bohren J., Boubez T., Chanliau M., Della-Libera G., 

Dixon B., Garg P., Gravengaard E., Gudgin M., Hallam-Baker P., 

Hondo M., Kaler C., Lockhart H., Martherus R., Maruyama H., Mishra 

P., Nadalin A., Nagaratnam N., Nash A., Philpott R., Platt D., 

Prafullchandra H., Sahu M., Shewchuk J., Simon D., Srinivas D., 

Waingold E., Waite D., Zolfonoon R., “Web Services Trust Language 

Version 1.1”, BEA Systems, Computer Associates International, IBM, 

Layer 7 Technologies, Microsoft, Netegrity, Oblix, OpenNetwork 

Technologies, Ping Identity, Reactivity, RSA Security, VeriSign, 

Westbridge Technology, May 2004 

[16] Box D., Curbera F., Hondo M., Kaler C., Langworthy D., Nadalin A., 

Nagaratnam N., Nottingham M., Riegen C., Shewchuk J., “Web 

Services Policy Framework”, BEA Systems, IBM, Microsoft, SAP, 

May 2003 

[17] Della-Libera G., Hallam-Baker P., Hondo M., Janzcuk T., Kaler C., 

Maruyama H., Nadalin A., Nagaratnam N., Nash A., Philpott R., 

Prafullchandra H., Shewchuk J., Waingold E., Zolfonoon R., “Web 

Services Security Policy Language Version 1.0”, IBM, Microsoft, RSA 

Security, VeriSign, December 2002 

[18] Skonnard A., “Understanding WS-Policy”, Skonnard Consulting, 

August 2003 

[19] Nagappan R., Skoczylas R., Sriganesh R., “Developing Java Web 

Services”, John Wiley & Sons, 2003 

[20] Dournaee B., “XML Security”, McGraw-Hill/Osborne, 2002 



 92

[21] Gradecki J., “Mastering JXTA: Building Java Peer-to-Peer 

Applications”, John Wiley & Sons, 2002 

[22] “Security and Project JXTA”, Sun Microsystems, January 2002 

[23] The VeriSign Company, http://www.verisign.com 

[24] The SATINE Project,  

 http://www.srdc.metu.edu.tr/webpage/projects/satine/ 

[25] Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Kirbas S., Gurcan 

Y., “Semantically Enriched Web Services for the Travel Industry”, 

ACM Sigmod Record, Vol. 33, No. 3, September 2004 

[26] Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Tumer A., 

“SATINE Project: Exploiting Web Services in the Travel Industry”, 

eChallenges 2004 (e-2004), October 2004 

[27] SATINE Consortium, Demo, “SATINE Project: A Semantically-

enriched Web Service Platform for the Travel Industry”, eChallenges 

2004 (e-2004), October 2004 

[28] Flugge M., Tourtchaninova D., “Ontology-derived Activity 

Components for Composing Travel Web Services”, The International 

Workshop on Semantic Web Technologies in Electronic Business 

(SWEB2004), October 2004 

 



 93

 

 

 

 

APPENDIX A 

 

 

 

DESCRIPTION FILES OF THE WEB SERVICES  

 

 

 

The WSDL description file of the XML Key Management Web service, which 

is provided by the peers of PeerGroup-3, is presented as follows: 

 

<?xml version="1.0"?> 
 
<definitions name="XMLKeyManagement" 
xmlns="http://schemas.xmlsoap.org/wsdl/" 
 xmlns:s="http://www.w3.org/2000/10/XMLSchema" 
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" 
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" 
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"  
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 
 xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20" 
 xmlns:tns="http://www.xkms.org/schema/xkms-2001-01-20" 
 targetNamespace="http://www.xkms.org/schema/xkms-2001-01-20"> 
 
  <types> 
 
<schema xmlns="http://www.w3.org/2001/XMLSchema" 
        xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 
        targetNamespace="http://www.w3.org/2000/09/xmldsig#" 
        version="0.1" elementFormDefault="qualified">  
 
<!-- Basic Types Defined for Signatures --> 
 
<simpleType name="CryptoBinary"> 
  <restriction base="base64Binary"> 
  </restriction> 
</simpleType> 
 
<!-- Start Signature --> 
 



 94

<element name="Signature" type="ds:SignatureType"/> 
<complexType name="SignatureType"> 
  <sequence>  
    <element ref="ds:SignedInfo"/>  
    <element ref="ds:SignatureValue"/>  
    <element ref="ds:KeyInfo" minOccurs="0"/>  
    <element ref="ds:Object" minOccurs="0" 
maxOccurs="unbounded"/>  
  </sequence>   
  <attribute name="Id" type="ID" use="optional"/> 
</complexType> 
 
  <element name="SignatureValue" type="ds:SignatureValueType"/>  
  <complexType name="SignatureValueType"> 
    <simpleContent> 
      <extension base="base64Binary"> 
        <attribute name="Id" type="ID" use="optional"/> 
      </extension> 
    </simpleContent> 
  </complexType> 
 
<!-- Start SignedInfo --> 
 
<element name="SignedInfo" type="ds:SignedInfoType"/> 
<complexType name="SignedInfoType"> 
  <sequence>  
    <element ref="ds:CanonicalizationMethod"/>  
    <element ref="ds:SignatureMethod"/>  
    <element ref="ds:Reference" maxOccurs="unbounded"/>  
  </sequence>   
  <attribute name="Id" type="ID" use="optional"/>  
</complexType> 
 
  <element name="CanonicalizationMethod" 
type="ds:CanonicalizationMethodType"/>  
  <complexType name="CanonicalizationMethodType" mixed="true"> 
    <sequence> 
      <any namespace="##any" minOccurs="0" 
maxOccurs="unbounded"/> 
      <!-- (0,unbounded) elements from (1,1) namespace --> 
    </sequence> 
    <attribute name="Algorithm" type="anyURI" use="required"/>  
  </complexType> 
 
  <element name="SignatureMethod" 
type="ds:SignatureMethodType"/> 
  <complexType name="SignatureMethodType" mixed="true"> 
    <sequence> 
      <element name="HMACOutputLength" minOccurs="0" 
type="ds:HMACOutputLengthType"/> 
      <any namespace="##other" minOccurs="0" 
maxOccurs="unbounded"/> 
      <!-- (0,unbounded) elements from (1,1) external namespace 
--> 
    </sequence> 
    <attribute name="Algorithm" type="anyURI" use="required"/>  



 95

  </complexType> 
 
<!-- Start Reference --> 
 
<element name="Reference" type="ds:ReferenceType"/> 
<complexType name="ReferenceType"> 
  <sequence>  
    <element ref="ds:Transforms" minOccurs="0"/>  
    <element ref="ds:DigestMethod"/>  
    <element ref="ds:DigestValue"/>  
  </sequence> 
  <attribute name="Id" type="ID" use="optional"/>  
  <attribute name="URI" type="anyURI" use="optional"/>  
  <attribute name="Type" type="anyURI" use="optional"/>  
</complexType> 
 
  <element name="Transforms" type="ds:TransformsType"/> 
  <complexType name="TransformsType"> 
    <sequence> 
      <element ref="ds:Transform" maxOccurs="unbounded"/>   
    </sequence> 
  </complexType> 
 
  <element name="Transform" type="ds:TransformType"/> 
  <complexType name="TransformType" mixed="true"> 
    <choice minOccurs="0" maxOccurs="unbounded">  
      <any namespace="##other" processContents="lax"/> 
      <!-- (1,1) elements from (0,unbounded) namespaces --> 
      <element name="XPath" type="string"/>  
    </choice> 
    <attribute name="Algorithm" type="anyURI" use="required"/>  
  </complexType> 
 
<!-- End Reference --> 
 
<element name="DigestMethod" type="ds:DigestMethodType"/> 
<complexType name="DigestMethodType" mixed="true">  
  <sequence> 
    <any namespace="##other" processContents="lax" 
minOccurs="0" maxOccurs="unbounded"/> 
  </sequence>     
  <attribute name="Algorithm" type="anyURI" use="required"/>  
</complexType> 
 
<element name="DigestValue" type="ds:DigestValueType"/> 
<simpleType name="DigestValueType"> 
  <restriction base="base64Binary"/> 
</simpleType> 
 
<!-- End SignedInfo --> 
 
<!-- Start KeyInfo --> 
 
<element name="KeyInfo" type="ds:KeyInfoType"/>  
 
<complexType name="KeyInfoType" mixed="true"> 



 96

  <sequence> 
<!--    <element ref="ds:KeyName"/>     --> 
    <element ref="ds:KeyName"/> 
    <element ref="ds:KeyValue"/>  
    <element ref="ds:RetrievalMethod"/>  
    <element ref="ds:X509Data"/>  
    <element ref="ds:PGPData"/>  
    <element ref="ds:SPKIData"/> 
    <element ref="ds:MgmtData"/> 
    <any processContents="lax" namespace="##other"/>   
    <!-- (1,1) elements from (0,unbounded) namespaces --> 
  </sequence> 
  <attribute name="Id" type="ID" use="optional"/>  
</complexType> 
 
  <element name="KeyName" type="string"/> 
  <element name="MgmtData" type="string"/> 
 
  <element name="KeyValue" type="ds:KeyValueType"/>  
  <complexType name="KeyValueType" mixed="true"> 
   <choice> 
     <element ref="ds:DSAKeyValue"/> 
     <element ref="ds:RSAKeyValue"/> 
     <any namespace="##other" processContents="lax"/> 
   </choice> 
  </complexType> 
 
  <element name="RetrievalMethod" 
type="ds:RetrievalMethodType"/>  
  <complexType name="RetrievalMethodType"> 
    <sequence> 
      <element name="Transforms" type="ds:TransformsType" 
minOccurs="0"/>  
    </sequence>   
    <attribute name="URI" type="anyURI"/> 
    <attribute name="Type" type="anyURI" use="optional"/> 
  </complexType> 
 
<!-- Start X509Data --> 
 
<element name="X509Data" type="ds:X509DataType"/>  
<complexType name="X509DataType"> 
  <sequence maxOccurs="unbounded"> 
    <choice> 
      <element name="X509IssuerSerial" 
type="ds:X509IssuerSerialType"/> 
      <element name="X509SKI" type="base64Binary"/> 
      <element name="X509SubjectName" type="string"/> 
      <element name="X509Certificate" type="base64Binary"/> 
      <element name="X509CRL" type="base64Binary"/> 
      <any namespace="##other" processContents="lax"/> 
    </choice> 
  </sequence> 
</complexType> 
 
<complexType name="X509IssuerSerialType">  



 97

  <sequence>  
    <element name="X509IssuerName" type="string"/>  
    <element name="X509SerialNumber" type="integer"/>  
  </sequence> 
</complexType> 
 
<!-- End X509Data --> 
 
<!-- Begin PGPData --> 
 
<element name="PGPData" type="ds:PGPDataType"/>  
<complexType name="PGPDataType">  
  <choice> 
    <sequence> 
      <element name="PGPKeyID" type="base64Binary"/>  
      <element name="PGPKeyPacket" type="base64Binary" 
minOccurs="0"/>  
      <any namespace="##other" processContents="lax" 
minOccurs="0" 
       maxOccurs="unbounded"/> 
    </sequence> 
  </choice> 
</complexType> 
 
<!-- End PGPData --> 
 
<!-- Begin SPKIData --> 
 
<element name="SPKIData" type="ds:SPKIDataType"/>  
<complexType name="SPKIDataType"> 
  <sequence maxOccurs="unbounded"> 
    <element name="SPKISexp" type="base64Binary"/> 
    <any namespace="##other" processContents="lax" 
minOccurs="0"/> 
  </sequence> 
</complexType>  
 
<!-- End SPKIData --> 
 
<!-- End KeyInfo --> 
 
<!-- Start Object (Manifest, SignatureProperty) --> 
 
<element name="Object" type="ds:ObjectType"/>  
<complexType name="ObjectType" mixed="true"> 
  <sequence minOccurs="0" maxOccurs="unbounded"> 
    <any namespace="##any" processContents="lax"/> 
  </sequence> 
  <attribute name="Id" type="ID" use="optional"/>  
  <attribute name="MimeType" type="string" use="optional"/> <!-
- add a grep facet --> 
  <attribute name="Encoding" type="anyURI" use="optional"/>  
</complexType> 
 
<element name="Manifest" type="ds:ManifestType"/>  
<complexType name="ManifestType"> 



 98

  <sequence> 
    <element ref="ds:Reference" maxOccurs="unbounded"/>  
  </sequence> 
  <attribute name="Id" type="ID" use="optional"/>  
</complexType> 
 
<element name="SignatureProperties" 
type="ds:SignaturePropertiesType"/>  
<complexType name="SignaturePropertiesType"> 
  <sequence> 
    <element ref="ds:SignatureProperty" maxOccurs="unbounded"/>  
  </sequence> 
  <attribute name="Id" type="ID" use="optional"/>  
</complexType> 
 
   <element name="SignatureProperty" 
type="ds:SignaturePropertyType"/>  
   <complexType name="SignaturePropertyType" mixed="true"> 
     <choice maxOccurs="unbounded"> 
       <any namespace="##other" processContents="lax"/> 
       <!-- (1,1) elements from (1,unbounded) namespaces --> 
     </choice> 
     <attribute name="Target" type="anyURI" use="required"/>  
     <attribute name="Id" type="ID" use="optional"/>  
   </complexType> 
 
<!-- End Object (Manifest, SignatureProperty) --> 
 
<!-- Start Algorithm Parameters --> 
 
<simpleType name="HMACOutputLengthType"> 
  <restriction base="integer"/> 
</simpleType> 
 
<!-- Start KeyValue Element-types --> 
 
<element name="DSAKeyValue" type="ds:DSAKeyValueType"/> 
<complexType name="DSAKeyValueType"> 
  <sequence> 
    <sequence minOccurs="0"> 
      <element name="P" type="ds:CryptoBinary"/> 
      <element name="Q" type="ds:CryptoBinary"/> 
    </sequence> 
    <element name="J" type="ds:CryptoBinary" minOccurs="0"/> 
    <element name="G" type="ds:CryptoBinary" minOccurs="0"/> 
    <element name="Y" type="ds:CryptoBinary"/> 
    <sequence minOccurs="0"> 
      <element name="Seed" type="ds:CryptoBinary"/> 
      <element name="PgenCounter" type="ds:CryptoBinary"/> 
    </sequence> 
  </sequence> 
</complexType> 
 
 
<element name="RSAKeyValue" type="ds:RSAKeyValueType"/> 
<complexType name="RSAKeyValueType"> 



 99

  <sequence> 
    <element name="Modulus" type="ds:CryptoBinary"/>  
    <element name="Exponent" type="ds:CryptoBinary"/>  
  </sequence> 
</complexType>  
 
<!-- End KeyValue Element-types --> 
 
<!-- End Signature --> 
 
</schema> 
 
<schema attributeFormDefault="qualified" 
elementFormDefault="qualified" 
 targetNamespace="http://www.xkms.org/schema/xkms-2001-01-20" 
 xmlns="http://www.w3.org/2001/XMLSchema"> 
 <import namespace="http://www.w3.org/2000/09/xmldsig#"/> 
   <element name="Recover" type="xkms:RecoverType"/> 
   <element name="Revoke" type="xkms:RevokeType"/> 
   <element name="Locate" type="xkms:LocateType"/> 
   <element name="Register" type="xkms:RegisterType"/> 
   <element name="Validate" type="xkms:ValidateType"/> 
   <element name="RegisterResult" 
type="xkms:RegisterResultType"/> 
   <element name="RecoverResult" 
type="xkms:RecoverResultType"/> 
   <element name="RevokeResult" type="xkms:RevokeResultType"/> 
   <element name="LocateResult" type="xkms:LocateResultType"/> 
   <element name="ValidateResult" 
type="xkms:ValidateResultType"/> 
   <complexType name="LocateType"> 
      <sequence> 
         <element minOccurs="0" name="TransactionID" 
type="string"/> 
         <element name="Query" type="xkms:KeyInfoType"/> 
         <element minOccurs="0" name="Respond" 
type="xkms:RespondType"/> 
      </sequence> 
   </complexType> 
   <complexType name="LocateResultType"> 
      <sequence> 
         <element minOccurs="0" name="TransactionID" 
type="string"/> 
         <element name="Result" type="xkms:ResultCodeType"/> 
         <element minOccurs="0" name="Answer" 
type="xkms:LocateResultAnswerType"/> 
         <element minOccurs="0" name="ErrorInfo" 
type="xkms:ErrorInfoType"/> 
         <element maxOccurs="1" minOccurs="0" 
ref="ds:Signature"/> 
      </sequence> 
      <attribute name="Id" type="ID" use="optional"/> 
   </complexType> 
   <complexType name="ValidateType"> 
      <sequence> 
         <element name="Query" type="xkms:KeyBindingType"/> 



 100 

         <element minOccurs="0" name="Respond" 
type="xkms:RespondType"/> 
      </sequence> 
   </complexType> 
   <complexType name="ValidateResultType"> 
      <sequence> 
         <element name="Result" type="xkms:ResultCodeType"/> 
         <element minOccurs="0" name="Answer" 
type="xkms:ValidateResultAnswerType"/> 
         <element minOccurs="0" name="ErrorInfo" 
type="xkms:ErrorInfoType"/> 
         <element maxOccurs="1" minOccurs="0" 
ref="ds:Signature"/> 
      </sequence> 
      <attribute name="Id" type="ID" use="optional"/> 
   </complexType> 
   <complexType name="ValidateResultAnswerType"> 
      <sequence> 
         <element name="KeyBinding" 
type="xkms:KeyBindingType"/> 
      </sequence> 
   </complexType> 
   <complexType name="RegisterType"> 
      <sequence> 
         <element name="Prototype" type="xkms:KeyBindingType"/> 
         <element name="AuthInfo" type="xkms:AuthInfoType"/> 
         <element name="Respond" type="xkms:RespondType"/> 
      </sequence> 
   </complexType> 
   <complexType name="RegisterResultType"> 
      <sequence> 
         <element name="Result" type="xkms:ResultCodeType"/> 
         <element minOccurs="0" name="Answer" 
type="xkms:RegisterResultAnswerType"/> 
         <element minOccurs="0" name="Private" 
type="xkms:PrivateType"/> 
         <element minOccurs="0" name="ErrorInfo" 
type="xkms:ErrorInfoType"/> 
         <element maxOccurs="1" minOccurs="0" 
ref="ds:Signature"/> 
      </sequence> 
      <attribute name="Id" type="ID" use="optional"/> 
   </complexType> 
   <complexType name="RegisterResultAnswerType"> 
      <sequence> 
         <element name="KeyBinding" 
type="xkms:KeyBindingType"/> 
      </sequence> 
   </complexType> 
   <complexType name="RecoverType"> 
      <sequence> 
         <element ref="xkms:Register"/> 
      </sequence> 
   </complexType> 
   <complexType name="RecoverResultType"> 
      <sequence> 



 101 

         <element ref="xkms:RegisterResult"/> 
      </sequence> 
   </complexType> 
   <complexType name="RevokeType"> 
      <sequence> 
         <element ref="xkms:Register"/> 
      </sequence> 
   </complexType> 
 
   <complexType name="PrivateType"> 
      <sequence> 
         <any maxOccurs="unbounded" processContents="lax"   
       minOccurs="0" namespace="##any"/> 
      </sequence> 
      <anyAttribute namespace="##any" processContents="lax"/> 
   </complexType> 
 
   <complexType name="RevokeResultType"> 
      <sequence> 
         <element ref="xkms:RegisterResult"/> 
      </sequence> 
   </complexType> 
   <complexType name="ErrorInfoType"> 
      <sequence> 
         <element name="ErrorDescription" type="string"/> 
         <element minOccurs="0" name="ErrorActor" 
type="string"/> 
         <element minOccurs="0" name="ErrorDetail" 
type="xkms:ErrorDetailType"/> 
      </sequence> 
      <attribute name="errorCode" type="string" 
use="required"/> 
   </complexType> 
   <complexType name="ErrorDetailType"> 
      <sequence> 
         <any namespace="##other" processContents="strict"/> 
      </sequence> 
      <anyAttribute namespace="##other" 
processContents="strict"/> 
   </complexType> 
   <simpleType name="ErrorCodeType"> 
      <restriction base="string"> 
         <enumeration value="Client"/> 
         <enumeration value="Server"/> 
         <enumeration value="Client.MalformedKeyNamePassed"/> 
         <enumeration value="Client.InvalidPassPhraseAuth"/> 
         <enumeration value="*"/> 
      </restriction> 
   </simpleType> 
   <complexType name="KeyBindingType"> 
      <sequence> 
         <element minOccurs="0" name="TransactionID" 
type="string"/> 
         <element name="Status" 
type="xkms:AssertionStatusType"/> 



 102 

         <element maxOccurs="unbounded" minOccurs="0" 
name="KeyID" type="string"/> 
         <element minOccurs="0" ref="ds:KeyInfo"/> 
         <element minOccurs="0" name="PassPhrase" 
type="string"/> 
         <element minOccurs="0" name="ProcessInfo" 
type="xkms:ProcessInfoType"/> 
         <element minOccurs="0" name="ValidityInterval" 
type="xkms:ValidityIntervalType"/> 
         <element maxOccurs="unbounded" minOccurs="0" 
name="KeyUsage" type="xkms:KeyUsageType"/> 
         <element minOccurs="0" name="Private" 
type="xkms:PrivateType"/> 
      </sequence> 
      <attribute name="Id" type="ID" use="optional"/> 
   </complexType> 
   <complexType name="KeyInfoType"> 
      <sequence> 
         <element ref="ds:KeyInfo"/> 
      </sequence> 
   </complexType> 
   <complexType name="RespondType"> 
      <sequence> 
         <element maxOccurs="unbounded" minOccurs="0" 
name="string" type="xkms:RespondEnum"/> 
      </sequence> 
   </complexType> 
   <simpleType name="RespondEnum"> 
      <restriction base="string"> 
         <enumeration value="KeyName"/> 
         <enumeration value="KeyValue"/> 
         <enumeration value="X509Cert"/> 
         <enumeration value="X509Chain"/> 
         <enumeration value="X509CRL"/> 
         <enumeration value="OCSP"/> 
         <enumeration value="RetrievalMethod"/> 
         <enumeration value="MgmtData"/> 
         <enumeration value="PGPData"/> 
         <enumeration value="PGPWeb"/> 
         <enumeration value="SPKIData"/> 
         <enumeration value="Multiple"/> 
         <enumeration value="Private"/> 
         <enumeration value="ValidityInterval"/> 
         <enumeration value="KeyUsage"/> 
         <enumeration value="Status"/> 
         <enumeration value="SignedResult"/> 
      </restriction> 
   </simpleType> 
   <complexType name="LocateResultAnswerType"> 
      <sequence> 
         <element maxOccurs="unbounded" minOccurs="0" 
ref="ds:KeyInfo"/> 
      </sequence> 
   </complexType> 
   <simpleType name="ResultCodeType"> 
      <restriction base="string"> 



 103 

         <enumeration value="Success"/> 
         <enumeration value="NoMatch"/> 
         <enumeration value="NotFound"/> 
         <enumeration value="Incomplete"/> 
         <enumeration value="Failure"/> 
         <enumeration value="Refused"/> 
         <enumeration value="Pending"/> 
      </restriction> 
   </simpleType> 
   <simpleType name="AssertionStatusType"> 
      <restriction base="string"> 
         <enumeration value="Valid"/> 
         <enumeration value="Invalid"/> 
         <enumeration value="Indeterminate"/> 
      </restriction> 
   </simpleType> 
   <complexType name="ProcessInfoType"> 
      <sequence maxOccurs="unbounded" minOccurs="0"> 
         <any namespace="##other"/> 
      </sequence> 
   </complexType> 
   <complexType name="ValidityIntervalType"> 
      <sequence> 
         <element minOccurs="0" name="NotBefore" 
type="timeInstant"/> 
         <element minOccurs="0" name="NotAfter" 
type="timeInstant"/> 
      </sequence> 
   </complexType> 
   <simpleType name="KeyUsageType"> 
      <restriction base="string"> 
         <enumeration value="Encryption"/> 
         <enumeration value="Signature"/> 
         <enumeration value="Exchange"/> 
      </restriction> 
   </simpleType> 
   <complexType name="AuthInfoType"> 
      <choice> 
         <element name="AuthUserInfo" 
type="xkms:AuthUserInfoType"/> 
         <element name="AuthServerInfo" 
type="xkms:AuthServerInfoType"/> 
      </choice> 
   </complexType> 
   <complexType name="ProofOfPossessionType"> 
      <sequence> 
         <element minOccurs="0" ref="ds:Signature"/> 
      </sequence> 
   </complexType> 
   <complexType name="KeyBindingAuthType"> 
      <sequence> 
         <element minOccurs="0" ref="ds:Signature"/> 
      </sequence> 
   </complexType> 
   <complexType name="AuthUserInfoType"> 
      <sequence> 



 104 

         <element minOccurs="0" name="ProofOfPossession" 
type="xkms:ProofOfPossessionType"/> 
         <element minOccurs="0" name="KeyBindingAuth" 
type="xkms:KeyBindingAuthType"/> 
         <element minOccurs="0" name="PassPhraseAuth" 
type="string"/> 
      </sequence> 
   </complexType> 
   <complexType name="AuthServerInfoType"> 
      <sequence> 
         <element minOccurs="0" name="KeyBindingAuth" 
type="xkms:KeyBindingAuthType"/> 
         <element minOccurs="0" name="PassPhraseAuth" 
type="string"/> 
      </sequence> 
   </complexType> 
</schema> 
  </types> 
 
  <message name="Register"> 
    <part name="body" element="xkms:Register"/> 
  </message> 
 
  <message name="RegisterResult"> 
    <part name="body" element="xkms:RegisterResult"/> 
  </message> 
 
  <message name="Validate"> 
    <part name="body" element="xkms:Validate"/> 
  </message> 
 
  <message name="ValidateResult"> 
    <part name="body" element="xkms:ValidateResult"/> 
  </message> 
 
  <message name="Locate"> 
    <part name="body" element="xkms:Locate"/> 
  </message> 
 
  <message name="LocateResult"> 
    <part name="body" element="xkms:LocateResult"/> 
  </message> 
 
  <portType name="KeyServicePortType"> 
    <operation name="Register"> 
      <input message="tns:Register"/> 
      <output message="tns:RegisterResult"/> 
 <fault message="tns:RegisterResult"/> 
    </operation> 
 
    <operation name="Validate"> 
      <input message="tns:Validate"/> 
      <output message="tns:ValidateResult"/> 
 <fault message="tns:ValidateResult"/> 
    </operation> 
 



 105 

    <operation name="Locate"> 
      <input message="tns:Locate"/> 
      <output message="tns:LocateResult"/> 
 <fault message="tns:LocateResult"/> 
    </operation> 
  </portType> 
 
  <binding name="KeyServiceSoapBinding" 
type="tns:KeyServicePortType"> 
    <soap:binding 
transport="http://schemas.xmlsoap.org/soap/http" 
style="document"/> 
 
    <operation name="Register"> 
      <soap:operation 
soapAction="http://www.xkms.org/schema/xkms-2001-01-
20#Register" style="document"/> 
      <input message="tns:Register"> 
        <soap:body parts="body" use="literal"/> 
      </input> 
      <output message="tns:RegisterResult"> 
        <soap:body parts="body" use="literal"/> 
      </output> 
    </operation> 
 
    <operation name="Validate"> 
      <soap:operation 
soapAction="http://www.xkms.org/schema/xkms-2001-01-
20#Validate" style="document"/> 
      <input message="tns:Validate"> 
        <soap:body parts="body" use="literal"/> 
      </input> 
      <output message="tns:ValidateResult"> 
        <soap:body parts="body" use="literal"/> 
      </output> 
    </operation> 
 
    <operation name="Locate"> 
      <soap:operation 
soapAction="http://www.xkms.org/schema/xkms-2001-01-20#Locate" 
style="document"/> 
      <input message="tns:Locate"> 
        <soap:body parts="body" use="literal"/> 
      </input> 
      <output message="tns:LocateResult"> 
        <soap:body parts="body" use="literal"/> 
      </output> 
    </operation> 
  </binding> 
 
  <binding name="KeyServiceHttpPostBinding" 
type="tns:KeyServicePortType"> 
    <http:binding verb="POST"/> 
 
    <operation name="Register"> 
      <http:operation location="xkms/Acceptor.nano"/> 



 106 

      <input message="tns:Register"> 
        <mime:content parts="body" type="text/xml"/> 
      </input> 
      <output message="tns:RegisterResult"> 
        <mime:content parts="body" type="text/xml"/> 
      </output> 
    </operation> 
 
    <operation name="Validate"> 
      <http:operation location="xkms/Acceptor.nano"/> 
      <input message="tns:Validate"> 
        <mime:content parts="body" type="text/xml"/> 
      </input> 
      <output message="tns:ValidateResult"> 
        <mime:content parts="body" type="text/xml"/> 
      </output> 
    </operation> 
 
    <operation name="Locate"> 
      <http:operation location="xkms/Acceptor.nano"/> 
      <input message="tns:Locate"> 
        <mime:content parts="body" type="text/xml"/> 
      </input> 
      <output message="tns:LocateResult"> 
        <mime:content parts="body" type="text/xml"/> 
      </output> 
    </operation> 
  </binding> 
 
  <service name="XMLKeyManagementService"> 
 <documentation>Verisign's XML Key Management Service 
(XKMS)</documentation> 
 
    <port name="KeyServiceSoapPort" 
binding="tns:KeyServiceSoapBinding"> 
      <soap:address 
location="http://xkms.verisign.com/xkms/Acceptor.nano"/> 
    </port> 
 
    <port name="KeyServiceHttpPostPort" 
binding="tns:KeyServiceHttpPostBinding"> 
      <http:address location="http://xkms.verisign.com/"/> 
    </port> 
  </service> 
 
  <service name="PilotXMLKeyManagementService"> 
 <documentation>Verisign's Pilot XML Key Management 
Service (XKMS)</documentation> 
 
    <port name="KeyServiceSoapPort" 
binding="tns:KeyServiceSoapBinding"> 
      <soap:address location="http://pilot-
xkms.verisign.com/xkms/Acceptor.nano"/> 
    </port> 
 



 107 

    <port name="KeyServiceHttpPostPort" 
binding="tns:KeyServiceHttpPostBinding"> 
      <http:address location="http://pilot-
xkms.verisign.com/"/> 
    </port> 
  </service> 
</definitions>  

 

The WSDL description file of the Security Token Management Web service, 

which is provided by the peers of PeerGroup-3, is presented as follows:  

 

<?xml version="1.0" encoding="UTF-8"?> 
<definitions name="HelloService" 
   
targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl" 
   xmlns="http://schemas.xmlsoap.org/wsdl/" 
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
   xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
  
   <message name="SayHelloRequest"> 
      <part name="firstName" type="xsd:string"/> 
   </message> 
   <message name="SayHelloResponse"> 
      <part name="greeting" type="xsd:string"/> 
   </message> 
  
   <portType name="Hello_PortType"> 
      <operation name="sayHello"> 
         <input message="tns:SayHelloRequest"/> 
         <output message="tns:SayHelloResponse"/> 
      </operation> 
   </portType> 
    
   <binding name="Hello_Binding" type="tns:Hello_PortType"> 
      <soap:binding style="rpc"  
         transport="http://schemas.xmlsoap.org/soap/http"/> 
      <operation name="sayHello"> 
         <soap:operation soapAction="sayHello"/> 
         <input> 
            <soap:body 
               
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
               namespace="urn:examples:helloservice" 
               use="encoded"/> 
         </input> 
         <output> 
            <soap:body 
               
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
               namespace="urn:examples:helloservice" 
               use="encoded"/> 



 108 

         </output> 
      </operation> 
   </binding> 
  
   <service name="Hello_Service"> 
      <documentation>WSDL File for HelloService</documentation> 
      <port binding="tns:Hello_Binding" name="Hello_Port"> 
         <soap:address  
            
location="http://localhost:8080/soap/servlet/rpcrouter"/> 
      </port> 
   </service> 
</definitions>  

 

The WSDL description file of the Purchase Order Web service, which is 

provided by the peers of PeerGroup-1 for the demonstrational purpose and 

invoked by the peers of PeerGroup-2 in a secure manner, is presented as 

follows:  

 

<?xml version="1.0" encoding="UTF-8"?> 
<definitions name="OrderService" 
   targetNamespace="http://ilhami/wsdl/OrderService.wsdl" 
   xmlns="http://schemas.xmlsoap.org/wsdl/" 
   xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 
   xmlns:tns="http://ilhami/wsdl/OrderService.wsdl" 
   xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
  
   <message name="OrderRequest"> 
      <part name="item_name" type="xsd:string"/> 
      <part name="price" type="xsd:string"/> 
      <part name="card_name" type="xsd:string"/> 
      <part name="expiration" type="xsd:string"/> 
      <part name="card_number" type="xsd:string"/> 
      <part name="card_limit" type="xsd:string"/> 
   </message> 
   <message name="OrderResponse"> 
      <part name="status" type="xsd:string"/> 
   </message> 
  
   <portType name="Order_PortType"> 
      <operation name="orderRequest"> 
         <input message="tns:OrderRequest"/> 
         <output message="tns:OrderResponse"/> 
      </operation> 
   </portType> 
    
   <binding name="Order_Binding" type="tns:Order_PortType"> 
      <soap:binding style="rpc"  
         transport="http://schemas.xmlsoap.org/soap/http"/> 
      <operation name="orderRequest"> 
         <soap:operation soapAction="orderRequest"/> 



 109 

         <input> 
            <soap:body 
               
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
               namespace="urn:examples:orderservice" 
               use="encoded"/> 
         </input> 
         <output> 
            <soap:body 
               
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
               namespace="urn:examples:orderservice" 
               use="encoded"/> 
         </output> 
      </operation> 
   </binding> 
  
   <service name="Order_Service"> 
      <documentation>WSDL File for OrderService</documentation> 
      <port binding="tns:Order_Binding" name="Order_Port"> 
         <soap:address  
            
location="http://localhost:8080/soap/servlet/rpcrouter"/> 
      </port> 
   </service> 
</definitions>  

 

 

 

 

 

 

 

 

 

 

 

 

 



 110 

 

 

 

 

APPENDIX B 

 

 

 

FORMATS OF SOAP MESSAGES FOR WEB SERVICES 

INVOCATION 

 

 

 

The sample formats of the XML Key Management Web service that denote the 

public key  location request and response are presented in Chapter III. The 

following SOAP message format represents the revocation request for some 

public key information: 

 

<?xml version="1.0" encoding="UTF-8"?> 
 
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"> 
   <SOAP-ENV:Body> 
      <k:Register xmlns:k="http://www.xkms.org/schema/xkms-
2001-01-20"> 
         <k:Prototype Id="refId_1"> 
            <k:TransactionID>cde285f0-1f14-11d6-b840-
3beb2501bc66</k:TransactionID> 
            <k:Status>Invalid</k:Status> 
            <d:KeyInfo 
xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 
               <d:KeyValue 
xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 
                  <d:RSAKeyValue> 
                     
<d:Modulus>rlc2VJ+acRniqpF8dh5N2qyUYOkne5C257v5Rme13KGl4B7SmAa3
40uBBicdx2RkfyHpW0q3Nm/iY7h8UY1+Cw==</d:Modulus> 
                     <d:Exponent 
xmlns:d="http://www.w3.org/2000/09/xmldsig#">AQAB</d:Exponent> 
                  </d:RSAKeyValue> 
               </d:KeyValue> 



 111 

            </d:KeyInfo> 
            
<k:PassPhrase>SxbPA0qih0NsrYU8ji+gWOhwy7c=</k:PassPhrase> 
         </k:Prototype> 
         <k:AuthInfo> 
            <k:AuthUserInfo/> 
         </k:AuthInfo> 
         <k:Respond> 
            <k:string>KeyName</k:string> 
            <k:string>KeyValue</k:string> 
         </k:Respond> 
      </k:Register> 
   </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>  

 

As for the response of the revocation request above, the following SOAP 

message format represents the revocation response for public key information:  

 

<?xml version="1.0" encoding="UTF-8"?> 
 
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"> 
   <SOAP-ENV:Body> 
      <RegisterResult Id="refId_0" 
xmlns="http://www.xkms.org/schema/xkms-2001-01-20" 
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 
xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20"> 
         <Result>Success</Result> 
         <Answer> 
            <KeyBinding> 
               <TransactionID>cde285f0-1f14-11d6-b840-
3beb2501bc66</TransactionID> 
               <Status>Invalid</Status> 
               
<KeyID>http://xkms.verisign.com/key?company=VeriSign&amp;depart
ment=XKMS Test&amp;CN=N100055 
XKMSTEST&amp;issuer_serial=85dfd14e8c4ecb4adeec353ca4c7b196</Ke
yID> 
               <KeyInfo 
xmlns="http://www.w3.org/2000/09/xmldsig#"> 
                  
<KeyName>http://xkms.verisign.com/key?company=VeriSign&amp;depa
rtment=XKMS Test&amp;CN=N100055 
XKMSTEST&amp;issuer_serial=85dfd14e8c4ecb4adeec353ca4c7b196</Ke
yName> 
                  <RetrievalMethod 
Type="http://service.xmltrustcenter.org/XKMS" 
URI="http://xkms.verisign.com/xkms/Acceptor.nano"/> 
                  <d:KeyValue 
xmlns:d="http://www.w3.org/2000/09/xmldsig#" 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
                     <d:RSAKeyValue> 



 112 

                        
<d:Modulus>AK5XNlSfmnEZ4qqRfHYeTdqslGDpJ3uQtue7+UZntdyhpeAe0pgG
t+NLgQYnHcdkZH8h6VtKtzZv4mO4fFGNfgs=</d:Modulus> 
                        <d:Exponent>AQAB</d:Exponent> 
                     </d:RSAKeyValue> 
                  </d:KeyValue> 
                  <dsig:X509Data 
xmlns:d="http://www.w3.org/2000/09/xmldsig#" 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
                     <dsig:X509IssuerSerial> 
                        <dsig:X509IssuerName>CN=VeriSign Class 
2 OnSite Individual TEST CA, OU=For Test Purposes Only, 
OU=VeriSign Class 2 OnSite Individual CA, 
O=VeriSign</dsig:X509IssuerName> 
                        
<dsig:X509SerialNumber>113123383192473107369800977913946522846<
/dsig:X509SerialNumber> 
                     </dsig:X509IssuerSerial> 
                     <dsig:X509SubjectName>CN=n100055 xkmstest, 
OU=&quot;www.verisign.com/repository/CPS Incorp. by 
Ref.,LIAB.LTD(c)96&quot;, OU=XKMS Test, 
O=VeriSign</dsig:X509SubjectName> 
                     
<dsig:X509SKI>MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAK5XNlSfmnEZ4qqRf
HYeTdqslGDpJ3uQtue7+UZntdyhpeAe0pgGt+NLgQYnHcdkZH8h6VtKtzZv4mO4
fFGNfgsCAwEAAQ==</dsig:X509SKI> 
                     
<dsig:X509Certificate>MIIDVTCCAv+gAwIBAgIQVRrFZ3hUx8OXAVXjzrtE3
jANBgkqhkiG9w0BAQQFADCBmTERMA8GA1UEChMIVmVyaVNpZ24xLjAsBgNVBAsT
JVZlcmlTaWduIENsYXNzIDIgT25TaXRlIEluZGl2aWR1YWwgQ0ExHzAdBgNVBAs
TFkZvciBUZXN0IFB1cnBvc2VzIE9ubHkxMzAxBgNVBAMTKlZlcmlTaWduIENsYX
NzIDIgT25TaXRlIEluZGl2aWR1YWwgVEVTVCBDQTAeFw0wMjAyMTEwMDAwMDBaF
w0wMzAyMTEyMzU5NTlaMIGKMREwDwYDVQQKFAhWZXJpU2lnbjESMBAGA1UECxQJ
WEtNUyBUZXN0MUYwRAYDVQQLEz13d3cudmVyaXNpZ24uY29tL3JlcG9zaXRvcnk
vQ1BTIEluY29ycC4gYnkgUmVmLixMSUFCLkxURChjKTk2MRkwFwYDVQQDExBuMT
AwMDU1IHhrbXN0ZXN0MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAK5XNlSfmnEZ4
qqRfHYeTdqslGDpJ3uQtue7+UZntdyhpeAe0pgGt+NLgQYnHcdkZH8h6VtKtzZv
4mO4fFGNfgsCAwEAAaOCAS4wggEqMAkGA1UdEwQCMAAwgawGA1UdIASBpDCBoTC
BngYLYIZIAYb4RQEHAQEwgY4wKAYIKwYBBQUHAgEWHGh0dHBzOi8vd3d3LnZlcm
lzaWduLmNvbS9DUFMwYgYIKwYBBQUHAgIwVjAVFg5WZXJpU2lnbiwgSW5jLjADA
gEBGj1WZXJpU2lnbidzIENQUyBpbmNvcnAuIGJ5IHJlZmVyZW5jZSBsaWFiLiBs
dGQuIChjKTk3IFZlcmlTaWduMAsGA1UdDwQEAwIFoDARBglghkgBhvhCAQEEBAM
CB4AwTgYDVR0fBEcwRTBDoEGgP4Y9aHR0cDovL3BpbG90b25zaXRlY3JsLnZlcm
lzaWduLmNvbS9PblNpdGVQdWJsaWMvTGF0ZXN0Q1JMLmNybDANBgkqhkiG9w0BA
QQFAANBAIt+n2Y6AKeZIrQlyLR3oZu8dGpM9ad1tUzg1d1uJ4olt0NT4pFrTLbO
2tfqWBBKYQoLaZ+9QYlcZ1joMISLWzw=</dsig:X509Certificate> 
                  </dsig:X509Data> 
               </KeyInfo> 
            </KeyBinding> 
         </Answer> 
         <dsig:Signature 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
            <dsig:SignedInfo 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
               <dsig:CanonicalizationMethod 
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 



 113 

               <d:SignatureMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" 
xmlns:d="http://www.w3.org/2000/09/xmldsig#"/> 
               <dsig:Reference URI="#refId_0" 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
                  <dsig:Transforms 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
                     <d:Transform 
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature" xmlns:d="http://www.w3.org/2000/09/xmldsig#"/> 
                     <dsig:Transform 
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/> 
                  </dsig:Transforms> 
                  <dsig:DigestMethod 
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/> 
                  
<dsig:DigestValue>ReUiRRDO8Ss+U80hs7JgURex9rM=</dsig:DigestValu
e> 
               </dsig:Reference> 
            </dsig:SignedInfo> 
            <dsig:SignatureValue 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">NTsEaNecScT0JWx
Bl6F7WizXh8ptDkilkSxeUgI0Obv/qRdeTPReA1LRZaVWg7DPMTxt63UqcIl0hG
e/ezpOfv4leHZ3+pDV2WLYiyxnbpIYVteqDOYGTpbw0Jjb/H3ZrBrhJUqvF4g3e
SYwczBPj8R1JHbgCEz6M/CNoPafY8c=</dsig:SignatureValue> 
            <dsig:KeyInfo 
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"> 
               <d:KeyValue 
xmlns:d="http://www.w3.org/2000/09/xmldsig#"> 
                  <d:RSAKeyValue> 
                     
<d:Modulus>ANjD0DM0mcCOoEhYC4X551U6q/78RHwF+cZHmMSYTa3HJKLcmpQ/
XaWpPDH7JQ9VIq8QyAT3x1+4Me/LY9Mt/V4KBb+gEHx9DRpWMY3T85JYIGfvHB1
d4k35RBoFBAK8Dg5kvEpaBL2hqsxPxJeln0KxDeHu/8bKtO7zd9E9Vn3H</d:Mo
dulus> 
                     <d:Exponent 
xmlns:d="http://www.w3.org/2000/09/xmldsig#">AQAB</d:Exponent> 
                  </d:RSAKeyValue> 
               </d:KeyValue> 
            </dsig:KeyInfo> 
         </dsig:Signature> 
      </RegisterResult> 
   </SOAP-ENV:Body> 
</SOAP-ENV:Envelope>  

 

 

 

 

 

 

 


