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ABSTRACT

CONFORMAL VECTOR FIELDS WITH RESPECT TO
THE SASAKI METRIC

Simsir, Fatma Muazzez
Ph.D., Department of Mathematics
Supervisor: Prof. Dr. Cem TEZER

January 2005, 37 pages

On the tangent bundle of a Riemannian manifold the most natural choice of metric
tensor field is the Sasaki metric. This immediately brings up the question of infinites-
imal symmetries associated with the inherent geometry of the tangent bundle arising
from the Sasaki metric. The elucidation of the form and the classification of the
Killing vector fields have already been effected by the Japanese school of Riemannian
geometry in the sixties. In this thesis we shall take up the conformal vector fields of

the Sasaki metric with the help of relatively advanced techniques.

Keywords: Sasaki metric tensor, Tangent Bundle, Killing vector fields, Conformal

vector fields, Lifts of tensor fields.
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Oz

SASAKI METRIGINE GORE KONFORM VEKTOR
ALANLARI

Simgir, Fatma Muazzez
Doktora, Matematik Boliimii

Tez Yoneticisi: Prof. Dr. Cem TEZER

Ocak 2005, 37 sayfa

Bir Riemann manifolduna ait teget demeti lizerinde metrik tansor olarak en tabii
olan1 Sasaki metrigidir. Bu hal hemen teget demeti iizerinde Sasaki metrigi vasitasiyla
bu suretle ortaya ¢ikan geometriye ait enfinitesimal simetriler sorusunu davet eder.
Bu ciimleden olmak tizere Killing vektor alanlarinin sekillerinin ortaya g¢ikartilmasi
ve siniflandirilmasi ¢aligmalar: Japon Riemann geometrisi ekoliince altmigh yillarda
bitirilmistir. Bu tezde Sasaki metriginin konform vektor alanlari nispeten ileri yontemlerle

ele alinacaktir.

Anahtar Kelimeler: Sasaki Metrik tansorii, Teget demeti, Killing vektor alanlari,

Konform vektor alanlari, Tansor alanlariin kaldirilmasi.



In the memory of my mother Cennet Simsir and my father Fatih Simsir

”Sadece ve sadece ¢ocuklarinin iyi insanlar olmalaring istediler”.

Yiiregi buyumas bir ¢cocuktum ben

Gizli gizli ne kadar ¢ok agladim

Bir gun olecegini distinerek onun
Annem yok artik,

Onun yuregindek: ben de yokum,

Yani annemle tanimlanan ben de oldim onunla
Simdi,

Yeni bir tanima alistirmaliyym kendimi,
Simdi

Ben kendimi disinmezken bile

Kim dustir beni ?

A .Behramoglu
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CHAPTER 1

INTRODUCTION

In its most embryonic form, the idea of working with the tangent bundles occurs in
the theory of ordinary differential equations where one routinely transforms systems
of second order ordinary differential equations into systems of first order ordinary
differential equations in twice as many unknowns. Since the systems of second order
differential equations constitute a central issue of classical mechanics, the importance
of this technique can not be exaggerated. The natural and nonetheless ingenious
sequel to this approach is analytical mechanics in the style of Lagrange in which
components of momentum are treated on equal footing with components of position,
that is as ”coordinates” not of the physical object but of the "physical state” of the
object. Even at this stage the implicit occurence of the cotangent bundle is clearly

recognisable.

Tangent bundle of a manifold has a natural manifold structure. The inherent
linearity of tangent fibers has a mathematically simplifying effect on the tangent
bundle, bestowing upon it a hybrid structure combining linear and nonlinear features.
The modern study of the geometry of tangent bundle may be considered to have
commenced with the seminal articles of S. Sasaki ([11]) in 1958 and P. Dombrowski
([3]) in 1962. Of course, the tangent bundle of a Riemannian manifold is an attractive
object for at least two reasons: Firstly, in the presence of a Riemannian tensor field
on a manifold, the tangent bundle becomes ”paired” with the cotangent bundle and
inherits a natural symplectic structure. Secondly, a Riemannian tensor field on a
manifold induces a natural flow on the tangent bundle which is called the geodesic

flow and is one of the most intensely studied objects of dynamical systems theory

(141, 7], [, 19D



Definition of the Sasaki metric was followed by the question of infinitesimal sym-
metries associated with this natural Riemannian geometry of the tangent bundle.
Killing and Conformal vector fields on the one hand ([5], [6], [8]) and the tangent
bundle of a manifold ([10]) on the other are natural objects of study in mathematics
as well as in theoretical physics. The Killing vector fields with respect to the Sasaki
metric tensor field on the tangent bundle of a Riemannian manifold were completely
characterized by S. Tanno ([12]) yet his calculations were not so easy to follow. We
reobtain the results of S. Tanno ([12]) in Chapter 3 by introducing more streamlined
methods in the light of which we shall characterize the conformal vector fields on the

tangent bundle with respect to the Sasaki metric tensor field in Chapter 4.

All that follows will be in the smooth category unless explicitly qualified otherwise.



CHAPTER 2

VECTOR FIELDS ON RIEMANNIAN

MANIFOLDS

2.1 Killing Vector Fields

Let g be the metric tensor field on the Riemannian manifold M. A vector field
A € X(M) is said to be a Killing vector field with respect to a Riemannian metric
tensor field g € X2 (M) if it satisfies the so called Killing’s equation, that is

SAg: o (2.1)

In the presence of a chart © = (2")1<i<y, such that g |gom)= gi;dr’ @ dz? the equation
(1) reduces to
EAg = VZA] + VJAZ =0 (2.2)
-0

in d here A |gomzn= A'=—.
in dom(x) where A |gom(a) o

Example 2.1. A € X(R?), A is a Killing vector field with respect to
g =dr ®dr+dy ®dy iff

0 9,
A= (—wy+ a)% + (wx + b)a_y

for some w, a,b € R. %



Example 2.2. Consider the Poincare half plane,

1
{(z,y) €eR?* |y >0} and g = ?(dx ®dr+dy ®@dy). A€ X(M) is a Killing vector
field iff 5 5 5 5 5
A: _ b . _ 2 .2\ 7 2 .
ap-+ (xax+yay)+0[(fc Vgt xyay]
for some a,b,c € R %

Example 2.3. Generalising 2.1 A € X(R") , is a Killing vector field with respect
to g = d0;;dx' ® da?. Then A is a Killing vector field iff A; = Y; + 29H,; where
Hy;+ H;; = 0. &

2.2 Conformal Vector Fields

Definition 2.1. A vector field A € X(M) is said to be a conformal vector field (or
a conformal Killing vector field ) with respect to a Riemannian metric tensor field
geX(M)if

Lig=20g (2.3)

for some scalar field o € §(M).

A conformal vector field A is called an infinitesimal homothety if o is constant.

In the presence of a chart = (2'),<;<,, the equation 2.3 reduces to

on dom(z) where

8laom(z) = 9ij da’ © da’?

and 5
A|dom(ac) =A ot
Raising j and contracting with ¢ in 2.4 it is easily seen that
1 div(A)
o= —div
n

where n = dim M. We would like to mention immediately one special instance of a

conformal vector field as it strongly bears upon our work in the sequel :



Example 2.4. Let n > 3 . On the n-dimensional Euclidean space, which is simply
the manifold R" with the Riemannian metric tensor field g = ¢;; dz* ® dz? where g;;

is a constant for each 1 < 1,7 < n, the equation 2.4 reduces to

0A;  0A;
Or > =20 Gij (25)

from which it can be deduced that ¢ must be of the form o = a,2? 4 b for some
constants a,, b € R and

1
Ai = Yi+ 2" Hyg + 520" (0990 + rGoi — @ir)

where Y;, H,; € R are constants and H,; + H;; =2 b g,  (Chapter 2.7, p.53 [2]) .
It is easily discernible that the first term generates a translation whereas the second
generates a rotation followed by a dilation . The third term, however, can generate
only a local flow which is an inversion followed by a reflection for each non-zero value
of the parameter of the local flow. We notice that this conformal vector field is
complete iff the vector a = (a');<;<, vanishes . On complete Riemannian manifolds,
Killing vector fields are always complete. The above example shows us that this is

not always the case for conformal vector fields, [2]. o



CHAPTER 3

(FGEOMETRY OF THE TANGENT BUNDLE

The purpose of this chapter is to present the fundamental concepts in the geometry

of the tangent bundle.

3.1 Preliminaries

Given a manifold M, let §(M) stand for the ring of smooth scalar fields on M and
let XP9(M) denote the F(M)-module of tensor fields of bidegree (p,q) on M. In
particular X%0(M) = F(M), X1 O(M) = X (M), XV (M) = X*(M).

Let M be a manifold of dimension n, T'M its tangent bundle and 7 : TM — M be

the canonical tangent bundle projection. In the presence of a chart z = (z',... z"),
the vectors
0 0
ot o g Iy

constitute a basis for the tangent space T,M at p for each p € dom(z). For each
chart x = (2')1<i<n, an open subset A of dom(z) and an open subset U of R consider
the set

Ny av = {d 0 €A (a',....,a") e U} CTM .

oxt

It can be routinely checked that sets of the form M, 4 constitute a basis for a

topology on T'M with respect to which T'M is locally Euclidean (of dimension 2n)

and Hausdorff, consequently a topological manifold. Given any chart

z = () 1<i<n : dom(z)C,, M — z dom(x)C,, R"



on M, we consider the chart
&= (2")1<a<2n : dom(2) = 77 dom(z)C,, TM — &dom(z) x R"C,, R*"
defined for each u € 7*dom(x) by

'(u) = a'(7(u))

) = W

for 1 <i < n where u = u'=— .
<i< e |~ (u)

By abuse of notation and as an obvious aid for memory we allow z’ to stand for
2 = 2'o7 for 1 < i < n. Again for obvious reasons we shall denote %" by i!

for 1 <7 < n. Of course, the dot is just a notational device and does not connote

differentiation.

The above described chart (z, %) = (2%, 2")1<;<, will be called the chart associated

with the chart x = (")1<i<p.

If the charts z = (2%);<j<, and y = (y')1<i<n on M have overlapping domains,
each 3" can be expressed as a function y* = y*(z!, 22, ...,2") of 27 s on dom(z) N
dom(y) . In this case (x,4) and (y,§) have overlapping domains, too. Moreover, on

dom(x,%) Ndom(y,y) we have

v o= gzt 2?2
X3 ayl 1 .2 n\ ;.q
Y = axq(x,x,...,:c)x

We observe that ¢ is linear in 27 s. Indeed the following is well known in classical

Lagrangian mechanics: ' '
gyt oy’
013 Ox

This shows us, among others thatthe charts on 7'M associated to smooths charts on

M, induce a smooth structure on T'M.

3.2 Lifting tensor fields to the tangent bundle

In the study of the tangent bundle it will be important to produce tensor fields on
the tangent bundle, from out of tensor fields on the manifold itself. Such a procedure

is usually referred to as a ”lifting” of tensor fields on M to tensor fields on T'M.



Let f be a scalar field on U C,, M, the corresponding scalar field f o7 on 771(U)
will be written as f for brevity. Indeed, we have already availed ourselves of this

simplification in connection with the chart (x, &) associated with the chart z.

Definition 3.1. Given A € X(M), the vertical lift A of A is the velocity field of
the flow
U:TM xR —TM

on T'M defined by
W(u,t) =u+tA .

It can be readily checked that in the presence of a chart * = (2')1<;<, with
. 0
A=A"—
Oz’ 5
YAl dom(as) = ' R
|d ( ) ) axz

Note that the vertical lift of vector fields is "tensorial”. To be precise, the value

of YA at u € M can be determined only on the basis of value of A at 7(u). In fact
U(fA) — f ’UA
for any A € X(M), feF(M).

Definition 3.2. Each tensor field S € XP4T(M) can be naturally regarded as a
tensor field "S € XP9(M) ([14]), which we call, for want of a better name, the
natural lift of S and define it by

D ' ‘
n _ kot
S|dom(a}) =Z Skljl...qu 8x11 ... a,i‘ip & dz RK...Q dx’e
where
i, O 0 % A A
S|dom(z) - kljllzq Ozt ... v ®dx" @ dx’' @ ...dx"

Given a tensor field H € X“!'(M) it is instructive to construct its natural lift

"H € X(T'M) in three equalivalent ways :

1. For allu € TM, "H = "(Hu(u)).



2. H induces a flow
V:TM xR —TM

defined by
W(u,t) = exp(tH-())u

"H is the velocity field of W.

3. In the presence of a chart x = (2%);<;<, where

.0
H ’dom(z) qa ; ® dx?

we have

Definition 3.3. Given A € X(M) which is also understood asamap A : M — TM,
the complete lift “A of A is defined by

‘A=TA:TM — T(TM).

. )
Again in the presence of a chart = (2')1<;<, with A = AZT it can be checked that
<i< i

0 i (9142 0
ozt 8:5‘1 ozt

CA’4|dom(:z?,a':) = AZ
Note that the complete lift of a vector field is not ”tensorial” | Indeed,
“(fA)=fC°A+ "df "A.

Definition 3.4. Given A € X(M) and a connection V on M, the horizontal lift
hA e £(M) of A (with respect to V) is defined for each u € TM by "A, = U(0)
, where U : J — T'M is the parallel vector field along a curve v : J — M with
U(0) = u, v(0) = m, ¥(0) = A,,,, J being an open subset of R with 0 € J.

0
In the presence of a chart x = (z* )1<Z<n with A = A'— we find easily

oxt
0 0
hA Al— — qFZ Ap
’dom(wr o1 T Ot
o 0
E _ gk
where I'j; = dx (v(_(%v“ —axj)).



Remark 3.1. In the presence of a Connection V, ‘A — "4 = "V A

On dom(z), instead of the local frame fields that arise from the chart (z,) on

T M, we shall make consistent use of the non-holonomic frame fields

0 0 9, 0 0
. = h = — 14 FT. - = Y =
ST o T 0w T g ST 0w 0
_ .0
for 1 <4 < n, where ¢ stands for i + n. For A € X(M) with A|;, .y = Ala - we
:C’L

clearly have

x,&)

It should be pointed out that the Lie-Brackets of non-holonomic frame fields do not

vanish, in general. By a routine computation,
—_ ~.q koo 21— 2] — ko o - as] —
[ei?ej] =—T Rijq €k ) [eiaej] - [ejvei] - _Fij €k ) [eiae'] =0.

Definition 3.5. For any A € X(M) with Al,, ) = Aig, the modified vertical
:L»l
lift A € X(TM) of A will be defined by

UA Ale; — 71V Age;

dom(z,z)

We shall also make use of the frame field (6%)1<q<2, dual to (e,)1<a2n. It can be

easily checked that

0 = da’
0" = di'+T}.di%dx"

3.3 The Sasaki Metric Tensor Field

Let M be a Riemannian manifold with tangent bundle T'M. The Sasaki metric tensor
field G on T'M is defined by

G |dom(z,s) = Yij <9i 20 +0 93)

Equivalently, G can be written in the form G |gom(s,) = Gaph® ® 6° where G;; = g5,
Gi; = Gy =0 and Gj; = g5

10



Another way of introducing the Sasaki metric is the following: For every u € TM
we define the vertical subspace V,TM of Tz, TM to be the subspace generated by

vertical lifts of elements of T’ to u. Clearly, in the presence of a chart x = (2)1<i<n

with 7(u) € dom(x)
WVWIT'M = <il |u>
i 1<i<n

The distribution u — V,TM on T M is called the vertical distribution. There is

no inherent distribution that complements the vertical distribution. With respect to

a connection V we define the horizontal space H,TM.

H/TM = i—rfuq (9
ozt 7 0z I<i<n

where, of course u = u’% |-y and T, ’s are the Christoffel symbols of V with respect
to the chart = with € 77! (domz). H, is independent of the choice of the chart z.
The distribution u — H,(T'M) on T'M is called the horizontal distribution with
respect to V. It can be checked that for all u € T,TM, T,TM =V, TM & H,TM.

Remark 3.2. Notice that we could complement the (inherently defined) vertical distri-
bution only by introducing a connection. Conversely, each choice of a distribution on
TM complementing the vertical distribution (provided a simple linearity assumption

is made!) arises from a connection.
Note that:

T, : HTM<T, M — T,,M and

v, : VIM —T,M
0 0
- — —
o’ ox?
for any chart = with m € dom(zx) are isomorphisms. We define G, on H,TM by
pulling g, on T,,M back by T,7. We define G, V,TM by pulling g,, on T,,M back
by ¥,. To complete the definition of G on T,TM we declare V,TM and H,TM

orthogonal.

Let O be the Levi-Civita connection of the Sasaki metric tensor G on T'M. The

associated Christoffel symbols can be calculated from the formula

Tos = 07(0(ea; e3))

11



Theorem 3.1.

1
ko _ Tk koo k k k k
ry, = I , 15 = 3 Ry~ 27 (5 = R~ &, rz =0
rk = E R, * i1 (k= 0 ko— Tk rk = 0
i T Tottie T L T v 15 ij I 7

Proof. Applying the formula

GOX,Y),Z) = %{{XG(Y,ZHYG(X,Z)—ZG(X,Y)
+ G([XvY]>Z>_G([KZ]>X)+G([Z’X]7Y)}

to the non-holonomic frame fields we obtain on the lefthand side of the equation

G(D(ei’ej)ﬁek) = G(ng €r +T§j &r; ek)

T

= Tij grk

On the righthand side we obtain, 3 agx]f 8‘1 ]k — 8i ;

}. Hence,

1 agjk agik agz‘j k k
Y2 0rt Ot Oxk b K

The other formulas can be derived by the same method.

G(O(ei,e)),e5) = G(Ty; e+ Tj; er, ef)
= TZ Grk
1
= leiGley, &) +eGlei &) — exGlei &)

+ G([ehej}vek) - G([ej7ek]vei) + G([ekaei]ﬂej)}

1.
- —51-‘1 Ri]’qk Grk
- 1
Hence, T}, = —§:tq Rijq’c . The remaning formulae can be routinely checked. U

Given a vector field A € X(T'M) where Al ) = Ale; + Ale; we can work out

the following special cases of
DaAﬁ = eaAg — TZBAH

as follows:

12



Casea=1i,0=7:

o D 1 .

Caseav=1,3=7:

DgAj = e;Aj — T%Ak — T%Ag
0A; 1 .

Casea=1i,8=7:

0:4; = ed; — YEA — THA;
0 _japr 9

- (3xi “ 9gr

1 .

Casea=1,8=7:

Oid; = edj— TEA, — TEA;

) J

0A;

J

ot

13



CHAPTER 4

KIiLLING VECTOR FIELDS WITH
RESPECT TO THE SASAKI METRIC
TENSOR FIELD

Definition 4.1. On M with Riemannian metric tensor field g we shall call P €
XYM skew symmetric with respect to g if
g(P(X),Y) = g(X,P(Y))

for all X|Y € X(M).

In the presence of a chart x = ()<<, if

_ J ?
P‘dom(m) - Pz dx @ @

the above condition assumes the very simple local form

Fij + Py =0
using the index raising and lowering convention. Notice that a skew symmetric P
has the effect of an infinitesimal Euclidean rotation on each T, M with respect to the

Euclidean geometry induced by the inner product g,,. In this chapter, as well as in

the following we shall make use of a tensor field introduced by S. Tanno [12].

Definition 4.2. To each vector field B € X(M), let the tensor field Tz € X°*(M)
be defined by
(IB(X> Y7 Z> W) = G(V((R(Xa Z7 W)7 B)7 Y)

14



It Bl o) = B'—— in the presence of a chart = ()1<;<n, then

Ozt
TB|dom(x) = qujp VpBr dz? ® dz’ ® da? ® dz" .

A vector field A € X(T'M) where

A |dom(:p,i¢): A O + (91135 .
is a Killing vector field iff
DaAg + DgAa =0 (4.1)

for each choice of chart x on M.

The equation (4.1) reduces in the respective cases « =i, =j and a =i,3 = j

and a =1i,8 =7 to

0A, OA; (L 0A, . 9A
and
A, OA; , A
81’3 + % — F%Aﬁ — Qiq <qujp Ap + qu a$r) =0 (43)
and
DA:  0A;
: 2 = 4.4
o0 " o (44)

From (4.4) we immediately conclude that
A; =Y, +2"Hy
where Y; and H,; are “vertically constant ” functions on dom(z, &) and
Hijj+H;=0
Substituting this expression for A; in (4.3) and regrouping we obtain
0A;

w + VJY; + jl'q (_qujp Ap + Vqui) - O (45)

Lemma 4.1. A;s in (4.5) is an analytic function of &'s.

15



Proof. Regarding 2%’s as constants, the above assertion is seen to be a special case
of the following : Given analtic functions Kjj;,, L;; where 1 < ¢,5,¢ < N, of z =
(z%,...,2Y) € Q CRYN, defined on the open set €, each solution F: Q) — R of the

system
OF"
is analytic in z = (2%,...,2") . To see this, consider a point a = (a'...a") € Q and

take any convex neighbourhood V' of a in € . Putting
Pl =pl(t) = F'((1 - t)a+tz)

for each z = (2!...2") € V we obtain

dp’ oFt . ,
it 02 (27 = o)

= (&7 = @) Kijg((1 = t)a+ t2)"(t) + (27 — a’)Lij((1 — t)a + tz)

and hence we find that for each 1 <i < N, ¢ is the solution of

dpt
o = kit i

$'(0) = F'(a)

where the functions k;, = ki, .(t), pi = pi.(t) defined on an open interval containing

1 N)

[0,1] € R depend analtically on the parameter z = (z',...,2"). Since the above

system is linear it has a solution on an open interval containing [0, 1] that depends
Ny =

analytically on z = (2%,...,2"). Consequently, Fi(z!,...,2") = ¢!(1) is an analytic

function of z = (2!,...,2N) € V. O

Lemma 4.2.

8NAJ 1 iqR P aN—lAp
—— — = — x - 4 , . .
Ot oriz . .. Oin N P PRI Orit ... Qrik—19gtk+1 . . . QN
for all N > 2 . In particular
ON A; _0

0r1 0z - - 91N |,

forall N > 2 .

16



Proof. Assuming A; € §(T'M) we first differentiate (4.5) with respect to &".

OPA; . 0A

axT;Z - R,m'jp Ap + VjHTl - x(] quz‘p axf - O
Interchanging ¢ and r we find

0A; . 0A

ang‘ir - R,L‘,’,jp Ap + VJHT,- - ]3(1 Rq,’,,jp 8xf = O

Adding up these equations, in view of the antisymmetry of R in its first two arguments
and that of H we obtain,

A 1, (R b4 A,,aA,,)

orrat 2 % ggr I Qg

Now, differentiating this equation with respect to ©* we get,

PPA, _1<R b4y, g paAp> 1 (R b A o pamp)

0rs0zT ozt 2 Oz 53 Ozt 2 - Jxsoxr I JxsOzt

Permutating ¢, s, ¢ cyclically and adding up the resulting three equations we obtain

0xs0iT0it 3

PA; i ( , 0?4, , 0*A, L 0PA, , 0%A, )

qj axsaxr qrj 833161.5 q) amsaxr qs] axrawz

Therefore, the assertion true for N = 3. Differentiating that identity with respect to

I'N+1 we obtain

N T O 2P
orhoriz ... QriNQiN+1 N p IN+10k] it - . . &L’Z\k L Qi
e N N
+ I_q Z R..P 9" 4,
N GkI gsin Y PPy
1 T ...8xk...axNa:L‘N+1
Permuting ¢y, 9, -+ ,in,iny41 cyclically and adding up the resulting equations will
give rise to
N . N+1 N
8 +1Aj _ 4 Z o p 6 Ap
Ori1Oxi2 . . . QLINQTiN+1 N +1 — qik) 9iit - Oqin -+ . QN 9N
which was to be proven. O
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4

Since A; is “vertically analytic“ we find that

where X; and V, are “vertically constant ” functions on dom(x, ). Substituting these

expressions in (4.2) and (4.3) respectively we conclude that

Vi + VYo + (= Ry Xp + ViHg) i + (= Ry "Vip)d%d" = 0 (4.6)
ViX; + V; X +29(ViVy; + V;Vi) =0 (4.7)
Lemma 4.3. [f VZBJ + VjBl = 0, then RkjipBP = —vzvak
Proof. Let
= VZV]Bk + Rkjipo
= VlV]Bk - VkV]BZ + v]kal
— ViV,;By+ VViB, + V,;V,.B;
Furthermore
= —Hju,
yet

= V,V,By+ V.ViB; + ViV,;B; + (Rijkp + Rjkip + Riijp) B® = Hjik

from which we conclude that H,j, = 0. O
Theorem 4.1. (S. Tanno [12]) A € X(T'M) is a Killing vector field for G iff
A= X+ VY + "P

where X, Y € X(M),P € X" (M) such that

18



1. X 1is a Killing vector with respect to g ,

2. The tensor fields VVY € X“2(M) and and Ty € X" (M) are antisymmetric

in the first two components,
3. P is a parallel tensor field that is skew symmetric with respect to g.
Proof. We know that
Al pomeay = (X' +2V, ) e + (Y +39H,") &

such that employing the above lemma and considering the coefficients of ¢ and &%z"
in the equations (4.6) and (4.7), we find that V;; = —V,Y; and

ViX; +V,;X; =0
V.V,Y, +V,;V;Y, =0
V; (ViX,+ Hy) =0
RyijpVPY, + R.ijp,VPY, = 0.
Putting P;; = V,X; + Hj; we find
Al jom(zay = (X' = 8VYy) & + (Y + 24P, = V'X,)) &
and in view of Vin = —Vqu
Al pom(zay = (X'ei + 27V, X'e7) + V'e; + 0P’ s — 27V Ve
O

The vague and intuitively rather unappealing condition (2) is drastically simplified

on a compact manifold. Indeed when M is compact,

Corollary 4.1. (S. Tanno[12]) If M is compact and orientable, A € X(TM) is a
Killing vector field with respect to the Sasaki metric tensor field on T'M iff

A= X4 'Y+ "P

with X, Y € X(M), P € XY (M) where X is a Killing vector field on M, Y and P

are parallel and g(P(.),.) is antisymmetric.
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Proof. Since VVY is antisymmetric, it can be immediately seen that V,V'Y, =
V'V,Y, =0 and

I VY HQ‘dom(m) - VzYJvZYJ = Vz(Y}VlYJ)

Consequently, VY 9? = divB where Blgom() = Y; V'Y’ By and thus
ml

/ | VY |2 vol, = / divB voly = 0
M M

which shows that VY =0 . O

20



CHAPTER 5

CONFORMAL VECTOR FIELDS WITH
RESPECT TO THE THE SASAKI METRIC

TENSOR FIELD

We shall be particularly interested in the natural lift "« € F(T'M) of a covector field
a € X*(TM) and "l € X(TM) for the identity tensor field | € X1 (M). Clearly

n g
a|dom(z,i) = TGy

where a,,,,.,) = aidz’ and
n”dom(z,d:) = ‘/tqeq :
Also the natural scalar field E € F(T'M) defined by
1 g
E‘dom(z,i) = 5 Yqr il

will make its appearance in our calculations.

The symbol &; ;; will indicate summation under cyclic permutation of 4, 7,k in

the given order.

5.1 Statement of Results

For each B € X(M) we shall consider its dual B, = g(B,e) € X*(M). Clearly,
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where 5
B|dom(a¢) = Bl ot

We shall also make use of a rather unusual if very straightforward extension of the

gradient and divergence operators to arbitrary tensor fields. If T € XP¢(M) with

i, O ) ,
T’dom(x) = jll...jq Dt ®...Q0 v Rdr’ ® ... Q dx’
then grad(T) € XPT49(M) and div(T) € XP~19(M) are defined by
krt1ip a 8 " i
grad(—r)‘dom(x) = VT, ok © i ®...© i ®dz" ®...®d
div(T) ] gom@y = ij—fl.?,jqp 5 @ @5 ® de’' @ ... @ da’e.

We employ the natural method proposed by S. Tanno with some modifications

and prove the following result :

Theorem 5.1. Given a Riemannian manifold (M,g) with n = dim(M) > 3, A €
X(TM) is a conformal vector field with respect to the Sasaki metric tensor field on
TM iff
/ 1
A= X+ "Y+ "P—FE “grad (b)+ E "a+ "a, "I—g E "grad (ay)

where X, Y € X(M), P € X"Y(M) and

1

b=—div(X) € F(M)
n

a— —% div(grad(Y)) € X(M)

such that

1. X is a conformal vector field with respect to g and

VVb=0,
2. the tensor fields
VVY + g®@a € X“*(M)
VVa € X" (M)
Ty + % g ® Va, — g (8® Vay)py € X" (M)
T, € X(M)

are antisymmetric in the first two arquments ,
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3. P is skew symmetric with respect to g and satisfies

VP=I®dh—g®grad b .

This is admittedly not quite pretty. However, it assumes a simple and surprising

form on compact manidifolds.

Theorem 5.2. Let (M, g) be a compact Riemannian manifold withn = dim(M) > 3.
A wector field A € X(TM) , is a conformal vector field with respect to the Sasaki
metric tensor field on TM iff it is a Killing vector field with respect to the Sasaki
metric tensor field on T'M.

We note once again that the above results are valid for manifolds of dimension at
least three. Two dimensional manifolds present certain peculiarities and they will be

treated elsewhere.

5.2 Proofs of the Results

Casea=1,0=7:

z 1

Caseaa=1,3=7:

04; 1

i) = eA; = TH A = T Ar = 58 — 5 Ryy," 804,
Caseaa=1i,3=7:
OA —ed— oA, iA=L _gorr Iyu LR okgaq rha
idy = eid; = T Ae = T Ap = (55 — 3" Ty 52) A5 — 5 Ry 874 — Ty Ag

Casea=1,3=7:

0A;

ot

A vector field A € X(TM) where Al = A%q = Ale; + Ale; is a conformal
vector field with respect to G iff

DgA; = e;A; — T%Ak — T%AE =

DaAg + DgAa =20 Gag (51)
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for each choice of chart z and o, 3 € {i,i}, where G;; = G5 = g;; and G5 = G; =0
for all 1 < i,57 < n. The equation 5.1 reduces in the respective cases (a, 3) = (1, j),

(e, 8) = (i), (e, 8) = (i, ) to

DA, 0A; (o DA A
8x§ — A, + E %Ay — it <Fqi &tj +1y 3x-r) = 2095 (52
A, OA: _ A
0A: A

Treating functions of z'’s as constants it is seen that 5.4 is nothing but the equation

2.5 in unknowns 4*’s and

o = aa7+0b (5.5)
1
Ai = Yot iHy+ Sa% Sy (5.6)

7

where a,, b, Y}, Hyi, Syri € F(dom(x, 1)) are functions of z's alone and

Hy+Hy = 2b gy (5.7)

Sqri =  QqGri + QrGqi — AiGqr - (58)

We avail ourselves of the conventional abuse of notation and understand a,,
b,Y;, Hyi, Sgri € §(dom(x)) . In fact these functions are clearly components of tensor
fields restricted to dom(xz). In particular there exist Y € X(M) and H € X(M)

such that

Z' 8
Y‘ dom(z) — Y ot

and

H| dom(x) = Hq % ® d:L'q :
Substituting 5.5 and 5.6 in the equation 5.3 and regrouping we obtain

0A;
o T VaYi+dt (ViH — R

qij

1
AR + 14"V = 0 (5.9)
Lemma 5.1. A; in 5.9 is an analytic function of &'s.

Proof. Regarding z' s as constants, the above assertion is seen to be a special case

of the following : Given analytic functions K*;,L'; where 1 < i,j,¢ < N, of

Jjq’
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z=(z"...,2Y) € Q CRY, defined on the open set §2, each solution F*: Q — R of
the system

OF"
= KZ J+ LZ
027
is analytic in z = (2!,...,2") . To see this, consider a point a = (a'...a") €  and

take any convex neighbourhood V' of a in € . Putting

Pt =pl(t) = F'((1 - t)a+tz)
for each z = (2'...2") € V we obtain

do'  OF!
TG

= (7 —d)K' (1 —t)a+t2)p(t) + (27 — a?) L' ,(1 — t)a + t2)

and hence we find that for each 1 <i < N, ¢’ is the solution of

dp’ , :
ko1 7
i P TP

'(0) = F'(a)

where the functions &', = k*, (t), p' = p.(t) defined on an open interval containing

[0,1] € R depend analtically on the parameter z = (2%,...,2"). Since the above

system is linear, it has a solution on an open interval containing [0, 1] that depends
analytically on z = (2',...,2"). Consequently, F(z',...,2") = ¢'(1) is an analytic

function of z = (2%,...,2V) e V. O

Lemma 5.2.

N _
E)NA . $_ Z (9N 1Ap
orhggiz ... 0xin - N pt @] 8m’i1 e D - DN

for all N > 4 . In particular

OV A

— A =0
D19z - - - Din

=0

for all N > 4 .

Proof. Assuming A; € F(T'M) we first differentiate 5.9 with respect to ©* to obtain

02 A,
i O

A,
+(V;Hy — Rsij”Ap) + 21 < Rq,]”a— +V. Ssqz)
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in view the symmetry of S, in the first two indices. Interchanging ¢ and s we find

0*A; . 0A
awsasz + (VjHiS — Risijp) + z <—R P P + VjSiqs) =0.

asj 0%

Adding up these equations, we obtain

D*A,; 1 »0A, »0A, 1.
st = 3 (R’ 5+ R 53t ) = 35T+ V18 = ¥y
in view of 5.5 and the antisymmetry of the Riemannian curvature tensor in the first
two arguments. Differentiating this equation with respect to @' we find

DA 1 <R 204, R pGAp)

0r 0 0Et 2\t Pis | i pgi

19 92A 0?A 1
* 5(%fa%%+ W%E%J‘§Wﬁm+%&“‘

Permutating 7, s, t cyclically and adding up the resulting three equations we obtain

oA an P4 p Phy | pop PAy
0i0r0rt | 3\ gpait w9 9poit | iidi

1
- g(ngz’st + V;Ssti + V;Shis)

Now, differentiate this with respect to " to get

DA, 1 ( o 0 04 , 0°A, L %A, )
1]

- 00 | T gpigpt | Y 9rigps

0xi0is0itoir 3

x'q P 63Ap p 83Ap p 83Ap
+'§@m&@%z*%nﬁ%%ﬁﬁma@%@

Finally, permutating i, s, ¢, r cyclically and adding up the resulting four equations we

obtain
64Aj _ ﬁ b DA, LR DA,
0zt 0xs0xt0x" 4 - JrsOxtox” ¥ Qrioztoxr
+ R Apﬂ .pﬂ
I QFidisOxr "I QFi0Es Ot

Therefore, the assertion true for N = 4. Differentiating the asserted identity for N

with respect to #*¥+1 we obtain

N —
AL B S
Q10’2 - - - QN Qarin+i N o= T ggi L Qgin - 9y
. N
xd 8NA,,
Ty Z Ry "

Qi -+ Dk - - DN Din 1

e
Il
—



Permuting 71,149, -+ ,in,iny1 cyclically and adding up the resulting equations will

give rise to

N+1 ) - q N+1 N
ONH1A, i , OV A,
qir] S

D& 0qi2 - - - QN PNt N + 1 pet R Qa1 - v+ Ok -+ OFIN FIN1
which was to be proven. ]
Lemma 5.3. If V,X; +V,;X; =20 g,;; , then
R,;"Xp = V;V,Xi — 9jiVb — g5V b+ g Vib (5.10)
Proof. Let Nijq = R,;;" X, — V;V,X; and notice that

Nijy = =V ViX;+ ViV, X; - V,V,X,
= —quin + Vi(—VjXq + 2 gjq b) — Vjqui
== _Gi,j,q(quin> + 2 gjq Vlb

= Gi’j’q(quijp — VZVQX]) + 2 gquib
= _Gi,j,q(viquj) +2 gjq Vib
= Nig
On the other hand,
Nijg = —6;;4(V¢ViX;) +2 gjy Vib

= -V, V.X;, -V.V,;X, - V,;V,X; +2b g, Vib
= =V, (=V,;X;+2bg;j)— Vi(=V,X; +2bygj,)
— Vi (=ViX;+2bgyu)+2gj, Vib
= —Nigi—29ji Veb—2 g4 Vib+2 g;,Vib
hence
Nijq = —9jiV¢b — 94V b+ gjoVib
U

Lemma 5.4. An infinitesimal homothety on a compact manifold is a Killing vector
field.
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Proof. Let (M,g) be a compact Riemannian manifold of dimension n, which we
assume to be orientable by taking its orientable double cover if necessary and denote
its volume form with respect to g by Volg . If X € X(M) is an infinitesimal homothety,
then Lxg = 20g where

o= L div(x)

n

is a constant. We have

1 1
= — o div(X) == divic X
0f=—0 iv(X) - iv(o X)

and

1
/02 Volg = — / div(c X) Vol =0
M nJm

hence we conclude that 0 =0 . O

5.2.1 Proof of theorem 2.1
Proof. By Lemma 5.1 and Lemma 5.2 we conclude that
g | Loyrs
Aj=X;+ a2V + g% Kqrj + gia'E Lysj (5.11)

where X, V,j, Kypj, Lyrs; € §(dom(z, %)) are functions of 2%’s alone and K, is sym-
metric in ¢, and Lg,; is symmetric in ¢,r,s. Again by the conventional abuse of
notation we understand X, V,;, Kyj, Lyrs; € §(dom(x)) . Again we note that these
functions are components of tensor fields restricted to dom(z). In particular there
exists X € X(M) such that

i a
X| dom(z) — X ot
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Substituting 5.11 in 5.2 and 5.9 we obtain

1
+ §x'q:'c7" (ViKgrj + Vi Kqps)
1
+ éiquﬁ'ri‘s (ViLqrsj + VquTSi)
= 2bgij + 21%a,9; (5.12)

Vij + VY, @ (Kyij + ViHg — Ry X,)

+ o+

1
588" (Larij + ViSeri =2 Ryi)” Vi)

1
j:q:l‘?rm's (_ﬁqu]p Krsp)

1
+ 93703 (——quj” me) =0 (5.13)

+

6

Since 5.12 is valid for all values of 27 we obtain

and notice that .
b= — div(X
- iv(X)

Similarly from 5.13 we obtain V;; = —V,Y;. Again in 5.12 the coefficient of 2¢ gives
us V;V,; +V;V, =2 a, g;; from which we obtain

V,VJYII + V]VZYQ = -2 Qg Gij (515)
Raising 7 and contracting with ¢ we find
1 .
a, = ——V; V'Y, (5.16)
n

which shows that a,’s are components of the restriction of a vector field a € X(M)
and
1
a=—— div(grad(Y)) .
n

The coefficient of 27 in 5.13 gives
Using 5.7 and the symmetry of Ky; in ¢, and antisymmetry of R ;; P'in ¢, 1 we have

Kyij = —94i Vb (5.18)
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In view of the Lemma 5.3 we find from 5.17 and 5.18

—9qi Vb + Vily = ViV Xi 4 9iqVib + gjiVeb — gjgVib = 0

and
VP = —g;iVqb+ g, Vib (5.19)
where
P, =H,; —-V,/X;
P+ PFPy,=0 (5.20)
hence
VP, = 9ijVqb— Vb — g,iVib
and

VP, =6V — gy V'b
which shows us that there exists a tensor field P € X! (M) having the form P | o (z)=

o 0
P;dxZ ® g in local coordinates such that
IZ

VP =1®db—g®gradb (5.21)
Using 5.18 we find from the coefficient of £92" in 5.12
Vi(=94V;b) + V(=9 Vib) =0
hence,
ViV;b=0 (5.22)

Since,

quj p Krsp = grsR P vpb = —0rs (quzv]b — Vzqujb) =0

qij
the coefficient of 292" 2° in 5.12 is automatically zero. Now, considering the coefficient

of 292" in 5.13 we find

Lqri]’ _|_ v]'Sqri - qujp VP}/; - RT‘ijp V}')Y(-] == O .
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If we interchange ¢ and i
and if we interchange r and ¢

Lorij + VjiSgr — Ry, VYi = R, ;P VY =0

hence,
3 Lq”j = - Vj (Sqfi + Sriq + Siqr)
= — Vj (aqgm’ + QrGqi — AiGqr + ArGiq —+ QiGrq — QqGri + @i Gqgr + AqGir — argiq)
- _vj (aqgri + a/rgiqa'igqr)
and thus,
1
Lq”'j = _§ (Gqﬂ’,i vjaqgri) (523)

As for the coefficient of 292"2® in 5.12
ViLgsj +VjLgrsi =0
which gives in view of 5.23
Syrs (ViVja,+V;Via,) =0
Explicitly, for each q,r,s,1,7
(ViVijag +V;Viag) grs + (ViVja, +V;Viar) gsq + (ViVijas + V;Vias) g =0 .
Given g, if g4q # 0 we put ¢ = r = s in this equation to obtain
3 94q (ViVja, 4+ V,;V,a,) =0
If g4 = 0, we choose r with g, # 0 and put s = ¢ to obtain
2 g4r (ViVja, 4+ V;Via,) =0
In any case

Viv]'&q + VjViaq =0 . (524)
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As the coefficient of 292" %%z in 5.13 must reduce to 0, we use 5.23 to obtain

qujp Vp ar g+ qujp Vyp as g + qujp Vp ai grs
+ RT’ijp VP as gtq _|_ RT‘ijp VP at gqs —'I_ R,,.ijp VP aq gSt
+ Rsijp Vy ay gor + Rsijp Vp ag grt + Rsijp Vp r Giq

+ Ry;" Vyaq grs + Ry;" Vi ap gog + Ry;" Vy ag g =0 (5.25)
We shall show that 5.25 is equivalent to

for all ¢, r,1, 5. It is easy to see that 5.26 implies 5.25 Let us conversely suppose that
5.25 holds. Having fixed 4, j for any given q if g, # 0 putting s = ¢ = ¢ = r we find
that 16 R,;;" V, a4 ggq = 0 hence R ;" 'V, a, = 0. If g, = 0, 3¢’ such that g,y # 0.
Put s =t = g and r = ¢ to obtain 6 R;;" V, a9,y = 0 hence R ;;” V, a, =0 in
any case. We note in particular that 5.26 is valid if ¢ = r. Now, consider distinct
q,7 : If g # 0 put s = q,t = r to obtain 4 (R ;" V, a, + R,;;" V, a,)g, = 0 and
R,;" Vya.+ R’ V,a,=0.If g, = 0, multiply with g** and contract over s, to
obtain (n +4)(R,;"” V, a, + R,;;* V, ag) = 0. Therefore, in any case 5.26 holds.

Finally, we consider the coefficient of £22" in 5.13
which gives in view of 5.8 and 5.23

1
— g(vj aq Gri + Vj ar giqg+Vj a; gor) +(Vj aq 90 +Vj ar gig — Vi a; ggr)

Equivalently,
2
qujp VY, + Rrijp VY, = 5(2 Ggr Vi @i — Ggi Vj @r — gri V; aq) (5.27)

Summing up we find that A € X(T'M) is a conformal vector field with respect to the
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Sasaki metric tensor field iff
A|dom(x,a’:) = Aie’i + A;e{

, 1 1 4
= (XZ + @V, a8 K, gx'qj:%qu,,;> &

4 . 1 4 1 1 ;
= (XZ — .C‘CqV’LYZI - §Q‘fqﬂ'frgqrvlb - gjlqi’ri’856qms(vlaqgrs)> €

. . 1 . ) .
+ <YZ +@7H," + ix'qx""(aq& + a0, — alqu)) &;
= (X'e;+ iV, X'e) +i(H,' — VX' )er + (Yie; — #'V'Ype;) — E Vb g
1 1 . , 1 .
+ §j:qaq:i:’eg + 5:}:%@%; — E(d" &) — 3 (E iV'ay) &
1 , 1
= < ‘X——F“radb)+ "Y +—FE "a
n n
1
n

1
+ "a, "l + §E "grad(a,) + "P) | dom (2,5)

for each chart # = (2')1<;<, on M . This proves the assertion and the conditions (1) ,
(2) , (3) are direct consequences of 5.22, 5.15, 5.24, 5.27, 5.26 , 5.19. 5.20, 5.21.
[

5.2.2 Proof of theorem 2.2

Proof. Taking the orientable double covering space if necessary, we may assume with-

out loss of generality, that M is orientable. Clearly
Vo> = V:bV'b
= Vi(bV'b) — b V;V'b
= Vi(bV'D)
showing that
|Vb||* = div(b grad(b))

Consequently,
/ IVb|*Vol, = / div(b grad(b))Volg = 0
M M
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by the divergence theorem and hence Vb = 0 showing that b is a constant and X
is an infinitesimal homothety. Consequently b = 0 by Lemma 4 and X is a Killing

vector field. On the other hand , in view of

ViViaj = gipVinaj
= —gi”VpViaj = —vapaj =0

we find

||Va||2|dom(x) = Viajviaj
= Vi(ajviaj) — ajVZ-Viaj
= Vi(ajviaj) .

Consequently, ||Val|* = div(W) for W € %(M) where

W|dom(ﬂ:) = ajv a’ ot

Therefore,

/ |Val* Volg = / div(W) Volg = 0
M M
and we conclude Va = 0 . Finally,
2
|| a || |dom(a:) - aqaq

1 .
— _ i ’LY q

n(VV 2)a

1 ) A
= —(Vi((TY,)a") - V'Y, Via?)

= V()

Consequently ||a||* = div(Z) for Z € ¥(M) where

1 ; 0
Z|dom(z) = _E (V Y:;)aq %
Hence
/ la||” Vol, = / div(Z) Volg = 0
M M
and we conclude a =0 . [l
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