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ABSTRACT

GEOMETRIC INTEGRATORS FOR COUPLED NONLINEAR SCHRÖDINGER

EQUATION

AYDIN, AYHAN

Ph.D., Department of Mathematics

Supervisor : Prof.Dr. Bülent Karasözen

January 2005, 153 pages

Multisymplectic integrators like Preissman and six-point schemes and a semi-explicit

symplectic method are applied to the coupled nonlinear Schrödinger equations (CNLSE).

Energy, momentum and additional conserved quantities are preserved by the multi-

symplectic integrators, which are shown using modified equations. The multisymplec-

tic schemes are backward stable and non-dissipative. A semi-explicit method which

is symplectic in the space variable and based on linear-nonlinear, even-odd splitting

in time is derived. These methods are applied to the CNLSE with plane wave and

soliton solutions for various combinations of the parameters of the equation. The

numerical results confirm the excellent long time behavior of the conserved quantities

and preservation of the shape of the soliton solutions in space and time.

Keywords: nonlinear Schrödinger equation, coupled nonlinear Schrödinger equation,

symplectic integrators, multisymplectic integrators, dispersion analysis, backward er-

ror analysis, modified equations, plane wave solution, soliton solution
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ÖZ

DOG̃RUSAL OLMAYAN İKİLİ SCHRÖDINGER DENKLEMİ İÇİN GEOMETRİK

ENTEGRASYON YÖNTEMLER

AYDIN, AYHAN

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Bülent KARASÖZEN

Ocak 2005, 153 sayfa

Preissman ve altı-nokta olarak adlandırılan çoklu simplektik yöntemler ve yarı-

açık simplektik yöntem dog̃usal olmayan ikili Schrödinger denklemine (CNLSE) uygu-

lanmıştır. Enerji, momentum ve ilave korunum özelliklerinin çoklu simplektik yöntemler

tarafından korunması geriye dönük hata analizi ile açıklanmıştır. Çoklu simplek-

tik yöntemler geriye dönük kararlı olup, dalga dag̃ılımı özellig̃i göstermezler. Uzay

deg̃işkenine göre simplektik, dog̃rusal-dog̃rusal olmayan, tek-çift ayrışımına dayalı

yarı-açık yeni bir yöntem geliştirilmiştir. Yöntemler CNLS’in çeşitli parametrelerine

uygulanmıştır. Elde edilen sayısal sonuçlar korunum kurallarının, soliton çözümlerin

uzay ve uzun zaman ararıg̃ında çok iyi korunmakta oldug̃unu dog̃rulamaktadır.

Anahtar Kelimeler: tek ve ikili dog̃rusal olmayan Schrödinger denklemi, simplektik

ve çoklu simplektik entegrasyon yöntemleri, geriye dönük hata analizi, düzeltilmiş

denklemler, düzlem dalga ve soliton şeklinde çözümler.
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2 NONLINEAR SCHRÖDINGER EQUATION . . . . . . . . . . . . . . 21

2.1 The Nonlinear Schrödinger Equation . . . . . . . . . . . . . . 21

2.1.1 Hamiltonian Formulation . . . . . . . . . . . . . . . . 22

2.1.2 Multisymplectic Formulation . . . . . . . . . . . . . . 23

2.1.3 Conserved Quantities . . . . . . . . . . . . . . . . . . 26

2.2 Coupled Nonlinear Schrödinger Equation . . . . . . . . . . . . 27

2.2.1 Hamiltonian Formulation . . . . . . . . . . . . . . . . 28

2.2.2 Multisymplectic Formulation . . . . . . . . . . . . . . 30

2.2.2.1 Conserved Quantities . . . . . . . . . . . 33

2.3 N–Coupled Nonlinear Schrödinger Equation . . . . . . . . . . 34

viii



3 NUMERICAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 The Ablowitz-Ladik Discrete NLS System . . . . . . . . . . . 37

3.2 Symplectic Integrators for CNLSE . . . . . . . . . . . . . . . . 39

3.3 Multisymplectic Integrators . . . . . . . . . . . . . . . . . . . . 41

3.3.1 The Preissman Box Scheme . . . . . . . . . . . . . . 42

3.4 Multisymplectic Integration of NLSE . . . . . . . . . . . . . . 47

3.5 Multisymplectic Integration of CNLSE . . . . . . . . . . . . . 49

3.6 Six-point scheme for CNLSE . . . . . . . . . . . . . . . . . . . 51

3.7 A Semi-Explicit Symplectic Integrator for CNLSE . . . . . . . 58

3.7.1 Linear-Nonlinear Splitting . . . . . . . . . . . . . . . 58

3.7.2 Even-Odd Splitting . . . . . . . . . . . . . . . . . . . 60

3.7.3 Composition method . . . . . . . . . . . . . . . . . . 63

4 LINEARIZED EQUATIONS AND DISPERSION RELATIONS . . . . 65

4.1 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 The Preissman Box Scheme . . . . . . . . . . . . . . 69

4.2 Linearized NLS . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Linearized CNLSE . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 The Preissman Box Scheme . . . . . . . . . . . . . . 77

4.3.2 Coupled Six-Point Scheme . . . . . . . . . . . . . . . 78

4.4 Linear Stability Analysis for Six–Point Scheme . . . . . . . . . 81

5 BACKWARD ERROR ANALYSIS . . . . . . . . . . . . . . . . . . . . 89

6 NUMERICAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 The plane wave solutions of CNLSE . . . . . . . . . . . . . . . 100

6.1.1 Numerical Simulation I: Elliptical Polarization (e = 1) 103

6.1.2 Numerical Simulation II: Linear Polarization (e = 2/3) 105

6.1.3 Numerical Simulation III: Circular polarization (e = 2) 107

6.2 Soliton Solutions of CNLSE . . . . . . . . . . . . . . . . . . . 109

6.2.1 Numerical Simulation I: Evolution of Single Soliton . 112

6.2.2 Numerical Simulation II : Evolution of Colliding Soliton113

6.3 CONCLUSION and FUTURE WORK . . . . . . . . . . . . . 115

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

ix



LIST OF TABLES

TABLES

Table 6.1 Values of parameter for the initial condition (6.13) of the CNLS
equation (6.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Table 6.2 Elliptic polarization (e = 1): The absolute maximum error in the
local and global conservation laws for the CNLS equation (6.11). . . . . . 105

Table 6.3 Elliptic polarization (e = 1): Exact and approximate values of the
conserved quantities (6.12) for various time for the CNLS equation (6.11). 106

Table 6.4 Linear polarization (e = 2/3): The absolute maximum error in the
local and global conservation laws for the CNLS equation (6.11) . . . . . . 108

Table 6.5 Various values for the conserved quantities (6.12) for the CNLS equa-
tion (6.14) with initial data (6.16) with α = 0.5, v = 1.0, e = 2/3, δ = 0.5
over the spatial interval [−40, 40] and time interval [0, 40] using MS and
MS6 integrators with N = 400, ∆t = 0.1. . . . . . . . . . . . . . . . . . . . 112

Table 6.6 Accuracy of the MS integrator using L∞ error norm 6.17 for the
CNLS equation (6.14) with initial data (6.16) with α = 0.5, v = 1.0, e =
2/3, δ = 0.5 over the spatial interval [−40, 40] and time interval [0, 40] using
MS integrator with N = 400, ∆t = 0.1. . . . . . . . . . . . . . . . . . . . . 113

Table 6.7 Various values for the conserved quantities (6.12) for the CNLS equa-
tion (6.14) with initial data (6.18) with e = 2/3 over the spatial inter-
val [−40, 40] and time interval [0, 40] using MS and MS6 integrators with
N = 400, ∆t = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

x



LIST OF FIGURES

FIGURES

Figure 3.1 Schematic of the Preissman scheme (3.22) and six-point difference
scheme (3.61)-(3.62) for the CNLSE (2.26)-(2.27). . . . . . . . . . . . . . . 55

Figure 4.1 The effect of discretization in space (∆t → 0) for linearized NLSE
(4.19). Solid line: exact dispersion relation (4.24); crossed: numerical dis-
persion relation with continuous time (4.28). The left plot: with ∆x = 0.5.
The right plot : with ∆x = 0.1. The top plot : a = −1 < 0, The middle
plot : a = 0. The bottom plot : a = 1 > 0. . . . . . . . . . . . . . . . . . . 83

Figure 4.2 The effect of discretization for linearized NLSE (4.19). Solid line: ex-
act dispersion relation (4.24); crossed: numerical dispersion relation (4.27).
The left plot: with ∆x = 0.1, ∆t = 0.1. The right plot : with ∆x = 0.1,
∆t = 0.01. The top plot : a = −1 < 0, The middle plot : a = 0. The
bottom plot : a = 1 > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.3 For ∆x = ∆t = 0.1, δ1 = δ2 = 1, d1 = d2 = 1, c1 = c2 = 1, exact
(solid) and numerical (crossed) dispersion relation for linearized CNLSE
(4.35)-(4.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.4 For ∆x = ∆t = 0.1, δ1 = δ2 = 1, d1 = d2 = 1, c1 = c2 = 0, exact
(solid) and numerical (crossed) dispersion relation for linearized CNLSE
(4.35)-(4.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 4.5 For ∆x = ∆t = 0.1, δ1 = δ2 = 1, d1 = d2 = 1, c1 = c2 = −10, exact
(solid) and numerical (crossed) dispersion relation for linearized CNLSE
(4.35)-(4.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.6 For ∆x = 0.05, ∆t = 0.02, δ1 = δ2 = 1, d1 = d2 = 1, c1 = c2 =
−10, exact (solid) and numerical (crossed) dispersion relation for linearized
CNLSE (4.35)-(4.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.7 For c1 = 0.01 < ∆x = ∆t = 0.1 < c2 = 1, δ1 = δ2 = 1, d1 = d2 =
1, exact (solid) and numerical (crossed) dispersion relation for linearized
CNLSE (4.35)-(4.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.8 For c2 = 0.01 < ∆x = ∆t = 0.1 < c1 = 1, δ1 = δ2 = 1, d1 = d2 =
1, exact (solid) and numerical (crossed) dispersion relation for linearized
CNLSE (4.35)-(4.36). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 4.9 Dispersion curves of the integrable case: δ1 = 5, δ2 = −5, d1 =
d2 = 1/2, with c1 = c2 = 1,∆x = ∆t = 0.1. Exact (solid) and numerical
(crossed) dispersion relation for linearized CNLSE (4.35)-(4.36). . . . . . 88

Figure 4.10 Dispersion curves of the non-integrable case: δ1 = 5, δ2 = −5, 1/2 =
d1 6= d2 = −1/2, with c1 = c2 = 1, ∆x = ∆t = 0.1. Exact (solid) and
numerical (crossed) dispersion relation for linearized CNLSE (4.35)-(4.36). 88

xi



Figure 6.1 Long–time evolution of the destabilized wave solutions for CNLSE
with e = 1 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T =
100. Left plots : surface of |ψ1|. Right plots : surface of |ψ2|. (a-b) The
multisymplectic scheme MS (c-d) the multisymplectic six point scheme MS6
(e-f) the semi-explicit scheme SE . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 6.2 Errors in local energy and momentum conservation laws of the desta-
bilized wave solutions for CNLSE with e = 1 ,a0 = 0.5, b0 = 0.5, ε =
0.1, θ = 0, N = 256, T = 100. Left plots : error in local energy. Right
plots : error in local momentum. (a-b) The multisymplectic scheme MS (c-
d) the multisymplectic six point scheme MS6 (e-f) the semi-explicit scheme
SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 6.3 Errors in local additional conservation laws of the destabilized wave
solutions for CNLSE with e = 1 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ =
0, N = 256, T = 100. Left plots : error in local energy. Right plots :
error in local momentum. (a-b) The multisymplectic scheme MS (c-d) the
multisymplectic six point scheme MS6 (e-f) the semi-explicit scheme SE . 121

Figure 6.4 Errors in global energy and momentum conservation laws of the
destabilized wave solutions for CNLSE with e = 1 , a0 = 0.5, b0 = 0.5, ε =
0.1, θ = 0, N = 256, T = 100. Left plots : error in local energy. Right
plots: error in local momentum. (a-b) The multisymplectic scheme MS (c-
d) the multisymplectic six point scheme MS6 (e-f) the semi-explicit scheme
SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 6.5 Conservation property of the MS6 scheme for the destabilized wave
solutions of the CNLSE with e = 1 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ =
0, N = 256, T = 100. (a) The conserved quantity (3.71) (b) The conserved
quantity (3.73) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 6.6 Long–time evolution of the destabilized wave solutions for CNLSE
with e = 1 ,a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 3π/2, N = 256, T = 100.
Surfaces of |ψ1| and |ψ2|.(a) The multisymplectic scheme MS6 (b) the semi-
explicit scheme SE (c) Local energy errors; left plot: MS6, right plot: SE 124

Figure 6.7 Long–time evolution of the destabilized wave solutions for CNLSE
with e = 1, a0 = 0.68, b0 = 0.2, ε = 0.1, θ = 3π/2, N = 256, T = 100.
Surfaces of |ψ1| and |ψ2|. (a) The multisymplectic scheme MS6 (b) the
semi-explicit scheme SE (c) Local energy errors; left plot: MS6, right plot:
SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 6.8 Long-time evolution of the destabilized wave solutions for CNLSE
with e = 2/3 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T = 100.
Surfaces of |ψ1| and |ψ2| : (a) The multisymplectic scheme MS6 (b) the
semi-explicit scheme SE (c)Local energy errors; left plot: MS6; right plot
:SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 6.9 Long-time evolution of the destabilized wave solutions for CNLSE
with e = 2/3 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 3π/2, N = 256, T = 100.
Surfaces of |ψ1| and |ψ2|: (a) The multisymplectic scheme MS6 (b) the
semi-explicit scheme SE (c) Local energy errors; left plot: MS6; right plot
:SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xii



Figure 6.10 Long-time evolution of the destabilized wave solutions for CNLSE
with e = 2/3 , a0 = 0.63, b0 = 0.2, ε = 0.1, θ = 0, N = 256, T = 100.
Surfaces of |ψ1| and |ψ2|: (a) The multisymplectic scheme MS6 (b) the
semi-explicit scheme SE (c) Local energy errors; left plot: MS6; right plot
:SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Figure 6.11 Long-time evolution of the destabilized wave solutions for CNLSE
with e = 2 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T = 100.
Left plots :Contour plot of |ψ1|. Right plots : surface of |ψ1|. (a) The
multisymplectic scheme MS (b) the multisymplectic six point scheme MS6
(c) the semi-explicit scheme SE . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 6.12 Errors in local energy conservation laws of the destabilized wave
solutions for CNLSE with e = 2 ,a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N =
256, T = 100. (a) The multisymplectic scheme MS (b) the multisymplectic
six point scheme MS6 (c) the semi-explicit scheme SE . . . . . . . . . . . 130

Figure 6.13 Long-time evolution of the destabilized wave solutions for CNLSE
with e = 2 ,a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 3π/2, N = 256, T = 100.
Left plots: Contour plots of |ψ1|. Right plots: Local energy error. (a) The
multi-symplectic scheme MS (b) the multi-symplectic six point scheme MS6
(c) the semi-explicit scheme SE . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 6.14 Long-time evolution of the destabilized wave solutions for CNLSE
with e = 2 , a0 = 0.78, b0 = 0.2, ε = 0.1, θ = 0, N = 256, T = 100.
Left plots : Contour plots of |ψ1|. Right plots: Local energy error (a) The
multi-symplectic scheme MS (b) the multi-symplectic six point scheme MS6
(c) the semi-explicit scheme SE . . . . . . . . . . . . . . . . . . . . . . . . 132

Figure 6.15 Wave forms : One soliton solution of CNLSE with e = 2/3, δ1 =
δ2 = 0.5, d1 = d2 = 0.5, a1 = a2 = 1, N = 400,∆t = 0.1. (a) MS integrator,
(b) MS6 integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 6.16 Evolution of the wave |ψ1|: One soliton solution of CNLSE with
e = 2/3 obtained using MS6 integrator . . . . . . . . . . . . . . . . . . . . 134

Figure 6.17 Local and global conservation of energy : One soliton solution of
CNLSE with e = 2/3. Left plots: MS integrator; right plots: MS6 integrator 135

Figure 6.18 Elastic collision of two solitons with e = 1 obtained using (a) MS
integrator (b) MS6 integrator . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 6.19 Evolution of the wave |ψ1|: Two soliton solution of CNLSE with
e = 1 obtained using MS integrator. . . . . . . . . . . . . . . . . . . . . . 137

Figure 6.20 Errors in local and global energy and additional conservation lows
: Two soliton solution of CNLSE with e = 1,. Left plots: MS integrator;
right plots: MS6 integrator. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 6.21 Contour plots: Two soliton solution of CNLSE with e = 1 obtained
using (a) MS integrator (b) MS6 integrator. . . . . . . . . . . . . . . . . . 139

Figure 6.22 Inelastic collision of two solitons with : e = 2/3 obtained using (a)
MS integrator (b) MS6 integrator . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 6.23 Evolution of the wave |ψ1|: Two soliton solution of CNLSE with
e = 2/3, δ1 = δ2 = 0.5 obtained using MS integrator . . . . . . . . . . . . 141

Figure 6.24 Local and global conservation of energy and additional conservation
: Two soliton solution of CNLSE with e = 2/3, δ1 = δ2 = 0.5,. Left plots:
MS integrator; right plots: MS6 integrator. . . . . . . . . . . . . . . . . . 142

Figure 6.25 Contour plots: Two soliton solution of CNLSE with e = 2/3, δ1 =
δ2 = 0.5, obtained using (a) MS integrator (b) MS6 integrator. . . . . . . . 143

xiii



Figure 6.26 Inelastic collision of two solitons of CNLSE with e = 2/3, δ1 = δ2 =
0.2, obtained using (a) MS integrator (b) MS6 integrator. . . . . . . . . . 144

Figure 6.27 Evolution of the wave |ψ1|: Two soliton solution of CNLSE with
e = 2/3, δ1 = δ2 = 0.2, obtained using MS6 integrator. . . . . . . . . . . . 145

Figure 6.28 Local and global conservation of energy and momentum conservation
: Two soliton solution of CNLSE with e = 2/3, δ1 = δ2 = 0.2,. Left plots:
MS integrator; right plots: MS6 integrator . . . . . . . . . . . . . . . . . . 146

Figure 6.29 Contour plots: Two soliton solution of CNLSE with e = 2/3, δ1 =
δ2 = 0.2, d1 = d2 = 0.5, a1 = a2 = 1, N = 400, ∆t = 0.1 obtained using (a)
MS integrator (b) MS6 integrator . . . . . . . . . . . . . . . . . . . . . . . 147

xiv



CHAPTER 0

INTRODUCTION

There has been a great activity in the field of geometric integration of differential equa-

tions in recent years. A numerical method that preserves the geometric features of a

differential equation such as energy, momentum, symplecticity is known as geometric

integrator. In particular, if the differential equation is a Hamiltonian system with a

symplectic structure, symplectic integrators give excellent results in long time inte-

gration which can be explained by backward error analysis. Preserving the symplectic

structure, symmetries and the reversibility of certain ordinary differential equations

(ODE’s) by numerical methods became almost a routine in recent years (see the mono-

graphs [33, 69]). Geometric integrators are now commonly used in many applications

including celestial mechanics and molecular dynamics.

In this thesis we are concerned with the numerical integration of the coupled

nonlinear Schrödinger equation (CNLSE) which is a Hamiltonian partial differential

equation (PDE). The two CNLSE were first derived in 1967 by Benney and Newell [14]

for two nonlinear interacting wave packets in a dispersive and conservative system.

Since the CNLSE is used in optical-soliton based telecommunication systems there was

a need for a through study of the solution behavior of the these equations. This is why

the CNLSE has attracted a great deal of attention Hamiltonian PDE’s are essential

in the theory of wave phenomena. Numerical computations of solutions for these

problems are very important to get insight into the behavior of a particular dynamics

of the system. Most of the nonlinear PDE’s like CNLSE can be solved analytically only

for a few number of parameters; for a wide range of physically interesting phenomena,

solutions must be obtained by numerical methods.

In recent years several approaches were carried out for solving nonlinear PDE’s

using geometric integrators. Among these there are two main approaches: either a
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semi-discretization in space to obtain a system of Hamiltonian ODE’s, or simultaneous

symplectic discretization in space and time to obtain multisymplectic systems.

In the first approach, discretizing the PDE in the space variable is done using

finite differences or spectral methods to obtain a Hamiltonian system of ODE’s or an

integrable system, and applying the known symplectic geometric integrators developed

for ODE’s. If the resulting system of ODE’s is in canonical Hamiltonian form, then

the application of symplectic methods is straightforward. For Hamiltonian system in

non-canonical form, or so called Poisson structure, symplectic methods can not be

directly applied (for a recent review of Poisson integrators see [33] Chapter VII and

[44]).

For low dimensional Hamiltonian systems the phase structure is accurately pre-

served by symplectic schemes. However, for higher dimensional systems arising from

semi-discretization of Hamiltonian PDE’s this is not well established [5]. The reason

for the failure is that the symplectic integrator preserves, in this form, only the global

invariants of the underlying system. A more satisfactory approach is to develop a lo-

cal concept of symplecticity for Hamiltonian PDE’s since symplecticity may vary from

point to point in space and time. Hence local conservation is more important than

global conservation for symplectic integration of PDEs. To overcome these disadvan-

tages, Bridges and Reich introduced the concept of multisymplectic integrators based

on the multisymplectic structure of some conservative PDEs [18, 21] which leads to

the second approach mentioned above.

Various discretization methods such as Fourier spectral, Gauss-Legendre colloca-

tion, finite volume have been shown to be multisymplectic (see [21, 22, 64, 65] and

reference therein). However, a through analysis of the local and global properties of

multisymplectic integrators has yet to be carried out.

Let M and K be any skew-symmetric matrices on Rn (n ≥ 3) and let S : R → R

be any smooth function. Then, a system of the following form

Mzt + Kzx = ∇zS(z), z ∈ Rn (0.1)

is called a Hamiltonian system with a multisymplectic structure, or a multisymplectic

PDE [18, 21] where ∇z denotes the gradient operator in Rn. The system (0.1) is

multisymplectic with skew-symmetric matrices M and K

ω(U, V ) =< MU, V >, κ(U, V ) =< KU, V >
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which define a space-time symplectic structure where U, V ∈ Rn are solutions of the

variational equation

Mdzt + Kdzx = DzzS(z)dz

associated with (0.1).

Any system of the form (0.1) satisfies the conservation of symplecticity equation

∂tω + ∂xκ = 0

with ∂t = ∂/∂t and ∂x = ∂/∂x. When the Hamiltonian S is independent of x and t,

then the system (0.1) has local energy and momentum conservation laws

∂tE + ∂xF = 0, ∂tI + ∂xG = 0

where
E(z) = S(z)− 1

2κ(zx, z), F (z) = 1
2κ(zt, z),

G(z) = S(z)− 1
2ω(zt, z), I(z) = 1

2ω(zx, z).
(0.2)

Usually the Hamiltonian S itself is not a conserved quantity. There are some additional

conservation laws which follows from Noether theory due to certain symmetries of

the underlying PDE. Under periodic boundary conditions, global conservations can

be obtained by integrating the local conservations in space [40]. Many PDE’s can

be formulated in a multisymplectic form such as the KdV, nonlinear Schrödinger

models, Boussinesq models, geostrophic flow, water waves, Sine-Gordon, Klein-Gordon

equation and Kadomtsev-Petviashvili (KP) equation [13, 19, 22, 17, 37, 40, 47, 83, 93].

The nonlinear Schrödinger equation with the generalized power nonlinearity [70]

iut + uxx + a|u|l−1u = 0, l ≥ 3

where i =
√−1, u = u(x, t) is complex-valued, x ∈ Rn, and a ∈ R has also a

multisymplectic structure. Several multisymlectic methods have been derived in recent

years for solving the nonlinear Schrödinger equation (NLSE) with cubic nonlinearity

l = 3 (see [23, 24, 25, 39] and reference therein).

The main subject of this thesis is the development and investigation of numerical

methods for CNLSE

i

(
∂ψ1

∂t
+ δ1

∂ψ1

∂x

)
+ d1

∂2ψ1

∂x2
+ (a1 |ψ1|2 + e |ψ2|2)ψ1 = 0 (0.3)

i

(
∂ψ2

∂t
+ δ2

∂ψ2

∂x

)
+ d2

∂2ψ2

∂x2
+ (e |ψ1|2 + a2 |ψ2|2)ψ2 = 0 (0.4)
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where δ1, δ2, d1, d2, a1, a2 and e are all real constants, and ψ1(x, t) and ψ2(x, t) are

complex valued functions of (x, t) ∈ R2. CNLSE has many applications such as

nonlinear optics, plasma physics, water waves and geophysical fluids [19, 20, 42, 48,

53, 82]. The parameters and their values vary from one application to another. In this

work the parameters are taken from nonlinear optics in which d1, d2 are dispersion

coefficients, a1, a2 are Landau constants which describes the self-modulation of the

wave packets, and e is the wave-wave interaction coefficient which describe the cross-

modulations of the wave packets. There are few integrable cases for some parameter

values; among the most known is the Manakov system with d1 = d2 and a1 = a2 = e

[48]; others are given for the parameter values d1 = −d2 and a1 = a2 = −e [91].

Integrable forms of CNLSE can be solved exactly using inverse scattering theory.

The most known multisymplectic integrator is the Preissman or box scheme which

corresponds to concatenating the midpoint scheme in space and time. This method

was successfully applied to many Hamiltonian PDE’s like Korteweg-de Vires (KdV)

equation [13, 93], nonlinear Klein-Gordon equation [83], wave equation [37], KP equa-

tion [47], and to the nonlinear Schrödinger equation (NLSE) [24, 25, 23, 71].

The behavior of the solution of the NLSE integrated by the Preissman scheme

preservation of the phase invariant structure was investigated in [39, 40] and a back-

ward error analysis was carried out in [55] in order to show the conserved quantities

such as energy and momentum are almost conserved.

In this thesis, in addition to the Preissman scheme we have formulated and applied

the so called six-point scheme to CNLSE. The Preissman and six-point schemes are

fully implicit. At each time step a large nonlinear system of equations is to be solved.

Since this requires a huge amount of computation to obtain accurate results over a

long time interval, we have developed a semi-explicit symplectic integrator based on

linear-nonlinear, even-odd splitting.

In Chapter 1, Hamiltonian systems of ODE’s and PDE’s are introduced. Multi-

symplectic PDE’s including their conservation properties such as symplecticity, en-

ergy, momentum and additional conservation laws are given. In Chapter 2, NLSE and

CNLSE are formulated as a Hamiltonian and multisymplectic PDE with the corre-

sponding conservation laws. Also in this chapter the N coupled NLSE is formulated

in a multisymplectic form. Derivation of multisymplectic methods like Preissman

and the six-point scheme, and a semi-explicit method, and an investigation of their
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conservation properties are given in Chapter 3. In Chapter 4, dispersion relations of

the CNLSE for both continuous and discrete equations are discussed for linearized

multisymplectic PDE’s, in particular for CNLSE. The multisymplectic integrators

like Preissman and six-point scheme are non-dissipative due to their multisymplec-

tic nature, but the semi-explicit method is not. The nondissipative character of a

numerical method is the most preferable property for nonlinear wave equations. Dis-

persion analysis of the linearized CNLSE shows that both the Preissman and six-point

schemes follow the exact dispersion properties for most of the mesh sizes in space and

time variables. The semi-explicit method has less desirable dispersion properties then

the Preissman and six-point schemes.

Since the conserved quantities are only exactly preserved by multisymplectic meth-

ods for linearized PDE’s, we have analyzed the conservation of the energy, momen-

tum over long time intervals using modified equations and backward error analysis in

Chapter 5. In this chapter we have also applied the backward error analysis which

was developed for multisymplectic method for PDE’s in [55, 56] to CNLSE. The mod-

ified equations for the solution and conserved quantities of CNLSE for Preissman and

six-point schemes are presented, which show that the modified conserved quantities

are preserved at higher order and over long time intervals.

In Chapter 6 numerical results have been presented. We have considered two types

of CNLSE; one with travelling wave solutions and the other with solitary waves. The

travelling wave solutions for periodic boundary conditions were investigated for three

types of polarizations of CNLSE, namely elliptic, linear and circular. All of these

correspond to different combinations of the parameters of CNLSE. In the literature,

usually, the CNLSE is integrated in the space variable either using finite differences

or spectral methods and integrated in time using higher order Runge-Kutta methods

[75], or Hopscotch method [81]; or it is integrated using a symplectic discretization

in space variable and applying the implicit midpoint rule in the time variable [42].

In all these works only the global quadratic conserved quantities of CNLSE which

corresponds to the preservation of the norm square of the solutions are conserved.

The preservation of these quantities were shown analytically and numerically. In this

work we have shown that, due to their multisymplectic nature, the Preissman and

six-point schemes preserves the local energy, momentum and additional conserved

quantity of the CNLSE. The numerical results obtained in these schemes are presented
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in form of the solutions of CNLSE, propagation of conserved quantities over time and

space variables are compared with those found in the literature. It turns out that

the Preissman and six-point schemes give the wave propagation of the CNLSE very

accurately due to their non-dissipative character and preservation properties of the

local conserved quantities for long time steps. As expected, the semi-explicit method

does not have such a good behavior, but the numerical results obtained for small time

steps are almost identical with those in the literature obtained by other methods. It

has to be mentioned that the number of variables by the six-point scheme is half of that

in the Preissman scheme and therefore requires less computational time. The semi-

explicit method does not require solutions of large implicit equations but it requires

smaller time steps in order to resolve the desired accuracy of the solutions.

The solitary wave solutions of CNLSE was investigated in the literature using finite

difference semi-discretization in space variable and integrated the resulting differential

equation by using implicit midpoint rule in [42] and by Runge-Kutta method in [41]

and by Preissman scheme in [72]. In this work soliton solutions for several combi-

nation of the parameters of the CNLSE are computed; one soliton , elastic (which

corresponds to the integrable CNLSE) collision and inelastic collision are obtained

by the Preissman and six-point schemes. All numerical results show excellent preser-

vation of the conservation quantities in time and the shape of the solitons over long

time interval are as expected and the results are similar to the results obtained in the

literature by other numerical methods. The computation times are by far less for the

six-point scheme than for the Preissman. The semi-explicit method does not work

satisfactorily especially for collision of solitons.

6



CHAPTER 1

HAMILTONIAN and SYMPLECTIC STRUCTURES

The Hamiltonian formalism was first introduced by Hamilton in 1834 for the problems

in optic. Later, it has been applied to different fields by many authors because most

of the problems in physics and engineering sciences can be described by Hamilton’s

formalism such as classical and celestial mechanics, molecular dynamics, optics, non-

linear waves and soliton propagation, plasma physics, rigid body, robotics, and so on.

Detailed description of Hamiltonian systems can be found in [33, 50, 60, 69].

In this chapter, we summarize the known results about the Hamiltonian systems

and their properties. This chapter is organized as follows: In Section (1.1), we present

the Hamiltonian ordinary differential equations (ODE’s), including its conservation

properties such as symplecticity and energy conservation. In Section (1.2), we present

some symplectic methods for integrating Hamiltonian systems. In Section (1.3), we

provide generalization of Hamiltonian ODE’s to Hamiltonian partial differential equa-

tions (PDE’s). In Section (1.4), we present the multisymplectic PDE’s and also provide

the conservation laws of multisymplectic PDE’s such as multisymplecticity, energy and

momentum conservation. In that section, we also provide an additional conservation

law which arises from the symmetry of multisymplectic PDE’s.

1.1 Hamiltonian ODE’s

We will start by giving the formulation of Hamiltonian systems for ODE’s as de-

scribed in [33, 69]. Let M be an even dimensional smooth manifold of points (q,p) =

(q1, · · · , qd, p1, · · · , pd). Let T be an open interval of the real line R of the time variable

t. If H = H(q,p, t) is a sufficiently smooth real function defined on M× T , then the

7



Hamiltonian system of differential equations is given by

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
i = 1, · · · , d (1.1)

with the Hamiltonian H. If H is independent of time i.e. H = H(q,p) then (1.1) is

called an autonomous Hamiltonian equation, otherwise it is called non-autonomous.

The system (1.1) is a system of 2d differential equation. The integer d is called the

degrees of freedom which identifies how many coordinates we need to describe the

motion. The state space M is called the phase space and the product M× T is the

extended phase space. The axis of the phase space gives the values of the q’s and p’s.

Hence, if we have d degrees of freedom, we have d pairs of q’s and p’s, and the phase

space will have a 2d dimensions. Therefore, for a Hamiltonian system (with no explicit

time dependence in H), the phase space will have 2d dimension. We assume that H

is at least C2 continuous, hence the right-hand side of the system (1.1) is C1, so that

the standard existence and uniqueness theorems can be applied to the corresponding

initial value problem. The variables q and p are called the canonical variables and the

set of equations (1.1) construct a canonical Hamiltonian system. In applications to

mechanics, the variables q denote the generalized coordinates, the variables p denote

the generalized momenta and the Hamiltonian H usually corresponds to the total

energy of the system (1.1). All generalized coordinates together form the configuration

space.

For autonomous Hamiltonian systems, it is sometimes useful to combine the de-

pendent variables in (1.1) in a 2d-dimensional vector z = (q(t),p(t))T . Then (1.1)

takes the form
dz

dt
= J−1∇H (1.2)

where ∇H is the gradient of the real valued Hamiltonian function H(z) and J is the

2d× 2d constant skew-symmetric structure matrix

J =




0d −Id

Id 0d


 (1.3)

Here Id and 0d represent d × d identity and zero matrices, respectively. The matrix

(1.3) has the following properties:

• J is skew-symmetric : JT = −J ;

• J is orthogonal : JT J = I2d = JJT ; and
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• det J =1.

The flow ϕt : M → R2d of the Hamiltonian system (1.1) is the mapping that

advances the solution by time t, i.e. ϕt(q0,p0) = (q(q0,p0, t),p(q0,p0), t) where

(q(q0,p0, t),p(q0,p0, t)) is the solution of the system (1.1) corresponding to initial

values q(0) = q0, andp(0) = p0 [33].

If we consider the total derivative of the Hamiltonian H(q,p, t) using (1.1) we get

d

dt
H(q,p, t) =

d∑

i=1

∂H

∂qi

dqi

dt
+

d∑

i=1

∂H

∂pi

dpi

dt
+

∂H

∂t
=

∂H

∂t
. (1.4)

If the Hamiltonian function H is independent of time (i.e. autonomous Hamiltonian

systems), then
∂H(q,p, t)

∂t
= 0, (1.5)

from which (1.4) becomes
d

dt
H(q,p) = 0. (1.6)

This shows that the Hamiltonian H or the total energy of the system remains constant

along all the solutions of (1.1). i.e. H is conserved. Conservation of energy tells us

that energy is neither created nor destroyed throughout the solution of (1.1).

Besides the conservation of the total energy, an autonomous Hamiltonian systems

preserves exactly the symplectic form which is defined by

ω = dp ∧ dq = dpT dq− dqT dp, (1.7)

that is
dω

dt
= dpt ∧ dq + dp ∧ dqt = 0 (1.8)

where dp, dq ∈ R2d×2d are solutions of the variational equation

dqt = DppH(q,p)dp + DqpH(q,p)dq (1.9)

dpt = −DpqH(q,p)dp − DqqH(q,p)dq . (1.10)

Here ∧ denotes the wedge or exterior product. To understand the geometric meaning

of the symplecticity, we summarize the results given in [33]. We consider a two-

dimensional parallelogram lying in R2d. Let P be the parallelogram spanned by two

vectors

ξ =




ξp

ξq


 , η =




ηp

ηq


 (1.11)

9



in the (q,p) space where ξp, ξq, ηp, ηq are in Rd. If d = 1, then the oriented area of

the parallelogram P is given by [33] as

area(P) = det




ξp ηp

ξq ηq


 = ξpηq − ξqηp. (1.12)

Therefore, in one dimension symplecticity is the conservation of area. In higher di-

mensions, we replace this by the sum of the oriented areas of the projections of P onto

the coordinate planes (qi,pi) (see [33] for details).

A linear mapping A : R2d → R2d is called symplectic if

AT JA = J (1.13)

or equivalently if ω(Aξ,Aη) = ω(ξ, η) for all ξ, η ∈ R2d where J is given in (1.3).

The flow ϕt of the (autonomous) Hamiltonian system (1.1) is a symplectic map.

Therefore the area in (1.12) is conserved throughout the evolution. In fact, all sym-

plectic mappings are area preserving.

If we take the determinant of (1.13) we obtain

det(AT JA) = det(J) = 1. (1.14)

Since det(A) = det(AT ), the equality (1.14) implies

(det(A))2 = 1. (1.15)

A function F is said to be a first integral for the Hamiltonian system (1.1) if and

only if

{F, H} = 0 (1.16)

where the bracket {·, ·} is defined in [60] as

{F, H} =
d∑

i=1

∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi
(1.17)

and satisfies the following properties for arbitrary smooth real-valued function F1, F2

and F3 on M:

i) Bilinearity:

{cF1 + c′F2, F3} = c{F1, F3}+ c′{F2, F3},

{F1, cF2 + c′F3} = c{F1, F2}+ c′{F2, F3}

for constants c, c′ ∈ R
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ii) Skew-symmetry: {F1, F2} = −{F2, F1},

iii) The Jacobi identity: {{F1, F2}, F3}+ {{F3, F1}, F2}+ {{F2, F3}, F1} = 0.

The bracket in (1.17) is called the canonical Poisson bracket. We notice from the

skew-symmetry property that {H, H} = 0 and therefore the Hamiltonian itself is

a first integral. In particular, if the Hamiltonian system (1.1) has d first integrals

F1, · · · , Fd satisfying

{Fi, Fj} = 0,

for all i, j then it is said to be completely integrable.

In some Hamiltonian systems there are additional quantities whose values also

remain constant as the trajectory evolves. For example, consider the following case.

Suppose one of the p’s, say pk does not change in time. That is,

dpk

dt
= − ∂H

∂qk
. (1.18)

Then, (1.18) can be 0 for all (q(t),p(t)) values along the trajectory if and only if

H(q,p) does not depend on qk. Thus, we say that the momentum pk is a constant of

motion if and only if the Hamiltonian H(q,p) does not depend on the corresponding

qk explicitly.

1.2 Symplectic Methods for Hamiltonian ODE’s

Most of the phenomena in classical physics, chemistry, biology and other sciences are

often modelled by Hamiltonian systems of differential equations. The name symplec-

tic integrator is usually attached to a numerical scheme that intends to solve such a

hamiltonian system approximately, while preserving its underlying symplectic struc-

ture. Astrophysics is one of the most interesting sources of numerical experiments

employing symplectic integrators. Other experiments of symplectic integrators can be

found in molecular dynamics, where some results have been achieved in the long-time

integration of some complicated collisions or long-lived trajectories (see, [33] CH.VII,

and [69] and reference therein)

A numerical approximation

zn+1 = Φ∆t(zn) zn = (qn, pn), tn+1 = tn + ∆t (1.19)
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for autonomous Hamiltonian system corresponding to (1.2) is said to be symplectic

if it satisfies the symplecticity condition (1.13) or if it is a discrete approximation for

(1.8):
ωn+1 − ωn

∆t
=

dpn+1 ∧ dqn+1 − dpn ∧ dqn

∆t
= 0 (1.20)

that is

dpn+1 ∧ dqn+1 = dpn ∧ dqn (1.21)

For example a one-step method applied to (1.2)

qn+1 = qn + ∆t
∂H

∂q
(qn+1,pn) , (1.22)

pn+1 = pn −∆t
∂H

∂p
(qn+1,pn) (1.23)

is called the symplectic Euler scheme of order 1 and the implicit mid-point rule

qn+1 = qn + ∆t
∂H

∂p
((qn+1 + qn)/2 , (pn+1 + pn)/2) , (1.24)

pn+1 = pn −∆t
∂H

∂p
((qn+1 + qn)/2 , (pn+1 + pn)/2) , (1.25)

is a symplectic method of order 2.

A Störmer/Verlet method applied to the first order system q̇ = v, v̇ = f(q)

vn+1/2 = vn +
∆t

2
f(qn)

qn+1 = qn + ∆tvn+1/2 (1.26)

vn+1 = vn+1/2 +
∆t

2
f(qn+1) (1.27)

is an explicit method which is also symplectic of order 2.

An s-stage Runge–Kutta method

ki = f


y0 + ∆t

s∑

j=1

aijkj


 , i = 1, · · · , s

y1 = y0 + ∆t
s∑

i=1

biki (1.28)

applied to the problem ẏ = f(y) is symplectic if it satisfies

biaij + bjaji − bibj = 0

for all i, j = 1, · · · , s where bj , aij (i, j = 1, · · · , s) are real numbers and cj =
∑s

j=1 aij .

One of the most important property of symplectic integrators is that they preserve

quadratic invariants. For example, all symplectic Runge-Kutta methods preserves

quadratic invariant (see [33] for details). They have excellent long–time behavior

which can be explained by backward error analysis [63].
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1.3 Hamiltonian PDE’s

Partial differential equations with a Hamiltonian structure are important in the study

of solitons such as the Korteweg-de Vries (KdV) and NLSE. Many PDE’s can be put

into a Hamiltonian formulation and admitted symmetries of this formulation can lead,

via Noether’s theorem, to conservation laws [50, 60]. There are several approaches

aimed at exploiting this structure in discretization of the PDE’s, all of which can be

labelled geometrical. One is based upon using the Hamiltonian formulation of the

PDE’s on multisymplectic structures, generalizing the classical Hamiltonian structure

by assigning a distinct symplectic operator for each space direction and time [18, 21,

65]. In this section we will summarize some of the ideas presented in the monograph

[60].

Many differential equations of the form

ut = F (x, u, ux, uxx, · · ·)

can be represented in the Hamiltonian form

ut = D
(

δH
δu

)
, H[u] =

∫
H(x, u, ux, uxx, · · ·) dx.

Typically the domain of integration is the real line or the circle (corresponding to

periodic boundary conditions for the PDE). Here H is a functional map from the

function space in which u is defined to the real line. The variational derivative δH/δu

is the function defined via the Gateaux derivative [60]
(

d

dε
H[u + εv]

)∣∣∣∣
ε=0

=
∫

δH
δu

v dx.

If , for example, u is a scalar function and H = H(u, ux) then the variational derivative

is given by
δH
δu

=
∂H

∂u
− ∂

∂x

(
∂H

∂ux

)
. (1.29)

The operator D is called Hamiltonian if the functionals A[u] and B[u] it generates a

Poisson bracket {·, ·} given as

{A,B} =
∫

δA
δu
D δB

δu
dx.

The Poisson bracket must satisfy the skew-symmetry condition

{A,B} = − {B,A}
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and the Jacobi identity

{{A,B}, C} + {{B, C},A} + {{C,A},B} = 0,

for all functional A,B, C. The Hamiltonian PDE for time evolution of the system is

then given by

ut = {u,H}.

If the Hamiltonian functional H is not explicitly dependent on time then it is con-

served.

In many PDE’s in the past, when approximating the solution of the differential

equations using a numerical integrator, properties of the differential equation were

neglected and they were discretized in space and time simultaneously. However, it

worths to preserve as many properties of the exact evolution equation as possible.

For this purpose, they are discretized in space first and then discretized in time by

symplectic methods when the symplectic structure was considered. Symplectic meth-

ods are accurate and efficient in the long-time integration of Hamiltonian ODE’s [69].

In addition, symplectic integrators lead to a useful interpretation of backward error

analysis, in which a modified equation, the equation solved by a numerical scheme to

higher order than the original equation, is used to understand the discretization error

induced by the numerical scheme [63]. Recently, the idea of the symplectic integra-

tion was extended to Hamiltonian PDE, by studying multisymplectic structure of the

PDE’s [18, 19, 20, 21, 22, 64, 65].

1.4 Multisymplectic PDE’s

In this section we summarize some of the ideas for multisymplectic PDE’s and the

conservation laws which are discussed in [18, 21, 49, 57]. If a variational description

of a Lagrangian formulation for a continuous dynamical system with the Lagrangian

L(u, ut, ux) is available

δ

∫ ∫
L(u, ut, ux) dt dx = 0 , (1.30)

then the equation of motion is formally given by

−∂t
∂L
∂ut

− ∂x
∂L
∂ux

+
∂L
∂u

= 0 . (1.31)

14



By introducing a conjugate variable v related to the temporal derivative ut

v ≡ ∂L
∂ut

, (1.32)

and assuming that the transformation above is invertible, ,i.e. ut = ut(v), then the

Hamiltonian is defined by a Legendre transformation [50]

H(u, v) =
∫

vut(v)− L(u, ut(v), ux) dx . (1.33)

By having the variational derivatives (1.29) of H required to satisfy the original equa-

tion of motion (1.31) and by the definition of the conjugate variable v (1.32), we

get

δH
δu

= ∂x
∂L
∂ux

− ∂L
∂u

= −∂tv (1.34)

δH
δv

= ut(v) + v u′t(v)− ∂L
∂ut

u′t(v) = ∂tu (1.35)

or, with y = (u, v)T

yt = J−1 δH
δy

(1.36)

with J as the skew-symmetric structure matrix (1.3) with d = 1. The equation (1.36)

is the formulation of (1.31) as an infinite–dimensional Hamiltonian system. If y is a

solution of the variational equation associated with (1.36), then the symplectic two-

form defined as

∂t
1
2

∫
dy ∧ Jdy dx = 0 (1.37)

is globally conserved. Here ∧ denotes the external product (1.7).

There are two disadvantages of the infinite-dimensional Hamiltonian formulation

(1.36); the symplectic structure (1.37) is infinite dimensional, and a function space is

required for the x-dependence. For example, to define the integral of the Hamiltonian

function (1.33), the domain of integration over the spatial variable x must be specified.

On the other hand, a multisymplectic formulation is defined on a phase space of finite-

dimension, and no integration is required.

Introducing a second conjugate variable, this time with respect to the spatial

variable ux,

ω ≡ ∂L
∂ux

, (1.38)

yields a multisymplectic structure [18]. Again we assume that this is an invertible

relation ux = ux(ω), and a new Hamiltonian defined by a Legendre transformation
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with respect to both v and ω is

S(u, v, ω) = vut + ωux − L(u, ut(v), ux(ω)). (1.39)

The partial derivatives of S with respect to (u, v, ω) are required to satisfy the equation

(1.31) as well as the definitions of v (1.32) and ω (1.38):

∂S

∂u
= −∂L

∂u
= −∂tv − ∂xω , (1.40)

∂S

∂v
= ut(v) + vu′t(v)− ∂L

∂ut
u′t(v) = ∂tu , (1.41)

∂S

∂ω
= ut(ω) + ωu′x(v)− ∂L

∂ux
u′x(v) = ∂xu . (1.42)

The multisymplectic formulation can be written in a compact form as

Mzt + Kzx = ∇zS(z), z ∈ R3, (1.43)

where

M =




0 −1 0

1 0 0

0 0 0




, K =




0 0 −1

0 0 0

1 0 0




, (1.44)

and z = (u, v, ω)T . In this definition ∇z is the gradient operator given by ∇z =

(∂/∂u, ∂/∂v, ∂/∂ω).

The multisymplectic formalism can be extended for higher dimensional systems

with n ≥ 3, skew-symmetric matrices M and K, and a smooth function S : Rn → R

[21, 18].

1.4.1 Symplecticity

The system (1.43) is multisymplectic in the following sense: associated with M and

K are pre-symplectic forms

ω(U, V ) =< MU, V > and κ(U, V ) =< KU, V >,

where U, V ∈ Rn, ω defines a symplectic structure on Rm, (m = rank M ≤ n)

which is associated with the time variable t, and κ defines a symplectic structure on

Rk (k = rank K ≤ n) which is associated with the space variable x. Any system of

the form (1.43) conserves the symplectic structure

∂tω + ∂xκ = 0. (1.45)
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To show this, we assume that U, V ∈ Rn are any two solution of the variational

equation associate with (1.43),

Mdzt + Kdxx = DzzS(z) dz . (1.46)

Then
∂tω = < MUt, V > + < MU, Vt >

∂xκ = < KUx, V > + < KU, Vx >

and since the Hessian matrix Dzz is symmetric, we obtain the multisymplectic con-

servation law

∂tω + ∂xκ = < MUt + KUx, V > − < U,MVt + KVx >

= < DzzS(z)U, V > − < U,DzzS(z)V >

= 0.

(1.47)

Using the wedge product notation the multisymplectic conservation law (1.45) can be

written as

∂t(dz ∧Mdz) + ∂x(dz ∧Kdz) = 0. (1.48)

1.4.2 Energy and Momentum Conservation

In addition to the multisymplectic conservation law (1.45), multisymplectic PDE’s

possesses two additional conservation laws [21]. When the Hamiltonian function S(z)

is independent of t and x, the PDE’s in multisymplectic form (1.43) haves local energy

and local momentum conservation laws. Conservation of energy and momentum are

associated with translation invariance in time and space respectively. Using the time

invariance of (1.43) an energy conservation law can be derived by multiplying (1.43)

with zT
t from the left

zT
t Kzx = zT

t ∇zS(z) = ∂tS(z) (1.49)

because of the skew–symmetry of M , zT
t Mzt = 0. Noting that

zT
t Kzx =

1
2
∂t(zTKzx) − 1

2
∂x(zTKzt) (1.50)

we obtain the energy conservation law

∂tE(z) + ∂xF (z) = 0 (1.51)

where

E(z) = S(z)− 1
2
κ(zx, z), F (z) =

1
2
κ(zt, z), (1.52)
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are known as energy density and energy flux respectively. Similarly, the spatial in-

variance of (1.43) can be used by multiplying (1.43) with zT
x from the left, which

gives

zT
x Mzt = zT

x∇zS(z) = ∂xS(z) (1.53)

because the skew-symmetry of M implies zT
x Kzx = 0. Using the identity

zT
x Mzt =

1
2
∂x

(
zTMzt

)
− 1

2
∂t

(
zTMzx

)
(1.54)

we obtain the momentum conservation law

∂tI(z) + ∂xG(z) = 0 (1.55)

where

G(z) = S(z)− 1
2
w(zt, z), I(z) =

1
2
ω(zx, z) (1.56)

are known as momentum density and momentum flux respectively.

However, the Hamiltonian function S(z) associated with the multisymplectic struc-

ture (1.43) is not preserved. This can be shown by

∂S(z)
∂t

= 〈∇zS(z), zt〉 = 〈Kzx, zt〉 = κ(zx, zt),

∂S(z)
∂x

= 〈∇zS(z), zx〉 = 〈Mzt, zx〉 = κ(zt, zx).

(1.57)

There are also some additional conservation laws for multisymplectic PDE’s [57].

This follows from Noether theory and the derivation of the multisymplectic formula-

tion from a Lagrangian functional

L =
∫

Ldtdx for L =
1
2
zT (Mzt + Kzx)− S(z) . (1.58)

Taking a linear one-parameter family of linear coordinate transformation given by

Gε = eεAz (1.59)

which is chosen in such a way that it is symplectic with respect to both ω and κ we

obtain

ATM + MA = 0 ATK + KA = 0.

Because the Lagrangian is invariant under such a transformation

0 =
∂L
∂ε

∣∣∣∣
ε=0

=
∫

S′(z)Azdtdx
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and we obtain the invariance condition

S′(z)Az = 0. (1.60)

Direct application of S′(z)Az = 0 to the multisymplectic formulation yields

(Az)TMzt + (Az)TKzx = (Az)T∇zS(z) = 0

which can be written as a conservation law

∂tT + ∂xV = 0 (1.61)

with T =
(
zTMAz

)
and V =

(
zTKAz

)
, which is called an additional conservation

law.

We note that all these conservation laws are of local nature. The local conservation

property is stronger than the global conservation since for Hamiltonian PDE’s sym-

plecticity may vary from point to point in space and from time to time. However local

conservation may lead to global conservation. Boundary conditions play an impor-

tant role here. In order to show this we consider the multisymplectic PDE (1.43) with

periodic boundary conditions and the multisymplectic conservation law (1.45). To

obtain the global conservation, we take the integral of (1.45) over the spatial domain

and obtain ∫ L

0

(
∂

∂x
κ

)
dx = κ(L, t)− κ(0, t) = 0, (1.62)

and ∫ L

0

(
∂

∂x
ω

)
dx =

∂

∂x

(∫ L

0
ωdx

)
=

d

dt
ω̂ = 0, (1.63)

where we used the periodicity of the boundary conditions in (1.62). We notice that

(1.63) corresponds to the conservation of symplecticity of Hamiltonian ODE’s.

Integrating E(z), I(z) and T (z) over the spatial domain with periodic boundary

conditions lead to global conservation of energy

d

dt
E(z) = 0 with E(z) =

∫ L

0
E(z)dx, (1.64)

the global conservation of momentum

d

dt
I(z) = 0 with I(z) =

∫ L

0
I(z)dx, (1.65)

and the global conservation of additional conservation law

d

dt
T (z) = 0 with T (z) =

∫ L

0
T (z)dx. (1.66)
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where L is the length of the spatial domain.

It is possible to simplify the multisymplectic conservation law (1.48) by taking a

non-unique splitting of matrices M and K such that

M = M+ + M− and K = K+ + K− , (1.67)

with

MT
+ = −M− and KT

+ = −K− . (1.68)

Noting that

dz ∧M+dz = dz ∧M−dz and dz ∧K+dz = dz ∧K−dz , (1.69)

the multisymplectic conservation law (1.48) holds with

ω = dz ∧M+dz and κ = dz ∧K+dz . (1.70)

This splitting can be used in the multisymplectic discretization of (1.43).
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CHAPTER 2

NONLINEAR SCHRÖDINGER EQUATION

The subject of integrable models is very fascinating largely because of their innumer-

able symmetries and a special class of solutions known as soliton solutions. However,

only a few systems are integrable. The NLSE is an example of an integrable equa-

tion. In contrast to many PDE’s like KdV and Sine-Gordon, the dependent variable

in NLSE is complex rather than real, so the evolutions of two quantities are governed

by the equation. It plays an important role in nonlinear physics [34, 46]. It is a

completely integrable system, having infinite number of conservation law, and admits

stable solitary wave solutions [59]. Various types of numerical schemes have been

proposed to simulate the NLSE (see, for example [4, 45, 66] and reference therein).

The CNLSE’s and N-CNLSE’s are often used to describe the more general physical

situations. They are also model PDE’s in such as plasma physics, optics, biophysics

and water waves (see [19, 20, 42, 48, 53, 82, 43] and reference therein). But in many

situation, they are not integrable.

This Chapter is organized as follows: In Section 2.1 the Hamiltonian and mul-

tisymplectic structure of the NLSE and its conserved quantities are discussed. The

Hamiltonian and multisymplectic structure of the CNLSE and its conserved quantities

are given in Section 2.2. We present the multisymplectic structure of the N-CNLSE

in Section 2.3.

2.1 The Nonlinear Schrödinger Equation

The cubic NLSE can be written as

i ut + uxx + a|u|2u = 0 (2.1)
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where x ∈ R, a is a constant, i =
√−1, | · | denotes the modulus, and u(x, t) is

complex function. It is a completely integrable system, possesses an infinite number of

conservation laws, and admits stable solitary-waves called solitons [46, 59]. Equations

with higher-order nonlinearities are also useful for numerical experiments, since they

can provide more severe tests for approximation schemes. The Schrödinger equation

with power nonlinearity (GPNLSE) [66]

i ut + uxx + a|u|l−1u = 0 (2.2)

where i =
√−1, u = u(x, t) is complex-valued, x ∈ Rn, a is a real constant, and l > 1

has been used to model nonlinear dispersive waves. We will consider the case x ∈ R

with the initial condition u(x, 0) = u0(x) decays exponentially to zero as |x| → ∞.

For l = 3, (2.2) reduces to the cubic NLSE (2.1). While the cubic NLSE (2.1) has

been examined in various numerical studied, less attention has been paid to the more

general Schrödinger equation (2.2) of which the cubic NLSE is a special case. The

GPNLSE (2.2) has been studied using the orthogonal spline collocation method for

spatial discretization (see [66] and reference therein)

In this thesis, we shown that the GPNLSE has Hamiltonian structure. Because

of the Hamiltonian structure one can use symplectic methods to simulate it. We also

show that GPNLSE has a multisymplectic formulation. Because of the multisymplec-

tic structure one can use multisymplectic methods to simulate it.

2.1.1 Hamiltonian Formulation

The Schrödinger equation with power nonlinearity (2.2) can be written as an infinite

Hamiltonian system

ut =
δH

δu∗
(2.3)

with the Hamiltonian

H(u, u∗) = i

∫ (
2a

l + 1
|u|l+1 − |ux|2

)
dx (2.4)

where u∗ denotes the complex conjugates of u. If p and q are real valued functions

then substituting u = p− iq into (2.3) we get

qt + pxx + a(p2 + q2)
l−1
2 p = 0,

−pt + qxx + a(p2 + q2)
l−1
2 q = 0,

(2.5)
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or equivalently

zt = J−1 δH
δz

, (2.6)

where z = (p, q)T , J is defined in (1.3), and the Hamiltonian or energy is

H(z) =
∫

H(z)dx, for H(z) =
∫ 1

2

[
2a

l + 1
(p2 + q2)

l+1
2 − p2

x − q2
x

]
dx . (2.7)

The main idea is to discretize the space appropriately so that the resulting semi-

discrete system can be written as a finite dimensional Hamiltonian system in the time

direction. The resulting system of ODE’s can be integrated by a symplectic method.

The Hamiltonian formulation of the NLSE allows us to identify the symplectic struc-

ture,and the conserved quantities and therefore aloows the application of a symplectic

integrator for its solution.

A symplectic and non-symplectic integration of (2.1) with periodic initial data and

boundary conditions was made in [35]. In [78], the properties of a symplectic method

were tested using different initial data: one-soliton and three-soliton solutions.

2.1.2 Multisymplectic Formulation

The GPNLSE (2.2) can be cast into a multisymplectic Hamiltonian system (1.43).

Using u = p− iq the GPNLSE can be rewritten as a pair of real-valued equations

qt + pxx + a(p2 + q2)
l−1
2 p = 0 ,

pt − qxx − a(p2 + q2)
l−1
2 q = 0 .

(2.8)

Introducing the pair of conjugate momenta v = px, ω = qx, we obtain the multisym-

plectic PDE

− qt − vx = a(p2 + q2)
l−1
2 p

pt − ωx = a(p2 + q2)
l−1
2 q

px = v

qx = ω

(2.9)

with the state variable z = (p, q, v, ω)T and the Hamiltonian

S(z) =
1
2

(
2a

l + 1

(
p2 + q2

) l+1
2 + v2 + ω2

)
. (2.10)
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In this case,

M =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0




, K =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0




. (2.11)

The corresponding multisymplectic conservation law is

∂

∂t
(dp ∧ dq) +

∂

∂x
(dp ∧ dv + dq ∧ dω) = 0 . (2.12)

The time invariance leads to the corresponding energy conservation law (1.51) as

∂

∂t

(
S(z)− v2 − ω2

)
+

∂

∂x
(vp t + ωqt) = 0 (2.13)

and space invariance leads to the momentum conservation law (1.55) as

∂

∂t
(qv − pw) +

∂

∂x
(S(z)− 1

2
(qpt − pqt)) = 0 . (2.14)

When we integrate these three equations with respect to x, we obtain the global

conservation of energy (Hamiltonian), momentum, and norm.

The multisymplectic form of NLSE (2.9) is invariant under the action of the one-

parameter group of rotations SO(2), given by Gθ(z) = Rθz, with

Rθ =




cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ




We define the matrix A such that

Az =
d

dθ
Gθ(z)|θ=0 = [−p, q,−ω, v]T .

Then, we have

zTMAz = p2 + q2, zTKAz = 2(pω − qv) (2.15)

which shows that the additional conservation law (1.61) is satisfied in the form

∂

∂t

[
1
2
(p2 + q2)

]
− ∂

∂x
(pω − q v) = 0 (2.16)

which is called the norm or additional conservation law for NLSE.
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All these conservation laws are local ones. For global conservation, boundary

conditions play an important role. In order to show, how boundary conditions are

crucial for global conservation we consider the NLSE (2.5) with cubic nonlinearity

l = 3 on x ∈ [0, L] where L ∈ r is length of space. If we take the derivative of H with

respect to t using the energy functional (2.7),we get

∂H

∂t
=

1
2

∂

∂t

[
a

2

(
p2 + q2

)2 − p2
x − q2

x

]

= a(p2 + q2)(ppt + qqt)− pxpxt − qxqxt

= a(p2 + q2)(ppt + qqt) + ptpxx + qtqxx − ∂

∂x
(pxpt + qxqt) (2.17)

To simplify this expression, we multiply the first equation of (2.5) by pt and the second

equation of (2.5) by qt and obtain

ptqt + ptqxx + a(p2 + q2)ptp = 0,

−qtpt + qtpxx + a(p2 + q2)qtq = 0,
(2.18)

If we add these equalities we get

ptpxx + qtqxx + a(p2 + q2)(ppt + qqt) = 0. (2.19)

Substituting this into (2.17) yields

∂H

∂t
= − ∂

∂x
(pxpt + qxqt). (2.20)

Let ζ ∈ [0, L] be any point. Evaluating (2.20) at x = ζ gives

∂

∂t
H(ζ, t) = − ∂

∂x
(px(ζ, t)pt(ζ, t) + qx(ζ, t)qt(ζ, t)) = 0.

Therefore, energy is conserved locally inside the integration domain. This shows that

the boundary conditions does not effect the local conservation. However, for global

conservation of energy, boundary conditions are crucial. To see the effect of boundary

condition for the global conservation we take the derivative of H with respect to time

and we get

d

dt
H =

∫ L

0

d

dt
Hdx

= (pxpt + qxqt) |L0
= [px(0, t)pt(0, t) + qx(0, t)qt(0, t)]− [px(L, t)pt(L, t) + qx(L, t)qt(L, t)] .

Notice that, for the periodic boundary condition

p(0, t) = p(L, t), q(0, t) = q(L, t), px(0, t) = px(L, t), qx(0, t) = qx(L, t),
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d

dt
H = 0,

i.e. energy is conserved globally. This example shows the difference between local and

global conservation, as well as how the boundary conditions effect the conservation.

2.1.3 Conserved Quantities

Although the general case of the GPNLSE is non-integrable, rapidly decaying solutions

to (2.2) at the boundaries do satisfies three conservation laws. The first conservation

law can be derived by multiplying (2.2) by u∗, then taking the imaginary part and

integrating over the real line. Then, we get the squared L2 norm of the solution

C1(u) =
∫ ∞

−∞
|u|2dx, (2.21)

which is conserved in time. The second conservation law

C2(u) =
∫ ∞

−∞

(
|ux|2 − 2a

l + 1
|u|l+1

)
dx, (2.22)

is obtained by multiplying (2.2) by u∗t , taking the real part, and integrating over the

real line. Also,

C3(u) =
∫ ∞

−∞
2Im(uu∗x)dx, (2.23)

is conserved in time, which can be found by multiplying (2.2) by u∗x, taking the real

part and integrating over the real line.

In the focusing (a > 0) and refocusing (a < 0) cases the situations that arise are

quite different. In particular, we have the following cases [70].

a) If a < 0 and l < ∞, solutions exist for all t.

b) If a > 0 and l < 5, solutions exist for all t with some regularity properties.

c) If a > 0, l ≥ 5, and C2(u0) < 0, the no smooth solution can exist for all positive

t.

If a > 0 and l ≥ 5, even if C2(u0) > 0, it is possible that blow-up may occur under some

conditions. Also, solitary-wave solutions of the GPNLSE are known to be unstable if

l ≥ 5 (see [84] and reference therein).
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2.2 Coupled Nonlinear Schrödinger Equation

Optical fiber communications are advancing very rapidly. One of the major transmis-

sion formats is to use optical solitons as information bits. For optical soliton, the pulse

can transmit without change of shape. In physical applications, pulse-pulse interac-

tions have been studied in the past 20 years. Most of these studies used the NLSE

model, which is appropriate when fiber birefringence is neglected. In an ideal fiber,

optical solitons can be modelled approximately by the NLSE, whose solution behav-

iors are completely known [6, 92]. But in reality, optical fibers are birefringent. When

fiber birefringence is taken into consideration, pulse propagation is actually governed

by two CNLSE. Pulses travel at slightly different speeds along the two orthogonal

polarization axes. This effect has been analyzed in [52], where two CNLSE’s were

derived for the pulse propagation along the two polarization axes. Such a pulse is

called a vector soliton in the optics literature. We note that a ”vector soliton” here

is just a solitary wave solution. In a linear birefringent fiber, the cross-phase modu-

lation coefficient e is 3/2. But it may take other values if the birefringence is elliptic

[54]. Birefringent fibers also support optical solitons [53, 88]. The collision of vector

solitons is critical in many optical switching devices and nonlinear telecommunication

networks. In all the above situations, collision of vector solitons is an important issue.

Collision of vector solitons in the CNLSE’s has been studied before. In the integrable

Manakov model, the soliton collision is elastic, and the outcome has been explicitly

specified.

A wide range of the CNLSE model can be written in the general form

i

(
∂ψ1

∂t
+ δ1

∂ψ1

∂x

)
+ d1

∂2ψ1

∂x2
=

δH
δψ̄1

(2.24)

i

(
∂ψ2

∂t
+ δ2

∂ψ2

∂x

)
+ d2

∂2ψ2

∂x2
=

δH
δψ̄2

(2.25)

where δ1, δ2, d1, d2 are real parameters and ψ1(x, t), ψ2(x, t) are complex valued func-

tions of (x, t) ∈ R and H(ψ1, ψ̄1, ψ2, ψ̄2) is a real valued function called as the Hamil-

tonian. For the classical CNLSE with cubic coupling H takes the form

H(ψ1, ψ̄1, ψ2, ψ̄2) = b1 |ψ1|4 + b2 |ψ2|4 + b3 |ψ1|2 |ψ2|2 ,

with real parameters b1, b2, b3.Thus the system (2.24)-(2.25) becomes

i

(
∂ψ1

∂t
+ δ1

∂ψ1

∂x

)
+ d1

∂2ψ1

∂x2
+ (a1 |ψ1|2 + e |ψ2|2)ψ1 = 0 (2.26)
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i

(
∂ψ2

∂t
+ δ2

∂ψ2

∂x

)
+ d2

∂2ψ2

∂x2
+ (e |ψ1|2 + a2 |ψ2|2)ψ2 = 0 (2.27)

where δ1, δ2, d1, d2, a1, a2 and e are all real constants. In applications the real para-

meters d1, d2 are the dispersion coefficients, a1, a2, e are the Landau constants which

describe the self-modulation of the wave packets, and e is the wave-wave interaction

coefficient which describes the cross-modulations of the wave packets. When e = 0,

the system decouples into two NLSEs. The coefficients in (2.26)-(2.27) are variable

parameters for the geophysical fluid dynamics. For nonlinear optics, the coefficients

are some fixed constants (see [48, 75, 81] and reference therein). In this work the

coefficients are taken from nonlinear optics.

In general the system (2.26)-(2.27) is an non-integrable system, that is, we can not

find infinitely many conservation laws [82]. The conservation laws can be written as

∂Dj

∂t
+

∂Fj

∂x
= 0

where the Dj are called the conserved density and the Fj are called the conserved

flux. In [82] four conserved quantities of CNLSE are listed among which two are

D1 = ψ∗1ψ1, F1 = δ1ψ
∗
1ψ1 + id1(ψ1xψ1 − ψ∗1ψ1x),

D2 = ψ∗2ψ2, F2 = δ2ψ
∗
2ψ2 + id2(ψ2xψ2 − ψ∗2ψ2x).

(2.28)

However, for some parameters the system (2.26)-(2.27) is integrable. For example,

in [48] the integrability of the CNLSE (2.26)-(2.27) is shown in the case d1 = d2 =

1, a1 = a2 = e. Later, in [91] it was shown that the CNLSE (2.26)-(2.27) is integrable

only for the following two cases:

a) The Manakov case : d1 = d2, a1 = a2 = e,

and

b) d1 = −d2 a1 = a2 = −e.

In a recent study [53] on optical fibers with a linear birefringence, (2.26)-(2.27) with

δ1 = −δ2 = δ, d1 = d2, a1 = a2 = 1, and e = 2/3 has been proposed.

2.2.1 Hamiltonian Formulation

If a PDE is an infinite-dimensional Hamiltonian system, then semi-discretization leads

to a system of ODE’s with symplectic form which is then solved by a symplectic

method. In this section we will review the Hamiltonian formulation of CNLSE.
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It is well known that the system (2.26)-(2.27) can be written as an infinite-

dimensional Hamiltonian system [16, 19, 91]. The Lagrangian density for (2.26)-(2.27)

is given in [82] as

L =
i

2

2∑

k=1

(ψ∗kψkt − ψ∗ktψk) +
i

2

2∑

k=1

δk (ψ∗kψkx − ψ∗kxψk)

−
2∑

k=1

dkψ
∗
kxψkx +

a1

2
|ψ1|4 + e|ψ1|2|ψ2|2 +

a2

2
|ψ2|4.

(2.29)

Here ψ∗ denotes the complex conjugate of ψ, and the subscripts t and x denote partial

differentiations with respect to time and space. Then the Euler-Lagrange equations

∂

∂t

(
∂L

∂ψkt

)
+

∂

∂x

(
∂L

∂ψkx

)
− ∂L

∂ψk
= 0,

∂

∂t

(
∂L

∂ψ∗kt

)
+

∂

∂x

(
∂L

∂ψ∗kx

)
− ∂L

∂ψ∗k
= 0,

(2.30)

yield the CNLSE system (2.26)-(2.27) and its complex conjugates. Introducing so

called conjugate momenta

Υk =
∂L

∂ψkt
=

i

2
ψ∗k, Υ∗

k =
∂L

∂ψ∗kt

= − i

2
ψk (2.31)

the Hamiltonian density is defined by

H =
2∑

k=1

(Υkψkt + Υ∗
kψ

∗
kt)− L

=
2∑

k=1

(
dkψ

∗
kxψkx − iδk

2
(ψ∗kψkx − ψ∗kxψk)

)
− a1

2
|ψ1|4 − e|ψ1|2|ψ2|2 − a2

2
|ψ2|4.

The Poisson bracket is given in [82] as

[A,B] = −i

∫
dx

(
δA

δψk

δB

δψ∗k
− δA

δψ∗k

δB

δψk

)
, k = 1, 2 , (2.32)

where the variational derivative is defined in (1.29). Hence, the CNLSE can be written

as a non-canonical Hamiltonian, or Poisson system

∂ψ1

∂t
= [ψ1,H] = id1

∂2ψ1

∂x2
− δ1

∂ψ1

∂x
+ ia1|ψ1|2ψ1 + ie|ψ2|2ψ1 ,

∂ψ2

∂t
= [ψ2,H] = id2

∂2ψ2

∂x2
− δ2

∂ψ2

∂x
+ ie|ψ1|2ψ2 + ia2|ψ2|2ψ2 .

(2.33)

We will now write the real form of CNLSE as an infinite-dimensional Hamiltonian

system by decomposing the complex functions ψ1, ψ2 into real and imaginary parts

as

ψ1(x, t) = q1(x, t) + iq2(x, t), ψ2(x, t) = q3(x, t) + iq4(x, t) (2.34)
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where qi’s i = 1 · · · , 4 are real functions. By substituting (2.34) into (2.26)-(2.27), we

obtain a system of real-valued equations

∂q1

∂t
+ δ1

∂q1

∂x
+ d1

∂2q2

∂x2
+ z1(q)q2 = 0,

∂q2

∂t
+ δ1

∂q2

∂x
− d1

∂2q1

∂x2
− z1(q)q1 = 0,

∂q3

∂t
+ δ2

∂q3

∂x
+ d2

∂2q4

∂x2
+ z2(q)q4 = 0,

∂q4

∂t
+ δ2

∂q4

∂x
− d2

∂2q3

∂x2
− z2(q)q3 = 0

(2.35)

where

z1(q) = a1(q2
1 + q2

2) + e(q2
3 + q2

4) and z2(q) = e(q2
1 + q2

2) + a2(q2
3 + q2

4) (2.36)

with q = (q1, q2, q3, q4)T . Then the CNLSE can be expressed in the canonical Hamil-

tonian form
∂uj

∂t
= − δH

δvj
,

∂vj

∂t
=

δH
δuj

, j = 1, 2 (2.37)

where u = (q1, q3)T , v = (q2, q4)T and

H(z) =
∫ {

W − d1

2

(
(
∂q1

∂x
)2 + (

∂q2

∂x
)2

)
− d2

2

(
(
∂q3

∂x
)2 + (

∂q4

∂x
)2

)

−δ1

(
q1

∂q2

∂x

)
− δ2

(
q3

∂q4

∂x

)}
dx. (2.38)

with

W =
1
4

[
a1

(
q2
1 + q2

2

)2
+ a2

(
q2
3 + q2

4

)2
]

+
e

2
(q2

1 + q2
2)(q

2
3 + q2

4).

Using (2.37) the CNLSE can be written as the canonical Hamiltonian system (1.36)

in variables q = (q1, q2, q3, q4)T

qt = J−1 δH

δq
(2.39)

where

J =




J−1 0

0 J−1


 (2.40)

with J defined in (1.3) with d = 1

2.2.2 Multisymplectic Formulation

In this section we will give the multisymplectic formulation of the CNLSE (2.26)-(2.27)

[19]. Following the derivations in Sec. 1.4, we will obtain the energy, momentum
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and the additional conservation laws of the CNLSE based on the multisymplectic

formulation.

Introducing the real functions pi , i = 1, · · · , 4

p1 + ip2 = d1
∂ψ1

∂x
+

1
2
iδ1ψ1, (2.41)

p3 + ip4 = d2
∂ψ2

∂x
+

1
2
iδ2ψ2, (2.42)

the coupled system (2.26)-(2.27) is equivalent to the following first-order system of

equations

∂q2

∂t
− ∂p1

∂x
= z1(q)q1 − δ1

2d1

(
p2 − δ1

2
q1

)

−∂q1

∂t
− ∂p2

∂x
= z1(q)q2 +

δ1

2d1

(
p1 +

δ1

2
q2

)

∂q4

∂t
− ∂p3

∂x
= z2(q)q3 − δ2

2d2

(
p4 − δ2

2
q3

)

−∂q3

∂t
− ∂p4

∂x
= z2(q)q4 +

δ2

2d2

(
p3 +

δ2

2
q4

)

∂q1

∂x
=

1
d1

(
p1 +

δ1

2
q2

)
(2.43)

∂q2

∂x
=

1
d1

(
p2 − δ1

2
q1

)

∂q3

∂x
=

1
d2

(
p3 +

δ2

2
q4

)

∂q4

∂x
=

1
d2

(
p4 − δ2

2
q3

)
.

The system (2.43) can be rewritten in the multisymplectic Hamiltonian system (1.43)

in coordinates z = (q1, q2, q3, q4, p1, p2, p3, p4)T with

M =




−J 02 02 02

02 −J 02 02

02 02 02 02

02 02 02 02




, K =




02 02 −I2 02

02 02 02 −I2

I2 02 02 02

02 I2 02 02




(2.44)

where J is defined in (1.3) with d = 1 and 02, I2 are 2× 2 zero and identity matrices

respectively, and

S(z) = W +
1

2d1

(
p2
1 + p2

2

)
+

1
2d2

(
p2
3 + p2

4

)
+

δ1

2d1
(p1q2 − p2q1)

+
δ2

2d2
(p3q4 − p4q3) +

δ2
1

8d1

(
q2
1 + q2

2

)
+

δ2
2

8d2

(
q2
3 + q2

4

)
(2.45)

with

W =
a1

4

(
q2
1 + q2

1

)2
+

a2

4

(
q2
3 + q2

4

)2
+

e

2

(
q2
1 + q2

1

) (
q2
3 + q2

4

)
.
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By direct computation we can prove that (2.26)-(2.27) has the multisymplectic con-

servation law

∂tω + ∂xκ = 0

where ω and κ are the two-forms associated with the skew-symmetric matrices M and

K given in (2.44). The local energy conservation law (1.51) can be obtained with the

energy density

E(z) = S(z) +
1
2




4∑

j=1

qj
∂pj

∂x
−

4∑

j=1

pj
∂qj

∂x


 (2.46)

and energy flux

F (z) =
1
2




4∑

j=1

pj
∂qj

∂t
−

4∑

j=1

qj
∂pj

∂t


 (2.47)

and the local momentum conservation law (1.55) can be obtained with the momentum

density

I(z) =
1
2

[
q1

∂q2

∂x
− p2

∂q1

∂x
+ q3

∂q4

∂x
− p4

∂q3

∂x

]
(2.48)

and the momentum flux

G(z) = S(z)− 1
2

[
q1

∂q2

∂t
− q2

∂q1

∂t
+ q3

∂q4

∂t
− q4

∂q3

∂t

]
. (2.49)

The CNLSE (2.26)-(2.27) has a phase invariance [20], where (eiθ1ψ1, e
iθ2ψ2) is a

solution of CNLSE whenever (ψ1, ψ2) is a solution, for any (θ1, θ2) ∈ R2. If we define

[20]

Rθ =




cos θ − sin θ

sin θ cos θ


 ,

then

G(θ1, θ2) = Rθ1 ⊕Rθ2 ⊕Rθ1 ⊕Rθ2 ∈ R8×8

is a action on R8×8 and the equalities

G(θ1, θ2)M = MG(θ1, θ2), G(θ1, θ2)K = KG(θ1, θ2) and S (G(θ1, θ2)z) = S(z)

hold for all (θ1, θ2) ∈ R2. If we define [20]

gj =
∂

∂θj
G(θ1, θ2)|θj=0, j = 1, 2, and A = g1 + g2, (2.50)
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then it can be shown that

∂t(zTMAz) + ∂x(zTKAz) = 0. (2.51)

Thus the additional conservation law (1.61) is given by

T = zTMAz = q2
1 + q2

2 + q2
3 + q2

4, (2.52)

V = zTKAz = 2(q1p2 − q2p1 + q3p4 − q4p3). (2.53)

2.2.2.1 Conserved Quantities

In this section we will show that how the CNLSE (2.26)-(2.27) satisfies the energy

densities

C1 =
∫ ∞

−∞
|ψ1|2dx, C2 =

∫ ∞

−∞
|ψ2|2dx (2.54)

where ψ1 and ψ2 are given in (2.28). In [42] it was shown that the CNLSE (2.26)-

(2.27) satisfies the energy densities (2.54) under homogenous Neumann type boundary

conditions. Here we will show that the densities (2.54) are satisfied by the CNLSE

under periodic boundary condition. To show that system (2.35) satisfies (2.54), we

will write system (2.35) as

∂w
∂t

+ δ1
∂w
∂x

+
1
2

∂2w
∂x2

+ z1Jw = 0 , (2.55)

∂v
∂t

+ δ2
∂v
∂x

+
1
2

∂2v
∂x2

+ z2Jv = 0 , (2.56)

where J is the skew-symmetric matrix (1.3) with d = 1, w = (q1, q2)T and v =

(q3, q4)T . Now, multiplying (2.55) and (2.56) by wT and vT respectively and integrat-

ing with respect to x yields

d

dt

∫ xR

xL

wtw dx = 0,
d

dt

∫ xR

xL

vtv dx = 0. (2.57)

Here the integrals above vanish due to the skew-symmetry property of the matrix J

and the imposing of the periodic boundary conditions at xL and xR

z1wT Jw = 0, wT Jwxx =
(
wT Jwx

)
,

z2vT Jv = 0, vT Jvxx =
(
vT Jvx

) (2.58)

Thus, from (2.57), we have

C1 =
∫ xR

xL

wtw dx =
∫ xR

xL

|ψ1|2 dx = const, (2.59)
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and

C2 =
∫ xR

xL

vtv dx =
∫ xR

xL

|ψ2|2 dx = const. (2.60)

Conservation of the energies (2.59) and (2.60) imply L2 boundedness of the solution

and no blow up is expected.

2.3 N–Coupled Nonlinear Schrödinger Equation

In recent years the concept of soliton has been treated in optical communications. It

has been found that soliton propagation through optical fiber arrays is governed by a

set of equations related to the CNLSEs [8, 10],

i
∂ψj

∂t
+ εj

∂2ψj

∂x2
+ 2µ

N∑

k=1

|ψk|2ψj = 0, j = 1, 2, · · · , N, (2.61)

where ψj is the j-th component of the beam, 2µ is the strength of nonlinearity, x is

the transverse coordinate and t is the coordinate along the direction of propagation.

For N = 1, ε = 1, and µ > 0 equation (2.61) reduces to the standard envelope

soliton possessing integrable Schrödinger equation (2.1). For N = 2, equation (2.61)

governs the integrable Manakov system. Recently the exact two-soliton solution has

been obtained and novel shape changing inelastic collision property has been brought

out [48, 62]. However, the results are rare for N ≥ 3, even though the underlying

systems are of considerable physical interest. For instance, in addition to optical

communication, in the context of biophysics the case N = 3 can be used to study

the launching and propagation of solitons along the three spines of an alpha-helix in

protein. Similarly, the CNLSE (2.61) and its generalization for N ≥ 3 are of physical

interest in the theory of soliton (see [43] and reference therein).

For ε = 1/2 and µ = 1/2, the set of equations (2.61) is a generalized Manakov set

which has been shown to be integrable. This means that all solutions, in principle,

can be written in analytical form. Periodic waves for the single-component regime,

or the N = 1 case of equation (2.61) have been studied earlier. [9]. Periodic waves

for N -coupled system (2.61) with three and four component are established in [27].

Analytical solutions of equation (2.61) have been derived for both the regimes of

anomalous and normal dispersion ε = +1 or −1, respectively, and all interaction

coefficients 2µ being +1 from two to six components [26]. Recently, the case of µ
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being allowed to be both positive and negative has been considered (see [36] and

reference therein).

The N-coupled nonlinear Schrödinger equation (N-CNLSE) (2.61) has a multi-

symplectic structure (1.43). Using ψk = q2k−1 + iq2k k = 1, 2, · · · , N , we can rewrite

(2.61) as a pair of real-valued equations

−∂q2

∂t
+ ε1

∂2q1

∂x2
+ 2µ

(
q2
1 + q2

2 + · · ·+ q2
2N

)
q1 = 0

∂q1

∂t
+ ε1

∂2q2

∂x2
+ 2µ

(
q2
1 + q2

2 + · · ·+ q2
2N

)
q2 = 0

...
...

...

−∂q2N

∂t
+ εN

∂2q2N−1

∂x2
+ 2µ

(
q2
1 + q2

2 + · · ·+ q2
2N

)
q2N−1 = 0

∂q2N−1

∂t
+ εN

∂2q2N

∂x2
+ 2µ

(
q2
1 + q2

2 + · · ·+ q2
2N

)
q2N = 0

(2.62)

Introducing pk(x, t) = ∂qk(x, t)/∂x k = 1, 2, · · · , 2N , the N-CNLSE (2.61) can be

reformulated to multisymplectic form (1.43)

Mzt + Kzx = ∇zS(z), (2.63)

in which z = (q,p)T with q = (q1, · · · , q2N ), p = (p1, · · · , p2N ),

M =




A 0

0 0


 , K =




0 B

−B 0


 ,

where A = diag(J), with J defined in (1.3) (d = 1), 0 is a 2N × 2N zero matrix,

B = diag(Ek) with

Ek =




εk 0

0 εk


 , k = 1, · · · , N ,

and

S(z) = −µ

2

(
2N∑

k=1

q2
k

)2

− 1
2

N∑

k=1

εk

(
p2
2k−1 + p2

2k

)

By direct computation, it can be shown that (2.63) has the multisymplectic con-

servation law

∂

∂t

(
−

N∑

k=1

dq2k−1 ∧ dq2k

)
+

∂

∂x

(
N∑

k=1

εk(dq2k−1 ∧ dp2k−1 + dq2k ∧ dp2k)

)
= 0. (2.64)
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CHAPTER 3

NUMERICAL METHODS

For conservative systems, many properties of the system are lost in discretization. A

basic idea behind the design of numerical schemes is preserving the properties such as

integrability, symplecticity and energy of the original problems as much as possible.

From the symplectic viewpoint, there are two approaches for developing symplectic

methods for ODE’s. In the first approach, if the system is a Hamiltonian ODE one

can define a symplectic method which preserves the underlying symplectic structure.

The second approach considers the Lagrangian viewpoint and uses a discrete varia-

tional principle (see for example [33] CH.6). The idea of the symplectic integration

of ODE’s is then extended to that of PDE’s. The main idea in defining symplectic

methods for PDE’s is to discretize the space appropriately so that the resulting semi-

discrete system can be cast into a finite dimensional Hamiltonian system in time; then

the resulting system of ODE’s are integrated in time by a symplectic method. Re-

cently, multisymplectic integrators were developed for PDE’s in the multisymplectic

form. Multisymplectic methods were first introduced in [49] based on the variational

approach. Later, Bridges and Reich [21] introduced a different approach that defined

a multisymplectic integrator as a numerical method that satisfies a discrete multi-

symplectic conservation law. This approach was later applied to many PDE’s such

as KdV, NLS, and Klein-Gordon equations (see [13, 24, 25, 39, 64, 65, 83, 93] and

reference therein). In this thesis we use the second approach. Multisymplectic PDE’s

have a symplectic structure associated with each of the temporal and spatial variables.

Therefore it is natural to preserve this structure under discretization.

The outline of this chapter is as follows. In Sec. 3.1 we review the integrable

Ablowitz-Ladik discrete NLS system. In Sec. 3.2 symplectic integrators for CNLSE

are constructed. In Sec. 3.3 multisymplectic integrators and Preissman scheme are

discussed. Multisymplectic integrators for NLSE and CNLSE are presented in Sec. 3.4
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and Sec. 3.5 respectively. In Sec. 3.6 a multisymplectic six-point scheme is derived for

the CNLSE. In Sec. 3.7 a semi-explicit scheme based on the linear-nonlinear, even-odd

splitting is constructed for the CNLSE.

Here and throughout the remainder of the thesis, we use uniform grid points

(xm, tn) ∈ R2 with mesh-length ∆x = xm − xm−1, m = 1, 2, . . . , M in the x-direction

and the time-step ∆t = tn − tn−1, n = 1, 2, · · · , N in the t-direction where M is the

number of grid points and N is the number of time steps. The space-time domain of

our problem will then be approximated by points (xm, tn) = (m∆x, n∆t). The value

of a variable z(x, t) at the mesh points (xm, tn) will be denoted by zn
m. The first order

derivatives zx and zt are approximated as follow.

δ+
x zn

m :=
zn
m+1 − zn

m

∆x
and δ+

t zn
m :=

zn+1
m − zn

m

∆t
, (3.1)

δ−x zn
m :=

zn
m − zn

m−1

∆x
and δ−t zn

m :=
zn
m − zn−1

m

∆t
, (3.2)

δ1
xzn

m :=
zn
m+1 − zn

m−1

2∆x
(3.3)

where δ+ and δ− are the forward and backward and δ0 the central difference opera-

tors, respectively. Using these difference operators the approximation for the second

derivatives zxx is defined by

δ2
xzn

m :=
zn
m+1 − 2zn

m + zn
m−1

∆x
= δ+

x δ−x zn
m. (3.4)

Using the average operators

δxzn
m :=

zn
m+1 + zn

m

2
and δtz

n
m :=

zn+1
m + zn

m

2
, (3.5)

(3.6)

the values of z(x, t) at the midpoints (m + 1
2 , n) and (m,n + 1

2) are defined as

zn
m+ 1

2
= δxzn

m z
n+ 1

2
m = δtz

n
m.

3.1 The Ablowitz-Ladik Discrete NLS System

The NLSE (2.1) is integrable, i.e. has infinite number of conservation laws. This

implies that solutions of the NLSE are well behaved and, in particular, one does not

expect to find any chaotic behavior. However in the discrete case this phenomenon is

not always true. Many numerical schemes have been proposed to simulate the NLSE
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(2.1), including a number of conservative schemes (see [35, 68, 77, 78] and reference

therein). Application of the standard difference scheme to the NLSE (2.1) gives the

discrete NLS (DNLS) [1]

i
d

dt
un +

un+1 − 2un + un−1

h2
+ a|un|2un = 0 (3.7)

which has the canonical Hamiltonian structure with the Hamiltonian

H = −i
N−1∑

j=0

(
|uj+1 − uj |2

h2
− a

2
|uj |4

)
(3.8)

where h = L/N denote the grid spacing. The DNLS system (3.7) has only two

integrals: the Hamiltonian (3.8) and the energy I =
∑N−1

j=1 |uj |2. Therefore it is not

integrable.

One of the most important discrete models of NLSE (2.1) is the integrable Ablowitz-

Ladik (AL) model

i
d

dt
un +

un+1 − 2un + un−1

∆x2
+

a

2
|un|2(un+1 − un−1) = 0, n = · · · ,−1, 0, 1, · · · . (3.9)

It is completely integrable, i.e. has an infinite number of conserved quantities [2, 77].

The solution of (3.9) converges to the that of (2.1) for ∆x → 0 [77]. On the other

hand, the Hamiltonian structure of the AL model (3.9) is noncanonical. When we

split un into real and imaginary parts via un = vn + iwn, (3.9) can be rewritten as

d

dt
vn +

wn+1 − 2wn + wn−1

∆x2
+

a

2
(v2

n + w2
n)(wn+1 − wn−1) = 0

d

dt
wn − vn+1 − 2vn + vn−1

∆x2
− a

2
(v2

n + w2
n)(vn+1 − vn−1) = 0.

(3.10)

Introducing the notation z = (v1, · · · , vN , w1, · · · , wN ), (3.10) can be transformed to

an 2N × 2N non-canonical Hamiltonian or Poisson system

d

dt
z = P (z)∇H(z) (3.11)

where the skew-symmetric structure matrix is given by

P (z) =




0 −D

D 0


 , D = diag(d1, · · · , dN ), with dk = 1 +

a

2
∆x2(v2

k + w2
k)

with the Hamiltonian

H =
1

∆x2

N∑

k=1

(vkvk−1 + wkwk1)−
2

a∆x4

N∑

k=1

ln
(

1 +
a

2
∆x2(v2

k + w2
k)

)
.
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The nonintegrable DNLS (3.7) was integrated in [78] by symplectic Runge-Kutta

methods which preserve the Hamiltonian and the energy. Since the phase space struc-

ture of the integrable AL system (3.9) has a non-canonical structure (3.11), the stan-

dard symplectic integrators can not be applied. The system (3.11) is a Poisson system.

Therefore, Poisson integrators can be used to integrate (3.11). However, in the con-

text of the Darboux theorem [7, 12], (3.11) can be transformed into canonical form

using a suitable local transformation; then symplectic integrators can be used to in-

tegrate (3.9). In [77], two symplectic schemes were considered to simulate the AL

(3.9) system and a comparison between symplectic and non-symplectic methods was

made. Symplectic methods based on generating functions for integrating AL system

under periodic boundary conditions have been developed and have been generalized

to generate symplectic integrators of arbitrary order for general non-canonical system

having a symplectic structure of the AL type (see [39] and reference therein).

3.2 Symplectic Integrators for CNLSE

In Sec. 2.2.1 we have shown that the CNLSE system (2.26)-(2.27) has a canonical

Hamiltonian structure. Therefore it can be integrated by a symplectic scheme. In this

section we construct a symplectic scheme to integrate the Hamiltonian system (2.39).

We notice that equation (2.39) can be rewritten as

qt = JAq (3.12)

where

A =




d1D2 + z1(q) −δ1D1 0 0

δ1D1 d1D2 + z1(q) 0 0

0 0 d2D2 + z2(q) −δ2D1

0 0 δ2D1 d2D2 + z2(q)




, (3.13)

D1 = ∂
∂x , D2 = ∂2

∂x2 are differential operators and z1(q), z2(q) are nonlinear terms

defined in (2.36). Equation (3.12) is semi-discretized in the space variables using the

central differences δ1
xzn

m and δ2
xzn

m to obtain a semi-discrete system

d

dt
z = J−1Az (3.14)
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where z = (q11, · · · , q1M , q21, · · · , q2M , q31, · · · , q3M , q41, · · · , q4M )T , J is defined in

(1.3) with d = M ,

A =




d1B2 + Z1(q) −δ1B1 0 0

δ1B1 d1B2 + Z1(q) 0 0

0 0 d2B2 + Z2(q) −δ2B1

0 0 δ2B1 d2B2 + Z2(q)




with Zi = diag{(zi)1, · · · , (zi)M}, i = 1, 2, I is M ×M identity matrix, and

B1 =
1

2∆x




0 1 0 · · · −1

−1 0 1 · · · 0
. . . . . .

0 0 · · · 0 1

1 0 · · · −1 0




, B2 =
1

∆x2




−2 1 0 · · · 1

1 −2 1 · · · 0
. . . . . .

0 0 · · · −2 1

1 0 · · · 1 −2




,

which correspond to the central difference approximation of the differential operators

D1 and D2.

Equation (3.14) can be formulated as a finite dimensional Hamiltonian system as

dz

dt
= J−1∇zH(z), (3.15)

with z = (q11, · · · , q1M , q21, · · · , q2M , q31, · · · , q3M , q41, · · · , q4M )T , and the Hamiltonian

H(z) =
d1

2

[
qT

1 M1q1 + qT
2 M1q2

]
+

d2

2

[
qT

3 M1q3 + qT
4 M1q4

]

−δ1qT
1 M2q2 + δ2qT

3 M2q4

+
N∑

m=1

1
4

[
a1

(
(q1)2m + (q2)2m

)2
+ a2

(
(q3)2m + (q4)2m

)2
]

+
N∑

m=1

e

2

(
(q1)2m + (q2)2m

) (
(q3)2m + (q4)2m

)

where qj = (qj1, . . . , qjM )T , j = 1, 2, 3, 4. One can then apply a symplectic method

to construct a symplectic integrator of (3.15) such as the implicit mid-point rule

zn+1 − zn = ∆tJ∇zH

(
zn+1 + zn

2

)
, (3.16)

which is second order in time.
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3.3 Multisymplectic Integrators

Multisymplectic integrators exhibit a new approach for solving the infinite-dimensional

Hamiltonian systems. The basic idea in the multisymplectic integrators is applying a

suitable discretization to each independent variables to preserve the discrete version

of the multisymplectic conservation laws. For discretization in space usually finite

difference, finite volume or pseudo-spectral methods were used (see [21, 22, 64, 24, 23]

and references therein). The multisymplectic methods differ from the usual semi-

discretization by the fact that they are constructed to preserve the local conserved

quantities. Because of the local conservation properties, the global conserved quanti-

ties are also well preserved in long term integration.

In [56] it was shown that applying the symplectic Euler and explicit midpoint

discretization both in space and time variables yields a multisymplectic integrator.

In [83] the multisymplectic structure of the nonlinear Klein-Gordon equation was

derived from the variational principle and a series of multisymplectic schemes were

constructed for the nonlinear Klein-Gordon equation. In [37] Hamiltonian PDE’s with

m ≥ 2 space dimensions were considered and it was shown that discretizing each in-

dependent variable by the implicit midpoint rule yields a multisymplectic integrator.

Further multisymplectic discretization for the generalized KP equation and the wave

equation with 2 space dimensions were given. A nine-point variational integrator from

the discrete variational principle and a six-point multisymplectic integrator from the

Preissman scheme for NLSE were derived in [24]. It was also shown there that the two

integrators are essentially equivalent. In [64] a finite volume cell-vertex method was

developed for multisymplectic PDE’s. Usually the multisymplectic finite difference

and finite volume methods are of second order in space. Higher order methods can be

constructed by compositions method [90]. Spectral methods usually provide higher

order accuracy with smooth solutions. The local and global properties of multisym-

plectic discretization based on finite differences and Fourier spectral approximations

were discussed in [40]. Further it was shown that the benefits of multisymplectic

integrators include improved resolution of the local conservation laws, dynamical in-

variants and complicated phase space structure. In [71] a new six-point scheme of

the CNLSE was derived from the symplectic scheme and collision behavior of soliton

waves were studied. Numerical experiment show that the new six-point scheme has
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excellent long-time numerical behavior. From the numerical experiment results the

collisions of the soliton waves in the CNLSE was shown to be sensitive to the col-

lision velocity and the cross-modulation coefficient. Symplectic and multisymplectic

methods for the KdV equation were studied in [13]. It was pointed out there that it

was possible to design a very stable, conservative difference scheme for the nonlinear

conservative KdV equation. It was also shown that the symplectic or multisymplectic

schemes were the best of all such schemes. The multisymplectic structure of the KdV

equation was presented directly from the variational principle. A multisymplectic 12-

points scheme which is equivalent to the multisymplectic Preissman scheme was tested

on the solitary waves over long time intervals.

In this work we present the difference scheme known as the Preissman box scheme

and then show that the Preissman box scheme is a multisymplectic integrator [21].

After then, we will show that the Preissman box scheme preserves the semi-discrete

energy and momentum conservation laws.

A numerical discretization of system (1.43) can be written schematically as

M∂m,n
t zn

m + K∂m,n
x zn

m = (∇zS(zn
m))n

m , (3.17)

where ∂mn
t and ∂mn

x denote the discretization of the derivatives ∂t = ∂/∂t and

∂x = ∂/∂x. Using the same discretization as in (3.17), a discrete conservation of

the multisymplectic conservation law (1.45) can be written as

∂m,n
t ωn

m + ∂m,n
x κn

m = 0 (3.18)

where

ωn
m =< MUn

m, V n
m >, κn

m =< KUn
m, V n

m >, (3.19)

and {Un
m} and {V n

m} satisfy the discrete variational equations

M∂m,n
t dzn

m + K∂m,n
x dzn

m = Dm,n
zz S(zn

m)dzn
m . (3.20)

The numerical scheme (3.17) is said to be multisymplectic if (3.18) is a discrete con-

servation law for (3.17).

3.3.1 The Preissman Box Scheme

A standard method for constructing multisymplectic schemes is to apply a known

symplectic discretization to each independent variable. One possibility is concatenat-

ing a pair of implicit midpoint discretization, one in the t-direction and one in the
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x-direction [21, 65]. Discretizing the multisymplectic PDE (1.43) in time and space

by the implicit midpoint rule yields

Mδ+
t zn

m+ 1
2

+ Kδ+
x z

n+ 1
2

m = ∇zS

(
z

n+ 1
2

m+ 1
2

)
(3.21)

or

M




zn+1
m+ 1

2

− zn
m+ 1

2

∆t


 + K


z

n+ 1
2

m+1 − z
n+ 1

2
m

∆x


 = ∇zS

(
z

n+ 1
2

m+ 1
2

)
, (3.22)

where

z
n+ 1

2

m+ 1
2

=
1
4

(
zn
m + zn

m+1 + zn+1
m + zn+1

m+1

)
,

which is called centered cell discretization or the Preissman box scheme [61].

Proposition 3.1 [21] The centered cell discretization (3.22) is multisymplectic. That

is, the discretization satisfies the discrete version of the multisymplectic conservation

law
ωn+1

m+ 1
2

− ωn
m+ 1

2

∆t
+

κ
n+ 1

2
m+1 − κ

n+ 1
2

m

∆x
= 0 (3.23)

where

ωn
m =< MUn

m, V n
m > and κn

m =< KUn
m, V n

m > (3.24)

and {Un
m}, {V n

m} are any two solutions of the discrete variational equation correspond-

ing to (3.22).

Proof: We introduce the discrete variational equation associated with (3.22)

M




dzn+1
m+ 1

2

− dzn
m+ 1

2

∆t


 + K


dz

n+ 1
2

m+1 − dz
n+ 1

2
m

∆x


 = S

n+ 1
2

m+ 1
2

dz
n+ 1

2

m+ 1
2

, (3.25)

with

S
n+ 1

2

m+ 1
2

:= DzzS

(
z

n+ 1
2

m+ 1
2

)
.

Let Un
m and V n

m be any two solutions of (3.25). Taking the inner product of (3.25)

with V
n+ 1

2

m+ 1
2

and using the fact that

z
n+ 1

2

m+ 1
2

=
1
2

(
zn+1
m+ 1

2

+ zn
m+ 1

2

)
=

1
2

(
z

n+ 1
2

m+1 + z
n+ 1

2
m

)
.

we obtain

< SU
n+ 1

2

m+ 1
2

, V
n+ 1

2

m+ 1
2

> =
1

∆t
< M(Un+1

m+ 1
2

− Un
m+ 1

2
), V

n+ 1
2

m+ 1
2

>

+
1

∆x
< K(U

n+ 1
2

m+1 − U
n+ 1

2
m ), V

n+ 1
2

m+ 1
2

> . (3.26)

43



Then equality (3.26) can be rewritten as

< SU
n+ 1

2

m+ 1
2

, V
n+ 1

2

m+ 1
2

> =
1

∆t
< M(Un+1

m+ 1
2

− Un
m+ 1

2
),

1
2
(V n+1

m+ 1
2

+ V n
m+ 1

2
) >

+
1

∆x
< K(U

n+ 1
2

m+1 − U
n+ 1

2
m ),

1
2
(V

n+ 1
2

m+1 + V
n+ 1

2
m ) > . (3.27)

We obtain similarly

< SV
n+ 1

2

m+ 1
2

, U
n+ 1

2

m+ 1
2

> =
1

∆t
< M(V n+1

m+ 1
2

− V n
m+ 1

2
),

1
2
(Un+1

m+ 1
2

+ Un
m+ 1

2
) >

+
1

∆x
< K(V

n+ 1
2

m+1 − V
n+ 1

2
m ),

1
2
(U

n+ 1
2

m+1 + U
n+ 1

2
m ) > (3.28)

Subtracting (3.28) from (3.27) and using (3.24) we obtain

< SU
n+ 1

2

m+ 1
2

, V
n+ 1

2

m+ 1
2

> − < SV
n+ 1

2

m+ 1
2

, U
n+ 1

2

m+ 1
2

>=
ωn+1

m+ 1
2

− ωn
m+ 1

2

∆t
+

κ
n+ 1

2
m+1 − κ

n+ 1
2

m

∆x
. (3.29)

Since S is symmetric, a straightforward calculation using the inner product leads to

< SU, V > − < SV, U >=< SU, V > − < U,SV >=<
(
S− ST

)
U, V >= 0.

where U = U
n+ 1

2

m+ 1
2

, V = V
n+ 1

2

m+ 1
2

. Therefore the left-hand side of (3.29) vanishes and

(3.23) holds.

Besides the multisymplectic conservation law, the Preissman scheme preserves

other properties. First we will discuss the semi-discrete conservation laws.

Proposition 3.2 [57] Spatial discretization of (1.51) using the implicit midpoint rule

yield the semi-discrete energy conservation law

∂tE
m+ 1

2 +
Fm+1 − Fm

∆x
= 0 (3.30)

with

Em+ 1
2 = ∂t

[
S(zm+ 1

2 )− 1
2
(z

1
2 )TK

zm+1 − zm

∆x

]
, Fm =

1
2
(zm)TKzm

t

Proof: In order to prove (3.30), we discretize (1.43) spatially using the implicit

midpoint rule. Then the spatial discrete equation becomes

Mz
m+ 1

2
t + Kδ+

x zm = ∇S(zm+ 1
2 ).

Taking the product with (z
m+ 1

2
t )T from the left yields

∂tS(zm+ 1
2 )− (z

m+ 1
2

t )TKδ+
x zm = 0, (3.31)
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where we have used the fact that (z
m+ 1

2
t )TMz

m+ 1
2

t = 0 by the skew-symmetry of M.

Notice that

(z
m+ 1

2
t )TKδ+

x zm =
1
2
∂t

(
(zm+ 1

2 )TKδ+
x zm

)
+

1
2
δ+
x

(
(z

m+ 1
2

t )TKzm+ 1
2

)

which corresponds to the spatial discretization of the identity (1.50). Putting this

identity into (3.31) we get the semi-discrete conservation law (3.30).

The semi-discrete momentum conservation law can be derived in a similar way by

changing the role of spatial and temporal variables which we will show in the following

proposition.

Proposition 3.3 [57] Temporal discretization of (1.43) using the implicit midpoint

rule exactly preserves the semi-discrete momentum conservation law

In+1 − In

∆t
+ ∂xGn+ 1

2 = 0, (3.32)

where

In =
1
2
(zn)TMzn

x

and

Gn+ 1
2 = S(zn+ 1

2 )− 1
2
(zn+ 1

2 )TMδ+
t zn.

Proof: To prove (3.32), we consider the temporal discretization of (1.43) using the

implicit midpoint rule, which yields

Mδ+
t zn + Kz

n+ 1
2

x = ∇zS(zn+ 1
2 ).

Multiplying this identity by (z
n+ 1

2
x )T from the left we get

(z
n+ 1

2
x )TMδ+

t zn − ∂xS(zn+ 1
2 ) = 0 (3.33)

where we have used the fact that (z
m+ 1

2
x )TKz

m+ 1
2

x = 0 by the skew-symmetry of K.

We note that the identity

(z
n+ 1

2
x )TMδ+

t zn =
1
2
∂x

(
(zn+ 1

2 )TMδ+
t zn

)
− δ4

t

(
(zn+ 1

2 )TMz
n+ 1

2
x

)

is the temporal discretization of (1.54). Substituting this identity into (3.33) we obtain

the semi-discrete momentum conservation law (3.32) .

Applying the implicit midpoint rule to both space and time yields the discrete

version of the energy conservation law (1.51), the momentum conservation law (1.55)
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and the additional conservation law (1.61). The residuals in the energy and momentum

conservation law are of the form

RE
n+ 1

2

m+ 1
2

=
En+1

m+ 1
2

−En
m+ 1

2

∆t
+

F
n+ 1

2
m+1 − F

n+ 1
2

m

∆x
(3.34)

RM
n+ 1

2

m+ 1
2

=
In+1
m+ 1

2

− In
m+ 1

2

∆t
+

G
n+ 1

2
m+1 −G

n+ 1
2

m

∆x
(3.35)

and the residual in the additional conservation law is of the form

RA
n+ 1

2

m+ 1
2

=
Tn+1

m+ 1
2

− Tn
m+ 1

2

∆t
+

V
n+ 1

2
m+1 − V

n+ 1
2

m

∆x
. (3.36)

If S(z) is quadratic in z, namely S(z) = 1
2zTAz (Asymmetric), and the zn

m is the

solution of the Preissman box scheme (3.22), then the local conservation laws are

conserved exactly [21] and the residuals become zero. For other nonlinear forms of

S(z) rather than quadratic, residuals are not zero, i.e. the conserved quantities are not

exactly preserved. We notice that while the energy density (2.46) and the momentum

flux (2.49) of the CNLSE are quartic, the energy flux (2.47), the momentum density

(2.48) and the additional conservation (2.51) are quadratic. In order to show that

they don’t grow over long time interval, we have resort to backward error analysis in

Chapter 5.

Discrete conservation of symplecticity, energy, momentum and other additional

invariants are all local properties of a numerical scheme. However, for periodic bound-

ary conditions, the discrete local conservation implies discrete global conservation. To

show how the boundary conditions are crucial in discrete global conservation we con-

sider the Preissman box scheme (3.22) with periodic boundary condition. Summing

(3.22) over all the grid points in the spatial direction we obtain

1
∆t

N∑

m=1

(
ωn+1

m+ 1
2

− ωn
m+ 1

2

)
∆x = 0, (3.37)

where the sum
N∑

m=1

(
κ

n+ 1
2

m+1 − κ
n+ 1

2
m

)
= κ

n+ 1
2

N+1 − κ
n+ 1

2
1 (3.38)

vanishes because the periodicity implies κ
n+ 1

2
1 = κ

n+ 1
2

N+1 for all n. Introducing

ω̂ =
N∑

m=1

ωn
m+ 1

2
∆x (3.39)

yields

ω̂n+1 = ω̂n (3.40)
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which is the conservation of symplecticity in the time direction. Notice that (3.37) is

the discretization of (1.63) and (3.38) is the discretization of (1.62).

Proposition 3.4 [57] If the multisymplectic PDE (1.43) satisfies the conservation

law (1.61), the Preissman box scheme satisfies the discrete conservation law

δ+
t

(
(zn

m+ 1
2
)TMAzn

m+ 1
2

)
+ δ+

x

(
(z

n+ 1
2

m )TKAz
n+ 1

2
m

)
= 0. (3.41)

Proof: In order to derive this conservation law, we multiply (3.22) by
(
Az

n+ 1
2

m+ 1
2

)T

and we get (
z

n+ 1
2

m+ 1
2

)T

MAδ+
t zn

m+ 1
2

+
(

z
n+ 1

2
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2

)T

KAδ+
x z

n+ 1
2

m = 0. (3.42)

Using the identity
(

zn
m+ 1

2

)T

MAzn+1
m+ 1

2

=
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2
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MT zn
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2
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(
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2

)T

ATMT zn
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2

=
(
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2

)T

MAzn
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2

the first term in (3.42) can be rewritten as

(
z

n+ 1
2

m+ 1
2

)T

MAδ+
t zn

m+ 1
2

=
1
2

[(
zn+1
m+ 1

2

)T

MA +
(
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2

)T
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]
δ+
t zn
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2

=
1

2∆t

[(
zn+1
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MAzn+1
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2

−
(
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MAzn
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2

]

=
1
2
δ+
t

(
(zn
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2
)TMAzn
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2

)
.

(3.43)

Similarly, the second term in (3.42) can be rewritten as

(
z

n+ 1
2

m+ 1
2

)T

KAδ+
x z

n+ 1
2

m =
1

2∆x

[(
z

n+ 1
2

m+1

)T

KAz
n+ 1

2
m+1 −

(
z

n+ 1
2

m

)T

KAz
n+ 1

2
m

]

=
1
2
δ+
x

(
(z

n+ 1
2

m )TKAz
n+ 1

2
m

)
.

(3.44)

Substituting the identities (3.43) and (3.44) into (3.42) we get the discrete conservation

law (3.41). Thus, (1.61) is conserved exactly under the Preissman box discretization.

3.4 Multisymplectic Integration of NLSE

In Section 2.1 we reviewed the Hamiltonian and multisymplectic structure of the NLSE

(2.2). Therefore, it is natural to require a discretization or a semi-discretization to

reflect these properties. Various type of numerical schemes have been proposed to
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simulate the NLSE [35, 68, 78]. In [35] and [78] a space discretization of NLSE was

considered generating a set of coupled ordinary differential equations that can be cast

into a Hamiltonian structure. The resulting systems of ODE’s are then integrated

by a symplectic integrator. In [35] the NLSE is simulated with periodic initial data

and boundary conditions. In [78] one soliton, two soliton and three soliton solutions

were studied. Symplectic and non-symplectic schemes were compared to simulate

the soliton solutions of the Ablowitz-Ladik model associated for homogenous bound-

ary conditions in [77]. Symplectic and multisymplectic integrators for NLSE were

considered first in [39] for periodic boundary conditions. It was shown that the mul-

tisymplectic Preissman box scheme preserves the local conservation laws extremely

well over long times for different mesh sizes and time steps. Also the global invariants

such as momentum and norm conservations are preserved within roundoff. For the

multisymplectic formulation, a new six point scheme equivalent to the multisymplectic

Preissman integrator is derived in [25] and its’ performance is discussed for the soliton

solutions.

In this Section we will review the multisymplectic integration of the NLSE and

derive the local energy, momentum and additional conservation laws based on the

Preissman box scheme. When we apply the multisymplectic Preissman box scheme

to the NLS (2.9) we obtain

−
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2

− qn
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2
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2
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.

(3.45)

The residual (3.34) in the discrete energy conservation law takes the form

En
m+ 1

2

= S(zn
m+ 1

2
)−

(
vn
m+ 1

2

)2

−
(

wn
m+ 1

2

)2

F
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2
m = v

n+ 1
2

m

(
pn+1

m − pn
m

∆t

)
+ w

n+ 1
2

m

(
qn+1
m − qn

m

∆t

) (3.46)

and the residual (3.35) in the discrete momentum conservation law can be obtained
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from
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m+ 1

2

=
1
2

(
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2
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2
− pn
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2
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where

S(zn
m) =

1
2

(
2a

l + 1

(
(pn

m)2 + (qn
m)2

) l+1
2 + (vn

m)2 + (wn
m)2

)
. (3.48)

The residual (3.36) in the discrete additional conservation can be easily obtained

Nn
m+ 1

2

= 1
2

((
pn

m+ 1
2

)2

+
(

qn
m+ 1

2

)2
)

Z
n+ 1

2
m = q

n+ 1
2

m v
n+ 1

2
m − p

n+ 1
2

m w
n+ 1

2
m .

(3.49)

3.5 Multisymplectic Integration of CNLSE

In Sec. 2.2 we have shown that the CNLSE (2.26)-(2.27) has a multisymplectic structure.

Therefore, it is natural to preserves this structure under the discretization in space

and time. In [81] the Hopscotch method was applied to the CNLSE (2.26)-(2.27) with

δ1 = δ2 = 0 and effect of phase difference was studied numerically. In [75], the stability

of solutions are studied analytically and criteria for the stability were derived using

pseudospectral discretization in space and Runge-Kutta method of forth order in time.

The long term behavior of periodic solutions were studied for the parameter values

δ1 = δ2 = 0 under periodic boundary conditions. The CNLSE was recently integrated

using Preissman scheme with parameter values δ1 = δ2 = 0 for solitary wave solutions

in [72]. Based on the multisymplectic structure, a new six point scheme, which is

equivalent to the multisymplectic Preissman box scheme was derived. The numerical

results show that the multisymplectic scheme has excellent long-time energy conser-

vation property. Here we will apply the Preissman box discretization to the CNLSE

(2.26)-(2.27) with nonzero δ1 and δ2 and obtain a multisymplectic integrator with the

residuals in the energy, momentum and additional conservation laws.

Applying the centered cell discretization to system (2.26)-(2.27), we obtain the
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multisymplectic Preissman scheme for CNLSE
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(3.50)

which is second order in space and time.

The corresponding residual in the discrete energy conservation law (3.34) can be com-

puted using the the energy density (2.46)
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(3.51)
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and using the energy flux (2.47)
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(3.52)

The residual in the discrete momentum conservation law (3.35) can be computed using

the momentum density (2.48)
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and using the momentum flux (2.49)
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The discrete additional conservation law (3.36) is written as
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(3.55)

3.6 Six-point scheme for CNLSE

In Sec. 2.2 in order to show that the CNLSE (2.26)-(2.27) has a multisymplectic struc-

ture, we have introduced auxiliary variables p1, p2, p3, p4. In Sec. 3.5 we applied the

Preissman discretization and obtained a multisymplectic integrator for the CNLSE.

However, in practice, we need to know the values of the functions ψ1 and ψ2 only.
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Therefore we can eliminate the auxiliary variables p1, p2, p3, p4 in the discretization

(3.50) and obtain a new scheme for the CNLSE (2.26)-(2.27). This idea was first in-

troduced in [25] for NLSE (2.1). For the multisymplectic formulation, a new six-point

difference scheme which is equivalent to the multisymplectic Preissman integrator was

derived, and the linear stability of the new scheme was investigated. The performance

of the six-point scheme was investigated by comparing with a symplectic scheme for

the one soliton, two soliton and three soliton solution of the NLSE in [25]. In [24] a

nine-point variational integrator from the discrete variational principle was derived for

NLSE and it was shown that this new scheme is equivalent to the six-point integrator

obtained from the Preissman box scheme. In [40] the six-point scheme for NLSE was

considered by discussing the preservation of the local conservation laws. Some new

difference schemes were derived for nonlinear Klein-Gordon equation in [83] and some

numerical results were reported to show the effectiveness of the schemes. A multisym-

plectic 12-points scheme which is equivalent to the multisymplectic Preissman box

scheme for KdV equation was developed and tested in [93] for solitary waves of the

KdV equation and was shown that the new scheme well simulates the solitary waves

very well. Then the 12-points scheme was simplified to an 8-points scheme in [13]. In

[47] the multisymplectic Preissman box scheme was simplified to the 45-points scheme

for KP equation. The new scheme was tested on solitary wave solutions of the KP

equation over long time interval. It was reported that the 45-points scheme for KP

equation well simulates the solitary solution of the KP equation.

In the literature there are two types of six-point integrators for the CNLSE system

(2.26)-(2.27). One is based on the symplectic structure and the other is based on the

multisymplectic structure of the CNLSE.

The symplectic six-point scheme based on the symplectic structure of the CNLSE

system (2.26)-(2.27) with δ1 = δ2 = 0, d1 = d2 = −1, a1 = a2 = 1 and homogenous

boundary conditions was investigated in [71]. The symplectic six-point scheme was

tested for the integrable and non-integrable CNLSE on the evolution of the colliding

solitary waves. But the numerical results shows that the symplectic six-point scheme

is not efficient in the long time integration.

A multisymplectic six-point integrator for CNLSE system (2.26)-(2.27) with δ1 =

δ2 = 0, d1 = d2 = 1, a1 = a2 = 1 under periodic boundary conditions was first derived

in [72]. It was shown that the new multisymplectic scheme well simulates the evolution
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of the solitons and preserves energy conservation well. But only the global energy was

considered. In this section we will consider the CNLSE system (2.26)-(2.27) with

nonzero parameter values δ1, δ2 and the corresponding multisymplectic discretization

(3.50) and obtained a new scheme by eliminating the auxiliary variables p1, p2, p3, p4

in (3.50). Using the finite difference operators (3.1) the difference equation (3.50)

takes the form
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)
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(3.56)

Applying δx to the first and δ+
x δt to the fifth equations and using the fact that the

four operators mutually commutes, we can eliminate p1 from the first and the fifth

equations. Similarly, eliminating p2, p3 and p4 yields

δ+
t δx

2(q2) + δ1δ
+
x δtδx(q2) − d1δ

+
x

2
δt(q1) − δxA(δtδxq) = 0,

δ+
t δx

2(q1) + δ1δ
+
x δtδx(q1) + d1δ

+
x

2
δt(q2) + δxB(δtδxq) = 0,

(3.57)

δ+
t δx

2(q4) + δ2δ
+
x δtδx(q4) − d2δ

+
x

2
δt(q3) − δxC(δtδxq) = 0,

δ+
t δx

2(q3) + δ2δ
+
x δtδx(q3) + d2δ

+
x

2
δt(q4) + δxD(δtδxq) = 0,

(3.58)

where q = (q1, q2, q3, q4),

A(δtδxq) = δtδxz1δtδxq1, B(δtδxq) = δtδxz1δtδxq2,

C(δtδxq) = δtδxz2δtδxq3, D(δtδxq) = δtδxz2δtδxq4.

Here z1, z2 are defined in (2.36).
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Using the fact that ψ1 = q1 + iq2 and ψ2 = q3 + iq4, we get a six-point difference

scheme

i
[
δ+
t δx

2(ψ1) + δ1δ
+
x δtδx(ψ1)

]
+ d1δ

+
x

2
δt(ψ1)

+δx
[
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]
δtδxψ1 = 0,

(3.59)

i
[
δ+
t δx

2(ψ2) + δ2δ
+
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x
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]
δtδxψ2 = 0,

(3.60)

for ψ1 and ψ2. Using the definitions (3.1), the six point scheme (3.59)-(3.60) for the

CNLSE can be written explicitly as
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(3.61)
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(3.62)

The scheme (3.61)-(3.62) is a new six-point difference schemes for the CNLSE

(2.26)-(2.27) (see Fig. 3.1). This new scheme is a multisymplectic integrator, because

it is derived from a multisymplectic Preissman scheme (3.50). Note that the scheme

couples two time levels in contrast to Preissman scheme, which involves three time

levels. It has a three-point space average in the approximation of ψ1t and ψ2t, and

two point time average in the approximation of ψ1x and ψ2x. Now we investigate

the conservation property of the multisymplectic six point scheme (3.61)-(3.62) for
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Figure 3.1: Schematic of the Preissman scheme (3.22) and six-point difference scheme
(3.61)-(3.62) for the CNLSE (2.26)-(2.27). Left picture: Preissman scheme, right
picture: six-point scheme.

the CNLSE. To do this, first we consider the multisymplectic integrator (3.61) in the

following form

i

2∆t

[
(ψ1

n+1
m−1/2 − ψ1

n
m−1/2) + (ψ1

n+1
m+1/2 − ψ1

n
m+1/2)

− δ1

2∆x

(
(ψ1

n+1
m−1/2 − ψ1

n+1
m+1/2) + (ψ1

n
m−1 − ψ1

n
m+1)

)]

+
d1

∆x2

(
ψ1

n+1/2
m−1 − 2ψ1

n+1/2
m + ψ1

n+1/2
m+1

)

+
(

a1

∣∣∣ψ1
n+1/2
m−1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m−1/2

∣∣∣
2
)

ψ1
n+1/2
m−1/2

+
(

a1

∣∣∣ψ1
n+1/2
m+1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m+1/2

∣∣∣
2
)

ψ1
n+1/2
m+1/2 = 0,

(3.63)

where

ψ1
n
m+1/2 =

ψ1
n
m+1 + ψ1

n
m

2
, ψ1

n
m−1/2 =

ψ1
n
m−1 + ψ1

n
m

2
.

Multiplying the equation (3.63) by ψ∗1
n+1/2
m and summing over m, we get

i

2∆t

[
M∑

m=1

(
(ψ1

n+1
m−1/2 − ψ1

n
m−1/2)ψ

∗
1
n+1/2
m + (ψ1

n+1
m+1/2 − ψ1

n
m+1/2)ψ

∗
1
n+1/2
m

)

− δ1

2∆x

M∑

m=1

(
(ψ1

n+1
m−1/2 − ψ1

n+1
m+1/2)ψ

∗
1
n+1/2
m + (ψ1

n
m−1 − ψ1

n
m+1)ψ

∗
1
n+1/2
m

)]

+
d1

∆x2

M∑

m=1

(
ψ1

n+1/2
m−1 − 2ψ1

n+1/2
m + ψ1

n+1/2
m+1

)
ψ∗1

n+1/2
m

+
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m−1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m−1/2

∣∣∣
2
)

ψ1
n+1/2
m−1/2ψ

∗
1
n+1/2
m

+
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m+1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m+1/2

∣∣∣
2
)

ψ1
n+1/2
m+1/2ψ

∗
1
n+1/2
m = 0.

(3.64)
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In (3.64) we note the followings:
M∑

m=1

(ψ1
n+1
m−1/2 − ψ1

n
m−1/2)ψ

∗
1
n+1/2
m =

M∑

m=1

(ψ1
n+1
m+1/2 − ψ1

n
m+1/2)ψ

∗
1
n+1/2
m+1

+
1
2

(
ψ1

n+1
0 + ψ1

n+1
1 − ψ1

n
0 − ψ1

n
1

)
ψ∗1

n+1/2
1

− 1
2

(
ψ1

n+1
M + ψ1

n+1
M+1 − ψ1

n
M − ψ1

n
M+1

)
ψ∗1

n+1/2
M+1

where we shift the index m to m+1 and then add and subtract the term corresponding

to m = M . Thus, the last term vanishes by the periodic boundary conditions

ψ10 = ψ1M , ψ11 = ψ1M+1 (3.65)

and only
M∑

m=1

(ψ1
n+1
m−1/2 − ψ1

n
m−1/2)ψ

∗
1
n+1/2
m =

M∑

m=1

(ψ1
n+1
m+1/2 − ψ1

n
m+1/2)ψ

∗
1
n+1/2
m+1 (3.66)

remains. We note that in (3.64)
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m−1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m−1/2

∣∣∣
2
)

ψ1
n+1/2
m−1/2ψ

∗
1
n+1/2
m

=
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m+1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m+1/2

∣∣∣
2
)

ψ1
n+1/2
m+1/2ψ

∗
1
n+1/2
m+1

+
(

a1

∣∣∣ψ1
n+1/2
0 + ψ1

n+1/2
1

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
0 + ψ2

n+1/2
1

∣∣∣
2
) (

ψ1
n+1/2
0 + ψ1

n+1/2
1

)
ψ∗1

n+1/2
1

−
(

a1

∣∣∣ψ1
n+1/2
M + ψ1

n+1/2
M+1

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
M + ψ2

n+1/2
M+1

∣∣∣
2
) (

ψ1
n+1/2
M + ψ1

n+1/2
M+1

)
ψ∗1

n+1/2
M+1

where we shift the index m to m + 1, expand the term corresponding to m = 0 and

then add and subtract the term corresponding to m = M . The last term in the

preceding identity vanishes by the periodic boundary conditions (3.65) and
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m−1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m−1/2

∣∣∣
2
)

ψ1
n+1/2
m−1/2ψ

∗
1
n+1/2
m

=
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m+1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m+1/2

∣∣∣
2
)

ψ1
n+1/2
m+1/2ψ

∗
1
n+1/2
m+1

(3.67)

remains. Substituting the identities (3.66) and (3.67) into (3.64) we obtain

i

2∆t

[
M∑

m=1

(
ψ1

n+1
m+1/2 − ψ1

n
m+1/2

) (
ψ∗1

n+1/2
m + ψ∗1

n+1/2
m+1

)

+
δ1

2∆x

M∑

m=1

(
ψ1

n+1
m+1/2 + ψ1

n
m+1/2

) (
ψ∗1

n+1/2
m+1 − ψ∗1

n+1/2
m

)]

− 2d1

∆x2

M∑

m=1

ψ1
n+1/2
m ψ∗1

n+1/2
m +

M∑

m=1

(
ψ1

n+1/2
m+1 + ψ1

n+1/2
m−1

)
ψ∗1

n+1/2
m

+
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m+1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m+1/2

∣∣∣
2
)

ψ1
n+1/2
m+1/2

(
ψ∗1

n+1/2
m + ψ∗1

n+1/2
m+

)
= 0.

(3.68)
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Now conjugating (3.63), multiplying by ψ1
n+1/2
m and summing over m we shall write

i

2∆t

[
M∑

m=1

((
ψ∗1

n+1
m−1/2 − ψ∗1

n
m−1/2

)
ψ1

n+1/2
m +

(
ψ∗1

n+1
m+1/2 − ψ∗1

n
m+1/2

)
ψ1

n+1/2
m

)

+
δ1

2∆x

M∑

m=1

((
ψ∗1

n+1
m−1/2 + ψ∗1

n+1
m−1/2

)
ψ1

n+1/2
m −

(
ψ∗1

n+1
m+1/2 + ψ∗1

n
m+1/2

)
ψ1

n+1/2
m

)]

+
d1

∆x2

M∑

m=1

(
ψ∗1

n+1/2
m−1 − 2ψ∗1

n+1/2
m + ψ∗1

n+1/2
m+1

)
ψ1

n+1/2
m

+
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m−1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m−1/2

∣∣∣
2
)

ψ∗1
n+1/2
m−1/2ψ1

n+1/2
m

+
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m+1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m+1/2

∣∣∣
2
)

ψ∗1
n+1/2
m+1/2ψ1

n+1/2
m = 0.

(3.69)

In the same way, changing the index m to m + 1, applying the periodic boundary

conditions etc., we can write

i

2∆t

[
M∑

m=1

(
ψ∗1

n+1
m+1/2 − ψ∗1

n
m+1/2

) (
ψ1

n+1/2
m + ψ1

n+1/2
m+1

)

+
δ1

2∆x

M∑

m=1

(
ψ∗1

n+1
m+1/2 + ψ∗1

n
m+1/2

) (
ψ1

n+1/2
m+1 − ψ1

n+1/2
m

)]

− 2d1

∆x2

M∑

m=1

ψ∗1
n+1/2
m ψ1

n+1/2
m +

M∑

m=1

(
ψ∗1

n+1/2
m+1 + ψ∗1

n+1/2
m−1

)
ψ1

n+1/2
m

+
M∑

m=1

(
a1

∣∣∣ψ1
n+1/2
m+1/2

∣∣∣
2
+ e

∣∣∣ψ2
n+1/2
m+1/2

∣∣∣
2
)

ψ∗1
n+1/2
m+1/2

(
ψ1

n+1/2
m + ψ1

n+1/2
m+

)
= 0.

(3.70)

Comparing (3.68) and (3.70), we get the conservation laws for the six-point multisym-

plectic integrators (3.61)-(3.62)

M∑

m=1

∣∣ψ1
n
m + ψ1

n
m+1

∣∣2 =
M∑

m=1

∣∣∣ψ1
n+1
m + ψ1

n+1
m+1

∣∣∣
2

(3.71)

M∑

m=1

∣∣∣ψ1
n+1
m+1 + ψ1

n
m+1

∣∣∣
2

=
M∑

m=1

∣∣∣ψ1
n+1
m + ψ1

n
m

∣∣∣
2

(3.72)

Similarly, using (3.62) the conserved quantities

M∑

m=1

∣∣ψ2
n
m + ψ2

n
m+1

∣∣2 =
M∑

m=1

∣∣∣ψ2
n+1
m + ψ2

n+1
m+1

∣∣∣
2

(3.73)

M∑

m=1

∣∣∣ψ2
n+1
m+1 + ψ2

n
m+1

∣∣∣
2

=
M∑

m=1

∣∣∣ψ2
n+1
m + ψ2

n
m

∣∣∣
2

(3.74)

can be found. Here we notice that the conserved quantities (3.72) and (3.74) are

related to the parameters δ1 and δ2 respectively because these conservation laws come
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from the coefficients of δ1 and δ2. Therefore, if δ1 and δ2 are chosen as zero these

quantities will disappear. A final note about the conserved quantities (3.71)-(3.74) is

that (3.71) and (3.73) have been investigated in [72] for the CNLSE (2.26)-(2.27) with

the parameters δ1 = δ2 = 0, d1 = d2 = 1, a1 = a2 = 1.

3.7 A Semi-Explicit Symplectic Integrator for CNLSE

An efficient way of time discretization of semi-discretized PDE’s in symplectic form

is by splitting. Splitting can be performed either on the Hamiltonian or the vector

field. Splitting techniques which are originally developed for multidimensional PDE’s

have been successfully applied to the ODE’s on geometric integrators (for review see

[51] and [33] Chapter II). If each vector field resulting from the splitting happens to

be integrable, then a numerical integration scheme is obtained as the concatenation

of the flows of the individual subsystems.

In this section a semi-explicit symplectic scheme for the CNLSE (2.26)-(2.27) will

be derived by splitting the vector field of the CNLSE into linear and nonlinear parts.

Then linear part will be solved exactly using the even-odd splitting. The even-odd

splitting method was proposed in [67]. The nonlinear part in Hamiltonian form will

be solved by the symplectic midpoint rule.

3.7.1 Linear-Nonlinear Splitting

We split the evolution equation of CNLSE (2.35) into linear and nonlinear parts as

qt = Lq +N q, (3.75)

where q = (q1, q2, q3, q4)T , and

L =




−δ1
∂
∂x −d1

∂2

∂x2 0 0

d1
∂2

∂x2 −δ1
∂
∂x 0 0

0 0 −δ2
∂
∂x −d2

∂2

∂x2

0 0 d2
∂2

∂x2 −δ2
∂

∂x




, N =




−z1(q)

z1(q)

−z2(q)

z2(q)




.

If L and N are t independent, a formal solution of (3.75) can be given by

q(x, t + ∆t) = exp[∆t(L+N )]q(x, t). (3.76)
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We split the equation (3.75) into linear

∂q1

∂t
= − δ1

∂q1

∂x
− d1

∂2q2

∂x2
,

∂q2

∂t
= − δ1

∂q2

∂x
+ d1

∂2q1

∂x2
,

∂q3

∂t
= − δ2

∂q3

∂x
− d2

∂2q4

∂x2
,

∂q4

∂t
= − δ2

∂q4

∂x
+ d2

∂2q3

∂x2
,

(3.77)

and the nonlinear subsystems

∂q1

∂t
= − [

a1
(
q2
1 + q2

2

)
+ e

(
q2
3 + q2

4

) ]
q2,

∂q2

∂t
=

[
a1

(
q2
1 + q2

2

)
+ e

(
q2
3 + q2

4

) ]
q1,

∂q3

∂t
= − [

e
(
q2
1 + q2

2

)
+ a2

(
q2
3 + q2

4

) ]
q4,

∂q4

∂t
=

[
e

(
q2
1 + q2

2

)
+ a2

(
q2
3 + q2

4

) ]
q3.

(3.78)

The linear subproblem (3.77) can be written as an infinite dimensional Hamiltonian

system (1.36) with

H(z) = −
∫ [

d1

2

(
(
∂q1

∂x
)2 + (

∂q2

∂x
)2

)
+

d2

2

(
(
∂q3

∂x
)2 + (

∂q4

∂x
)2

)

+δ1 q1
∂q2

∂x
+ δ2 q3

∂q4

∂x

]
dx.

(3.79)

and J as defined in (2.40). Next, introducing the variables in (2.41)-(2.42), the linear

subproblem (3.77) can also be written in the multisymplectic form (1.43) with M and

K as defined in (2.44) and

S(z) =
1

2d1

(
p2
1 + p2

2

)
+

1
2d2

(
p2
3 + p2

4

)
+

δ1

2d1
(p1q2 − p2q1) +

δ2

2d2
(p3q4 − p4q3)

+
δ2
1

8d1

(
q2
1 + q2

2

)
+

δ2
2

8d2

(
q2
3 + q2

4

)
.

(3.80)

The nonlinear subproblem (3.78) has Hamiltonian structure (1.36) with the J

defined in (2.40) and the Hamiltonian

H =
1
4

[
a1

(
q2
1 + q2

2

)2
+ a2

(
q2
3 + q2

4

)2
]

+
e

2
(q2

1 + q2
2)(q

2
3 + q2

4). (3.81)
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3.7.2 Even-Odd Splitting

We consider the infinite dimensional Hamiltonian formulation of the CNLSE (1.36).

We discretize the Hamiltonian (2.38) by approximating the integral by a Riemann

sum and use the central differences to approximate the space derivatives. We will

apply periodic boundary conditions, with period L. For simplicity, we will use the

notation q1m = q1(m∆x, t), etc. Then, the discretized Hamiltonian is

H =
N∑

m=1

[
∆x

4

(
a1

(
q1

2
m + q2

2
m

)2
+ a2

(
q3

2
m + q4

2
m

)2
)

+
∆x

2
e(q1

2
m + q2

2
m)(q3

2
m + q4

2
m)

]

−∆x

2
d1

N∑

m=1

[(
q1m+2 − q1m−2

4∆x

)2

+
(

q2m+1 − q2m−1

2∆x

)2
]

−∆x

2
d2

N∑

m=1

[(
q3m+2 − q3m−2

4∆x

)2

+
(

q4m+1 − q4m−1

2∆x

)2
]

−∆xδ1

N∑

m=1

q1m

(
q2m+1 − q2m−1

2∆x

)
−∆xδ2

N∑

m=1

q3m

(
q4m+1 − q4m−1

2∆x

)

(3.82)

First, we split the discrete Hamiltonian (3.82) into linear and nonlinear parts as

H = Hlin + Hnon

where

Hlin = −∆x

2
d1

N∑

m=1

[(
q1m+2 − q1m−2

4∆x

)2

+
(

q2m+1 − q2m−1

2∆x

)2
]

−∆x

2
d2

N∑

m=1

[(
q3m+2 − q3m−2

4∆x

)2

+
(

q4m+1 − q4m−1

2∆x

)2
]

−∆xδ1

N∑

m=1

q1m

(
q2m+1 − q2m−1

2∆x

)

−∆xδ2

N∑

m=1

q3m

(
q4m+1 − q4m−1

2∆x

)

(3.83)

and

Hnon =
N∑

m=1

[
∆x

4

(
a1

(
q1

2
m + q2

2
m

)2
+ a2

(
q3

2
m + q4

2
m

)2
)

+
∆x

2
e(q1

2
m + q2m

2)(q3
2
m + q4

2
m)

] (3.84)

Note that Hnon corresponds to the discretization of (3.81) and Hlin corresponds to

the discretization of (3.79). We notice in (3.83) that if m is even then the index of q1m
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and q3m are even, while the index of q2m and q4m are odd and vice versa. Therefore

we can apply even-odd splitting for the discrete Hamiltonian (3.83). Hence we can

write

Hlin = Heven + Hodd (3.85)

where

Heven = −∆x

2
d1

N∑
even

[(
q1m+2 − q1m−2

4∆x

)2

+
(

q2m+1 − q2m−1

2∆x

)2
]

−∆x

2
d2

N∑
even

[(
q3m+2 − q3m−2

4∆x

)2

+
(

q4m+1 − q5m−1

2∆x

)2
]

−∆xδ1

N∑
even

q1m

(
q2m+1 − q2m−1

2∆x

)

−∆xδ2

N∑
even

q3m

(
q4m+1 − q4m−1

2∆x

)

(3.86)

and

Hodd = −∆x

2
d1

N∑

odd

[(
q1m+2 − q1m−2

4∆x

)2

+
(

q2m+1 − q2m−1

2∆x

)2
]

−∆x

2
d2

N∑

odd

[(
q3m+2 − q3m−2

4∆x

)2

+
(

q4m+1 − q5m−1

2∆x

)2
]

−∆xδ1

N∑

odd

q1m

(
q2m+1 − q2m−1

2∆x

)

−∆xδ2

N∑

odd

q3m

(
q4m+1 − q4m−1

2∆x

)

(3.87)

Consequently, we split the Hamiltonian (3.82) into three parts

H = Hlin + Hnon

= Heven + Hodd + Hnon

(3.88)

where Heven, Hodd and Hnon are defined in (3.86), (3.87) and (3.84) respectively. Then

the time evolution generated by Heven is

dq1m

dt
= − 1

∆x

∂Heven

∂q2m

,
dq2m

dt
=

1
∆x

∂Heven

∂q1m

,

dq3m

dt
= − 1

∆x

∂Heven

∂q4m

,
dq4m

dt
=

1
∆x

∂Heven

∂q3m

.

(3.89)
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This evolution is given by

dq1m

dt
= 0

dq2m

dt
=

d1(q1m−2 − 2q1m + q1m+2)
4∆x2

+
δ1(q2m−1 − q2m+1)

2∆x
dq3m

dt
= 0

dq4m

dt
=

d2(q3m−2 − 2q3m + q3m+2)
4∆x2

+
δ2(q4m−1 − q4m+1)

2∆x





for m even (3.90)

and
q1m

dt
= −d1(q2m−2 − 2q2m + q1m+2)

4∆x2
+

δ1(q1m−1 − q1m+1)
2∆x

q2m

dt
= 0

q3m

dt
= −d2(q4m−2 − 2q4m + q4m+2)

4∆x2
+

δ2(q3m−1 − q3m+1)
2∆x

q4m

dt
= 0





form odd (3.91)

This system of equations can be solved exactly, since only even indexes q1m, q3m and

odd indexes q2m, q4m occur on the right hand sides, and these are constant in time.

When we use Hodd for time evolution, the situation is reversed and Hodd generates

solvable dynamics again by the following evolution equations:

q1m

dt
= −d1(q2m−2 − 2q2m + q1m+2)

4∆x2
+

δ1(q1m−1 − q1m+1)
2∆x

q2m

dt
= 0

q3m

dt
= −d2(q4m−2 − 2q4m + q4m+2)

4∆x2
+

δ2(q3m−1 − q3m+1)
2∆x

q4m

dt
= 0





for m even (3.92)

and
q1m

dt
= 0

q2m

dt
=

d1(q1m−2 − 2q1m + q1m+2)
4∆x2

+
δ1(q2m−1 − q2m+1)

2∆x
q3m

dt
= 0

q4m

dt
=

d2(q3m−2 − 2q3m + q3m+2)
4∆x2

+
δ2(q4m−1 − q4m+1)

2∆x





form odd (3.93)

Similarly, the time evolution generated by HNon is

dq1m

dt
= − 1

∆x

∂HNon

∂q2m

,
dq2m

dt
=

1
∆x

∂HNon

∂q1m

,

dq3m

dt
= − 1

∆x

∂HNon

∂q4m

,
dq4m

dt
=

1
∆x

∂HNon

∂q3m

.

(3.94)
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and the dynamics is evolved according to

∂q1m

∂t
= − [

a1
(
q1

2
m + q2m

2
)

+ e
(
q3

2
m + q4

2
m

) ]
q2m

∂q2m

∂t
=

[
a1

(
q1

2
m + q2m

2
)

+ e
(
q3

2
m + q4

2
m

) ]
q1m

∂q3m

∂t
= − [

e
(
q1

2
m + q2m

2
)

+ a2
(
q3

2
m + q4

2
m

) ]
q4m

∂q4m

∂t
=

[
e

(
q1

2
m + q2m

2
)

+ a2
(
q3

2
m + q4

2
m

) ]
q3m.

(3.95)

which can be solved by a symplectic method. In this section we will use the implicit

mid–point rule.

3.7.3 Composition method

The idea of the composition methods is to split the right hand side of a first-order

system of differential equations into two or more pieces, so that each of which can

be solved exactly or more conveniently than the original equation. The individual

solutions are then combined in such a way as to approximate the evolution of the

original equation for a time step.

Suppose that the linear and the nonlinear subsystems (3.77) and (3.78) have known

exact solutions

q(x, t + ∆t) = exp[∆t(L)]q(x, t), (3.96)

q(x, t + ∆t) = exp[∆t(N )]q(x, t). (3.97)

respectively. Replacing the exponential operator in (3.76) by an appropriate combi-

nation of products of the exponential operators exp(∆tL) and exp(∆tN ), we can

approximate the exact solution of equation (3.75). But since L and N are noncommu-

tative operators, this composition produces an error. The error of the noncommuta-

tive operators are analyzed by the Baker-Campbell-Haussdorff (BCH) formula [69, 90].

The BCH formula for two noncommutative operators X and Y can be formulated as

exp(X) exp(Y ) = exp
{

X + Y +
1
2
[X, Y ] +

1
12

[X − Y, [X, Y ]] + · · ·
}

, (3.98)

where the commutator [ , ] is defined by [X, Y ] = XY − Y X. A first-order approxi-

mation of the exponential operator in (3.76) is then

ϕ1(∆t) = exp(∆tL) exp(∆tN ).
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The second-order approximation is given by

ϕ2(∆t) = exp(
1
2
∆tN ) exp(∆tL) exp(

1
2
∆tN )

which satisfies the reversibility relation ϕ2(−∆t) = ϕ−1
2 (∆t). Higher order composi-

tion techniques can be found in [51, 73, 90] and [33] (Chapter II).

Here we consider the second order semi-explicit symplectic integrator for the

CNLSE (3.75) which is provided by the composition

ϕ2(∆t) = exp
(

1
2
∆tHodd

)
◦ exp

(
1
2
∆tHeven

)
◦ exp (∆tHnon) ◦

exp
(

1
2
∆tHeven

)
◦ exp

(
1
2
∆tHodd

)
(3.99)

where exp (tH) denotes the time-t flow of the vector field H.

The corresponding residuals in the energy and momentum conservation law are of

the form

REn
m =

En+1
m − En

m

∆t
+

F
n+ 1

2
m+1 − F

n+ 1
2

m−1

2∆x
, (3.100)

RMn
m =

In+1
m − In

m

∆t
+

G
n+ 1

2
m+1 −G

n+ 1
2

m−1

2∆x
, (3.101)

and the residual in the additional conservation law is of the form

RAn
m =

Tn+1
m − Tn

m

∆t
+

V
n+ 1

2
m+1 − V

n+ 1
2

m−1

2∆x
. (3.102)
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CHAPTER 4

LINEARIZED EQUATIONS AND DISPERSION

RELATIONS

The difficult part of doing any analysis of numerical dispersion and dissipation prop-

erties of the numerical schemes of the NLSE’s is that they are nonlinear. However,

for linear problems the exact solution of the PDE can be found so that it is straight-

forward to make comparison with the exact solution and the numerical solution.

So far, we have discussed NLSE’s and CNLSE’s with some properties, expressed

as conservation laws, which have a significant role in determining the dynamics of the

system. We have also discussed three numerical schemes and have shown how some of

these conservation laws are preserved by these schemes. However, these conservation

laws do not give enough information about the solution of these schemes. For example,

in every case, the energy and momentum conservation laws could not be preserved

exactly for general nonlinear problems using these schemes [21]. To understand the

solution behavior of these schemes, in this chapter we will consider the linearized

equations. That is, we will consider (1.43) such that

S(z) =
1
2

< z,Az >

where A is symmetric. This gives the linear multisymplectic PDE

Mzt + Kzx = Az. (4.1)

In [56] the Euler box scheme, the Preissman box scheme, the explicit midpoint scheme

and a mixed discretization (explicit midpoint in space, implicit midpoint in time and

vice versa) were applied to the linear multisymplectic PDE (4.1) and both continuous

and discrete dispersion relations were discussed for two model problems: the linearized

KdV and Boussinesq equations where the nonlinear wave equation is just a special case
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for the latter equation. Now we give a short summary of [56] for linearized equations:

In [56] it was shown that the dispersion relations for the Euler and Preissman schemes

were close to the exact relation for the linearized Boussinesq equation. On the other

hand, the explicit midpoint scheme produced computational modes. Computational

modes are produced when the discretization yields different branches in the disper-

sion relation. In other words, there are modes where the numerical scheme produces

good approximation and there are modes where the scheme yields poor approxima-

tions. Thus one must ensure that these modes are not stimulated during numerical

applications for nonlinear problems (see [58]). For the linearized KdV equation it was

shown that while the Euler and the explicit midpoint schemes produce computational

modes, the Preissman scheme does not. Using the continuous and numerical disper-

sion relations, it was shown that the absence of numerically induced diffusion and the

nonexistence of computational modes are two main characteristic expected of a mul-

tisymplectic integrator. For this reason the explicit midpoint scheme could not be a

multisymplectic integrator and in some cases the Euler box scheme could not be a mul-

tisymplectic integrator either. Moreover in [13] numerical dispersion relations were

presented for some symplectic and multisymplectic schemes for the linearized KdV

equation. For detailed analysis of the numerical and continuous dispersion relations

see also [58, 80].

In this chapter we will discuss the dispersion relation for both continuous and

discrete equations to understand the solution behavior of our multisymplectic Preiss-

man and coupled six point schemes for linearized problems. The Preissman scheme

was first proposed by Preissman [61] and developed by Zhao and Qin [93]. A simpler

version of this method was developed in [13]. Both the Preissman and the coupled

six point schemes are non-dissipative. Thus these methods give qualitatively correct

results for long times. Then using these results we will discuss the exact and the

numerical dispersion relations for the linearized NLSE and CNLSE.

4.1 Dispersion Relation

Any time-dependent scalar, linear partial differential equation with constant coeffi-

cients on an unbounded space domain admits plane wave solutions [38, 80, 85],

u(x, t) = uei(ξx+ωt), ξ ∈ R, i =
√−1 (4.2)
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where u = u(ξ), and ξ is the wave number, ω is the frequency and λ = 2π/ξ is the

wave length. Note that we use the standard notation for the frequency which should

not be confused with the auxiliary variable ω in the previous sections. If the initial

data u(x, 0) = eiξx are supplied to an equation of this kind, then there is a solution

for t > 0 consisting of u(x, 0) multiplied by an oscillation factor eiξx. The partial

differential equation gives a relationship between ξ and ω, and this relationship

ω = ω(ξ) (4.3)

is known as the dispersion relation. It must be noted that for every ξ there may

several different frequencies ωj(ξ) corresponding to different modes. In many cases,

the solution admits two modes such that ω1 = −ω2, corresponding to right and left

travelling waves.

If ω is real, then the wave (4.2) is propagated with the speed −ω/ξ. For complex

ω = a + ib, the plane wave solutions (4.2) takes the form

u(x, t) = ei(ξx+at)e−bt. (4.4)

The wave (4.4) decays as t →∞ if Im(ω) > 0, it grows if Im(ω) < 0 and and neither

grows nor decays if Im(ω) = 0. Also, if Re(ω) = 0 there will be no wave propagation.

Substituting the plane wave solution (4.2) into the linear PDE (4.1) gives the linear

system

(iωM + iξK−A)u = 0. (4.5)

If the determinant of the matrix derived from this equation is non-zero, then the

only solution is u = 0. This means that we have no wave solution. Therefore, the

determinant must be zero. This gives the continuous dispersion relation [18]

DA(ω, ξ) = det(iωM + iξK−A) = 0, (4.6)

which will be compared with the numeric dispersion relations. Notice that the matrix

used in (4.6) is self-adjoint. This implies a real dispersion relation, meaning there is

no diffusion ([85], Chapter 11).

The discrete approximations to differential equations also have plane wave so-

lutions, at least if the grid is uniform, and so they have dispersion relations, too.

Consider the discrete analog of the plane wave solutions (4.2)

un
m = ûei(Ξxm+Ωtn) = ûei(Ξm∆x+Ωn∆t), (4.7)
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where i =
√−1, Ξ ∈ R is the numerical wave number and Ω is the numerical frequency

such that

Ξ ∈ [−π/∆x, π/∆x] and Ω ∈ [−π/∆t, π/∆t]

because xm = m∆x and tn = n∆t ([15], Chapter 11). As in the continuous case, we

consider Ω = Ω(Ξ) so that the solution (4.7) will satisfy our difference equation. Note

that while the numerical wave number will remain the same for each solution, the

numerical wave frequency is different for each solution because of their dependency

on the wave number changes according to the discretization, which will be clear in

the following subsections. The function Ω(Ξ) will be called the discrete dispersion

relation. Notice that at all spatial grid points xm, the exponential ei(2πNxm/∆x) =

ei(2πNm) is exactly 1 for any integer N . More generally, any numerical wave number

Ξ is indistinguishable on the spatial grid from all other numerical wave numbers

Ξ+2πN/∆x. This means that (4.7) is 2π/∆x periodic on R. To make sense of the idea

of analyzing the plane wave solution, we shall normally restrict our attention to one

period of un
m by looking only at wave numbers in the range [−π/∆x, π/∆x]. Similarly,

we shall consider the numerical frequency Ω ∈ R in the range [−π/∆t, π/∆t]. If

Ω = a + ib, the discrete plane wave solution (4.7) has the form

un
m = ûei(Ξm∆x+an∆t)e−bn∆t. (4.8)

Thus, we see that the wave (4.8) decays as n →∞ if Im(Ω) > 0, grows without bound

(and the scheme will be unstable) if Im(Ω) < 0 and neither grows nor decays if Ω

real. Also, if Re(Ω) = 0 there will be no wave propagation.

The numerical solution (4.7) can be used to derive a numerical dispersion relation for

each of the schemes.

A strong method to determine the accuracy of a scheme is to compare the numerical

solution to an analytical solution. The equations we are considering are wave equations

and so we will compare the properties of waves. Dispersion relation gives information

about the wave so that we will compare the continuous dispersion relation with the

corresponding numeric relation. In the numerical discretization both the time step

and the space step affect the accuracy. To investigate the effect of the space and time

steps, we consider the numerical dispersion relation assuming ∆t → 0 and ∆x → 0

respectively.
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4.1.1 The Preissman Box Scheme

Applying the Preissman box scheme (3.22) to the linear PDE (4.1) yields

M




zn+1
m+ 1

2

− zn
m+ 1

2

∆t


 + K


z

n+ 1
2

m+1 − z
n+ 1

2
m

∆x


 = Az

n+ 1
2

m+ 1
2

, (4.9)

Using (4.7) we obtain the solution at x = (m + 1/2)∆x, t = n∆t as

zn
m+ 1

2
=

1
2
(zn

m+1 + zn
m)

=
1
2
û

(
ei(Ξ(m+1)∆x+Ωn∆t) + ei(Ξm∆x+Ωn∆t)

)

=
1
2
ûei(Ξ(m+ 1

2
)∆x+Ω(n+ 1

2
)∆t)

(
ei(Ξ∆x

2
−Ω∆t

2
) + ei(−Ξ∆x

2
−Ω∆t

2
)
)

= ẑe−iΩ∆t
2

(
eiΞ∆x

2 + e−iΞ∆x
2

)

where

ẑ :=
1
2
û

(
ei(Ξ(m+ 1

2
)∆x+Ω(n+ 1

2
)∆t)

)
.

Similarly

zn+1
m+ 1

2

= ẑeiΩ∆t
2

(
eiΞ∆x

2 + e−iΞ∆x
2

)

z
n+ 1

2
m+1 = ẑeiΞ∆x

2

(
eiΩ∆t

2 + e−iΩ∆t
2

)

z
n+ 1

2
m = ẑe−iΞ∆x

2

(
eiΩ∆t

2 + e−iΩ∆t
2

)

z
n+ 1

2

m+ 1
2

=
1
2
ẑ

(
eiΞ∆x

2 + e−iΞ∆x
2

) (
eiΩ∆t

2 + e−iΩ∆t
2

)

Thus we get

zn+1
m+ 1

2

− zn
m+ 1

2
= ẑ

(
eiΞ∆x

2 + e−iΞ∆x
2

) (
eiΩ∆t

2 − e−iΩ∆t
2

)

z
n+ 1

2
m+1 − z

n+ 1
2

m = ẑ
(
eiΞ∆x

2 − e−iΞ∆x
2

) (
eiΩ∆t

2 + e−iΩ∆t
2

)

Using the identities

eiθ + e−iθ = 2 cos(θ) and eiθ − e−iθ = 2i sin(θ)

we get

zn+1
m+ 1

2

− zn
m+ 1

2
= 4i cos

(
Ξ∆x

2

)
sin

(
Ω∆t

2

)
ẑ,

z
n+ 1

2
m+1 − z

n+ 1
2

m = 4i cos
(

Ω∆t

2

)
sin

(
Ξ∆x

2

)
ẑ,

z
n+ 1

2

m+ 1
2

= 2i cos
(

Ξ∆x

2

)
sin

(
Ω∆t

2

)
ẑ.
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After substituting these equalities into (4.9) we get a linear system

iM

2 tan
(

Ω∆t
2

)

∆t
+ iK

2 tan
(

Ξ∆x
2

)

∆x
−A


 û = 0. (4.10)

If we define the pseudo wave number and the pseudo frequency for the Preissman box

scheme by

ΞP :=
2 tan

(
Ξ∆x

2

)

∆x
and ΩP :=

2 tan
(

Ω∆t
2

)

∆t
(4.11)

the linear system (4.10) can be written as

(iΩPM + iΞK−A)û = 0, (4.12)

which is the numerical dispersion relation for the Preissman box scheme [56]. We

notice that the numerical dispersion relation (4.12) is the exact dispersion relation

evaluated at the pseudo wave number and the pseudo frequency, that is

DA(ΩP , ΞP ) = 0, (4.13)

where DA is defined in (4.6). Notice that the numerical dispersion relation (4.13) is

found by taking the determinant of a self-adjoint matrix, meaning there is no diffusion

induced by the numerical scheme.

Numerical dispersion relations for the Preissman scheme have also been presented

and discussed for linearized Boussinesq and KdV equations in [56]. In [13] the exact

and the numerical dispersion relation were compared for the linearized KdV equation

based on the two box schemes (4 × 3 and 4 × 2 narrow box) and a 5 × 2 symplec-

tic scheme. The results show that while the multisymplectic 12-point box scheme

preserves the shape of the exact dispersion relation for all cases the 8-point narrow

box scheme preserves the shape of the true dispersion relation under some conditions.

On the other hand, it was shown that the symplectic midpoint scheme has parasitic

waves. Parasites in space or time can both be harmful! However only the box scheme

avoids this problem in both space following the proposition in [13].

Proposition 4.1 [13]. The Preissman scheme qualitatively preserves the dispersion

relation of any system of linear first–order pdes Mzx + Kzt = Az. Specifically, there

are diffeomorphisms Ψ1 and Ψ2 which conjugate the exact and numerical dispersion

relations such that to each pair (ξ, ω) satisfying the numerical dispersion relation there

corresponds a pair (Ψ1(ξ),Ψ2(ω)) satisfying the exact dispersion relation.
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Proof. We set zn
m = aei(ξm+ωn) = ei( ξ

∆x
(m∆x)+ ω

∆t
(n∆t)) where a is a constant vector.

The exact dispersion relation is obtained by letting x = m∆x and t = n∆t vary

continuously, giving the generalized eigenvalue problem
(

i
ω

∆t
M + i

ξ

∆x
K−A

)
a = 0. (4.14)

The dispersion relation is a nontrivial solution of the above system; that is it is a

polynomial

det
(

i
ω

∆t
M + i

ξ

∆x
K−A

)
= 0. (4.15)

For the numerical scheme we get the numerical dispersion relation (as in (4.10)),

det
(

i
2

∆t
tan(ω/2)M + i

ξ

∆x
tan(ξ/2)K−A

)
= 0. (4.16)

Thus, the required diffeomorphisms are

Ψ1 : (−π, π) → R, Ψ1(ξ) = 2 tan(ω/2), (4.17)

Ψ2 : (−π, π) → R, Ψ2(ξ) = 2 tan(ξ/2). (4.18)

This completes the proof.

Notice that the multisymplectic property (namely that M and K are antisymmet-

ric and A is symmetric) is not used.For large systems of PDEs the dispersion relation

can be more complex. For example the relation may contain many branches. It is

remarkable that the Preissman scheme can capture all of this with a shift in frequen-

cies, unconditionally, for all ∆t and ∆x. Proposition 4.1 also holds for PDEs with any

number of space dimensions [13].

Next we discuss the continuous and numerical dispersion relation for linearized

NLS and linearized CNLSEs.

4.2 Linearized NLS

In this section we will consider the linearized Nonlinear Schrödinger equation

iut + uxx + au = 0, (4.19)

where a ∈ R and u is a complex-valued function. Using u = p+ iq we can write (4.19)

as a pair of real-valued equations

pt + qxx + aq = 0,

qt − pxx − ap = 0.
(4.20)

71



The linearized NLSE (4.19) can be written as an infinite dimensional Hamiltonian

system.
dz

dt
= J−1 δH

δz

where z = (p, q)T , J as defined in (1.3) with d = 1 and the Hamiltonian

H =
∫ 1

2

[
p2

x + q2
x − a(p2 + q2)

]
dx.

Introducing v = px and w = qx, the above system of equations can be written as a

first-order system

qt − vx = ap

−pt − wx = aq

px = v

qx = w

(4.21)

which leads to the linearized multisymplectic Hamiltonian system (4.1) with M and

K defined in (2.11) and

A =




a 0 0 0

0 a 0 0

0 0 1 0

0 0 0 1




and we obtain

iωM + iξK−A =




−a iω −iξ 0

−iω −a 0 −iξ

iξ 0 −1 0

0 iξ 0 −1




(4.22)

Then the continuous dispersion relation of the linearized NLSE based on the multi-

symplectic structure can be found by taking the determinant of this matrix, which

yields

D(ω, ξ) = ω2 − ξ4 + 2aξ2 − a2 = 0 (4.23)

or equivalently

ω2 =
(
a− ξ2

)2
. (4.24)

Notice that for every wave number ξ, the solution admits two modes ω1 = −ω2 which

corresponds to two equivalent waves travelling in opposite directions.
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Using (4.13), the numeric dispersion relation of the linearized NLSE corresponding

to the Preissman box scheme can be written as

D∆(ΩP , ΞP ) = Ω2
P − Ξ4

P + 2aΞ2
P − a2 = 0, (4.25)

or, equivalently

4 tan2
(

Ω∆t
2

)

∆t2
=


a−

4 tan2
(

Ξ∆x
2

)

∆x2




2

. (4.26)

Solving for Ω we find the numeric dispersion relation for the Preissman box scheme

Ω = ± 2
∆t

tan−1


∆t

2


a−

4 tan2
(

Ξ∆x
2

)

∆x2





 , Ω ∈ [−π/∆t, π/∆t], (4.27)

since tan(Ω∆t/2) is invertible for −π/2 < Ω∆t/2 < π/2. The numeric dispersion

relation (4.27) can be compared to the continuous dispersion relation (4.24). First

we notice that for every numerical wave number Ξ there correspond two numerical

frequencies Ω as in the case of exact dispersion relation (4.24). In particular, if we

decrease both the time step ∆t → 0 and the space step ∆x → 0, the numerical

dispersion relation (4.26) approaches the continuous dispersion relation (4.24). Next,

we will first investigate the effect of space step. For this, we consider the numeric

dispersion relation (4.26) assuming ∆t → 0, which yields

Ω2 =


a−

4 tan2
(

Ξ∆x
2

)

∆x2




2

. (4.28)

It is important to note that both in the exact and numeric dispersion relations (4.24)

and (4.28), ω2 and Ω2 are positive and therefore they are real, implying that there is

no diffusion.

We plot the numeric dispersion relation with continuous time (4.28) over the exact

dispersion relation (4.24) in Fig. 4.1 for spatial step size ∆x = 0.5 and ∆x = 0.1.

Notice that for every wave number the exact and the numerical dispersion relation

gives two frequencies as expected. The direction of these frequencies are opposite

meaning that two waves travelling in opposite direction as expected. We see that

while the numerical dispersion relation is close to the exact dispersion relation for the

spatial step size ∆x = 0.1, it is not close for step size ∆x = 0.5. However, in either

cases there are no temporal or spatial parasitic waves.

Notice that the accuracy is good for small wave number which corresponds to

long waves since the wave length is λ = 2π/ξ. Because the phase speed is ω/ξ, the
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phase speed is large. Also we find that the group speed ∂ω/∂ξ increasing because the

tangent line drawn to the graph approaches the vertical as the wave number go far

away from the origin.

Finally let us compare the numeric dispersion relation (4.27) to the exact dispersion

relation (4.24). The dispersion curves are shown in Fig. 4.2. We see that the results

are almost same with the previous case. The exact dispersion relation gives two

frequencies for every wave number as expected. The plot shows the the numerical

dispersion relation is close to the exact dispersion relation for small step size which

corresponds to many grid points in discretization. Also we notice that neither temporal

nor spatial parasitic waves are observed.

4.3 Linearized CNLSE

In this section we discuss the exact and numerical dispersion relation for the linearized

CNLSE based on the multisymplectic structure and check the robustness of our mul-

tisymplectic schemes for plane wave solution. In [29] the CNLSE (2.26)-(2.27) was

considered with δ1 = δ2 = 0, d1 = d2 = 1 and a1 = a2 = e = σ/2, where σ ∈ R. Using

the plane wave solutions

ψ1 = aei(ξx−ωt), ψ2 = bei(−ξx−ωt) (4.29)

an amplitude-dependent dispersion relation

ω = ξ2 − σ

2
(|a|2 + |b|2), a, b ∈ R

was obtained. Then the linearized stability analysis is presented by perturbing the

plane wave solutions. In [75] it was shown that the CNLSE (2.26)-(2.27) with δ1 =

δ2 = 0 has the exact periodic solutions

ψ1 = ν1e
i(ξ1x−ω1t), ψ2 = ν2e

i(ξ2x−ω2t) (4.30)

with the dispersion relations

ω1 = d1ξ
2
1 − (a1ν

2
1 + eν2

2), ω2 = d2ξ
2
2 − (a2ν

2
2 + eν2

1), (4.31)

where ν1, ν2 ∈ R. In this section we consider the linearized CNLSE based on the

multisymplectic structure and obtain the exact and numerical dispersion relation using

the plane wave solutions of the form

ψ1 = u1ei(ξx+ωt), ψ2 = u2ei(ξx+ωt) (4.32)
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where u1 and u2 are the amplitudes of the wave which are assumed to be real without

loss of generality, ξ is the wave number and ω is the frequency of the wave. In the

CNLSE (2.26)-(2.27) the nonlinear terms are replaced by real constants c1 and c2 as

c1 = a1 |ψ1|2 + e |ψ2|2 , (4.33)

c2 = e |ψ1|2 + a2 |ψ2|2 . (4.34)

Thus the linearized CNLSE can be written as

i

(
∂ψ1

∂t
+ δ1

∂ψ1

∂x

)
+ d1

∂2ψ1

∂x2
+ c1ψ1 = 0 (4.35)

i

(
∂ψ2

∂t
+ δ2

∂ψ2

∂x

)
+ d2

∂2ψ2

∂x2
+ c2ψ2 = 0 (4.36)

The linearized CNLSE (4.35)-(4.36) admits a plane wave solutions

ψ1 = u1ei(ξx+ωt), ψ2 = u2ei(ξx+ωt). (4.37)

Substituting (4.37) into (4.35)-(4.36) and cancelling the exponential terms gives two

homogenous equations

(
ω + δ1ξ + d1ξ

2 − c1

)
u1 = 0

(
ω + δ2ξ + d2ξ

2 − c2

)
u2 = 0

for u1 and u2. If the determinant of the matrix derived from these two equations

is non-zero, the only solution is u1 = u2 = 0. This means that we have no wave.

Therefore the determinant must be zero. This gives

(ω + δ1ξ + d1ξ
2)(ω + δ2ξ + d2ξ

2) = 0.

Note that the coefficients of the first and the second factors are the coefficients of

ψ1 and ψ2, respectively. Thus, the dispersion relations for the linearized CNLSE

(4.35)-(4.36) are given by

ω1,ψ1 = c1 − δ1ξ − d1ξ
2, ω2,ψ2 = c1 − δ1ξ − d1ξ

2 (4.38)

Now, we will derive the dispersion relation based on the multisymplectic structure.

The system (4.35)-(4.36) can also be written as a linear multisymplectic PDE (4.1)

for z = (q1, q2, q3, q4, p1, p2, p3, p4)T

A =




J1 J2

−J2 J3



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where

J1 =




2c̃1 0 0 0

0 2c̃1 0 0

0 0 2c̃2 0

0 0 0 2c̃2




J2 =




0 −δ1/2d1 0 0

δ1/2d1 0 0 0

0 0 0 −δ2/2d2

0 0 δ2/2d2 0




J3 =




1/d1 0 0 0

0 1/d1 0 0

0 0 1/d2 0

0 0 0 1/d2




c̃1 = c1/2 + δ2
1/8d1, c̃2 = c2/2 + δ2

2/8d2 and M and K defined in (2.44). Thus, finding

the determinant of the matrix

(iωM + iξK−A) =



−2c̃1 iω 0 0 −iξ δ1/2d1 0 0

−iω −2c̃1 0 0 −δ1/2d1 −iξ 0 0

0 0 −2c̃2 iω 0 0 −iξ δ2/2d2

0 0 −iω −2c̃2 0 0 −δ2/2d2 −iξ

iξ −δ1/2d1 0 0 −1/d1 0 0 0

δ1/2d1 iξ 0 0 0 −1/d1 0 0

0 0 iξ −δ2/2d2 0 0 −1/d2 0

0 0 δ2/2d2 iξ 0 0 0 −1/d2




gives the continuous dispersion relation for the multisymplectic linearized CNLSE

(4.35)-(4.36)

D(ω, ξ) =
1

d2
1d

2
2

(c2
1 − 2c1d1ξ

2 − δ2
1ξ

2 + d2
1ξ

4 − 2δ1ξω − ω2)

(c2
2 − 2c2d2ξ

2 − δ2
2ξ

2 + d2
2ξ

4 − 2δ2ξω − ω2) = 0.

Note that the coefficients of the first factor are the coefficients of ψ1 and the coeffi-

cients of the second factor are the coefficients of ψ2. Therefore, the first factor gives

the continuous dispersion relation for ψ1 and the second factor gives the continuous

dispersion relation for ψ2, that is

Dψ1(ω, ξ) = c2
1 − 2c1d1ξ

2 − δ2
1ξ

2 + d2
1ξ

4 − 2δ1ξω − ω2 = 0, (4.39)

Dψ2(ω, ξ) = c2
2 − 2c2d2ξ

2 − δ2
2ξ

2 + d2
2ξ

4 − 2δ2ξω − ω2 = 0, (4.40)
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Solving (4.39)-(4.40) for ω we get

ω1,ψ1 = c1 − δ1ξ − d1ξ
2, ω2,ψ1 = −c1 − δ1ξ + d1ξ

2, (4.41)

ω1,ψ2 = c2 − δ2ξ − d2ξ
2, ω2,ψ2 = −c2 − δ2ξ + d2ξ

2. (4.42)

These solutions give two branches for each wave ψ1 and ψ2. For every wave number ξ,

there are two frequencies which correspond to two wave travelling in different direction.

Note that for linear CNLSE (4.35)–(4.36) with c1 = c2 = 0 and δ1 = δ2 = 0, for every

wave number ξ, there are two frequencies satisfying ω1,ψ1 = −ω2,ψ1 and ω1,ψ2 = −ω2,ψ2

, which correspond to two equal waves for both ψ1 and ψ2 travelling in opposite

directions.

It is important to note that while the dispersion relation of the linearized CNLSE

(4.35)–(4.36) has two roots (4.38), the dispersion relation of the multisymplectic form

(4.1) has four roots (4.41),(4.42).

4.3.1 The Preissman Box Scheme

For the linearized CNLSE (4.35)-(4.36) the numerical dispersion relation (4.10) is

given by

D∆(ΩP ,ΞP ) =
1

d2
1d

2
2

(c2
1 − 2c1d1Ξ2

P − δ2
1Ξ

2
P + d2

1Ξ
4
P − 2δ1ΞP ΩP − Ω2

P )

(c2
2 − 2c2d2Ξ2

P − δ2
2Ξ

2
P + d2

2Ξ
4
P − 2δ2ΞP ΩP − Ω2

P ) = 0.

where the pseudo wave number and the pseudo frequency for the Preissman scheme

are defined as

ΞP :=
2 tan

(
Ξ∆x

2

)

∆x
, ΩP :=

2 tan
(

Ω∆t
2

)

∆t
.

Thus, we get

D∆,ψ1(ΩP , ΞP ) = c2
1 − 2c1d1Ξ2

P − δ2
1Ξ

2
P + d2

1Ξ
4
P − 2δ1ΞP ΩP − Ω2

P = 0, (4.43)

D∆,ψ2(ΩP , ΞP ) = c2
2 − 2c2d2Ξ2

P − δ2
2Ξ

2
P + d2

2Ξ
4
P − 2δ2ΞP ΩP − Ω2

P = 0, (4.44)

Solving (4.43)-(4.44) for ΩP we obtain

ΩP,ψ1 = ∓c1 − δ1ΞP ± d1Ξ2
P , ΩP,ψ2 = ∓c2 − δ2ΞP ± d2Ξ2

P . (4.45)

These dispersion relations are 2π/∆x periodic in Ξ and 2π/∆t periodic in Ω. With

the use of inverse trigonometric function it is possible to solve such equation for Ω, so
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that we can exhibit the functional dependence explicitly. But in general, the resulting

formulas are less appealing and often harder to work it because the trigonometric

functions may not be invertible in the corresponding domain. In our situation we use

the invertibility of the tan(θ) for θ ∈ [−π/2, π/2] so that (4.45) is equivalent to

Ωψ1 =
2

∆t
tan−1


∆t

2


−δ1

2 tan
(

Ξ∆x
2

)

∆x
∓ d1

4 tan2
(

Ξ∆x
2

)

∆x2
± c1





 (4.46)

Ωψ2 =
2

∆t
tan−1


∆t

2


−δ2

2 tan
(

Ξ∆x
2

)

∆x
∓ d2

4 tan2
(

Ξ∆x
2

)

∆x2
± c2





 (4.47)

where c1 and c2 are defined in 4.33. Thus, there are four frequency for every wave

number.

4.3.2 Coupled Six-Point Scheme

Applying the coupled six-point scheme (3.59)-(3.60) to the linearized CNLS (4.35)-

(4.36) yields

i
[
δ+
t δ2

x(ψ1) + δ1δ
+
x δtδx(Ψ1)

]
+ d1δ

+
x

2
δt(ψ1) + c1δtδ

2
xψ1 = 0, (4.48)

i
[
δ+
t δ2

x(ψ2) + δ2δ
+
x δtδx(Ψ2)

]
+ d2δ

+
x

2
δt(ψ2) + c2δtδ

2
xψ2 = 0, (4.49)

Substituting the plane waves

ψn
1m

= û1ei(Ξxm+Ωtn), ψn
2m

= û2ei(Ξxm+Ωtn) (4.50)

into (4.48)-(4.49) and cancelling the exponential terms yields two algebraic equations

in û1 and û2

[
tan

(
Ω∆t

2

)
+

δ1∆t

∆x
tan

(
Ξ∆x

2

)
+

2d1∆t

∆x2
tan2

(
Ξ∆x

2

)
− ∆t

32
c1

]
û1 = 0,

[
tan

(
Ω∆t

2

)
+

δ2∆t

∆x
tan

(
Ξ∆x

2

)
+

2d2∆t

∆x2
tan2

(
Ξ∆x

2

)
− ∆t

32
c2

]
û2 = 0,



W1(Ξ) 0

0 W2(Ξ)







û1

û2


 =




0

0




where

W1(Ξ) = tan
(

Ω∆t

2

)
+

δ1∆t

∆x
tan

(
Ξ∆x

2

)
+

2d1∆t

∆x2
tan2

(
Ξ∆x

2

)
− ∆t

32
c1

W2(Ξ) = tan
(

Ω∆t

2

)
+

δ2∆t

∆x
tan

(
Ξ∆x

2

)
+

2d2∆t

∆x2
tan2

(
Ξ∆x

2

)
− ∆t

32
c2
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To get a nontrivial solution the determinant of the coefficient matrix must be zero.

This gives

Ω6,ψ1 =
2

∆t
tan−1


∆t

2


−δ1

2 tan
(

Ξ∆x
2

)

∆x
− d1

4 tan2
(

Ξ∆x
2

)

∆x2
+

c1

16





 , (4.51)

Ω6,ψ2 =
2

∆t
tan−1


∆t

2


−δ2

2 tan
(

Ξ∆x
2

)

∆x
− d2

4 tan2
(

Ξ∆x
2

)

∆x2
+

c2

16





 . (4.52)

because tan(θ) is invertible for −π/2 ≤ θ ≤ π/2. Notice that for every wave number

there are two frequencies.

Now we compare the numerical dispersion relations obtained from the multisym-

plectic schemes with the exact dispersion relation. We see that the dispersion relations

for the continuous case (4.41)-(4.42) represent a polynomial relation between the wave

number ξ and the frequency ω, while the discrete model obtained using the Preiss-

man scheme (4.46)-(4.47) and using the six point scheme (4.51)-(4.52) amounts to

a trigonometric relation between the numerical wave number Ξ and the numerical

frequency Ω. We recall that the CNLSE (2.26)-(2.27) is integrable for d1 = d2 and

a1 = a2 = e [52], it is non-integrable for other cases [82]. Here we compare the disper-

sion curves of the integrable and non-integrable cases and also we compare the effect

of the linearized term corresponding to the constants c1 and c2.

The dispersion curves for the linearized CNLSE (4.35)-(4.36) with δ1 = δ2 =

1, d1 = d2 = 1 and c1 = c2 = 1 for the step sizes ∆x = ∆t = 0.1 are displayed in

Fig. 4.3. First we note that the exact dispersion relation gives two frequencies for

every wave number as expected. The plot shows that the dispersion relation for the

Preissman box scheme is close to the exact dispersion relation. For the coupled six

point scheme there is only one frequency for every wave number. This behavior of the

coupled six point scheme is due to the fact that we eliminate the auxiliary variables

in the multisymplectic form. However, the figure shows that the dispersion curve of

the coupled six point scheme preserves the one branch of the exact dispersion curve.

In Fig. 4.4, we fixed the parameters δ1, δ2, d1, d2 and changed c1 and c2 as c1 = c1 = 0

and we observe that the results are almost the same with Fig. 4.3. This shows that

the linearized term does not affect the numerical schemes. In Fig. 4.3 and 4.4 we

see that there are no temporal or spatial parasitic waves. The accuracy is good for a

small wave number which correspond to many grid points in the discretization as in

the case of linearized NLSE.
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Since c1 and c2 are in no way related to ∆t and ∆x, it is interesting to know how

the dispersion relations changes as the parameters c1 and c2 change. In Fig. 4.5 we

plot the exact and numerical dispersion relations of the Preissman box scheme and the

coupled six point scheme for ∆x = ∆t = 0.1, δ1 = δ2 = 1, d1 = d2 = 1, c1 = c2 = −10,

. The figure shows that there are no parasitic waves for both methods. Notice that

while the Preissman box scheme is still close to the exact dispersion relation in low

frequencies, the coupled six point scheme gives poor approximation. However, if we

decrease the step sizes we see that numerical dispersion relation are close to the exact

dispersion relation. For ∆x = 0.05,∆t = 0.02, in Fig. 4.6, the dispersion relations

become more ’flattened’ and as a result each plot shows a close correlation between

the numerical and exact dispersion relation. In Fig. 4.7 and 4.8 we plot the numerical

and exact dispersion relations for c1 = 0.01 < ∆x = ∆t = 0.1 < c2 = 1 and for

c2 = 0.01 < ∆x = ∆t = 0.1 < c1 = 1. In both cases we see that the dispersion

curves are almost same with Fig. 4.3 and 4.4 showing that the linearized terms which

corresponds to the constants c1 and c2 does not effect the numerical schemes.

We note that all the above cases were integrable cases (d1 = d2). Now compare the

dispersion curves of the integrable and non-integrable cases of the linearized CNLSE

(4.35)-(4.36). Fig. 4.9 and 4.10 shows the numerical and exact dispersion curves for

the integrable case δ1 = δ2 = 5, d1 = d2 = 1/2 with c1 = c2 = 1 and ∆x = ∆t = 0.1

and for the non-integrable case δ1 = δ2 = 5, 1/2 = d1 6= d2 = −1/2 with c1 = c2 = 1

and ∆x = ∆t = 0.1 respectively. From the figures we see that the Preissman box

scheme exhibit better behavior, qualitatively preserving the exact dispersion relation

for small frequencies. Also, the coupled six point scheme preserves the one branch

of the exact dispersion relation. In each case the discrete dispersion relation is an

accurate approximation when Ξ is small, which correspond to many grid point per

wavelength, because the number of points per spatial wavelength for the wave (4.7) is

2π/Ξ∆x.

We observe that the multisymplectic Preissman scheme does not have tempo-

ral or spatial parasitic waves for any problem based on the relation (4.46)-(4.47)

since tan(Ωψ1∆t/2) and tan(Ωψ1∆t/2) are invertible for −π/2 < Ωψ1∆t/2 < π/2 and

−π/2 < Ωψ2∆t/2 < π/2. By the same argument, the coupled six point scheme does

not have temporal or spatial parasitic waves for any problem of the form (4.51)-(4.52).

Both the exact and the numerical dispersion relations of these schemes are very close
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to each other, as a result each plot shows a close correlation between the numerical

and the exact dispersion relations.

In fact we observed two main characteristic of a multisymplectic integrator [56].

The first is the absence of numerically induced diffusion which is apparent from the

real numerical dispersion relation. The second characteristic of a multisymplectic

integrator is the non-existence of computational modes. It is well known that the

Preissman scheme is a multisymplectic integrator [21] and the numerical dispersion

relation of the Preissman scheme did not produce any computational modes. Also

we observed that the coupled six point scheme did not produce any computational

modes and for this reason we will consider the coupled six point scheme to be a

multisymplectic integrator, which is also apparent from the fact that the coupled six

point scheme was obtained from the multisymplectic Preissman scheme.

4.4 Linear Stability Analysis for Six–Point Scheme

In this section we investigate the linear stability of the six-point scheme (3.61)-(3.62).

In general, linear stability analysis for nonlinear equation can not be justified. How-

ever, it is found to be effective in practice [28]. In [25] the linear stability of a new

six–point scheme for the cubic NLSE (2.1) was investigated and it was shown that

the scheme was unconditionally linearly stable. Following [25], we consider the linear

CNLSE (4.35)–(4.36) and discuss the linear stability of the six–point scheme (3.61)–

(3.62).

Applying the six–point scheme (3.61)–(3.62) to the linearized CNLSE (4.35)–

(4.36), we obtain

i

2∆t

[
(ψ1

n+1
m−1/2 − ψ1

n
m−1/2) + (ψ1

n+1
m+1/2 − ψ1

n
m+1/2)

+
δ1

2∆x

(
(ψ1

n+1
m+1/2 − ψ1

n+1
m−1/2) + (ψ1

n
m+1/2 − ψ1

n
m−1/2)

)]

+
d1

∆x2

(
ψ1

n+1/2
m−1 − 2ψ1

n+1/2
m + ψ1

n+1/2
m+1

)

+
c1

2

(
ψ1

n+1/2
m+1/2 + ψ1

n+1/2
m−1/2

)
,

(4.53)
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i

2∆t

[
(ψ2

n+1
m−1/2 − ψ2

n
m−1/2) + (ψ2

n+1
m+1/2 − ψ2

n
m+1/2)

+
δ2

2∆x

(
(ψ2

n+1
m+1/2 − ψ2

n+1
m−1/2) + (ψ2

n
m+1/2 − ψ2

n
m−1/2)

)]

+
d2

∆x2

(
ψ2

n+1/2
m−1 − 2ψ2

n+1/2
m + ψ2

n+1/2
m+1

)

+
c2

2

(
ψ2

n+1/2
m+1/2 + ψ2

n+1/2
m−1/2

)
.

(4.54)

Let

ψ1
n
m = eiml∆xξ1 and ψ2

n
m = eiml∆xξ2 (4.55)

where l is an arbitrary integer. Substituting (4.55) into (4.53)–(4.54) and rearranging

the terms we obtain the amplification matrix

G(ξ) =




ξ1

ξ2


 = −




a1 + ib 0

0 a2 + ib



−1 


a1 − ib

a2 − ib


 (4.56)

where

a1 = −δ1∆t

∆x
sin(l∆x)− 2d1∆t

∆x2
sin2(

l∆x

2
) +

c1∆t

2
cos2(

l∆x

2
),

a2 = −δ2∆t

∆x
sin(l∆x)− 2d2∆t

∆x2
sin2(

l∆x

2
) +

c2∆t

2
cos2(

l∆x

2
),

b = 2 cos2(
l∆x

2
).

The eigenvalues of the amplification matrix G are

λ1 = −
(

a2
1 − b2

a2
1 + b2

)
+

(
2a1b

a2
1 + b2

)
i, λ2 = −

(
a2

2 − b2

a2
2 + b2

)
+

(
2a2b

a2
2 + b2

)
i. (4.57)

We notice that |λ1| = |λ2| = 1. Since G is Hermitian, the scheme (3.61)-(3.62) is

linearly stable (see [79] p.268). Thus we have proven the following:

Theorem 4.2 The multisymplectic integrator (3.61)-(3.62) is unconditionally lin-

early stable.

This means that there is no restriction on time step ∆t, but we must choose it by care

to obtain accurate results.
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Figure 4.1: The effect of discretization in space (∆t → 0) for linearized NLSE (4.19).
Solid line: exact dispersion relation (4.24); crossed: numerical dispersion relation with
continuous time (4.28). The left plot: with ∆x = 0.5. The right plot : with ∆x = 0.1.
The top plot : a = −1 < 0, The middle plot : a = 0. The bottom plot : a = 1 > 0
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Figure 4.2: The effect of discretization for linearized NLSE (4.19). Solid line: exact
dispersion relation (4.24); crossed: numerical dispersion relation (4.27). The left plot:
with ∆x = 0.1, ∆t = 0.1. The right plot : with ∆x = 0.1, ∆t = 0.01. The top plot :
a = −1 < 0, The middle plot : a = 0. The bottom plot : a = 1 > 0
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and numerical (crossed) dispersion relation for linearized CNLSE (4.35)-(4.36).
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and numerical (crossed) dispersion relation for linearized CNLSE (4.35)-(4.36).
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and numerical (crossed) dispersion relation for linearized CNLSE (4.35)-(4.36).
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−2 0 2
−3

−2

−1

0

1

2

3

Preissman Box Scheme: Ψ
1

ω
 ∆

 t

−2 0 2
−3

−2

−1

0

1

2

3

Preissman Box Scheme: Ψ
2

−2 0 2
−3

−2

−1

0

1

2

3

Coupled 6 Point Scheme: Ψ
1

ω
 ∆

 t

ξ ∆ x
−2 0 2

−3

−2

−1

0

1

2

3

Coupled 6 Point Scheme: Ψ
2

ξ ∆ x

Figure 4.10: Dispersion curves of the non-integrable case: δ1 = δ2 = 5, 1/2 = d1 6=
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CHAPTER 5

BACKWARD ERROR ANALYSIS

One of the most efficient ways to analyze the effect of discretization error in a numerical

solution is known as backward error analysis (BEA), in which a system of differentials

is compared with the modified equations that are satisfied by the numerical solution.

A modified equation is a truncated series in powers of step size, that is solved to higher

order by a numerical scheme. Such a transformation induces an error which can be

made exponentially small, and the results remain valid on exponentially long time

intervals [33]. It is very useful when the qualitative behavior of a numerical scheme is

of interest, and when statements over long time intervals are needed.

The idea of backward error analysis was first introduced by Wilkinson to under-

stand the propagation of rounding errors in numerical linear algebra. Later, the idea

of BEA have been applied to ODE’s [30, 31].

Although the expansions used in BEA depend on the numerical scheme, it can

be done for any finite difference method (see [33](Chapter 9), [69](Chapter 10)). In

particular, if a symplectic integrator is used to discretize a Hamiltonian system of

ODE’s, the modified equations are also Hamiltonian, and these types of integrators

have proved to give accurate and efficient results for long time integration [32, 63].

Recently, the ideas of backward error analysis have been applied to PDE’s in multi-

symplectic form [55, 56].

In this chapter, we summarize the results about the BEA for ODE’s and PDE’s

given in [55, 56].

Consider the initial value problem

y′ = f(y(t)), y(0) = y0. (5.1)

Let ϕt(y0) be the exact flow of (5.1) and Φ∆t(y) be a numerical method that approx-
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imates the solution of (5.1). A forward error analysis consist in the study of the local

error y1 − ϕ∆t(y0) and the global error yn − ϕn∆t(y0) where y0, y1, y2, · · · are approx-

imations produced by the numerical method Φ∆t(y) in the solution space. However,

the idea of BEA consists in searching for a modified differential equation ỹ′ = f∆t(ỹ)

of the form

ỹ′ = f(ỹ) + ∆tf2(ỹ) + ∆t2f3(ỹ) + · · · , (5.2)

ỹ(0) = y0 (5.3)

such that

yn = ỹ(n∆t) (5.4)

and studying the difference of the vector fields f(y) and f∆t(y). We notice in (5.4) that

ỹ(n∆t) is the exact solution of (5.2), while yn is the approximate solution obtained

from Φ∆t(y). In order to make this point clear, we consider the ODE (5.1) and apply

the first order explicit Euler method with step size ∆t and get

yn+1 = yn + δtf(yn). (5.5)

The Taylor series expansion of y(tn + ∆t) about tn gives

y(tn+1) = y(tn) + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3) (5.6)

and replacing the derivatives from the original equation (5.1), we obtain

y(tn+1) = y(tn) + ∆tf(y(tn)) +
∆t2

2
fy(y(tn))f(y(tn)) +O(∆t3) (5.7)

where fy(y(tn)) denotes the Jacobian of f . Ignoring all terms of order ∆t3 and by

eliminating the reference to the point n∆t, the modified PDE associated with the

Euler scheme (5.5) can be written as

y′ = f̃ := f(y)− ∆t

2
fy(y)f(y). (5.8)

Comparing the modified equation (5.8) with (5.1), we see that only one term is added

to the original equation (5.1). Therefore, the modified PDE (5.8) is called a first

order modification. In [56] it was shown that, the explicit Euler scheme (5.5) solves

the modified equation (5.8) to a second order accuracy. If more terms are used in the

Taylor series, the numerical scheme solves the modified equation to a higher accuracy

(see [56] for details).
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Notice that in the preceding analysis we eliminate the higher order derivatives in

(5.6) by differentiating the original equation (5.1). Following [56], we call this analysis

as BEA1. However, for higher order modification this becomes more complicated.

Now we give a revised approach to find the modified equation called BEA2 [56].

Consider the Hamiltonian ODE (1.1). Introducing

yn+1/2 :=
1
2
(yn+1 + yn)

and discretizing (1.1) by the implicit midpoint rule yields

J
yn+1 + yn

∆t
= ∇yH(yn+1/2). (5.9)

Then using Taylor series expansion about tn+1/2 we find that

y(tn+1)− y(tn)
∆t

= yt(tn+1/2) +
∆t2

223!
yttt(tn+1/2) +

∆t4

245!
yttttt(tn+1/2) + . . .

and

y(tn+1) + y(tn)
∆t

= yt(tn+1/2) +
∆t2

222!
ytt(tn+1/2) +

∆t4

244!
ytttt(tn+1/2) + . . .

Taking the expansion out to O(∆t2ρ) we can write

yn+1 + yn

2
=

ρ∑

j=0

Aj(τ)∂2j
t y (5.10)

and
yn+1 − yn

∆t
=

ρ∑

j=0

Bj(τ)∂2j+1
t y (5.11)

where τ := ∆t/2 and

Ak(τ) =
τ2k

(2k)!
, Bk(τ) =

τ2k

(2k + 1)!
.

Substituting the identities (5.10) and (5.11) into (5.9) we obtain the general modified

equation

J




ρ∑

j=0

Bj(τ)∂2j+1
t y


 = ∇yH




ρ∑

j=0

Aj(τ)∂2j
t y


 (5.12)

which can also be written as a modified Hamiltonian system. A similar approach is

carried out for Symplectic Euler method in [33]

Note that the BEA1 and BEA2 can only be applied to a system of ODE’s. However,

they can be applied to PDE’s by considering the system of ODE’s that result from

the semi-discretization of PDE’s. But this partially describes the error induced from
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the numerical scheme because in the modified equation only the powers of ∆t will

appear. On the other hand, the backward error analysis can be applied to PDE’s to

obtain a modified PDE in which the modification terms contain powers of ∆t and

∆x. This can be achieved by the revised approach in both time and space which was

introduced in [55] and known as BEA3 approach. In order to make this point clear, we

consider the multisymplectic PDE (1.43) and the Preissman box discretization (3.22)

to find the modified PDE associated with the Preissman box discretization. For this,

we introduce

τ =
∆t

2
and χ =

∆x

2

and define the notation

(Y(z))
n+ 1

2

m+ 1
2

= Y(z(tn+1/2, xm+1/2)). (5.13)

Using the Taylor series expansion about tn+1/2 we find that

δ+
t z(tn) =

z(tn+ 1
2

+ ∆t
2 )− z(tn+ 1

2
− ∆t

2 )

∆t

=

(
zt +

1
3!

(
∆t

2

)2

zttt +
1
5!

(
∆t

2

)4

zttttt +O(∆t6)

)n+ 1
2

.

(5.14)

Using the Taylor series expansion about xm+ 1
2

and performing the similar calculation

by changing the role of t and n to x and m, we obtain

δ+
x z(xm) =

z(xm+ 1
2

+ ∆x
2 )− z(xm+ 1

2
− ∆x

2 )

∆x

=

(
zx +

1
3!

(
∆x

2

)2

zxxx +
1
5!

(
∆x

2

)4

zxxxxx +O(∆x6)

)

m+ 1
2

.
(5.15)

Substituting (5.14) and (5.15) into the multisymplectic discretization (3.22) yields

Mδ+
t zn

m+ 1
2

+ Kδ+
x z

n+ 1
2

m −∇zS

(
z

n+ 1
2

m+ 1
2

)
=

(
Mzt + Kzx −∇zS(z) +O(∆x2 + ∆t2)

)n+ 1
2

m+ 1
2

(5.16)

which shows that the Preissman box discretization (3.22) is second order in time and

space.

Expansions (5.14) and (5.15) can be rewritten in a more compact way as

δ+
t z(tn) =

σ∑

k=0

τ2k

(2k + 1)!
∂2k+1

t z, δ+
x z(xm) =

σ∑

k=0

χ2k

(2k + 1)!
∂2k+1

x z (5.17)

where we have truncated the terms higher than ∆t2σ and ∆x2σ. Substituting these

expansions into the multisymplectic Preissman box scheme (3.22) yields the modified
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equation

M

(
σ∑

k=0

τ2k

(2k + 1)!
∂2k+1

t z

)
+ K

(
σ∑

k=0

χ2k

(2k + 1)!
∂2k+1

x z

)
= ∇zS(z) (5.18)

which is satisfied by the numerical solution up to O(∆t2σ + ∆x2σ).

Note that for σ = 0, the modified equation (5.18) becomes the multisymplectic

PDE (1.43). For σ = 1 modification, (5.18) takes the form

Mzt +
(∆t)2

24
Mzttt + Kzx

(∆x)2

24
Kzxxx = ∇zS(z) (5.19)

which can be viewed as a generalized (higher order) multisymplectic PDE and is

satisfied by the numerical solution up to O(∆t4 + ∆x4). For example, the modified

equation for the discrete NLSE (3.45) with σ = 1 modification can be written as

−
(

qt +
∆t2

24
qttt

)
−

(
vx +

∆x2

24
vxxx

)
= a

(
p2 + q2

)
p

(
pt +

∆t2

24
pttt

)
−

(
ωx +

∆x2

24
ωxxx

)
= a

(
p2 + q2

)
q

px +
∆x2

24
pxxx = v

qx +
∆x2

24
qxxx = ω.

(5.20)

The modified equation for the discrete CNLSE (3.50) with σ = 1 can be written as

q2t +
∆t2

24
q2ttt − p1x −

∆x2

24
p1xxx − z1q1 +

δ1

2d1

(
p2 − δ1

2
q1

)
= 0

−q1t −
∆t2

24
q1ttt − p2x −

∆x2

24
p2xxx − z1q2 − δ1

2d1

(
p1 +

δ1

2
q2

)
= 0

q4t +
∆t2

24
q4ttt − p3x −

∆x2

24
p3xxx − z2q3 +

δ2

2d2

(
p4 − δ2

2
q3

)
= 0

−q3t −
∆t2

24
q3ttt − p4x −

∆x2

24
p4xxx − z2q4 − δ2

2d2

(
p3 +

δ2

2
q4

)
= 0

q1x +
∆x2

24
q1xxx −

1
d1

(
p1 +

δ1

2
q2

)
= 0

q2x +
∆x2

24
q2xxx −

1
d1

(
p2 − δ1

2
q1

)
= 0

q3x +
∆x2

24
q3xxx −

1
d2

(
p3 +

δ2

2
q4

)
= 0

q4x +
∆x2

24
q4xxx −

1
d2

(
p4 − δ2

2
q3

)
= 0.

(5.21)

Eliminating the variables p1, . . . , p4 and using the fact that ψ1 = q1 + iq2 and

ψ2 = q3 + iq4 the modified equation (5.21) can be written as
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i

[
ψ1t +

∆t2

24
ψ1ttt + δ1

(
ψ1x +

∆x2

24
ψ1xxx

)]
+ d1

(
ψ1xx +

∆x2

12
ψ1xxxx

)

+ d1

(
∆x2

24

)2

ψ1xxxxxx +
(
a1|ψ1|2 + e|ψ2|2

)
ψ1 = 0, (5.22)

i

[
ψ2t +

∆t2

24
ψ2ttt + δ2

(
ψ2x +

∆x2

24
ψ2xxx

)]
+ d2

(
ψ2xx +

∆x2

12
ψ2xxxx

)

+ d2

(
∆x2

24

)2

ψ2xxxxxx +
(
e|ψ1|2 + a2|ψ2|2

)
ψ2 = 0. (5.23)

The modified equation with σ = 1 modification (5.19) can be rewritten as mul-

tisymplectic PDE. To make this more clear, we consider the modified equation with

σ = 1 modification (5.19). Introducing the auxiliary variables

p = zt, q = pt, r = zx, s = rx, (5.24)

the modified equation (5.19) can be rewritten as a first-order system of equations

Mzt +
(∆t)2

24
Mqt + Kzx+

(∆x)2

24
Ksx = ∇zS(z),

−(∆t)2

24
Mpt = −(∆t)2

24
Mq,

(∆t)2

24
Mzt =

(∆t)2

24
Mp,

−(∆x)2

24
Krx = −(∆x)2

24
Ks,

(∆x)2

24
Kzx =

(∆x)2

24
Kr

(5.25)

or in multisymplectic form

M̃z̃t + K̃z̃x = ∇z̃S̃(z̃) (5.26)

where

M̃ =




M 0 (∆t)2

24 M 0 0

0 − (∆t)2

24 M 0 0 0
(∆t)2

24 M 0 0 0 0

0 0 0 0 0

0 0 0 0 0




,
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K̃ =




K 0 0 0 (∆x)2

24 K

0 0 0 0 0

0 0 0 0 0

0 0 0 − (∆x)2

24 K 0
(∆x)2

24 K 0 0 0 0




and

S̃(z̃) = S(z) +
∆t2

24
qTMp +

∆x2

24
rTKs.

Note that M̃ and K̃ are skew-symmetric matrices due to the skew-symmetry of the

matrices M and K. Associated with the multisymplectic formulation (5.26), one can

define the two forms

ω̃ =< M̃, Ũ , Ṽ >, κ̃ =< K̃, Ũ , Ṽ > (5.27)

where Ũ and Ṽ are the solutions of the variational equation corresponding to the

modified multisymplectic formulation (5.26). Using the results in Section 1.4 one can

derive the modified energy conservation law

∂tẼ(z̃) + ∂xF̃ (z̃) = 0, (5.28)

and the modified momentum conservation law

∂tĨ(z̃) + ∂xG̃(z̃) = 0, (5.29)

where
Ẽ(z̃) = S̃(z̃)− 1

2 κ̃(z̃x, z̃), F̃ (z̃) = 1
2 κ̃(z̃t, z̃),

G̃(z̃) = S̃(z̃)− 1
2 ω̃(z̃t, z̃), Ĩ(z̃) = 1

2 ω̃(z̃x, z̃).
(5.30)

By direct computation modified energy conservation (5.28) of the CNLSE (2.26)-

(2.27) can be obtained with the energy density

Ẽ(z) = S(z)− 1
2

(
zTKzx − ∆x2

6
zT
x Kzxx +

∆t2

12
ztMztt +

∆x2

24
zTKzxx

)
(5.31)

and the energy flux

F̃ (z) =
1
2

(
zTKzt +

∆x2

24
zTKzxxt − ∆x2

24
zT
x Kzxt − ∆x2

24
ztKzxx

)
. (5.32)

Similarly, the modified momentum conservation (5.29) of the CNLSE (2.26)-(2.27)

can be obtained with the momentum density

Ĩ(z) =
1
2

(
zTMzx +

∆t2

24
zTMzxtt − ∆t2

24
ztMzxt − ∆t2

24
zxMztt

)
(5.33)
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and the modified momentum flux

G̃(z) = S(z)− 1
2

(
zTMzt − ∆x2

12
zT
x Kzxx +

∆t2

24
zTMzttt

)
. (5.34)

The modified equation (5.26) can also be derived from a modified Lagrangian

density which is also invariant under the transformation (1.59) [57]. Then the corre-

sponding modified conservation law can be found by multiplying the modified equation

(5.19) by (Az)T . Thus we get

zTMAzt +
∆t2

24
zTMAzttt + zTKAzx +

∆x2

24
zTKAzxxx = 0, (5.35)

where we have used the skew-symmetry of the matrices M and K, and the identity

(1.60). Using the identities

zTMAzt =
1
2
∂t

(
zTMAz

)

zTMAzttt = ∂t

(
zTMAztt

)
− 1

2
∂t

(
zT
t MAzt

)

zTKAzx =
1
2
∂x

(
zTKAz

)

zTKAzxxx = ∂x

(
zTKAzxx

)
− 1

2
∂x

(
zT
x KAzx

)

(5.36)

the equality (5.35) can be written as

∂t

(
zTMAz +

∆t2

12
zTMAztt − ∆t2

24
z2
t MAzt

)
+

∂x

(
zTKAz +

∆x2

12
zTKAzxx − ∆x2

24
z2
xKAzx

)
= 0. (5.37)

Thus we obtain the additional modified conservation law which is the modified version

of the conservation law (1.61).

Another form of backward analysis can be performed by expanding the Taylor’s

series about both tn+1/2 and xm+1/2. In this case we get

δ+
t zn

m+ 1
2

=
1

2∆t

(
zn+1
m+1 + zn+1

m − zn
m+1 − zn

m

)

=

(
zt +

χ2

2!
zxxt +

τ2

3!
zttt +

χ2τ2

2!3!
zxxttt +

χ4

4!
zxxxxt +O(χ6 + τ6)

)n+ 1
2

m+ 1
2

δ+
x z

n+ 1
2

m =
1

2∆x

(
zn+1
m+1 + zn

m+1 − zn+1
m − zn

m

)

=

(
zx +

χ2

3!
zxxx +

τ2

2!
zxtt +

χ2τ2

2!3!
zxxxtt +

χ4

5!
zxxxxx +O(χ6 + τ6)

)n+ 1
2

m+ 1
2

z
n+ 1

2

m+ 1
2

=
1
4

(
zn+1
m+1 + zn

m+1 + zn+1
m + zn

m

)

=

(
z +

χ2

2!
zxx +

τ2

2!
ztt +

χ2τ2

2!2!
zxxtt +

χ4

4!
zxxxx +O(χ6 + τ6)

)n+ 1
2

m+ 1
2

.
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Substituting these into the Preissman box scheme (3.22), we get

Mδ+
t zn

m+ 1
2
+Kδ+

x z
n+ 1

2
m −∇zS(z

n+ 1
2

m+ 1
2

) = Mzt +Kzx−∇zS(z)+O(∆x2 +∆t2) (5.38)

which again shows that the Preissman box discretization is second order both in space

and time. We can write these expansions in compact form as

z
n+ 1

2

m+ 1
2

=
σ∑

k=0

σ∑

l=0

Xk(χ)Xl(τ)∂2k
x ∂2l

t z (5.39)

δ+
x z

n+ 1
2

m =
σ∑

k=0

σ∑

l=0

Xk(τ)Tl(χ)∂2l+1
x ∂2k

t z (5.40)

δ+
t zn

m+ 1
2

=
σ∑

k=0

σ∑

l=0

Xk(χ)Tl(τ)∂2k
x ∂2l+1

t z. (5.41)

After substituting these expansions into (3.22) we get the general modified PDE

M

(
σ∑

k=0

σ∑

l=0

Xk(χ)Tl(τ)∂2k
x ∂2l+1

t z

)
+ K

(
σ∑

k=0

σ∑

l=0

Xk(τ)Tl(χ)∂2l+1
x ∂2k

t z

)
(5.42)

= ∇zS

(
σ∑

k=0

σ∑

l=0

Xk(χ)Xl(τ)∂2k
x ∂2l

t z

)
(5.43)

It is important to note that the case σ = 0 corresponds to no modification and the

equation (5.42) becomes the standard first-order multisymplectic PDE (1.43). How-

ever, for higher modification, for example σ = 1 modification the modified equation

(5.42) becomes

M

(
zt +

χ2

2
zxxt +

τ2

6
zttt +

χ2τ2

12
zxxttt

)
+ K

(
zx +

χ2

6
zxxx +

τ2

2
zxtt +

χ2τ2

12
zxxxtt

)

= ∇zS

(
z +

χ2

2
zxx +

τ2

2
ztt +

χ2τ2

4
zxxtt

)
(5.44)

which can be considered as a generalized (higher-order) multisymplectic PDE and is

satisfied by the numerical solution up to O(∆x4 + ∆t4). This modified equation can

be written in the form of the multisymplectic PDE (1.43). To do this, we introduce

z̃ = z + χ2

2 zxx + τ2

2 ztt + χ2τ2

4 zxxtt

= z + ∆x2

8 zxx + ∆t2

8 ztt + ∆x2∆t2

64 zxxtt

(5.45)

where we have used the definitions (5). Then

zt +
χ2

2
zxxt +

τ2

6
zttt +

χ2τ2

12
zxxttt = z̃t − ∆t2

12
z̃ttt +O(∆t4) (5.46)
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and

zx +
χ2

6
zxxx +

τ2

2
zxtt +

χ2τ2

12
zxxxtt = z̃x − ∆x2

12
z̃xxx +O(∆x4). (5.47)

Substituting (5.45),(5.46) and (5.47) into (5.44) yields

M

(
z̃t − ∆t2

12
z̃ttt

)
+ K

(
z̃x − ∆x2

12
z̃xxx

)
= ∇z̃S(z̃) (5.48)

where we ignored all terms containing O(∆x4 + ∆t4). In order to write (5.48) as a

first-order multisymplectic PDE, we introduce

a = z̃t, b = at, v = z̃x, w = vx, (5.49)

and rewrite (5.48) as

Mz̃t − (∆t)2

12
Mbt + Kz̃x− (∆x)2

12
Kwx = ∇z̃S(z̃)

(∆t)2

12
Mat =

(∆t)2

12
Mb

−(∆t)2

12
Mz̃t = −(∆t)2

12
Ma

(∆x)2

12
Kvx =

(∆x)2

12
Kw

−(∆x)2

12
Kz̃x = −(∆x)2

12
Kv

(5.50)

or in multisymplectic form

M̂ẑt + K̂ẑx = ∇ẑŜ(ẑ) (5.51)

where ẑ = (z̃, a, b, v, w)T , ∇ẑŜ(ẑ) = S(z̃) + ∆t2

12 aTMb + ∆x2

12 vTKw and

M̂ =




M 0 − (∆t)2

12 M 0 0

0 (∆t)2

12 M 0 0 0

− (∆t)2

12 M 0 0 0 0

0 0 0 0 0

0 0 0 0 0




K̂ =




K 0 0 0 − (∆x)2

12 K

0 0 0 0 0

0 0 0 0 0

0 0 0 (∆x)2

12 K 0

− (∆x)2

12 K 0 0 0 0




.
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CHAPTER 6

NUMERICAL RESULTS

In this chapter we examine the performance of the multisymplectic integrators; Preiss-

man box scheme (MS), the six-point scheme (MS6) and the semi-explicit symplectic

(SE) scheme. We use uniformly distributed mesh points in space and constant time

steps for all schemes. The numerical schemes are compared for two problem classes:

plane waves and soliton solutions with periodic boundary conditions.

Because the multisymplectic integrators MS and MS6 are implicit, to advance the

solution in time, we have used Newton iteration. As stopping criteria for the Newton

iteration we have used the error tolerance 10−10 between two successive iterates. At

each Newton step, system of dimension 8N × 8N for MS and 4N × 4N for MS and

SE schemes has been solved by LU decomposition. All programs have been written

and run in Matlab 6.5.

As mentioned in the preceding chapters, the preservation of the conserved quan-

tities like energy, momentum and additional conservation property by the multisym-

plectic integrators in long term computation plays an important role and they can be

used to monitor the accuracy and qualitative behavior of the solutions. We have com-

puted the residuals of the local conserved quantities for multisymplectic Preissman

and six-point schemes as the local energy conservation

LE(n) = ∆x(En+1
m+1/2 −En

m+1/2) + ∆t(Fn+1/2
m+1 − Fn+1/2

m ), (6.1)

the local momentum conservation

LM(n) = ∆x(In+1
m+1/2 − In

m+1/2) + ∆t(Gn+1/2
m+1 −Gn+1/2

m ) (6.2)

and the local additional conservation law

LA(n) = ∆x(Tn+1
m+1/2 − Tn

m+1/2) + ∆t(V n+1/2
m+1 − V n+1/2

m ). (6.3)
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The residuals of the local conserved quantities for the semi-explicit symplectic scheme

have been computed as the local energy conservation

LE(n) = ∆x(En+1
m − En

m) + (∆t/2)(Fn+1/2
m+1 − F

n+1/2
m−1 ), (6.4)

the local momentum conservation

LM(n) = ∆x(In+1
m − In

m) + (∆t/2)(Gn+1/2
m+1 −G

n+1/2
m−1 ) (6.5)

and the local additional conservation law

LA(n) = ∆x(Tn+1
m − Tn

m) + (∆t/2)(V n+1/2
m+1 − V

n+1/2
m−1 ). (6.6)

Once the local conserved quantities are evaluated the global invariants E(t) in

(1.64), I(t) in (1.65) and T (t) in (1.66) can be computed over the space domain. The

errors in the global invariants are then given as

GE(n) =
M∑

m=1

∆x(En
m − E0

m), (6.7)

GM(n) =
M∑

m=1

∆x(In
m − I0

m), (6.8)

GA(n) =
M∑

m=1

∆x(Tn
m − T 0

m). (6.9)

Here E0, I0 and T 0 are the initial values, and En, In and Tn are the values at time

t = n∆t of the conserved quantities.

The outline of this chapter is as follows: In Sec. 6.1 we present the numerical

results for CNLSE with plane wave solutions. The numerical results obtained by

the multisymplectic integrators and semi-explicit symplectic integrator are compared

with those existing in the literature for different parameter values of the CNLSE and

the initial conditions. In Sec 6.2 CNLSE with soliton solutions is considered. Single

soliton, elastic (corresponds to the integrable case of CNLSE) and inelastic soliton

collisions are computed using the Preissman and six-point schemes and the numerical

results are compared with those in the literature.

6.1 The plane wave solutions of CNLSE

Waves represented by function of one variable of the form

ω(x, t) = f(x− ct)
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with a nonzero constant c are called travelling waves. The constant |c| denotes the

speed of the wave. If c < 0, then the profile of the wave at a later time t is a translation

of the initial profile ω(x, 0) = f(x) by an amount ct in the negative x-direction with

constant speed |c|. If c > 0, then the profile of the wave represents a wave moving

in positive x-direction with speed c. Plane waves of PDE’s which retain their shapes

for a long period of time are known as solitary waves or solitons. Many analytical

and numerical studies were carried out for solitary wave solutions of CNLSE (see

[42, 41, 74, 76, 82, 86] and reference therein). This will be the subject of the next

section. Less attention is paid for the study of periodic plane wave solutions of the

CNLSE. In [74] the stability of the periodic solution of the form

ψ1 = a1 exp(i(ξ1 − ω1)),

ψ2 = a2 exp(i(ξ2 − ω2)),
(6.10)

have been studied analytically and criteria for the stability have been obtained.

In this Section we consider the CNLSE system (2.26)-(2.27) with δ1 = δ2 = 0,

d1 = d2 = 1, a1 = a2, i.e.,

i
∂ψ1

∂t
+

∂2ψ1

∂x2
+ (|ψ1|2 + e |ψ2|2)ψ1 = 0,

i
∂ψ2

∂t
+

∂2ψ2

∂x2
+ (e |ψ1|2 + |ψ2|2)ψ2 = 0

(6.11)

with periodic plane wave solution.

Analytical solutions of the CNLSE can be obtained only for a few parameter val-

ues where the self-modulation coefficients a1 = a2 and the cross-phase modulation

term e are equal, which corresponds to the integrable case studied by Manakov in

[48] (see Sec. 2.2). For all other cases, where the coefficients are different, numeri-

cal studies are necessary. Recently several methods have been developed in order to

understand the dynamics of plane wave solutions of the CNLSE for various combi-

nation of parameters (see [75, 81] and reference therein). Among them we mention

two numerical approaches which lead to better understanding of the dynamics of the

CNLSE. The first one is the Hopscotch method used in [81]. The Hopscotch method

uses both an explicit and an implicit scheme in time as follows: If m and n are the

spatial and temporal location in the discrete equation, then if (m + n) is odd, the

explicit scheme should be used; if (m+n) is even, the implicit scheme should be used.

The other approach is based on a combination of discretizing the CNLSE in space by
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using a pseudospectral method with the fourth-order Runge-Kutta integrator in time

[75]. In these papers the accuracy of the solutions were checked only using the norm

conservation of each compound of the CNLSE

C1(ψ1) =
∫ L/2

−L/2
|ψ1|2dx, and C2(ψ2) =

∫ L/2

−L/2
|ψ2|2dx (6.12)

where L denotes the spatial period of the solution.

In the following we will compare our numerical results obtained by the multisym-

plectic Preissman, six-point and the semi-explicit symplectic scheme for different cases

studied in [75, 81]. For multisymplectic integrators we have plotted the local conser-

vation of energy, momentum and additional conserved quantity in order to show how

their preservation affects the accuracy of the numerical results for the periodic waves

in long term. Because the additional conserved quantitiy is quadratic, it is preserved

by the Preissman scheme up to the rounding error. The preservation of the energy

and momentum over time with the error of order O(∆x)4 and O(∆t)4 can be ex-

plained using the backward error analysis in Chapter 5. The semi-explicit symplectic

integrator does not preserve the conserved quantities locally, but the growth in the

residual of these quantities over time is not much, so that the results obtained are

comparable with those in the literature. Another useful numerical aspect of multi-

symplectic schemes over the non-symplectic schemes can be seen by the numerical

results with initial phase shifts. Due to the excellent preservation of the dispersion

relations proved in Chapter 4 the multisymplectic scheme preserve the shape of the

waves overtime very well in case of initial phase shifts.

To solve the CNLSE system (6.11) numerically, we use the following initial condi-

tions [81]:

ψ1(x, 0) = a0(1− ε cos ξx), ψ2(x, 0) = b0(1− ε cos ξ(x + θ)), (6.13)

where a0 and b0 are the initial amplitudes of the unperturbed periodic waves, ε ¿ 1 is

a small parameter which represents the strength of perturbation, ξ is the wave number

of the perturbation, and θ is the initial phase difference between the two perturbations.

In the numerical experiments we choose ξ = 0.5 and ε = 0.1. Three sets of parameters

are used for the initial condition (6.13) which are listed in Table 6.1.

102



Table 6.1: Values of parameter for the initial condition (6.13) of the CNLS equation
(6.11).

a0 b0 θ

Case 1) e = 1 (Elliptic Polarization)
(1a) 0.5 0.5 0
(1b) 0.5 0.5 3π/2
(1c) 0.68 0.2 3π/2

Case 2) e = 2/3 (Linear Polarization)
(2a) 0.5 0.5 0
(2b) 0.5 0.5 3π/2
(2c) 0.63 0.2 0

Case 3) e = 2 (Circular Polarization)
(3a) 0.5 0.5 0
(3b) 0.5 0.5 3π/2
(3c) 0.78 0.2 0

6.1.1 Numerical Simulation I: Elliptical Polarization (e = 1)

We consider the CNLS equation (6.11) with e = 1. This is the integrable case that

Manakov [48] studied. The numerical solutions were computed using the perturbed

initial condition (6.13). From the linear stability analysis [75], the plane wave solution

(6.10) is linearly stable if the perturbation wave number ξ is greater than the the

critical value ξc =
√

2(a2
0 + b2

0). Otherwise, it is unstable. For case (1a) (see Table 6.1)

ξc = 1. The present choice of ξ = 1/2 implies that that the plane wave is unstable. For

this problem, the exact vaules of the conserved quantities (6.12) are C1(ψ1) = 3.1573

and C2(ψ2) = 3.1573.

Figure 6.1 provides the results for CNLS equation (6.11) with initial condition

(6.13) (see Table 6.1 1a), obtained by the schemes MS, MS6 and SE for (a-d) N =

256, ∆t = 0.1 and for (e-f) N = 256,∆t = 0.01. In this problem the spatial period

is 2π/ξ or 4π for ξ = 1/2. From the Fig. 6.1 we see that, within that length there

is only one single peak which we call one-hump state. The figure shows that the

amplitude of ψ1 and ψ2 undergoes oscillations between the near-uniform state and

the one-hump state as in the Hopscotch method (see [81]). This is basically a Fermi-

Pasta-Ulam (FPU) recurrence phenomenon which is defined as an event from the past

appears to be happening again as clearly as the first time you experienced it [11].

Fig. 6.2 shows the errors in local energy (3.51)-(3.52) and the local momentum (3.53)-

(3.54) conservation law. We see that the MS scheme preserves the local energy and
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momentum very well. However, the local errors for MS6 scheme is greater than the

MS scheme; this is because we eliminate the auxiliary variables pi, i = 1, · · · , 4 in the

MS integrator. But for the local conservation (3.51)– (3.54) we need the eliminated

variables pi, i = 1, · · · , 4 which are approximated by first-order forward difference

approximation which increases the local conservation errors. In SE scheme the local

energy and momentum errors are increasing because SE is not a multisymplectic

integrator. It should be pointed out that the errors are concentrated in the regions of

the solutions where there are two peaks.

Fig. 6.3 shows the results for errors in additional conservation law (3.55). We

notice that the multisymplectic schemes MS and MS6 shows a bounded oscillating

behavior, whereas the error in SE scheme is increasing.

The errors in global energy (6.7) and global momentum (6.8) conservations are

displayed in Fig. 6.4. It is worth noting that both MS and MS6 schemes preserves the

global momentum very well (up to the error criterion of 10−9) because it is quadratic

invariant. Although the SE scheme is not a multisymplectic integrator, it preserves

the global momentum very well too.

Fig. 6.5 shows that the multisymplectic six-point integrator MS6 preserves the

conserved quantities (3.71) and (3.73).

Plots in Fig. 6.6 show the surfaces |ψ1(x, t)| and |ψ2(x, t)| of the waveform ob-

tained using MS6 (3.61)-(3.62) and SE (3.99) schemes for initial data (6.13) (see Ta-

ble 6.1(1b)) with a) MS6 using N = 256, ∆t = 0.1 and b) SE using N = 256, ∆t = 0.01,

both for T = 100. The surface of the wave form obtained using MS integrator (3.50)

is similar to the surface of MS6 (see Fig. 6.6(a)). In [81] the authors have shown that

within the introduction of the phase difference θ = 3π/2 between the initial condi-

tions (6.13) (see Table 6.1(2a)) the evolution of ψ1 ceases to become periodic after

a few cycles in Hopscotch method. However, Fig. 6.6 shows that the periodicity of

the solution is not destroyed for MS6 and SE integrators. On the other hand, the SE

scheme shows small vibration with time. Thus, a phase difference may have dramatic

effect on the long time integration for SE scheme. We notice that although there is

no phase difference for ψ1, initially introducing a phase difference on ψ2 affects the

evolution of ψ1.

Fig. 6.7 show the results for the CNLS equation (6.11) using the initial data (6.13)

for a) MS6 using N = 256, ∆t = 0.1, b) SE using N = 256, ∆t = 0.01. The values
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Table 6.2: Elliptic polarization (e = 1): The absolute maximum error in the local and
global conservation laws for the CNLS equation (6.11).

LE LM LACL GE GM GACL
MS 1.2E-05 3.7E-04 1.9E-14 5.2E-06 1.0E-08 1.9E-13
MS6 1a 3.1E-03 8.6E-03 1.6E-03 4.5E-03 2.6E-10 1.6E-12
SE 7.4E-01 1.7E-01 9.5E-01 1.3E-02 2.5E-05 1.3E-02
MS 2.3E-05 6.3E-04 2.3E-14 9.9E-06 1.4E-06 2.5E-13
MS6 1b 5.5E-03 1.3E-02 2.6E-03 8.4E-03 6.4E-07 2.1E-12
SE 5.5E-01 7.1E-01 8.8E-01 3.9E-02 1.4E-04 5.7E-02
MS 1.4E-05 3.8E-04 1.9E-14 6.1E-06 1.4E-04 2.0E-13
MS6 1c 3.0E-03 8.6E-03 1.6E-03 4.5E-03 3.6E-05 1.1E-12
SE 5.8E-01 3.2E-01 7.9E-01 2.1E-01 1.0E-02 1.7E-02

of the parameters in the initial condition (6.13) is listed in Table 6.1(1c). Here we

notice that a0 and b0 are varied such that ξc is kept constant, and a phase difference

θ = 3π/2 is introduced initially. For this case, the periodic oscillation between the one-

hump state and the near uniform state was again destroyed using Hopscotch method

(see [81]). However, Fig.6.7 shows that in the multisymplectic integrator MS6 and

in the semi–explicit integrator SE the periodicity is not destroyed. The result of MS

integrator (3.50) is exactly same with MS6 (see Fig. 6.7-a).

Table 6.2 shows the absolute maximum error in the local energy (LE), momentum

(LM) and additional conservation (LACL) and global energy (GE), momentum (GM)

and additional conservation (GACL) for the CNLS equation (6.11) with initial data

(6.13) using the MS integrator (3.50), MS6 integrator (3.61)-(3.61) and SE integrator

(3.99). From the table we see that the multisymplectic schemes MS and MS6 preserves

the quadratic invariants such as GM and ACL.

Table 6.3 shows the values of the conserved quantities (6.12) obtained using MS,

MS6 and SE integrators for various time. The integrals (6.12) are approximated by

Simpson’s rule. The almost constant values of both C1(ψ1) and C2(ψ2) show that the

schemes are working well.

6.1.2 Numerical Simulation II: Linear Polarization (e = 2/3)

We consider the CNLS equation (6.11) with e = 2/3. This is an non–integrable case.

The numerical solutions were computed using the perturbed initial condition (6.13).

From the linear stability analysis [75], the plane wave solution is linearly stable if the
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Table 6.3: Elliptic polarization (e = 1): Exact and approximate values of the conserved
quantities (6.12) for various time for the CNLS equation (6.11).

(1a) (1b) (1c)

C1(ψ1) C2(ψ2) C1(ψ1) C2(ψ2) C1(ψ1) C2(ψ2)

Exact Values 3.1573 3.1573 3.1573 3.1573 5.8397 0.5052
Time
25 3.1574 3.1574 3.1578 3.1578 5.8390 0.5050

MS 50 3.1574 3.1574 3.1574 3.1574 5.8390 0.5050
75 3.1576 3.1576 3.1574 3.1574 5.8390 0.5050
100 3.1588 3.1588 3.1578 3.1578 5.8390 0.5050
25 3.1574 3.1574 3.1578 3.1578 5.8390 0.5050

MS6 50 3.1574 3.1574 3.1573 3.1573 5.8390 0.5050
75 3.1577 3.1577 3.1575 3.1575 5.8390 0.5050
100 3.1597 3.1597 3.1576 3.1576 5.8390 0.5050
25 3.1527 3.1527 3.1574 3.1574 5.8390 0.5050

SE 50 3.1521 3.1521 3.1575 3.1575 5.8390 0.5050
75 3.1524 3.1524 3.1577 3.1577 5.8390 0.5050
100 3.1545 3.1545 3.1572 3.1572 5.8390 0.5050

perturbation wave number ξ is greater than the the critical value

ξc =

√
a2

0 + b2
0 +

√
(a2

0 + b2
0)−

20
9

a2
0b

2
0.

Otherwise, it is unstable.

For a0 = b0 = 0.5 (see Table 6.1 2(a-b)), ξc = 0.91. For this choice, ξ = 0.5 implies

that that the plane wave is unstable. The exact vales of the conserved quantities

(6.12) are C1(ψ1) = 3.1573 and C2(ψ2) = 3.1573.

Fig. 6.8 shows the surfaces |ψ1(x, t)| and |ψ2(x, t)|, and local energy conservation

errors for CNLS equation (6.11) with initial data (6.13) (see Table 6.1 2a) obtained

using a) MS6 integrator (3.61)-(3.62) for N = 256, ∆t = 0.1 b) SE integrator (3.99)

for N = 256, ∆t = 0.01. The surface |ψ1(x, t)| of the waveform obtained using MS

integrator (3.50) is same as the surface obtained using MS6 integrator (see Fig. 6.8(a)).

Fig. 6.8 shows that the solution again evolves between the near-uniform state and

the one-hump state as in the Hopscotch method [81]. However, comparing with the

Hopscotch method, the results obtained using the MS and SE integrators shows that

the number of oscillation increases. Fig. 6.8(c) shows the local energy errors. From

the figure we see that although the error in MS6 scheme remains bounded, the error

in SE scheme increases in time. Also we notice that errors are concentrated in the
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region where there are two peaks as in the elliptic polarization case.

Fig. 6.9(a-b) shows that the initial phase difference in ψ2(x, 0) effects the evolution

of ψ1(x, t) as in the case of elliptic polarization. From the figure we see that, the spatial

location of peaks in |ψ1(x, t)| is affected by those in |ψ2(x, t)|. We also notice that,

within the introduction of a phase difference between the initial conditions, the period

of oscillation decreases. To see this effect one can compare Fig. 6.8 and Fig. 6.9. On the

other hand, in Hopscotch method [81], a phase difference between the perturbations

has no effect on the spatial locations of peaks of ψ1 and on the periodicity of the

evolution of ψ1. Fig. 6.9(c) shows the local energy errors. From the figure we see the

error in MS6 scheme remains bounded and the error in SE scheme increases in time

again. The errors are concentrated in the region where there are two peaks as in the

previous cases.

For a0 = 0.63, b0 = 0.2, ξc remains at 0.91. A chance in the ratio of a0/b0, or

a chance of the initial amplitude chances the period of oscillation again as in the

Hopscotch method [81]. The larger amplitude difference between the perturbations,

the shorter period of oscillation between the near-uniform state and the one-hump

state will become. However, in the large scale dynamics, namely oscillation between

a near-uniform state and a one-hump state, remains unchanged (see Fig. 6.10). The

bottom plots in Fig. 6.10 shows the local energy errors for MS6 and SE schemes. We

notice that while the local energy errors remains bounded in MS6 integrator, it grows

in time in SE integrator.

Table 6.4 shows the errors in local and global conservation in linear polarization

case. From the table we wee that MS integrator preserves the conserved quantities

better than MS6 and SE schemes.

6.1.3 Numerical Simulation III: Circular polarization (e = 2)

We consider the CNLS equation (6.11) with e = 2. In nonlinear optics, this is the

circular polarization mode case. This case is also non–integrable. The interaction

between perturbed periodic waves is very strong since the eave-wave interaction coef-

ficient e is two times the dispersion coefficients d1 = d2 = 1. The numerical solutions

were computed using the perturbed initial condition (6.13). From the linear stability
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Table 6.4: Linear polarization (e = 2/3): The absolute maximum error in the local
and global conservation laws for the CNLS equation (6.11)

LE LM LACL GE GM GACL
MS 6.0E-06 1.7E-04 1.3E-14 1.1E-06 1.3E-14 1.3E-13
MS6 2a 1.8E-03 5.6E-03 1.2E-03 2.5E-03 1.5E-14 4.1E-13
SE 1.9E-01 2.7E-02 3.1E-01 1.2E-03 4.7E-11 1.3E-03
MS 5.7E-06 1.6E-04 1.3E-14 2.2E-06 1.3E-14 1.2E-13
MS6 2b 1.6E-03 5.2E-03 1.1E-03 2.3E-03 9.5E-14 4.1E-13
SE 4.7E-01 4.4E-01 1.1E-00 1.8E-02 7.3E-11 4.0E-02
MS 5.8E-06 1.6E-04 1.2E-14 6.5E-06 3.8E-16 1.3E-13
MS6 2b 1.7E-03 5.1E-03 1.1E-03 2.3E-03 4.6E-16 3.3E-13
SE 5.4E-02 6.4E-03 8.2E-02 3.1E-04 1.2E-15 2.0E-04

analysis [75], the critical perturbation wave number is

ξc =

√
a2

0 + b2
0 +

√
(a2

0 + b2
0)2 + 12a2

0b
2
0

above which the plane wave solution (6.10) is stable; otherwise, it is unstable.

For a0 = b0 = 0.5 (see Table 6.1 3(a-b)), ξc = 1.23. The present choice of ξ = 0.5

implies that the plane wave is unstable. For this case the exact vales of the conserved

quantities (6.12) are C1(ψ1) = 3.1573 and C2(ψ2) = 3.1573.

When the initial amplitudes are equal a0 = b0 = 0.5 and the is no phase difference

initially, the evolution is more complex than the elliptic and linear polarization cases.

Fig. 6.11 shows the evolution of |ψ1(x, t)| of the waveform for CNLS equation (6.11)

with initial data (6.13) (see Table 6.1 3a) obtained using a) MS integrator (3.50) for

N = 256, ∆t = 0.1 b) MS6 integrator (3.61)-(3.62) for N = 256, ∆t = 0.1 c) SE

integrator (3.99) for N = 256, ∆t = 0.01. Exactly the same results are obtained

for the surface |ψ2(x, t)| which are not shown here. The results obtained using MS

and MS6 integrators show that one peak splits into two peaks and two peaks remerge

again. This phenomena repeats itself throughout the evolution (see Fig. 6.11 a,b).

The same results were obtained in the Hopscotch method. However in Fig. 6.11(c),

the results obtained using SE integrator show that after a period of time the separated

peaks coupled together, remain stationary and oscillating in their strength. Fig. 6.12

shows the local errors in energy conservation. From the figure we see that the errors in

multisymplectic integrators MS and MS6 remains bounded and do not grow in time.

However the local energy error in SE scheme increases in time and shows a chaotic

behavior in long time dynamics. Also the errors are concentrated on the region where

108



there are peaks.

When we introduce a phase angle between the perturbations, the evolution pattern

changes. There are two oscillating pulses excited from a single pulse. Initially, one

pulse propagates toward the left, another propagates toward the right. After a period

of time, they merge again. This pattern repeats itself with different periods (see

Fig. 6.13). The results obtained using MS integrator show that they move away in

opposite directions (Fig. 6.13 a). The same results were obtained in the Hopscotch

method. From Fig. 6.13 we see that the local errors are concentrated throughout the

propagation of the wave.

When the initial amplitudes are different and there is no initial phase difference,

the dynamic changes again. Fig. 6.14 shows the results for different initial amplitudes

(a0 = 0.78, b0 = 0.2) and zero phase difference. For this case the solitary wave-like

pulses were observed: two pulses are coupled together and form a new bound state,

remaining stationary and oscillating in their strength. Similar results were obtained

for the Hopscotch method.

6.2 Soliton Solutions of CNLSE

As mentioned in the preceeding section, there exist only few integrable cases of CNLSE

for which analytical solutions by the inverse scattering transform exist. For all other

cases extensive numerical computations are needed in order to understand the com-

plicated wave phenomenon in the CNLSE. As the fiber technology advanced, the

interest in optical solitons grows rapidly. Various soliton collision scenarios such as

transmission, reflection and creation of a new soliton have been reported. If a system

is integrable, solitary waves collide elastically, that is they preserve their shape after

collision. However if the system is non-integrable the collision may be highly non-

trivial and the collision may inelastic, that is the shapes of the solitons are changed

after collision. In general the speed and height of the solitary waves are not preserved

in the collision. In a non-integrable system, for some parameter values, the solitary

waves reflect one another while, for different parameter values, the wave pass through

each other but emerge with different speeds and amplitude. Additionally, the soliton

interactions can lead to large and rapidly decaying oscillating radiative tails. Because

the CNLSE is non-integrable in general, the solitary waves of an integrable and non-
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integrable CNLSE are of interest by many authors (see [3, 42, 41, 71, 86, 89, 87] and

reference therein).

In [42] the CNLSE (2.26)-(2.27) with δ1 = −δ2, d1 = d2 = 1/2, a1 = a2 and a

homogenous Neumann type boundary condition was considered. Solitary wave so-

lutions were studied numerically by introducing a finite difference method which is

second order in space and time and conserves the energy of the system exactly. In

[41] the CNLSE (2.26)-(2.27) with δ1 = δ2 = 0, d1 = d2 = 1/2, a1 = a2 = 1 was

solved numerically by a finite difference method which is fourth-order in space and

second order in time. It was shown that the finite difference scheme preserves the

conserved quantities (2.59)-(2.60) under homogenous boundary conditions. In [3] the

Ablowitz-Ladik (AL) type integrable discretization (see Sec 3.1) was applied to the

CNLSE (2.26)-(2.27) with δ1 = δ2 = 0, d1 = d2 = −1, a1 = a2 = 2. It was notice that

although the Ablowitz-Ladik discrete NLSE (3.9) is integrable, the integrability of the

the AL type of the CNLSE depends on the cross-modulation term e. Further it was

shown that the AL type discretization of the CNLSE results in a non-canonical Hamil-

tonian or Poisson structure which can be solved only by a nonlinear transformation

of the variables into canonical Hamiltonian form.

However in all these works, the symplectic and multisymplectic structures of the

CNLSE were not carried. Recently some authors applied symplectic and multisym-

plectic methods to NLSE in [72, 71]. In [71] the symplectic structure of the CNLSE

(2.26)-(2.27) with δ1 = δ2 = 0, d1 = d2 = −1, a1 = a2 = 1 was considered with

homogenous boundary conditions. Further, a symplectic six-point scheme based on

the symplectic structure of the CNLSE was derived to study the collision behavior

of the soliton waves of the CNLSE. We notice that the symplectic six-point scheme

found in [71] is different from the six-point scheme that we have derived using the

multisymplectic structure of the CNLSE. But the numerical results show that the

symplectic six-point scheme is not very usefull in the solitary wave simulation of the

CNLSE because local errors of the conserved quantities are averaged over the space

and therefore do not reflect the local multisymplectic structure of the system in space

and time. Further in [71] it was shown that the symplectic six-point scheme preserves

the discrete average norm conservation (3.71) and (3.73), which are used to show the

accuracy of the symplectic scheme. The solitary wave solutions of the CNLSE (2.26)-

(2.27), as a multisymplectic structure, with δ1 = δ2 = 0, d1 = d2 = 1, a1 = a2 = 1
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under periodic boundary conditions was studied numerically in [72]. The same six-

point scheme was used as in [71] and it was shown that it preserves the average norms.

The numerical results were reported for the collisions of the soliton with the mesh size

∆x = 0.2 and the time step ∆t = 0.02. Additionally, trapping, reflection, transaction,

fusion of two solitons and creation of a new soliton were observed numerically. The

accuracy of the multisymplectic six-point scheme was checked by monitoring only the

global energy error.

We notice that in all these numerical simulations, the local energy, momentum and

additional conservation properties of the CNLSE were neglected. They lacked also a

backward error analysis and dispersion analysis of the multisymplectic scheme. In

this work we have shown that the multisymplectic integrators based on the multisym-

plectic conservative PDE’s give highly accurate energy and momentum conservation

on the solitary wave solutions of the CNLSE. Although in [72] and [71] the mesh size

and time step were chosen as ∆x = 0.2 and ∆t = 0.02, we have shown that the

multisymplectic integrators like Preissman and six-point schemes well simulate the

solitary wave solutions of the CNLSE with ∆x = 0.1 and ∆t = 0.1 which decreases

the computation time.

In this section we investigate the performance of the proposed schemes MS and

MS6 for the evolution of a single soliton. We consider the CNLS equation (2.26)-(2.27)

with δ1 = −δ2 = δ, d1 = d = 1/2, a1 = a2 = 1, [42]; that is

i

(
∂ψ1

∂t
+ δ

∂ψ1

∂x

)
+

1
2

∂2ψ1

∂x2
+ (|ψ1|2 + e |ψ2|2)ψ1 = 0,

i

(
∂ψ2

∂t
− δ

∂ψ2

∂x

)
+

1
2

∂2ψ2

∂x2
+ (e |ψ1|2 + |ψ2|2)ψ2 = 0.

(6.14)

In general the equation (6.14) is nonintegrable [82]. However for e = 1 , (6.14) reduces

to the Manakov equation which is shown to be integrable [48]. The exact solution of

(6.14) is given by [42]

ψ1(x, t) =

√
2α

1 + e
sech(

√
2α(x− vt)) exp i ((v − δ)x− ζt) ,

ψ2(x, t) = ±
√

2α

1 + e
sech(

√
2α(x− vt)) exp i ((v + δ)x− ζt)

(6.15)

where α and v are real constants and ζ = (v2 − δ2)/2− α.
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Table 6.5: Various values for the conserved quantities (6.12) for the CNLS equation
(6.14) with initial data (6.16) with α = 0.5, v = 1.0, e = 2/3, δ = 0.5 over the spatial
interval [−40, 40] and time interval [0, 40] using MS and MS6 integrators with N = 400,
∆t = 0.1.

MS MS6
Time C1(ψ1) C2(ψ2) C1(ψ1) C2(ψ2)

10 1.6957 1.6936 1.6954 1.6932
20 1.6962 1.6949 1.6961 1.6945
30 1.6958 1.6940 1.6954 1.6939
40 1.6962 1.6944 1.6959 1.6939

Exact 1.6971 1.6971 1.6971 1.6971

6.2.1 Numerical Simulation I: Evolution of Single Soliton

We solve the CNLS equation (6.14) with the initial condition [42]

ψ1(x, 0) =

√
2α

1 + e
sech(

√
2αx) exp i ((v − δ)x) ,

ψ2(x, 0) =

√
2α

1 + e
sech(

√
2αx) exp i ((v + δ)x) .

(6.16)

In our experiment we choose e = 2/3 which is a nonintegrable case. We present here

the result of an integration with

α = 0.5, v = 1.0, δ = 0.5, −40 ≤ x ≤ 40, 0 ≤ t ≤ 40.

We divide the spatial length into N = 400 subintervals. We choose the temporal

step size as ∆t = 0.1. The spatial domain have been chosen large enough so that

the boundaries do not affect the solitary wave propagation. For these parameters,

the exact values of the conserved quantities (6.12) are C1 = 1.6971 and C2 = 1.6971.

Simpson’s rule is used for the integrals (6.12) in the numerical integrations and the

results are shown in Table. 6.5. The nearly constant values shows that the integrals in

(6.12) are conserved through the integration. This shows that the schemes are working

well. We also study the accuracy of the schemes MS, MS6 and SE by calculating the

infinity norm

L∞ = max1<m<N {|(‖ψe
1(xm, tn)‖ − ‖ψa

1(xm, tn)‖)|} (6.17)

where ψe
1(xm, tn) is the exact value obtained from (6.15) and ψa

1(xm, tn) is the approx-

imate values obtained from difference schemes MS at the point (xm, tn). Table 6.6

shows the accuracy of the MS integrator using L∞ error norm (6.17) for the CNLS
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Table 6.6: Accuracy of the MS integrator using L∞ error norm 6.17 for the CNLS
equation (6.14) with initial data (6.16) with α = 0.5, v = 1.0, e = 2/3, δ = 0.5 over the
spatial interval [−40, 40] and time interval [0, 40] using MS integrator with N = 400,
∆t = 0.1.

Time L∞
10 0.2033
20 0.3929
25 0.4669
30 0.5396
35 0.6132
40 0.6832

equation (6.14) with initial data (6.16) with α = 0.5, v = 1.0, e = 2/3, δ = 0.5 over the

spatial interval [−40, 40] and time interval [0, 40] using MS integrator with N = 400,

∆t = 0.1.

Fig. 6.15 shows the wave forms for CNLS equation (6.14) with initial condition

(6.16) obtained using (a) MS integrator (b) MS6 integrator with N = 400,∆t = 0.1.

From the figure, we can see that the evolution of the soliton is well simulated by

MS and MS6 integrators. Fig. 6.15 shows solitary wave has quasiperiodic structure.

Fig. 6.16 provides the results obtained using MS6 integrator.From the figure we see

that the single soliton is moving to the right with velocity v = 1 at t = 0, 10, 15, · · · , 40.

The same result is reported in [42].

Fig. 6.17 shows the local and global conservations of the energy and momentum

for MS and MS6 integrators. We notice that the schemes MS and MS6 well preserve

the local and global conservations. In local conservations we note that the error occur

mainly when the soliton travels into the spatial domain [−40, 40].

6.2.2 Numerical Simulation II : Evolution of Colliding Soliton

In this section, we solve the CNLS equation (6.14) with the initial condition [42]

ψ1(x, 0) =
2∑

j=1

√
2αj

1 + e
sech(

√
2αjxj) exp i((vj − δ)xj)

ψ2(x, 0) =
2∑

j=1

√
2αj

1 + e
sech(

√
2αjxj) exp i((vj + δ)xj),

(6.18)

where

α1 = 1, α2 = 0.5, v1 = 1.0, v2 = 0.1, x1 = x + 20, x2 = x− 5.
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Table 6.7: Various values for the conserved quantities (6.12) for the CNLS equation
(6.14) with initial data (6.18) with e = 2/3 over the spatial interval [−40, 40] and time
interval [0, 40] using MS and MS6 integrators with N = 400, ∆t = 0.1.

MS MS6
Time C1(ψ1) C2(ψ2) C1(ψ1) C2(ψ2)

10 2.8956 2.8933 2.8952 2.8930
20 2.8965 2.8947 2.8962 2.8942
30 2.8978 2.8947 2.8998 2.8867
40 2.8996 2.8956 2.8995 2.8824

Exact 2.8971 2.8971 2.8971 2.8971

These equations corresponds to two solitary waves, one initially located at x = −20

and moving to the right with velocity v1, and the second initially located at x = 5

moving to the right with velocity v2 [42]. We solve the problem using the proposed

schemes MS and MS6 for the spatial interval −40 ≤ x ≤ 40 using N = 400 spatial

mesh points for times up to t = 40 using the time step ∆t = 0.1.

In our first experiment we choose e = 1 which is an integrable case.

Fig. 6.18 shows the wave forms obtained using the MS and MS6 integrators.

From the figure we can see that the schemes well simulates the evolution of the

waves. Fig. 6.19 shows the evolution of the waves ψ1(x, t) and ψ2(x, t) at time

t = 0, 10, 15, · · · , 40. From the figure we notice that the taller (faster) wave catches up

and with the shorter (slower) wave, then it collides with the shorter wave and leaves it

behind. From the figure we notice that the interaction is elastic that the two solitons

left the interaction region without any disturbances in their identities. Two waves

emerge without any changes in their shapes and they conserve the energy almost ex-

actly. This phenomenon shows that there is no energy exchange during the collusion.

Fig. 6.20 represents the local and global energy and momentum conservation. In the

local conservations of energy and momentum, we note that the error mainly occur

through the faster soliton evolution. From both local and global conservation, we

can see that the error increases when the interaction takes place. Fig.6.21 shows the

contour plots of the waves ψ1(x, t) and ψ2(x, t). From these figures, we can see that

after the collision there is a small changes in the direction; that is collision causes a

small phase shift in solitons.

In our second experiment we choose e = 2/3 which is a non-integrable case.

Fig. 6.22 shows the wave forms obtained using the MS and MS6 integrators. From
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the figure we can see that the schemes simulate the evolution of the waves as good

as the integrable case e = 1. Fig. 6.23 shows the evolution of the waves ψ1(x, t)

and ψ2(x, t) at time t = 0, 10, 15, · · · , 40. From the figure we notice that the taller

(faster) wave catches up and with the shorter (slower) wave, then it collides with

the shorter wave and leaves it behind. From the figure we notice that the colliding

waves undergo an inelastic collision in case e = 1, that is, the two waves change their

original shapes after collision. The taller one becomes more taller and the shorter

one becomes more shorter. This phenomenon shows that there is an energy exchange

during the collusion. Fig. 6.24 represents the local and global energy and additional

conservation. From the figure we notice that the error occurs mainly through the

faster soliton evolution again. From both local and global conservation, we can see

that the error increases when the interaction takes place. Fig.6.25 shows the contour

plots of the waves ψ1(x, t) and ψ2(x, t). From these figures, we can see that after the

collision there is a small changes in the direction; that is, the collision causes a small

phase shift in solitons.

6.3 CONCLUSION and FUTURE WORK

The coupled nonlinear Schrödinger equation CNLSE plays an important role in non-

linear optics, in transmission of information over long distances, in geophysics and so

on. Because of its technical importance and symplectic nature it has attracted the

interest of many researchers in the last thirty years. There exists only for few parame-

ter integrable cases of the CNLSE for which analytical solutions are available. For a

wide range of physically interesting cases one has to find accurate numerical solutions

in order to understand the dynamics of the underlying nonlinear wave phenomena.

Several discretization schemes have been applied for solving the CNLSE; like as a dis-

crete integrable system, semi-discretized Hamiltonian ODE’s obtained either by finite

difference or pseudospectral approximations.

Throughout this thesis we have applied, using the multisymplectic structure of the

CNLSE, the multisymplectic integrators Preissman and six-point schemes. In partic-

ular we have considered several local conservation laws such as energy, momentum,

additional conserved quantity due to the symmetry and averaged norm associated

with the multisymplectic structure of the CNLSE and analyzed the behavior of the
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multisymplectic integrators with respect to these conservation laws. It was shown that

the Preissman and six-point schemes preserves the discrete multisymplectic quadratic

conservation laws like momentum and averaged norm exactly. Higher order poly-

nomial conserved quantities like energy are preserved in long term integration with

a small error. Because both schemes are fully implicit and expensive, a new semi-

explicit method was derived based on symplectic discretization in space, combined

with linear-nonlinear, even-odd splitting in time using the Hamiltonian formulation

of CNLSE.

For linearized CNLSE, numerical dispersion relations were derived. The non-

dissipative character of multisymplectic schemes makes them very attractive for preser-

vation of the shape of the periodic waves and soliton of solution of the CNLSE during

the computation. Also, the six-point scheme for the linearized CNLSE was shown to

be unconditionally linearly stable. Because the discrete form of the conserved quanti-

ties are preserved exactly by the multisymplectic schemes only for linear systems, we

have shown the almost preservation of the conserved quantities for the CNLSE using

the concept of the backward stability analysis. The backward stability analysis of the

multisymplectic schemes are done by deriving the modified equations simultaneously

in space and time variables for the discretized equations and conservation laws. It

turned out that the modified equations are correct to higher order in space and time

variables than the original ones.

All three numerical methods are applied to the CNLSE with plane wave and soliton

solutions for various combinations of parameters under periodic boundary conditions.

In the current literature mostly the preservation of the norms of each of the solution

components are given as a measure of the accuracy of the solutions. Numerical results

show that for certain parameter ranges the Fermi-Pasta-Ulam recurrence occurs for

the unperturbed destabilized periodic solutions of the CNLSE as for the single NLSE.

This suggest that the CNLSE has a kind of solutions that the waves ψ1 and ψ2 are

in proportional while for other ranges of parameters, solitary wave-like pulses are

excited. We have examined the effect of the initial phase differences on the long-

time evolution of the underlying physical systems. We have focused on the context of

wave propagation along a birefringent optical fiber. In the case of elliptical and linear

polarization, a phase difference does not have a significant influence on the long-time

evolution. On the other hand, in the circular polarized mode, a phase difference results
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in complex dynamics.

The numerical results obtained show that the distribution of the errors in the local

conserved quantities over the space and time domains is in a very good agreement with

the behavior of the wave solutions. They confirm the theoretical results predicted by

the backward error and linear dispersion analysis. The Preissman and the six-point

schemes preserve the shape of the waves and solitons and the results are superior to

those in the literature obtained by non-symplectic methods by using larger mesh sizes

in space and time steps. The semi-explicit method gives good results for a small time

step for the plane wave solutions but it fails in case of soliton collisions. However

a modified soliton can be obtained to represent a better numerical solution in both

space and time.

It turns out that the multisymplectic integrators like Preissman and six-point

schemes are very robust methods for the integration of the CNLSE and can be used

further to investigate the complicated nonlinear phenomena like collisions of waves,

solitons etc. in the CNLSE for different values of parameters.

Although there are lots of numerical studies for single PDE’s, there is few structure

preserving numerical studies for coupled PDE’s. The work done here can be applied

to other coupled PDE’s like the N-coupled NLSE.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Long–time evolution of the destabilized wave solutions for CNLSE with
e = 1 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T = 100. Left plots : surface
of |ψ1|. Right plots : surface of |ψ2|. (a-b) The multisymplectic scheme MS (c-d) the
multisymplectic six point scheme MS6 (e-f) the semi-explicit scheme SE
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Errors in local energy and momentum conservation laws of the destabilized
wave solutions for CNLSE with e = 1 ,a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N =
256, T = 100. Left plots : error in local energy. Right plots : error in local momentum.
(a-b) The multisymplectic scheme MS (c-d) the multisymplectic six point scheme MS6
(e-f) the semi-explicit scheme SE
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(a)

(b)

(c)

Figure 6.3: Errors in local additional conservation laws of the destabilized wave solu-
tions for CNLSE with e = 1 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T = 100.
Left plots : error in local energy. Right plots : error in local momentum. (a-b) The
multisymplectic scheme MS (c-d) the multisymplectic six point scheme MS6 (e-f) the
semi-explicit scheme SE
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Figure 6.4: Errors in global energy and momentum conservation laws of the destabi-
lized wave solutions for CNLSE with e = 1 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N =
256, T = 100. Left plots : error in local energy. Right plots: error in local momentum.
(a-b) The multisymplectic scheme MS (c-d) the multisymplectic six point scheme MS6
(e-f) the semi-explicit scheme SE
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Figure 6.5: Conservation property of the MS6 scheme for the destabilized wave solu-
tions of the CNLSE with e = 1 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T =
100. (a) The conserved quantity (3.71) (b) The conserved quantity (3.73)
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(a)

(c)

Figure 6.6: Long–time evolution of the destabilized wave solutions for CNLSE with
e = 1 ,a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 3π/2, N = 256, T = 100. Surfaces of |ψ1| and
|ψ2|.(a) The multisymplectic scheme MS6 (b) the semi-explicit scheme SE (c) Local
energy errors; left plot: MS6, right plot: SE
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(a)

(b)

(c)

Figure 6.7: Long–time evolution of the destabilized wave solutions for CNLSE with
e = 1, a0 = 0.68, b0 = 0.2, ε = 0.1, θ = 3π/2, N = 256, T = 100. Surfaces of |ψ1|
and |ψ2|. (a) The multisymplectic scheme MS6 (b) the semi-explicit scheme SE (c)
Local energy errors; left plot: MS6, right plot: SE
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(a)

(b)

(c)

Figure 6.8: Long-time evolution of the destabilized wave solutions for CNLSE with
e = 2/3 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T = 100. Surfaces of |ψ1| and
|ψ2| : (a) The multisymplectic scheme MS6 (b) the semi-explicit scheme SE (c)Local
energy errors; left plot: MS6; right plot :SE
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(a)

(b)

(c)

Figure 6.9: Long-time evolution of the destabilized wave solutions for CNLSE with
e = 2/3 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 3π/2, N = 256, T = 100. Surfaces of |ψ1|
and |ψ2|: (a) The multisymplectic scheme MS6 (b) the semi-explicit scheme SE (c)
Local energy errors; left plot: MS6; right plot :SE
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(a)

(b)

(c)

Figure 6.10: Long-time evolution of the destabilized wave solutions for CNLSE with
e = 2/3 , a0 = 0.63, b0 = 0.2, ε = 0.1, θ = 0, N = 256, T = 100. Surfaces of |ψ1| and
|ψ2|: (a) The multisymplectic scheme MS6 (b) the semi-explicit scheme SE (c) Local
energy errors; left plot: MS6; right plot :SE
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Figure 6.11: Long-time evolution of the destabilized wave solutions for CNLSE with
e = 2 , a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T = 100. Left plots : Contour
plot of |ψ1|. Right plots : surface of |ψ1|. (a) The multisymplectic scheme MS (b) the
multisymplectic six point scheme MS6 (c) the semi-explicit scheme SE
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(a)

(b)

(c)

Figure 6.12: Errors in local energy conservation laws of the destabilized wave solutions
for CNLSE with e = 2 ,a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 0, N = 256, T = 100. (a)
The multisymplectic scheme MS (b) the multisymplectic six point scheme MS6 (c)
the semi-explicit scheme SE
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Figure 6.13: Long-time evolution of the destabilized wave solutions for CNLSE with
e = 2 ,a0 = 0.5, b0 = 0.5, ε = 0.1, θ = 3π/2, N = 256, T = 100. Left plots: Contour
plots of |ψ1|. Right plots: Local energy error. (a) The multi-symplectic scheme MS
(b) the multi-symplectic six point scheme MS6 (c) the semi-explicit scheme SE
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Figure 6.14: Long-time evolution of the destabilized wave solutions for CNLSE with
e = 2 , a0 = 0.78, b0 = 0.2, ε = 0.1, θ = 0, N = 256, T = 100. Left plots : Contour
plots of |ψ1|. Right plots: Local energy error (a) The multi-symplectic scheme MS (b)
the multi-symplectic six point scheme MS6 (c) the semi-explicit scheme SE
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(a)

(b)

Figure 6.15: Wave forms : One soliton solution of CNLSE with e = 2/3 (a) MS
integrator, (b) MS6 integrator
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Figure 6.16: Evolution of the wave |ψ1|: One soliton solution of CNLSE with e = 2/3
obtained using MS6 integrator
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Figure 6.17: Local and global conservation of energy : One soliton solution of CNLSE
with e = 2/3 Left plots: MS integrator; right plots: MS6 integrator
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(a)

(b)

Figure 6.18: Wave forms : Elastic collision of two solitons with e = 1 obtained using
(a) MS integrator (b) MS6 integrator
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Figure 6.19: Evolution of the wave |ψ1|: Two soliton solution of CNLSE with e = 1
obtained using MS integrator.
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Figure 6.20: Local and global conservation of energy and momentum : Two soliton
solution of CNLSE with e = 1. Left plots: MS integrator; right plots: MS6 integrator.
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Figure 6.21: Contour plots: Two soliton solution of CNLSE with e = 1 obtained using
(a) MS integrator (b) MS6 integrator.
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(a)

(b)

Figure 6.22: Inelastic collision of two solitons with : e = 2/3 obtained using (a) MS
integrator (b) MS6 integrator.
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Figure 6.23: Evolution of the wave |ψ1|: Two soliton solution of CNLSE with e =
2/3, δ1 = δ2 = 0.5, obtained using MS integrator
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Figure 6.24: Local and global conservation of energy and additional conservation
: Two soliton solution of CNLSE with e = 2/3, δ1 = δ2 = 0.5,. Left plots: MS
integrator; right plots: MS6 integrator.
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Figure 6.25: Contour plots: Two soliton solution of CNLSE with e = 2/3, δ1 = δ2 =
0.5, obtained using (a) MS integrator (b) MS6 integrator.
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(a)

(b)

Figure 6.26: Inelastic collision of two solitons of CNLSE with e = 2/3, δ1 = δ2 = 0.2,
obtained using (a) MS integrator (b) MS6 integrator.
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Figure 6.27: Evolution of the wave |ψ1|: Two soliton solution of CNLSE with e =
2/3, δ1 = δ2 = 0.2, obtained using MS6 integrator.

145



0 5 10 15 20 25 30 35

−3

−2

−1

0

1
x 10

−4

t

E
ne

rg
y

GLOBAL ENERGY ERROR

5 10 15 20 25 30 35
−3

−2

−1

0

1

2

3

x 10
−3

t

E
ne

rg
y

GLOBAL ENERGY ERROR

0 5 10 15 20 25 30 35

−6

−4

−2

0

2

4

6

8

x 10
−5

t

M
om

en
tu

m

GLOBAL MOMENTUM ERROR

0 5 10 15 20 25 30 35

−4

−2

0

2

4
x 10

−4

t

M
om

en
tu

m

GLOBAL MOMENTUM ERROR

Figure 6.28: Local and global conservation of energy and momentum conservation
: Two soliton solution of CNLSE with e = 2/3, δ1 = δ2 = 0.2,. Left plots: MS
integrator; right plots: MS6 integrator.
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Figure 6.29: Contour plots: Two soliton solution of CNLSE with e = 2/3, δ1 = δ2 =
0.2, d1 = d2 = 0.5, a1 = a2 = 1, N = 400,∆t = 0.1 obtained using (a) MS integrator
(b) MS6 integrator.
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Congress French Association for Computation., 1961.

[62] R. Radhakrishnan, M. Lashmanan, and J. Hietarinta, Inelastic collision and
switching of coupled bright solitons in optical fibers, Phys. Rev. E 56 (1997),
2213–2216.

[63] S. Reich, Backward error analysis for numerical integrators, SIAM,Numerical
Analalysis 36 (1999), 1549–1570.

[64] S. Reich, Finite volume methods for multi–symplectic PDEs, BIT 40 (2000), 559–
582.

[65] S. Reich, Multi–symplectic Runge–Kutta collocation methods for Hamiltonian
wave equations, Computational Physics 157 (2000), 473–499.

151



[66] M.P. Robinson, The solution of nonlinear Schrödinger equations using orthogonal
spline collocation, Computers Mathematics and Application 33 (1997), 39–57.

[67] A. Rouhi and J. Wright, A new operator splitting method for the numerical solu-
tion of partial differential equations, Comput. Phys. Comm. 85 (1995), 18–28.

[68] J.M. Sanz-Serna, Methods for the numerical solution of the nonlinear Schrödinger
equation, Mathematical Computation 43 (1984), 21–27.

[69] J.M. Sanz-Serna and M.P Calvo, Numerical Hamiltonian Problems, Chapman
and Hall, London, 1994.

[70] W.A. Strauss, The Schrödinger equation, North–Holland Mathematics Studies,
vol. 730, pp. 452–465, North–Holland, New–York, 1978.

[71] J.Q. Sun and X.Y. Gu Z.Q. Ma, Numerical study of the soliton waves of the
coupled nonlinear Schrödinger system, Physica D 196 (2004), 311–328.

[72] J.Q. Sun and M.Z. Qin, Multi–Symplectic methods for the coupled 1D nonlinear
Schrödinger system., Comp. Phys. Comm. 155 (2003), 221–235.

[73] M. Suzuki, Convergence of general decompositions of exponential operators, Com-
munication in Mathematical Physics 163 (1994), 491–508.

[74] B. Tan and J.P. Boyd, Coupled–mode solitary wave in a pair of cubic Schrödinger
equations with cross modulations: Analytical solution and collisions., Chaos, Soli-
tons & Frcatals 11 (2000), 1113–1129.

[75] B. Tan and J.P. Boyd, Stability and long time evolution the periodic solutions of
the two coupled nonlinear Schrödinger equations, Chaos Solitons and Fractals 12
(2001), 721–734.

[76] Y. Tan and J. Yang, Resonance–and phace–induced window sequaences in vector–
soliton collision, Phy. Let. A 288 (2001), 309–315.

[77] Y.F. Tang, V.M. Parez-Garcia, and L. Vazquez, Symplectic Methods for Ablowitz–
Ladik model, Appl. Math. and Comp. 82 (1997), 17–38.

[78] Y.F. Tang, L. Vazquez, F. Zhang, and V.M. Perez Garcia, Symplectic methods
for the nonlinear schrödinger equation, Comput. Math. Applic 32 (1996), 73–83.

[79] J.W. Thomas, Numerical partial differential equations: Finite difference methods,
Springer, 1995.

[80] L.N. Trefethen, Finite differences and spectral methods for ordinary
and partial differential equations, unpublished text, 1996, available at
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/pdetext.html.

[81] S.C. Tsang and K.W. Chow, The evolution of periodic waves of the coupled non-
linear Schrödinger equations., Math & Compt. Simul. 66 (2004), 551–564.

[82] M. Wadati, T. Iizuka, and M. Hisakado, A coupled nonlinear Schrödinger equation
and optical solitons, J. Phys. Soc. Japan 61 (1992), 2241–2245.

[83] Y.S. Wang and M.Z. Qin, Multisymplectic Schemes for the Nonlinear Klein–
Gordon Equation., Math. Comp. Model. 36 (2002), 963–977.

152



[84] M.I. Weinstein, Solitary waves of nonlinear dispersive evolution equations with
critical power nonlinearities, J. Diff. Eq. 69 (1987), 192–203.

[85] G.B. Whitham, Linear and Nonlinear Waves, Wilet–Interscience, New York,
1974.

[86] J. Yang, Classifications of the solitary waves in coupled nonlinear Schrödinger
equations., Physica D 108 (1997), 92–112.

[87] J. Yang, Interactions of vector solitons, Phys. Rev. E 64 (2001), 1–16.

[88] J. Yang and D.J. Benney, Some properties of nonlinear wave systems, Stud. Appl.
Math. 96 (1996), 111–139.

[89] J. Yang and Y. Tan, Fractal structure in the collision of vector solitons, Phys.
Rev. Lett. 85 (2000), 3624–3627.

[90] H. Yoshida, Construction of higher order Symlectic Integrators, Physics Letters
A 150 (1990), 262–268.

[91] V.E. Zakharov and E.L. Schulman, To the integrability of the system of two cou-
pled nonlinear Schrödinger equations., Physica D 4 (1982), 270–274.

[92] V.E. Zakharov and A.B. Shabat, Exact theory of two–dimensional self–focusing
and one–dimensional self–modulation of waves in nonlinear media, Sov. Phys.
JETP 34 (1972), 62–69.

[93] P.F. Zhao and M.Z. Qin, Multisymplectic geometry and multisymplectic preissman
scheme for the KdV equation, J. of Phys. A: Math. and General 33 (2000), 3613–
3626.

153


