DEPLOYING AND INVOKING SECURE WEB SERVICES OVER JXTA
FRAMEWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ILHAMI GORGUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

Prof. Dr. Ayse Kiper
Chair of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Asuman Dogag
Supervisor

Examining Committee Members

Assoc. Prof. Dr. Nihan K. Cicekli (METU, CENG)

Prof. Dr. Asuman Dogag (METU, CENG)

Assoc. Prof. Dr. I. Hakki Toroslu (METU, CENG)

Assoc. Prof. Dr. Ali Dogru (METU, CENG)

Biilent Kunag (Tepe Tech.)

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last name: [lhami Gorglin

Signature

iii

ABSTRACT

DEPLOYING AND INVOKING SECURE WEB SERVICES OVER JXTA
FRAMEWORK

Gorgiin, Ilhami
M.Sc., Department of Computer Engineering

Supervisor : Prof. Dr. Asuman Dogag

December 2004, 113 pages

Web services introduce a new paradigm for distributed computing, and the
technology that it introduces constructs a new type of Web application. Web
services can be described as any software that makes its discovery and
invocation available over the Internet, and uses a standardized XML messaging

system.

The term peer-to-peer refers to a class of decentralized systems enabling the
access of shared resources available on peers that are acting both as client and

as Server.

In this work, a peer-to-peer approach is used to expoit Web service
technologies by providing Web service security for JXTA peer-to-peer
networks. JXTA 1is a network programming environment that has particularly

been designed for the peer-to-peer platform.

v

In order to achieve the goal of secure Web services, the specifications “WS-
Security”, “XML Key Management Specification”, “WS-Trust” and “WS-
SecurityPolicy” are exploited. “WS-Security” is primarily a specification for an
XML-based security metadata container, and is a building block for the
specifications “WS-Trust” and “WS-SecurityPolicy”. “WS-Trust” defines the
process of how to acquire security tokens. Within the peer-to-peer network that
is proposed with this work, a peer is dedicated to act as a “trusted third party”
and to manage the processes for incorporating the security of public-key
infrastructure, which is defined by “XML Key Management Specification”. In
addition, the same peer is dedicated to manage to acquire security tokens,
which is defined by “WS-Trust”. As for “WS-SecurityPolicy”, Web service
invoking peers conform to this specification that specifies how to define
security assertions stating Web service provider’s preferences and

requirements.

This work realizes and achieves the necessity of bringing together the
technologies mentioned above in order to propose an architecture of secure
SOAP messaging for Web service invocation in peer-to-peer environment that

is provided by the JXTA framework.

The work presented in this thesis is realized as a part of the SATINE project

funded by the European Commission.

Keywords: Security, Web service, Peer-to-peer, JXTA

(0Y/

JXTA CATISI iICIN GUVENLI AG SERVISLERI YAYILMASI VE
KULLANILMASI

Gorgiin, [lhami
Y. Lisans, Bilgisayar Miihendisligi Boliimii

Tez Yoneticisi : Prof. Dr. Asuman Dogag

Aralik 2004, 113 sayfa

Ag servisleri dagitik calisma i¢in yeni bir goriis tanitmaktadir ve tanittiklar
teknoloji yeni ag uygulama teknigi inga etmektedir. Ag servisleri, Internet
iizerinden bulunmalarim ve kullanilmalarint miimkiin kilan herhangi bir
yazilm pargasi olarak tanmimlanabilir ve standartlasmis XML mesajlagsma

sistemini kullanmaktadir.

Esler-arasi terimi, hem alic1 hem de sunucu olarak davranan eslerin paylasilmis
kaynaklarina ulagimi miimkiin kilan merkezilestirilmemis sistemler sinifini

tanimlamaktadir.

Bu calismada, JXTA esler-aras1 aglan i¢in ag servisi giivenligi saglayarak ag
servisi teknolojilerinden faydalanabilmek icin esler-aras1t yaklasimi
kullanilmaktadir. JXTA, 6zellikle esler-arasi platformu igin tasarlanmig bir ag

programlama ortamudir.

vi

Ag servisleri icin giivenligi saglayabilmek icin “WS-Security”, “XML Key
Management Specification”, “WS-Trust” ve “WS-SecurityPolicy”
tanimlamalar1 kullanilmaktadir. “WS-Security” temelde XML tabanli yardimci
giivenlik veri icerigi i¢in tanimlamadir ve “WS-Trust” ve “WS-SecurityPolicy”
tanimlamalar i¢in temel tas olusturmaktadir. “WS-Trust” giivenlik jetonlarina
ulagma siirecini belirtmektedir. Bu ¢alisma ile tanitilan esler-arasi ag icerisinde
bir es, “giivenilir {icilincii sistem” olarak davranmak ve “XML Key
Management Tanimlamas1” ile belirtilen public-key mekanizmasinin giivenligi
ile ilgili siirecleri yerine getirmek islemlerine adanmis durumdadir. Buna ek
olarak, aym es, giivenlik jetonlarina ulagma islemini yerine getirmektedir.
“WS-SecurityPolicy” tanimlamasina gelince ise, ag servis kullanan egler, ag
servis saglayan eslerin tercihlerini ve gereksinimlerini belirten bu tamimlamaya

uymaktadirlar.
Bu calisma, JXTA catistnin imkan verdigi esler-aras1 ortaminda ag
servislerinin kullanimi i¢in, giivenli SOAP mesajlasma mimarisi tanitma amaci

i¢cin yukarida bahsedilen teknolojileri biraraya getirmektedir.

Bu calisma, Avrupa Komisyonu tarafindan desteklenen SATINE projesinin bir

parcasi olarak gerceklestirilmistir.

Anahtar Kelimeler: Giivenlik, Ag servisi, Esler-arasi, JXTA

vii

To My Family

viil

ACKNOWLEDGMENTS

I would like to thank my supervisor Asuman Doga¢ for all her guidance,

advice, encouragement and support during this study.

I would like to thank each member of SRDC team for their technical guidance

and support during this study.

I would like to thank Yildiray Kabak, Gokce Banu Laleci and Umit Liitfii

Altintakan for their technical assistance and support throughout this study.

Finally, I would like to thank my family, especially to my fiancee and to my

mother, for all their patience and support.

1X

TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt s st et v
OZ oottt vi
ACKNOWLEDGMENTS ...ttt s ix
TABLE OF CONTENTS ...ttt ettt X
CHAPTER
1. INTRODUCTION.....coctiiiiiiiieieninece ettt sttt 1
2. ENABLING TECHNOLOGIES.........cc.cocteiiniiiinieienenecieeeeeeie e 4
2.1 Peer-to-peer COMPULING......c.corueerieeieeieeieeeteetee et eee e 4
2.2 JXTA Framework.......c.ccooceiviieiiieiieniineieeieceneesee e 8
2.3 WED SEIVICES....eiitiiiiiiiiiiieiiteiteeee ettt 12
2.3.1 Extensible Markup Language (XML)........cccceevueeueennee. 14
2.3.2 Simple Object Access Protocol (SOAP)........cccceeeeenee. 15
2.3.3 Web Services Description Language (WSDL)................ 15
2.3.4 Universal, Description, Discovery, and
Integration (UDDI).......cccceviiiiniiiiieeiie e, 16
2.3.5 ebXML oot 16
2.4 Web ServiCes SECUTTILY....ccevriirrirrieriie et eteesieeste et seee e 18
2.4.1 XML ENCryption....cceceeiieiieeie ettt 18
242 XML SigNAtUre......coecuieieieieieeeieeieesieeetee et 21
2.4.3 WS-SECUTILY...ueiiieiieeiieiie et ettt 26

2.5 XML Key Management Specification (XKMS)..........ccccce... 27

2.6 WS-TTUSE coeiiieeiieeecte ettt 29
2.7 WS-SecurityPoliCy....ccooieiieiiiiiieeeeeeeeeee e 33
3. SECURE WEB SERVICES IN

PEER-TO-PEER ENVIRONMENT......cccocociiiiiininieiecieneeeee e 38
3.1 Descriptions of Peers in PeerGroup-1..........ccoceeveiiiiineinccnennnne. 40
3.2 Descriptions of Peers in PeerGroup-2..........ccoceeveeeieeneenceneennne. 44
3.3 Descriptions of Peers in PeerGroup-3..........cccceeveiiiiineinccnnennne. 47

3.3.1 XML Key Management Service........c.ccevuereeeiereneeenneenne. 47

3.3.2 Security Token Management Service............ccecoeerueenennne. 50

4. SECURE WEB SERVICE INVOCATION OVER

JXTA FRAMEWORKccciiiiiiiiiniiicerence e 53

4.1 Design and Implementation of the System.........cc.cceveerirrirnnnns 54

4.2 Example Walkthrough.........c.ccoooiiiiiiiiiiieeeee e 56

5. THE SATINE PROJECT INTEGRATION.........ccccceririeniniinienrenn. 73

5.1 SATINE Network SeCUTity........ccocerviervernienienieeieenieeneeneeeeeens 77

6. RELATED WORK.......coiiiiiitiiiiiiecteseeteie ettt 86

7. CONCLUSION AND FUTURE WORK.......ccccocovieieniiiinicienenene 88

REFERENCES.......cootiiiiitiie ettt sttt sttt et st 90
APPENDICES

A. DESCRIPTION FILES OF THE WEB SERVICES...........ccccccceeenuee. 93

B. FORMATS OF SOAP MESSAGES FOR
WEB SERVICES INVOCATION........cooiiiinieiiieiieieeeeneeeeeeieens 110

X1

LIST OF TABLES

TABLES

2.1

Security Policy Assertions defined by WS-SecurityPolicy.....................

3.2 Peer-to-peer Network Elements............ccecvveeriiieiiieeniieennieeniie e,

xii

LIST OF FIGURES

FIGURES

1.1 An Overall Architecture of the System.........ccccueevuerieeneeniienninneenienee 2
2.1 The Client/Server Model...........cocceeviiiiiiiiiiiiiiititeeeeeesee e 5
2.2 A P2P NEtWOIK....oueitiiitiit i 6
2.3 Target Architecture of P2P Framework........................o 8
2.4 The Peer-to-Peer Model............cooiiiiiiiiiiiii i 9
2.5 Logical Layers of IXTA.....coiiiiiii e, 11
2.6 Web Services Operational Model..................oooiiiiiiii 13
2.7 Components of XML Signature............c.covveiiiiiiiiiiiiiiininiinnn, 24
2.8 Typical Message FIOW.........coiuiiiiiiiiiiii i, 27
2.9 Web Services Specifications............coeveiiiiiiiiiiiiiiiiiiiiii, 30
2.10 Security Token Service Model............c.ocoiiiiiiiiiiiiiiii 32
2.11 POICY OVEIVIEW. ...ttt e, 34
3.1 Interaction Diagram within the P2P Network................................. 40
4.1 Architecture of the Peer-to-peer System..............oooveiiiiiiiiiiiin.n. 54
4.2 Authentication for Peer-to-peer System...............ccooiiiiiiiiiiiia.... 57
4.3 XML Key Management and Security Token Service Peer.................. 57
4.4 Secure Web Service Invoking Peer..................oooiiiiiii, 58
4.5 Constructed SOAP MeSSaZ.....uuvruiiiitiiiiie it ieeieeaaeenann 59

Xiii

4.6 Resultant SOAP Message after Encryption................c.oooiiiiiin. 61
4.7 Resultant SOAP Message after Adding Digital Signature................... 63

4.8 Resultant SOAP Message after Adding Username Token Information....66

4.9 Received Secure SOAP MeSSage......evvuiieiiiiitiiieiiiiieeieeaieenaan, 68
4.10 Digital Signature Verification............cooeviiviiiiiiiiiiiiniiiinii e, 70
4.11 Resultant SOAP Message after Decryption.............cooovvviivinninnnnn, 71
4.12 Security Token Validation.............ccooiiiiiiiiiiiiiiiiiiiiiiiinen e, 72
5.1 General ArChiteCture.oouvuiiuiiitiiii i, 74
5.2 General Architecture Deployment Diagram....................cocoiiia. 76

Xiv

CHAPTER 1

INTRODUCTION

Peer-to-peer systems introduce a class of decentralized systems enabling the
access of shared resources available on peers that are acting both as client and
as server. The shared resources include computing power, data (storage and
content), and network bandwidth. These features of peer-to-peer computing
facilitate distributed computing, data/content sharing, communication and

collaboration, or platform services.

Peer-to-peer computing is increasingly receiving attention in research, product
development and investment. Peer-to-peer systems provide the advantages of
improved scalability and reliability, resource aggregation and interoperability,

increased autonomy, and dynamism.

Web services are autonomous platform-independent computational elements
that can be described, published, discovered, orchestrated, and programmed
using XML artefacts for the purpose of developing distributed interoperable
applications. Well-accepted standards like Web Services Description Language
(WSDL) and Simple Object Access Protocol (SOAP) make it possible to

dynamically invoke Web services.

Despite the promise, Web services have lacked the mechanism for
implementing security, which is a crucial aspect to enable Web services
techbology to become more popular and common. In order to overcome this

issue, specifications like WS-Security, WS-Trust, WS-Policy, and WS-

SecurityPolicy have emerged. The aim of this work is to bring together the
technologies introduced by peer-to-peer computing and Web services by
providing a secure Web service invoking mechanism in a peer-to-peer network.
In this work, a peer-to-peer network architecture which provides secure Web
service implementation conforming to the standards WS-Security, WS-Trust,
WS-SecurityPolicy and XML Key Management Specification is implemented.

The overall system architecture is denoted in Figure 1.1.

Web Service
Providing peer.

ecure SOAP messaging

Security Token validation

Web Service
Invoking peer

Public Key location

Security Token man ent

A\ 4 \4

XKMS & Security Tokens
Services peer 4

ublic Key management

Figure 1.1. An Overall Architecture of the System

Within this work, in order to achieve peer-to-peer network creation and
implementation, JXTA technology is exploited. JXTA technology is a network
programming and computing platform that is designed to solve a number of
problems in modern distributed computing, particularly in the area of peer-to-
peer computing. The JXTA project has been initiated by Sun Microsystems and
has been designed with the participation of a number of experts from academic

institutions and industry.

The focus of this thesis is on defining an architecture to provide secure Web

services for peer-to-peer systems, which has gained an increasing popularity. In

this work, JXTA framework is exploited for the peer-to-peer network
implementation. JXTA framework has introduced its own security mechanism
[22], which provides whole message integrity and confidentiality only among
the communicating peer pairs, and exploits the technology Transport Layer
Security (TLS). For the Web services technology, a more complex mechanism
is required in order to involve all the peers (Web service providing and
invoking peers) within the peer-to-peer network by conforming to the well-

accepted specifications introduced for Web services security.

The thesis work contributes to the SATINE project [24, 25, 26, 27, 28], which
is developed within the Sixth Framework Programme of European
Commission. The objective of the project is to develop a secure semantic-based
interoperability framework for exploiting Web service platforms in conjunction

with peer-to-peer networks in the travel industry.

The thesis is organized as follows: Chapter II describes the technologies that
enable this work, namely, peer-to-peer computing, JXTA Framework, Web
Services, Web Services Security, XML Key Management Specification, Web
Services Trust, and Web Services Security Policy. Chapter III describes how
the mechanism for performing secure Web services in peer-to-peer systems is
achieved. Chapter IV describes the building blocks for the implementation of
the introduced system, and presents a sample walkthrough for demonstrational
purpose. Chapter V describes the integration of the thesis work to the SATINE
project. Chapter VI summerizes the related work. Chapter VII concludes the

thesis and presents the future work.

CHAPTER 11

ENABLING TECHNOLOGIES

In this chapter, the technologies that enable this work are described. Initially,
peer-to-peer computing, and JXTA technology that provides the framework to
implement peer-to-peer computing are introduced in Section 2.1 and Section
2.2. Later in the section, Web services and the standards related with Web

servives that are exploited in this work are introduced.

2.1. Peer-to-peer Computing

Peer-to-Peer (P2P) computing refers to the exchange of data between two
computers. The P2P architecture allows to develop a decentralized application
design where each computer, independent of software and hardware platforms,

can access shared resources available on other peers.

In a typical client/server computing model, the communication between the
computers on a network is through a centralized server. The server controls the
flow of data and information between the client computers. Alternatively, P2P
allows to share resources independently, without going through a central
server. In P2P computing, numerous computers are interconnected with each
other to share resources directly; and in a P2P application, multiple peers

perform specific roles in communicating with each other.

The P2P computing model has several advantages over the centralized model.

These advantages include effective utilization of network resources, dynamic

nature of the network, and security and integrity of data. The distributed
architecture offers interoperability among network devices. P2P is based on the
concept of an equal participation of peers allowing resource sharing and

collaboration among the integral parts of a distributed system design.

The following figure denotes the client/server model where client computers

are connected with the Internet and the Web Server through HTTP:

HTML

Internet

Il

FTP

File/HTML
document

Figure 2.1. The Client/Server Model

In P2P computing model, the participating computers can work as clients as
well as servers. A peer computer acts as a client but has an additional layer of
software that allows it to act as a server. For example, a peer computer
responds to the requests of other peers. These requests could be for retrieval or

storage of information, a computation to be performed, or simply an exchange

of messages. In this way, a peer can directly interact with other computers on
the network without the need of a central server. The following figure denotes

a sample P2P network:

1

I:I — Internet > ’_‘

L]
]

Figure 2.2. A P2P Network

In a P2P network, collaboration between the peer computers and resource
sharing help in increasing productivity and reducing costs through efficient use

of the available resources.

The SETI@Home project is a good example of how P2P applications can
leverage unused resources and gain access to vast storage and computational
power. This project comprises about 2.4 million users from over 200 countries
who contribute the idle cycles on their computers to process data for Search for
Extra Terrestrial Intelligence (SETI). Napster introduced another concept of
distributed file sharing and file storage. In the Napster model, individual
computer nodes connect with each other to copy MP3 files. Replication of
content and information is useful because the client does not have to depend on

a centralized server for the required data. Every node or peer can be used as a

repeater to retransmit data once it reaches the node. In this way, Napster users

can have access to several terabytes of storage and bandwidth at no extra cost.

With new advances in P2P technologies, many new concepts have been
introduced. Enterprises are considering P2P as a viable option for cost
reduction and efficient resource management. Companies, such as SUN and
Groove networks, have taken up many innovative projects. With XML
becoming the de facto standard for Web data, enterprises would be able to use
Web Services in P2P applications for performing several business-to-business
(B2B) related tasks. For example, buyers can use P2P networks to search for
and find supplier and product details. This would help in direct B2B
transactions and eliminate the need for intermediaries. SUN has taken initiative
in promoting P2P by introducing JXTA, a collection of low-level protocols for
developing P2P applications. According to SUN, JXTA can facilitate
interoperability between a range of devices, such as personal computers, cell

phones and other wireless devices.

The P2P model is significant in enterprises because it promises the following
benefits:
e Qverall cost of processing can be brought down and productivity can be
increased.
e Value added services could be offered in business-to-business (B2B)

and business-to-customer (B2C) transactions.

In the last years, there has been a rapid increase in the development of new P2P
technologies and standards, which are particularly targeting interoperability.
The most significant way to achieve interoperability is through a common
infrastructure. A common platform reduces the efforts needed to develop
applications for different platforms and interfaces. Project JXTA is a set of
low-level protocol that allows programmers to develop efficient P2P

applications. New generations of wireless devices embedded with JXTA are to

deliver a significant level of interoperability. Figure 2.3. denotes the aimed P2P

framework where applications and devices are interoperable:

=

e T
e

Internet Q
FDA
Server
[==]
[om]
1]
= .
I 4
Firgwall Cell phone
GO0 e
= S =

Figure 2.3. Target Architecture of P2P Framework

Finally, it is worth noting that issues such as security and trust need to be
addressed in order to make the best use of P2P applications and to develop a
standard platform for application developers, which constitute the target of this
work, particularly for the exploitation of Web service technology within P2P

network.

2.2. JXTA Framework

The project JXTA introduces a set of protocols, which enables peer-to-peer
communication among computers and software components. JXTA is a
network programming and computing platform that is designed to solve a
number of problems in modern distributed computing, particularly in the area

of peer-to-peer computing.

Project JXTA has originally been initiated by Sun Microsystems and designed
with the participation of a number of experts from academic institutions and
industry. The project has defined the following objectives based on the
advantages of peer-to-peer systems:
¢ Interoperability: compatible P2P systems and participation among
P2P systems.
¢ Platform Independence: independent of programming languages,
development environments, or deployment platforms.
e Ubiquity: implementable on every device with a digital heartbeat,
including sensors, consumer electronics, PDA’s, network routers,

desktop computers, and storage systems.

JXTA defines a set of protocols that enable computers connected in parallel to
communicate with each other. Computers connected in parallel contain entities,
called peers. That is, a peer is an entity that can speak the protocols required of

a peer.

In a peer-to-peer model, each peer or entity in a parallel network has an ID.
User-defined entities or a peer group represent a collection of peers. A unique
ID also identifies a peer group. A peer can belong to multiple peer groups and
can discover other entities dynamically. JXTA supports three types of
communication in a peer-to-peer model, unicast, secure, and broadcast pipe.

The following figure denotes the peer-to-peer model using the JXTA protocol:

Peer

\ 4

«—] JXTA —
—p] protocol —

Figure 2.4. The Peer-to-Peer Model

JXTA defines peer group as a virtual entity that speaks the set of peer group

protocols. Typically, a peer group is a collection of cooperating peers

providing a common set of services. There is a special group, called the World

Peer Group, which includes all JXTA peers.

JXTA exploits pipes as communication channels for sending and receiving

messages. Pipes are asynchronous and unidirectional. Thus, there are input and

output pipes between the peers. Pipes are also virtual, that is, an endpoint of a

pipe can be bound to one or more peer endpoints.

JXTA has defined the following six protocols that provide the mechanisms

described above:

Peer Discovery Protocol: enables a peer to find advertisements on
other peers, and can be used to find any of the peer, peer group, or
advertisements. This protocol is the default discovery protocol for all
peer groups, including the World Peer Group.

Peer Resolver Protocol: enables a peer to send and receive generic
queries to search for peers, peer groups, pipes, and other information.
Peer Information Protocol: allows a peer to learn about the
capabilities and status of other peers.

Peer Membership Protocol: allows a peer to obtain group
membership requirements, to apply for membership and receive a
membership credential along with a full group advertisement, to update
an existing membership or application credential, and to cancel a
membership or an application credential.

Pipe Binding Protocol: allows a peer to bind a pipe advertisement to a
pipe endpoint, thus indicating where messages actually go over the
pipe. In some sense, a pipe can be viewed as an abstract, named
message queue that supports a number of abstract operations such as

create, open, close, delete, send, and receive.

10

e Peer Endpoint Protocol: allows a peer to ask a peer router for

available routes for sending a message to a destination peer.

JXTA supports the management of peer-to-peer communication of individual
peers and peer groups, and enables communications among peers using pipes
and eXtensible Markup Language (XML) documents. Figure 2.5. denotes the

logical layers of JXTA, which support peer-to-peer communication:

JXTA Application

JXTA Community Application Sun JXTA Application
JXTA Shell I_
JXTA Services
-z Peer Commands |

JXTA Community Service Sun JXTA SErvice

JXTA Core
) O &
Security

v v

The Peer-to-Peer Network

Figure 2.5. Logical Layers of JXTA

The Core layer consists of element peers, peer groups, entity names, and
protocols, such as discovery, communication, and monitoring. This layer is the
primary layer of the JXTA solution and also provides functionalities of the
JXTA Peer-to-Peer (P2P) solution in the services or applications layers.

The Services layer performs network functions, such as communication
between two peers or software components. This layer provides functionalities,

such as sharing resources and documents on a peer and authenticating peers.

11

Services are built on top of the JXTA Core layer. These services provide the
specific capabilities required by different P2P applications.
The Application layer is built above the Services layer. The system introduced

witin this work has been developed in this layer.

2.3. Web Services

Web services are self-describing and modular applications that provide
services over the Internet through programmable interfaces and using Internet
protocols for the purpose of providing ways to find, subscribe, and invoke
those services. Web services are autonomous platform-independent
computational elements that can be described, published, discovered,
orchestrated, and programmed using XML artefacts for the purpose of

developing massively distributed interoperable applications.

Web services have been described as the new phase of the Internet. The
emergence of Web services introduces a new paradigm for enabling the
exchange of information across the Internet based on open Internet standards
and technologies. Using industry standards, Web services encapsulate
applications and publish them as services. These services deliver XML-based
data for use on the Internet, which can be dynamically located, subscribed, and
accessed using a wide range of computing platforms, handheld devices,
appliances, and so on. Due to the flexibility of using open standards and
protocols, it also facilitates Enterprise Application Integration (EAI), business-
to-business (B2B) integration, and application-to-application (A2A)
communication across the Internet and corporate intranet. In organizations with
heterogeneous applications and distributed application architectures, the
introduction of Web services standardizes the communication mechanism and
enables interoperability of applications based on different programming

languages residing on different platforms.

12

Based on XML standards, Web services can be developed as loosely coupled
application components using any programming language, any protocol, or any
platform. This facilitates delivering business applications as a service

accessible to anyone, anytime, at any location, and using any platform.

As mentioned, Web services are implemented based on open standards and
technologies specifically exploiting XML. The XML-based standards and
technologies, such as Simple Object Access Protocol (SOAP); Universal
Description, Discovery, and Integration (UDDI); Web Services Definition
Language (WSDL); and Electronic Business XML (ebXML), are commonly
used as building blocks for Web services, which will be described in the

following sections.

Web services operations can be conceptualized as a simple operational model
(Figure 2.6.). Operations are described as involving three distinct roles and

relationships that define the Web services providers and users.

Service
Broker

Discover

Service Register

Service
Provider

Service
Requestor <

Invoke
Service

Figure 2.6. Web Services Operational Model

These roles and relationships are defined as follows:

13

e Service Provider: The service provider is responsible for developing
and deploying the Web services. The provider also defines the services
and publishes them with the service broker.

e Service Broker: The service broker (also commonly referred to as a
service registry) is responsible for service registration and discovery of
the Web services. The broker lists the wvarious service types,
descriptions, and locations of the services that help the service
requesters find and subscribe to the required services.

¢ Service Requestor: The service requestor is responsible for the service
invocation. The requestor locates the Web service using the service
broker, invokes the required services, and executes it from the service

provider.

The five core Web services standards and technologies for building and
enabling Web services are XML, SOAP, WSDL, UDDI, and ebXML. An

overview of each is presented in the following sections.

2.3.1. Extensible Markup Language (XML)

In February 1998, the Worldwide Web Consortium (W3C) officially endorsed
the Extensible Markup Language (XML) as a standard data format. XML uses
Unicode, and it is structured self-describing neutral data that can be stored as a
simple text document for representing complex data and to make it readable.
Today, XML is the de facto standard for structuring data, content, and data
format for electronic documents. It has already been widely accepted as the
universal language lingua franca for exchanging information between

applications, systems, and devices across the Internet.
In the core of the Web services model, XML plays a vital role as the common

wire format in all forms of communication. XML also is the basis for other

Web services standards.

14

2.3.2. Simple Object Access Protocol (SOAP)

SOAP is a standard for a lightweight XML-based messaging protocol. It
enables an exchange of information between two or more peers and enables
them to communicate with each other in a decentralized, distributed application
environment. Like XML, SOAP also is independent of the application object
model, language, and running platforms or devices. SOAP is endorsed by W3C
and key industry vendors like Sun Microsystems, IBM, HP, SAP, Oracle, and
Microsoft. These vendors have already announced their support by
participating in the W3C XML protocol-working group. The ebXML initiative
from UN/CEFACT also has announced its support for SOAP.

In the core of the Web services model, SOAP is used as the messaging protocol
for transport with binding on top of various Internet protocols such as HTTP,
SMTP, FTP, and so on. SOAP uses XML as the message format, and it uses a
set of encoding rules for representing data as messages. Although SOAP is
used as a messaging protocol in Web services, it also can operate on a
request/response model by exposing the functionality using SOAP/RPC based
on remote procedural calls. SOAP also can be used with J2EE-based

application frameworks.

2.3.3. Web Services Description Language (WSDL)

The Web Services Description Language (WSDL) standard is an XML format
for describing the network services and its access information. It defines a

binding mechanism used to attach a protocol, data format, an abstract message,

or set of endpoints defining the location of services.

In the core of the Web services model, WSDL is used as the metadata language

for defining Web services and describes how service providers and requesters

15

communicate with one another. WSDL describes the Web services
functionalities offered by the service provider, where the service is located, and
how to access the service. Usually the service provider creates Web services by
generating WSDL from its exposed business applications. A public/private

registry is utilized for storing and publishing the WSDL-based information.

2.3.4. Universal Description, Discovery, and Integration (UDDI)

Universal Description, Discovery, and Integration, or UDDI, defines the
standard interfaces and mechanisms for registries intended for publishing and
storing descriptions of network services in terms of XML messages. It is
similar to the yellow pages or a telephone directory where businesses list their
products and services. Web services brokers use UDDI as a standard for
registering the Web service providers. By communicating with the UDDI

registries, the service requestors locate services and then invoke them.

In the core Web services model, UDDI provides the registry for Web services
to function as a service broker enabling the service providers to populate the
registry with service descriptions and service types and the service requestors
to query the registry to find and locate the services. It enables Web applications
to interact with a UDDI-based registry using SOAP messages. These registries
can be either private services within an enterprise or a specific community, or
they can be public registries to service the whole global business community of
the Internet. The UDDI working group includes leading technology vendors
like Sun Microsystems, IBM, HP, SAP, Oracle, and Microsoft.

2.3.5. ebXML

ebXML defines a global electronic marketplace where enterprises find one

another and conduct business process collaborations and transactions. It also

defines a set of specifications for enterprises to conduct electronic business

16

over the Internet by establishing a common standard for business process
specifications, business information modeling, business process collaborations,
collaborative partnership profiles, and agreements and messaging. ebXML is
an initiative sponsored by the United Nations Center for Trade Facilitation and
Electronic Business (UN/CEFACT) and the Organization for the Advancement
of Structured Information Standards (OASIS). Popular standards organizations
like Open Travel Alliance (OTA), Open Application Group, Inc. (OAGI),
Global Commerce Initiative (GCI), Health Level 7 (HL7, a healthcare
standards organization), and RosettaNet (an XML standards committee) also

have endorsed it.

In the Web services model, ebXML provides a comprehensive framework for
the electronic marketplace and B2B process communication by defining
standards for business processes, partner profile and agreements, registry and
repository services, messaging services, and core components. It complements
and extends with other Web services standards like SOAP, WSDL, and UDDI.
In particular:

e cbXML Business Process Service Specifications (BPSS) enable
business processes to be defined.

e e¢bXML CPP/CPA enables business partner profiles and agreements to
be defined, and it provides business transaction choreography.

e ebXML Messaging Service Handler (MSH) deals with the transport,
routing, and packaging of messages, and it also provides reliability and
security, a value addition over SOAP.

e ebXML registry defines the registry services, interaction protocols, and
message definitions, and ebXML repository acts as storage for shared
information. The ebXML registries register with other registries as a
federation, which can be discovered through UDDI. This enables UDDI
to search for a business listing point to an ebXML Registry/Repository.

e e¢bXML Core components provide a catalogue of business process

components that provide common functionality to the business

17

community. Examples of such components are Procurement, Payment,

Inventory, and so on.

2.4. Web Services Security

Web services security proposes a standard set of SOAP extensions that can be
used when building secure Web services to implement integrity and
confidentiality. This set of extensions are referred as the “Web Services

Security Language” or “WS-Security”.

WS-Security exploits the XML security technologies as the building bocks.
XML-Encryption and XML-Digital Signature, which constitute the basis for

XML security, are explained in the following sections.

2.4.1. XML Encryption

There are particular difficulties in dealing with hierarchical data structures, like
XML, and with subsets of data with varying requirements as to confidentiality,
access authority, or integrity. In addition, the application of standard security

controls differentially to XML documents is not at all straightforward.

An XML document, like any other, can be encrypted in its entirety and sent
securely to one or more recipients. This is a common function of Secure
Sockets Layer (SSL) or Transport Layer Security (TLS), for example, but what
is much more interesting is how to handle situations where different parts of
the same document need different treatment. A valuable benefit of XML is that
a complete document can be sent as one operation and then held locally, thus
reducing network traffic. But this then raises the question of how to control
authorized viewing of different groups of elements. In order to examplify with

a possible scenario, a merchant may need to know a customer's name and

18

address but does not need to know the various details of any credit card being
used any more than the bank needs to know the details of the goods bought. A
researcher may need to be prevented from seeing personal details on medical
records while an administrator may need exactly those details but should be
prevented from viewing medical history; a doctor or nurse, in turn, may need
medical details and some, but not all, personal material.

Cryptography now does far more than merely concealing information. Message
digests confirm text integrity, digital signatures support sender authentication,
and related mechanisms are used to ensure that a valid transaction cannot later

be repudiated by another party.

One of the strengths of XML language is that searching is clear and
unambiguous: The Document Type Definition (DTD) or schema provides
information as to the relevant syntax. If a document subsection, including tags,
is encrypted as a whole, then the ability to search for data relevant to those tags
is lost. Further, if the tags are themselves encrypted, then, being known, they
may be useful as material for mounting plain text attacks against the

cryptography employed.

XML Encryption is a specification that has been introduced by W3C. XML
Encryption specifies a process for encrypting data and representing the result in
XML. The data may be arbitrary data (including an XML document), an XML
element, or XML element content. The result of encrypting data is an XML

Encryption element which contains or references the cipher data.

The core element in the XML encryption syntax is the EncryptedData element
which, with the EncryptedKey element, is used to transport encryption keys
from the originator to a known recipient, and derives from the EncryptedType
abstract type. Data to be encrypted can be arbitrary data, an XML document, an
XML element, or XML element content; the result of encrypting data is an

XML encryption element that contains or references the cipher data. When an

19

element or element content is encrypted, the EncryptedData element replaces
the element or content in the encrypted version of the XML document. When it
is arbitrary data that is being encrypted, the EncryptedData element may
become the root of a new XML document or it may become a child element.
When an entire XML document is encrypted, then the EncryptedData element
may become the root of a new document. Further, EncryptedData cannot be the
parent or child of another EncryptedData element, but the actual data encrypted

can be anything including existing EncryptedData or EncryptedKey elements.

In order to examplify the mechanism that XML Encryption introduces, if the
following XML document is intended to be encrypted to conceal information

on payment mechanisms:

<?xml version='1l.0'"?>
<PaymentInfo xmlns='http://example.org/paymentv2'>
<Name>John Smith<Name/>
<CreditCard Limit='5,000"' Currency='USD'>
<Number>4019 2445 0277 5567</Number>
<Issuer>Bank of the Internet</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>
</PaymentInfo>

The resultant XML document becomes as follows:

<?xml version='1l.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>
<Name>John Smith<Name/>
<EncryptedData
Type="http://www.w3.0rg/2001/04/xmlenc#Element "'
xmlns="http://www.w3.0rg/2001/04/xmlenc#"'>

<CipherData><CipherValue>A23B45C56</CipherValue></CipherData>
</EncryptedData>
</PaymentInfo>

In yet other cases, it might be necessary to conceal some sensitive content,

which may result in the following XML document:

<?xml version='1l.0"'?>

<PaymentInfo xmlns='http://example.org/paymentv2'>
<Name>John Smith<Name/>
<CreditCard Limit='5,000"' Currency='USD'>

20

<Number>
<EncryptedData xmlns='http://www.w3.0rg/2001/04/xmlenc#’
Type='http://www.w3.0rg/2001/04/xmlenc#Content'>
<CipherData><CipherValue>A23B45C56</CipherValue>
</CipherData>
</EncryptedData>
</Number>
<Issuer>Bank of the Internet</Issuer>
<Expiration>04/02</Expiration>
</CreditCard>
</PaymentInfo>

2.4.2. XML Signature

Digital signatures provide end-to-end message integrity guarantees, and can
also provide authentication information about the originator of a message. In
order to be most effective, the signature must be part of the application data, so
that it is generated at the time the message is created, and it can be verified at

the time the message is ultimately consumed and processed.

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) also provide
message integrity (as well as message privacy), but these mechanisms only do
this while the message is in transit. Once the message has been accepted by the
server (or, more generally, the peer receiver), the SSL protection must be
"stripped off" so that the message can be processed. As a more subtle point,

SSL and TLS only work between the communication endpoints.

An XML signature defines a series of XML elements that can be embedded in,
or otherwise affiliated to, any XML document. It allows the receiver to verify

that the message has not been modified from what the sender intended.

XML Signature specifies XML syntax and processing rules for creating and
representing digital signatures. XML Signatures can be applied to any digital
content (data object), including XML. An XML Signature may be applied to

the content of one or more resources.

21

Indeed, XML Signature is a method of associating a key with referenced data
(octets); it does not normatively specify how keys are associated with persons
or institutions, nor the meaning of the data being referenced and signed.
Consequently, while this specification is an important component of secure
XML applications, it itself is not sufficient to address all application
security/trust concerns, particularly with respect to using signed XML (or other
data formats) as a basis of human-to-human communication and agreement.

Prior to explaining the format and the mechanism that XML Signature
introduces, the following paragraph details the process of achieving digital

signatures:

A digital signature provides an integrity check on some content. If a single byte
of the original content has been modified, then the signature fails to verify. The
first step for creating a digital signature is to "hash" the message. A
cryptographic hash takes an arbitrary stream of bytes and converts it to a single
fixed-size value known as a digest. A digest is a one-way process: it is
"computationally infeasible" to recreate a message from the hash, or to find two

different messages which produce the same digest value.

If a message M is generated, and a digest is created, (written as H(M), for "the
hash of M"), and the receiver gets M and H(M), the receiver can create his/her
own digest H'(M), and if the two digest values match, it is assured that the
receiver gets what has originally been sent. In order to protect M against

modification, it is only needed to protect H(M) from being modified.

There are two common approaches to prevent H(M) from being modified. The
first method is to mix a shared secret into the digest. In other words, to create
H(S+M). When the receiver gets the message, the receiver uses his/her own
copy of S to create H'(S+M). This new digest is called an HMAC, or Hashed

Messsage Authentication Code.

22

Another method to protect the digest is to use public-key cryptography. In
public-key cryptography, there are two keys, a private key, known only to the
holder, and a public key, accessible to anyone who wants to communicate with
the key holder. In public-key cryptography, anything encrypted with the private
key can be decrypted with the public key, and vice versa. Using this method, a
digest is generated, H(M), and encrypted it with sender’s private key,
{H(M)}private-key, which is the signature. When the receiver gets the
message, M, the receiver generates the digest, H'(M), and decrypts the
signature using the sender’s public key, getting the H(M) that has been
generated by the sender. If H(M) and H'(M) are the same, then it is assured
that M is the same. Further, it is known that whoever has the private key is the

sender of the message.

XML signatures are digital signatures designed for use in XML transactions.
The standard defines a schema for capturing the result of a digital signature

operation applied to arbitrary (but often XML) data.

A fundamental feature of XML Signature is the ability to sign only specific
portions of the XML tree rather than the complete document. This will be
relevant when a single XML document may have a long history in which the
different components are authored at different times by different parties, each
signing only those elements relevant to itself. This flexibility will also be
critical in situations where it is important to ensure the integrity of certain
portions of an XML document, while leaving open the possibility for other
portions of the document to change. Consider, for example, a signed XML
form delivered to a user for completion. If the signature is over the full XML
form, any change by the user to the default form values invalidates the original

signature.

The components of XML Signature is denoted in the following figure:

23

Each resource to be signed has its own
<Reference> element, identified by the URI
\attribute.

)

<Signature>
<Signedinfo>
(Canonicalizatio

(<Referenc€ (URI=)? >

(Transforms)? The <Transform> element specifies an ordered list of
(DigestMethod)‘\ processing steps that were applied to the referenced
(DigestValue) resource’s content before it was digested.

</Reference>)+ '\
</Signed|nfo> The <DigestValue> element carries the value of the
N digest of the referenced resource.
(SignatureValue) 9

f,
(gle)ylnfto*)) The <SignatureValue> element carries the
(ject) value of the encrypted digest of the
</Signature> <Signedinfo> element.

The <Keylnfo> element indicates the key to be used
to validate the signature. Possible forms for
identification include certificates, key names, and
key agreement algorithms and information.

Figure 2.7. Components of XML Signature

The top-level Signature element covers information about what is being signed,

the signature, and the keys used to create the signature.

In XML signatures, each referenced resource is specified through a Reference
element and its digest (calculated on the identified resource and not the
Reference element itself) is placed in a DigestValue child element. The
DigestMethod element identifies the algorithm that is used to calculate the
digest. Reference elements are collected with their associated digests within a

SignedInfo element.

The CanonicalizationMethod element indicates the algorithm that is used to
canonize the SignedInfo element. Different data streams with the same XML
information set may have different textual representations, such as differing as
to whitespace. In order to help prevent inaccurate verification results, XML
information sets must first be canonized before extracting their bit
representation for signature processing. The SignatureMethod element

identifies the algorithm used to produce the signature value.

24

The digest of the SignedInfo element is calculated, that digest is signed, and

the signature value is put in a SignatureValue element.

If the keying information is to be included, it is placed in a KeyInfo element.
The SignedInfo, SignatureValue, and KeyInfo elements are placed into a

Signature element. The Signature element comprises the XML signature.

The following is a sample XML signature document:

<?xml version="1.0" encoding="UTF-8"7?>

<Signature xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<SignedInfo Id="foobar">

<CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-cl4n—

20010315"/>

<SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#dsa-shal"

/>

<Reference

URI="http://www.abccompany.com/news/2000/03_27_00.htm">

<DigestMethod

Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />

<DigestValue>j6lwx3rvEPOOVKtMup4NbeVu8nk=</DigestValue>

</Reference>

<Reference
URI="http://www.w3.0rg/TR/2000/WD-xmldsig—core—

20000228/signature-example.xml">

<DigestMethod

Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>

<DigestValue>UrXLDLBIta6skoV5/A8Q38GEw44=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>MCOE~LE=</SignatureValue>

<KeyInfo>

<X509Data>

<X509SubjectName>CN=Ed Simon, O=XMLSec

Inc., ST=0TTAWA, C=CA</X509SubjectName>

<X509Certificate>
MIID53CCAO+gA. . .1VN
</X509Certificate>
</X509Data>
</KeyInfo>
</Signature>

25

2.4.3. WS-Security

Web Services Security (WS-Security) describes enhancements to SOAP
messaging to provide quality of protection through message integrity, message
confidentiality, and single message authentication. These mechanisms can be
used to accommodate a wide variety of security models and encryption

technologies.

WS-Security is flexible and is designed to be used as the basis for the
construction of a wide variety of security models, such as Public Key
Infrastructure (PKI). Specifically WS-Security provides support for multiple
security tokens, multiple trust domains, multiple signature formats, and

multiple encryption technologies.

WS-Security provides three main mechanisms:

® security token propagation,

® message integrity, and

* message confidentiality.
These mechanisms by themselves do not provide a complete security solution.
Instead, WS-Security is a building block that can be used in conjunction with
other Web service extensions and higher-level application-specific protocols to
accommodate a wide variety of security models and encryption technologies.
WS-Security specifies the methods to embed security within the SOAP

message itself, and addresses: authentication, signatures, and encryption.

WS-Security addresses concerns related with security by leveraging existing
standards and specifications, such as XML Encryption, XML Signature, and
XML Canonicalization. This avoids the necessity to define a complete security
solution within WS-Security. What WS-Security adds to existing specifications

is a framework to embed these mechanisms into a SOAP message.

26

WS-Security defines a SOAP Header element to carry security-related data. If
XML Signature is used, this header can contain the information defined by
XML Signature that conveys how the message is signed, the key that is used,
and the resulting signature value. Likewise, if an element within the message is
encrypted, the encryption information such as that conveyed by XML
Encryption can be contained within the WS-Security Header element. WS-
Security does not specify the format of the signature or encryption. Instead, it
specifies how one would embed the security information laid out by other
specifications within a SOAP message. WS-Security is primarily a

specification for an XML-based security metadata container.

Figure 2.8. depicts a fairly common message flow:

1. Send request for tokens
(may be non-Web service
related)

Web Service Client

A 4

Security Token Service
2. Get tokens to add to

SOAP message
< g

i 4. Validate Tokens
3. Sign and send message

to Web service -
»| Web Service

<5. Receive Response

Figure 2.8. Typical Message Flow
2.5. XML Key Management Specification (XKMS)
The XML Key Management Specification (XKMS) defines processes and
formats that enable XML-aware applications to incorporate the security of

public-key infrastructure (PKI).

XKMS defines two classes of PKI functions:

27

e Public key lifecycle management (registration, revocation and,
renewal),

e Validation and location of cryptographic keys.

XKMS provides an alternative approach to developers implementing PKI-
enabled applications. Public Key Infrastructure (PKI) is essential for enabling

trust in digital communications.

PKI enables to digitally sign documents, and then to verify those signatures.
PKI also enables to encrypt and decrypt documents. However, complex and
expensive infrastructure is required to perform these seemingly simple tasks.
Many hours must be spent by developers integrating applications, such as e-
mail clients or ERP systems, with a PKI. And once one ERP or e-mail client is
PKI-enabled, it does not necessarily function with another PKI-enabled ERP or

another e-mail client.

XKMS solves the problem of complexity by enabling client applications to
delegate processing to server-based services. With XKMS, PKI complexity is
hidden in the infrastructure, making it easy to integrate cryptographic trust
services into more applications. At the same time, XKMS simplifies and
standardizes the interface between a client application and a PKI. Standards-
based interfaces make interoperable PKI feasible. In other words, XKMS
makes it possible simply to "plug in" to a trust service that enables applications

to easily perform cryptographic functions.
With XKMS, trust functions reside in servers accessible via easily programmed
XML transactions. XKMS also enables increased interoperability between

XKMS systems by combining XML with PKI.

Incorporating digital signatures or encryption functionality into applications

help in gaining the following benefits when XKMS is used:

28

e Developers can integrate authentication, digital signature, and
encryption services, such as revocation status checking into
applications doing away with the constraints and complications
associated with proprietary PKI software toolkits.

e XKMS provides a pure XML, developer-friendly syntax. By avoiding
the introduction of PKI toolkits on the client side, the trust
infrastructure permits developers to work in a simple XML
environment.

e XKMS enables rapid implementation of trust with standard XML
toolkits. The only client logic beyond traditional XML parsing runtimes
is cryptographic support for XML digital signatures and XML
encryption.

e XKMS does not require proprietary plug-ins to support enterprise PKI.

e XKMS reduces delays in PKI deployment, as it moves the complexity

of PKI and trust processing from client-side to server-side components.

2.6. WS-Trust

The Web Services Security (WS-Security) roadmap describes mechanism for
addressing security within a Web service environment. It defines a
comprehensive Web service security model that supports, integrates, and
unifies several popular security models, mechanisms, and technologies
(including both symmetric and public key technologies) in a way that enables a
variety of systems to securely interoperate in a platform- and language-neutral
manner. It describes scenarios that show how the specifications like WS-Trust

and WS-SecurityPolicy might be used together.

Figure 2.9. denotes the WS-Security specification as the building block for the
specifications WS-Trust and WS-SecurityPolicy.

29

WS- WS-Federation WS-
Authorization

SecureConversatio

n

WS-Policy WS-Trust WS-Privacy

I

WS Security

SOAP Foundation

Figure 2.9. Web Services Specifications

WS-Trust describes the model for establishing both direct and brokered trust
relationships including third parties and intermediaries. This specification
defines extensions that build on WS-Security to provide a framework for

requesting and issuing security tokens, and to broker trust relationships.

WS-Security defines the basic mechanisms for providing secure messaging.
WS-Trust uses these base mechanisms and defines additional primitives and
extensions for security token exchange to enable the issuance and

dissemination of credentials within different trust domains.

WS-Trust defines extensions to WS-Security that provide:
e Methods for issuing, renewing, and validating security tokens.

e Ways to establish, assess the presence of, and broker trust relationships.

Using these extensions, applications can engage in secure communication
designed to work with the general Web services framework, including WSDL
service descriptions, UDDI businessServices and bindingTemplates, and SOAP
messages. To achieve this, WS-Trust introduces a number of elements that are

used to request security tokens and broker trust relationships.

30

The goal of WS-Trust is to enable applications to construct trusted SOAP
message exchanges. This trust is represented through the exchange and
brokering of security tokens. WS-Trust provides a protocol agnostic way to

issue, renew, and validate these security tokens.

WS-Trust intends to provide a flexible set of mechanisms that can be used to
support a range of security protocols; that is, WS-Trust intentionally does not

describe explicit fixed security protocols.

The Web service security model defined in WS-Trust is based on a process in
which a Web service can require that an incoming message prove a set of
claims (e.g., name, key, permission, capability, etc.). If a message arrives
without having the required proof of claims, the service ignores or rejects the
message. A service can indicate its required claims and related information in

its policy as described by WS-SecurityPolicy specification.

The model introduced by WS-Trust is illustrated in the Figure 2.10., which
denotes that any requestor may also be a service, and that the Security Token
Service is a Web service; that is, it may express policy and require security

tokens.

31

Policy

Security_|___] Claims ||
Token

Security
Token
Searvice

Policy

lequester

- ____] Security
Claims | Token

Policy
Web
Service
Security | __
Token

Figure 2.10. Security Token Service Model

WS-Trust defines what requests to a security token service look like and how
responses are sent back. The interaction relies on two elements:
RequestSecurityToken and RequestSecurityTokenResponse. The basic idea is
to send a SOAP message containing a RequestSecurityToken as its body, then
get back a SOAP message containing a RequestSecurityTokenResponse,
complete with the new security token.

A sample body of the response returned by the security token service might

look like:

<s:Body> <wsse:RequestSecurityTokenResponse> <wsse:RequestedSecurityToken>
<wsse:BinarySecurityToken ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary"> KkFPle </wsse:BinarySecurityToken>

</wsse:RequestedSecurityToken> </wsse:RequestSecurityTokenResponse> </s:Body>

32

2.7. WS-SecurityPolicy

The Web Services Policy Framework (WS-Policy) provides a general purpose
model and corresponding syntax to describe and communicate the policies of a

Web Service.

WS-Policy defines a base set of constructs that can be used and extended by
other Web Services specifications to describe a broad range of service

requirements, preferences, and capabilities.

In order to successfully integrate with a nontrivial Web service, the service's
XML contract along with any additional requirements, capabilities, and
preferences, also referred to as policies, must fully be understood. For example,
just knowing that a service supports WS-Security is not enough information to
enable successful integration. The client needs to know if the service actually
requires WS-Security. If so, it also needs to know what security tokens it is
capable of processing (such as UsernameToken, or certificates), and which one
it prefers. The client must also determine if the service requires signed
messages. And if so, it must determine what token type must be used for the
digital signatures. And finally, the client must determine when to encrypt the
messages, which algorithm to use, and how to exchange a shared key with the
service. Trying to integrate with a service without understanding these details

is a stab in the dark.

A standard policy framework would make it possible for developers to express
the policies of services in a machine-readable way. Web services infrastructure
could be enhanced to understand certain policies and enforce them at runtime.
For example, a developer could write a policy stating that a given service
requires Kerberos tokens, digital signatures, and encryption. Other developers
could use the policy information to reason about whether it can use the service.

Plus, the infrastructure could enforce these requirements without requiring the

33

developer to write a single line of code. So not only would a policy framework
provide an additional description layer, it would also offer developers a more

declarative programming model.

Microsoft, IBM, BEA, and SAP has released a specification called the Web
Services Policy Framework (WS-Policy) to fill the need for a generic policy
framework. WS-Policy defines a generic model and syntax for describing and

communicating the policies of a Web service.

WS-Policy defines a general framework that can be used and extended by other
Web services specifications to describe a broad range of Web services policies.
WS-Policy defines a policy to be a collection of one or more policy assertions

(Figure 2.11.).

Policy
Policv Subject
- Policy Attachment Web
Policv | Service
Policv

Figure 2.11. Policy Overview

A policy assertion represents an individual preference, requirement, capability,
or other general characteristic. There are two additional specifications that
define standard sets of policy assertions that can be used within a policy
expression. The Web Services Policy Assertions Language (WS-
PolicyAssertions) specification defines a set of general message assertions and
the Web Services Security Policy Language (WS-SecurityPolicy) specification

defines a set of common security-related assertions.

34

The WS-Policy specification defines the general model and syntax for policy
expressions and policy assertions, but stops short of specifying how policies

are located or attached to a Web service.

A policy assertion represents an individual preference, requirement, capability,
or other characteristic and is the basic building block of a policy expression. A
policy assertion is represented by an XML element with a well-known name
and meaning, typically defined by another specification like WS-
SecurityPolicy.

A policy expression simply contains a set of policy assertion elements as
follows:

<wsp:Policy xmlns:wsp="..." xmlns:wsu="..." wsu:Id="..." Name="..." TargetNamespace="..."

" "

> <Assertion wsp:Usage="..." wsp:Preference="..." /> <Assertion wsp:Usage="..."

wsp:Preference="..." /> <Assertion wsp:Usage="..." wsp:Preference="..." /> ... </wsp:Policy>

WS-SecurityPolicy specification defines a set of security-related policy
assertions (Table 2.1.). These assertions allow to specify the types of security
tokens, signature formats, and encryption algorithms supported, required, or

rejected by a given subject.

The SecurityToken element is used to describe what security tokens are
required and accepted by a Web service. It can also be used to express a Web
Service's policy on security tokens that are included when the service sends out

a message (e.g., as a reply message).

<SecurityToken wsp:Preference="..." wsp:Usage="..." > <TokenType>...</TokenType>
<Tokenlssuer>...</Tokenlssuer> <Claims>...Token type-specific claims...</Claims>

(TokenType-specific details) </SecurityToken>

35

Table 2.1. Security Policy Assertions defined by WS-SecurityPolicy

Policy Assertion Policy Assertion Description

wsse:SecurityToken specifies a type of security token defined in WS-
Security

wsse:Integrity specifies a signature format defined in WS-
Security

wsse:Confidentiality specifies an encryption format defined in WS-
Security

wsse: Visibility specifies portions of a message that MUST be

able to be processed by an intermediary or

endpoint

wsse:SecurityHeader specifies how to use the Security header defined

in WS-Security

wsse:MessageAge specifies the acceptable time period before

messages are declared “stale” and discarded

The Integrity element is used to indicate a required signature format. The
schema outline for Integrity, an assertion about an integrity requirement, is as

follows:

<Integrity = wsp:Preference="..." wsp:Usage="..."> <Algorithm Type="..." URI="..."

wsp:Preference="..."/> <TokenInfo> <SecurityToken>...</SecurityToken> </TokenInfo>
<Claims>...</Claims> <MessageParts Dialect="..." Signer="..."> ... </MessageParts>

<Integrity>

The Confidentiality element is used to indicate a required encryption format.

The schema outline for this element is as follows:

<Confidentiality wsp:Preference="..." wsp:Usage="..."> <Algorithm Type="..." URI="..."

wsp:Preference="..."/> <KeyInfo> <SecurityToken .../> <SecurityTokenReference .../> ...

</KeyInfo> <MessageParts Dialect="..."> ... </MessageParts> </Confidentiality>

36

Some intermediaries may require that parts of the message be visible to them.
That is, they either need to be passed in the clear (unencrypted), or there must
be an encryption binding for the intermediary. The Visibility element is used to
indicate portions of a message that MUST be able to be processed by an

intermediary or endpoint. The schema outline for this element is as follows:

<Visibility wsp:Usage="..."> <MessageParts Dialect="..."> ... </MessageParts> </Visibility>

37

CHAPTER III

SECURE WEB SERVICES IN PEER-TO-PEER ENVIRONMENT

In this chapter, the approach and the mechanisms that are pursued in this work
in order to provide and invoke secure Web services in peer-to-peer

environment are descibed.

For this purpose, the specifications like WS-Security, WS-Trust, WS-
SecurityPolicy, and XML Key Management Specification are exploited in
addition to JXTA framework that has been benefitted from for peer-to-peer

network implementation.

A peer-to-peer network, over JXTA framework, that consists of at least three
peers is introduced in this work. The functionalities and responsibilities of the

peers within this network are defined in Table 3.1.
Considering the peer groups that are described in Table 3.1., the

demonstrational peer-to-peer network covers three peers, which is adequate to

justify the proposed architecture.

38

Table 3.1. Peer-to-peer Network Elements

Peer-to-peer Functionality
Network
Groups
PeerGroup-1 - provides Web service to be invoked by peer-2

- processes secure SOAP message by decrypting
and/or verifying digital signature

- validates token information available in the SOAP
message

- invokes XML Key Management Web service, that is
provided by peer-3, to locate the public key
information

- invokes security token Web service, that is provided
by peer-3, to locate and validate token information

- invokes XML Key Management Web service, that is
provided by peer-3, to locate the secret key

PeerGroup-2 - invokes Web service provided by peer-1

- provides the capability of constructing the SOAP
message from the scratch by parsing the WSDL file
for the Web service of peer-1

- encrypts the depicted element of the constructed
SOAP message with the secret key that is located by
invoking the XML Key Management Web service
provided by peer-3

- digitally signs the depicted element of the
constructed SOAP message with the private key that
is kept by peer-2

- adds the token information, that is located by
invoking the security token Web service provided by
peer-3, to the constructed SOAP message

- performs secure invocation of Web service provided
by peer-1

PeerGroup-3 - provides XML Key Management Web service for
peer-1 and peer-2

- provides security token Web service for peer-1 and
peer-2

The interaction among the peers belonging to the peer groups described in
Table 3.1 is depicted in Figure 3.1, which also denotes the overall architecture

of the introduced peer-to-peer network.

39

The three peer groups that constitute the basis for the peer-to-peer network

architecture proposed in this work are described in the following sections.

i

1. R

private'Rey (2) pubiié key (2) private key (1) public key (1)
Peer of secure SOAP messaging Peer of

PeerGroup-2 Tl | DccrGroup-1

validate security token (2)

request security token

register public key

locate public key (2)

Peer of
PeerGroup-3

S

ég

S

public key (1) & secret key (1-2)
public key (2)

Figure 3.1. Interaction Diagram within the P2P Network

3.1. Description of Peers in PeerGroup-1

The peers of PeerGroup-1 conform to the specifications described by SOAP,
WSDL, XKMS, WS-Trust, WS-Security, and WS-SecurityPolicy in order to
provide secure Web service implementation. These peers process the security
token information, encryption and the digital signatures prior to evaluating the

response of their services.

40

The Web Services Description Language (WSDL) files for the Web services
provided by the peers of this group are assumed to be available for the peers of

PeerGroup-2 within the peer-to-peer network.

In addition, the security policy assertions (WS-SecurityPolicy) files for the
Web services provided by the peers of this group are assumed to be available
for the peers of PeerGroup-2 within the peer-to-peer network. The following
assertions examplify a possible content of such a file that conforms to the

specification WS-SecurityPolicy:

<wsp:Policy xmlns:wsp="..." xmlns:wsse="...">

<wsse:SecurityToken wsp:Usage="wsp:Rejected">
<wsse:TokenType>wsse:Kerberosv5ST</wsse:TokenType>

</wsse:SecurityToken>

<wsse:SecurityToken wsp:Usage="wsp:Required">
<wsse:TokenType>wsse:UsernameToken</wsse: TokenType>

</wsse:SecurityToken>

<wsse:SecurityToken wsp:Usage="wsp:Optional ">
<wsse:TokenType>wsse:UsernameToken</wsse: TokenType>

</wsse:SecurityToken>

<wsse:Integrity wsp:Usage="wsp:Required">
<wsse:Algorithm Type="wsse:AlgSignature" />
<MessageParts> xxx </MessageParts>

</wsse:Integrity>

<wsse:Confidentiality wsp:Usage="wsp:Required">
<wsse:Algorithm Type="wsse:AlgEncryption" />
<MessageParts> yyy </MessageParts>

</wsse:Confidentiality>

</wsp:Policy>

The XML Key management specification is exploited by the peers of
PeerGroup-1 in order to locate the public key information, which is required
for the verification of digital signature available in the SOAP message, by

invoking the XML Key Management Web service provided by the peers of

41

PeerGroup-3. It is assumed that the WSDL file for this XML Key Management
service is available for the peers of this group. The following SOAP message
examplifies a possible content of a SOAP message that requests the location of
a public key information and conforms to the XML Key Management

Specification:

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<k:Locate xmlns:k="http://www.xkms.org/schema/xkms-2001-01-20">

<k:TransactionID>c41696b0-1f14-11d6-b840-
3beb2501bc66</k:TransactionID>

<k:Query>

<d:KeyInfo xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">

<d:KeyName>http://xkms.verisign.com/key?company=VeriSign&department=X
KMS Test&CN=N100055
XKMSTEST&issuer_serial=85dfd14e8c4ecb4adeec353cadc7b196</d:KeyName
>
</d:KeylInfo>
</k:Query>
<k:Respond>
<k:string>KeyName</k:string>
<k:string>KeyValue</k:string>
<k:string>X509Chain</k:string>
</k:Respond>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0org/TR/2001/REC-xml-c14n-20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-
shal"/>
<ds:Reference URI="#xpointer(/k:Locate)">

<ds:Transforms>

42

<ds:Transform
Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"/>
<ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>

<ds:DigestValue>Y VwLOtUSstnIDPVFQXOZbg+ifC4=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>GuzjcpjLjSH1doWh6cdz16HZeY3F7z00vUSJ8TR7kG13Zdo2b
LOf/BI3tJmCQz32T+R1MBxY
hJ4zX3gKIfKwRQ==</ds:Signature Value>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>

<ds:Modulus>uabFEH3e0QBcQPbo3ixRGZ+GpJqaUjs+P4+JzhmIXmhI0SmpM1liw
910Egu1106y01ze6g6KU
ob7LSrO4/bIBHQ==</ds:Modulus>
<ds:Exponent>Aw==</ds:Exponent>
</ds:RSAKeyValue>
</ds:KeyValue>
</ds:KeyInfo>
</ds:Signature>
</k:Locate>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The specification WS-Trust is exploited by the peers of PeerGroup-1 in order

to locate the token information, which is required for the validation of security

token information available in the SOAP message, by invoking the security

token Web service provided by the peers of PeerGroup-3. The following SOAP

message examplifies a possible content of a SOAP message that requests the

43

location of username token information and conforms to the specification WS-

Trust:

3.2,

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<s:Body>
<wsse:RequestSecurityToken>
<wsse:TokenType>wsse:UserName</wsse:TokenType>
<wsse:RequestType>wsse:Reqlssue</wsse:RequestType>
<wsse:Base>
<wsse:Reference URI="#peer2"/>
</wsse:Base>
</wsse:RequestSecurityToken>
</s:Body>

</s:Envelope>

Description of Peers in PeerGroup-2

The peers of PeerGroup-2 conform to the specifications described by SOAP,
WSDL, XKMS, WS-Trust, WS-Security, and WS-SecurityPolicy in order to

perform the secure invocation of the Web service provided by the peers of

PeerGroup-1.

The Web Services Description Language (WSDL) files for the Web services

provided by the peers of PeerGroup-1 are assumed to be available for the peers

of this group. Hence, these peers enable the capability of providing a user

interface to construct the related SOAP messages from the scratch by parsing

the related WSDL files, which is to be demonstrated in more detail in the next

chapter.

44

Having constructed the SOAP messages with the capability mentioned above,
these peers achieve the insertion of digital signatures on the depicted SOAP
message elements conforming to the specification WS-Security. Similarly, the
peers of PeerGroup-2 achieve the encryption of the depicted SOAP message

elements conforming to the specification WS-Security.

The XML Key management specification is exploited by the peers of
PeerGroup-2 in order to locate the secret key information, which is required for
the encryption of the depicted SOAP message elements, by invoking the
security token Web service provided by the peers of PeerGroup-3. It is
assumed that the WSDL file for this security token service is available for the
peers of this group. The following SOAP message examplifies a possible
content of a SOAP message that requests the location of a secret key
information for the connection between the peers of PeerGroupl and the peers

of PeerGroup2:

<?xml version="1.0" encoding="utf-8"7>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<s:Body>

<RequestSecretKey>

<Partyl>peerl</Partyl>

<Party2>peer2</Party2>

</RequestSecretKey>
</s:Body>

</s:Envelope>

The peers of PeerGroup-2 achieve the insertion of digitally signature, that is
applied to the constructed SOAP message, by using the private keys of these
peers. The sample content of how the private keys are stored by these peers can

be denoted as follows:

45

<?xml version="1.0" encoding="UTF-8"7?>
<ds:KeyInfo
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:KeyValue>
<xkms:RSAKeyPair
xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">

<xkms :Modulus>AM2EJMuJrLtDGDD0O3d56SoWgEXcvIWIFXGAKrmexdnbd
xgskTeHYat7993HzrvCUQsNglU3LV

0jEceHawgNCUB+sDV3pFYrrzKOvzkvdtHrILC+6ucztLeYx8NhVUOhXIt
5bgiQx0D4P/YRWO
LNSU55mX0bJIYybSgW/DgeWoXJrX</xkms :Modulus>

<xkms:PublicExponent>AQAB</xkms:PublicExponent>

<xkms:PrivateExponent>A7dMI9wUxQ120NWu4JUquyEXv90i9QDuD6gB
xswlgSaPayon4lgqIbCnJbJ0OMX7s+jcvVbdeqt

10d9gh/k5GCY2AWtOt iTnFrpuPglo91JZKNc8YuiVy/32ZTvhE6T5EVVT
9rgcsGulpc+YUPr
1KHUvuylKEyTjc2A5D1gvwwErcE=</xkms:PrivateExponent>

<xkms :P>APx1VVXNgDp42Y1IMW1lplDDpw4 fLnjPPT/9X/+T1S7THWnZQyeb
eKoGI9Tke73687msbDr2aST cO09tN4LOHYI9L8gE=</xkms:P>

<xkms:Q>ANBzb4Ji99H0y3VEQlrDJ+t79eycI13JES5k6YMVIVIZ2HZ9IP
ZVRplVFW4Xzw41lutC93rlrS 3B1lVVgWarVxPknc=</xkms:Q>

<xkms :DP>AObVPCEWJEJqd51sF f+qLpiNyPSxcTSZS8xNp/xUTWhbPeH
hfQ/zI1Z45gTqVY4ayvSGH702 5cUEnDp2TPgbeUE=</xkms :DP>

<xkms :DQ>afUTJIKEGAxXH0372z/7DNvOyQ8EnZzFVmie/busyk08z1S0SM
VIU3+IY95J0pI9XK74nlbaNb UenMFnfOgWrNNw==</xkms:DQ>

<xkms : QINV>AKNDNGMZJtCrdmzEoCrURRQDB1kOEBTI j30vQFuZi jopGhx
ILXQHTpmucEpdaIFNH4sXfiYi8 oOAGJKTgNJzeeUI=</xkms:QINV>
</xkms :RSAKeyPair>
</ds:KeyValue>
</ds:KeyInfo>

In addition, the security policy assertions (WS-SecurityPolicy) files for the
Web services provided by the peers of PeerGroup-1 are assumed to be

available for the peers of this group, because the WS-SecurityPolicy

46

specification does not currently address the specifying how these security
policies are located or attached to a Web service. The peers of this group apply
the encryption and/or digital signature operations conforming to the security
assertions that are defined in WS-SecurityPolicy files assumed to be available,

like the WSDL files.

3.3. Description of Peers in PeerGroup-3

The peers of PeerGroup-3 provide two key services for the other two peer
groups. The two services are:
e XML Key Management Service, and

e Security Token Service.

These two Web services are detailed in the following subsections.

3.3.1. XML Key Management Service

XML Key Management service conforms to the XML Key Management
Specification (XKMS), which defines processes and formats that enable XML-
aware applications to incorporate the security of public-key infrastructure

(PKI).

XML Key Management service performs the following functions as a service
for the peers of other two peer groups:
e Public key lifecycle management (registration, revocation and,
renewal),
Following is a sample content of a SOAP message that requests the

revocation of a specified public key information:

<?xml version="1.0" encoding="UTF-8"?>

47

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<k:Register xmlns:k="http://www.xkms.org/schema/xkms-2001-01-20">
<k:Prototype Id="refld_1">
<k:TransactionID>cde285f0-1f14-11d6-b840-
3beb2501bc66</k: Transaction]D>
<k:Status>Invalid</k:Status>
<d:KeyInfo xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:KeyValue xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:RSAKeyValue>
<d:Modulus>rlc2VJ+acRniqpF8dhSN2qyUYOkne5C257v5Rme13KGI4B7S
mAa340uBBicdx2RkfyHpW0q3Nm/iY 7h8UY 1+Cw==</d:Modulus>
<d:Exponent
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">AQAB</d:Exponent>
</d:RSAKeyValue>
</d:KeyValue>
</d:KeyInfo>
<k:PassPhrase>SxbPA0qihONsrYU8ji+gWOhwy7c=</k:PassPhrase>
</k:Prototype>
<k:AuthInfo>
<k:AuthUserInfo/>
</k:AuthInfo>
<k:Respond>
<k:string>KeyName</k:string>
<k:string>KeyValue</k:string>
</k:Respond>
</k:Register>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Validation and location of cryptographic keys.
Following is a sample content of a SOAP message that requests the

validation of a specified public key information:

<?xml version="1.0" encoding="UTF-8"?>

48

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<k:Validate xmlIns:k="http://www.xkms.org/schema/xkms-2001-01-20">
<k:Query>
<k:TransactionID>cb618060-1f14-11d6-b840-
3beb2501bc66</k:TransactionID>
<k:Status>Indeterminate</k:Status>
<d:KeyInfo xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:KeyValue xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:RSAKeyValue>

<d:Modulus>rlc2VJ+acRniqpF8dhSN2qyUYOkne5C257v5SRme13KG14B7S
mAa340uBBicdx2RkfyHpW0q3Nm/iY 7h8UY 1+Cw==</d:Modulus>
<d:Exponent
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">AQAB</d:Exponent>
</d:RSAKeyValue>
</d:KeyValue>
</d:KeylInfo>
</k:Query>
<k:Respond>
<k:string>KeyName</k:string>
<k:string>KeyValue</k:string>
<k:string>ValidityInterval</k:string>
<k:string>KeyUsage</k:string>
<k:string>Status</k:string>
<k:string>X509Chain</k:string>
</k:Respond>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference URI="#xpointer(/k: Validate)">

<ds:Transforms>

49

<ds:Transform
Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"/>

<ds:Transform Algorithm="http://www.w3.0rg/TR/2001/REC-
xml-c14n-20010315"/>

</ds:Transforms>

<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>

<ds:DigestValue>nM21iuKLqO0yUcdT5vY ybfyDofA=</ds:DigestValue>
</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>ttGwOFexCEJjzNbws29NbCU20qdUpPOsFGasXZ4M
X3ZQKLEgV35DG9%mJdenxSGLFOvVuIEv
STLPKIU+0tEhSQ==</ds:SignatureValue>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>

<ds:Modulus>uabFEH3e0QBcQPbo3ixRGZ+GpJqaUjs+P4+JzhmIXmhI0S
mpM1iw910Egu1l06y0lze6g6KU
ob7LSrO4/bIBHQ==</ds:Modulus>
<ds:Exponent>Aw==</ds:Exponent>
</ds:RSAKeyValue>
</ds:KeyValue>
</ds:KeyInfo>
</ds:Signature>
</k:Validate>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

With the functionalities described above, XML Key Management service

provides an interface for implementing Public Key Infrastructure (PKI), which

is essential for enabling trust in digital communications. Thus, the peers of this

group behave as a trusted third party for the peers of PeerGroup-1 and

PeerGroup-2.

50

3.3.2. Security Token Management Service

Security token service conforms to the specification WS-Trust, which defines
extensions built on WS-Security to provide a framework for requesting and

issuing security tokens, and to broker trust relationships.

Security token service performs the following functions as a service for the

peers of other two peer groups:
e Jocation of security tokens,

Following is a sample content of a SOAP message that represents the

response for the request of username token information:

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<s:Body>
<wsse:RequestSecurityTokenResponse>
<wsse:RequestedSecurityToken>
<wsse:UserNameToken
<wsse:Username>peer2</wsse:Username>
<wsse:Password>peer2</wsse:Password>
</wsse:UserNameToken>
</wsse:RequestedSecurityToken>
</wsse:RequestSecurityTokenResponse>
</s:Body>

</s:Envelope>

e validation of security tokens.

Following is a sample content of a SOAP message that represents the
validation request of username token information:

<?xml version="1.0" encoding="utf-8"?>

51

<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<s:Body>

<wsse:RequestSecurityToken>

<wsse:TokenType>wsse:UserName</wsse:TokenType>

<wsse:RequestType>wsse:Reqlssue</wsse:RequestType>
<wsse:Base>

<wsse:Reference URI="#peer2"/>

</wsse:Base>

</wsse:RequestSecurityToken>

</s:Body>

</s:Envelope>

With the functionalities described above, security token service provides an
interface for implementing security token management. Thus, the peers of this

group behave as a trusted third party for the peers of PeerGroup-1 and
PeerGroup-2.

52

CHAPTER IV

SECURE WEB SERVICE INVOCATION OVER JXTA FRAMEWORK

Within the scope of this thesis work, the implementation of peer-to-peer
network and the communication among the peers of the peer groups decsribed

in the previous chapter have been achieved by using the JXTA framework.

The JXTA framework requires the implementation of the JXTA protocol stack
so that the peers conforming to these protocols become JXTA peers. The peers
of PeerGroup-1, PeerGroup-2, and PeerGroup-3 imply to be JXTA peers with
their implementations conforming to the protocols defined by JXTA

framework.

The JXTA framework facilitates the following operations to be exploited
within the implementation of this work:
e authentication of each peer prior to operating to perform their
functionalities, and this feature is exploited by the peers of PeerGroup-
1, PeerGroup-2 and PeerGroup-3.
e creation of peer-to-peer network that is introduced by this work and is
composed of the peers of PeerGroup-1, PeerGroup-2 and PeerGroup-3.
e bidirectional pipe implementation between the peers of PeerGroup-1,
PeerGroup-2 and PeerGroup-3 in pairs, which provides the invocation

of the Web services introduced within this work.

53

The following section provides the details of the developed prototype and

presents an example walkthrough of the system introduced.

4.1. Design and Implementation of the System

Figure 4.1. denotes the execution flow of how secure Web service invocation is

achieved in the peer-to-peer network introduced.

1. Send request for

locating secret key XKMS &
»] Security Token Service
2. Get secret key Peer of
4fOI‘ peer-1 and peer-2 PeerGroup-3
Web Service Invoking
Peer of 4.] Validate token
PeerG 2 i 5. Locate |secret& public
eerGroup- 3. Encrypt&Sign and gend key for W peer-2
message to Web service - —
- »] Web Service Providing
B Peer of
6. Verify signature&decrypt PeerGroup-1
and send response

Figure 4.1. Architecture of the Peer-to-peer System

Considering the architecture above, the following operations are performed
sequentially to achieve secure Web service invocation provided by the peer of
PeerGroup-1:

1. the peer of PeerGroup-2 sends the request for the location of the secret
key generated for the peerl-peer2 communication to the peer of PeerGroup-3.
2. the peer of PeerGroup-3 sends the generated secret key to the peer of
PeerGroup-2.

3. the peer of PeerGroup-2 encrypts the constructed SOAP message with
the secret key, adds the digital signature computed with its private key, adds
the username-password security token, and sends the final SOAP message to

the peer of PeerGroup-1.

54

4. the peer of PeerGroup-1 sends the request for the validation of
username-passwords security token information belonging to the peer of
PeerGroup-2 to the peer of PeerGroup-3.

5. the peer of PeerGroup-1 sends the request for the location of the public
key belonging to the peer of PeerGroup-2 to the peer of PeerGroup-3, and
sends the request for the location of the secret key generated for the peerl-
peer2 communication to the peer of PeerGroup-3.

6. the peer of PeerGroup-1 first verifies the digital signature available in
the SOAP message with the located public key, then decrypts the SOAP

message with the located secret key.

The demonstrational implementation of the introduced system is realized by
using the technologies of JXTA framework, WSDL, SOAP, and implementing
the introduced system with J2SE (Java-2 Standard Edition).

The WSDL descriptions of the sample service to be invoked in a secure
manner and the services introduced within this work with the formats of the
SOAP messages related with these services are presented in Appendix-A and

Appendix-B.

For the purpose of processing the WSDL files of the sample service provided
by the peer of PeerGroup-2, processing the services related to the specifications
of WS-Trust and XKMS, and the policy file holding the security assertions of
the peer of PeerGroup-2 in the form of the specification WS-SecurityPolicy,

the Xerces XML parser of Apache is used.

The implementation of the WS-Security specification used by the peers of
PeerGroup-1 and the peers of PeerGroup-2 is achieved by exploiting and
extending the open source implementation of XML Security specifications
provided by the TrustGateway API (application programming interface) by
VeriSign [23]. This API provides a programming interface to apply digital

55

signature and encryption operations on the DOM (Document Object Model)
representation of the XML documents conforming to the specifications of
XML Encryption and XML Digital Signature. This API has been extended to
provide a programming interface to apply the security token, digital signature
and encryption constructs conforming to the specification of WS-Security, and
to achieve symmetric secret key and asymmetric key pairs (public and private
keys) generation. The security component of J2SE (Java-2 Standard Edition)
has been used for the purposes of key generation. The mechanism of
processing the security assertions stored in the WS-SecurityPolicy compliant

files has also been provided in this extended programming interface.

The development of the graphical user interfaces for the protypes of the peers
of PeerGroup-1 and PeerGroup-2 has been achieved by using Java Swing

components.

For the purpose of exchanging the SOAP messages regarding the XKMS and
security token services provided by the peer of PeerGroup-3, and regarding the
sample service provided by the peer of PeerGroup-1, the JXTA framework has

been used by its programming interface for bidirectional pipes.

4.2. Example Walkthrough

In order to demonstrate the execution of the system developed, three JXTA
peers, each of which represents a peer of the peer groups introduced within this
work, constitute the sample system. These three peers execute and construct

the peer-to-peer network on the same system for demonstrational purpose.

All three peers perform the authentication process as denoted in Figure 4.2.,

which is facilitated by JXTA framework.

56

£ JXTh Secure Login

Secure Username: || |

Password: | |

| OK || Cancel |

Figure 4.2. Authentication for Peer-to-peer System

The peer of PeerGroup-3 executes continuously in order to provide the XML
Key Management service and security token service for the other two peers.

Figure 4.3. denotes the execution of this peer.

AWINDOWS\System 3 2\cmd. exe

IC:~Documents and SettingsstoshibaDesktop“thesis'w echpeer3d?java —classpath xm
1_prod_key.jar:;xml_pilot_key. jar:xerces.jar:tsik. jar; . .~1ibnjxta.jar; .~1ibM\log4].
jar; .~libsjxtasecurity. jar; .slibweryptix—asnl. jar; .~1libxcryptix3d2. jar; .~1ibvjxta
ptls.jar;.~libxminimalBC. jar;. XEHSpeer

'HKME szervice’ & ‘Token Management service' peer...

Reading in pipexample .aduv
star@ing_SergePPipei

starting ServerPipe2

Figure 4.3. XML Key Management and Security Token Service Peer

This peer starts two pipe connections for the other two peers, which is
facilitated by the JXTA framework. These two pipe connections are advertised
to the corresponding peers with the following pipe advertisement structure of

the JXTA framework:

<!DOCTYPE Jjxta:PipeAdvertisement>

<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">
<Id>
urn: jxta:uuid-
59616261646162614A757874614D504725184FBC4E5D498AA0919F 662
E40028B04
</Id>

57

<Type>

JxtaUnicast

</Type>
<Name>

PipeExample

</Name>

</jxta:PipeAdvertisement>

The peer of PeerGroup-2 provides the user interface, denoted in Figure 4.4., in

order to construct the SOAP message for the invocation of the Web service that

the peer of PeerGroup-1 provides.

£ secorewebservicetnvoker =lolx
WSDL Schema 1 “1-Element Attributes {|| SOAP Messaye
[~ deiinitions ' e I—Ordameques' |1 soap:Envelope
@ [definitions 4 [y soapHeadsr
@ Cmessage - SIGH [soapBody
D part
[part
D part
[part
[} part-- ENCRYPT
D part
@[] message M
@ 1 portType Sign
@[] hinding
o S aerice Rt |
Add
insert Token
Send
locate Secret Key
request Token | .
£l HML Text :

Figure 4.4. Secure Web Service Invoking Peer

The left part seen in Figure 4.4. is dedicated to the hierarchical view of the

WSDL file of the sample Web service provided by the peer of PeerGroup-1,

which reveals the granularity and the types of input parameter information. The

sample Web service requires six input parameters denoted with “part” nodes on

the WSDL view for an Order Request as seen in Figure 4.4.

Selecting each “part” node on the WSDL view and entering the required

information conforming to the required parameter type information denoted in

58

the middle part of Figure 4.4., the SOAP message is constructed on the right
part of Figure 4.4. packed in the “soap:Body” element. Figure 4.5. denotes the

constructed SOAP message:

e e
WWSDL Schema 1 | -Element Attributes || SOAP Message
[~ deiinitions N 0rcic Roquoct : |1 soap:Envelope
@ [definitions [y soapHeadsr
§ CA|message - SIGH | & D soapmocy
[part : @ [itern_narme
[pant [Js74 Book
[part @ [price
[part 1005
[} part-- ENCRYPT @ [card_name
D part [wisa
® [message M @ [expiration
@ 1 portType Sign [12708
@[hinding e @ O3 card_nurmber
o[senice QS [1111 2222 3333 4444
Add d @ [T card_limit
insert Token 2 D 10000:%
Send
locate Secret Key
request Token |
2| XML Text
xmins:soap="http.#schemas xmlsoap.org/soapienvelope ;I
xminsxsd="hitp s w3, org2001XMLSchema” xminsxsi="hity
=g0apHeader’=
=g0ap Body=
=itern_name xsitype="xsd:string"=J<TA Book=fitem_namex=
=price xsitype="xsd:string"=100 §=iprice=
=card_name xsitype="xsd:string"=Yisa=/card_name=
=gxpiration xsitype="xsd:slring"=12/M5=iexpiration=
=card_numberxsitype="zsd:string"=1111 2222 3333 4444=/c.
=card_limit xsitype="ksd string"=10000 §=icard_limit=
=fsoap:Body=
H =isoapEnvelopes
A || K | » il

Figure 4.5. Constructed SOAP Message

The constructed SOAP message is:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soap:Header/>
<soap:Body>
<item_name xsi:type="xsd:string">JXTA Book</item_name>
<price xsi:type="xsd:string">1000 $</price>
<card_name xsi:type="xsd:string">Visa</card_name>
<expiration xsi:type="xsd:string">10/04</expiration>
<card_number xsi:type="xsd:string">1111 2222 3333 4444</card_number>
<card_limit xsi:type="xsd:string">10000 $</card_limit>
</soap:Body>
</soap:Envelope>

In order to conceal the credit card number information, which is one of the

input parameters of the “Order Request” service, firstly, the secret key

59

information is requested from the peer of PeerGroup-3, which is running

continuously to respond. The secret key request message is:

<?xml version="1.0" encoding="utf-8"?>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext™"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
>
<s:Body>
<RequestSecretKey>
<Partyl>peerl</Partyl>
<Party2>peer2</Party2>
</RequestSecretKey>
</s:Body>
</s:Envelope>

The secret key response message created by the peer of PeerGroup-3 is:

<?xml version="1.0" encoding="utf-8"7?>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"

xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility"
>
<s:Body>
<ResponseSecretKey>
<Partyl>peerl</Partyl>
<Party2>peer2</Party2>
<SecretKey>Rz_0, |pOkuEsUnfi¢%s ?ABRSm </SecretKey>
</ResponseSecretKey>
</s:Body>
</s:Envelope>

Selecting the “card_number” node on the SOAP message view, the constructed
SOAP message is encrypted on the “card_number” element with the received
secret key information after checking the security policy assertions stored in
the WS-SecurityPolicy compliant file if this action is allowed by the service
provider. Figure 4.6. denotes the encryption applied to the constructed SOAP

message to conceal the credit card number information:

60

£ Secure Web Service Invoker j =10l>

WSDL Schema :| Element Attributes | soap
27 definitions | l— I soap:Envelope
3 name |OrderRequest : .
@ [T definitions 2 L - D s0apHeader
© CJmessage -- SIGN ; e M soapBody
[pant 3 A @ 3 itern_name
[part E : [1A Book
[pant i A 9 Tprice
[part 4 [NELGES
[part-—- ENCRYPT : i @ [card_name
[pant B | visa
@ [message ¢ M 2 @ [T expiration
@[portType E Sign : [12105
@ [T hinding H oo A @ [card_number
@[] service Q : [1111 2222 3333 4444
Add ;| @ 3 card_limit
insert Token : D 10000:5
somn| 5
locate Secret Key
request Token |

H|
- KML Text

=xenc:Encryptioniethod Aloorithm="htt: i w2 urglzum;l 3
sxenc:CipherDatas i

=xenc:Cipherfalue=PonnkihCgeg2Em3o+hi33 plwiddy
KE+uboll7 9CYKmUrAgDCKIZRT 7aUMWEZYIKdZNEOzf

TBZSCeY+EKeMidOWZCGYEJESkMENMUPIDMRSDXhe
[8MHE01Z2SHMEZIh @1 UEJHYT +pRyg Y c5Z8CYNe+1
=fxenc:CipherDatas
=henc.EncryptedData=
=card_limit xsitype="xsd string"=10000 §=icard_limit~
;| =/soap:Body=
i <rzoap:Envelopes|

Ef‘<| | omll

Figure 4.6. Resultant SOAP Message after Encryption

The following is the content of the security policy file for the Web service

provided by the peer of PeerGroup-1:

<wsp:Policy xmlns:wsp="..." xmlns:wsse="...">
<wsse:SecurityToken wsp:Usage="wsp:Rejected">
<wsse:TokenType>wsse:Kerberosv53T</wsse:TokenType>
</wsse:SecurityToken>
<wsse:SecurityToken wsp:Usage="wsp:Required">
<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
</wsse:SecurityToken>
<wsse:Integrity wsp:Usage="wsp:Required">
<wsse:Algorithm Type="wsse:AlgSignature" />
<MessageParts> /soap:Body </MessageParts>
</wsse:Integrity>
<wsse:Confidentiality wsp:Usage="wsp:Required">
<wsse:Algorithm Type="wsse:AlgEncryption" />
<MessageParts> /soap:Body/card_number
</MessageParts>
</wsse:Confidentiality>
</wsp:Policy>

The resultant SOAP message after encryption is:

<?xml version="1.0" encoding="UTF-8"7>

<soap:Envelope
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

61

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance">
<soap:Header/>
<soap:Body>
<item_name xsi:type="xsd:string">JXTA Book</item_name>
<price xsi:type="xsd:string">1000 $</price>
<card_name xsi:type="xsd:string">Visa</card_name>
<expiration xsi:type="xsd:string">10/04</expiration>
<xenc:EncryptedData
Type="http://www.w3.0rg/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#">
<xenc:EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-
cbe"/>
<xenc:CipherData>

<xenc:CipherValue>wLdVyjsal XWta8 OIFdOdO5SPIFfBQINZG500jibVHO+XwBqLExe4WN
cQPZVLIJjXTIljRoltvsm

JaFzOOf7fm3NvZ+M8UATgo6vPLkE88ebrIQv0a3YPNHajyFykIrJOgfDp++9QFRcdOyHU
mS+

3n1w2xhofrw4dGGKW+/jIYB8 AkobpofcUX90OMv/ZuLxDurmxjDfR4q7ndmRg8XRVPBUT
NTSNh

kexZyJVMKDRUKYy/CLhaEImISIn2IFkwh2orDgfZJUyo5cY S+GFtjcZVz7cPOAXdKzIz+6U
76 jlIdfWo4usD591dFil3/K g==</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
<card_limit xsi:type="xsd:string">10000 $</card_limit>
</soap:Body>
</soap:Envelope>

In order to add digital signature to the SOAP message for enabling message
integrity and non-repudiation of this peer, selecting the “soap:Body” node on
the SOAP message view, the constructed SOAP message is extended with the
digital signature obtained on the “soap:Body” element with the private key
information of this peer after checking the security policy assertions stored in
the WS-SecurityPolicy compliant file if this action is allowed by the service
provider. Figure 4.7. denotes the SOAP message after applying the digital

signature to the whole SOAP message content to avoid any modification:

62

4 Secure Web Service Invoker

WSDL Schema | #| Element Attributes ‘| SOAP Message
[definitions : ool ordermequest 3 soap:Envelope
@ [definitions D soap:Header
@ I message - SIGN i @ 3 snapBody
[pant @ CJitem_name
[part [T4 Book
[pant @ Cdprice
[part (Y1008
[nart—- ENCRYPT @ [card_name
[pant visa
@ [message M @ [T expiration
@ [T portType Sign [y 12105
@ [T hinding oo @ [card_number
&[] senvice # [1111 2222 3333 4444
Add @ [card_limit
insert Token D 10000:5
Send
locate Secret Key
request Token |
HML Text :
<ds:Transfarrn Algorithm="httn: A w2 urngthDm;I 3
<ids:Transforms= 4
=ds:Digestvethod Algorithm="http: e w3 org2000/0
=ds:Digestyalue=Z4RVYPDmdoAmc +IIuu-5MzEZe ks
=ids Reference>
=fds:Signedinfo=
BLES lugs=IIfHJzZh YR tweugsU)3+
TughZFyssOYyhGdHxPYCByHAUI BAYI3Rarfdhire Te
=ids:Signature=
;| =/soap:Hody=
“) |=isoap Envelope=
1 | ol

Figure 4.7. Resultant SOAP Message after Adding Digital Signature

The resultant SOAP message after adding digital signature is:

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<soap:Header/>

<soap:Body>

<item_name xsi:type="xsd:string">JXTA Book</item_name>
<price xsi:type="xsd:string">1000 $</price>

<card_name xsi:type="xsd:string">Visa</card_name>
<expiration xsi:type="xsd:string">10/04</expiration>

<xenc:EncryptedData

Type="http://www.w3.0rg/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0org/2001/04/xmlenc#">
<xenc:EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-

cbe"/>

<xenc:CipherData>

<xenc:CipherValue>wLdVyjsal XWta8OIFdOdO5SPIFfBQINZG500jibVHO+XwBqLExe4WN

cQPZVLIJjXTljRoltvsm

JaFzOOf7fm3NvZ+M8UATgo6vPLkE88ebrIQv0a3 YPNHajyFykIrJOgfDp++9QFRcdOyHU

mS+

3nl1w2xhofrw4dGGKW+/jIYB8 AkobpofcUX90OMv/ZuLxDurmxjDfR4q7ndmRg8XRVPBUT

NTSNh

63

kexZyJVMKDRUKYy/CLhaEImISIn2IFkwh2orDgfZJUyo5¢Y S+GFtjcZVz7cPOAXdKzIz+6U
76 jlIdfWo4usD591dFil3/K g==</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
<card_limit xsi:type="xsd:string">10000 $</card_limit>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-
signature"/>
<ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>7u8LIBJH4v/d2PnCZ4K+UM/IOAk=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue>HiLFROIJL4idhw1ddKLG9ZseUnmrNqgKYy3ubVAhB3qJNF+s8qwNq
+uU7FnlCk+Dp+U/CFpV

WakpfuOJIntTSfiFBLziPCpRdFr/T54EbkRSbsMmS5kvAhA96aiajooLJZnwmg4gADol1GGarus
gQI4U9DPs3cVEhqhhLLj+OqSQA=</ds:SignatureValue>
</ds:Signature>
</soap:Body>
</soap:Envelope>

To provide the security token information in the SOAP message, firstly, the
username-password token information is requested from the peer of
PeerGroup-3, which is running continuously to respond. The request message

for the username-password token information is:

<?xml version="1.0" encoding="utf-8"7>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<s:Body>
<wsse:RequestSecurityToken>
<wsse:TokenType>wsse:UserName</wsse:TokenType>
<wsse:RequestType>wsse:Reglssue</wsse:RequestType>
<wsse:Base>
<wsse:Reference URI="#peer2"/>
</wsse:Base>
</wsse:RequestSecurityToken>
</s:Body>
</s:Envelope>

64

The token information response message created by the peer of PeerGroup-3
is:
<?xml version="1.0" encoding="utf-8"7?>
<s:Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext"
xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility">
<s:Body>
<wsse:RequestSecurityTokenResponse>
<wsse:RequestedSecurityToken>
<wsse:UserNameToken
<wsse:Username>ilhami</wsse:Username>
<wsse:Password>ilhami78</wsse:Password>
</wsse:UserNameToken>
</wsse:RequestedSecurityToken>
</wsse:RequestSecurityTokenResponse>
</s:Body>
</s:Envelope>

The constructed SOAP message is extended with the received secret key
information by adding this information on the “soap:Header” element of the
SOAP message view after checking the security policy assertions stored in the
WS-SecurityPolicy compliant file if this action is allowed by the service
provider. Figure 4.8. denotes the resultant SOAP message content after
inserting security token information which is achieved by username-password

information mechanism:

65

e
WWSDL Schema - “|-Element Attributes || SOAP Message
[~ deiinitions ' l— =T soapEnvelope
OrderRequest f
@ [definitions fame i

@ CImessage - SIGN

[part
[part
[part
[part
[} part-- ENCRYPT
[part
3 il essage _Eneoat
& portType Sign
@[] hinding
@[senice M
Add
insert Token
Send
locate Secret Key
request Token |
2| XML Text
A} =7l version="1.0" encoding="UTF-8"?= -l
2} |=snap:Envelope
s0ap tyle="httpfischemas xmlsoap.of prencodin

xmins:soap="http.#schemas xmlsoap.org/soapienvelope
xminsxsd="hitp s w3, org2001XMLSchema® xminsxsi="htty
=goapHeaders
=Security=
=UserNameToken=
=UserMName=ilhami</UsarName=
<Passward=ilhami78</Passward=

=UserMameTokens=
=ISecuritys
=/soap:Header>
<soapBody-
3 | K |

|| @ Tsoap:Header

@ 7 Security
@ 3 UserNameToken
@ CIUseriame
D ilhami
@ O Password
[ithamizs

||| @ O3 soap:Body

@ O itern_nams
[JxTa Book

@ T price
Cy1o0s

@ [T card_narme
[visa

@ [expiration
[y 12105

@ [card_nurmber
D 1111 2222 3333 4444

@ [T card_limit
[100008

2

Figure 4.8. Resultant SOAP Message after Adding Username-Password Token

Information

The final SOAP message is:

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<soap:Header>
<Security>
<UserNameToken>
<UserName>ilhami</UserName>
<Password>ilhami78</Password>
</UserNameToken>
</Security>
</soap:Header>
<soap:Body>
<item_name xsi:type="xsd:string">JXTA Book</item_name>
<price xsi:type="xsd:string">1000 $</price>
<card_name xsi:type="xsd:string">Visa</card_name>
<expiration xsi:type="xsd:string">10/04</expiration>
<xenc:EncryptedData
Type="http://www.w3.0rg/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#">

<xenc:EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-

cbe"/>

66

<xenc:CipherData>
<xenc:CipherValue>Y stBEWHRXKXx2VboMrzwENXPqAJgA52by9dx VkI5qSFITNfOQPmM6
e0dYW1QbY7LfK9danRQf
5j4xyXGT7YSPKyWCycllzY w+J1YOVKX7xxSCb2KrvMsVPenHO+bZwPDRmYj8Ra3IcpX
TkcoGw
mQ-+Pal6UBuYcB3cRuMSu7WL6Hvsj50sXJ0tlpzzpDgWBW6RpG119P51905SECmTZhoqyQ
rZ8m
XtXxfwbZN4iQRWdASVIZRjLboKACVYSPQMktD8VIJspCHXR 1ZRBIHvKdockhnix2+/LA
h0tOn LzpHf9bh6aAn9jmkI38U/A==</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
<card_limit xsi:type="xsd:string">10000 $</card_limit>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315"/>
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-
signature"/>
<ds:Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>
<ds:DigestValue>1L365M10r20brde/TTozz/Y AMTc=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>RFBtZs6QbJvlj0onQK7urx8 XK TfoKL+0/I14F3HEB YufqoFHuT1SPjpQP
AqnXiui2wpjbXkOiO
GkjY3M1FsiFW6v3Bdl9ejNEaryhsZimJSS3Tmlu2UO0ZI8JQL4p XY UsZrx78Wv5zRWH2Prv
XW HCsGub1JsB2LVGGmikDHswKWxRI=</ds:Signature Value>
</ds:Signature>
</soap:Body>
</soap:Envelope>

The peer of PeerGroup-1 provides the user interface, denoted in Figure 4.9., in
order to process the security information available in the SOAP message
received from the peer of PeerGroup-2 by initially checking the obedience of

the security policies.

67

4 Secure Web Service Provider I 1Ol x|
=l version="1.0" encoding="TF-§ = | checking Security Policy:
=zoap:Envelope

soapencodingStyle="http:fschemal: confidentiality policy satisfied:
¥mins soap="htip:fschemas xmisol: card_number encrypted
sminsxsd="http: Mo w3, orgl2001)5
=z0ap:Headers inteqrity policy satisfied:
=Security= __fi_J soap:Body signed
=UserMameToken= :
=Usertame=ilhami<iUserti:
=Pagsward=ilhami7a=Pass{:
=flserMameToken=
=ISecurity=
=/s0apHeader=
=goap.Body=
=itern_namme xsitype="xsd:striny
=price ¥sitype="xsd:string"=100
=card_name xsitype="xsd:string
=expiration ksitype="4sd:string"= 1"
=xenc:EncryptedData :
Type="http.Massnar w3, orgr2001 12
=xenc:EncryptionMethod Algor
=xenc:CipherData=
=wencCipherfalue=nsLyYRdt
kLnopg3I7ofILBTOij482 35
1sDEGHEPH1 1 Flrs2usdz+)
HALIGAS Y IR DB Ty
=fxenc:.CipherData=
=fenc.EncryptedData=
=card_limit ¥sitype="xsd.string"=
=ds:Signature xmins:ds="http:
=ds:Signedinfos locate Secret Koy |
=ds:CanonicalizationMethod|_ | locate Public Key
=ds:Signaturedethod Algarith = | = ... - |
v validate Token
clear

Figure 4.9. Received Secure SOAP Message

Figure 4.10. denotes the process for verifying the digital signature applied to

the received message by the peer of PeerGroup-2.

Prior to the verification of the digital signature, the public key information for
the peer of PeerGroup-2 is located by requesting this key content from the peer

of PeerGroup-3. The public key information location request message is:

<?xml version="1.0" encoding="UTF-8"7?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<k:Locate xmlns:k="http://www.xkms.org/schema/xkms—-2001-
01-20">

68

<k:TransactionID>c41696b0-1f14-11d6-b840-
3beb2501bc66
</k:TransactionID>
<k:Query>
<d:KeyInfo
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:KeyName>peer2</d:KeyName>
</d:KeyInfo>
</k:Query>
<k :Respond>
<k:string>KeyName</k:string>
<k:string>KeyValue</k:string>
</k:Respond>
</k:Locate>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The public key information response message created by the peer of

PeerGroup-3 is:

<?xml version="1.0" encoding="UTF-8"7?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">"
<SOAP-ENV:Body>
<k:LocateResult
xmlns:k=\"http://www.xkms.org/schema/xkms-2001-01-20\">
<k:TransactionID>c41696b0-1f14-11d6-b840-
3beb2501bc66</k:TransactionID>
<Result>Success</Result>
<Answer>
<KeyInfo
xmlns="http://www.w3.0rg/2000/09/xmldsig#">
<KeyName>peer2</KeyName>
<RetrievalMethod
Type="http://service.xmltrustcenter.org/XKMS"
URI="XKMSpeer:xkms/Acceptor.nano"/>
<d:KeyValue
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:RSAKeyValue>
<d:Modulus>zYQky4msuOMYMM7d3npKhaoRdy9YkVcYAquZ7F2dt 3GCyRN4dhg3
v33cfOu8JRCW2DVTCctXSMRx4drCAOJQHO6WNXekViuvMrS/0S920esgsL7g5z00t
5JHW2FVT2Fci31uqJdDE4Pg/9hFbQs1JTnmZ fRskhjJtKpb80p5Sahcmtc=
</d:Modulus>
<d:Exponent xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">AQAB
</d:Exponent>
</d:RSAKeyValue>
</d:KeyValue>
</KeyInfo>
</LocateResult>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

69

4 Secure Web Service Provider i ;lglil

=2umlversion="1.0" encoding="UTF-§ Sighature: YERIFIED
=zoap:Envelope
soapencodingStyle="http:fschemal:
¥mins soap="htip:fschemas xmisol:
sminsxsd="http: Mo w3, orgl2001)5
=z0ap:Headers
=Security=
=UserMameToken= :
=Usertame=ilhami<iUserti:
=Pagsward=ilhami7a=Pass{:
=flserMameToken=
=ISecurity=
=/s0apHeader=
=goap.Body=
=itern_namme xsitype="xsd:striny
=price ¥sitype="xsd:string"=100
=card_name xsitype="xsd:string
=expiration ksitype="4sd:string"= 1"
=xenc:EncryptedData :
Type="http.Massnar w3, orgr2001 12
=xenc:EncryptionMethod Algor
=xenc:CipherData=

[»

=wencCipherfalue=nsLyYRdt
kLnopg3I7ofILBTOij482 35
1sDEGHEPH1 1 Flrs2usdz+)
HALIGAS Y IR DB Ty
=fxenc:.CipherData=
=fenc.EncryptedData=
=card_limit ¥sitype="xsd.string"=

=ds:Signature xmins:ds="httpJ
locate Secret K
=ds:Signedinfo= ocate Secret Key |

=ds:CanonicalizationMethod|_ | locate Public Key

=ds:Signaturedethod Algarith = | = ... - |

v validate Token
clear

check Palicy

4

Figure 4.10. Digital Signature Verification

Figure 4.11. denotes the process for decrypting the encrypted SOAP message
element that has been applied to the credit card number information in the

received message by the peer of PeerGroup-2.

Prior to decryption, the secret key information, that has been created by the
peer of PeerGroup-3 for the connection established between the peer of
PeerGroup-1 and the peer of PeerGroup-2, is located by requesting this key

content from the peer of PeerGroup-3.

70

4 Secure Web Service Provider 2 ;lglil

D

=mlversion="1.0" encoding="UTF-§ = =50ap:Bady=

=soapEnvelope =itern_name xsitype="xsd string"=Jx]|
soapencodingStyle="hitp:ischema =price ¥sitype="¥sd:string"=100 $=/p
¥mins:soap="http:f'schemas . xmlso =card_name xsitype="xsd: string"=4ig
xmingxsd="http i w3 orgf2001 =expiration xsitype="xsd:string"=1210

=50ap:Header= > <card_numbars
J 1111 2222 3333 4444

=Security=
=UserMameToken= =fcard_number=
=lserhame=ilhami=iUsert =card_limit xsitype="xsd:string"=100
=Password=ilhamiT8=/Pass =ds:Signature xmins: ds="hitp M
=zerMameToken= =ds:Sighedinfo=
=ISecurity= =ds:CanonicalizationMethod Alg
=/s0apHeader= =ds:SignatureMethiod Algorithirm
=g0ap:Body= =ds:Reference URI=""=
=itern_narme xsitype="xsd string" =dg Transforms=
=price ¥sitype="xsd:string"=100 § =ds Transfarm Algarithm="
=card_name xsitype="xsd string" =ds:Transform Algarithm="
=expiration ksitype="xsd:string"= =ids Transforms=
=xenc:EncryptedData =ds:Digestvethod Algarithm=
Type="http: e i argf 2001 1 =ds:Digestvalue=picwnwC Pk
=xenc:Encryptiondethod Algorid =fds:Reference=
=xenc:CipherData= =ids:Signedinfo=

=wencCiphervalue=nsLyYRdt =dg.Signaturevalue=Ms551kLTFy
kLnopg317elILBT0ij4 82 3 A MAFSdpxn48heEMBDI v
1sDEGHEPH1 1 Flrs2usdz+) =Ids:Signature=
HALIGAS Y IR DB Ty =fsoapBody=
=henc.CipherData= =Isoap Envelopes=
=fencEncryptedData= >
=card_limitxsitype="xsd:string"= 1 [»]

=ds:Signature xmins:ds="http: locate Secret Key |
=g Signedinfo=

=ds:CanonicalizationMethod|_ | locate Public Key
=ds:Signaturedethod Algarith = | = ... - |
| v validate Token

decrypt clear

verify check Policy

4

1]

Figure 4.11. Resultant SOAP Message after Decryption

Figure 4.12. denotes the process for validating the username security token

information inserted to the received message by the peer of PeerGroup-2.

Prior to the validation of the security token, the username token information for

the peer of PeerGroup-2 is located by requesting from the peer of PeerGroup-3.

71

4 Secure Web Service Provider

=2umlversion="1.0" encoding="UTF-§
=zoap:Envelope
soapencodingStyde="http Mischems
¥mins:soap="http:f'schemas . xmlso
sminsxsd="hitpMarwane w3, argf2001
=z0ap:Headers
=Security=
=UserMameToken=
=lserMame=ilhami=ilserh
=Password=ilhamiT8=/Pasg
=flserMameToken=
=ISecurity=
=/s0apHeader=
=goap.Body=
=itern_narme xsitype="xsd:string"
=price ¥sitype="xsd:string"=100 §
=card_name xsitype="xsd string"
=expiration ksitype="4sd:string"=
=xenc:EncryptedData
Type="http: e i argf 2001 1
=xenc:EncryptionMethod Algorit
=xenc:CipherData=

=wencCipherfalue=nsLyYRdt
kLnopg3I7ofILBTOij482 35
1sDEGHEPH1 1 Flrs2usdz+)
HALIGAS Y IR DB Ty
=fxenc:.CipherData=
=fenc.EncryptedData=
=card_limit ¥sitype="xsd.string"=
=ds:Signature xmins:ds="http:
=g Signedinfo=
=ds:CanonicalizationMethod

_sds:SignatureMethud Algaritl

4]

1

[»]

decrypt

verify

=0l]

Usertame: ilhami
FPasgword: ilhami7g
Token: WALIDATED

locate Secret Hey |

locate Public Key
validate Token
clear

check Policy

Figure 4.12. Security Token Validation

72

CHAPTER V

THE SATINE PROJECT INTEGRATION

The thesis work is realized as a part of the SATINE project which is funded by
the European Commission [24, 25, 26, 27, 28].

The SATINE project is aiming to develop a semantic-based interoperability
framework for the tourism industry. The framework provides tools and
mechanisms for publishing, discovering and invoking Web services through
their semantics in peer-to-peer networks, thus exploiting the synergies between
these two technologies. By means of the SATINE tools and infrastructure,
tourism companies, such as hotel chains, rent-a-car agencies and airline
companies, are able to:

e wrap their applications with Web services,

e enrich those services with semantic descriptions,

e publish them on the P2P network.

Service requestors, such as travel agencies, are able to discover services based
on their semantics, invoke them, combine simple travel services to complex

ones.

In order to be compliant with industry standards the Open Travel Alliance
(OTA) specifications are considered for the messages exchanged between the
trading partners. However OTA compliance is not enforced. Rather the

automated mapping of messages and functionalities are supported through the

73

use of appropriate ontologies. The infrastructure to be developed especially

addresses the difficulties of smaller companies in announcing their services.

The SATINE architecture provides a framework which is based on P2P
networks integrated with Service Registries. The architecture shown in Figure
5.1 enables searching, publishing, and invoking travel Web services in a

distributed environment.

ServiceRegistry
{ebXNML)

ServiceRegistry

(any) SATINE Peer Network

O

“Web Service

SATINEP2ZPNe twork
(SuperPeer Networl)

'WebSmriceWrapper

(ExecuteW3)
S . - | [SuperPeer
Swer gl _ | ISATINEP2PNetwork
Peer PeerGateway
| Peer Fepository

i FegistryWrapper

Web Service

ServiceRegistry

(UDDI)

D PeerGateway B Service Registry gg;‘;ii‘:&es‘f;frapper
D Registry\Wrapper ' Peer Repository O Weh Service

) [SATINEPZPMetwark i
‘ ISuperPeer O Super Peer

Figure 5.1. General Architecture

Peer

74

The network consists of three layers. The core layer is the super peer network
which is named as SATINE P2P Network. Super peers are responsible for
keeping the semantic routing tables and routing the messages which may be
queries, advertisements, Web Service invocation/result messages and some
other entities in the network. Super peers are connected each other via Super
Peer interface. The second layer is the peer network. Peers represent the users
of the SATINE architecture. This layer includes applications to help users in
integrating their business to SATINE, get connected with Super Peer Network

and to advertise and search services in SATINE.

Each peer is a travel service provider or requestor. Peers are connected to the
lower layer which is super peer network, with PeerGateway interface. Every
ingoing or outgoing function from/to peer is realized with use of this interface.
Peers are able to wrap some Service Registries or Web Services and inform the

remaining of the network from them.

Applications to wrap a Registry or a Web Service are included in the Peer
Network Layer. The set of wrapped sources which are the Registries and Web
Services defines the outmost layer. The Web Services may be already existing
Web Services or some Web Service constructed with the tools provided by
SATINE. Via the tools that will be provided it will be possible to wrap existing

resources such as databases as Web Services.

Each peer in the system, including super peers, has a central peer repository in
order to keep the temporary or persistent information for that peer. The
information about the wrapped sources, semantic information about the peer
such as the ontologies, and ontology mapping definitions, semantic routing
tables are all examples for the set of information to be kept in central peer
repositories. Peer repositories are totally different than business Service

Registries/Repositories. Peer repositories are ordinary databases where

75

information specific to a peer is kept in tables. Figure 5.2 shows the

deployment diagram for this architecture.

Web Service oL
P~ b
(Application Pear S
Server) Peer ‘egisry
Satine P 2P Metwork
Peer]
Super Peer Super Peer
Feer DDl
Registry

Figure 5.2. General Architecture Deployment Diagram

The Web Services and Registries in SATINE are advertised semantically to the
network when wrapped by a peer in the system. As the ontologies are the core
components for a semantic based architecture, the advertisements of Web
Services or Registries are annotated with ontologies. The ontologies are
previously deployed to the system. Applications in Peer Network Layer create
the advertisements and pass the advertisements to the Super Peer Network.
Super Peers update their semantic routing tables using these advertisements.

SATINE supports advertisements and queries in more than one ontologies.
Instead of a single global ontology, it supports more than one global ontologies

in the system, and provides way to map and translate semantically overlapping

entities between these ontologies. Tools to design mapping and applications to

76

translate between ontology instances are provided in Peers. Translation
mechanism provides translation services to whole SATINE platform, which
may be used by Peers or Super Peers. The system also provides the evolution

of the ontologies via again mappings and translations.

5.1. SATINE Network Security

As this thesis work is realized as a part of the SATINE project, the architecture
introduced with this work achieves the introduction of security implementation

for the P2P and Peer networks proposed with the SATINE project.

The functionalities of the super peers that constitute the SATINE P2P Network
are extended to act as the peers of PeerGroup-3, introduced within this work,
for the purpose of providing the XML Key Management and Security Token
Management services. Thus, the super peers introduced with the SATINE
project have also been dedicated to provide additional services of XKMS and

WS-Trust.

Similarly, the functionalities of the peers that constitute the SATINE Peer
Network are extended to act as the peers of PeerGroup-1 and PeerGroup-2,
introduced within this work, for the purpose of providing and invoking Web
services in a secure manner. This integration is achieved through the WS-
Security programming interface provided by this thesis work, including the
generation of asymmetric key pairs (public and private keys), the processing of
security assertions stored in WS-SecurityPolicy compliant files, and adding the
encryption and digital signature information on the specified element nodes of

the constructed messages.
The security mechanism is integrated to the SATINE network as follows:

e FEach peer of the SATINE Peer Network creates its own public and

private key pairs at start-up by the provided programming interface, and

77

sends the created public key to the trusted super peer of the SATINE
P2P Network, which is extended to provide XKMS service, conforming
to XKMS-registerPublicKeyRequest message. The sample structure of
the generated public-private key pairs through the provided
programming interface are as follows:

Public Key:
<?xml version="1.0" encoding="UTF-8"?>
<d:KeyInfo xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:KeyName>Public Key</d:KeyName>
<d:KeyValue xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:RSAKeyValue>

<d:Modulus>6L0B+NFIEDo5hwzQ+cggEZsFOLY YEtgj5jA8iltUc8 AMIOkwqlI8I3nv
AlEcOOcvUxBWPfcgghK1HDBYG15KX8zNaK84MMF3i9gqZSP11lewUKSO6bmnRaN
u2TBmpspvDGEalvBWEgnBFZgfIsTThIOhMCbWRZyqAPPlrsqnP2Mc=</d:Modulus>

<d:Exponent
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">AQAB</d:Exponent>
</d:RSAKeyValue>

</d:KeyValue>

</d:KeylInfo>

Private Key:

<?xml version="1.0" encoding="UTF-8"?>
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:KeyValue>
<xkms:RSAKeyPair xmlns:xkms="http://www.xkms.org/schema/xkms-
2001-01-20">

<xkms:Modulus>AOi9AfjRSBA60YcMOPnIIBGbBTpWGBLYI+YwWPIILVHPADC
NJMKiCPCN57wJRHDjnL1MQV;331IStRwwWBteSI/MzWivODDBd4vYKmUj9ZXsF
Ckjum5pOWjbtkwZgbKbwxhGpbw VhIJwWRWYHyLEyY SDoTAm1kWcqgDz5a7Kpz9jH
</xkms:Modulus>
<xkms:PublicExponent>AQAB</xkms:PublicExponent>

<xkms:PrivateExponent>ALbjsCUC8Iov9vz1SVK/VNOY 6ibJeO12B9/fj/IM6zR6eg9
QeHgyv2dxbix36KGeqkWvINWk2VrdslySQOpg0jeuapODYeXAYWLU2u2mxK+C32f
ovbyVrA17r6MYbr9qQCm1h+V8Tfa2004X/Kj6MOELqpWBUMOINRAGuKEi2Fvph</x
kms:PrivateExponent>

<xkms:P>APVTEOtjJc2jZh5/YVi9z0dVZIiECTok777bC0j/UXtZj44gT+QNNu7xGXr
oNccGE3k310+PQIMIXEopW8DAOTis=</xkms:P>

<xkms:Q>APLduLfaU376Sa7xK9SruaRVPwDcpNdVux57vI580LH80pxmzHSFTQ4
09B6dHplalXRmONAcGOyirdL8Y 1xH7dU=</xkms:Q>

<xkms:DP>AKR1QrQBDXCjn2vGfN3esLvjVgm+4CNDmNIuFUBRABq87+VjbkV
250nwSsRzCtVuWxDsISgyBkelLJZSz32SRS+0=</xkms:DP>

<xkms:DQ>ANiSuWP/pXDzgxtIRfrTf6dBFyb6vvMWIxQRO0xDY YEJU3dEJ/zuf10J]
NvoUt2qd46VPIEOeQVIC/aEA7t3jpj0=</xkms:DQ>

78

<xkms:QINV>AzcyEebjvHjDUhxoRo+cD7kX0aOkIVEmU6QNfQZNq6ExIkXrEf4
6vEDfD/Dfv9ZjvY 1JkJCu8GUSsRfx6x Glww==</xkms:QINV>
</xkms:RSAKeyPair>
</ds:KeyValue>
</ds:KeyInfo>

e The Web service invoking peer of the SATINE Peer Network requests
the secret key information from the trusted super peer of the SATINE
P2P Network, which is extended to provide XKMS service, for the
session with the Web service providing peer of the SATINE Peer
Network. The sample 24-bytes secret key generated through the
provided programming interface is:

Rz[10,IpOkuEsUpii; %o ?2ABSmA

e The trusted super peers of the SATINE P2P Network store the public
key information of the peers of the SATINE Peer Network, and
generate and store the secret key information by the provided
programming interface for the Web service invoking sessions of the
peers of the SATINE Peer Network.

e The Web service invoking peer of the SATINE Peer Network inserts
the encryption data based on the secret key information and the digital
signature to the constructed Web service message by the provided
programming interface. Encryption and signing operations are
performed according to the security policies of the Web service
providing peer of the SATINE Peer Network, and the provided
programming interface is used for this operation. The sample security
policy file that is processed to perform encryption and digital signature

can be denoted as:

<wsp:Policy xmlns:wsp="..." xmlns:wsse="...">
<wsse:Integrity wsp:Usage="wsp:Required">
<wsse:Algorithm Type="wsse:AlgSignature" />
<MessageParts>/InvokeMessage</MessageParts>
</wsse:Integrity>
<wsse:Confidentiality wsp:Usage="wsp:Required">
<wsse:Algorithm Type="wsse:AlgEncryption" />
<l--
MessageParts>/InvokeMessage/Instance/rdf:RDF/a:Airport</Message
Parts ——>

<MessageParts>/InvokeMessage/Instance</MessageParts>

79

</wsse:Confidentiality>
</wsp:Policy>

According to the policy assertions above, the original invoke message is to
be encrypted on the *“/InvokeMessage/Instance/rdf:RDF/a:Airport”
element, and the digital signature applied on the element
“/InvokeMessage’” is to be added to the resultant message after encryption.
As the following sample invoke message denotes, the messages exchanged

are in the form of RDF (Resource Description Framework) data:

<7xml version="1.0" encoding="UTF-8"?>
<InvokeMessage>
<Instance>
<rdf:RDF xml:base="file:/C:/codes/satine/docs/map/OTA1.rdf"

xmlns:a="http://www.srdc.metu.edu.tr/~yildiray/ontology/OTADomainOntology_v3.r
dfs#"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<a:BookingRequest rdf:ID="al"
a:bookingFlightNo="4437"
a:time="050904">
<a:hasCompany rdf:resource="#a2"/>
<a:bookingProperties rdf:resource="#a4"/>
<a:bookingTo rdf:resource="#a9"/>
<a:bookingFrom rdf:resource="#al1"/>
<a:hasPassenger rdf:resource="#a13"/>
</a:BookingRequest>
<a:Company rdf:ID="a2"
a:name="TK">
<a:contact rdf:resource="#a3"/>
</a:Company>
<a:Contact rdf:ID="a3"
a:address="METU"
a:email="yildiray @srdc.metu.edu.tr"
a:phone="2102076"
a:fax="2101004">
</a:Contact>
<a:Booking rdf:ID="a4"
a:bookingClass="Y"
a:designCode="">
<a:inCabin rdf:resource="#a5"/>

</a:Booking>
<a:Cabin rdf:ID="a5"

a:cabinType="">

<a:hasSeat rdf:resource="#a6"/>
</a:Cabin>

<a:Seat rdf:ID="a6">
<a:assignedTo rdf:resource="#a7"/>

</a:Seat>

<a:Person rdf:ID="a7"
a:personName="YILDIRAY">
<a:contactInfo rdf:resource="#a8"/>

80

</a:Person>

<a:Contact rdf:ID="a8"
a:address=""
a:email=""
a:phone=
a:fax="">

</a:Contact>

<a:City rdf:ID="a9"
a:cityname="IST">
<a:hasAirport rdf:resource="#al0"/>

</a:City>

<a:Airport rdf:ID="al0"
a:airportCode="IST">

</a:Airport>

<a:City rdf:ID="all"
a:cityname="PAR">
<a:hasAirport rdf:resource="#al2"/>

</a:City>

<a:Airport rdf:ID="a12"
a:airportCode="ORY">

</a:Airport>

<a:Person rdf:ID="al3"
a:personName="KABAK">
<a:contactInfo rdf:resource="#al4"/>

</a:Person>

<a:Contact rdf:ID="a14"

a:address=""
a:email=""
a:phone=""
a:fax="">
</a:Contact>
</rdf:RDF>

</Instance>

<OwlsURI>

</OwlIsURI>

<WsdlURI>http://www.srdc.metu.edu.tr/~yildiray/amadeus3.wsdl</WsdlURI>
</InvokeMessage>

The resultant secure message achieved after applying the operations of
encryption and digital signature on the elements defined in the security

policy file is as follows:

<InvokeMessage>
<Instance>
<rdf:RDF xml:base="file:/C:/codes/satine/docs/map/OTA1.rdf"
xmlns:a="http://www.srdc.metu.edu.tr/~yildiray/ontology/OTADomainOntology_v3.rdfs#
" xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<a:BookingRequest a:bookingFlightNo="4437" a:time="050904"
rdf:ID="al">
<a:hasCompany rdf:resource="#a2"/>
<a:bookingProperties rdf:resource="#a4"/>
<a:bookingTo rdf:resource="#a9"/>
<a:bookingFrom rdf:resource="#al1"/>

81

<a:hasPassenger rdf:resource="#a13"/>
</a:BookingRequest>
<a:Company a:name="TK" rdf:ID="a2">
<a:contact rdf:resource="#a3"/>
</a:Company>
<xenc:EncryptedData
Type="http://www.w3.0rg/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#"><xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>AmHYIwsuAPAw4PCa02qSkn1Dg95zSsh
35WcBnpUr3uaXb2w0VrD4eFcWcOM1ztB4BECfWal6

1PUdjRpnu3eG68j+twDMG442iRJf00/gNLCm1iiKXIFA+I+cvV8AzSO0rTP3dLHum/
D9cglé6l

L7ANRrXrd7s9gMV8+C9;EO7DLy1F1gL7mSHI2FbUInsoPn0yXdUOB/2x+HKT37
vxENHCI93t

CJnZFsLy0IK9yy] 7tBbC7azJX5zK/irQIEEoCjVM47vE478DfOuhdFr+HmmQ4GpA
SzuagKER

FWDp0A02Sg+0NKOOrby7ca+K2EMWWIWS5GFJQV VIeEkJ3i+Guc1BXh41FulJK
o/bol8vbplct
vH8=</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
<a:Booking a:bookingClass="Y" a:designCode="" rdf:ID="a4">
<a:inCabin rdf:resource="#a5"/>
</a:Booking>
<a:Cabin a:cabinType="" rdf:ID="a5">
<a:hasSeat rdf:resource="#a6"/>
</a:Cabin>
<a:Seat rdf:ID="a6">
<a:assignedTo rdf:resource="#a7"/>
</a:Seat>
<xenc:EncryptedData
Type="http://www.w3.0rg/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#"><xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>BPm8kR5gKyHkFPylh5g616dab3qQwM+
5/GZbQ164R55EulovtQ9Y tkeuSUKwROUqHy00jGmf

pvrQw VkpFrucfMtdc1vP+19eTC6TR550g6Rbmbl/uaNq+6 VMt5zJhNCMtMT7hJ40
T6VAgHAS

OSEXzUES80pZuKNuONaH8RsM+29MHk9g YIAUObIVzKaOaQBFShgQ5PnZL.65
sIQxyiill TUKwx

zs5UolQCvHfocWoCsx14ew73h/sx8SsRLKAEbIZbPiSYZ/MNT7SbWd6pWBmSOZ
SEYsIdI6XO

VOON3fxUmiYOJKrZuXoR/J9bcgdLWcx+hgdboPuPKHA=</xenc:CipherValue>

</xenc:CipherData>
</xenc:EncryptedData>

82

<xenc:EncryptedData
Type="http://www.w3.0rg/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0org/2001/04/xmlenc#"><xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>wFHE/G40QT 1x9nxgSZsFBL2bJ X 6ssbw
MZPo6CLx0s5+WfWuOgdizPPFVENyd70cVbV+3jCPO

OLkVj2wWOGcCIbUhV9umbviW8GL14X0aXLAg48QD3/uwz0sE6kiOu3GzqTHy
QRmZ/d6pY;jP3

2fqPXmx58Xi9SKXCiFnKPA7cYsinZ+09n20SPk8uDgm AkslxHhOq/5tDU5ZsuFeR
FLpal THf

+HNXwjD5yxu+8wK/NktIFj/qV luzcZgqyPY AxuJU7yBoNxGdGUif7Yi+/Efo3DhTtc
ObaoAU

6e6VDnb3aSqC4u3hxxaD0Q==</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
<a:City a:cityname="IST" rdf:ID="a9">
<a:hasAirport rdf:resource="#al0"/>
</a:City>
<a:Airport a:airportCode="IST" rdf:ID="al0">
</a:Airport>
<a:City a:cityname="PAR" rdf:ID="al1">
<a:hasAirport rdf:resource="#al2"/>
</a:City>
<a:Airport a:airportCode="ORY" rdf:ID="a12">
</a:Airport>
<xenc:EncryptedData
Type="http://www.w3.0org/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#"><xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>XXLatS7TQOEZWnE/nbdt36MVpw45b/Hb
0ik7aKt2uM86C3RQjeNEJPD00abd5SCKYHwTBchSIE

j+zFtAZCd+HIPY3AxpVQ7Crn/INjGzZrwlhggUBzwEvpTMsTsgEaCj9gmEPcy7Jo
ygWdo99Z7

e3xK22SMT9moifvilwOZEDWEIufBzbfJKgqb1+IqzbyXnUKYfcypl V2NDVhRMTq
ypQO2XV1k

6tkzZpyVVBE4kNIOVfAZSWOKNEklg/nHADiYFZ66ItESpoK7EOJoBoW68p3/6fiH
XvbnCynbU

hLa3aYjmWcud1CRwvgjRzOuLImMbF32XmlLv9SpeiGZA=</xenc:CipherValue>
</xenc:CipherData>

</xenc:EncryptedData>

<xenc:EncryptedData
Type="http://www.w3.0org/2001/04/xmlenc#Element"
xmlns:xenc="http://www.w3.0org/2001/04/xmlenc#"><xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-
cbc"/><xenc:CipherData><xenc:CipherValue>InQSWIZuEdOisesE7waiTEeRcBpFDNIlo
2THHh2SnVVamEaPc78nqFFnZgn50x74uxJ5jnYO

83

1YC2nbJ0jV3DVqVkqvn27UMUx 1y2F5Q6Lc71dYOB83HIR3m7k4 XKK+UVt0w0z
okd50lrAQQ+

g4xJFOLmJDxhWaJHyLHRPi6/uf VOLXX{NIORwzbf9ppBW3Q7cPEXSEOfMm9BN
CKyOJSFNFtb

imN4ibzef038NYFSmtCPilwIhwLt98UOdbY v/wFSRESFPHLhOKvDSIBimDJEDj
MtKhpkvRyf

tOBpiR+fi2I6M0OQ/NV4Hvw==</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</rdf:RDF></Instance><OwlIsURI>
</OwlsURI>
<WsdlURI>http://www.srdc.metu.edu.tr/~yildiray/amadeus3.wsdl</WsdlURI>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
<ds:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"/>
<ds:Reference URI="">
<ds:Transforms>
<ds:Transform
Algorithm="http://www.w3.0rg/2000/09/xmldsig#enveloped-signature"/>
<ds:Transform
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</ds:Transforms>
<ds:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>

<ds:DigestValue>Hk2vomCsc+G7h8kBFZdUx/qTuHU=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>

<ds:SignatureValue>PKxFIVRKwOGM7rblaVuUmgEdOuO5n1HF91aSuEHWcEy64
MsdhYu45qQ2QQZNh4QmCKf5AaUw

4UigbUl6umex+KZGn2rkicc/rHMuAh46UIEIdpHarmJ+ne Y wmC65EncEXbA65/+b
Cuhlni/J

pzxpJP30TK1mwFNTPJr6DVwFGJ8=</ds:SignatureValue>
</ds:Signature>
</InvokeMessage>

e Having received the secure Web service message, the Web service
providing peer of the SATINE Peer Network requests the secret key
information from the trusted super peer of the SATINE P2P Network,
which is extended to provide XKMS service, for the session with the

Web service invoking peer of the SATINE Peer Network, and requests

84

the public key information of the same peer conforming to XKMS-
locatePublicKeyRequest message.

The Web service providing peer of the SATINE Peer Network verifies
the digital signature based on the public key information, and decrypts
the encrypted data based on the security key information by the
provided programming interface.

Having executed the Web service, the Web service providing peer of
the SATINE Peer Network constructs the Web service response
message, and inserts the encryption data based on the same secret key
information as the one requested and inserts the digital signature based
on its own private key information by the provided programming
interface.

The Web service invoking peer of the SATINE Peer Network verifies
the digital signature based on the public key information, and decrypts
the encrypted data based on the security key information so that this

peer can reach the Web service execution result in a secure manner.

85

CHAPTER VI

RELATED WORK

Web services security is an important research and development area, and

several building blocks and standards have been proposed for this topic.

[23] proposes such a mechanism that is achieved over the Internet. This
mechanism, introduced by VeriSign, performs XML Key Management
Specification interface as a Web service built on the protocol http (hyper-text
transfer protocol) and provides a framework for the implementation of WS-

Security.

JXTA framework has introduced its own security mechanism [22], which
provides whole message integrity and confidentiality only among the
communicating peer pairs, and exploits the technology Transport Layer
Security (TLS). Hence, the security mechanism introduced by the JXTA
framework does not provide a solution required for the exploitation of Web
services. For the Web services technology, a more complex mechanism is
required in order to involve all the peers (Web service providing, invoking and
intermediary peers) within the peer-to-peer network by conforming to the well-

accepted specifications introduced for Web services security.

86

[14] presents the description of a proposed strategy for addressing security
within a Web service environment. The proposed architecture is benefitted in
this thesis work in order to bring together the security token management and
XML Key Management services by delegating these responsibilities to a group

of peers acting as a trusted third party for the other peers.

[8], [9], and [10] describe the structures that the XML security technology
relies on. These descriptions are exploited within the thesis work to achieve the
implementation of the framework that provides the programming interface of

WS-Security to be used by the peers.

87

CHAPTER VII

CONCLUSION AND FUTURE WORK

In order to be able to exploit the Web service technology to its full potential,
the specifications related with Web services security should be used in Web

service implementations.

In this thesis, realizing the increasing popularity of peer-to-peer computing and
the efforts of Project JXTA to provide solutions for peer-to-peer networks, a
peer-to-peer approach for providing secure Web service implementation is
proposed. For this purpose, the specifications WS-Security, WS-Trust, WS-
SecurityPolicy, and XML Key Management Specification are exploited, and
brought together with the JXTA framework in order to achieve the introduced

system.

The thesis work is realized as a part of the SATINE project funded by the
European Commission. The objective of the project is to develop a secure
semantic-based interoperability framework for exploiting Web service
platforms in conjunction with peer-to-peer networks for the travel industry.
This thesis work contributes to the project by enabling the deployment and
invocation of Web services in a secure manner in peer-to-peer networks, which

is one of the aims of the SATINE project.

88

There exists a number of issues left as future work, which are:

The mechanism for distributing the security policy files of Web service
providing peers among the Web service invoking peers, which is also
currently missing in the specification WS-SecurityPolicy.

Providing the mechanism and implementation of reliable SOAP
messaging among the Web service providing and Web service invoking
peers, which is defined by the WS-Reliability specification.

Extending the introduced system to conform to the other specifications
built on the specification WS-Security, which are WS-Privacy defining
the preferences and practices of Web services, WS-SecureConversation
enabling the SOAP messaging to act like a connection-based approach
so that repeating the authentication and policy negotiation is not
required for every SOAP message, WS-Authorization defining how
Web services manage authorization policies, and WS-Federation

enabling associations between security domains.

&9

[1]
(2]

(3]

[4]

[5]

[6]

(71

[8]

[9]

[10]

[11]

[12]

REFERENCES

World Wide Web Consortium, http://www.w3.org

Web Service Description Language (WSDL), March 2001,
http://www.w3.org/TR/wsdl

Simple Object Access Protocol (SOAP), June 2003,
http://www.w3.org/TR/SOAP

Universal Description, Discovery, and Integration (UDDI),
http://www.uddi.org

Project IXTA, http://www.jxta.org

Milojicic D., Kalogeraki V., Lukose R., Nagaraja K., Pruyne J., Richard
B., Rollins S., Xu Z., “Peer-to-peer Computing”, HP Laboratories Palo
Alto, March 2002

Li Gong, “JXTA: A Network Programming Environment”, Sun
Microsystems, June 2001

Simon E., Madsen P., Adams C., “An Introduction To XML Digital
Signatures”, August 2001

Mactaggart M., “Enabling XML Security”, IBM DeveloperWorks,
September 2001

Salz R., “Understanding XML Digital Signature”, Microsoft
Corporation, July 2003

Seely S., “Understanding WS-Security”, Microsoft Corporation,
October 2002

Atkinson B., Della-Libera G., Hada S., Hondo M., Hallam-Baker P.,
Kaler C., Klein J., LaMacchia B., Leach P., Manferdelli J., Maruyama
H., Nadalin A., Nagaratnam N., Prafullchandra H., Shewchuk J., Simon

90

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

D., “Web Services Security Version 1.07, IBM & Microsoft &
VeriSign, April 2002

Geer D., “Taking Steps To Secure Web Services”, IEEE Computer,
October 2003

Joint white paper, “Security In a Web Services World: A Proposed
Architecture and Roadmap”, IBM Corporation & Microsoft
Corporation, April 2002

Anderson S., Bohren J., Boubez T., Chanliau M., Della-Libera G.,
Dixon B., Garg P., Gravengaard E., Gudgin M., Hallam-Baker P.,
Hondo M., Kaler C., Lockhart H., Martherus R., Maruyama H., Mishra
P., Nadalin A., Nagaratnam N., Nash A., Philpott R., Platt D.,
Prafullchandra H., Sahu M., Shewchuk J., Simon D., Srinivas D.,
Waingold E., Waite D., Zolfonoon R., “Web Services Trust Language
Version 1.17, BEA Systems, Computer Associates International, IBM,
Layer 7 Technologies, Microsoft, Netegrity, Oblix, OpenNetwork
Technologies, Ping Identity, Reactivity, RSA Security, VeriSign,
Westbridge Technology, May 2004

Box D., Curbera F., Hondo M., Kaler C., Langworthy D., Nadalin A.,
Nagaratnam N., Nottingham M., Riegen C., Shewchuk J., “Web
Services Policy Framework”, BEA Systems, IBM, Microsoft, SAP,
May 2003

Della-Libera G., Hallam-Baker P., Hondo M., Janzcuk T., Kaler C.,
Maruyama H., Nadalin A., Nagaratnam N., Nash A., Philpott R.,
Prafullchandra H., Shewchuk J., Waingold E., Zolfonoon R., “Web
Services Security Policy Language Version 1.0”, IBM, Microsoft, RSA
Security, VeriSign, December 2002

Skonnard A., “Understanding WS-Policy”, Skonnard Consulting,
August 2003

Nagappan R., Skoczylas R., Sriganesh R., “Developing Java Web
Services”, John Wiley & Sons, 2003

Dournaee B., “XML Security”, McGraw-Hill/Osborne, 2002

91

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Gradecki J., “Mastering JXTA: Building Java Peer-to-Peer
Applications”, John Wiley & Sons, 2002

“Security and Project JXTA”, Sun Microsystems, January 2002

The VeriSign Company, http://www.verisign.com

The SATINE Project,
http://www.srdc.metu.edu.tr/webpage/projects/satine/

Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Kirbas S., Gurcan
Y., “Semantically Enriched Web Services for the Travel Industry”,
ACM Sigmod Record, Vol. 33, No. 3, September 2004

Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Tumer A,
“SATINE Project: Exploiting Web Services in the Travel Industry”,
eChallenges 2004 (e-2004), October 2004

SATINE Consortium, Demo, “SATINE Project: A Semantically-
enriched Web Service Platform for the Travel Industry”, eChallenges
2004 (e-2004), October 2004

Flugge M., Tourtchaninova D., “Ontology-derived Activity
Components for Composing Travel Web Services”, The International
Workshop on Semantic Web Technologies in Electronic Business

(SWEB2004), October 2004

92

APPENDIX A

DESCRIPTION FILES OF THE WEB SERVICES

The WSDL description file of the XML Key Management Web service, which

is provided by the peers of PeerGroup-3, is presented as follows:

<?xml version="1.0"?>

<definitions name="XMLKeyManagement"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:s="http://www.w3.0rg/2000/10/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20"
xmlns:tns="http://www.xkms.org/schema/xkms-2001-01-20"
targetNamespace="http://www.xkms.org/schema/xkms-2001-01-20">

<types>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
targetNamespace="http://www.w3.0rg/2000/09/xmldsig#"
version="0.1" elementFormDefault="qualified">
<!-- Basic Types Defined for Signatures —-->
<simpleType name="CryptoBinary">
<restriction base="base64Binary">
</restriction>

</simpleType>

<!-- Start Signature -->

93

<element name="Signature" type="ds:SignatureType"/>
<complexType name="SignatureType">
<sequence>
<element ref="ds:SignedInfo"/>
<element ref="ds:SignaturevValue"/>
<element ref="ds:KeyInfo" minOccurs="0"/>
<element ref="ds:0bject" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>

<element name="SignatureValue" type="ds:SignatureValueType"/>
<complexType name="SignatureValueType">
<simpleContent>
<extension base="base64Binary">
<attribute name="Id" type="ID" use="optional"/>
</extension>
</simpleContent>
</complexType>

<!-— Start SignedInfo —-—>

<element name="SignedInfo" type="ds:SignedInfoType"/>
<complexType name="SignedInfoType">
<sequence>
<element ref="ds:CanonicalizationMethod"/>
<element ref="ds:SignatureMethod"/>
<element ref="ds:Reference" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>

<element name="CanonicalizationMethod"
type="ds:CanonicalizationMethodType"/>
<complexType name="CanonicalizationMethodType" mixed="true">
<sequence>
<any namespace="##any" minOccurs="0"
maxOccurs="unbounded" />
<!-— (0,unbounded) elements from (1,1) namespace ——>
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>

<element name="SignatureMethod"
type="ds:SignatureMethodType" />
<complexType name="SignatureMethodType" mixed="true">
<sequence>
<element name="HMACOutputLength" minOccurs="0"
type="ds:HMACOutputLengthType" />
<any namespace="##other" minOccurs="0"
maxOccurs="unbounded" />
<!-— (0,unbounded) elements from (1l,1) external namespace
——>
</sequence>
<attribute name="Algorithm" type="anyURI" use="required"/>

94

</complexType>
<!-— Start Reference -->

<element name="Reference" type="ds:ReferenceType"/>
<complexType name="ReferenceType">
<sequence>
<element ref="ds:Transforms" minOccurs="0"/>
<element ref="ds:DigestMethod"/>
<element ref="ds:DigestValue"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
<attribute name="URI" type="anyURI" use="optional"/>
<attribute name="Type" type="anyURI" use="optional"/>
</complexType>

<element name="Transforms" type="ds:TransformsType"/>
<complexType name="TransformsType">
<sequence>
<element ref="ds:Transform" maxOccurs="unbounded"/>
</sequence>
</complexType>

<element name="Transform" type="ds:TransformType"/>
<complexType name="TransformType" mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>

<!-- (1,1) elements from (0,unbounded) namespaces ——>
<element name="XPath" type="string"/>
</choice>

<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>

<!-- End Reference —-->

<element name="DigestMethod" type="ds:DigestMethodType"/>
<complexType name="DigestMethodType" mixed="true">

<sequence>

<any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="Algorithm" type="anyURI" use="required"/>
</complexType>

<element name="DigestValue" type="ds:DigestValueType"/>
<simpleType name="DigestValueType">
<restriction base="base64Binary"/>

</simpleType>
<!-- End SignedInfo —--—>
<!-— Start KeyInfo ——>

<element name="KeyInfo" type="ds:KeyInfoType"/>

<complexType name="KeyInfoType" mixed="true">

95

<sequence>
<!-- <element ref="ds:KeyName"/> ——>
<element ref="ds:KeyName"/>
<element ref="ds:KeyValue"/>
<element ref="ds:RetrievalMethod"/>
<element ref="ds:X509Data"/>
<element ref="ds:PGPData"/>
<element ref="ds:SPKIData"/>
<element ref="ds:MgmtData"/>
<any processContents="lax" namespace="##other"/>
<!-— (1,1) elements from (0,unbounded) namespaces —-—>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>

<element name="KeyName" type="string"/>
<element name="MgmtData" type="string"/>

<element name="KeyValue" type="ds:KeyValueType"/>
<complexType name="KeyValueType" mixed="true">
<choice>

<element ref="ds:DSAKeyValue"/>

<element ref="ds:RSAKeyValue"/>

<any namespace="##other" processContents="lax"/>
</choice>
</complexType>

<element name="RetrievalMethod"
type="ds:RetrievalMethodType"/>
<complexType name="RetrievalMethodType">
<sequence>
<element name="Transforms" type="ds:TransformsType"
minOccurs="0"/>
</sequence>
<attribute name="URI" type="anyURI"/>
<attribute name="Type" type="anyURI" use="optional"/>
</complexType>

<!-— Start X509Data -->

<element name="X509Data" type="ds:X509DataType"/>
<complexType name="X509DataType">
<sequence maxOccurs="unbounded">
<choice>
<element name="X509IssuerSerial"
type="ds:X509IssuerSerialType" />
<element name="X509SKI" type="base64Binary"/>
<element name="X509SubjectName" type="string"/>
<element name="X509Certificate" type="base64Binary"/>
<element name="X509CRL" type="base64Binary"/>
<any namespace="##other" processContents="lax"/>
</choice>
</sequence>
</complexType>

<complexType name="X509IssuerSerialType">

96

<sequence>
<element name="X509IssuerName" type="string"/>
<element name="X509SerialNumber" type="integer"/>
</sequence>

</complexType>
<!-— End X509Data —-—>
<!-- Begin PGPData -->

<element name="PGPData" type="ds:PGPDataType"/>
<complexType name="PGPDataType">
<choice>
<sequence>
<element name="PGPKeyID" type="base64Binary"/>
<element name="PGPKeyPacket" type="base6t4Binary"
minOccurs="0"/>
<any namespace="##other" processContents="lax"
minOccurs="0"
maxOccurs="unbounded" />
</sequence>
</choice>
</complexType>

<!-- End PGPData —-—>
<!-- Begin SPKIData -->

<element name="SPKIData" type="ds:SPKIDataType"/>
<complexType name="SPKIDataType">
<sequence maxOccurs="unbounded">
<element name="SPKISexp" type="base64Binary"/>
<any namespace="##other" processContents="lax"
minOccurs="0"/>

</sequence>
</complexType>
<!-- End SPKIData -->
<!-- End KeyInfo --—>
<!—-— Start Object (Manifest, SignatureProperty) -->

<element name="Object" type="ds:0ObjectType"/>
<complexType name="ObjectType" mixed="true">

<sequence minOccurs="0" maxOccurs="unbounded">

<any namespace="##any" processContents="lax"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

<attribute name="MimeType" type="string" use="optional"/> <!-
- add a grep facet -->

<attribute name="Encoding" type="anyURI" use="optional"/>
</complexType>

<element name="Manifest" type="ds:ManifestType"/>
<complexType name="ManifestType">

97

<sequence>
<element ref="ds:Reference" maxOccurs="unbounded"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>

<element name="SignatureProperties"
type="ds:SignaturePropertiesType"/>
<complexType name="SignaturePropertiesType">

<sequence>

<element ref="ds:SignatureProperty" maxOccurs="unbounded"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>
</complexType>

<element name="SignatureProperty"
type="ds:SignaturePropertyType" />
<complexType name="SignaturePropertyType" mixed="true">
<choice maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>
<!-— (1,1) elements from (1,unbounded) namespaces —-->
</choice>
<attribute name="Target" type="anyURI" use="required"/>
<attribute name="Id" type="ID" use="optional"/>

</complexType>
<!-- End Object (Manifest, SignatureProperty) —--—>
<!-- Start Algorithm Parameters -->

<simpleType name="HMACOutputLengthType">
<restriction base="integer"/>
</simpleType>

<!-— Start KeyValue Element-types —-->

<element name="DSAKeyValue" type="ds:DSAKeyValueType"/>
<complexType name="DSAKeyValueType">
<sequence>
<sequence minOccurs="0">
<element name="P" type="ds:CryptoBinary"/>
<element name="Q" type="ds:CryptoBinary"/>
</sequence>
<element name="J" type="ds:CryptoBinary" minOccurs="0"/>
<element name="G" type="ds:CryptoBinary" minOccurs="0"/>
<element name="Y" type="ds:CryptoBinary"/>
<sequence minOccurs="0">
<element name="Seed" type="ds:CryptoBinary"/>
<element name="PgenCounter" type="ds:CryptoBinary"/>
</sequence>
</sequence>
</complexType>

<element name="RSAKeyValue" type="ds:RSAKeyValueType"/>
<complexType name="RSAKeyValueType">

98

<sequence>
<element name="Modulus" type="ds:CryptoBinary"/>
<element name="Exponent" type="ds:CryptoBinary"/>

</sequence>
</complexType>
<!-- End KeyValue Element-types -->
<!-— End Signature -—-—>
</schema>

<schema attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.xkms.org/schema/xkms-2001-01-20"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<import namespace="http://www.w3.0rg/2000/09/xmldsig#"/>
<element name="Recover" type="xkms:RecoverType"/>
<element name="Revoke" type="xkms:RevokeType"/>
<element name="Locate" type="xkms:LocateType"/>
<element name="Register" type="xkms:RegisterType"/>
<element name="Validate" type="xkms:ValidateType"/>
<element name="RegisterResult"
type="xkms:RegisterResultType"/>
<element name="RecoverResult"
type="xkms:RecoverResultType"/>
<element name="RevokeResult" type="xkms:RevokeResultType"/>
<element name="LocateResult" type="xkms:LocateResultType"/>
<element name="ValidateResult"
type="xkms:ValidateResultType"/>
<complexType name="LocateType">
<sequence>
<element minOccurs="0" name="TransactionID"
type="string"/>
<element name="Query" type="xkms:KeyInfoType"/>
<element minOccurs="0" name="Respond"
type="xkms:RespondType" />
</sequence>
</complexType>
<complexType name="LocateResultType">
<sequence>
<element minOccurs="0" name="TransactionID"
type="string"/>
<element name="Result" type="xkms:ResultCodeType"/>
<element minOccurs="0" name="Answer"
type="xkms:LocateResultAnswerType"/>
<element minOccurs="0" name="ErrorInfo"
type="xkms:ErrorInfoType"/>
<element maxOccurs="1" minOccurs="0"
ref="ds:Signature"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>
</complexType>
<complexType name="ValidateType">

<sequence>

<element name="Query" type="xkms:KeyBindingType"/>

99

<element minOccurs="0" name="Respond"
type="xkms:RespondType" />
</sequence>
</complexType>
<complexType name="ValidateResultType">
<sequence>
<element name="Result" type="xkms:ResultCodeType"/>
<element minOccurs="0" name="Answer"
type="xkms:ValidateResultAnswerType"/>
<element minOccurs="0" name="ErrorInfo"
type="xkms:ErrorInfoType"/>
<element maxOccurs="1" minOccurs="0"
ref="ds:Signature"/>

</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
<complexType name="ValidateResultAnswerType">
<sequence>

<element name="KeyBinding"
type="xkms:KeyBindingType"/>
</sequence>
</complexType>
<complexType name="RegisterType">
<sequence>
<element name="Prototype" type="xkms:KeyBindingType"/>
<element name="AuthInfo" type="xkms:AuthInfoType"/>
<element name="Respond" type="xkms:RespondType"/>
</sequence>
</complexType>
<complexType name="RegisterResultType">
<sequence>
<element name="Result" type="xkms:ResultCodeType"/>
<element minOccurs="0" name="Answer"
type="xkms:RegisterResultAnswerType"/>
<element minOccurs="0" name="Private"
type="xkms:PrivateType" />
<element minOccurs="0" name="ErrorInfo"
type="xkms:ErrorInfoType"/>
<element maxOccurs="1" minOccurs="0"
ref="ds:Signature"/>

</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
<complexType name="RegisterResultAnswerType">
<sequence>

<element name="KeyBinding"
type="xkms:KeyBindingType" />
</sequence>
</complexType>
<complexType name="RecoverType">
<sequence>
<element ref="xkms:Register"/>
</sequence>
</complexType>
<complexType name="RecoverResultType">
<sequence>

100

<element ref="xkms:RegisterResult"/>
</sequence>
</complexType>
<complexType name="RevokeType">
<sequence>
<element ref="xkms:Register"/>
</sequence>
</complexType>

<complexType name="PrivateType">
<sequence>
<any maxOccurs="unbounded" processContents="lax"
minOccurs="0" namespace="##any"/>
</sequence>
<anyAttribute namespace="##any" processContents="lax"/>
</complexType>

<complexType name="RevokeResultType">
<sequence>
<element ref="xkms:RegisterResult"/>
</sequence>
</complexType>
<complexType name="ErrorInfoType">
<sequence>
<element name="ErrorDescription" type="string"/>
<element minOccurs="0" name="ErrorActor"
type="string"/>
<element minOccurs="0" name="ErrorDetail"
type="xkms:ErrorDetailType"/>
</sequence>
<attribute name="errorCode" type="string"
use="required"/>

</complexType>
<complexType name="ErrorDetailType">
<sequence>
<any namespace="#f#other" processContents="strict"/>
</sequence>

<anyAttribute namespace="##other"
processContents="strict"/>
</complexType>
<simpleType name="ErrorCodeType">
<restriction base="string">
<enumeration value="Client"/>
<enumeration value="Server"/>
<enumeration value="Client.MalformedKeyNamePassed"/>
<enumeration value="Client.InvalidPassPhraseAuth"/>
<enumeration value="*"/>
</restriction>
</simpleType>
<complexType name="KeyBindingType">
<sequence>
<element minOccurs="0" name="TransactionID"
type="string"/>
<element name="Status"
type="xkms:AssertionStatusType" />

101

<element maxOccurs="unbounded" minOccurs="0"
name="KeyID" type="string"/>
<element minOccurs="0"
<element minOccurs="0"
type="string"/>
<element minOccurs="0"
type="xkms:ProcessInfoType"/>
<element minOccurs="0" name="ValidityInterval"
type="xkms:ValidityIntervalType"/>
<element maxOccurs="unbounded" minOccurs="0"
name="KeyUsage" type="xkms:KeyUsageType"/>
<element minOccurs="0" name="Private"
type="xkms:PrivateType"/>
</sequence>
<attribute name="Id" type="ID" use="optional"/>
</complexType>
<complexType name="KeyInfoType">
<sequence>
<element ref="ds:KeyInfo"/>
</sequence>
</complexType>
<complexType name="RespondType">
<sequence>
<element maxOccurs="unbounded"
name="string" type="xkms:RespondEnum" />
</sequence>
</complexType>
<simpleType name="RespondEnum">
<restriction base="string">

ref="ds:KeyInfo"/>
name="PassPhrase"

name="ProcessInfo"

minOccurs="0"

<enumeration value="KeyName"/>

<enumeration value="KeyValue"/>
<enumeration value="X509Cert"/>
<enumeration value="X509Chain"/>

<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration
<enumeration

value="X509CRL" />
value="0OCSp"/>
value="RetrievalMethod" />
value="MgmtData"/>
value="PGPData"/>
value="PGPWeb" />
value="SPKIData"/>
value="Multiple"/>

<enumeration value="Private"/>
<enumeration value="ValidityInterval"/>
<enumeration value="KeyUsage"/>
<enumeration value="Status"/>
<enumeration value="SignedResult"/>
</restriction>
</simpleType>
<complexType name="LocateResultAnswerType">
<sequence>

<element maxOccurs="unbounded" minOccurs="0"
ref="ds:KeyInfo"/>
</sequence>
</complexType>
<simpleType name="ResultCodeType">

<restriction base="string">

102

<enumeration value="Success"/>
<enumeration value="NoMatch"/>
<enumeration value="NotFound"/>
<enumeration value="Incomplete"/>
<enumeration value="Failure"/>
<enumeration value="Refused"/>
<enumeration value="Pending"/>
</restriction>
</simpleType>
<simpleType name="AssertionStatusType">
<restriction base="string">
<enumeration value="Valid"/>
<enumeration value="Invalid"/>
<enumeration value="Indeterminate"/>
</restriction>
</simpleType>
<complexType name="ProcessInfoType">
<sequence maxOccurs="unbounded" minOccurs="0">
<any namespace="##other"/>
</sequence>
</complexType>
<complexType name="ValidityIntervalType">
<sequence>
<element minOccurs="0" name="NotBefore"

type="timeInstant"/>

<element minOccurs="0" name="NotAfter"

type="timeInstant"/>

</sequence>
</complexType>
<simpleType name="KeyUsageType">
<restriction base="string">
<enumeration value="Encryption"/>
<enumeration value="Signature"/>
<enumeration value="Exchange"/>
</restriction>
</simpleType>
<complexType name="AuthInfoType">
<choice>
<element name="AuthUserInfo"

type="xkms:AuthUserInfoType"/>

<element name="AuthServerInfo"

type="xkms:AuthServerInfoType"/>

</choice>
</complexType>
<complexType name="ProofOfPossessionType">
<sequence>
<element minOccurs="0" ref="ds:Signature"/>
</sequence>
</complexType>
<complexType name="KeyBindingAuthType">
<sequence>
<element minOccurs="0" ref="ds:Signature"/>
</sequence>
</complexType>
<complexType name="AuthUserInfoType">
<sequence>

103

<element minOccurs="0" name="ProofOfPossession"

type="xkms:ProofOfPossessionType"/>
<element minOccurs="0" name="KeyBindingAuth"
type="xkms:KeyBindingAuthType" />
<element minOccurs="0" name="PassPhraseAuth"
type="string"/>
</sequence>
</complexType>
<complexType name="AuthServerInfoType">
<sequence>
<element minOccurs="0" name="KeyBindingAuth"
type="xkms:KeyBindingAuthType" />
<element minOccurs="0" name="PassPhraseAuth"
type="string"/>
</sequence>
</complexType>
</schema>
</types>

<message name="Register">
<part name="body" element="xkms:Register"/>
</message>

<message name="RegisterResult">
<part name="body" element="xkms:RegisterResult"/>
</message>

<message name="Validate">
<part name="body" element="xkms:Validate"/>
</message>

<message name="ValidateResult">
<part name="body" element="xkms:ValidateResult"/>
</message>

<message name="Locate">
<part name="body" element="xkms:Locate"/>
</message>

<message name="LocateResult">
<part name="body" element="xkms:LocateResult"/>
</message>

<portType name="KeyServicePortType">
<operation name="Register">
<input message="tns:Register"/>
<output message="tns:RegisterResult"/>
<fault message="tns:RegisterResult"/>
</operation>

<operation name="Validate">
<input message="tns:Validate"/>
<output message="tns:ValidateResult"/>
<fault message="tns:ValidateResult"/>
</operation>

104

<operation name="Locate">
<input message="tns:Locate"/>
<output message="tns:LocateResult"/>
<fault message="tns:LocateResult"/>
</operation>
</portType>

<binding name="KeyServiceSoapBinding"
type="tns:KeyServicePortType">
<soap:binding
transport="http://schemas.xmlsoap.org/soap/http"
style="document"/>

<operation name="Register">
<soap:operation
soapAction="http://www.xkms.org/schema/xkms-2001-01-
20#Register" style="document"/>
<input message="tns:Register">
<soap:body parts="body" use="literal"/>
</input>
<output message="tns:RegisterResult">
<soap:body parts="body" use="literal"/>
</output>
</operation>

<operation name="Validate">
<soap:operation
soapAction="http://www.xkms.org/schema/xkms-2001-01-
20#Validate" style="document"/>
<input message="tns:Validate">
<soap:body parts="body" use="literal"/>
</input>
<output message="tns:ValidateResult">
<soap:body parts="body" use="literal"/>
</output>
</operation>

<operation name="Locate">
<soap:operation
soapAction="http://www.xkms.org/schema/xkms-2001-01-20#Locate"
style="document"/>
<input message="tns:Locate">
<soap:body parts="body" use="literal"/>
</input>
<output message="tns:LocateResult">
<soap:body parts="body" use="literal"/>
</output>
</operation>
</binding>

<binding name="KeyServiceHttpPostBinding"
type="tns:KeyServicePortType">
<http:binding verb="POST"/>

<operation name="Register">
<http:operation location="xkms/Acceptor.nano"/>

105

<input message="tns:Register">
<mime:content parts="body" type="text/xml"/>
</input>
<output message="tns:RegisterResult">
<mime:content parts="body" type="text/xml"/>
</output>
</operation>

<operation name="Validate">
<http:operation location="xkms/Acceptor.nano"/>
<input message="tns:Validate">
<mime:content parts="body" type="text/xml"/>
</input>
<output message="tns:ValidateResult">
<mime:content parts="body" type="text/xml"/>
</output>
</operation>

<operation name="Locate">
<http:operation location="xkms/Acceptor.nano"/>
<input message="tns:Locate">
<mime:content parts="body" type="text/xml"/>
</input>
<output message="tns:LocateResult">
<mime:content parts="body" type="text/xml"/>
</output>
</operation>
</binding>

<service name="XMLKeyManagementService">
<documentation>Verisign's XML Key Management Service
(XKMS) </documentation>

<port name="KeyServiceSoapPort"
binding="tns:KeyServiceSoapBinding">
<soap:address
location="http://xkms.verisign.com/xkms/Acceptor.nano"/>
</port>

<port name="KeyServiceHttpPostPort"
binding="tns:KeyServiceHttpPostBinding">
<http:address location="http://xkms.verisign.com/"/>
</port>
</service>

<service name="PilotXMLKeyManagementService">
<documentation>Verisign's Pilot XML Key Management
Service (XKMS)</documentation>

<port name="KeyServiceSoapPort"
binding="tns:KeyServiceSoapBinding">
<soap:address location="http://pilot-
xkms.verisign.com/xkms/Acceptor.nano"/>
</port>

106

<port name="KeyServiceHttpPostPort"
binding="tns:KeyServiceHttpPostBinding">
<http:address location="http://pilot-—
xkms.verisign.com/"/>
</port>
</service>
</definitions>

The WSDL description file of the Security Token Management Web service,

which is provided by the peers of PeerGroup-3, is presented as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="HelloService"

targetNamespace="http://www.ecerami.com/wsdl/HelloService.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.ecerami.com/wsdl/HelloService.wsdl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<message name="SayHelloRequest">

<part name="firstName" type="xsd:string"/>
</message>
<message name="SayHelloResponse">

<part name="greeting" type="xsd:string"/>
</message>

<portType name="Hello_PortType">
<operation name="sayHello">
<input message="tns:SayHelloRequest"/>
<output message="tns:SayHelloResponse"/>
</operation>
</portType>

<binding name="Hello_Binding" type="tns:Hello_PortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sayHello">
<soap:operation soapAction="sayHello"/>
<input>
<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:examples:helloservice"
use="encoded" />
</input>
<output>
<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="urn:examples:helloservice"
use="encoded" />

107

</output>
</operation>
</binding>

<service name="Hello_Service">
<documentation>WSDL File for HelloService</documentation>
<port binding="tns:Hello_Binding" name="Hello_Port">
<soap:address

location="http://localhost:8080/soap/servlet/rpcrouter"/>
</port>
</service>
</definitions>

The WSDL description file of the Purchase Order Web service, which is
provided by the peers of PeerGroup-1 for the demonstrational purpose and
invoked by the peers of PeerGroup-2 in a secure manner, is presented as

follows:

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="OrderService"
targetNamespace="http://ilhami/wsdl/OrderService.wsdl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ilhami/wsdl/OrderService.wsdl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<message name="OrderRequest">
<part name="item_name" type="xsd:string"/>
<part name="price" type="xsd:string"/>
<part name="card_name" type="xsd:string"/>
<part name="expiration" type="xsd:string"/>
<part name="card_number" type="xsd:string"/>
<part name="card_limit" type="xsd:string"/>
</message>
<message name="OrderResponse">
<part name="status" type="xsd:string"/>
</message>

<portType name="Order_PortType">
<operation name="orderRequest">
<input message="tns:0OrderRequest"/>
<output message="tns:0OrderResponse"/>
</operation>
</portType>

<binding name="Order_Binding" type="tns:0rder_PortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="orderRequest">
<soap:operation soapAction="orderRequest"/>

108

<input>
<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:examples:orderservice"
use="encoded"/>
</input>
<output>
<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:examples:orderservice"
use="encoded"/>
</output>
</operation>
</binding>

<service name="Order_Service">
<documentation>WSDL File for OrderService</documentation>
<port binding="tns:0rder_Binding" name="Order_Port">
<soap:address

location="http://localhost:8080/soap/servlet/rpcrouter"/>
</port>
</service>
</definitions>

109

APPENDIX B

FORMATS OF SOAP MESSAGES FOR WEB SERVICES
INVOCATION

The sample formats of the XML Key Management Web service that denote the

public key location request and response are presented in Chapter III. The

following SOAP message format represents the revocation request for some

public key information:

<?xml version="1.0" encoding="UTF-8"7?>

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<k:Register xmlns:k="http://www.xkms.org/schema/xkms—
2001-01-20">
<k:Prototype Id="refId_ 1">

<k:TransactionID>cde285f0-1f14-11d6-b840-
3beb2501bc66</k:TransactionID>

<k:Status>Invalid</k:Status>

<d:KeyInfo
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">

<d:KeyValue
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:RSAKeyValue>

<d:Modulus>rlc2VJ+acRnigpF8dh5N2qyUY¥Okne5C257v5Rmel13KG14B7SmAa3

40uBBicdx2RkfyHpWOg3Nm/1Y7h8UY1+Cw==</d:Modulus>
<d:Exponent

xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">AQAB</d:Exponent>

</d:RSAKeyValue>
</d:KeyValue>

110

</d:KeyInfo>

<k:PassPhrase>SxbPA0gihONsrYU8ji+gWOhwy7c=</k:PassPhrase>
</k:Prototype>
<k:AuthInfo>
<k:AuthUserInfo/>
</k:AuthInfo>
<k :Respond>
<k:string>KeyName</k:string>
<k:string>KeyValue</k:string>
</k:Respond>
</k:Register>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As for the response of the revocation request above, the following SOAP

message format represents the revocation response for public key information:

<?xml version="1.0" encoding="UTF-8"7?>

<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<RegisterResult Id="refId_ 0"
xmlns="http://www.xkms.org/schema/xkms-2001-01-20"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">
<Result>Success</Result>
<Answer>
<KeyBinding>
<TransactionID>cde285f0-1f14-11d6-b840~-
3beb2501bc66</TransactionID>
<Status>Invalid</Status>

<KeyID>http://xkms.verisign.com/key?company=VeriSigné& depart
ment=XKMS Test& CN=N100055
XKMSTEST& issuer_serial=85dfdl4e8cdecbdadeec353cadc7blo96</Ke
yID>

<KeyInfo
xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<KeyName>http://xkms.verisign.com/key?company=VeriSigné& depa
rtment=XKMS Test& CN=N100055
XKMSTEST& issuer_serial=85dfdl4e8cdecbd4adeec353cadc7bl96</Ke
yName>

<RetrievalMethod
Type="http://service.xmltrustcenter.org/XKMS"
URI="http://xkms.verisign.com/xkms/Acceptor.nano"/>

<d:KeyValue
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">

<d:RSAKeyValue>

111

<d:Modulus>AK5XN1SfmnEZ4qgqRfHYeTdgs1lGDpJ3uQtue7+UZntdyhpeAelpgG
t+NLgQYnHcdkZH8h6VtKtzZv4mO4 fFGNfgs=</d:Modulus>
<d:Exponent>AQAB</d:Exponent>
</d:RSAKeyValue>
</d:KeyValue>
<dsig:X509Data
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<dsig:X509IssuerSerial>
<dsig:X509IssuerName>CN=VeriSign Class
2 OnSite Individual TEST CA, OU=For Test Purposes Only,
OU=VeriSign Class 2 OnSite Individual CA,
O=VeriSign</dsig:X509IssuerName>

<dsig:X509SerialNumber>113123383192473107369800977913946522846<
/dsig:X509SerialNumber>
</dsig:X509IssuerSerial>
<dsig:X509SubjectName>CN=nl100055 xkmstest,
OU="www.verisign.com/repository/CPS Incorp. by
Ref.,LIAB.LTD (c) 96", OU=XKMS Test,
0=VeriSign</dsig:X509SubjectName>

<dsig:X509SKI>MFwwDQYJK0oZIhvcNAQEBBQADSWAWSAJBAKSXN1SfmnEZ4ggRE
HYeTdgslGDpJd3uQtue7+UZntdyhpeAeOpgGt+NLgQYnHcdkZH8hoVtKtzZv4mO4
fFGNfgsCAWEAAQ==</dsig:X509SKI>

<dsig:X509Certificate>MIIDVTCCAV+gAwWIBAgIQVRrFZ3hUx80XAVXjzrtE3
jANBgkghkiG9wOBAQQFADCBMTERMABGAIUEChMIVMVyaVNpZ24xLIjASBgNVBAST
JVZ1lcmlTaWduIENsYXNzIDIgT25TaXR1IE1uZGl2aWR1YWwgQOExHZAdBgNVBAS
TFkZvciBUZXNOIFBlcnBvc2VzIE9ubHkxMzAxBgNVBAMTK1Z1lcml TaWduIENsYX
NzIDIgT25TaXR1IE1uZGl2aWR1YWwgVEVTVCBDQTAeFwOwMjAyMTEWMDAWMDBaF
wOwMzAYMTEyMzUSNT1aMIGKMREwWDwYDVQQKFAhWZXJpU21nb JjESMBAGA1UECXQJ
WEtNUyBUZXNOMUYWRAYDVQQLEz13d3cudmVyaXNpZ24uY¥29tL3J1lcG9zaXRvenk
VQIBTIE1uY29ycC4g¥nkgUmVmLixMSUFCLkxURCh jKTk2MRkwFwYDVQQDExBuUMT
AwMDU1IHhrbXNOZXNOMFwwDQYJKoZIhvcNAQEBBQADSWAWSAJBAKSXN1SfmnEZ4
ggRfHYeTdgs1lGDpJ3uQtue7+UZntdyhpeAeOpgGt+NLgQYnHcdkZH8h6VLKt zZv
4mO4 fFGNfgsCAWEAAAOCAS4wggEqMAKGALIUdEWQCMAAWgawGA1UdIASBpDCBOTC
BngYLYIZIAYb4RQEHAQEWgY4wKAYIKwYBBQUHAgEWHGhOdHBZz018vd3d3LnZlcm
1zaWduLmNvbS 9DUFMwYgY IKwYBBQUHAGIWV JAVEGSWZXJpU21nbiwgSW5 L jADA
gEBGJj1WZXJpU21nbidzIENQUyBpbmNvcnAuIGIS5IHI1ZmVyZW5jZSBsaWFiLiBs
dGQUIChjKTk3IFZ1lcmlTaWduMAsSGAlUdDWQEAwWIFoDARBglghkgBhvhCAQEEBAM
CB4AWTgYDVROfBECWRTBDoOEGgP4Y9aHR0OcDovL3BpbG90b25zaXR1Y3JsLlnZlcm
1zaWduLmNvbS9Pb1NpdGVQdWIsaWMvTGF0ZXNOQ1 IMLmNybDANBgkghkiGOwOBA
QQFAANBAIt+n2Y6AKeZIrQlyLR30Z2u8dGpM9%adltUzgldluJ4oltONT4pEFrTLbO
2t fqWBBKYQoLaz+9QY1lcZ1ljoMISLWzw=</dsig:X509Certificate>
</dsig:X509Data>
</KeyInfo>
</KeyBinding>
</Answer>
<dsig:Signature
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<dsig:SignedInfo
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<dsig:CanonicalizationMethod
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>

112

<d:SignatureMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal"
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#" />
<dsig:Reference URI="#refId_0O"
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<dsig:Transforms
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<d:Transform
Algorithm="http://www.w3.0rg/2000/09/xmldsigf#enveloped-
signature" xmlns:d="http://www.w3.0rg/2000/09/xmldsig#"/>
<dsig:Transform
Algorithm="http://www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</dsig:Transforms>
<dsig:DigestMethod
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"/>

<dsig:DigestValue>ReUiRRD0O8Ss+U80hs7JgURex9rM=</dsig:DigestValu
e>
</dsig:Reference>
</dsig:SignedInfo>
<dsig:SignatureValue
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">NTsEaNecScTO0JIWx
Bl16F7WizXh8ptDkilkSxeUgI00Obv/gRdeTPReA1LRZaVWg7DPMTxt 63UgcI10hG
e/ezpO0fv4leHZ3+pDV2WLY1yxnbpIYVtegDOYGTpbw0Jjb/H3ZrBrhJUqvF4g3e
SYwczBP j8R1JHbgCEz6M/CNoPafY8c=</dsig:SignaturevValue>
<dsig:KeyInfo
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#">
<d:KeyValue
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">
<d:RSAKeyValue>

<d:Modulus>ANjDODMOmcCOOEhYC4X551U6q/78RHWF+cZHMMSYTa3HJKLcmpQ/
XaWpPDH7JQ9VIQ8QyAT3x1+4Me/LYIMt /VAKBb+gEHx 9DRpWMY3T85JYIGEvHBI
d4k35RBoFBAK8Dg5kvEpaBL2hgsxPxJeln0KxDeHu/8bKt07zd9E9Vn3H</d: Mo
dulus>
<d:Exponent
xmlns:d="http://www.w3.0rg/2000/09/xmldsig#">AQAB</d:Exponent>
</d:RSAKeyValue>
</d:KeyValue>
</dsig:KeyInfo>
</dsig:Signature>
</RegisterResult>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

113

