
 I

IMPROVEMENT OF COMPUTATIONAL SOFTWARE FOR COMPOSITE
CURVED BRIDGE ANALYSIS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AHMET SERHAT KALAYCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

JANUARY 2005

 II

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Erdal Çokca
 Department Head

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Cem Topkaya
 Supervisor

Examining Committee Members

Prof. Dr. Polat Gülkan (METU,CE)

Asst. Prof. Dr. Cem Topkaya (METU,CE)

Prof. Dr. M. Semih Yücemen (METU,CE)

Prof. Dr. S. Tanvir Wasti (METU,CE)

Volkan Aydoğan(M.S.) (PROYA)

 III

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name : AHMET SERHAT KALAYCI

Signature :

 IV

ABSTRACT

IMPROVEMENT OF COMPUTATIONAL SOFTWARE FOR COMPOSITE
CURVED BRIDGE ANALYSIS

Kalaycı, Ahmet Serhat

M.S., Department of Civil Engineering

Supervisor : Asst. Prof. Dr. Cem Topkaya

 January 2005, 157 pages

In highway bridge construction, composite curved girder bridges are becoming

more popular recently. Reduced construction time, long span coverage, economics

and aesthetics make them more popular than the other structural systems.

Although there exist some methods for the analysis of such systems, each have

shortcomings. The use of Finite Element Method (FEM) among these methods is

limited except in the academic environments. The use of commercial FEM

software packages in the analysis of such systems is cumbersome as it takes too

much time to form a model. Considering such problems a computational software

was developed called UTRAP in 2002 which analyzes bridges for construction

loads by taking into account the early age deck concrete. As the topic of this thesis

work, this program was restructured and new features were added. In the

following thesis work, the program structure, modeling considerations and

recommendations are discussed together with the parametric studies.

Keywords: Composite Curved Bridge, Finite Element Method, Software,
Parametric Studies

 V

ÖZ

KAVİSLİ KOMPOZİT KÖPRÜ ANALİZİ İÇİN BİR BİLGİSAYAR
PROGRAMI GELİŞTİRİLMESİ

Kalaycı, Ahmet Serhat

Yüksek Lisans., İnşaat Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Cem Topkaya

Ocak 2005, 157 sayfa

Günümüzde karayolu köprü inşaatlarında kompozit köprüler daha popüler bir hale

gelmiştir. İnşaat süresinin kısalması, uzun açıklıkları geçebilme, ekonomi ve

estetik gibi etkenler bunları diğer yapısal sistemlere göre daha yaygın bir hale

getirmiştir. Bu tip sistemlerin analizi için çeşitli yöntemler olsa da her birinin

kendine özgü kısıtlamaları vardır. Anılan yöntemlerin içinde Sonlu Elemanlar

Yönteminin kullanımı ise akademik çevreler dışında yaygın değildir. Bu tip

yapısal sistemlerin çözümünde ticari Sonlu Eleman Yöntemi yazılımlarının

kullanımı ise modellerin oluşturulması uzun zaman aldığı için zordur. Bu tip

sorunların çözümü için 2002 yılında UTRAP adında, inşaat yükleri altında ve yeni

dökülen tabliye betonunun çelik kirişler üzerindeki etkilerini de modelleyebilen

bir program geliştirilmişir. Bu program yeniden düzenlenmiş ve yeni özellikler

eklenmiştir. Bu tez çalışmasında program yapısı, modelleme tekniği ve tavsiyeleri

ile beraber yapılan parametrik çalışmalar da açıklanmaktadır.

Anahtar Kelimeler: Kompozit Kavisli Köprü, Sonlu Elemenlar Yöntemi, Yazılım,
Parametrik Çalışmalar.

 VI

TABLE OF CONTENTS

PLAGIARISM……………………………………………………………. III

ABSTRACT………………………………………………………………. IV

ÖZ………………………………………………………………………… V

TABLE OF CONTENTS…………………………………………………. VI

CHAPTERS

1. INTRODUCTION……………………………………………………... 1

1.1 General……………………………………………………… 1

2. PROGRAM STRUCTURE…………………………………………….. 7

2.1 General……………………………………………………… 7

2.2 Inputs………………………………………………………... 7

2.2.1 Geometry………………………………………….. 7

2.2.2 Plate Properties…………………………………… 9

2.2.3 Bracing……………………………………………. 9

2.2.4 Support……………………………………………. 9

2.2.5 Stud……………………………………………….. 9

2.2.6 Pour Sequence…………………………………….. 9

2.3 Pre-processor Module………………………………………. 10

2.3.1 Preliminaries……………………………………… 10

2.3.2 Node Generation………………………………….. 12

2.3.3 Shell Element Generation………………………… 27

2.3.4 Internal and External Braces……………………… 30

2.3.5 Top Lateral Braces………………………………... 33

2.3.6 Shear Studs………………………………………... 35

 VII

2.3.7 Support Elements…………………………………. 37

2.3.8 Pin Nodes…………………………………………. 38

2.3.9 Assigning Shell Element Properties………………. 41

2.3.9.1 Property Shell Library…………………….. 41

2.3.9.2 Property Shell Indexes……………………. 43

2.3.10 Assigning the Stud Properties…………………….. 45

2.3.10.1 Stud Modification Factors…………….. 47

2.3.11 Assigning the Properties of Internal, External

 and Top Lateral Braces…………………………… 47

2.4 Processor Module…………………………………………… 48

2.4.1 Preliminaries……………………………………… 48

2.4.2 Gaussian Quadrature Data and Shape Function

Arrays……………………………………………... 48

2.4.3 Determination of the Number of Non-zero Entries

 in the Global Stiffness Matrix…………………….. 49

2.4.4 Formation of the “irowindex” and “icolumn”

vectors…………………………………………….. 51

2.4.5 Formation of the Structural Stiffness Matrix……... 53

2.4.5.1 Assembly of Shell Elements……………… 54

2.4.5.2 Assembly of Top Lateral Braces………….. 55

2.4.5.3 Assembly of Internal Braces……………… 56

2.4.5.4 Assembly of External Braces……………... 57

2.4.5.5 Assembly of Support Elements…………… 59

2.4.5.6 Assembly of Studs………………………... 59

2.4.6 Modification for Support Conditions……………... 60

2.4.7 Formation of the Load Vector…………………….. 60

2.4.8 Solution for Displacements……………………….. 61

2.5 Post-processor Module……………………………………… 62

2.5.1 Preliminaries……………………………………… 62

2.5.2 Cross-sectional Deflections……………………….. 62

2.5.3 Cross-sectional Rotations…………………………. 62

 VIII

2.5.4 Top Lateral Brace Forces…………………………. 63

2.5.5 Internal Brace Forces……………………………... 63

2.5.6 External Brace Forces…………………………….. 64

2.5.7 Cross-sectional Forces……………………………. 65

3. NUMERICAL MODELING DETAILS AND PROGRAM

VERIFICATION………………………………………………………….. 69

3.1 Modeling of the Physical System…………………………… 69

3.2 Element Formulations………………………………………. 71

3.2.1 Shell Element Formulation……………………….. 71

3.2.2 Truss Element Formulation……………………….. 80

3.2.3 Spring Element Formulation……………………… 80

3.3 Solver Basics………………………………………………... 81

3.3.1 Sparse Solver Storage Format…………………….. 82

3.4 Program Verification with Existing Solutions……………… 83

3.4.1 General……………………………………………. 83

3.4.2 Hand Calculations………………………………… 84

3.4.3 Published Solutions……………………………….. 85

4. MODELING RECOMMENDATIONS FOR COMPOSITE

BRIDGE ANALYSIS…………………………………………………….. 88

4.1 Simply Supported Bridge Case……………………………... 88

4.1.1 Deflections………………………………………... 93

4.1.1.1 Node Normals…………………………….. 96

4.1.2 Top Lateral Brace Forces…………………………. 97

4.1.3 Internal Brace Forces……………………………... 104

4.1.4 Cross-sectional Forces……………………………. 108

4.1.5 Cross-sectional Stresses…………………………... 109

4.2 Continuous Bridge Case…………………………………….. 111

4.2.1 Deflections……………………………………….. 115

4.2.2 Top Lateral Brace Forces………………................. 116

 IX

4.2.3 Internal Brace Forces…………………………....... 118

4.2.4 Cross-sectional Forces……………………………. 120

4.2.5 Cross-sectional Stresses…………………………... 120

4.3 Simply Supported Double I-girder Bridge………………….. 120

4.3.1 Deflections………………………………………... 124

4.3.2 Top Lateral Brace Forces…………………………. 126

4.3.3 External Brace Forces…………………………….. 126

4.3.4 Cross-sectional Forces……………………………. 128

4.3.5 Cross-sectional Stresses…………………………... 128

4.4 Solver Type and Performance………………………………. 129

4.4.1 Direct vs. Iterative Solver: A Case Study………… 130

5. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH…………………………………………………… 134

BIBLIOGRAPHY………………………………………………………… 137

APPENDIX-A: SUBROUTINES LIST…………………………………... 139

APPENDIX-B: VARIABLES LIST……………………………………… 147

APPENDIX-C: USER’S MANUAL……………………………………... 153

 X

CHAPTER 1
INTRODUCTION

1.1 General

Composite highway interchange bridges are being built more frequently

recently. This is mainly because of the ease of construction, long span coverage,

economy and aesthetics. A typical composite bridge consists of a concrete deck at

the top and steel girder(s) supporting the deck (Fig.1.1,Fig.1. 2).

Figure 1.1: Typical Composite Bridge Cross-section

 Although trapezoidal box girders are extensively used owing to their high

torsional stiffness after the hardening of the deck concrete, steel I-girders are also

common in practice. Shear studs are welded to the top flanges of the girders to

achieve composite action (Fig. 1.1). Curved interchange bridges are generally

long-spanned and the deck concrete should generally be placed not at once but in

sequence because of the large volume of the concrete, and also to control

shrinkage. This requires consideration of the structural behavior of the steel

Steel Girders(U-shaped)

Deck Concrete

Internal Braces
External Braces

Shear Studs

1

 2

girders at early concrete ages during construction. Another major problem faced

in these structures is the relatively low torsional stiffness observed before the

achievement of composite behavior between the deck and the girders through the

studs as the concrete hardens. In order to sustain the stability of the girders

internal, external and top lateral braces are used (Fig. 1.1).

Figure 1.2: Composite Bridge

 There are several methods to analyze curved steel girders including the

approximate hand methods, finite difference method, finite strip method, grid

analysis method and the finite element method (FEM). Among these, the most

effective one is the FEM in terms of both modeling and accuracy. In the FEM, the

complex structures are divided into large, finite number of elements and the

behavior of these elements is well defined. Accumulating the individual element

 3

responses, the overall complex structure response can be obtained. The FEM

allows one to determine the stresses and strains at any location in a cross-section.

The main shortcoming of the FEM is the extensive computer resources it requires.

A large number of equations has to be solved in order to get the required outputs.

Although the box and I-shaped steel girders can be analyzed using general-

purpose finite element packages which require little finite element background,

formation of the models can be difficult and time consuming. Also accurate

modeling of composite action between the concrete deck and steel girder and

behavior of the composite bridge at the early concrete ages needs extra effort. In

addition to this, parametric studies cannot be easily carried out as every time a

parametric study is performed a new model needs to be created.

Until now FEM was not extensively used as a tool to analyze composite

curved bridges. Also the behavior of composite bridges at early concrete ages was

not understood clearly. In the field it was observed that (Topkaya, Williamson,

Frank 2004) before the concrete gains strength, the steel girders fail to resist the

torsional stresses created (Fig. 1.3).

Figure 1.3: Trapezoidal box girder failure during construction

 4

In order to put these issues into the design, to speed up the design process

and to allow for easy parametric studies a computer program named UTRAP was

developed (Topkaya, Williamson 2003). UTRAP consists of an analysis module

and the input module. The analysis module of the program was written in Fortran

and the input module is a Graphic User Interphase (GUI) written in Visual Basic.

The inputs to the program are entered through the GUI and the GUI converts these

inputs into a text file. The main engine of the program reads these inputs from the

text, performs the analysis and produces the outputs as a text file. Finally, GUI

reads the outputs and displays them according to the display format.

UTRAP is able to analyze trapezoidal box girders under the construction

loads. The analysis module of the program is a linear, three dimensional finite

element code consisting of pre-processing, processing and the post processing

components. The analysis module forms the finite element mesh, element

connectivity and the material properties according to information supplied from

the GUI. Concrete deck and the steel girders are modeled with nine-node shell

elements, internal, external and top lateral braces are modeled with two-node truss

elements and the shear studs are modeled with two-node spring elements. For all

bridges a constant mesh density is used. The program is able to analyze single

and dual girders. At a given cross-section top flanges are modeled with two shell

elements, webs and bottom flanges are modeled with four shell elements and the

concrete deck is modeled with ten shell elements for single girder systems and

twenty elements for dual girders systems. The program utilizes the Imperial

System of units and the constant element size along the bridge is 0.6m(2-ft). The

types of the internal, external and top lateral braces implemented into the program

conform with the practice. For the concrete pour sequence analysis, the concrete

deck can be divided into segments along the bridge. For each segment different

values for the concrete modulus, stud stiffness and distributed load can be entered.

UTRAP is capable of reporting the stresses over the entire cross-section, directly

computing the brace forces, taking into account the partial composite behavior.

Through the GUI cross-sectional dimensions, plate thickness, locations of

supports and braces, properties of the concrete deck and construction loads can be

 5

inputted to the program. The GUI has also the ability to display the analysis

results both numerically and graphically (Fig. 1.4).

Although UTRAP is a useful program for bridge designers and gives

outputs compatible with the available analysis tools, it has some limitations.

These limitations are both geometric, such as the constant element size and

structural, such as the single element type used for modeling. Also the program

has a rigid structure so that new features cannot be easily implemented. In order to

overcome this problem, the program needed to be restructured by rewriting from

the beginning, keeping certain subroutines, adding new ones and forming a new

program structure so that in the future, improvements can be easily made with

minimum effort.

 (a) (b)

Figure 1.4: (a)Geometric Properties Input Form, (b)Deflection Diagram

 One of the limitations of the program was the constant element size which

leads to a constant mesh density. The user was not able to change mesh density so

the differences between having a fine mesh or a coarse mesh could not be

observed. Also a single nine-node shell element was implemented into the

program to model the steel girders and the concrete deck but there was no

alternative for this element so the effects of the element size on the results were

 6

unclear. Another drawback was that the program was only capable of solving

single or dual girders with box steel sections but in practice I-sections are also

used and the number of girders can be more than two. The program was able to

solve only the straight girders and the constant curvature bridges but bridge

curvature can be variable. This type of variable curvature bridges are commonly

observed in heavily congested freeway to freeway interchanges. A direct sparse

solver was implemented in UTRAP but there are also iterative sparse solvers so

the performance of these two types need to be compared. Finally, the system of

units used in the program is only the Imperial System of Units but SI units are

more commonly used in the world.

 The thesis work consists of the restructuring of the computer program

UTRAP and overcoming the above mentioned limitations. First of all, the

constant element size used in the program is converted into variable element size.

In addition to the previously implemented nine-node element into the program

another four-node element is implemented. Thirdly I-shaped girders are

implemented into the program. Also the program is restructured so that it takes

into account the variable radius of curvature along the length of the bridge. To

compare the performances of the direct sparse solvers and the iterative sparse

solvers, a sparse iterative solver is adopted into the program. Finally the present

form of the program is also compatible with the SI units.

 In the following sections first the overall program algorithm will be

explained including the flow chart and all the individual subroutines. In the

second part Finite Element Formulation and the Numerical Modeling Details will

be discussed. The third part consists of the verification of the developed software

with the hand calculations and published solutions. After that parametric studies,

mesh convergence and analysis recommendations for design will be presented.

 7

CHAPTER 2
PROGRAM STRUCTURE

2.1 General

 The developed program is composed of more than 14 000 lines of Fortran

code excluding the solver libraries. The solver libraries used in the program are

readily available equation solver packages. The main engine of the developed

program consists of the pre-processor, processor and post-processor modules. In

the pre-processor module, first, the geometry of the bridge is defined together

with the node locations within a cross-section and along the span. Then the

elements forming the finite element mesh are formed and element properties are

assigned. After establishing the geometry using the loading data the nodal loads

are assigned. Upon the formation of the geometry and assignment of the nodal

loads the processor module of the program assembles the global stiffness matrix

and solves the equilibrium equations to obtain the displacements. The nodal

displacements are processed in the post processor module to give the required

stresses and forces. The program flowchart is given in Figure 2.1.

2.2 Inputs

 As mentioned before the inputs of the program are entered through the

GUI and GUI creates a text file readable by the main engine of the program. The

inputs to the program can be classified into six main categories namely geometry,

plate properties, bracing, support, stud and pour sequence.

2.2.1 Geometry

Geometric inputs of the program are the number of girders which may be

single or dual, chosen element size which will affect the mesh density, number of

 8

ST
A

RT

PR
O

G
RA

M
 IN

PU
TS

 A
RE

R
EA

D

M
O

D
IF

Y
 T

H
E

EL
E M

EN
T

SI
ZE

A
N

D
 C

O
M

PU
TE

 T
H

E
N

U
M

B
ER

 O
F

C
R

O
SS

SE
CT

IO
N

S

N
O

D
A

L
C

O
O

R
D

IN
A

T E
S

A
N

D
 Q

,R
 A

N
D

 V
V

EC
TO

R
S

A
RE

D
ET

ER
M

IN
ED

O
B

TA
IN

 S H
EL

L
IN

FO
:N

U
M

BE
R

 O
F

EL
EM

EN
TS

 P
E R

 C
R

O
SS

SE
CT

I O
N

, N
U

M
B

ER
 O

F
N

O
D

ES
 P

E R
 E

LE
M

EN
T,

N
U

M
B

ER
 O

F
D

EG
R

ES
S

O
F

FR
EE

D
O

M
 P

ER
 N

O
D

E

G
EN

E R
A

TE
 T

H
E

SH
E L

L
EL

EM
EN

TS
D

ET
ER

M
IN

E
N

U
M

B
E R

S
O

F
IN

TE
R

N
A

L
A

N
D

 E
X

TE
R

N
A

L
B

RA
C

E
EL

EM
E N

TS

G
EN

ER
A

TE
 IN

TE
R

N
A

L
A

N
D

 E
X

TE
RN

A
L

B
R

A
CE

 E
LE

M
EN

TS
D

ET
ER

M
IN

E
N

U
M

B
E R

 O
F

TO
P

LA
TE

R A
L

BR
A

C
E

EL
E M

EN
TS

G
EN

ER
A

TE
 T

O
P

LA
TE

R
A

L
B

RA
C

E
EL

E M
EN

TS
D

E T
ER

M
IN

E
N

U
M

B
ER

 O
F

ST
U

D
 E

LE
M

EN
TS

G
EN

E R
A

TE
 S

TU
D

EL
EM

EN
TS

D
ET

ER
M

IN
E

N
U

M
B

ER
 O

F
S U

PP
O

RT
 E

LE
M

E N
TS

G
EN

E R
A

TE
 S

U
PP

O
R

T
EL

EM
EN

TS
D

E T
ER

M
IN

E
TH

E
N

U
M

B
ER

O
F

PI
N

N
E D

 N
O

D
ES

G
EN

ER
A

TE
 T

H
E

PI
N

N
ED

N
O

D
ES

FO
R

M
 T

H
E

PR
O

PE
RT

Y
LI

BR
A

R
Y

 FO
R

 T
H

E
S H

EL
L

EL
EM

EN
TS

FO
R

M
 T

H
E

PR
O

PE
RT

Y
IN

D
EX

 A
RR

A
Y

 F
O

R
T H

E
SH

EL
L E

LE
M

E N
TS

FO
R

M
 T

H
E

PR
O

PE
RT

Y
A

R
R A

Y
 F

O
R

 S
TU

D
EL

E M
EN

TS

F O
R

M
 T

H
E

ST
U

D
M

O
D

IF
IC

A
TI

O
N

 F
A

C
TO

R
A

R
RA

Y

FO
R

M
 T

H
E

M
A

TE
R

IA
L

PR
O

PE
RT

Y
 A

R
RA

Y
 F

O
R

TH
E

IN
TE

R
N

A
L

BR
A

C
ES

FO
R

M
 T

H
E

M
A

TE
R

IA
L

PR
O

PE
R T

Y
 A

R
RA

Y
 F

O
R

TH
E

EX
TE

R
N

A
L

B
RA

C
ES

FO
R

M
 T

H
E

M
A

TE
R

IA
L

PR
O

PE
RT

Y
 A

R
RA

Y
 F

O
R

TO
P

LA
TE

RA
L

BR
A

C
ES

O
B

TA
IN

 T
H

E
G

A
U

SS
IA

N
I N

TE
G

R
A

TI
O

N
 P

O
IN

TS
 A

N
D

W
EI

G
H

T S
, T

H
E

FI
R

ST
 A

N
D

SE
CO

N
D

 D
ER

IV
A

TI
V

ES
 O

F
TH

E
E L

EM
EN

T
SH

A
PE

FU
N

C
TI

O
N

S

FO
R

M
 "i

c"
 A

R
R

A
Y

F O
R

M
 "i

n v
in

c"
 A

R
R

A
Y

D
ET

E R
M

IN
E

TH
E

N
O

N
ZE

RO
 E

N
TR

I E
S

O
F

TH
E

ST
R

U
CT

U
RA

L
ST

IF
FN

ES
S M

A
TR

IX

FO
R

M
 T

H
E

"i
co

lu
m

ns
" a

nd
"i

ro
w

in
d e

x"
 A

RR
A

Y
S

IN
TI

A
LI

ZE
 T H

E
ST

R U
C

TU
R

A
L S

TI
F F

N
ES

S
M

A
T R

IX
, D

I S
PL

A
C

E M
EN

T
A

N
D

 L
O

A
D

 V
EC

TO
R

A
SS

EM
B

LE
 SH

EL
L

E L
EM

EN
TS

 IN
TO

ST
RU

C
TU

R
A

L S
TI

FF
N

ES
S

M
A

TR
IX

A
SS

E M
B

LE
 T

O
P

LA
T E

RA
L

B
RA

C
E

EL
EM

EN
TS

 I N
TO

ST
RU

C
TU

R
A

L S
TI

FF
N

ES
S

M
A

TR
IX

A
S S

EM
B

L E
 IN

TE
R

N
A

L
B

RA
C

E
EL

EM
E N

TS
 IN

TO
ST

RU
C

TU
R

A
L S

TI
FF

N
ES

S
M

A
TR

I X

A
SS

EM
B

LE
 EX

TE
R

N
A

L
B

RA
C

E
EL

E M
EN

TS
 IN

TO
ST

R U
C

TU
R

A
L S

TI
F F

N
ES

S
M

A
T R

IX

A
SS

EM
B

LE
 SU

P P
O

R
T

E L
EM

EN
TS

 IN
TO

ST
RU

C
TU

R
A

L S
TI

FF
N

ES
S

M
A

TR
IX

A
SS

E M
B

LE
 S T

U
D

EL
EM

EN
TS

 I N
TO

S T
RU

C
TU

R
A

L S
T I

FF
N

ES
S

M
A

TR
IX

A
PP

LY
 T

H
E

B
O

U
N

D
A

R Y
C

O
N

D
IT

IO
N

S
A

SS
IG

N
 T

H
E

LO
A

D
IN

G
C

A
LL

 SO
L V

ER
- S

O
LV

E
TH

E
S Y

ST
EM

C
A

LC
U

LA
TE

 V
ER

TI
C A

L
D

EF
LE

C
TI

O
N

S
C

A
LC

U
LA

TE
 C

R
O

SS
SE

CT
IO

N
A

L
RO

T A
TI

O
N

S
C

A
L C

U
LA

TE
 T

O
P

LA
TE

R
A

L
B

R
A

C
E

F O
RC

ES

C
A

LC
U

L A
TE

 IN
T E

R
N

A
L

B
RA

C
E

F O
R

CE
S

C
A

LC
U

LA
TE

 EX
TE

R
N

A
L

B
RA

C
E

FO
R

C E
S

C
A

LC
U

LA
TE

 C
R

O
SS

SE
CT

IO
N

A
L

F O
R

CE
S

E N
D

P R
E-

P R
O

C
ES

SO
R

PR
O

C
ES

SO
R

PO
S T

-P
R

O
C

E S
SO

R

Fi
gu

re
 2

.1
: P

ro
gr

am
 F

lo
w

ch
ar

t

 9

segments including the length and radius curvature of each segment, girder

section type-either trapezoidal or I section, chosen shell element type which may

be four-node or nine-node elements and the cross-sectional dimensions. The

cross-sectional dimensions are web depth, bottom flange width, top width, top

flange width, deck width and concrete deck thickness.

2.2.2 Plate Properties

 Inputs for the plate properties are entered to define the thicknesses of the

webs, bottom flanges and top flanges. The user can enter variable thicknesses

along the length of the bridge.

2.2.3 Bracing

 Bracing inputs are internal, external and top lateral brace locations, types

and areas which may be again variable along the span.

2.2.4 Support

 To input the supports the number and locations should be specified.

2.2.5 Stud

 The inputs related to studs include stud locations, spacing and number per

flange.

2.2.6 Pour Sequence

 The pour sequence inputs are length of the poured concrete, concrete

modulus, stud stiffness and the loading which are specified for every pour

sequence. When the concrete is placed, before it hardens and gains strength, it has

to be carried by the steel girders. The developed program has the ability to analyze

girders with semi-cured concrete.

 10

2.3 Pre-processor Module

2.3.1 Preliminaries

 After the inputs are read and assigned to different variables, the pre-

processing module of the program starts. First of all the total length of the bridge

is obtained by adding all the segment lengths. The element size is truncated so

that the total bridge length is an integer multiple of the element size. This

adjustment was necessary as the total length of the bridge specified by the user

may not be same as the total length of the bridge obtained after mesh generation.

The truncation is done as in Algorithm 2.1.

Algorithm 2.1

1. The integer number of element divisions are assigned to a dummy variable

idum = Length of the bridge(as specified by the user)/element size(as

specified by the user)

2. idum is assigned as the number of divisions.

ndiv(number of divisions) = idum

3.Truncated element size is found by dividing the total length of bridge by ndiv

Element size(truncated) = Length of the bridge(as specified by the user)/ndiv

 After the truncated element size is obtained, the total number of cross-

sections is calculated for the two types of elements, four-node and nine node-shell

elements. The geometric difference between these two element types is that nine-

node element has middle nodes and four-node element does not. When generating

the mesh, the program generates more cross-sections for the nine node shell

element. The number of cross-sections for bridges modeled with nine-node

elements generated for the nine-node element is twice the number of divisions

plus one. The number of the cross-sections for the four-node element is calculated

by adding one to the number of divisions.

 There are three variables used to define different cross-sections that the

program can analyze. These variables are the number of girders (denoted by ngird

in the program), steel girder section type (denoted by isec_type in the program)

and shell element type (denoted by ielem_type in the program). Number of girders

 11

can be either one or two, steel girder section type can be either trapezoidal or I-

section and the shell element type can be either nine-node element or four-node

element. This makes a total of eight different cases. When defining a specific case

a three digit number notation is used like ‘xyz’. Here x stands for the number of

girders, y stands for the steel girder section type and z stands for the shell element

type. For example 212 defines the cross-section having two I girders with four-

node elements. The program UTRAP is structured in such a way that in the

restructured program, the number of girders can easily be increased and new steel

cross-sections can easily be added. In addition to the nine-node element which the

program utilizes a four-node element is added into the program and if new

elements need to be utilized they can be added without much effort.

 As discussed previously the program utilizes a constant cross-sectional

mesh density for each cross-sectional case. For example for case 111, the concrete

deck is modeled with ten shell elements, the top flanges are modeled with two

shell elements, the web and bottom flanges are modeled with four shell elements.

Table 2.1 shows the eight different cases and how many shell elements are used

for modeling the different parts.

 For each of the eight cross-sections the number of nodes per cross-section

are shown in Table 2.2.

Table 2.1: Shell modeling

 Number of shell elements used for modeling

Case Concrete deck Top Flange Bottom Flange Web

111 10 2 4 4

112 10 2 4 4

121 6 2 2 4

122 6 2 2 4

211 20 2 4 4

212 20 2 4 4

221 12 2 2 4

222 12 2 2 4

 12

The number of nodes for each cross-section is constant and is calculated internally

in the program.

Table 2.2:Number of Nodes Per Cross-section for Each Case

Case Number of nodes per cross-section

111 54

112 28

121 30

122 16

211 107

212 55

221 59

222 31

2.3.2 Node Generation

 The global x,y and z coordinates of the nodes are computed from the

cross-sectional dimensions and the radius of curvature of the individual segments.

In order to define the shell element geometry, three mutually orthogonal unit

vectors are formed for each node denoted by Q, R, and V. Among these unit

vectors, V always points in the direction of the thickness of the shell element and

R always points in the direction of the tangent to the arc length. Q is the unit

vector which is orthogonal to the other two vectors. The unit vectors for the 111

case can be seen on the Fig. 2.2.

 13

Figure 2.2: Node Locations and Unit Vectors for Case 111

 In the main program, the subroutine “get_coordinates” is called and this

subroutine itself calls the subroutines to compute coordinates and unit vectors for

each node for every cross-section type. For example subroutine

“get_coordinatesxyz” computes the coordinates and unit vectors for the cross-

section having “x” “y”-type steel sections composed of “z” type shell elements.

The notation used for expressing the coordinates of a node is xy(a,b). Here “a”

can take the values 1 for the x-coordinate, 2 for the y-coordinate and 3 for the z-

coordinate. The second variable in the parenthesis, b, stands for the node number.

 In a given cross-section, nodal coordinates are calculated parametrically by

the cross-sectional dimensions. These cross-sectional dimensions are web depth,

bottom flange length, top length, top flange width, deck width, and the offset

distance (Fig. 2.3).

 After the determination of the nodal point coordinates(x and y coordinates)

for the first cross-section, the program generates the nodal point coordinates for

the rest of the bridge(x,y and z coordinates) using the individual segment lengths

and radius of curvatures (Algorithm 2.2, Figure 2.4).

 The nodes for the all eight cross-sections are shown in Fig. 2.5 through Fig

2.12.

Q

R
V

Q

R V

Q

R
V

RV

 14

Figure 2.3: Cross-sectional Dimensions

Algorithm 2.2

1. For each bridge segment having a different radius of curvature, find the start

and end cross-section numbers. Force the last cross-section number be equal to

the previously calculated total number of cross-sections value.

2. Set the global x and z-coordinates of the centers of each curved segment(cx, cz)

and vax, vay ,vbx and vby to zero.

 cx = 0.0

 cz = 0.0

3. Loop over the segments and locate the x and z-coordinates of the centers.

nnpcs : number of nodes per cross-section

rnn : reference node number

cx = xy(1,(icsec_start(ij)-1)*nnpcs +rnn)+vax*al_rcurv_segm(ij)

cz = xy(3,(icsec_start(ij)-1)* nnpcs + rnn)+vaz*al_rcurv_segm(ij)

4. Define angle theta and set it to zero.

θ = 0.0

 Theta is the angle enclosed by the arc length starting from the first cross-section

up the cross-section for which the nodal coordinates are to be determined.

y

x

web depth

top length top length

deck width

Bottom flange length Offset

 15

5.Update θ.

θ new = θ previous + element size/radius of curvature (4-node element)

θ new = θ previous + (element size/2.0)/radius of curvature (9-node element)

6. Form the unit vector va starting from the center of the segment (if it has certain

curvature) pointing along the radius to the reference node on the bridge center

line.

vax = cos(θ)

vaz = sin(θ)

5. Form the unit vector, vb which is perpendicular to va

6. If the bridge segment is straight x and z-coordinates of the generated segments

are calculated as follows(9-node element):

do ik = 1, number of cross-sections per segment

do im = 1, number of nodes per cross-sections

xy(1,(ik* nnpcs)+im)=xy(1,(ik-1)* nnpcs +im)-element size/2.0*vbx

xy(3,(ik* nnpcs)+im)=xy(3,(ik-1)* nnpcs +im)- element size /2.0*vbz

end do

end do

7. If the bridge segment(ij) is curved, x and z-coordinates of the generated

segments are calculated as follows(9-node element):

do ik = 1, number of cross-sections per segment

do im = 1, number of nodes per cross-sections

xy(1,(ik* nnpcs)+im)=cx+vax*(xy(1,im)-radius of curvature(ij))

xy(3,(ik* nnpcs)+im)=cz+vaz*(xy(1,im)- radius of curvature (ij))

end do

end do

 Having obtained the x,y and z-coordinates of all nodes forming the finite

element mesh, previously explained Q, R and V unit vectors (Fig 2.2) which are

used in defining the shell geometry are calculated. This calculation is explained in

Algorithm 2.3.

 16

Algorithm 2.3

1. The Q, R and V vectors for the nodes lying on the horizontal plane(nodes

forming the deck, bottom flange and top flange) are calculated first by forming a

unit vector on the x-z plane using the bottom flange nodes extending from left to

right.

For Case 111;

qx= xy(1,46+(i-1)*54)-xy(1,38+(i-1)*54)

qz= xy(3,46+(i-1)*54)-xy(3,38+(i-1)*54)

2. By diving qx and qz components by the norm of the vector which is;

Norm = 2 2(qx)qz+

3. Q unit vector is obtained which always points towards the center.

R is the unit vector which is perpendicular to Q so the dot product of the two

vectors should be zero, then it should have the components;

RX = QZ

RZ = -QX

V unit vector always points toward the center of the shell so it will have only y-

component and the value of it is 1.

VY = 1.0

4. For the webs which are rather curved, first the x and z components of the R unit

vector is found by calculating the x and z components of the unit vector on the

horizontal bottom flange. For case 111;

ax=xy(1,46+(i-1)*54)-xy(1,38+(i-1)*54)

az=xy(3,46+(i-1)*54)-xy(3,38+(i-1)*54)

vect1= 2 2(ax)az+

ax=ax/vect1

ay=0.0

az=az/vect1

RX = az

RZ = -ax

5. The next step is to find the x,y and z components of the Q unit vector. So for

 17

111 case;

QX=xy(1,38+(i-1)*54)-xy(1,30+(i-1)*54)

QY=xy(2,38+(i-1)*54)-xy(2,30+(i-1)*54)

QZ=xy(3,38+(i-1)*54)-xy(3,30+(i-1)*54)

vect2= 2 2 2(qx)qy qz+ +

QX =qx/vect2

QY =qy/vect2

QZ =qz/vect2

6. V is the unit vector perpendicular to both Q and R, so it can be found by the

cross product of Q and R.

V = Q X R

 18

O
1

O
2

C L

va

va
vb

vb

se
gm

en
t 1

se
gm

en
t 2

se
gm

en
t 3

th
et

a+
n*

dt
he

ta

st
ar

t c
ro

ss
 se

ct
io

n

su
bj

ec
t c

ro
ss

 se
ct

io
n(

n)

va

vb

O
3

Fi
gu

re
 2

.4
: T

yp
ic

al
 v

ar
ia

bl
e

ra
di

us
 o

f c
ur

va
tu

re
 b

ri
dg

e
an

d
th

e
pa

ra
m

et
er

s i
nv

ol
ve

d
in

 c
oo

rd
in

at
e

ca
lc

ul
at

io
ns

 19

(a
) (b

)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

22
23

24
25

26
27

54
28

29

38
39

31

32

33

34

30

35

36

37

40
41

42
43

44
45

46

53

52

51

50

49

48

47

1
2

3
4

5
6

7
8

9
10

11
12

13
14

19

15

16

17

18

20
21

22

26

25

24

23

Fi
gu

re
 2

.5
: (

a)
N

od
e

an
d

(b
)E

le
m

en
t N

um
be

ri
ng

 fo
r

C
as

e
11

1

 20

(a
) (b

)

1
2

3
4

5
6

7
8

9
10

11

12
13

14
28

15

20

17

18

16

19

21
22

23
24

27

26

25

1
2

3
4

5
6

7
8

9
10

11
12

13
14

20
21

22

26

25

24

23

15

16

17

18

19

Fi
gu

re
 2

.6
: (

a)
N

od
e

an
d

(b
)E

le
m

en
t N

um
be

ri
ng

 fo
r

C
as

e
11

2

 21

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17 18

19

20

21

22

23

24

25

26 27 28 29 30

1 2 3 4 5 6

7 8

9

10

11

12

13 14

 Figure 2.7: (a)Node and (b)Element Numbering for Case 121

 22

(a)

(b)

1 2 3 4 5 6 7

8 9 10

11

12

13

14 15 16

1 2 4 5 6

7 8

9

10

11

12

13 14

3

 Figure 2.8: (a)Node and (b)Element Numbering for Case 122

 23

(a
)

1
2

3
4

5
7

6
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41

42
43

50
44

45
46

47
74

48
49

51
52

53
54

55
56

57

58

59

60

61

62

63

64

65

66

67
68

69
70

71
72

73

75
76

83
77

78
79

80
10

7
81

82

84
85

86
87

88
89

90

91

92

93

94

95

96

97

98

99

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(b
)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

29

30

31

32
33

34
35

36
37

38

39

40

25
26

27
28

41

42

43

44
45

46
47

48
49

50

51

52

Fi
gu

re
 2

.9
: (

a)
N

od
e

an
d

(b
)E

le
m

en
t N

um
be

ri
ng

 fo
r

C
as

e
21

1

 24

(a
)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21

22
26

23
24

38
25

27

28

29

30
32

33
34

35

36

37

31

44

45

46

47
49

50
51

52

53

54

48

39
43

40
41

55
42

(b
)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

29

30

31

32

34
35

36

38

39

40

33

37

25
26

27
28

41

42

43

44

46
47

48

50

51

52

45

49

Fi
gu

re
 2

.1
0:

 (a
)N

od
e

an
d

(b
)E

le
m

en
t N

um
be

ri
ng

 fo
r

C
as

e
21

2

 25

(a)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 21 2219 2017 1815 1613 14 23 24 25

27 28 29 3026

39 40 41 4238

44 45 46 4743

56 57 58 5955

31
32

33
34

35
36

37

48
49

50
51

52
53

54

1 2 3 4 5 6 1110987 12

13 14

17 18

15 16

19 20

21

22

23

24

25

26

27

28

 Figure 2.11: (a)Node and (b)Element Numbering for Case 221

 26

(a)

(b)

1 2 3 4 5 6 1110987 12 13

15 1614

21 2220

24 2523

30 3129

17

18

19

26

27

28

1 2 3 4 5 6 1110987 12

13 14

17 18

15 16

19 20

21

22

23

24

25

26

27

28

 Figure 2.12: (a)Node and (b)Element Numbering for Case 222

 27

 After the nodal coordinates and unit vectors associated with them are

obtained, the next step is to generate the shell elements. Before the shell element

generation subroutines are called, in the main program three variables are set to

zero. These are the number of elements per cross-section, the number of nodes per

element and the number of degrees of freedom per node. These variables are

cross-section specific, as they are basically different for all eight cases. To give an

example for case 111, the number of elements per cross-section is 26, the number

of nodes per element is 9 and the number of degrees of freedom per node is 5.

2.3.3 Shell Element Generation

 Before the subroutines to generate the shell elements are called, the

subroutine “get_shell_info” is called which gives the number of elements per

cross-section, the number of nodes per element and the number of degrees of

freedom per node values for each of the eight cross-sections. The information

obtained in this subroutine is used in the upcoming subroutines (Table 2.3).

Although the number of degrees of freedom per node value is constant as 5 for

each case, if another element requiring the sixth degree of freedom is to be used,

Table 2.3:Shell Element Information

Case
Number of elements

per cross-section

Number of nodes

per element

Number of degrees

of freedom per node

111 26 9 5

112 26 4 5

121 14 9 5

122 14 4 5

211 52 9 5

212 52 4 5

221 28 9 5

222 28 4 5

by this variable the properties of that element associated with the number of

degrees of freedom per node can easily be accommodated into the program.

 28

 After the required information for all eight cross-sections are dictated, the

shell element generation starts. In the main program the subroutine “elgen_shell”

is called and this subroutine call eight subroutines for all eight cases in the form

“elgen_shell_xyz” where x,y and z stand for the number of girders, the steel

girder section type and the element type used for modeling, respectively as before.

For example “elgen_shell_111” stands for the subroutine to generate the shell

elements for the case 111.

 In the shell element generation subroutines main point is the way the

element nodes are numbered because the elements are defined by the nodes. The

numbering is done starting from the lower left corner of the element and in

counter-clockwise direction. First the corner nodes are numbered and after that, if

they exist the mid-nodes are numbered (Fig 2.13). To give an example consider

the element 1 of the cross-section 111 (Fig. 2.14).

 In Fig. 2.12 the first shell element forming the deck of Case 111 is shown.

For the sake of clarity only the node numbers forming that element are shown. As

the element node numbering method suggests the first node is numbered as 1.

Nodes 3, 111 and 109 follow that node. As the element is a nine-node element

having mid-nodes the fifth node is 2. Nodes 57, 110, 55 follow node 2. The last

node is the node 56. So in order to define element 1 for the case 111 the required

sequence of nodes is, 1, 3, 111, 109, 2, 57, 110, 55, 56.

 In order to define all the shell elements along the length of the bridge, first,

the element definitions for the first cross-section are completed. After that, by

looping over the total number of element divisions, all the shell elements forming

the bridge are generated.

 29

1

2

3

4

5
6

7

8 9

55 56 57

109 110 111

1 2 3

Figure 2.13: 9-node Shell Element Node Numbering

Figure 2.14: Shell Element 1 for Case 111

 30

2.3.4 Internal and External Braces

 In order to overcome the stability problems of steel girders of composite

bridges internal and external braces are used (Fig 1.1). Internal and external

braces increase the lateral rigidity and torsional stiffness of the steel girders

especially before the poured deck concrete hardens. In the program, the internal

and external braces are modeled as truss systems. As mentioned earlier two types

of steel girder sections are implemented into the program: trapezoidal girder and

I-girder. Naturally internal braces cannot be used with the I-girders but external

braces can be used with both types if dual girder system is utilized. The number of

internal braces and number of internal brace elements are different concepts for

dual girders as number of internal brace elements is twice the number of internal

braces because there exists two girders. Another remainder is that while

generating both the internal braces and the external braces, 4 nodes are required.

 For both internal and external braces, in the main program, the relationship

between the number of internal/external braces and internal/external brace

elements are stated. The information supplied in this section is given in Table 2.4.

Table 2.4:Relationships between number of internal/external braces and

internal/external brace elements

Case Number of Internal Brace Elements Number of External Brace Elements

111 Number of Internal Braces 0

112 Number of Internal Braces 0

121 0 0

122 0 0

211 2 x Number of Internal Braces Number of External Braces

212 2 x Number of Internal Braces Number of External Braces

221 0 Number of External Braces

222 0 Number of External Braces

 After the information in Table 2.4 is established the subroutines

“elgen_int_brace” and “elgen_ext_brace” are called in the main program. These

 31

two subroutines again call the secondary subroutines to generate internal and

external braces respectively. The general form of these secondary subroutines is

“elgen_int_bracexyz/elgen_ext_bracexyz” where x, y and z stand for the number

of girders, steel girder section type and the element type used for modeling

respectively as before. For example “elgen_int_brace111/ elgen_ext_brace111”

stands for the subroutine to generate the internal/external braces for the case 111.

Current version of the program utilizes only one type of internal and external

braces (Fig. 2.15).

1

2 3

4 5

1 2

3 4

(a)

(b)

Figure 2.15: (a)External and (b)Internal Brace Types and Nodes

 In order to define the internal braces along the length of the bridge, first,

the internal brace of the first cross-section is defined and then the rest is generated

 32

as there always exists a constant number of nodes between the consecutive cross-

sections. Internal brace generation for the first cross-section of the 111 case is

shown in Figure 2.16.

54

38

30

46

Internal Brace For Case 111

Figure 2.16: Internal Brace and Nodes for Case 111

 As shown in Figure 2.16 the number of nodes necessary to define an

internal brace for a single girder system is 4. For the sake of simplicity only the

nodes for defining the internal braces are shown. The locations of the internal

braces were inputted to the program previously. As the total length of the bridge is

an integer multiple of the element size, the location of the internal braces are

written in terms of the element size. For the four-node element integer division of

the location of the internal brace “i” by the element size gives the the location of

the internal brace in terms of the internal multiple cross-sections. As for the nine-

node element there exists the middle node instead of the “element size”, the user

defined internal brace location values are divided by “element size/2”.

 For the 111 case, the node locations to define the internal brace for the first

cross-section is 30, 54, 38, 46 respectively. By looping over the total number of

internal braces and multiplying the above specified node numbers by the internal

 33

brace locations and total number of nodes per cross-section value which is 54 in

case 111 the internal brace generation for the entire bridge is obtained.

 In order to define external braces along the length of the bridge, first, the

external brace of the first cross-section is defined and then the rest is generated as

there always exists a constant number of nodes between cross-sections. External

brace generation for the first cross-section of the 211 case is shown in Figure 2.17.

74

66

83

91

External Brace for Case 211

Figure 2.17: External Brace and Nodes for Case 211

2.3.5 Top Lateral Braces

 Another precaution to prevent the distortion of the steel section before the

deck concrete hardens is to put top lateral braces which connect the two flanges of

the trapezoidal girders in single or dual trapezoidal girder systems and the two I-

girders in dual I-girder systems. Top lateral braces tend to increase the torsional

stiffness of the steel girders by producing pseudo closed sections. In the program

the top laterals are modeled as truss elements. There are two types of top laterals

that can be used in the program (Fig. 2.18).

 34

Type 2 Type 1

Nodes used for generating the top lateral brace

Node 1

Node 2

Figure 2.18: Top Lateral Brace Types and Nodes

 As the top lateral braces are used for connecting the top flanges of a

trapezoidal girder in single or dual girder systems or the two I-girders of a dual I-

girder system there are no top lateral braces for single I-girder systems. In dual

girder systems the number of the top lateral elements are twice the number of top

laterals inputted to the program.

 In the main program, the subroutine “elgen_toplt” is called and this

subroutine again calls the secondary subroutines in the form “elgen_topltxyz”

where x,y and z stand for the number of girders, steel girder section type and

finite element type used for modeling, respectively as before. For example

“elgen_toplt111” stands for the subroutine to generate the top lateral braces for

the case 111.

Top lateral braces for Case 111 is shown in Figure 2.19.

 35

Type 1 Type 2

Node 1

Node 2

Figure 2.19: Top Lateral Braces for Case 111

2.3.6 Shear Studs

 In order to connect the deck concrete to the underlying steel girder(s), stud

elements are used. Stud elements play a key role in the development of the

composite action between the concrete and steel deck. In the program, the stud

elements are modeled as spring elements and it is assumed that three shear studs

per flange are used. The number of the shear studs used per cross-section for each

of the eight cases are given in Table 2.5.

Table 2.5:The number of Shear Studs Used

Case
Number of Shear

Studs Used per Cross-section

111 6

112 6

121 3

122 3

 36

Table 2.5:The number of Shear Studs Used(Continued)

Case
Number of Shear

Studs Used per Cross-section

211 12

212 12

221 6

222 6

 After the number of studs elements is obtained, the stud element

generation starts. In the main program the subroutine “elgen_studs” is called

which again calls subroutines in the form “elgen_studsxyz” for all eight cases to

generate studs where x, y and z stand for the number of girders, steel girder

section type and finite element type used for modeling, respectively as before. For

example “elgen_studs111” stands for the subroutine to generate the stud elements

for the case 111.

 The stud elements are generated for every cross-section, so for the same

stud element in successive cross-sections, the node numbers used for generation

should be increased by the total number of nodes per cross-section value. Stud

elements for Case 111 are shown in Figure 2.20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 54 28 29

38 39

31

32

33

34

30

35

36

37

40 41 42 43 44 45 46

53

52

51

50

49

48

47

Stud Elements Stud Elements

Figure 2.20: Stud Elements for Case 111

 37

 Two nodes are necessary to define a stud element. One node is on the

concrete deck and the other node is on the steel girder. In fact these two nodes lie

on each other. For example to define the stud elements in the first cross-section

for the case 111 the necessary nodes on the concrete deck are 22,30,25,26,54,29.

Their counterpart on the steel girders are 5,7,9,13,15,17. So the leftmost stud

element is defined by the nodes 22 and 5. The rest of the stud elements along the

bridge length are generated in a similar manner, simply by adding the

multiplication of total number of nodes per cross-section value with the number of

cross-sections to the individual node numbers.

2.3.7 Support Elements

 In practice, in order to reduce the torsional stresses induced from the

loading, diaphragms made of steel plates are used at the support locations as they

have very high torsional stiffness. In order to simulate this, very stiff truss systems

are used at the support locations. By preventing the relative movements of the

edges of the cross-sections rigid diaphragm action is modeled.

 Except for the trapezoidal dual girder systems, for all other six sections the

number of support elements equal to the number of supports as entered by the

user. For trapezoidal dual girder systems the number of support elements equal to

three times the number of support elements (Fig 2.21).

 To generate the supports, in the main program the subroutine

“elgen_support” is called which again calls subroutines in the form

“elgen_supportxyz” for all eight cases to generate support elements where x, y

and z stand for the number of girders, steel girder section type and finite element

type used for modeling respectively as before. For example “elgen_support111”

stands for the subroutine to generate the support elements for the case 111.

 The support locations are inputted by the user and as it was explained

before, these values are divided by the element size for the four-node element and

by half the element size for the nine-node element to obtain the support locations

in terms of integer number of cross-sections. After the support locations are

expressed in terms of the element size, the cross-section associated with this value

is determined and the node locations to form the support elements at that

 38

particular cross-section are obtained. By this way the support element nodes are

obtained.

 Four nodes are required to define a support element. For Case 111 the

node locations of the support at the first cross-section are 30,54,38 and 46. The

other node locations for other support are going to be integer multiples of these

node numbers.

2.3.8 Pin Nodes

 While modeling the supports, bottom flange nodes of the first support is

modeled as pin supports. For the rest of the supports, the bottom flange nodes of

the steel girders are modeled as rollers. To give an example for the Case 111,

nodes 38,..,46 are pinned if the support is at the first cross-section. The

corresponding nodes for the other supports are modeled as rollers. The number of

total number of pinned nodes for a bridge is calculated by multiplying the total

number of supports by the number of pinned nodes for the first cross-section.

Table 2.6 shows the pinned nodes for all eight cases.

 To generate the pinned nodes, in the main program the subroutine

“gen_pinnodes” is called which again calls subroutines in the form

“gen_pinnodesxyz” for all eight cases to generate the pinned nodes where x, y and

z stand for the number of girders, steel girder section type and finite element type

used for modeling respectively as before. For example “gen_pinnodes111” stands

for the subroutine to generate the pinned nodes for the case 111.

Table 2.6:Pinned Nodes

Case Pinned Nodes
Number of Pinned

Nodes

111 38,..46 9

112 20,..24 5

121 26,..30 5

122 14,..16 3

211 58,..66-91,..99 18

212 30,..34-47,..51 10

 39

Table 2.6:Pinned Nodes(Continued)

Case Pinned Nodes
Number of Pinned

Nodes

221 38,..42-55,..59 10

222 20,..22-29,..31 6

 40

4
5

7
6

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

50
44

45
46

47
74

48
49

51
52

53
54

55
56

57

58

59

60

61

62

63

64

65

66

67
68

69
70

71
72

73

75
76

83
77

78
79

80
10

7
81

82

84
85

86
87

88
89

90

91

92

93

94

95

96

97

98

99

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Su
pp

or
t E

le
m

en
t s

21
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20

22
23

24
25

26
27

54
28

29

38
39

31 32 33
34

30

35 36 37

40
41

42
43

44
45

46

5 3 52
51 50

49 48
47

S u
pp

or
t

El
em

en
t

Fi
gu

re
 2

.2
1:

 S
up

po
rt

 E
le

m
en

ts
 fo

r
Si

ng
le

 a
nd

 D
ua

l G
ir

de
r

Sy
st

em
s

 41

2.3.9 Assigning Shell Element Properties

2.3.9.1 Property Shell Library

 As the subject bridges are long and in order to get more accurate results,

the program requires finer meshes and the computer memory requirement is high.

Also, in the program, there is an option that user can take multiple runs with the

program according the pour sequence scheme that he/she inputs. All these tend to

increase the physical memory that the programs needs for execution. To give a

rough estimate for a Case 111 bridge which is 100 m long and the element size is

0.1 m, the number of the cross-sections formed will be 1 000 and the number of

shell elements generated will be 26 000 if we utilize four-node elements. In

addition to this, the size of the global stiffness matrix that program assembles will

be 130 000 by 130 000.

The required inputs for the shell elements are steel modulus; web, bottom

flange and top flange thicknesses of the steel girders, concrete modulus and

thickness of the deck. In order to save from memory space required, a property

library is formed in the form “prop_sh_lib(n_runs, 4, nwebt+ nbotft +ntft+

n_deck)” where “nwebt” is the different number of web thicknesses, “nbotft” is

the different bottom flange thicknesses, “ntft” is the different top flange

thicknesses and “n_deck” is the different concrete deck concrete pour sequences.

First by looping over number of runs and number of web thicknesses the number

of different web thicknesses along the bridge length are entered. This storage is

shown in Algorithm 2.4

Algorithm 2.4

do ij = 1,number of runs

do ik = 1,number of web thicknesses

prop_sh_lib(ij,1,ik)=steelmodulus

prop_sh_lib(ij,2,ik)=0.3d0

prop_sh_lib(ij,3,ik)=web thickness

prop_sh_lib(ij,4,ik)=1.0d0

end do

end do

 42

The second and fourth entries in the above representation are the poisson’s ratio

and type of the element respectively which are not entered by the user. After the

web thicknesses are stored, then the second loop is carried out starting from

number of web thicknesses to number of bottom flange thicknesses (Alg. 2.5).

Algorithm 2.5

do ij = 1,number of runs

do ik = number of web thicknesses+1,number of web thicknesses+number

of bottom flange thicknesses

prop_sh_lib(ij,1,ik)=steelmodulus

prop_sh_lib(ij,2,ik)=0.3d0

prop_sh_lib(ij,3,ik)=botft(ik-nwebt)

prop_sh_lib(ij,4,ik)=1.0d0

end do

end do

 The property shell library’s remaining entries for top flange thicknesses

and number of decks are filled in a similar way.

 The property shell library is a reference table of properties for the shell

elements. Once the shell library is formed, instead of assigning the shell properties

for every shell element one by one and repeating the entries for large number of

shell elements, the program is structured so that for each element it refers to the

associated property by mapping the corresponding shell element property.(Fig.

2.22).

 43

Property Shell Library
ES
í
tweb1

type1

ES
í
tweb2

type1

ES
í
tbottomflange1

type1

ES
í
tbottomflange1

type1

.

.

.

EC

í
tdeck1

type2

Shell Element #1

Shell Element #2

.

.

.
Shell Element #n

Figure 2.22:Shell Element Property Mapping

2.3.9.2 Property Shell Indexes

 After the property shell library is formed, the task is to correctly map the

shell element properties to the associated shell elements. The shell elements could

be used for modeling the flanges, webs or the concrete deck. They will have

different geometric properties and each of these properties should be assigned

properly.

 The properties are not stored but instead their property shell library

indexes are stored. In this way when the global stiffness matrix is assembled the

properties of the shell elements are assigned quickly.

In order to assign the property shell index values to the shell elements in

the main program a subroutine “form_prop” is called which again calls

 44

subroutines of the form “form_propxyz” to form the shell properties for all eight

cases where x, y and z stand for the number of girders, steel girder section type

and finite element type used for modeling respectively as before. For example

“form_prop111” stands for the subroutine to assign the property indexes for the

Case 111.

In the “form_propxyz” subroutine first the property shell index array of

size “number of shell elements” is formed. After that the internal arrays for the

deck, the web, the top flange and the bottom flange thicknesses are obtained.

These arrays are used to determine the start and end division numbers for each

deck segment, number of web thickness, number of top flange thickness and

number of bottom flange thickness values. For example if a bridge is divided into

30 divisions and if we have 3 different top flange thickness values along the

bridge and their lengths are same, the start and end divisions numbers for the first,

second and third top flange thickness change intervals will be 1 to10,11 to 20 and

21 to 30 respectively. Here for all start and end division numbers, the start

division number is forced to be one and end division number is forced to be zero.

After the start and end division numbers are obtained for number of decks,

number of web thicknesses, number of top flange thicknesses and number of

bottom flange thicknesses the assignment of the property shell indexes to the

associated shell elements is started.

Here only the algorithm for the deck thicknesses will be explained and rest

proceeds in a similar way. The algorithm to assign the deck thicknesses to shell

elements forming the deck for Case 111 is given in Algorithm 2.6.

 45

Algorithm 2.6

1. Loop over the user inputted different number of deck thicknesses value.

do im=1,number of decks

2. Determine ikpro which locates the deck thickness property in the property

library

ikpro=#of web thicknesses+#of bottom flange thicknesses+#number of top

flange thicknesses+im

3. Loop over the previously calculated start and end division numbers for

number of decks

do ij=start division number of deck(im),end division number of deck(im)

4. The shells forming the deck for the 111 case is numbered as 1 to 10

(Fig.2.4). So loop over the deck shell elements to assign the property shell

index values.

do ik=1,10

ielnum=ik+(ij-1)*total number of elements per cross-section(26 for Case

111)

iprop_sh_index(ielnum)=ikpro

end do

end do

end do

Algorithm 2.6 is repeated for the web, top flange and bottom flange

thickness by changing the necessary variables so at the end the properties of all

the shells forming the bridge are obtained.

2.3.10 Assigning the Stud Properties

 As it will be described in Chapter 3, the studs are modeled as spring

elements. The studs are used to connect the steel girders to the concrete deck. To

simulate the wet concrete behavior, in addition, the user specifies concrete

modulus and the user defines stud stiffness for each concrete pouring sequence.

So the stiffness is variable along the bridge length.

 46

 As the studs are modeled with spring elements, the only property required

for the studs is the stud stiffness. In order to assign the stud properties to the stud

elements in the main program, a subroutine “form_stpr” is called which again

calls subroutines of the form “form_stprxyz” to assign the stud properties for all

eight cases where x,y and z stand for the number of girders, steel girder section

type and finite element type used for modeling respectively as before. For

example “form_stpr111” stands for the subroutine to assign the stud properties for

the Case 111.

In the subroutine “form_stprxyz” first the arrays “prop_stud” of size

number of runs by number of stud elements are formed. Then the internal arrays

to store the start and end cross-section numbers for different stud properties are

generated. The start and end cross-section numbers for different stud property

intervals are obtained. The overall start cross-section number is forced to be zero

and overall end cross-section number is forced to be the total number of cross-

sections. Then looping over the number of runs, the number of deck divisions,

start and end cross-section numbers and finally number of studs per cross-section,

the stud properties are assigned (Alg. 2.7).

Algorithm 2.7

do i = 1,number of runs

do j = 1,number of deck division numbers

do k = start cross-section, end cross-section

do l = 1,number of studs per cross-section

ielnum=ik+(ij-1)* number of studs per cross-section

prop_stud(il,ielnum)=stud_stf(il,1)

end do

end do

end do

end do

 47

2.3.10.1 Stud Modification Factors

 As it was explained before three studs are assigned to each flange. So for

each trapezoidal girder there are 6 studs and for each I-girder there are 3 there

studs. However in the program the user is free to enter any number of studs per

flange. The number of studs can take values less than three and more than three.

In order to simulate this, the individual stud stiffnesses assigned in the previous

step are modified by stud modification factors. If the user specified number of

studs per flange is less than three, the stud modification factor for the required

number of studs is set to 1.0 and the rest is deamplified by a very small number

(1E-8 in the program). If the user specified number of studs per flange is greater

than three, the stud stiffness are amplified by the total number of stud stiffness.

In order to obtain the stud modification factors, in the main program a

subroutine “form_std_mod” is called which again calls subroutines of the form

“form_std_modxyz” to assign the stud modification factors for all eight cases

where x, y and z stand for the number of girders, steel girder section type and

finite element type used for modeling respectively as before. For example

“form_std_mod111” stands for the subroutine to assign the stud modification

factors for the Case 111.

2.3.11 Assigning the Properties for Internal, External and Top Lateral

Braces

 As compared with the shell elements, the numbers of the internal, external

and top lateral braces are small. So there is no storage problem when the

properties of internal, external and top lateral braces are assigned. For all brace

types the required inputs are the steel modulus, area of the brace and the type of

the brace. By looping over each brace element these properties are assigned to the

braces one by one. For internal and top lateral braces in dual girder systems as the

internal and top lateral braces in one of the girders is the same as those of the

other, first the properties of the braces of one girder is assigned and then it is

copied for the one, on the other girder. Property arrays for internal, external and

top lateral braces are of size three by the total number of respective brace types.

 48

2.4 Processor Module

2.4.1 Preliminaries

 After the geometries are formed and the material properties are assigned in

the Pre-Processor Module, the Processor Module starts. In the Processor Module,

basically the stiffness matrices for all elements are defined, the global stiffness

matrix and the load vector are assembled, equilibrium equations are solved and

the nodal displacements are obtained. In this section, the programming technique

will be discussed and the theoretical background will be given in Chapter 3.

2.4.2 Gaussian Quadrature Data and Shape Function Arrays

 Because of the complex algebraic expressions present in element stiffness

matrix computations the exact evaluation of these integrals is not always possible.

If this is the case these integrals should be numerically evaluated. This process is

called numerical integration. Among the numerical integration techniques, the

most popular one is the Gaussian Quadrature. In Gaussian Quadrature the integral

expression is approximated as a series of sums of multiplication of quadrature

points and quadrature weights.

 In the program Gaussian Quadrature parameters for nine-node and four

node elements are obtained. In order to obtain the quadrature points and weights

for the nine-node element a subroutine called “gauss3x3” is called in the main

program. This subroutine stores the Gaussian quadrature points and weights for

nine integration points. Likewise a subroutine called “gauss2x2” is called in the

main program for the four-node element. This subroutine stores the Gaussian

quadrature points and weights for four integration points.

 After the Gaussian quadrature points and weights for the nine-node and

four-node elements are defined the shape functions and their derivatives are

obtained for the two types of elements.

 For the nine-node element, in the main program, a subroutine called

“shaper9” is called. In this subroutine the shape functions and the first and the

second derivatives of the shape functions are stored. Likewise for the four node

element, in the main program, a subroutine called “shaper4” is called. In this

subroutine the shape functions and the first and the second derivatives of the

 49

shape functions for the 4-node element are stored. The shapes functions are stored

in the array “shapes”, the first and second derivatives are stored in the “dshapes”

array.

2.4.3 Determination of the Number of Nonzero Entries in the Global Stiffness

Matrix

 The sparse solver package developed by Compaq, which is a part of the

Compaq Extended Math Library (CXML) and implemented into the program

requires only the nonzero entries of the upper triangular half of the symmetric

structural stiffness matrix be stored. Also auxiliary vectors should be formed to

define the locations of the nonzero entries should be supplied. Using these

matrices, the solver is able to reorder and factor the stiffness matrix and solve for

the displacements.

 In order to form the auxiliary matrices, first of all, a temporary array called

“ic” is formed that contains all the nodes. “ic” is a 10 by total number of elements

array. The total number of elements is found by summing the number of shells,

internal braces, external braces, top lateral braces, studs and support elements. In a

typical representation of the form “ic(a,b)” “a” stands for the number of nodes and

“b” is the element number. As the total number of nodes per any type of element

is 9(nine-node shell element) the first dimension of the array “ic” is chosen to be

between 0 and 9. While forming the “ic” array, first the array is defined and

entries are set to zero. Then a subroutine called “form_ic” is called in the main

program. In this subroutine starting with shell elements and proceeding with the

internal braces, external braces, top lateral braces, studs and support elements the

array entries are filled.

 The next step is to form the “invinc” array which contains information

about which node is connected to which elements. In the invinc(a,b)

representation “a” denotes up to how many elements are connected to the subject

node and “b” denotes the number of nodes. The algorithm for this process is given

in Algorithm 2.8.

 50

Algorithm 2.8

1. Form the “invinc” array and set the array entries to zero.

invinc(0:15,total number of nodes) = 0

2. Loop over the total number of elements to find which node is connected to

which element and to how many elements.

do ik= 1, total number of elements

do ij=1, ic(0,ik)

invinc(0, ic(ij, ik))=invinc(0, ic(ij, ik))+1

invinc((invinc(0, ic(ij, ik))), ic(ij, ik))=ik

end do

end do

 In order to find the number of nonzeros in the stiffness matrix subroutine

“form_nonzero” is called in the main program. This subroutine computes the

number of nonzero entries in the structural stiffness matrix. In the subroutine

“form_nonzero” first the arrays “invinc” and “ic” array are retrieved. Then

nonzero count is set to zero. A loop over all the number of nodes is started. Then

another loop is started in order to find which elements have that node. In the

program each node has five degrees of freedom (DOF). After the elements

connected to subject node is found, the other nodes of those elements are

determined. If a node does not belong to any element connected to the subject

node, the DOF’s associated with that node for the DOF’s of the subject node will

be zero. The above discussion is given in Algorithm 2.9.

 51

Algorithm 2.9

1. Start a loop over all nodes.

2. Define a dummy array of size, say, 200 and set all entries to 0

do i = 1,200

idum1(i) = 0

3. Loop over all elements that contain that node(Guarantee that the node is not

written before and greater than the previous node)

do ikl=1,invinc(0,ij)

ie=invinc(ikl,ij)

ldum=ldum+1

idum1(ldum)=ic(ik,ie)

4. Compute the number of nonzero entries in the stiffness matrix

ldum2=ldum*number of DOF’s per node

do ikl=1, number of DOF’s per node

irclg=ldum2-ikl+1

nonzeros=nonzeros+irclg

5. Go to 1

As it was explained before the solver package implemented in the program

requires that the structural stiffness matrix be expressed as a vector of size

“nonzeros”. By this way the zero elements of the structural stiffness matrix is not

stored. The solver reorders the structural stiffness matrix according to the

“irowindex” and icolumns” vectors. “irowindex” is a vector of size “number of

nodes*number of degrees of freedom per node + 1”. “icolumns” vector is vector

of size “nonzeros”. “irowindex” and “icolumns” vectors define the location of

every nonzero entry in the structural stiffness matrix.

2.4.4 Formation of the “irowindex” and “icolumns” vectors

 After “irowindex” and “icolumns” vectors are allocated in the main

program, the subroutine “form_connect” is called. The subroutine “form_connect”

fills the entries of the “irowindex” and “icolumns” vectors. The entries in

 52

“irowindex” vector indexes the first nonzero entry in an upper triangular matrix in

a row. The entries are numbered from top to bottom and from left to right. This

requires that row index number of the (i+1)th row minus the row index number of

the ith row gives the number of nonzero entries in the ith row. In order to force this

relationship hold every time, a dummy row index is added as the last element of

“irowindex” array which is one more than the previous. Therefore altogether there

are “n” rows but “(n+1)” row indexes. While filling the entries of the “icolumns”,

the column numbers of each nonzero entry of the structural stiffness matrix is

stored. The algorithm for the above explained procedure is given Algorithm 2.10.

Algorithm 2.10

1. Row index number for the first entry is set to 1

irowindex(1)=1

2. Start a loop over all nodes.

3. Define a dummy array of size, say, 200 and set all entries to 0.0

do i = 1,200

idum1(i) = 0

4. Loop over all elements that contain that node(Guarantee that the node is not

written before and greater than the previous node)

do ikl=1,invinc(0,ij)

ie=invinc(ikl,ij)

ldum=ldum+1

idum1(ldum)=ic(ik,ie)

5. Sort the entries of idum1 in ascending order

6. Convert the obtained nodal connectivity to DOF connectivity

ldum2=0

 53

do ji=1,ldum

istr=(idum1(ji)-1)*number of DOF’s per node

do ki=1,5

ldum2=ldum2+1

idum2(ldum2)=istr+ki

end do

end do

7. Obtain the “irowindex” and “icolumns” vectors

do ikl=1, number of DOF’s per node

irown=(ij-1)* number of DOF’s per node +ikl

irclg=ldum2-ikl+1

idu7=0

do il=ikl,ldum2

idu7=idu7+1

icolumns(irowindex(irown)-1+idu7)=idum2(il)

end do

irowindex(irown+1)=irowindex(irown)+irclg

end do

8. Go to 1.

After the required vectors are obtained the “invinc” and “ic” matrices are

deallocated in the main program.

2.4.5 Formation of the Structural Stiffness Matrix

 As mentioned before, the direct and indirect solvers implemented into the

program require the structural stiffness matrix be reordered and expressed as a

column vector. The structural stiffness matrix, denoted by “ssm” in the program,

is of size “nonzeros”. In order to form the structural stiffness matrix for each

desired run, the entries are first set to 0.0. Also the entries of the required right

hand side of the system of equilibrium and displacement vectors, “rhs” and “uv”

 54

respectively are set to 0.0. The size of these two vectors is number of nodes times

number of degrees of freedom per node.

 After “ssm”, “rhs” and “uv” entries are set to zero, the assembly of the

local stiffness matrix entries into the global stiffness matrix is started. The

assembly process is carried out for the shell, top lateral, external, internal, support

and stud elements individually.

2.4.5.1 Assembly of Shell Elements

 The girders and deck of a typical bridge is modeled with shell elements so

the most common element of the finite element mesh is the shell element. As

mentioned before there are two types of shell elements implemented into the

program so this results in some differences in shell assembly process.

 In the main program the subroutine “assemb_shell” is called. In the

subroutine first a loop is started over all the shell elements. For each shell element

the x, y and z coordinates and the corresponding Q, R, and V vectors of the nodes

are retrieved. After that the material properties of the individual shell elements are

assigned using property shell library and property shell index number. The next

step is to initialize the element force “ef” and element stiffness “ek” matrices. In

the subroutine another subroutine, “l_r_shell3d02”, is called which computes the

element stiffness matrix in local coordinates and then rotation matrix of the

associated element and finally the stiffness matrix in global coordinates. The

theoretical background will be discussed in Chapter 3.

 After the rotated element stiffness matrix is obtained, then by looping over

the number of nodes per element and number of degrees of freedom per node the

related local degrees of freedom and global degrees of freedom are paired. By

looping over the number of degrees of freedom per element the row index and

column number of the element stiffness matrix entry is mapped on the global

structural stiffness matrix. Comparing the elemental row index and column

numbers with the global counterparts and adding if they coincide, the global

structural stiffness matrix entries are filled for shell elements. The above

discussion is given in Algorithm 2.11.

 55

Algorithm 2.11

1. Start a loop over all shell elements.

2. Start a loop over each individual number of nodes per shell element.

3. Retrieve the nodal coordinates, Q, R, and V vectors.

4. Assign the material properties (Modulus of Elasticity(E), Poisons ratio(ν),

thickness(h) and type) to the shell element.

5. Initialize the element stiffness matrix.

ek(i,j) = 0.0

6. Obtain the rotated element stiffness matrix.

7. Transform the local degree of freedom entries of the element stiffness

matrix into the global global degrees of freedom.

8. Fill the global structural stiffness matrix for the shell element.

9. Go to 1.

2.4.5.2 Assembly of Top Lateral Braces

 Top lateral braces are simple truss elements so their element stiffness

matrix computations does not require much effort. Simple truss formulation will

do and then the rotated element stiffness matrix entries are transformed into global

coordinates.

 In order to assemble the top lateral braces, in the main program, the

subroutine “assemb_toplt” is called. In the “assemb_toplt” subroutine first a loop

is started over all top lateral brace elements and then the top lateral brace nodal

coordinates are retrieved. After that the material properties are assigned to

individual top lateral brace elements. The next step is to initialize the element

stiffness matrix of individual top lateral brace elements. Then a subroutine

“get_trussk” is called in the subroutine to compute the rotated element stiffness

matrix of the top lateral brace element which itself is a simple truss element. After

obtaining the rotated element stiffness matrix the element degrees of freedom in

local coordinates are transformed into global degrees of freedom by looping over

each degree of freedom. By looping over the number of degrees of freedom per

element the row index and column number of the element stiffness matrix entry is

 56

mapped on the global structural stiffness matrix. Comparing the elemental row

index and column numbers with the global counterparts and adding if they

coincide the global structural stiffness matrix entries are filled for top lateral brace

elements.

2.4.5.3 Assembly of Internal Braces

 As the internal braces and external braces are composed of more than one

truss element, their assembly process is not as simple as the top lateral brace

elements’. In the assembly of internal and external braces static condensation

technique is used. First of all the truss elements are assembled together to form a

superelement. Second the degrees of freedom which are not shared with the steel

girder are condensed out.

 In the assembly of the internal braces, first, in the main program the

subroutine “assemb_intbr” is called. In the subroutine a loop is started over all

internal brace elements’. The nodal coordinates are retrieved and material

properties are assigned to each internal brace element. The twelve by twelve

element stiffness matrix “ek” is initialized to zero. Then another subroutine

“get_intbrk” is called which computes the assembled stiffness matrix of the

components of the internal braces, condenses the assembled internal brace

element matrix for the unshared degrees of freedom with the steel girders, and

finally gives the internal brace element stiffness matrix. The algorithm for the

subroutine “get_intbrk” is given Algortihm 2.12.

After obtaining the element stiffness matrix the element degrees of

freedom in local coordinates are transformed into global degrees of freedom by

looping over each degree of freedom. By looping over the number of degrees of

freedom per element the row index and column number of the element stiffness

matrix entry is mapped on the global structural stiffness matrix. Comparing the

elemental row index and column numbers with the global counterparts and adding

if they coincide the global structural stiffness matrix entries are filled for internal

brace elements.

 57

2.4.5.4 Assembly of External Braces

 The assembly of process of the external braces are similar to the internal

braces. In the assembly of the external braces, first, in the main program the

subroutine “assemb_extbr” is called. In the subroutine a loop is started over all

external brace elements. The nodal coordinates are retrieved and material

properties are assigned to each external brace element. The twelve by twelve

element stiffness matrix “ek” is initialized to zero. Then another subroutine

“get_extbrk” is called which computes the assembled stiffness matrix of the

components of the external braces, condenses the assembled external brace

element matrix for the unshared degrees of freedom with the steel girders and

finally gives the external braces element stiffness matrix. The algorithm for the

subroutine “get_extbrk” is similar to Algorithm 2.12.

Algorithm 2.12

1. The internal braces are actually composed of five nodes so the

coordinates of all the four nodes are retrieved and the coordinates of the

fifth node is calculated form the other two (Fig. 2.23).

12 3

4 5

 Figure 2.23: Internal Brace Nodes

coordinates of 1 = (coordinates of 2 + coordinates of 3)/2

2. The fifteen by fifteen element stiffness matrix is initialized to zero.

3. A loop is started over all four truss elements forming the internal

brace.

4. The material properties are assigned to the truss elements.

 58

The assembly of the element stiffness matrix into the global stiffness

matrix for the external braces follows the same procedure explained for the

internal braces. The nodes for the external brace elements are given in Figure

2.24.

5. The element stiffness matrices of all truss elements are initialized to

zero.

6. Rotated element stiffness matrices are formed by calling the

“get_trussk” subroutine.

ek2(15,15)

7. The positions of the entries of the rotated element matrix in the

internal brace element stiffness matrix are obtained.

8. Artificial stiffness are assigned to the nodes where there may be zero

stiffness.

ek2(1,1) = ek2(1,1) + 1.e-5

ek2(2,2) = ek2(2,2) + 1.e-5

ek2(3,3) = ek2(3,3) + 1.e-5

9. Correction factor is calculated for all the entries of ek2.

factor = -ek2(j,i)/ek2(i,i)

10. The entries of ek2 are recalculated taking into account the factor.

ek2(j,k)=ek2(j,k)+factor*ek2(i,k)

11. The condensed internal brace element stiffness matrix is obtained by

ignoring the first three entries of ek2 from left to right and from top to

bottom

ek(12,12) = ek2(15-3,15-3)

 59

1 2

3 4
5

Figure 2.24: External Brace Nodes

2.4.5.5 Assembly of Support Elements

 As discussed previously the supports are modeled as rigid truss systems so

that the torsional stresses induced from the loading can be handled.

 In the assembly of the supports the subroutine “assemb_support” is called

in the main program. In this subroutine, first, a loop is started over all the support

elements. For each support element the nodal coordinates are retrieved and the

material properties are assigned. The twelve by twelve element stiffness matrix is

initialized to zero. After that the subroutine “get_supportk” is called to compute

the element stiffness matrix for each support element. The algorithm for the

subroutine “get_supportk” is similar to that of shell elements.

The assembly of the element stiffness matrix into the global stiffness

matrix for the support elements follows the same procedure explained for the

internal braces.

2.4.5.6 Assembly of Studs

 In the program the stud elements are modeled with spring elements so their

stiffness matrix computation is simple and explained in Chapter 3.

 In the main program the subroutine “assemb_stud” is called. In this

subroutine first a loop is started over all stud elements. For each stud element the

stud stiffness is modified with corresponding stud modification factor. The six by

six element stiffness matrix is initialized to zero. After that the subroutine

“get_studk” is called to compute the element stiffness matrix for each stud

 60

element. Having obtained the stiffness matrix for each stud element, now next

step is to assemble the entries to the global structural stiffness matrix.

The assembly of the element stiffness matrix into the global stiffness

matrix for the studs follows the same procedure explained for the internal braces.

2.4.6 Modification for Support Conditions

 As the supports are modeled as rigid truss systems they do not allow

displacements for some of their degrees of freedom. So some of the structural

displacements should be modified to simulate this behavior. Penalty method is

used to prescribe the support conditions. Specifically at the support locations

where previously pinned nodes were assigned the structural stiffness matrix

entries are modified by adding a very big number to the associated entry. By this

way the structural displacement at the subject degree of freedom of the subject

node is zero.

 In order to modify for the support conditions, in the main program, a

subroutine “apply_support” is called. In this subroutine a loop is started over all

pinned nodes and for the proposed degrees of freedom, to the corresponding

entries in the global structural stiffness matrix a very big number, say 1.0 E20, is

added.

2.4.7 Formation of the Load Vector

 After the structural stiffness matrix is obtained, the next step is to compute

the load vector. The load vector comprises the right hand side of the system of

equilibrium equations so this vector is denoted by “rhs” in the program.

To compute the load vector, in the main program, the subroutine

“assign_dist_load” is called which again calls subroutines in the form

“assign_dist_loadxyz” for all eight cases to form the load vectors where x,y and z

stand for the number of girders, the steel girder section type and the element type

used for modeling respectively as before. For example “assign_dist_load111”

stands for the subroutine to generate the load vector for the case 111.

In a typical subroutine of the form “assign_dist_loadxyz”, first the start

and end cross-section numbers of concrete pour intervals of the deck are

 61

determined. The start and end cross-section numbers are forced to be zero and

“ncsec” respectively. On each cross-section point loads are acted on the specified

nodes. These nodes are repeating nodes for each cross-section. Table 2.7 lists the

nodes on which the equivalent nodal loads are acted for each cross-section case.

On each specified node the load coming from the tributary area of each

cross-section are distributed.

Table 2.7:Load Nodes

Case Load Nodes

111 22,30,25,26,54,29

112 12,16,13,14,28,15

121 14,16,18

122 8,9,10

211 42,50,45,46,74,49,75,83,78,79,107,82

212 22,26,23,24,38,25,39,43,40,41,55,42

221 26,28,30,43,45,47

222 14,15,16,23,24,25

2.4.8 Solution for the Displacements

 After the global stiffness matrix and the load vector are obtained nodal

displacements are obtained by solving the system of equations. The global

stiffness matrix and the load vector are given as input to the solver.

 In the main program the subroutine “solver” is called. This subroutine

contains the previously explained direct sparse solver of the CXML. Another

solver called “ITPACK” which is an iterative solver was adopted into the program

to compare it with the direct solver. The results of this comparison will be given

in Chapter 4.

 The subroutine “solver” conveys the calculated structural stiffness matrix

and load vector to the solver. The solver solves the system of equations and a

solution vector “uv” is obtained. “uv” contains the structural displacements for

each degree of freedom.

 62

2.5 Post-Processor Module

2.5.1 Preliminaries

 After the structural displacements are obtained they are post-processed to

obtain the average vertical cross-sectional deflections, cross-sectional rotations,

top lateral, internal, external brace forces, cross-sectional forces and stresses.

2.5.2 Cross-sectional Deflections

 After solving for the displacements the vertical deflections of each node

are obtained but a representative value should be specified to give the vertical

deflection of the bridge. This is essential for the evaluation of the deflection of the

bridge along the span.

In order to post-process the vertical deflections, in the main program, the

subroutine “post_defl” is called which again calls subroutines in the form

“post_deflxyz” for all eight cases to post-process the deflections where x, y and z

stand for the number of girders, the steel girder section type and the element type

used for modeling respectively as before. For example “post_defl111” stands for

the subroutine to post-process the deflections for the case 111.

If the post-processed cross-section is a single girder system, the average

deflection of the nodes on the bottom flange corners are calculated. This value is a

good approximation for the vertical deflection of the subject bridge at its specified

location. To be clear, for the Case 111 the average vertical deflection of the nodes

38 and 46 can be used as the bridge deflection at the specified location.

For dual girder systems the deflections under each girder are given

separately.

 2.5.3 Cross-sectional Rotations

 The cross-sectional rotations are necessary in the design of steel girders

which are susceptible to torsional stresses.

In order to calculate cross-sectional rotations, in the main program, the

subroutine “post_rot” is called which again calls subroutines in the form

“post_rotxyz” for all eight cases to compute the cross-sectional rotations where x,

y and z stand for the number of girders, steel girder section type and finite element

 63

type used for modeling respectively as before. For example “post_rotl111” stands

for the subroutine to compute the cross-sectional rotations for the case 111.

If the cross-sectional rotations for a single girder system is to be

calculated, the difference of the vertical deflections of the nodes on the bottom

flange corners of the steel girder are divided by the bottom flange length. For the

sake of clarity, for Case 111, the cross-sectional rotation is found by dividing the

difference between the vertical deflections of the nodes 38 and 46 by the bottom

flange length.

For dual girder systems the cross-sectional rotations of each girder are

calculated and reported separately.

2.5.4 Top Lateral Brace Forces

 The forces induced in the top lateral braces are also computed in the

program.

In order to calculate top lateral brace forces, in the main program, the

subroutine “post_toplt2” is called. In this subroutine first a loop started over all

top lateral brace elements. Then for each top lateral brace element the coordinates

of the element nodes are retrieved. After that material properties are assigned to

each element. In the next step element load vector and element stiffness matrix are

initialized to zero. The subroutine “get_trussk” is called and the element stiffness

matrix entries are formed again. The positions of the displacements corresponding

to the element nodal degrees of freedom in the global displacement vector are

located and they are stored in an array called “displ”. Element force vector is

obtained by multiplying the element stiffness matrix with the “displ” vector. Unit

vectors are obtained in local x, y and z directions and they are multiplied with the

corresponding load vector entries to obtain the resultant loads. The axial force in

the top lateral element is calculated.

2.5.5 Internal Brace Forces

In order to calculate internal brace forces, in the main program, the

subroutine “post_intbr” is called. In this subroutine first a loop started over all

 64

internal brace elements. Note that each internal brace element is composed of four

truss elements. For each of these truss elements, the coordinates of the element

nodes are retrieved. In this stage only nodal coordinates shared with the steel

girder are retrieved. After that, material properties are assigned to each element. In

the next step element load vector and element stiffness matrix for the super

element are initialized to zero. The subroutine “get_intbrk” is called and the

element stiffness matrix entries are formed again. The positions of the

displacements corresponding to the element nodal degrees of freedom in the

global displacement vector are located and they are stored in an array called

“displ”. Element force vector is obtained by multiplying the element stiffness

matrix with the “displ” vector. The coordinates of all five nodes of the internal

brace elements are retrieved. For each truss member forming the internal brace

superelement unit vectors are obtained in local x, y and z directions and they are

multiplied with the corresponding load vector entries to obtain the resultant loads.

The axial force in each of the truss elements forming the internal brace are

obtained.

2.5.6 External Brace Forces

In order to calculate external brace forces, in the main program, the

subroutine “post_extbr” is called. In this subroutine first a loop started over all

external brace elements. Note that each external brace element is composed of

four truss elements. Then for each truss element the coordinates of the element

nodes are retrieved. In this stage only nodal coordinates shared with the steel

girder are retrieved. After that material properties are assigned to each element. In

the next step element load vector and element stiffness matrix for the super

element are initialized to zero. The subroutine “get_extbrk0” is called and the

element stiffness matrix entries are formed again. The positions of the

displacements corresponding to the element nodal degrees of freedom in the

global displacement vector are located and they are stored in an array called

“displ”. Element force vector is obtained by multiplying the element stiffness

matrix with the “displ” vector. The coordinates of all five nodes of the external

brace element are retrieved again. For each truss member forming the external

 65

brace superelement unit vectors are obtained in local x, y and z directions and they

are multiplied with the corresponding load vector entries to obtain the resultant

loads. The axial force in each of the truss elements forming the external brace are

obtained.

2.5.7 Cross-sectional Forces

 The last step in the post-processing part is to compute the internal forces.

In a cross-section along the bridge 3 force components, in the direction of

previously defined Q, R, and V vectors, and two couples in the direction of

previously defines Q and R vectors are defined. These forces and moments are

denoted by “fq”, ”fr”, ”fr”, ”amq”, ”amr” in the program, respectively (Fig. 2.25).

 In order to compute the cross-sectional forces, first in the main program,

the subroutine “post_csec_for” is called. The subroutine “post_csec_for” itself

calls eight subroutines in the form “post_csec_forxyz” to compute the cross-

sectional forces for eight different cases. Here x stand for the number of girders, y

stands for the steel girder section type and z stands for the finite element type used

for shell modeling. The cross-sectional forces are computed in any cross-section

where the plane is an interface between two sets of shell elements. This means

that the cross-sectional forces are computed at distances of integer multiple of

element size. The desired forces can be outputted at either every element

boundary or at every user defined integer multiple of divisions. For each element,

the cross-sectional forces are computed for the rear nodes (nodes 3,4 and 7 in

shell numbering) and then accumulated for the cross-section (Fig. 2.26).

 66

fq

fr

fv

mq

mr

Figure 2.25: Cross-sectional Forces

element size element size element size element size element size element size element size

A

A
A-A:Typical plane where the cross sectional forces are computed

1

2 3

4

5

6

7

8

9
Cross-sectional forces
are calculated for these

nodes and then
accumulated for the

cross section.

Figure 2.26: Computation of Cross-sectional Forces

 When the internal moments are calculated at the nodes the nodal moments

are calculated first. After that the moments created by the nodal forces about a

reference node within the cross-section are determined. These two values are

 67

summed and the cross-sectional forces are determined for the desired direction.

The reference node is within the symmetry plane of the cross-section.

 In a typical subroutine of the form “post_csec_forxyz”, first the location

where the cross-sectional forces are to be computed is determined. At that cross-

section the nodes where the nodal forces are going to be calculated are determined

together with the reference node. For each node Q, R, and V vectors are retrieved

and the x, y and z coordinates of the reference node is assigned to three unique

variables, namely “xref”, “yref” and “zref”. The variables to store the cross-

sectional forces are set to zero. After that a loop is started over all the nodes of the

subject cross-section. For each node the fq, fr and fv forces and am and aq

moments are computed by calling the subroutine “post_sh_nfor9” for the nine-

node element. For the four-node element the corresponding subroutine is

“post_sh_nfor4”. Within the loop, the computed nodal forces are summed to get

the cross-sectional fq, fr and fv forces. The vertical distances of the nodes to the

reference node are determined and by multiplying these with the corresponding

nodal forces the moments created by the nodal forces are determined. Also the

normal stress and shear stresses within each cross-section are determined in the

subroutine. The algorithm for the subroutine “post_sh_nfor9” is given in

Algorithm 2.13. The algorithm for the subroutine “post_sh_nfor4” is similar.

 68

Algorithm 2.13

1. Loop over the nodes within the shell element to retrieve the coordinates, Q,

R, and V vectors.

2. Assign the material properties.

3. Initialize the shell element force vector and stiffness matrix.

4. Retrieve the stiffness matrix of the element.

5. Locate the element degrees of freedom in the global stiffness matrix, and

displacement vector.

6. Using the corresponding displacements at the rear nodes compute the nodal

forces.

7. Transform the calculated forces and moments to global coordinates.

8. Call the related subroutine to compute the nodal stresses.

9. Go to 1

 69

CHAPTER 3
NUMERICAL MODELING DETAILS AND PROGRAM

VERIFICATION

3.1 Modeling the Physical System

 In the literature there are several methods to analyze the steel girder –

concrete deck interaction. In one of these methods the concrete deck is modeled

with brick elements and the steel girder is modeled with shell elements (Tarhini

and Frederick, 1992). The studs are modeled with spring elements. The

shortcoming with this method is the large number of brick elements, thus large

number of degrees of freedom required to capture the flexural response with

sufficient accuracy (Fig. 3.1).

 In another approach, both the steel girder and the concrete deck are

modeled with shell elements (Brockenrough, 1986, and Tabsh and Sahajwani,

1997). The concrete deck and the steel girders are connected together with

connector (beam) elements. The length of the connector elements has to be chosen

by the analyst to properly model the offset between the neutral axis of the top

flange of the girders and that of the deck. This approach is the most popular

technique presented in the literature but there is no common consensus on how to

choose the connector length.

 In the developed software another approach was employed which

addresses both of the above-mentioned problems. In a given cross-section two

types of shell elements are used for modeling. In the shell element formulation the

three-dimensional domain is represented by a surface. For steel sections, the

reference surface is the middle surface, whereas, for the concrete deck, the bottom

surface is the reference surface (Fig. 3.1). Steel sections and the concrete deck are

connected to each other by spring elements, which represent the stud connectors.

With this modeling the number of degrees of freedom is reduced as compared

with the brick modeling. In addition to this, it properly models the interface

 70

behavior by eliminating the beam elements and including the girder offset by

using the bottom shell surface as the reference surface.

Brick Elements Shell Elements

Connector Elements

(a)

(b)

v v v v v

Figure 3.1 (a) Different Modeling Techniques for Deck-Flange Interface, (b)

Reference Surfaces for Shell Elements

 Three dimensional models of a double I-girder straight, and a single box-

girder variable degree of curvature bridge are shown in Figure 3.2. The nodal

coordinates and elements are generated using the developed program and then

imported to the ANSYS program which is a general purpose finite element

modeling and analysis tool.

 71

 (a) (b)

Figure 3.2: Three dimensional views of (a) double I-girder, straight bridge

and (b) variable radius of curvature, single box-girder bridge

3.2 Element Formulations

3.2.1 Shell Element Formulation

 The program contains two types of shell elements: nine-node

isoparametric shell element and a four-node isoparametric shell element (Fig.3.3).

The formulation of these two elements are similar, the only difference is the shape

functions.

 72

1

2

3

4

5
6

7

8 9

Q

R
V

x

y

z

Figure 3.3: Nine-Node Shell Element

 The interpolation functions for the 9-node (Fig. 3.4) element implemented

into the program are as follows;

η

ξ

1 2

34

5

6

7

8
9

 Figure 3.4: 9-node element

 73

2 2
1

2 2
2

2 2
3

2 2
4

2 2
5

2 2
6

2 2
7

2 2
8

2 2
9

1 ()()
4
1 ()()
4
1 ()()
4
1 ()()
4
1 (1)()
2
1 ()(1)
2
1 (1)()
2
1 ()(1)
2
(1)(1)

N

N

N

N

N

N

N

N

N

ξ ξ η η

ξ ξ η η

ξ ξ η η

ξ ξ η η

ξ η η

ξ ξ η

ξ η η

ξ ξ η

ξ η

= − −

= + −

= + +

= − +

= − −

= + −

= − +

= − −

= − −

 The interpolation functions for the 4-node element (Fig. 3.5) implemented

into the program are as follows;

η

ξ

1 2

34

Figure 3.5: 4-node element

 74

1

2

3

4

1 (1)(1)
4
1 (1)(1)
4
1 (1)(1)
4
1 (1)(1)
4

N

N

N

N

ξ η

ξ η

ξ η

ξ η

= − −

= + −

= + +

= − +

 The geometry of the element is defined as:

()

()

()

1

1

1

(, ,) ,
2

(, ,) ,
2

(, ,) ,
2

nne

i xi i
i

nne

i yi i
i

nne

i zi i
i

hx x V N

hy y V N

hz z V N

ξ η ζ ζ ξ η

ξ η ζ ζ ξ η

ξ η ζ ζ ξ η

=

=

=

⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

∑

where , ,ξ η ζ are the coordinate axes for the mapped element and ζ is in the

thickness direction. Vi (Vxi, Vyi, Vzi) is the unit vector at each node, which is in

the direction of the nodal fiber. “h” is the thickness of the shell. (),iN ξ η is the

shape function for node number i.

 At each node there are three displacement (u, v, w) and two rotational

(,α β) degrees of freedom. In order to define the rotation axes for α and β a

right-handed triplet of mutually orthogonal unit vectors (V, R, Q) have to be

chosen at each node.

 The displacement components (u, v, w) are interpolated as follows:

()

()

()

1

1

1

(, ,) (,
2

(, ,) (,
2

(, ,) (,
2

nne

i i xi i xi i
i

nne

i i yi i yi i
i

nne

i i zi i zi i
i

hu u R Q N

hv v R Q N

hw w R Q N

ξ η ζ ζ α β ξ η

ξ η ζ ζ α β ξ η

ξ η ζ ζ α β ξ η

=

=

=

⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

∑

 75

Derivatives of displacements are calculated as follows:

()

()

()

1

1

1

(, ,) ,
2

(, ,) ,
2

(, ,) ,
2

nne

i xi i
i

nne

i xi i
i

nne

xi i
i

hx x V N

hx x V N

hx V N

ξ η ζ ζ ξ η
ξ ξ

ξ η ζ ζ ξ η
η η

ξ η ζ ξ η
ζ

=

=

=

⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∂ ⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

∑

∑

∑

()

()

()

1

1

1

(, ,) ,
2

(, ,) ,
2

(, ,) ,
2

nne

i yi i
i

nne

i yi i
i

nne

yi i
i

hy y V N

hy y V N

hy V N

ξ η ζ ζ ξ η
ξ ξ

ξ η ζ ζ ξ η
η η

ξ η ζ ξ η
ζ

=

=

=

⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∂ ⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

∑

∑

∑

()

()

()

1

1

1

(, ,) ,
2

(, ,) ,
2

(, ,) ,
2

nne

i zi i
i

nne

i zi i
i

nne

zi i
i

hz z V N

hz z V N

hz V N

ξ η ζ ζ ξ η
ξ ξ

ξ η ζ ζ ξ η
η η

ξ η ζ ξ η
ζ

=

=

=

⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
⎡ ⎤∂ ∂⎛ ⎞= +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦

∂ ⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦

∑

∑

∑

The Jacobian and its inverse are defined as follows:

x y z

J x y z

x y z

ξ ξ ξ

η η η

ζ ζ ζ

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂

= ⎜ ⎟∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

 1

x x x

J
y y y

z z z

ξ η ζ

ξ η ζ

ξ η ζ

−

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂ ∂⎜ ⎟= ⎜ ⎟∂ ∂ ∂

⎜ ⎟
∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂⎝ ⎠

Derivatives used in the B matrix formation are defined as:

i i i

i i i

i i i

N N N
x x x
N N N
y y y
N N N
z z z

ξ η
ξ η

ξ η
ξ η

ξ η
ξ η

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂ ∂

 76

Derivatives of displacements functions with respect to coordinates (x,y,z) are as follows:

() () ()

()

1 1 1

() , () , () ,
2 2 2

() ,
2

nne nne nne

i i xi i xi i i i xi i xi i i xi i xi i
i i i

i i xi i xi i

u h h hu R Q N u R Q N R Q N
x x x x

u hu R Q N
y y

ξ η ζζ α β ξ η ζ α β ξ η α β ξ η
ξ η

ξζ α β ξ η
ξ

= = =

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ⎡ ∂ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤∂ ∂ ∂⎛ ⎞= + − +⎜ ⎟⎢∂ ∂ ∂⎝ ⎠⎣

∑ ∑ ∑

() ()

() ()

1 1 1

1

() , () ,
2 2

() , () ,
2 2

nne nne nne

i i xi i xi i i xi i xi i
i i i

nne

i i xi i xi i i i xi i xi i
i

h hu R Q N R Q N
y y

u h hu R Q N u R Q N
z z

η ζζ α β ξ η α β ξ η
η

ξ ηζ α β ξ η ζ α β ξ η
ξ η

= = =

=

⎡ ⎤ ⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − + + − +⎜ ⎟ ⎜ ⎟⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + − + + + − +⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ()

() () ()

1 1

1 1

() ,
2

() , () , () ,
2 2 2

nne nne

i xi i xi i
i i

nne nne

i i yi i yi i i i yi i yi i i yi i yi i
i i

h R Q N
z z

v h h hv R Q N v R Q N R Q N
x x x x

ζα β ξ η

ξ η ζζ α β ξ η ζ α β ξ η α β ξ η
ξ η

= =

= =

⎡ ⎤ ⎡ ∂ ⎤⎛ ⎞+ − +⎜ ⎟⎢ ⎥ ⎢ ⎥∂⎝ ⎠⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ⎡ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑

() () ()

1

1 1 1
() , () , () ,

2 2 2

()
2

nne

i

nne nne nne

i i yi i yi i i i yi i yi i i yi i yi i
i i i

i i yi i yi

v h h hv R Q N v R Q N R Q N
y y y y

v hv R Q N
z

ξ η ζζ α β ξ η ζ α β ξ η α β ξ η
ξ η

ζ α β
ξ

=

= = =

⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∂ ∂⎛ ⎞= + − +⎜ ⎟∂ ∂⎝ ⎠

∑

∑ ∑ ∑

() () ()

()

1 1 1

1

, () , () ,
2 2

() , ()
2 2

nne nne nne

i i i yi i yi i i yi i yi i
i i i

nne

i i zi i zi i i i zi i zi
i

h hv R Q N R Q N
z z z

w h hw R Q N w R Q
x x

ξ η ζξ η ζ α β ξ η α β ξ η
η

ξζ α β ξ η ζ α β
ξ

= = =

=

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ⎡ ∂ ⎤⎛ ⎞ ⎛ ⎞+ + − + + − +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + − + + + − +⎜ ⎟ ⎜⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ () ()

() ()

1 1

1 1

, () ,
2

() , () , ()
2 2 2

nne nne

i i zi i zi i
i i

nne nne

i i zi i zi i i i zi i zi i i zi i zi
i i

hN R Q N
x x

w h h hw R Q N w R Q N R Q
y y y

η ζξ η α β ξ η
η

ξ ηζ α β ξ η ζ α β ξ η α β
ξ η

= =

= =

⎡ ⎤∂ ∂ ⎡ ∂ ⎤⎛ ⎞+ − +⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − + + − +⎜ ⎟ ⎜ ⎟ ⎜⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑ ()

() () ()

1

1 1 1

,

() , () , () ,
2 2 2

nne

i
i

nne nne nne

i i zi i zi i i i zi i zi i i zi i zi i
i i i

N
y

w h h hw R Q N w R Q N R Q N
z z z z

ζξ η

ξ η ζζ α β ξ η ζ α β ξ η α β ξ η
ξ η

=

= = =

⎡ ⎤∂
⎟⎢ ⎥∂⎠⎣ ⎦

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ⎡ ∂ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − + + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦

∑

∑ ∑ ∑

76

 77

The B matrix is formed as follows:

0 0
2 2

0 0
2 2

0 0
2

xi xi

yi yi

zi

N h N h NR N Q Nu
x x x x x

x
N h N h Nv R N Q N
y y y y yy

N h Nw R
z zz

u v
y x
w u
x z
w v
y z

ζ ζζ ζ

ζ ζζ ζ

ζ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + − +∂⎡ ⎤ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥∂⎢ ⎥ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂∂⎢ ⎥ − + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎝ ⎠ ⎝ ⎠∂
⎢ ⎥ ∂ ∂∂⎢ ⎥ − +
⎢ ⎥ ∂ ∂∂

=⎢ ⎥∂ ∂⎢ ⎥+
⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥+
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎢ ⎥+
∂ ∂⎢ ⎥⎣ ⎦

K

K

2

0
2 2 2 2

0
2 2 2

zi

xi yi xi yi

zi xi zi

h NN Q N
z z z

N N h N h N h N h NR N R N Q N Q N
y x y y x x y y x x

N N h N h N h NR N R N Q
z x x x z z

ζ ζζ

ζ ζ ζ ζζ ζ ζ ζ

ζ ζζ ζ ζ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞− +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + − + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

K

K

2

0
2 2 2 2

xi

zi yi zi yi

u
v
w

h NN Q N
x x z z

N N h N h N h N h NR N R N Q N Q N
z y y y z z y y z z

α
β

ζ ζζ

ζ ζ ζ ζζ ζ ζ ζ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ ⎡ ⎤
⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢ ⎥
⎜ ⎟ ⎢
⎜ ⎟ ⎢
⎜ ⎟ ⎢
⎜ ⎟ ⎢

∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎢+ + + ⎣ ⎦⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + − + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

L

LK

K

⎥
⎥
⎥
⎥
⎥

77

 78

 The rigidity matrix, D, must contain the shell assumption that, the stress

component along the thickness direction is zero. As a result of this a rigidity

matrix similar to the one used in two-dimensional plane stress analysis is

obtained.

2

2
2

2

1 0 0 0 0
1 0 0 0 0

0 0 0 0 0 0
10 0 0 0 0

21
10 0 0 0 0

2
10 0 0 0 0

2

local ED

υ
υ

υ

υ
υ

υ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
= ⎜ ⎟

− ⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠

 As the stiffness terms are calculated in the global coordinates, the rigidity

matrix should be transformed from local to global coordinates at each integration

point. This is done by multiplying the rigidity matrix with the rotation matrix,

ROT . In order to from the rotation matrix, a local orthogonal coordinate axes

consisting of unit vectors t1, t2, t3 should be formed where t3 is the vector normal

to the shell surface at the point of consideration. The orthogonal local axes are

formed as follows:

At the point of consideration:

1

T
x y zt
ξ ξ ξ

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

r
 2

T
x y zt
η η η

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟∂ ∂ ∂⎝ ⎠

ur

Form the unit vectors:

1
1

1

tt
t

=

r
r

r 2
2

2

tt
t

=

ur
ur

ur

Calculate the normal vector t3:

3 1 2t t t= ×
ur r ur

 79

Re-orient the t2 vector:

2 3 1t t t= ×
ur ur r

The rotation matrix that transforms stress-strain laws is:
2 2 2

1 1 1 1 1 1 1 1 1
2 2 2

2 2 2 2 2 2 2 2 2
2 2 2

3 3 3 3 3 3 3 3 3

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3

2 2 2
2 2 2
2 2 2

l m n l m m n n l
l m n l m m n n l
l m n l m m n n l

ROT
l l m m n n l m l m m n m n n l n l
l l m m n n l m l m m n m n n l n l
l l m m n n l m l m m n m n n l n l

⎛
⎜
⎜
⎜

= ⎜
+ + +⎜
+ + +
+ + +⎝

⎞
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

Where the entries are the directional cosines of vectors t1, t2, t3.

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

x

x

x

y

y

y

z

z

z

l t
l t
l t
m t

m t

m t

n t
n t
n t

=
=
=
=

=

=

=
=
=

The global rigidity matrix, D, is calculated as follows:
T localD ROT D ROT=

The stiffness matrix is:

{ }
1

det() ()
nip

T

ip

K B DB J w ip
=

= ∑

The implementation uses regular integration that is 3 integration points in

,ξ η directions and 2 integration points in ζ direction for the 9-node element and 2

integration points in ,ξ η directions and 2 integration points in ζ for the 4-node

element.

 80

3.2.2 Truss Element Formulation

 A standard 3 dimensional, 2-node linear truss element is implemented into

the program. (Fig 3.6) The stiffness formulation is as follows:

L

2
1

3

5
4

6

Figure 3.6: 3 dimensional, 2 node truss element

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

EA EA
L L

EA EA
L L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Where;

E: Modulus of Elasticity, A: Area of Truss Member, and L: Length of Truss

Member

3.2.3 Spring Element Formulation

 A standard 2-node, three dimensional spring element is implemented into

the program (Fig 3.7). The stiffness matrix formulation is as follows:

 81

2
1

3

5
4

6

Figure 3.7: 3 dimensional, 2-node spring element

1 1

2 2

3 3

1 1

2 2

3 3

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

K K
K K

K K
K K

K K
K K

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

Where;

K1, K2 and K3 are stiffness values in three global directions.

3.3 Solver Basics

 The main solver of the developed program is the direct solver which is a

part of the Compaq Extended Math Library (CXML). An iterative solver called

ITPACK is also adopted into the program to compare the direct and iterative

solvers. As discussed previously the direct solver is supplied as a library file and

can be compiled with the program.

Suppose we have a system of equations of the form:

Ax B=

where A is an n by n matrix and x and B are n element column vectors.

 82

 In this representation for our case A is the stiffness matrix and vectors x

and B are displacement vectors and load vectors, respectively. We know that most

of the elements of the A matrix are zero. Such matrices are named as sparse

matrices. Generally speaking computer softwares that find solutions to linear

equation systems are called solvers. A solver specifically designed to solve sparse

systems is called a sparse solver. The sparse solvers can be direct or iterative.

Iterative solvers start with an initial approximation of the solution vector and try

to converge to the actual result as close as possible. On the other hand, in a direct

solver, the matrix A is factored into upper and lower triangular matrices and a

forward and backward triangular solution process is employed. The solution time

required for direct solvers is more predictable compared with the iterative solvers

but for some well-conditioned systems the iterative solvers may be more efficient.

3.3.1 Sparse Solver Storage Format

 The direct solver adopted into the program requires only the nonzero

entries of the structural stiffness matrix be stored. In addition to this, the solver

requires two vectors that define the locations of the nonzero entries. Based on the

information of the nonzero entries and their locations the solver is capable of

reordering and factoring the stiffness matrix and solving for the displacements.

Only the upper or lower triangular half of the matrix is stored.

 The non-zero entries are stored in a vector called “nonzeros”, the column

and row numbers of these non-zero entries are also stored in two matrices called

“icolumns” and “irowindex”, respectively. When the elements of the matrix

“nonzeros” are filled, the upper triangular half of the structural stiffness matrix is

considered and the nonzero elements are stored starting with the upper first row

excluding the zero elements. The “icolumns” vector is of the same size as the

vector “nonzeros”. The entries of the “icolumns” vector give the column numbers

of the corresponding entries of the vector “nonzeros”. The “irowindex” vector

gives the location of the first non-zero entry within each row.

Since the “irowindex” vector gives the location of the first non-zero within

a row, and the non-zeros are stored consecutively, then we are able to compute the

 83

number of non-zeros in the i-th row as the difference of the row indexes of the

consecutive rows give the desired value.

In order have this relationship hold for the last row of A, we need to add

an entry (dummy entry) to the end of “irowindex” array whose value is equal to

the number of non-zeros in A, plus one. This makes the total length of the

“irowindex” array one larger than the number of rows of A.

The above discussion can be more clarified with the following example.

Suppose we have symmetrical matrix A;

1 4 9 8 7
* 2 0 0 0
* * 5 0 0
* * * 8 0
* * * * 3

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The “nonzeros” vector will be;

[]1 4 9 8 7 2 5 8 3nonzeros =

The “icolumns” vector will be;

[]1 2 3 4 5 2 3 4 5icolumns =

and the “irowindex” vector will be;

[]1 6 7 8 9 10irowindex =

 The storage schemes for both direct and sparse solvers adopted into the

program are same.

 The displacement vector “uv” and the right hand side vector “rhs” in the

program are vectors of size, the number of nodes times the number of degrees of

freedom per node.

3.4 Program Verification with Existing Solutions

3.4.1 General

 The validity of the computational software was tested both with

approximate hand methods and with published solutions in the literature.

 84

3.4.2 Hand Calculations

 While the computational software is compared with the hand methods, a

horizontal, single I-girder is modeled as a simply supported beam and the

construction loading is applied. The deck concrete is assumed to be just poured

and the effects of stud stiffnesses are ignored. The single I-girder bridge is solved

both with program developed and the simple beam bending formula. The analyzed

bridge cross section is shown in Figure 3.8.

25 cm
700 cm

115 cm

125 cm

3 cm

2 cm
5 cm

90 cm

Figure 3.8: The Cross-section of the Analyzed Bridge

The element size is chosen as 100 cm and the modulus of elasticity of steel

is 20 000 000 N/cm2. The bridge is 6000 cm long and assumed to be straight.

There are no internal, external or top lateral brace members. The concrete

modulus and stud stiffnesses are taken to be very close to zero and the distributed

loading on the bridge is 10 N/cm. The bridge is simply supported with the

supports at 0 and 6000 cm.

Maximum bending moment, maximum shear force, maximum normal

stress, maximum shear stress and mid-span deflection values obtained by using

both the program and simple beam bending formula are given in Table 3.1

 85

Table 3.1: Comparison of the Program Outputs and Hand Methods

Parameter UTRAP Hand Calculation

Maximum Bending Moment(Mmax)

(kN.m)
450 450

Maximum Shear Force(Vmax)

(kN)
30 30

Maximum Normal Stress(σmax)

(N/cm2)
1245.87 1229.72

Maximum Shear Stress(τmax)

(N/cm2)
55.12 56.63

Maximum Deflection(δmax)

(cm)
3.29 3.24

As it can be inferred from Table 3.1, the program gives sufficiently close

outputs as the simple bending formula. The slight difference between the program

outputs and the hand calculations can be attributed to the element size selected

and the node normals.

3.4.3 Published Solutions

 The computational software results were compared with the hand method

developed by the researchers Fan and Helwig (1999) in order to predict the top

lateral brace member forces in curved box girders. The method proposed by Fan

and Helwig was compared with the commercially available finite element analysis

package, ANSYS. The predictions of the hand method were in excellent

agreement with the finite element analysis. In this section, the published finite

element analysis results are compared with the results of the developed software.

The bridge analyzed by Fan and Helwig (1999) was a three-span single girder

system having a radius of 291 m and .a length of 195.06 m. The details of the

bridge are given in Fig. 3.9.

 86

A B
C

Section P Section N Section P
41.15m 27.43m 57.91m

Section PSection N
41.15m27.43m

w=48.2 kN/m

54.86m 54.86m85.34m

97.55 m

A

B
C

R=291 m(19.7o/100 m)

(Symmetric)

24.1kN/m 24.1kN/m

304.8 cm

Horizontal Truss

35.6 cm x 2.2 cm

1.3 cm 1.3 cm
190.5 cm

1.6 cm

SECTION P

304.8 cm

Horizontal Truss

61.0 cm x 5.7 cm

1.9 cm 1.9 cm190.5 cm

1.6 cm

SECTION N

228.6 cm228.6 cm

Figure 3.9: Layout and Cross-sectional Dimensions of the Bridge (Fan(1999))

Internal braces were located at every 3 m, and an X-type top lateral system

between internal brace points was utilized. The top lateral brace members were

WT 6 × 13 sections, while the internal brace elements were L 4×4× 5/16

sections. The distributed loading on the bridge was 48.2 kN/m. A constant top

flange width of 35.6 cm was assumed. The thickness of top flange plates in

Section N was modified to 9.7 cm to give the same plate area.

 The top lateral members were grouped into (X1 and X2) according to their

orientation. Force levels for these top lateral members obtained from finite

element analysis were presented by Fan and Helwig (1999). These force levels are

compared with the predictions from the developed software in Figures 3.10 and

3.11. It could be concluded that the developed software is capable of producing

results similar to the published solutions.

 87

Top Lateral Forces(X1)

-200
-150
-100
-50

0
50

100
150
200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Brace Number

Fo
rc

e(
kN

)
Fan-Helwig(1999) UTrAp

Figure 3.10: Comparison of Published and UTRAP Results for X1 Diagonals

Top Lateral Forces(X2)

-150
-100

-50
0

50
100
150
200
250
300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Brace Number

Fo
rc

e(
kN

)

Fan-Helwig(1999) UTrAp

Figure 3.11: Comparison of Published and UTRAP Results for X2 Diagonals

 88

CHAPTER 4
MODELING RECOMMENDATIONS FOR COMPOSITE BRIDGE

ANALYSIS

4.1 Simply Supported Bridge Case

 In order to report some design and modeling recommendations, mesh

convergence studies are conducted by analyzing three bridges, first of which is a

simply supported bridge. The configuration of the personal computer used for the

analysis includes an Intel Centrino Mobile 1.4 GHz Processor and a 512 MB DDR

RAM. The simply supported bridge analyzed is a 60.0 m long box-girder bridge

consisting of 19 internal braces each 3.0 m apart. There is one top lateral brace for

each panel, which make a total of 20 top lateral braces. The uniform loading on

the bridge is 19kN/m and the elastic modulus of the steel is 200 000 MPa. The

cross-sectional dimensions are given in Figure 4.1.

200 mm

360 mm 360 mm

20 mm

20 mm

15 mm

1900 mm

2300 mm

7120 mm

3050 mm

Figure 4.1: Cross-sectional Dimensions

 89

The concrete modulus and stud stiffnesses are taken as zero in order to

simulate the girder behavior at early ages of concrete.

The simply supported bridge is analyzed for five different radius of

curvatures. The radius of curvatures for these bridges are defined as the subtended

angle the bridge covers. The subtended angle is the angle in degrees that is

enclosed by 100 m of representative bridge length. The bridges are analyzed for

straight, 5o/100 m, 10o/100 m, 20o/100 m, 30o/100 subtended angles (Fig. 4.2).

The element sizes are taken as 60 cm, 75 cm, 100 cm, 150 cm and 300 cm,

which are panel length/5, panel length/4, panel length/3, panel length/2 and panel

length respectively. Both of the element types implemented into the program, 4-

node and 9-node elements, are used in the analysis (Table 4.1).

Table 4.1 Analysis Parameters

Subtended Angle(degrees/100 m) 0,5,10,20,30

Element Size(cm) 60,75,100,150,300

Element Type 4-node, 9-node

 As it can be inferred from Table 4.1 a total of 50 runs are performed for

the simply supported bridge.

While studying the performance of the element types and element sizes,

the required time for solution and required memory are also recorded using

CXML direct solver and are given in Table 4.2.

 90

To
p

La
te

ra
l B

ra
ce

In
te

rn
al

 B
ra

ce

20
@

3
m

Li
ne

 o
f S

ym
m

et
ry

pa
ne

l

L1

L2

L3
L4

L5
L6

L7
L8

L9
L1

0

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

Su
pp

or
ts

Fi
gu

re
 4

.2
: A

na
ly

ze
d

B
ri

dg
e

 91

Table 4.2: Solution Time and Required Physical Memory

Subtended
angle/100 m

Element
type

Element
Size(cm)

Solution
Time(sec)

Required
Physical

Memory(MB)

60 5.9 24
75 4.8 19

100 3.6 14
150 2.3 10

4-node

 300 1.2 2

60 41.0 120
75 32.4 95

100 23.9 69
150 15.7 45

0o

9-node

300 7.8 22

 In Table 4.2 the solution time and the required physical memory for only

0o/100m subtended angle are shown. As the number of elements and nodes do not

depend on the degree of curvature these values are same for different subtended

angles as long as the element sizes are the same.

 As it can be seen on Table 4.2, when the 4-node element is used, as

expected, the solution time and required memory are less when compared with the

9-node element. In Figures 4.3 and 4.4 the variation of Solution Time and

Required Physical Memory with respect to the element size for 0o subtended angle

and 9-node element are shown respectively.

 92

0
5

10
15
20
25
30
35
40
45

60 75 100 150 300

Element Size(cm)

So
lu

tio
n

Ti
m

e(
se

c)

Figure 4.3: Variation of Solution Time with respect to the Element Size

0

20

40

60

80

100

120

140

60 75 100 150 300
Element Size(cm)

R
eq

ui
re

d
Ph

ys
ic

al
 M

em
or

y(
M

B
)

 Figure 4.4: Variation of Required Physical Memory with respect to the

Element Size

As it can be seen from Figure 4.3 and Figure 4.4, both the solution time

and required physical memory for program execution follow a similar trend when

plotted against the element size. Furthermore it can be concluded that when the

element size is doubled both the memory requirement and solution time are

halved.

 93

4.1.1 Deflections
 The maximum deflection for the 0o/100 m subtended angle for 4-node and

9-node elements with respect to the element size used is given in Fig. 4.5 and Fig.

4.6, respectively. A representative deflection profile along the bridge is also given

in Figure 4.7, for 30o/100 m subtended angle, 9-node element and 60 cm element

size.

 As it can be inferred from the two figures, the degree of accuracy of the

results obtained with the 9-node element is far more realistic than the 4-node

element. For the 9-node element as the element size increases, the obtained results

for the maximum deflection does not differ much, even for the 150 cm and 300

cm element sizes the obtained results are 18.12 cm and 18.05 cm respectively,

even though the element size doubles. On the other hand for the 4-node element

as the element size increases the maximum deflection value decreases and the

difference between the maximum deflection values obtained with the 150 cm

element size and 300 cm element size differs about 23%. Therefore it can be

concluded that 9-node element is a more reliable element than the 4-node element.

However considering advantages of solution time and required memory, 4 node

element is still feasible when the element size is taken as 150 cm. Smaller

elements sizes for the 4-node elements may also be considered but there is a

modeling constraint associated with them which will be discussed in Section

4.1.1.1.

 94

0

5

10

15

20

25

60 75 100 150 300

Element Size (cm)

M
ax

im
um

 D
ef

le
ct

io
n

(c
m

)

Figure 4.5: Maximum Deflections for Various Element Sizes for 4-node

element

0

5

10

15

20

25

60 75 100 150 300

Element Size (cm)

M
ax

im
um

 D
ef

le
ct

io
n

(c
m

)

Figure 4.6: Maximum Deflections for Various Element Sizes for 9-node

element

 95

-25

-20

-15

-10

-5

0
0 1200 2400 3600 4800 6000

Bridge Length(cm)
D

ef
le

ct
io

n(
cm

)

Figure 4.7: Deflection Profile Along the Bridge

In Figure 4.7 the symmetrical deflection profile agrees with the inputs.

 The variation of maximum deflection with respect to the radius of

curvature and element size for the 9-node and 4-node elements are given in Table

4.5 and Table 4.6, respectively.

Table 4.5: Variation of Maximum Deflection with Subtended Angle(9-
node element)

Maximum Deflection(cm)

Element
Size
(cm)

Subtended
Angle:

0o/100m

Subtended
Angle:

5o/100m

Subtended
Angle:

10o/100m

Subtended
Angle:

20o/100m

Subtended
Angle:

30o/100m

60 18.13 18.19 18.36 19.05 20.21
75 18.13 18.19 18.36 19.05 20.21

100 18.13 18.18 18.35 19.04 20.2

 96

Table 4.5: Variation of Maximum Deflection with Subtended Angle

(9-node element)(Continued)

Maximum Deflection(cm)
Element

Size
(cm)

Element
Size
(cm)

Element
Size
(cm)

Element
Size
(cm)

Element
Size
(cm)

Element
Size
(cm)

150 18.12 18.17 18.34 19.03 20.18
300 18.05 18.1 18.27 18.95 20.09

Table 4.6: Variation of Maximum Deflection with Subtended Angle

(4-node element)

Maximum Deflection(cm)

Element
Size
(cm)

Subtended
Angle:

0o/100m

Subtended
Angle:

5o/100m

Subtended
Angle:

10o/100m

Subtended
Angle:

20o/100m

Subtended
Angle:

30o/100m

60 19.78 19.83 20.00 20.65 21.76
75 19.58 19.63 19.79 20.45 21.55

100 19.17 19.22 19.38 20.03 21.13
150 18.11 18.16 18.32 18.95 20.03
300 13.99 14.04 14.18 14.77 15.76

 From Tables 4.5 and 4.6 it can be inferred that even the 300 cm element

size when 9-node elements are used gives good results in terms of maximum

deflection. Also when 4-node element is used, quite useful results are obtained

considering the time and memory advantages the element offers.

4.1.1.1 Node Normals

 When the maximum deflection values for 4-node and 9-node elements are

compared it is seen that the 4-node element gives higher values than the 9-node

element (Figs 4.5, 4.6). This unexpected flexible behavior can be attributed to

node normals.

As discussed in Chapter 2, the shell geometry is defined by the node

normals Q, R and V which are defined at each node. Among these unit vectors V

always points in the direction of the thickness of the shell element and R always

points in the direction of the tangent to the arc length. Q is the unit vector which is

orthogonal to the other two vectors.

 97

Consider a trapezoidal girder in Figure 4.8. The node normals at the top

flange-web interface are oriented as given in the figure.

V

Q

R

Figure 4.8:Node Normals at the Interphase

As it can be seen in the figure, when the node normals are used to define

the geometry, at the connections, as in the case of Figure 4.8, the shaded area is

discarded. This results in getting higher deflection values as the member sizes

decrease. The cumulative effect of this shortcoming is more dominant when 4-

node elements are used because their meshes are coarser.

4.1.2 Top Lateral Brace Forces
 In Table 4.6, maximum top lateral brace forces for different subtended

angles, element types and element sizes are shown. The given values are the

absolute values, they can be either tensile or compressive.

 98

When the maximum top lateral brace forces for 0o/100 m subtended angle

are examined it is seen that the obtained results for the 4-node element are even

two fold of the 9-node counterparts for most of the cases, however when the

subtended angle increases this difference become negligible and the 4-node

element becomes feasible. In Figures 4.9 and 4.10 this behavior is shown.

Table 4.6: Maximum Top Lateral Forces

Subtended angle/100 m Element type Element Size(cm) Maximum Top Lateral
Force(kN)

60 60
75 65
100 71
150 75

4-node

300 65
60 32
75 32
100 33
150 34

0o

9-node

300 65
60 82
75 86
100 91
150 94

4-node

300 85
60 61
75 61
100 61
150 63

5o

9-node

300 86
60 127
75 130
100 133
150 135

4-node

300 127
60 112
75 112
100 112
150 113

10o

9-node

300 130

 99

Table 4.6:Maximum Top Lateral Forces(Continued)

Subtended angle/100 m Element type Element Size(cm) Maximum Top Lateral
Force(kN)

60 232
75 233
100 234
150 234

4-node

300 224
60 226
75 226
100 226
150 227

20o

9-node

300 234
60 343
75 344
100 344
150 343

4-node

300 330
60 337
75 337
100 337
150 338

30o

9-node

300 345

0
10
20
30
40
50
60
70
80

60 75 100 150 300

Element Size

M
ax

im
um

 T
op

 L
at

er
al

Br

ac
e

Fo
rc

e(
kN

)

4-node element 9-node element

Figure 4.9: Maximum Top Lateral Brace Forces for 0o/100 m subtended

Angle

 100

270
280
290
300
310
320
330
340
350

60 75 100 150 300

Element Size(cm)

M
ax

im
um

 T
op

 L
at

er
al

Br

ac
e

Fo
rc

e(
kN

)

4-node element 9-node element

Figure 4.10: Maximum Top Lateral Brace Forces for 30o/100 m subtended
Angle

 As it can be inferred from Figures 4.9 and 4.10 which show the maximum

top lateral brace forces for 0o/100 m and 30o/100 m subtended angles with respect

to the element size, even the 4-node elements are reliable when the degree of

curvature is high.

In Tables 4.7 and 4.8 the top lateral brace forces for 0o subtended angle

and 30o subtended angle are given.

 101

Table 4:7 Top Lateral Brace Forces for 0o/100 m Subtended Angle
SUBTENDED ANGLE = 0o/100 m

ELEMENT TYPE = 4 NODE ELEMENT ELEMENT TYPE = 9 NODE ELEMENT
TOP

LATERAL
BRACE

ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm
L1 -5 -5 -6 -6 -5 -3 -3 -3 -3 -6
L2 -15 -16 -18 -19 -15 -8 -8 -8 -9 -16
L3 -25 -27 -30 -32 -27 -14 -14 -14 -15 -27
L4 -34 -37 -40 -42 -36 -18 -18 -19 -19 -36
L5 -41 -45 -49 -52 -44 -22 -22 -23 -24 -44
L6 -47 -51 -56 -59 -51 -26 -26 -26 -27 -51
L7 -52 -57 -62 -66 -57 -28 -28 -29 -30 -56
L8 -56 -61 -66 -70 -61 -30 -30 -31 -32 -61
L9 -58 -63 -69 -73 -63 -32 -32 -32 -34 -63

L10 -60 -65 -71 -75 -65 -32 -32 -33 -34 -65
R10 -60 -65 -71 -75 -65 -32 -32 -33 -34 -65
R9 -58 -63 -69 -73 -63 -32 -32 -32 -34 -63
R8 -56 -61 -66 -70 -61 -30 -30 -31 -32 -61
R7 -52 -57 -62 -66 -57 -28 -28 -29 -30 -56
R6 -47 -51 -56 -59 -51 -26 -26 -26 -27 -51
R5 -41 -45 -49 -52 -44 -22 -22 -23 -24 -44
R4 -34 -37 -40 -42 -36 -18 -18 -19 -19 -36
R3 -25 -27 -30 -32 -27 -14 -14 -14 -15 -27
R2 -15 -16 -18 -19 -15 -8 -8 -8 -9 -16
R1 -5 -5 -6 -6 -4 -3 -3 -3 -3 -6

ES = Element Size

101

 102

Table 4:8 Top Lateral Brace Forces for 30o/100 m Subtended Angle
SUBTENDED ANGLE = 0o/100 m

ELEMENT TYPE = 4 NODE ELEMENT ELEMENT TYPE = 9 NODE ELEMENT
TOP

LATERAL
BRACE

ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm ES=60 cm ES=75 cm ES=100 cm ES=150 cm ES=300 cm
L1 329 328 327 324 315 334 333 333 333 329
L2 -343 -344 -344 -343 -330 -337 -337 -337 -338 -345
L3 284 282 279 275 271 296 296 296 295 283
L4 -317 -320 -323 -324 -310 -303 -303 -303 -304 -321
L5 209 205 201 197 198 229 229 228 227 206
L6 -260 -264 -269 -271 -257 -240 -240 -240 -241 -265
L7 117 113 107 103 108 142 142 141 140 113
L8 -181 -185 -191 -194 -181 -156 -156 -156 -158 -186
L9 16 11 5 1 10 43 43 43 41 11

L10 -86 -91 -97 -101 -89 -59 -59 -59 -61 -91
R10 -86 -91 -97 -101 -89 -58 -58 -59 -61 -91
R9 16 11 5 1 10 43 43 43 41 11
R8 -181 -185 -191 -194 -181 -155 -155 -156 -157 -186
R7 117 113 107 103 108 142 141 141 140 113
R6 -260 -264 -268 -271 -257 -239 -239 -240 -241 -265
R5 209 205 201 196 198 228 228 228 227 206
R4 -317 -320 -323 -324 -310 -303 -303 -303 -304 -321
R3 284 282 279 275 271 296 296 296 295 283
R2 -343 -344 -344 -343 -330 -337 -337 -337 -338 -345
R1 329 328 327 324 315 333 333 332 332 329

 ES = Element Size

102

 103

In Tables 4.7 and 4.8, it is seen that when the radius of curvature is small,

as in the case of Figure 4.7 in which the analyzed bridge is straight, the 300 cm

element gives much higher values than the 150 cm element for the 9-node element

so in terms of top lateral brace forces the 300 cm element is not efficient. Smaller

element sizes should be selected, however, the 150 cm element size seems

efficient as the difference between the top lateral brace forces obtained by using

smaller element sizes is far less than 2% for most of the members. In Figure 4.11

the top lateral brace forces for 0o subtended angle obtained by using 9-node

element and with 150 and 300 cm element sizes are plotted. As a result of these, it

may be recommended that element size should be at most half the panel size.

-70

-60

-50

-40

-30

-20

-10

0
L1 L2 L3 L4 L5 L6 L7 L8 L9 L1

0
R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

Top Laterals

To
p

La
te

ra
l B

ra
ce

 F
or

ce
(k

N
)

ES=150 cm ES=300 cm

Figure 4.11:Top Lateral Brace Forces for 150 and 300 cm Element Sizes

(ES = Element Size)

When the subtended angle increases, as torsional effects come into the

scene, the 300 cm element size performs better as shown in Figure 4.12.

 104

-400

-300

-200

-100

0

100

200

300

400
L1 L2 L3 L4 L5 L6 L7 L8 L9 L1

0
R10 R9 R8 R7 R6 R5 R4 R3 R2 R1

Top Laterals
To

p
La

te
ra

l B
ra

ce
 F

or
ce

(k
N

)

ES=150 cm ES=300 cm

Figure 4.12: Top Lateral Brace Forces for 150 and 300 cm Element Sizes

(ES = Element Size)

 In Figure 4.12 it is seen that except from some mid-elements the results

obtained with 150 cm and 300 cm element sizes agree.

4.1.3 Internal Brace Forces

 In Chapter 2 the internal braces were defined as in Figure 4.13. The

internal brace elements are composed of 4 truss elements and the numbering

system is shown in the figure. Due to the symmetry of the cross-section and

loading, the forces in members 3 and 4 should have opposite signs but same

magnitude.

 105

1 2

3 4

E lem ent nodes

Figure 4.13: Typical Internal Brace Element

 In Figures 4.14 and 4.15 the maximum force in the members forming the

internal brace are shown for 0o/100 m and 30o/100 m subtended angle and for 4-

node and 9-node elements. The maximum force member is the element number 1

for the specified cases.

0

10

20

30

40

50

60

70

80

60 75 100 150 300

Element Size(cm)

M
ax

im
um

 F
or

ce
(k

N
)

4-node element 9-node element

Figure 4.14: Maximum Internal Brace Element Force for 0o/100 m

Subtended Angle

 106

0

10

20

30

40

50

60

70

80

60 75 100 150 300

Element Size(cm)

M
ax

im
um

 F
or

ce
(k

N
)

4-node element 9-node element

Figure 4.15: Maximum Internal Brace Element Force for 30o/100 m

Subtended Angle

As it can be seen in the above figures there is a significant difference in

obtained axial force levels when 4-node and 9-node elements are used. Both

figures show a big diversion from the trend when the 300 cm element is used

which is because of combined the effect of node normals and mesh fineness.

 In Table 4.9 the forces in the 4 members forming an internal brace are

shown for all 19 internal braces along the bridge for 30o/100 m subtended angle

using 9-node elements. From the table it may be concluded that 150 cm element

performs very close to 60 cm element, thus it is reliable and suitable for design

but the 300 cm element size deviates from the actual values for about %50 or even

more for most of the cases. Therefore, 300 cm element size is not feasible.

In Figure 4.16 the force in internal brace number 1 for the first 9 internal

braces are plotted for 60 cm, 150 cm and 300 cm element sizes. The rest of the

members are not plotted due to the symmetry. In the figure it is clear that although

similar results are obtained for 60 cm and 150 cm element sizes 300 cm element

size gives far higher results.

 107

Table 4.9: Internal Brace Element Forces for 30o/100 m subtended angle, 9-node element and 60 cm, 150 cm and 300 cm

element size

ES = Element Size

R=30o/100 m subtended angle
Internal Brace Element 1 Internal Brace Element 2 Internal Brace Element 3 Internal Brace Element 4

Internal
Brace

Number ES=60
cm

ES=150
cm

ES=300
cm

ES=60
cm

ES=150
cm

ES=300
cm

ES=60
cm

ES=150
cm

ES=300
cm

ES=60
cm

ES=150
cm

ES=300
cm

1 13 14 19 5 6 11 -10 -11 -9 10 11 9
2 22 22 28 19 19 23 -4 -4 -7 4 4 7
3 20 21 32 1 2 17 -25 -25 -20 25 25 20
4 34 35 47 30 30 37 -6 -6 -12 6 6 12
5 27 28 46 -1 0 23 -38 -37 -29 38 37 29
6 42 44 60 37 38 48 -7 -7 -16 7 7 16
7 32 33 55 -3 -1 28 -46 -45 -36 46 45 36
8 47 49 68 41 42 54 -8 -8 -19 8 8 19
9 32 36 59 -4 -2 30 -50 -49 -39 50 49 39

10 49 51 71 43 44 56 -8 -9 -20 8 9 20
11 34 36 59 -4 -2 30 -50 -49 -39 50 49 39
12 47 49 68 41 42 54 -8 -8 -19 8 8 19
13 32 33 55 -3 -1 28 -46 -45 -36 46 45 36
14 42 44 60 37 38 48 -7 -7 -16 7 7 16
15 27 28 46 -1 0 23 -38 -37 -29 38 37 29
16 34 35 47 30 30 37 -5 -6 -12 5 6 12
17 20 21 32 1 2 17 -25 -25 -19 25 25 19
18 22 22 28 19 19 23 -4 -4 -7 4 4 7
19 14 14 19 5 6 11 -10 -11 -10 10 11 10

107

 108

0
10

20
30
40
50

60
70

80

1 2 3 4 5 6 7 8 9

Internal Brace Member #1 for the first 9 Internal Braces

M
em

be
r F

or
ce

(k
N

)

60 cm 150 cm 300 cm

Figure 4.16:Internal Brace Member #1 Forces for the first 9 Internal Braces

 As the 4-node element gives more conservative values compared with the

9-node element when equal element sizes are used except the 300 cm element

size, the 4-node element can be used at least in the preliminary design phase

considering the time and memory advantages it offers.

4.1.4 Cross-sectional Forces

 In Chapter 2, it was explained that the program is able to calculate the

shear force, bending moment and torsional force within a cross-section. When the

bridge is straight no torsional stresses develop so the torsional moment is zero.

When degree of curvature is increased gradually, the torsional moments tend to

increase.

 It is pleasing to state that, as expected, all the element types and element

sizes implemented into the program perform successfully and similar results are

obtained for all cases that fully agree with the statics.

 109

4.1.5 Cross-sectional Stresses

 The program is able to calculate the cross-sectional stresses at specified

points within the cross-section. In Figure 4.17 the element integration points

within the cross-section for which the cross-sectional stresses are computed are

shown.

1 2 3 4 5 6 7 8 9 10

11 12 13 14

19

15

16

17

18

20 21 22

26

25

24

23

Figure 4.17: Locations Where the Cross-sectional Stresses are Computed

 The program is able to calculate both normal and shear stresses at a

specific location. In Figure 4.18, the variation of normal stress at 300 cm right of

the left support for 0o/100 m subtended angle is plotted against the element size

for both 4-node and 9-node element types at stress location 12.

 110

-25

-20

-15

-10

-5

0
60 75 100 150 300

Element Size (cm)

N
or

m
al

 S
tr

es
s(

M
Pa

)
4-node element 9-node element

Figure 4.18: Normal Stress vs. Element Size for 0o/100 m Subtended Angle

for both 4-node and 9-node Element Types

 As it can be seen on the above figure the 4-node element gives

conservative values up to 100 cm element size, however after that the reliability of

the element size declines. Also the 300 cm element size for the 9-node element

deviates from the actual value which is around 20 MPa, therefore while using the

9-node element for detailed analysis the element size should be at least half the

panel length.

 Similar arguments stated for the 0o/100 m subtended angle can be restated

for the 30o/100 m subtended angle. As it can be seen in Figure 4.19 due to the

torsional effects involved because of the increase in curvature, the cross-sectional

normal stresses are almost doubled.

 111

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

60 75 100 150 300

Element Size (cm)

N
or

m
al

 S
tr

es
s(

M
Pa

)

4-node element 9-node element

Figure 4.19: Normal Stress vs Element Size for 30o/100 m Subtended Angle

for both 4-node and 9-node Element Types

 The above discussion for the normal stresses can be extended for the shear

stresses and similar conclusions can be drawn.

4.2 Continuous Bridge Case

 The second bridge analyzed is a three span continuous bridge of total

length 150 m. The middle span is 60 m long and the side two spans are 45 m each.

The cross-sectional dimensions are the same as the simply supported case but at

the proximity of the negative moment region the plate thicknesses are doubled as

shown in Figure 4.20.

 112

200 mm

360 mm 360 mm

40 mm

40 mm

30 mm

1900 mm

2300 mm

7120 mm

3050 mm

Figure 4.20: Cross-sectional Dimensions at Negative Moment Regions

 Negative moment regions are identified as 12 m to the right and to the left

of the middle supports, so a total of 48 m bridge length is modeled using the

above cross-section. At every 3.0 m except from the supports there is an internal

brace, which make a total of 47 internal braces. The panel length is 3.0 m and for

each panel there is a top lateral brace as in the simply supported bridge case. The

total number of top lateral braces is 50 (Fig 4.21).

 The concrete modulus and stud stiffnesses are taken as zero in order to

simulate the girder behavior at early ages of concrete.

 The continuous bridge is analyzed for 4 subtended angles, which are

namely straight, 10o/100 m, 20o/100 m and 30o/100.

 113

Li
ne

 o
f S

ym
m

et
ry

50
@

3
m

To
p

La
te

ra
l B

ra
ce

In
te

rn
al

 B
ra

ce

Su
pp

or
t

Fi
gu

re
 4

.2
1:

 A
na

ly
ze

d
B

ri
dg

e

 114

 The element size is taken as 60 cm, 100 cm, 150 cm and 300 cm. The

analysis parameters are given in Table 4.10.

Table 4.10: Analysis Parameters
Subtended Angle(degrees/100 m) 0, 10, 20, 30

Element Size(cm) 60, 100, 150, 300

Element Type 4-node, 9-node

 As it can be inferred from Table 4.10 a total of 32 runs are taken for the

continuous bridge case. The supports are at 0 m, 45 m, 105 m and 150m. The

uniformly distributed load on the bridge is 19 kN/m and the elastic modulus of the

steel is 200 000 MPa.

 As in the case of the simply supported bridge, the solution time and

required physical memory are recorded and given in Table 4.11.

Table 4.11: Solution Time and Required Memory

Subtended
angle/100 m

Element
type

Element
Size(cm)

Solution
Time(sec)

Required
Physical

Memory(MB)

60 14.6 58
100 8.7 36
150 5.8 24

4-node

 300 2.9 3

60 110.6 300
100 61.2 180
150 40.7 121

0o

9-node

300 19.9 58

 As the number of elements and nodes are same for all subtended angles, in

Table 4.11 only the values for 0o/100 m subtended angle are given. The rest is

similar.

 In Table 4.11 it is seen that, when the 4-node element is used, the solution

time decreases five fold from 60 cm element size to 300 cm element size but the

required memory decreases about 20 fold. This is not the case for the 9-node

element as shifting from 60 cm element size to 300 cm element size both the

 115

solution time and required physical memory drop by five fold. In terms of solution

time and required physical memory 4-node element performs better as expected.

4.2.1 Deflections

 A representative deflection profile along the bridge for 30o/100 m

subtended angle, 9-node element and 300 cm element size is given in Figure 4.22.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Bridge Length(m)

D
ef

le
ct

io
n(

cm
)

Figure 4.22: Deflection Profile along the Bridge for 30o/100 m subtended

angle, 9-node element and 300 cm element size

 In Figure 4.23 maximum deflection is plotted against the element size for

4-node and 9-node elements and 0o/100 m subtended angle.

0 4.5 10.5 15.0

 116

0
0.5

1
1.5

2
2.5

3
3.5

60 100 150 300

Element Size(cm)

M
ax

im
um

 D
ef

le
ct

io
n(

cm
)

4-node element 9-node element

Figure 4.23: Maximum Deflection vs. Element Size

 From Figure 4.23 it is understood that in terms of deflections, when using

the 9-node element, even the 300 cm element size perform very accurately.

However when the 4-node element is used 300 cm element size fails but element

sizes up to 150 cm are feasible as they give a little conservative but close values

as the 9-node element.

 The above discussion is valid for all subtended angles. The reason why the

4-node element gives more conservative results was discussed in Section 4.1.1.1

4.2.2 Top Lateral Brace Forces

 The maximum top lateral brace forces for 0o/100 m subtended angle are

drawn for both 4-node and 9-node elements and with respect to the element size

are plotted in Figure 4.24.

 117

0
5

10
15
20
25
30
35
40

60 100 150 300

Element Size(cm)

M
ax

im
um

 T
op

 L
at

er
al

B
ra

ce
 F

or
ce

(k
N

)

4-node element 9-node element

Figure 4.24: Maximum Top Lateral Brace Force vs. Element Size

 As it can be seen in the figure above, the 4-node element gives

conservative values for all element sizes as compared with the 9-node element.

For the 9-node element the 300 cm element size deviates from the correct value.

Considering these, it can be stated that, while designing for the top lateral brace

members and for the straight bridge case 4-node element can be used keeping in

mind that it gives conservative values and while using the 9-node element for

detailed design the element size should be at most half the panel length.

 The same graph for the straight bridge is repeated for 30o/100 m subtended

angle in Figure 4.25.

 118

38
40
42
44
46
48
50
52

60 100 150 300

Element Size(cm)

M
ax

im
um

 T
op

 L
at

er
al

 F
or

ce
(k

N
) 4-node element 9-node element

Figure 4.25: Maximum Top Lateral Force vs. Element Size

 From the above figure it can be inferred that when the subtended angle

increases, the 300 cm element size for both 4-node and 9-node elements become

infeasible so it is recommended that while a curved bridge is analyzed, the

element length should be at most half the panel length for both element types.

4.2.3 Internal Brace Forces

 Similar to the simply supported bridge case the maximum internal brace

element force is observed in member 1 (Fig 4.13). The variation of this with

respect to the element type and element size for 0o/100 m subtended angle is given

in Figure 4.26.

 119

0

5

10

15

20

25

60 100 150 300

Element Size(cm)

M
ax

im
um

 In
te

rn
al

 B
ra

ce

Fo
rc

e(
kN

)
4-node element 9-node element

Figure 4.26: Maximum Internal Brace Force vs. Element Size

 Similar conclusions stated for the top lateral brace elements can also be

drawn for internal braces, such as, when the bridge is straight both 4-node and 9-

node elements can be used if conservative results of the 4-node element is

desirable. While performing detailed analysis with the 9-node element, 300 cm

element size may give far higher results than the actual.

 In Figure 4.27 the maximum internal brace element force is plotted for

different element sizes and types for 30o/100 m subtended angle. From the figure

it can be inferred that, as similar to the top lateral brace forces case, the 300 cm

element performs poorly for both element types when the degree of curvature of

the bridge increases. Therefore while analyzing the internal braces, the element

size should be selected such that it is at most half the panel length.

 120

0

5

10

15

20

25

60 100 150 300

Element Size(cm)

M
ax

im
um

 In
te

rn
al

 B
ra

ce

Fo
rc

e(
kN

)
4-node element 9-node element

Figure 4.27: Maximum Internal Brace Force vs. Element Size

4.2.4 Cross-sectional Forces

 As expected, similar to the simply supported bridge case, the program

performs successfully while computing the internal forces, the vertical shear,

bending moment and the torsion for all element types, element sizes and

subtended angles.

4.2.5 Cross-sectional Stresses

 The discussion on cross-sectional stresses for the continuous bridge case is

similar to the simply supported bridge case. The 4-node element gives

conservative values up to 100 cm element size and after that the reliability of the

element declines. Although the 9-node element gives more accurate results, for

detailed analysis and design purposes it is recommended that element size should

be selected such that it is at most 150 cm.

4.3 Simply Supported Double-I Girder Bridge

 The next bridge analyzed is a 60.0 m long double I-girder bridge

consisting of 19 external braces each 3.0 m apart. There are 2 top lateral

 121

braces(cross brace) for each panel, which make a total of 40 top lateral braces.

The uniform loading on the bridge is 30 kN/m and the elastic modulus of the steel

is 200 000 MPa. The cross-sectional dimensions are given in Figure 4.28 and plan

view of the bridge is shown in Figure 4.29.

250 mm
7500

2500 mm

1500 mm 1500 mm

2500 mm
50 mm

30 mm

20 mm

2500 mm

20 mm

50 mm

30 mm

Figure 4.28: Cross-sectional Dimensions

 The cross-sectional areas of the external braces are 20 cm2, and the cross-

sectional areas of the top lateral braces are 25 cm2. The studs are placed at every

60 cm. The concrete modulus and stud stiffnesses are selected very close to zero

in order to simulate the behavior of the girder under construction loading at early

ages of deck concrete.

 The bridge is analyzed for 4 subtended angles, which are namely straight,

10o/100 m, 20o/100 m and 30o/100 m.

 The element size is taken as 60 cm, 100 cm, 150 cm and 300 cm. The

analysis parameters are given in Table 4.12.

 122

Li
ne

 o
f S

ym
m

et
ry

20
@

3
m

op
 L

at
er

al
 B

ra
ce

s

Ex
te

rn
al

 B
ra

ce

Su
pp

or
ts

Fi
gu

re
 4

.2
9:

 A
na

ly
ze

d
B

ri
dg

e

 123

Table 4.12: Analysis Parameters
Subtended Angle (degrees/100 m) 0, 10, 20, 30

Element Size(cm) 60, 100, 150, 300

Element Type 4-node, 9-node

 As it can be inferred from Table 4.12 a total of 32 runs are taken for the

continuous bridge case. The supports are at 0 m and 60 m.

 As in the cases of the simply supported bridge and continuous bridge, the

solution time and required physical memory are recorded as given in Table 4.13

for only 0o/100 m subtended angle. As the number of nodes and elements are

same for different subtended angles, as long as the element size does not change

the required time and memory will be the same.

Table 4.13: Solution Time and Required Memory

Subtended
angle/100 m

Element
type

Element
Size(cm)

Solution
Time(sec)

Required
Physical

Memory(MB)

60 6.4 25
100 3.8 15
150 2.6 3

4-node

 300 1.4 2

60 42.5 118
100 25.2 69
150 16.7 46

0o

9-node

300 8.3 23

 Similar conclusions as those of the simply supported and continuous

bridges can be drawn also here, as the 4-node element is utilized faster than the 9-

node element and the required physical memory is less. Also there is almost a

linear dependence between the element sizes and required time and physical

memory.

 124

4.3.1 Deflections

 The program calculates displacements for each girder. Representative

deflection profiles along the bridge for 0o/100 m and 30o/100 m subtended angle,

9-node element and 300 cm element size are given in Figure 4.30 and 4.31.

-9
-8
-7
-6
-5
-4
-3
-2
-1
0

0 60
0

12
00

18
00

24
00

30
00

36
00

42
00

48
00

54
00

60
00

Bridge Length(cm)

D
ef

le
ct

io
n(

cm
)

Girder 1 Girder 2

4.30: Deflection Profile Along the Bridge for 0o/100 m subtended angle, 9-

node element and 300 cm element size

-16
-14
-12
-10

-8
-6
-4
-2
0

0 60
0

12
00

18
00

24
00

30
00

36
00

42
00

48
00

54
00

60
00

Bridge Length(cm)

D
ef

le
ct

io
n(

cm
)

Girder 1 Girder 2

4.31: Deflection Profile along the Bridge for 10o/100 m subtended angle, 9-

node element and 300 cm element size

 125

 In Figure 4.30 the deflection profiles for girder 1 and girder 2 coincide. As

it can be seen in Fig. 4.30 and Fig. 4.31 when the subtended angle thus the

torsional moment increases different deflection profiles are observed.

 In Figure 4.32 maximum deflection is plotted against the element size for

4-node and 9-node elements and 0o/100 m subtended angle.

5

6

7

8

9

60 100 150 300

Element Size(cm)

D
ef

le
ct

io
n(

cm
)

4-node element 9-node element

4.32: Maximum Deflection vs Element Size

 As in the cases of the other bridges analyzed, 9-node element performs

better than the 4-node and for all element sizes and the 4-node element is nor

recommended for detailed design. However up to 150 cm element size the 4-node

element gives conservative values, thus it may be used in preliminary analysis or

may be used when there is time or memory limitation.

The above discussion is valid for all subtended angles. The reason why the

4-node element gives more conservative results for some element sizes was

discussed in Section 4.1.1.

 126

4.3.2 Top Lateral Brace Forces

 The maximum top lateral brace forces for 0o/100 m subtended angle are

drawn for both 4-node and 9-node elements and with respect to the element size

are plotted in Figure 4.33.

0
2
4
6
8

10
12
14
16
18

60 100 150 300

Element Size(cm)

M
ax

im
um

 T
op

 L
at

er
al

Fo

rc
e(

kN
)

4-node element 9-node element

4.33: Maximum Top Lateral Force vs. Element Size

 As it can be seen in the figure above, the 4-node element gives

conservative values up to 150 cm element size as compared with the 9-node

element. Similar conclusions that were stated for the simply supported and

continuous bridges are valid.

4.3.3 External Brace Forces

 Because of the geometry of the cross-section, there are no internal braces

in double I-girder systems. Instead, external braces are used. In Chapter 2 the

external braces were defined as in Figure 4.34. The external brace elements are

composed of 5 truss elements and the numbering system is shown in the figure.

 127

2 3

4 5

1

Figure 4.34: Typical External Brace Element

In Figures 4.35 and 4.36 the maximum force in the members forming the

external brace are shown for 0o/100 m and 30o/100 m subtended angle and for 4-

node and 9-node elements. The maximum force element is the element number 1

for the specified cases.

0

5

10

15

20

25

30

60 100 150 300

Element Size

M
ax

im
um

 E
xt

er
na

l B
ra

ce

El
em

en
t F

or
ce

(k
N

)

4-node element 9-node element

Figure 4.35: Maximum External Brace Element Force for 0o/100 m

subtended angle

 128

0
20
40
60
80

100
120
140

60 100 150 300

Element Size

M
ax

im
um

 E
xt

er
na

l B
ra

ce

El
em

en
t F

or
ce

(k
N

)

4-node element 9-node element

Figure 4.36: Maximum External Brace Element Force for 30o/100 m

subtended angle

 The maximum force member for the 0o/100 m subtended angle is the

member 1 of Figure 4.34 and for the 30o/100 m subtended angle is the member 4

or 5 (these are equal force members in terms of magnitude). When the bridge is

straight, the 4-node element behaves conservatively up to 150 cm element size.

However if there is torsion the 4-node element is not reliable for all element sizes.

4.3.4 Cross-sectional Forces

 As it is expected, similar to the simply supported and continuous bridge

cases, the program performs successfully while computing the internal forces, the

vertical shear, bending moment and the torsion for all element types, element

sizes and subtended angles.

4.3.5 Cross-sectional Stresses

 The discussion on cross-sectional stresses for the continuous bridge case is

similar to the simply supported bridge case. The 4-node element gives

conservative values up to 100 cm element size and after that the reliability of the

element decreases. Although the 9-node element gives more accurate results, for

 129

detailed analysis and design purposes it is recommended that element size should

be selected such that it is at most 150 cm.

4.4 Solver Type and Performance

 As previously explained a direct sparse solver of Compaq Extended Math

Library (CXML) and an iterative sparse solver called ITPACK was implemented

into the program. The direct solver, as the name implies, does not use any iterative

technique but directly gives the desired displacement vector. On the other hand

ITPACK uses iterative techniques to converge to the desired solution.

ITPACK is a collection of seven FORTRAN subroutines for solving large

sparse linear systems employing adaptive accelerated iterative algorithms. The

algorithms in ITPACK have been tested most extensively for linear systems

arising from elliptic partial differential equations. ITPACK uses four major

iterative solution techniques, which are the Jacobi method, the Successive

Overrelaxation method, the Symmetric Overrelaxation method and the Reduced

System method, and two acceleration procedures which are Chebyshev (Semi-

Iteration) and Conjugate Gradient for rapid performance. All the four methods

listed cannot be combined with the mentioned two acceleration techniques so

ITPACK includes seven subroutines which are Jacobi Conjugate Gradient (JCG),

Jacobi Semi-Iteration (JSI), Successive Overrelaxation (SOR), Symmetric

Successive Overrelaxation Conjugate Gradient (SSORCG), Symmetric

Successive Overrelaxation Semi-Iteration (SSORSI), Reduced System Conjugate

Gradient (RSCG) and Reduced System Semi-Iteration (RSSI). The user is able to

select the method of choice and the solution is carried out accordingly.

In the main program the required parameters for the method of solution are

inputted and then the corresponding subroutine is called from the library of

subroutines which is compiled as an independent FORTRAN file. The critical

parameters of the iterative solvers which are common for all iterative techniques

implemented are the Convergence Tolerance, which is denoted by rparm (1), and

the Maximum Number of Iterations, which is denoted by ITMAX, in the program.

The convergence tolerance determines the desired accuracy of the result. If the

convergence tolerance is selected relatively small the convergence time is higher

 130

but the accuracy of the result increases. On the other hand if the maximum

number of iterations is selected as a relatively small number the solver stops

execution at that specified maximum number of iteration and the accuracy of the

obtained result decreases. In order to obtain good performance from the solver

given a specific method of iteration an optimum balance between time limit and

degree of accuracy should be satisfied.

 The matrix storage format of ITPACK is same as the direct sparse solver

of CXML, which played an important role in selecting as the iterative solver. A

detailed discussion on matrix storage format was discussed in Chapter 2.

4.4.1 Direct vs. Iterative Solver: A Case Study

In order to compare the direct and iterative solvers adopted into the

program a generic bridge is selected and it is analyzed with both the direct and the

iterative solvers. The bridge considered is a simply supported, 30 m long box-

girder bridge with 3.0 m panel length. There are 9 internal braces and 10 top

lateral braces which is 1 for each panel. The stud and deck concrete stiffnesses are

taken to be zero. The cross-sectional dimensions are same as those of the bridge

of Figure 4.1. The elastic modulus of the steel is taken to be 200 000 MPa.

The iterative subroutines that are used for solution are JCG, JSI, SOR,

SSORCG and SSORSI subroutines. The RSCG and RSSI subroutines are not

considered because they require a different matrix storage format for solution.

Therefore the generic bridge is analyzed with CXML direct solver and five

iterative methods of ITPACK. The maximum number of iterations is taken as

10 000 and the following solution times are obtained (Table 4.14).

 131

Table 4.14: Solution Times of Solvers

SOLUTION TIME(sec)
Method of Solution

Iterative(ITPACK) Converge
Tolerance Direct

(CXML) JCG JSI SOR SSORCG SSORSI
1.00E-06 1.98 10.90 14.6 30.2 28.1
1.00E-05 1.81 4.80 14.6 3.3 28.1
1.00E-04 1.13 4.10 14.6 2.5 23.7
1.00E-03 0.91 3.30 11.9 1.1 3.4
1.00E-02 0.66 2.60 2.8 0.7 0.8
1.00E-01

0.7

0.55 1.60 2.6 0.6 0.6

Although the above solution times are reported not all the iterative solution

subroutines converge to the true solution. In Table 4.15 the maximum deflection

values obtained are given.

Table 4.15: Maximum Deflections obtained using the Solvers

MAXIMUM DEFLECTION(cm)
Method of Solution

Iterative(ITPACK) Converge
Tolerance Direct

(CXML) JCG JSI SOR SSORCG SSORSI
1.00E-06 0.89 0.89 0.89 0.89 0.29
1.00E-05 0.89 0.89 0.89 0.89 0.29
1.00E-04 0.89 0.89 0.89 0.89 0.25
1.00E-03 0.89 0.89 0.89 0.89 0.03
1.00E-02 0.89 0.89 1.01 0.87 0
1.00E-01

0.89

0.03 0.89 0.99 0 0

As it can be seen on above two tables, the direct solver is faster than the

iterative solver. Of the iterative solution techniques considered JCG is the fastest

converging technique of all. However, as the convergence tolerance is increased

for obtaining the results faster the JCG subroutine fails. JSI gives accurate results

for all the convergence tolerance levels but the solution time is 3 to 5.5 times

longer than JCG. SOR gives quite accurate results as compared with the SSORCG

and SSORSI subroutines but the solution time is higher than the JSI subroutine.

Considering the SOR subroutine the solution times are same for 1e-6, 1e-5 and

1e-4 convergence tolerance levels because actually the maximum number of

iterations, 10 000, is insufficient for the subroutine to converge for the specified

convergence tolerance levels. The obtained maximum deflection results are far

 132

below the correct value because the convergence tolerance exceeds the number of

significant digits reported. Except for the 1e-6 convergence tolerance level the

SSORCG subroutine seems fast but for 1e-2 and 1e-1 convergence levels it cannot

converge to the true value. Among all the iterative subroutines, the SSORSI seems

to be the poorest. This subroutine cannot converge to the true result for all

convergence tolerance levels for 10 000 maximum number of iterations. In Table

4.16 the maximum deflection values using SSORSI subroutine for 1e-6

convergence tolerance level are shown for different maximum number of iteration

(ITMAX) values.

Table 4.16: Solution Times and Maximum Deflection for SSORSI Subroutine

ITMAX Solution Time
(sec)

Maximum
Deflection (cm)

10 000 28.1 0.29
20 000 55.7 0.49
30 000 83.5 0.62
40 000 111.3 0.71
50 000 138.6 0.77
60 000 166.1 0.81
70 000 194.7 0.83

 As ITMAX value is increased the SSORSI subroutine converges to the

true result but the solution time increases unfeasibly.

 Considering the above results it may be concluded that for the solution of

symmetric sparse linear systems the direct solvers are more useful compared with

the iterative solvers. The matrices produced by the assembly of shell elements are

ill-conditioned which is an unfavorable condition for the iterative solvers. Also

the bridge length is selected to be 30, which is fixed for all solver types, is a

relatively short length. In practice such bridges are much longer and in the

analysis of such bridges using the iterative solvers the error involved will be

higher. Among the iterative solution techniques Jacobi Method with Conjugate

Gradient acceleration technique is the most successful technique considering both

the solution time and quality of convergence. The solution times and convergence

qualities of the iterative solvers may be improved by changing the some

parameters like convergence tolerance and maximum number of iterations but this

 133

requires extensive research and familiarity of the methods which is beyond the

scope of this work.

 134

CHAPTER 5
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH

 As they are manufactured and erected rapidly, composite bridge

construction in highways have become more popular in the last decades.

Consisting of single or multi box or I-girders at the bottom and concrete deck at

the top, connected to each other with shear studs, internal, external and top lateral

braces, these structural systems also offer strength, economy and aesthetics. After

the composite action is achieved between the concrete deck and the steel girders,

especially the trapezoidal box-girders have very high torsional stiffness and

provide adequate strength. However, the problems arise before the deck concrete

hardens and composite behavior is achieved through the shear studs. The stresses,

originating from the wet concrete, cause girder failures.

 In order to simulate the behavior of the bridge before the composite action

is achieved a computer program employing Finite Element Method (FEM), called

UTRAP was developed (Topkaya, Williamson 2003). This program is able to

analyze the bridge for concrete pour sequence and the developed stresses and

forces within the steel girders, internal and external braces and top laterals can be

monitored at every stage of the construction. This program is able to analyze only

the trapezoidal girders. The bridge is modeled with 9-node shell elements and the

element size used for creating the finite element mesh is constant. Also the

program is not able to analyze variable radius of curvature bridges. The solver

adopted into the program was a direct solver of Compaq Extended Math Library

(CXML). Finally the system of units that the program can support is only the

Imperial System of units.

 Keeping the limitations explained in mind, comprising the subject of this

thesis work, the program UTRAP was improved. First of all, the program had a

rigid structure that improvements cannot be easily be done. In order to overcome

this, the program is restructured and converted into a state that improvements can

easily be done whenever needed. I-girders are added to the program so that in

 135

addition to the trapezoidal girders, single and double I-girders can also be

analyzed with the program. A 4-node element was implemented in order to

compare the performance of the 9-node and 4-node elements. The element size is

stored as a variable in order to adjust the density of the finite element mesh can be

adjusted. The program is improved so that it can analyze variable radius of

curvature bridges which are commonly observed in practice. An iterative solver

package, ITPACK, was adopted into the program in order to test the performance

of iterative solvers and compare them with the direct solver. The system of units

is arranged so that the user is able to work with any system of units he/she prefers.

The improvements to the program are summarized in Table 5.1.

Table 5.1: The Improvements of the Program

UTRAP (2003) UTRAP (2005)

Has a rigid structures changes

cannot be easily implemented

 Has a flexible structure

Element size is constant Element size is variable

Utilizes 9-node shell elements Utilizes both 9-node and 4-node shell

elements

Box Girders can be analyzed Box Girders and I-girders can be analyzed

Constant curvature and straight

bridges are analyzed

 Variable curvature and straight bridges are

analyzed

The adopted solver is a direct sparse

solver

 In addition to the direct solver an iterative

solver is adopted into the program

Uses Imperial system of units Uses imperial and metric system of units

 In the first part of this thesis, the program structure is explained under pre-

processor, processor and post-processor headings. In the preprocessor module, the

nodes and elements are generated and their material and geometric properties are

assigned. In the processor module, the structural stiffness matrix and the load

vector is formed by assembling the individual elements to the global system. The

obtained structural stiffness matrix and the load vector are arranged to be

 136

compatible with the matrix storage format of the solvers. After this the solution is

carried out and the structural displacements are obtained. In the post-processor

module, the structural displacements obtained in the processor module are post-

processed and the cross-sectional deflections, cross-sectional rotations, top lateral

brace forces, internal brace forces, external brace forces, cross-sectional forces

and cross-sectional stresses are obtained.

 In the second part of the thesis, numerical modeling details are discussed

and program verification with existing solutions are carried out. The details of the

shell, truss and spring element formulations are explained. Also the required

storage format of the matrices for the solvers are discussed. At the end of this part,

the program is verified with published solutions.

The third part of this thesis comprises the modeling recommendations for

composite bridge analysis. For this part three bridges are taken with different

geometric features, girder types, internal, external and top lateral brace

configurations, variable curvatures along the length and some finite element

modeling advices are given using the developed program. At the end of this part, a

comparison is made between direct and iterative solvers and some performance

measures are presented.

In conclusion, the analysis capabilities of the program UTRAP were

improved. With the improved capabilities the behavior of 4-node and 9-node

elements, the convergence rates and accuracies of direct and iterative solvers were

compared. Some parametric studies are conducted to provide modeling

recommendations for the bridge designers using the developed software. In the

future, live load analysis could be implemented into the program. New shell

elements and steel girder types could be added. The maximum number of girders,

which is limited to two in the current state, could be increased. It is assumed that

there is no elevation difference between the supports of the bridges, however in

the future elevation difference parameter can be added into the analysis. The

cross-sectional dimensions could be variable along the bridge length which is now

constant. The stiffener elements could be added and modeled with finite elements.

The bridge ends could be dapped which is the common form in practice and

finally superelevation could be added into the analysis.

 137

BIBLIOGRAPHY

Topkaya, C. (2002). “Behavior of Curved Steel Trapezoidal Box Girders During

Construction.” Doctoral Dissertation, University of Texas at Austin.

Topkaya, C., Williamson, E. B. (2003). “Development of Computational Software

for Analysis of Curved Girders under Construction Loads.” Computers and

Structures, Vol. 81, pp.2087-2098.

Fan, Z., and Helwig, T. A. (1999). “Behavior of Steel Box Girders with Top

Flange Bracing.” ASCE Journal of Structural Engineering, Vol. 125, No. 8,

pp.829-937

Cheplak, B. A., Memberg, M., Frank, K. H., Yura, J.A., Williamson, E.B., Chen,

B. S., and Topkaya, C.(2002) “Field Studies of Steel Trapezoidal Box Bridges.”

Research Report, University of Texas at Austin.

Ahmad, S., Irons, B. M., and Zienkiewicz, O. C. (1970). “Analysis of Thick and

Thin Shell Structures by Curved Finite Elements.” International Journal for

Numerical Methods in Engineering, Vol. 2, pp.419-451.

Benzi, M., Kouhia, R., and Tuma, M. (1998). “An Assessment of Some

Preconditioning Techniques in Shell Problems.” Communications in Numerical

Methods in Engineering, Vol. 14, pp.897-906

Kincaid, D. R., Respess, J. R., Young, D. M., and Grimes, R. G. (2003).

“ITPACK 2C: A Fortran Package for Solving Large Sparse Linear Systems by

Adaptive Accelerated Iterative Methods.” Research Report, University of Texas at

Austin, Boeing Computer Services Company.

 138

Cook, R. D., Malkus, D. S., Plesha, M. E., Witt, R. J., (2002). “Concepts and

Applications of Finite Element Analysis.” 4th Ed. John Wiley and Sons.

Reddy, J. N., (1993). “An Introduction to the Finite Element Method.” 2nd Ed.

McGraw – Hill International Editions

Compaq Extended Math Library (2001). “Reference Guide.” Compaq Computer

Corporation, Houston, Texas.

ANSYS (1997). “User Manuals and Guides.” ANSYS Inc., USA.

Razaqpur, A. G., Nofal, M. (1989). “A Finite Element for Modeling the Nonlinear

Behavior of Shear Connectors in Composite Structures.” Computers and

Structures, Vol. 32, No. 1, pp.169-174.

Tabsh, S. W., Sahajwani, K. (1997). “Approximate Analysis of Irregular Slab-on-

Girder Bridges.” ASCE Journal of Bridge Engineering, Vol. 2, No. 1, pp. 11-17.

 139

APPENDIX – A SUBROUTINES LIST

 In Table A1, the names of the subroutines in the program are listed

together with the arguments and functions of the subroutines

Table A-1: Subroutines List
Subroutine name Arguments Function

get_nnpcsec nnpcsec, ngird, isec_type,
ielem_type

Computes the number of
nodes per cross-section

get_coordinates

ngird, isec_type, ielem_type,
numnodes, xy, vai, qai, rai,
al_segm, al_rcurv_segm,

elemsize

Calls the appropriate
subroutines to compute the
nodal coordinates and Q, R

and V vectors
get_xy111
get_xy112
get_xy121
get_xy122
get_xy211
get_xy212
get_xy221
get_xy222

xy, vai, qai, rai, numnodes,
al_segm, al_rcurv_segm,

elemsize

Obtain the nodal coordinates
of all nodes

and obtain Q, R and V
vectors for the specified

cross-section

get_shell_info
n_elem_pcsec,

n_nodes_pelem, n_dof_pnode,
ngird, isec_type, ielem_type

Returns the number of
elements per cross-section,
the number of elements per
node and number of degrees

of freedom per node for
each of the 8 cross-section

combinations

elgen_shell
nodes_shell, n_shell_elm,

ndiv, ngird, isec_type,
ielem_type

Calls subroutines which
form the shell elements by
assigning the appropriate
nodes for each of the 8

cross-section combinations
elgen_shell_111
elgen_shell_112
elgen_shell_121
elgen_shell_122
elgen_shell_211
elgen_shell_212
elgen_shell_221
elgen_shell_222

nodes_shell, n_shell_elm,
ndiv

Forms the shell elements by
assigning the appropriate
nodes for each of the 8

cross-section combinations

elgen_int_brace

nodes_intbr, n_intbr_elm,
aloc_int_brc, n_int_brc, ngird,

isec_type, ielem_type,
elemsize

Calls subroutines that
generates the internal braces

for the 4 cross-sections
having internal braces

 140

Table A-1: Subroutines List (Continued)

Subroutine name Arguments Function
elgen_int_brace111
elgen_int_brace112
elgen_int_brace211
elgen_int_brace212

nodes_intbr, n_intbr_elm,
aloc_int_brc, n_int_brc,

elemsize

Generates the internal
braces for the specified

cross-sections

elgen_ext_brace

nodes_extbr, n_extbr_elm,
aloc_ext_brc, n_ext_brc,

ngird, isec_type, ielem_type,
elemsize

Calls subroutines which
form external braces for

the 4 cross-sections having
external braces

elgen_ext_brace211
elgen_ext_brace212
elgen_ext_brace221
elgen_ext_brace222

nodes_extbr, n_extbr_elm,
aloc_ext_brc, n_ext_brc,

elemsize

Generates the external
braces for the specified

cross-sections

elgen_toplt

nodes_toplt, n_toplt_elm,
ktype_top_ltr, ielem_type,

aloc1_top_ltr, aloc2_top_ltr,
n_top_ltr, ngird, isec_type,

elemsize

Calls subroutines which
form the top laterals for

the 6 cross-sections having
top lateral braces

elgen_toplt111
elgen_toplt112
elgen_toplt211
elgen_toplt212
elgen_toplt221
elgen_toplt222

nodes_toplt, n_toplt_elm,
ktype_top_ltr, aloc1_top_ltr,

aloc2_top_ltr, n_top_ltr,
elemsize

Generates the top lateral
braces for the specified top

lateral brace members

elgen_studs nodes_stud, n_stud_elm,
ielem_type, isec_type, ngird

Calls subroutines which
form the studs for all the 8

cross-sections
elgen_studs111
elgen_studs112
elgen_studs121
elgen_studs122
elgen_studs211
elgen_studs212
elgen_studs221
elgen_studs222

nodes_stud, n_stud_elm, ncsec Forms the studs for the
specified cross-section

elgen_support

nodes_support,
n_support_elm, aloc_support,

n_support, elemsize, ngird,
isec_type, ielem_type

Calls subroutines which
form the supports for all

the 8 cross-sections

get_ncsec ndiv, ielem_type, ncsec Computes the number of
cross-sections

 141

Table A-1: Subroutines List (Continued)

Subroutine name Arguments Function
elgen_support111
elgen_support112
elgen_support121
elgen_support122
elgen_support211
elgen_support212
elgen_support221
elgen_support222

nodes_support,
n_support_elm,

aloc_support, n_support,
elemsize

Forms the supports for the
specified cross-section

gen_pinnodes

aloc_support, n_support,
nodes_pin, n_pin_nodes,

elemsize, ngird, isec_type,
ielem_type

Calls subroutines which
form the pinned nodes for

all the 8 cross-sections

gen_pinnodes111
gen_pinnodes112
gen_pinnodes121
gen_pinnodes122
gen_pinnodes211
gen_pinnodes212
gen_pinnodes221
gen_pinnodes222

aloc_support, n_support,
nodes_pin, n_pin_nodes,

elemsize

Forms the pinned nodes for
the specified cross-section

form_plib

prop_sh_lib, n_runs, nwebt,
nbotft, ntft, n_deck, webt,
botft, tft, conc_mod, deckt,

steelmodulus

Forms the property library
for the shell elements

form_prop

iprop_sh_index, n_shell_elm,
al_pour, n_deck, alwebt,

nwebt, albotft, nbotft, altft,
ntft, ngird, isec_type,

ielem_type, elemsize, ndiv

Calls the subroutines which
assigns the shell properties
for all the 8 cross-sections

form_prop111
form_prop112
form_prop121
form_prop122
form_prop211
form_prop212
form_prop221
form_prop222

iprop_sh_index, n_shell_elm,
al_pour, n_deck, alwebt,

nwebt, albotft, nbotft, altft,
ntft, elemsize, ndiv

Assigns the shell properties
by mapping the property

library

form_stpr

prop_stud, n_runs,
n_stud_elm, n_deck, al_pour,

stud_stf, elemsize, ngird,
isec_type, ielem_type, ncsec

Calls subroutines which
form the stud properties for

all the 8 cross-sections

 142

Table A-1: Subroutines List (Continued)

Subroutine name Arguments Function
form_stpr111
form_stpr112
form_stpr121
form_stpr122
form_stpr211
form_stpr212
form_stpr221
form_stpr222

prop_stud, n_runs, n_stud_elm,
n_deck, al_pour, stud_stf,

elemsize, ncsec

Assigns the stud properties
for the specified cross-

section

form_std_mod

stud_mod_fac, n_stud_elm,
al_studsp, stud_sp, n_s_flange,

n_studsp, elemsize, ngird,
isec_type, elem_type, ncsec

Calls the subroutines which
modify stud stiffnesses for

all the 8 cross-sections

form_std_mod111
form_std_mod112
form_std_mod121
form_std_mod122
form_std_mod211
form_std_mod212
form_std_mod221
form_std_mod222

stud_mod_fac, n_stud_elm,
al_studsp, stud_sp, n_s_flange,

n_studsp, elemsize, ncsec

Modifies the stud
stiffnesses for the specified

cross-section

gauss3x3
gauss2x2 weights,xi

Calculates the Gaussian
Quadrature data for

numerical integration for 9-
node and 4-node elements

shaper9
shaper4 xi,psi

Computes the shape
functions, first and second

derivatives of the shape
functions

For the 9-node and the 4-
node elements

form_ic

ic, ne, n_shell_elm,
n_intbr_elm, n_extbr_elm,

n_toplt_elm, n_stud_elm,
n_support_elm, nodes_shell,

nodes_intbr, nodes_extbr,
nodes_toplt, nodes_stud,

nodes_support, ielem_type,
n_nodes_pelem

Stores the node data of
each element

form_nonzero invinc, numnodes, ic, ne,
nonzeros, n_dof_pnode

Locates and stores the
nonzero entries of the

structural stiffness matrix

 143

Table A-1: Subroutines List (Continued)

Subroutine name Arguments Function

form_connect
invinc, numnodes, ic, ne,

icolumns, irowindex,
nonzeros, n_dof_pnode

Forms the element
connectivity data by filling

“irowindex” and “icolumns”
vectors

assemb_shell

xy, vai, qai, rai, nodes_shell,
n_shell_elm, numnodes,

prop_sh_lib, n_runs, nwebt,
nbotft, ntft, n_deck,

iprop_sh_index, ssm,
icolumns, irowindex,

nonzeros, irun,
n_nodes_pelem, n_dof_pnode

Assembles the shell
elements into the structural

stiffness matrix

assemb_toplt

xy, nodes_toplt, n_toplt_elm,
numnodes, prop_toplt, ssm,

icolumns, irowindex,
nonzeros, n_dof_pnode

Assembles the top lateral
brace elements into the

structural stiffness matrix

assemb_intbr

xy, nodes_intbr, n_intbr_elm,
numnodes, prop_intbr, ssm,

icolumns, irowindex,
nonzeros, n_dof_pnode

Assembles the internal brace
elements into the structural

stiffness matrix

assemb_extbr

xy, nodes_extbr, n_extbr_elm,
numnodes, prop_extbr, ssm,

icolumns, irowindex,
nonzeros, n_dof_pnode

Assembles the external
brace elements into the

structural stiffness matrix

assemb_support

xy, nodes_support,
n_support_elm, numnodes,
ssm, icolumns, irowindex,
nonzeros, n_dof_pnode,

steelmodulus

Assembles the support
elements into the structural

stiffness matrix

assemb_stud

nodes_stud, n_stud_elm,
n_runs, prop_stud, numnodes,

ssm, icolumns, irowindex,
nonzeros, irun, stud_mod_fac,

n_dof_pnode

Assembles the studs into the
structural stiffness matrix

apply_support

nodes_pin, n_pin_nodes, ssm,
nonzeros, irowindex,

numnodes, ngird,
n_dof_pnode,

n_pin_nodespcsec

Applies the boundary
conditions

assign_dist_load

rhs, numnodes, al_pour,
n_deck, dist_load, n_runs,

irun, n_dof_pnode, elemsize,
ngird, isec_type, ielem_type,

ncsec

Call subroutines that assign
the distributed loading to the

nodes for all the 8 cross-
sections

 144

Table A-1: Subroutines List (Continued)

Subroutine name Arguments Function
assign_dist_load111
assign_dist_load112
assign_dist_load121
assign_dist_load122
assign_dist_load211
assign_dist_load212
assign_dist_load221
assign_dist_load222

rhs, numnodes, al_pour,
n_deck, dist_load, n_runs,

irun, n_dof_pnode, elemsize,
ncsec

Assigns the distributed
loading to the nodes for all

the 8 cross-sections

l_r_shell3d02 -
Forms the element

stiffness matrix for shell
elements

get_trussk ek, coords, amatprop
Forms the element

stiffness matrix for truss
elements

get_intbrk ek, coords, amatprop
Forms the element

stiffness matrix for internal
brace elements

get_extbrk ek, coords, amatprop
Forms the element
stiffness matrix for

external brace elements

get_supportk ek, coords, amatprop
Forms the element

stiffness matrix for support
elements

get_studk ek, studstf Forms the element
stiffness matrix for studs

invert a, ainv, det Returns the inverse of the
square matrix “a”

solver ssm, irowindex, icolumns,
rhs, uv, numnodes, nonzeros

Calls the direct
solver(CXML)

solver_itpack
ssm, irowindex, icolumns,

rhs, uv, numnodes, nonzeros,
n_dof_pnode, itype

Calls the iterative
solver(ITPACK)

post_defl
uv, numnodes, irun, ndiv,

n_dof_pnode, elemsize, ngird,
isec_type, ielem_type

Calls the subroutines
which post-process the

solution vector to obtain
the vertical deflections for

all the 8 cases

 145

Table A-1: Subroutines List (Continued)

Subroutine name Arguments Function
post_defl111
post_defl112
post_defl121
post_defl122
post_defl211
post_defl212
post_defl221
post_defl222

uv, numnodes, irun, ndiv,
n_dof_pnode, elemsize

Post-processes the solution
vector to obtain the vertical
deflections for the specified

case

post_rot
uv, numnodes, ndiv, irun,

botfl, n_dof_pnode, elemsize,
ngird, isec_type, ielem_type

Calls the subroutines to
post-process the solution
vector to obtain the cross-

sectional rotations for all the
8 cases

post_rot111
post_rot112
post_rot121
post_rot122
post_rot211
post_rot212
post_rot221
post_rot222

uv, numnodes, ndiv, irun,
botfl, n_dof_pnode, elemsize

Post-processes the solution
vector to obtain the cross-
sectional rotations for the

specified case

post_toplt2
xy, numnodes, nodes_toplt,
n_toplt_elm, prop_toplt, uv,

irun, n_dof_pnode

Post-processes the solution
vector to obtain the top

lateral brace forces for the 6
cases having top lateral

braces

post_intbr
xy, numnodes, nodes_intbr,
n_intbr_elm, prop_intbr, uv,

irun, n_dof_pnode

Post-processes the solution
vector to obtain the internal
brace forces for the 4 cases

having internal braces

post_extbr
xy, numnodes, nodes_extbr,
n_extbr_elm, prop_extbr, uv,

irun, n_dof_pnode

Post-processes the solution
vector to obtain the external
brace forces for the 4 cases

having external braces

tr_axforce coords, displ, amatprop,
axforce

Calculates the top lateral
forces by multiplying the
member stiffness matrix

with the structural
displacements

 146

Table A-1: Subroutines List (Continued)

Subroutine name Arguments Function

post_csec_for

xy, vai, qai, rai, nodes_shell,
n_shell_elm, numnodes,

prop_sh_lib, n_runs, nwebt,
nbotft, ntft, n_deck,

iprop_sh_index, uv, nonzeros,
irun, totallength, elemsize,

ioutelem, n_dof_pnode, ngird,
isec_type, ielem_type

Calls the subroutines to
calculate the cross-sectional

forces for all the 8 cases

post_csec_for111
post_csec_for112
post_csec_for121
post_csec_for122
post_csec_for211
post_csec_for212
post_csec_for221
post_csec_for222

xy, vai, qai, rai, nodes_shell,
n_shell_elm, numnodes,

prop_sh_lib, n_runs, nwebt,
nbotft, ntft, n_deck,

iprop_sh_index, uv, nonzeros,
irun, totallength, elemsize,

ioutelem, n_dof_pnode

Calculates the cross-
sectional forces for all the 8

cases

post_sh_nfor9

xy, vai, qai, rai, nodes_shell,
n_shell_elm, numnodes,

prop_sh_lib, n_runs, nwebt,
nbotft, ntft, n_deck,

iprop_sh_index, uv, nonzeros,
irun, iel, ql, rl, vl, fl3, fl4, fl7,
aml3, aml4, aml7, str22, str12

Calculates the contribution
of each shell element to the
cross-sectional forces for 9-

node shell elements

post_sh_nfor4

xy, vai, qai, rai, nodes_shell,
n_shell_elm, numnodes,

prop_sh_lib, n_runs, nwebt,
nbotft, ntft, n_deck,

iprop_sh_index, uv, nonzeros,
irun, iel, ql, rl, vl, fl3, fl4,
aml3, aml4, str22, str12

Calculates the contribution
of each shell element to the
cross-sectional forces for 4-

node shell elements

l_r_shell3d02 - Forms the element stiffness
matrix for shell elements

l_r_shell3d03 - Forms the element stiffness
matrix for shell elements

l_r_shell3d04 - Forms the element stiffness
matrix for shell elements

 147

APPENDIX – B VARIABLES LIST

In Table A2, the names of the variables, descriptions and types of them are

given.

Table A-2: Variables List

Variable Name Description Type
al_pour length of the concrete poured Real array of size(n_deck)
al_rcurv_segm radius of curvature of a segment Real array of size(nsegm)
al_segm length of the bridge segment Real array of size(nsegm)
al_studsp length of the stud spacing

intervals
Real array of
size(n_studsp)

albotft length of bottom flange
thickness change intervals

Real array of size(nbotft)

aloc_ext_brc location of the external braces Real array of
size(n_ext_brc)

aloc_int_brc location of the internal braces Real array of
size(n_int_brc)

aloc_support location of the supports Real array of
size(n_support)

aloc1_top_ltr starting coordinate of the top
laterals

Real array of
size(n_top_ltr)

aloc2_top_ltr ending coordinate of the top
laterals

Real array of
size(n_top_ltr)

altft length of top flange thickness
change intervals

Real array of size(ntft)

alwebt length of web thickness change
intervals

Real array of size(nwebt)

amatprop material properties of the shell
elements

Real array of size(12)

area_ext_brc cross-sectional areas of the
external braces

Real array of
size(n_ext_brc)

area_int_brc cross-sectional areas of the
internal braces

Real array of
size(n_int_brc)

area_top_ltr cross-sectional areas of the top
laterals

Real array of
size(n_top_ltr)

botfl bottom flange length Real
botft bottom flange thickness Real array of size(nbotft)
cmd1 input heading Character
conc_mod modulus of elasticity of the

concrete
Real array of
size(n_runs,n_deck)

coords x,y,z coordinates of the shell
elements

Real array of size(3,9)

 148

Table A-2: Variables List (Continued)

Variable Name Description Type
deckt deck thickness Real
deckw deck width Real
displ(5,9) nodal displacements of the shell

elements
Real array of size(5,9)

dist_load distributed loading Real array of
size(n_runs,n_deck)

drb the multiplication the matrices to
obtain the stresses

Real array of size(9,45)

dshapes derivatives of the shape
functions

Real array of size(2,9,16)

dtheta internal variable used in the
subroutine to form the curvature
of the bridge along the length

Real

dummy variable used for calculating the
program execution time

Real

ef force vector for the shell
elements

Real array of size(81)

ek element stiffness matrix for the
shell elements

Real array of size(81,81)

elemsize element size of the FEM Model Real
ianalysis_type analysis type under different

loading conditions
Integer

ic nodes of all elements Integer array of
size(0:9,ne)

icolumns column numbers of the nonzero
entries of the structural stiffness
matrix

Integer array of
size(nonzeros)

icsec_end internal variable used in the
subroutine to form the curvature
of the bridge along the length

Integer Array of
size(nsegm)

icsec_segm internal variable used in the
subroutine to form the curvature
of the bridge along the length

Integer Array of
size(nsegm)

icsec_start internal variable used in the
subroutine to form the curvature
of the bridge along the length

Integer Array of
size(nsegm)

ielem_type type of the elements to be used
in FEM analysis

Integer

inpcmd input heading Logical array of size(20)
invinc contains information about

which node is connected to
which element

Integer Array of
size(0:15,numnodes)

 149

Table A-2: Variables List (Continued)

Variable Name Description Type

ioutelem an integer number for which the
user specifies the results to be
displayed for

Integer

iprop_sh_index property indexes for shell
elements

Integer array of
size(n_shell_elm)

irowindex row index numbers of the
nonzero entries of the structural
stiffness matrix

Integer array of
size(numnodes*n_dof_pno
de+1)

irun Internal variable used as a
counter for the number of runs

Integer

isec_type section type of the beams Integer
isolver_type equation solver type Integer
k_type_int_brc type of the internal braces Integer array of

size(n_int_brc)
ktype_ext_brc type of the external braces Integer array of

size(n_ext_brc)
ktype_top_ltr type of top laterals Integer array of

size(n_top_ltr)
n_deck number of different deck length

when pouring concrete
Integer

n_dof_pnode number of degrees of freedom
per node

Integer

n_elem_pcsec number of elements per cross-
section

Integer

n_ext_brc number of external braces Integer
n_extbr_elem number of external braces Integer
n_int_brc number of internal braces Integer
n_intbr_elem number of internal braces Integer
n_nodes_pelem number of elements per node Integer
n_pin_nodes number of pinned nodes Integer
n_runs number of program analysis runs Integer
n_runs number of runs Integer
n_s_flange number of studs per flange Integer array of

size(n_studsp)
n_shell_elem number of shell elements Integer
n_stud_elm number of stud elements Integer
n_studsp number of stud spacings Integer
n_support number of supports Integer

 150

Table A-2: Variables List (Continued)

Variable Name Description Type
n_support_elm number of support elements Integer
n_top_ltr number of top laterals Integer
n_toplt_elm number of top laterals Integer
nbotft number of bottom flange

thickness change intervals
Integer

ncsec total number of cross-sections Integer
ndiv number of divisions(2 divisions

per element for 9 node element
and 1 division per element for 4
node element)

Integer

ngird number of girders Integer
nint number of integration points Integer
nnode number of nodes Integer
nnpcsec number of nodes per cross-

section
Integer

nodes_extbr nodes of external braces Integer array of
size(4,n_extbr_elm)

nodes_intbr nodes of internal braces Integer array of
size(4,n_intbr_elm)

nodes_pin node numbers of the pinned
nodes

Integer array of
size(n_pin_nodes)

nodes_shell nodes of shell elements Integer array of
size(9,n_shell_elm or
4,n_shell_elm)

nodes_stud nodes of the studs Integer array of
size(2,n_stud_elm)

nodes_support nodes of the supports Integer array of
size(4,n_support_elm)

nodes_toplt nodes of top laterals Integer array of
size(2,n_toplt_elm)

nsegm number of segments having
different radius of curvatures
along the length

Integer

ntft number of top flange thickness
change intervals

Integer

numnodes total number of nodes Integer
nwebt number of web thickness change

intervals
Integer

offset girder offset length Real
prop_extbr properties of the external braces Real array of

size(3,n_extbr_elm)

 151

Table A-2: Variables List (Continued)

Variable Name Description Type
prop_intbr properties of the internal braces Real array of

size(3,n_intbr_elm)
prop_sh_lib property library for the shell

elements
Real array of
size(n_runs,4,nwebt+nbotft
+ntft+n_deck)

prop_stud properties of the studs Real array of
size(n_runs,n_stud_elm)

prop_toplt properties of the top laterals Real array of
size(3,n_toplt_elm)

prpject project name Character
psi shape functions, first and second

derivatives of the shape
functions

Real array of size (3,9)

qai unit vectors defining shell
geometry

Real arrray of
size(3,numnodes)

qi vectors defining the shell
geometry

Real array of size(3,9)

rai unit vectors defining shell
geometry

Real arrray of
size(3,numnodes)

rhs right hand side of the system of
linear equations

Real array of
size(nonzeros)

ri vectors defining the shell
geometry

Real array of size(3,9)

segm_legth length of each segment having a
different radius of curvature

Real array of size(n_segm)

shapes shape Functions Real array of size(9,16)
ssm structural Stiffness Matrix Real array of

size(numnodes*n_dof_pno
de)

start variable used for calculating the
program execution time

Real

steelmodulus modulus of Elasticity of Steel Real
stud_mod_fac stud modification factor Real array of size

(n_stud_elm)
stud_sp stud spacing Real array of

size(n_studsp)
stud_stf stud stiffnesses Real array of

size(n_runs,n_deck)
tft top flange thickness Real array of size(ntft)
tfw top flange width Real

 152

Table A-2: Variables List (Continued)

Variable Name Description Type
theta internal variable used in the

subroutine to form the curvature
of the bridge along the length

Real

topl top length Real
tot_length internal variable used in the

subroutine to form the curvature
of the bridge along the length

Real

totallength total length of the bridge after
adjusting the element size

Real

totime variable used for calculating the
program execution time

Real

uv structural displacements Real Array of
size(numnodes*n_dof_pno
de)

vai unit vectors defining shell
geometry

Real arrray of
size(3,numnodes)

vi vectors defining the shell
geometry

Real array of size(3,9)

webd depth of web Real
webt web thickness Real array of size(nwebt)
weights weights of the Gaussian

Quadrature
Real array of size(9)

xi integration points of the
Gaussian Quadrature

Real array of size(2,9)

xy x,y,z coordinates of the nodes Real array of
size(3,numnodes)

 153

APPENDIX – C USER’S MANUAL

 As discussed previously the inputs to the program are entered through a

text file named “utinp” which is in the same folder as the executable file of the

program. After the execution of the program, the outputs are stored as individual

text files. The output files are also stored in the same folder as the input file. Table

A-3 lists the names of the outputs files and the description of information stored in

them.

Table A-3: The Outputs Files and Their Descriptions

Output File Name Description of the Contents of the Output File

axf0987
The number of the top lateral braces and the top lateral

brace forces.

ebr0987
The number of the external braces and the external brace

forces at each element.

ibr0987
The number of the internal braces and the internal brace

forces at each element.

def0987
The location along the bridge and the vertical deflection

value at that specific location.

rot0987
The location along the bridge and the angular rotation

value at that specific location.

sec0987
The location along the bridge and the shear force, bending

moment and torsional moment at that specific location.

str0987
The location along the bridge and the normal and shear

stresses at that specific location.

 In Table A-4 a sample input file and the descriptions of the input fields are

listed.

 154

Table A-4: Sample Input File and Descriptions of the Input Fields (*)

Input Field Description

prname

“input file “
• name of the project.

ngird

2
• number of girders, 1 or 2.

elemsize

150
• element size, 150 cm in this case.

steelmodulus

20000000

• elastic modulus of steel, 20 000 000

N/cm2 in this case.

no_of_segments

3

6000 , 1200

6000, 0

6000, -1200

• number of segments with different

radius of curvature,

• segment length, radius (3, 6000 cm

long segments, (-) sign indicates

negative curvature

section_type

1

• section type, 1 for box girder and 2

for I-girder.

secdim

 230 , 190 , 305 , 36 , 712 , 20 , 230

• section dimensions in cm (web depth,

bottom flange width, top length, top

flange width, deck width, deck thick,

offset, respectively).

webthick

 3

 6000 , 1

 9000 , 2

 3000 , 4

• number of different web thicknesses

along length,

• length of segment, thickness.

botfthick

 2

 7500 , 1

 7500 , 2

• number of different bottom flange

thicknesses along length,

• length of segment, thickness.

 155

Table A-4: Sample Input File and Descriptions of the Input Fields
(Continued)

tfthick

 4

 4500 , 1

 4500 , 2

 4500 , 4

 4500 , 5

• number of different top flange

thicknesses along length.

• length of segment, thickness(in cm)

internal_brace

 8

2000, 1 , 15

4000, 1 , 15

6000, 1 , 15

8000, 1 , 15

10000, 1 , 15

12000, 1 , 15

14000, 1 , 15

16000, 1 , 15

• number of internal braces,

• location, type, cross-sectional area.

external_brace

 10

2000, 1 , 20

4000, 1 , 20

6000, 1 , 20

8000, 1 , 20

10000, 1 , 20

12000, 1 , 20

14000, 1 , 20

16000, 1 , 20

• number of external braces,

• location, type, cross-sectional area.

 156

Table A-4: Sample Input File and Descriptions of the Input Fields
(Continued)

top_lateral

 6

 1 , 0 , 3000 , 25

 2 , 3000 , 6000 , 25

 1 , 6000 , 9000 , 25

 2 , 6000 , 9000 , 25

 1 , 9000 , 12000 , 25

 2 , 12000 , 15000 , 25

• number of top lateral braces,

• type, start location, end location,

cross-sectional area.

support

 3

 0

 9000

 18000

• the number of supports.

• support locations.

element_type

 1

• element type, 1 for 9-node element

and 2 for 4-node element.

Studs

 2

 9000 , 200 , 2

 9000 , 150 , 3

• number of different stud �roperty

 es,

• length, stud spacing, number of studs

per flange.

analysis_type

1

• analysis type, 1 for pour sequence

analysis, the program supports only

“1” in its present situation.

solver_type

2

• solver type, 1 for direct solver and 2

for iterative solver.

pour_seq

 1

 1

 600

 0.00001 , 0.00001 ,190

• number of runs,

• number of deck segments,

• length of the deck segment,

• concrete modulus, stud stiffness and

distributed load value.

 157

Table A-4: Sample Input File and Descriptions of the Input Fields
(Continued)

outelmnum

2
• stress display per element.

(*) Any consistent system of units can be entered.

