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USTEL DONME MATRISLERI ARACILIGI ILE
UZAYSAL MEKANIZMALARIN SENTEZI

FARIBORZ SOLTANI

Makine Miihendisligi Bolumii
Bas Danisman : Prof. Dr. Eres Soylemez
Yardimci Danisman : M. Kemal. Ozgoren

Ocak 2005

Bu tezin buiytik bir kismi uzaysal mekanizmalarin yoriinge ve hareket
{iretimi sentezine adanmustir. Ilk kez iistel donme matrisleri araciligiyla bir
kinematik sentez metodu ortaya konulmustur. Ayrica kiiresel, silindrik ve
Hook gibi uzaysal eklemler , doner ve kayar eklemlerin bilesimi biciminde
modellenerek ve Denavit-Hartenberg kuralin1 kullanarak, tiim alt kinematik
cift iceren uzaysal mekanizmalarin yoriinge ve hareket {iretiminin sentezi
icin genel dongii kapamim denklemleri sunulmustur. Mevcut sentez
metodlariyla kiyasladigimizda, bu tezde sunulmus olan metodun en asikar
avantaji, ortaya konulmus olan dongti kapanim denklemlerinin, tiim alt
kinematik cift iceren uzaysal mekanizmalarda kullanisli olmasidir. Ayrica bu
metodda tasarimci tistel donme matrisleri cebirinin avantajlarmdan

faydalanabilir.

Bu tezde sunulmus olan sentez yonteminin kullanigh oldugunu gostermek
icin RSHR, RCCR ve RSSR-SC mekanizmalarmm doéngti kapanim
denklemleri elde edilmis, bu denklemleri kullanarak 6 sayisal ornek

cozulmiistiir. Dongti kapanim denklemleri esas alinarak, bu mekanizmalarin

v



kinematik sentezinde tanimlanabilecek noktalarin ve konumlarin sayisi

hakkinda faydali bilgiler tablolar bigiminde sunulmustur.

Sayisal orneklerde mekanizmalar, tezde elde edilmis olan doéngii
kapanim denklemleri esas almarak, ¢oziilmistiir. Bazi 6rneklerde yari
analitik c¢oztimler elde edilse de, oOrneklerin ¢ogunda dongii kapanim
denklemleri Mathcad’le yazilmus olan programlarla c¢oztilmustiir. Her
sayisal Ornegin sonunda girdi-gikti agilarmin diyagrami ¢izilmis ve
dallanmanin engellenmis oldugu gosterilmistir. Yazilmis olan bilgisayar
programlar1 hakkinda detayli bilgi verilmis, denklemleri ¢6zerken ortaya

¢ikabilecek sorunlar tartisilmis, ¢oztimler tiretilmistir.

Yukarida belirlenmis olan mevzulara ilaveten, RCCR mekanizmasinin
tizerinde bir hareket kabiliyeti analizi yapilmistir ve uzuv uzunluklarma
bagli olan esitsizlikler elde edilmistir. RCCR mekanizmasmimn salinim

acisinin diyagrami da gizilmistir.

Anahtar kelimeler : Kinematik Sentezi, Uzaysal Mekanizma, Ustel

Deveran Matrisleri , Dongti Kapanma Denklemleri.



ABSTRACT

KINEMATIC SYNTHESIS OF SPATIAL MECHANISMS
USING ALGEBRA OF EXPONENTIAL ROTATION
MATRICES

FARIBORZ SOLTANI

M.S. , Department of Mechanical Engineering
Supervisor : Prof. Dr. Eres Soylemez
Cosupervisor : Prof. Dr. M. Kemal Ozgéren

January 2005

The major part of this thesis has been devoted to path and motion
generation synthesis of spatial mechanisms. For the first time kinematic
synthesis methods have been presented based on the algebra of exponential
rotation matrices. Besides modeling spatial pairs such as spheric , cylindric
and Hook’s joints by combinations of revolute and prismatic joints and
applying Denavit-Hartenberg’s convention , general loop closure equations
have been presented for path and motion generation synthesis of any spatial
mechanism with lower kinematic pairs. In comparison to the exsisting
synthesis methods the main advantage of the methods presented in this
thesis is that , general loop closure equations have been presented for any
kind of spatial linkage consisting of lower kinematic pairs. Besides these
methods enable the designer to benefit the advantages of the algebra of

exponential rotation matrices.

In order to verify the applicability of the synthesis methods presented in
the thesis , the general loop closure equations of RSHR , RCCR and RSSR-SC
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mechanisms have been determined and then using these equations six
numerical examples have been solved. Some tables have been presented
based on the determined loop closure equations which reveal useful
information about the number of precision points or positions that can be
considered for the kinematic synthesis of the above mentioned mechanisms

and the number of free parameters.

In numerical examples , the mechanisms have been synthesized based on
the general loop closure equations and the synthesis algorithms presented in
the thesis. Although in some cases semi-analytical solutions have been
obtained, in most of the cases, the loop closure equations were solved by
computer programs written by Mathcad. The input angle-output angle
diagrams drawn at the end of each numerical example illustrate the motion
continuity of the mecahnisms and that branching has been avoided. Detailed
information has been given about the computer programs and the difficulties

which may arise while synthesizing spatial mechanisms.

In addition to the above mentioned points, a mobility analysis has been
done for the RCCR mechanism and some inequalities have been obtained in
terms of the link lengths. The swing angle diagram of the RCCR linkage has

been drawn too.

Key words : Kinematic Synthesis , Spatial Mechanism , Algebra of

Exponential Rotation Matrices, Loop Closure Equations.

vii



TABLE OF CONTENTS

Pages

OZ s iv
ABSTRACT ..ottt vi
TABLE OF CONTENTS.......ooiiii e viii
LIST OF FIGURES.........ooooeereresesesetsee ettt xi
LIST OF TABLES.......co ettt xiv
CHAPTER ONE : INTRODUCTION

T1.1) GENETAL... oo 1
1.2) Kinematic SYNENESIS. ............eeereveeeeeeeeseeeeosesseees oo seeeesseesseesees oo sseesssonse 5
1.3) LItETAtUre SUIVEY.......ovvooeeoeeeeeoeeeeseeeeooeeeseeeeeeoossseseee oo seee e oo sesess o seeeseeees 6
T4) MOBVAON. ...t 7

CHAPTER TWO : MATHEMATICAL TOOLS AND
CONVENTIONS

2.1) GENETAL ...ttt ettt sttt 9
2.2) Properties of the algebra of exponential rotation matrices......................... 11
2.3) Denavit-Hartenberg’s CONVENtion.............cccoceuiiveiniciniicninicineciciieeenes 13
2.4) Loop closure equUations..........c.cocveeerericeirenieieentetee et s seene 15

viii



CHAPTER THREE: PATH AND MOTION GENERATION
SYNTHESIS OF SPATIAL MECHANISMS

B.1) GENETAL ...ttt 24
3.2) Path generation synthesis.............ccccoeiiiiniiiiniiniicccccceee 25
3.3) Path generation synthesis of an RSHR linkage..........ccccceeiniininninnes 28
3.5) Motion generation synthesis............ccccoeiiviiiniiiiicnincicccec e, 41
3.6) Motion generation synthesis of an RSHR linkage...........cccccccevueennnne. 43
3.7) Numerical @Xamples. ... ...o.ouiuiuiiiiiiii e 51

CHAPTER FOUR : OVER CONSTRAINED SPATIAL
MECHANISMS

4.1) GENETAL....eiuiiiteieeettee ettt sttt 63
4.2) RCCR HNKAGE......cocvmiiiiiiiciciiiciciccieccssen st 65
4.3) Mobility analysis of the RCCR linkage..........ccccccoeueuiiniiiniiinncniiiiieeee 71
4.4) Swing angle of the RCCR linkage..........ccccceccevriiiniiininiiniiiiiicccice, 79
4.5) Path generation synthesis of the RCCR Linkage..........cccccccceceviruiincinnnne. 81

CHAPTER FIVE : MULTILOOP SPATTAL LINKAGES

5.1) GENETAL....cviiiiiiiieeecie ettt ettt e 94
5.2) Loop closure equations..........c.coccveererieeirenieieenteiee et 97
5.3) General displacement eqUations...........ccceeurerreriereerineneeinenece e 102
5.4) Motion generation synthesis of the RSSR-SC linkage..........cccccoevrunnnnnne. 106

X



CHAPTER SIX : SOME REMARKS ON THE COMPUTER
PROGRAMS

0.1) General......c.ouiniiii 114
6.2) NO SOIULION CASE. ....eueninininii e 115
6.3) Case of unreasonable link lengths..................... 116
6.4) Branching case............cooiiiuiiiiiiiiiiiii 117
6.5) Techniques used in computer programs.................cocoeeviiiininiininn. 123
CHAPTER SEVEN : CONCLUSION......cccocotniiirieieeereiieese e 126
REFERENCES........oo oottt st 128



LIST OF FIGURES

Figures Pages

1.1) Railway signal mechanism. A function generator...........................
1.2) Lens polishing machine. A motion generator ...............................

1.3) Dough kneeding mechanism. A path generator ............................

1.4) Cylindric and spheric joints and their equivalent P-R combinations

1.5) A screw joint and its equivalent P-R combination ..........................

2.1) Installation of reference frames according to Denavit-Hartenberg’s

[al0) 1M 145 0150 ) o VAN

22) AnRSHR INKage ......cooiiiiiiiiiii

2.3) P_R combination of the RSHR linkage. The reference frames have

been installed according to Denavit-Hartenberg’s convention..........
2.4) Input angle-output angle curve of the RSHR mechanism.................
3.1) The vectors which construct the k'th link.......................

3.2) An RSHR INKage........ccooviiiiiiiiiiii

3.3) The right and left dyads of the RSHR linkage . Note that links 2,3

and 5 are virtual links and their lengths are equal to zero................

3.4) The right and left dyads of the RSHR linkage . Note that links 2,3

and 5 are virtual links and their lengths are equal to zero................

3.5) k’th link of an n link spatial mechanism.................c.cocoiiiiiin..

3.6) The right and left dyads of the RSHR linkage . Note that links 2,3

and 5 are virtual links and their lengths are equal to zero................

Xi



3.7) Input angle-output angle curves and input angles and output
angles of precision points of the synthesized RSHR mechanism......... 53

3.8) Input angle-output angle curves and input angles and output
angles of precision points of the synthesized RSHR mechanism..........56

3.9) Input angle-output angle curves and input angles and output
angles of precision points of the synthesized RSHR mechanism......... 59
3.10) The two prescribed positions of the object which is suppose to be

carried by the RSHR linkage................c.coo 60

3.11) Input angle-output angle curves and input angles and output
angles of prescribed positions of the synthesized RSHR

mechanisSmL....... ...t 62
41) ANRCCRINKAGE ....ovvviniiiiiiiii e 65
4.2) Schematic figure of the RCCR linkage .................ccooiiiiii . 66

4.3) The input angle-output angle curves of the RCCR linkages
which act as crank-rockers. ... 72

4.4) The input angle-output angle curves of the RCCR linkages
which act as rocker-cranks. ... 74

4.5) The input angle-output angle curves of the RCCR linkages
which act as double cranks...............ooooi 75

4.6) The input angle-output angle curves of the RCCR linkages
which act as double rockers...............cooiiiii 77

4.7) The input angle-output angle curves of the RCCR linkages
which act as double rockers...............oooiiiii 78

4.8) Swing angle diagram of the RCCR linkage........................ooo 80
4.9) When the locations and orientations of the fixed joints are not
prescribed all positions and orientations are defined based on a

global coordinate system .................cocoiiiiiiiiii 81

4.10) Input angle-output angle curves and input angles and output
angles of precision points of the synthesized RCCR mechanism ....... 93

Xii



5.1) AN RSSR_RC HNKAZE ....vouiiiiiiiiiiiiicicciccecccecc e 95

5.2)In this figure the spheric joints of the RSSR-SC have been
replaced by equivalent combinations of revolute joints. Note
that links L,,L,,L,L,,L; and L; are virtual and their lengths are

€qQUAL 0 ZETO .nitiiiii e 96
5.3) The input angle-output angle diagram of the RSSR-SC linkage.......... 104
5.4) The input angle-output angle diagram of the RSSR-SC linkage.......... 105
5.5) The input angle-output angle diagram of the RSSR-SC linkage.......... 105

5.6) Input angle-output angle curves and input angles and output
angles of prescribed positions of the synthesized RSSR-SC
mechanisSmL....... ..ot 112

5.7) Input angle-output angle curves and input angles and output
angles of prescribed positions of the synthesized RSSR-SC
MechaniSM. ... .....oooiiiiii 113

5.8) Input angle-output angle curves and input angles and output
angles of prescribed positions of the synthesized RSSR-SC

mechanisSmL....... ...t 113
6.1) A branching case of example (3.1)........c.ccoiiiiiiiiiiiiiiii 118
6.2) A branching case of example (3.2)..........ccocoiiiiiiiiiiiiiiii 120
6.3) A branching case of example (3.2)..........ccocoiiiiiiiiiiiiiii 122

xiil



LIST OF TABLES

Tables Pages
2.1) Denavit-Hartenberg parameters of the RSHR linkage...........c.ccccceeennee. 19
3.1) Denavit-Hartenberg parameters of the RSHR linkage...........c.ccccceeennee. 30

3.2) Number of free parameters versus number of precision points in
the path generation synthesis of the RSHR linkage when the
locations and orientations of the ground pivots are not prescribed......... 32

3.3) Number of free parameters versus number of precision points in
the path generation synthesis of the RSHR linkage when the

locations and orientations of the ground pivots are prescribed.............. 40

3.4) Number of free parameters versus number of prescribed positions

in the motion generation synthesis of the RSHR linkage....................... 54
4.1) Denavit-Hartenberg parameters of RCCR mechanism...........c..cccceueueueeeee. 67
4.2) Denavit-Hartenberg parameters of RCCR mechanism...........c..cccceueuneeee. 82

4.3) Number of free parameters versus number of precision points in
the path generation synthesis of the RCCR linkage .......c.ccccccevnnnns 84

5.1) Denavit-Hartenberg parameters of the firstloop of the RSSR-SC
MechaniSm...........ccoiiiiiiiii 99

5.2) Denavit-Hartenberg parameters of the second loop of the RSSR-SC
MechaniSm...........ccoiiiiiiiii 99

5.3) Number of free parameters versus number of prescribed positions
in the motion generation synthesis of the RSS-SC linkage.................. 109

X1V



CHAPTER ONE
INTRODUCTION

1.1) GENERAL

Most of the mechanical linkages used in various machines and
instruments are planar mechanisms. However there are many cases where
spatial motion is needed. A mechanism whose motion is not limited to a
fixed plane is considered to be spatial. Like planar mechanisms , spatial
mechanisms are useful for generating various paths , motions , functions , or
for transfering force and torque. Some spatial mechanisms have been

illustrated in figures (1.1) to (1.3) .

Figure (1.1) : Railway signal mechanism. A function generator (ref.29) .



Figure (1.2) : Lens polishing machine. A motion generator (ref.29) .
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Figure (1.3) : Dough kneeding mechanism. A path generator (ref.29)



While there are only two types of lower kinematic joints in planar
mechanisms , spatial mechanisms consist of various joint types. However the
motion caused by any spatial joint can be modeled by a combination of
revolute and prismatic joints. The following figure illustrates some spatial

joints and their equivalent P-R (prismatic-revolute) combinations.

Figure (1.4) : Cylindric and spheric joints and their equivalent P-R combinations.



s=nd

Figure (1.5) : A screw joint and its equivalent P-R combination.

In order to present general loop closure equations for any spatial linkage
with lower kinematic pairs, in this thesis all spatial joints have been replaced
by their equivalent P-R combinations. Thus applying Denavit-Hartenberg's
convention , the author succeeded to present general loop closure equations
in chapter two. These equations can be applied to any spatial linkage with

lower kinematic pairs.



1.2) KINEMATIC SYNTHESIS

In the kinematic synthesis of a mechanism the designer aims to synthesize
a mechanism whose dimensions satisfy the desired motion of one of its links.
There are three types of kinematic synthesis problems, Motion Generation ,
Path Generation and Function Generation. In motion generation synthesis the
aim is to design a mechanism with a floating link passing through prescribed
positions. In path generation synthesis it is desired to synthesize a
mechanism so that some point on one of its floating links passes through
prescribed points. In function generation synthesis , rotation or sliding

motion of input and output links are correlated.

The major part of this thesis has been devoted to path and motion
generation synthesis of spatial linkages and new methods of synthesis have
been presented based on the algebra of exponential rotation matrices. This
algebra has been described in detail by M.K.Ozggoren (ref.1,2). The properties
of the algebra of exponential rotation matrices have been presented in the

second chapter of this thesis too.



1.3) LITERATURE SURVEY

So far many analytical methods have been presented for kinematic
synthesis of spatial mechanisms. Novodvorski (ref.7) formulated the function
generation synthesis problem of the RSSR mechanism whose axes of ground
pivots were skewed and nonintersecting. Rao et al (ref.9)used the principle of
linear super position to synthesize several function generation mechanisms
for the maximum number of precision points. Wilson (ref.10) derived the
relationships to calculate centerpoint and spheric point curves for guiding a
rigid body by means of an R-S link. Roth (ref.13) investigated the loci of
special lines and points associated with spatial motion . Roth and Chen
(ref.14,15) and Roth (ref.11,12) proposed a general theory for computing the
number and locus of points in a rigid body in finite or infinitesimal motion.
Sandor (ref.16) and Sandor and Bisshopp (ref.17) introduced methods of dual
number , quaternions and stretch rotation tensors to find loop closure
equations of spatial mechanisms . Suh (ref.18,19) employed 4 by 4 matrices
for the synthesis of spatial mechanisms where design equations are
expressed as constraint equations in order to obtain constrained motion.
Kohli and Soni (ref.20,21) employed matrix methods to synthesize spherical
four link and six link mechanisms for multiply separated positions of a rigid
body in spherical motion. Alizade et al (ref.23,24) described the basis for a
new method of type synthesis with the use of single loop structural groups
having zero degrees of freedom. Jimenez et al (ref.26) used a set of fully
Cartesian coordinates to describe a mechanism by a set of geometric
constraints and introduced the design requirements by a set of functional
constraints and finally Shih and Yan (ref.25) presented a synthesis method
for the rigid body guidance between two prescribed positions based on

descriptive geometry.



1.4) MOTIVATION

Up to now many mathematical methods such as the algebra of complex
numbers , the algebra of dual numbers , quaternions , screw algebra and the
algebra of exponential rotation matrices have been used to develop the
theory of kinematics. The algebra of exponential rotation matrices which is
an efficient and elegant tool for working with matrice equations has been
used in the analysis of robot manipulators (ref.1,2,4,6) and spatial
mechanisms (ref.5) . However so far no body has used the algebra of
exponential rotation matrices for the purpose of synthesis in an official text.
Since the author of this thesis had worked with this mathematical tool when
analyzing serial robot manipulators and he was fully aware of its fantastic
capabilities , he decided to use it for synthesizing spatial mechanisms for the

first time.

Most of the synthesis methods presented for synthesizing spatial
mechanisms describe general synthesis techniques but not general formulas.
In this thesis , using the algebra of exponential rotation matrices and
Denavit-Hartenberg’s convention the author succeeded to present general
formulas for the path and motion generation synthesis of spatial mechanisms
which can be applied to both single and multiloop spatial mechanisms . The
synthesis methods presented in this thesis , enable the mechanism designer
to benefit the advantages of the algebra of exponential rotation matrices.
Besides in these methods the designer directly deals with link lengths and
link angles which make more sense while in some other synthesis methods

(ref. 18,19,26) the designer works with X,Y and Z coordinates.

Three spatial mechanisms have been chosen as examples in the thesis .

The first mechanism is an RSHR linkage which is a simple single loop spatial



mechanism and was chosen just for its simplicity and in order to explain how
the synthesis methods are applied to a single loop spatial mechanism. The
second mechanism is an RCCR linkage which is an overconstrained
mechanism . This mechanism was selected because of its constraints and
their effects on the synthesis procedure of the mechanism. The last example
is an RSSR-SC linkage which is a two-loop spatial mechanism. It was chosen
to verify that the synthesis methods and formulas presented in the thesis are

appliable to multiloop linkages too.



CHAPTER TWO
MATHEMATICAL TOOLS AND

CONVENTIONS

2.1) GENERAL

Analysis and synthesis of spatial mechanisms always require solving
nonlinear equations which are usually lengthy and complicated.The usual
mathematical methods like matrix and vector algebra can be used for
analyzing and synthesizing mechanisms but since these usual methods are
time consuming, mechanism designers have tried to develope more efficient
mathematical methods in kinematics . Among the various developed

methods the following methods are noteworthy,

1) METHOD OF COMPLEX NUMBERS

This method was developed by Coolidge[1940] , Zwikker[1950] ,
Morley[1954] and Beris[1958]. Although some interesting results were found
in the method the fact is that it is quite limited to planar motion (ref.28).

2) ALGEBRA OF DUAL NUMBERS

This algebra was introduced by Clifford[1850] and it was systematically
applied to kinematics by Kotelnikov[1895] . It can be applied to both planar

and spatial kinematics (ref.28).

3) ALGEBRA OF QUATERNIONS

Algebra of quaternions is an elegant tool to describe spherical

displacements and has been used by Blaschke[1960] and H.R.Miiller[1962].
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4) SCREW ALGEBRA

Screw algebra has been employed in kinematics for more than two
centuries. Mozzi studied this algebra in the eighteenth century. It was
rediscovered in 1960’s by Hunt and Phillips then Walderon and Hunt
employed this theory to search for overconstrained mechanisms. The last
decades witnessed the publication of several studies from Duffy concerning

the kinematic and dynamic analysis of spatial linkages via screw theory

(ref.27,34) .

5) ALGEBRA OF EXPONENTIAL ROTATION MATRICES
This algebra which was developed by Ozgoéren (ref.1,2) enables us to

efficiently simplify the matrix and vector equations involved in the synthesis
and analysis procedures of spatial mechanisms. The algebra of exponential
rotation matrices has been successfully used in the kinematic analysis of
robot manipulators by M.K. Ozgoren (ref.1,4,6). He has also written a paper
on the analysis of spatial mechanisms (ref.5) by means of the algebra of
exponential rotation matrices. In this thesis , using the algebra of exponential
rotation matrices , the author succeeded to develope a synthesis method for

the path and motion generation synthesis of spatial mechanisms.
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2.2) PROPERTIES OF THE ALGEBRA
EXPONENTIAL ROTATION MATRICES

n, 0 -n, n, 1 00
Let n=|n, |, n=| n 0 =-n|,I={0 1 0]then
n, -n, n 0 0 0 1

o o o
e"’ =Icos@+nsin@+nn'(1-cosb)

OF

Where ¢’ is the rotation matrix about an axis of unit vector 7 through

angle 0 .

1 0

1

0
Assuming u, =| 0|, u, =| 1|, uy; =| 0| the following equations are
0

0

obtained (ref.6),

1 0 0 cos@ 0 siné cos@ -sinf 0
¢ =10 cos@ -sin@| , el = 0 1 0 L e =|sin@ cos@ 0
0 sinf@ cosd -sind 0 cos@ 0 1

1) #n? =nn' -1 and 7° =i

2) fim=mn' —(m'n)l

3 If w=nm then u =nm—mn =mn' —nm'

4) ¥'ar =0 but 7'a*r={m'r)’ -r'r
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5) (eﬁe)—l :(eﬁe)t :e—ﬁe

P = 16,10, 70

ne— ~ _ nl~ -né@
e"’u then m=e""ie™" and e

O
N
-~
3|
1

e

10) e™e™ =e?®e™ where p=e"’n

11) "™ =™ e where g =e"n

70— — ~— .
12) e""u; =u, cos@+iuu, sinf

—t ufd _ —t ~ — N[ _*
13) u; e"” =u, cos@+(u,u,) sind
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2.3) DENAVIT-HARTENBERG'S CONVENTION

Denavit-Hartenberg’s convention has been applied to all fixed and
moving frames in both synthesis and analysis processes in this thesis .The

convention can be shortly explained as follows (ref.33) ,

o z?](“")

Figure (2.1) : Installation of reference frames according to Denavit-Hartenberg’s convention.

(ref.6)
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As illustrated in Figure(2.1) the third axis lies along the joint axis and the
first axis is the common normal of the two neighbor joint axes and finally the

orientation of the second axis is determined according to the right hand rule.

The link parameters are,

a, = 4,0, : the effective length of link (k) .

(k (k)

@, : the angle between i, and i, about i,

s, : the translational distance of link (k) with respect to link (k-1) along i,“™".

(k=1)

0, : the rotational angle of link (k) with respect to link (k-1) about u,

14



2.4) LOOP CLOSURE EQUATIONS

Consider a single loop spatial mechanism with n links in which the fixed
link is named as both 0’th and n’th link. In other words link zero and link n
both address the fixed link. Installing coordinate systems according to
Denavit-Hartenberg’s convention the following loop closure equations , are

written (ref.5),

a) ORIENTATION LOOP CLOSURE EQUATION :

é(o,l)é(l,z)é(z,z) é(n—l,n) - é(O,n) :i (2'1)

where C** is the orientation matrix of coordinate system (k) with respect

to coordinate system (k-1) and/ is the 3 by 3 identity matrix.

Considering Denavit-Hartenberg’s convention the folllowing equation can

be written,

é(k—l,k) - eu3ek eﬁ‘a"

Thus equation (2.1) can be presented in the form below,

"0 ol g0 iy | o6, G = | (2.2)

This equation has been written based on the fact that the orientation of the

tixed link is always constant.

15



b) POSITION LOOP CLOSURE EQUATION

F+F, HF .+ =0 (2.3)

where 7, is a vector drawn from the origin of the (k-1)"th frame to the origin

of the k’th frame.

The following equation is obtained according to Denavit-Hartenberg's

convention,

—=(0) _ A(0,k=1)— 0,k)—
r, =d,C u, +a,C%u,

—(0 . ~ . . ,
where 7" represents the column matrix form of 7 defined in zero'th

frame.

Thus equation (2.3) can be written in the following form ,

— ~(0,1)— A0, — ~(0,2)— ~(0,n-1)— AO0n)— —
du,+a,C"'u, +d,C"uy +a,C"u +..+d C" uy +a,C "y = 0 (2.4)

The loop closure equations above are two fundamental matrix equations
by which the general displacement equation of any spatial linkage is
obtained. These equations also play a key role in the synthesis method which
will be explained in the next chapter. The following example shows how the
general displacement equation of a spatial linkage is determined by means of

loop closure equations explained above.
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Example (2.1) : Determine the general displacement equation of the RSHR

mechanism illustrated in Figure (2.2) .

Figure (2.2) : An RSHR linkage

17



The RSHR linkage can be redrawn as illustrated in Figure(2.3) . Note that

links 2,3,5 are virtual and their lengths are equal to zero.

Figure(2.3) : P_R combination of the RSHR linkage. The reference frames have been installed

according to Denavit-Hartenberg’s convention.
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Table (2.1) has been constructed according to Figure(2.3) . Considering this

table the following equations are obtained,

é‘(O,l) - 6’73'91 é(O,Z) — eus(el +€z)e_'71”/2 6(0»3) — 6’73('91 +€:)e_51”/2653€3 6’71”/2 — 6’73('91 +€z)652€3

6(0,4) — 6173(6l +62)eL72€3 65364 6(0,5) — 6173(61+62)6L7263 653(€4+65)e—§lm2

6(0,6) — 6'73(61*"92 )6'7263 653(64*'65)65266 6(0»7) — i

Table (2.1) ;Joint variables and Denavit-Hartenberg parameters of the RSHR linkage.

Link (7] a a d
1 variable 0 [, -b
2 variable -n/2 0 0
3 variable n/2 0 0
4 variable 0 L 0
5 variable -n/2 0 0
6 variable n/2 L 0
7 variable n/2 a -C

The equation below can be written according to equation (2.4)

—bit, +1.C "V, +1,C"Vu, +L,C U —cC"u, +aC®u, =0 (2.5)

Considering equation (2.1) the following equations are obtained,

6(0,4) — (6(4,7))—1 — (eu3eseazeﬁeu3e7ealn/z)—l — e—aln/ze—aﬁe—ﬁzeﬁe—%es
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é(O,S) — (6(5,7))—1 — (61726665307 eﬁln/z)—l — e_ﬁ‘mze_%@e_azeﬁ

é(0,6) — (6(6,7))—1 — (65367 eﬁln/z)—l — e—uln/ze—a3e7

cP =1

Substituting C"*,C",C"® and C” from equations above into equation

(2.5) equation below is got,

_b173 +lleii3€11/—ll +lze—ﬁlﬂ/ze—u3€7e—uze(,e—u3€51/71 +l3e—ulﬂ/ze—u3€7 1/_[1 _ce—ulﬂ/ze—u3€7 1/73 + aL_tl =0

(2.6)
or
=bu, +1 cosGu, +1 sinBu, +1,(cos G, cos g, cos 8, —sin G, sinb,) u,
+/,cos 8, sinBu, +1,(cos b, cos g, sin b, +sin g, cos 8, )u, +1, cos O,u,
+1,sin 8., —cit, +au, =0
which results in the following equations,
[,cos@ +1,(cos b, cosb, cosl, —sinbf,sinf,)+1,cosb, +a =0 (2.7)
[;sin@ +1,cos@;sing,—c=0 (2.8)
—b+1[,(cosb,cosf,sinf, +sinf;cosb,)+/,sin8, =0 (2.9)

From equations (2.7) and (2.9) the following equation is derived,
1, cos® B, cos® @, +sin” @, =1 cos> @ +1," =2bl,sin @, +a* +b*> +21[, cos 6, cos 6,

+2al, cos @, +2al, cosb, (2.10)
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and from equation (2.8) equation below can be obtained,

1, cos® B,sin* @, =1 sin> @ +¢* —2l,csin 6 (2.11)

Now adding equations (2.10) and (2.11) the following equation is gained,

—21,(I,cos 8 +a)cos@, +2bl,sin@, =1 -1, +1* +a’ +b* +c* +2al, cos 8 —2l,csin 6,

Let 6 =¢ and 6, =¢ .Hence equation above can be rewritten in the
following form,
—21,(I, cosy + a)cos @+ 2bl,sin =17 —1,> +1,° +a’ +b* +¢* +2al, cosyy

—2lcsiny (2.12)

Equation (2.12) is called the general displacement equation of the RSHR
linkage and plays a key role in mobility analysis and function generation

synthesis of the linkage.

Example (2.2) :Consider an RSHR mechanism with the following
dimensions,

=5 L=11 [,=20 a=4 b=15 c=3

Determine the general displacement equation of the linkage and draw its

output angle diagram versus input angle.

Equation below can be written according to equation (2.12)

—40(5cosy +4)cos ¢+600sin ¢ =40cosy —30sing +554
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Let p@)=-2L(,cosy+a) , ¢=2bl, ,

r@) =17 —1,> +1 +a’ +b* +c* +2al, cosy — 2lcsin g

Thus equation (2.12) is written in the following form,

p(@)cosg+gsing =r(y) (2.13)

2

1+¢?

Hence equation (2.13) is written

Now let cos@= and sin@= 1 2t

+¢2

in the form below ,

(F(¢)+P(lﬂ))t2 =2qt+r()-p)=0

which results in,

G PP W+ - W)
rW) + pW)

=

Thus the equation below is derived ,

-2 2¢
1+¢2 71+

@=angle( )

For the RSHR linkage whose dimensions have been given above the output-

input angle curve has been illustrated in Figure(2.4).
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Figure(2.4) : As illustrated by the diagram, the RSHR linkage acts as a crank_rocker
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CHAPTER THREE
PATH AND MOTION GENERATION

SYNTHESIS OF SPATIAL MECHANISMS

3.1) GENERAL

The path and motion generation synthesis methods which will be
explained in this chapter are the first synthesis methods developed by means
of the algebra of exponential rotation matrices. The main advantage of these
methods is that general dyad equations have been presented for single loop
spatial linkages with n links (equations (3.1) and (3.2) ) and very similar
equations can be written for multiloop spatial linkages. Besides in these
methods the mechanism designer directly deals with link lengths and joint
angles which make more sense while in some synthesis methods ,designers
work with X ,Y and Z coordinates (ref.18,19,26). Finally using these synthesis
methods designers can benefit the advantages of the algebra of exponential

rotation matrices.
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3.2) PATH GENERATION SYNTHESIS

Consider a single loop spatial mechanism with n links. Assume that a
coordinate system is attached to each link according to Denavit-Hartenberg’s
convention . Now consider a point P on the k’th link .This point -which is

called the path tracer point- is supposed to pass through points P, P,,...,P,_,

which are called precision points.

=(k-1)
u,

Figure (3.1) : The vectors which construct the k’th link .

25
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As illustrated in Figure (3.1) vectors U,V,W have been defined as

constant vectors in the k’th frame because the k’'th frame is attached to the

k’th link .

Let ﬁo,ﬁl,...,ﬁ_

.. be vectors which have been drawn from the origin of a

global frame to the precision points £, R,,...,P,_, respectively . Where j is the

J
number of precision points. Assuming that the fixed frame attached to the
linkage is called as both zero’th frame and n’th frame, the following loop

closure equations can be written for the left and right dyads of the linkage,

_ A (g.0)— A (g)— 2 (g )— 2 (g.2)— A (g.k=2)— A (g k-1)—
F+d C, +a,C Vi +d,C Vi, +a,C M+ d C T+, C

+dkCi(g’k_l)L73 +éi(g,k)17(k) =R (3.1)
and

éi(g,k)W(k) + dk+1éi(g,k)1’_l3 + ak+1éi(g,k+l)1’_ll tot dnéi(g,n_l)i’_% +anéi(g,n)1’_ll -r= _Ei (3-2)
and

yo Lo =g ® (3.3)
where,

i=0,,...,j—-1 andjis the number of precision points .

A (k) — A(g,0) A (0.k)
cl#h =Cl=0C,

C¢ is the orientation matrix of the zero'th frame with respect to the global

frame and since both frames are fixed ,obviously C*”  will be a constant
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matrix which can be defined by an arbitrary sequence of rotations . For

example by C®? =¢"e"™e™ or C'®” =¢"e™e"™ .

C" is the orientation matrix of the k’th coordinate system with respect to

the zero’th frame when the path tracer point is coincident to the i'th precision

point and is defined as follows,

C 0 = " g g8 T2 | o1 ol (3.4)

6,,6;....,0, are the joint variables when the path tracer point is coincident to

the i’'th precision point and @, is the angle between u* and u{*™ about

a®.

Ve, w® and U® have been illustrated in Figure (3.1) .

Note that when the locations and orientations of the fixed joints are
prescribed ,without loss of generality the global frame can be chosen to be
coincident to the zero’th frame . In this case the following equalities will be

available,

CeY =] and 7=0

where [ is the 3 by 3 identity matrix and 0 is the null matrix .
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3.3) PATH GENERATION SYNTHESIS OF AN RSHR
LINKAGE

a) THE POSITIONS OF THE GROUND PIVOTS ARE
PRESCRIBED.

Considering Figure (3.3) the associated Denavit-Hartenberg parameters

have been determined as listed in table (3.1) .

Figure (3.2) : An RSHR linkage.
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: The right and left dyads of the RSHR linkage .Note that links 2,3 and 5 are

Figure (3.3)

virtual links and their lengths are equal to zero.
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Table(3.1) : Joint variables and Denavit-Hartenberg parameters of the RSHR linkage.

link (7 a a d
1 6 0 [ -b
2 o 5t 0 0
3 e z 0 0
4 A 0 [, 0
5 é. =z 0 0
6 e 5 A 0
7 e, z a —-c

According to equation (3.1) the equation below can be written for the left

dyad ,

= bit, +1,C ", + VD =R, (3.5)

and considering equation (3.2) the following equation is written,

for the right dyad,

o L A 0477 2(0,6)— A (0,6)— AO0ND— ]
R +CW D +1,C%, —cC"u, +aC ", =0 (3.6)

Regarding equation (2.1), equations below are obtained ,

~(0,4) — A4\
Ci( ) - (C[( ))

~(0,6) A (6,7)\-1
Ci _(Ci( ))
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Thus considering Denavit-Hartenberg parameters in table (3.1) the following

equations are derived ,
20,1 — 156

Ci( 1 — e

6(0,4) - (é(4,7))—1 - (6539; 61729(;6539; eﬁlﬂ/Z)—l - e—aln/ze—%(% e—uzeg 6—5365'
1 1

A(0,6) —_ ¢ AOTIN-T — ¢ is6h imi2N=1 — _—iim/2 =il
Ci( )_(Ci( )) _(eus 76“1” ) e“l” e Y

Hence equations (3.5) and (3.6) can be written in the form below ,

— 0 — —TT2 _—iy0 —ih6 6577 (4) —
—bit, + 1" +e Ve e Sy W = R (3.7)

1

e—ulﬂ/ze—u397 e—uzﬁ(, e—u395 w (4) + l3e—ulﬂ/ze—u3€7 I/_ll _ Ce_ulﬂ/zlx_l3 + aL_ll - _Ri (38)
The following equation can be written according to equation (3.3) ,

17(4) + W(‘*) - [7(4)

From Figure (3.3) it is seen that U =/,u;, . Thus equation above can be

written in the following form ,

VO+w® =g (3.9)
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Table (3.2) has been constructed according to equations (3.7) to (3.9) .

Table (3.2) : According to the table below when the locations and orientations of the fixed

joints of the RSHR linkage are prescribed , the path tracer point can pass through at most

three precision points.

number | number of number of number of

of scalar unknowns free
precision | equations parameters

points
1 9 13 4
(L L VO wD.68.6,.,6,,6))
2 15 17 (above + 6,,6.,6,,6, ) 2
3 21 21 (above + 6°,6:,6.,6;) 0

Assume that it is desired to synthesize an RSHR linkage whose path tracer

point is supposed to pass through three precision points

following equations are obtained ,

~ 0 _~ e~ 0~ 0~ 0 —
_bﬁ} +lle“3'91 I/_ll +e ulﬂ/Ze “3'976 “2'956 1365 V(4) =R

0

~ ol _~ gl _~pl o~ gl — —
_b173 +lle“3'91171 +e ulﬂ/Ze “3'976 “2'956 “3'95V(4) :Rl

~ 2 _~ e~ 2~ —
_b173 +lle“3'91 I/_ll +e ulﬂ/Ze “3'976 “2'956 U365 V(4) =R

e—ulmze—%e;’ e—uzeg 6—5392 W(4) + [36“71”/2

~ a0
_M3€7 —

2

u, —ce
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. For i=0,1,2 the

(3.10)

(3.11)

(3.12)

(3.13)




_~ =gl _~ gl gl — _~ e —
e ulﬂ/Ze u3€7e u2€6€ u3€5W(4) +l3e ulﬂ/Ze u3€7u1 —ce ulﬂ/Z +au1 — Rl (314)

“3'97

e

e—ﬁln/ze—ﬁ3972 e—ﬁzeg 6—53952 W(4) + l3e_'7‘”/2 i —ce

W+ air, = =R, (3.15)
The following equations are obtained from equation (3.10) and (3.13) ,
7O = g% g8 o8 o112 (R — ] B 4 i) (3.16)

s '97

W(z;) — 6539;’6,72926;392 eﬁ‘”/z(—l_?() _l3e—almze

i, —ai, +ce i) (3.17)

Substituting ¥ and W ¥ from equations above into equations (3.11),

(3.12) , (3.14) and (3.15) equations below are obtained,

— 6 — -l —i30) 8 iy (0)-6%) i,8) W6 W2 Ty 5,60 — —\N—7
—bir, + 1%, + o™V e g% 1 (%) piol g8 G2 (R — [ %y + bir,) = R, (3.18)

— bi +lle'73e‘zb_tl +e—ﬁlﬂ/ze—ﬁ36726—526(36173(650—652)6172626173670651/1/2(1_30 ~le 6 — i, +bit,) = R

(3.19)
W2 0y 0,0 (60 -6) w00 0,60 2 uﬂ/2 D 7 w2 —u3€7
el es7e 2(635 seZ(es7 (au1+ce l )

—mL2 b — _ 12
+1e ey = —qi, +ce” "y, - R, (3.20)
e—ﬁlﬂ/ze—ﬁ3€7ze—u2€(f i (60 -62) u2€66u3€7 ulﬂ/Z( ail. +ce uﬂ/2 _ —l —,7/2 —u3€7)

1

—W2 i — _ 12

+1e ey = —qu, +ce”" i, — R, (3.21)

Adding equations (3.16) and (3.17) equation below is derived ,

— — ~ 0~ g0~ g0 i
V(4) +W(4) — eu3€5 euzﬁ(, eu3€7 eulﬂ/z(_lleu3ﬁ9l +bu3 le ulﬂ/Ze u3€7u _aul +ce ulﬂ/2u3)

17 (3.22)

33



Thus,

— 00 W8 0,60 @2

~ 0 __ _ _~ a0 _ _~ _
i, "% e"% "% "2 (=] %y + bit, — e e % u, — ait, + ce™iy) =0 (3.23)
=0 =0~ 0~ ~ 0 _ _7 —77.0° — — -0, 7T/ 2—
iy €% "% "% " (=1 Vi + bty —Le ™ e i, — aut, +ce " uy) = 0 (3.24)
Using a proper numerical method, equations (3.18) to (3.24) can be solved for
6.,6.,6,6°.6.,6:,6°.6.,6:,8),6,,6,1, and [, , then V® and W¥can be

determined from equations (3.16) and (3.17) respectively and /, is found

from equation ( 3.9) .
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b) THE POSITIONS OF THE GROUND PIVOTS ARE NOT
PRESCRIBED.

Figure (3.4) : The P-R combination of the RSHR linkage. When the positions of the ground

pivots are not prescribed all coordinates are measured with respect to a global frame.
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As illustrated in Figure (3.4) ,in this case all locations and orientations are
defined in a global coordinate system .According to equations (3.1) and (3.2)

the following equations are obtained ,

— A — A — al N1, _

F=bCE=Vu, +1C Vi +C VD =R, (3.25)
o L e A — A (g.6)— A D= _ =

R +CEIW® +1.C&O% —cC %, +aC* i =7 (3.26)
where,

CA'(g,O) — eﬁsxeﬁzyeﬁsz
C&D = C@OAOD = i iy i (+6)
1 1

éi(g,zt) — é(g,méi(o,zt) — é(g’o)(éf‘”))‘l = ¥ gV plls? o~ IT1/2 , 06 =16 [, i)

Ci(g,é) - C(g,O)Ci(O,é) - C(g,O)(Ci(6,7))—l - eu3xeu2yeu3ze—ulﬂ/ze—u39§

CE&D = (@O0 = Gisx iy Gz [ = i iy yilsz

Thus equations (3.25) and (3.26) can be written in the form below ,

7 — beﬁ3xe'ﬁzy1/—l3 + lleﬁ3xeﬂzyeﬁ3(z+ﬁ')lj—ll + e'ﬁ3xeﬁzyel73ze—iilﬂ/Ze—%H; e—'ﬁzﬁée—%ﬁg 17(4) — l?l (327)

eii3xeiizye'ﬁ3ze—iilﬂ/Ze—%H; e—'u}ﬁé 6—53'9; W(4) + l3eﬁ3xe'ﬁzye'u}ze—ﬁlﬂ/ze—'u}ﬂ I/_ll _ Ceﬁ3xeﬁzyeﬁ3ze—ﬁlﬂ/2b—l3

+ ae%)feﬁzyeﬁﬂb—ll -7 ==R. (3.28)

1
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In equations (3.27) and (3.28) the summations of the vectors which do not

include subscript (i) can be considered as constant vectors .That is let

r—=be" e u, =1, (3.29)
and
ae"™ e " —ce™ e e e, —F = 7, (3.30)

Hence equations (3.27) and (3.28) are written in the following forms,

171 +lleﬁ3xeuzye@(z+@')b—ll + eﬁ3xeuzyeu3ze—ﬁln/26—1739;e—uzege—uﬁ; I7(4) - Ri (3'31)
7, +eu3xeazye§32e—aln/ze—uﬁ;'e—uze;;e—uﬁ; W@ +13eu3xeazyeﬁSZe—aln/ze—@e; i = —I_Qi (3.32)
and recalling equation (3.3) the following equation is obtained,

VOLT® =1, (3.33)

Thus Table (3.3) can be constructed according to equations (3.31) to (3.33)
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Table (3.3) : The table below shows that when the positions of the ground pivots of the RSHR

linkage are not prescribed its path tracer point can pass through at most seven precision

points.
number number number of
of of number of free
precision scalar unknowns parameters

points | equations

1 9 22 13
(171,172,17(4),W(4),ll,12,13,)(:,)/,2,310,650,6:,370)

2 15 26 (above + 6,,6,,6,.,6, ) 1
3 21 30 (above + 62,62,62,67 ) 9
4 27 34 (above + 6,6.,6.,6, ) 7
5 33 38( above + &',6:,6,6: ) 5
6 39 42 (above + 8°,6°,6°,6° ) 3
7 45 46 (above + 6°,6.,6°,6° ) 1

Let’s consider the case of five precision points. The following equations

are obtained from equations (3.31) and (3.32) for i=0 ,
7= Eo _ lle%xeﬁzye%(”%)ﬁl _ei?3xei?2yei?3ze—iilﬂ/26—53970 e—uzeg’e—uﬁ;’ 7% (3.34)

72 — _1—30 _ 136173)(6172 yei?3z e—ulmze—%e;’ L_tl _ e%xeaz yei?3z e—almze—aﬁ;’ e—azeg 6—5392 W(4) (3 3 5)

Substituting 7 and 7, from equations (3.34) and (3.35) into equations (3.31)

and (3.32) for i=1,2,3,4 the following equalities are obtained ,
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Wx iy Ghz g W8 _ O N— 4 dx Gy dhz w2 ~i8 _ 8N4 — T P
e e™ e (% — &% Yu, + e e e e (e =" WP =R, —R, (3.36)

Uyx iy iz —iml2 o —ily6h —ii,09 \— Wy iy iz —i7m2
3X LUy LUs L (e ¥ —e 37)u1+es 2 3 1 (

136 e e e e _539; _ﬁzeé —5395" _e_ﬁsege_ﬁzege_ﬁseso )W(“)

e e e
=R, R, (3.37)
Solving equations (3.36) , (3.37) and (3.33) with five free parameters
l,0y,0,,%,9,2,6,6.,68,8.,V® W* can be determined and consequently 7
and 7 can be found from equations (3.34) and (3.35) then a,b,c and 7 are

determined from equations (3.29) and (3.30) as follows,

Adding equations (3.29) and (3.30) the following equation is obtained ,
ae ™ e, —be™ ™ i, —ce™ ™ e e i, = F, +7,

or

ait, — by, —ce ", = e e e (1 +77y) (3.38)

and premultiplying equation (3.38) by #,',u,’ and u, equations below are

gained ,
— =l -3z =,y —U3X (= 4 =
a=ue e Ve " (n+r)

— _ =l -z —U,y —lsx = 4 =
b=-u,e e e (1, +1,)

— _ =t -z -~y X oy o
c=-u,e e e " (n+r)
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c¢) THE ORDERS OF PRECISION POINTS ARE PRESCRIBED

In kinematic synthesis there are some cases where the order of the
precision points or prescribed positions are important. In Examples (3.1) and
(3.2) presented in section (3.7) no order has been prescribed for the precision
points however the same loop closure equations and solution procedure can
be applied to the cases where the order of precision points is important. The
only difference is that the prescribed order should be imposed to the
computer program as inequalities in terms of the input angles. For example
assume that in Example (3.2) the path tracer point is desired to pass through

points P, to P, successively. In this case adding the following inequalities to

the program the required condition will be satisfied ,

0<8’ <6 <6 <8 <2m or 0<6<6<6 <6’ <2m

Example (3.3) presented in section (3.7) verifies the above discussion.

40



3.4) MOTION GENERATION SYNTHESIS

Consider a single loop spatial linkage with n links. Assume that a
coordinate system is attached to each link according to Denavit-Hartenberg's
convention. Now consider a point P on the k’th link. A coordinate system (p)
is attached to the k’th link so that its origin coincides with the path tracer
point (P) . The coordinate system is supposed to lie in prescribed positions

when the path tracer point passes through the precision points.

= (k)
1
i

Figure (3.5) : K'th link of an n link spatial mechanism.

41



Let C'*” be the orientation matrix of frame (p) with respect to a global

frame when frame (p) lies in the i'th prescribed position . Hence in addition
to the loop closure equations (3.1) , (3.2) and (3.3) the following equation can

be written ,
éi(g,k)é(k,p) - éi(g,m (3.39)
Where,

C*" is the orientation matrix of the k’th frame with respect to the global

frame when frame (p) is in the i'th prescribed position.

C*? is the orientation matrix of frame (p) with respect to the k’th frame .

Since both frames are attached to the K’th link obviously C*? must be a

constant matrix and can be defined as follows,
Cor) = pina

P (3.40)

and finally C*” is the orientation matrix of frame (p) with respect to the

global frame when frame (p) lies in the i'th position and is always prescribed.
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3.5) MOTION GENERATION SYNTHESIS OF AN RSHR

LINKAG

Figure (3.6) : The right and left dyads of the P-R combination of the RSHR linkage.
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Considering Figure (3.6) and recalling equations (3.1) , (3.2) and (3.3)

equations below are derived ,

— ~ _ A 1— A AT _
7 =bC*"y, +llCi(g’ )“1 +Ci(g @ = R.

= 2 (2,6)— A (8.6)— A @)= _ =
R+CEIW® +1.C¢O% —cC%u, +aC* i =7

17(4) +W(4) :[7(4)

and from equation (3.39) the following equality is gained ,

A8 Adp) — S (gp)
CEVCEn =
Where,

CA'(g,O) — eﬁsxeﬁzyeﬁsz

A 1 _ A A o ~ ~ i
Ci(g ) — C(g,O)Ci(O,l) = ¥ Y i (2*8)

Ci(g,4) - C(g,O)Ci(0,4) - C(g,O) (Ci(4,7))—1 - eu3xeu2yeu3ze—ulﬂ/ze—u3€7e

A(g,6) — A(g.0)A(0,6) — A(g.0)  A6,TIN-1 — lI3x Ty Tz —i/2 —i6
Ci(g, ) — C(g )Ci( ) _C(g )(Ci( )) = ! gl pthZ o T TTI2 U
CE&D = (@O0 = Gisx iy Gisz [ = i iy yilsz

CA'(4,P) - eﬁsaeﬁzﬂeﬁsy

Note that C,'*” is prescribed.
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Thus equations (3.41) and (3.42) can be written in the form below ,

7 — beﬁ3xe'ﬁzy1/—l3 + lleﬁ3xeﬁzyeﬂ3 (z+'S{")I/—l1 + e'ﬁ3xeﬁzyel73ze—iilﬂ/Ze—%H; e—'ﬁzﬁé 6—53'9; 17(4) — l?l (345)

eﬁ3xeﬁzyea3ze—ﬁlmze—aﬁ;e—uzege—ﬁ39;W(4) + 13eﬁ3xeazyeu3ze—aln/ze—ﬁﬁ; L_ll _ce@xeazyeu}ze—almzb—l}

+ae™ ™ e’73ZL7l -r=-R (3.46)

1

In equations (3.45) and (3.46) the summation of the vectors which do not

include subscript (i) can be considered as constant vectors .That is let

r—=be" e u, =r, (3.47)
and
ae"™ e " —ce™ ™ e e, —F = 7, (3.48)

Hence equations (3.45) and (3.46) are written in the following form,

7+ lleESXeﬁzyeES(z+gli)L71 +e@XeazyeaSze—uln/26—1739;e—uze;;e—aﬁ; V@ =R (3.49)

1

+ea3xeazyea3ze—aln/ze—1739;e—aze;;e—@e; W(4) +136173xeazye@ze-almze—uﬁ; L_tl - —I_Qi (3'50)

7
and considering Figure (3.6) the following equation is obtained ,

VO +w® =1L, (3.51)

and from equation (3.44) the following equation is got,
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eﬁ3xeﬁzyeﬁ3ze—ﬁlﬂ/ze—ﬁ39§ e—aze;; 6—5365' eﬁ3ae:72ﬁe:73y - C"«i(g,p) (352)

Regarding equations (3.49) to (3.52) the following table is constructed,

Table (3.4) : According to the table below when the locations and orientations of the fixed
joints are not prescribed , the coupler link of the RSHR linkage can lie at most in three

prescribed positions.

number of number of number of number of
prescribed scalar unknowns free
orientations equations parameters
25
1 12 (1.1,1,.6.65.6..6;.a. B,y 13

S (4 777 (4
T X, y, 2,V O W)

D) 21 29 (above + 8',6.,6..,6, ) 8

3 30 33 (above + 6°,62,62,6: ) 3

Let's consider the case in which the coupler link of RSHR linkage is
supposed to take two prescribed orientations . Hence assuming i=0,1

equations (3.49) and (3.50) are written in the form below ,

7 +lle@xeazye@(z+@0)b_ll + ei?3xei?2yei?3ze—ﬁlﬂ/ze—%ﬁg6—52936—53950 y@ = Eo (3.53)
. +lleaﬁe@yeu}(z+q‘)ﬁl +e@ceazye%ze—almze—u}e;e—ﬁzege—539;7(4) - 1_31 (3.54)
7 +e%xeazye%ze—mmze—@eg’6—52936—5392W(4) +13eaSXeazyeusze-glmze—uﬁ;’L—l - _1—30 (3.55)

46




7, + e@xeuzye@ze—almze—aﬂe—azege—uﬁ;W(z;) + l3eESX€EZy65326_51”/26_173671 i = —l_31 (3.56)
and regarding equation (3.52) equations below are obtained ,

eﬂ3xel72yeii3ze—'ﬁlﬂ/ze—'ﬁ3€706—52926—173950 eﬁ3aeﬁzﬁeﬁ3y — é«o(g,p) (3'57)

Wyx iy iz —i71/2 —173946—520}, —i1,6)

ee"e e e e 8 oI g oty = C (&) (3.58)

Let's choose a,p,y,6!,6.,6° arbitrarily . Thus from equation (3.57) the
following equation is obtained ,
eﬂ3xeﬁzyeﬁ3z — évo(g,P)e—ﬁgye_ﬂzﬁe_ﬂsyeﬁsgso

eﬁzgg 653970 e'ﬁlﬂ/z (3'59)

A Y T Y Y Y ~ . . .
Let C, " e ™ e ™Pe ™% g% g% oW = )f then postmultiplying equation

(3.59) by u; equation below is gained ,

cos xsin yu, +sin xsin yu, +cos yu, =M u, + M ,,u, + M ,,u, (3.60)
Which results in,

cosy=M,, , cosxsiny=M, , sinxsiny=M,,

and consequently x and y can be determined with one ambiguity related to y

as follows,

sin y =#y1-M,,°
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y =angle(M,,\1-M’) or y=angle(M,—1-My")

M, M
x = angle(—,—*)
siny siny

Now premultiplying equation (3.59) by #," equation below is gained ,
—C0S y cos zi, +sin ysin zu, +cos yiu, = My u, + M u, + M i,
From which it can be derived that,

M M
z = angle(—2—,——4)
—siny siny

Note that if y =0 a singularity takes place. In this case other elements of

M should be used.
From equation (3.58) the following equation is obtained ,

6173'95l 6172'923 653'9; - eﬁlaeﬁzﬂeﬁsy(él(g,l’))_l eﬁsxeﬁz)’eﬁszeﬁlmz (361)

Let e™ ™™ (C®P) ™™ e™e"™? = N then using a technique similar to

the one used above, @,,6,,6, canbe found as follows,

0 =angle(N,;,A/1-N,,’) or 6 =angle(Ny,—/1-N,,*)

—.N” —N231) and 8, = angle( Ny N

6. = angle(
5 1 b . . 1 b . 1
sing, sin g, —-sind; sinf,
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From equations (3.49) and (3.50) for i=0 the following equations can be

obtained ,
y@ = 61739;6529},61739; ealmze—%ze—azye—aﬁ (1—30 -7 —lle%xeﬁzye%(”g”)ﬁl) (3.62)
W(z;) — 617395‘ eaze},e,ze; ealmze—@ze—azye—aﬁ(_1—30 _Fz _l3eaﬁeuzyeaﬂe—aln/zb—ll (3.63)

Substituting ¥* and W™ from equations above into equations (3.51) ,

(3.54) and (3.56) the following equalities are gained ,

7 +lle,73xeﬁzy6173(z+eg)b_ll +eﬁ3x€172ye173ze—ﬁln/ze—ﬁﬂ}e—ﬁze(le%(eg’—esl)61726(?653670

WITI2 =iz =,y —iX [T — ix iy i (zt0)— N\ —

e“l e usze uzye usx(RO _rl _lleusxeuz)’eus(z l)ul) _Rl (364)
72 +l}g@xe@ye@ze—aln/ze—%@f’L—ll +eaSXeazyea3ze—aln/z6—539;e—azege%(eg’—e;)eazeg

HE) W2 -z -~y X T = ] X _ihy iz -2 -8 — N\ — _ D

e e e e e (=R, =1, — e e e e e “u)=-R, (3.65)
e%xeﬁz ye%ze—ﬁln/ze—ﬁﬁ; e—aze},e%(e;’ —e;)eﬁze(? 6173970 eﬁln/ze—ﬁ3ze—172 ye—ii3x (_’71 _ ’72

fhx iy iy (z+6) Ux _fhy iz~ il — N\ — ] —
o T R R e TR = A7) (3.66)

Using a proper numerical method equations (3.64) to (3.66) can be solved
for 1,1,1,,8,68 7,7, with two free parameters then 7™ and W® can be

determined from equations (3.62) and (3.63) . Now adding up equations
(3.47) and (3.48) equation below is obtained ,

Usx Uy Uzz— _beiilx Uy — Usx Uy Uiz

ae™ e e u, eu, —ce™e e e " Uy, =1 +

or
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-T2 —

au, —bu, —ce """ u; =e e e (1 +1y)

Premultiplying equation (3.67) by #',uz," and u, the following equations

are obtained ,

— = =iz =,y —UX (= 4 =
a=ue e e (1, +r)

— _ =l -z —U,y —lsX = 4 =
b=-uye e ™e (1, +1,)

— _ =t -z -~y X oy o
c=-u,e e e " (n+n)

and for 7 it can be written,

Usx Uy y—

r=r+be" e u,
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3.6) NUMERICAL EXAMPLES

All numerical examples of this thesis were solved by a Pentium 4 with a
processor frequency of 2.8 Ghz and a RAM of 128MB. Detailed information
has been presented in chapter 6 about the computer programs , trial and

error steps and the difficulties which may arise while solving equations.

Example (3.1) : Synthesize an RSHR linkage whose path tracer point on its

20 30 -10
coupler link passes through points £, =|-10|, A =| 0 [,P, =| 10 | defined
10 20 0

in the zero’th frame. The following data is available, a=30 , b=2 , ¢=5

Applying the solution algorithm explained in part (a) of section (3.3) a
computer program can be written for solving this problem. Here using

Mathcad the following results were determined ( Running Time : 21

seconds).
Inputs
20 30 -10
R=\-10| , R=[0| , R=[10| , a=30 , b=2 , c¢=5
10 20 0
Initial Values
[[=20 , [L,=50 , @'=4 , 6=77 , =87, 6=0, 6 =05

g=1, 6 =05 , 6.=1, 6=15 , &=5 , =11 , 6 =17
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Outputs

[,=19.36108 , [,=49.50558 , [,=48.91563 , [,=29.2786 , [, =42.38448

6’ =4.4365 , 6 =6.96546 , 6’ =6.53532

6 =-0.56212 , 6:=025014 , 6> =3.13484

6 =3.60277 , 6 =4.08354 , 67 =5.24591

6 =4.15402 , 6 =4.19076 , 6> =4.16323

15.26699 34.23871
VW =|2442313 | , W =|-24.42312
-5.25987 5.25989

Now it should be checked to see if the path tracer point passes through
the precision points continuously or not . Recalling equation (2.12) the
diagram of the output angle versus input angle of the above mentioned
RSHR linkage can be drawn .According to Figure (3.7) the RSHR linkage
acts as a crank-rocker and since the input and output angles determined
through the synthesis procedure all lie on a continuous curve it can be
deduced that the path tracer point will pass through the precision points

continuously.
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Figure (3.7) : The circles illustrate the input and output angles at which the path tracer point
passes through the precision points. The dashed curve displays the other loop closure curve

of the mechanism.

Example (3.2) : Synthesize an RSHR linkage whose path tracer point on its

coupler link passes through the following points,

60 50 50 55 55
p=(-30| , B=|-20| , P,=|-40| , P =|-25| , P,=|-35
20 30 25 35 35

Applying the solution procedure explained in part (b) of section (3.3) and
using Mathcad the following results were determined (Running Time : 124

seconds).
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Inputs

60 50 50 55 55
Ry,=|-30| , R ={-20| , R,=|-40| , R, =|-25| , R,=|-35
20 30 25 35 35

Initial Values

=100 , ,=100 , ;=100 , @' =5m/6 , 6 =3m/2 , & =5m/3

6 =7m/6 , 8 =7m/4, 6)=5m/6 , 6:=2m/3 , 6.=5m/4 , 6 =3m/2

6 =1ml6 , &=m/4 , 6=2m1/3 , =1 , =m1/2 , G =-m/4

&@=-m/6 , &=m/3 , F=m , =0 , 6 =31/2

Imposed Conditions

10<17, <120 , 20=<1, <120 , L~1 , L, =1

-0.5<6,-8"<0.5 , -0.5<6 -6 <0.5 , -0.5<6 -6;<0.5

-0.5<6/ -8 <0.5
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Outputs

[ =12.47711 , 1,=120 , 1,=56.38387 , [,=28.92972 , I =91.43267

6 =6.185 , 6 =486693 , 6°=189699 , 6 =-1.57486 , &' =3.1647

6 =3.99495 , 6. =0.65539 , 67=1.02014 , 6 =-2.49228 , 6} =-2.33563

6 =0.47608 , 6 =—3.46868 , 67 =2.72237 , 6’ =0.30943 , 6' =0.35106

6°=22672 , 6:=1.95996 , 62=276719 , & =1.95451 , 6 =2.47549

x=-2.776 , y=1.86581, z=-0.14 , a=20.9615 , b =-45.81694 ,c = -81.58719

83.68423 28.65415 91.34585
F=|-4135241| , VW =|-241027| , W% =| 2.41027
35.88041 -3.17163 3.17193

Now the continuity of the motion of the path tracer point when it passes
through the precision points should be checked. As illustrated in Figure (3.8)
the input and output angles at which the path tracer point passes through the
precision points all lie on a continuous curve . This proves that the path

tracer point will pass through the precision points continuously.
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Figure (3.8) : The circles illustrates the input and output angles at which the path tracer point
passes through the precision points . The dashed curve displays the other loop closure curve

of the mechanism.

Example (3.3) : Synthesize an RSHR linkage whose path tracer point on its

coupler link passes through the following points successively,

60 50 50 55
P,=|-30| , P=[-20| , P,=[-40| , P =|-25
20 30 25 35

Applying the solution procedure explained in part (b) of section (3.3) and
using Mathcad the following results were determined (Running Time : 55

seconds) .
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Inputs

60 50 50 55
R,=|-30| , R =|-20| , R,=[-40| , R, =|-25
20 30 25 35

Initial Values

=100 , L,=100 , =100 , 6'=12 , 6 =3m/2 , & =5m/3

6 =11m/10 , &' =5m/6 , 6.=2m/3 , 6 =5m/4 , 6 =3m/2
& =mn/4 , 6=2m/3 , @=n , §=n/2 , &=-1/6 , O =mn/3

&=m =0 , x=-n/4 y=n , z=-7/6
7 7

Imposed Conditions

20</, <90 , 20=<[,=<120 , 20<[L=<110 , L>=L , L>]
-0.55<6,-6'<0.55 , -055<6:-6)<0.55 , -0.55<6 -6 <055
0=<6’ <1 , 1.5<6' <25 , 3<6'<4 ,  45<6 <55
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Outputs

[,=22.00465 , [,=120 , [,=80.99909 , [, =93.19316 , [, =31.00092

=1 , 6=18063 , =4 , =55

6 =34735 , 6=036469 , 67=0.02166 , & =0.03051

6 =-027479 , 6 =346975 , 6’ =3.46351 , 6 =3.3332

6°=070151 , 6.=0942 , 6°=125151 , & =0.91661

x=0.65, y=1.189 , z=-1.083 , a=-11.36594 , b=-43.069 , ¢=-19.11834

104.62349 92.18295 27.81705
F=|-1831878| , V% =|13.68441 ., W =|-13.68441
15.86019 -0.07453 0.07453

Considering the input angles of the RSHR mechanism when the path
tracer point passes through the precision points, it is seen that the path tracer
point will pass from point P, to point P, successively. Besides Figure (3.9)
verifies the motion continuity of the mechanisms when its path tracer point

passes through the precision points.
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Figure (3.9) : The circles illustrate the input and output angles at which the path tracer point
passes through the precision points . The dashed curve displays the other loop closure curve

of the mechanism.

Example (3.4) : Synthesize an RSHR linkage whose coupler link moves a
cube from position (1) to position (2) as shown in Figure (3.10) .

50
Position (1) : {R, =| 80 |,C, = ™" ™"}

30

30
Position (2) : {R, =| 0 |,C, = ™™™ 4273}
40
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"‘(S) — (
1{3 1{28)

Figure (3.10) : The two prescribed positions of an object which is supposed to be carried by
the RSHR linkage.

Applying the solution procedure explained in section (3.5) and using
Mathcad program the following results were determined . Note that since
this problem has been solved semianalytically some of the free parameters

were selected beforehand (Running Time : 14 seconds).
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Inputs

Prescribed values,

50 30

D A U7/ 6 1,3/ 4 a3 A U2 _u,—m/4 _w,27m/3

R,=|80| , R=|0| , C,=e""""™ | (C =" e "™
30 40

Arbitrarily chosen values,

a=n/7 , B=5n/7 , y=n/5, 6 =2m/5 , @ =m/10 , 6 =-m/6

Initial Values

Imposed Condition

-m/12<6) -6 <m/12
Outputs
[, =63.05401 , [,=44.33913 , [;=4291135 , [,=109.30748 , [, =68.70836
x=3.38236 , y=536427 , z=2.68679 , 6’ =087232 , 6 =1.13412
6 =3.02012

, 6; =2.60402 , a=-110.07879 , b =8.54829

61



c=52.52234

7y =

—72.45168
15.00284
105.29682

b

7@ =

103.66968
7.84179
33.75247

W@ =

—59.33065
—7.84185
—33.75231

Figure (3.11) illustrates the continuity of the coupler link’s motion when it

passes from the first prescribed position to the second one.

400
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on
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=]
o
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L~ -~ - T~ T — ~
-,
0 | | | | |
10 20 30 40 50 60 70
Input angle (degree)

Figure (3.11) : The circles illustrate the input and output angles at which frame (p) lies in the
prescribed positions. The dashed curve displays the other loop closure curve of the RSHR

mechanism.
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CHAPTER FOUR
OVER CONSTRAINED SPATIAL

MECHANISMS

4.1) GENERAL

The degree of freedom of a spatial mechanism can be calculated by the

following formula ,
DO.F =6(n-1)-5R-5P-4C-3S§ (4.1)
Where,
n is the number of links .
R is the number of revolute joints .
P is the number of prismatic joints .
C is the number of cylindric joints .
S is the number of spheric joints .
When the degree of freedom of a mechanism is less than one , it is
expected to be immobile .However there are some spatial mechanisms

whose degrees of freedom - according to formula (4.1) -are less than unity

and still they can move under some specific conditions . Such mechanisms
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are called over constrained mechanisms and the conditions under which they

move are called the constraints of the mechanism.

Over constrained mechanisms are attractive to mechanism designers for
their higher capacity-in comparison to the similar mechanisms-to carry loads
and that they are cheaper .A.]. Shih(ref.30) and J.E.Baker(ref.31,32) recently
have worked on some over constrained mechanisms. In this chapter using
the algebra of exponential rotation matrices ,the mobility and kinematic

synthesis of an over constrained spatial mechanism has been studied.
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4.2) RCCR LINKAGE

According to equation (4.1) the degree of freedom of the RCCR linkage
illustrated in Figure (4.1) is equal to zero but it has been proved that this

mechanism is able to move under a constraint .

Figure (4.1) : An RCCR linkage
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Figure (4.2) : Schematic figure of the RCCR linkage.
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Considering Figure (4.2) and Denavit-Hartenberg’s convention table (4.1)
can be constructed. Hence the rotation matrices between the link frames are

determined as follows,

Table (4.1) : Denavit-Hartenberg parameters of the RCCR linkage.

Link g a a d
1 variable 0 I, -c
2 variable a l,cosy s,
3 variable 0 L S,
4 variable -B —a -b

CA"(O,I) - 6’73'91 ; é(l,Z) - 653'92 eala 6(2,3) - 6’73'93 ; 6(3,4) - 653'946_51:5

7

The following equation can be written according to equation (2.1) ,

¢ =]

Thus equation below is derived ,

C(O’Z)C(2’4) =] = Cc? = (C(2’4))_1 — 6173('91“92)6'71” = eﬁlﬁe—ﬁs(%*@;) (4'2)

From equation (4.2) the following equation is resulted ,

cos(g,+6,) -—cosasin(g +6,) sinasin(8 +6,) cos(6, +6,) sin(6, +6,) 0
sin(g, +6,) cosacos(6,+6,) -—sinacos(f +6,)|=|—cosfsin(f,+8,) cosPcos(f,+6,) -sinf
0 sina cosa —sin Bsin(6, +6,) sinBcos(f,+6,) cosf
4.3)
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which results in,

cosa@=cosff =>a=Lor a=-L

If a=p then according to equation (4.3) constraint below is obtained ,

cos(,+6,)=1=6+6,=0

and

cos(6,+6,)=1=6,+6,=0

If a=-p then,

cos(,+6,)=-1=6+6,=m

and

cos(6,+0,)=-1=>6,+6,=m1

From Figure (4.2) it can be seen that,

a=p0

Therefore it can be deduced that the RCCR linkage will be movable if and only if the

axes of the fixed joints are parallel to the axes of the moving joints.

Recalling equation (2.4) the following equation is written ,
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du, + alé(o’l)t_tl + dzé(o’l)ﬁl + azé(o’z)t_tl + d3é(0’2)t73 + a3é(0’3)t71 + d4é(0’3)t73 + a4é(0’4)ﬁl =0
(4.4)
Substituting a, and d, from table (4.1) equation (4.4) can be written in the

form below,

1L,COVa, — i, +1, cos yC i, +5,C Vi, +1,C OV, + 5,0V, —aC Vi, ~bC OV, =0
(4.5)
Let a=p=0 then equation below is deduced,

é(0,4) =i:> 6(0,3)6(3,4) — I‘ — é(o,z) — (6(3,4))—1 — (653646—515)—1 — 65156—5364

Replacing €% and C®Y by I and e™e™* in equation (4.5) respectively

the following equation is obtained,

36—

lle u, _6'173 +lz cos Wﬁs(@l*'gz)eﬁld_ 36— '73('91'“92)6’715_ =36,

o
u, +s,eu, +s,e u, +Le"e "My,

—au, —beu“ye_%'g“b_z3 =0 (4.6)

Regarding the constraint of the mechanism (g, + 6, =0) equation (4.6) results

in the scalar equations below ,

l[,cos@ +1,cosy+l,cosf,—a=0 4.7)
[,sin@ —1,cosdsinf, —s,sind0+bsind =0

—c+s,—1,;sindsinf, +s,c0s0—bcosd =0

Let §=¢ and 6,=¢ . Hence according to equation (4.7) the general

displacement equation of the RCCR linkage will be,
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[, cosy +1,cosy+l,cosp—a=0 (4.8)
Note that ) 1is a constant angle and belongs to the structure of the

mechanism.
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4.3) MOBILITY ANALYSIS OF THE RCCR LINKAGE

1) CRANK-ROCKER (¢ varies from 0 to 27t)

According to equation (4.8) the inequality below is derived,

cosp< a+l —l,cosy
L L

=1, —l,cosy <

-l <l,cosy+lcosp—as<l = a (4.9)

In this case the inequality —-1<cos¢<1 must be never violated. Hence the

following inequality has to be satisfied,

_lsa—ll—lzcosySa+ll—lzcosySl (4.10)
L L

which results in the following inequalities,

I -l,<a-lcosy<sl, -1 and [, >] (4.11)

Therefore under condition above the RCCR linkage will act as a crank-

rocker.

Example (4.1) : Draw the output angle-input angle diagrams of the RCCR

linkages with the following dimensions,

=20 ; [,=40 ; f=a-lcosy=-20,-10,..20

71



200

150

100

output (degree)

~ Fa
~ ’
. K
50 — " e _
0 | | | | | | |
0 50 100 150 200 250 300 350 400
Input (degree)
— =20
----- £=-10
=0
—-- £10
=20

Figure (4.3) : The angular displacement of the output link versus the angular displacement of

the input link for /, =20, /; =40 and variousf’s .

As shown in the diagram above , all of the RCCR linkages whose

dimensions satisfy inequality (4.11) act as crank-rockers.
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2) ROCKER-CRANK (¢ varies from 0 to 21)

From equation (4.8) equation below is derived ,

a—lzcosy—l3<Cosw<a—lzcosy+l3

-, <l cosy+l,cosy—asl,= ; 7
1 1

(4.12)

In the case of rocker-crank inequality —1<cos{/ <1 mustbe never violated.

Thus inequality ,

a—1l,—1,cosy < a+tl,—1l,cosy <
L B L B

-1<

1 (4.13)

Has to be satisfied which results in,

l,=l,<a-l,cosy<l —-I, and [ >, (4.14)

Hence under condition above the mechanism will act as a rocker-crank.

Example (4.2) : Draw the output angle-input angle diagrams of the RCCR
linkages with the following dimensions,

=40 ; [,=20 ; f=a-lcosy=-20,-10,..20

73



400
300 .
0
&
o
)
= 200 7
=
&
=
o
100 [~ .
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- =10
- =10
=20
=20

Figure (4.4) : As illustrated in the diagram all the RCCR linkages whose dimensions satisfy
inequality (4.14) act as rocker-cranks.

3) DOUBLE-CRANK (both ¢ and ¢ vary from 0 to 21)

So far the conditions under which the RCCR linkage acts as crank-rocker
and rocker-crank were determined. The common part of these two
conditions will give us the condition under which the linkage acts as a
double crank. Considering inequalities (4.11) and (4.14) it can be seen that

both inequalities are satisfied if and only if ,
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[,=1, and a=Ilcosy (4.15)

Thus under condition above the mechanism will be a double crank.

Example (4.3) : Draw the output angle-input angle diagram of the RCCR

linkages with the following dimensions,

[,=1, and a=[cosy

200

150

100

50

output (degree)

-50

—100

—150

I I I I I I I
50 100 150 200 250 300 350 400

Input (degree)

—200
0

Figure (4.5) : When condition (4.15) is satisfied the RCCR linkage acts as a double crank.
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4) DOUBLE-ROCKER (both ¢ and ¢ vary in a range less than 271 )

Recalling the conditions under which the RCCR linkage acts as crank-
rocker and rocker-crank it can be deduce that the opposite conditions are

required for the linkage to act as a double rocker. That is,
a—l,cosyz2l,-1, or a-l,cosy<l —I[, when [, >] (4.16)
a—l,cosy=2l—-1l, or a-l,cosy<l,—I, when [ >, (4.17)

However conditions (4.16) and (4.17) can be considered only as necessary
conditions for the RCCR linkage to act as a double rocker. The reason is that
so far the conditions under which the linkage becomes locked have not been
regarded. From inequality (4.9) it can be stated that the mechanism won't be

locked if and only if ,

a+ll—lzcosyZ_1 and cz—ll—lzcosySl

L l
which result in
—(l,+L)<a-l,cosy<l +l, (4.18)

Hence inequality (4.18) together with inequality (4.16) or (4.17) gives us the

conditions under which the linkage acts as a double rocker. That is,
-(,+l,)<a-l,cosy<sl —I, or ;=] <a-lcosy<l +Il, when [,>[ (4.19)

or
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-, +l,)<a-l,cosy<sl,=Il or [ -L,<a-lcosy<l +l, when [ >I, (4.20)

Example (4.4) : Draw the output angle-input angle diagram of the RCCR
linkages with the following dimensions,
a) [,=20 , [,=40 , f=a-l,cosy=-30,-40,-50

b) [, =40 , 1,=20 , f=a~-1l,cosy=30,40,50

a) [,=20 , =40 , f=a-1l cosy=-30,-40,-50

180

170 -

160 [~

150 -

140 [~

output (degree)

120 -

110 [~

100
50 100 150 200 250 300
Input (degree)
f=-30
""" f=-40
f=-50

Figure (4.6) : All RCCR linkages whose dimensions satisfy inequality (4.19) are double

rockers .
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b) [,=40 , [,=20 , f=a-l,cosy=30,40,50

140

120

100

80

output (degree)

60

40

20

| | | | | | I

0
—80 ~60 40 20 0 20 40 60 80
Input (degree)
=30
""" =40
=50

Figure (4.7) : All RCCR linkages whose dimensions satisfy inequality (4.20) act as double

rockers.
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4.4) SWING ANGLE OF THE RCCR LINKAGE

The swing angle of a crank-rocker mechanism is the variation range of the
output angle for a complete rotation of the input link . Considering that in
return positions the angular speed of the output link is equal to zero , the

swing angle of the mechanism is determined as follows,

Differentiating equation (4.8) in terms of ¢ the following equation is

derived,
. dg )
=l sing{——) =/, sin 4.21
sSIng 40) 1 Singy (4.21)
The following equation is available in return positions,

(j—;)ZOSSianOSwl:O or Y,=nm

If ¢, =0 then the following equation is resulted from equation (4.8) ,

—ll+a—lzcosy a—1l,cosy

=q¢= cos_l(_—ll+

cosq@ = 4.22
T A e

If ¢,=m then ¢ isdetermined as follows ,

@ =cos™ (AL + AL C0SYy (4.23)

L L

Hence the swing angle is determined as follows,
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Ap=|p - q|

Let i=p and w=q then,
13 3
Ap=|cos™ (p+q)=cos™ (=p+q) (4.24)

Now the swing angle diagram of the RCCR linkage can be drawn by means

of equation (4.24).
200
150 [~ .
m
2 ,
en S
o s
3 .
(5] 4
= 100 [~ - u
=) ,-
< .
en
£ :
3 / o
/
50 - s -
4
0 |
0 0.5 1
p
q=0
""" q=0.2
q=0.4
- q=0.6
q=0.8

[
Figure (4.8) : Swing angle diagram of the RCCR linkage for various p’s and q's. Here p = l—l
3

_a—lcosy

and ¢ ;
3
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4.5) PATH GENERATION SYNTHESIS OF THE RCCR
LINKAGE

Let’s consider the case in which the locations and orientations of the fixed
joints are not prescribed. In this case a global coordinate system is used to

specify the locations of the precision points as shown in the figure below ,

Figure (4.9) : When the locations and orientations of the fixed joints are not prescribed all

positions and orientations are defined based on a global coordinate system.
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Note that for the synthesis procedure the link variables shown in table (4.1)

are changed as shown in table (4.2) ,

Table (4.2) : Joint variables and Denavit-Hartenberg parameters of the RCCR linkage.

Link g a a d
1 6 0 [, -c
2 o. o I,cosy st
3 6, 0 L S5
4 o, -0 —-a -b

After dividing the mechanism into left and right dyads the loop closure

equations are written for the left and right dyads as follows,

= _ A0 A (gD — iA~(gD)— A (2772 —

r=cC®u, +1,C.""u, +5,C, 7 u, +C27V Y = R (4.25)
o LA e i A (g.2)— A — A (g.3)— A — _ -

R +CPW® +5:C 2, +1,0%Vu, =bC. Vi, —aC®Ou, =7 (4.26)
VvoO+w® =u® (4.27)

Where,

é(g,O) - eﬁlxeﬁz)’eﬁsz

h

7 has been illustrated in Figure (4.9) and 7 =|r,

3

~ ni
u3 6

A @) _ A A O iy iy 0
Ci(g ) _C(g )Ci( )_eulxeuzyeusze
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éi(g’z) - é(g,O) é’i(o’z) - eﬁlxeaz)’617326173('9{*"9;)6515

C(g ,3) _C(g O)C(03) — ulv uzy u3Z(C (34))—1 =e ulv i,y u32( A uIJ) 1 eulveu2yeu3zeul e A

As it was deduced from equation (4.3) , 8 +6, =0 and &, +8; =0
are constraints of the RCCR linkage . Hence equations (4.25) and (4.26) can

be written in the forms below ,

F_Ceﬁlxe%yu} +l e“lx iy “3(Z+'9) +S e“lxe’hyu +e“1x iy “32 “1 V(z) R[

(4.28)
R +eulx uzyeu3zeu15W(2) +Sleulxeu2yeu3zeul M3 +l eulxeuzyeu3zeul e iy 21/_!1
(4.29)
—be™ ™ "™ ", —ae™ ™ "™, = F
The following equation is written according to Figure (4.9) ,
[,cosy
VA+w® =U® =|1,siny (4.30)
0
Let
= _ mx iy y— uxuy 3z _moy7 (2) — =
r—ce"e™u, +e" e e” e’y =7 (4.31)
and
—ae™e™ "™ u, —be" ™ " " u, + e e™ e "W P — 7 =7, (4.32)

Hence equations (4.28) and (4.29) can be written in the following form,

7ol e" o™ em N + gl ™ = R (4.33)
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7, +sie™ e e™ "y, + e e™ e e e ™%y, = R, (4.34)

1

According to equations (4.33) and(4.34) the following table is constructed,

Table (4.3) : According to table (4.3) when the locations and orientations of the fixed joints
are not prescribed the path tracer point of the RCCR linkage will pass through at most six

precision points.

number of | number of number of number of
precision scalar unknowns free
points equations parameters
1 6 16 (7, 7,,1,,15,%,1,2,0,53,57,6°,6,) 10
2 12 20( above + s',s,6',6) ) 8
3 18 24( above + s2,52,67%,62) 6
4 24 28( above + s,,5;,6’,6, ) 4
5 30 32( above + s;,s1,6,6;) 2
6 36 36( above + 53,53,6°,8] ) 0

Assume that it is desired to synthesize an RCCR linkage whose path tracer

point is capable of passing through five precision points . That is i=0,1,2,3,4 .

Considering equation (4.33) the following equations are derived ,

— iy iy (46—~ o 0 Wy = — T
7o+le"e™ ey +s)e" e, = R, (4.35)

— ix iy (48— o ) ix iy— _ o
7o+le™e™ ey +sle™ e u, = R, (4.36)
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N

|

N

L tle
hx iy iy (z+6)

L tle

L tle

hx iy iy (z+67)

— 2 X _ihy— — p
ere u, +syee”u; =R,

3 Wx _l,y—

ee u, +sye"e>u; =R,

hx iy i (z+67)

- 4 WX _Uhy— — p
ere u, +s,ee”u, =R,

(4.37)

(4.38)

(4.39)

Substituting 7 from equation (4.35) into equations (4.36) to (4.39) equations

below

lleﬁ‘xeaz yeﬂ3z (617391‘

/ eﬂlxeﬂzyeﬂ3z (617395

lleﬂlxeﬂzyeﬂ3z (617393

/ eﬂlxeﬂzyeﬂ3z (61739;‘

or

ll (6173'91l

ll (6173'912

ll (6173'913

ll (6173'914

are obtained ,

~ A0
- )i, +(S; _53)7/_’3

~ 20
- ), +(522 _Sg)ﬁz

~ 20
- ), +(S; _Sg)ﬁz

~ 20
- ), +(S; _Sg)ﬁz

AN 1 0N x Jihy— — T _ ]
=" ), + (s, —5,)e" e u; =R, - R,
560\ 2 0\ iy Jhy— —p _ T
=" u, +(s; —s,)e"e"u; =R, - R
60 \— 3 0\, ix Jhy— — D _ T
=" )u, +(s; —s,)e" e u; =R, — R

560\ 4 0\, ix Jhy— —p _ T
=" yu, +(s5 —s,)e"e"™u;, =R, — R,

— e—ﬁ3ze—ﬂzye—ﬂlx (E _ EO)

= o g T (1’?2 - EO)

— e—ﬂ3ze—172ye—ﬁlx (E _ EO)

= o g T (E - EO)
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The following equations are obtained from equation (4.34),

a°
Ux _Uyy Uz —u36,

7y, +se"t e e e 0y + Lo e e ey = =R, (4.44)
7, +sie" e e e, + e e e e e '739‘1711 =-R, (4.45)
7, +siee™ e e, + 1" e™ e e e” “3€4u1 =-R, (4.46)
7, +sie"e™ e U, + e e e e e “39“u1 =-R, (4.47)
7, +siee™ e e, + 1" e™ e e e” “3€4u1 =-R, (4.48)

Substituting 7, from equation (4.44) into equations (4.45) to (4.48) equations

below are derived ,

1 0N Ux Uy Uz )0 yx uzy sz “1 -6, L N— — D 1)
(55 —85)e" e e e"u, +le e (e™ —e ™™ )u, =R, — R,

2 0N WX Uy Uzz 0 Ux iy iz 00 o —i6F L N— — D )
(57 —83)e" e e e"u, +L,e" e e e (e —e ", =R, —R,
(S3 -5 )eulx uzyeu3zeul M3 +l eulx uzyeu3z 0o (e 1,63 _ e—%@? )I/_ll — EO _ E}

4 0N WX Uy Uzz 0 Ux iy iz 00 o —iiy6) L N— — D )
(s; —s3)e" e e e"u, +L,e" e e e" (e —e """, =R, - R,
or

_~ gl _~p0 _~ _~ _~ o~ = —
(s3 —s)), +1(e 50 _ o7t Yu, = e 10 g7ihi g 7Y g ““(R, —R)) (4.49)
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o~ =0 _~ _~ _~ o~ = —
(53 —s)ty +1,(e™% —e™% )iy, =e e e e ™ (R, - R,) (4.50)
~ 3 o _~ _~ _~ I — —
(s —s9)iy +1(e 50— i Ju, =e 10 g7l oY g ““(Ry, — R;) (4.51)
o

(54 = sty +1,(e™ P Yit, = e e e g™ (R —R,) (4.52)

Multiplying equations (4.40) to (4.43) and (4.49) to (4.52) by #,' and u," the

following equations are obtained ,

L, (€™ —e™ i, =i e ™ e ™ e ™ (R, — R,) (4.53)
L, (e'w‘2 - Ya, =i, e ™ e ™ e ™ (R, = R,) (4.54)
L, (e'w‘3 — Y, =u,'e e e (R, - R,) (4.55)
L' (€™ e Y, =1, e ™ e ™ e ™ (R, - R,) (4.56)
L) (ew‘l — ™ i, =1, e e e ™ (R, - R,) (4.57)
Lig, (™% —e™ )i =u,'e ™ e ™ e (R, - R,) (4.58)
Lig, (€™ — ™Y, =ut,'e ™ e ™ e (R, - R,) (4.59)
Lig, (™% —e™ )i =u,'e ™ e ™ e (R, - R,) (4.60)
Lit) (™% —e ™% ) = i1 e e e e (R ~R,) (4.61)
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L =365 _ O N — 5,00 =iz, mihy X 1_3 _1—3 4.62
;U (e e Y, =up e e e e (R, )) (4.62)

Lt/ (™% — ™% it =i1'e e e ¢ (R~ R,) (4.63)
Lt/ (™% —e ™% )i =7 'e e e o (R, ~ R,) (4.64)
L, (e_w‘i — e 4 i, =1, e e e e (R, = R,) (4.67)
Lit, (e™% — ™% )i =i7,'e e ™ e (R, ~R,) (4.68)
Lit, (e™™% —e ™% Yii =iz, e 0o o e (R, ~Ry) (4.69)
L, (e_w‘? — 70 Vi, =1, e e e e ™ (R, = R,) (4.70)

Using a proper numerical method equations (4.53) to (4.70) can be solved
for (x,y,2,0,1,,1,,6,.,6,,67,6,.,6.,6,,6,.,6;,6,,8;) . Then choosing s) and s

arbitrarily s,,s;,53,55,51,5:,5:,5: can be determined as follows,,

Multiplying equations (4.40) to (4.43) and (4.49) to (4.52) by u," equations

below are derived ,

sy =50+ e e ™ e ™ (R, —R,) (4.71)
52 =sy+ue ™ e™e™ (R, —R,) (4.72)
53 =50 +ue™e ™ e ™ (R, - R,) (4.73)
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53 =s)+ue™e™e™ (R, - R,) (4.74)

sy =s)+ue e ™ e ™ e (R, - R)) (4.75)
52 =5y +ue e e ™ e (R, — R,) (4.76)
s3 =50+ e™e™ e ™ e™ (R, - Ry) (4.77)
sT=s)+ue e ™ e ™ e (R, — R,) (4.78)

Now 7, and 7% can be found from equations (4.35) and (4.44)

respectively then adding equations (4.31) and (4.32) the following equation is

resulted ,

_aeulxeuzyeu3zul beulxeuzyeu3zeul U3 _ceulxeuzyu +€u1x i,y u3z “1 (V(2)+W(2)) 171+172

(4.79)
but from equation (4.30) it can be seen that,
[,cosy
7O LT =T =| [siny
0
Hence equation (4.79) can be written in the following form ,
—ait, —be™’u, —cu, =e e e (i +7,)-U P (4.80)

Thus choosing [, and ) arbitrarily , a, b and ¢ are determined from

equation (4.80) as follows,
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a=-u'le™e™e (5 +7,)—e"U P (4.81)

— 1

b= Si‘; 5[e"732e"7ﬂe"7~‘ (7 +7,) - T ] (4.82)
c=-u,Te ™ e ™ e ™ (7 +7,)—e"°U?]-bcos (4.83)

Now choosing V@ arbitrarily W ® can be determined from equation

(4.30) .

Example (4.5) : Synthesize an RCCR linkage whose path tracer point

passes through the following precision points,

50 35 40 20 20
p=|-20| , P=[-4| , P=|-20| , P=|0]| , P,=|10
15 0 20 30 20

Applying the solution procedure explained in this chapter and using
Mathcad the following results were determined (Running Time : 84 seconds).
Detailed information has been presented in chapter 6 about the computer
programs and trial and error steps and the difficulties which may arise while

solving equations.
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Inputs

50 35 40 20 20
R,=|-20| , R =|-4| , R,=|-20| , R,=| 0| , R, =|10
15 0 20 30 20

Arbitrarily chosen values,

30
st=40 sP=15 VP=|0 [,=30 y
20

wly

Initial Values

[[=50 , [,=20 , @ =7m/6 , @ =5m/3 , G =1m/4 , =21

6 =1m/3 , &=m/6 , =m , 6=m1/2 , &=21/3 , 6 =5m/6
1 7 7 7

x=n/4 , y=n , z=n/6 , o0=n/3

Imposed Conditions
2= -6 <2 , -2<6-6:<2 , -2<68'-6<2 , -2<60)-6' <2
0=<0
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Outputs

[ =13.18833 [,=30 [,=1442179 1,=36.05551 I =36.05551

6°=22313 6 =5.78843 67 =293902 6’ =4.01633 &' =5.14723

@) =1.18097 @, =2.97302 ] =0.77451 &, =1.15344 G =2.17274

s0=40 sl =33.68528 s2=33.56116 sl =6.78575 ! =626432

sy =15 5, =29.09742 s =24.54516 5] =54.04923 s =55.4552

30 -15
a=1238945 5=55.56276 c¢=-1.19062 VP =|0 w® =|25.98076
20 -20

0 =-0.54975

Now it should be checked that if the path tracer point passes through the
precision points continuously or not. For this purpose the output angle -

input angle diagram of the RCCR linkage should be drawn as shown below,
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Figure (4.10) : The circles indicate the input and output angles at which the path tracer point

passes through the precision points. The dashed curve displays the other loop closure curve.

As illustrated in the Figure (4.10) since the input and output angles at
which the path tracer point passes through the precision points all lie on a
continuous curve ,it can be deduced that the path tracer point will pass

through the precision points continuously.
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CHAPTER FIVE
MULTILOOP SPATIAL LINKAGES

5.1) GENERAL

In many cases multiloop spatial linkages are preferred to single loop
spatial linkages , because in comparison to single loop spatial linkages they
have a higher capacity to carry loads and besides that since the number of
joints in multiloop spatial linkages is greater than that of the single loop
spatial linkages , in the synthesis cases where a high number of points or
positions have been prescribed , the multiloop spatial linkages are more

preferable.

In this chapter the general displacement equations of a two loop spatial
linkage have been obtained and then a procedure has been presented for the

motion generation synthesis of this linkage.

Consider the RSSR-SC linkage illustrated in Figure (5.1) . Replacing the
spheric joints by equivalent combinations of revolute joints the RSSR-SC
linkage is redrawn as shown in Figure (5.2) . Note that in this case there are
two fixed coordinate systems attached to the fixed link and that the fixed link
is called L,,L; and L, .In other words L,,L, and L, all address the fixed

link .
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Figure (5.1) : An RSSR_SC linkage (ref.29)
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Figure (5.2) : In this figure the spheric joints of the RSSR-SC have been replaced by

equivalent combinations of revolute joints. Note that links L,, L, L, ,L;,L; and L] are

virtual and their lengths are equal to zero.
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5.2) LOOP CLOSURE EQUATIONS

Regarding Figure (5.2) it is seen that two orientation loop closure
equations and two position loop closure equations can be written for the

RSSR_SC linkage as follows,

a) ORIENTATION LOOP CLOSURE EQUATIONS
CUeD AU AULR) = AUk = | (5.1)
CUEULL)  AULRAEULR  AUf) = GUfio = | (5.2)

where CY+/ is the orientation matrix of frame (k) with respect to frame

(k-1) .

The equation below  is written according to Denavit-Hartenberg's

convention,
é(/b,/}c) — easel ealal easez ealaz '.'6’7361: ealak (53)

where @ isjoint variable and a, is link parameter.
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b) POSITION LOOP CLOSURE EQUATIONS

Vowr Tlo, Tt 0, = 0 (5.4)
- S —— 0 .
ooy Tlooy Tty ¥F, +otr, =0 (5.5)
where

r, .. 1sthe vector drawn from the origin of frame (k-1) to the origin of frame

(k) -

Considering Denavit-Hartenberg’s convention equations (5.4) and (5.5)

can be written in the following form,
diii, +a,CYNi +d CYNg +a, N+ +d CU i+ a COE =00 (5.6)

d1173 + alc(fb,fi)l/—[l + d2C(f°’f')ﬁ3 +612C(f"f2)1/_ll + ..+ dsc(ﬁ;,ﬂ)ﬁ3 +a;C(f°’f5)L_tl +.+ dlloc(fb,fé)l/—l3

+aioé(/b,/i'o)1/—ll =0 (5.7)

Regarding Figure (5.2) the link parameters and joint variables of the RSSR-
SC linkage have been listed in tables (5.1) and (5.2) .
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Table (5.1): Link parameters and joint variables of the first loop.

[ a a
8, |
o, -n/2 0
A n/2 0
A 0 L,
72 -n/2 0
6, n/2 0
e, 0 L
A o a

Table (5.2) : Link parameters and joint variables of the second loop.

(7] a a
6 l
o, -n/2 0
A n/2 0
6, 0 I,
4 0 l,
o, -7n/2 0
o, n/2 0
b 0 I
e, o a
-B 0 0

99




Considering equations (5.6) and (5.7) and according to the link

parameters and joint variables listed in tables (5.1) and (5.2) it can be written

that,
—bit, +1,CY i, +1,CUg 1, E P =5 O, +aCU g =0 (5.8)

—b173 +11C('/b"/i)1/_ll +lzc(/b,/4)zj—ll +l4c(./b,fs)1/—ll +lsc(./b,/iz)1/—ll _C'C(./‘b,./‘iz)l/—l3 + a'c(/b,/&)b—ll

+ bvé(_/b,_/ro)L—l} =0 (5.9

Considering table (5.1) and according to equation (5.3) the following

equations are obtained,

Ol = i

CUols) = g8+ it i,

According to equation (5.1) equations below are written,
CUrPEURR) = GUh) = | o (U =[G T =[O = ¢ 10 Ttk
CUol) = f

Now regarding table (5.2) and according to equations (5.2) and (5.3) the

following equations are derived ,

CUol) = GUI) (U = G (8+6) b, s (6,-)

CUrRIGUS = GUfi) = | = GUeR) = [GURD) 71 = [T o8 g B = T o il o i
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G GBS = GUnhD) = | o () =[G ] = [ A ] = TP

CUoli) = f

Thus equations (5.8) and (5.9) can be written in the form below ,
5 -G— -0 iy —

g 6 — T (8+6y) 0 i1y0y— - _ — _7
bu, +1e"u, +1,e7 e ey + Le e M u —sge e uy +au, =0 (5.10)

_b173 + 116173'91171 + 126173(91 +62)€Ez'93 653'94171 + 146173('91 +'92)e'72'93 6173('94_1’)1/_{1 + lseﬁsﬂe_ﬁlfye_ﬂs'%ﬁl

—c'e™ e, +d'e™Fu +b'u, =0 (5.11)
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5.3) GENERAL DISPLACEMENT EQUATIONS

From equations (5.10) and (5.11) the following equations are obtained ,

5 iy — -

u;(6+6,) w0 w30, — _— — — 6, — =i,
—1,e™ "% N0y = qu, — b, + e, +Le e i —sge

%u, (5.12)

W (6+6,) it i, — w1 — 1B — hB -ind — 6, —
om0 G o iy — 1 o™ Vi ) = a'e™Pu, + (b’ —b)u, —c'e™F e u, +1e™%u,

+l.e"Fe ey (5.13)

and subtracting equation (5.10) from equation (5.11) equations below are

derived,

146173('91*'92)6‘7253 6173(54‘}’)1/—[1 + 156173/36"715'6'5356171 — c’e%ﬁe'ﬁlfyzj3 + a'e%ﬁﬁl + b,I/_l3 - 136"7156'5358171

- 0— — _ N
+sge "uy —au, =0

or

— 14653(61 +Hz)eazgs 6173(64_1/)171 — lseﬁsﬂe_ﬁlfye_as%b_ll — c’easﬂe_alfyb_l} + a'e%ﬁb_tl + b’ﬁ}

_ -0 —uz6 — -ho0— _ =
Le e "™ u, +s.e " u, —au, (5.14)

Taking the transposes of equations (5.12) to (5.14) the following equations

are obtained ,

— 1 08, -0, -(6+6) —[ — _ 1— 6 — ~0,0 iy — —ii,0—
—Lu'e % e M) = ay —bir, + 1%, + e e i, — s u, | (5.15)

— Sy — - (6,+6y) -6 ~T0, — B — — B -5 — To —
—[Lu, +1,e™u) e e % T = [g'e™ Py + (b - b)u, —c'e™Fe ™ u, +1e™%u,

+le™Pe ey ) (5.16)
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—U36 — 1B = 3

—i; (6 +'92)e_5263 6_53(64_1/) - [156173'86_171 u —ce’e i 173 +d'e L_ll

—1
—u'le e

+b'i, — Le e %, + s,e”"u, —au, | (5.17)

Multiplying equations (5.12) to (5.14) by equations (5.15) to (5.17)

respectively the following equations are derived ,

1> =[ait, - b, +1,e™%u, +Le e ™%y, — s, %, 1 [ai, — bit, + 1 "%, + e e %y,
-se”"%u,) (5.18)
(1, +1,cosy)* +1,>sin’ y =[d'e™Pu, + (b' - by, —c'e™Fe™u, +1e™%u,

+1.e™Pe ey | [a'e™Pu, + (b - b)u, —c'e™Pe i, +1,e"%u,

+l.e™Pe ey (5.19)

2 i -0 G — — —N()— G — 1,0 — —
=[le"Fe ™™y —c'e™Fe ™ u, +a'e™u, + b'u, —Le e u +s.e”u, —au, |’
B -0,0 i — B —0,0— Tf— — —00 -6 — 70— —
[Le™Fe ™ ey —c'e™ e, +a'e™u, +b'u, — Le e %, + s, "u, —au,

(5.20)
Equations (5.18) to (5.20) are the general displacement equations of the

RSSR_SC linkage. Note that the only variables in equations above are ,

6,6,,s, and @, and the rest of the terms are parameters.
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Example (5.1) : Considering the sliding motion of the cylindric joint of the

RSSR-SC linkage shown in Figure (5.1) as the input of the linkage ,draw
the input-output diagrams of the RSSR-SC linkage whose dimensions

have been given as follows,
=10 , I,=41 , =10 , [,=8 , [=5 , a=19 , d'=
b'=8 c=11 , =0 , y=4n/5 , o0=n/3 , d'=nl/6

Let 6 =¢(s), 6, =Q(s), 6, =P(s) . By solving equations (5.18) to (5.20)

simultaneously the following diagrams were drawn,

60

40
o
o
> W) 20
A=A

0
-50 l l l | | |
0 2 4 6 8 10 12 14

input (cm)
Figure (5.3) : The input angle-output angle diagram of the RSSR-SC linkage . Note that S

has been considered as the input of the system.
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Output (degree)

80

Q(s)

s
Input (cm)

Figure (5.4) : The input angle-output angle diagram of the RSSR-SC linkage . Note that S

has been considered as the input of the system.

100
50
©
o
o)
3
= d(s) O
S
Q
=)
(@)
=50
-100 | | | | | |
0 2 4 6 8 10 12 14

Input (cm)
Figure (5.5) : The input angle-output angle diagrams of the RSSR-SC linkage . Note that S

has been considered as the input of the system.
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54) MOTION GENERATION SYNTHESIS OF THE
RSSR-SC MECHANISM

Considering Figure (5.2) and tables (5.1) and (5.2) the following loop

closure equations can be written,
— _bC(g,_/b)L—l3 + llci(g,/l)lf_ll + Ci(g,./4)17(/;;) e ]?1 (521)

C(g /4)W(/4) +l C(g /7 SSC(g S1)— I/l +aC (8:/8)— i, w—-7r=—-R (522)

C[(8;./4>W(/;;) +I4Ci(g,/s)1/—ll +15Ci(g,./g)1/71 _C’Ci(g’/g)b_l3 +a'Ci(8,/9)L—ll +b’Ci(g,./§)L_l3 _17 e _E

(5.23)
where
C&ly) = gt ity e
L) = g gy o+
éi(g,./A) - eﬂgxeﬂzye%(zw{#e;)6172.93’653.9;
CA'i(g,/i) - é(g,./b)éi(/b,/i) - é(g,./b)[éi(/i,/é)]—l — ugxeuzy i3z [euﬂgeul e“3xe“2ye“3ze “156_53'915
GlEf) = GEREUR) = (EM] = grghr i
GBI = (et URD = g ey s (4048 0 T 81 -)
Gl = GERAEUR = GEM[EERII] = gl o[ 56 gid g ]!

e“s)‘e“zyeus (Z+,5) 6’6_1739(3
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~(8.3) = ((&:S0) (o:S5) = (&S [ OUsfi) 171 = LiIx Ly sz T 11 — Lix iy iy (z+f)
Ci 9_C OCio9_C O[Ci910] _esezes[es] =" e e™

A8 1) = ((&:S0) Ao fi)) = (& So) [ = Lix iy iz
Ci 10 _C ociom _C o[_esezes

and finally the following orientation loop closure equation is derived,

éi(g,p) — éi(g,/;;)é(/a,p) (5.24)

where C®? is the orientation matrix of frame (p) with respect to the global
frame when frame (p) lies in the i'th position and it is a prescribed matrix.

CY*? is the orientation matrix of frame (p) with respect to the fourth frame

and is a constant matrix. This orientation matrix can be defind by an

arbitrary sequence of triple solutions . For example ,C/+? = ™% ¢ Note

that ¢,¢ and @ are constant angles.

Hence equations (5.21) to (5.24) can be written in the form below ,

7= be%xeazyb_@ + lleasxeazyeas (Z+6{)I/_[1 + easxeaz)’eas(z*"g{*'gé)eaz'gsi 6172'94 17(/4) - l_el (525)
easxeﬁz)’ 6'73 (z+6 +'9£)e‘72'9§ 6173'94{ W(/lt) + 13 easxeazyeasz 6_171‘56_53'9,g I/_ll - Sé easxeaz)’ easze_ﬂl‘)—zj_t3
+ae"e"e" u, —r =-R, (5.26)

e"~‘3xe’72yeﬁ3(Z+91i+9£)eﬁzgji eﬁﬂi W(fﬂ + I4eﬁ3xeﬁzyeﬁ3(2+91i+9£)e‘729£ 67'73(&{_}’)1/—[1 +

Esxeazyeas(z*'ﬁ)e_alfy ~,65 — 1 X iy ES(Z"'IB)e_El 1 isx iy iy (z+8)— +p' iUs3x iy

o —
lse e "Pu —ceee uytaeee u, +be™ e u,

=-R (5.27)

1

Let,
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Usx Uy y—

r—be" e u, =1,

Uyx i,y U3z—

ae™ e e u —r =r,

1 X by iz (z+B)—

5 — Tox iy — —
u, +a'e"ee u +b'eeu, =r,

1 _i3x

—-c'e eﬁzy '73(2*',3)6_'71

e

Note that now an additional equation is obtained ,

— 1 -3z _—ihy —U3X (= 3 =\ —
u,e e e ™ (r+r)=0

Thus equations (5.25) to (5.27) can be written in the following form ,

- iyx iy ,il3(z+6)) = iyx iy i3 (z+6+63) b6 #6517 (f)) — o
n+le“ e e u, te“ee e Fe YUY = R

easxeﬁz)’ 6173 (z+6+6; )6172'9; 6173'94{ W(/lt) + 13 easxeuzyeﬁsz 6_171‘56_53'9,g I/_ll - Sé eﬁsxeaz)’ easze_ﬂl‘)—zj_t3

+172 =-R.

1

e‘73xe’72."eﬁ3(Z+91i+9£)6529?£ eﬁﬂi W(fﬂ + 1465335652."653(2*'91[+9£)e‘729£ e%(ﬂ‘l’)b—ll +

'73)‘6'72)’653(Z+:5)e_’715e_53'95iI/_t + 173 = _]_ei

lse 1

eﬁsxeﬁzyeﬂs (z+6/+6; )6172'93’ 6173(9£+¢)e'72‘//e'73w — é’i(g,p)

VU L7 =g

Now regarding equations (5.28) to (5.33) the following

constructed ,
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(5.31)

(5.32)

(5.33)
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Table (5.3) : According to the table below, the floating link of the RSSR-SC linkage can pass

through at most five prescribed positions.

number of number of number of number of
prescribed scalar equations unknowns free parameters
positions

37

(x,v,2,0,,1,,15,1,,1
i 16 8.60.6".6.,6' .6, 21
54,3, 1,0,0, 0, w

= 7 o U g U
r]arza’%aV ! aW 4)

44 ( above + 6,6,
2 2 6.6,.6.8; s, 16

51 (above + 6°,6;
3 40 @z,Hj,@z,Héz,sg) 11

58 (above + 6,6,
4 52 8.6,.6,.6, .5} ) 6

65 (above + 4,8
> 64 6..6,.6,.6.5 ) 1

Example (5.2) : Synthesize an RSSR-SC linkage whose floating link guides
arigid body through the following positions,

[ 30 40
P, ={R,=|-10 ’éo — e@méeazm}e@mé} P ={R =|-20 ’él — ea3n/ze:72n/4ea3mz}
| 50 40
[20
P2 — {Rz =l 0 ’éz — 6173”/56:72”/3653”/5}
60
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Solving equations (5.28) to (5.33) by Mathcad the following results were
determined (Running Time : 22 minutes). Detailed information has been
presented in chapter 6 about the computer programs and trial and error

steps and the difficulties which may arise while solving equations.

Inputs
30 40 20
Ry=|=10| , R =|=20| , Ry=| 0| , G =" %" """
50 40 60
Cl 2617371/2 Uy 71/4 U7/ 2 , Cz :eﬁﬁ/s U, 71/3 37/ S

Initial Values

1 =7276656 , 1,=12.77803 , =125 , 1, =10 , [ =23.02063

6 =1.62006 , 6'=13859 , 6°=1.86238 , 6°=0.28054
6, =-005636 , 6=063721 , 6°=-001675 , 6 =-0.02962
67=097325 , 6'=-061632 , 6.=0.1463 , 6 =0.7902
& =1.07288 , 6.=-022137 , G=-131715 , 6°=-121868
s=2.52774 ,  s.=19.5692 ,  s2=-1448906 , x=-0.11656
y=073979 , z=-054102 ,  ¢=039492 , =0.25304
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w=-0.33561 , y=158053 , 0=0.29146 , 0 =-0.03164

-0.01137 -1.13456
£=0.19118 , VD = -6.51512 , w YD =1 6.51512
-8.37842 8.37842

Imposed Conditions

10<1, <150 , 10<1,<150 , 10</ <150 , 10<1, <150 , 10<I, <150

—-20< 55— sy <20 , —-20 <55 =5y <20 , -04<6'-6°<04

-04<6°-6°<04 , -04<6-6<04 -04<6'-6"'<04

-04=<6,-6' <04 , -04<6-6'<04 , n/2<y=<5n/6
Outputs

I, =43.7904 , 1, =10.02003 , [, =55.50913 , [, =11.58281 , [ =75.16235

6 =1.86537 , 6 =1.46546 , G>=2.1773 , s!=4.627 , s.=-0.11931

s2=-1021372 , 6 =1.19713 , 6. =1.50914 , 67 =0.79963 , &° =1.06688

6 =1.29441 , 67 =0.86831 , x=0.63504 , y=130835 , z=-1.02597

¢=136086 , ¢=0.75934 , «w=-1.55676 , 6=0.27067 , &' =0.12176

B=-0.40544 , y=2.61799 , a=-6.66059 , H=13.39069 , a' =-11.37168
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b'=-223.35849, ¢' =-233.77873 , 6° =0.90257, 6. =-1.17766 , 6> =0.25739

6 =-0.76975 , 6:=0.80603 , 62=09435 , 6°=-0.95437 , 6. =1.35643

8; =0.5064
-0.16055 10.18057 51.04917
VW =1-414199| , W@ =| 414199 | , ¥ =|-30.09171
2.70903 -2.70903 84.71729

Figures (5.6) to (5.8) show that the rigid body is guided through the

prescribed positions continuously .

130

120 1

110 ]

100 1

output (degree)

30 | | | | | | | |
—12 —10 -8 —6 —4 -2 0 2 4 6

input (cm)

Figure (5.6) : The variations of /(s) (6, (s)) versus s . The circles illustrate the s and

{/(s) at which the rigid body attached to the floating link lies in the prescribed positions.
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input (cm)

Figure (5.7) : The variations of Q(s) (6,(s)) versus s . The circles illustrate the s and

Q(s) at which the rigid body attached to the floating link lies in the prescribed positions
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70 [~ -
65 .
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o
(o))
(]
2 e[ 7
=
g
>
o
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45 | | | | | | | |
—12 -10 -8 ) —4 -2 0 2 4 6
input (cm)

Figure (5.8) : The variations of ®(s) (6;(s)) versus s . The circles illustrate the s and ®P(s)

at which therigid body attached to the floating link lies in the prescribed positions
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CHAPTER SIX
SOME REMARKS ON THE COMPUTER

PROGRAMS

6.1) GENERAL

In this thesis all nonlinear equations resulted from the synthesis
procedures were solved by Mathcad’s Find command . The auto-select
feature of Mathcad automatically determines the kind of problem which is
aimed to be solved and tries various appropriate solution algorithms to find
a valid solution .The Conjugate Gradient, Quasi-Newton and Levenberg-
Marguaret are three methods which are used by Mathcad for solving
nonlinear equations. The accuracy of the results can be adjusted by changing
the convergence tolerance of the program. The convergence tolerance of the
programs used in this thesis was chosen to be 0.001. It was observed that
with this convergence tolerance, the closed loop equations were satisfied
with errors less than 0.01. Considering that in all programs the dimensions
are in centimeters , one will vrify that a 0.01 cm error is an acceptable error.
Note that a smaller convergence tolerance will considerably increase the

running time of the programs.

The major difficulties which arised while solving numerical synthesis

problems , can be classified as follows,
a) No solution case.

b) Case of unreasonable link lengths.

c) Branching case.
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6.2) NO SOLUTION CASE

It is well known that in numerical methods ,the matter of finding a
solution for a system of nonlinear equations highly depends on the selected
initial values. The more the number of equations is the more difficult it
would be to find a solution. Besides note that in the cases where no free
parameter exists the existence of a solution can not be guarantied
However, leaving some free parameters -if there are any- to the computer
and allowing the computer to select values for the free parameters, will

increase the probabality of finding a solution.

As seen from table (3.2) no free parameter exists in the solution procedure
of Example (3.1). That is why it was very difficult and time consuming to
find a solution for this problem and the only thing the author could do was
changing the initial values. However in other examples it was not that
difficult to find a solution because some free parameters were present, and
allowing the computer to select the values of these free parameters made it

easy for the computer to find a solution.

Now one may ask “ Is it reasonable to let the computer choose values for
all free parameters while some of them may be needed to meet design
conditions or for other reasons?” The answer is that, the program can be
forced to meet our conditions by imposing constraints to the solution block
of the computer program. For example by adding inequalities to the program
it can be forced to find the link lengths in a suitable range or determine the

input angles can be determined in a prescribed order.
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6.3) CASE OF UNREASONABLE LINK LENGTHS

In many cases it was observed that the link lengths found by the program
were not reasonable . For example, sometimes the lengths of links were
determined as negative values or in some cases the length of a link was equal
or very close to zero or the values of link lengths were too big. In order to
resolve this problem some inequalities were imposed to the programs . For
example the following inequalities were added to the solution block of the

program which was written for Example (3.2),

10<17 <120 , 20<[,<120 , L= , L=

Without the above inequalities , with the same initial values and with the
same inputs the link lengths in Example (3.2) had been determined as
follows,

1, =2470.18 , 1,=504.12453 , [, =-173.6554

Note that adding inequalities to the program may result in no solution
case. In such cases either the initial values or the inequalities should be

modified.
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6.4) BRANCHING CASE

As presented at the end of all numerical synthesis examples, the input
angle-output angle curves of the synthesized mechanisms illustrate if the
obtained dimensions result in branchings or not. According to the
experience of the author, in most of the cases the determined link lengths and
angles result in branchings. The following diagrams illustrate the branchings

which took place in some of the numerical examples solved in this thesis.

A BRANCHING CASE OF EXAMPLE (3.1) :

Initial Values

No condition was imposed

Outputs
[, =108.45268 , [,=117.92025 , [,=49.49181 , [, =118.81177
[, =42.20453 , 6’ =-2.39481 , 6 =-172046 6’ =6.29182
=0 , 6=904164 , O=1.46564 , & =235073 , 6 =5.02261

117



6> =328258 , 6°=-213781 ,  6.=9.02332 , 6>=2.15583

111.26244 6.6578
VW =|-41.67377| , WW =] 41.67363
0.45227 -0.45217
350 T T T T T T T
[
300 , —
J
250 - e _
3 ~
;ED 200 l/ —
E \
g 150 AN — —
3 — —
“\
100 \ _
|
50— =
0 | | | | | | |
100 150 200 250 300 350 400 450 500

input angle (degree)

Figure (6.1) : The input angle- output angle diagram of the RSHR mechanism synthesized
according to the inputs given in Example (3.1) and initial values presented on the last page.
The circles illustrate the input and output angles at which the path tracer point passes

through the precision points.

A BRANCHING CASE OF EXAMPLE (3.2) :

Initial Values

The same as presented in Example (3.2)
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Imposed Conditions

10<17, <120 , 20=<1, <120 , L~1 , L, =1

-0.7<6,-6) <0.7 , -0.7<6 -6 <0.7 , -07<6 -6 <07

-0.7<6' -8 <0.7

Outputs
1, =21.79941 , [,=5533151 , 1,=5533139 , 6"=2.03393
6 =7.86249 ,  G*=475337 .,  6°=246689 , 6 =6.66991
6’ =-033098 , 6=-6.08571 , 6=48283 , 6 =6.86444
6! =-0.81489 , @’ =514063 , 6 =51159 ., 6> =23.4037
6’ =5.15857 , 6! =5.00675 6’ =155803 , 6 =1.3082
6> =2.25401 ,  6=0.85804 ,  6'=225803 : x=4.189
102.74421 -47.4127
y=17.354 , z=6.759 , VW=| 7.52747 , WW=|-752747
78.1695 -78.1695
98.69214
7=| 5.7064
42.98439
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Figure (6.2) : The input angle- output angle diagram of the RSHR mechanism synthesized

according to the inputs given in Example (3.2) and initial values presented on the last page.

The circles illustrate the input and output angles at which the path tracer point passes

through the precision points.

A BRANCHING CASE OF EXAMPLE (3.3) :

Initial Values

6’ =5m/6

The rest of the initial values are the same as presented in Example (3.3)
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Imposed Conditions

10<17, <120 , 20=<1, <120 , L~1 , L, =1

-05<6,-6) <05 -05<6;-6) <05 , -05<6 -6<05

0<6'<6 <6 <8 <2m

Outputs

=0 , 6=134653 , 6°=235198 , & =33745 , 6°=1.9064

6 =2.52747 , 62=533945 , 6)=484228 , ' =2.98133 , 6 =1.86137

6> =479906 , 6°=1949 , 6°=155958 , 6. =135241 , 67 =2.05462

59.43716
6:=2.05958 , x=-2776 , y=8.149 , z=-0.14 , V¥ =| -6.46413
-10.14035

21.0334 2.86529
W®=| 6.46413 , 7 =|-46.58887
10.14035 9.67999
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Figure (6.3) : The input angle- output angle diagram of the RSHR mechanism synthesized
according to the inputs given in Example (3.3) and initial values presented on the last page.
The circles illustrate the input and output angles at which the path tracer point passes

through the precision points.

The problem of branching can be resolved by forcing the program to
choose input or output angles- at which the path tracer point passes through
the precision points -close to one another. This is done by adding inequalities
in terms of input or output angles to the program. In the cases where free
parameters are present the program can be forced to choose free parameters
according to the inequalities which result in close input or output angles. For
example from figure (6.1) and (6.2) it is observed that choosing output
angles closer to each other may make all circles lie on a single branch. Thus
decreasing the neighborhood of the output angles as presented in Examples
(31) and (3.2) branching was avoided. However decreasing the
neighborhood of output or input angles may lead to no solution case. In such

cases the initial values should be modified.
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6.5) TECHNIQUES USED IN COMPUTER PROGRAMS

The general algorithm used in computer programs of the numerical

examples is as follows,

Initial values are chosen.

Moditfy initial Is a solution Are link lengths
No 3 Yes || Ly Yes
values. found ? suitable?
v
No
Impose
Modify initial |, No Is a solution inequalities to
values. found ? limit the link
l lengths.
Yes
Yes 1
Impose inequalities
to decrease the

Is branching

Is a solution neighborhood of 3 No Roasin
found? input or output
,l, angles or modify the
No initial values. Yes
Modify initial Brd

values,
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The algorithm used for Example (3.3) which requires a prescribed order for

the precision points is as follows,

Initial values are chosen.

Y

Modify initial - Is a solution Are link lengths
& 0 | Yes Yes
values. 3 found ? B i suitable? )
[
No
| Impose
Modify initial |, No [, Is a solution inequalities to
LY
values. found ? limit the link
l lengths.
Yes
. - e ’
Modify initial 5 | ool on Impose inequalities
values. fourd ? to satisfy the
l prescribed order.
Yes
¥
15 [mpose inequalities
1 to decrease the
Is a solution X No Is branching
neighborhood of
found? : avoided?
; input or output
No angles or modify the
¥ initial values. Yes
Modify initial
values.
End
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The algorithm used for Example (5.2) is different. Since the number of
equations in Example (5.2) was more than other examples it was more
difficult to find suitable initial values for this example. In order to determine
proper initial values for the program, at the first step the equations were
solved by Minerr command. The difference between Minerr and Find is that
in the case of Find command, if the precision of the determined values is
below the prescribed accuracy limit, the program will state that “No solution
was found” . While in the case of Minerr command a solution will be found
any way, however the error of the results may be great. In other words
Minerr finds the results with the minimum error but this minimum error
may still be unacceptable. After solving the equations by Minerr command
the results were used as initial values and the equations were resolved by
Find according to the new initial values. Then the same algorithm which was

presented on page 123 was applied .
At the end of each program, the determined values were substituted into

the equations to verify the accuracy of solutions. It was observed that all

equations were satisfied with an error ratio less than 0.01.
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CHAPTER SEVEN
CONCLUSION

Considering the general loop closure equations which were obtained
based on Denavit-Hartenberg’s convention and the algebra of exponential
rotation matrices , it can be deduced that these loop closure equations and
the path and motion generation synthesis methods presented in the thesis are
sufficiently general so that they can be applied to the synthesis of any spatial
linkage with lower kinematic pairs. Besides, regarding the presented
examples which include path and motion generation synthesis of three
different types of spatial mechanisms based on the synthesis methods

presented in the thesis , one will verify the applicability of these methods.

Since the general loop closure equations obtained in chapter 3 ,have been
written based on a systematic convention (Denavit-Hartenberg’s convention)
, the presented synthesis methods can be easily used in computer programs.
While solving synthesis examples presented in the thesis the properties of
the algebra of exponential rotation matrices have been used to simplify the
loop closure equations as much as possible. These properties facilitated the
simplification procedures and made it easy to work with matrix equations. In
other words the algebra of exponential rotation matrices which was used to
develope the kinematic synthesis methods presented in the thesis , enables

the designer to efficiently simplify the loop closure equations.
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Although the kinematic synthesis methods described in the present study
are considerably general methods and cover all spatial mechanisms with
lower kinematic pairs, still they can not be applied to the spatial mechanisms
with higher kinematic pairs such as mechanisms including gears , cam and
followers and etc. More work is required to modify the loop closure
equations and the synthesis methods so that they can be applied to all types
of spatial mechanisms including those which consist of higher kinematic

pairs.

Although the algebra of exponential rotation matrices which is an efficient
and elegant mathematical tool for simplifying matrix equations resulted from
the kinematic analysis and synthesis, has been used in the analysis of robot
manipulators (ref.1,2,3,4,6) very little work exists on the application of this
algebra to analysis or synthesis of spatial mechanisms. Applying this
valuable algebra to more analysis and synthesis problems of spatial
mechanisms , other mechanism designers can be encouraged to use this

productive algebra.
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