DEVELOPING JXTA APPLICATIONS FOR MOBILE DEVICES
AND
INVOKING WEB SERVICES DEPLOYED IN JXTA PLATFORM
FROM MOBILE DEVICES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MESUT BAHADIR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Ozgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

Prof. Dr. Ayse Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Asuman Dogag
Supervisor

Examining Committee Members

Prof. Dr. Asuman Doga¢ (METU,CENG)

Assoc. Prof. Dr. Ali Dogru (METU,CENG)

Assoc. Prof. Dr. Nihan K. Ci¢ekli (METU,CENG)

Assoc. Prof. Dr. 1. Hakki Toroslu (METU,CENG)

Dr. Ayse Yasemin Seydim (TCMB)

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this work.

Name, Last Name : Mesut Bahadir

Signature

1ii

ABSTRACT

DEVELOPING JXTA APPLICATIONS FOR MOBILE DEVICES
AND
INVOKING WEB SERVICES DEPLOYED IN JXTA PLATFORM
FROM MOBILE DEVICES

Bahadir, Mesut
M.Sc., Department of Computer Engineering

Supervisor: Prof. Dr. Asuman Dogag

December 2004, 90 pages

Today, Peer-to-peer (P2P) computing and Web Services play an important role in
networking and computing. P2P computing, that aims addressing all the resources
in a network and sharing them, is an old paradigm that gains importance
nowadays with the advent of popular file sharing and instant messaging
applications. On the other hand, a Web service is a software system that has an
interface allowing applications to interact with other applications through Internet
or intranet. Providing methods for publishing and discovering Web services from
which mobile devices can facilitate in a P2P environment enables exploitation of
P2P and Web service technologies efficiently by mobile devices. This also extends
the range of devices that facilitate P2P and Web services technologies from
servers and desktop computers to personal digital assistants (PDAs) and mobile
phones.

In this thesis, an architecture that enables publishing and discovering Web
services for mobile clients that are inter-connected in a P2P environment is
introduced. Key issues in this architecture are allowing mobile devices to join in a

v

P2P network group, publishing Web services and discovering these services in
P2P network. Invoking Web services that are published and discovered is another
key issue in this architecture. The architecture introduced exploits P2P and Web
services standards using various tools for mobile devices. For the purpose of
organizing a P2P environment, JXTA protocols and services are used. WSDL is
used for describing Web services. JXTA advertisements help in publication and
discovery of Web services; and BPEL enables composition, deployment and
execution of Web services. The architecture introduced within the scope of this
thesis combines all these standards with tools that enable use of these standards
on mobile devices.

The work done in this thesis is realized as a part of Artemis, a project
funded by European Commission for providing interoperability of medical

information systems.

Keywords: Peer-to-peer (P2P), JXTA, Web Services, BPEL, WSDL, SOAP,
J2ME, MIDP, CLDC, Mobile applications

0z

MOBIL CIHAZLARDA JXTA UYGULAMALARI GELISTIRILMESI
VE
MOBIL CIHAZLARDAN JXTA ORTAMINDAKI WEB SERVISLERININ
CALISTIRILMASI

Bahadir, Mesut
Yiksek Lisans, Bilgisayar Mihendisligi Bolumi

Tez Yoneticisi: Prof. Dr. Asuman Dogag

Aralik 2004, 90 sayfa

Guntmizde, Esler-arast (P2P) hesaplama sistemleri ve ag servisleri iletisim ve
hesaplama alanlarinda 6nemli rol oynamaktadir. Amaci, bir ag tizerindeki butin
kaynaklart adreslemek ve paylasmak olan esler-arast hesaplama sistemleri,
bugtinlerde Esler-arasi iletisime dayanan popiler dosya paylasim ve aninda
mesajlasma uygulamalarinin citkisiyla 6nem kazanmaya baglayan eski bir
paradigmadir. Esler-arast hesaplama sistemleri yaninda, bir ag servisi, internet veya
yerel aglar tizerindeki uygulamalar arasinda etkilesim saglayan bir araytize sahip bir
yazilim sistemidir. Bir Esler-arast ortamda, ag servislerinin yayimlanmast ve
kesfedilmesi i¢in yontemler sunmak, Esler-arasi ve ag servisi teknolojilerinin mobil
cihazlar tarafindan etkili bir sekilde kullanilmasini saglayacaktir. Bu ayrica Esler-
arast ve ag servisi teknolojilerinden faydalanan cihazlarin kapsamini sunucu ve
masatstli bilgisayarlardan PDA ve mobil telefonlara dogru genisletecektir.

Bu tez calisgmasinda, bir Esler-arast ortama tye mobil cihazlar icin ag
servislerinin ~ yayinlanmast ve kesfedilmesini saglayan bilgisayar ~mimarisi
sunulmustur. Mobil cihazlarin Esler-arasi aga dahil edilmesi, ag servislerinin

vi

yayimlanmast ve bu ag servislerinin Esler-arast agda kesfedilmesi bu mimari
yapidaki anahtar konulardandir. Yayimlanan ve kesfedilen ag servislerinin
calistirilmast da bu mimari yapinin diger bir anahtar konusudur. Tanitilan mimari
yapl, Esler-arasi ve ag servisleri standartlarini, mobil cihazlar icin gelistirilen
yazilim araglar araciligryla kullanmustir. Esler-arast ortam olusturulmasi amaciyla,
JXTA protokolleri ve servisleri kullanmustir. Ag servislerinin tanimlanmast igin
WSDL kullandmistir. JXTA ilanlari, ag sistemlerinin yayimlanmasia ve
kesfedilmesine yardimct olmaktadir. BPEL, ag servislerinin olusturulmasini,
yerlestirilmesini ve calistirdlmasini saglamistir. Bu tezin kapsaminda sunulan
mimari yapi, P2P ve ag servisi standartlarini, mobil cihazlar icin olan araci
yazilimlarla birlestirmistir.

Bu tez, saglik bilgi sistemlerinin birlikte ¢alisithigini saglamak icin Avrupa
Komisyonu tarafindan desteklenen Artemis projesinin bir bélimi olarak

gerceklestirilmistir.

Anahtar Kelimeler: Esler-arast (P2P), JXTA, Ag Servisleri, BPEL, WSDL, SOAP,
J2ME, MIDP, CLDC, Mobil Uygulamalar

vii

To my family

viii

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof. Dr. Asuman Dogag for her guidance,
support, encouragement and patience during this thesis study.

I would like to thank SRDC team for their support.

I would like to thank my colleagues and classmates, Kircicegi Korkmaz,
Seda Daglar, Serpil Memis, Glizen Erézel, Yasemin Seydim, Mustafa Kemal
Kaplan, Sait Korkmaz, Merter Sualp, Serkan Toprak, and especially IThami
Gorglin for their encouragements during this study.

Finally, I would like to thank my family for their support and patience.

X

TABLE OF CONTENTS

PLAGIARISM...oiie ettt i

ABSTRACT ..ottt v

O 7ttt vi

DEDICATION. ...ttt s sessaesess et sessessacsens viii

ACKNOWLEDGMENTS......cooiiiitieeeeeceeeceeeeee e sensens ix

TABLE OF CONTENTS ..ot eseenens X

LIST OF TABLES. ..ottt senees xiii

LIST OF FIGURES. ..ottt senes X1v
CHAPTER

1 INTRODUCTION.....ceiiiiiiiiiiiieic s sesssans 1

2 ENABLING TECHNOLOGIES........cccccoosuviiiinniiciniiceeneeeieeeaene 5

2.1 Peer-to-Peer (P2P) Technology.........cccocovvivviiivininininininininininininiiicinenns 5

2.1.1 Peer-to-Peer NetWorks......ccocovivviieiviniiiiiiicciiceeccenes 5

2.1.2 P2P APPLCAtiONS.....cviviuieiuiiiieiriicieiiicieeieicie e 6

2.2 Introduction to JXTA . ..o 6

221 JXTA ALChIteCtULC....iuiuiiiiiiciiicice e 8

2211 Platform Layer......coiiencrcricreireeineeireesseenseeneenes 8

2.2.1.2 Setrvices Layer....cccoiiiiiiiiiiiiic s 9

2213 APPHCAHONS LAYEL.rrrrierrrrerrseerssrsssesssesssesssessessesssee 9

222 CONCEPLS..oiiiririeiiiiiiieeetesieie bbbttt 9

2220 PeeISuiiiiiiies 9

2222 Peet GIrOoUPS ..o 10

2223 SEIVICES..iiiiiiiiiiiiiiieiricitce e 11

2224 AdVErtiSEMEntsoccureeerreeerreerreerreerneeerseesseeessesessesessesenns 11

2225 MOAUIES....ccoeveueiiiicieiirtcree e 12

2226 PIPES wuiuiiiiiiic 14

2227 BAAPOINS.crerrreerreeesoeesseesessessesssessseessessessees s 15

2228 MESSAZES rrrserrrseeessesssesssesssresessesssesssesssessss et 15

2.2.3 PrOtOCOIS.uueiiieeiee ettt sttt et e et esereseaesene 15

2.2.3.1 Peer Discovery Protocol........ccccvcvicivicniciniccinicnninnn. 15

2.2.3.2 Peer Resolver Protocol.......ccocvviicciviiiniiccinicinicnn, 15

2.2.3.3 Peer Information Protocol.........cccoeveviuviciviciricinicnninnnn. 15

2234 Pipe Binding ProtocoL....oooneerrooessesoeescesscessesseese 16

2235 Endpoint Routing Protocol.......oroessvrssoes, 16

22.3.6 Rendezvous Protocol.......eennecccreinicinecnnecineenneeenn. 16

2.3 WED SEIVICES. .ot 16
2.3.1 XML: Extensible Markup Languagec.ccceovvvviniirivrinnnnen. 18

2.3.2 WSDL: Web Services Description Languageccccceueee. 18

2.3.3 SOAP: Simple Object Access Protocolccevviuiurinianne. 19

2.3.4 BPELAWS: Business Process Execution Language for Web
SEIVICES ..ottt 19

2.3.4.1 WSIF: Web Services Invocation Framework 20

2342 JROM: Java Record Object Model....orerrsvcrrssers 21

2343 WSGW: Web Services Gateway.......ccovuveeeeverereerencecrrennn. 22

2.4 Java TechnolOgy......cccciiviiiiiiiiininiicicin s 23
2.4.1 J2SE (Java 2 Standard Edition)........ccceceeeuvinicinininiciniciniines 24

2.4.2 J2EE (Java 2 Enterprise Edition)......cccccevuvvvvivivivciviiirinininnen 25

2.43 J2ME (Java 2 Micro Edition)........cccceeveucuviciiciiiciciiciiiinen, 25
2.43.1 CLDC (Connected Limited Device Configuration).......27

2432 CDC (Connected Device Configuration).........c....... 28

2.43.3 MIDP (Mobile Information Device Profile)................... 29

3 SYSTEM ARCHITECTURE ..ot 33
3.1 Hardware and Development Environment..........ccccocoevccicciiinnnnn. 33
BT CHENtiiiiiiiiiiicicicci s 33
3.1.1.1 Jeode Runtime Environment........ccccovvuvivenivinirincneenee 34

3.1.1.2 MEASE....oiiiiiiicc e 34

3.2 Web Services TOOlS ..o 34
321 BPWSA o 34

322 KXMLiiiciciiicc 35

323 KSOAP....cc 36

3.3 JXTA ENVIFONMENT...iiiiiiiiiiiiiiiiiiieiiieiciereieieieessiieeseisse s sessessaenens 36

330 J2SE JXTA PIatfOrm. . eoeoeeoeeeeeeeeeeeeseseceeeeessssoeeesssseeeeee 36

3.3.2 JXME : JXTA for J2ME DevVICES.....cccecvuririrrririiiriiricneriicans 36

4 ARTEMIS SYSTEM ARCHITECTURE.......ccccccceiiiiiiiiiiiiceiiccinn, 38
4.1 Artemis Mediator P2P Architecture........coovvvniiiiiininiiiicniicniicncines 40

4.2 Artemis Mediator COMPONENL.....ccciiiiriniiniiiiiiieeriie e 41

5 IMPLEMENTATION.....ccociiiiiiiiiiceiee e 45
5.1 Components of the Architecture.......ocovvivivirivirisirinriniceiriceecicnen 45

5.2 Deploying Business Processes.......ccoovvvirnieriiiinieneiiiniceniinicenrincenens 45

5.3 Invoking BPEL Web Services from Mobile Devices...........cceueueee. 47

5.4 Architecture of Publication and Discovery of Web Services in JXTA
ENVIFONMENT. ..ttt 48

5.4.1 Publishing BPEL Web Services in JXTA Network............... 51

5.4.2 Discovering BPEL Web Services Published in JXTA

NEWOLK ..o 57

5.43 Invocation of BPEL Web Services from Mobile Devices

through Relay Peef........cccviiiininiiiiiicccccce, 63

5.4.4 Direct Invocation of BPEL Web Services from Mobile

Devices (without Relay Peer)......ccooviviiiiniiiiiine, 67

6 CONCLUSIONS......cooiiiiiiiiini s 068
REFERENCES.......ccoiiiiiiiiiiii s 70
APPENDICES.......coiiiiiiiiiiiiii s 73
A A Simple Client for Mobile Device That Invokes Web Services............... 73
B WSDL Documents of Artemis Web Service......covvuiiiicieiccicciiinininne, 75
C Business Process (BPEL) Documents of Artemis Web Service................. 34

Xii

LIST OF TABLES

Table 1: Basic Network TOPOIOGIES........ccviiiiiiiiieiiiiicisiicicsiseessee s 6
Table 2: CLDC PacKage........cccuiiiiiiiiiiiiiiiiiie s sesssssssesssssans 28
Table 3: J2ME Profiles that are used with CDC.........c.ccccovvviviiiniiiiiiiriiiciaes 29
Table 4: MIDP Package........cccccuiuiiiiiiiiiiiiiiiiiiciniicniese e 31
Table 5: Properties of HP iPaq 5450 Pocket PC........cccoovivivinininininiiiiiiiciians 33
Table 6: Module Class Advertisement (MCA) of "Chapa Hospital" BPEL Web
SEIVICE. ottt 55
Table 7: Module Specification Advertisement (MSA) of "Chapa Hospital" BPEL
WED SEIVICE....iiiiiiiiiicicic s 56
Table 8: Elements of Message "SEND" for Minimal Peef.........ccccocvuviviiiiiinininne. 58
Table 9: Elements of Message "FIND" for Minimal Peer.........cccccoeviviniiiiininnne. 59
Table 10: Elements of Message "GETW" for Minimal Peef.........cccccevuiiinininnnne. 59
Table 11: Elements of Message "CALL" for Minimal Peef.....c.c.cocceeeeecvceernennnes 59
Table 12: Elements of Message "SEND" for Relay Peef........ccccovviiiviiiicinicinnnne. 60
Table 13: Elements of Message "FIND" for Relay Peef........ccccouoviiiniiiinininane. 601
Table 14: Elements of Message "GETW" for Relay Peer.......cccoeuviviiiiniiinicininne. 601
Table 15: Elements of Message "CALL" for Relay Peef......ocovvveevvincvniccinaes 62

xiil

LIST OF FIGURES

Figure 1: Web Service Stack and SemantiC........ccovvvivivivininivinininniccnecesecens 2
Figure 2: Proposed Web Service Stack........cccoiiiiiiiiiiiiiiiiiicnccccenes 3
Figure 3: JXTA ALChItECtULC.....cviviiiiiiiiiiiciciiccce e 8
Figure 4: Module Class AdVErtiSeMEnt.......cuvuvuviririririririniriiisiisiisiisisisiiseeseeseenens 12
Figure 5: Module Specification AdVertiSement.......cooeueveuruevereriiiiniiinieeneiieerecenens 13
Figure 6: Module Implementation AdvertiSemMent.......ccovvviriiiiiiiecnincenens 14
Figure 7: Methods and Roles of Web Service Model..........cccccovvvivnnininiciinincnnen, 17
Figure 8: Structure of SOAP Document.........cccucuvueiiiniiinininninininiinicccccceeennes 19
Figure 9: Representation of an XML Document in JROM and Java [18]............... 22
Figure 10: Java 2 Platform, Standard Edition Platform [21]......cccccoviviiinnniiinnnns 25
Figure 11: J2ZME Platform.......ccccociiiiniiiiiiiiiccicesnccceeeenenenes 26
Figure 12: MIDIet HEeCyCle.......covoiiiiiiiiiiiiiiccicicicicienrceeeeeenenes 31
Figure 13: The Flow of Messages in JXME Architecture........cccocovviviviiniininnencnnes 37
Figure 14: Artemis P2P Architecture........coovviviiiiiiiiiiiiiiiiiiincccccceenes 40
Figure 15: An Overview of the Mediatorf........ccoovviviiiininiicininiccicccnes 42
Figure 16: Components and Tools of the Architecture........ccccceuvveiniiiiiicccnenns 45
Figure 17: Deploying WSDL Documents in IBM BPELAWS............ccooooiinnnnn 46
Figure 18: Last Step in Deploying Business Processes in IBM BPEL4WS............ 47
Figure 19: Invocation of Deployed Web Service from ME4SE Emulator............. 47
Figure 20: Result of the INVOCAtIONc.cveviviiiiiiiiiiiiiiiicicicciccceccees 48
Figure 21: Peer Group with Mobile Devices........cccovvviviiciiiniiciiiniiccicccecnens 49
Figure 22: Architectural Design of the Complete System.........coucvvvviiivivnannen 50
Figure 23: Mapping BPEL Web Services to JXTA Module Advertisements......... 52
Figure 24: GUI of Publisher Peert........ccccciuiiiiiiiiiiiiiiiiiiccccccccceces 53
Figure 25: Finding the WSDL Services and Operations..........cccceveeerriricrereincannens 54
Figure 26: Publishing Module Class Advertisement.........c.cccovceeerviriicrrinicennincnnens 55
Figure 27: Discovery of a Web Service through JXTA Relay.......cccocovvviiiivnnanee. 58
Figure 28: Invocation of Web Services using Relay Peet........cccoevviiiiviiinininnn 63

X1v

Figure 29: Discovering the MSA from the Relay Peef........cccccvviviniiiiccncns 04

Figure 30: Main Option List of Minimal Peer (PDA).cccoovviviviniviiiniiiee 65
Figure 31: Selecting the BPEL Web Services.......cccovvninnninnninininininniniinnciccnens 65
Figure 32: Parameter List sent by the Relay Peer is filled.........cccccocoviiiiinininnnne. 66
Figure 33: Invocation Option LiSt......ccccciviiiiiiiiiiiiiiniciiccccennennes 66
Figure 34: Result of the INVOCAtION.......ccoiiiiiiiiiiice s 66
Figure 35: Invocation of Web Services without Relay Peef........cccccceveviiiiiiiininanee. 67

XV

CHAPTER 1

INTRODUCTION

In recent years, the number and types of devices that connect to the Web for
accessing information and services has increased rapidly. These devices differ in types
of architectures, capabilities, processing power, as well as connection types. They
make use of different architectures and platforms to access information and services
on the Web.

Peer-to-peer (P2P) computing and Web services are paradigms that collectively
enable various types of devices to connect to Internet or intranet for accessing
information and services. They overlap in some properties, such as publication and
discovery of services. However, Web services achieve these functionalities in a
service-oriented manner, whereas P2P systems achieve in a peer-oriented (node-
oriented) manner.

Peer-to-peer (P2P), which is a computing and networking paradigm, has gained
great importance in the past decade. It is not a new concept in computer area but
with the advent of popular file sharing and instant messaging applications, awareness
of this paradigm has increased rapidly. P2P systems consist of self-organizing
interconnected nodes, named as peers. P2P computing is the sharing of computer
resources and services between interconnected nodes.

Besides P2P computing, Web services is another popular research and
application area for enabling various types of devices to use services on the Web. A
Web service is a software system for providing services to users or other systems.
The technology introduced by Web services builds upon the specifications and the

architecture of these specifications that are denoted in Figure 1 [1].

BPEL Service Flow and Composition

Trading Partner Agreement Service Agreement

UDDI/WS Inspection Service Discovery

uDDI Service Publication .
Web Service
Stack and

WSDL Service Description Semantic

WS Security Secure Messaging

SOAP XML Messaging

HTTP, FTP, SMTP, Transport

MQ, RMI over IIOP P

Web Services Web Services Semantics

Figure 1: Web Service Stack and Semantic

In this work, the technologies introduced by Web services and P2P computing
are brought together in order to realize the application of these technologies on
mobile devices. For the purpose of implementing P2P system, the JXTA framework
is exploited.

Within the system architecture proposed by this work, the technology stack
that is denoted in Figure 2 forms the basis for this work. In this system architecture,
service discovery and publication is realized through JXTA.

Considering this stack of specifications that is built upon the mechanisms of
Web services, the Web service related specifications, Business Process Execution
Language (BPEL), Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and P2P computing related specifications provided
by JXTA, JXTA Service Advertisement and JXTA Service Discovery, constitute the

core building blocks for this work.

BPEL *

Service Flow and Composition

Trading Partner Agreement

Service Agreement

UDDI/WS Inspection &
JXTA Service Discovery *

Service Discovery

UDDI &
JXTA Service Advertisement

*

Service Publication

WSDL *

Service Description

WS Security

Secure Messaging

SOAP

XML Messaging

HTTP, FTP, SMTP,
MQ, RMI over IIOP

Transport

Web Services

Web Services Semantics

-

Figure 2: Proposed Web Service Stack

Web Service
Stack for
the Proposed
Architecture

The proposed Web service stack is utilized in Artemis [2] Web service

architecture for mobile devices. The aim of the Artemis project is to exploit

ontologies based on the domain knowledge exposed by the healthcare

information standards through HL7 [3], CEN TC251 [4], ISO TC215 [5] and

GEHR [6], to provide interoperability of medical information systems.

This thesis is organized as follows:

+ Chapter 2 describes the technologies and standards used in this work.

« In Chapter 3, the tools that exploit the standards detailed in Chapter 2

are presented. The components of the applications developed in this

work are also presented in this chapter.

+ Chapter 4 presents the Artemis system architecture.

« Chapter 5 describes the integration of the technologies and tools, and

presents the implementations. Web service invocation through mobile

devices, JXTA mobile client development, and Web service discovery

3

and invocation through JXTA environment from mobile devices are
introduced in subsections of this chapter.

« Finally, the thesis is concluded in Chapter 6.

CHAPTER 2

ENABLING TECHNOLOGIES

In this chapter, the technologies and standards that enable the work done in this
thesis are described. In Section 2.1 and Section 2.2, Peer-to-peer (P2P) computing
and an introduction to JXTA project is given. Section 2.3 explains Web services
and standards on the area of Web services. Finally, in Section 2.4, the Java

platform and especially J2ME edition of Java is explained in detail.

2.1 Peer-to-Peer (P2P) Technology

Peer-to-peer (P2P) is a paradigm in network architectures and computation that
tries to increase the utilization of computer resources such as (CPU, files, etc..)
over the Internet and local intranet. P2P technology focuses on efficient use of
computer resources by joining a P2P group as a peer through Internet. P2P
computing is characterized by direct connections between interconnected
computing nodes. A node in a P2P network may be a client requesting resources
such as shared files or processing power, or it may be a server that serves by

supplying files and other resources.

2.1.1 Peer-to-Peer Networks

A peer-to-peer network architecture consists of interconnected nodes called
peers. The information on one peer can be accessible to other peers. Various
network topologies, such as hierarchical, ring, client-server (centralized),
decentralized, and hybrid topologies, are used for organizing a P2P environment.

The properties of the topologies are given in Table 1 [7].

Table 1: Basic Network Topologies

Topology Property

Centralized All function and information about peers and shares is
centralized into one server with many peers connecting directly
to the server node to send and receive information. Many P2P

applications use a centralized component in their architectures.

Ring A cluster of peers connected together in a ring structure.

Hierarchical ~ This topology has the form of a tree structure and the head peer
sits on the root node of the tree. The node below the root node

are responsible from the nodes below it.

Decentralized = All peers can communicate with each other and have equal roles.

True P2P networks use this topology or a hybrid topology that

has the properties of this topology.

Hybrid topologies are systems that combine at least two basic network topologies.

2.1.2 P2P Applications

There are many popular applications constructed on P2P technology, such
as well-known file-sharing programs, Napster, Gnutella and Kazaa, resource
sharing programs, SETI@home, and instant messaging programs like AOL
Instant Message (AIM) and Yahoo! Messenger. All currently developed P2P
solutions rely on platforms, programming language and networking that are
peculiar to their own architecture, which implies the lack of interoperability

among all P2P applications.

2.2 Introduction to JXTA

JXTA is an open source project that defines generalized peer-to-peer (P2P) protocols
for P2P computing. [8] JXTA is a short form of juxtapose, to place side by side,
which implies that the aim of Project JXTA is not to replace the client/server
computing. JXTA allows any connected device on the network that ranges from
PDAs to servers to communicate and interact with each other as peers. Project JXTA
started as a research project at Sun Microsystems in 2001 and currently developing as

an open source project.

The project devote serious effort to provide P2P applications with an
infrastructure where the applications use standards for communication or
collaboration.

The main objectives of the Project JXTA are based on the shortcomings in
many popular peer-to-peer systems [9]. These aims are:

+ Interoperability

JXTA technology is designed to enable interconnected peers to easily
locate each other, communicate and collaborate with each other, and offer
services to each other across different P2P systems and different
communities.

+ Platform independence

JXTA technology is designed to be independent of programming
languages, operating systems, and networking platforms.

+ Ubiquity

JXTA technology is designed to be implementable on every device
with a digital heartbeat, including sensors, consumer electronics, PDAs,
appliances, network routers, desktop computers, data-center servers, and

storage systems.

By defining a standardized set of protocol specification for the peers to
operate, the Project JXTA overcomes the lack of interoperability within P2P
systems. The JXTA protocols specify the manner in which peers:

« Discover each other

+ Self-organize into peer groups

+ Publish and discover network services

« Communicate with each other

« Monitor each other

The Project JXTA targets a P2P environment where each peer is
independent of software and hardware platform, and can benefit from being

connected to other peers.

2.2.1 JXTA Architecture

The Project JXTA architecture consists of three layers; the platform layer, the

services layer, and the application layer as shown in Figure 3.

Application S
Layer JXTA Applications
JXTA Shell ||

Service JXTA Services Peer Commands

Layer

Peer Groups Pipes Monitoring

Platform

Layer

Security

Figure 3: JXTA Architecture

2.2.1.1 Platform Layer

The platform layer provides minimal and essential elements used in P2P
networking. This layer is the core of the Project JXTA. Service and Application
layers are built on top of the platform layer and this layer provides functionality to
the upper layers. The platform layer provides the following core elements, and
functions.

« FElements

« Peers
« Peer Groups
« Pipes

« Endpoints
+ Messages
+ Advertisements
+ Identifiers
« Functions
+ Creation of peers and peergroups

« Discovery
« Transport
+ Security

The elements and functions are covered in section 2.2.2 and 2.2.3.

2.2.1.2 Services Layer

The services layer provides network services that may not be necessary for a P2P
network to operate, but are common in the P2P environment. Searching and
indexing, directory, storage systems, file sharing, authentication are examples of

services provided in this layer.

2.2.1.3 Applications Layer

The application layer consists of the integrated applications like instant messaging,
document and resource sharing programs. These applications make use of the

services provided by service layer.

2.2.2 Concepts
JXTA concepts are the primary components of the JXTA platform that are
common for P2P networks. JXTA tries to keep the number of concepts minimal
in order to refrain from complexity.

The JXTA network consists of interconnected nodes, namely peers. Peers
can organize into peergroups, which provide services. Peers advertise their services to
the peergroups in XML documents called advertisements. Advertisements enable
peers to learn how to interact with a service. Peers use pipes for sending messages to
other peers. Pipes are connected to endpoints on peers.

The following subsections will give the definitions and use of the JXTA

concepts.

2.2.2.1 Peers

Peers are the interconnected nodes in a JXTA environment that implements the
core JXTA protocols. Peers can be any network-aware device ranging from cell
phones and PDAs to PCs and supercomputers. They are uniquely identified by a
peer ID that are expressed in URNs. Each peer can operate independently and
asynchronously from other peers.

Peers can advertise multiple network interfaces as peer endpoints.
Endpoints are used by peers for establishing point-yo-point connections with

other peers. In order to communicate with another peer, direct point-to-point are

9

not necessarily required; peers can use intermediary peers to communicate. There

are five types of peers distinguished according to their responsibilities that are

given as follows:

Simple Peers : publish resources to other peers and use resources
from other peers in a peer group.

Rendezvous Peers : additionally provides propagation of messages
within peer groups. A rendezvous peer knows the peers using itself as
rendezvous and also knows other rendezvous for message forwarding
between rendezvous.

Router Peers : enables communication through network address
translators (NATSs) and firewalls.

Relay Peer : spools messages for peers that are not accessible
every time. It has also simple peer functionalities.

Minimal Peer : uses a relay peer for simple peer functionalities. It

periodically polls relay peers for messaging.

2.2.2.2 Peer Groups

A peer group is a collection of peers that have a common set of interest. Peer

groups are formed from self-organization of peers and identified uniquely by a

peer group ID. There are three common motivations for creating peer group in

P2P network: exchanging services among interested members, securing accessible

services offered by a group and monitoring a group of peers. A peer group

provides a set of services called peer group services. The set of services includes

at least the core JXTA services. The core services are:

Discovery Service : for searching peer group resources such as

peers, peer groups, pipes, and services.

Membership Service : for deciding whether to reject or accept a

new group membership application (i.e., to allow a new peer to join a peer

group).

Peers wanting to join a peer group need to discover at least one member of
the peer group and then request to join. The request to join is either

rejected or accepted by the collective set of current members.

10

« A peer may belong to more than one peer group simultaneously.

+ Access Service : for validating requests made by one peer to
another.

+ The peer receiving the request provides the requesting peer credentials and
information about the request being made to the Access Service to
determine if the access is permitted. Not all actions within the peer group
need to be checked with the Access Service. Only those actions that are
restricted to a subset of member peers must be checked.

+ Pipe Service : for managing and creating pipe connections
between the different peer group members.

+ Resolver Service : for addressing queries to services running on
peers in the group and collect responses.

+ Monitoring Service : for allowing one peer to monitor other members of

the same peer group.

2.2.2.3 Services

A service is an abstract resource [10] provided by a peer or peer group. Services
can either be deployed or installed on a peer or loaded from the network. In order
to run a service on a peer or peer group, a peer may need to locate an
implementation suitable for the peet's runtime environment. Invoking or stopping
a JXTA service is not defined within the protocol, therefore any existing standard
for invoking service can be used.

JXTA protocols define advertisements for publishing and discovery of

services in JXTA environment.

2.2.2.4 Advertisements

Advertisements are structures for describing resources such as peer, peer group,
pipe, etc. In JXTA, advertisements are represented in XML documents. JXTA
defines several advertisement types but any service or peer implementation can
create advertisements. The following are the advertisement types defined in JXTA
specification:

+ Peer Advertisement

« PeerGroup Advertisement
11

+ ModuleClass Advertisement
« ModuleSpec Advertisement
+ ModuleImpl Advertisement
+ Pipe Advertisement

« Rendezvous Advertisement

2.2.2.5 Modules

Modules are designed to allow a developer to provide functionality within JXTA
[11]. They are responsible for providing JXTA's functionality, such as
implementations of the peer groups, services and applications provided by peer
groups.

The modules are provided by peer groups and they can be initialized,
started or stopped by peers. There are also service modules and application
modules. Service module is a component of JXTA that is used by peers to run a
service and application module is used for running applications.

A module definition consists of three types of advertisements:

- Module Class Advertisement

— Module Specification Advertisement

- Module Implementation Advertisement

Module Class Advertisement
This advertisement only announces the existence of a class of module and

the structure of this advertisement is given in Figure 4:

<?xml version=“1.0" encoding="UTF-8"7>
<jxta:MCA>

<MCID> .. </MCID>

<Name> .. </Name>

<Desc> .. </Desc>
</jxta:MCA>

Figure 4: Module Class Advertisement

MCID — Required — Contains a Module Class ID that uniquely identifies a

class of modules. This 1D is used as the basis for the IDs contained in the
12

Module Specification and Implementation Advertisements.
Name — Optional — Contains a name for the module class.

Desc — Optional — Contains a description of the module class.

Module Specification Advertisement
This advertisement uniquely identifies a set of protocol-compatible modules

and the structure of this advertisement is given in Figure 5:

<?xml version="1.0" encoding="UTF-8"7>
<jxta:MSA>
<MSID> .. </MSID>
<Name> .. </Name>
«Crtr> .. </Crtr>
<SURI> .. </SURI>
<vers> .. </vers>
<Desc> .. </Desc>
<Parm> .. </Parm>
<jxta:PipeAdvertisement> .. </jxta:PipeAdvertisement>
<Proxy> .. </Proxy>
<Auth> .. </Auth>
</jxta:MSA>

Figure 5: Module Specification Advertisement

MSID — Required — Contains a Module Class ID that uniquely identifies a
class of modules. This ID includes Module Class ID.

Name — Optional — Contains a name for the module class.

Crtr — Optional — Contains a name for the creator of the module
specification.

SURI — Optional — Contains a URI pointing to a specification document.
Vers — Optional — Contains information on the module specification.

Desc — Optional — Contains a description of the module class.

Parm — Optional — Contains parameters for the module class.
jxta:PipeAdvertisement — Optional — Contains a pipe advertisement that

describes a pipe for sending data to the module.

13

Proxy — Optional — Contains MSID of a module that can be used to proxy
communication with a module defined by this module specification.
Auth — Optional — Contains MSID of a module that provides

authentication services for a module defined by this module specification.

Module Implementation Advertisement
This advertisement provides information on an implementation of a

module and the structure of this advertisement is given in Figure 6:

<?xml version=“1.0" encoding="“UTF-8"7>
<jxta:MIA>

<MSID> .. </MSID>

<Comp> ... </Comp>

<Code> .. </Code>

<PURI> .. </PURI>

<Prov> .. </Prov>

<Desc> .. </Desc>

<Parm> .. </Parm>
</jxta:MIA>

Figure 6: Module Implementation Advertisement

MSID — Required — Contains a Module Class ID that uniquely identifies a
class of modules. This ID includes Module Class ID.

Comp — Optional — Contains compatibility information of the
implementation, such as for applications implemented in Java, JVM and
binding information is stored in this field.

Code — Optional — Contains any information required to run the code of
the module implementation.

PURI — Optional — Contains a URI pointing to the package that contains
the module code.

Prov — Optional

Desc — Optional — Contains a description of the module class.

Parm — Optional — Contains parameters for the implementation.

2.2.2.6 Pipes

14

Pipes are communication channels for sending and receiving messages within
JXTA framework. The communicate occurs in asynchronous way. Since pipes are

unidirectional channels, there are input and output channels.

2.2.2.7 Endpoints

Endpoints are network interfaces that are used to send and receive data using
pipes. That is, endpoints are the initial source or final destination of any message

that is transmitted over JXTA P2P network.

2.2.2.8 Messages

Messages are any piece of data structure designed to be usable on top of

asynchronous, unreliable and unidirectional transport.

2.2.3 Protocols

The Project JXTA defines several protocols to standardize the P2P networking.
These protocols provide functionality for peers on a network. These set of
protocols are XML based and describes operations such as peer discovery,
endpoint routing, connection binding, message exchange and network

propagation. We describe these protocols in the following sections:

2.2.3.1 Peer Discovery Protocol

Peer Discovery Protocol (PDP) is used for discovering published resources.
A peer, peer group, pipe, service is a resource in a JXTA environment. The
resources are published as advertisements.

A peer can find advertisements (resources) on other peers using PDP. The

PDP is the default discovery mechanism for peer groups.

2.2.3.2 Peer Resolver Protocol

The Peer Resolver Protocol (PRP) is one of the core protocols that provides a
quety/response interface for applications and services. This interface is used for

building resolution services.

2.2.3.3 Peer Information Protocol

Peer Information Protocol (PIP) is used for obtaining status information of

peers. The status information may be state, uptime or traffic load on a peer. The
15

PIP protocol provides messages for querying status information of a peer.

2.2.3.4 Pipe Binding Protocol

This protocol allows a peer to bind a pipe advertisement to a pipe endpoint,

thus, enables messages to go over the pipe.

2.2.3.5 Endpoint Routing Protocol

Endpoint Routing Protocol allows a peer to ask a router for any available
route for sending a message to a destination peer. The response of the router peer
can be a list of gateways along the route. By implementing this protocol, any peer

can be a router peer.

2.2.3.6 Rendezvous Protocol

The responsibility of rendezvous protocol is to enable peers to propagate
messages to each other, and to reduce network traffic by caching most essential

information to the operation of the P2P network.

2.3 Web Services

A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network [12]. Web services are self-contained, self-
describing, modular applications that can be published, located, and invoked
across the Web [13]. Web services perform functions, which can be anything from
simple requests to complicated business processes. Once a Web service is
deployed and published, other applications possibly other Web services can
discover and invoke the deployed service. Web Services provides an environment
that does not depend on any platform or programming language.

Web services use some standards for enabling use of software elements of
Web services. These standards allow Web services to be

+ described

+ published

+ discovered

+ invoked

in a standard way and these methods are illustrated in Figure 7.

16

Service Service
I Invocation a Description
Service Requestor [« > Service Provider
J _
Service Senice
Discovery Publication

Service Registry

Figure 7: Methods and Roles of Web Service Model

The roles in Figure 7 can defined as follows:

Reguestor - Web service client that discovers and invokes the service.
Provider : Web service server that composes, describes and publishes the
service.

Registry : Keeps the description of Web services published by providers

and allows requestors to search published Web services.

Web services are enabled by use of Extensible Markup Language (XML)
for standardization of data formats and exchange of data through Internet or
intranet.

For describing Web services, Web Services Description Language (WSDL)
is widely used which is a W3C standard. For publishing and discovering Web
services, Universal Description and Discovery Integration (UDDI) framework is
used. Simple Object Access Protocol (SOAP) is a framework for invoking

services via message exchanging.

17

2.3.1 XML: Extensible Markup Language
Extensible Markup Language (XML) is a simple, flexible, self-describing text
format language [14]. XML is a World Wide Web Consortium (W3C) standard
and widely adopted by the computer community. It is derived from SGML.
XML takes an important role in the exchange of a wide variety of data on

any platform, such as Web services, P2P computing.

2.3.2 WSDL: Web Services Description Language
Web Services Description Language (WSDL) is an XML based language for
describing network services as a set of endpoints operating on messages [15]. The
operations and messages are described abstractly, and then bound to a concrete
network protocol and message format to define an endpoint. WSDL is extensible
to allow description of endpoints and their messages.

A WSDL document defines services as collections of network endpoints, or
ports. In a WSDL document, the abstract definition of endpoints and messages are
separated from their concrete network deployment or data format bindings. This
allows the reuse of abstract definitions: messages, which are abstract descriptions of
the data being exchanged, and por# #pes which are abstract collections of gperations.
The concrete protocol and data format specifications for a particular port type
constitutes a reusable binding. A port is defined by associating a network address
with a reusable binding, and a collection of ports define a service. Hence, a
WSDL document uses the following elements in the definition of network
services:

® Types —a container for data type definitions
Message — definition of the data being communicated.
Operation — action supported by the service.

Port Type — set of operations supported by one or more endpoints.

Binding— a protocol and data format specification for a particular port
type.

® Port — a single endpoint defined as a combination of a binding and a
network address.

® Service — a collection of related endpoints.

18

Web Services Description Language (WSDL) is the standard for describing
a Web service in W3C.

2.3.3 SOAP: Simple Object Access Protocol
Simple Object Access Protocol (SOAP) is a protocol for exchange of

information as messages in a decentralized, distributed environment [16]. It is
based on XML and consists of three parts: an envelgpe that defines a framework for
describing what is in a message and how to process it; a set of encoding rules for
expressing instances of application-defined datatypes; and a convention for

representing remote procedure calls and responses.

Header

Body

Envelope

SOAP Document V

Figure 8: Structure of SOAP Document

2.3.4 BPELA4WS: Business Process Execution Language for
Web Services

Business Process Execution Language for Web Services (BPEL4WS) is an XMIL-
based flow language that enables defining business processes as coordinated sets
of Web service interactions and defines both abstract and executable processes.
Web services interactions may include processes contained within enterprise or
between enterprises.

The aim of BPEL4WS is to provide a standard platform for creation of
composite Web services and interactions between business partners. The language

is based on the IBM's WSFL and Microsoft's XLANG languages and merges the
19

concepts of these two languages. In order to realize its aim, BPEL4WS adds many
concepts from structured programming languages such as, sequential execution,
iteration, etc.

BPELAWS allows describing complex business processes and business
interactions between or within enterprises. The main activities to provide these
complex business process interactions are:

+ performing Web service invocations

+ manipulating data

+ handling fault conditions

+ terminating process

The above activities may be nested within structured activities that defines,
how these activities run, such as in sequence or in parallel.

2.3.4.1 WSIF: Web Services Invocation Framework

The Web Service Invocation Framework (WSIF) is a set of libraries that provides
a simple API for invoking Web services. The features of WSIF is given as follows
[17]:
+ has an API that provides binding independent access to any Web service.
« has a port type compiler to generate a stub that allows invocation using
the abstract service interface.
+ allows stubless (completely dynamic) invocation of Web services.
+ anew binding can be plugged in at runtime.
« allows the choice of a binding to be deferred until runtime.
WSIF invocation includes the following steps :
+ Loading a WSDL document.
+ Creation of a port factory for this service.
+ Retrieving the service port using the port factory.
« Creation of messages.
+ Invoking by supplying the port with the name of the operation to be
invoked, along with an input and/or output message as desctibed by the

operation.

20

2.3.4.2 JROM: Java Record Object Model

Java Record Object Model (JROM) is a tool consisting of a set of interfaces for
providing an in-memory tree representation of instances of structured, typed
information and that is based on the XML Schema data type system. JROM
values can either be simple values, or complex values that can contain an arbitrary
number of elements and attributes. [18§]

JROM is used in BPEL as an intermediate representation between XML
and Java code. JROM enables dynamic invocation without needing Java class
generation. It allows swapping in different SOAP engines with no need for the
writing of custom de-serializers or serializers for specific Java classes. The simple
JROM values contain a Java value that is able to represent the given Schema type. For
example, a JROMFloatValue contains a Java float and corresponds to the Schema
float simple type. However, all complex types are mapped to the tree structured
JROMComplexValue. [19]

In Figure 9, an illustration of JROM and Java representation of an XML

document is given.

21

=workiddress xsitypeZtypeNs Addresd"=

<street xsi:typedxsd:strind’=30 Saw Mill PRiwver
Boad</strestr

Zzip xsitypeFusd: int”=10832< mip=
=phone xsi:typetypelNs: Phone' =
<areaCode xsitypezsd:int™=91l4=< areaCode-
“nunber xsittypefusd:string’=5E5E1Z1Z< /munher>
= /phone=

< Sgorkiddress-

workLddress

Java

Figure 9: Representation of an XML Document in JROM and Java [18]

Dynamic invocation of Web services in BPEL is enabled by the use of
JROM and WSIF. Use of JROM with WSIF provides a powerful approach
building dynamic Web services systems such as business processes in BPEL.

WSIF supports both JROM and Java types.

2.3.4.3 WSGW: Web Services Gateway
Web Services Gateway (WSGW) is a set of run-time libraries for providing a

gateway between Internet and intranet application [19]. The gateway enables
clients to invoke Web services safely from outside a firewall. WSGW provides the

following features:

+ Service mapping: Maps an existing WSDL-defined Web service to a new
service that is served by the gateway to others.

« Export mapping: Maps an internal service to an external service
in Internet. The WSDL file in enterprise intranet is regenerated as
a new WSDL file. The clients that request the service from outside
will use the gateway as the service end-point.

« Import Services: Maps an external service to an internal service.
An internal service requestors invoke the service as if it is running
on the gateway.

« Transformation: The original web service protocol may change to
another protocol at the end of service mapping. For example, an internal
service available on SOAP over JMS may be invoked using SOAP over
HTTP.

+ Security and management: The web services gateway provides a single

point of control, access, and validation of Web service requests.

2.4 Java Technology

Java is an object-oriented programming language and a platform developed by
Sun Microsystems. Java technology is based on Java virtual machine (JVM)
working as a translator between the language and the operating system and the
hardware[20]. JVM has two functions: first, compiles the java programs into an
intermediate language, namely java bytecode, then, interprets the java bytecode on
each time the program is run. JVM is responsible for the hardware-independence
and operating system-independence of the java platform, the small size of
compiled code (bytecodes), and platform security. Thus, JVM enables Java
programs to run on any system.

Java platform consists of JVM and Java Application Programming Interface
(API). API is a collection of libraries used in development of java applications.

There are three versions Java platform that are specialized for different type
applications and devices:
o J2SE (Java 2 Standard Edition) : Standard edition is the core of

the Java technology that includes tools, runtimes, and APIs for developers who

23

write, deploy, and run applets and applications in the Java programming
language.

o J2EE (Java 2 Enterprise Edition) : This version is used in construction
and deployment of multitier enterprise applications by basing them on
standardized modular components. J2EE provides a complete set of services
to modular components of an enterprise application, and handles many details
of application behavior automatically, without complex programming.

o J2ME (Java 2 Micro Edition) : Micro edition version of Java is a
optimized for Java runtime environment that specifically addresses the small
(physically and in memory capability) devices like mobile phones and
consumer and embedded devices ranges from smart phones or pagers to the

set-top box.

2.4.1 J2SE (Java 2 Standard Edition)
Java 2 Platform, Standard Edition (J2SE) is an edition of Java language and

platform that provides a complete programming environment for development of
desktop or server applications [21]. J2SE platform consists of two products: Java
2 Runtime Environment, Standard Edition (JRE) and Java 2 Software
Development Kit, Standard Edition (SDK). The JRE provides the Java APIs, Java
virtual machine, and other components necessary to run applets and applications
written in the Java programming language. Java 2 Platform, Enterprise Edition
(J2EE) technology is based on JRE. The JRE does not contain tools and utilities
such as compilers or debuggers for developing applets and applications.

The Java 2 SDK is a superset of the JRE. It contains everything that is in
the JRE as well as tools such as the compilers and debuggers necessary for
developing applets and applications.

Figure 10 illustrates all the component technologies in J2SE platform and in

which layer these technologies located.

24

Java™ 2 Platform, Standard Edition v 1.4

~ OguSlogTE tave Compile | ova Debugger | javodoc | pon
Tﬂm.iﬂ

User Interface
Toolkits :

Integration
SOK APls

Core
APls

lava
Virtual

PMatforms Solaris™ ‘Windows

Linux Other

Figure 10: Java 2 Platform, Standard Edition Platform [21]

2.4.2 J2EE (Java 2 Enterprise Edition)
The Java 2 Platform, Enterprise Edition (J2EE) is the Java platform that is based

on on JRE. The aim of J2EE is to standardize developing multitier enterprise
application and simplify development and deployment of standardized enterprise
applications. [22].

The J2EE platform takes advantage of many features of the J2SE
environment. The J2EE supports Enterprise JavaBeans components, Java Servlets

API, JavaServer Pages and XML technology.

2.4.3 J2ME (Java 2 Micro Edition)
The Micro Edition of the Java 2 Platform (J2ME) is a robust, flexible

environment for applications running on embedded or consumer devices[23]. The
consumer devices range from mobile devices and personal digital assistants
(PDAS) to advanced consumer systems such as TV set-top boxes. J2ME includes
Java virtual machines and a set of standard Java APIs defined through the Java
Community Process (JCP) [24].

The set of standard Java APIs included in J2ME are flexible user interfaces,

a robust security model, a broad range of built-in network protocols, and

25

extensive support for networked and offline applications that can be dynamically
and securely downloaded and deployed.

The J2ME platform is deployed on millions of consumer and embedded
devices and supported by leading companies.

The J2ME architecture comprises a variety of configurations, profiles, and
optional packages. Since there are various types of consumer devices and
embedded systems that uses J2ME platform, for each system, a device-specific
package is formed from these configurations and profiles to provide a complete
Java runtime environment that closely fits the requirements of the system. Each
combination is optimized for the memory, processing powet, and I/O capabilities
of the devices. The components of the J2ME architecture is layered stack and
consisting of a virtual machine and core J2ME class libraries besides

configurations and profiles. The layered stack of J2ME is illustrated in Figure 11.

Mobile || Personal
Foundation Personal Personal Basis Inf[{;ji?;on A[;:f;t{:int Profile
Profile (FP) || Profile (PP) Profile (PBP) Profile Profile
(MIDP) || (PDAP)
Connected Deviee Configuration (CDC) Mm;fn“&mmﬂgmm

Java
Edition
j | Virtual
CVM L m Machine
byl _ 32 Bit Microprocessor, Processor
o o BT LD

Figure 11: J2ME Platform

The components of J2ME architectures can be defined as follows:

« A confignration is consisting of a set of libraries and it provides virtual-
machine features that must be present in a J2ME environment. The set
of libraries with a virtual-machine defines a runtime-environment.

Configurations provide the base functionality for a particular range of
26

devices that share similar characteristics, such as network connectivity
and memory footprint. Currently, there are two J2ME configurations:
Connected Limited Device Configuration (CLDC) and the Connected
Device Configuration (CDC). A configuration provides a Java platform
for creating applications for consumer and embedded devices when
joined with one or more profiles.

A profile is a set of standard Java APIs that support consumer or
embedded devices of a chosen configuration. When used with a specific
configuration, a profile provides a complete Java application
environment for the target device class. Together, they provide a rich
run-time environment. Mobile Information Device Profile (MIDP) is a
well known profile that is used with CLDC to provide a complete Java
application environment for cell phones and other devices with similar
capabilities.

An optional package is a set of technology-specific APIs that extends the
functionality of a Java application environment. Well known optional
packages used in a J2ME environment are Wireless Messaging API
(WMA) and the Mobile Media API (MMAPI).

2.4.3.1 CLDC (Connected Limited Device Configuration)

The Connected Limited Device Configuration (CLDC) provides the base set of

application programming interfaces and a virtual machine for resource-

constrained devices like mobile phones, pagers, and PDAs [25]. CLDC can be

used with a profile, such as MIDP, to provide a Java platform for developing

applications to run on devices with limited memory, processing power, and

graphical capabilities.

The properties of the devices where CLDC can be used are as follows:

16-bit or 32-bit processor with a clock speed of 16MHz or higher
At least 160-192 kilobytes of total memory, including both RAM and
flash or ROM, available for the Java platform.

Limited power, often battery powered operation.

27

« Connectivity to a network, often with a wireless, non-continuous

connection with limited bandwidth.

« User interfaces with varying degrees of sophistication (low-level GUI

APIs to high-level APIs) down to and including none.

The goal of the CLDC specification is to standardize a highly portable,
minimum-footprint Java application development platform for resource-
constrained, network-connected devices. It is developed through the Java
Community Process (JCP). We can state the design goals of CLDC as follows:

+ Reducing the requirements for deploying application.

« Making use of application portability by abstracting native system
operations into standardized APIs

« Extending device functionality by allowing dynamic downloading of
applications into the device

The set of base CLDC API packages are:

Table 2: CLDC Package

CLDC Package Description
java.io 1O classes and packages
java.lang virtual machine classes and interfaces
java.util utility classes and interfaces
javax.microeditionio = CLDC generic connection framework classes and
interfaces

2.4.3.2 CDC (Connected Device Configuration)
The Connected Device Configuration (CDC) provides Java technology to build

and deliver applications that can be shared across a range of network-connected
consumer and embedded devices, including high-end PDAs [20].

The properties of the devices where CLDC can be used are as follows:

+ Atleast 32-bit processor with a clock speed of 16MHz or higher

« Atleast 2-2.5 megabytes of total memory, including both RAM and flash

or ROM, available for the Java platform.

CDC is part of the J2ME platform and developed through JCP like other

J2ME configurations, profiles and other tools such as optional packages. Target
28

devices of CDC technology consisting of consumer devices and embedded

systems those having higher capabilities, displays and processing power. Some

properties of CDC configuration are as follows:

+ can be integrated with enterprise applications

+ provides more secure application, deployment and network environment

« provides rich set of user interface APIs

+ supports a wide range of consumer and embedded devices

+ supportts reuse of code that are developed for J2SE-based applications

As illustrated in Figure 11, CDC can be used with Foundation Profile (FP),

Personal Profile (PP) and Personal Basis Profile (PBP). The properties of these

profiles are given in Table 3 as follows.

Table 3: J2ME Profiles that are used with CDC

Foundation Profile (FP)

+ Java class libraries are based on J2SE edition
+ There is no GUI support
+ Provides CLDC compatible library.

Personal Basis Profile (PBP)

In addition to FP features, PBP supports:

+ lightweight Java Abstract Windowing Tool
(AWT)

« Xlet class which is an application model
based on Java TV APIL

Personal Profile (PP)

In addition to PBP APIs, PP supports:
+ heavyweight and lightweight AWT

« applets

2.4.3.3 MIDP (Mobile Information Device Profile)
The Mobile Information Device Profile (MIDP) is a profile that provides Java

runtime environment for resource-limited mobile devices [27]. MIDP API allows

user interface design, networking and persistent storage support. It is supported

by CLDC and when combined with the CLDC, provides a standard Java runtime

environment for mobile information devices, such as cell phones and mainstream

PDAs. MIDP is the most widely adopted and used profile for mobile devices and

29

PDAs for enabling for mobile Java applications to run.

CLDC and MIDP provide the core application functionality required by

mobile Java applications. The properties of MIDP APIs are as follows:

User Interface: MIDP provides the code graphical user interface classes
for Java applications. The GUI is optimized for the small display size,
varied input methods of modern mobile devices. MIDP provides
intuitive navigation and data entry by taking advantage of phone
keypads, extra buttons such as arrow keys, touch screens. MIDP
applications are installed and run locally, can operate in both networked
and unconnected modes, and can store and manage persistent local data
securely.

Connectivity: MIDP enables developers to use the native data network
and messaging capabilities of mobile information devices. It supports
leading connectivity standards, including HTTP, HTTPS, datagrams,
sockets, server sockets, and serial port. MIDP also supports the Short
Message Service (SMS) and Cell Broadcast Service of GSM and CDMA
networks, through the Wireless Messaging API (WMA) optional
package.

Multimedia: MIDP supports development of multimedia applications.
Beside high-level Ul API, MIDP provides low-level user-interface API
for application developers who want to take greater control of graphics
and input. Mobile Media API (MMAPI) optional package can also be
used for adding video and other rich multimedia content to MIDP
applications.

Over-the-Air-Provisioning: MIDP provides dynamic and secure
deployment of mobile applications.

Security: The network, application and information security on a mobile
device is provided MIDP. MIDP supports HTTPS which enables
applications to use existing security standards such as SSL send and

receive encrypted data.

The set of base MIDP API packages are:

30

Table 4: MIDP Package

MIDP Package Description

javax.microedition.ledui | UI classes and interfaces

javax.microedition.rms Record management system classes to support
persistent storage

javax.microedition.midlet MIDP application definition support classes and

interfaces

javax.microedition.io MIDP generic connection framework classes and
interfaces

java.io IO classes and packages

java.lang virtual machine classes and interfaces

java.util utility classes and interfaces

A J2ME application build on top of MIDP profile and CLDC configuration is
known as MIDlet. MIDlets are similar to applets in that they both have state
information. A MIDlet can exist in four different states: loaded, active, paused,

and destroyed. The lifecycle of a MIDlet is illustrated in Figure 12.

startApp

loaded \‘

StartAPP gl gctive

/ estroyApp

paused

P destroyed

destroyApp

Figure 12: MIDlet lifecycle

First, MIDlet is loaded into the device and the constructor is called, it is in the

loaded state. After startApp() is called, the MIDlet is in the active state until the

31

program manager calls pauseApp() or destroyApp(); pauseApp() pauses the
MIDlet, and desroyApp() terminates the MIDlet.

32

CHAPTER 3

SYSTEM ARCHITECTURE

In this chapter, the system architecture is explained together with the tools used.
This chapter aims to give a detailed explanation of the components of the system
architecture and tools used in the thesis. Firstly, we introduce the hardware and
software environment. Then, we explain the web services standards and tools.

Finally, we conclude this chapter with the JXTA environment tools.

3.1 Hardware and Development Environment

The client and server of the proposed architecture are implemented on different
types of machine architectures. The server is a desktop application, whereas, the
client is developed as a mobile application. The mobile device used in this thesis

is a personal digital assistant (PDA).

3.1.1 Client
The client device used for invoking Web services and joining to a P2P
environment is HP's iPaq 5450 Pocket PC. Microsoft Pocket PC 2002 operating
system is running on the device. Other properties of the device is given in the
Table 5.
Table 5: Properties of HP iPaq 5450 Pocket PC

Operating System | Microsoft Pocket PC 2002

Processor 400MHz Intel XScale

Memory 64 MB RAM, 48 MB ROM

Display Type 16 bit, 64K color, 240 x 320

Wireless Built in Bluetooth (1.1 compliant) and 802.11b (Wireless
Connectivity Local Area Network (WLAN))

33

3.1.1.1 Jeode Runtime Environment

Jeode platform is an implementation of Sun Microsystems JVM specification that
supplies a java run-time environment for resource-constrained devices that have
limited memory, battery power and display screen. Embedded and mobile devices
that Jeode supports have the following characteristics:

« diverse architecture types

+ less memory

+ variety of graphics

+ low power processors

Jeode runtime environment provides an environment that compatible with
J2ME configurations such as CDC and CLDC.
Jeode platform is implemented by Insignia Solutions Inc. [28] and it is a

product of this company.

3.1.1.2 MEA4SE

MEASE is a library that enables J2ME APIs, such as lcdui, persistent storage,
networking, and the Generic Connection Framework available for the Java 2
Standard Edition [29]. The motivation of the project is:
+ providing limited development support for platforms where no emulator
is available.
+ allowing demonstration of MIDlets before installation on the device.

+ enabling personal java devices to run MIDlets.

3.2 Web Services Tools

In this section, the tools that enables the use of web services standards on server

and client machines are introduced.

3.21 BPWS4]
The Business Process Execution Language for Web Services (BPWS4J) is a

platform on which business processes, written using the Business Process
Execution Language for Web Services (BPEL4WS), can be executed.[30] BPWS4]

runs in a servlet containetr.

34

The BPWS4] engine works as follows:

— The BPWS4]J engine takes
- a BPELAWS document that describes the process to be executed,
- a WSDL document (without binding information) that describes
the interface that the process will present to clients (partners in
BPELAWS terms),
- a WSDL documents that describe the services that the process
may or will invoke during its execution.

- From this information, the process is made available as a Web service
with a SOAP interface. A WSDL file that describes the process's
interface may be retrieved from the run-time. The BPWS4] engine
supports the invocation, from within the process, of Web services that

have a SOAP interface, that are EJBs, or that are normal Java classes.

3.2.2 kXML

kXML is a library that provides an XML pull parser and writer for all Java
platforms including the Java 2 Micro Edition (J2ME) (CLDC/MIDP/CDC). It is

designed for constrained environments such as MIDP devices. The project is

maintained by the Enhydra organization [31]. kXML provides the following key

features:

XML Namespace support

"Relaxed" mode for parsing HTML or other SGML formats

Small Memory footprint

A Pull-based patser for simplified parsing of nested / modularized XML
structures

XML writing support including namespace handling

Optional kKDOM

Optional WAP support (WBXML/WML)

Despite supporting XML for mobile devices, kXML has the following restrictions:

kXML does not support user defined (external) entities.

The doctype declaration can not be directly parsed.

35

3.2.3 kSOAP

The kSOAP project is a lightweight pull parser based on kXML, designed
specifically for use with MIDP devices. The project is maintained by the Enhydra
organization [32].

kSOAP is a relatively simple tool for invoking Web services through SOAP
messages. It supports capturing and handling faults in SOAP messaging.

kSOAP requires two objects for messaging, namely SoapObject and
HittpTransport and an object for mapping SOAP faults to an exception, namely
SoapFanlt.

3.3 JXTA Environment

The Project JXTA envisions creating a P2P environment where interconnected
peers easily communicate and collaborate with each other. It provides this
flexibility by standardizing only the protocols. This enables JXTA to be

architecture-independent, language-independent and ubiquitous platform.

3.3.1 J2SE JXTA Platform
J2SE JXTA platform is a reference implementation of core and standard JXTA

protocols in Java programming language using J2SE. It provides sets of libraries
that contains Java APIs for programming JXTA applications in Java. The JXTA
platform standardizes methods for:

+ discovering other peers

« advertising peer resources (Peer, PeerGroup, Service and Pipe

Advertisements)
« communicating with each other (Pipes)
« cooperating with each other to form secure peer groups (group

membership)

3.3.2 JXME : JXTA for J2ME Devices
JXME is an implementation of a small subset of JXTA platform protocols for
resource-limited devices. It provides classes for connecting to a relay peer and
polling for message spooled in relay peer. There are three classes mainly used for

connecting to a peer, polling for messages, constructing messages that will be

36

send and evaluating the received message. The classes are:
+ PeerNetwork

« Message

« FElement

Figure 13: The Flow of Messages in JXME Architecture

37

CHAPTER 4

ARTEMIS SYSTEM ARCHITECTURE

Most of the health information systems today are proprietary and often only serve
one specific department within a healthcare institute. A patient’s health
information may be spread out over a number of different institutes which do not
interoperate. This makes it very difficult for clinicians to capture a complete
clinical history of a patient.

On the other hand, the Web services model provides the healthcare
industry with an ideal platform to achieve the difficult interoperability problems.
Web services are designed to wrap and expose existing resources and provide
interoperability among diverse applications.

Introducing Web services to the healthcare domain brings many advantages:

« It becomes possible to provide the interoperability of medical
information systems through standardizing the access to data through
WSDL and SOAP rather than standardizing documentation of electronic
health records.

+ Medical information systems suffer from proliferation of standards to
represent the same data. Web services allow for seamless integration of
disparate applications representing different and, at times, competing
standards.

« Web services will extend the healthcare enterprises by making their own
services available to others.

« Web services will extend the life of the existing software by exposing

previously proprietary functions as Web services.

38

The Artemis project [2] the interoperability problem in the healthcare
domain where organizations have proprietary application systems to access data.
To exchange information there are different standards like HL7, GEHR or
CEN’s ENV 13606. The aim of the Artemis project is to allow organizations keep
their proprietary systems, yet expose the functionality through Web services.
Furthermore, an ontology based description of these data exchange standards are
proposed. One of the goals of using ontologies is to reduce (or to eliminate)
conceptual and terminological differences among the healthcare data exchange
standards through semantic mediation.

Mediators are developed to process data from possibly several data sources
and to prepare them for the effective use by applications [33]. However with
WWW becoming the global communication medium and with the Semantic Web
initiative, ontologies are becoming the primary part of the mediation process.

Artemis Web service architecture does not rely on globally agreed
ontologies: rather health-care institutes develop their own ontologies. However, it
is reasonable to expect healthcare institutes to develop their own ontologies based
on the concepts provided by the existing healthcare information standards since

considerable semantic information is already captured there.

39

peer 1

e Mediator 2 peer 2
HealtCare i
Institute Institute
: Super—Pesr
& Iﬁefrlfrfna:e Mediator 1 S

Super—Peer

ARTEMIS JXTA peer N
. based
HealtCare S - - gt
Institute . P2P NETWORK Iﬁfﬂl.fc are
. nefifte
- i :
~
peer N Q
HealtCare
Institute
HealtCare
Institute
peer 1
e peer 2

HealtCare '

Institute : HealtCare
Institute

Figure 14: Artemis P2P Architecture

Artemis architecture then helps to reconcile the semantic differences among
healthcare institutes through the mediator component. To provide scalability and
discovery of other mediators, it has a P2P communication architecture. An

overview of Artemis architecture is given in Figure 14.

4.1 Artemis Mediator P2P Architecture

In Artemis, healthcare institutes communicate with each other through mediators

which resolve their differences bilaterally. The following observations on

organization of mediators are made:

+ The mediators must have a distributed architecture to provide for scalability.

« When a healthcare institute, say A, wants to communicate with another
healthcare institute, say B, it should be possible to automatically locate the
mediator of B.

« There are efficiencies to be gained by logically grouping the healthcare
40

institutes which communicate often through a single mediator.

With these considerations in mind, Artemis mediators are organized as
JXTA super peer groups. In the JXTA super peer based architecture, peers in a
peer group communicate with their super peer to advertise their capabilities as
well as to search for other peers.

In Artemis, each mediator is a super peer serving the healthcare institutes in
its logical peer group. Super-peers employ keyword based routing indices where
keywords are used to locate the healthcare institutes. On registration the peer

provides this information to its super-peer.

4.2 Artemis Mediator Component

Semantic mapping is the process where two ontologies are semantically related at
conceptual level and source ontology instances are transformed into target
ontology entities according to those semantic relations. In Artemis, the source and
target ontologies belong to the two healthcare institutes willing to exchange
information. However, the mapping of these two ontologies are achieved through
the reference ontologies stored in the mediator: the generic Service Functionality
ontology for classifying Web services in healthcare domain and Service Message
ontology for annotating finer granularity services retrieving meaningful electronic
healthcare record (EHR) components. The mediator resolves the semantic
differences between source and target ontologies by using these ontologies.

Since all the ontologies involved are related with the basic healthcare
standards, the mediation process is simpler and hence more efficient.
Furthermore, resolved semantic differences are stored as Virtual Web Services
(VWS).

The mediator architecture, which is shown in Figure 15, has the following
subcomponents:

« Ontology server: The Ontology server contains the following ontologies:

41

Service Functionality and Service Message ontologies: Each healthcare

institute may develop its own Service Functionality and Service Message

ontologies based on existing healthcare information standards. The

minimum requirement is annotating their services through such

ontologies.

Virtual Web Services subsystem handles the creation of Virtual Web

Services (VWSs) to provide complex aggregations of Web services. The

creation of VWSs is realized according to the mappings between the

ontologies of Web services” input and output semantics. Newly created

VWSs are classified according to the Service Functionality Ontology of

the requesting party for its possible future reuse.

i .
Mediator Component

Ontology Server

— Functional Ontology

(?utenﬁeﬁm]:—:e;.% (equesPainReforals

Semantic
Processor

Semantic Mapping
via Bridges

Web Service

Enactment

SuperPeer
Services

Client Interface

)

CEN .
Encapsulation

-
Legacy
System

HET. ..
Encapsulation

Legacy
System

.
[

GEI—[R_
ncapsulation

Legacy
System

Figure 15: An Overview of the Mediator

42

Semantic Processor: There may be more than one Service Functionality and
Service Message ontologies in the mediator and the mediator generates the
mappings between them using its own reference ontologies based on the
healthcare standards. In Artemis, MAFRA [34] is used to represent the
mappings and to transform the ontology instances. MAFRA uses the Semantic
Bridge Ontology to define the mappings and includes a transformation engine.
The mediator stores the previously defined mappings via semantic bridges.
For example, the semantic equality relation between the
“DiagnosticTestResult” concept in ENV 136006, and the “ObservationResult”

concept in HL7 can be represented using MAFRA semantic bridges as follows:

<a:ConceptBridge rd:ID="CB163312">
<a:relatesTargetEntity rdfiresource=
"http:/ /www.stdc.metu.edu.tr/HL7#ObsetvationResult" />
<arelatesSourceEntity rdfiresource=
"http:/ /www.stdc.metu.edu.tr/ CEN#DiagnosticTestResult" />
<a:abstract rdfiresource="&a;True" />

</a:ConceptBridge>

Note that, more complex mappings can be represented using “semantic

bridges”, such as compositions, alternatives, and transformations aided by

external functions.

At runtime the source ontology instances are transformed into target

ontology instances by providing the source instance and the rdf representation of

mapping to the transformation engine of MAFRA.

Service registries like UDDI and ebXML: The Web services of the involved
healthcare institutes are published in the UDDI or ebXML registries of the
mediator.

Web service Enactment Component handles the invocation of the Web
Services and transmits the results of the Web Services. Bridge [35] is used to
deploy and invoke Web services in JXTA environment.

Superpeer Services Component contains the services that provides the
communication with other Mediators in a P2P infrastructure. Basically, these

services implement the JXTA Protocols. For example, Discovery Service that
43

implements the JXTA Peer Discovery Protocol is used to find the other
Mediators through a keyword based search mechanism.
Client Interface handles the communication of healthcare institutes with the

mediator using client-mediator protocol.

44

CHAPTER 5

IMPLEMENTATION

In this chapter, first the overall picture of the tools used is illustrated, then the
implementation of a JXTA application for deployment and execution of business

processes for especially connected-limited devices is explained.

5.1 Components of the Architecture

In Figure 106, the components of the architecture and tools that are covered in

Chapter 3 are briefly described.

HP iPaq 5450

Jeode for =
providing e =
Java Runtime Minimal Peer |
Environment

ME4SE for supporting
J2ME (CJDC+MIDP) on
HP iPaq 5450.

Relay Peer Server Peer

JXME for joining to JXTA
environment and discovering
and invoking Web services

kSOAP (+kXML) for invoking
BPEL Web services

J2SE provides Java Runtime
Environment
JXTA J2SE Reference

Implementation for providing
JXTA relay peer capabilities

J2SE provides Java Runtime
Environment

BPWS4J for composition and
execution of business processes

Figure 16: Components and Tools of the Architecture

5.2 Deploying Business Processes

In order to use a Web service, first, we have deployed BPEL and WSDL
documents in IBM BPEL4WS tool.
45

IBM BPEIL4WS engine provides a user friendly interface for deployment of
BPEL documents. The steps in deployment of a business process described in
BPEL is as follows:

+ The engine takes a BPEL document and related WSDL document.

« The BPEL document and related WSDL document is parsed.

+ The engine requests the other WSDL documents that are invoked during

the execution of the BPEL document.

The engine gives the Web service invocation point, namely SOAP address,

and the methods provided by the service.

) IBM Business Process Execution Language for Web Services Java Runtime Admin Tool - Moz... ZHEJEI

File Edit View Go Bookmarks Tools Help
®-> -8 @ | 8 [@ [htw:127.00.1:5050bpws tjadminindexchim (¥ [IGL
-~
IBM Business Process Execution LLanguage for
Web Services Java Runtime
b
Confi S
onfigure = & 3
= Deploy a Process: Partner
Processes
Identification
List })
Please enter the name of the WSDL file which corresponds to each of the
following partners in the business process.
Deploy unsolicited3 [E\TEZPROG\BPELProjects\TOMCATDEMO\cenrah[Browse... |
unsolicited2 [E\TEZPROG\BPELProjects\TOMCATDEMO\cerraht[Browse..
Un-deploy orderService [E\TEZPROG\BPELProjects\TOMCATDEMO\cerrahH[Browse.. |
schedule [E:\TEZPROG\BPELProjects\TOMCATDEMO\cerrah-[[Browse ..
[Start Serving the Process]
[Cancel Deployment]
b
Done

Figure 17: Deploying WSDL Documents in IBM BPEL4WS

Figure 17 shows the BPEL4WS page that takes the invoked WSDL
documents and Figure 18 gives the SOAP addresses and methods of the deployed
Web services. The BPEL and WSDL documents used for deployment of a Web

service are parts of Artemis project [30].

46

) IBM Business Process Execution Language for Web Services Java Runtime Admin Tool - Mozilla Firefox E|ﬂj|fg|

File Edit View Go Bookmarks Tools Help

@-9 -8 0 @ @ @[nw2.00.us0m0bpwstfaninindechin vl [E

IBM Business Process Execution Language for Web)
Services Java Runtime

v
Configure Process {urn:Cerrahpasa:CerrahpasaBPEL}CerrahpasaHospitalServiceBP deployed:
FHficesses External WSDL = [click here]
Channels:
List + Apache SOAP
SOAP Address: http://127.0.0.1:8080/bpws4}/soaprpcrouter
SOAP Action URL
Deploy Method Namespace URIs:
o urn:Cerrahpasa:CerrahpasaBPEL#CerrahpasaHospitalServiceBP#clig
Un-deploy

Figure 18: Last Step in Deploying Business Processes in IBM BPEL4AWS

5.3 Invoking BPEL Web Services from Mobile Devices

In Figure 19, the invocation of Web services deployed in Section 5.1 is invoked

via a mobile device emulator, namely ME4SE.

¢ meast ... [0 O|[X]

C=pa BPEL Form
Event Information

Fatient [dentification
12345546, 5ingle; T.C.;144.12
Crisability Information
Headq;20-01-2004:Headcrazh
Wllergy Information

123, SERIOUS; HARMLES S
ccident Information

(345, 22-01-2004

T T

Figure 19: Invocation of Deployed Web Service from ME4SE Emulator

47

In Figure 20, the result of the invoked Web service is given.

¢ mease ... [0]0)X]

Capa BPEL Form
IDisal:-iIih.r Information

HeadA

Wllergy Information
123

Wecident Information
ot

l0bsenation Request

Lt
Observation Result

Returned String:
Scheduling:0Ok

Figure 20: Result of the Invocation

5.4 Architecture of Publication and Discovery of Web
Services in JXTA Environment

The architectural design in Figure 21 and denotes the use of Project JXTA
protocols and the tools that enables facilitation of P2P networking on mobile
devices with Web service technologies.

Key issues that are considered in this architecture are:

+ allowing mobile devices to join in a P2P network group

+ publishing Web services in P2P network

« discovering Web services in P2P network

invoking Web services that are published and discovered

Figure 21 illustrates a P2P network environment where a mobile device can

join. The illustration shows that a mobile device can be a minimal peer and join to

a P2P environment through JXTA relay peers.

The minimal peers can only connect to a peer group through relay peer,
send message to the relay peer and receive message from relay peer by periodically

polling the relay peer. Sending and receiving capabilities of minimal peers can

48

enable a mobile device running as a minimal peer to facilitate peer group services

and other implemented services.

Internet

+Connect
+Send Message
+Poll for Receiving Message

Figure 21: Peer Group with Mobile Devices

denotes the whole picture and describes key issues that are considered,
namely, allowing mobile devices to join in a P2P network group, publishing Web
services in P2P network, discovering Web services in P2P network and invoking

Web services that are published and discovered.

49

——
S———————

[

145
(33|

Sjuald vad yum
dnoay 1ead v1Xe

N

N -

S3JIAISS 13d9 b
Buluuny 1994 yim

dnoiy 1ead V1XP
/\ V
eq 0]

.

149)

LY
S1Udl] vad uitm
dnoiy 1ead V1XP

V

Figure 22: Architectural Design of the Complete System
50

Process Type

Step Number

Description

Convert the BPEL into Module Class
Advertisement (MCA), Module Service

A ! Advertisement (MSA), Module Implementation
Advertisement (MIA)

A 5 Publish the MCA, MSA, MIA through JXTA
Peer
PDA peer sends a message to the relay peer for

B 1 finding a Web service through JXTA peer
group

B 5 JXTA relay peer searches the Web service
through JXTA peer group

B 3 JXTA relay peer finds the MCA of the Web
services

B 4 JXTA relay peer sends the Web service
information to the PDA peer

C 1 PDA peer prepares the input for the Web
service and sends it to the JXTA relay peer.

C 5 JXTA relay peer gets the form and sends it to
the server peer

C 3 Server peer invokes the Web service

C 4 The result of the invocation of the service is
sent back to the relay peer

C 5 JXTA relay peer sends the result to the PDA
peer

D 1 PDA peer invokes the Web service outside of
the JXTA peer group

D 5 The result of the invocation of the service is

sent back to the PDA peer

5.4.1 Publishing BPEL Web Services in JXTA Network

In JXTA, a service is published by an advertisement. A service is defined as a

module and modules are published as advertisements, namely, Module Class

Advertisement, Module Specification Advertisement and Module Implementation

Advertisement. In Figure 23, the BPEL Web service and the JXTA module

advertisements to which the Web service is mapped are shown.

51

Module Class Advertisement
<?xml version=“1.0" encoding="“UTF-8"7>
<jxta:MCcA>
) <MCID> .. </MCID>
) <Name> .. </Name>
‘:)IBMBusinesstcessExecutionLanguageforWebServices.lavaRuntimeAdminTool-MmzillaFirefax B@@ <Desc> .. </ Desc>
He Eit Ven G Bodmaks Took tep </jxta:MCA>
2 . .8 [| . r i el
e e e 2 = Module Specification Advertisement
IBM Business Process Execution Language for Web <?xm1 version="1.0" encoding="UTF-8"?>
S . J R t. <Jxta:MSA>
ervices Java huntime x <MSID> .. </MSID>
I R " <Name> .. </Name>
;j::i?;:: Process {urn:Cerrahp rabpasaBPEL}C viceBP deployed: <«<Crtrs . </Cl‘tl">
Estemal WSDL = [click here] <SURI> .. </SURI>
Chamels: <vers> .. </vers>
+ Spacke SOAP <Desc> .. </Desc>
SOAP Addeess-hitp:/127.0.01:3080 bpws4j soaprpcrouter <Parm> .. </pParm>
SOAP Action URE: <jxta:PipeAdv> .. </jxta:PipeAdv>
Method Namespace URIs: <Proxy> .. </proxy>
o um:Cerrahpasa:CerrahpasaBPEL#CerrahpasaHospitalServiceBPcl <Auth> .. </Auth>
</jxta:MSA>
Module Implementation Advertisement
<?xml1 version="1.0" encoding="UTF-8"7>
. . - e i - <jxta:MIA>
B <MSID> .. </MSID>
<Comp> .. </Comp>
L, <Code> .. </Code>
<PURI> .. </PURI>
<Prov> .. </Prov>
<Desc> .. </Desc>
<Parm> .. </Parm>
</jxta:MIA>

Figure 23: Mapping BPEL Web Services to JXTA Module Advertisements

First, the BPEL Web service is published as Module Class Advertisement
(MCA), which defines a specific version of a module. The name of the service and
a description of the service is defined with an ID (MCID) that uniquely defines
the module.

Module Specification Advertisement (MSA) defines the module, parameters
of the service (inputs, outputs, results) and the URI of the specification. An MCA
is normally followed by a MSA. An MSA advertisement also contains name,
description and ID (MSID) for uniquely identifying the module.

Module Implementation Advertisement defines specific instance of a
module on a platform.

In Figure 24, an implementation of a publisher peer that maps BPEL Web

services to JXTA module advertisements, is shown.

52

£ JXTA Server

WSDL Lacation: Ittp 1182.168.1.101:8080/0pws4j/showtSDL2idNSA | Find - 2 |

Service: | v Discover-1 |

Operation: | v/ rommca-1 |

Module Description: | || rommsa-s |

MCA Name: | || romma-s |
Invoke - 3 Exit

Figure 24: GUI of Publisher Peer

The steps in publishing a BPEL Web service into JXTA module is as
follows:

1. The discovery service of the advertiser peer is started by pressing the
“Discover — 17 button,

2. By filling the “WSDL Location” of the BPEL Web service and pressing the
“Find — 2” button, the services and the operations provided by the services is
brought to the “Service” and “Operation” lists as in Figure 25.

3. After selecting the service and the operation provided the service, by pressing
the “Invoke — 3” button, the input, inout [IN-OUT], output and result

parameters of the BPEL service is found.

53

£ JXTA Server |Z |§|g|

WSDL Location: |hﬂp:ﬁ192.158.1.1D1:EHJE!DibpwseljishnmﬂISDL?idNS:{ | Find - 2 |
Service: | ChapaHospitalSEDA - | | Discover - 1 |
Operation: | process > | | Form MCA - 4 |
Module Description: |ChapaHuspitaI Module Advertisement | | FormMSA - 5 |
MCA Name: |ChapaHuspital | | Form MIA - 6 |

Mon Mow 29 08:44:19 EET 2004
---------- start operation
Operation Marme : null
hon Mow 29 084419 EET 2004
---------- start operation
Operation Mame | process
---------- end operation
Mon Mow 29 084419 EET 2004
---------- start operation
Operation Mame : process
---------- end operation
—————————— end serice

| »

Invoke - 3 | Exit

Figure 25: Finding the WSDL Services and Operations

4. Module Class Advertisement of the BPEL Service is prepared by “Form MCA
— 4” button. The name and description of the MCA are written in “MCA
Name” and “Module Description” fields. In Table 6 and Figure 26, the MCA
of the “Chapa Hospital” BPEL Web service is given.

5. “Form MSA — 5” button is used for publishing the module specification
advertisement of the BPEL Web service. The name and description of the
MSA are taken from the “MCA Name” and “Module Description” fields. In
publishing MSA, inputs, inouts, outputs and results are published in Parm field
of the advertisement. Also the value of the “WSDL Location” field is used as
the value of SURI (specification URI). In Table 7, the MSA of the “Chapa
Hospital” BPEL Web service is given.

6. Finally, the advertisement of module implementation is published by pressing

“Form MIA — 6” button.

54

Table 6: Module Class Advertisement (MCA) of "Chapa Hospital" BPEL Web Service

<!DOCTYPE jxta:MCA>
<jxta:MCA xmlns:jxta="http://jxta.org">
<MCID>
urn:jxta:uuid-EF12D26C163E44A2ADOBEA9456C3823F05
</MCID>
<Name>
ChapaHospital
</Name>
<Desc>
ChapaHospital Service
</Desc>
</jxta:MCA>

WSDL Location: |hﬂpﬂ1921581.1DtEDSWbpws4ﬂshnmNVEDLﬁdNE#| Find - 2 |
Senvice; |ChapaHuspﬂmSEDn v|| Discover - 1 |
Operation: | process ~|| rommca.4 |
Module Description: |ChapaHDspitaI Module Advertisement | | FormMSA -5 |
MCA Name: |ChapaHuspital | | Form MIA - 6 |

Return Parameter
result --=string --[OLIT]

—————————— end getting argument list ---------------------

Mon Mow 29 08:45:24 EET 2004

—————————— start publishing MCA -------—--m-mm e

FPublishing our Module Class Advertizsement....

Mame : ChapaHospita

Description : ChapaHospital Module Adverisemeant

Service 1D urncjdaunid-ABE294AB220240FE9AF0SADDEEIEOCTEDS
---------- gnd publishing MCA —--mmme e

il

Invoke - 3

Exit

Figure 26: Publishing Module Class Advertisement

55

Table 7: Module Specification Advertisement (MSA) of "Chapa Hospital" BPEL Web Service

<!DOCTYPE jxta:MSA>
<jxta:MSA xmlns:jxta="http://jxta.org">
<MSID>
urn:jxta:uuid-
EF12D26C163E44A2ADOBEA9456C3823F4CFED52F14DE45A2BE8AB465BB69BFB806
</MSID>
<Name>
ChapaHospital
</Name>
<Crtr>
www.srdc.metu.edu.tr
</Ccrtr>
<SURI>

http://192.168.1.101:8080/bpws4j/showwSDL?1dNS=urn:Capad:CapadService&idNa
me=ChapaHospitalSEDA
</SURI>
<vers>
Vversion 1.0
</Vers>
<Desc>
ChapaHospital Service
</Desc>
<Parm>
<Input§ize>

</InputSize>
<string>
EVN
</string>
<string>
MSH
</string>
<string>
PID
</string>
<string>
DBl
</string>
<string>
ALl
</string>
<string>
ACC
</string>
<string>
OBR
</string>
<string>
OBX
</string>
<InoutSize>

</In0utSize>
<Outputsize>
0

</0outputSize>
<ResultSize>
1

</ResultSize>
<string>
result
</string>
</Parm>
<jxta:PigeAdvertisement xmlns:jxta="http://jxta.org">
<Id>
urn:jxta:uuid-
5961626164616;6&4E504720503250333BDEC3ABA324433BA6DFF59BSC9760CBO4
</Ia>
<Type>
Jxtaunicast
</Type>
<Name>
ChapaHospital
</Name>
</jxta:PipeAdvertisement>
</jxta:MSA>

56

5.4.2 Discovering BPEL Web Services Published in JXTA

Network

In Figure 23, in order for mobile devices to discover BPEL Web services from
JXTA environment, BPEL Web services are mapped into module advertisements.
By mapping Web services to advertisements:

« Web services invocation point (WSDL address)

« parameters and type of parameters of the Web services

+ return type of Web services

+ description of the services

+ other module related parameters

are published as modules, so that a peer can discover the publication of
Web services through module advertisements. Mobile devices can discover the
services as a minimal peer by using JXTA relay peers. By sending and receiving
messages, a mobile device can request discovery of a specific service from relay
peer and get the module advertisements for the specified services. In Figure 27,

discovery of a Web service is illustrated:

The steps for discovering a Web service published in a JXTA environment

by a minimal peer (mobile device) is as follows:

1. The request message for discovery of a specific Web services is sent
from minimal peer.

2. The relay peer gets the message and converts it to a module discovery
message.

3. The module advertisement that is the result of the discovery message is
acquired by the relay peer

4. The relay peer converts the module advertisement to a message format

for minimal peer.

57

Module Class Advertisement
<?xml version="1.0" encoding="UTF-8"7>

<jxta:MCA> ;
<MCID> .. </MCID> 3) Relay Gets the 4) Conversion of the Module
<Name> .. </Name> Discovered Advertisements
<Desc> .. </Desc> Web Services 0 JXME Messages

</jxta:MCA>

Module Specification Advertisement
<?xml version="1.0" encoding="UTF-8"7>
<jxta:MSA>

<MSID> .. </MSID>

<Name> .. </Name>

<Crtr> .. </Crtr>

<SURI> .. </SURI>

<vers> .. </vers> <

<Desc> .. </Desc>

<Parm> .. </Parm>
<jxta:PipeAdv> .. </jxta:PipeAdv>

<Proxy> .. </Proxy>

<Auth> .. </Auth>

</jxta:MSA> Relay Peer

Module Implementation Advertisement
<?xm1 version="1.0" encoding="UTF-8"7>

<jxta:MIA>
<MSID> .. </MSID>
<Comp> .. </Comp> 1) Sending Message for
<Code> .. </Code> L Discovery of a specified
<PURI> .. </PURI> Web services
<Prov> .. </Prov> 2) Relay Sends Discovery
<Desc> .. </Desc> Message to Peer Group

<Parm> .. </Parm>

</jxta:MIA>

Figure 27: Discovery of a Web Service through JXTA Relay

The BPEL Web services defined as JXTA modules and published as MCA, MSA,
and MIA are discovered by using a protocol between relay peer and minimal peers
(PDA). The protocol consists of the messages and response to these messages.
The messaging part is consisting of two parts; messages sent by minimal peer and
messages sent by relay peer. The following are the messages sent by minimal

peers:

Limited Device (Minimal Peer [PDA])

« SEND : Used for messaging between minimal peers and relay peer.

Table 8: Elements of Message "SEND" for Minimal Peer

Element # Element Name Element Value
0 "JXTASENDER" Identity name
1 "JXTAMESSAGETYPE" “SEND”
2 " XTAMESSAGE" Message
3 "JXTAARGS" "NetPeerGroup"

58

- FIND

Used for

finding

the specified keyword in

advertisements published by the relay peer.

Table 9: Elements of Message "FIND" for Minimal Peer

Element # Element Name Element Value
0 "JXTASENDER" Identity name
1 "IXTAMESSAGETYPE" “FIND”
2 "JXTAMESSAGE" Keyword
3 "JXTAARGS" "NetPeerGroup"
- GETW Used for selecting the appropriate Web service from the

list of Web services sent by relay peer.

Table 10: Elements of Message "GETW" for Minimal Peer

Element # Element Name Element Value
0 "JXTASENDER" Identity name
1 "JXTAMESSAGETYPE" “GETW”
2 "] XTAMESSAGE" Name of the MSA of Web Service
"JXTAMESSAGE" WSDL Location of the MSA
Service

4 "JXTAARGS" "NetPeerGroup"

« CALL* Used for calling the Web service with the given

parameters. (input, inout, output, result)

*: Used when invoking the Web service through relay peer.

Table 11: Elements of Message "CALL" for Minimal Peer

Element # Element Name Element Value
0 "JXTASENDER" Identity name
1 "JXTAMESSAGETYPE" “CALL”
2 "JXTAARGS" "NetPeerGroup"
3 "JXTAARGS" Input size (# of Input) (INS)
4 "JXTAARGS" Inout size (# of Inout) (10S)
5 "JXTAARGS" Output size (# of Output) (OUS)

59

Table 11 (Continued)

Element #

Element Name

Element Value

6

"IXTAARGS"

Result size (# of Result) (RES)

7 -> 7+INS-1

"IXTAARGS"

Input fields

7+INS ->
7+INS+10S-1

"IXTAARGS"

Inout fields

7+INS+IOS
-> 74+INS +
I0OS+0OUS-1

"IXTAARGS"

Output fields

7+INS+IOS+
ousS ->
7+INS +
10S§+O0OUS +
RES-1

"IXTAARGS"

Result Fields

7+INS +
10S+0OUS +
RES

"IXTAARGS"

Name of the BPEL Service

7+INS +
10S+OUS +
RES+1

"IXTAARGS"

WSDL Location of the BPEL

Service

Web Service Provider Peer (Relay Peer)

- SEND Used for messaging between minimal peers and relay
peet.
Table 12: Elements of Message "SEND" for Relay Peer
Element # Element Name Element Value
0 "JXTASENDER" "WSPROVIDER"
1 "JXTAMESSAGETYPE" “SEND”
2 "JXTAMESSAGE" Message
3 "JXTAARGS" "NetPeerGroup"

60

- FIND

Used for sending the found Web

advertisement to the minimal peer.

services MSA

Table 13: Elements of Message "FIND" for Relay Peer

Element # Element Name Element Value
0 "JXTASENDER" "WSPROVIDER"
1 "IXTAMESSAGETYPE" “FIND”
2 "JXTAARGS" Size of Found List (FOS)
3->3+FOS-1 | "JXTAARGS" Found List
« GETW Used for sending the parameter list (input, inout, output

result list) to the minimal peer.

bl

Table 14: Elements of Message "GETW" for Relay Peer

Element # Element Name Element Value
0 "JXTASENDER" "WSPROVIDER"
1 "JXTAMESSAGETYPE" “GETW”
2 "] XTAMESSAGE" Name of the MSA of Web Service
3 "JXTAARGS" Input size (# of Input) (INS)
4 "JXTAARGS" Inout size (# of Inout) (10S)
5 "JXTAARGS" Output size (# of Output) (OUS)
6 "JXTAARGS" Result size (# of Result) (RES)
7->7+INS-1 "JXTAARGS" Input fields
7+INS -> "JXTAARGS" Inout fields
7+INS+IOS-1
7+INS+IOS "JXTAARGS" Output fields
-> 7+INS +
I0S+0OUS-1
7+INS+IOS+ "JXTAARGS" Result Fields
ous ->
7+INS +
I0OS+OUS +
RES-1

61

Table 14 (Continued)

Element # Element Name Element Value
7+INS + "JXTAARGS" Name of the BPEL Service
IOS+OUS +
RES
7+INS + "JXTAARGS" WSDL Location of the BPEL
10S+0OUS + Service
RES+1
« CALL* Used for sending the result of invocation of the BPEL

Web service.

*: Used when invoking the Web service through relay peer.

Table 15: Elements of Message "CALL" for Relay Peer

Element # Element Name Element Value
0 "JXTASENDER" Identity name
1 "JXTAMESSAGETYPE" “CALL”
2 "JXTAARGS" "NetPeerGroup"
3 "JXTAARGS" Result

Other key issue in this thesis is the invocation of the Web services that are
discovered by the minimal peer. There are two ways for invoking the Web service;
the first one is invoking the Web service using the parameters of the Web service
discovery message sent by relay peer, and the other one is preparing a invocation
message and sending it to relay peer for invocation in relay peer or the in the peer
which publishes the Web service. Facilitating the peer that publishes the Web
service allows using this peer as a relay in invocation of Web services. Figure 28
and Figure 35 illustrate invocation of services through a relay peer and without a

relay peer.

62

5.4.3 Invocation of BPEL Web Services from Mobile
Devices through Relay Peer

There are 2 methods for invocation of BPEL Web services published in JXTA
network. In both methods, the discovery of Web services, searching from the
relay peer and minimal peer, selecting the BPEL Web service and getting the
parameter list from the relay peer are same as in Figure 29, Figure 30, Figure 31
and Figure 32. The first method is invocation of the services via relay peer. Figure

28 depicts the first method.

. . 3) Get the result of the Web service
4) Get the result of invocation invocation and convert it to JXME message
message from relay peer and send it to the minimal peer

—
—

Relay Peer Server Peer

1) Prepare invocation message (including

WSDL address and parameter in WSDL) 2) Invoke the Web service using WSDL address
and send it to the relay peer and parameters outside the JXTA environment

Figure 28: Invocation of Web Services using Relay Peer

In order to discover a BPEL Web service, first the relay peer discovers the MSA's
from the other neighboring peers or rendezvous peers. For this purposes, the
following steps should be followed:

1. First, the Web Services Provider for PDA functionality is started by pressing
“StartServerl”. This server listens the messages sent to the relay peer and
processes the messages and take the necessary actions on behalf of the minimal
peer.

2. The discovery service of the server is started.

3. Pipe advertisements are searched.
63

4. Module class advertisements are searched by pressing “SearchMCA4” button.

5. Module specification advertisements are searched by pressing “SearchMSA5”
button.

6. Module implementation advertisements are searched by pressing

“SearchMIAG” button.

7. By pressing “Invoke8” button, the MSA advertisements are prepared for the

minimal peers.

< JXTA Web Services Provider for PDA o]
Relay Server: 1192.168.1.101 ||azz0 |
| startServer1 |
Search for: | | | Discover2 ‘ | StopServer9 |
SearchPipe3 || SearchMCAd || SearchMsAS || SearchMias |

Searching forthe wMIA Advertisement

Mon Mow 29 08:57:12 EET 2004

Searching forthe * Service Advertizement
Mame - Description - URI of the Service Adv.: ChapaHospital-ChapaHospital Module Advertisement=hit
Mame - Description - URI ofthe Service Adv.; echoServiceBP-echoServiceBP Service=httpai1 27.0.0.1:80

__||__
ChapaHospital-||--

echoSericeBP--|--

‘ Invokes Exit10 |

Figure 29: Discovering the MSA from the Relay Peer

In Figure 30, the main option list provided in a minimal peer is depicted. “Send”
and “Reply” options are used for messaging between minimal peers and with relay
peer. “Find” is used for searching a BPEL Web service. “Configuration” option is
used for configuring the address of the relay peer and identity name of the

minimal peer.

64

Find

Reply
Connect
Buddy List
Canfiguration
Crefaults
Dizconnect
Exit

N E—
Figure 30: Main Option List of Minimal Peer (PDA).

(“Find” is chosen for searching advertisements of BPEL Web services)

In Figure 31, the BPEL Web services those having corresponding MSA
advertisements are listed in minimal peer. The listed Web services also meets the

criteria that is entered in “Find” option.

< messt ... [2) 0]

SETW List

echoSeniceBP

Figure 31: Selecting the BPEL Web services

In Figure 32, the parameter list (input, inout) of the Web service selected in Figure
31, is sent to the minimal peer. And in Figure 33, the first option, “Call” is
selected for invoking the selected Web service via relay peer. Finally, Figure 34

denotes the result of the invocation.

65

£ mease ... [2 0K
CALL List

echoString
Eﬂﬁnginrem#u4

Figure 32: Parameter List sent by the Relay Peer is filled

£ messt ... [0 0K

Calz2
Back

__Cancet]

Figure 33: Invocation Option List

£ mease ... [2]0)X]

TN E—

Figure 34: Result of the Invocation

66

5.4.4 Direct Invocation of BPEL Web Services from Mobile

Devices (without Relay Peer)

The other method for invoking the BPEL Web service, defined in a JXTA
module and advertised as MCA and MSA, is invoking the Web service directly
from the minimal peer. The difference between this invocation and the other
invocation is that this invocation scheme does not use JXTA network in
invocation. Figure 35 shows the direct invocation scheme. In order to invoke

directly, when calling the Web service, “Cal2” option should be used in Figure 33.

2) Get the result of the Web service invocation

1) Using WSDL address invoke the Web service
using the Parameter in WSDL Server Peer

.~

Minimal Pe

Figure 35: Invocation of Web Services without Relay Peer

67

CHAPTER 6

CONCLUSIONS

With the increasing popularity of Peer-to-Peer (P2P) computing, P2P technology
promises notable progress of spreading towards all devices including the devices
only with digital heartbeat.

Mobile devices are expected to become more common in the P2P
networks, which is one of the core aims of P2P computing and the Project JXTA.
Besides, mobile devices, like personal digital assistants (PDAs), have already
started to take an active role in everyday life and to become more widespread.

The Web services technology has gained much popularity, particularly
having acquired the great support from industry. Thus, it has been inevitable to
accommodate the Web services technology within P2P computing technology,
which has also been an effort of the Project JXTA and this thesis work.

This work presents an infrastructure to realize the development of
applications that reside on mobile devices and to implement JXTA protocols to
make them behave as JXTA peers within the proposed architecture, and the
invocation of Web services that reside on machines different from mobile devices
but similarly behaving as JXTA peers conforming to the JXTA protocols. Thus,
the motivation of this work is to bring the P2P and Web services technologies
together for mobile devices, particularly PDAs, by exploiting the JXTA
framework for the implementation of P2P environment.

The main question that is investigated for applying the technologies
mentioned above and adapting the architecture proposed in this work to mobile

devices emerges from the fact that, currently, there exists no standard P2P system

68

implementation for mobile devices. That is, even the JXTA framework does not
introduce a solution for this concern for mobile devices. Within this work, in
order to overcome this concern, JXTA for J2ME (JXME) has been exploited.

The work done in this thesis exploits three main technologies that gain
popularity in recent years, namely P2P computing, Web services and mobile
computing, and combine them to provide an environment for mobile devices. In
order to realize this, various standards and tools are exploited on these
technologies. Since these technologies are relatively new and different platforms
are used, many problems appear and these problems are briefly explained as
follows:

+ Because of the limited display and memory capability of mobile devices,
in case of any exception or problem in applications deployed on these
devices, the problem can not be easily found and fixed.

+ Since BPEIAWS language consists of various set of libraries and tools,
for exception and problems that occur on a Web service invocation from
mobile device or application, details of the underlying set of libraries and
tools have been discovered.

In order to prove the realization of the system structure as a whole, a
complete scenario is developed based on the components of the system
architecture. This enables us to see the whole system architecture providing
mobile devices with the capability to join a P2P environment and facilitate the
services published in the environment.

The work designed and developed in this thesis is a part of IST-1-002103-
STP Artemis project which is funded by European Commission. The
contribution of the work is the architecture designed to provide mobile devices

with the services published in a P2P environment.

69

10:

11:

12:

13:

REFERENCES

Bussler, C., Fensel, D., Maedche, A., A Conceptual Architecture for
Semantic Web Enabled Web Services,
http://lsdis.cs.uga.edu/SemNSF/SIGMOD-Record-Dec02/Bussler.pdf

A. Dogac, G. Laleci, S. Kirbas, Y. Kabak, S. Sinir, A. Yildiz, Artemis:
Deploying Semanticaly Enriched Web Services in the Healthcare Domain,
http://www.srdc.metu.edu.tr/webpage/projects/artemis/publications/ D
ogac_InfSys04.pdf

Health Level 7 (HL7), http://www.hl7.org

CEN TC/251 (European Standardization of Health Informatics) ENV
13600, Electronic Health Record Communication,
http:/ /www.centc251.org

ISO TC/215, International Organization for Standardization, Health
Informatics Technical Committee,
http:/ /www.iso.ch/iso/en/stdsdevelopmenttc/tclist/ Technical Committee
DetailPage. Technical CommitteeDetaiPCOMMID=4720

The Good Electronic Health Record, http://www.gehr.org

Nelson ~ Minar, Distributed = Systems Topologies: ~ Part 1,
http://www.openp2p.com/pub/a/p2p/2001/12/14/topologies_one.html

Project JXTA: Java[TM] Programmers Guide,
http:/ /www.jxta.org/docs/[xtaProocGuide v2.pdf

Gong, Li, A Network Programming Environment,
http:/ /www.jxta.org/project/www/docs/[XTAnetworkProgEnv.pdf

Web Setrvices Glossary, http://www.w3.org/TR/2004/NOTE-ws-gloss-
20040211/

Brendon J. Wilson, Projects::JXTA Book,
http:/ /www.brendonwilson.com/projects/ixta/

Web Services Glossary, http://www.w3.0rg/ TR /ws-gloss/

Web Services - The Web's next revolution,

70

14

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

25:

26:

27:

28:

29:

http:/ /wwwo6.software.ibm.com/developerworks/education/wsbasics /wsb
asics-ltr.pdf

World Wide Web Consortium (W3C) XML Standard,
http:/ /www.w3.org/ XML/

Web Services Description Language (WSDL) 1.1,
http:/ /www.w3.org/ TR /wsdl

Simple Objet Access Protocol (SOAP), http://www.w3c.org/TR/SOAP/

The architecture of Web Service Invocation Framework (WSIF),
http://www-106.ibm.com/developerworks/webservices/library /ws-
wsif.html

JROM (Java Record Object Model),
http:/ /www.alphaworks.ibm.com/tech/jrom

Mukhi, N., Khalaf, R., Fremantle, P., Multi-protocol Web Services for
enterprises and the Grid,
http://ewic.bcs.org/conferences/2002/euroweb/session5 /paper2.pdf

Java Technology, http://java.sun.com/

Java 2 Platform Standard Edition (J2SE), http://java.sun.com/j2se/

Java 2 Platform Enterprise Edition (J2EE), http://java.sun.com/j2ee/

Java 2 Platform Micro Edition (J2ME), http://java.sun.com/j2me/

Java Community Process (JCP), http://jcp.org/

Connected Limited Device Configuration (CLDC),
http:/ /java.sun.com/products/cldc

Connected Device Configuration (CDO),
http:/ /java.sun.com/products/cdc/

Mobile Information Device Profile (MIDP),
http:/ /java.sun.com/products/midp/

Insignia Solutions, http://www.insignia.com/

MEA4SE, http://me4se.org/medse.html

71

30:

31:

32:

33:

34:

35:

306:

37:

IBM Business Process Execution Language for Web Services Java Run
Time (BPWS4)), http://www.alphaworks.ibm.com/tech /bpws4;

kXML, http://kxml.objectweb.org/

kSOAP, http://ksoap.objectweb.org/

Wiederhold, G., Mediators in the Architecture of Future Information
Systems, IEEEComputer, Vol.25 No.3, March 1992, IEEEComputer,
Vol.25 No.3, March 1992.

Maedche, A., Motik, D., Silva, N., Volz, R, MAFRA-A MApping
FRAmework for Distributed Ontologies, In Proc. of the 13th European
Conf. on Knowledge Engineering and Knowledge Management EKAW-
2002, Madrid, Spain, 2002,
http:/ /www.sklse.org/oroup/uml/ebXMIL/2004.09.17/MAFRA%20-%
20A%20MApping%e20FR Amework%20for%20Distributed %o
200ntologies%020in%20the%20Semantic%20Web(ECAI-WS'2002).pdf

Burton, Kevin A., Bridge, http://soap.jxta.org/servlets/ProjectHome

Artemis Project, http://www.srdc.metu.edu.tr/webpage/projects/artemis

SRDC Team, The StoryBoard of Web Services Orchestration Demo with
Collaxa BPEL Server,
http:/ /www.srdc.metu.edu.tr/webpage /projects/artemis

72

APPENDIX A

A Simple Client for Mobile Device That Invokes Web Services

ArtMobileMIDlet.java
//

package tr.edu.srdc;

import java.lang.*;

import java.util. Hashtable;

import javax.microedition.lcdui.*;

import javax.microedition.midlet. MIDlet;

//
public class ArtMobileMIDlet extends MIDlet implements CommandListener {

public static void main (String[] args) {
ArtMobileMIDlet tArtMobileMIDlet = new ArtMobileMIDlet();
}

public AttMobileMIDlet () {
display = Display.getDisplay (this);

mainScreen = new Form ("Capa BPEL Form");
invokeCommand = new Command ("Invoke", Command.SCREEN, 1);
exitCommand = new Command ("Exit", Command. EXIT, 2);

tfEVN = new TextField ("Event Information","",6,0);
tfMSH = new TextField ("Message Header","",6,0);
tfPID = new TextField ("Patient Identification","",6,0);
tfDB1 = new TextField ("Disability Information","",6,0);
tfAL1 = new TextField ("Allergy Information","",6,0);
tfACC = new TextField ("Accident Information","",6,0);
tfOBR = new TextField ("Observation Request","",6,0);
tfOBX = new TextField ("Obsetvation Result","",6,0);
stRET = new Stringltem ("Returned String:","");
mainScreen.append (tfEVN);

mainScreen.append (tfMSH);

mainScreen.append (tfPID);

mainScreen.append (tfDB1);

mainScreen.append (tfAL1);

mainScreen.append (tfACC);

mainScreen.append (tfOBR);

mainScreen.append (tfOBX);

mainScreen.addCommand (invokeCommand);
mainScreen.addCommand (exitCommand);

options = new List ("Options", 3, mainOptions, null);
options.addCommand (invokeCommand);

73

startApp ();

public void commandAction(Command command, Displayable displayable) {
if (command.getCommandType() == Command.EXIT) {
destroyApp (true);
notifyDestroyed ();
return;
H
try {
hshlnput = new Hashtable ();
hshlnput.put ("EVN", tfEVN.getString());
hshInput.put ("MSH", tfMSH.getString());
hshlnput.put ("PID", tfPID.getString());
hshInput.put ("DB1", tfDB1.getString());
hshlnput.put ("AL1", tfAL1.getString());
hshInput.put ("ACC", tfACC.getString());
hshlnput.put ("OBR", tfOBR.getString());
hshInput.put ("OBX", tfOBX getString());

InvokeArtMob tlnvokeArtMob = new InvokeArtMob();

String tRetVal = tinvokeArtMob.process("http:/ /ugimbtp3:8080/bpws4j/soaprpcroutet”,
hshlnput);

stRET = new Stringltem("Returned String:" tRetVal);
mainScreen.append(stRET);

} catch (Excepton e) {
e.printStackTrace();

}

}

public void destroyApp (boolean flag) {
}

public void pauseApp () {
H

public void startApp () {
mainScreen.setCommandListener(this);
display.setCurrent(mainScreen);

}

private Display display;

private Form mainScreen;

private List options;

private Command invokeCommand;
private Command exitCommand;
private String mainOptions[] = { };
private TextField tfEVN;

private TextField ttMSH;

private TextField tfPID;

private TextField tfDB1;

private TextField tfAL1;

private TextField tfACC;

private TextField tfOBR;

private TextField tfOBX;

private Stringltem stRET;

private Hashtable hshlnput;

//
74

APPENDIX B

WSDL Documents of Artemis Web Service

The WSDL documents given in this appendix are described for the Web Service
Orchestration Demo of Artemis Project [2][37][36] and deployed for Web service

invocation from mobile devices.

ChapaHospital.wsdl

<definitions targetNamespace="urn:Capad:CapadService"

—_n

xmlns:tns="urn:Capad:CapadService"
xmlns:slt="http://schemas.xmlsoap.org/ws/2002/07 /service-link /"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http:/ /www.w3.0tg/2001/XMLSchema">

<message name="ChapaHospitalRequestMessage">
<patt name="EVN" type="xsd:string" />
<part name="MSH" type="xsd:string" />
<part name="PID" type="xsd:string" />
<part name="DB1" type="xsd:string"/>
<part name="AL1" type="xsd:string" />
<part name="ACC" type="xsd:string" />
<part name="OBR" type="xsd:string" />
<part name="OBX" type="xsd:string" />

</message>

<message name="ChapaHospitalResponseMessage">
—n

<part name=
</message>

—_n

result” type="xsd:string" />

<portType name="ChapaPT">
<operation name="process" parameterOrder="EVN MSH PID DB1 AL1 ACC OBR

OBX">
<input message="tns:ChapaHospitalRequestMessage" />
<output message="tns:ChapaHospitalResponscMessage" />
</operation>
</pottType>

<slt:serviceLinkType name="ChapaHospitalSLT">

<slt:role name="service">
<slt:portType name="tns:ChapaPT"/>

</slt:role>

</slt:serviceLink Type>

<service name="ChapaHospital">

</service>

</definitions>

75

CerrahpasaHospital.wsdl

<exml version="1.0" encoding="UTF-8" »>

—_n

<definitions targetNamespace="urn:Cerrahpasa:CerrahpasaBPEL"
xmlns:tns="urn:Cerrahpasa:CerrahpasaBPEL"
xmlns:xsd="http://www.w3.0tg/2001/XMLSchema"
xmlns:slt="http://schemas.xmlsoap.org/ws/2002/07 /service-link/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="CerrahpasaResultMessage">
<part name="result" type="xsd:string" />

</message>

<message name="CerrahpasaRequestMessage">
<patt name="msh" type="xsd:string" />
<part name="pid" type="xsd:string" />
<part name="all" type="xsd:string" />
<part name="obt" type="xsd:string" />
<part name="obx" type="xsd:string" />

</message>

<portType name="Cerrahpasa">

—n;

<operation name="initiate">
<input message="tns:CetrahpasaRequestMessage" />
<output message="tns:CerrahpasaResultMessage" />
</operation>
</pottType>
<binding name="clientCerrahpasaApacheSOAPSOAPBinding" type="tns:Cerrahpasa">
<soap:binding style="tpc" transport="http://schemas.xmlsoap.otg/soap/http" />
<operation name="initiate">
<soap:operation soapAction="" style="rpc" />
<input>
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:Cerrahpasa:CerrahpasaBPEL#CerrahpasaHospitalServiceBP#client#urn:Cerrahpasa:Cerrah
pasaBPEL#Cerrahpasa" />
</input>
<output>
<soap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:Cerrahpasa:CerrahpasaBPEL#CerrahpasaHospitalServiceBP#client#urn:Cerrahpasa:Cerrah
pasaBPEL#Cerrahpasa" />
</output>
</operation>
</binding>
<service name="CerrahpasaHospitalServiceBP">
<port name="clientCerrahpasaApacheSOAPSOAPBindingPort"
binding="tns:clientCerrahpasaApacheSOAPSOAPBinding">
<soap:address location="http:/ /localhost:8080/bpws4j/soaprpcrouter" />
</pott>
</service>
<slt:serviceLinkType xmlns:slt="http://schemas.xmlsoap.org/ws/2002/07 /setvice-link/"
name="CerrahpasaSLT">
<slt:role name="CerrahpasaProvider">
<slt:portType name="tns:Cerrahpasa" />
</slt:role>
</slt:serviceLink Type>
</definitions>

—_n

76

AdmitVisit.wsdl

<exml version="1.0" encoding="UTF-8">>
<definitions name="MyAdmitVisit"

targetNamespace="urn:Foo"

xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0tg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types/>

<message name="AdmitVisit_admit">
<part name="String_1" type="xsd:string" />
<patt name="String_ 2" type="xsd:string" />
<part name="String_3" type="xsd:string" />
<part name="String_4" type="xsd:string" />
<patt name="String_5" type="xsd:string" />
<part name="String_6" type="xsd:string" />

</message>

<message name="AdmitVisit_admitResponse">

—n —n

<part name="result" type="xsd:string"/>
</message>

<portType name="AdmitVisit">

—_n

<operation name="admit" parameterOrder="String 1 String 2 String_3 String_4 String_5

String_6">

<input message="tns:AdmitVisit_admit"/>
<output message="tns:AdmitVisit_admitResponse" />
</operation>

</pottType>

<binding name="AdmitVisitBinding" type="tns:AdmitVisit">
<operation name="admit">
<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded" namespace="utn:Foo"/>

</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
encoded" namespace="utn:Foo"/>
</output>
<soap:operation soapAction=""/>
</operation>
<soap:binding transport="http://schemas.xmlsoap.otg/soap/http" style="tpc" />
</binding>

<setrvice name="MyAdmitVisit">
<port name="AdmitVisitPort" binding="tns:AdmitVisitBinding">
<soap:address location="http:/ /ugimbtp3:1024 /admit/admitpatient" />
</pott>
</service>

</definitions>

77

Unsolicited.wsdl

<exml version="1.0" encoding="UTF-8">>

<definitions

name="MyUnsolicited"

targetNamespace="urn:Foo"

xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0tg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types/>

<message name="Unsolicited_transmission">

<part name="String_1" type="xsd:string" />
<part name="String 2" type="xsd:string" />
<part name="String_3" type="xsd:string" />

<part name="String_4" type="xsd:string" />

</message>
<message name="Unsolicited_transmissionResponse">

—_n

<part name=

—_n

result” type="xsd:string" />

</message>

<portType name="Unsolicited">

—_n

<operation name="transmission" parameterOrder="String 1 String 2 String 3 String_4">
<input message="tns:Unsolicited_transmission"/>
<output message="tns:Unsolicited_transmissionResponse" />

</operation>

</pottType>

<binding name="UnsolicitedBinding" type=

—_n

)

tns:Unsolicited">
<operation name="transmission">
<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded" namespace="utn:Foo"/>

</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded" namespace="utn:Foo"/>

</output>
<soap:operation soapAction=""/>
</operation>
<soap:binding transport="http://schemas.xmlsoap.otg/soap/http" style="tpc" />

</binding>

<service name="MyUnsolicited">

)

<port name="UnsolicitedPort" binding="tns:UnsolicitedBinding">
<soap:address location="http:/ /ugimbtp3:1024 /unsolicited /unsolinfo" />
</pott>

</service>

</definitions>

78

Cerrahpasa.wsdl

<definitions targetNamespace="urn:Cerrahpasa:CerrahpasaBPEL"
xmlns:tns="urn:Cerrahpasa:CerrahpasaBPEL"
xmlns:slt="http://schemas.xmlsoap.org/ws/2002/07 /service-link/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http:/ /www.w3.0tg/2001/XMLSchema">

<message name="CerrahpasaRequestMessage">
<part name="msh" type="xsd:string" />
<part name="pid" type="xsd:string" />
<part name="all" type="xsd:string" />
<part name="obt" type="xsd:string" />
<part name="obx" type="xsd:string" />

</message>

<message name="CerrahpasaResultMessage">
<part name="result" type="xsd:string" />

</message>

<portType name="Cerrahpasa">
<operation name="initiate">
<input message="tns:CetrahpasaRequestMessage" />
<output message="tns:CerrahpasaResultMessage" />
</operation>

</pottType>

<slt:serviceLinkType name="CerrahpasaSLT">
<slt:role name="CerrahpasaProvider">
<slt:portType name="tns:Cerrahpasa"/>
</slt:role>

</slt:serviceLink Type>
<service name="CerrahpasaHospitalServiceBP">

</service>
</definitions>

79

OrderEntry.wsdl

<exml version="1.0" encoding="UTF-8">>

<definitions
name="MyOrderEntry"
targetNamespace="urn:Foo"
xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0tg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types/>

<message name="OrderEntry_order">
<part name="String_1" type="xsd:string" />
<part name="String_2" type="xsd:string" />
<patt name="String_3" type="xsd:string" />
<part name="String_4" type="xsd:string" />
<patt name="String_5" type="xsd:string" />

</message>

<message name="OrderEntry_orderResponse">

—_n

<part name=
</message>

—_n

result" type="xsd:string" />

<portType name="OrderEntry">
<operation name="ordet" parameterOrder="String 1 String 2 String 3 String 4

String_5">
<input message="tns:OrdetrEntry_order"/>
<output message="tns:OrdetEntry_ordetResponse"/>
</operation>
</pottType>

—_n

<binding name="OrderEntryBinding" type=
<operation name="order">
<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="utn:Foo"/>
</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="utn:Foo"/>

tns:OrderEntry">

</output>
<soap:operation soapAction=""/>
</operation>
<soap:binding transport="http://schemas.xmlsoap.otg/soap/http" style="tpc" />

</binding>

<service name="MyOrderEntry">
<port name="OrderEntryPort" binding="tns:OrderEntryBinding">
<soap:address location="http:/ /ugimbtp3:1024 /lab/ordet" />
</pott>
</service>
</definitions>

80

Unsolicited2.wsdl

<exml version="1.0" encoding="UTF-8">>
<definitions name="MyUnsolicited" targetNamespace="urn:Foo" xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http:/ /www.w3.0rg/2001 /XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types/>

<message name="Unsolicited_transmission">
<part name="String_1" type="xsd:string" />
<part name="String_ 2" type="xsd:string" />
<part name="String_3" type="xsd:string" />
—n

<part name="String_4" type="xsd:string" />
</message>

<message name="Unsolicited_transmissionResponse">
<part name=" xsd:string" />

</message>

—_n

result" type=

<portType name="Unsolicited">
<operation name="transmission" parameterOrder="String 1 String 2 String_3 String_4">
<input message="tns:Unsolicited_transmission"/>
<output message="tns:Unsolicited_transmissionResponse" />
</operation>
</pottType>

)

<binding name="UnsolicitedBinding" type="tns:Unsolicited">
<operation name="transmission">
<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="utn:Foo"/>
</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="utn:Foo"/>

</output>
<soap:operation soapAction=""/>
</operation>
<soap:binding transport="http://schemas.xmlsoap.otg/soap/http" style="tpc" />

</binding>

<service name="MyUnsolicited">
<port name="UnsolicitedPort" binding="tns:UnsolicitedBinding">
<soap:address location="http:/ /ugimbtp3:1024/unsoll/solil" />
</pott>
</service>
</definitions>

81

Unsolicited3.wsdl

<exml version="1.0" encoding="UTF-8">>

<definitions

name="MyUnsolicited"

targetNamespace="urn:Foo"

xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0tg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types/>

<message name="Unsolicited_transmission">

<part name="String_1" type="xsd:string" />
<part name="String 2" type="xsd:string" />
<part name="String_3" type="xsd:string" />

<part name="String_4" type="xsd:string" />

</message>
<message name="Unsolicited_transmissionResponse">

—_n

<part name=

—_n

result” type="xsd:string" />

</message>

<portType name="Unsolicited">

—_n

<operation name="transmission" parameterOrder="String 1 String 2 String 3 String_4">
<input message="tns:Unsolicited_transmission"/>
<output message="tns:Unsolicited_transmissionResponse" />

</operation>

</pottType>

<binding name="UnsolicitedBinding" type=

—_n

)

tns:Unsolicited">
<operation name="transmission">
<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded" namespace="utn:Foo"/>

</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded" namespace="utn:Foo"/>

</output>
<soap:operation soapAction=""/>
</operation>
<soap:binding transport="http://schemas.xmlsoap.otg/soap/http" style="tpc" />

</binding>

<service name="MyUnsolicited">

)

<port name="UnsolicitedPort" binding="tns:UnsolicitedBinding">
<soap:address location="http:/ /ugimbtp3:1024/unsol2/soli2" />
</pott>

</service>

</definitions>

82

Scheduling.wsdl

<exml version="1.0" encoding="UTF-8">>

<definitions
name="MyScheduling"
targetNamespace="urn:Foo"
xmlns:tns="urn:Foo"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0tg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types/>

<message name="Scheduling_schedule">
<part name="String_1" type="xsd:string" />
<part name="String_2" type="xsd:string" />
<part name="String_3" type="xsd:string" />
<part name="String_4" type="xsd:string" />
<patt name="String_5" type="xsd:string" />
<part name="String_6" type="xsd:string" />

</message>

<message name="Scheduling_scheduleResponse">
<part name=" xsd:string" />

</message>

—_n

result" type=

<portType name="Scheduling">
<operation name="schedule" parameterOrder="String 1 String 2 String 3 String_4
String_5 String 6">
<input message="tns:Scheduling_schedule"/>
<output message="tns:Scheduling_scheduleResponse" />
</operation>
</pottType>

<binding name="SchedulingBinding" type="tns:Scheduling">
<operation name="schedule">
<input>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="urn:Foo"/>
</input>
<output>
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
use="encoded" namespace="urn:Foo"/>

</0utput>
<soap:operation soapAction=""/>
</operation>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>

</binding>

<service name="MyScheduling">
<port name="SchedulingPort" binding="tns:SchedulingBinding">
<soap:address location="http:/ /ugimbtp3:1024/opet/room" />
</pott>
</service>
</definitions>

83

APPENDIX C

Business Process (BPEL) Documents of Artemis Web Service

The BPEL documents given in this appendix are composed and described for the

Web Service Orchestration Demo of Artemis Project [2][37][306].

ChapaHospital.bpel

<process name="ChapaHospital"
targetNamespace="urn:Capad:CapadService"
xmlns:tns="urn:Capad:CapadService"
xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"
xmlns:nsO="urn:Foo"

xmlns:ns1="urn:Cerrahpasa:CerrahpasaBPEL">

<containers>
<container name="input" messageType="tns:ChapaHospitalRequestMessage" />
<container name="output" messageType="tns:ChapaHospitalResponseMessage" />
<container name="admitin" messageType="ns0:AdmitVisit_admit"/>

—_n —_n

<container name="admitout" messageType="ns0:AdmitVisit_admitResponse"/>

—_n

<container name="unsolin" messageType="ns0:Unsolicited_transmission"/>
<container name="unsolout" messageType="ns0:Unsolicited_transmissionResponse" />
<container name="cerrahin" messageType="ns1:CerrahpasaRequestMessage" />

—n —n

<container name="cerrahout" messageType="ns1:CerrahpasaResultMessage" />
</containers>

<partners>
<partner name="callet" serviceLinkType="tns:ChapaHospitalSLT" />

—_n

<partner name="AdmitService" serviceLinkType="ns0:AdmitVisitSLT"/>
<partner name="UnsolicitedService" serviceLinkType="ns0:UnsolicitedSLT" />
<partner name="Cerrahpasa" serviceLinkType="ns1:CerrahpasaSLT" />
</partners>
<sequence name="
<receive name="receivelnput" partner="
container="input" createlnstance="yes"/>
<scope name="AdmitVisit">
<sequence>
<assign name="Input_to_AdmitVisit">
<Copy>
<from container="input" part="EVN">
</from>
<to container="admitin" part="String_1"/>
< / Copy>
<copy>
<from container="input" part="MSH">
</from>
<to container="admitin" part="String_2"/>
< / copy>
<Copy>
<from container="input" part="PID">

main">
caller" portType="tns:ChapaPT" operation="process"

84

</from>
<to container="admitin" part="String_3"/>
</Copy>
<copy>
<from container="input" part="DB1">
</from>
<to container
</copy>
<Copy>
<from container="input" part="AL1">
</from>
<to container="admitin" part="String_5"/>
</Copy>
<copy>
<from container="input" part="ACC">
</from>
<to container="admitin" part="String_6"/>
</copy>
</assign>
<invoke partner="AdmitService" portType="ns0:AdmitVisit" operation="admit"
inputContainer="admitin" outputContainer="admitout"/>
<assign name="Output_of_AdmitVisit">
<Copy>
<from container="admitout" part="
</from>
<to container="output" part="result"/>
</Copy>
</assign>
</sequence>
</scope>
<switch name="Check_AdmitVisit">
<case condition="bpws:getContainerData('output','result’) = '"Admit:OK"">
<sequence>
<scope name="Unsolicited_Transmission">
<sequence>
<assign name="Input_to_Unsolicited">
<Copy>
<from container="input" part="MSH">
</from>
<to container="unsolin" part="String_1"/>
</Copy>
<copy>
<from container="input" part="PID">
</from>
<to container="unsolin" part="String_2"/>
</copy>
<Copy>
<from container="input" part="OBR">
</from>
<to container="unsolin" part="String_3"/>
</Copy>
<copy>
<from container="input" part="OBX">
</from>
<to container
</copy>
</assign>
<invoke partner="UnsolicitedSetvice" portType="ns0:Unsolicited" operation="transmission"
inputContainer="unsolin" outputContainer="unsolout"/>
<assign name="Output_of_Unsolicited">
<Copy>
<from container="unsolout" part="result">
</from>

—n

admitin" patt="String_4"/>

result">

—n

unsolin" part="String_4"/>

85

—n

<to container
</copy>
</assign>
</sequence>
</scope>
<switch name="Check_Unsolicited">
<case condition="bpws:getContainerData('output’,'result’) = 'Unsolicited: OK"">
<scope name="CerrahpashaHospital">
<sequence>
<assign name="Input_to_Cerrahpasha">
<Copy>
<from container="input" part="MSH">
</from>
<to container="cerrahin" part="msh"/>
</Copy>
<copy>
<from container="input" part="PID">
</from>
<to container
</copy>
<Copy>
<from container="input" part="AL1">
</from>
<to container="cerrahin" part="all"/>
</Copy>
<copy>
<from container="input" part="OBR">
</from>
<to container="cerrahin" part="obt"/>
</copy>
<Copy>
<from container="input" part="OBX">
</from>
<to container="cerrahin" part="obx"/>
</Copy>
</assign>
<invoke partner="Cerrahpasa" portType="ns1:Cerrahpasa" operation="initiate"
inputContainer="cerrahin" outputContainer="cerrahout"/>
<assign name="Last">
<copy>
<from container="cerrahout" part="
</from>
<to container
</copy>
</assign>
</sequence>
</scope>
</case>
<otherwise>
<assign name="Unsolicited_Failed"><copy>
<from expression=""Unsolicited is not OK"'>
</from>
<to container="output" part="result"/>
</copy>
</assign>
</otherwise>
</switch>
</sequence>
</case>
<otherwise>
<assign name="Admit_Failed">
<copy>
<from expression="'Admit is not OK"">

output" part="result"/>

—n

cerrahin" part="pid"/>

result">

—n

output" part="result"/>

86

</from>
<to container="output" part="result"/>
< / Copy>
</assign>
</otherwise>
</switch>
<reply name="replyOutput" partner
container="output" />
</sequence>
</process>

—n

caller" portType="tns:ChapaPT" operation="process"

87

Cerrahpasa.bpel

<process name="Cerrahpasa"
targetNamespace="urn:Cerrahpasa:CerrahpasaBPEL"
xmlns:tns="urn:Cerrahpasa:CerrahpasaBPEL"
xmlns:nsO="urn:Foo"
xmlns="http://schemas.xmlsoap.org/ws/2002/07 /business-process/" >

<containers>
<container name="input" messageType="tns:CerrahpasaRequestMessage" />
<container name="output" messageType="tns:CerrahpasaResultMessage" />
<container name="orderInput" messageType="ns0:OrderEntry_order"/>
<container name="orderOutput" messageType="ns0:OrderEntry_orderResponse"/>

—_n

<container name="unsolicited2Input" messageType="ns0:Unsolicited_transmission"/>

—_n

<container name="unsolicited20utput" messageType="ns0:Unsolicited_transmissionResponse"/>

—_n

<container name="unsolicited3Input" messageType="ns0:Unsolicited_transmission"/>
<container name="unsolicited3Output" messageType="ns0:Unsolicited_transmissionResponse"/>
<container name="scheduleInput" messageType="ns0:Scheduling_schedule"/>

—n —n

<container name="scheduleOutput" messageType="ns0:Scheduling_scheduleResponse"/>
</containers>

—_n

<partners>
<partner name="client" serviceLinkType="tns:CerrahpasaSLT" />
<partner name="orderService" serviceLinkType="ns0:OtrdertEntrySLT"/>
<partner name="unsolicited2" serviceLinkType="ns0:Unsolicited2SLT" />
<partner name="unsolicited3" serviceLinkType="ns0:UnsolicitedS3LT" />
<partner name="schedule" serviceLinkType="ns0:SchedulingSLT" />
</partners>

—_n

<sequence name="main">
—n —n

<receive name="receivelnput" partner=
operation="initiate" container="input"
createlnstance="yes" />
<scope>
<sequence>
<scope>
<flow>
<sequence>
<scope name="UnsolicitedTransmissionOfPatient">
<sequence>
<assign>
<copy>
<from container="input" part="msh">
</from>
<to container
</copy>
<Copy>
<from container="input" part="pid" >
</from>
<to container="unsolicited2Input" part="String 2"/>
</Copy>
<copy>
<from container="input" part="obr" >
</from>
<to container="unsolicited2Input" part="String 3"/>
</copy>
<Copy>
<from container="input" part="obx">
</from>
<to container="unsolicited2Input" part="String_4"/>
</Copy>
</assign><invoke partner="unsolicited2" portType="ns0:Unsolicited"

operation="transmission" inputContainer="unsolicited2Input" outputContainer="unsolicited20utput" />

88

—_n

client" portType="tns:Cerrahpasa"

—n

unsolicited2Input" part="String 1"/>

—_n

</sequence>
</scope>
</sequence>
<sequence>
<scope name="UnsolicitedTransmissionOfRecordSystem">
<sequence>
<assign>
<copy>
<from container="input" part="msh" >
</from>
<to container="unsolicited3Input" part="String 1"/>
</copy>
<Copy>
<from container="input" part="pid">
</from>
<to container="unsolicited3Input" part="String 2"/>
</Copy>
<copy>
<from container="input" part="obr">
</from>
<to container="unsolicited3Input" part="String 3"/>
</copy>
<Copy>
<from container="input" part="obx">
</from>
<to container="unsolicited3Input" part="String_4"/>
</Copy>
</assign>

—_n —_n

<invoke operation="transmission" inputContainer="unsolicited3Input"

—_n —_n

outputContainer="unsolicited3Output" partner=
</sequence>
</scope>
</sequence>
<sequence>
<scope name="SchedulingOperationRoom">
<sequence>
<sequence>
<assign>
<Copy>
<from container="input" part="msh">
</from>
<to container="scheduleInput" part="String 1"/>
</Copy>
<copy>
<from expression=""booo"">
</from>
<to container="scheduleInput" part="String 2"/>
</copy>
<Copy>
<from container="input" part="pid">
</from>
<to container="scheduleInput" part="String 3"/>
</Copy>
<copy>
<from container
</from>
<to container="scheduleInput" part="String 4"/>
</copy>
<Copy>
<from expression=""no dg1 info found"'>
</from>
<to container="scheduleInput" part="String 5"/>
</Copy>

—_n

unsolicited3" portType=

—n

input" part="obx">

89

ns0:Unsolicited" />

<copy>
<from expression=""no ais info found"">
</from>
<to container="scheduleInput" part="String 6"/>
</Copy>
</assign>
<invoke operation="schedule" inputContainer="scheduleInput"
outputContainer="scheduleOutput" partner="schedule" portType="ns0:Scheduling" />
<assign>
<copy>
<from container
</from>
<to container="output" part="result"/>
</copy>
</assign>
</sequence>
</sequence>
</scope>
</sequence>
</flow>
</scope>
<sequence name="LabOrderEntry">
<assign>
<copy>
<from container="input" part="msh">
</from>
<to container="otdetInput" part="String 1"/>
</copy>
<copy>
<from container="input" part="pid">
</from>
<to containetr="orderInput" part="String 2"/>
</Copy>
<copy>
<from container="input" part="all">
</from>
<to container
</copy>
<copy>
<from expression=""boooo"">
</from>
<to container="orderInput" part="String 4"/>
</Copy>
<copy>
<from expression=""booooo"">
</from>
<to container="ordetInput" part="String 5"/>
</copy>
</assign>
<invoke operation="ordet" inputContainer="orderInput" outputContainer="orderOutput"
partner="orderSetvice" portType="ns0:OrderEntry"/>
</sequence>
</sequence>
</scope>
<reply name="callbackClient" partner="client" portType="tns:Cerrahpasa" operation="initiate"
container="output" />
</sequence>
</process>

—_n

scheduleOutput" part="result">

—n

—n

otdetInput" part="String 3"/>

90

