

A CONTROL SYSTEM USING BEHAVIOUR HIERARCHIES AND
NEURO-FUZZY APPROACH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

DİLEK ARSLAN

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JANUARY 2005

Approval of the Graduate School of Natural and Aplied Sciences,

 Prof. Dr. Canan Özgen

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Ayşe Kiper

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ferda N. Alpaslan

 Supervisor

Examining Committee Members

Prof. Dr. Mehmet Tolun (Çankaya Univ.)

Assoc. Prof. Dr. Ferda Nur Alpaslan (METU)

Prof. Dr. Adnan Yazıcı (METU)

Assist. Prof. Dr. Halit Oğuztüzün (METU)

Dr. Ayşenur Birtürk (METU)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

Name, Last name : Dilek Arslan

 Signature :

 iv

ABSTRACT

A CONTROL SYSTEM USING BEHAVIOUR HIERARCHIES AND
NEURO-FUZZY APPROACH

Arslan, Dilek

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ferda Nur Alpaslan

December 2004, pages 59

In agent based systems, especially in autonomous mobile robots, modelling the

environment and its changes is a source of problems. It is not always possible to

effectively model the uncertainity and the dynamic changes in complex, real-world

domains. Control systems must be robust to changes and must be able to handle these

uncertainties to overcome this problem.

In this study, a reactive behaviour based agent control system is modelled and

implemented. The control system is tested in a navigation task using an environment,

which has randomly placed obstacles and a goal position to simulate an environment

similar to an autonomous robot’s indoor environment. Then the control system was

 v

extended to control an agent in a multi-agent environment. The main motivation of

this study is to design a control system, which is robust to errors and easy to modify.

Behaviour based approach with the advantages of fuzzy reasoning systems is used in

the system.

Keywords: Behaviour hierarchy, behaviour-based robotics, neuro-fuzzy systems,

autonomous navigation.

 vi

ÖZ

BULANIK MANTIK VE DAVRANIŞ SIRADÜZENİ KULLANAN BİR
KONTROl SİSTEMİ

Arslan, Dilek

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doc. Dr. Ferda Nur Alpaslan

Aralık 2004, 59 sayfa

Etmen tabanlı sistemlerde, özellikle özerk devingen robotlarda, ortamın

modellenmesi ve ortamda meydana gelen değişiklikler bir sorun kaynağıdır.

Karmaşık, gerçek dünya alanlarında belirsizlikleri ve dinamik değişimleri etkili

şekilde modellemek her zaman mümkün değildir. Bu problemin üstesinden gelmek

için kontrol sistemleri değişikliklere karşı dirençli olmalı ve belirsizlikleri ele

alabilmelidir.

Bu çalışmada, tepkisel davranış tabanlı bir kontrol sistemi modellenmiş ve

geliştirilmiştir. Bu kontrol sistemi gelişigüzel yerleştirilmiş engeller ve bir hedef

nokta içeren ve bir özerk robotun kapalı bir alandaki çalışma ortamını taklit eden bir

 vii

ortamda bir gezinim görevinde test edilmiştir. Daha sonra bu kontrol sistemi çok

etmenli bir ortamdaki bir etmeni kontrol etmek üzere genişletilmiştir. Bu çalışmanın

temel güdüsü hatalara karşı dirençli ve değiştirmesi kolay bir kontrol sistemi

tasarlamaktır. Sistemde bulanık muhakemeden faydalanan davranış tabanlı bir

yaklaşım kullanılmıştır.

Anahtar Kelimeler: Davranış sıradüzeni, davranış tabanlı robotbilim, nöral-bulanık

sistemler, özerk gezinim.

 viii

TABLE OF CONTENTS

PLAGIARISM PAGE.. iii

ABSTRACT.. iv

ÖZ.. vi

TABLE OF CONTENTS...viii

INTRODUCTION..1

BACKGROUND ..4

2.1 Behaviour Based Agent Control ... 4

2.2 Behaviour Coordination .. 7

2.3 Behaviour Hierarchies in Robotics ... 8

2.4 Fuzzy Logic for Robot Control ... 11

2.5 Neuro-Fuzzy Systems... 16

2.6 Genetic-Fuzzy Systems .. 17

ADAPTIVE NETWORKS AND ANFIS..19

3.1 Introduction.. 19

3.2 ANFIS (Adaptive-Network-Based Fuzzy Inference System) ... 20
3.2.1 Fuzzy Reasoning System Types ... 20
3.2.2 ANFIS Architecture.. 22
3.2.3 Learning Algorithm.. 24

IMPLEMENTATION ...29

 ix

4.1 Problem... 29

4.2 Implementation Details.. 30
4.2.1 Behaviour Hierarchy For Single Agent Control ... 30
4.2.2 Definition of the Environment.. 32
4.2.3 Learning Mechanism for Single Agent Control ... 33

4.2.3.1 Obstacle Avoidance .. 34
4.2.3.2 Go To Goal ... 35
4.2.3.3 Follow Optimum Path... 36
4.2.3.4 Navigate.. 37

4.2.4 Experiment Results of Single Agent Architecture.. 41
4.2.5 Experiment Results with Erroneous Data... 46
4.2.6 Behaviour Hierarchy For Multi-Agent Control .. 47
4.2.7 Learning Mechanism for Multi-Agent Control .. 49

4.2.7.1 Navigate.. 49
4.2.7.2 Avoid Agent ... 50
4.2.7.3 Search Goal... 50

4.2.8 Experiment Results of Multi-Agent Control Hierarchy.. 51

CONCLUSION AND FUTURE WORK ...54

REFERENCES...56

 x

LIST OF FIGURES

Figure 1-Traditional Decomposition of Mobile Robot Control System (adopted from[1]).......5

Figure 2- Subsumption architecture (adopted from [1]) ..6

Figure 3- Arbitration via action-selection scheme (adopted from [21])8

Figure 4- Mobile robot behaviour hierarchy (Adopted from [4]) ..11

Figure 5-Sturcture of Fuzzy Logic Controllers (adopted from [17])13

Figure 6-Two approaches of command fusion (adopted from [16])..16

Figure 7- An example adaptive network (adopted from [7]) ...20

Figure 8- Types of fuzzy reasoning systems (adopted from [7]) ...21

Figure 9-An example of Type-3 ANFIS architecture (adopted from [7])................................22

Figure 10- A Type-1 ANFIS network (adopted from [7]) ...25

Figure 11-Two heuristic rules for updating value of k (adopted from [7])..............................28

Figure 12- Behaviour hierarchy for controlling single agent...30

Figure 13- An example environment ...33

Figure 14- Interpretation of ANFIS outputs ..34

Figure 15- ANFIS architecture for Avoid Obstacle behaviour ..35

Figure 16-Execution of Navigate behaviour ..42

Figure 17-Eyesight of the agent ...43

Figure 18-Experiment results of single agent ..44

Figure 19-DOA values during the execution ...45

Figure 20- Experiment results by using erroneous input data..47

 xi

Figure 21-Behaviour hierarchy for multi-agent control...48

Figure 22- Experiment results of multi-agent hierarchy ..52

 1

CHAPTER 1

INTRODUCTION

In recent years, agent based systems gained great interest. This is because of their

promise as a paradigm for conceptualising, designing and implementing systems.

Agent based systems are being used in a variety of application domains such as

software engineering, intelligent search techniques, and robotics.

Since the growing interest in agent based systems, many methods were

developed for controlling autonomous intelligent agents, which are widely used

for problem solving in Artificial Intelligence (AI). These methods can be

categorized as deliberative and reactive approaches.

Deliberative approach, which is the classical way of controlling autonomous

agents, relies on global planning method. A deliberative agent decides on which

actions to take, by considering information about previous experiences and an

overall goal as well as information from its current perception/situation.

Deliberative agents build up maps of their environments and use them to plan

routes to make their moves, and remember whether previous actions in a certain

situation helped to achieve its goal or not. Using all of this information, the

 2

deliberative agent can calculate a plan of action, which it believes will most

efficiently achieve the agent's goal.

However, deliberative approach has some drawbacks. For example, in a dynamic

environment, some of the information, which the agent remembers from a

previous experience, will be inconsistent with the way the world around it is

currently. If a task is highly structured and predictable it makes sense to use a

deliberative approach. For example, if an intelligent agent is embedded in an

entirely virtual environment, then it is often possible to encode every aspect of

the environment with some semantic representation. But in complex, real-world

domains where uncertainty cannot be effectively modelled, agents must have a

means of reacting to an infinite number of possibilities.

In reactive approach, actions of the agent are based completely on the changes of

its environments. Reactive agents don’t use planning or internal models of the

environment. Instead, they respond to apperception of the real world around them

by using stimuli-response mechanism. Thus, in reactive approach, there is a

direct connection between agent’s inputs and actions. This causes the main

drawback of reactive approach; uncertain inputs lead reactive agents into wrong

actions.

A behaviour-based approach that was proposed by Brooks [1] suggests a robust

solution for perception errors and uncertainties of the environment for

autonomous mobile robots, which are considered as reactive agents in Brooks’

work. Brooks’ approach is called subsumption architecture and became very

popular in robot control since its proposal. In this approach, agent’s overall task

is divided into smaller independent behaviours. For example, in a navigation

problem, overall task can be divided into goal-search and avoid-obstacle

behaviours. So these two smaller tasks can be handled separately.

Use of fuzzy logic [9] for dealing with uncertainties is also proved to be useful in

recent years [2, 3, 4, 5, 6]. Fuzzy inference systems, unlike classical inference

 3

systems, can express human expert knowledge naturally without a need for an

analytical model of the system. Since they don’t need exact mathematical

models, fuzzy inference systems are powerful tools to be used in uncertain and

not completely known environments.

In fuzzy inference systems, there is not always expert knowledge exist to find the

proper rules and membership functions. To solve this problem, hybrid methods

like neuro-fuzzy systems and genetic-fuzzy systems were proposed. Some

examples of these hybrid systems are [7, 8, 11, 12, 13, 14]. These systems

combine the advantages of fuzzy logic and neural networks.

In this study, a reactive behaviour based agent control system is modelled and

implemented. The control system is tested for a navigation task in an

environment, which has obstacles and a goal position, similar to an autonomous

robot’s environment. Goal of the agent is to find and reach the goal position

while avoiding obstacles and trying to follow a path as close as possible. As a

second phase, the control system is extended to a multi-agent domain were the

agents’ goal are to search a goal as well as avoiding obstacles and other agent(s).

Agents are supposed to stay as far from each other as possible so that the agents

can search different parts of the area and find the goal faster. The system uses a

neuro-fuzzy system called Adaptive Network Fuzzy Inference System (ANFIS)

for the rule bases of the behaviours. ANFIS is applied in its offline-learning

mode. No planning or global world modelling has been used. Behaviour

hierarchies proposed by Tunstel [4] was used for the behaviour coordination.

The thesis is organized as follows. Chapter 2 gives the background about

behaviour-based robotics, fuzzy control in robotics, neuro-fuzzy systems, and

genetic-fuzzy systems. Chapter 3 gives details of neuro-fuzzy systems and

ANFIS. Chapter 4 introduces design of the agent control system proposed in this

thesis and gives results of the system. Chapter 5 concludes the thesis and gives

future work.

 4

CHAPTER 2

BACKGROUND

2.1 Behaviour Based Agent Control

Autonomous agents are used in many application domains such as software

development, web services, robotics, decision support systems, etc. In the

environments they operate, they sometimes must be able to consider multiple

concurrent requirements and make their decisions in real-time.

To achieve these complex tasks they’re given, agents must have some level of

intelligence and ability to learn. Classical AI spent decades trying to model human-

like intelligence, using knowledge-based systems that processed representation at a

high, symbolic level. Symbolic representation was considered as the most important

problem because it allowed agents to operate on sophisticated human concepts and

report on their action at a linguistic level. Since the goal of early AI was to produce

human-like intelligence, researchers used human-like approaches. Early researchers

believed an intelligent machine should, like a human, first build a model of its

environment and then explore solutions abstractly before enacting strategies in the

real world. This emphasis on symbolic representation and planning had a great effect

on agent control strategies. Although many of the strategies developed were both

elaborate and elegant, the problem was that the intelligence in these systems

 5

belonged to the designer. The agent itself had little or no autonomy and often failed

to perform if the environment changed.

Traditional way used to divide operations of an agent into a series of functional

modules like, getting input from the environment, processing this input, planning the

next action, and executing the result. Application of this approach, which is also

called deliberative approach, to an autonomous mobile robot is given in Figure 1. A

deliberative agent decides its actions by considering information from all of its

sensors, together with information about previous experiences and overall goals for

the agent. All things are considered before an action is invoked. A deliberative agent

can build up maps of its environment and use these to plan routes around obstacles,

and remember whether previous actions in a certain situation helped to achieve its

goal or not. Using all of this information, the deliberative agent can calculate a plan

of action, which it believes will most efficiently achieve its goal.

Figure 1-Traditional Decomposition of a Mobile Robot Control System (adopted from [1])

This approach of modelling the environment and making plans for the next actions is

useful if prior knowledge about the environment is complete, changes in the

environment are rare, and possibilities used for planning are finite. But in real world

problems, agent generally must dial with a dynamically changing environment. For

example, in case of autonomous mobile robots, prior knowledge about the

environment is, in general, incomplete, uncertain, and approximate. Perceptually

acquired information is also typically noisy and incomplete. [5]

 6

To solve this problem, Brooks proposed a different decomposition of robot’s task

[1]. In his work, Brooks decomposed tasks of a robot into task achieving behaviours

instead of functional units as in the classical Sense-Model-Plan-Act (SMPA)

systems. In this architecture, behaviours are arranged in layers and each layer has a

level of competence. Higher levels of competence imply higher priority behaviours.

Higher-level layers subsume the roles of lower level layers when they want to take

control. The subsumption architecture, offers a robust way to deal with environment

changes and a flexible way to add new behaviours. The layered control system

introduced by Brooks is shown in Figure 2. “Avoid obstacle” behaviour shown at the

bottom has the lowest priority and “Reason about behaviours of objects” behaviour

shown at the top of the layers has the highest priority.

Figure 2- Subsumption architecture (adopted from [1])

Similar to Brooks’ approach Minsky [10] claimed that, mind is made of many

smaller processes called agents. According to Minsky, these agents are as simple as

possible and each perform a small part of a complex task. When we join these agents

in societies, this leads to intelligence. Minsky’s this approach is well suited to

behaviour-based agent control systems where agent’s task is divided into simpler and

smaller tasks. These tasks can be thought as Minsky’s small processes/agents.

 7

2.2 Behaviour Coordination

Behaviour based approaches, which offers to divide the complex tasks into many

separate and independent behaviours, brought along an important problem: How to

coordinate these simultaneously working behaviours and produce an overall coherent

behaviour that achieves the intended task?

Since introduction of behaviour based approach in mid eighties, this problem

becomes a major one and still many researcher works on this topic. Behaviour

coordination architectures can be divided into two categories: behaviour arbitration

and command fusion schemes.

Arbitration scheme is based on competition. In this architecture, in each step one

behaviour is selected and this selected dominant behaviour solely controls the robot

in that step. Outputs of other behaviours are completely ignored. Arbitration

architectures can also be divided into two categories: Static arbitration policies and

dynamic arbitration policies.

Early solutions, like subsumption architecture of Brooks [1], relied on a static

arbitration policy, hard-wired into a network of suppression and inhibition links. But

this static method is not enough to handle changes in the environment of an

autonomous mobile robot. So, most current architectures use dynamic arbitration

schemes where the decision of which behaviour to activate depends on the current

plan and on the environmental changes. In dynamic schemes, methods like voting

and action-selection are used. In voting method, behaviours vote for a predefined set

of actions and the action receiving the highest vote is applied. In action-selection

method, the activation level of each behaviour is determined according to agent’s

goals and inputs. Behaviour, which has the highest activation level, is applied in each

step. This scheme is shown in Figure 3.

 8

When number of behaviours increase, there are several criteria, which should be

taken into account to accomplish a task. In this case, simply selecting one of the

behaviours as the dominant one as in the arbitration method is not suitable. To solve

this problem, command fusion schemes aggregate the control actions of multiple

concurrently active behaviours into a consensual decision. The most popular

approaches of command fusion uses vector summation scheme. Output of each

behaviour is represented by a force vector and outputs from different behaviours are

combined by vector summation. Output of the robot becomes the resulting force

vector. So, outputs of all behaviours are fused and combined.

Figure 3- Arbitration via action-selection scheme (adopted from [21])

But vector summation is not always sufficient and does not contain enough

information. To address this problem, many fuzzy behaviour coordination techniques

were proposed in literature. Some of these solutions contain hybrid approaches like

neuro-fuzzy systems and genetic-fuzzy systems. These approaches will be covered in

sections 2.4, 2.5, and 2.6.

2.3 Behaviour Hierarchies in Robotics

Since the autonomous mobile robots are supposed to act in non-engineered, and

constantly changing real-world environments, there are many uncertainties about the

environment and often it is not possible to model or quantify this uncertainty.

 9

Because of these uncertainties, it is difficult, if not impossible, to obtain a precise

mathematical model of the robot’s interaction with its environment in autonomous

navigation. The lack of precise and complete knowledge about the environment

limits the applicability of conventional control system design to the domain of

autonomous robotics. What is needed are intelligent control and decision-making

systems with the ability to reason under uncertainty.

It is unrealistic to assume that any learning algorithm is able to learn a complex

robotic task, in reasonable learning time starting from scratch without prior

knowledge about the task or the environment.

Task complexity can be reduced by a divide and conquer approach, which attempts

to break down the overall problem into more manageable subtasks. This course is

advocated by hierarchical behaviour architectures, in that they separate the design or

adaptation of primitive behaviours from the task of learning a supervisory policy for

behaviour coordination [4, 12, and 15].

Controlling agents by using behaviour hierarchies by Tunstel [4], like many other

works, is basically inspired by Brooks’ work and is parallel to Minsky’s ideas. In this

reactive approach, main idea is to divide a robot’s task into a finite number of task-

achieving behaviours and arrange these behaviours as a hierarchical network of

distributed rule bases each responsible from a different part of the overall task.

There are two types of behaviours in the hierarchy: primitive and composite types of

behaviours. Primitive behaviours are, at the bottom of the hierarchy and they are

simple and self-contained behaviours which servers a single purpose. Primitive

behaviours are independent from other behaviours and they focus on a part of the

complex task. These behaviours act in a reactive and reflexive fashion. For example,

in a navigation task, obstacle avoidance can be considered as a primitive behaviour.

Only primitive behaviours themselves wouldn’t be sufficient enough to perform a

complex task. They need coordination among them. Composite behaviours are used

 10

for behaviour modulation. A composite behaviour control two or more primitive

behaviours and decide how true it is to let them affect the overall result of the agent.

For example, in a navigation task, goal seeking can be considered as a composite

behaviour and it may control primitive behaviours such as “go to a given coordinate”

and “avoid obstacles”.

For behaviour modulation, composite behaviours use a concept called degree of

applicability (DOA), which is a weighted control decision-making concept [4, 6].

Composite behaviours produce degree of applicability values for each primitive

behaviour they control. These DOA values are a measure of instantaneous level of

activation of primitive behaviours. Outputs of each primitive behaviour are

multiplied with its degree of applicability value before adding this output into the

overall result. Since degree of applicability values are used as percentages for

desirability of the corresponding primitive behaviours, their values can only be

between 0 and 1.

DOA values are determined dynamically for each step of the given complex task.

This feature allows primitive behaviours to influence the overall behaviour to a

greater or lesser degree as required by the current situation and goal. It serves a form

of adaptation since it causes the control policy to dynamically change in response to

goal information and inputs taken from the agent’s environment.

An example of behaviour hierarchies proposed by Tunstel is shown in Figure 4. It

shows hierarchical decomposition of a robot’s indoor navigation task.

Behaviours “go-to-xy”, “avoid-collision”, “wall-follow”, and “doorway” are

primitive behaviours. The other tree behaviours on the higher levels are composite

behaviours. The lines connecting the behaviours indicate the dependencies between

them. Circles between primitive behaviours and composite behaviours show DOAs

of associated primitive behaviours. Composite behaviour “goal-seek” uses outputs of

primitive behaviours “go-to-xy” and “avoid-collision” to accomplish task of going to

the goal position without colliding any obstacles. Composite behaviour “route-

 11

following” uses outputs of all four primitive behaviours to accomplish task of going

to a given coordinate (a sub-goal) without colliding any obstacles and by following

any walls met towards the sub-goal and pass through the doorways.

Figure 4- Mobile robot behaviour hierarchy (Adopted from [4])

Behaviour hierarchies can easily be extended to work in a multi-agent domain by

adding some behaviour to the hierarchy for coordination and communication with the

other agents.

2.4 Fuzzy Logic for Robot Control

One of the main problems in robotics is as explained above, the changes in dynamic

environments and complexity of modelling the environment. There are also other

problems like sensor errors, limited ranges of sensors, poor observation conditions,

and impossibility of modifying/simplifying the environment for robot’s needs. These

problems cause imprecise and incomplete information.

To handle this erroneous information, traditional work in robotics tried to carefully

design sensors, and engineer the environment. Some additions to the environment

were made to ease the robot’s task. But this solution increased the cost and was

impossible to apply all domains. For ease of use of robots, environment should not

 12

be intervened. So the main problem becomes to produce robust robot control

approaches which can handle incomplete information and which can be applied to

other domains.

Fuzzy logic, introduced by Zadeh in mid sixties [9], was used to implement robust

control techniques against incomplete and uncertain information. By using fuzzy

logic, need for an exact model of the world was surpassed and because of its

qualitative nature, fuzzy logic gave good results in control applications.

In fuzzy logic, unlike classical set theory, there are no crisp boundaries. Instead of a

value’s being a member of a set or not, in fuzzy logic there are degrees of

membership. These degrees are determined using functions called a membership

function. Outputs of memberships functions can be in the interval [0,1]. This output

is a measure of degree of similarity of an instance to the fuzzy set as a numerical

value. Fuzzy sets are described in linguistic terms such as “high”, “low”, “near”, far,

etc.

A generic fuzzy if-then rule is defined as follows;

 If x is A then u is B

Where x and u represent input and output fuzzy linguistic variables respectively. A

and B are fuzzy sets representing linguistic values of x and u. An example fuzzy if-

then rule is given below:

 If obstacle is close then velocity is small

This type of fuzzy if-then rules are known as Mamdani-type of fuzzy rules [31, 32].

Another form of fuzzy if-then rules is Takagi-Sugeno type of rules [18]. This type of

fuzzy rules has fuzzy sets only in their premise parts. A generic Takagi-Sugeno type

of fuzzy rule is given below;

 If x is A then u is f(x)

 13

Where x is input fuzzy linguistic variable and A is a linguistic label characterized by

an appropriate membership function as in Mamdani-type of fuzzy rules. But f(x) in

the consequent part of the rule is non-fuzzy equation and it is a linear or nonlinear

function describing the dynamics of the system output u for the particular value A of

the input x.

Both types of fuzzy if-then rules, due to their concise form, are often used to capture

imprecise modes of reasoning in an environment of uncertainty and imprecision.

Fuzzy Logic Controllers (FLCs) are control systems which produce actions

according to fuzzy rules based on fuzzy logic. Units of a Fuzzy Logic Controller

based on Mamdani-type fuzzy rules are: fuzzifier, fuzzy rule base, fuzzy inference

engine, and defuzzifier. This structure is shown in Figure 5.

Figure 5-Structure of Fuzzy Logic Controllers (adopted from [17])

Normalization and denormalization modules are optional parts. Normalization is

used to map the physical values of the current input variables into normalized

 14

domain. Denormalization maps the normalized value of the output variable onto its

physical domain. When a non-normalized domain is used, there’s no need for

normalizaton and denormalization modules.

In fuzzifier module, fuzzification is performed which converts a crisp value of an

input variable into a fuzzy set using membership functions, in order to make it

compatible with the fuzzy set representation of the input variable in the rule’s

premise part.

The rule base consists of membership functions of fuzzy if-then rules, which

specifies behaviour of the system. Inference engine module maps fuzzy input sets to

fuzzy output sets. In design of inference engines there are two basic types:

(1) Composition based inference,

(2) Individual rule-based inference:.

Defuzzifier module performs defuzzification, which converts the set of modified

output values (fuzzy results) into a single crisp value.

Fuzzy logic controllers were first used for single primitive behaviour

implementations. Some early examples are; model car of Sugeno and Nishida which

tracks a path delimited by two walls [19] and Takeuchi’s fuzzy controller for

obstacle avoidance [20]. It is not enough to perform a simple behaviour to

accomplish a complex task. To perform autonomous navigation, a robot should take

multiple objectives into account.

Fuzzy logic controllers are typically designed to consider one single goal. If we want

to design a fuzzy logic controller, which takes several goals into consideration, there

are two ways;

i) One set of complex rules are written. Antecedents of these rules consider all

goals simultaneously. This type of rule sets are called monolithic rule sets.

 15

ii) Rule set is divided into number of goals. Each subsets contains rules

concerning only a single sub goal. Outputs of these subsets must be combined

somehow.

Choosing one of these options is difficult. First solution should be preferred if

interactions between the sub goals are important. But as the number of sub goals

increase, number of rules tends to grow exponentially and rule set becomes

intracable. Second solution has also an important problem; if we choose the second

solution, we must also find a way to combine the outputs of the rule subsets.

Fuzzy logic is also used for coordination of behaviour, in other words; for combining

outputs of independent rule subsets. Behaviour coordination methods in literature are

mentioned in section 2.2. Fuzzy logic has been used to implement both static and

dynamic arbitration schemes. The first example of static fuzzy arbitration scheme is

work of Berenji et al. [22]. Dynamic arbitration scheme for fuzzy logic can be

implemented using context rules. Fuzzy context rules are used to arbitrate

behaviours, which are themselves implemented by fuzzy logic.

One of the first examples of command fusion by using fuzzy logic is Ruspini’s work

[23]. In fuzzy command fusion, each behaviour is seen as an agent and they express

preferences as to which command to apply. These preferences are represented as

fuzzy sets. Fuzzy operators are used to combine these preferences and produces a

collective preference.

While producing a single preference, combining the individual results by using for

example vector summation and using the collective preference from fuzzy logic

operators can give different results. Figure 6 shows an example to this situation.

Combining the individual decisions does not satisfy behaviour B2 in the first case.

But taking collective preferences into account satisfies both behaviours B1 and B2 in

the second case. This shows that fuzzy command fusion is fundamentally different

from vector summation and it may produce decisions that better satisfy all the

behaviours.

 16

2.5 Neuro-Fuzzy Systems

Neuro-fuzzy systems incorporate the knowledge representation of fuzzy logic with

the learning capabilities of artificial neural networks. The power of neural networks

comes from the distributed processing capability of a large number of

computationally simple elements. In contrast fuzzy logic is closer related to

reasoning on a higher level. Pure fuzzy systems do not possess the capabilities of

learning, adaptation or distributed computing that characterize neural networks. On

the other hand, neural networks lack the ability to represent knowledge in a manner

comprehensible to humans, a key feature of fuzzy rule based systems. Neuro-fuzzy

systems bridge the gap between both methodologies, as they synthesize the

adaptation mechanisms of neural networks with the symbolic components of fuzzy

inference systems, namely membership functions, fuzzy connectives, fuzzy rules and

aggregation operators.

Figure 6-Two approaches of command fusion (adopted from [16])

Two examples of neuro-fuzzy systems on behaviour-based robotics are; the systems

in Ahrns et al [24] and in Godjavec et al [25]. Ahrns et al apply neuro-fuzzy control

 17

to learn collision avoidance behaviour. Their approach relies on reinforcement

learning for behaviour adaptation. The learner incrementally adds new fuzzy rules as

learning progresses and simultaneously tunes the membership functions. Godjavec et

al present a neuro-fuzzy approach to learn obstacle avoidance and wall-following

behaviour on a small size robot. Their scheme allows it to seed an initial behaviour

with expert rules, which are refined throughout the learning process. During training

the robot is controlled either by a human or a previously designed controller. The

recorded state-action pairs serve as training examples during supervised learning of

neuro-fuzzy control rules.

2.6 Genetic-Fuzzy Systems

Several authors proposed evolutionary algorithms for learning and tuning of fuzzy

controllers for robotic behaviours [26, 27, 28, 29]. In a genetic fuzzy system the

evolutionary algorithm evolves a population of parameterise fuzzy controllers.

Candidate controllers share the same fuzzy inference mechanism, but establish

different input-output mappings according to their genetically encoded knowledge

base. The evolutionary algorithm adapts all or part of the components that constitute

the knowledge base, namely membership functions, scaling factors and fuzzy rules.

The same mechanism is used for the adaptation of primitive behaviours and learning

of supervisory fuzzy controllers. The performance of the fuzzy controller while it

governs the behaviour of the robot is described by a scalar fitness function. Those

fuzzy controllers that demonstrate behaviours of higher fitness compared to their

competitors are selected as parents for reproduction. Novel candidate behaviours are

generated through recombination and mutation of parent fuzzy rules and membership

functions. The cycle of selection, reproduction and fitness evaluation progressively

leads to improved fuzzy controllers that enable the robot to achieve the behaviour

design goals in its environment.

Two examples of genetic-fuzzy systems are in Tunstel et al [3] and Hagras et al [27].

Tunstel et al apply genetic programming for off-line identification of supervisory

fuzzy rules that coordinate primitive fuzzy behaviours [3]. Composite behaviours are

evaluated according to their success in orchestrating the primitive behaviours such

 18

that they eventually navigate the robot to its goal location. The fitness is averaged

over several trials in different simulated environments in order to obtain robust and

reliable behaviours. The generalization capability of the highest scoring behaviours is

tested in a more general environment unrelated to the test environments used during

evolution. The off-line evolved behaviours are transferred to the physical robot for

verification. The robot successfully navigates within close proximity to the goal.

Hagras et al present a fuzzy classifier system that utilizes a genetic algorithm for

online-learning of a goal seeking and a wall following behaviour. The fuzzy

classifier system maintains a rule cache to store suitable fuzzy rules, that might be of

benefit in future situations and which serve to seed the initial population when a new

genetic learning process is invoked. This technique substantially speeds up the

learning process, thus making the entire approach feasible for on-line learning of

robotic behaviours.

 19

CHAPTER 3

ADAPTIVE NETWORKS AND ANFIS

3.1 Introduction

An adaptive network is a multi-layered network structure, which consists of nodes

and directional links through which the nodes are connected. A part of these nodes

are adaptive; that is, outputs of these nodes depend on parameters of these nodes. A

learning rule is used to specify how these parameters should be changed to minimize

error of the output [7].

To produce an output, each node in an adaptive network uses a function called node

function. Node function can be different for each node or each layer of the adaptive

network. Links in an adaptive network have no weights associated to them. They

only show flow direction of signals. An example of adaptive networks is given in

Figure 7.

Two types of nodes are shown in the figure; circular and square nodes. Circular

nodes have no parameters and they are called fixed nodes. Square nodes have

parameters whose value change during learning process, so they are called adaptive

nodes.

 20

Figure 7- An example adaptive network (adopted from [7])

Basic learning rule of adaptive networks is based on gradient decent algorithm and

chain rule, which was proposed by Webos [30] in 1970s.

3.2 ANFIS (Adaptive-Network-Based Fuzzy Inference

System)
ANFIS is a fuzzy inference system implemented in the framework of adaptive

networks by using a hybrid learning procedure. ANFIS was proposed by Jang [7] in

1993. By using the hybrid learning method of neural networks and fuzzy inference

systems, ANFIS constructs an input-output mapping based on human knowledge (by

using fuzzy if-then rules which captures human knowledge easily) and stipulated

input-output data pairs.

Architecture of an ANFIS network is up to which type of reasoning system it uses.

Types of fuzzy reasoning systems are explained in the following section.

3.2.1 Fuzzy Reasoning System Types

Several types of fuzzy reasoning have been proposed in the literature. Depending on

the fuzzy if –then rules and types of fuzzy reasoning they use, these systems can be

classified into three types.

In Type-1 systems, the overall output is the weighted average of each rule’s crisp

output induced by the rule’s firing strength and output membership functions. The

 21

output membership functions used in this scheme must be monotonically non-

decreasing.

In Type-2 systems, Mamdani type of fuzzy if-then rules are used. In these systems,

the overall fuzzy output is derived by applying “max” operator to the fuzzy outputs.

These fuzzy outputs are equal to the minimum of firing strength and the output

membership function of each rule. To produce the final output, many schemes have

been proposed. Some of these are center of area, mean of maxima, and bisector of

area, etc. [31, 32].

In Type-3 systems, Takagi and Sugeno’s type of fuzzy if-then rules [18] are used.

Output of each rule is a linear combination of input variables plus a constant term.

The final output is the weighted average of each rule’s output.

Three types of fuzzy reasoning systems are shown in Figure 8 below.

Figure 8- Types of fuzzy reasoning systems (adopted from [7])

 22

3.2.2 ANFIS Architecture

ANFIS is a feed-forward network whose nodes are connected through weightless

links. Some of the nodes in an ANFIS network are adaptable which has adaptable

parameters. The other type of node in ANFIS architecture are fixed nodes which

have no adaptable parameters. Example ANFIS architecture for Type-3 fuzzy

reasoning systems is shown in Figure 9. Adaptive nodes are shown as square nodes

and fixed nodes are shown as circular nodes in the figure.

Figure 9-An example of Type-3 ANFIS architecture (adopted from [7])

ANFIS network shown in Figure 9 has two inputs (x and y) and one output (f). An

ANFIS network has five layers and the ANFIS network in Figure 9 has two fuzzy

rules of type Takagi and Sugeno rules [18]. ANFIS networks have five layers. Node

functions in the same layer are the same function family. The layers in ANFIS

networks are defined as follows:

Layer1 This layer represents membership functions used in the fuzzy rules of the

network. Number of nodes in this layer is equal to number of inputs times number of

rules. Every node in this layer is a square node with a node function:

)(1 xAO ii µ= (1)

 23

where x is the input to node i. iA is the linguistic label (near, far, etc) associated with

the node function of node i. The output of the node (1

io) is the membership function

of iA and it specifies the degree to which the given x satisfies the quantifier iA .

Membership function)(xAiµ is generally chosen as a bell-shaped function with

minimum equal to 0 and maximum equal to 1, such as:

ib

a
cx

xA

i

i

i



















 −
+

=
2

1

1)(µ (2)

where ia , ib , and ic are parameters of node i. As the values of these parameters

change, the bell-shaped membership functions change as well. Parameters in this

layer are referred to as premise parameters.

Layer 2 Every node in Layer 2 are circular fixed nodes. Output of each node in this

layer represents firing strength of a rule. Number of nodes in this layer is equal to

number of rules in the network. Nodes in Layer 2 multiplies the incoming signals and

sends the product out. Output of nodes in this layer are calculated using Equation 3

for the ANFIS shown in Figure 9.

 2,1),(*)(2 === iyBxAwO iiii µµ (3)

Layer 3 Number of nodes in this layer is equal to number of rules in the network. i-

th node in this layer calculates the ratio of the i-th rule’s firing strength to the sum of

all rules’ firing strengths. Outputs of nodes in this layer are calculated using Equation

4 for the ANFIS shown in Figure 9.

2,1,
21

3 =
+

== i
ww

wwO i
ii (4)

Outputs of Layer 3 are called normalized firing strengths.

 24

Layer 4 Every node in this layer are adaptable nodes with parameters. Nodes in this

layer calculate outputs of each rule. Node function of the nodes in Layer 4 is;

()iiiiiii ryqxpwfwO ++==4 (5)

where iw is output of Layer 3 and ip , iq , and ir are the parameter set of this layer.

Parameters in this layer are called consequent parameters.

Layer 5 This layer has a single fixed node. It computes the overall output as the

summation of all incoming signals;

∑
∑

∑ ==
i w

i fw
ifiwO

i

ii

i

5
1 (6)

Architecture and node functions were given above for Type-3 fuzzy inference

sytems. For Type-1 and Type-2 fuzzy inference systems, the architecture needs some

extensions. For Type-1 fuzzy inference systems, the change is straightforward. A

Type-1 ANFIS is shown in Figure 10 where the output of each rule is induced jointly

by the output membership function and the firing strength. For Type-2 fuzzy

inference systems, we need to replace the centroid defuzzification operator with a

discrete version, which calculates the approximate centroid of area. Then Type-3

ANFIS can be constructed accordingly. But it is more complicated than Type-1 and

Type-3 ANFIS networks.

Type-1 ANFIS shown in Figure 10 has two inputs (x and y) and two fuzzy rules in its

database as in Type-3 ANFIS shown in Figure 9.

3.2.3 Learning Algorithm

ANFIS uses a hybrid learning algorithm which combines the gradient method and

least squares estimates (LSE) to identify parameters of the nodes in the network.

 25

Figure 10- A Type-1 ANFIS network (adopted from [7])

ANFIS networks have only one output, which can be written as;

Output = F(SI ,
r

) (7)

Where I
r

 is the set of input variables and S is the set of all parameters in the ANFIS

network. If there exist a function H such that the composite function H o F is linear

in some of the elements of S, then these elements can be identified by the least

squares method. If the parameter set S can be decomposed into two sets such as;

 21 SSS ⊕= (8)

where ⊕ shows direct sum and H o F is linear in the elements of 2S . So the Equation

7, which is linear in the elements of, 2S becomes;

H(output) = H o F(SI ,
r

) (9)

Given values of elements in 1S , training data can be added into Equation 9. Let

number of these training data be P. Then the matrix equation below is obtained;

 26

 AX = B (10)

Where X is an unknown vector whose elements are parameters in 2S and size of 2S

is M. Since, number of training data (P) is usually greater than number of linear

parameters (M), generally there is no exact solution to Equation 10. Instead, a least

squares estimate of X, *X is found to minimize the squared error. Equation for *X

is as follows;

() BAAAX TT 1* −= (11)

where () TT AAA 1−
is pseudo inverse of A if AAT is non-singular. Because it deals

with matrix inverse, Equation 11 is expensive to compute and it becomes ill-defined

when AAT is singular. So, sequential formulas to compute the LSE of X are used,

which is more efficient. For writing these sequential formulas, let the ith row vector

of matrix A be T
ia and the ith element of B be T

ib . Then X can be calculated

iteratively using the sequential formulas;

()i
T
i

T
iiiii XabaSXX 11111 +++++ −+=

1,....,1,0,
1 11

11
1 −=

+
−=

++

++
+ Pi

aSa
SaaSSS

ii
T
i

i
T
iii

ii (12)

where iS is called covariance matrix and the least square estimate (LSE) *X is PX .

Initial conditions of Equation 12 are, 00 =X and γ=0S I where γ is a positive

large number and I is the identity matrix of dimension MxM.

After gathering these equations, a hybrid of gradient method and the least squares

estimate is applied in each epoch. This procedure is composed of a forward pass and

a backward pass. In the forward pass, input data goes forward to calculate each

node’s output until matrices A and B in Equation 10 are obtained and the parameters

in 2S are identified by the sequential least squares formulas in Equation 12. After

 27

identifying parameters in 2S , input signals keep going forward until the error

measure is calculated.

In the backward pass, the error rates propagate from the output end towards the input

end, and the parameters in 1S are updated by the gradient method explained below.

Assuming the given training data set has P entries, error measure for the pth entry of

the training data is the sum of squared errors;

()
2)(#

1
,,∑

=
−=

L

m

L
pmpmP OTE (13)

where #(L) represents number of layers in the network, pmT , is the mth component

of pth target output vector, and L
pmO , is the mth component of actual output vector

produced by the ANFIS network. Hence the overall error measure is; ∑ == P
p PEE 1

In order to implement a learning procedure which implements gradient decent in E

over the parameter space, first the error rate
O
EP

∂
∂

 for pth training data and for each

node output O is calculated. The error rate for the output node i at layer L is

calculated as follows;

()L
piL

pi

P OT
O
E

,pi,
,

2 −−=
∂
∂

 (14)

For an internal node in in any layer of the network, error rate can be calculated by

using the chain rule. The error rate of an internal node can be expressed as a linear

combination of the error rates of the nodes in the next layer.

If α is a parameter of the ANFIS network, we can write an equation such that;

 28

αα ∂
∂

∂
∂

=
∂
∂

∑
∈

*

*
*

O
O
EE

SO

PP (15)

where S is the set of nodes whose output depends on α . Then the derivative of the

overall error measure E with respect to α is;

∑
= ∂
∂

=
∂
∂ P

p

PEE
1 αα

 (16)

Accordingly, the update formula for the generic parameter α is;

α
ηα
∂
∂

−=∆
E

 (17)

where η is learning rate which can be formulated as;

∑ 






∂
∂

=

α α

η
2E

k
 (18)

where k is the step size, the length of each gradient transition in the parameter space.

The value of k varies the speed of convergence. In ANFIS, some heuristic rules are

used for changing k. These rules are shown in Figure 11;

Figure 11-Two heuristic rules for updating value of k (adopted from [7])

 29

CHAPTER 4

IMPLEMENTATION

4.1 Problem

Over the past few years, research in autonomous mobile robots gained an interest due

to various tasks they’re used. First solutions proposed were mostly based on

numerical methods, but in recent years, many fuzzy logic based methods were

proposed for controlling mobile robots.

In this thesis, behaviour hierarchies and a hybrid learning method of neural networks

and fuzzy inference systems are combined to implement an autonomous agent

control method. This method obtains the advantages of fuzzy systems, numerical

systems, and provides flexible control architecture.

An off-line learning system is modelled and implemented. It was tested in both static

and dynamic environments. In the test environment, obstacles and a goal area was

located to simulate a robot’s working environment. To simulate the real world

environments and robustness of the method, error was added to the inputs of the

agent. As a second phase, the method implemented was tested in a multi-agent

environment. The other agent in this phase was also forming a dynamic obstacle.

 30

Main motivation of this study is to design an agent control system, which is robust,

easy to train and flexible to add new behaviours for new tasks and environments.

4.2 Implementation Details

4.2.1 Behaviour Hierarchy For Single Agent Control

As the first phase of the thesis, a control method for a single agent was implemented.

Task of the agent is to reach a given goal position while avoiding obstacles on its

way and following the shortest path to the goal as close as possible. Behaviour

hierarchy used to achieve this task is given in Figure 12.

Figure 12- Behaviour hierarchy for controlling single agent

Behaviours in the hierarchy are explained below;

Avoid Obstacle: This behaviour has three inputs: distance from the closest obstacle

on the left, distance from the closest obstacle on the right, and distance from the

closest obstacle in front. Obstacle Avoidance behaviour tends to go to the direction

where obstacle distance is the farthest.

Go To Goal: Inputs to this behaviour are: goal distance on the left, goal distance on

the right, and goal distance in front. This behaviour tries to go to the direction where

goal distance is the smallest.

Navigate

Avoid
Obstacle

Go To
Goal

Move
Randomly

Follow
Opt. Path

 31

Follow Optimum Path: Inputs of this behaviour are: distance from the optimum

path on the right, on the left, and in front. Follow Optimum Path behaviour, as its

name implies, tries to follow the optimum path as close as possible.

Move Randomly: This behaviour does not use any learning technique. It simply

produces a random speed and direction for the next movement. It is used when the

agent gets stuck somewhere and cannot move.

All four behaviours explained above are simple primitive behaviours, which deal

with only a single goal. For example, Go To Goal does not care if there are obstacles

in the direction it chooses to go or Avoid Obstacle does not know if it gets closer to

the goal or not while trying to escape an obstacle.

Since these behaviours only consider their own simple goals, another more complex

behaviour is needed to coordinate them. In the hierarchy given above, the composite

behaviour, which coordinates and controls them, is Navigate behaviour explained

below.

Navigate: Composite behaviour Navigate controls four primitive behaviours by

finding their appropriate DOAs in each step of the execution such that the agent

moves towards the goal without hitting obstacles and follows the optimum path

towards the goal. To take into consideration the overall task, Navigate behaviour

uses all the information about obstacle distances, goal distances, and distances from

the optimum path.

This behaviour can be thought as four parts, each controlling a primitive behaviour.

For controlling Avoid Obstacle behaviour, inputs used are the result produced by

behaviour Avoid Obstacle, obstacle distance in the direction where Avoid Obstacle

intends to go, and distance from the goal position in the current position. This part of

the behaviour tries to produce a Degree of Applicability (DOA) value for the Avoid

Obstacle primitive behaviour such that DOA increases when an obstacle is close and

decrease when the goal is close.

 32

Second part of the Navigate behaviour controls DOA value of Go To Goal. Inputs of

this part are: the result produced by the behaviour Go To Goal, obstacle distance in

the direction where Go To Goal intends to go, and distance from the goal location in

the current position. DOA value for the Go To Goal behaviour tends to increase

when the goal is close and decreases when an obstacle is close.

Third part of the behaviour controls Move Randomly behaviour and produce its DOA

value. Inputs of this part are: distances between the current position and two steps

ago, four steps ago, and six steps ago. DOA of Move Randomly behaviour tends to

increase if these distances get smaller.

Fourth and the last part of the Navigate behaviour controls, DOA of Follow Optimum

Path. Inputs of it are: the result produced by Follow Optimum Path behaviour,

obstacle distance in the direction where Follow Optimum Path wants to go, and

distance from the goal location in the current position.

All the primitive and composite behaviours defined above, except Move Randomly

primitive behaviour, uses ANFIS architecture to learn and accomplish their tasks.

Learning mechanism used for the single agent architecture is explained in the

following sections.

4.2.2 Definition of the Environment

Environment used to test the method is a square board whose height and width are

100 units. It has 10x10-sized obstacles placed randomly around the board and a goal

location. An example board with obstacles is shown in Figure 13 below.

Orange coloured areas on the board represent obstacles. Walls of the board are also

accepted as obstacles. Green area on the lower left corner is the goal position.

Dashed line, which passes through the diagonal, shows the optimum path to the goal

position if the agent’s initial position is upper left corner.

 33

Upper left corner of the board has coordinates (0, 0) and coordinates of the lower

right corner are (100, 100).

4.2.3 Learning Mechanism for Single Agent Control

For learning all the primitive and composite behaviours in the hierarchy, except

Move Randomly behaviour, ANFIS learning architecture is used in off-line learning

mode. In primitive behaviours, ANFIS learns to produce a speed and direction to

achieve the task of that behaviour. In composite behaviours, ANFIS networks learn

to produce DOA values of the primitive behaviours for each step of the execution.

Figure 13- An example environment

In the training phase, all primitive and composite behaviours are trained separately.

But since the composite behaviour Navigate uses outputs of the primitive behaviours

as its input, primitive behaviours are trained first and their outputs in the last epoch

of training is saved to be used by the composite behaviour Navigate later.

ANFIS has just one output node. Output value produced by this node is used as both

the speed and direction value for that behaviour. Sign of the output value produced

by the ANFIS network shows the direction ANFIS wants to go. If the sign is

negative, the new direction becomes right. If the sign is positive, direction becomes

 34

left. If the result produced by ANFIS is zero then the direction does not change.

Absolute value of the result is used as the speed value. When the output is zero, a

default value of 2 is used as the speed. Figure 14 shows how the output of the ANFIS

network is interpreted.

 4.2.3.1 Obstacle Avoidance

ANFIS used in this behaviour has three input nodes. These inputs are obstacle

distance from the left of the current position, obstacle distance from the right, and

obstacle distance in front.

Figure 14- Interpretation of ANFIS outputs

In the training phase, the agent is placed in random coordinates on a board with

obstacles placed randomly on it and obstacle distances in three directions are

measured and given to the ANFIS network as inputs. The network is trained to

choose the direction with the biggest obstacle distance. While training the ANFIS

Give Inputs to
ANFIS

Calculate
ANFIS Output

Output
Value

Turn Left with
the Speed of
Output Value

Turn Right
with the Speed

of Output

Go Ahead
with a Default

Speed

< 0 > 0

= 0

 35

network, the desired output is given to the network as the distance from the farthest

obstacle and a sign is added according to the farthest obstacle direction. For example,

if the farthest obstacle is on the right and its distance is 1.8 units from the current

position, then the desired output is –1.8. If the farthest obstacle is in front of the

agent, then the desired output is given as zero to the ANFIS network.

If obstacle distances on two directions are the same, the ANFIS network is trained to

favour right side on the left and front on the right. Since Avoid Obstacle is a

primitive behaviour, as long as the agent moves away from the obstacles, it does not

take into consideration if the agent moves towards the goal or not.

The Type-1 ANFIS network used for the Avoid Obstacle behaviour is shown in

Figure 15.

Figure 15- ANFIS architecture for Avoid Obstacle behaviour

 4.2.3.2 Go To Goal

Obs. Dist. On
the Left

Obs. Dist. On
the Right

Obs. Dist. In
Front

Π

Π

Π

Π

Π

Π

Π

Π

Ν

Ν

Ν

Ν

Ν

Ν

Ν

Ν

1

2

3

4

5

6

7

8

Σ

Near

Far

Near

Far

Near

Far

 36

ANFIS architecture used in this behaviour has also three input nodes. These inputs

are: goal distance if the agent moves one unit left from the current position, goal

distance if the agent moves one unit right, and goal distance if the agent moves

straight ahead one unit.

In the training phase, the agent is placed in random coordinates on a board without

obstacles on it since this primitive behaviour does not take the obstacles into

consideration. Goal distances in three directions are measured and given to the

ANFIS network as inputs. The network is trained to choose the direction with the

smallest goal distance. While training the ANFIS network, the desired output is

given to the network as the distance of the closest goal and a sign is added according

to the direction of this smallest goal distance. If the closest goal is in front of the

agent, then the desired output is given as zero to the ANFIS network.

If the goal distances on two directions are the same, the ANFIS network is trained to

favour right side on the left and front on the right. Since Go To Goal is a primitive

behaviour, as long as the agent moves closer to the goal, it does not take into

consideration if the agent moves closer to an obstacle also or not.

The Type-1 ANFIS network used for the Go To Goal behaviour is the same in Figure

15 except the meanings of the inputs. Inputs of Go To Goal behaviour are: goal

distances on the left, on the right, and in front.

 4.2.3.3 Follow Optimum Path

Optimum path is the straight line from the agent’s beginning position to the given

goal location.

ANFIS architecture used in this behaviour has also three input nodes. These inputs

are distance from the optimum path if the agent moves one unit left from the current

position, distance from the optimum path if the agent moves one unit right, and

distance from the optimum path if the agent moves straight ahead one unit. So the

agent is not given the whole coordinates of the optimum path but it is only given the

 37

distance from it. This behaviour can be thought as a robot, which tries to follow a

line on the floor.

In the training phase, the agent is put in random coordinates on a board without

obstacles like the Go To Goal behaviour. Distances from the optimum path in three

directions are measured and given to the ANFIS network as inputs. The network is

trained to choose the direction with the smallest distance from the optimum path.

While training the ANFIS network, the desired output is given to the network as the

smallest distance from the optimum path and a sign is added according to the

direction of the smallest optimum path distance. If the smallest optimum path

distance is when the agent goes straight, then the desired output is given as zero to

the ANFIS network.

Similar to the other primitive behaviours, if the distances on two directions are the

same, the ANFIS network is trained to favour right side on the left and front on the

right. Like the other primitive behaviours, as long as the agent moves closer to the

optimum path, it does not take into consideration if the agent moves closer to an

obstacle or goes away from the given goal position.

The Type-1 ANFIS network used for the Follow Optimum Path primitive behaviour

is the same in Figure 15 except the meanings of the inputs. Inputs of Follow

Optimum Path behaviour are: optimum path distances on the left, on the right, and in

front.

4.2.3.4 Navigate

Since the ANFIS architecture has just one output and the composite behaviour

Navigate needs to produce a proper DOA value for each of the four primitive

behaviours, this behaviour contains four ANFIS networks to control the primitive

behaviours. DOA values are positive numbers in the range of [0,100] and they

represent percentage of properness of a primitive behaviour in each step of the

execution. DOA values are produced dynamically in each step. Architectures of each

of these networks are explained below.

 38

The first ANFIS network learns to produce DOA values for the Obstacle Avoidance

behaviour. It has, like the primitive behaviours explained above, three inputs. These

inputs are absolute value of the output produced by Obstacle Avoidance behaviour,

obstacle distance in the direction of this output, and goal distance in the current

position. Architecture of the ANFIS used is the same as the one given in Figure 15.

Membership functions of these inputs are as follows:

• Avoid Obstacle Output: Big, Small

• Obstacle Distance: Near, Far

• Goal Distance: Near, Far

The network learns to produce small DOA values if the obstacle distance is far. DOA

increases as the obstacle distance gets nearer. When an obstacle is near, Avoid

Obstacle becomes more dominant because of the big DOA value and affects the

overall output more.

The network is trained to take the goal distance into consideration too, so that the

agent does not go away from the goal while trying to avoid an obstacle. If the goal

distance is near, then the DOA gets smaller so that, output of the Avoid Obstacle

affects the overall output less when the goal is near.

The second ANFIS network learns to produce DOA values for the Go To Goal

behaviour. It also has three inputs. These inputs are absolute value of the output

produced by Go To Goal behaviour, obstacle distance in the direction of this output,

and goal distance in the current position. Architecture of the ANFIS used is the same

as the one given in Figure 15. Membership functions and the rules learned by the

network is quite similar to the one explained above which controls Obstacle

Avoidance behaviour. Membership functions of these inputs are as follows:

• Go To Goal Output: Big, Small

• Obstacle Distance: Near, Far

• Goal Distance: Near, Far

 39

The network learns to produce small DOA values if the goal distance is far. DOA

increases as the goal distance gets nearer. When the goal location is near, Go To

Goal becomes more dominant because of the big DOA value and affects the overall

output more.

The network is trained to take the obstacle distance into consideration too, so that the

agent does not hit an obstacle while trying to reach the goal. If the Obstacle Distance

is near, then the DOA gets smaller so that, output of the Go To Goal affects the

overall output less when an obstacle is near.

If the output value produced by the Go To Goal behaviour is bigger than the obstacle

distance, DOA value gets smaller to decrease the effect of Go To Goal on the overall

output and prevent the agent to hit an obstacle.

The third ANFIS network learns to produce DOA values for the Follow Optimum

Path behaviour. Its inputs are absolute value of the output produced by Follow

Optimum Path behaviour, obstacle distance in the direction of this output, and

distance from the optimum path in the current position. Architecture of the ANFIS

used is the same as the one given in Figure 15. Membership functions are also

similar to the first two networks explained above. Membership functions of these

inputs are as follows:

• Follow Optimum Path Output: Big, Small

• Obstacle Distance: Near, Far

• Optimum Path Distance: Near, Far

Unlike the first two ANFIS networks, this network learns to produce bigger DOA

values if the distance from the optimum path is far. DOA increases as the optimum

path gets more distant. When the optimum path is far, Optimum Path Following

becomes more dominant because of the big DOA value and affects the overall output

more so that it pulls the agent towards the optimum path.

 40

Like the first two ANFIS networks, this network is trained to take the obstacle

distance into consideration too for the agent to not hit an obstacle while trying to

follow the optimum path. If the obstacle distance is near, then the DOA gets smaller

so that, output of the Follow Optimum Path affects the overall output less when an

obstacle is near.

If the output value produced by the Follow Optimum Path behaviour is bigger than

the Obstacle Distance, DOA value gets smaller to decrease the effect of Follow

Optimum Path on the overall output and prevent the agent to hit an obstacle.

Different than the first two ANFIS networks, this ANFIS learns to produce a

negative DOA value to handle the case of agent’s being on the optimum path

already. In this case, the network learns to produce a negative DOA value, which

shows a choice to not to move and stay in the current position. This case is the only

exception for the [0,100] range of DOA values. When Navigate behaviour produces

a negative DOA value for the Follow Optimum Path behaviour, this is interpreted by

decreasing outputs of the other behaviours by 50%.

Fourth and the last part of the Navigate behaviour controls the primitive behaviour

Move Randomly by producing its DOA values for each step of the agent. Inputs of

this part are distances between the current position and the positions of the agent two

steps ago, four steps ago, and six steps ago. These inputs have again two membership

functions: big and small. If these distances are small, DOA for Move Randomly

behaviour increases. If the distances are big enough, the DOA value gets smaller so,

Random Movement does not affect the overall output. Aim of this behaviour is to

rescue the agent if it gets stuck somewhere and cannot move or move in the same

places in a persistent way.

To produce a single overall output value, which represents the agent’s speed and

direction in every step, first absolute values of outputs of the primitive behaviours

are multiplied with their DOA values. Then vector summation is used to combine

 41

these results into one single, combined result. Execution of the Navigate behaviour

and production of the final output is shown in Figure 16.

Normally, outputs of the primitive behaviours can represent three directions; left,

right, and front. They cannot choose the agent go any other directions. But since the

vector summation is used to combine the results of these primitive behaviours, the

agent can move in the directions between these three.

4.2.4 Experiment Results of Single Agent Architecture

Experiments were done in the environment defined in section 4.2.2 and the board

used for the experiments is same as the one in Figure 13. Obstacles used in the

environment are static obstacles.

All the ANFIS networks in the hierarchy are trained off-line. They are all trained in

300 epochs and 100 training data are used in each epoch. First, the primitive

behaviours are trained and their behaviours in the last epoch are saved to be used by

behaviour as the inputs.

While training the ANFIS networks, each epoch is divided into two phases: forward

and backward phases. Training data is produced by putting the agent in random

positions on a board again randomly generated (Obstacles are placed randomly).

In the first phase of the training, outputs of the first three layers of the network are

calculated and consequent parameters of the network are found by using Least

Squares Estimate method. In the second phase, gradient decent algorithm is used to

update membership function parameters.

The agent starts the experiment from (0,0) coordinates of the board (Upper left

corner). The goal location it is supposed to go is the lower right corner of the board.

For the agent’s eyesight to cover all the space around it, it sees the direction it looks

as shown in Figure 17.

 42

Figure 16-Execution of Navigate behaviour

In the figure, agent faces north. Small rectangles on Figure 17 have dimensions (10,

10) units. Red, green, and blue rectangles in the figure show the eye sights of the

Find DOA of Obstacle
Avoidance

Find DOA of Go To
Goal

Find DOA of Follow
Opt. Path

Find DOA of Move
Randomly

While not all
beh. added

Beh. output
is 0?

Set output to
default value

Yes

No

Multiply abs.
output with DOA

l

Add result to
vector summation

If DOA of
Follow Op.P < 0

Yes
Decrease all
DOAs 50%

 43

agent in front, on the right, and on the left respectively. They have overlapping areas

on the corners.

Figure 17-Eyesight of the agent

Agent looks only to its left, right and front. It does not see behind. So agent’s current

direction is important to determine what it sees and how it will react. Agent’s

direction can take four values; North, South, West, and East for the simplicity even if

the agent moves to a direction between these. Agent’s direction is determined as

follows;

The behaviours can choose to go to the right, to the left, or straight. If result of the

vector summation is something between the four main directions, one of its

components must be the current direction. In this case, the new direction is accepted

as the vector’s component, which is not the current direction. For example, if the

current direction is south and the result vector has components in the directions south

and east, the new direction is determined as east.

Result of the experiment done after the training phase is shown in Figure 18.

Initial direction of the agent is given as south. The agent does not have a map of the

board and its path is not pre-planned. It is given only distances from the goal

position, optimum path and closest obstacles to simulate perception of a mobile

robot. At the starting position, because of the Avoid Obstacle behaviour, the agent

chooses to turn east (that is agent’s left hand-side). At this point, since the agent is

already on the Optimum Path, composite behaviour Navigate chooses to produce a

F

L RA

 44

negative DOA for Follow Optimum Path behaviour as shown in Figure 19 and stay

in the current position. (Since the agent never gets stuck during the execution, DOA

of Move Randomly behaviour is always zero and it is not shown in the graph.) As for

Go To Goal behaviour, both going forward and left are the same but as explained

above, it is trained to favour going forward in this case. So it chooses to go forward.

But since the obstacle is close, the biggest DOA is Avoid Obstacle’s and agent turns

left but it still goes forward a small amount because of Go To Goal behaviour.

Figure 18-Experiment results of single agent

Points where the agent changes direction are marked on both the agent’s path and the

graph, which shows DOAs of the behaviours. Agent’s behaviour at these points is

explained below.

At point A, direction is east. Avoid Obstacle and Follow Optimum Path chooses to

turn right, but Go To Goal still chooses going forward. At this point, DOA of Follow

Optimum Path is not determined by distance from the optimum path. The distance

from the obstacle in the direction where Follow Optimum Path wants to go

determines it because output of the Follow Optimum Path is greater than the obstacle

A

B

C
D

E

 45

distance in that direction. DOA is chosen as the biggest value possible to prevent the

agent hitting the obstacle. DOA of Go To Goal also is determined according to

distance from the closest obstacle in that direction. DOA of Avoid Obstacle is very

high because of the close obstacles.

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

Number of Steps

D
O

A
s Avoid Obstacle

Go To Goal
Follow Opt. Path

Figure 19-DOA values during the execution

At point B, direction is south. Since there are no obstacles close to the agent on the

left, right, and in front, DOA of Avoid Obstacle is quite small. Again because there

are no close obstacles, DOA of Follow Optimum Path is determined by the distance

from the optimum path. Since the agent is not very far from the optimum path, DOA

at this point is not high but it still affects the overall behaviour and causes the agent

to go left. The distance from the goal also determines DOA of Go To Goal and it is

bigger than the previous step’s DOA since the agent is getting closer to the goal. Go

To Goal behaviour causes the agent to go forward at this point.

At point C Avoid Obstacle becomes dominant again as the agent approaches a new

obstacle. Since distance from the optimum path remains the same, DOA of Follow

Optimum Path does not change much. DOA of Go To Goal is small in this step

because this behaviour chooses the agent to go towards the obstacle and its DOA is

determined by distance from the obstacle.

A B C D E

 46

At point D again DOA of Avoid Obstacle increases because of decreasing distance

from the obstacle. Since the goal is getting quite close, DOA of Go To Goal begins

to increase a good deal. DOA of Follow Optimum Path also increases because

distance from the optimum path also increases.

At point E the most dominate behaviour is Go To Goal since the goal is closer now.

In spite of this, increasing of its DOA is slowed down, as can be seen in Figure 19,

for the agent to not to hit the wall. Because the agent is getting close to the goal,

DOA of Avoid Obstacle gets smaller. This is needed for the Obstacle Avoidance

behaviour to not to prevent the agent from reaching the goal by moving it away from

the walls of the board.

4.2.5 Experiment Results with Erroneous Data

One of the most important problems in robotics is the imprecise data taken from

robots’ sensors due to hardware errors, limited ranges of sensors, poor observation

conditions, etc. To handle these erroneous inputs, control mechanism of the agent

must be robust.

The control mechanism for the single agent architecture explained above is tested by

adding 10% of error to the agent’s inputs. Results of this robustness test are shown in

Figure 20 below.

The same board as in the first experiment was used in the test for an easy

comparison. As shown in Figure 20, agent’s path stays mostly the same. The most

important difference is between the points A and B. In this part, the agent follows the

optimum path not as close with the precise inputs but it still goes parallel to the

optimum path. Other than that it still achieves its task without hitting the obstacles on

its way and following the optimum path where possible. The path it follows to

achieve its task is very close to the first experiment where the agent was given error-

free inputs.

 47

Figure 20- Experiment results by using erroneous input data

4.2.6 Behaviour Hierarchy For Multi-Agent Control

As the second phase of the thesis, the control method for a single agent explained in

the previous sections was extended to control the agents in a multi-agent architecture.

Task of the agents is to search the goal while avoiding obstacles on their way. This

time the agents must learn to avoid the other agents too to prevent collisions and

keep the agents apart so that they can search different parts of the board to find the

goal. Behaviour hierarchy used is given in Figure 21.

Behaviours in the hierarchy are explained below;

Avoid Obstacle, Go To Goal: These behaviours are same as the single agent

versions except a “Field of View” is added this time. Field of View is 40 units in a

100x100 board. If there are obstacles farther than 40 units or if the goal is farther

than 40 units, then the agents cannot see them.

Move Randomly: This behaviour is also the same as in the first hierarchy and it

produces random directions and speeds.

A

B

 48

Figure 21-Behaviour hierarchy for multi-agent control

Avoid Agent: This behaviour prevents the agents to collide and get close to each

other so that they can search different parts of the board. This primitive behaviour

allows agents to share the search space somehow.

Navigate: In this hierarchy, composite behaviour Navigate controls three primitive

behaviours by using their DOAs. Its inputs are the same as in the previous section

too except this hierarchy does not contain Follow Optimum Path behaviour.

Search Goal: This composite behaviour has two parts to control behaviours

Navigate and Avoid Agent. The first part controls Avoid Agent behaviour and has

four inputs; output produced by the primitive behaviour Avoid Agent, obstacle

distance in the direction Avoid Agent wants to go, goal distance (if goal distance is

bigger than 40 units than this input is given as a constant value called MAX-

DISTANCE), and distance from the closest agent.

Second part of the Search Goal produces a DOA value for Navigate. DOA it

produces is complement of the Avoid Agent’s DOA.

Navigate

Avoid
Obstacle

Go To
Goal

Move
Randomly

Search
Goal

Avoid
Agent

 49

In addition to the existing ANFIS networks, the first part of composite behaviour

Search Goal and primitive behaviour Avoid Agent uses ANFIS too.

4.2.7 Learning Mechanism for Multi-Agent Control

In this hierarchy, ANFIS is used in off-line learning mode too. Differences in the

existing behaviours and the newly added behaviours are explained below. Since the

ANFIS architecture and inputs used for Avoid Obstacle and Go To Goal behaviours

are the same as single agent control, these behaviours are not explained again.

4.2.7.1 Navigate

In multi-agent control hierarchy, this composite behaviour has three parts to control

Avoid Obstacle, Go To Goal, and Move Randomly behaviours. In this hierarchy

Follow Optimum Path behaviour was not used because the task of the agents here is

to search the board for a goal whose location is unknown. So an optimum path,

which leads to the goal, does not exist in this task.

Navigate produces DOA of Avoid Obstacle in the same way as single agent control’s

Navigate behaviour. Architecture of ANFIS used to control Go To Goal is also the

same but in multi-agent case, Navigate learns to produce zero, as the DOA value for

Go To Goal, if the goal is not seen.

Control of Move Randomly primitive behaviour is also different. In multi-agent case,

this part of the Navigate behaviour has three inputs. These are: output of Move

Randomly behaviour, obstacle distance in the direction it wants to go, and goal

distance in the current direction. In the single agent case, the Move Randomly

behaviour was only active if the agent’s behaviour becomes persistent (if it gets stuck

somewhere). But in the multi-agent case, this behaviour is always active. Its DOA

depends on the obstacle and goal distances. As the agent gets closer to the goal or an

obstacle, DOA of this behaviour gets smaller. In this way, random behaviour does

not prevent the agent to reach the goal or makes it collide with an obstacle.

 50

 4.2.7.2 Avoid Agent

ANFIS used in this behaviour has three input nodes. These inputs are closest agent’s

distance on the left from the current position, closest agent’s distance on the right,

and closest agent’s distance in front. Like Avoid Obstacle and Go To Goal, agent has

a field of view of 40 units for seeing the other agents.

In the training phase, the agent is put in random coordinates on a board with other

agents placed randomly on it and agent distances in three directions are measured

and given to the ANFIS network as inputs. The network is trained to choose the

direction with the biggest agent distance. Usage of sign of the output value is the

same as the other primitive behaviours.

If agent distances on two directions are the same, the ANFIS network is trained to

favour right side on the left and front on the right. Since Avoid Agent is a primitive

behaviour, as long as the agent moves away from the other agents, it does not take

into consideration if the agent moves towards the goal/obstacle or not.

The Type-1 ANFIS network used for the Avoid Agent behaviour is the same as the

one shown in Figure 15.

4.2.7.3 Search Goal

This composite behaviour has just one ANFIS to control Avoid Agent primitive

behaviour. Different than the other behaviours in the hierarchy, ANFIS architecture

used in this behaviour has four inputs: output produced by the primitive behaviour

Avoid Agent, obstacle distance in the direction Avoid Agent wants to go, goal

distance, and distance from the closest agent.

ANFIS used is again a Type-1 ANFIS with four nodes in the first (input) layer, and

twelve nodes in second layer. Unlike the other ANFIS networks used for the other

behaviours, it has three membership functions for each input. Membership functions

of these inputs are as follows:

• Avoid Agent Output: Big, Medium, Small

 51

• Obstacle Distance: Near, Medium, Far

• Goal Distance: Near, Medium, Far

• Agent Distance: Near, Medium, Far

The network learns to produce small DOA values if the agent distance is far. DOA

increases, as the agent distance gets nearer. When an agent is near, Avoid Agent

becomes more dominant because of the high DOA value and it affects the overall

output more.

The network is trained to take the goal and obstacle distances into consideration too,

so that the agent does not go away from the goal while trying to avoid an agent or

does not hit an obstacle. If the goal distance is near, then the DOA gets smaller so

that, output of the Avoid Agent affects the overall output less. In the same way, if

obstacle distance is near, DOA again gets smaller and Avoid Agent affects the overall

output less.

DOA of the composite behaviour Navigate is used as complement of DOA of Avoid

Agent. No ANFIS network or other learning technique is used for this.

4.2.8 Experiment Results of Multi-Agent Control Hierarchy

Experiments were done in the environment defined in section 4.2.2 and the board

used for the experiments is same as the one in Figure 13. Obstacles used in the

environment are static obstacles but the agents move around the board and they can

be considered as dynamic obstacles for the other agent(s). Two agents were used for

this experiment.

All the ANFIS networks in the hierarchy are trained off-line. They are all trained in

200 epochs and 300 training data were used in each epoch. First, the primitive

behaviours are trained and their behaviours in the last epoch are saved. Then the

composite behaviours Navigate and Search Goal are trained by using these outputs

as the inputs.

 52

The agents start the experiment from (40, 0) and (80, 0) coordinates of the board.

The goal location they are supposed to find is the lower right corner of the board.

Result of the experiment done after the training phase is shown in Figure 22 below.

Figure 22- Experiment results of multi-agent hierarchy

Initial directions of both of the agents are south. Numbers on the figure shows

number of steps of the agents. Green numbers belong to Agent-1 and red numbers

belong to Agent-2. At the starting position (point-1), because the agents barely see

each other, Avoid Agent behaviour is not much active. In this position, the most

dominant behaviour is Move Randomly.

At point-2, since the agents get closer, they begin to see each other and Avoid Agent

behaviour gets more dominant. Because of this behaviour, both of the agents change

their direction to go away from each other.

At point-3, Agent-1 is oriented by Avoid Obstacle behaviour and changes its

direction to move away from the obstacle but Agent-2 keeps going towards the only

direction it would not approach Agent-1 and hit walls of the board.

A

11 2 2

3

4
5

6 7

8

9

4

5

6

7 8 9

3

 53

At point-4, this time Agent-2 is guided by Avoid Obstacle behaviour and Agent-1

goes forward to not to approach Agent-2 on the left and the obstacle on the right.

At point-5, both Avoid Obstacle and Avoid Agent behaviours dominate Agent-2. So

the agent goes towards a direction which is a composition of these two behaviours

and ends up both going south to avoid Agent-1 and going to the west a little to avoid

the obstacle. For Agent-1, both Avoid Obstacle and Avoid Agent behaviours choose

to go towards west.

At point-6, both agents are controlled mostly by Avoid Obstacle behaviour. At point-

7 while Agent-1 is still controlled by Avoid Obstacle behaviour, Agent-2 begins to

see the goal. Because of both Avoid Obstacle and Go To Goal behaviours, it turns

towards south.

At points 8 and 9 Agent-1 is controlled by Move Randomly behaviour because there

are no close obstacles and agents around. Agent-2 is now very close to the goal and it

is controlled by only Go To Goal behaviour.

 54

CHAPTER 5

CONCLUSION AND FUTURE WORK

Fuzzy controllers are widely used in robotics applications in recent years. Because

they are convenient choices in the cases where there is uncertainty in the inputs and it

is not possible to obtain a model of the environment. Another advantage of the fuzzy

logic in robot controllers is the easiness it provides to represent human knowledge

without needing analytical model of the system.

In this study, a behaviour-based control strategy using ANFIS neuro-fuzzy learning

approach is presented. Fuzzy behaviour hierarchies used to combine the behaviours

in the system. It resulted in a system robust to errors in input data, and easy to

modify by adding new behaviours to the hierarchy. The agents using this control

architecture successfully navigate in a simulated indoor-like environment with both

static and dynamic obstacles in it and find and reach goal positions.

This study has an advantage over some other studies, which apply fuzzy behaviour

hierarchies [4] [6] in finding and tuning of membership functions. The other systems

do this by trial and error and finding the appropriate membership functions is often

quite a tiring process and a problem. But usage of learning algorithms like ANFIS

 55

overcomes this problem and the membership functions are found and tuned by

ANFIS automatically.

As a future work, multi-agent control architecture in the second phase of the study

can be improved by adding new behaviours to the system. For example, a new

behaviour can be added for the agents to share the information they have with the

other agent or share their tasks. As another improvement ANFIS system can be used

in on-line learning mode to adapt the agent to the changes in the environment.

The control architecture presented in this study is tested in a simulated environment.

As another future work, the study can be tried on a real mobile robot and in real

world problems like tasks of finding a target location in an unknown environment.

 56

REFERENCES

[1] Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot.

IEE Journal of Robotics and Automation, Vol. RA-2, No.1, pp 14-23, March

1986

[2] H. Hagras, V. Callaghan. A Hierarchical Fuzzy-Genetic Multi-Agent

Architecture for Intelligent Buildings Online Learning, Adaptation and Control.

International Journal of Information Sciences, November 2001

[3] E. Tunstel, M. Jamshidi. On Genetic Programming of Fuzzy Rule-Based

Systems for Intelligent Control. International Journal of Intelligent Automation

& Soft Computing, Vol.2 No.3, pp. 273-284, 1996

[4] E. Tunstel, T. Lippincott, M. Jamshidi. Behaviour Hierarchy for Autonomous

Mobile Robots: Fuzzy-Behaviour Modulation and Evolution. International

Journal of Intelligent Automation & Soft Computing, Vol.3, No.1, Special Issue

on Autonomous Control Engineering, pp. 37-50, 1997

[5] A. Saffiotti. The Use of Fuzzy Logic for Autonomous Robot Navigation. Soft

Computing, Vol. 1(4), pp 180-197, 1997

[6] E. Tunstel, M. Oliveira, S. Berman. Fuzzy Behaviour Hierarchies for Multi-

Robot Control. International Journal of Intelligent Systems, Vol.17 449-470.

2002

[7] Jyh-Shing R. Jang. ANFIS: Adaptive-Network-Based Fuzzy Inference

System. IEEE Trans. Systems, Man & Cybernetics, Vol. 23, pp 665-685, 1993.

 57

[8] Y. Lin, G. Cunningham. A New Approach to Fuzzy-Neural System

Modeling. IEEE Transactions On Fuzzy Systems. Vol.3, No.2, May 1995

[9] L. A. Zadeh. Fuzzy Sets. Information and Control, No. 8, pp. 338-353, June

1965

[10] Marvin Minsky. The Society of Mind. Simon and Schuster, New York, 1985

[11] I. Ahrns, J. Bruske, G. Hailu, and G. Sommer. Neural fuzzy techniques in

sonarbased collision avoidance. Soft Computing for Intelligent Robotic Systems,

pages 185–214. Physica, 1998.

[12] A. Bonarini. Evolutionary learning of fuzzy rules: competition and

cooperation. Fuzzy Modeling: Paradigms and Practice, pages 265–284. Kluwer

Academic Press, Norwell, MA, 1996.

[13] J. Godjavec and N. Steele. Neuro-fuzzy control for basic mobile robot

behaviors. In Fuzzy Logic Techniques for Autonomous Vehicle Navigation,

pages 97–117. Spring, 2000.

[14] H.Hagras, V. Callaghan, and M.Colley. Learning fuzzy behavior co-

ordination for autonomous multi-agents online using genetic algorithms and

real-time interaction with the environment. Fuzzy IEEE, 2000.

[15] A. Saffiotti, K. Konolige, and E.H. Ruspini. A multivalued-logic approach

to integrating planning and control. Artificial Intelligence, 76(1-2):481–526,

1995.

[16] A. Saffiotti, D. Driankov. Fuzzy Logic In Autonomous Navigation. In Fuzzy

Logic Techniques for Autonomous Vechile Navigation. Pages 3-24, 2001.

 58

[17] A. Saffiotti, D. Driankov. A Reminder on Fuzzy Logic. In Fuzzy Logic

Techniques for Autonomous Vechile Navigation. Pages 25-47, 2001.

[18] T.Takagi and M.Sugeno Derivation of Fuzzy Control Rules From Human

Operator’s Control Actions. Proc. Of the IPAC Symp. On Fuzzy Information

Knowledge Representation and Decision Analysis, pages 55-60, July 1983

[19] M Sugeno and M.Nishida. Fuzzy Control of Model Car. Fuzzy Sets and

Systems, 16:103-113, 1985

[20] T.Takeuchi, .Y.Nagai, and N.Enomoto. Fuzzy Control of a Mobile Robot for

Obstacle Avoidance. Information Sciences, 43:231-248,1988

[21] R. C. Arkin. Behaviour-Based Robotics. MIT Press, Cambridge, 1998

[22] H. Berenji, Y-Y. Chen, C-C. Lee, J-S. Jang, and S.Murugesan. A

hierarchical approach to designing approximate reasoning-based controllers for

dynamic physical systems. In Proc. of the Conf. On Uncertainity in Artif. Intell.,

pages 362-369, Cambridge, MA, 1990.

[23] E.H. Ruspini. Truth as utility: A conceptual syntesis. In Proc. of the Conf.

On Uncertainity in Artif. Intell., pages 316-322, Los Angeles, CA, 1991.

[24] I. Ahrns, J. Bruske, G. Hailu, and G. Sommer. Neural fuzzy techniques in

sonarbased collision avoidance. In Soft Computing for Intelligent Robotic

Systems, pages 185–214. Physica, 1998.

[25] J. Godjavec and N. Steele. Neuro-fuzzy control for basic mobile robot

behaviors. In Fuzzy Logic Techniques for Autonomous Vehicle Navigation, pages

97–117. Springer, 2000.

 59

[26] A. Bonarini. Evolutionary learning of fuzzy rules: competition and

cooperation. In W. Pedrycz, editor, Fuzzy Modelling: Paradigms and Practice,

pages 265–284. Kluwer Academic Press, Norwell, MA, 1996.

[27] H.Hagras, V. Callaghan, and M.Colley. Learning fuzzy behaviour co-

ordination for autonomous multi-agents online using genetic algorithms and real-

time interaction with the environment. In Fuzzy IEEE, 2000.

[28] F. Hoffmann. Evolutionary algorithms for fuzzy control system design.

Proceedings of the IEEE, 89(9):1318–33, September 2001.

[29] E. W. Tunstel. Fuzzy-behavior synthesis, coordination, and evolution in an

adaptive behavior hierarchy. In Fuzzy Logic Techniques for Autonomous Vehicle

Navigation, pages 205–234. Springer, 2000.

[30] P. Werbos. Beyond Regression: New tools for prediction and analysis in the

behavioural sciences. PhD Thesis, Harvard University, 1974.

[31] C.C.Lee. Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part 1.

IEEE Trans. On Systems, Man, and Cybernetics. 20(2): 404-418, 1990.

[32] C.C.Lee. Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part 1.

IEEE Trans. On Systems, Man, and Cybernetics. 20(2): 419-435, 1990.

[33] Alessandro Saffiotti, Zbigniew Wasik. Using Hierarchical Fuzzy Behaviors

in the RoboCup Domain, Physica-Verlag GmbH Heidelberg, Germany, 2003.

[34] Frank Hoffmann. Fuzzy Behaviour Coordination For Robot Learning from

Demonstration. NAFIPS 2004, Banff Canada, June 2004.

