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ÖZ 

 
ÜSTEL DÖNME MATRİSLERİ ARACILIĞI İLE 

UZAYSAL MEKANİZMALARIN SENTEZİ 
 
 

FARİBORZ SOLTANİ 
 

Makine Mühendisliği Bölümü 
Baş Danõşman : Prof. Dr. Eres Söylemez 

Yardõmcõ Danõşman : M. Kemal. Özgören 
 

Ocak 2005 
 

     Bu tezin büyük bir kõsmõ uzaysal mekanizmalarõn yörünge ve hareket 

üretimi sentezine adanmõştõr. İlk kez  üstel dönme matrisleri aracõlõğõyla bir 

kinematik sentez metodu ortaya konulmuştur. Ayrõca küresel, silindrik ve 

Hook gibi uzaysal eklemler , döner ve kayar eklemlerin bileşimi biçiminde 

modellenerek  ve Denavit-Hartenberg kuralõnõ kullanarak, tüm alt kinematik 

çift içeren uzaysal mekanizmalarõn yörünge ve hareket üretiminin sentezi 

için genel döngü kapanõm denklemleri sunulmuştur. Mevcut sentez 

metodlarõyla kõyasladõğõmõzda, bu tezde sunulmuş olan metodun en aşikar 

avantajõ, ortaya konulmuş olan döngü kapanõm denklemlerinin, tüm alt 

kinematik çift içeren uzaysal mekanizmalarda kullanõşlõ olmasõdõr. Ayrõca bu 

metodda tasarõmcõ üstel dönme matrisleri cebirinin avantajlarõndan 

faydalanabilir. 

 

     Bu tezde sunulmuş olan sentez yönteminin kullanõşlõ olduğunu göstermek 

için RSHR, RCCR ve RSSR-SC mekanizmalarõnõn döngü kapanõm 

denklemleri elde edilmiş, bu denklemleri kullanarak 6 sayõsal örnek 

çözülmüştür. Döngü kapanõm denklemleri esas alõnarak, bu mekanizmalarõn 
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kinematik sentezinde tanõmlanabilecek noktalarõn ve konumlarõn sayõsõ 

hakkõnda faydalõ bilgiler tablolar biçiminde sunulmuştur.  

 

      Sayõsal örneklerde mekanizmalar, tezde elde edilmiş olan döngü 

kapanõm denklemleri esas alõnarak, çözülmüştür. Bazõ örneklerde yarõ 

analitik çözümler elde edilse de, örneklerin çoğunda döngü kapanõm 

denklemleri Mathcad�le yazõlmõş olan programlarla çözülmüştür. Her 

sayõsal örneğin sonunda girdi-çõktõ açõlarõnõn diyagramõ çizilmiş ve 

dallanmanõn engellenmiş olduğu gösterilmiştir. Yazõlmõş olan bilgisayar 

programlarõ hakkõnda detaylõ bilgi verilmiş, denklemleri çözerken  ortaya 

çõkabilecek sorunlar tartõşõlmõş, çözümler üretilmiştir.  

 

     Yukarõda belirlenmiş olan mevzulara ilaveten, RCCR mekanizmasõnõn 

üzerinde bir hareket kabiliyeti analizi yapõlmõştõr ve uzuv uzunluklarõna 

bağlõ olan eşitsizlikler elde edilmiştir. RCCR mekanizmasõnõn salõnõm 

açõsõnõn diyagramõ da çizilmiştir. 

 

Anahtar kelimeler : Kinematik Sentezi, Uzaysal Mekanizma, Üstel 

Deveran Matrisleri , Döngü Kapanma Denklemleri.    
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ABSTRACT 
 
KINEMATIC SYNTHESIS OF SPATIAL MECHANISMS 

USING ALGEBRA OF EXPONENTIAL ROTATION  
MATRICES 

 
FARIBORZ SOLTANI 

 
M.S. , Department of Mechanical Engineering  

Supervisor : Prof. Dr. Eres Söylemez 
Cosupervisor : Prof. Dr. M. Kemal Özgören 

 
January 2005  

 
 

     The major part of this thesis has been devoted to path and motion 

generation synthesis of spatial mechanisms. For the first time kinematic 

synthesis methods have been presented based on the algebra of exponential 

rotation matrices. Besides  modeling spatial pairs such as spheric , cylindric 

and Hook�s joints by combinations of revolute and prismatic joints and 

applying Denavit-Hartenberg�s convention , general loop closure equations 

have been presented for path and motion generation synthesis of any spatial 

mechanism  with lower kinematic pairs. In comparison to the exsisting 

synthesis methods the  main advantage of the methods presented in this 

thesis is that , general loop closure equations have been presented for any 

kind of spatial linkage consisting of lower kinematic pairs. Besides  these 

methods enable the designer to benefit the advantages of the algebra of 

exponential rotation matrices. 

 

     In order to verify the applicability of the synthesis methods presented in 

the thesis , the general loop closure equations of RSHR , RCCR and RSSR-SC 
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mechanisms have been determined and then using these equations six 

numerical examples have been solved. Some tables have been presented 

based on the determined loop closure equations which reveal useful 

information about the number of precision points or positions that can be 

considered for the kinematic synthesis of the above mentioned mechanisms 

and the number of free parameters.  

 

     In  numerical examples , the mechanisms have been synthesized based on 

the general loop closure equations and the synthesis algorithms presented in 

the thesis.  Although in some cases semi-analytical solutions have been 

obtained,  in most of the cases, the loop closure equations were solved by 

computer programs written by Mathcad. The input angle-output angle 

diagrams drawn at the end of each numerical example illustrate the motion 

continuity of the mecahnisms and that branching has been avoided. Detailed 

information has been given about the computer programs and the difficulties 

which may arise while synthesizing spatial mechanisms.  

  

     In addition to the above mentioned points, a mobility analysis has been 

done for the RCCR mechanism and some inequalities have been obtained in 

terms of the link lengths. The swing angle diagram of the RCCR linkage has 

been drawn too.   

 

Key words : Kinematic Synthesis , Spatial Mechanism , Algebra of 

Exponential Rotation Matrices, Loop Closure Equations.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1) GENERAL 
 

     Most of the mechanical linkages used in various machines and 

instruments are planar mechanisms. However there are many cases where 

spatial motion is needed. A mechanism whose motion is not limited to a 

fixed plane is considered to be spatial. Like planar mechanisms , spatial 

mechanisms are useful for generating various paths , motions , functions , or 

for transfering force and torque. Some spatial mechanisms have been 

illustrated in figures (1.1) to (1.3) . 

 

 

 

                                                          
 

 
Figure (1.1) : Railway signal mechanism. A function generator (ref.29) . 
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Figure (1.2) : Lens polishing machine. A motion generator (ref.29) . 

 

 
 

 

 

Figure (1.3) : Dough kneeding mechanism. A path generator (ref.29) 
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     While there are only two types of lower kinematic joints in planar 

mechanisms , spatial mechanisms consist of various joint types. However the 

motion caused by any spatial joint can be modeled by a combination of 

revolute and prismatic joints. The following figure illustrates some spatial 

joints and their equivalent P-R (prismatic-revolute) combinations. 

                                                         

 
 

Figure (1.4) : Cylindric and spheric joints and their equivalent P-R combinations. 
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                                                                                                         θns =  
                        

                                                                             

Figure (1.5) : A screw joint and its equivalent P-R combination. 

 

     In order to present general loop closure equations for any spatial linkage 

with lower kinematic pairs, in this thesis all spatial joints have been replaced 

by their equivalent P-R combinations.  Thus applying Denavit-Hartenberg�s 

convention , the author succeeded to present general loop closure equations 

in chapter two. These equations can be applied to any spatial linkage with 

lower kinematic pairs.  
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1.2) KINEMATIC SYNTHESIS 
 

     In the kinematic synthesis of a mechanism the designer aims to synthesize 

a mechanism whose dimensions satisfy the desired motion of one of its links. 

There are three types of kinematic synthesis problems, Motion Generation , 

Path Generation and Function Generation. In motion generation synthesis the 

aim is to design a mechanism with a floating link passing through prescribed 

positions. In path generation synthesis it is desired to synthesize a 

mechanism so that some point on one of its floating links passes through 

prescribed points. In function generation synthesis , rotation or sliding 

motion of input and output links are correlated. 

 

     The major part of this thesis has been devoted to path and motion 

generation synthesis of spatial linkages and new methods of synthesis have 

been presented based on the algebra of exponential rotation matrices. This 

algebra has been described in detail by M.K.Özgören (ref.1,2). The properties 

of the algebra of exponential rotation matrices have been presented in the 

second chapter of this thesis too. 
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1.3) LITERATURE SURVEY 

 
     So far many analytical methods have been presented for kinematic 

synthesis of spatial mechanisms. Novodvorski (ref.7) formulated the function 

generation synthesis problem of the RSSR mechanism whose axes of ground 

pivots were skewed and nonintersecting. Rao et al (ref.9)used the principle of 

linear super position to synthesize several function generation mechanisms 

for the maximum number of precision points. Wilson (ref.10) derived the 

relationships to calculate centerpoint and spheric point curves for guiding a 

rigid body by means of an R-S link. Roth (ref.13) investigated the loci of 

special lines and points associated with spatial motion . Roth and Chen 

(ref.14,15) and Roth (ref.11,12) proposed a general theory for computing the 

number and locus of points in a rigid body in finite or infinitesimal motion. 

Sandor (ref.16) and Sandor and Bisshopp (ref.17) introduced methods of dual 

number , quaternions  and stretch rotation tensors to find loop closure 

equations of spatial mechanisms . Suh (ref.18,19) employed 4 by 4 matrices 

for the synthesis of spatial mechanisms  where design equations are 

expressed as constraint  equations in order to obtain constrained motion. 

Kohli and Soni (ref.20,21) employed matrix methods to synthesize spherical 

four link and six link mechanisms for multiply separated positions of a rigid 

body in spherical motion. Alizade et al (ref.23,24) described the basis for a 

new method of type synthesis with the use of single loop structural groups 

having zero degrees of freedom. Jimenez et al (ref.26) used a set of fully 

Cartesian coordinates to describe a mechanism by a set of geometric 

constraints and introduced the design requirements by a set of functional 

constraints and finally  Shih and  Yan (ref.25) presented a synthesis method 

for the rigid body guidance between two prescribed positions based on 

descriptive  geometry. 
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1.4) MOTIVATION 
 

     Up to now many mathematical methods such as the algebra of complex 

numbers , the algebra of dual numbers , quaternions , screw algebra and the 

algebra of exponential rotation matrices have been used to develop the 

theory of kinematics. The algebra of exponential rotation matrices which is 

an efficient and elegant tool for working with matrice equations  has been 

used in the analysis of robot manipulators (ref.1,2,4,6) and spatial 

mechanisms (ref.5) . However so far no body has used the algebra of 

exponential rotation matrices for the purpose of synthesis in an official text. 

Since the author of this thesis had worked with this mathematical tool when 

analyzing serial robot manipulators and he was fully aware of its fantastic 

capabilities , he decided to use it for synthesizing spatial mechanisms for the 

first time. 

     

      Most of the synthesis methods presented for synthesizing spatial 

mechanisms describe general synthesis techniques but not general formulas. 

In this thesis , using the algebra of exponential rotation matrices and 

Denavit-Hartenberg�s convention the author succeeded to present general 

formulas for the path and motion generation synthesis of spatial mechanisms 

which can be applied to both single and multiloop spatial mechanisms . The 

synthesis methods  presented in this thesis , enable the mechanism designer 

to benefit the advantages of the algebra of exponential rotation matrices. 

Besides in these methods the designer directly deals with link lengths and 

link angles which make more sense while in some other synthesis methods 

(ref. 18,19,26) the designer works with X,Y and Z coordinates. 

 

     Three spatial mechanisms have been chosen as examples in the thesis . 

The first mechanism is an RSHR linkage which is a simple single loop spatial 
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mechanism and was chosen just for its simplicity and in order to explain how 

the synthesis methods are applied to a single loop spatial mechanism. The 

second mechanism is an RCCR linkage which is an overconstrained 

mechanism . This mechanism was selected because of its constraints  and 

their effects on the synthesis procedure of the mechanism. The last example 

is an RSSR-SC linkage which is a two-loop spatial mechanism. It was chosen 

to verify that the synthesis methods and formulas presented in the thesis are 

appliable to multiloop linkages too.       
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CHAPTER TWO 

MATHEMATICAL TOOLS AND 
CONVENTIONS 

 

2.1) GENERAL 

 

     Analysis and synthesis of spatial mechanisms always require solving 

nonlinear equations which are usually lengthy and complicated.The usual 

mathematical methods like matrix and vector algebra can be used for 

analyzing and synthesizing mechanisms but since these usual methods are 

time consuming, mechanism designers have tried to develope more efficient 

mathematical methods in kinematics . Among the various developed 

methods the following methods are noteworthy, 

 

1) METHOD OF COMPLEX NUMBERS 

     This method was developed by  Coolidge[1940] , Zwikker[1950] , 

Morley[1954] and Beris[1958]. Although some interesting results were found 

in the method  the fact is that it is quite limited to planar motion (ref.28). 

 

2) ALGEBRA OF DUAL NUMBERS 

     This algebra was introduced by Clifford[1850] and it was systematically 

applied to kinematics by Kotelnikov[1895] . It can be applied to both planar 

and spatial kinematics (ref.28). 

 

3) ALGEBRA OF QUATERNIONS 

     Algebra of quaternions is an elegant tool to describe spherical 

displacements and has been used by Blaschke[1960] and H.R.Müller[1962]. 
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4) SCREW ALGEBRA 

     Screw algebra has been employed in kinematics for more than two 

centuries. Mozzi studied this algebra in the eighteenth century. It was 

rediscovered in 1960�s by Hunt and Phillips then Walderon and Hunt 

employed this theory to search for overconstrained mechanisms. The last 

decades witnessed the publication of several studies from  Duffy concerning 

the kinematic and dynamic analysis of spatial linkages via screw theory   

(ref.27,34) . 

 

5) ALGEBRA OF EXPONENTIAL ROTATION MATRICES 

     This algebra which was developed by Özgören (ref.1,2) enables us to 

efficiently simplify the matrix and vector equations involved in the synthesis 

and analysis procedures of spatial mechanisms. The algebra of exponential 

rotation matrices has been successfully used in the kinematic analysis of  

robot manipulators  by M.K. Özgören (ref.1,4,6). He has also written a paper 

on the analysis of spatial mechanisms (ref.5) by means of the algebra of 

exponential rotation matrices. In this thesis , using the algebra of exponential 

rotation matrices , the author succeeded to develope a synthesis method for 

the path and motion generation synthesis of spatial mechanisms.  
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2.2)  PROPERTIES        OF        THE        ALGEBRA        OF 

EXPONENTIAL  ROTATION  MATRICES 
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angle θ . 

     Assuming 















=

0
0
1

1u  , 















=

0
1
0

2u  , 















=

1
0
0

3u  the following equations are 

obtained (ref.6), 

 
















−=

θθ
θθθ

cossin0
sincos0
001

1
~ue   , 

















−
=

θθ

θθ
θ

cos0sin
010

sin0cos
2

~ue   , 














 −
=

100
0cossin
0sincos

3
~ θθ

θθ
θue  

 

 

1) Innn t �~2 −=  and  nn ~~3 −=  

 

2) Inmnmmn tt �)(~~ −=  

 

3) If  mnu ~=  then  tt mnnmnmmnu −=−= ~~~~~  

 

4) 0~ =rnr t  but  rrrnrnr ttt −= 22 )(~  
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5) θθθ ntnn eee
~~1� )()( −− ==  

 

6) )(~~~~~ φθθφφθ +== nnnnn eeeee  

 

7) nnen =θ~
 and tnt nen =θ~  

 

8) θθ nn enne ~~ ~~ =  

 

9) If  uem nθ~
=  then  θθ nn euem ~~ ~~ −=  and θφθφ nunm eeee ~~~~ −=   

 

10) βθθβ mpnm eeee ~~~~
=  where  nep mβ~

=  

 

11) θββθ qmmn eeee ~~~~
=  where  neq mβ~−=  

 

12) θθθ sin~cos
~

jijj
u uuuue i +=  

 

13) θθθ sin)~(cos
~ t

ij
t
j

ut
j uuueu i +=  
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2.3) DENAVIT-HARTENBERG�S  CONVENTION 

 
     Denavit-Hartenberg�s convention has been applied to all fixed and 

moving frames in both synthesis and analysis processes in this thesis .The 

convention can be shortly explained as follows (ref.33) , 

 

                                                           

  
Figure (2.1) : Installation of reference frames according to Denavit-Hartenberg�s convention. 

(ref.6) 
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     As illustrated in  Figure(2.1)  the third axis lies along the joint axis and the 

first axis is the common normal of the two neighbor joint axes and finally the 

orientation of the second axis is determined according to the right hand rule. 

 

     The link parameters are , 

 

kkk OAa =  : the effective length of link (k) . 

 

kα : the angle between )(
3
kur and  )1(

3
−kur  about  )(

1
kur . 

 

ks : the translational distance of link (k) with respect to link (k-1) along )1(
3

−kur . 

 

kθ : the rotational angle of link  (k)  with respect to link (k-1) about  )1(
3

−kur  . 
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2.4) LOOP CLOSURE  EQUATIONS 

 
     Consider a single loop spatial mechanism with n links in which the fixed 

link is named as both 0�th and n�th link. In other words link zero and link n 

both address the fixed link. Installing coordinate systems according to 

Denavit-Hartenberg�s convention the following loop closure equations , are 

written (ref.5), 

 

a) ORIENTATION LOOP CLOSURE EQUATION : 

 

ICCCCC nnn ���...��� ),0(),1()3,2()2,1()1,0( ==−                                                                       (2.1)  

 

where ),1(� kkC −  is the orientation matrix of coordinate system (k) with respect 

to coordinate system (k-1) and I�  is the 3 by 3 identity matrix. 

 

     Considering Denavit-Hartenberg�s convention the folllowing equation can 

be written, 

 

kk uukk eeC αθ 13
~~),1(� =−         

 

Thus equation (2.1) can be presented in the  form below,                                                    

 

Ieeeeee nn uuuuuu �... 1321231113
~~~~~~

=αθαθαθ                                                                               (2.2) 

 

This equation has been written based on the fact that the orientation of the 

fixed link is always constant. 
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b) POSITION LOOP CLOSURE  EQUATION 

 

0...321

rrrrr =++++ nrrrr                                                                                               (2.3) 

 

where  kr
r   is a vector drawn from the origin of the (k-1)�th frame to the origin 

of the k�th frame.                                                                                                     

 

     The following equation is obtained according to Denavit-Hartenberg�s 

convention,  

 

1
),0(

3
)1,0()0( � uCauCdr k

k
k

kk += −  

 

where  )0(
kr  represents the column matrix form of  kr

r   defined in zero�th 

frame. 

 

Thus  equation (2.3) can be written in the following form , 

 

0��...���
1

),0(
3

)1,0(
1

)2,0(
23

)1,0(
21

)1,0(
131 =++++++ − uCauCduCauCduCaud n

n
n

n                (2.4) 

 

     The loop closure equations above are two fundamental matrix equations 

by which the general displacement equation of any spatial linkage is 

obtained. These equations also play a key role in the synthesis method which 

will be explained in the next chapter. The following example shows how  the 

general displacement equation of a spatial linkage is determined by means of 

loop closure equations explained above. 
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Example (2.1) : Determine the general displacement equation of  the RSHR 

mechanism illustrated in Figure (2.2) . 

 

                                                   

 
 
 

Figure (2.2) : An RSHR linkage 
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      The RSHR linkage can be redrawn as illustrated in Figure(2.3) . Note that 

links 2,3,5 are virtual and their lengths are equal to zero.   

                                                         

                               
 

Figure(2.3) : P_R combination of the RSHR linkage. The reference frames have been installed 

according to Denavit-Hartenberg�s convention. 
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Table (2.1) has been constructed   according to Figure(2.3)  . Considering this 

table the following equations are obtained, 
 

13
~)1,0(� θueC =    2/~)(~)2,0( 1213� πθθ uu eeC −+=      322131331213

~)(~2/~~2/~)(~)3,0(� θθθπθπθθ uuuuuu eeeeeeC +−+ ==   

 

4332213
~~)(~)4,0(� θθθθ uuu eeeC +=      2/~)(~~)(~)5,0( 154332213� πθθθθθ uuuu eeeeC −++=      

 

6254332213
~)(~~)(~)6,0(� θθθθθθ uuuu eeeeC ++=      IC �� )7,0( =  

 

 
Table (2.1) :Joint variables and Denavit-Hartenberg parameters of  the RSHR linkage. 

 

Link θ  α  a d 

1 variable 0 1l  -b 

2 variable 2/π−  0 0 

3 variable 2/π  0 0 

4 variable 0 2l  0 

5 variable 2/π−  0 0 

6 variable 2/π  3l  0 

7 variable 2/π  a -c 
 
 

 

The equation below can be written according to equation (2.4)    

 

0�����
1

)7,0(
3

)6,0(
1

)6,0(
31

)4,0(
21

)1,0(
13 =+−+++− uCauCcuCluCluClub                             (2.5) 

 

Considering equation (2.1) the following equations are obtained, 

 

53627311736253
~~~2/~12/~~~~1)7,4()4,0( )()�(� θθθππθθθ uuuuuuuu eeeeeeeeCC −−−−−− ===  
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6273117362
~~2/~12/~~~1)7,5()5,0( )()�(� θθππθθ uuuuuu eeeeeeCC −−−−− ===  

 

731173
~2/~12/~~1)7,6()6,0( )()�(� θππθ uuuu eeeeCC −−−− ===  

 

IC �� )7,0( =  

 

Substituting  )6,0()5,0()4,0( �,�,� CCC  and  )7,0(�C  from equations above into equation 

(2.5) equation below is got, 

 

013
~2/~

1
~2/~

31
~~~2/~

21
~

13
731731536273113 =+−+++− −−−−−−−− uaueceueelueeeeluelub uuuuuuuuu θπθπθθθπθ      

                                                                                                                                 (2.6) 

or  

 

)sinsincoscos(cossincos 7576522111113 θθθθθθθ −+++− lululub 1u  

2652 sincos ul θθ+ 3757652 )cossinsincos(cos ul θθθθθ ++ 173 cos ul θ+  

0sin 12373 =+−+ uaucul θ                                   

 

which results in the following equations, 

 

0cos)sinsincoscos(coscos 7375765211 =++−+ alll θθθθθθθ                              (2.7) 

 

0sincossin 65211 =−+ cll θθθ                                                                                 (2.8) 

 

0sin)cossinsincos(cos 73757652 =+++− θθθθθθ llb                                           (2.9) 

 

From equations (2.7) and (2.9) the following equation is derived, 
22

73
2

31
22

15
2

6
2

5
22

2 sin2cossincoscos babllll ++−+=+ θθθθθ 7131 coscos2 θθll+  

7371 cos2cos2 θθ alal ++                                                                                        (2.10) 
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and from equation (2.8) equation below can be obtained, 

 

11
2

1
22

16
2

5
22

2 sin2sinsincos θθθθ clcll −+=                                                         (2.11) 

 

Now adding equations (2.10) and (2.11) the following equation is gained, 

 

1111
2222

3
2

2
2

1737113 sin2cos2sin2cos)cos(2 θθθθθ clalcballlblall −+++++−=++−  

 

Let  ψθ =1   and  φθ =7  .Hence  equation above can be rewritten  in the 

following form, 

ψφφψ cos2sin2cos)cos(2 1
2222

3
2

2
2

1313 alcballlblall +++++−=++−  

ψsin2 1cl−                                                                                                             (2.12)                        

                                                                             

     Equation (2.12) is called the general displacement equation of the RSHR 

linkage and plays a key role in mobility analysis and function generation 

synthesis of the linkage. 

 

 

Example (2.2) :Consider an RSHR mechanism with the following 

dimensions , 

51 =l      112 =l      203 =l      4=a      15=b      3=c    

Determine  the general displacement equation of the linkage and draw its 

output angle diagram versus input angle. 

 

     Equation below can be written according to equation (2.12)   

 

554sin30cos40sin600cos)4cos5(40 +−=++− ψψφφψ  
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Let  )cos(2)( 13 allp +−= ψψ    ,    32blq =     ,   

 

ψψψ sin2cos2)( 11
2222

3
2

2
2

1 clalcballlr −+++++−=    

 

Thus  equation (2.12) is written in the following form , 

 

)(sincos)( ψφφψ rqp =+                                                                                     (2.13) 

Now let   2

2

1
1cos
t
t

+
−=φ   and   21

2sin
t
t

+
=φ  . Hence  equation (2.13) is written 

in the form below , 

 

0)()(2))()(( 2 =−+−+ ψψψψ prqttpr  

 

which results in , 

 

)()(
)()( 222

ψψ
ψψ

pr
rqpq

t
+

−+±
=  

 

Thus  the equation below is derived , 

 

)
1

2,
1
1( 22

2

t
t

t
tangle

++
−=φ  

 

For the RSHR linkage whose dimensions have been given above  the output-

input angle curve has been illustrated in Figure(2.4).    
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Figure(2.4) : As   illustrated by the diagram, the  RSHR  linkage  acts  as  a  crank_rocker 
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CHAPTER THREE 

PATH AND MOTION GENERATION  
SYNTHESIS OF SPATIAL MECHANISMS 

 
 

3.1) GENERAL 
    

     The path and motion generation synthesis methods which will be 

explained in this chapter are the first synthesis methods developed by means 

of the algebra of exponential rotation matrices. The main advantage of these 

methods is that general dyad equations have been presented for single loop 

spatial linkages with n links (equations (3.1) and (3.2) ) and very similar 

equations can be written for multiloop spatial linkages. Besides  in these 

methods the mechanism designer directly deals with link lengths and joint 

angles which make more sense while in some synthesis methods ,designers 

work with X ,Y and Z coordinates (ref.18,19,26). Finally using these synthesis 

methods designers can benefit the advantages of the algebra of exponential 

rotation matrices.  
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3.2) PATH GENERATION SYNTHESIS 

 
     Consider a single loop spatial mechanism with n links. Assume that a 

coordinate system is attached to each link according to Denavit-Hartenberg�s 

convention . Now consider a point P on the k�th link .This point -which is 

called the path tracer point- is supposed to pass through points  110 ,...,, −jPPP  

which are called precision points. 

 

 

                                                         

  

 

Figure (3.1) : The vectors which construct the k�th link . 
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     As illustrated in  Figure (3.1) vectors  WVU
rrr

,,  have been defined as 

constant vectors in the k�th frame because the k�th frame is attached to the 

k�th link . 

     Let 110 ,...,, −jRRR
rrr

  be vectors which have been drawn from the origin of a 

global frame to the precision points  110 ,...,, −jPPP  respectively . Where j is the 

number of precision points. Assuming that the fixed frame attached to the 

linkage is called as both zero�th frame and n�th frame, the following loop 

closure equations can be written for the left and right dyads of the linkage , 

 

1
)1,(

13
)2,(

11
)2,(

23
)1,(

21
)1,(

13
)0,(

1
��...���� uCauCduCauCduCauCdr kg
ik

kg
ik

g
i

g
i

g
i

g −
−

−
− +++++++  

i
kkg

i
kg

ik RVCuCd =++ − )(),(
3

)1,( �                                                                               (3.1) 

                                                                                                                                  

and 

 

i
ng

in
ng

in
kg

ik
kg

ik
kkg

i RruCauCduCauCdWC −=−+++++ −+
++ 1

),(
3

)1,(
1

)1,(
13

),(
1

)(),( ��...���    (3.2) 

 

and 

 
)()()( kkk UWV =+                                                                                                    (3.3) 

 

where , 

 

1,...,1,0 −= ji    and j is the number of precision points . 

 
),0()0,(),( ��� k

i
gkg

i CCC =                                                                   

 
)0,(� gC  is the orientation matrix of the zero�th frame with respect to the global 

frame and since both frames are fixed ,obviously  )0,(� gC   will be a constant 
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matrix which can be defined by an arbitrary sequence of rotations . For 

example by zuyuxug eeeC 321
~~~)0,(� =  or  zuyuxug eeeC 323

~~~)0,(� =  . 

 
),0(� k

iC  is the orientation matrix of  the k�th coordinate system with respect to 

the zero�th frame when the path tracer point is coincident to the i�th precision 

point and is defined as follows, 

 

k
i
k

ii uuuuuuk
i eeeeeeC αθαθαθ 1321231113

~~~~~~),0( ...� =                                                                          (3.4) 

 
i
k

ii θθθ ,...,, 21    are the joint variables when the path tracer point is coincident to 

the i�th precision point and  kα   is the angle between  )(
3
ku  and  )1(

3
−ku  about  

)(
1
ku . 

 
)(kV , )(kW  and  )(kU  have been illustrated in Figure (3.1) . 

 

     Note that when the locations and orientations of the fixed joints are 

prescribed ,without loss of generality  the global frame can be chosen to be 

coincident to the zero�th frame . In this case the following equalities will be 

available, 

 

IC g �� )0,( =     and   0=r    

 

where  I�  is the 3 by 3 identity matrix and  0  is the null matrix . 
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3.3) PATH GENERATION SYNTHESIS OF AN RSHR 

LINKAGE 

 

a) THE POSITIONS OF THE GROUND PIVOTS ARE 

PRESCRIBED. 

 

     Considering Figure (3.3) the associated Denavit-Hartenberg parameters 

have been determined as listed in table (3.1) . 

                                                                

                                              
 

Figure (3.2) : An RSHR linkage.  
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Figure (3.3) : The right and left dyads of the RSHR linkage .Note that links 2,3 and 5 are 

virtual links and their lengths are equal to zero. 
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Table(3.1) : Joint variables and Denavit-Hartenberg parameters of the RSHR linkage. 

 

link θ  α  a d 

1 i
1θ  0 1l  b−  

2 i
2θ  2

π−  0 0 

3 i
3θ  2

π  0 0 

4 i
4θ  0 2l  0 

5 i
5θ  2

π−  0 0 

6 i
6θ  2

π  3l  0 

7 i
7θ  2

π  a  c−  

 

 

According to equation (3.1) the equation below can be written for the left 

dyad  , 

 

iii RVCuClub =++− )4()4,0(
1

)1,0(
13

��                                                                             (3.5) 

 

and considering equation (3.2) the following equation is written, 

for the right dyad,  

 

0����
1

)7,0(
3

)6,0(
1

)6,0(
3

)4()4,0( =+−++ uCauCcuClWCR iiiii                                               (3.6) 

 

Regarding equation (2.1), equations below are obtained , 

 
1)7,4()4,0( )�(� −= ii CC  

 
1)7,6()6,0( )�(� −= ii CC  
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and 

 

ICi �� )7,0( =     

 

Thus considering Denavit-Hartenberg parameters in table (3.1) the following 

equations are derived , 

 

iu
i eC θ3~)1,0(� =  

 
iiiiii uuuuuuuu

ii eeeeeeeeCC 53627311736253
~~~2/~12/~~~~1)7,4()4,0( )()�(� θθθππθθθ −−−−−− ===  

 
ii uuuu

ii eeeeCC 731173
~2/~12/~~1)7,6()6,0( )()�(� θππθ −−−− ===  

 

Hence  equations (3.5) and (3.6) can be written in the form below , 

 

i
uuuuu RVeeeeuelub

iiii

=++− −−−− )4(~~~2/~
1

~
13

536273113 θθθπθ                                                       (3.7) 

 

i
uuuuuuu RuauceueelWeeee

iiii

−=+−+ −−−−−−−
13

2/~
1

~2/~
3

)4(~~~2/~
17315362731 πθπθθθπ                         (3.8) 

 

The following equation can be written according to equation (3.3)  , 

 
)4()4()4( UWV =+                                                                                                           

 

From Figure (3.3) it is seen that  12
)4( ulU =  . Thus equation above can be 

written in the following form , 

 

12
)4()4( ulWV =+                                                                                                      (3.9)  
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      Table (3.2) has been constructed according to equations (3.7) to (3.9) . 

 
Table (3.2) : According to the table below when the locations and orientations of the fixed 

joints of the RSHR linkage are prescribed , the path tracer point can pass through at most 

three precision points. 

 

number 

of 

precision 

points 

number of 

scalar 

equations 

number of 

unknowns 

number of 

free 

parameters 

1 9 13 

),,,,,,,,( 0
7

0
6

0
5

0
1

)4()4(
321 θθθθWVlll

4 

2 15 17 ( above + 1
7

1
6

1
5

1
1 ,,, θθθθ  ) 2 

3 21 21 ( above + 2
7

2
6

2
5

2
1 ,,, θθθθ ) 0 

 

 

     Assume that it is desired to synthesize an RSHR linkage whose path tracer 

point is supposed to pass through three precision points . For i=0,1,2 the 

following equations are obtained , 

 

0
)4(~~~2/~

1
~

13

0
53

0
62

0
731

0
13 RVeeeeuelub uuuuu =++− −−−− θθθπθ                                                   (3.10) 

 

1
)4(~~~2/~

1
~

13

1
53

1
62

1
731

1
13 RVeeeeuelub uuuuu =++− −−−− θθθπθ                                                     (3.11) 

 

2
)4(~~~2/~

1
~

13

2
53

2
62

2
731

2
13 RVeeeeuelub uuuuu =++− −−−− θθθπθ                                                   (3.12) 

 

013
2/~

1
~2/~

3
)4(~~~2/~

1
0
731

0
53

0
62

0
731 RuauceueelWeeee uuuuuuu −=+−+ −−−−−−− πθπθθθπ                      (3.13) 
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113
2/~

1
~2/~

3
)4(~~~2/~

1
1
731

1
53

1
62

1
731 RuauceueelWeeee uuuuuuu −=+−+ −−−−−−− πθπθθθπ                       (3.14) 

 

213
2/~

1
~2/~

3
)4(~~~2/~

1
2
731

2
53

2
62

2
731 RuauceueelWeeee uuuuuuu −=+−+ −−−−−−− πθπθθθπ                      (3.15) 

 

The following equations are obtained from equation (3.10) and (3.13)  , 

 

)( 31
~

10
2/~~~~)4( 0

131
0
73

0
62

0
53 ubuelReeeeV uuuuu +−= θπθθθ                                                         (3.16) 

 

)( 3
2/~

11
~2/~

30
2/~~~~)4( 1

0
7311

0
73

0
62

0
53 uceuaueelReeeeW uuuuuuu πθππθθθ −−− +−−−=                        (3.17) 

 

Substituting  )4(V  and  )4(W  from equations above into equations (3.11) , 

(3.12) , (3.14) and (3.15) equations below are obtained, 

 

131
~

10
2/~~~)(~~~2/~

1
~

13 )(
0
131

0
73

0
62

1
5

0
53

1
62

1
731

1
13 RubuelReeeeeeeuelub uuuuuuuuu =+−++− −−−− θπθθθθθθπθ  (3.18) 

 

231
~

10
2/~~~)(~~~2/~

1
~

13 )(
0
131

0
73

0
62

2
5

0
53

2
62

2
731

2
13 RubuelReeeeeeeuelub uuuuuuuuu =+−++− −−−− θπθθθθθθπθ  

                                                                                                                               (3.19) 

)(
0
7311

0
73

0
62

1
5

0
53

1
62

1
731

~2/~
303

2/~
1

2/~~~)(~~~2/~ θπππθθθθθθπ uuuuuuuuuu eelRuceuaeeeeeee −−−−−−− −−+−  

13
2/~

11
~2/~

3
1

1
731 Ruceuaueel uuu −+−=+ −−− πθπ                                                                 (3.20) 

 

)(
0
7311

0
73

0
62

2
5

0
53

2
62

2
731

~2/~
303

2/~
1

2/~~~)(~~~2/~ θπππθθθθθθπ uuuuuuuuuu eelRuceuaeeeeeee −−−−−−− −−+−  

23
2/~

11
~2/~

3
1

2
731 Ruceuaueel uuu −+−=+ −−− πθπ                                                                (3.21) 

 

Adding equations (3.16) and (3.17) equation below is derived , 

 

)( 3
2/~

11
~2/~

331
~

1
2/~~~~)4()4( 1

0
731

0
131

0
73

0
62

0
53 uceuaueelubueleeeeWV uuuuuuuu πθπθπθθθ −−− +−−+−=+  

12ul=                                                                                                                      (3.22) 
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Thus , 

 

0)( 3
2/~

11
~2/~

331
~

1
2/~~~~

2
1

0
731

0
131

0
73

0
62

0
53 =+−−+− −−− uceuaueelubueleeeeu uuuuuuuut πθπθπθθθ         (3.23) 

 

0)( 3
2/~

11
~2/~

331
~

1
2/~~~~

3
1

0
731

0
131

0
73

0
62

0
53 =+−−+− −−− uceuaueelubueleeeeu uuuuuuuut πθπθπθθθ         (3.24) 

 

Using a proper numerical method, equations (3.18) to (3.24) can be solved for 

1
2
7

1
7

0
7

2
6

1
6

0
6

2
5

1
5

0
5

2
1

1
1

0
1 ,,,,,,,,,,,, lθθθθθθθθθθθθ  and 3l  , then  )4(V  and )4(W can be 

determined from equations (3.16) and (3.17) respectively and  2l  is found 

from equation ( 3.9) . 
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b) THE POSITIONS OF THE GROUND PIVOTS ARE NOT 

PRESCRIBED. 

                                                           

 
Figure (3.4) : The P-R combination of  the RSHR linkage. When the positions of  the ground             

pivots are not prescribed all coordinates are measured with respect to a global frame. 
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     As illustrated in Figure (3.4) ,in this case all locations and orientations are 

defined in a global coordinate system .According to equations (3.1) and  (3.2) 

the following equations are obtained , 

 

i
g

i
g

i
g RVCuCluCbr =++− )4()4,(

1
)1,(

13
)0,( ���                                                                (3.25) 

 

ruCauCcuClWCR g
i

g
i

g
i

g
ii =+−++ 1

)7,(
3

)6,(
1

)6,(
3

)4()4,( ����                                            (3.26) 

 

where , 

 
zuyuxug eeeC 323

~~~)0,(� =  

 
)(~~~)1,0()0,()1,( 1323��� izuyuxu

i
gg

i eeeCCC θ+==  

 
iii uuuuzuyuxu

i
g

i
gg

i eeeeeeeCCCCC 5362731323
~~~2/~~~~1)7,4()0,()4,0()0,()4,( )�(���� θθθπ −−−−− ===                 

 
iuuzuyuxu

i
g

i
gg

i eeeeeCCCCC 731323
~2/~~~~1)7,6()0,()6,0()0,()6,( )�(���� θπ −−− ===  

 
zuyuxuzuyuxugg eeeIeeeCCC 323323

~~~~~~)7,0()0,()7,( ���� ===  

 

Thus  equations  (3.25) and (3.26) can be written in the form below , 

 

i
uuuuzuyuxuzuyuxuyuxu RVeeeeeeeueeelueber

iiii

=++− −−−−+ )4(~~~2/~~~~
1

)(~~~
13

~~
5362731323132323 θθθπθ  (3.27) 

 

3
2/~~~~

1
~2/~~~~

3
)4(~~~2/~~~~

13237313235362731323 ueeeceueeeeelWeeeeeee uzuyuxuuuzuyuxuuuuuzuyuxu iiii πθπθθθπ −−−−−−− −+

i
zuyuxu Rrueeae −=−+

1

323
~~~

                                                                                      (3.28) 
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In equations (3.27) and (3.28)  the summations of the vectors which do not 

include subscript  (i) can be considered as  constant vectors .That is let  

13
~~

23 rueber yuxu =−                                                                                                   (3.29) 

 

and 

 

23
2/~~~~

1
~~~

1323323 rrueeeceueeae uzuyuxuzuyuxu =−− − π                                                           (3.30) 

 

Hence  equations (3.27) and (3.28) are written in the following forms , 

 

i
uuuuzuyuxuzuyuxu RVeeeeeeeueeelr

iiii

=++ −−−−+ )4(~~~2/~~~~
1

)(~~~
11

53627313231323 θθθπθ                           (3.31) 

 

i
uuzuyuxuuuuuzuyuxu RueeeeelWeeeeeeer

iiii

−=++ −−−−−−
1

~2/~~~~
3

)4(~~~2/~~~~
2

7313235362731323 θπθθθπ     (3.32) 

 

and recalling equation (3.3) the following equation is obtained, 

 

12
)4()4( ulWV =+                                                                                                  (3.33) 

 

Thus Table (3.3) can be constructed  according to equations (3.31) to (3.33)    . 
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Table (3.3) : The table below shows that when the positions of the ground pivots of the RSHR 

linkage are not prescribed its path tracer point can pass through at most seven precision 

points. 

 

number 

of 

precision 

points 

number 

of 

scalar 

equations 

 

number of 

unknowns 

number of 

free 

parameters

1 9 22 

( 0
7

0
6

0
5

0
1321

)4()4(
21 ,,,,,,,,,,,,, θθθθzyxlllWVrr ) 

13 

2 15 26 ( above + 1
7

1
6

1
5

1
1 ,,, θθθθ  ) 11 

3 21 30 ( above + 2
7

2
6

2
5

2
1 ,,, θθθθ  ) 9 

4 27 34 ( above + 3
7

3
6

3
5

3
1 ,,, θθθθ  ) 7 

5 33 38( above + 4
7

4
6

4
5

4
1 ,,, θθθθ  ) 5 

6 39 42 ( above + 5
7

5
6

5
5

5
1 ,,, θθθθ  ) 3 

7 45 46 ( above + 6
7

6
6

6
5

6
1 ,,, θθθθ  ) 1 

 

 

        Let�s consider the case of five precision points. The following equations 

are obtained from equations (3.31) and (3.32) for i=0  , 

 
)4(~~~2/~~~~

1
)(~~~

101

0
53

0
62

0
7313230323 VeeeeeeeueeelRr uuuuzuyuxuzuyuxu θθθπθ −−−−+ −−=                         (3.34) 

 
)4(~~~2/~~~~

1
~2/~~~~

302

0
53

0
62

0
731323

0
731323 WeeeeeeeueeeeelRr uuuuzuyuxuuuzuyuxu θθθπθπ −−−−−− −−−=          (3.35) 

 

Substituting  1r   and  2r  from equations (3.34) and (3.35) into equations (3.31) 

and (3.32) for  i=1,2,3,4 the following equalities are obtained , 
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0
)4(~~2/~~~~

1
~~~~~

1 )()(
0
73731323

0
1313323 RRVeeeeeeueeeeel i

uuuzuyuxuuuzuyuxu ii

−=−+− −− θθπθθ             (3.36) 

 
)4(~~~~~~2/~~~~

1
~~2/~~~~

3 )()(
0
53

0
62

0
735362731323

0
73731323 Weeeeeeeeeeueeeeeel uuuuuuuzuyuxuuuuzuyuxu iiii θθθθθθπθθπ −−−−−−−−−− −+−  

iRR −= 0                                                                                                                 (3.37) 

Solving equations (3.36) , (3.37) and (3.33) with five free parameters   
)4()4(

7651321 ,,,,,,,,,,, WVzyxlll iiii θθθθ  can be determined  and consequently  1r  

and  2r  can be found from equations (3.34) and (3.35) then cba ,,  and  r  are 

determined from equations (3.29) and (3.30) as follows , 

 

Adding equations (3.29) and (3.30) the following equation is obtained , 

 

213
2/~~~~

3
~~

1
~~~

132323323 rrueeeceuebeueeae uzuyuxuyuxuzuyuxu +=−− − π   

 

or 

 

)( 21
~~~

3
2/~

31
3231 rreeeuceubua xuyuzuu +=−− −−−− π                                                          (3.38) 

 

and premultiplying equation (3.38) by tt uu 21 ,  and  tu3 equations below are 

gained  , 

 

)( 21
~~~

1
323 rreeeua xuyuzut += −−−  

 

)( 21
~~~

3
323 rreeeub xuyuzut +−= −−−  

 

)( 21
~~~

2
323 rreeeuc xuyuzut +−= −−−  
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c) THE ORDERS OF PRECISION POINTS ARE PRESCRIBED 

 

      In kinematic synthesis there are some cases where the order of the 

precision points or prescribed positions are important. In Examples (3.1) and 

(3.2) presented in section (3.7) no order has been prescribed for the precision 

points however the same loop closure equations and solution procedure can 

be applied to the cases where the order of precision points is important. The 

only difference is that the prescribed order should be imposed to the 

computer program as inequalities in terms of the input angles. For example 

assume that in Example (3.2) the path tracer point is desired to pass through 

points  0P  to  3P  successively. In this case adding the following inequalities to 

the program the required condition will be satisfied , 

 

πθθθθ 20 3
1

2
1

1
1

0
1 ppppp         or       πθθθθ 20 0

1
1
1

2
1

3
1 ppppp  

 

Example (3.3) presented in section (3.7) verifies the above discussion. 
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3.4) MOTION GENERATION SYNTHESIS 

 

     Consider a single loop spatial linkage with n links. Assume that a 

coordinate system is attached to each link according to Denavit-Hartenberg�s 

convention. Now consider a point P on the k�th link. A coordinate system (p) 

is attached to the k�th link so that its origin coincides with the path tracer 

point  (P) . The coordinate system is supposed to lie in prescribed positions 

when the path tracer point passes through the precision points.  

 

          

                                  
Figure (3.5) : k�th link of an n link spatial mechanism. 
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     Let  ),(� pg
iC  be the orientation matrix of frame (p) with respect to a global 

frame when frame (p) lies in the i�th prescribed position . Hence in addition 

to the loop closure equations (3.1) , (3.2) and (3.3) the following equation can 

be written , 

 
),(),(),( ��� pg

i
pkkg

i CCC =                                                                                                (3.39) 

 

Where , 

 
),(� kg

iC  is the orientation matrix of the k�th frame with respect to the global 

frame when frame (p) is in the i�th prescribed position. 

 
),(� pkC  is the orientation matrix of frame (p) with respect to the k�th frame . 

Since both frames are attached to the k�th link obviously  ),(� pkC  must be a 

constant matrix and can be defined as follows , 

 
γβα 323

~~~),(� uuupk eeeC =                                                                                                 (3.40) 

 

and finally  ),(� pg
iC  is the orientation matrix of frame (p) with respect to the 

global frame when frame (p) lies in the i�th position and is always prescribed. 
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3.5) MOTION GENERATION SYNTHESIS OF AN RSHR 

LINKAG

 
Figure (3.6) : The right and left dyads of the P-R combination of the RSHR linkage. 
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     Considering Figure (3.6) and recalling equations (3.1) , (3.2) and (3.3) 

equations below are derived , 

 

i
g

i
g

i
g RVCuCluCbr =++− )4()4,(

1
)1,(

13
)0,( ���                                                                (3.41) 

 

ruCauCcuClWCR g
i

g
i

g
i

g
ii =+−++ 1

)7,(
3

)6,(
1

)6,(
3

)4()4,( ����                                            (3.42) 

 
)4()4()4( UWV =+                                                                                                 (3.43) 

 

and from equation (3.39) the following equality is gained , 

 
),(),4()4,( ��� pg

i
pg

i CCC =                                                                                                (3.44) 

 

Where , 

 
zuyuxug eeeC 323

~~~)0,(� =  

 
)(~~~)1,0()0,()1,( 1323��� izuyuxu

i
gg

i eeeCCC θ+==  

 
iii uuuuzuyuxu

i
g

i
gg

i eeeeeeeCCCCC 5362731323
~~~2/~~~~1)7,4()0,()4,0()0,()4,( )�(���� θθθπ −−−−− ===  

 
iuuzuyuxu

i
g

i
gg

i eeeeeCCCCC 731323
~2/~~~~1)7,6()0,()6,0()0,()6,( )�(���� θπ −−− ===  

 
zuyuxuzuyuxugg eeeIeeeCCC 323323

~~~~~~)7,0()0,()7,( ���� ===  

 
γβα 323

~~~),4(� uuup eeeC =  

 

Note that ),(� pg
iC  is prescribed. 
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Thus  equations  (3.41) and (3.42) can be written in the form below , 

 

i
uuuuzuyuxuzuyuxuyuxu RVeeeeeeeueeelueber

iiii

=++− −−−−+ )4(~~~2/~~~~
1

)(~~~
13

~~
5362731323132323 θθθπθ  (3.45) 

 

3
2/~~~~

1
~2/~~~~

3
)4(~~~2/~~~~

13237313235362731323 ueeeceueeeeelWeeeeeee uzuyuxuuuzuyuxuuuuuzuyuxu iiii πθπθθθπ −−−−−−− −+
 

i
zuyuxu Rrueeae −=−+

1

323
~~~

                                                                                      (3.46) 

 

In equations (3.45) and (3.46) the summation of the vectors which do not 

include subscript  (i) can be considered as   constant vectors .That is let  

 

13
~~

23 rueber yuxu =−                                                                                                   (3.47) 

 

and 

 

23
2/~~~~

1
~~~

1323323 rrueeeceueeae uzuyuxuzuyuxu =−− − π                                                           (3.48) 

 

Hence  equations (3.45) and (3.46) are written in the following form , 

 

i
uuuuzuyuxuzuyuxu RVeeeeeeeueeelr

iiii

=++ −−−−+ )4(~~~2/~~~~
1

)(~~~
11

53627313231323 θθθπθ                          (3.49)                        

 

i
uuzuyuxuuuuuzuyuxu RueeeeelWeeeeeeer

iiii

−=++ −−−−−−
1

~2/~~~~
3

)4(~~~2/~~~~
2

7313235362731323 θπθθθπ     (3.50) 

 

and considering Figure (3.6) the following equation is obtained , 

 

12
)4()4( ulWV =+                                                                                                  (3.51) 

 

and from equation (3.44) the following equation is got , 
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),(~~~~~~2/~~~~ �3235362731323 pg
i

uuuuuuuzuyuxu Ceeeeeeeeee
iii

=−−−− γβαθθθπ                                           (3.52) 

 

Regarding equations (3.49) to (3.52)  the following table is constructed, 

 
Table (3.4) : According to the table below when the locations and orientations of the fixed 

joints are not prescribed , the coupler link of the RSHR linkage can lie at most in three 

prescribed positions. 

 

number of 

prescribed 

orientations 

number of 

scalar 

equations 

number of 

unknowns 

number of 

free 

parameters 

 

1 

 

12 

25 

γβαθθθθ ,,,,,,,,,( 0
7

0
6

0
5

0
1321 lll  

),,,,,,, )4()4(
21 WVzyxrr  

 

13 

2 21 29 ( above + 1
7

1
6

1
5

1
1 ,,, θθθθ  ) 8 

3 30 33 ( above + 2
7

2
6

2
5

2
1 ,,, θθθθ  ) 3 

 

 

     Let�s consider the case in which the coupler link of RSHR linkage is 

supposed to take two prescribed orientations . Hence assuming i=0,1  

equations (3.49) and (3.50) are written in the form below , 

 

0
)4(~~~2/~~~~

1
)(~~~

11

0
53

0
62

0
731323

0
1323 RVeeeeeeeueeelr uuuuzuyuxuzuyuxu =++ −−−−+ θθθπθ                    (3.53) 

 

1
)4(~~~2/~~~~

1
)(~~~

11

1
53

1
62

1
731323

1
1323 RVeeeeeeeueeelr uuuuzuyuxuzuyuxu =++ −−−−+ θθθπθ                      (3.54) 

 

01
~2/~~~~

3
)4(~~~2/~~~~

2

0
731323

0
53

0
62

0
731323 RueeeeelWeeeeeeer uuzuyuxuuuuuzuyuxu −=++ −−−−−− θπθθθπ    (3.55) 
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11
~2/~~~~

3
)4(~~~2/~~~~

2

1
731323

1
53

1
62

1
731323 RueeeeelWeeeeeeer uuzuyuxuuuuuzuyuxu −=++ −−−−−− θπθθθπ     (3.56) 

 

and regarding equation (3.52) equations below are obtained , 

 
),(

0
~~~~~~2/~~~~ �323

0
53

0
62

0
731323 pguuuuuuuzuyuxu Ceeeeeeeeee =−−−− γβαθθθπ                                          (3.57) 

 
),(

1
~~~~~~2/~~~~ �323

1
53

1
62

1
731323 pguuuuuuuzuyuxu Ceeeeeeeeee =−−−− γβαθθθπ                                           (3.58) 

 

     Let�s choose  0
7

0
6

0
5 ,,,,, θθθγβα   arbitrarily . Thus from equation (3.57)  the 

following equation is obtained , 

 
2/~~~~~~~),(

0
~~~

1
0
73

0
62

0
53323323 � πθθθγβγ uuuuuuupgzuyuxu eeeeeeeCeee −−−=                                               (3.59) 

 

Let   MeeeeeeeC uuuuuuupg �� 2/~~~~~~~),(
0

1
0
73

0
62

0
53323 =−−− πθθθγβγ  then postmultiplying equation 

(3.59) by 3u    equation below is gained , 

 

333223113321 cossinsinsincos uMuMuMuyuyxuyx ++=++                               (3.60) 

 

Which results in , 

 

33cos My =    ,   13sincos Myx =    ,   23sinsin Myx =  

 

and consequently  x and y can be determined with one ambiguity related to y 

as follows , 

 

2
331sin My −±=     
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)1,( 2
3333 MMangley −=    or   )1,( 2

3333 MMangley −−=  

 

)
sin

,
sin

( 2313

y
M

y
Manglex =  

 

Now premultiplying equation (3.59) by tu3  equation below is gained , 

 

333232131321 cossinsincoscos uMuMuMuyuzyuzy ++=++−  

 

From which it can be derived that , 

 

)
sin

,
sin

( 3132

y
M

y
Manglez

−
=  

 

Note that if  0=y  a singularity takes place. In this case  other elements of  

M� should be used. 

 

     From equation (3.58) the following equation is obtained ,  

 
2/~~~~1),(

1
~~~~~~

1323321
1
73

1
62

1
53 )�( πγβαθθθ uzuyuxupguuuuuu eeeeCeeeeee −=                                               (3.61) 

 

Let  NeeeeCeee uzuyuxupguuu �)�( 2/~~~~1),(
1

~~~
1323321 =− πγβα  then using a technique similar to 

the one used above ,   1
5

1
6

1
7 ,, θθθ   can be found as follows , 

 

)1,( 2
3333

1
6 NNangle −=θ       or      )1,( 2

3333
1
6 NNangle −−=θ  

 

)
sin

,
sin

( 1
6

23
1
6

131
5 θθ

θ NNangle=      and     )
sin

,
sin

( 1
6

31
1
6

321
7 θθ

θ NNangle
−

=  
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      From equations (3.49) and (3.50) for i=0 the following equations can be 

obtained , 

 

)( 1
)(~~~

110
~~~2/~~~~)4( 03233231

1
73

1
62

1
53 ueeelrReeeeeeeV zuyuxuxuyuzuuuuu θπθθθ +−−− −−=                   (3.62) 

 

)( 1
2/~~~~

320
~~~2/~~~~)4( 13233231

1
73

1
62

1
53 ueeeelrReeeeeeeW uzuyuxuxuyuzuuuuu ππθθθ −−−− −−−=            (3.63) 

 

Substituting  )4(V  and  )4(W  from equations above into equations (3.51) , 

(3.54) and (3.56) the following equalities are gained , 

 
0
73

0
62

1
5

0
53

1
62

1
731323

1
1323

~~)(~~~2/~~~~
1

)(~~~
11

θθθθθθπθ uuuuuuzuyuxuzuyuxu eeeeeeeeeueeelr −−−−+ ++  

11
)(~~~

110
~~~2/~

)(
0
13233231 RueeelrReeee zuyuxuxuyuzuu =−− +−−− θπ                                           (3.64) 

 
0
62

1
5

0
53

1
62

1
731323

0
731323

~)(~~~2/~~~~
1

~2/~~~~
32

θθθθθπθπ uuuuuzuyuxuuuzuyuxu eeeeeeeeueeeeelr −−−−−− ++  

21
~2/~~~~

320
~~~2/~~

)(
0
7313233231

0
73 RueeeeelrReeeee uuzuyuxuxuyuzuuu −=−−− −−−−− θππθ                  (3.65) 

 

21
~~~2/~~~)(~~~2/~~~~

(3231
0
73

0
62

1
5

0
53

1
62

1
731323 rreeeeeeeeeeeee xuyuzuuuuuuuuzuyuxu −−−−−−−−− πθθθθθθπ  

121
~2/~~~~

3
)(~~~

1 )
0
731323

0
1323 ulueeeeeleeel uuzuyuxuzuyuxu =−− −−+ θπθ                                              (3.66) 

 

     Using a proper numerical method  equations (3.64) to (3.66) can be solved 

for  21
1
1

0
1321 ,,,,,, rrlll θθ  with two free parameters then   )4(V  and )4(W  can be 

determined from equations (3.62) and (3.63) . Now adding up equations 

(3.47) and (3.48) equation below is obtained , 

 

213
2/~~~~

3
~~

1
~~~

132321323 rrueeeceuebeueeae uzuyuxuyuxuzuyuxu +=−− − π  

 

or 
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)( 21
~~~

3
2/~

31
3231 rreeeuceubua xuyuzuu +=−− −−−− π  

 

Premultiplying equation (3.67) by  tt uu 21 ,  and  tu3  the following equations 

are obtained , 

 

)( 21
~~~

1
323 rreeeua xuyuzut += −−−  

 

)( 21
~~~

3
323 rreeeub xuyuzut +−= −−−  

 

)( 21
~~~

2
323 rreeeuc xuyuzut +−= −−−  

 

and for  r  it can be written , 

 

3
~~

1
23 ueberr yuxu+=  
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3.6) NUMERICAL EXAMPLES 
 

     All numerical examples of this thesis were solved by a Pentium 4 with a 

processor frequency of 2.8 Ghz and a RAM of 128MB. Detailed information 

has been presented in  chapter 6 about the computer  programs , trial and 

error steps and the difficulties which may arise while solving equations.  

 

Example (3.1) : Synthesize an RSHR linkage whose path tracer point on its 

coupler link passes through points 















−=
10
10

20

0P  , 















=

20
0

30

1P ,














−
=

0
10
10

2P  defined 

in the zero�th frame. The following data is available ,  a= 30   ,   b=2   ,   c=5 

 

     Applying the solution algorithm explained in part (a) of section (3.3)  a 

computer program  can be written for solving this problem.  Here using 

Mathcad the following results were determined ( Running Time : 21 

seconds).   

 

Inputs 

 
















−=
10
10

20

0
R    ,   
















=

20
0

30

1
R    ,   















−
=

0
10
10

2
R    ,   30=a    ,   2=b    ,   5=c  

Initial Values 

 

201 =l     ,    503 =l     ,    40
1 =θ     ,     7.71

1 =θ     ,   7.82
1 =θ    ,   00

5 =θ    ,  5.01
5 =θ     

 

12
5 =θ     ,    5.00

6 =θ     ,    11
6 =θ    ,   5.12

6 =θ     ,    50
7 =θ     ,    111

7 =θ     ,  172
7 =θ       
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Outputs 

 

36108.191 =l   ,  50558.492 =l   ,  91563.483 =l   ,  2786.294 =l   ,  38448.425 =l  

 

4365.40
1 =θ   ,  96546.61

1 =θ   ,  53532.62
1 =θ  

 

56212.00
5 −=θ   ,  25014.01

5 =θ   ,  13484.32
5 =θ  

 

60277.30
6 =θ   ,  08354.41

6 =θ   ,  24591.52
6 =θ  

 

15402.40
7 =θ   ,  19076.41

7 =θ   ,  16323.42
7 =θ  

 

















−
=

25987.5
42313.24
26699.15

)4(V   ,  















−=

25989.5
42312.24

23871.34
)4(W  

 

 

     Now it should be checked to see if the path tracer point passes through 

the precision points continuously or not . Recalling equation (2.12)  the 

diagram of the output angle versus input angle of the above mentioned 

RSHR linkage  can be drawn .According to  Figure (3.7) the RSHR linkage 

acts as a crank-rocker and since the input and output  angles determined 

through the synthesis procedure all lie on a continuous curve it can be 

deduced that the path tracer point will pass through the precision points 

continuously. 
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Figure (3.7) : The circles illustrate the input and output angles at which the path tracer point 

passes through the precision points. The dashed curve displays the other loop closure curve 

of the mechanism.  

 

 

Example (3.2) : Synthesize an RSHR linkage whose path tracer point on its 

coupler link passes through the following points , 

 
















−=
20
30

60

0P    ,   















−=
30
20

50

1P    ,   















−=
25
40

50

2P    ,   















−=
35
25

55

3P    ,   















−=
35
35

55

4P  

     Applying the solution procedure explained in part (b) of section (3.3) and 

using Mathcad the following results were determined (Running Time : 124 

seconds).  
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Inputs 

 
















−=
20
30

60

0R    ,   















−=
30
20

50

1R    ,   















−=
25
40

50

2R    ,   















−=
35
25

55

3R    ,   















−=
35
35

55

4R   

 

Initial Values 

 

1001 =l    ,   1002 =l    ,   1003 =l     ,    6/50
1 πθ =    ,   2/31

1 πθ =    ,    3/52
1 πθ =     

 

6/73
1 πθ =   ,  4/74

1 πθ =  ,  6/50
5 πθ =   ,  3/21

5 πθ =   ,  4/52
5 πθ =   ,  2/33

5 πθ =   

 

6/74
5 πθ =    ,   4/0

6 πθ =    ,   3/21
6 πθ =    ,   πθ =2

6    ,   2/3
6 πθ =    ,   4/4

6 πθ −=  

 

6/0
7 πθ −=    ,   3/1

7 πθ =    ,   πθ =2
7    ,   03

7 =θ    ,   2/34
7 πθ =  

 

Imposed Conditions 

 

12010 1 pp l             ,            12020 2 pp l             ,           32 ll f             ,           13 ll f    

   

5.05.0 0
7

1
7 pp θθ −−          ,        5.05.0 0

7
2
7 pp θθ −−         ,        5.05.0 0

7
3
7 pp θθ −−     

 

5.05.0 0
7

4
7 pp θθ −−                    
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Outputs 

 

47711.121 =l    ,   1202 =l    ,   38387.563 =l    ,   92972.284 =l    ,   43267.915 =l  

 

185.60
1 =θ    ,   86693.41

1 =θ    ,   89699.12
1 =θ    ,   57486.13

1 −=θ    ,   1647.34
1 =θ  

 

99495.30
5 =θ   ,  65539.01

5 =θ   ,  02014.12
5 =θ   ,  49228.23

5 −=θ   ,  33563.24
5 −=θ   

 

47608.00
6 =θ   ,  46868.31

6 −=θ   ,  72237.22
6 =θ   ,  30943.03

6 =θ   ,  35106.04
6 =θ   

 

2672.20
7 =θ   ,  95996.11

7 =θ   ,   76719.22
7 =θ   ,   95451.13

7 =θ   ,  47549.24
7 =θ  

 

776.2−=x  , 86581.1=y  , 14.0−=z  , 9615.20=a  , 81694.45−=b , 58719.81−=c   

 
















−=

88041.35
35241.41

68423.83
r    ,   

















−
−=

17163.3
41027.2
65415.28

)4(V    ,   















=

17193.3
41027.2
34585.91

)4(W         

      

     Now the continuity of the motion of the path tracer point when it passes 

through the precision points should be checked. As illustrated in Figure (3.8) 

the input and output angles at which the path tracer point passes through the 

precision points all lie on a continuous curve . This proves that the path 

tracer point will pass through the precision points continuously. 
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Figure (3.8) : The circles illustrates the input and output angles at which the path tracer point 

passes through the precision points . The dashed curve displays the other loop closure curve 

of the mechanism. 

 

 

 

Example (3.3) : Synthesize an RSHR linkage whose path tracer point on its 

coupler link passes through the following points successively, 

 
















−=
20
30

60

0P    ,   















−=
30
20

50

1P    ,   















−=
25
40

50

2P    ,   















−=
35
25

55

3P    

 

     Applying the solution procedure explained in part (b) of section (3.3) and 

using Mathcad the following results were determined (Running Time : 55 

seconds)  .  
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Inputs 

 
















−=
20
30

60

0R    ,   















−=
30
20

50

1R    ,   















−=
25
40

50

2R    ,   















−=
35
25

55

3R    

 

Initial Values 

 

1001 =l    ,    1002 =l     ,    1003 =l     ,    2.10
1 =θ    ,   2/31

1 πθ =    ,   3/52
1 πθ =  

 

10/113
1 πθ =     ,    6/50

5 πθ =     ,    3/21
5 πθ =      ,    4/52

5 πθ =     ,    2/33
5 πθ =     

 

4/0
6 πθ =    ,   3/21

6 πθ =    ,   πθ =2
6    ,   2/3

6 πθ =    ,   6/0
7 πθ −=    ,   3/1

7 πθ =  

 

πθ =2
7         ,        03

7 =θ         ,        4/π−=x        ,        π=y         ,      6/π−=z     

 

Imposed Conditions 

 

9020 1 pp l       ,      12020 2 pp l       ,      11020 3 pp l       ,      32 ll f       ,      13 ll f  

 

55.055.0 0
7

1
7 pp θθ −−       ,      55.055.0 0

7
2
7 pp θθ −−      ,     55.055.0 0

7
3
7 pp θθ −−   

 

10 0
1 pp θ          ,          5.25.1 1

1 pp θ          ,        43 2
1 ppθ         ,       5.55.4 3

1 ppθ  
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Outputs 

 

00465.221 =l    ,    1202 =l    ,    99909.803 =l    ,   19316.934 =l    ,   00092.315 =l  

 

10
1 =θ       ,      8063.11

1 =θ      ,      42
1 =θ       ,     5.53

1 =θ   

 

4735.30
5 =θ     ,     36469.01

5 =θ     ,    02166.02
5 =θ     ,    03051.03

5 =θ  

 

27479.00
6 −=θ     ,    46975.31

6 =θ     ,    46351.32
6 =θ     ,    3332.33

6 =θ    

 

70151.00
7 =θ     ,    942.01

7 =θ     ,    25151.12
7 =θ     ,     91661.03

7 =θ     

 

65.0=x  , 189.1=y  , 083.1−=z  , 36594.11−=a  , 069.43−=b  ,  11834.19−=c  

 
















−=

86019.15
31878.18
62349.104

r      ,     
















−
=

07453.0
68441.13
18295.92

)4(V      ,     















−=

07453.0
68441.13

81705.27
)4(W  

 

     Considering the input angles of the RSHR mechanism when the path 

tracer point passes through the precision points, it is seen that the path tracer 

point will pass from point 0P  to point 3P  successively. Besides Figure (3.9) 

verifies the motion continuity of the mechanisms when its path tracer point 

passes through the precision points. 
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Figure (3.9) : The circles illustrate the input and output angles at which the path tracer point 

passes through the precision points . The dashed curve displays the other loop closure curve 

of the mechanism. 

 

  

Example (3.4) : Synthesize an RSHR linkage whose coupler link moves a 

cube from position (1) to position (2) as shown in Figure (3.10) . 

Position (1) : }�,
30
80
50

{ 3/~4/3~6/~
00

123 πππ uuu eeeCR =















=  

Position (2) : }�,
40
0

30
{ 3/2~4/~2/~

11
123 πππ uuu eeeCR −=
















=  
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Figure (3.10) : The two prescribed positions of an object which is supposed to be carried by 

the RSHR linkage. 

 

     Applying the solution procedure explained in section (3.5) and using 

Mathcad program the following results were determined . Note that since 

this problem has been solved semianalytically some of the free parameters 

were selected beforehand (Running Time : 14 seconds). 



61 

Inputs 

 

Prescribed values , 

 
















=

30
80
50

0R    ,   















=

40
0

30

1R    ,   3/~4/3~6/~
0

123� πππ uuu eeeC =     ,   3/2~4/~2/~
1

123� πππ uuu eeeC −=     

 

Arbitrarily chosen values , 

 

7/πα =    ,  7/5πβ =   ,  5/πγ =   ,   5/20
5 πθ =    ,   10/0

6 πθ =   ,   6/0
7 πθ −=  

 

Initial Values 
















=

30
50

100

1r    ,   















=

10
5
5

2r    ,   21 =l    ,   302 =l    ,   23 =l    ,   2/0
1 πθ =    ,   2/1

1 πθ =  

 

Imposed Condition 

 

12/12/ 1
1

0
1 πθθπ pp −−  

 

Outputs 

 

05401.631 =l   ,  33913.442 =l   ,  91135.423 =l   ,  30748.1094 =l   ,  70836.685 =l   

 

38236.3=x    ,   36427.5=y    ,   68679.2=z    ,   87232.00
1 =θ    ,   13412.11

1 =θ          

 

02012.31
6 =θ        ,       60402.21

5 =θ         ,        07879.110−=a        ,       54829.8=b       
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52234.52=c  

 















−
=

29682.105
00284.15
45168.72

r    ,   















=

75247.33
84179.7
66968.103

)4(V    ,   
















−
−
−

=
75231.33

84185.7
33065.59

)4(W  

 

     Figure (3.11) illustrates the continuity of the coupler link�s motion when it 

passes from the first prescribed position to the second one. 
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Figure (3.11) : The circles illustrate the input and output angles at which frame (p) lies in the 

prescribed positions. The dashed curve displays the other loop closure curve of the RSHR 

mechanism. 
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CHAPTER FOUR 

OVER CONSTRAINED SPATIAL 
MECHANISMS 

 
4.1) GENERAL 

 

     The degree of freedom of a spatial mechanism can be calculated by the 

following formula  , 

 

SCPRnFOD 3455)1(6.. −−−−−=                                                                       (4.1) 

 

Where , 

 

n is the number of links . 

 

R is the number of revolute joints . 

 

P is the number of prismatic joints . 

 

C is the number of cylindric joints . 

 

S is the number of spheric joints . 

 

     When the degree of freedom of a mechanism is less than one , it is 

expected  to be immobile .However there are some spatial mechanisms 

whose degrees of freedom - according to  formula (4.1) -are less than unity 

and still they can move under some specific conditions . Such mechanisms 
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are called over constrained mechanisms and the conditions under which they 

move are called the constraints of the mechanism. 

 

     Over constrained mechanisms are attractive to mechanism designers for 

their higher capacity-in comparison to the similar mechanisms-to carry loads 

and that  they are cheaper .A.J. Shih(ref.30) and J.E.Baker(ref.31,32) recently 

have worked on some over constrained mechanisms. In this chapter using 

the algebra of exponential rotation matrices ,the mobility and kinematic 

synthesis of an over constrained spatial mechanism has been studied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

4.2) RCCR LINKAGE 

 
     According to equation (4.1) the degree of freedom of the RCCR linkage 

illustrated in Figure (4.1) is equal to zero but it has been proved that this 

mechanism is able to move under a constraint . 

 

 

                      

 
 

Figure (4.1) : An RCCR linkage 
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Figure (4.2) : Schematic figure of the RCCR linkage. 
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     Considering Figure (4.2) and Denavit-Hartenberg�s convention  table (4.1) 

can be constructed. Hence  the rotation matrices between the link frames are  

determined as follows , 

 
Table (4.1) :  Denavit-Hartenberg parameters of the RCCR linkage. 

 

Link θ  α  a  d  

1 variable 0 1l  c−  

2 variable α  γcos2l  2s  

3 variable 0 3l  3s  

4 variable β−  a−  b−  

 
 

 

13
~)1,0(� θueC =      ;     αθ 123

~~)2,1(� uu eeC =      ;     33
~)3,2(� θueC =      ;     βθ 143

~~)4,3(� uu eeC −=  

 

     The following equation can be written according to equation (2.1)  , 

 

IC �� )4,0( =  

 

Thus equation below is derived , 

 

ICC ��� )4,2()2,0( =  ⇒ 1)4,2()2,0( )�(� −= CC  ⇒  )(~~~)(~
43311213 θθβαθθ +−+ = uuuu eeee                        (4.2) 

 

     From equation (4.2) the following equation is resulted , 

 

















++−
−++−

++
=
















+−++

++−+

βθθβθθβ
βθθβθθβ

θθθθ

αα
θθαθθαθθ

θθαθθαθθ

cos)cos(sin)sin(sin
sin)cos(cos)sin(cos
0)sin()cos(

cossin0
)cos(sin)cos(cos)sin(

)sin(sin)sin(cos)cos(

4343

4343

4343

212121

212121  

                                                                                                                               (4.3) 
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which results in , 

 

βα coscos =  βα =⇒  or  βα −=   

 

If  βα =   then  according to equation (4.3) constraint below is obtained , 

 

01)cos( 2121 =+⇒=+ θθθθ  

 

and 

 

01)cos( 4343 =+⇒=+ θθθθ  

 

If  βα −=  then , 

 

πθθθθ =+⇒−=+ 2121 1)cos(  

 

and 

 

πθθθθ =+⇒−=+ 4343 1)cos(  

 

From Figure (4.2) it can be seen that , 

 

βα =  

 

Therefore it can be deduced that the RCCR linkage will be  movable if and only if the 

axes of the fixed joints are parallel to the axes of the moving joints. 

 

     Recalling equation (2.4) the following equation is written  , 
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0�������
1

)4,0(
43

)3,0(
41

)3,0(
33

)2,0(
31

)2,0(
21

)1,0(
21

)1,0(
131 =+++++++ uCauCduCauCduCauCduCaud  

                                                                                                                                 (4.4) 

Substituting  ia  and  id  from table (4.1)  equation (4.4) can be written in the 

form below ,  

 

0������cos�
3

)3,0(
1

)4,0(
3

)2,0(
31

)3,0(
33

)1,0(
21

)2,0(
231

)1,0(
1 =−−++++− uCbuCauCsuCluCsuClucuCl γ  

                                                                                                                                 (4.5) 

Let   δβα ==   then equation below is deduced , 

 

431143
~~1~~1)4,3()3,0()4,3()3,0()4,0( )()�(������ θδδθ uuuu eeeeCCICCIC −−−− ===⇒=⇒=     

 

Replacing  )4,0(�C  and  )3,0(�C  by  I�  and  431
~~ θδ uu ee −    in equation (4.5) respectively  

the following equation is obtained, 

 

1
~~

33
~)(~

33
~

21
~)(~

231
~

1
431121313121313 cos ueelueesuesueelucuel uuuuuuuu θδδθθθδθθθ γ −++ ++++−  

03
~~

1
431 =−− − uebeua uu θδ                                                                                            (4.6)                         

                                                                                                                            

Regarding the constraint of the mechanism ( 021 =+θθ ) equation (4.6) results 

in the scalar equations below , 

 

0coscoscos 43211 =−++ alll θγθ                                                                           (4.7) 

 

0sinsinsincossin 34311 =+−− δδθδθ bsll  

 

0coscossinsin 3432 =−+−+− δδθδ bslsc  

 

Let  ψθ =1   and  φθ =4  . Hence according to equation (4.7) the general 

displacement equation of the RCCR linkage will be , 
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0coscoscos 321 =−++ alll φγψ                                                                             (4.8) 

Note that  γ   is a constant  angle and belongs to the structure of the 

mechanism. 
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4.3) MOBILITY ANALYSIS OF THE RCCR LINKAGE 

 

1) CRANK-ROCKER (ψ  varies from  0 to 2π ) 

 

       According to  equation (4.8) the inequality below is derived, 

 

3

21

3

21
1321

coscoscoscoscos
l
lla

l
llalalll γφγφγ −+≤≤−−

⇒≤−+≤−              (4.9) 

 

In this case the inequality   1cos1 ≤≤− φ    must be never violated. Hence the 

following inequality has to be satisfied, 

 

1coscos1
3

21

3

21 ≤−+≤−−≤−
l
lla

l
lla γγ                                                               (4.10) 

 

which results in the following inequalities , 

 

13231 cos lllall −≤−≤− γ   and   13 ll >                                                                (4.11) 

 

Therefore under condition above the RCCR linkage will act as a crank-

rocker.  

 

Example (4.1) : Draw the output angle-input angle diagrams of the RCCR 

linkages with the following dimensions , 

 

201 =l      ;     403 =l      ;     20,...,10,20cos2 −−=−= γlaf     
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Figure (4.3) : The angular displacement of the output link versus the angular displacement of  

the input link for  201 =l  ,  403 =l   and  various f�s . 

 

 

   As shown in the diagram above , all of the RCCR linkages whose 

dimensions satisfy inequality (4.11) act as crank-rockers. 
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2) ROCKER-CRANK (φ   varies from 0 to 2π ) 

     

 From equation (4.8) equation below is derived , 

 

1

32

1

32
3213

coscoscoscoscos
l

lla
l

llalalll +−≤≤−−
⇒≤−+≤− γψγγψ          (4.12) 

 

In the case of  rocker-crank inequality  1cos1 ≤≤− ψ    must be never violated. 

Thus inequality ,   

    

 1coscos1
1

23

1

23 ≤−+≤−−≤−
l
lla

l
lla γγ                                                              (4.13)   

 

Has to be satisfied  which results in , 

 

31213 cos lllall −≤−≤− γ    and   31 ll >                                                              (4.14)                         

 

Hence under condition above the mechanism will act as a rocker-crank. 

 

 

Example (4.2) : Draw the output angle-input angle diagrams of the RCCR 

linkages with the following dimensions , 

401 =l      ;     203 =l      ;     20,...,10,20cos2 −−=−= γlaf   
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Figure (4.4) : As illustrated in the diagram all the RCCR linkages whose dimensions satisfy 

inequality (4.14) act as rocker-cranks. 

 

 

3) DOUBLE-CRANK ( both ψ  and φ  vary from 0 to 2π)  

 

     So far  the conditions under which the RCCR linkage acts as crank-rocker 

and rocker-crank were determined. The common part of these two 

conditions will give us the condition under which the linkage acts as a 

double crank. Considering inequalities (4.11) and (4.14) it can be seen that 

both inequalities are satisfied if and only if  , 
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31 ll =   and   γcos2la =                                                                                        (4.15) 

 

Thus under condition above the mechanism  will be a double crank. 

 

Example (4.3) : Draw the output angle-input angle diagram of the RCCR 

linkages with the following dimensions , 

 

31 ll =    and    γcos2la =  
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Figure (4.5) : When condition (4.15) is satisfied the RCCR linkage acts as a double crank. 
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4) DOUBLE-ROCKER ( both  ψ  and φ  vary in a range less than 2π  ) 

 

     Recalling the conditions under which the RCCR linkage acts as crank-

rocker and rocker-crank it can be deduce that the opposite conditions are 

required for  the linkage to act as a double rocker. That is , 

 

132 cos llla −≥− γ    or   312 cos llla −≤− γ   when   13 ll >                                 (4.16) 

 

312 cos llla −≥− γ    or   132 cos llla −≤− γ    when   31 ll >                                (4.17) 

 

     However conditions (4.16) and (4.17) can be considered only as necessary 

conditions for  the RCCR linkage to act as a double rocker. The reason is that 

so far  the conditions under which the linkage becomes locked have not been 

regarded. From inequality (4.9) it can be stated that the mechanism won�t be 

locked if and only if , 

 

1cos

3

21 −≥−+
l
lla γ      and      1cos

3

21 ≤−−
l
lla γ  

 

which result in 

 

31231 cos)( lllall +≤−≤+− γ                                                                                (4.18) 

 

Hence inequality (4.18) together with inequality (4.16) or (4.17) gives us the 

conditions under which the linkage acts as a double rocker. That is , 

 

31231 cos)( lllall −≤−≤+− γ    or   31213 cos lllall +≤−≤− γ   when  13 ll >     (4.19) 

 

or 
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13231 cos)( lllall −≤−≤+− γ   or   31231 cos lllall +≤−≤− γ    when   31 ll >    (4.20) 

 

Example (4.4) : Draw the output angle-input angle diagram of the RCCR 

linkages with the following dimensions , 

a)  201 =l      ,      403 =l      ,     50,40,30cos2 −−−=−= γlaf  

b) 401 =l       ,        203 =l      ,     50,40,30cos2 =−= γlaf  

 

 

a)   201 =l      ,      403 =l      ,     50,40,30cos2 −−−=−= γlaf  
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Figure (4.6) : All RCCR linkages whose dimensions satisfy inequality (4.19) are double 

rockers . 



78 

b)  401 =l      ,      203 =l      ,      50,40,30cos2 =−= γlaf  
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Figure (4.7) :  All  RCCR linkages whose dimensions satisfy inequality (4.20) act as double 

rockers.  
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4.4) SWING ANGLE OF THE RCCR LINKAGE 
 

     The swing angle of a crank-rocker mechanism is the variation range of the 

output angle for a complete rotation of the input link . Considering that in  

return positions the angular speed of the output link is equal to zero ,  the 

swing angle of the mechanism is determined as follows , 

 

Differentiating equation (4.8) in terms of  ψ   the following equation is 

derived, 

 

ψ
ψ
φφ sin)(sin 13 l
d
dl =−                                                                                          (4.21) 

 

The following equation is available in return positions,  

 

00sin0)( 1 =⇒=⇒= ψψ
ψ
φ
d
d  or  πψ =2     

 

If  01 =ψ    then  the following equation is resulted from equation (4.8)  , 

 

3

2

3

1
1

coscos
l
la

l
l γφ −+−=   )cos(cos

3

2

3

11
1 l

la
l
l γφ −+−=⇒ −                                 (4.22) 

 

If   πψ =2    then  2φ  is determined as follows  , 

 

)cos(cos
3

2

3

11
2 l

la
l
l γφ −+= −                                                                                    (4.23) 

 

Hence the swing angle is determined as follows , 
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12 φφφ −=∆     

 

Let   p
l
l =
3

1   and  q
l
la =−

3

2 cosγ   then , 

 

)(cos)(cos 11 qpqp +−−+=∆ −−φ                                                                        (4.24) 

 

Now  the swing angle diagram of the RCCR linkage can be drawn by means 

of equation (4.24). 
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Figure (4.8) : Swing angle diagram of the RCCR linkage for various p�s and q�s. Here  
3

1

l
lp =   

and  
3

2 cos
l
laq γ−=  . 
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4.5) PATH GENERATION SYNTHESIS OF THE RCCR 

LINKAGE 

 

     Let�s consider the case in which the locations and orientations of the fixed 

joints are not prescribed. In this case a global coordinate system is used to 

specify the locations of the precision points as shown in the figure below , 

 

                

Figure (4.9) : When the locations and orientations of the fixed joints are not prescribed all  

positions and orientations are defined based on a global coordinate system.  



82 

Note that for the synthesis procedure the link variables shown in table (4.1) 

are changed as shown in table (4.2) , 

 
Table (4.2) : Joint variables and Denavit-Hartenberg parameters of the RCCR linkage. 

  

Link θ  α  a  d  

1 i
1θ  0 1l  c−  

2 i
2θ  δ  γcos2l  is2  

3 i
3θ  0 3l  is3  

4 i
4θ  δ−  a−  b−  

 

 

     After dividing the mechanism into left and right dyads  the loop closure 

equations are written for  the left and right dyads as follows , 

 

i
g

i
g

i
ig

i
g RVCuCsuCluCcr =+++− )2()2,(

3
)1,(

21
)1,(

13
)0,( ����                                         (4.25) 

 

ruCauCbuCluCsWCR gg
i

gg
i

ig
ii =−−+++ 1

)0,(
3

)3,(
1

)3,(
33

)2,(
3

)2()2,( �����                    (4.26) 

 
)2()2()2( UWV =+                                                                                                  (4.27) 

 

Where , 

 
zuyuxug eeeC 321

~~~)0,(� =  

r  has been illustrated in Figure (4.9) and  















=

3

2

1

r
r
r

r  

iuzuyuxu
i

gg
i eeeeCCC 13321

~~~~)1,0()0,()1,( ��� θ==  
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δθθ 1213321
~)(~~~~)2,0()0,()2,( ��� uuzuyuxu

i
gg

i eeeeeCCC
ii +==  

 
ii uuzuyuxuuuzuyuxu

i
zuyuxu

i
gg

i eeeeeeeeeeCeeeCCC 431321143321321
~~~~~1~~~~~1)4,3(~~~)3,0()0,()3,( )()�(��� θδδθ −−−− ====

 

            As it was  deduced from equation (4.3) , 021 =+ ii θθ  and 043 =+ ii θθ   

are constraints of the RCCR linkage . Hence  equations (4.25) and (4.26) can 

be written in the forms below , 

 

i
uzuyuxuyuxuizuyuxuyuxu RVeeeeueesueeeluecer

i

=+++− + )2(~~~~
3

~~
21

)(~~~
13

~~
132121132121 δθ                                           

                                                                                                                               (4.28) 

 

rueeaeueeebe

ueeeeelueeeesWeeeeR
zuyuxuuzuyuxu

uuzuyuxuuzuyuxuiuzuyuxu
i

i

=−−

+++ −

1

~~~
3

~~~~
1

~~~~~
33

~~~~
3

)2(~~~~

3211321

43132113211321

δ

θδδδ

               (4.29) 

                          

     The following equation is written according to Figure (4.9) , 
















==+

0
sin
cos

2

2
)2()2()2( γ

γ
l
l

UWV                                                                              (4.30)  

Let   

 

1
)2(~~~~

3
~~

132121 rVeeeeuecer uzuyuxuyuxu =+− δ                                                                    (4.31) 

 

and 

 

2
)2(~~~~

3
~~~~

1
~~~

13211321321 rrWeeeeueeebeueeae uzuyuxuuzuyuxuzuyuxu =−+−− δδ                       (4.32) 

 

Hence  equations (4.28) and (4.29) can be written in the following form , 

 

i
yuxuizuyuxu Rueesueeelr

i

=++ +
3

~~
21

)(~~~
11

211321 θ                                                              (4.33) 
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i
uuzuyuxuuzuyuxui Rueeeeelueeeesr

i

−=++ −
1

~~~~~
33

~~~~
32

4313211321 θδδ                                        (4.34) 

 

According to equations (4.33) and(4.34)  the following table is constructed, 

 

 

Table (4.3) : According to table (4.3) when the locations and orientations of the fixed joints 

are not prescribed the path tracer point of the RCCR linkage will pass through at most six 

precision points. 

 

number of 

precision 

points 

number of 

scalar 

equations 

number of 

unknowns 

number of 

free 

parameters 

1 6 16 ),,,,,,,,,,,( 0
4

0
1

0
3

0
23121 θθδ sszyxllrr  10 

2 12 20( above + 1
4

1
1

1
3

1
2 ,,, θθss  ) 8 

3 18 24( above + 2
4

2
1

2
3

2
2 ,,, θθss ) 6 

4 24 28( above + 3
4

3
1

3
3

3
2 ,,, θθss  ) 4 

5 30 32( above + 4
4

4
1

4
3

4
2 ,,, θθss ) 2 

6 36 36( above + 5
4

5
1

5
3

5
2 ,,, θθss  ) 0 

 

     

 Assume that it is desired  to synthesize an RCCR linkage whose path tracer 

point is capable of passing through five precision points . That is i=0,1,2,3,4 .  

 

     Considering equation (4.33)  the following equations are derived , 

 

03
~~0

21
)(~~~

11
21

0
1321 Rueesueeelr yuxuzuyuxu =++ +θ                                                             (4.35) 

 

13
~~1

21
)(~~~

11
21

1
1321 Rueesueeelr yuxuzuyuxu =++ +θ                                                              (4.36) 
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23
~~2

21
)(~~~

11
21

2
1321 Rueesueeelr yuxuzuyuxu =++ +θ                                                             (4.37) 

 

33
~~3

21
)(~~~

11
21

3
1321 Rueesueeelr yuxuzuyuxu =++ +θ                                                              (4.38) 

 

43
~~4

21
)(~~~

11
21

4
1321 Rueesueeelr yuxuzuyuxu =++ +θ                                                             (4.39) 

 

Substituting 1r  from equation (4.35) into equations (4.36) to (4.39) equations 

below are obtained , 

 

013
~~0

2
1
21

~~~~~
1

21
0

13
1
13321 )()( RRueessueeeeel yuxuuuzuyuxu −=−+− θθ                                          

 

023
~~0

2
2
21

~~~~~
1

21
0
13

2
13321 )()( RRueessueeeeel yuxuuuzuyuxu −=−+− θθ                                         

 

033
~~0

2
3
21

~~~~~
1

21
0
13

3
13321 )()( RRueessueeeeel yuxuuuzuyuxu −=−+− θθ                                         

 

043
~~0

2
4
21

~~~~~
1

21
0
13

4
13321 )()( RRueessueeeeel yuxuuuzuyuxu −=−+− θθ                                         

 

or 

 

)()()( 01
~~~

3
0
2

1
21

~~
1

123
0
13

1
13 RReeeussueel xuyuzuuu −=−+− −−−θθ                                      (4.40) 

 

)()()( 02
~~~

3
0
2

2
21

~~
1

123
0
13

2
13 RReeeussueel xuyuzuuu −=−+− −−−θθ                                     (4.41) 

 

)()()( 03
~~~

3
0
2

3
21

~~
1

123
0
13

3
13 RReeeussueel xuyuzuuu −=−+− −−−θθ                                      (4.42) 

 

)()()( 04
~~~

3
0
2

4
21

~~
1

123
0
13

4
13 RReeeussueel xuyuzuuu −=−+− −−−θθ                                     (4.43) 
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The following equations are obtained from equation (4.34),  

 

01
~~~~~

33
~~~~0

32

0
4313211321 Rueeeeelueeeesr uuzuyuxuuzuyuxu −=++ − θδδ                                       (4.44) 

 

11
~~~~~

33
~~~~1

32

1
4313211321 Rueeeeelueeeesr uuzuyuxuuzuyuxu −=++ − θδδ                                        (4.45) 

 

21
~~~~~

33
~~~~2

32

2
4313211321 Rueeeeelueeeesr uuzuyuxuuzuyuxu −=++ − θδδ                                       (4.46) 

 

31
~~~~~

33
~~~~3

32

3
4313211321 Rueeeeelueeeesr uuzuyuxuuzuyuxu −=++ − θδδ                                        (4.47) 

 

41
~~~~~

33
~~~~4

32

4
4313211321 Rueeeeelueeeesr uuzuyuxuuzuyuxu −=++ − θδδ                                       (4.48) 

 

Substituting  2r  from equation (4.44) into equations (4.45) to (4.48) equations 

below are derived , 

 

101
~~~~~~

33
~~~~0

3
1
3 )()(

0
43

1
4313211321 RRueeeeeelueeeess uuuzuyuxuuzuyuxu −=−+− −− θθδδ                       

 

201
~~~~~~

33
~~~~0

3
2
3 )()(

0
43

2
4313211321 RRueeeeeelueeeess uuuzuyuxuuzuyuxu −=−+− −− θθδδ                 

 

301
~~~~~~

33
~~~~0

3
3
3 )()(

0
43

3
4313211321 RRueeeeeelueeeess uuuzuyuxuuzuyuxu −=−+− −− θθδδ                      

 

401
~~~~~~

33
~~~~0

3
4
3 )()(

0
43

4
4313211321 RRueeeeeelueeeess uuuzuyuxuuzuyuxu −=−+− −− θθδδ                      

 

or 

 

)()()( 10
~~~~

1
~~

33
0
3

1
3

1231
0
43

1
43 RReeeeueeluss xuyuzuuuu −=−+− −−−−−− δθθ                            (4.49) 
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)()()( 20
~~~~

1
~~

33
0
3

2
3

1231
0
43

2
43 RReeeeueeluss xuyuzuuuu −=−+− −−−−−− δθθ                           (4.50) 

 

)()()( 30
~~~~

1
~~

33
0
3

3
3

1231
0
43

3
43 RReeeeueeluss xuyuzuuuu −=−+− −−−−−− δθθ                           (4.51) 

 

)()()( 40
~~~~

1
~~

33
0
3

4
3

1231
0
43

4
43 RReeeeueeluss xuyuzuuuu −=−+− −−−−−− δθθ                           (4.52) 

 

     Multiplying equations (4.40) to (4.43) and (4.49) to (4.52) by tu1  and tu2  the 

following equations are obtained , 

 

)()( 01
~~~

11
~~

11
123

0
13

1
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                   (4.53) 

 

)()( 02
~~~

11
~~

11
123

0
13

2
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                  (4.54) 

 

)()( 03
~~~

11
~~

11
123

0
13

3
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                   (4.55) 

 

)()( 04
~~~

11
~~

11
123

0
13

4
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                  (4.56) 

 

)()( 01
~~~

21
~~

21
123

0
13

1
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                  (4.57) 

 

)()( 02
~~~

21
~~

21
123

0
13

2
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                 (4.58) 

 

)()( 03
~~~

21
~~

21
123

0
13

3
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                  (4.59) 

 

)()( 04
~~~

21
~~

21
123

0
13

4
13 RReeeuueeul xuyuzutuut −=− −−−θθ                                                 (4.60) 

 

)()( 10
~~~~

11
~~

13
1231

0
43

1
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                         (4.61) 
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)()( 20
~~~~

11
~~

13
1231

0
43

2
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                        (4.62) 

 

)()( 30
~~~~

11
~~

13
1231

0
43

3
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                        (4.63) 

 

)()( 40
~~~~

11
~~

13
1231

0
43

4
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                        (4.64) 

 

)()( 10
~~~~

21
~~

23
1231

0
43

1
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                        (4.67) 

 

)()( 20
~~~~

21
~~

23
1231

0
43

2
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                       (4.68) 

 

)()( 30
~~~~

21
~~

23
1231

0
43

3
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                       (4.69) 

 

)()( 40
~~~~

21
~~

23
1231

0
43

4
43 RReeeeuueeul xuyuzuutuut −=− −−−−−− δθθ                                       (4.70) 

 

     Using a proper numerical method  equations (4.53) to (4.70) can be solved 

for ),,,,,,,,,,,,,,,( 4
4

3
4

2
4

1
4

0
4

4
1

3
1

2
1

1
1

0
131 θθθθθθθθθθδ llzyx . Then choosing  0

2s  and 0
3s  

arbitrarily   4
3

3
3

2
3

1
3

4
2

3
2

2
2

1
2 ,,,,,,, ssssssss   can be determined as follows , 

 

Multiplying equations (4.40) to (4.43) and (4.49) to (4.52) by tu3   equations 

below are derived , 

 

)( 01
~~~

3
0
2

1
2

123 RReeeuss xuyuzut −+= −−−                                                                       (4.71) 

 

 )( 02
~~~

3
0
2

2
2

123 RReeeuss xuyuzut −+= −−−                                                                     (4.72) 

 

)( 03
~~~

3
0
2

3
2

123 RReeeuss xuyuzut −+= −−−                                                                      (4.73) 
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)( 04
~~~

3
0
2

4
2

123 RReeeuss xuyuzut −+= −−−                                                                      (4.74) 

 

)( 10
~~~~

3
0
3

1
3

1231 RReeeeuss xuyuzuut −+= −−−− δ                                                               (4.75) 

 

)( 20
~~~~

3
0
3

2
3

1231 RReeeeuss xuyuzuut −+= −−−− δ                                                               (4.76) 

 

)( 30
~~~~

3
0
3

3
3

1231 RReeeeuss xuyuzuut −+= −−−− δ                                                               (4.77) 

 

)( 40
~~~~

3
0
3

4
3

1231 RReeeeuss xuyuzuut −+= −−−− δ                                                               (4.78) 

 

     Now    1r  and  2r  can be found from equations (4.35) and (4.44) 

respectively then adding equations (4.31) and (4.32) the following equation is 

resulted , 

 

21
)2()2(~~~~

3
~~

3
~~~~

1
~~~

)(1321211321321 rrWVeeeeueceueeebeueeae uzuyuxuyuxuuzuyuxuzuyuxu +=++−−− δδ  

                                                                                                                               (4.79) 

but from equation (4.30) it can be seen that , 

 
















==+

0
sin
cos

2

2
)2()2()2( γ

γ
l
l

UWV  

 

Hence   equation (4.79) can be written in the following form , 

 
)2(

21
~~~

33
~

1 )(1231 Urreeeucubeua xuyuzuu −+=−−− −−−δ                                             (4.80) 

 

Thus choosing  2l  and  γ  arbitrarily , a , b  and  c  are determined from 

equation (4.80) as follows , 
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])([ )2(~
21

~~~
1

1123 Uerreeeua uxuyuzut δ−+−= −−−                                                             (4.81) 

 

])([
sin

)2(~
21

~~~2 1123 Uerreeeub uxuyuzu
t

δ

δ
−+= −−−                                                           (4.82) 

 

δδ cos])([ )2(~
21

~~~
3

1123 bUerreeeuc uxuyuzut −−+−= −−−                                                 (4.83) 

 

Now choosing  )2(V   arbitrarily   )2(W  can be determined from equation 

(4.30) . 

 

     Example (4.5) : Synthesize an RCCR linkage whose path tracer point 

passes through the following precision points , 

 
















−=
15
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0P    ,   















−=
0
4

35

1P    ,   















−=
20
20

40

2P    ,   















=

30
0
20

3P    ,   















=

20
10
20

4P      

 

     Applying the solution procedure explained in this chapter and using 

Mathcad the following results were determined (Running Time : 84 seconds). 

Detailed information has been presented in chapter 6 about the computer  

programs and trial and error steps and the difficulties which may arise while 

solving equations.  
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Inputs 

 
















−=
15
20

50

0R    ,   















−=
0
4

35

1R    ,   















−=
20
20

40

2R    ,   















=

30
0
20

3R    ,   















=

20
10
20

4R      

 

 

Arbitrarily chosen values , 

 

400
2 =s      150

3 =s      















=

20
0

30
)2(V      302 =l      3

πγ =     

 

Initial Values 

 

501 =l     ,    203 =l     ,    6/70
1 πθ =     ,    3/51

1 πθ =     ,    4/72
1 πθ =    ,   πθ 23

1 =  

 

3/74
1 πθ =    ,    6/0

7 πθ =    ,   πθ =1
7    ,   2/2

7 πθ =    ,   3/23
7 πθ =    ,   6/54

7 πθ =    

 

4/π=x    ,   π=y    ,   6/π=z    ,    3/πδ =  

 

 

 

Imposed Conditions 

 

22 1
7

0
7 pp θθ −−    ,   22 2

7
0
7 pp θθ −−    ,   22 3

7
0
7 pp θθ −−    ,   22 4

7
0
7 pp θθ −−  

 

0pδ  
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Outputs 

 

18833.131 =l      302 =l      42179.143 =l      05551.364 =l      05551.365 =l  

 

2313.20
1 =θ      78843.51

1 =θ      93902.22
1 =θ      01633.43

1 =θ      14723.54
1 =θ  

 

18097.10
4 =θ      97302.21

4 =θ      77451.02
4 =θ      15344.13

4 =θ      17274.24
4 =θ  

 

400
2 =s      68528.331

2 =s      56116.332
2 =s      78575.63

2 =s      26432.64
2 =s  

 

150
3 =s      09742.291

3 =s      54516.242
3 =s      04923.543

3 =s      4552.554
3 =s  

38945.12=a      56276.55=b      19062.1−=c      















=

20
0

30
)2(V      

















−

−
=

20
98076.25
15

)2(W  

54975.0−=δ  

 

     Now it should be checked that if the path tracer point passes through the 

precision points continuously or not. For this purpose the output angle �

input angle diagram of the RCCR linkage should be drawn as shown below, 
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Figure (4.10) : The circles indicate the input and output angles at which the path tracer point 

passes through the precision points. The dashed curve displays the other loop closure curve. 

 

 

 

     As illustrated in the Figure (4.10) since the input and output angles at 

which the path tracer point passes through the precision points all lie on a 

continuous curve ,it can be deduced that the path tracer point will pass 

through the precision points continuously. 
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CHAPTER FIVE 

MULTILOOP SPATIAL LINKAGES 
 
5.1) GENERAL 

 
     In many cases multiloop spatial linkages are preferred to single loop 

spatial linkages , because in comparison to single loop spatial linkages they 

have a  higher capacity to carry loads and besides that since the number of 

joints in multiloop spatial linkages is greater than that of the single loop 

spatial linkages , in the synthesis cases where a high number of points or 

positions have been prescribed , the multiloop spatial linkages are more 

preferable. 

 

     In this chapter the general displacement equations of a two loop spatial 

linkage have been obtained and then a procedure has been presented for the 

motion generation synthesis of this linkage. 

 

     Consider the RSSR-SC linkage illustrated in Figure (5.1) . Replacing the 

spheric joints by  equivalent combinations of revolute joints  the RSSR-SC 

linkage is redrawn as shown in Figure (5.2) . Note that in this case there are 

two fixed coordinate systems attached to the fixed link and that the fixed link 

is called 80 ,LL  and  10L′  . In other words  80 ,LL   and  10L′   all  address the fixed 

link . 
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Figure (5.1) : An RSSR_SC linkage (ref.29) 
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Figure (5.2) : In this figure the spheric joints of the RSSR-SC have been replaced by  

equivalent combinations of revolute joints. Note that links  66532 ,,,, LLLLL ′  and 7L′  are 

virtual and their lengths are equal to zero. 
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5.2) LOOP CLOSURE EQUATIONS      
 

     Regarding Figure (5.2) it is seen that two orientation loop closure 

equations and two position loop closure equations can be written for the 

RSSR_SC linkage as follows , 

 

a) ORIENTATION LOOP CLOSURE  EQUATIONS  

 

ICCCC ffffffff ���...�� ),(),(),(),( 80872110 ==                                                                          (5.1) 

 

ICCCCCC ffffffffffff ���...��...�� ),(),(),(),(),(),( 10010965542110 == ′′′′′′                                                 (5.2) 

 

where  ),( 1� kk ffC −   is the orientation matrix  of frame (k) with respect to frame 

(k-1) . 

 

The equation below  is written according to Denavit-Hartenberg�s 

convention, 

 

kkk uuuuuuff eeeeeeC αθαθαθ 13212311130
~~~~~~),( ...� =                                                                         (5.3) 

 

where  iθ  is joint variable and  iα  is  link parameter.  
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b) POSITION LOOP CLOSURE EQUATIONS  

 

0...
12110

rrrr
=+++

− nn oooooo rrr                                                                                        (5.4) 

 

0......
10965542110

rrrrrr
=++++++ ′′′′′ oooooooooo rrrrr                                                               (5.5) 

 

where 

 

kk oor 1−

r  is the vector drawn  from the origin of frame (k-1) to the origin of frame 

(k) . 

 

     Considering  Denavit-Hartenberg�s convention  equations (5.4) and (5.5) 

can be written in the following form , 

 

0��...���
1

),(
3

),(
1

),(
23

),(
21

),(
131

010211010 =++++++ − uCauCduCauCduCaud nn ff
n

ff
n

ffffff     (5.6) 

 

3
),(

101
),(

53
),(

51
),(

23
),(

21
),(

131
905040211010 �...��...��� uCduCauCduCauCduCaud ffffffffffff ′′ ′++′++++++  

0�
1

),(
10

100 =′+ ′ uCa ff                                                                                                     (5.7) 

 

     Regarding Figure (5.2) the link parameters and joint variables of the RSSR-

SC linkage have been listed in tables (5.1) and (5.2) . 
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Table (5.1): Link parameters and joint variables of the first loop. 

 

Link θ  α  a d 

1L  1θ  0 1l  -b 

2L  2θ  2/π−  0 0 

3L  3θ  2/π  0 0 

4L  4θ  0 2l  0 

5L  5θ  2/π−  0 0 

6L  6θ  2/π  0 0 

7L  7θ  0 3l  0 

8L  8θ  δ  a  8s−  

 

 

 
Table (5.2) : Link parameters and joint variables of the second loop. 

 

Link θ  α  a d 

1L  1θ  0 1l  -b 

2L  2θ  2/π−  0 0 

3L  3θ  2/π  0 0 

4L  4θ  0 2l  0 

5L′  γ−  0 4l  0 

6L′  6θ′  2/π−  0 0 

7L′  7θ′  2/π  0 0 

8L′  8θ′  0 5l  0 

9L′  9θ′  δ′  a′  c′−  

10L′  β−  0 0 b′  
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      Considering equations (5.6) and (5.7) and according to the link 

parameters and joint variables listed in tables (5.1) and (5.2) it can be  written 

that ,   

 

0�����
1

),(
3

),(
81

),(
31

),(
21

),(
13

8070704010 =+−+++− uCauCsuCluCluClub ffffffffff                (5.8) 

 

1
),(

3
),(

1
),(

51
),(

41
),(

21
),(

13
908080504010 ������ uCauCcuCluCluCluClub ffffffffffff ′′′′ ′+′−++++−  

0�
3

),( 100 =′+ ′ uCb ff                                                                                                      (5.9) 

 

     Considering  table (5.1) and according to equation (5.3) the following 

equations are obtained, 

 

1310
~),(� θuff eC =  

 

433221340
~~)(~),(� θθθθ uuuff eeeC +=  

 

According to equation (5.1) equations below are written , 

 

8311838770808770
~~1~~1),(),(),(),(),( ][]�[����� θδδθ uuuuffffffffff eeeeCCICCC −−−− ===⇒==  

 

IC ff �� ),( 80 =  

 

     Now regarding table (5.2) and according to equations (5.2) and (5.3) the 

following equations are derived , 

 
)(~~)(~),(),(),( 4332213544050 ��� γθθθθ −+′′ == uuuffffff eeeCCC  

 

931331931088010010880
~~~1~~~1),(),(),(),(),( ][]�[����� θδββδθ ′−′−−−′′−′′′′′′′ ===⇒== uuuuuuffffffffff eeeeeeCCICCC
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ββ 331099010010990
~1~1),(),(),(),(),( ][]�[����� uuffffffffff eeCCICCC ===⇒== −−−′′′′′′′  

 

IC ff �� ),( 100 =′  

 

Thus  equations (5.8) and (5.9) can be written in the form below , 

 

013
~~

81
~~

31
~~)(~

21
~

13
831831433221313 =+−+++− −−−−+ uaueesueelueeeluelub uuuuuuuu θδθδθθθθθ      (5.10) 

 

1
~~~

51
)(~~)(~

41
~~)(~

21
~

13
93134332213433221313 ueeelueeelueeeluelub uuuuuuuuuu θδβγθθθθθθθθθ ′−′−−++ ++++−  

031
~

3
~~

313 =′+′+′− ′− ubueaueec uuu βδβ                                                                         (5.11) 
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5.3) GENERAL DISPLACEMENT EQUATIONS 
 

     From equations (5.10) and (5.11) the following equations are obtained , 

 

3
~

81
~~

31
~

1311
~~)(~

2
1831134332213 uesueeluelubuaueeel uuuuuuu δθδθθθθθ −−−+ −++−=−                    (5.12) 

 

1
~

13
~~

31
~

1412
~~)(~

1313334332213 )(][ uelueecubbueaueluleee uuuuuuuu θδββγθθθθ +′−−′+′=−− ′−−+  

1
~~~

5
9313 ueeel uuu θδβ ′−′−+                                                                                                (5.13) 

 

and subtracting equation (5.10) from equation (5.11) equations below are 

derived, 

 

1

~~

331

~

3

~~

1

~~~

51
)(~~)(~

4
83131393134332213 ueelubueaueecueeelueeel uuuuuuuuuuu θδβδβθδβγθθθθ −−′−′−′−−+ −′+′+′−+  

013
~

8
1 =−+ − uaues u δ  

 

or 

 

1
)(~~)(~

4
4332213 ueeel uuu γθθθθ −+− = 31

~
3

~~
1

~~~
5

3139313 ubueaueecueeel uuuuuu ′+′+′− ′−′−′− βδβθδβ  

13
~

81
~~

3
1831 uauesueel uuu −+− −−− δθδ                                                                               (5.14) 

 

Taking the transposes of  equations (5.12) to (5.14) the following equations 

are obtained , 

 
tuuuuuuut uesueeluelubuaeeeul ][ 3

~
81

~~
31

~
131

)(~~~
12

1831132133243 δθδθθθθθ −−−+−−− −++−=−           (5.15) 

 

1
~

13
~~

31
~~~)(~

1
~

412
1313343322133 )([][ uelueecubbueaeeeuelul uuuuuuutu θδββθθθθγ +′−−′+′=+− ′−−−+−−

 
tuuu ueeel ]1

~~~
5

9313 θδβ ′−′−+                                                                                              (5.16) 
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1
~

3
~~

1
~~~

5
)(~~)(~

41
31393134332213 [ ueaueecueeeleeelu uuuuuuuuut βδβθδβγθθθθ ′+′−=− ′−′−′−−−−+−  

tuuu uauesueelub ]13
~

81
~~

33
1831 −+−′+ −−− δθδ                                                                  (5.17) 

 

Multiplying equations (5.12) to (5.14) by equations (5.15) to (5.17) 

respectively the following equations are derived , 

 

1
~~

31
~

1313
~

81
~~

31
~

131
2

2
83113183113 [][ ueeluelubuauesueeluelubual uuutuuuu θδθδθδθ −−−−− ++−−++−=  

]3
~

8
1 ues u δ−−                                                                                                              (5.18) 

 

1
~

13
~~

31
~22

4
2

42
13133 )([sin)cos( uelueecubbuealll uuuu θδββγγ +′−−′+′=++ ′−  

tuuu ueeel ]1
~~~

5
9313 θδβ ′−′−+ 1

~
13

~~
31

~
13133 )([ uelueecubbuea uuuu θδββ +′−−′+′ ′−

]1
~~~

5
9313 ueeel uuu θδβ ′−′−+                                                                                               (5.19) 

 
tuuuuuuuuu uauesueelubueaueecueeell ][ 13

~
81

~~
331

~
3

~~
1

~~~
5

2
4

18313139313 −+−′+′+′−= −−−′−′−′− δθδβδβθδβ  

][ 13
~

81
~~

331
~

3
~~

1
~~~

5
18313139313 uauesueelubueaueecueeel uuuuuuuuu −+−′+′+′− −−−′−′−′− δθδβδβθδβ                                  

                                                                                                                               (5.20) 

    

     Equations (5.18) to (5.20) are the general displacement equations of the 

RSSR_SC linkage. Note that the only variables in equations above are , 

881 ,, sθθ  and  9θ′  and the rest of the terms are parameters. 
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Example (5.1) : Considering the sliding motion of the cylindric joint of the 

RSSR-SC linkage shown in Figure (5.1) as the input of the linkage ,draw 

the input-output diagrams of the RSSR-SC linkage  whose dimensions 

have been given as follows , 

 

101 =l    ,   412 =l    ,   103 =l    ,   84 =l    ,   55 =l    ,   19=a    ,   18=′a    ,    16=b  

 

8=′b    ,   11=′c    ,   0=β    ,   5/4πγ =    ,   3/πδ =    ,   6/πδ =′  

 

     Let  )(1 sψθ =  ,  )(8 sΩ=θ  ,  )(9 sΦ=′θ  . By solving equations  (5.18) to (5.20) 

simultaneously the following diagrams were drawn , 

 

Figure (5.3) : The input angle�output angle diagram of the RSSR-SC linkage . Note that  S 

has been considered as the input of the system. 
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Figure (5.4) : The input angle�output angle diagram of the RSSR-SC linkage . Note that  S 

has been considered as the input of the system. 
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Figure (5.5) : The input angle�output angle diagrams of the RSSR-SC linkage . Note that  S 

has been considered as the input of the system. 
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5.4) MOTION GENERATION  SYNTHESIS OF THE 

RSSR-SC MECHANISM 

 

     Considering Figure (5.2) and tables (5.1) and (5.2)  the following loop 

closure equations can be written, 

 

i
ffg

i
fg

i
fg RVCuCluCbr =++− )(),(

1
),(

13
),( 4410 ���                                                        (5.21) 

 

i
fg

i
fg

i
fg

i
ffg RruCauCsuClWC −=−+−+ 1

),(
3

),(
81

),(
3

)(),( 87744 ����                                   (5.22) 

 

i
fg

i
fg

i
fg

i
fg

i
fg

i
ffg

i RruCbuCauCcuCluClWC −=−′+′+′−++ ′′′′′
3

),(
1

),(
3

),(
1

),(
51

),(
4

)(),( 9988544 ������

                                                                                                                               (5.23) 

where  

 
zuyuxufg eeeC 3230

~~~),(� =  

 
)(~~~),( 13231� izuyuxufg

i eeeC θ+=  

 
iiii uuzuyuxufg

i eeeeeC 4332213234
~~)(~~~),(� θθθθ ++=  

 
ii uuzuyuxuuuzuyuxuff

i
fgff

i
fgfg

i eeeeeeeeeeCCCCC 8313231833238707007
~~~~~1~~~~~1),(),(),(),(),( ][]�[���� θδδθ −−−− ====

 
zuyuxufgff

i
fgfg

i eeeICCCC 32308008
~~~),(),(),(),( ����� ===  

 
)(~~)(~~~),(),(),( 4332213235005 ��� γθθθθ −++′′ ==

iiii uuzuyuxuff
i

fgfg
i eeeeeCCC  

 
1~~~~~~1),(),(),(),(),( ][]�[���� 319332310808008 −−′′−′′′′ === βδθ uuuzuyuxuff

i
fgff

i
fgfg

i eeeeeeCCCCC  

931323
~~)(~~~ θδβ ′−′−+= uuzuyuxu eeeee                                                          
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)(~~~1~~~~1),(),(),(),(),( 323332310909009 ][]�[���� ββ +−−−′′′′ ==== zuyuxuuzuyuxuff
i

fgff
i

fgfg
i eeeeeeeCCCCC  

 
zuyuxufgff

i
fgfg

i eeeICCCC 3230100010
~~~),(),(),(),( ����� === ′′  

 

and finally  the following orientation loop closure equation is derived, 

 
),(),(),( 44 ��� pffg

i
pg

i CCC =                                                                                               (5.24) 

 

where  ),(� pg
iC   is the orientation matrix of frame (p) with respect to the global 

frame when frame (p) lies in the i�th position and it is a prescribed matrix. 
),( 4� pfC   is the orientation matrix of frame (p) with respect to the fourth frame 

and is a constant matrix. This orientation matrix can be defind by an 

arbitrary sequence of triple solutions . For example , ωψφ 3234
~~~),(� uuupf eeeC = . Note 

that  ψφ,  and ω  are constant angles. 

 

Hence  equations (5.21) to (5.24) can be written in the form below , 

 

i
fuuzuyuxuzuyuxuyuxu RVeeeeeueeelueber

iiiii

=++− +++ )(~~)(~~~
1

)(~~~
13

~~
4423221323132323 θθθθθ            (5.25) 

 

3
~~~~

81
~~~~~

3
)(~~)(~~~

1323
8

313234433221323 ueeeesueeeeelWeeeee uzuyuxuiuuzuyuxufuuzuyuxu i
iiii δθδθθθθ −−−++ −+  

i
zuyuxu Rrueeae −=−+ 1

~~~
323                                                                                       (5.26) 

 

++ −++++
1

)(~~)(~~~
4

)(~~)(~~~
4332213234433221323 ueeeeelWeeeee
iiiiiiii uuzuyuxufuuzuyuxu γθθθθθθθθ  

1
~~)(~~~

5
931323 ueeeeel
iuuzuyuxu θδβ ′−′−+

3
~~

1
)(~~~

3
~)(~~~

233231323 ueebueeeaueeeec yuxuzuyuxuuzuyuxu ′+′+′− +′−+ βδβ  

iR−=                                                                                                                      (5.27) 

 

Let ,  
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13
~~

23 rueber yuxu =−  

 

21
~~~

323 rrueeae zuyuxu =−  

 

33
~~

1
)(~~~

3
~)(~~~

233231323 rueebueeeaueeeec yuxuzuyuxuuzuyuxu =′+′+′− +′−+ βδβ  

 

Note that now  an additional equation is obtained , 

 

0)( 21
~~~

2
323 =+−−− rreeeu xuyuzut                                                                                    (5.28) 

 

Thus  equations (5.25) to (5.27) can be written in the following form , 

 

i
fuuzuyuxuzuyuxu RVeeeeeueeelr

iiiii

=++ +++ )(~~)(~~~
1

)(~~~
11

44332213231323 θθθθθ                                (5.29) 

 

3
~~~~

81
~~~~~

3
)(~~)(~~~

1323
8

313234433221323 ueeeesueeeeelWeeeee uzuyuxuiuuzuyuxufuuzuyuxu i
iiii δθδθθθθ −−−++ −+  

iRr −=+ 2                                                                                                               (5.30) 

 

++ −++++
1

)(~~)(~~~
4

)(~~)(~~~
4332213234433221323 ueeeeelWeeeee
iiiiiiii uuzuyuxufuuzuyuxu γθθθθθθθθ  

1
~~)(~~~

5
931323 ueeeeel
iuuzuyuxu θδβ ′−′−+

iRr −=+ 3                                                                 (5.31) 

 
),(~~)(~~)(~~~ �32433221323 pg

i
uuuuzuyuxu Ceeeeeee

iiii

=+++ ωψφθθθθ                                                        (5.32) 

 

12
)()( 44 ulWV ff =+                                                                                                (5.33) 

 

     Now regarding equations (5.28) to (5.33)  the following table is 

constructed , 
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Table (5.3) : According to the table below, the floating link of the RSSR-SC linkage can pass 

through  at most five prescribed positions.  

 

number of 

prescribed 

positions 

number of 

scalar equations  

number of 

unknowns 

number of 

free parameters 

 

 

1 

 

 

16 

 

 

              37 

( 54321 ,,,,,,, lllllzyx  

0
9

0
8

0
4

0
3

0
2

0
1 ,,,,, θθθθθθ ′  

ωψφδδγβ ,,,,,,,0
8 ′s  

)()(
321

44 ,,,, ff WVrrr )

 

 

21 

 

2 

 

28 

44 ( above + 1
2

1
1 ,θθ  

1
8

1
9

1
8

1
4

1
3 ,,,, sθθθθ ′  ) 

 

16 

 

3 

 

40 

51 ( above + 2
2

2
1 ,θθ  

2
8

2
9

2
8

2
4

2
3 ,,,, sθθθθ ′  ) 

 

11 

 

4 

 

52 

58 ( above + 3
2

3
1 ,θθ  

3
8

3
9

3
8

3
4

3
3 ,,,, sθθθθ ′  ) 

 

6 

 

5 

 

64 

65 ( above + 4
2

4
1 ,θθ  

4
8

4
9

4
8

4
4

4
3 ,,,, sθθθθ ′  ) 

 

1 

 

Example (5.2) : Synthesize an RSSR-SC linkage whose floating link guides 

a rigid body through the following positions , 

}�,
50
10

30
{ 6/~3/~6/~

000
323 πππ uuu eeeCRP =
















−==           }�,

40
20

40
{ 2/~4/~2/~

111
323 πππ uuu eeeCRP =
















−==  

}�,
60
0
20

{ 5/~3/~5/~
222

323 πππ uuu eeeCRP =















==  
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     Solving equations (5.28) to (5.33) by Mathcad the following results were 

determined (Running Time : 22 minutes). Detailed information has been 

presented in chapter 6 about the computer  programs and trial and error 

steps and the difficulties which may arise while solving equations.  

 

Inputs 

 
















−=
50
10

30

0R    ,   















−=
40
20

40

1R    ,   















=

60
0
20

2R    ,   6/~3/~6/~
0

323� πππ uuu eeeC =       

 
2/~4/~2/~

1
323� πππ uuu eeeC =    ,   5/~3/~5/~

2
323� πππ uuu eeeC =  

 

Initial Values 

 

76656.721 =l     ,    77803.122 =l     ,    5.123 =l     ,    104 =l     ,    02063.235 =l  

 

62006.10
1 =θ        ,       38569.11

1 =θ        ,      86238.12
1 =θ       ,      28054.00

2 =θ      

 

05636.01
2 −=θ      ,      63721.02

2 =θ       ,      01675.00
3 −=θ      ,     02962.01

3 −=θ    

 

97325.02
3 =θ        ,       61632.00

4 −=θ        ,       1463.01
4 =θ        ,      7902.02

4 =θ    

 

07288.10
8 =θ       ,      22137.01

8 −=θ       ,     31715.12
8 −=θ      ,     21868.10

9 −=′θ   

 

52774.20
8 =s        ,      5692.191

8 =s       ,       48906.142
8 −=s       ,      11656.0−=x  

    

73979.0=y        ,        54102.0−=z         ,         39492.0=φ        ,       25304.0=ψ    
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33561.0−=ω        ,        58053.1=γ       ,     29146.0=δ       ,      03164.0−=′δ         

 

19118.0=β           ,           
















−
−
−

=
37842.8
51512.6
01137.0

)( 4fV           ,          














−
=

37842.8
51512.6
13456.1

)( 4fW  

 

Imposed Conditions 

 

15010 1 pp l    ,   15010 2 pp l    ,   15010 3 pp l    ,   15010 4 pp l    ,   15010 5 pp l  

 

2020 0
8

1
8 pp ss −−         ,         2020 0

8
2
8 pp ss −−          ,         4.04.0 0

9
1

9 pp θθ ′−′−  

 

4.04.0 0
9

2
9 pp θθ ′−′−        ,       4.04.0 0

1
1
1 pp θθ −−        ,        4.04.0 0

1
2

1 pp θθ −−  

 

4.04.0 0
8

1
8 pp θθ −−           ,         4.04.0 0

8
2
8 pp θθ −−           ,         6/52/ πγπ pp  

 

Outputs 

 

7904.431 =l   ,  02003.102 =l   ,  50913.553 =l   ,   58281.114 =l   ,   16235.755 =l  

 

86537.10
1 =θ    ,   46546.11

1 =θ    ,   1773.22
1 =θ    ,   627.40

8 =s    ,   11931.01
8 −=s     

 

21372.102
8 −=s   ,  19713.10

8 =θ   ,  50914.11
8 =θ   ,  79963.02

8 =θ   ,  06688.10
9 =′θ  

 

29441.11
9 =′θ   ,   86831.02

9 =′θ    ,   63504.0=x    ,   30835.1=y    ,   02597.1−=z    

 

36086.1=φ    ,   75934.0=ψ    ,    55676.1−=ω    ,   27067.0=δ   ,   12176.0=′δ  

 

40544.0−=β   ,  61799.2=γ   ,   66059.6−=a   ,  39069.13=b   ,  37168.11−=′a  
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35849.223−=′b , 77873.233−=′c  , 90257.00
2 =θ , 17766.11

2 −=θ   ,  25739.02
2 =θ  

 

76975.00
3 −=θ   ,  80603.01

3 =θ   ,   9435.02
3 =θ   ,   95437.00

4 −=θ   ,   35643.11
4 =θ   

 

5064.02
4 =θ    
















−
−

=
70903.2
14199.4
16055.0

)4(V   ,  
















−
=

70903.2
14199.4
18057.10

)4(W   ,  















−=

71729.84
09171.30

04917.51
r        

 

 

     Figures (5.6) to (5.8) show that the rigid body is guided through the 

prescribed positions continuously . 
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       Figure (5.6) : The variations of  )(sψ  ( )(1 sθ ) versus s . The circles illustrate  the s and  

)(sψ  at  which the rigid body attached to the floating link lies in the prescribed positions. 
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       Figure (5.7) : The variations of  )(sΩ  ( )(8 sθ ) versus s . The circles illustrate  the s and  

)(sΩ  at  which the rigid body attached to the floating link lies in the prescribed positions 
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Figure (5.8) : The variations of  )(sΦ  ( )(9 sθ ′ ) versus s . The circles illustrate  the s and )(sΦ  

at  which the rigid body attached to the floating link lies in the prescribed positions 
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CHAPTER SIX 

SOME REMARKS ON THE COMPUTER 
PROGRAMS 

 
6.1) GENERAL 
 

     In this thesis all nonlinear equations resulted from the synthesis 

procedures were solved by Mathcad�s Find command . The auto-select 

feature of Mathcad automatically determines the kind of problem which is 

aimed to be solved and tries various appropriate solution algorithms to find 

a valid solution .The Conjugate Gradient, Quasi-Newton and Levenberg-

Marguaret are three methods which are used by Mathcad for solving 

nonlinear equations. The accuracy of the results can be adjusted by changing 

the convergence tolerance of the program. The convergence tolerance of the 

programs used in this thesis was chosen to be 0.001. It was observed that 

with this convergence tolerance, the closed loop equations were satisfied 

with errors less than 0.01. Considering that in all programs the dimensions 

are in centimeters , one will vrify that  a 0.01 cm error is an acceptable error. 

Note that a smaller convergence tolerance will considerably increase the 

running time of the programs. 

 

     The major difficulties which arised while solving numerical synthesis 

problems , can be classified as follows, 

 

a) No solution case. 

b) Case of unreasonable link lengths. 

c) Branching case.  
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6.2) NO SOLUTION CASE 

 

     It is well known that in numerical methods ,the matter of  finding a 

solution for a system of nonlinear equations highly depends on the selected 

initial values. The more the number of equations is the more difficult it 

would be to find a solution. Besides note that in the cases where no free 

parameter exists  the existence of a solution can not be guarantied  . 

However, leaving some free parameters �if there are any- to the computer 

and allowing the computer to select values for the free parameters, will 

increase the probabality of finding a solution.   

 

     As seen from table (3.2) no free parameter exists in the solution procedure 

of Example (3.1). That is why it was very difficult and time consuming to 

find a solution for this problem and the only thing the author could do was 

changing the initial values. However in other examples it was not that 

difficult to find a solution because some free parameters were present, and 

allowing the computer to select the values of these free parameters made it 

easy for the computer to find a solution. 

 

     Now one may ask � Is it reasonable to let the computer choose values for 

all free parameters while  some of them may be needed to meet design 

conditions or for other reasons?� The answer is that, the program can be 

forced to  meet our conditions by imposing constraints to the solution block 

of the computer program. For example by adding inequalities to the program  

it can be forced to find the link lengths in a suitable range or  determine  the 

input angles can be determined in a prescribed order.  
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6.3) CASE OF UNREASONABLE  LINK  LENGTHS  

 

     In many cases it was observed that the link lengths found by the program 

were  not  reasonable . For  example,  sometimes  the   lengths  of  links  were             

determined as negative values or in some cases the length of a link was equal 

or very close to zero or  the values of link lengths were too big. In order to 

resolve this problem some inequalities were imposed to the programs . For 

example the following inequalities were added to the solution block of the 

program which was written for Example (3.2), 

 

12010 1 pp l    ,   12020 2 pp l    ,   32 ll f    ,   13 ll f  

 

Without the above inequalities , with the same initial values and with the 

same inputs  the link lengths in Example (3.2) had been determined as 

follows, 

 

18.24701 =l    ,   12453.5042 =l    ,   6554.1733 −=l  

 

     Note that adding inequalities to the program may result in no solution 

case. In such cases either the initial values or the inequalities should be 

modified.  
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6.4) BRANCHING CASE 

 

     As presented at the end of all numerical synthesis examples, the input 

angle-output angle curves of the synthesized mechanisms illustrate if the 

obtained dimensions  result in branchings or not. According to the 

experience of the author, in most of the cases the determined link lengths and 

angles result in branchings. The following diagrams illustrate the branchings 

which took place in some of the numerical examples solved in this thesis.  

 

A BRANCHING CASE OF EXAMPLE (3.1) : 

 

Initial Values 

 

701 =l    ,    503 =l     ,    20
1 =θ     ,    31

1 =θ     ,    5.42
1 =θ     ,    00

5 =θ     ,    5.01
5 =θ     

 

22
5 =θ      ,    10

6 =θ     ,    5.31
6 =θ     ,    42

6 =θ     ,    10
7 =θ     ,    31

7 =θ     ,    5.42
7 =θ  

 

No condition was imposed 

 

Outputs 

 

45268.1081 =l        ,       92025.1172 =l       ,       49181.493 =l      ,      81177.1184 =l   

 

20453.425 =l        ,        39481.20
1 −=θ        ,      72046.11

1 −=θ       ,       29182.62
1 =θ  

 

00
5 =θ      ,     04164.91

5 =θ      ,     46564.12
5 =θ     ,    35073.20

6 =θ     ,   02261.51
6 =θ  
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28258.32
6 =θ         ,        13781.20

7 −=θ        ,        02332.91
7 =θ        ,      15583.22

7 =θ  
















−=

45227.0
67377.41
26244.111

)4(V    ,   
















−
=

45217.0
67363.41
6578.6

)4(W  
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Figure (6.1) : The input angle- output angle diagram of the RSHR mechanism synthesized 

according to the inputs given in Example (3.1) and  initial values presented on the last page. 

The circles illustrate the input and output angles at which the path tracer point passes 

through the precision points. 

 

A BRANCHING CASE OF EXAMPLE (3.2) : 

 

Initial Values 

 

The same as presented in Example (3.2) 

 



119 

Imposed Conditions 

 

12010 1 pp l             ,           12020 2 pp l              ,            32 ll f            ,            13 ll f   

 

 7.07.0 0
7

1
7 pp θθ −−         ,         7.07.0 0

7
2
7 pp θθ −−         ,       7.07.0 0

7
3
7 pp θθ −−   

 

7.07.0 0
7

4
7 pp θθ −−  

 

Outputs 

 

79941.211 =l          ,         33151.552 =l       ,       33139.553 =l        ,       03393.20
1 =θ  

 

86249.71
1 =θ         ,        75337.42

1 =θ        ,        46689.23
1 =θ         ,       66991.64

1 =θ  

 

33098.00
5 −=θ       ,        08571.61

5 −=θ       ,       8283.42
5 =θ           ,       86444.63

5 =θ  

 

81489.04
5 −=θ        ,        14063.50

6 =θ         ,        1159.51
6 =θ         ,      4037.232

6 =θ   

 

15857.53
6 =θ          ,          00675.54

6 =θ        ,         55803.10
7 =θ        ,       3082.11

7 =θ     

 

25401.22
7 =θ           ,       85804.03

7 =θ          ,      25803.24
7 =θ          ,          189.4=x    

354.7=y          ,     759.6=z       ,      















=

1695.78
52747.7

74421.102
)4(V        ,     

















−
−
−

=
1695.78

52747.7
4127.47

)4(W  
















=

98439.42
7064.5
69214.98

r  
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Figure (6.2) :  The input angle- output angle diagram of the RSHR mechanism synthesized 

according to the inputs given in Example (3.2) and  initial values presented on the last page. 

The circles illustrate the input and output angles at which the path tracer point passes 

through the precision points. 

 

A BRANCHING CASE OF EXAMPLE (3.3) : 

 

Initial Values 

 

6/50
1 πθ =  

 

 The rest of the  initial values are the same as presented in Example (3.3)   
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Imposed Conditions 

 

12010 1 pp l             ,            12020 2 pp l             ,            32 ll f             ,           13 ll f  

 

5.05.0 0
7

1
7 pp θθ −−        ,        5.05.0 0

7
2
7 pp θθ −−         ,       5.05.0 0

7
3
7 pp θθ −−   

 

πθθθθ 20 3
1

2
1

1
1

0
1 ppppp  

 

Outputs 

 

00
1 =θ      ,     34653.11

1 =θ      ,     35198.22
1 =θ      ,     3745.33

1 =θ     ,    9064.10
5 =θ  

 

52747.21
5 =θ    ,   33945.52

5 =θ    ,   84228.43
5 =θ    ,   98133.20

6 =θ   ,   86137.11
6 =θ  

 

79906.42
6 =θ     ,    949.13

6 =θ     ,    55958.10
7 =θ    ,   35241.11

7 =θ    ,   05462.22
7 =θ  

 

05958.23
7 =θ     ,    776.2−=x     ,   149.8=y    ,   14.0−=z    ,   

















−
−=

14035.10
46413.6
43716.59

)4(V  

 
















=

14035.10
46413.6
0334.21

)4(W        ,      















−=

67999.9
58887.46

86529.2
r  
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Figure (6.3) : The input angle- output angle diagram of the RSHR mechanism synthesized 

according to the inputs given in Example (3.3) and  initial values presented on the last page. 

The circles illustrate the input and output angles at which the path tracer point passes 

through the precision points. 

 

     The problem of branching can be resolved by forcing the program to 

choose input or output angles- at which the path tracer point passes through 

the precision points -close to one another. This is done by adding inequalities 

in terms of input or output angles to the program. In the cases where free 

parameters are present  the program can be forced to choose free parameters 

according to the inequalities which result in close input or output angles. For 

example from figure (6.1) and (6.2)  it is observed that choosing output 

angles closer to each other may make all circles lie on a single branch. Thus 

decreasing the neighborhood of the output angles as presented in Examples 

(3.1) and (3.2) branching was avoided. However decreasing the 

neighborhood of output or input angles may lead to no solution case. In such 

cases the initial values should be modified.  
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6.5) TECHNIQUES USED IN COMPUTER PROGRAMS 

 
     The general algorithm used in computer programs of the numerical 

examples is as follows, 

      

   

 



124 

The algorithm used for Example (3.3) which requires a prescribed order for 

the precision points is as follows,  
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     The algorithm used for  Example (5.2) is  different. Since the number of 

equations in Example (5.2) was more than other examples it was more 

difficult to find suitable initial values for this example. In order to determine 

proper initial values for the program, at the first step the equations were 

solved by Minerr command. The difference between Minerr and Find is that 

in the case of Find command, if the precision of the determined values is 

below the prescribed accuracy limit, the program will state that �No solution 

was found� . While in the case of Minerr command a solution will be found 

any way, however the error of the results may be great. In other words 

Minerr finds the results with the minimum error but this minimum error 

may still be unacceptable.  After solving the equations by Minerr command 

the results were used as initial values and the equations were resolved by 

Find according to the new initial values. Then the same algorithm which was 

presented on page 123 was  applied .    

 

     At the end of each program, the determined values were substituted into 

the equations to verify the accuracy of solutions. It was observed that all 

equations were satisfied with an error ratio less than 0.01.                                                           
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CHAPTER SEVEN 

CONCLUSION 
 

     Considering the general loop closure equations which were obtained 

based on Denavit-Hartenberg�s convention and the algebra of exponential 

rotation matrices , it can be deduced that these loop closure equations and 

the path and motion generation synthesis methods presented in the thesis are 

sufficiently general so that they can be applied to the synthesis of any spatial 

linkage with lower kinematic pairs. Besides, regarding the presented 

examples which include path and motion generation synthesis of three 

different types of spatial mechanisms based on the synthesis methods 

presented in the thesis , one will verify the applicability of these methods. 

 

     Since the general loop closure equations obtained in chapter 3 ,have been 

written based on a systematic convention (Denavit-Hartenberg�s convention) 

, the presented synthesis methods can be easily used in computer programs. 

While solving synthesis examples presented in the thesis the properties of 

the algebra of exponential rotation matrices have been used to simplify the 

loop closure equations as much as possible. These properties facilitated the 

simplification procedures and made it easy to work with matrix equations. In 

other words the algebra of exponential rotation matrices which was used to 

develope the kinematic synthesis methods presented in the thesis , enables 

the designer to efficiently simplify the loop closure equations. 
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     Although the kinematic synthesis methods described in the present study 

are considerably general methods and cover all spatial mechanisms with 

lower kinematic pairs,  still they can not be applied to the spatial mechanisms 

with higher kinematic pairs such as mechanisms including gears , cam and 

followers and etc. More work is required to modify the loop closure 

equations and the synthesis methods so that they can be applied to all types 

of spatial mechanisms including those which consist of higher kinematic 

pairs. 

 

     Although the algebra of exponential rotation matrices which is an efficient 

and elegant mathematical tool for simplifying matrix equations resulted from 

the kinematic analysis and synthesis, has been used in the analysis of robot 

manipulators (ref.1,2,3,4,6)  very little work exists on the application of this 

algebra to analysis or synthesis of spatial mechanisms. Applying this 

valuable algebra to more analysis and synthesis problems of spatial 

mechanisms , other mechanism designers can be encouraged to use this 

productive algebra. 
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