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ABSTRACT

DYNAMICS OF WALL BOUNDED TURBULENCE

Ozan Tuğluk

M.S., Department of Engineering Sciences

Supervisor: Assoc. Prof. Dr. Hakan I. Tarman

February 2005, 77 pages

Karhunen-Loève decomposition is a well established tool, in areas such as signal pro-

cessing, data compression and low-dimensional modeling. In computational fluid me-

chanics (CFD) too, KL decomposition can be used to achieve reduced storage re-

quirements, or construction of relatively low-dimensional models. These relatively

low-dimensional models, can be used to investigate the dynamics of the flow field in

a qualitative manner. Employment of these reduced models is beneficial, as the they

can be studied with even stringent computing resources. In addition, these models

enable the identification and investigation of interactions between flowlets of different

nature (the flow field is decomposed into these flowlets). However, one should not

forget that, the reduced models do not necessarily capture the entire dynamics of the

original flow, especially in the case of turbulent flows.

In the presented study, a KL basis is used to construct reduced models of Navier-
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Stokes equations in the case of wall-bounded turbulent flow, using Galerkin projection.

The resulting nonlinear dynamical systems are then used to investigate the dynamics

of transition to turbulence in plane Poiseuille flow in a qualitative fashion. The KL

basis used, is extracted from a flow filed obtained from a direct numerical simulation

of plane Poiseuille flow.

Keywords: Wall bounded turbulence, Karhunen-Loève decomposition, Transition to

turbulence, Galerkin projection
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ÖZ

DUVAR SINIRLI TÜRBÜLANS DİNAMİĞİ

Ozan Tuğluk

Yüksek Lisans, Mühendislik Bilimleri Bölümü

Tez Yöneticisi: Doç. Dr. Hakan I. Tarman

Şubat 2005, 77 sayfa

Deneysel özdeğer fonksiyonlarına (Karhunen-Loève) ayrıştırma yöntemi, sinyal işleme,

veri sıkıştırma, düşük boyutlu model oluşturma alanlarında kullanılan bir araçtır.

Hesaplamalı akışkanlar mekaniğinde, bu yöntem benzer amaçlarla kullanılabilir. Bu

alanda oluşturulan modeller, düşük hesaplama gücü gereksinimleri ve akış içerisindeki

alt-akışların etkileşimlerinin incelenmesine olanak tanımalarından, yararlı olabilmek-

tedir. Ancak bu indirgenmiş modellerin, özellikle türbülanslı akışlarda, akışın tüm

dinamiğini kapsamayabileceği unutulmamalıdır.

Sunulan çalışmada, deneysel özdeğer fonksiyonları, Navier-Stokes denklemlerinin,

duvar sınırlı türbülanslı akış özelinde, Galerkin projeksiyonu yöntemi ile, indirgenmiş

modellerini oluşturmak için kullanılmıştır. Oluşturulan nonlineer dinamik sistemler,

türbülansa geçiş bölgesinde akış dinamiğinin niteliksel incelenmesinde kullanılmıştır.
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Anahtar Kelimeler: duvar sınırlı türbülans dinamiği, Deneysel özdeğer fonksiyonları,

Türbülansa geçiş, Galerkin projeksiyonu

vii



This work is dedicated to all the people whom it is not dedicated to . . .

viii



ACKNOWLEDGMENTS

I would like to thank my advisor, Hakan Tarman, first and foremost. His support,

guidiance, enthusiasm was indespansible for this work. I would also like to thank

him for keeping me focused during the course of my studies, without which this work

would have never been completed.

I am grateful to my family for their continual support, encouragement, and friendship.

I am indebted to my parents, Ali Rıza and Şadan, and my brother, Okan, for always
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ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

DEDICATON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 KL DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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CHAPTER 1

INTRODUCTION

Heisenberg is said to have said on his deathbed that, he would ask God two questions:

why relativity and why turbulence?. Reportedly he added , ”I really think he may

have an answer to the first question.”

To give a brief description, turbulence is a complex phonemena involving 3D,

unsteady, nonlinear vortex activity on a large number of length and time scales.

What makes turbulence rather unique is the fact that, almost all the simplifica-

tions/assumptions which make up theoretical fluid dynamics are invalid for turbulence.

For example one cannot linearize NS equations to get turbulent solutions, turbulence

is essentialy nonlinear. One cannot assume the turbulent flow is irotational unlike

many problems in fluid mechanics. Also one cannot reduce the spatial dimension to

2 to simplify the solution (if one does, one simply destroys the problem). So it is not

suprising that turbulence is a good object for scientific curiosity.
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To sum up turbulence is a

• nonlinear

• highly unsteady

• dissipative (kinetic energy is transformed into internal energy )

• diffusive

• rotational

• 3D

• multiscale

phenomenon, which poses quite of an intellectual challenge to the researchers. In

addition to the challanges involved, most flows in the universe are turbulent. In terms

of engineering, turbulent flow means

• a large increase in drag

• a large decrease in momentum/flowrate

• cyclic structural loading, which causes fatigue

• increased noise

• increased/enhanced heat transfer

• increased/enhanced mixing

As can be deduced from the above list, prediction and control over turbulence is highly

desirable on many occations. It is obvious that both prediction and control require a
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fair understanding of underlying dynamics to be effective. This is why turbulence is

an attractive area of study for the engineer.

We also should note that, virtually all flows are turbulent in nature, so one should

not view turbulence as an exception, the real exception is the laminar flows. As noted

earlier the common tools of theoretical fluid dynamics are inadequate for turbulent

flows, so generally a brute force (i.e. numerical simulation) approach is employed, to

gain insight to the underlying principles.

In the presented study, dynamics of turbulence, in the context of wall bounded

turbulence, is studied through channel flow. Channel or plane Poiseuille flow (i.e. flow

between two parallel plates and driven by uniform pressure gradient) is convenient for

investigating the fundamental physics of wall bounded turbulence for a variety of

reasons. One of the most important of these reasons is, unlike turbulent boundary

layer over a flat plate which exhibits growth in streamwise direction, channel flow is

homogeneous in spanwise and streamwise directions beyond the entrant flow region.

Owing to this fact channel geometry is almost standard in experimental and numerical

studies of wall-bounded turbulence.

In our work, we utilize a model consisting of a system of ODE’s. The ODE’s

are obtained á la Galerkin, by projection of NS (Navier-Stokes) equations onto a

space spanned by KL (Karhunen-Loève) modes. This simple idea is deeply rooted in

dynamic systems theory and existence of characteristic large scale motions (coherent

structures). A brief history is given below.

Owing to the processing power increase, first numerical simulations of turbulence

were performed starting from 1970’s (Deardorff, Orszag and Peterson, Schumann, Ro-

gallo, Moin and Kim). As the ratio of (processing power)/(currency unit) increased,
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the number of grid points and thus the resolution of the simulations improved signifi-

cantly. This created a wealth of sufficeintly resolved turbulent flow field data available.

Meanwhile, the experimentalists came up with information, which implied the

existince of underlying coherent structures in turbulent flows. [Cantwell, 1981] 1 The

approaches to isolate coherent structures from the experimental observations varied

from statistical correlation studies to flow visualization techniques.

On the theoretical front, the advances in dynamical systems theory and its appli-

cations to turbulence suggested such flows resided on relatively low dimensional at-

tractors [Guckenheimer, 1986]. It was generally regarded that the underlying strange

attractor could be characterized by the coordinates defined by the coherent structures.

This idea is related to inertial manifolds, which manifest that long-term behaviour of

an infinite dimensional system can be explained in terms of a small number of coor-

dinates, provided the system has an inertial manifold.

At this point the KL expansion, which was suggested for use in turbulent flows by

Lumley [Lumley, 1967, Lumley, 1970], was generally considered as the rational tool for

extraction of the underlying coherent structures in turbulent flow. The well-resolved

data needed for this procedure was available from the numerical simulations and from

the experiments. The extraction of coherent structures, which were thought to roughly

define the attractor for the flow, opened the scene for low dimensional models (for an

excellent discussion consult [Sirovich, 1986]). The most famous (and perhaps the

most controversial) of these models was the Cornell model [Aubry et al., 1988] which

consisted of 5 complex equations (10 real), which was confined to the wall region and

totally ignored longitidunal (streamwise) dependence in the flow.

1 The presence of such structures was first discussed in mid 1950’s [Townsend, 1956]
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One of the oldest problems of fluid mechanics is the description of the mechanisms

of growth of instabilities in laminar flows that lead to transition to turbulence. The

behaviour of small-amplitude disturbances is reasonably well understood in contrast

to finite-amplitude disturbances which is incomplete [Drazin and Reid, 1981]. There

is yet no satisfactory agreement between theoretical and experimental studies of tran-

sition flows in general. This is especially true for the general class of shear flows

for which wall-bounded flows and in particular plane Poiseuille or channel flow are

examples.

The initial stages of transition in channel flow are theorized to start with the

mean parabolic velocity profile loosing its stability to finite dimensional disturbances

in a subcritical manner [Orszag and Kells, 1980, Orszag and Patera, 1983]. A new

mathematical framework has been established recently to describe mechanisms of this

subcritical bifurcation leading to secondary instability. This framework uses the tools

like pseudospectra of nonnormal matrices to develop an algebraic theory of instabil-

ity [Reddy and Trefethen, 1994, Trefethen, 1997]. Subsequent secondary instability

analysis yields various scenarios of transition to turbulence involving streamwise vor-

tices, oblique waves, streamwise streaks, and streak breakdown [Reddy et al., 1998,

Schmid and Henningson, 2001].

The rest of this thesis is organized in five chapters. In Chapter 2, the general idea

of KL decomposition procedure is presented. Chapter 3 will present the reader channel

flow. Chapter 4 gives details about application of KL decomposition to channel flow.

In Chapter 5, the reader may find the derivation of the model. Chapter 6 includes

the results obtained together with conclusions drawn, the work is concluded with

suggestions for future work.
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CHAPTER 2

KL DECOMPOSITION

2.1 Karhunen-Loève decomposition

The idea behind KL decomposition/expansion is straightforward. Actually in science

and engineering, a special case of KL-expansion, the Fourier series expansion, is fre-

quently used. The KL expansion is the representation of a vector field u(x, t) as a

series of the form:

u =

∞∑

n=1

an(t)φ(n)(x) (2.1)

in terms of an orthonormal set of functions φ(n),

(φ(n), φ(m))x =

∫

V
φ

(n)
j φ

(m)
j dV = δnm where j = 1, 2, 3 (2.2)

summation convention on repeated indices, (·, ·)x denotes inner product over x. The

time dependent coefficients {an} are also required to be statistically independent (sta-
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tistically orthogonal),

E{anam} =

∫

an(t) am(t)dt = λn δnm (2.3)

Where E{} indicates the ensemble average. As can be seen, the KL-decomposition

decomposes the field u into space dependent (represented by a set of orthonormal

functions, φ(n)) and time dependent (represented by an) parts. The KL expansion is

optimal in the sense that for any truncated representation,

uN =
N∑

n=1

an(t)φ(n)(x) (2.4)

the sum:

EN =
N∑

n=1

λn

is a maximum among similar representations. The physical importance of the above

statement will be clarified in Chapter 4. The above requirements uniquely defining the

KL-decomposition may seem exceedingly stringent, however, the orthonormal basis set

{φ(n)} which are the eigenfunctions of the following integral equation:

∫

V
Kij(x,x′)φ

(n)
j (x′)dx′ = λnφ

(n)
i (x) (2.5)

whose kernel is the autocorrelation tensor of the field u, i.e.

Kij(x,x′) = E{ui(x, t), uj(x
′, t})

satisfy the requirements stated above. Hence the KL-decomposition procedure man-
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ifests itself as the solution of a integral eigenproblem. There are several methods

for the solution of 2.5, these methods are presented briefly in Chapter 4. The fact

that the kernel (autocorrelation tensor) in 2.5 is hermitian, non-negative and square

integrable, assures that a uniformly convergent spectral representation for it exists

(Mercer’s Theorem [Riesz and Nagy, 1955]). So it is guaranteed that we have a com-

plete set of orthonormal vector eigenfunctions φ(n) as solutions to 2.5. A more detailed

discussion of the properties of the kernel can be found in [Sirovich, 1986].

KL decomposition ( also called POD, EOF (empirical orthogonal function) analysis

and EEF (empirical eigenfunction )), is used broadly in many disciplines. These

include, but are not limited to, pattern recognition [Fukanaga, 1972] and geophysics

[Preisendorfer, 1988], besides experimental and computational fluid mechanics.

2.2 Coherent structures

The concept of coherent structures in turbulent flow is rooted in the observation of

organized structures in turbulent flow [Cantwell, 1981]. These observations naturally

caused attempts to extract information on these structures from a given turbulent

flow field.

However, until a theoretical framework supplied (see for example [Lumley, 1967]),

such attempts generally lacked an objective definition of the so-called coherent struc-

tures. What this definition states is that, if such a structure exists it should be max-

imally correlated with the given turbulent flow field. In more mathematical terms, a

coherent structure represented by a deterministic function φi(·) should be as “nearly”

parallel to a given ensemble of vector fields ui(·) as possible in Hilbert space.

For a somewhat more detailed derivation for the structure and properties of the
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eigenfunctions see Appendix A. In the preceeding statement (·) indicates dependence

on a point in the chosen space. This leads to an equation for the coherent structures,

φi), [Lumley, 1970].

∫

Rij(·, ·
′)φi(·

′) d(·′) = λφi (·) (2.6)

where Rij is two-point correlation function defined as

Rij(·, ·
′) = E{ui(·)uj(·

′)} (2.7)

Here, Rij regarded as a kernel is square integrable, non-negative, and hermitian. As

a result, a complete set of orthonormal vector eigenfunctions as solutions to 2.6 is

assured. So the random vector field representing a turbulent flow field, ui, may be

expanded in the coherent function basis as,

u(·) =
∑

n

an φ
(n)
i (·) n = 1, 2, · · · (2.8)

an =

∫

ui(·)φ
n
i (·) d(·) (2.9)

and the above series converges in a mean square sense. In [Lumley, 1970], it is assumed

that the eigenfunctions are ordered so that, λ(1), the largest eigenvalue corresponds

to φ
(1)
i . It is worthwhile to note here that the eigenvalues λ(n) represent the average

fraction of flow energy along the corresponding eigenfunction, φn
i . From these, it

follows that the expansion in 2.8 is optimal in the sense that, the fraction of energy

along φn
i decreases rapidly as summation index n increases.
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At this point it is clear that the expansion derived for coherent structures is similar

to the KL decomposition of the turbulent velocity field. The quest for extraction of

structure from an ensemble of experimental data or numerical solutions led to the

consideration of KL decomposition as a possible tool. In the beginning phases, the KL

decomposition had been thought as a faithful representation of the coherent structures,

but, the existence of an homogeneous direction in the physical space leads to empirical

eigenfunctions which are simply the Fourier modes. As this does not seem to agree

with the observation of localised coherent structures, this view has been abandoned.

2.3 Applications

In this section we briefly list fields of application for the KL expansion.

Data compression: By employing KL compression one can achive a significant de-

crease in storage requirements for almost any data. We will focus on scientific

computing, specifically CFD. Suppose a CFD calculation is performed on a

m × n × q grid, the storage required to store the flow field is (per time step)

3 × m × n × q units. If we consider a rather coarse turbulence simulation on a

24×48×129 grid for 5000 timesteps 1, the storage requirement is approximately

16.6 Gb per simulation. If KL decomposition is performed however, generally

retaining the first few thousand modes is enough (i.e. first few thousand modes

generally retain a large fraction of the total energy). If we suppose the first

5000 time dependent coefficients need to be stored (an(t)), the total storage re-

quirment drops to about 190 Mb for each realization, plus a one time storage

1 In an architecture where double precision numbers are represented with 8 bytes, like i386 for
example
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of library of KL eigenfunctions (φ(n)(x)).2 If we further assume data for 10

different conditions is stored, storing KL expansion coefficients with the library

of KL eigenfunctions amounts to 10% of pointwise storage. The flow field can

be recovered later by the expansion

uN =
N∑

n=1

an(t)φ(n)(x)

Some examples of such wok can be found in data reduction in digital represen-

tation of human faces [Sirovich and Kirby, 1987], in experimental flow visual-

ization of structures [Sirovich et al., 1990b] etc.

Low dimensional modeling: Suppose we have nonlinear differential equation given

by

∂u

∂t
= N (u,R)

where N represents a nonlinear operator involving u, spatial derivatives of u,

and parameters represented by R. A low dimensional model capturing some

important aspects of the equation may be constructed by projecting the orig-

inal equation on a subspace spanned by the truncated KL expansion (i.e. via

Galerkin projection). This can be done as follows: first the KL eigenfuncions are

extracted from the field u, obtained by, say numerical simulation, at reference

value Ro. The expansion is substituted into the original equation,

d

dt

N∑

n=1

an φ(n) = N (
N∑

n=1

an φ(n),R)

2 5000 × 24 × 48 × 129 × 3 bytes (≈ 16 GB) for the eigenfunctions.
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Performing the Galerkin procedure, results in an equation of the form

dak

dt
= Ñ (ak,R) (2.10)

for the KL expansion coefficients ak

This equation can be used to determine the time evolution of expansion co-

efficients and thus may constitute a low dimensional model for the original

equation in the neighbourhood of Ro . Note that optimality of the KL ex-

pansion is no longer available when used for off reference values of R, however,

the KL expansion functions φ(n) still satisfy all the spatial constraints on the

field, such as boundary conditions, incompressibility conditions, etc. Some ex-

amples of such uses of KL expansion can be found in the studies of dynamics of

Ginzburg-Landau equation [Sirovich et al., 1990c], transition in boundary layer

flow [Sirovich and Zhou, 1994], transition in Rayleigh-Benard thermal convec-

tion flow [Tarman, 2003]].
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CHAPTER 3

CHANNEL FLOW

3.1 Governing equations

Channel flow takes place in a physical domain, −∞ < x, z < ∞; 0 < y < 2h, and is

driven by a uniform force k (pressure gradient) in the x-direction. Here x represents

longitudional (streamwise), z lateral (spanwise), and y azimuthal (wall-normal/cross-

channel) directions. The notation u = (u1, u2, u3) = (u, v, w) will be used for flow

velocities and x = (x1, x2, x3) = (x, y, z) for the spatial coordinates interchangeably.

The boundary conditions are (imposed by the finite viscosity of the fluid, µ), the

so-called no-slip boundary conditions,

u(x, 0, z, t) = u(x, 2h, z, t) = 0

Channel flow is ideal for the study of turbulence dynamics. In turbulent flows in

channels the flow in longitudional (streamwise) and lateral (spanwise) directions is

homogeneous (beyond the entrant flow region), contrast this with turbulent boundary

layer where the boundary layer grows, albeit slowly, in the longitudional direction.
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This property of the turbulent channel flow is a great simplification and thus made

the channel the geometry of choice for experiments and numerical simulations alike.

If we accept that NS equations describe the turbulent flow adequately (for a brief

discussion see [Holmes et al., 1998]), then the equations of motion are given by:

∂uj

∂xj
= 0, (3.1a)

ρ(
∂ui

∂t
+

∂

∂xj
uiuj) +

∂p

∂xi
= kδi1 + µ∇2ui, (3.1b)

and the boundary conditions are

ui(x, 0, z, t) = ui(x, 2h, z, t) = 0

for i, j=1,2,3.

The mean flow is, 〈ui〉 = U(y)δi1, given by

〈ui〉 ≡ lim
T→∞

1

T

∫ T/2

−T/2
ui(x, t)dt ≡ lim

A→∞

1

T

∫

A
ui(x, t)dxdz

where A denotes the area of the x-z plane of the channel. The last equivalence follows

from the assumption of ergodicity which states that time averaging is equivalent to

spatial averaging over homogeneous directions, provided that A and T are sufficiently

large. If the flow is decomposed into the components of the mean and the fluctuations

from the mean by

u = 〈ui〉 + u′

and substituted into the NS equations, deemed as governing equations (3.1), it follows
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that that u′ satisfies:

ρ

{
∂u′

i

∂t
+

∂

∂xj
u′

iu
′
j

}

+
∂p′

∂xi
= −ρ

{

U
∂u′

∂x
+ δi1

(

v′
∂U

∂y
−

∂

∂y
〈u′v′〉

)}

+ µ∇2u′
i (3.2)

and the mean flow satisfies

k = −
∂

∂y

{

µ
∂U

∂y
− ρ〈u′v′〉

}

. (3.3)

It should be noted that the fluctuating component is driven by the interactions with

the mean flow, in contrast to the mean flow component which is driven by the con-

stant uniform pressure gradient k. From now on the primes on the velocity shall be

dropped and unless otherwise explicitly stated, u will signify the fluctuation velocities.

(3.3) states that the uniform pressure gradient k is balanced by the Reynolds stress

(−ρ〈u′v′〉) and by the shear stress due to mean flow(µ∂U
∂y ), which can be interpreted

as the pressure force being balanced by microscopic and macroscopic transport of

momentum to the walls. The equation for the mean can be integrated twice to yield

U(y) =
1

ν

∫ y

0
〈u′v′〉dy +

u2
τ

ν

(
2hy − y2

2h

)

.

In the absence of turbulence (i.e. in the case laminar flow), the above equation is

reduced to

U(y) =
u2

τ

ν

(
2hy − y2

2h

)

which is the well-known parabolic velocity profile.
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The wall skin friction is, by a simple force balance,

τ = µ
∂U

∂y
|(y=0) = kh,

and the friction velocity may be defined as:

uτ =
√

τ/ρ =
√

kh/ρ.

And via the friction velocity a wall length scale can be defined through

lτ =
ν

uτ
.

While lτ and uτ are reffered to as the micro scales, the channel half height, h, and the

centerline velocity, UCL, are called as macro scales and scale the core region. Another

macroscale for the velocity is the so-called bulk velocity,

Ub =
1

2h

∫ 2h

0
U(y) dy.

Nondimensionalization (normalization) provided by the scales, uτ for velocity; h for

length; h/uτ for time, i.e.:

u

uτ
→ u∗;

x

h
→ x∗;

t

h/uτ
→ t∗;

p

ρu2
τ

→ p∗,
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leads to normalized form of NS equations:

∂u∗
j

∂x∗
j

= 0, (3.4a)

∂u∗
i

∂t∗
+

∂

∂x∗
j

u∗
i u

∗
j +

∂p∗

∂x∗
i

= δi1 +
1

Rτ
∇2u∗

i , (3.4b)

with Reynolds number given by:

Rτ =
uτh

ν
=

h

lτ
.

Another normalization is possible, with lτ for the length scale. The resulting units

after this normalization are called wall units. This normalization is given by:

u

uτ
→ u+;

x

lτ
→ x+;

t

h/uτ
→ t+.

The conversion between friction and wall units:

y+ =
y

lτ
=

yRτ

h
= y∗Rτ ,

t+ = t∗Rτ .

The wall units measure smaller scales in the near wall region and commonly called

the micro units. The friction units are sometimes referred to as macro units. The next

section gives a somewhat more detailed discussion of the nondimensionalizations.
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3.2 Scales and normalizations

In this section, some details and justifications about the nondimensional units utilized

are given with asymptotic analysis of the resulting nondimensional equations.

Consider (3.3), this equation when integrated once yields:

−
ky

ρ
= −〈u′v′〉 + ν

dU

dy
− u2

τ (3.5)

Where uτ is the friction velocity defined in the previous section and is related to the

gradient of the mean flow at the wall. If the friction velocity is written in open form

(uτ =
√

kh/ρ) in (3.5), we get

u2
τ

(

1 −
y

h

)

= −〈u′v′〉 + ν
dU

dy
. (3.6)

If (3.6) is nondimensionalized by uτ and h

1 −
y

h
= −

〈u′v′〉

u2
τ

+
ν

uτh

d(U/uτ )

d(y/h).
(3.7a)

Employing the nondimensional frictional units yields,

1 − y∗ = −
〈u′v′〉

u2
τ

+
1

Rτ

du∗

dy∗
(3.7b)

It is vital to note, that for large values of the friction Reynolds number (Rτ = uτh/ν),

the viscous stress is supressed by this nondimensional form. As the stress at the wall

is predominantly viscous in nature, this normalization cannot be valid near the wall

as Rτ → ∞. This is why the second unit system (wall units) was presented in the
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preceeding section.

So one needs to define another unit system (i.e. nondimensional form), in the

immediate vicinity of the wall so that the viscous term does not diminish for large

values of Rτ . One way to achive this, is to simply absorb the friction Reynolds number

in the length scale. With this modification (3.6) becomes,

1 −
y

h
= −

〈u′v′〉

u2
τ

+
d(U/uτ )

d(yuτ/ν).
(3.8a)

Employing the nondimensional wall units yields,

1 −
y+

Rτ
= −

〈u′v′〉

u2
τ

+
du+

dy+.
(3.8b)

Clearly the form stated in (3.8b) tends to supress the change of stress in the y-

direction as Rτ → ∞. Now let us investigate (3.7b, 3.8b) asymptotically as Rτ → ∞.

Provided that y∗ remains O(1), (3.7b) reduces to

1 − y∗ = −
〈u′v′〉

u2
τ

(3.9)

This equation cannot be valid as y∗ → 0, which corresponds to finite values of y+ (i.e.

the vicinity of the wall). The part of the flow where (3.9) holds, is called the core

region.

(3.8b), can be written as, y+ being O(1),

1 = −
〈u′v′〉

u2
τ

+
du+

dy+
(3.10)

The above equation is not valid as y+ → ∞ (the core region). The region of validity
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for (3.10) is called as the surface layer.

The two layer description (surface layer - core region) presented above requires a

matching region. This matching should be done in a region characterized by the limits

y+ → ∞ and y∗ → 0. This can be achived by a process known as aymptotic matching

[Tennekes and Lumley, 1972]. This overlap region is a region of approximately con-

stant Reynolds stress. The viscous stress on the other hand is very small compared

to Reynolds stress in this region. Due to this lack of local viscous effects, this overlap

region is called inertial sublayer. Since the stress at the surface is purely viscous in

nature, as one moves down the inertial sublayer towards the wall there should be a

region in which viscous stresses dominate over Reynolds stresses (this is also suggested

by experimental evidence). This region is called the viscous sublayer and extends

up to about y+ = 5. The region where the viscous and inertial sublayers merge is

called the buffer layer. In this region neither of the two stress components can be

ignored. This layer is also the site for maximum turbulent energy production, which

occurs approximately at y+ = 12.

3.3 Kinetic Energy of Turbulence

The equations of motion for steady mean flow in an uncompressible fluid are

∂Ui

∂xi
= 0, Uj

∂Ui

∂xj
=

∂

∂xj

(
Tij

ρ

)

, (3.11)

where Tij is defined by Tij = −Pδij + 2µSij − ρ〈u′
iu

′
j〉. The mean rate of strain Sij is

defined as
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Sij =
1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)

.

The equation governing the dynamics of the mean flow kinetic energy (1
2UiUi) is

obtained by multiplying (3.11)

ρUj
∂

∂xj

(
1

2
UiUi

)

=
∂

∂xj
(TijUij) − Tij

∂Ui

∂xj
=

∂xj

(TijUij)
− TijSij . (3.12)

Here, the first term on the right-hand side represents transport of mean-flow energy by

the stress Tij , which integrates to zero over the control volume on whose surfaces either

Tij or Ui vanishes. The term TijSij is called deformation work which represents kinetic

energy of the mean flow that is lost to or retrived from the agency that generates the

stress. After substituting the stress tensor expression, we have

−TijSij = −2µSijSij + ρ〈u′
iu

′
j〉Sij

The term 2µSijSij is called viscous dissipation.

The equation governing the mean kinetic energy 1
2〈u

′
iu

′
i〉 of the turbulent velocity

fluctuations is obtained by ui = Ui + u′
i, taking the time average of all terms and

subtractiong (3.12) one gets

ρUj
∂

∂xj

(
1

2
〈u′

iu
′
i〉

)

= −
∂

∂xj

(

〈u′
jp〉 +

1

2
〈u′

iu
′
iu

′
j〉 − 2µ〈sijsij〉 − ρ〈u′

iu
′
j〉Sij

)

, (3.13)

where the quantity sij is the fluctuating rate of strain given by

sij =
1

2

(
∂u′

i

∂xj
+

∂u′
j

∂xi

)

.

21



The divergence (transport) terms on the right-hand side merely redistribute energy

from one point in the flow to another, if the energy flux out of or into a closed volume

is zero.

The term ρ〈u′
iu

′
j〉Sij occurs in (3.12) and in eqn. (3.13) with opposite signs.

Since normally negative values of 〈u′
iu

′
j〉 tend to occur in situations with positive

Sij , this term apparently serves to exchange kinetic energy between the mean flow

and turbulence. Normally, the energy exchange involves a loss to the mean flow and

a gain to turbulence1. Thus this term is called turbulent energy production.

3.4 Energy Flow between Layers

In the particular case of channel flow, Ui = U(y)δi1, the mean flow kinetic energy

reads

kU = −
d

dy

(

U

{

µ
dU

dy
− 〈u′v′〉

})

+ µ

(
dU

dy

)2

− ρ〈u′v′〉
dU

dy
.

The surface layer is a sink for momentum and therefore also for kinetic energy

associated with the mean flow. Mean flow kinetic energy transferred into the surface

layer by Reynolds stresses d(〈u′v′〉U)/dy is converted into turbulent kinetic energy

〈u′v′〉(dU/dy) (turbulence production) and into heat ν(dU/dy)2 (viscous dissipation).

If we integrate the transport term, d(〈u′v′〉U)/dy, over the control volume covering the

surface layer, we obtain an energy input to the surface layer of order ρUuτ
2 per unit

area and time, because U is fairly close to UCL at the edge of the surface layer. The

direct loss of order ρuτ
3 to viscous dissipation occurs primarily in the viscous sublayer

of ν/uτ thickness within the surface layer. Most of the mean flow energy transported

into the surface layer is thus used for maintanance of turbulent kinetic energy. In

1 This has been recently disputed in [Jiménez and Simens, 2000]
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the core region, on the other hand, the Reynolds stress is of order ρu2
τ and dU/dY

is of order uτ/h. Integrating over the entire core region, the turbulence production

per unit area and time in the core region is of order ρuτ
3 . So it seems plausible to

conclude that, most of the turbulence production occurs in the surface layer, while

the rate of dissipation of turbulent energy is also high there. The main function of

the core region is thus transport of mean flow kinetic energy into the surface layer,

where it is converted into turbulent kinetic energy.

3.5 Linear Stability

Consider the linearized form of the governing equations for the fluctuations from the

mean (3.2),

∂u

∂t
+ U

∂u

∂x
+ vU ′ = −

∂p

∂x
+

1

Re
∇2u, (3.14a)

∂v

∂t
+ U

∂v

∂x
= −

∂p

∂y
+

1

Re
∇2v, (3.14b)

∂w

∂t
+ U

∂w

∂x
= −

∂p

∂z
+

1

Re
∇2w, (3.14c)

where the primes on the fluctuating components are dropped and (′) denotes a y-

derivative. Here we followed the convention and used a scaling based on the centerline

velocity UCL, thus Re = UCLh/ν. The above set of equations is completed by the

continuity equation

∂u

∂x
+

∂v

∂x
+

∂w

∂x
= 0. (3.15)

Taking the divergence of the linearized momentum equations (3.14) and using the

continuity equation (3.15) yields an equation for the fluctuation pressure:
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∇2p = 2U ′ ∂v

∂x
,

This equation may be used with the second equation (3.14) to eliminate p, resulting

in an equation for the normal velocity, v:

[(
∂

∂t
+ U

∂

∂x

)

∇2 − U ′′ ∂

∂x
−

1

Re
∇4

]

v = 0. (3.16)

In order to complete the description of the flow field, a second equation is obtained

for the normal vorticity,

η =
∂u

∂z
−

∂w

∂x
,

where it satisfies

[
∂

∂t
+ U

∂

∂x
−

1

Re
∇2

]

η = −U
∂v

∂x
. (3.17)

The pair of equations (3.16) and (3.17) are considered with the boundary condi-

tions

v = v′ = η = 0,

at the walls.

Next, wave like solutions are introduced of the form
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v(x, y, z, t) =v̂(y)ei(αx+βy−ωt),

η(x, y, z, t) =η̂(y)ei(αx+βy−ωt),

where α and β denote the streamwise and spanwise wave numbers respectively, and ω

stands for the frequency. Introducing this representation into (3.16) and (3.17) results

in the following pair of quations for v̂ and η̂

[

(−iω + iαU)(D2 − k2) − iαU∗ −
1

Re
(D2 − k2)

2
]

v̂ =0, (3.18)

[

(−iω + iαU) −
1

Re
(D2 − k2)

]

η̂ = − iβU ′v̂, (3.19)

with the boundary conditions v̂ = Dŵ = η̂ = 0 at the walls. Here D stands for differ-

entiation operator in the normal (y) direction and k2 = α2+β2. These are the classical

Orr-Sommerfeld and Squire equations [Drazin and Reid, 1981, Schmid and Henningson, 2001].

The frequency ω appears as the eigenvalue in the Orr-Sommerfeld equation, together

with the associated eigenfunctions v̂ is generally complex. The spatial wave numbers

α and β are assumed to be real.

The critical Reynolds number for the Orr-Sommerfeld equations is computed by

Orszag as Rec = 5777.22 [Orszag, 1971] corresponding to α = 1.02055 and β = 0,

which is in line with Squires theorem;

Squire’s Theorem. If a three dimensional mode is unstable, a two-dimensional mode

(β = 0) is unstable at a lower Reynolds number.

The Orr-Sommerfeld eigenproblem is solved by a Matlab routine (see Appendix
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Figure 3.1: Spectrum of Orr-Sommerfeld equation, Re=10000, α = β = 1.

B) resulting in the typical Y-shaped spectrum figure 3.1 for Re=10000 and wave

numbers α = 1 and β = 0. In this case, there is one slightly unstable mode on the

branch A, which is called a Tollmien-Schlichting wave. This is remarkable in that

the Orr-Sommerfeld equation has unstable disturbances for flows without inflection

points. According to Rayleigh’s inflection point criterion of inviscid linear stability

theory:

Inflection Point Criterion. If there exist perturbations with ci > 0, then U ′′(y)

must vanish for some y ∈ [−1, 1].

the Poiseuille profile is stable as Re → ∞, thus viscosity in this case is destabilizing.

The eigenvalues in (3.1) are located on three main branches which have been

labeled A (cr → 0), P (cr → 1), and S (cr ≈ 2/3) where ω = cr + ici. The typical

shapes of the corresponding eigenfunctions are shown in figure 3.2. Downwards in the
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Figure 3.2: Eigenfunctions of Orr-Sommerfeld equation, Re=5000, α = β = 1 left
normal velocity, right normal vorticity.

S-branch, the wave length λ of the disturbance becomes shorter, so viscosity dominates

via ν∇2u ≈ −νλ−2u. The two branches (A and P) show the influence of the advection

(U · ∇u) + (u · ∇)U in the equation of motion. If u is localized near the wall, it moves

very slowly downstream, and thus (cr → 0). It is apperent from the shape of the A

modes which have their largest variation close to the wall that they are designated as

wall modes and have rather small phase velocities. If u is localised in the center, it

moves with the UCL, therefore (cr → 1). The P modes have their maxima close to

the center of the channel and have much higher phase speeds. They are designated as

center modes. The highly damped S modes move with a medium velocity, cr ≈ 2/3.

As Re increased, the wall modes are hardly influenced, the center and the damped

modes are faster. The merging point of the branches moves down and to the right.
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CHAPTER 4

KL DECOMPOSITION APPLIED TO CHANNEL

FLOW

s The application of any orthogonal decomposition precedure requires a complete

sufficiently resolved data set to work on. Advances in integrated circuit technology

has made direct numerical simulations feasible (DNS), DNS in turn made available

data sets of entire flow fields. Currently however, the processing speed required for

a direct simulation of turbulent flows in complex geometries or at very high flow

velocities is not reached, this is why in practical engineering problems turbulence

models or large eddy simulation (LES) techniques are employed. For an interesting

“asymptotic” account of computational cost of turbulence simulations (LES and DNS)

and the future of turbulence research consult [Jiménez, 2003].

As mentioned above, application of KL-decomposition to turbulent flow is gen-

erally1 preceeded by a direct numerical simulation. After the 4 dimensional velocity

field is computed, the KL procedure is used to extract KL modes (eigenfunctions).

1 Generation of approximate KL modes is also possible by machine learning techniques.
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The eigenfunctions obtained can then be utilized for further study.

4.1 Turbulence simulation

The DNS of turbulent channel flow is, generally, either conducted by a pseudospectral

(spectral collocation) or a spectral element method. As the name implies in DNS, no

assumptions regarding the physics of the flow are made, and all the scales are resolved

(i.e. all the scales which can be represented by the selected basis are resolved without

discrimination). In this section we present the DNS of turbulence via a pseudospectral

scheme, as this is the method employed in generation of the utilized data set.

The equations to solve numerically are the nondimensional NS equations (3.4).

The solution is obtained by a pseudospectral algorithm due to Kim, Moin and Moser

[Kim et al., 1987]. In this algorithm the velocity field is approximated by a Fourier-

Chebyshev expansion, given by

u(x, t) =

M
2
−1

∑

m=−M
2

N
2
−1

∑

n=−N
2

P∑

p=0

amnp(t)Tp(x2)e
ik1x1eik3x3 , (4.1)

where Tp(x2) denotes the Chebyshev polynomials, the complex exponentials are due

to Fourier expansion, k1 = 2πm/L1, k3 = 2πn/L3. Where L1 and L3 are the domain

lengths in the x1 and x3 directions respectively.

We used a data set generated by Webber et al. [Webber et al., 1997] in which

L1 = π, L3 = 0.3π and the resolution is 48×129×24 in the longitudinal, wall-normal,

and lateral directions, respectively. The friction Reynolds number for the simulation

(Rτ ) was set to 135.5.

Weber et al. performed the decomposition based on the numerical data obtained

for a minimal channel. The minmal channel concept was devised by J. Jimenez and
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P. Moin [Jiménez and Moin, 1990], and defined by them as the minimum size of the

periodic computational box that would sustain turbulence. In their simulation, Weber

et al., used a minimal channel which can be viewed as a 1/5th lateral-slice of the

original full channel. They defined the minimal channel to be the slice of the wide

channel in which just one roll pair appears. The minimal channel is only a model

of the full channel and can be inaccurate is some important dynamical aspects, and

higher order turbulence statistics, however, as dimension is an extensive quantity,

when only a lateral slice of 1/5 spanwise length is considered, the attractor dimension

also roughly drops by a factor of 5. In the light of these considerations, the minimal

channel is a considerably simpler laboratory to be used in exploring the dynamics of

wall turbulence.

Note that in the simulation y∗ ∈ [−1, 1], which is the canonical interval.2

4.2 The decomposition

In application of KL procedure to turbulent channel flow, the flow is generally sepa-

rated into mean and fluctuating components

u(x1, x2, x3, t) = U(x2)e1 + u′(x1, x2, x3, t). (4.2)

Before the extraction of the KL modes, where U(x2) is the mean flow as defined in

Chapter 3, however this is not followed in the presented work. The KL mode extraction

is performed on the full flow field. Henceforth the prime on u′ will be dropped and

unless otherwise explicitly stated u will denote the fluctuations from the mean.

The velocity field is homogenous in the x1 and x3 directions, so that the velocity

2 So y ∈ [−h, h]
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field is translationally invariant over the horizontal plane. It follows that a direct KL

analysis is possible via Fourier transform of u in the x1 and x3 directions,

u(k)(x, t) =
∑

m

∑

n

û(k)(m, n; x2)e
i(k1x1+k3x3), (4.3)

and averaging the correlation over the entire ensemble

κij(m, n; x2, x
′
2) =

1

K

K∑

k=1

ûi(m, n; x2)ûj(m, n; x′
2),

where the overbar denotes the complex conjugation. So it follows that for each wave

number pair (n, m) the empirical eigenfunctions φ, and eigenvalues λ are determined

from
∫ h

−h
κij(m, n; x2, x

′
2)φj(m, n; x′

2) dx′
2 = λ(m, n)φi(x2) (4.4)

with i, j=1, 2, 3. Here also note that κ is the discrete Fourier transform of two point

spatial correlation tensor given in section 2.1.

Once the empirical eigenfunctions are calculated from eqn.(4.4), the KL modes are

given by

Ψ(k)(x1, x3, x2) = e
(i 2πm

L1
x1)

e
(i 2πn

L3
x3)

Φ(k)(x2), (4.5)

where k = (m, n, q) and q is referred to as the vertical quantum number (often abbre-

viated as quantum number).

The velocity field then, can be expressed as

u(x, t) =
∑

k

ak(t)Ψ(k)(x), (4.6)
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where the KL-coefficients are obtained from the inner product

ak(t) = (u,Ψ
(k)

)ω =

∫

V
u(x, t) · Ψ

(k)
(x) · ω(x)dV, (4.7)

and (·, ·)ω denotes the weighted inner product with respect to weight ω. This

weight is the weight with respect to which the K-L eigenfunctions are orthonormal, is

borrowed from the orthogonality considerations of Chebyshev expansion polynomials,

given by form as :

ωj =
π

Ny
sin (

πj

Ny
) j = 0, . . . , Ny.

Now we list some properties retained by eigenfunctions. First of all as the eigen-

functions are derived from physical flow fields, they too are flow fields. Hence they

retain the incompressibility property [Ball et al., 1990], ∇ · Ψ(k) = 0 and satisfy the

no-slip boundary conditions, Ψ(k) = 0 at x2 = ±h. Also if we define the index

conjugation as k = [−kx,−kz, q] then

Ψ(k) = Ψ
(k).

As mentioned earlier, the possible uses of the generated empirical eigenfunction-

eigenvalue pairs are, storage of the flow field in a compressed manner (only eigenfunction-

coefficient pairs should be stored, which is a huge decrement in storage require-

ments), and the generation of “rather” low dimensional models ([Aubry et al., 1988],

[Sirovich and Zhou, 1994]).

We should note that, the tendency to produce truely low dimensional models using

a dynamical system of low order (O(10)) have generated controversy. These models

may provide insight provided that one views these models as idealizations. It must not
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be forgotten that results obtained from such models (and indeed higher dimensional

ones) are qualitative. In claiming a low dimensional model tracks NS equations, one

asserts that the strange attractor on which the solution field lies (if we assume such

an attractor exists for solution fields to NS equations) is in the space spanned by the

KL modes used. Current estimates on attractor dimension, however, produced figures

like 780 degrees of freedom for Rτ = 780. This number renders all efforts for a low

dimensional quantitative description of wall turbulence rather futile. However one

does not need to represent all modes to gain insight to the underlying dynamics. So

we conclude that “rather“ low dimensional models are a valuable tool for qualitative

analysis of wall turbulence.

As we mentioned earlier, the KL mode expansion, used in this work, is performed

on the full flow field. This is due to the fact that, the mean-fluctuating component

seperation, and seperate modelling of the mean flow which appers in (3.2), causes the

quadratically nonlinear NS equations be represented by a cubically nonlinear reduced

system of ODEs and this causes inconsistencies.

4.3 Symmetries

Channel flow is translationally invariant in longitudinal, x, and lateral, z, directions.

Due to the invariance in these directions if, the 4-dimensional velocity field u(x, t)

solves (3.4), then the field u(x + Lx , y , z + Lz , t ) is also a solution for any Lx

and Lz. It follows from this argument that, the Fourier basis provides the natural

represantation of u in the (x, z) space. Furthermore, the flow field u, reflected in the

mean-planes y = 0 (Refy) or z = 0 (Refz), or rotated by π about the x-axis (Rotx),

all generate additional solutions to Eqns. (3.4) and make up a symmetry group which
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is composed of four elements. To visualize this situation let v be a vector in a six

dimensional space of the from,

v = [x, y, z, u, v, w]T ,

then the four elements of the group can be represented in matrix form by,

Refy = diag[1, 1,−1, 1, 1,−1] =⇒ Refy v = [x, y,−z, u, v,−w],

Refz = diag[1,−1, 1, 1,−1, 1] =⇒ Refz v = [x,−y, z, u,−v, w],

Rotx = diag[1,−1,−1, 1,−1,−1] =⇒ Refz v = [x,−y,−z, u,−v,−w],

resulting in the symmetry group

G = {I,Refy,Refz,Rotx}

Where I is the identity transformation, and note that Rotx = RefyRefz. The sym-

metries have been introduced into the computation of the KL eigenfunctions through

the extension of the ensemble size by 4 fold via group actions [Sirovich et al., 1991,

Sirovich et al., 1990a]. Since KL decomposition is a statictical procedure, the size and

representation quality of the underlying ensemble plays a crucial role on the sharpness

of the resulting KL modes. The extensions of the ensemble via symmetries contributes

to this objective. Thus the KL eigenfunctions come with a degeneracy of maximum

4, i.e

λq(m, n) = λq(m,−n) = λq(−m, n) = λq(−m,−n).
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This suggests that eigenfunction calculations are only necessary for positive values of

(m, n). Others belonging to the same family of {m, n},

{m, n} = {(m, n), (−m,−n)
︸ ︷︷ ︸

conjugate pairs

; (m,−n), (−m.n)
︸ ︷︷ ︸

conjugate pairs

, }

can be generated by group actions

Refy[m, q, n, Φ1, Φ2, Φ3]
T = [m, q,−n, Φ1, Φ2,−Φ3]

T ,

Refz[m, q, n, Φ1, Φ2, Φ3]
T = [−m, q, n,−Φ1, Φ2,−Φ3]

T ,

Rotz[m, q, n, Φ1, Φ2, Φ3]
T = [−m, q,−n,−Φ1, Φ2,−Φ3]

T .

In the light of these symmetry considerations, the KL decomposition of the flow can

be written as in terms of the flowlets, um

um(x, t) = amqn(t)Ψ(m,q,n)(x) + a−mq−n(t)Ψ(−m,q,−n)(x)
︸ ︷︷ ︸

conjugate pairs

+

a−mqn(t)Ψ(−m,q,n)(x) + amq−n(t)Ψ(m,q,−n)(x)
︸ ︷︷ ︸

conjugate pairs

having physical attributes.

4.4 Mode Families

The KL modes are classified into three groups [Ball et al., 1990]. The roll modes,

which have m = 0, are independent of the longitudinal coordinate, and represent

streamwise rolls (hence the name). These modes are directly linked to streaks and
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mainly confined to the wall region. The propagating modes, have streamwise depen-

dence (m 6= 0), and have their main support in the core region, we further classify

these modes as core-modes, (m, 0, q), and (oblique) waves, (m, n, q). The last class of

modes is the so called net-flux mode familiy, which receive the forcing, and mimic the

mean flow. Wavenumbers in homogenous coordinates (m, n) range , 0 ≤ |m|, |n| ≤ 5,

the quantum number (q) belongs to the interval 1 ≤ q ≤ 25. In total there are

6 × 6 × 25 = 900 stored modes, the total number of modes created via group actions

is 3025. The cutt-off index has been determined by searching the index for which the

reconstructed flow field retains more than %90 of the original energy. A short list of

energy fractions for a number of modes is given in Table 4.1. It is obvious that most

of the energy resides in the net-flux modes as the KL modes are extracted from the

full flow field.

The modes except the net-flux family exhibit, quantum number parity,for example

k(m, n, 1) is even, and k(kx, kz, 2) is the corresponding odd function. Due to this parity

the mode selection always involves an even number of quantum layers.

It is also worthwhile to note that the for roll mode (0, 1, 1), the center of the roll

closest to the wall is approximately at the maximum turbulence production location

(y+ ≈ 12), while the propagating mode (1, 0, 1) has the main activity in the core.
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Table 4.1: Energy fractions of KL modes.

Mode (m, n, q)

√
λ2

m

E Mode (m, n, q)

√
λ2

m

E

0 0 1 0.99997759 1 0 5 0.000212495752

0 1 1 0.00475737681 2 1 2 0.00019530793

0 1 2 0.0037529525 2 0 2 0.000192116994

0 1 3 0.00105245305 0 1 5 0.000189426314

0 0 2 0.000959730622 0 1 6 0.000187764969

0 0 3 0.000958763048 2 0 3 0.000182640943

1 1 1 0.000871290228 1 0 6 0.000178927105

1 1 2 0.000861367446 0 0 8 0.000158498939

0 1 4 0.000777764922 0 0 9 0.000156747012

0 0 4 0.000739000196 1 1 5 0.000147032156

0 0 5 0.000531445248 2 0 4 0.000138155178

0 2 1 0.000493009909 0 1 7 0.000138046068

1 0 1 0.000483169474 1 1 6 0.000134863367

1 0 2 0.000367204683 2 1 3 0.000121747591

1 1 3 0.000340297887 1 0 7 0.00011491487

1 0 3 0.000330045718 0 0 10 0.000112477407

1 1 4 0.000308265006 0 0 11 9.80482E-05

1 0 4 0.000303530069 1 0 8 9.62098091E-05

2 1 1 0.000295810063 0 2 3 9.5254587E-05

0 0 6 0.000282963972 0 2 4 9.4906672E-05

0 0 7 0.000273782311 3 1 1 9.38855725E-05

0 2 2 0.000271785402 3 0 1 9.35664789E-05

1 2 1 0.000238002654 3 0 2 8.95911902E-05

1 2 2 0.000230982595 2 1 4 8.89756483E-05

2 0 1 0.000217642423 1 0 9 8.88191895E-05
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Figure 4.1: Net-flux (mean flow) KL modes.
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Figure 4.2: Roll (KL) modes Φ(0,1,1) and Φ(0,1,2).
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Figure 4.3: Roll (KL) modes Φ(0,1,3) and Φ(0,1,4).

40



0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
eigUV101

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
eigW101

X

Y

−0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
real

U
V
W

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
imag

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
eigUV102

X

Y

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
eigW102

X

Y

−2 −1 0 1 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
real

U
V
W

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
imag

Figure 4.4: Propagating (KL) modes Φ(1,0,1) and Φ(1,0,2) a.k.a. cores modes.
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Figure 4.5: Propagating (KL) modes Φ(1,0,3) and Φ(1,0,4) a.k.a. core modes.
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Figure 4.6: Propagating (KL) modes Φ(1,1,1) and Φ(1,1,2).
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Figure 4.7: Propagating (KL) modes Φ(1,1,3) and Φ(1,1,4).
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CHAPTER 5

THE NUMERICAL MODEL

5.1 Preliminaries

The computer code employed was written in FORTRAN 77 with FORTRAN 90 like

extensions available through GNU’s g77 compiler. A number of libraries are also

used (namely blas and rksuite [Brankin et al., 1993]; which are obtainable through

http://www.netlib.org). The code was written for GNU/Linux systems, and is not

portable without modification of the output routine (which uses time() system call

to create output directories).

Briefly, the code first calculates the coefficients of the coupled ODE resulting from

the projection of NS equations onto the subspace spanned by the selected KL modes.

This is followed by a time integration of the resulting set of ODEs.

In chapter 4,we have presented the KL expansion applied to channel flow. The

development involved the seperation of the flow field into mean and fluctuating com-

ponents. The KL-modes then, were obtained from the fluctuating portion of the flow.

In this approach, one needs seperate integraton of mean and fluctuating components.
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As mentioned earlier, this in turn results in an inconsistent time dependence for the

mean flow and cubic-direction-field (in KL coefficients ak).

So it is convenient to construct the KL-basis using the total flow field. The pro-

cedure to obtain the emprical eigenfunctions corresponding to the full flow field, from

the eigenfunctions constructed form the fluctuating velocity field, is relatively simple.

First observe that mean flow is only dependant on the wall normal coordinate (recall

that U(y)δi1). Thus it is void of dependence on x and z coordinates. If we consider

the structure of the KL-modes, as given by (4.5) in page 31, we can easily conclude

that only those modes with both kx = 0 and kz = 0 will be different than the modes

for the fluctuating portion.

5.2 Galerkin Projection

Galerkin projection is a common method in computational science and engineering, so

only problem specific information is presented here. We first start subtituting the KL

represantation of the velocity field (given by 4.6) into the normalized NS equations

(eqn. 3.4) [Webber et al., 2002] resulting in

∑

r

d

dt
ar Ψ(r) = −

(
∑

p

ap Ψ(p)

)

·∇

(
∑

q

aq Ψ(q)

)

−∇p+
1

Rτ
∇2

(
∑

p

ap Ψ(p)

)

+e1

To obtain a set of coupled differential equations for the coefficients for ak(t) ,

the Galerkin projection is used. This is nothing but the projection of the above

expression onto the subspace spanned by the KL eigenfunctions (which can be written

as span{Ψ(k)}). The projection is done via the weighted discrete inner product defined
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earlier (see eqn. 4.7, page 32). Performing the projection and rearranging one gets,

d

dt
ak = −

∑

p

∑

q

apaq (Ψ(p) · ∇Ψ(q),Ψ(k))ω+
1

Rτ

∑

p

ap(∆Ψ(p),Ψ(k))ω+(δi1,Ψ
(k))ω,

Note that in the above equation the term involving the pressure term drops due to

the periodicity of the pressure field and the eigenfunctions together with the fact that

the eigenfunctions are incompressible and zero along surfaces y = ±1.

If we define the coefficients prod, diss, nlin as:

prod(k) =(δi1,Ψ
(k))ω

if kx = 0 and kz = 0

diss(k; p) =
1

Rτ
(∆Ψ(p),Ψ(k))ω

if kx = px and kz = pz

nlin(k; p,q) = − (Ψ(p) · ∇Ψ(q),Ψ(k))ω

if kx = px + qx and kz = pz + qz

The resulting equations become:

d

dt
ak = prod(k) +

1

Rτ
diss(k; p)ap + nlin(k; p,q)apaq,

(summation convention on repeated indices). In the above quations k ranges over

the selected index set of conjugate pairs indxv(the full set has 3025 modes with 1525

conjugate-pairs) whereas p and q range over the full selected set cindexv. Note that
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k, p, q are actually vectors corresponding to (kxs(k),kzs(k),mds(k)).

5.3 Program details

Prior to the execution of the program, a list of selected KL modes is stored in a file,

this file is then fed to the main program. After the selected mode list is read, the

program creates the coefficients nlin, diss, prod, sets up the coupled system of nonlin-

ear differential equations and calls the integrating routine. The mode list presented

to the program does not involve those modes which are complex conjugates of each

other, these modes are formed by a subroutine called dynsys cindex().

The integration is handled by a subroutine called ut belonging to rksuite, which

is an adaptive step size Runge-Kutta integrator, and can also handle mildly stiff

differential equations. The integration is carried on about 105 time steps after the

initial transients are discarded (on a simple Reynold number based criteria). The step

size used is 10−3, halving the step size does not yield any significant change in the

results. More information about the integrator can be found at the netlib repository

(http://www.netlib.org). The data is sampled every 50 timesteps. Over %95 of

total CPU time is consumed by the integrating routine.

The KL-representation of a parabolic velocity profile is taken to be the initial con-

dition. If the integration is to be performed over a Reynolds number range, the initial

condition corresponding to the first Reynolds number is taken to be the corresponding

parabolic profile, in the following Reynolds numbers, the time average velocity profile

for the previous Reynolds number is perturbed and used as an initial condition. Use

of random initial conditions results in no perceptible change in qualitative behaviour.

As mentioned earlier the equations for ak(t) are only solved for a single member
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of a conjugate family (ak, ak) (consult page 32, for index conjugation). This can

geometrically be viewed as the integration being carried out only for quadrants I

and IV , or quadrants II and III in the wave number space (m, n). In our program

quadrants I and IV are chosen (purely for cosmetic reasons, the outcome of the

integration would be identical independent of the quadrants considered). The other

member in the conjugate family is equal to the complex conjugate of the calculated

member. This conjugate property roughly halves the calculation costs .

The code runs as follows:

• Read the index vector containing the quadrants I and IV , in wave number space

(m, n).

• Generate the full index vector, containing the indexes read and their conjugate

indexes

• Read input files, read prod coefficient-index matrix

• Calculate and store diss and nlin coefficient-index matrices

• Enter Reynolds number loop (if exists)

• Initialize the solution by projection of a parabolic profile initially, afterwards

disturb the previous solution

• Enter solution loop

In pseudo-code:
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PROGRAM dynsys_main

read indxv !read in the selected modes

call dynsys_cindex !create full index set

call dynsys_init !read in Diff. matrices,eigenfunctions etc.

call dynsys_coeff !create dissipation and nonlinear coefficients

call dynsys_init_mode !assign initial values to a_k

call setup !initialize the integration routine

for the Reynolds number range:

do i=1,nstep

call ut !integrate the equations

call dynsys_entropy !calculate entropy,

call dynsys_energy_prop !energies in mode families

if steady-state then

conduct average in time

endif

enddo

call dynsys_vel_ave !reconstruct flow field

call dynsys_slope_check !check slope at y={1,-1}

call out_put !output the solution etc.

END PROGRAM dynsys_main

subroutine dynsys_init()

read Dy,D2y !read in Chebyshev diff matrices order 1&2

read fa{x,z},fac{x,z} !read in wave number arrays

read e{u,v,w}{r,i} !read in K-L eigenfunctions

read k{x,z}{s,p} !read in index-vector values (kx,kz,mds)

read mds,mndex

read cprod(indxv) !read in the production coefficients

!corresponding to the selected set.

end subroutine dynsys_init

subroutine dynsys_coeff()

do ik=1,nmod !loop over the selected modes,number=nmod

do ip=1,len_cin !loop over full selected set,number=len_cin

call dyndiss !calculate the dissipation coeff. (ik;ip)

end do

end do

do ik=1,nmod !loop over the selected modes,number=nmod

do ip=1,len_cin

do iq=1,len_cin

call dynnlin !calculate nlin coeff .(ik;ip;iq)

enddo

enddo

enddo

end subroutine dynsys_coeff
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5.4 Validation

We run our model as a test, in a laminar setting. By laminar setting, it is understood

all the modes included in the selection are initialized as zero. As the forcing is only

on the so-called net-flux modes, we expect only the net-flux modes evolve and then

evolve to result in the parabolic profile. This setting can be thought as an idealized

channel flow, where there exist no perturbations of any kind.

In table 5.1, we present the slope of the velocity profile, at an xy-crosssection with

z = 0, at the walls. The exact value of these slopes is known to be ±Rτ . Table 5.2

gives the comparison of the calculates centerline velocity with the theoretical value of

Rτ/2, and a comparison of the calculated and the exact results.

Table 5.1: Slope of velocity profile at the walls, laminar setting

Exact,Rτ upper wall lower wall % error

20 -19.7730631 19.7730632 1.1347

40 -39.5474857 39.5474858 1.1313

60 -59.3212291 59.3212293 1.1313

80 -79.0949778 79.094978 1.1313

100 -98.8687412 98.8687414 1.1313

Table 5.2: Velocity profile, laminar setting

Rτ exact DS % error UCL
‖uexact−u‖∞

UCL

20 10 9.9294 0.71 0.0083134

40 20 19.860 0.70 0.0082703

60 30 29.789 0.70 0.0082703

80 40 39.719 0.70 0.0082702

100 50 49.649 0.70 0.0082699

Clearly our model produces the well known parabolic profile for an ideal setting.

This gives us the initial confidence necessary for further utilization the model.
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CHAPTER 6

RESULTS and CONCLUSIONS

The computer code simulating the model was run for different paramaters, such as

Reynolds number, the truncation cut-off. Obviously the most important parameter

of the problem is the number and nature of the retained KL modes. The model is

used to predict the qualitative behaviour in the region where transition to turbulence

occurs. Each selected mode subset (each different model ODE system for turbulence),

was run on a Reynolds number range. While selecting the modes, the odd-even parity

was taken into account so that number of quantum layers (the y component in index

space) is always even.

For benchmarking purposes we compare the ratio of maximum velocity to mean

velocity,(u∗
centerline/u∗

average), and velocity defect ratio (u∗
centerline − u∗

average), with

those graphed in [Dean, 1978]. The effect of mode selection on velocity defect ratio is

given in figure 6.2

Clearly the model captures the qualitative aspects of the transition but lacks the

accuracy in predicting the region of transition. However the selection of modes only

weakly affects the drop of velocity defect ratio as long as the mode parity is taken

into account (by using an even number of quantum numbers).

Also, qualitatively speaking, independent of the mode selection a periodic region

followed by a quasiperiodic region is observed before the chaotic regime. Tests are

performed both using random and parabolic initial (i.e. corresponding laminar ve-

locity profile) conditions. The initial conditions corresponding to presented results is

parabolic profile for the first Reynolds number, perturbation of the previous result for
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Figure 6.1: Velocity ratio, rectangular mode selection=2x2, 10 quantum layers.
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Figure 6.2: Velocity ratio, various mode selections.
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Figure 6.3: Original plot of the experimental data complied by Dean [Dean, 1978].

the other Reynolds numbers.

The representational (or Shannon) entropy, plotted in figure 6.9, is a measure of

lack of information about the flow. The entropy increases as the energy is distributed

among modes. For a totally stochastic system one would observe the energy fraction

of the modes be almost equal (white noise). The Shannon entropy is defined as:

S(p) = −
N∑

i=1

pi ln pi (6.1)

Where pi is the realtive frequency of event i, in our case the relative energy of the

mode i (aia
c
i/

∑
aia

c
i ). Note that S(p) is always positive and has a maximum at

lnN . For an excellent account on thermodynamics approach to complex system, see

[Beck and Schlögl, 1995]

The above graphs, illustrate transition from laminar flow to turbulence, it is clear

as Rτ is increased the signals (time histories of velocity components) approach white

noise. But as observed from figure 6.9 the magnitude of the Shannon entropy is less

than that for a fully stochastic 1.

1 Had the system been stochastic the Shannon entropy would have been around 3.9
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Figure 6.4: FFT of u-velocity signal, rectangular mode selection 2x2, quantum lay-
ers=4. At (0,−0.9, 0).
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Figure 6.5: u-velocity time signal, rectangular mode selection 2x2, quantum layers=4,
corresponds to figure 6.4. Dashed lines: u-velocity for the laminar case.
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Figure 6.6: FFT of v-velocity signal, rectangular mode selection 2x2, quantum lay-
ers=4. At (0,−0.9, 0).
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Figure 6.7: FFT of w-velocity signal, rectangular mode selection 2x2, quantum lay-
ers=4. At (0,−0.9, 0).
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Figure 6.8: FFT of w-velocity signal, rectangular mode selection 2x2, quantum lay-
ers=4. Close-up on the transition region. At (0,−0.9, 0).

As the number of quantum layers is increased the transition region is pushed to

lower Reynolds numbers. In the experiments, it is observed the transition region

lays in the range Rcr
τ ∈ (35, 55), an interval which is not far away from the exper-

imental value of Rcr
τ ' 62. The transition is reached following a periodic and a

quasiperiodic region. After the transition, the turbulent activity switches from wall to

wall, which is in accordance with other numerical experiments [Webber et al., 1997,

Jiménez and Moin, 1990].

The onset of turbulent activity can also be observed from the Reynolds stress, as

presented in figure 6.10

In line with the Squire’s theorem, two-dimensional modes are more sensitive to

perturbations, perturbations on roll and core (m, 0, q) modes are amplified at lower

Reynolds number. Also the amplification factors for 2D disturbances are higher. In a

simulation where no selective disturbances are given, first the roll-modes gain energy

from the mean flow. The roll-modes are followed by core modes and oblique-waves. At

roughly the point where the wave modes experience a relatively large energy increase,

the flow becomes turbulent. Figure 6.11 shows the periodic and quasiperiodic regions.
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Figure 6.9: Representational entropy time signal, rectangular mode selection 2x2,
quantum layers=4, corresponds to figure 6.4. Dashed lines: maximum possible
Shannon-entropy for the mode selection.

We can clearly observe the transition in figure 6.14, where as Rτ is increased from

39 to 40, the roll modes experience an amplification of O(100).

The energy exchange between roll and propagating families is evident from figures

6.15 and 6.16
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Figure 6.10: Reynolds stress rectangular mode selection 2x2, quantum layers=4.
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Figure 6.11: Propagating mode energy versus roll energy, mode selection 2x2, quantum
layers=4, top left Rτ = 39 increments of Rτ = 1, right-bottom.
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Figure 6.12: Production, roll, core, wave mode energies. The groups correspond to
production, roll, core, wave modes respectively from left to right.
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Figure 6.13: Production, roll, core, wave mode energies. The groups correspond to
production, roll, core, wave modes respectively from left to right.
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Figure 6.14: Production, roll, core, wave mode energies. The groups correspond
to production, roll, core, wave modes respectively from left to right. Close up on
transition region.
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Figure 6.15: Energy exchange between mode families, rectangular mode selection 2x2,
quantum layers=4, Rτ = 55.
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Figure 6.16: Energy exchange between mode families, rectangular mode selection 2x2,
quantum layers=4, Rτ = 47.
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6.1 Future Work

The work presented here can be extended/enhanced in a number of ways. We list

these possible extensions/enhancements in order of relative simplicity.

• Pseudospectra analysis can be performed and the results can be compared to

Orr-Sommerfeld equations. Further the spectrum can be used to verify/identify

mode sets which represent better models for the NS equations in the given

domain.

• Turbulence control can be attempted by selectively exciting/repressing certain

modes, probably with the help of machine learning algorithms (i.e. artifical

neural networks, evolution strategies.)

• DNS if turbulence on a finer grid can be performed (possibly at a Reynolds

number closer to transition). From the data obtained, a new KL-basis can be

computed. The presented study, then, can be repeated with the new set of KL

eigenfunctions and the results can be compared.
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APPENDIX A

Consider a continuous random filed u(t) with

E{u(t)} = 0 and E{|u(t)|2} < ∞ (A.1)

for t ∈ [a, b], u(t) is continuous in t for every ε > 0, there is a δ > 0 such that if

|h| ≤ δ then,

E{|u(t) − u(t + h)|2} ≤ ε2

Now define the covariance function by

R(t, s) = E{u(t)u(s)} (A.2)

R(t, s) is continuous in t and s when u(t) is continuous in t. The complex conju-

gate (·) is included for generality. Suppose that there exists a deterministic function

φ(t) in this random field, such that it has a structure typical of the ensemble of the

random field. This suggests that the function φ(t) can be identified by maximizing

the projection u(t) an φ(t) which is given by

(u, φ) ≡

∫ b

a
u(t)φ(t)dt

in a Hilbert space, where φ(t) is a square integrable function. Since the value of

(u, φ) must be independent of the magnitude of φ, the expression should be in the
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form

(u, φ)/(φ, φ)1/2

If this idea is extended to the ensemble of u(t), the expression must be maximized

in some average sense. Then the problem arises that

E{(u, φ)} = 0

by condition A.1. Hence the identification problem of the coherent structures (φ)

must be posed as the maximization of the expression

E{(u, φ)(u, φ)}/(φ, φ) = λ ≥ 0 (A.3)

Now, if φ(t) is continuous in t, then

E{(u, φ)(u, φ)} =E

{∫ b

a
u(t)φ(t) dt

∫ b

a
u(s)φ(s) ds

}

=

∫ b

a
dt

∫ b

a
ds φ(s)φ(t)E {u(t)u(s)}

=

∫ b

a
dt

∫ b

a
dsR(t, s)φ(s)φ(t),

so that (A.3) takes the form

(
R(t, s) , φ(t)φ(s)

)

(φ(t), φ(t))
= λ ≥ 0

Suppose that φ(t) is the function which maximizes λ. Then any other function

can be written as φ(t) + aφ′(t), where a is a complex constant. Using the shorthand

notation (φ for φ(t)), λ can be written as

(R , φφ) + a(R , φ φ′) + a(R , φ′ φ) + a a(R , φ′ φ′)

(φ, φ) + a(φ, φ′) + a(φ′, φ) + a a(φ′, φ′)
= λ
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Since the maximum occurs when a = 0, the derivatives with respect to a and a at

a = 0 must vanish. This results in

(
R , φ φ′

)
= λ(φ′ , φ) and

(
R , φ′ φ

)
= λ(φ , φ′) (A.4)

Fro the definition A.2 of R ,

R(t, s) = R(s, t) (A.5)

it follows that

(
R(t, s) , φ′ φ(s)

)
=

(
R(s, t) , φ′(t)φ(s)

)

=
(
R(t, s) , φ(t)φ′(s)

)

=
(
R(t, s) , φ(t)φ′(s)

)c

where (·)c denotes the complex conjugation operator, and

(φ(t), φ′(t)) = (φ′(t), φ(t))
c

so that the two equations in (A.4) are equivalent. If we take the equation for φ,

i.e.,

(
R , φ φ′

)
= λ(φ′ , φ)

which can be written as

((
R(t, s) , φ(s)

)
− λ φ(t) , φ′(t)

)
= 0

or
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(
R(t, s) , φ(s)

)
= λ φ(t)

because φ′ is an arbitrary function. Hence, the deterministic structure in the

random field is the eigenfunction of the integral equation

∫ b

a
R(t, s)φ(s) ds = λ φ(t) (A.6)

with the covariance function R(t, s) as the kernel.

The function R(t, s) regarded as a kernel is continuous in both variables , hermitian

(see cond (A.5)), non-negative and square integrable. Consequently, the solutions

to (A.6) has some advantegous properties, discussed by the fundamental theorems

for symmetric equations. Furthermore, since the integral in (A.6) is over a finite

interval, Mercer’s theorem applies as well. Thus the eigensolutions have the following

properties.

1. There are not one, but a discrete set of solutions to (A.6), which can be written

as
∫ b

a
R(t, s)φ(n)(s) ds = λ(n) φ(n)(t) n = 1, 2, . . .

2. This set can be chosen such a way that φ(n) are orthonormal, i.e.

∫ b

a
φ(n)(s)φ(m)(s) ds = δnm

3. The eigenfunctions form a complete set of functions
{
φ(n)

}
, so that the random

field may be expanded in them, such that

u(t) =
∑

n

an φ(n)(t)

where

an =
(

u , φ(n)
)

=

∫ b

a
u(t)φ(n)(t) dt
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and the series converges in the mean square.

4. The random coefficients in item 3 are statistically uncorrelated, i.e.

E
{(

u φ(n)
) (

u, φ(n)
)c}

=
(

R(t, s) , φ(n)(t)φ(m)(t)
)

=λ(m)
(

φ(m)(t) , φ(n)(t)
)

=λ(m)δmn

5. R(t, s) may be decomposed into a double series in φ(n) as follows,

R(t, s) =E {u(t) , u(s)}

=
∑

n

∑

m

φ(n)(t)φ(m)(s)E{an am}

=
∑

n

∑

m

λ(m) δnm φ(n)(t)φ(m)(s)

=
∑

m

λ(m) φ(m)(t)φ(m)(s)

and the series converges uniformly and absolutely.

6. The eigenvalues λ(n) are real, non-negative and their sum is finite, i.e.

λ(n) ≥0

E{(u , u)} =

∫ b

a
R(t, t) dt

=
∑

m

λ(m)

∫ b

a
φ(m)(t)φ(m)(t) dt

=
∑

m

λ(m) < ∞
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by the relation A.1

So the search for the deterministic function φ(t) which maximizes the mean square

of (u , φ) in some average sense results in a discrete set of solutions. These set of

eigenfunctions are orthogonal to each other, so each eigenfunction encompasses aspects

of the function u, which cannot be accomodated in the other eigenfunctions. The

decomposition of the random field into these deterministic structures is optimal in the

sense that each structure holds a large portion of the energy of the field as it possibly

can. This is a consequence of the fact that each structure is found by extremization of

the corresponding eigenvalue λ which represents the fraction of the total energy that

the structure holds.

There is one case that the solution to the integral equation (A.6) takes a simple

form. This is the case where t is a homogenous coordinate. Then R(t, s) depends on

the distance between the two coordinate points, i.e.

R(t , s) = R(s − t)

Morover if the kernel is L-periodic in s and t, i.e.

R(t , s) = R(t + mL , s + nL) ∀n, m ∈ I

where L = b − a, then (A.6) becomes

∫ b

a
R(s − t)φ(s) ds = λ φ(t)

Now suppose that,

φ(s) = e(i 2π
L

k s) k ∈ I (A.7)

then
∫ b

a
R(s − t) e(i 2π

L
k s) ds = λ(k)

let r = s − t than
∫ L/2

−L/2
R(r) e(i 2π

L
k r) dr = λ(k)
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since the kernel is Hermitian, this reduces to

2

∫ L/2

−L/2
R(r) cos (

2π

L
k r) dr = λ(k) (A.8)

This is equivalent to saying that in the homogenous direction, the sinusoids (A.7) are

suitable solutions to (A.6) and the eigenvalues are given by (A.8)
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APPENDIX B

In order to construct spectral approximation to Orr-Sommerfeld differential eigenvalue

problem, let {vj} be the vector of values of v sampled at the Chebyshev-Lobatto points,

xj = cos(πj/N) ,j = 1, . . . , N − 1. The polynomial interpolant p(x), satisfying the

boundary conditions can be constructed as follows

• Let p be the unique polynomial of degree ≤ N + 2 with p(±1) = px(±1) = 0

and p(xj) = vj for j = 1, . . . , N − 1

• Then the high derivatives can be computed by differentiating p(x)

If we set

p(x) = (1 − x2)q(x),

Then, a polynomial q of degree ≤ N with q(±1) = 0 corresponds to a polynomial p

of degree ≤ N + 2 with q(±1) = qx(±1) = 0.

Now we can carry out the differentiation as follows

• Let q be the unique polynomial of degree ≤ N with q(±1) = 0 and q(xj) =

vj/(1 − x2) for j = 1, . . . , N − 1
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• The derivatives are then discretized to yield:

pxxxx =⇒ D4 ≡
[

diag(1 − x2
j )D̃

(4)
N − 8diag(xjD̃

(3)
N − 12D̃

(2)
N

]

× diag

(

1

1 − x2
j

)

pxxx =⇒ D3 ≡
[

diag(1 − x2
j )D̃

(3)
N − 6diag(xjD̃

(2)
N − 6D̃

(2)
N

]

× diag

(

1

1 − x2
j

)

pxx =⇒ D2 ≡ D̃(2)

where D̃
()
N are the higher-order Chebyshev differentiation matrices obtained by

taking the indicated powers of DN and stripping away the first and last rows

and columns in order to satisfy th boundary conditions [Trefethen, 2000].

% orr.m - eigenvalues and eigenmodes of Orr-Sommerfeld operator

R = 10000; a = 1; b = 0; ab = a^2 + b^2; N = 120; clf

% 2nd- and 4th-order differentiation matrices:

[D,x] = cheb(N); D2 = D^2; D2 = D2(2:N,2:N);

S = diag([0; 1 ./(1-x(2:N).^2); 0]);

D4 = (diag(1-x.^2)*D^4 - 8*diag(x)*D^3 - 12*D^2)*S;

D4 = D4(2:N,2:N);

% Orr-Sommerfeld operators A,B and generalized eigenvalues:

I = eye(N-1);

A = -(D4-2*ab*D2+(ab^2)*I)/R + 2i*a*I + 1i*a*diag(1-x(2:N).^2)*(D2-ab*I);

B = 1i*(D2-ab*I);

[eigm,eigv] = eig(A,B); ee = diag(eigv);

index = find((imag(ee)==max(imag(ee))));

vz = [0; eigm(:,index); 0];

% Vertical vorticity component

for k = 1:N-1

LHS = B/R + ((a*diag(1-x(2:N).^2)-ee(k)*I));

RHS = 2*b*diag(x(2:N))*eigm(:,k);

nuk = LHS \ RHS; nu(:,k) = [0; nuk; 0];

end

nuz = nu(:,index);

% Horizontal velocity components

uz = (-1i*b*nuz + 1i*a*D*vz)/ab;

wz = (1i*a*nuz + 1i*b*D*vz)/ab;
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