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abstract

LIFTING FIBRATIONS ON ALGEBRAIC SURFACES

TO CHARACTERISTIC ZERO

Kaya, Celalettin

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Hurşit ÖNSİPER

January 2005, 21 pages

In this thesis, we study the problem of lifting fibrations on surfaces in char-

acteristic p, to characteristic zero. We restrict ourselves mainly to the case of

natural fibrations on surfaces with Kodaira dimension -1 or 0. We determine

whether such a fibration lifts to characteristic zero. Then, we try to find the

smallest ring over which a lifting is possible. Finally, in some favourable cases,

we compare the moduli of liftings of the fibration to the moduli of liftings of the

surface under consideration.

Keywords: Liftings, Fibrations.
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öz

CEBİRSEL YÜZEYLER ÜZERİNDEKİ LİFLENMELERİ

KARAKTERİSTİK SIFIRA KALDIRMA

Kaya, Celalettin

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Hurşit ÖNSİPER

Ocak 2005, 21 sayfa

Bu tezde, karakteristiği sıfırdan büyük olan cisimler üzerindeki yüzeylerde bu-

lunan liflenmelerin kaldırılması problemi incelenmiştir. Genelde, Kodaira boyutu

-1 veya 0 olan yüzeyler üzerindeki doğal liflenmeler çalışılmıştır. Öncelikle, böyle

bir liflenmenin karakteristik sıfıra kaldırılıp kaldırılamayacağı tespit edilmiş, ceva-

bın olumlu olduğu durumlarda, bu kaldırmanın mümkün olduğu en küçük halka

bulunmaya çalışmıştır. Ayrıca bu kaldırmaların moduli uzayı, ele alınan yüzeyin

moduli uzayı ile karşlaştırılmıştır.

Anahtar Kelimeler: Kaldırmalar, Lif uzayları.
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chapter 1

basic concepts

The idea of lifting objects to characteristic zero is one of the main themes of

the interplay between characteristic zero and characteristic p geometries. It is

the counterpart of the more accessible technique of “reduction mod p” and in its

most general form the theory is concerned with the following questions.

• Given an object or a structure in characteristic p, can one find an ob-

ject/structure of the same type over a discrete valuation ring of mixed char-

acteristic such that the special fiber is the initially given object/structure?

In case one has an affirmative answer to this question, we ask

• What is the “smallest” (a term to be clarified in the sequel) base scheme

over which a lifting exists ?

• What is the moduli of the liftings ?

Clearly, these problems fit into the general framework of deformation theory

in algebraic geometry and the relevant results are indispensable for instance, in

the moduli problems over Spec(Z). To deal with the lifting problems, one needs

more sophisticated techniques than those used in equicharacteristic deformation

theory. This sophistication, on the other hand, pays off in the form of a series of

astonishing results some of which justify the following rather vague statements :
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1) A result is true in characteristic zero, if and only if it holds in characteristic

p, for almost all p.

2) If a variety lifts to characteristic zero, then it does not have pathological

behavior as regards the properties which are deformation invariant.

Before we describe the problem we are concerned with in this thesis, we fix

our notation and then we recall some of the most outstanding applications of

liftings to characteristic zero.

• k is a field (algebraically closed unless otherwise stated) of characteristic

p > 0.

• R is a complete discrete valuation ring (dvr) of characteristic zero with

residue field k.

• W (k) is the ring of Witt vectors over k and Wn(k) = W (k)/mn is the ring

of Witt vectors of length n.

• X is a projective smooth minimal surface over k.

• c1, c2 denote the first and the second Chern classes, χet is the etale Euler

characteristic and χzar is the Zariski Euler characteristic.

• Π1(Y ) denotes the algebraic fundamental group of Y .

• A lifting of X means a projective smooth scheme X over S = Spec(R) with

special fiber X ×S Spec(k) ∼= X.

Now we can recall some well known applications of the theory of liftings. The

first and arguably the most outstanding result is the following theorem due to

Deligne-Illusie ([7]).
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Theorem. If X lifts to W2(k), then the deRham-Witt spectral sequence for X

degenerates.

In particular, we obtain the following result.

Corollary. If X lifts to W2(k) and if H2

cry(X/W ) is torsion free, then X has

Hodge symmetry, that is hp,q = hq,p for all pairs (p, q).

As will be explained in Chapter III of this thesis, this theorem depends on

the “size” of the base ring over which a lifting exists. One has counterexamples

due to W. Lang in case X lifts to characteristic zero only after some ramification

(that is, not over W (k) but over a dvr which is an extension of W (k)).

Another important application is the work by Ekedahl ([9]) on foliations in

characteristic p. The asymptotic result thus obtained about the Bogomolov in-

equality is particularly interesting.

After these general remarks and propaganda we now describe the problem we

are interested in this thesis.

We consider a separable, connected fibration π : X → C over a smooth

projective surface X in characteristic p and as our first question, we ask if π lifts

to characteristic zero. More precisely, we look for a discrete valuation ring R of

mixed characteristic, a smooth projective surface X and a smooth curve C over

R which give the following commutative diagram.

X → X

↓ ↓

C → C

↓ ↓

Spec(k) → Spec(R)
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More generally, we will allow “weak liftings”, that is liftings over integral

domains R of characteristic zero which admit surjective homomorphisms R → k.

Then we want to determine the moduli of such liftings (over a fixed base ring

R) and in particular, we compare the moduli of liftings of π to the moduli of

liftings of the surface X (after forgetting the fibration).

Clearly, the problem makes sense only if X lifts as a surface. Then since there

is no obstruction to lifting the base curve C, the problem becomes a special case of

the general problem of lifting morphisms to characteristic zero. To treat problems

of this type, at least in the case of smooth morphisms, there is the classical theory

(initiated by Grothendieck in [10]) which combines the obstruction theory (in the

cohomology of the relative cotangent complex) to the existence of infinitesimal

deformations and the technique of algebraization of formal liftings. The basic

results of this theory will be quoted at the end of this chapter. In this thesis, we

restrict ourselves mainly to the case of natural fibrations on surfaces with Kodaira

dimension κ = −1, 0. Lifting problems related to such fibrations are amenable

to straightforward applications of the method described or to elementary and

explicit constructions. For general fibrations one incorporates more sophisticated

techniques including the recent progress on foliations in characteristic p.

First, we include some basic facts about Henselian rings, which we will refer

to in the following chapters. An excellent concise reference for this topic is ([13],

pp. 35–39).

1) Any complete discrete valuation ring is Henselian.

2) If R is a Henselian ring with residue field k, then we have:

• For smooth maps X → S = Spec(R), the specialization map

X (S) → X (Spec(k)) is surjective.
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• For X → S proper, the map Et(X ) → Et(X), Y 7→ Y ×S Spec(k) induces

a bijection between the sets of etale covers.

Finally, we recall some elementary results from infinitesimal deformation the-

ory as developed in ([10], Exp.182).

Let X be a smooth projective scheme over an (algebraically closed) field k

and let R be complete discrete valuation ring with residue field k.

Fact 1. If H2(X, ΘX) = 0 = H2(X,OX) (here ΘX is the tangent sheaf of X),

then there exists a projective flat R-scheme X such that X ×R Spec(k) ∼= X.

([10], Exp.182, Cor.3 on p.14).

Fact 2. If furthermore H1(X, ΘX) = 0, then the R-scheme X is unique up to

isomorphism which is identity on the closed fiber. (Loc. cit. Cor.1 on p.14).

Fact 3. Suppose X lifts to X over Spec(R) and let E be a locally free sheaf on

X. We have:

(i) If H2(X,End(E)) = 0, then E lifts to a locally free sheaf on X

(ii) If furthermore H1(X,End(E)) = 0, then this lifting is unique.

(Loc. cit. Prop.3 and Thm.1 on p.11).

Fact 4. Given a smooth morphism f : X → Y between smooth schemes over

k. The obstruction to lifting f vanishes if H2(X, ΘX/Y ) = 0. (ΘX/Y denotes the

relative cotangent sheaf of X/Y).

Remark 1. From Fact 1, it follows that any smooth proper curve C over Spec(k)

lifts to a smooth projective R-curve C.

Remark 2. Any locally free sheaf E on a smooth proper curve C/k, lifts to a

locally free sheaf on C.
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chapter 2

elementary observations

In this chapter we will work out some elementary results which follow more

or less directly from the general results of relative algebraic geometry and from

the theory of algebraic surfaces.

We first observe that if X is a lifting of X, then the generic fiber Xη has the

same Kodaira dimension as X and Xη is minimal if X is. This is a consequence

of specialization in intersection theory ([11]).

Lemma 1. If a surface X lifts to characteristic zero, then the Bogomolov in-

equality holds for X.

Proof. Let X → S be a lifting. Then, since the map X → S is proper, the Zariski

Euler characteristic χzar and the etale characteristic χet of the fibers are fixed

([13]). Therefore, since 12χzar = c2

1
+c2, χet = c2 and since Bogomolov’s inequality

holds for all surfaces in characteristic zero, we obtain c2

1
(X) = 12χzar(X) −

c2(X) = 12χzar(Xη) − c2(Xη) = [c2

1
(Xη) + c2(Xη)] − c2(Xη) = c2

1
(Xη) ≤ 3c2(Xη) =

c2(X) 2

It follows from this lemma that there are surfaces of general type admitting

smooth nonisotrivial fibrations, which do not lift even as surfaces. For instance,

one may take the smooth fibrations X → C constructed by Szpiro in ([18]) for

which c2

1
(X) > 3c2(X). There are similar examples with fiber genus 2, con-

structed by Parshin in ([16]).
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Another obstruction to lifting fibrations comes from the comparison of the

contributions of singular fibers to c2. We recall that if π : X → C is a (connected)

fibration, then in etale cohomology we have the following formula

χet(X, l) = χet(C, l).χet(F , l) + t

which relates the etale Euler characteristics of X,C and of the geometric generic

fiber F . ([13], Remark 2.15(c) on p.192). Here t is the contributions of the

singular fibers.

It is well known that

(i) in characteristic zero,

t =
∑

p∈C

[χ(Fp, l) − χ(F, l)] (1)

(ii) in characteristic p > 0,

t =
∑

p∈C

[χ(Fp, l) − χ(F, l) −
2∑

n=0

(−1)nαp(Fn)] (2)

In (ii), Fn = Rnπ∗Fl and αp is the associated (exponent of) the wild conductor

at p ∈ C, defined in ([13], p.188).

If the fibration lifts, then clearly, the base genus (resp. the fiber genus) of

the fibrations on Xη and on X are equal. Therefore, since c2 is fixed, if the

given fibration is generically smooth then we see that the contributions t of the

singular fibers on X and on Xη are equal, too. Recalling that a singular fiber of

X → C does not lift to a smooth fiber on Xη ([18]) and by comparing (1) and (2)

we obtain a restriction on the Milnor numbers of singular fibers on X (compare

with the formula in [8]). This observation, however, is hard to apply in practical

situations because of the difficulty of calculating the wild conductors.
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On the positive side, for some special fibrations one has the following result

for the existence of liftings.

Lemma 2. Let X be a lifting of X over a complete discrete valuation ring and

assume that the fibration π : X → C is either

a) the albanese fibration X → AlbX , or

b) the n-th canonical fibration.

Then π lifts to a fibration X → C.

Proof.

a) We consider the dual of the reduced component of the Picard scheme PicX/S

containing the identity. Under the given hypothesis this is an abelian scheme and

is the relative albanese scheme AlbX/S of X /S. As the base scheme is Henselian,

the point in X(k) used in defining the albanese map of the special fiber, lifts to

a section in X (S) (Chapter I). Thus the relative albanese map X → AlbX/S is

defined over S and gives the required curve C.

b) If the given fibration corresponds to the n-th canonical map, then clearly

the image of the map X → P(πS∗(w
⊗n
X/S)) is a curve C; the result follows. 2

Lemma 2(b) applies in particular to surfaces with Kodaira dimension κ =

1, because elliptic fibrations on surfaces with κ = 1 arise from n-th canonical

mappings ([14]). Details of the lifting problem concerning these surfaces will not

be covered in this thesis.

Lemma 2(a) applies to ruled surfaces and hyperelliptic surfaces; because for a

ruled surface X → C, the albanese map is simply given by X → JC which factors

through X → C because on an abelian variety there exists no curve of genus zero.

On the other hand it is classical that, for a hyperelliptic surface X, we have two

9



elliptic fibrations on X, one of which is the albanese fibering. However, a ruled

surface lifts over any complete discrete valuation ring (see Chapter III) whereas

this is not the case for hyperelliptic surfaces. In fact W. Lang ([12]) constructed

hyperelliptic surfaces in characteristic p = 2, 3 which lift only after ramification

(of degree 2) is allowed. This example was already mentioned in Chapter I and

is related to lifting actions of groups whose order is divisible by the characteristic

(see Chapter III).

To state and prove our final result in this chapter we recall the well-known

result in characteristic zero to the effect that a surface admits a fibration over a

curve of genus g ≥ g0 ≥ 2 if and only if its topological fundamental group maps

onto the fundamental group of a curve of genus g0. This in particular implies that

any deformation of such a surface also admits a fibration with base genus g ≥ 2.

In the proof of the following analogous result one uses the algebraic fundamental

group instead of the topological fundamental group.

Lemma 3. Let π : X → C be a fibration with g(C) ≥ 2 and suppose that X /S

lifts X. Then the geometric generic fiber X η admits a fibration over a curve of

genus g ≥ g(C).

Proof. Fixing a point x ∈ X(k) and its image c ∈ C, we have the sequence

of algebraic fundamental groups Π1(X, x) → Π1(C, c) → 0 and the specializa-

tion map Π1(Xη, xη) → Π1(X, x) → 0 which give a surjective homomorphism

Π1(Xη, xη) → Π1(C, c) → 0. Then one checks that the proof of (Theorem in [2])

goes through with topological fundamental groups replaced by algebraic funda-

mental groups. 2

10



Remark 1. One can give an alternative proof for Lemma 3 in case the lifting

is over a complete discrete valuation ring. The essential step in the proof of

(Theorem in [2]) is the construction of enough number of cyclic coverings of

some fixed degree of Xη. For this, we consider cyclic covers C ′ → C of prime

degree n 6= char(k). Each such cover gives, by base extension, a cylic cover of

degree n, X ′ → X of the special fiber of X /S. As the base scheme of the lifting

is Henselian, this cover lifts to an etale cover X ′ → X (Chapter I) which when

restricted to Xη gives a cover of the required type.

Remark 2. Clearly, the result in Lemma 3 provides an affirmative answer to the

main question for fibrations satisfying some additional restrictions (for instance,

if the fibration on the generic fiber is defined over the quotient field of R and has

good reduction and if the fibration on X is unique modulo the automorphisms of

π).

Remark 3. The restriction on the genus of the base curve is essential; one can

construct simple abelian surfaces in characteristic zero with non-simple reductions

mod p (see Chapter III).

11



chapter 3

the case of surfaces with

κ = −1, 0

In this chapter we will exploit the classification of surfaces in characteristic p

as worked out by Mumford and Bombieri ([3],[14]). We will start with geomet-

rically ruled surfaces and then take up surfaces with Kodaira dimension κ = 0

where the first examples indicating the subtlety of the problems related to lifting

appear. In the κ = 0 case, rather than repeating the proofs of well-known results,

we will refer to the relevant article in the literature.

κ = −1 Case :

The following lemma answers completely the existence and moduli questions

concerning the lifting of ruled surfaces.

Lemma 4. Let π : X = P(E) → C be a ruled surface over a smooth projective

curve C and let R be a complete discrete valuation ring with residue field k. Then

a) π lifts to a P
1-bundle over a curve C/S.

b) Any lifting X of X over S = Spec(R), is a P
1-bundle over a suitable lifting

C of C.

Proof.

12



a) We know that any smooth curve over k lifts to R (Chapter I, Remark 1).

Moreover, since H2(C,End(E)) = 0, there is no obstruction to lifting E to a rank

two locally free sheaf E on C (Chapter I, Remark 2). We take X = P(E).

b) This is a restatement of the remark following Lemma 2 in Chapter II. 2

κ = 0 Case :

Hyperelliptic Surfaces :

We know that X = (E1 ×E2)/G for a group G of automorphisms whose type

and action on E1 and E2 were worked out in ([3]). Since there is no ramification

in the action of G on E1, the pair (E1, G) lifts over W (k) ([17]). The second

pair (E2, G) lifts over W (k) if there is no wild ramification in the action of G

on E2 ([17]). If this is the case, then the fibrations X → Ei/G, i=1,2 clearly

lift over W (k) to give X = (E1 ×S E2)/G → Ei/G. In fact, since X → E1/G is

the albanese fibration, this fibration lifts automatically (remark after Lemma 2

in Chapter II).

W. Lang’s example ([12]) is a hyperelliptic surface in characteristic p = 2

and with G ∼= Z2 which acts on the second component with wild ramification.

Lang proves that X does not lift over W (k), but lifts over an extension of degree

2 of W (k). Thus, for lifting the fibrations in this example we obtain the same

conclusion as in the preceding paragraph, only after we allow ramification of

degree 2 (minimum possible !). In fact, this example is a special case of a general

result ([17]) which shows that if σ ∈ Aut(Y ), where Y is a smooth complete

curve, then the pair (Y, σ) lifts to W [ζp] if p2 does not divide |σ|.

We note that Lang shows also that ([12], Theorem 1) bDR
1

(X) 6= h1,0 +h0,1 for

this surface and thus proves that the hypothesis of the theorem of Deligne-Illusie

13



quoted in Chapter I is optimal.

Quasi-hyperelliptic Surfaces :

This case occurs in characteristic 2 and 3 ([3]).

These surfaces are of the form X = (E1 × C0)/G, where C0 is a cusp-

idal curve, G is a finite subgroup scheme of E1 and the action is given by

g.(u, v) = (u+ g, α(g)v) for some injective homomorphism α : G → Aut(C0). We

have two fibrations X → C0/α(G) ∼= P
1 and X → E1/G ∼= E where E = Alb(X).

It follows that, if the surface lifts then the second fibration (the albanese fibra-

tion) also lifts.

Abelian Surfaces :

It is well known that any abelian surface lifts in the weak sense ([15]). However

fibrations on abelian surfaces need not lift; we give an example constructed using

the relative jacobian of a suitable curve of genus 2.

Example. Consider the affine “plane” curve C given by

y2 = x(x − 1)(x − 2)(x − 5)(x − 6) over S = Spec(W (F7)).

The complete nonsingular model is a curve of genus 2. We take the jacobian

scheme JC/S. The generic fiber is a geometrically simple abelian surface (cf. [4],

p. 159), but the special fiber is the jacobian of the curve birational to the plane

curve

y2 = x(x − 1)(x − 2)(x + 2)(x + 1) (since 6 ≡ −1, 5 ≡ −2 (mod 7))

which admits an elliptic fibration ([4], Thm. 14.1.1(iii)) over an elliptic curve E.

14



This result, clearly is in conformity with the obstruction theory for liftings.

The obstruction to infinitesimal lifting of the fibration is in the cohomology group

H2(J, ΘJ/E)⊗π∗(I) (Chapter I, notes on infinitesimal deformation theory) where

J is the special fiber of JC/S and ΘJ/E is the relative tangent bundle. Since

ΘJ/E
∼= OJ we have H2(J, ΘJ/E) = F7. Therefore, it is not surprising to find out

that the obstruction does not vanish.

K3 Surfaces :

We know ([6]) that any K3 surface lifts. It is also known that this lifting is

in the strong sense if X is not nonelliptic superspecial (conjecturally, such K3

surfaces do not exist !) and that if p > 2, then any K3 surface lifts over W (k)[
√

p].

Lemma 5. A generically smooth fibration on a K3 surface X is necessarily

elliptic with base P
1.

Proof. Since H0(X, ΩX) = 0 in all characteristics, the base is P
1. If F is the

generic fiber, then 2g(F ) − 2 = F.(KX + F ) = 0 since KX = 0. Thus F is an

elliptic curve. 2

Then our problem is to see if an elliptic fibration on a K3 surface lifts. In

some special cases (suitable Kummer surfaces) this problem is related to lift-

ing/reduction of Shioda-Inose structures. We have certain finite groups giving

rise to generalized Kummer surfaces which appear only in characteristic p > 0. It

seems interesting to study the lifting problem relevant to fibrations and Shioda-

Inose structures arising from these special groups.

The example we will treat is the fibration on a K3 surface which covers an

Enriques surface; these we will discuss in the following paragraph.
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Enriques Surfaces :

These surfaces admit elliptic fibrations X → P
1, which may be quasi-elliptic

in characteristic 2 and 3 ([3]).

We have the following results as regards the lifting of Enriques surfaces.

1) An Enriques surface X lifts to characteristic zero, if p 6= 2 or if (i) X is a

µ2-surface, (ii) classical with a regular 1-form with only isolated singularities ([5],

Corollary 1.4.1, p. 93).

2) If X is of α2-type, then bDR
1

(X) 6= h1,0 + h0,1, hence X does not lift even

to W2(k). (For the relevant terminology, see [3], [5]).

Question :

Does an Enriques surface of α2-type lift after some ramification ?

Example. We consider an Enriques surface X of classical type over a field k

with char(k) 6= 2 ([3], Part III). Let Y be the degree 2 etale covering of X, and

consider the situation

Y
ϕ→ X

↓ π

P
1

where ϕ is the “universal covering map”.

Claim: πoϕ is not connected.

Proof: If πoϕ is connected, then we obtain an elliptic fibration πoϕ : Y → P
1

on the K3 surface Y , with precisely two double fibers, say over p1 and p2. Then

by the canonical bundle formula for elliptic fibrations, we get wY = (πoϕ)∗(L)⊗

OY (F
′

1
+F

′

2
) where L is a line bundle on P

1 of degree, deg(L) = χ(OY )−χ(OP1) =

0, since χ(OX) = 2. Therefore, wY
∼= OY (F

′

1
+ F

′

2
) 6= OY ; contradiction since

KY = 0. 2
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Therefore, we need “Stein factorization” obtained from the double cover P
1 →

P
1, to get a connected fibration Y → P

1 (cf. [1], p.274, Remarks). (We note that

this covering P
1 → P

1 corresponds to the line bundle O(p1 +p2) ∼= O(1)⊗2 on P1).

Now, let X be a lifting of X over a Henselian ring (for instance W (k)). We

first verify that the fibration π : X → P
1 lifts to a fibration on X . For this,

we construct P(E) over S for a suitable rank 2 locally free sheaf and the map

X → P(E) lifting π.

Construction: The map X → P
1 corresponds to the linear system deter-

mined by the line bundle L = π∗(OP1(1)) ∼= O(2F
′

i ) where 2F
′

i is one of the

double fibers of π lying over p1, p2 ∈ P
1. Since End(L) ∼= OX , H2(X,End(L)) ∼=

H2(X,OX) = 0 and H1(X,End(L)) ∼= H1(X,OX) = 0, because X is an Enriques

surface. Therefore by (Fact 3, Chapter I) L lifts to a unique line bundle L on

X . Taking E = ϕ∗(L) we obtain X → P(E) (corresponding to the natural map

ϕ∗(ϕ∗(L)) → L → 0) which lifts π : X → P
1.

One checks that the induced fibration on the generic fiber Xη is connected

and has precisely two double fibers; in fact these double fibers lie over the generic

points of the sections si : S → P(E) which lift the points p1, p2 ∈ P
1(k) in the

special fiber (Henselian base!). 2

The degree 2 etale covering Y of X is a K3 surface and since the base scheme

is Henselian the covering map Y → X lifts to give Y → X . The composite map

Y → X → P(E) induces an elliptic fibration which we proved is not connected.

The “Stein factorization” Y → P(E) obtained from the double cover P(E) → P(E)

which ramifies precisely over s1 ∪ s2, lifts the elliptic fibration on the K3 surface

Y . This is the example referred to in the preceding paragraph.
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Finally, we state some problems which are inspired by and generalize the

questions considered in this thesis.

1) Find good criteria for lifting (algebraic) group actions. This problem is

related to class field theory as applied in ([17]) with considerable success in case

of curves. The most interesting cases are those in which one encounters infitesimal

groups and groups with order divisible by the characteristic.

2) Find criteria for lifting varieties with given covers. This problem, in the

case of Galois covers is related to the preceding problem.

3) Study the relation of uniformization with lifting problems. In relation to

this approach of constructing fibrations, to develop the characteristic p coun-

terpart of L2-cohomology techniques of Gromov seems to be a very interesting

problem. This approach is clearly also related to rigidity theory which proved to

be extremely effective in studying deformations of fibered surfaces in character-

istic zero.

4) Apply the full power of the theory of foliations in characteristic p, as de-

veloped by Ekedahl ([9]), to the problem of lifting fibrations.

18
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