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ABSTRACT 
 
 

STAR MODELS: AN APPLICATION TO TURKISH INFLATION AND 

EXCHANGE RATES 

 

YILDIRIM, Dilem 

M.S. in Economics 

Supervisor: Associate Prof. Dr. Nadir ÖCAL 

 

December 2004, 85 pages 

 
The recent empirical literature has shown that the dynamic generating mechanism of 

macroeconomic variables can be asymmetric. Inspiring from these empirical results, 

this thesis uses a class of nonlinear models called smooth transition autoregressive 

models to investigate possible asymmetric dynamics in inflation and nominal 

exchange rate series of Turkey. Estimation results imply that variables under 

consideration contain strong nonlinearities and these can be modeled by STAR 

models. 

  

Key Words: Smooth transition autoregressive (STAR) model, Inflation, Nominal 

exchange rate, Asymmetry, Nonlinearity. 
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ÖZ 
 
 

YUMU�AK GEÇ��L� OTOREGRESS�F MODELLER: TÜRK�YE 

ENFLASYONU VE DÖV�Z KURU ÜZER�NE B�R UYGULAMA 

 

YILDIRIM, Dilem 

Yüksek Lisans Tezi, �ktisat Anabilim Dalı 

Tez Yöneticisi: Doç. Dr. Nadir ÖCAL 

 

Aralık 2004, 85 sayfa 

 
Son yıllarda geli�mekte olan ampirik yazın, makroekonomik de�i�kenlerin 

dinami�ini olu�turan mekanizmanın asimetrik olabilece�ini göstermektedir. Bu 

ampirik bulgulardan esinlenerek, bu tez yumu�ak geçi�li otoregresif modelleri 

kullanarak Türkiye’nin enflasyon ve nominal döviz kurları verilerindeki olası 

asimetrik dinami�i ara�tırmaktadır. Tahmin sonuçları, analiz edilen de�i�kenlerin 

güçlü do�rusal olmayan yapılar içerdi�ini ve bu yapıların yumu�ak geçi�li 

otoregresif (STAR) modellerle modellenebilece�ini göstermektedir. 

 

Anahtar Kelimeler: Yumu�ak geçi�li otoregresif  (STAR) modeller, Enflasyon, 

Nominal döviz kuru, Asimetri, Do�rusalsızlık. 
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CHAPTER I 
 

INTRODUCTION 
 

 
 
Modeling of business cycles is a key feature of macroeconomic time series analysis. 

Recent empirical literature has shown that the business cycle is asymmetric in the 

sense that the economy behaves differently during expansions and recessions. It has 

been established that downturns in the business cycle are sharper than recoveries in 

key macroeconomic variables. For example, output and employment fall more 

sharply than they rise. Following this feature, the unemployment rate is likely to rise 

sharply in recessions and than slowly decline to its long-run value in expansion 

periods, implying that dynamic adjustment of the unemployment rate depends on the 

phases of business cycle. 

  

Cyclical asymmetry is actually a nonlinear phenomenon, therefore it can not be 

represented by linear models with symmetric error distributions because such models 

can only generate realizations with symmetric fluctuations and they are incapable of 

generating asymmetric cycles, which seems to be the characteristics of business 

cycle data. 
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Recently several nonlinear models have been suggested in the literature to capture 

observed asymmetries. A common feature of these models is that they assume the 

presence of different regimes, within which the time series under scrutiny can have 

different means, variances and (auto-) correlation structures. Threshold 

autoregressive (TAR) models, smooth transition autoregressive (STAR) models and 

Markov-switching regime models have been the most popular nonlinear models in 

applied literature. Threshold autoregressive model is a set of different linear AR 

models, changing according to the value of threshold variable(s) relative to fixed 

threshold(s) and indicating different regimes. Although the process is linear in each 

regime, the possibility of regime switching means that the entire process is nonlinear. 

In the smooth transition autoregressive (STAR) model, the fixed thresholds of a 

standard threshold autoregressive (TAR) model are replaced with a smooth transition 

function, which needs to be continuous and non-decreasing. The Markov-switching 

regime model imposes entirely stochastic breaks for the model while other two have 

exogenous breaks. In the Markov model, the inferences are drawn on the base of 

probabilistic estimates of the most likely state prevailing at each point of time during 

the observation period. 

 

This study aims to provide a review of these three nonlinear models with emphasis 

being on the application of the smooth transition autoregressive models. The study 

concentrates on STAR models since they are flexible enough to allow several 

different types of dynamics that could be observed in macroeconomic time series. 

For example, a STAR model with a logistic transition function can describe an 

economy with its dynamic properties in expansion being different than that of 

contraction, whereas with an exponential transition function it represents an economy 
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where the contractions and expansions have rather similar dynamic structures, but 

the middle ground can have different dynamics. Moreover, while the Hamilton type 

Markov switching models and threshold models imply that the economy can only be 

in two different regimes, namely recession and expansion. STAR models allow a 

continuum of regimes between these two extremes.  

 

These models have been employed to analyze not only economic variables used to 

examine business cycle fluctuations but also to investigate the possible nonlinearities 

in the financial variables such as exchange rate and interest rates. We also wanted to 

examine macroeconomic variables but because of sample size problems we consider 

monthly inflation and nominal exchange rate data of Turkey with sample period 

January 1987-June 2001. The first reason of selecting these variables is the sufficient 

length of the sample. Secondly, the studies concerning PPP hypothesis suggests that 

as a consequence of nonzero transaction, transportation costs and other impediments 

to trade, deviations from the PPP should contain significant nonlinearities. The 

empirical studies in this field contain Liew et al. (2003), Sarno (2000), Taylor and 

Peel (2000) and Baum et al. (2001). They find strong evidence of nonlinear behavior 

of real exchange rate and characterized the data by smooth transition autoregressive 

(STAR) model, a type of nonlinear time series model that allows the real exchange 

rate to adjust smoothly every moment in between two regimes, which may be either 

appreciating and depreciating or undervaluation and overvaluation regimes. Sarno, 

Taylor and Chowdhury (2004) test empirically the validity of the law of one price. 

Using threshold autoregressive (TAR) models, they find significant nonlinear mean 

reversion in deviations from the law of one price. The other empirical studies follow 

the same procedure are Micheal et al. (1994), Obstfeld and Taylor (1997) and Taylor 
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(2000). Sarno (1997) finds evidence of nonlinearity in real exchange rate of Turkey 

but does not provide any information about the possible source of nonlinearity that 

can be observed either one of the component series or both. In our study, to examine 

the source of this possible nonlinear structure in PPP hypothesis we decided to 

analyze the component series, namely inflation and nominal exchange rate, 

separately. The nonlinear structure can be a result of only one variable or both. This 

is important because if one does not consider the source of nonlinearity one can 

make wrong inferences about the dynamics of variables. Therefore, the first step of 

modeling cycle for transformed variables such as real exchange rates, TL / $ should 

be to uncover the source of nonlinearity. We estimate STAR models for inflation,  

TL / $ and TL / £ series and examine their dynamic properties and forecast 

performances. Adequacy of these models is checked by a group of misspecification 

tests. Our findings indicate that STAR models adequately describe the dynamics of 

the variables. This implies that possible asymmetric dynamics of these variables 

should not be neglected when they are used in macroeconomic modeling. 

 

This study is quite important on the following grounds. First, it indicates that if the 

data show significant nonlinearity, than the use of linear models will not be 

appropriate and the constructed nonlinear model will probably give better forecasts. 

Second, the identification of nonlinearity will be quite useful in determining 

macroeconomic policy changes. That is the effectiveness of macroeconomic policies 

may change from one regime to another. Other implication of this study is that if the 

data follow nonlinear process, than the dynamic structure may change according to 

the regimes and this may cause a nonlinear stationary process to be taken as a linear 

nonstationary process.  
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The plan of this study is as follows. Chapter two discusses the main properties of 

three nonlinear models. The modeling cycle of smooth transition autoregressive 

model, the data and evaluation of empirical findings are provided in Chapter three. 

Finally, Chapter four gives an evaluation of the study. 
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CHAPTER II 
 

 NONLINEAR TIME SERIES MODELS 
 
 
2.1 Introduction 

The assumption of linearity has long been dominating macro econometric model 

building. If linear approximations to economic relationships had not been successful 

in empirical work they would no doubt have been abandoned long ago. However, in 

the last three decades, the adequacy of linear model in capturing the dynamics of 

business cycle data has been debated very often in the literature. It has been observed 

that the business cycle is asymmetric in the sense that the economy behaves 

differently during expansions and recessions. A wide variety of linear models have 

been employed to model business cycle features, but linear time series models with 

symmetric error terms cannot capture asymmetric dynamics. To describe such 

dynamics one needs nonlinear models.  

 

In the last two decades, many nonlinear models have been suggested, though only a 

few commonly applied in economics. These models are the threshold autoregressive 

(TAR) model due to Tong (1983), the Markov switching model used by Hamilton 

(1989) and Engle and Hamilton (1990) and the smooth-transition autoregressive 

(STAR) models promoted by Teräsvirta (1994) and his co-authors as a smooth 
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generalization of TAR models. The main objective of this chapter is to provide a 

brief review of these models. 

 

This chapter is organized as follows. In Section 2.2, the threshold autoregressive 

model is introduced and modelling procedure is explained. Markov-switching 

models and two different approaches for this model are provided in Section 2.3. 

Section 2.4 considers the main topic of this study, smooth transition autoregressive 

models. Finally, the last section is devoted to the comparison of nonlinear time series 

models. 

 

2.2 Threshold Autoregressive Models 

The threshold autoregressive model was first proposed by Tong (1978) and discussed 

in detail by Tong and Lim (1980), Tong (1983) and Tsay (1989). The procedure 

proposed by Tong and Lim (1980) is quite complex. It involves several computing-

intensive stages and there were no diagnostic statistics available to assess the need 

for a threshold model for a given data set. Because of these reasons their estimation 

procedure has not received much attention in applied studies. Tsay (1989) suggested 

a simple method to estimate TAR models. The simplicity of the procedure comes 

from the usage of familiar linear regression techniques. Potter (1995) and Tiao and 

Tsay (1994) used this modeling procedure to describe US real GNP and found good 

results in favor of TAR specification. 

 

2.2.1 Representation of Basic TAR Model 

A TAR model is a piecewise linear autoregressive model in the space of the 

threshold variable. A simple TAR model of a time series Yt with the threshold 
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variable rt-d is defined as follows, where rt is a stationary variable from inside or 

outside of the model and d is referred as threshold lag. Partition the space of rt-d, the 

real line, by   ∞−   = �0< � 1<…………< � g < � g+1 = ∞  

Then a TAR model of order p for yt is defined as 

Yt = �0
(h) + �1

(h)Yt-1 +............. + �1
(h)Yt-p + �h,t        for  � h-1� rt-d < � h                            (2.1) 

        �h,t ~ iid(0,�2)    h = 1,...g, g: number of regimes in the model 

where � h’s are referred to as the thresholds and g is the positive integer. 

 

In a two-regime case, the model becomes, 

        t,1ptp11t1110 Y.................Y ε+α+α+α −−          if     rt-d >τ  
Yt =                                                                                                                        (2.2) 
        t,2ptp21t21120 Y.................Y ε+α+α+α −−        if     rt-d �τ  
 

where rt-d is the transition variable, d is the delay parameter and τ  is the threshold 

parameter 

 

On one side of the threshold, the Yt sequence is governed by one autoregressive 

process and on the other side of the threshold, by another AR process. Although Yt is 

linear in each regime, the possibility of regime switching implies that the entire 

sequence is nonlinear and therefore TAR model is said to be a piecewise linear 

autoregressive model. This property of these models allows modeling asymmetric 

behavior observed in empirical data. 

 

2.2.2 Modeling TAR Models 

Modeling procedure of threshold autoregressive models contains five steps. 
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In the first step an appropriate AR model is selected, for the all data points in use to 

construct a basis for nonlinear modeling. AR order p can be selected either by 

considering the partial autocorrelation function (PACF) or some other information 

criteria such as Akaike information criteria (AIC) or Schwarz Bayesian criteria 

(SBC). However, PACF is more preferable over other information criteria because if 

the process in indeed is nonlinear than the information criteria could be misleading1. 

 

Second step of TAR modeling is threshold nonlinearity test and finding the threshold 

variable. To detect nonlinearity and the threshold variable, arranged autoregression 

procedure is applied. An arranged autoregression is an autoregression with cases 

rearranged, based on the values of a particular regressor. For the TAR model, 

arranged autoregression becomes useful by arranging the values of the variables 

according to ascendingly ordered values of the threshold variable. This arrangement 

effectively transforms a threshold model into a change point problem. That is the 

data points are grouped in such a way that all of the observations in a group follow 

the same linear AR model. 

 

The procedure to be applied in the third step can be summarized as follows. An 

arranged autoregression based on the threshold variable rt-d is constructed. This 

rearrangement procedure is done for all possible values of the delay parameter, d. To 

start threshold nonlinearity test, predictive residuals are obtained from the each 

arranged autoregression. These predictive residuals play a crucial role in this step,  

 

 

1See, Tsay (1989) 
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because if the appropriate model is linear than standardized predictive residuals and 

regressors will be orthogonal. Based on this, an auxiliary regression is constructed by 

regressing predictive residuals on the regressors. After estimating the auxiliary 

regression, LM test is applied. Then, for all possible variables and delay parameters 

auxiliary regressions are constructed and LM test is applied. The variable having 

smallest p-value (maximum power) is selected as the optimum threshold variable for 

the TAR model.   

 

After detecting threshold nonlinearity and specifying delay parameter, the next step 

is to determine location of threshold value and the number of regimes. For this 

purpose, scatter plots of the standardized predictive residuals or ordinary predictive 

residuals versus determined threshold variable or the scatter plots of t-ratios of 

recursive estimates of an linear AR coefficient versus the threshold variable can be 

used. The use of a scatter plot of recursive t-ratios of an AR coefficient versus the 

threshold variable has two functions. Firstly, they show the significance of that 

particular AR coefficient. Secondly, if the process is linear and the coefficient is 

significant, t-ratios gradually and smoothly converge to a fixed value as the recursion 

continues. However, if the process is nonlinear the predictive residuals will be biased 

at the threshold value and the convergence of the t-ratio will be destroyed. This 

biasedness and convergence destruction indicates the location of threshold value and 

major changes in the slope of the t-ratio suggest regime partitions. 

 

Chan (1993) introduced a similar technique for finding the consistent estimate of the 

threshold. His method is also heavily based on the concept of arranged 

autoregression. In that technique, the sum of squared residuals from any TAR model 
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are thought as being a function of the threshold value used in the estimation. 

According to this technique, the smallest value for sum of squared of residuals is a 

sign of being close to the true threshold value. Hence, sum of squares of residuals 

should be minimized at the value of the threshold. The true threshold value is 

captured in the trough of the graph of the sum of squared residuals and if the graph 

has several minima, than this means that the model has several thresholds and several 

regimes. One difficulty with this approach is the fact that one has to estimate a TAR 

model for each possible threshold value and variable. 

 

Having found the appropriate AR order, threshold variable, possible threshold value 

and the number of regimes, the modeling cycle of the TAR model comes to the 

estimation stage. Since TAR model is a locally linear model, ordinary least squares 

techniques are useful in studying the process. TAR model can be estimated with two 

available least squares estimation techniques. According to the number of regimes, 

the series is divided into the groups and OLS technique is applied for each group. A 

single regression is constructed for the whole series with indicator functions given by 

the single index multiplying lags of the time series. Second method is useful when 

there is a need to impose a restriction of equality of certain estimated coefficients 

across regimes or to use exogenous variables, which might have same or different 

coefficients across regimes.  

 

Having estimated the TAR model, validity of the model must be checked. First check 

is the location of the threshold value. The only limitation is that a threshold should 

not be too close to the 0th or 100th percentile. For these extreme points there will be 

not enough observations to provide an efficient estimate. To decide the adequacy of 



 12 

the model a battery of misspecification tests must be carried out and these are tests 

for no residual autocorrelation, heteroscedasticity, remaining nonlinearity, skewness, 

kurtosis and normality. Final evaluation criterion is post-sample forecasting and size 

of the combined error variance. To be able to choose the TAR model over linear AR 

model, TAR model should be statistically adequate, should have better forecast 

performance and smaller combined error variance. Otherwise there is no need to use 

this complex modeling cycle. Post-sample forecast performance comparison can be 

based on the comparison of the mean squared error of forecasts. In combined error 

variance case there is a quite important point. A reduction in the combined error 

variance obtained from the TAR model does not always indicate a better 

performance of the TAR model. There can be two reasons for this reduction, real 

improvement or just over fitting in the sample. In order to decide, linear and 

nonlinear models should be estimated recursively and the correlation between 

recursive forecasts and actual data should be obtained. If the correlation is at 

maximum in the TAR model, than the reduction is actually because of real 

improvement. 

 

2.3 Markov Switching Models 

The interest in Markov switching models in describing business cycle data has risen 

following the study by Hamilton (1989) and Filardo (1994). Hamilton type Markov 

models allow for two states to exist with a series of shifts between the states 

occurring in a probabilistic fashion. Thus, the shifts occur endogenously rather than 

being imposed from outside. In the Markov regime switching process, the probability 

of being in a particular state is only depend on the state of the process in the previous 

period. It is assumed that the probabilities of switching from one regime to the other 
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are fixed over time. The Hamilton two state Markov switching regime AR(1) model 

is as follows 

Y t = � st + � st + � t                                                                                                                                    (2.3) 

where � t is N(0, �2
 st)  

 

It is assumed that that regime path (st-1, st-2,…) follows a first order Markov process 

with time homogeneous transition probabilities, 

P(st = j | st-1 = i )�= pij , 

for i and j =1,2. 

 

Thus pij is equal to the probability that the Markov chain model moves from state i at 

time t-1 to state j at time t. In application to business cycle data st =1 can be thought 

as recession regime and st = 2 can be thought as expansion regime. This Hamilton 

process is completely described by the following constant transition probabilities: 

 

P(st = 1 | st-1 = 1) = p11 

P(st = 2 | st-1 = 1) = p21 = 1 – p11 

P(st = 2 | st-1 = 2) = p22 

P(st = 1 | st-1 = 2) = p12 = 1-p22 

 

So p11 is the probability of continuing in recession regime, p21 is the probability of 

switching from recession to expansion, p22 is the probability of continuing in 

expansion regime and finally p12 is the probability of switching from expansion to 

recession. 
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The regime path process st depends on regime path st only through previous value of 

regime path st-1. The unconditional probabilities, found by Bayesian method, of the 

stationary distributions that the process is in each of the regimes are given by 

 

 

To obtain estimates of the parameters and the transition probabilities governing the 

Markov chain of the unobserved state, one needs an iterative estimation technique. 

Estimates of parameters for the two most likely regimes are calculated using 

maximum likelihood estimation techniques. The likelihood is calculated for each 

possible state, and the probability that a particular state is prevailing is obtained by 

dividing the likelihood of particular state by the total likelihood for both states. 

 

One important shortcoming of Hamilton process is fixed probabilities. This is 

important because it is assumed that, for example, the probability of moving from 

recession to expansion fixed irrespective of whether the economy is at the beginning 

or end of the recession. As a solution to this drawback Filardo (1994) extended the 

Markov chain component by allowing the transition probabilities to fluctuate over 

time with movements in an indicator variable, xt. He uses a single indicator 

specification of the logistic form: 
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P11 = Prob(St = 1|St-1= 1, xt-K1) = 
)}(exp{1

1

11110 Ktx −+−+ ββ
 

P00 = Prob(St = 1|St-1= 1, xt-K0) = 
)}(exp{1

1

01000 Ktx −+−+ ββ
 

where 10β and 00β  give rise to constant transition probabilities for regime 1 and 

regime 0 respectively when x = 0, while 11β and 01β  are the regime 1 and regime 0 

coefficients on the (respective) lagged value of the leading indicator. Thus, the 

probability of remaining in a regime is conditional on the lagged value of the leading 

indicator, xt-j, as well as the lagged regime St-1. Although Filardo’s approach provides 

a flexible modeling we do not consider this method due to its complexity. 

 

2.4 Smooth Transition Autoregressive Models 

Smooth transition autoregressive (STAR) models are, due to their flexibility, have 

been frequently used for modeling economic data. The term ‘smooth transition’ in its 

present meaning first appeared by Bacon and Watts (1971). They presented their 

smooth transition model as a generalization to models of two intersecting straight 

line with an abrupt change from one linear regression to another at some unknown 

change point. They also apply the model to two sets of physical data. One year later, 

Goldfeld and Quant (1972) generalized the so-called two-regime switching 

regression model by using the same idea. Goldfeld and Quandt (1972) and Chan and 

Tong (1986) both proposed that the smooth transition between regimes be modeled 

by using the cumulative distribution function of a standard normal variable as the 

transition function. Bacon and Watts (1971) used the hyperbolic tangent function. 

Luukkonen, Saikkonen and Teräsvirta (1988) proposed the logistic function, which is 

a popular choice in this field. Following these developments, Teräsvirta (1994) 

devised a data-based technique for specification, estimation and evaluation of STAR 
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models. This modeling technique has been applied to several economic time series in 

Teräsvirta and Anderson (1992). The STAR models are discussed in detail in 

Granger and Teräsvirta (1993), Teräsvirta (1998) and Potter (1999). 

 

2.4.1 Representation of the Basic STAR Model 

In the smooth transition autoregressive model, the fixed thresholds of a standard 

threshold autoregressive (TAR) model are replaced with a smooth function, which 

needs to be continuous and non-decreasing. This implies that STAR models are more 

flexible than TAR and Hamilton type Markov Switching regime models and 

therefore preferred in this study. 

 

A two-regime STAR model of order p is given by 

� �
= =

−−− ++++=
p

i

p

i
tdtitiitit cYFYYY

1 1
220110 ),;(*)( εγθθππ                                 (2.4) 

or 

tdtttt cYFY εγωθωπ ++= − ),;(*''                                                                    (2.5) 

 

with )',......,( 110 pπππ = ,  )',.....,( 220 pθθθ =  and )',.......,,1( 1 pttt yy −−=ω  

 

The tε ’s are assumed to be a martingale difference sequence with respect to the 

history of the time series up to time t-1, which is denoted as },.......{ 11 pttt yy −−− =Ω  

that is E( tε | 1−Ωt ) = 0. Also it is assumed that the conditional variance of tε  is 

constant, E( tε 2| 1−Ωt ) = �2. An extension of STAR model, which allows for a change 

in variance, that is autoregressive conditional heteroscedasticity (ARCH) is 
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considered in Lundbergh and Teräsvirta (1998). In this study any ARCH effect is 

tested by Engle (1982) ARCH test.2 

 

),;( cYF dt γ−  is the transition function that is bounded between 0 and 1. The extreme 

value 0, corresponds to regime 1 with coefficients i1π , i = 0,1,….,p and the other 

extreme value 1, indicates regime 2 with coefficients i1π  + i2θ , i = 0,1,….,p. 

Intermediate values of the transition function define situations in which the process is 

a mixture of two linear AR(p) processes of regimes 1 and 2. Hence STAR model 

allows for a ‘continuum’ of regimes, each associated with a different value of 

),;( cYF dt γ−  between 0 and 1.  

 

Different choices for the transition function ),;( cYF dt γ−  give rise to different types 

of regime-switching behavior. There are two popular choices for the transition 

function, logistic function and exponential function. The first-order logistic function 

is, 

1)))(exp(1()( −
−− −−+= LdtLdtL cyyF γ , Lγ >0                                                    (2.6)  

where yt-d is transition variable, Lγ  is transition or smoothness parameter and cL is 

threshold parameter. 

STAR model with this function is called logistic STAR (LSTAR) model. The 

parameter γ  determines the smoothness of change in the value of the logistic 

function and, thus, the smoothness of the transition from one regime to the other. As 

γ  becomes very large, the logistic function )( dtL yF −  goes to the indicator function 

 

2See, Lundbergh and Teräsvirta (1998) 
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)( Ldt cyI >−  defined as I(A) = 1 if A is true and I(A) = 0 otherwise, and, 

consequently the change of  )( dtL yF −  from 0 to 1 becomes instantaneous at 

Ldt cy =− . Hence the LSTAR model goes to the self-exciting TAR (SETAR) model, 

discussed in Section 2.2. When γ → 0, the logistic function approaches a constant 

(equal to 0.5) and when γ  = 0, the LSTAR model reduces to a linear AR model with 

parameters i1π  + (½) i2θ , i = 0,1,….,p. In the LSTAR model, the two regimes are 

associated with small and large values of the transition variable dty −  relative to Lc  

and this permits business cycle expansions ( )( dtL yF − = 1) and contractions 

( )( dtL yF − = 0) to have different dynamics. This type of regime switching can be 

convenient for modeling, for example, business cycle asymmetry where the regimes 

of the LSTAR are related to expansions and recessions.3  

 

In certain applications it is more convenient to specify the transition function such 

that regimes are associated with small and large absolute values of dty −  relative to 

the threshold value. This can be achieved by using the second popular choice for the 

transition function, the exponential function, 

))(exp(1)( 2
EdtEdtE cyyF −−−= −− γ  , Eγ >0                                                  (2.7) 

and the resultant model is called exponential STAR (ESTAR) model. The 

exponential function has the property that )( dtE yF −  goes to 1 both as dty −  goes to ∞  

and -∞ , whereas )( dtE yF −  = 0 for dty − = Ec . In the ESTAR model, only the distance 

from the location parameter is important, so that the regimes are effectively  

 

3See, Teräsvirta and Anderson (1993) and Skalin and Teräsvirta (2001) 
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defined by values close to Ec  and far from Ec . For either γ →0 or γ → ∞ , the 

exponential function approaches to a constant (equal to 0 and 1, respectively). Hence, 

the model collapses to a linear model in both cases. The resultant exponential STAR 

(ESTAR) model has been applied to real (effective) exchange rates by Michael 

(1997), Sarantis (1999) and Taylor (2001), motivated by the argument that the 

behavior of the real exchange rate depends nonlinearly on the size of the deviation 

from purchasing power parity. 

 

2.4.2 Modeling Cycle of STAR Model 

Following the procedure suggested in Teräsvirta (1994), there are five steps in 

modeling procedure. 

 

2.4.2.1 Specification of a Linear Autoregressive Model 

In the first step an appropriate linear AR model is constructed to obtain a basis for 

the nonlinear model. To specify a linear AR(p) model, one can employ an order 

selection criteria such as AIC (Akaike 1974) or SBIC (Rissanen 1978; Schwarz 

1978). However, SBIC, which is dimension-consistent, sometimes leads to too 

parsimonious models in the sense that the estimated residuals of the selected model 

are not free from serial correlation. In that sense, AIC may be more preferable. The 

procedure using AIC for order selection is as follows. To select an appropriate AR 

model, an AR model with 24 lags is considered and the maximum order of lag is 

restricted by AIC. However, it is important that the use of any model selection 

procedure should be accompanied by a proper test for residual autocorrelation, like 

the Portmanteau test of Ljung and Box (1978). This is important, because omitted 

autocorrelation can detoriate the remaining steps of modeling cycle. 
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2.4.2.2 Linearity Test Against STAR Model 

Testing linearity against STAR model constitutes a crucial step towards building 

STAR models. The null hypothesis of linearity can be expressed by the equivalence 

of the autoregressive parameters in the two regimes of the STAR model in (2.4).  

 

The testing problem is complicated by the presence of unidentified nuisance 

parameters under the null hypothesis. Formally, the STAR model contains 

parameters, which are not restricted by the null hypothesis, but nothing can be 

learned from the data when the null hypothesis holds true. The null hypothesis of 

equivalence of two regime parameters does not give a restriction on the parameters 

of transition function, γ  and c. An alternative way to illustrate the presence of 

unidentified parameters in this case is to note that the null hypothesis for the linearity 

test can be formulated in different ways. In addition to the equality of the AR 

parameters in the two regimes, the alternative null hypothesis 0:'0 =γH  also 

indicates a linear model for each choice of the transition function. If '0H  is used, the 

location parameter c and the AR parameters of two regimes will be unidentified 

parameters. 

 

The problem of unidentified nuisance parameters under the null hypothesis was first 

considered by Davies (1977; 1987). His solution is to derive the test statistic by 

keeping the unidentified parameters fixed. The main consequence of the presence of 

such nuisance parameters is that the conventional statistical theory is not available 

for obtaining the asymptotic null distribution of the classical likelihood ratio, 

Lagrange Multiplier and Wald statistic. Instead, these test statistics tend to have 

nonstandard distributions for which analytic expressions are most often not available, 
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but which have to be obtained by the help of simulation. Luukkonen, Saikkonen and 

Teräsvirta (1988) encountered the same problem in an alternative way. Their 

proposed solution is to replace the transition function ),;( cyF dtL γ−  by a suitable 

Taylor approximation. In the reparametrized equation, the identification problem is 

solved and linearity can be tested by means of Lagrange Multiplier (LM) statistic 

with a standard 2χ  distribution under the null hypothesis. This technique has two 

main advantages. First, the model under the alternative hypothesis need not be 

estimated and standard asymptotic theory is available for obtaining asymptotic 

critical values for the test statistic. 

 

2.4.2.2.1 Test Against LSTAR 

Consider the LSTAR model, 

� � ++++= −−−

p p

tLLdtLitiitit cYFYYY
1 1

220110 ),;(*)( εγθθππ                               (2.8) 

Luukkonen suggests approximating the logistic function 

1)))(exp(1()( −
−− −−+= LdtLdtL cyyF γ  

with a first-order Taylor series approximation around Lγ = 0 and obtained the 

following auxiliary regression 

t

p

dtiti

p

itit eYYYY �� +++= −−−
1

2
1

10 βββ                                                                 (2.9) 

The parameters i1β , i2β ; i = 1,……,p in the auxiliary regression are functions of the 

parameters in the LSTAR model such that the restriction 0=Lγ  implies 

0,0 10 ≠≠ iββ  and 02 =iβ  for i = 1,……,p. Hence, testing the null hypothesis 

0:'0 =LH γ  turns to testing the null hypothesis 0:'' 20 =iH β  for i = 1,……,p. 
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However, this auxiliary regression does not have good power in situations where 

only the intercept differs across regimes. A test which does have power against this 

situation is constructed by approximating the transition function ),;( cyF dtL γ−  by a 

third-order Taylor approximation. The resultant auxiliary regression is 

t

p

1i

p

1i

dt
3

iti3

p

1i

dt
2

iti3dtiti2

p

1i
iti10t eYYYYYYYY � ���

= =
−−

=
−−−−

=
− +β+β+β+β+β=      (2.10) 

Again, i2β , i3β  and i4β  for i = 1,…..,p are functions of the parameters in the LSTAR 

model such that the null hypothesis 0:'0 =LH γ  now corresponds to 

0:'' 4320 === iiiH βββ , i = 1,….,p. This type of approximation is more general and 

more applicable.4 

 

2.4.2.2.2 Test Against ESTAR 

Consider the ESTAR model, 

� �
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−−− ++++=
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tEEdtEitiitit cYFYYY
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220110 ),;(*)( εγθθππ                              (2.11) 

Saikkonen and Luukkonen (1988) suggest testing linearity against an ESTAR model 

by using the auxiliary regression 
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1
10 ββββ                                        (2.12) 

Equation (2.12) is obtained by using first-order Taylor approximation for the 

exponential transition function. The restriction 0=Eγ  corresponds with     

ii 32 ββ = = 0, i = 1,……,p. 

 

4See, Teräsvirta (1994, 1998) and Granger and Teräsvirta (2001) for more detail. 
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Escribano and Jorda (1999) claim that a first-order Taylor approximation of the 

exponential function is not sufficient to capture its characteristic features, the two  

inflection points of this function in particular. They suggest that a second-order 

Taylor approximation is needed. Using second-order Taylor approximation causes 

extra variables in the auxiliary regression.  

 

Since this effect is neutralized by the increase in the dimension of the null 

hypothesis, neither of the approximations dominates the other in terms of power and 

first-order Taylor approximation becomes more applicable. 

 

2.4.2.2.3 Application of Linearity Test 

The linearity test is carried out by using LM test. The procedure for obtaining LM 

statistic is as follows. First, the model is estimated under the null hypothesis of 

linearity by regressing ty  on (1, ,1−ty …., pty − ) and the residuals tê  are obtained. 

Then, the auxiliary regressions are constructed by using tê  as dependent variable. 

For the LSTAR model equation (2.13) and for the ESTAR model equation (2.14) are 

used. 
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The null hypotheses and corresponding test statistics are 



 24 

04320 ====
���

H βββ ,  i = 1,…..,p; LM3 for LSTAR model 

0''' 320 ===
��

H ββ ,  i = 1,…..,p; LM2 for ESTAR model 

 

The test statistics have asymptotic 2χ  distribution. However, in small samples it is 

recommended to use F versions of the LM test statistics, because these have better 

size properties than 2χ  variant, which may be heavily oversized. 

 

2.4.2.2.4 Determining the Transition Variable 

If linearity is rejected, the next objective is to select the appropriate transition 

variable. Even though, the LM3 statistic was developed as a test against the LSTAR 

alternative, it has power against ESTAR alternatives as well. An intuitive way to 

understand this is to note that all variables in the first-order approximation to the 

ESTAR model in (2.13) are contained in (2.14). This means that the appropriate 

transition variable can be determined, without specifying the form of the transition 

function, by computing LM3 statistic for various choices of delay parameter, d = 

1,….,p, and selecting the one with smallest p-value. The logic behind this procedure 

is that if the correct transition variable is used, than the test should have maximum 

power 

 

2.4.2.3 Choosing Between LSTAR and ESTAR Model 

The selection between LSTAR and ESTAR is based on testing a sequence of 

hypothesis in equation (2.13), using the selected transition variable Yt-d from step 2. 

The sequence of hypothesis tested is 
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00: 43203 ===
���

H βββ   where i =1,……,p 

 

These hypotheses are tested by ordinary F tests. The decision rule is as follows: If 

02H  is rejected and 03H  not rejected, then appropriate model is ESTAR. If 02H  is 

not rejected and 03H  is rejected, then LSTAR model is preferable. However, it is 

better to compare relative strengths of the rejections. Then the decision criteria is as 

follows: If 02H  has the minimum p-value ESTAR model is chosen and if 03H  has 

the minimum p-value LSTAR model is more preferable. However, if the p-values 

corresponding to F3 and F2 or F4 and F3 are close to each other in relative terms, both 

LSTAR and ESTAR models should be considered. 

 

Discrimination between these models can also be done by using the structure of the 

data. If the observations are symmetrically distributed around the transition value, 

than ESTAR model is selected correctly almost without exception. If most of the 

observations lie on one side of the threshold value, LSTAR and ESTAR models give 

similar implications and they can be used as close substitutes. So ESTAR models 

provide a good approximation to LSTAR models if most of the observations lie on 

the right hand side of threshold. 

 

Recent increases in computational power have made these decision rules less 

important in practice. It is now easy to estimate both LSTAR and ESTAR models 

and selection between them can be implemented by misspecification tests. Therefore 

we prefer to estimate both type models and leave model selection to post-estimation 

stage. 
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2.4.2.4 Estimation 

Once the transition variable dty − and the transition function ),;( cyF dt γ−  have been 

selected, the next stage in the modeling cycle is estimation of the parameters in the 

STAR model. The estimation procedure is carried out using nonlinear least squares 

(NLS). The parameters, 

),,,,,( 220110 cii γθθππθ =    i = 1,…….,p can be estimated as 

�
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−−−==
T

t
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where );,.......,( 1 θptt yyF −− = � � ++++ −−−

p p

tdtitiiti cYFYY
1 1

220110 ),;(*)( εγθθππ  

 

However, this high dimensionality of NLS estimation can cause computational 

problems. To simplify this estimation problem, Leybourne, Newbold and Vougas 

(1998) suggested concentrating on the sum of squares function. When parameters γ  

and c in the transition function are known and fixed, the STAR model is linear in the 

autoregressive parameters of two regimes. In this case the estimation of 

autoregressive parameters become conditional upon γ  and c and this reduces the 

dimensionality of the NLS estimation problem considerably. 

 

Teräsvirta proposed a different approach. As a first step of estimation procedure, 

Teräsvirta suggested to standardize the exponent of ),;( cYF dt γ−  by division the 

sample variance and standard deviation, respectively for the estimation of ESTAR 

and LSTAR models. The logic of this scaling procedure is to make the smoothness of 

transition variable approximately scale-free, and this provides easiness in 

determining a set of initial values for this parameter. The initial values for remaining 
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parameters should also be determined. To obtain the initial values, an extensive two-

dimensional grid search for pairs of γ  and c is constructed. The set of grid values for 

γ  is ranged between 1 and 150, and if the minimizing value for γ  is found close to 

150, the range is extended. A reasonable set of grid values for the location parameter 

c may be defined as sample percentiles of the transition variable dty − . This 

guarantees that the values of the transition function contain enough sample variation 

for each choice of γ  and c. The combination yielding the lowest residual sum of 

squares is used as starting value for all parameters. However, at least 30 different sets 

of initial values, selected from the grid search, are used as an attempt to find the 

global minimum. 

 

The only problem in estimation procedure can be seen in estimation of transition 

variableγ . When the value of γ  is very large, than it may be difficult to obtain an 

accurate estimate of this parameter. This is due to the fact that for such large values 

ofγ , the STAR is similar to a threshold model, as the transition function turns to be a 

step function. To obtain an accurate estimate ofγ , one then needs many observations 

in the immediate neighborhood of c, because even large changes in γ  only have a 

small effect on the shape of transition function. The estimate of γ  may therefore be 

rather imprecise and often appear to be insignificant when judged by its t-statistic.5 

This should, however, not be thought as evidence for weak nonlinearity, as the t-

statistic does not have its customary asymptotic t-distribution under the  

 

5See Bates and Watts (1987, 1988) 
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hypothesis that γ  = 0, due to the identification problem discussed in Section 2.4.2.2.  

In this case, the causes of a large standard error estimate are purely numerical. 

Besides, large changes in γ  have only minor effect on the transition function; high 

accuracy in estimating γ  is not necessary. 

 

2.4.2.5 Evaluation 

After estimating the parameters in a STAR model, the next stage is model evaluation.   

First of all, the location of threshold value is important. If threshold value is far 

outside of the observed range, then the estimated model is not satisfactory. Secondly, 

high standard deviations of the parameters, except that of the transition parameter 

and threshold, indicate redundant parameter problem in the model. If the model does 

not have these problems, its adequacy should be checked by a set of misspecification 

tests. These tests are test for skewness, kurtosis, normality, heteroscedasticity, 

autocorrelation and parameter instability. Moreover evidence of unmodeled 

nonlinearity should be examined. Eitrheim and Teräsvirta (1996) design several tests 

for testing the evidence of autocorrelation, parameter consistency and additive 

nonlinearity where the residuals are that of a STAR model and these are discussed 

below. 

 

2.4.2.5.1  Testing the Hypothesis of No Error Autocorrelation 

The general residual autocorrelation test, the customary portmanteau test of Ljung 

and Box (1978) is inapplicable because its asymptotic null distribution is unknown if 

the test is based on estimated residuals of a STAR model. Eitrheim and Teräsvirta 

(1996) proposed a test procedure for STAR type models. The procedure is as follows 

A STAR model can be defined as 
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ttt uGy +Ψ= ),(ω , where 
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The procedure of no residual autocorrelation test is as follows: 

i) The STAR model is estimated by NLS under the assumption of uncorrelated errors 

and the residuals are obtained 

ii) Following the logic of LM test, the derivatives 
Ψ∂
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 are computed. Because of the 

structure of nonlinearity, the regressors, essential for the test, are obtained by using 

derivatives6 . If the model is a LSTAR model, the derivatives are 
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In the case of ESTAR model, the derivatives become 
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6See Eitrheim and Teräsvirta (1996) for more detail 
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iii) After that, residuals obtained from step i are regressed on q lagged residuals, 

)(tgγ
� , )(tgc

� , )(tgπ
�  and )(tgθ

�  and ordinary LM test is applied. This is actually a 

generalization of the LM test for serial correlation in an AR(p) model of Godfrey 

(1979), which is obtained by setting ),( ΨtG ω = tωθ ' . 

 

2.4.2.5.2  Testing the Hypothesis of No Remaining Nonlinearity 

To discuss this test it is appropriate to introduce multiple regime (two-transition) 

STAR models. Single-transition STAR model (2.4) cannot accommodate more than 

two regimes, regardless of the specific functional form of the ),;( cyF dt γ− . Even 

though two regimes might be sufficient in many applications, it can be desirable to 

allow multiple regimes. 

 

An obvious extension of the STAR model in equation (2.4) is to include two additive 

transition functions. The resulting model permits more than two underlying regimes 

and its equation can be given as 

tettdtttt ucYFcYFY +++= −− ),;(*'),;(*'' 222111 γωφγωθωπ ,                  (2.15) 

tu ~ iid (0, �2)  

This extension leads to additive STAR model. The model has been parameterized in 

such a way that F1 and F2 are logistic or exponential functions as appropriate. 

      Moreover, F1 and F2 are specified such that the location values satisfy c1 < c2, in 

order to separately identify the two transition functions. It may appear that the 
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extension to two transition functions allows the possibility of four regimes, as first 

the function F1 changes from 0 to 1, followed by a similar change of F2. While it may 

technically be possible to distinguish four regimes in this way when d and e take 

different values, when they are same then dty −  determines both transitions and at  

       least one of the four extreme cases will be ruled out.7 As an example, assume that 

over a range of dty −  the two extremes F1 = 0,1 are possible while F2 = 1 through this 

range. Then the distinct values for c1 and c2 (which allow F1 = 0,1 while F2 = 1) must 

logically rule out F1 = F2 = 0 because F2 = 1 in the range of dty −  where F1 = 0  

 

Another way of obtaining a four-regime model is ‘encapsulating’ two different two-

regime LSTAR models as follows: 
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with ).,.........( 110 pφφφ = ’  and )..,.........( 110 pδδδ = ’ 

The effective relationship between ty  and its lagged values is given by a linear 

combination of four linear AR models, each associated with a particular combination 

of ),;( 111 cYF dt γ−  and ),;( 222 cYF et γ−  being equal to 0 or 1. This is so-called multiple 

regime STAR (MRSTAR) model and it is discussed in detail in van Dijk and Franses 

(1999). The MRSTAR model in (2.16) reduces to a (SE)TAR model with four-

regimes determined by two sources when the smoothness parameters 1γ  and 2γ   

 

 

7See, Ocal and Osborn (2000)  
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become very large, such that the logistic functions F1 and F2 approach indicator 

functions I( )1cy dt >−  and  I( )2cy et >− , respectively. The resultant nested TAR 

(NeTAR) model is discussed in Astatkie et al. (1997). It is now appropriate to 

discuss additional nonlinearity test in detail. 

 

      Eitrheim and Teräsvirta (1996) develop an LM statistic to test the two-regime 

LSTAR model against the alternative of an additive STAR model defined in (2.15). 

However, it is well known from the linearity test part of the modeling cycle that the 

LM test has also power against the case of exponential transition function. Consider 

the additive STAR model: 

tettdtttt ucYFcYFY +++= −− ),;(*'),;(*'' 222111 γωφγωθωπ  

The null hypothesis of a two-regime model can be expressed either by 0: 20 =γH  or 

φθ =:0H . Evidently, this testing problem suffers from a similar identification 

problem as encountered in testing linearity against a two-regime STAR model, see 

Section 2.4.2.2. To circumvent this identification problem, the transition function 

),;( 222 cYF et γ−  is replaced by a Taylor series approximation around 2γ = 0. Hence, it 

is assumed that F2 is logistic and replaced by its third-order Taylor approximation 

about 2γ = 0. After some reparametrizations, equation (2.15) takes the form: 
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where tϖ = ( 1−ty ,….., pty − ) and the parameters iβ  , i = 0,1,2,3, are functions of the 

parameters 2,,, γφθπ  and c2. The null hypothesis of no additional nonlinearity 

0: 20 =γH  translates into 0:' 3210 === βββH . The test statistic can be computed 

as nR2 from the auxiliary regression of the residuals, which are obtained from the 
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estimated model under the null hypothesis of 02 =γ , on the partial derivatives of 

regression function with respect to parameters in the two-regime model, 1,,, γφθπ  

and c1, evaluated under the null hypothesis and auxiliary regressors et
i

ty −ϖ , i = 1,2,3. 

The partial derivatives with respect to the parameters 1,,, γφθπ  and c1 used in the 

auxiliary regression are same with the derivatives used for no error autocorrelation 

test for LSTAR case, see Section 2.4.2.5.1.1. The derived test statistic has an 

asymptotic 2χ  distribution with 3p degrees of freedom and the degrees of freedom 

in F test are 3p and T-n-3p, respectively. 

 

Note that in deriving the test it is assumed that the delay parameter e in the second 

transition function is known. Because the value of e might be unknown, the test 

should be carried out for various values of e and to be able to use the two-regime 

STAR model, the null hypothesis should not be rejected for all possible values of e. 

Carrying out the LM test for all possible values of e is helpful in checking that the 

delay parameter d in the two-regime model is correctly specified. In other words, it is 

useful to check whether yt-d is an appropriate transition variable for the single-

transition STAR model. If the result of the test requires constructing an additive 

STAR model, the functional form of F2 is selected as discussed in Section 2.4.2.3. 

 

In the case of MRSTAR model, van Dijk and Franses (1999) derive an LM test for 

testing the null of the two-regime LSTAR model against the MRSTAR alternative 

given in (2.16). The null hypothesis can be expressed either 0: 20 =γH  or 

δθφπ == ,:'0H . In the case the transition function ),;( 222 cYF et γ−  is replaced with 
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a third-order Taylor approximation, the result of the corresponding approximation 

can be written as 

t11dt1et
3

t6et
2

t5ett4

et
3

t3et
2

t2ett111dt1t2t'1t

e)c,;y(F*)y'y'y'(

y'y'y')c,;y(F*)'(y

+γϖβ+ϖβ+ϖβ+

ϖβ+ϖβ+ϖβ+γωθ+ωθ=

−−−−

−−−−  (2.19) 

 

The null hypothesis can be reformulated as 0:'0 =iH β , i =1,…6.  

The resultant test statistic is asymptotically 2χ  distributed with 6p.8  

 

2.4.2.5.3 Test of Parameter Consistency 

Because  STAR models are estimated under the assumption of constant parameters, 

parameter stability test is important in checking the adequacy of the model. 

 

To test consistency of parameters, it is assumed that the transition function has 

constant parameters, whereas both θπ ,  are subject to changes over time. Consider  

the following nonlinear model 

tdtttt ucYFttY ++= − ),;(*)'()'( γωθωπ  
 

The time varying parameter vectors are 

),;(~)( 111 ctHt j γλππ +=   ,              where 1λ  is a (k*1) vector 

),;(
~

)( 112 ctHt j γλθθ +=    ,              where 2λ  is a ( � *1) vector 

 

 

 

 

8See , Eitrheim and Teräsvirta (1996)  for more detail 
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The null hypothesis of parameter consistency is H0: ),;( 11 ctH j γ  	 0 (or ),;( 11 ctH j γ  

	 constant).  Lin and Teräsvirta (1994) use three functional forms for Hj. They are 

5.0)))(exp(1(),;( 1
11111 −−−+= −ctctH γγ                                             (2.20) 

))(exp(1(),;( 2
11112 ctctH −−−= γγ                                                        (2.21) 

5.0)))(exp(1(),;( 1
1011

2
12

3
1113 −+++−+= −ctctctctH γγ                     (2.22) 

 

where 1γ  >0 and c1 =(c10, c11, c12)’. So, the null hypothesis of parameter consistency  

may be indicated as H0: 1γ  = 0. Transition function (2.20) postulates a smooth 

monotonic parameter change. Function (2.21) represents a nonmonotonic change 

which is symmetric about t = c and (2.22) is the most flexible function allowing both 

monotonically and nonmonotonically changing parameters. 

 

General test statistic for parameter consistency is derived for testing H0 with H3 as 

the alternative, the tests when either H1 or H2 is assumed under the alternative will be 

special cases of this test. As the first step of testing procedure, the STAR model is 

estimated under the assumption of parameter consistency and residuals are obtained. 

After that, an auxiliary regression is constructed by regressing residuals on 

'))(ˆ),(ˆ),ˆ,ˆ;(,ˆ,1(ˆ tgtgcyFwwz cdtttt γγ−= and 

'3232 ))ˆ,ˆ;('),ˆ,ˆ;('),ˆ,ˆ;(','~,'~,'~(ˆ cyFwtcyFwtcyFwtwtwtwtv dttdttdtttttt γγγ −−−=  where 

tw~  is the vector of including lags, after insignificant ones are excluded. 

If the alternative is specified to be (a), than '~3
twt  and )ˆ,ˆ;('3 cyFwt dtt γ−  regressors are 

excluded from the auxiliary regression and if monotonic change in parameters, 

defined in (c), is allowed, '~2
twt  and )ˆ,ˆ;('2 cyFwt dtt γ−  are also eliminated from the 

regression 
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2.4.2.5.4 Autoregressive Conditional Heteroscedasticity (ARCH) Test 

The LM tests assume constant (conditional) variance. Neglected heteroscedasticity 

has similar effects on tests for nonlinearity as residual autocorrelation, in that it may 

lead to spurious rejection of the null hypothesis. 

 

For testing the ARCH effect, the Lagrange Multiplier test of Engle (1982) is used, 

and the procedure is as follows: 

i) The STAR model is estimated by NLS under the assumption of no 

heteroscedasticity (homoscedasticity), the residuals and square of the 

residuals are obtained. 

ii) An auxiliary regression is constructed by regressing the square of the 

residuals on the q-lagged values of the dependent variable. Ordinary LM 

test is applied on this auxiliary regression and LMARCH(q) statistic is 

obtained. 

 

Wooldridge (1990; 1991) developed specification tests that can be used in the 

presence of heteroscedasticity, without need to satisfy the form of the 

heteroscedasticity explicitly. These procedures may be readily applied to robust the 

tests against STAR nonlinearity, see also Granger and Teräsvirta (1993). However, 

Lundbergh and Teräsvirta (1998) present simulation evidence suggesting that in 

some cases this robustification removes most of the power of the linearity test, as a 

result existing nonlinearity may not be detected. If the aim of the analysis is to find 

and model nonlinearity in the conditional mean, robustification therefore cannot be 

recommended. 
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After carrying all these tests the soundness of model is assessed. First, estimated 

values have to be examined. Large standard deviations of the estimated coefficients 

(except Lγ  or Eγ  ) indicate that the model includes redundant parameters. 

Furthermore if the estimated threshold value does not lie within the observed range 

of Yt, then the model is not satisfactory. The next step is the interpretation of the 

individual parameters. Although the interpretation of them is very difficult for STAR 

models, the roots of the associated characteristic polynomials are quite informative 

about their dynamic properties. The roots can be calculated for various values of FL 

and FE, but roots of polynomials corresponding to the extreme regimes (FL and FE = 

0,1) are particularly interesting ones for describing the local dynamics of different 

regimes. 

 

2.4.3 Smooth Transition Regressive (STR) Models 

STAR models, analyzed in this thesis, are especially a special case of smooth 

transition regression (STR) models. They are straightforward generalization of 

univariate smooth transition autoregressive models to a multivariate framework. 

STAR models capture nonlinearity in a univariate context by modeling the transition 

between states or regimes as a function of a lagged value of the variable of interest. 

However, these univarite models cannot predict regime changes; they can only 

respond to the signal given by a past value that the regime has changed. 

 

A STR model gives the opportunity of examing the effects of one variable on another 

within a nonlinear, asymmetric dynamics framework. In this context, the single 

transition STR model can be defined as: 
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where tε ~ i.i.d (0, �2) and rt-d is the transition variable (leading indicator) and d is the 

delay parameter. Transition variable rt-d can either be a lagged term of the dependent 

variable or a lagged term of the exogenous variable. The transition function F(.) 

satisfies all properties mentioned in Section 2.4.1. 

 

In the context of modeling nonlinearities between two variables, yt and xt, there are 

two possibilities, both of which are plausible. That is, a change in yt may contribute 

to regime changes in xt or the effects of the former differ over the regimes in the 

latter, and vice versa. Combining this with the fact that no priori assumptions 

regarding the form of the transition function and the possible transition variable are 

made, suggests eight models. These models are:  
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where F(.) represents either the exponential or logistic function. 

 

By using yt-d and xt-d as the transition variables in models (2.24)-(2.27), it is 

considered that regimes for both variables are defined either in terms of past values 
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of the dependent variable or past values of the leading indicator. Models (2.24) and 

(2.26) implies that transition between different regimes in the variable of interest is a 

function of a lagged value of the leading indicator and therefore define the situation 

that one variable impose a regime change in the other variable. Models (2.21) and 

(2.23), on the other hand, describe the transition between different regimes as a 

function of a lagged value of the variable of interest with the other variable having 

different effects in these different regimes. As a result, they imply that the effects of 

one variable change over the regimes in the other variable.9 

 

 

The method for specification and estimation of STR models is based on Teräsvirta 

(1994; 1998) and almost same with STAR model, the only difference is that at each 

step the second variable, xt, is also taken into the account. Although a brief review of 

these models is presented, they are not considered in this thesis. 

 

2.4 Comparision of Three Nonlinear Time Series Models 

The first distinction among the discussed nonlinear models is seen in their empirical 

applications. While STAR models do not assume a sharp switch from one regime to 

the other, TAR and the Hamilton’s Markov switching regime models indicate a sharp 

change. Smooth transition seems to be more appropriate for macroeconomic time 

series because it is unlikely that economic agents change their behavior 

simultaneously. Hence, as Teräsvirta (1994) notes, for aggregated processes the 

change in regime may be smooth rather than discrete. Although TAR and the  

 

 
9See, Sensier, Osborn and Ocal (2002), and Ocal (2002, 2003) for empirical 
examples 
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Hamilton’s Markov switching regime models differ from STAR models by 

indicating a sharp switch, Filardo’s Markov switching regime model shows a similar 

structure to smooth transition. Filardo’s approach allows for smooth change under a  

Markov switching framework and therefore may be more appropriate for modeling 

macroeconomic variables than Hamilton’s modeling approach. However, the theory 

and application procedure of this approach is quite complex and not considered here. 

It seems that smooth transition autoregressive models are very flexible and easy to 

implement and therefore employed in this study. 

 

The second feature that discriminate STAR model from TAR and the Hamilton’s 

Markov regime switching models is the state of economy determined by the models.  

In the Hamilton’ Markov switching and TAR models the economy must be within a 

single regime in each time period. However, the smooth transition model allows the 

possibility that the economy may be in an intermediate state between, say, recession 

and expansion. Filardo’s Markov switching model indicates again similar 

implications with STAR model by allowing the probability of remaining in a regime 

to be conditional on the lagged value of the leading indicator and lagged regime. 

 

Another nice feature of the STAR models over other nonlinear models is that they 

nest linear regression model, and we can thus use linear Lagrange Multiplier (LM) 

tests for testing the null of linearity before fitting any nonlinear model. We can also 

use LM tests for choosing between the alternative STAR specifications. 

 

Although STAR models are flexible and easy to implement it is difficult to reach a 

conclusion regarding the performances of nonlinear models in practice. One 

approach could be the use of all nonlinear models for the same data set and find out 
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which one best fit the data. However, this procedure is very time consuming and we 

will only employ STAR models to examine the evidence of nonlinearity in our data. 

Next chapter discusses empirical findings. 

 

2.5  Conclusion 

Recent empirical econometrics literature has shown that economic variables may 

contain asymmetric cycles in their generating mechanisms. To capture this 

asymmetric behavior some empirical models have been developed. In this chapter 

the most prominent ones, Markov- switching regime model, threshold autoregressive 

(TAR) model and smooth transition autoregressive (STAR) model are briefly 

explained. In the Markov-switching models, the regimes associated with business 

cycle expansions and contractions and the switch between regimes described by a 

probabilistic fashion. Threshold autoregressive models specify the switch as a 

function of past values and STAR models are the smooth transition generalization of 

TAR models. We put more emphasis on STAR models in this chapter. This is 

because of the fact that STAR models are more flexible than TAR and Markov-

switching models. In contrast to TAR and Hamilton type Markov-switching models, 

STAR model allow the possibility that the economy may be in intermediate states. 

These features make smooth transition models more appropriate for macroeconomic 

time series. Therefore, this study focuses on STAR models and the next chapter 

contains applications of them to certain financial variables. 
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CHAPTER III 
 

 EMPRICAL INVESTIGATIONS 
 

 3.1 Introduction 
 
This chapter provides the empirical modeling of our data set using STAR models. 

We have considered three macroeconomic time series of Turkey which includes 

consumer price index (CPI) and nominal exchange rates; TL/$ and TL/£. All series 

are seasonally unadjusted monthly series and taken from the Central Bank of Turkey. 

As mentioned before there are two reasons to select these macroeconomic variables. 

The sufficient length of the sample size is the first reason and second is to analyze 

whether the variables used to examine PPP hypothesis contain nonlinearity. This is 

important because nonlinearity found in real exchange rate could be due to each of 

the component series or both. Sarno (1997) finds evidence of nonlinearity in real 

exchange rate of Turkey but does not provide any information about the possible 

nonlinearity in component series. Our objective is to close this gap.  

 

The plan of this chapter is as follows. In Section 3.2, consumer price index of Turkey 

is analyzed and estimated STAR model is examined for its adequacy in all 

perspectives. The same analysis is performed for US Dollar, in Section 3.3 and for 

British Pound in Section 3.4.  
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 3.2 STAR Modeling for Consumer Price Index 

There are lots of studies concerning Turkish inflation rate. One of these studies is 

presented by Erlat. He tested whether inflation is stationary but exhibits long-

memory and found a significant long-memory component. Other studies on Turkish 

inflation concerns the possible impacts of inflation and construct multivariate 

models. Onis and Ozmucur (1990) explore inflationary dynamics in Turkey with a 

VAR and a simultaneous equation model and find supply-side factors seem to have 

significant effects on inflation. Metin (1995) finds that fiscal expansion dominates 

Turkish inflation from 1950 to 1988. Diboglu and Kibritcioglu (2002) show terms of 

trade, monetary and balance of payment shocks figure prominently in the inflationary 

process. Unlike the recent literature, however, we believe that inflation indicates 

nonlinear behavior and constructed a STAR model for the data. 

 

The series we consider in this section is the logarithmic form of the consumer price 

index (CPI) of Turkey, at the monthly frequency covering the period January 1987 - 

June 2001. The series, which is shown in Figure 3.1, show nonstationary behavior 

and requires a differencing procedure. After taking first difference of the logarithmic 

form, as shown in Figure 3.2, stationary is approximately obtained. Figure 3.2 

indicates that the inflation data contains a pronounced seasonal pattern. Typically, 

inflation rate is above its average value during the winter, late summer and fall 

(January-March, July-December) and below average during spring (April-June). We 

assume that structure of seasonality is deterministic and the systematic component of 

seasonality can be adequately captured by monthly dummy variables, which are 

denoted as tSS ,  ,  s = 1,…11. Where tSS , = 1 if observation t corresponds to month s 

and tSS , = 0 otherwise. In the light of the assumption of deterministic seasonality, 
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seasonally adjusted data is obtained as the residuals from the regression of 

differenced data on a constant and tSS , , s = 1,….11. Final form of data, which is used 

in modeling procedure, is shown in Figure 3.3.  

 

 
Figure 3.1: Logarithmic Form of CPI 
 
 
 
 

 
Figure 3.2: Differenced Form of CPI 
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Figure 3.3: Seasonally Adjusted Form of CPI 
 

Table 3.1 presents various statistics of seasonally adjusted inflation rate. The results 

show that the distribution is skewed, exhibits excess kurtosis and does not satisfy 

normality. 

 

Table 3.1: Statistics of Seasonally Adjusted CPI 
Sample Mean -0.000 

Standard Error 0.021 

Significance 

Levels 

t-statistic -0.000 1.000 

Skewness 2.772 0.000 

Kurtosis 20.076 0.000 

Jarque-Bera 3127.048 0.000 

 

The seasonally unadjusted data indicates that, Turkey is a high inflation country but 

the inflation in Turkey is not hyperinflation. In other words, it does not reach large 

three-digit levels but remains around a figure which is, consistently, greater than fifty 

percent but never goes beyond a hundred percent except for a couple of months in 
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1994. The extreme values are, located especially in 1988:1, 1994:4 and 2001:4, the 

result of economic crises experienced in Turkish economy. Common explanations of 

these episodes in inflation rate are devaluations, oil-price shocks, balance-of-

payment crises, public sector deficits, the Persian Gulf crisis in 1990-1991, financial 

crises at home and abroad and recent earthquakes. If the determination of outliers is 

carried out statistically, that is, if we take the values above and below three standard 

deviation from its mean as extraordinary values, than 1987:4, 1988:1 and 1994:4 

values are outliers. Because the extraordinary structure of 2001:4 value is not 

supported by standard deviation rule, we continue modeling cycle both with and 

without 2001:4 dummy variable. 

 

Following the modeling cycle as outlined in Section 2.4.2, we start by specifying a 

linear AR model. AR model is parameterized by allowing for a maximum of 15 lags, 

p =1,……,15. According to the minimum AIC and SBC criteria and misspecification 

tests results, the best linear model contains only the first and fifth lagged term and 

the estimated equation is given in Table 3.2. 

 

      Table 3.2: Estimated Linear Models for CPI 
 

9441523.08810783.01299.03307.00009.0 51 DDZZZ ttt ++++−= −−  
            (0.350)   (0.000)          (0.006)         (0.000)           (0.000) 

        tD ε̂200140316.0 ++                                                                               (3.1) 
           (0.013) 
 

εσ̂ =0.012    SK = 0.631   EK = 0.096   JB = 0.209   Q(12) = 0.831                                

AIC = -1457.96   SBC = -8.680 
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where p-values are given below the parameter estimates, tε̂  denotes the regression 

residual at time t, εσ̂ is the residual standard deviation, SK is skewness, EK is excess 

kurtosis, JB is the Jarque-Bera test of normality of the residuals, Q(12) is the Ljung-

Box Q-Statistics for no residual autocorrelation. The results of these tests show that 

the estimated model passes basic diagnostic tests. There seems to be a weak evidence 

of excess kurtosis but very negligible. 

 

The next stage of modeling cycle is to test linearity against STAR type nonlinearity 

using LM statistics, see Section 2.4.2.2. The results of linearity tests with and 

without dummy variables are reported in Table 3.3. 

 

Table 3.3: Linearity Tests Results for CPI 
FTS-test (p-values) 

Variable d Without 
Dummy 

With 
Dummy 
(88:1, 94:4) 

With 
Dummy 
(88:1, 
94:4,2001:4) 

1 0.214 0.054 0.056 

2 0.159 0.055 0.056 

3 0.590 0.048 0.046 

4 0.930 0.812 0.792 

Z 

5 0.760 0.104 0.108 

  

 

Test results clearly show how outliers may affect linearity test results. As long as the 

results with dummies considered there is evidence of nonlinearity at first, second and 

third lag of the variable of interest. Whereas when dummy variables are excluded, 
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than there remain no evidence of nonlinearity and STAR type nonlinearity is rejected 

for all possible values of delay parameter, d. Although according to results with 

dummy variables third lag seems to be optimal delay parameter, first and second lag 

can also be taken as delay parameters since they also provide significant p-value 

lower than 10%. We do not make model selection tests and estimate both ESTAR 

and LSTAR models to be able to see results of different specifications. 

 

Twelve nonlinear models are estimated according to the procedure explained in 

Section 2.4.2.4. All nonlinear models are initially specified with maximum lag orders 

five, and then insignificant lags are deleted one by one (starting with the least 

statistically significant one according to the t-ratio) provided that such deletions 

reduce Akaike Information Criteria (AIC). Misspecification tests are applied to the 

estimated models as described in Section 3.4.2.5.1 and finally following adequate 

nonlinear models are obtained.  

 
Table 3.4: Estimated Nonlinear Models for CPI 
 
LSTAR Model: 
 

944148.08810765.0133.0292.0459.00058.0 521 DDZZZZ tttt +++−+−= −−−  
            (0.281)   (0.000)      (0.107)        (0.005)        (0.000)            (0.000) 

        )287.0771.0058.0(200140274.0 31 −− −−++ tt ZZD  
            (0.028)                 (0.058)  (0.010)        (0.070) 
 
        ))))031.0(*)0188.0/60.1exp((1/(1(* 2 −−+ −tZ                                       (3.2) 
                              (0.071)                         (0.000) 
 
AIC = -1457.32   SK = 0.993   KU = 0.048   LMARCH(12) = 0.879   FAC(12) = 0.333   FPC = 0.326               
FNL,1 = 0.662   FNL,2 =0.352   FNL,3 = 0.084   FNL,4 = 0.690   FNL,5 =0.390 NLσ̂ = 0.0117                                                                      
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ESTAR Model: 
 

944150.0881075.0063.0471.0002.0 31 DDZZZ ttt ++−+−= −−  
           (0.109) (0.000)       (0.233)        (0.000)         (0.000)             

        )724.00127.0(20014026.0 1−−++ tZD  
            (0.041)               (0.107)    (0.005)        (0.070) 
 
        ))007.0(*)00035.0/204.0exp(1(* 2

2 +−− −tZ                                       (3.3) 
                         (0.170)                              (0.077) 
 
AIC = -1473.28   SK = 0.305   KU = 0.004   LMARCH(12) = 0.836   FAC(12) = 0.166   FPC = 0.936               
FNL,1 = 0.409   FNL,2 =0.190   FNL,3 = 0.170   FNL,4 = 0.594   FNL,5 =0.229 NLσ̂ =0.0120 

 
LSTAR Model: 
 

944148.0881076.0129.0345.0475.0006.0 521 DDZZZZ tttt +++−+−= −−−  
          (0.312)   (0.000)      (0.092)        (0.007)        (0.000)            (0.000) 

        )2307.0796.0065.0( 31 −− −−+ tt ZZ  
            (0.057)  (0.009)        (0.056)         
 
        ))))032.0(*)0188.0/503.1exp((1/(1(* 2 −−+ −tZ                                (3.4) 
                              (0.074)                             (0.000)   
 
AIC = -1455.21   SK = 0.973   KU = 0.077   LMARCH(12) = 0.552   FAC(12) = 0.328   FPC = 0.281               
FNL,1 = 0.542   FNL,2 =0.084   FNL,3 = 0.099   FNL,4 = 0.633   FNL,5 =0.305 NLσ̂ = 0.0119                                                            

 
ESTAR Model: 
 

944146.0881072.0142.0140.0487.0002.0 531 DDZZZZ tttt +++−+−= −−−  
          (0.046)  (0.000)       (0.012)        (0.003)        (0.000)          (0.000) 

        )872.0023.0( 1−−+ tZ  
            (0.033)  (0.002)                 
 
        ))))008.0(*)00035.0/152.0exp((1(* 2 +−− −tZ                                 (3.5) 
                           (0.103)                             (0.028)  
 
AIC = -1462.24   SK = 0.886   KU = 0.068   LMARCH(12) = 0.505   FAC(12) = 0.228   FPC = 0.215               
FNL,1 = 0.227   FNL,2 =0.106   FNL,3 = 0.226   FNL,4 = 0.649   FNL,5 =0.3173 NLσ̂ =0.0118 
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According to the minimum AIC criteria and misspecification test results the final 

model which best fits to the data is an ESTAR with d = 2. The estimated equation 

and the result of diagnostic tests are given in Equation 3.3.       

 

We start to analyze the estimated nonlinear model with interpretable coefficients, 

which are transition parameter Eγ  and location parameter cE. Estimated threshold 

value Eĉ  is equal to -0.007 and this means that, estimated model is in the middle 

regime (moderate inflation) when the transition variable, Zt-2, is about -0.007 and in 

the outer regime (low or high inflation) when Zt-2 value goes to far away from this 

value. In other words, the closeness of the two month lagged value to the value -

0.007 determines the state of economy. The other important point to notice is that 

there are many observations lying on both sides of location parameter Eĉ  = -0.007, 

which is shown in Figure 3.4, and this creates a symmetric and U-shaped transition 

function, supporting the ESTAR model without any doubt. Moreover small values of 

FE are more common than large ones implying the possibility that the usual state of 

economy is the moderate inflation period. Indeed, with a few exceptions, Turkey has 

never experienced a very high or low inflation periods compared to the periods 

represented by the middle regime.  
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Figure 3.4: Transition Function for CPI 
 
 
To highlight the dynamic behavior of the ESTAR model, the models corresponding 

to FE = 0 and 1 need to be analyzed. In our model, middle regime refers to moderate 

inflation case and outer regime means high and low-inflation period. The 

corresponding linear models for   FE = 0 and FE = 1 are  

 

 

FE =0; 
2001326.0944150.0881075.0063.0471.0002.0 31 DDDZZZ ttt +++−+−= −−  

 
FE = 1; 

2001326.0944150.0881075.0063.0253.00107.0 31 DDDZZZ ttt +++−−= −−  

 

As seen, although same variables contained in both linear models corresponding to 

different phases, the coefficients show great differences. For example, the coefficient 

of Zt-1 shows a change not only in size but also in sign, implying asymmetric 

behavior of inflation rate. This means that the dynamics of inflation differs according 

to the period in which the economy is in. 
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Table 3.5: Regime Analysis Statistics for CPI 
Variable Regime FE FL Root Modules 

-0.288 0.288 
CPI Middle 0 — 

0.379� 0.273i 0.467 

0.503 0.503 
 Outer 1 — 

0.125� 0.331i 0.354 

 

 

The roots of the characteristic equations corresponding to each regime or linear 

model are presented in Table 3.5. The mid regime contains a pair of complex roots 

with modulus 0.467 and one real root, which is smaller than one in absolute value. 

So, the mid-regime is locally stationary. The outer regime indicates the same 

dynamic with a real root and a pair of complex roots having modulus 0.354. This 

implies that to move inflation from one regime to another a big external shock or a 

sequence of minor ones with same signs are necessary. 

To compare estimated linear and nonlinear models, we first check the reduction in 

the estimated residual variances. As shown in the Table 3.6, the nonlinear ESTAR 

model provides lower residual variance, 22 ˆ/ˆ LNL σσ = 0.998. So the gain of the model 

over its linear counterpart in terms of residual variance is 0.2 %. This gain is not very 

high but this is not surprising considering linearity test results. That is there is a mild 

or no evidence of nonlinearity in inflation rate. This may be because of the fact that 

CPI is an aggregate variable and this aggregation procedure may smooth the 

nonlinear structure. That is the component series of CPI may contain nonlinearities 

and aggregation may have smoothed out these nonlinearities.  
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Table 3.6: Comparison Statistics for Linear and Nonlinear Models for CPI 
 Forecast Performance 

22 ˆ/ˆ LNL σσ  Nonlinear RMSE 
Nonlinear/Linear 

RMSE 
S1(p-value) 

0.966 0.0169 1.096 0.875 

 

We also compare forecast performances of the specified linear and nonlinear models. 

For this purpose, we use 18 months as the forecast period. The models are specified 

using the whole sample period, but the forecasts are made by recursively re-

estimating the models as each observation is added during this period. The forecasts 

are evaluated according to the two criteria, the RMSE and the test of equal forecast 

accuracy due to Diebold and Mariano (1995). The test of forecast accuracy considers 

a sample path of a loss-differential series, dt={g(ei,t)-g(ej,t)}, for rival forecasts i and 

j, t = 1,…..,T. We use the mean-square error as the Standard of forecast quality; that 

is, dt = tt ee ,2
2

,1
2 ˆˆ − . 

 

Table 3.6 provides the RMSE of the 18 months forecasts for linear and nonlinear 

models and the results for the null hypothesis of equal forecast accuracy between 

linear and nonlinear ESTAR models. As expected from the linearity test results, 

nonlinear models do not provide any forecast gain over the linear model. The 

forecast equality test also suggests that there is no evidence of nonlinearity in terms 

of the predictive performance of the nonlinear model. The reason for this outcome 

could be the fact that forecast performance of nonlinear models depends on the 

period in which forecast was made.1 The other important point shown in the Figure  

1See, Granger and Terasvirta (1993) and Ocal and Osborn (2000)  
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3.5 is that ESTAR model seems to be capturing most of the turning points while 

linear model continue as a straight line during the forecast period. This means that 

nonlinear model may signal turning points, while linear model does not. As seen 

from the Figure 3.5, nonlinearity is needed mainly to capture the periods indicating 

high price changes and forecast periods include only a few such data points. To 

summarize we may conclude that nonlinearity is needed only to capture several high 

inflation period and therefore does not provide big substantial improvement over the 

linear model. Nevertheless, the estimated ESTAR model may be suffering from over 

fitting and a longer sample may help to remedy this. 

 

 
Figure 3.5:  Forecast Results for CPI 
 

3.3 STAR Modeling for US Dollar 

In this section we analyze the logarithmic form of the TL/$ series with sample period 

January 1987 to June 2001. As seen from the Figure 3.6, like consumer price index, 

logarithmic form of the exchange rate indicates nonstationarity. To solve this 

nonstationarity problem, differencing procedure is applied and stationarity is 
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obtained, as indicated in Figure 3.7. After this procedure, seasonality effect on the 

data appears evidently. It is assumed seasonality is deterministic and 

deseasonalization procedure is applied by regressing differenced data on a constant 

and Ss,t, s = 1,…..11. However, the regression results indicate that only S1 and S11 

monthly dummies are significant, therefore the regression is run once more with only 

these dummy variables and seasonally adjusted data is obtained. Final form of the 

data that will be used in modeling is shown in Figure 3.8. 

 

 
Figure 3.6: Logarithmic Form of TL/$ 
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Figure 3.7: Differenced Form of TL/$ 

 

 

 
Figure 3.8: Seasonally Adjusted Form of TL/$ 

 
 

Combining Figure 3.8 with the statistics in Table 3.7, it is obvious that the data in use 

have significant skewness, excess kurtosis and normality problems 
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Table 3.7: Statistics of Seasonally Adjusted TL/$ 
Sample Mean -0.000 

Standard Error 0.046 

Significance 

Levels 

t-statistic -0.000 1.000 

Skewness 4.345 0.000 

Kurtosis 30.830 0.000 

Jarque-Bera 7396.475 0.000 

 

 Like the case of consumer price index, exchange rate series suffers from abnormal 

values. The values being outside of the three standard deviation band, are taken as 

outliers. The data points are April 1994, March 2001 and April 2001 and these 

correspond to the economic crises in the economy. 

 

The modeling procedure applied is as follows. Firstly, a linear AR model is specified 

to construct a basis for STAR type nonlinear model. We start with a maximum of 

pmax = 15 lags of variable of interest and restrict the general model according to the 

AIC and SBC values. Misspecification tests results of the residuals are also 

considered and three suitable linear AR models are obtained, and these are given in 

Table 3.8. 

 
Table 3.8: Estimated Linear Models for TL/$ 
 

1382.00002.0 −+= tt ZZ                                                                                   (3.6) 
        (0.940)   (0.000)             

εσ̂ =0.042    SK = 0.000   EK = 0.000   JB = 0.000   Q(12) = 0.990                                

AIC = -1080.19   SBC = -6.28 
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200132130.0944379.01620.02030.00039.0 21 DDZZZ ttt ++−+−= −−                                              
           (0.056)    (0.000)        (0.001)           (0.000)         (0.000) 
          
          tD ε̂20014149.0 ++                                                                               (3.7) 
             (0.000) 
 

εσ̂ =0.026   SK = 0.001   EK = 0.000   JB = 0.000   Q(12) = 0.001                                      

AIC = -1226.92   SBC = -7.170 

 

54321 0169.0004.0030.0186.0211.0003.0 −−−−− +++−+−= tttttt ZZZZZZ     (3.8) 
          (0.099)   (0.000)       (0.003)       (0.629)       (0.948)         (0.794) 
 
          20013212.0944381.0026.0025.0061.0 876 DDZZZ ttt ++++− −−−  
              (0.351)       (0.699)         (0.026)       (0.000)          (0.000) 
 
          tD ε̂20014150.0 ++            
               (0.000) 

εσ̂ =0.026   SK = 0.001   EK = 0.000   JB = 0.000   Q(12) = 0.001                                      

AIC = -1161.77   SBC = -7.040 

 

The first model is constructed without considering outlier effect and the other two are 

specified with dummy variables. As seen all three models’ residuals have skewness, 

excess kurtosis and normality problem. In addition to these problems, second and 

third model have a significant autocorrelation problem. Two reasons for the poor 

results could be the treatment of outliers and deseasonalization procedure. The 

treatment of outliers is an important practical problem in nonlinear economic 

modelling2, but since they are not central of interest to this study and they are on 

their own a very comprehensive topic, we removed them directly by using 

corresponding dummy variables.  

 

2See van Dijk et al., 1999 
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Second, deseasonalization is applied in the light of the deterministic seasonality 

assumption without being supported with any test result. However, the 

autocorrelation problem, shared by the models with dummy variables, can be the 

result of the necessity of a nonlinear structure. Linear autoregressive models 

constructed with dummy variables up to order 24 continue to exhibit autocorrelation 

which is significant at 5 % level and this points out that residual autocorrelation 

problem is not a simple consequence of order misspecification but may be a 

consequence of neglected nonlinearity. 

 

If we ignore misspecification problems for the present, according to the minimum 

AIC criteria, the best linear model seems to be second model. However to have a 

flexible modeling, we decide to take third model as our base linear model. 

Nonlinearity test is carried out for all possible delay parameters d = 1,....,8. The 

results of linearity test with and without dummy variables are reported in Table 3.9. 

It should be noted that although we selected a maximum lag length of 15 for linear 

modeling, an AR (8) is preferred for nonlinear specification simply due to possible 

degrees of freedom problem in nonlinearity tests. Moreover, as noted before, high 

orders do not bring solution to the autocorrelation problem observed in linear 

models. 
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Table 3.9: Linearity Tests Results for TL / $ 
FTS-test (p-values) 

Variable D Without Dummy With Dummy 

1 0.000 0.000 

2 0.000 0.000 

3 0.000 0.000 

4 0.000 0.000 

5 0.000 0.000 

6 0.004 0.001 

7 0.001 0.001 

Z 

8 0.000 0.000 

 

 

Table 3.9 shows that there is strong evidence of nonlinearity irrespective of outliers. 

This evidence of nonlinearity is found at all possible delay parameters d = 1,....,8. 

Therefore, we search for a suitable nonlinear STAR model for all possible lagged 

terms. 

 

Following the procedure discussed in Section 2.4.2.4, thirty-two STAR models are 

estimated. More specifically, eight models are constructed with logistic transition 

function and eight with exponential transition function and these models are analyzed 

both with and without dummy variables. The general case of these models is 

constructed with maximum lag order of eight, than insignificant lags are reduced one 

by one (starting with the most statistically insignificant one according to the t-ratio) 

provided that such reductions decrease AIC value. The adequacy of reduced models 
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is checked by misspecification tests, mentioned in Section 2.4.2.5.1. However, most 

of the reduced models are eliminated because of the residual autocorrelation and 

additional nonlinearity problem. The reasons of these poor diagnostics could be 

handling of outliers and deseasonalization procedure as discussed in the previous 

section. Nevertheless, another important reason could be the fact that a multiple 

regime model may be necessary to capture the dynamic structure. If we do not 

consider these problems, the most suitable nonlinear STAR model according to AIC 

is an ESTAR model with d = 2 and its equation is provided in Table 3.10. The only 

problem with the selected model is additional nonlinearity for delay of seven month, 

skewness and excess kurtosis in the residuals. 

 

Table 3.10: Selected STAR Model for TL / $ 
 
ESTAR Model: 
 

20013217.0944393.0189.0154.0683.0001.0 861 DDZZZZ tttt +++−+−= −−−  
           (0.709) (0.000)       (0.034)        (0.028)         (0.000)         (0.000)    

        )965.2739.1487.0693.1022.0(20014058.0 8641 −−−− −+−−−++ tttt ZZZZD  
            (0.034)               (0.238)    (0.000)       (0.012)       (0.005)        (0.002)  
 
        ))018.0(*)0019.0/121.0exp(1(* 2

2 −−− −tZ                                       (3.9) 
                         (0.000)                            (0.002) 
 
AIC = -1240.41   SK = 0.002  KU = 0.000  LMARCH(12) = 0.138   FAC(12) = 0.742   FPC = 0.931               
FNL,1 = 0.187   FNL,2 =0.216   FNL,3 = 0.210   FNL,4 = 0.195   FNL,5 =0.846   FNL,6 =0.878              
FNL,7 =0.035    FNL,8 =0.107  NLσ̂ =0.0205 

 

According to the estimation results, the switch between two regimes, transition from 

middle to outer regime, occurs at the value of 0.018. The middle regime applies for 

values of the variable about 0.018 and the outer regime is for values far away from 

this value. Combining Figure 3.8 with Figure 3.9, we see that most of the 
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observations are below the threshold value and the ones greater than the value belong 

to the crises periods. This nonsymmetrical structure of the transition function may be 

the sign of the need of a second transition function, namely a two-transition STAR 

model.3 

 
 

 
Figure 3.9: Transition Function of TL/$ 
 
 
 
 To be able to see the different dynamics corresponding to two distinct regimes, two 

extreme cases of the transition function is considered. These cases correspond to two 

different linear AR models, one for middle regime (FE = 0) and second for outer 

regime (FE =1). The models are  

 

 

 

 

 

3See, Ocal and Osborn (2000) for a discussion 
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FE = 0; 
20013217.0944393.0189.0154.0683.0001.0 861 DDZZZZ tttt +++−+−= −−−  

        20014058.0 D+  
 
FE = 1; 

944393.0776.2585.1487.0010.1023.0 8641 DZZZZZ ttttt +−+−−−= −−−−              
         20013217.0 D+ 20014058.0 D+  

 

Comparing these two linear models, it can be obviously seen that the estimated 

coefficients show great differences. Moving from the mid-regime to the outer 

regime, the coefficients of variables, Zt-2, Zt-6, Zt-8, change both in size and in sign. 

So, exchange rate series exhibit different dynamics in different phases. 

 

Table 3.11: Regime Analysis Statistics for TL / $ 
Variable Regime FE FL Root Modules 

0.87 0.87 

0.72� 0.48i 0.86 

0.08� 0.83i 0.83 

-0.54� 0.53i 0.76 

CPI Middle 0 — 

-0.69 0.69 

-1.18� 0.12i 1.19 

-0.66� 1.06i 1.25 

0.41� 1.04i 1.12 
 Outer 1 — 

0.928� 0.37i 0.99 

 

Table 3.11 provides the roots of the corresponding equations. The mid-regime with 

Yt-2 = cE = 0.018 and FE = 0, contains three pairs of complex roots and two real roots. 

According to the modules and absolute value of real roots, the mid-regime is locally 
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stationary. Unlike the mid-regime, outer regime with four pairs of complex roots 

shows nonstationary behavior with high modules. This suggests that when the 

process is in the outer regime it moves on to the middle regime very quickly but not 

vice versa. This is an expected behavior of exchange rate data. Such that if we 

consider the location parameter as the equilibrium point, one way or another the 

process has to turn this value. That is a highly appreciated or depreciated currency 

will have to move its equilibrium value. At that point nonlinearity indicates its 

importance once more. Ignoring nonlinear behavior of US Dollar series may result in 

wrong conclusions about stationary properties of the series. These conclusions may 

be due to the fact that the variable exhibits distinct dynamics in different regimes. 

That is we may have nonstationary and stationary regimes but overall a stationary 

model. 

  

To make a comparison between linear and nonlinear models, we first inspect the 

reduction in the estimated residual variances. In Table 3.12, it can be seen that 

nonlinear model gives lower residual variance with the ratio of 22 ˆ/ˆ LNL σσ = 0.628 

and the gain obtained from using nonlinear specification is 37.2 %, which is quite 

large. It is worthy of note that although our nonlinear model has poor diagnostics, it 

provides a better characterization of the data. This might suggest that considering 

multiple regime models may not only improve the diagnostics but also description of 

the data. However, we do not consider multiple regime models considering the large 

number of parameters to be estimated and sample size. Moreover these poor 

diagnostics may be a result of highly erratic structure of data. 
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Table 3.12: Comparison Statistics for Linear and Nonlinear Models for TL/$ 
 Forecast Performance 

22 ˆ/ˆ LNL σσ  Nonlinear RMSE 
Nonliear/Linear 

RMSE 
S1(p-value) 

0.628 0.01697 1.0955 0.848 

 

The forecast performances of the estimated linear and nonlinear models are also 

considered. As in the consumer price index, 18 months period is used for this 

purpose and the forecasts are evaluated according to the RMSE and the test of equal 

forecast accuracy results. 

 

According to the Table 3.12, the forecast equality test result indicates that there is no 

gain in using nonlinear structure for prediction purpose, linear model is adequate. 

However, the estimated nonlinear ESTAR model gives quite lower residual variances 

and better forecasts in crises periods, see Figure 3.10. This may be because of the 

fact that nonlinear model exhibits a better forecast performance for the periods 

showing unexpected behavior and forecast period does not contain such periods 

frequently. Also change points seem to be better described by the estimated ESTAR 

model. This is an important point because the identification of the appropriate 

nonlinear dynamics of exchange rate is crucial as exchange rate may serve as one of 

potential intermediate policy tools in the economy.  Moreover, additive nonlinearity 

test results show that there is a need for two threshold model with second delay 

parameter being d = 7. So, two-threshold model may be needed. However, two-

threshold models contain more parameters to be estimated and therefore need larger 

samples. As a result, we assume that poor diagnostics and evidence of additional 
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nonlinearity could be due to the highly erratic structure of the data as can be 

observed in exchange rate data. 

 
 

 
Figure 3.10: Forecast Results for TL/$ 
 
 
 
 
3.3 STAR Modeling for British Pound  
 
 
British Pound series with sample period January 1987 to June 2001 is examined in 

this part of the study. Similar to other two applied series, logarithmic form of the 

TL/£ is nonstationary and needs a differencing procedure to be able to reach a 

stationary series, as indicated in Figure 3.11 and 3.12. After that, to remove 

seasonality effect, an auxiliary regression is constructed with constant and significant 

seasonal dummies, as mentioned in Section 3.2 and 3.3. Final form of the data that 

will be used in modeling procedure is shown in Figure 3.13. 
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Figure 3.11: Logarithmic Form of  TL/£  
 
 
 
 
 

 
Figure 3.12: Differenced Form of  TL/£ 
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Figure 3.13: Seasonally Adjusted Form of  TL/£ 
 
 
 
Table 3.13 contains some statistics of the seasonally adjusted British Pound series 

and we see that there is significant skewness, excess kurtosis and normality 

problems. The other important point to be mentioned in the structure of the data is 

outlier problem. According to the band constructed with three standard deviation 

from the mean, the values April 1994, March 2001 and April 2001 are abnormal and 

dummy variables are used for these data points. 

Table 3.13 : Statistics of Seasonally Adjusted TL/£ 
Sample Mean 0.000 

Standard Error 0.047 

Significance 

Levels 

t-statistic 0.000 1.000 

Skewness 3.450 0.000 

Kurtosis 23.519 0.000 

Jarque-Bera 4330.678 0.000 
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Modeling cycle procedure is started with specifying a suitable linear AR model. 

Again we start with a maximum of pmax = 15 lagged of variable of interest and 

impose restrictions to the general model with considering AIC, SBC values and 

misspecification tests results of the residuals. Three linear AR model is obtained as 

shown in Table 3.14. First model contains no outlier effect and constructed without 

dummy variables, while other two are specified with suitable dummies. 

Misspecification tests results indicate that excess kurtosis and normality problems 

are common features of all three models. Skewness problem is present in the first 

model and residual autocorrelation problem is significant in the second and third 

model. As mentioned in Section 3.3, the reasons of poor diagnostics may be the 

treatment of outliers and applied deseasonalization procedure. However, linear AR 

models constructed with dummy variables up to order 24 continue to have significant 

residual autocorrelation problem, this may be due to the nonlinear structure. If we 

ignore these problems, the best linear AR model to use for STAR type modeling is 

model 3.12 in Table 3.14. 

 

Table 3.14: Estimated Linear Models for British Pound 
 

1372.000012.0 −+= tt ZZ                                                                                 (3.10) 
        (0.972)     (0.000)             

εσ̂ =0.044    SK = 0.000   EK = 0.000   JB = 0.000   Q(12) = 0.586                                

AIC = -1069.24   SBC = -6.22 
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200132109.0944360.0162.0219.0004.0 21 DDZZZ ttt ++−+−= −−                                               

           (0.080)  (0.000)        (0.003)       (0.000)         (0.000) 
          
          tD ε̂200141404.0 ++                                                                             (3.11) 
             (0.000) 
 

εσ̂ =0.0297   SK = 0.511   EK = 0.000   JB = 0.000   Q(12) = 0.000                                      

AIC = -1191.57   SBC = -6.927 

 

54321 0153.0023.0923.0212.0237.0004.0 −−−−− −++−+−= tttttt ZZZZZZ      
          (0.113)  (0.000)       (0.001)       (0.172)       (0.739)         (0.826) 
 
          20013216.0944359.0028.0005.00499.0 876 DDZZZ ttt +++−− −−−    (3.12) 
              (0.481)        (0.936)         (0.658)       (0.000)          (0.000) 
 
          tD ε̂20014142.0 ++            
               (0.000) 

εσ̂ =0.0298   SK = 0.741   EK = 0.000   JB = 0.000   Q(12) = 0.000                                      

AIC = -1123.96   SBC = -6.81 

 
 

Nonlinearity test is carried out for d = 1,…,8. As noted before this order is selected 

due to degrees of freedom considerations. Moreover, the evidence of autocorrelation 

in linear model is not a result of short lag length since an AR(24) model does not 

solve the problem. The use of dummy variables does not cause a significant change 

in the test results. There is a significant nonlinearity for all possible values of delay 

parameter and therefore all alternatives are considered. 
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Table 3.15: Linearity Tests Results for TL/£ 
FTS-test (p-values) 

Variable d Without Dummy With Dummy 

1 0.000 0.000 

2 0.000 0.000 

3 0.000 0.000 

4 0.000 0.001 

5 0.014 0.019 

6 0.003 0.006 

7 0.037 0.048 

Z 

8 0.031 0.027 

 
 
 
Thirty-two STAR models are estimated. Following the model reduction procedure as 

in Section 2.2.4, the most parsimonious model is obtained.                                                                                                                                   

The most suitable nonlinear model is selected according to the misspecification tests 

results and AIC and SBC values. However, like US Dollar case, most of the 

estimated models suffer from residual autocorrelation, which may be the result of the 

deseasonalization procedure, handling of outliers and the need of additive 

nonlinearity and/or highly erratic structure of the data. Among the estimated models, 

the one which best fits the data is an ESTAR model with d = 2 and its estimated 

equation is presented in Table 3.16.  
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Table 3.16: Selected STAR Model for TL/£ 
 
ESTAR Model: 
 

20013208.0944366.0321.0236.05725.0007.0 541 DDZZZZ tttt ++−++−= −−−  
           (0.765) (0.000)       (0.007)          (0.002)         (0.000)         (0.000)    

        4321 166.1792.0417.07656.000004.0(20014082.0 −−−− −+−−++ tttt ZZZZD  
            (0.012)               (0.998)     (0.000)          (0.000)       (0.000)        (0.027)  
 
        ))001.0(*)00207.0/202.0exp(1(*)174.2 2

25 −−−+ −− tt ZZ               (3.13)                             
            (0.029)                      (0.053)                              (0.818) 
 
AIC = -1195.74   SK = 0.761  KU = 0.114  LMARCH(12) = 0.055   FAC(12) = 0.069   FPC = 0.638               
FNL,1 = 0.023   FNL,2 =0.465   FNL,3 = 0.694   FNL,4 = 0.241   FNL,5 =0.164   FNL,6 =0.426              
FNL,7 =0.419    FNL,8 =0.804  NLσ̂ =0.02492 

 

The estimation results indicate that, second lag of variable of interest is the transition 

variable of the model. Model diagnostics show evidence of autocorrelation, 

heteroscedasticity and there is evidence of additive nonlinearity at d = 1. The 

transition from middle regime to outer regime occurs about the value of 0.001. So, 

when the growth rate is about zero we are in middle regime and values far away from 

zero represents the dynamics of outer regime. The estimated value of transition 

variable is Eγ̂ = 0.202 / 0.00207 and the data points are equally spreaded around the 

estimated threshold value, as seen in Figure 3.14. This implies that exponential form 

provides an adequate description of the data. 
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Figure 3.14: Transition Function of TL/£ 
 
 
In the third stage, we analyze the dynamic structure of the selected ESTAR model. 

ESTAR model indicates two different linear AR models according to the two 

extreme values of the exponential transition function, first for middle regime (FE = 0) 

and second for outer regime (FE = 1).   

 
These models are as follows, 
 
 
FE = 0; 

20013208.0944366.03213.0236.0572.00007.0 541 DDZZZZ tttt ++−++−= −−−  
        20014082.0 D+  

 
FE = 1; 

54321 853.1930.0792.0417.0193.0000069.0 −−−−− +−+−−−= tttttt ZZZZZZ              
         20013217.0944393.0 DD ++ 20014058.0 D+  
 
 

As seen, the linear models corresponding to different phases differ from each other in 

the number of regressors, size and sign of the coefficients. While middle regime is 

constructed with Zt-1, Zt-4 and Zt-5, outer regime includes additional variables, Zt-2 and 

Zt-3. Moreover, the coefficients of variables show great differences. Switching from 
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the middle to outer regime, the coefficients of Zt-1 and Zt-4 turns to be negative and 

the coefficient of Zt-5 becomes positive and this indicates that different phases have 

different dynamic structures. 

 
Table 3.17: Regime Analysis Statistics for TL / £ 
Variable Regime FE FL Root Modules 

-0.78 0.78 

-0.07� 0.78i 0.78 CPI Middle 0 — 

0.75� 0.32i 0.82 

0,31� 0.98i 1.027 

1.02 1.016  Outer 1 — 

-0.91� 0.94i 1.31 

 

According to the Table 3.17, the middle regime with one real and two pairs of 

complex roots having modules 0.78 and 0.82 is locally stationary. On the other hand, 

the outer regime with modules 1.027 and 1.31 has locally explosive structure. This 

means that a highly appreciated or depreciated currency cannot last forever, the 

process one way or another move to the middle regime represented by the values 

about the threshold value cE = 0.001. 

To be able to compare the estimated linear and nonlinear models, we use estimated 

residual variance values and forecast performances. We first inspect the reduction in 

the estimated residual variances from the estimated ESTAR model. Table 3.18 

indicates that, nonlinear model gives lower residual variance with the ratio 

22 ˆ/ˆ LNL σσ = 0.699 and the gain obtained over the nonlinear specification is 30.1 %. 

Secondly, we compare forecast performances of the estimated linear and nonlinear 

models by using RMSE values and the test of equal forecast accuracy result. 



 75 

According to the Table 3.18, the RMSE value of the ESTAR model is higher than the 

estimated linear model. Also test of equal forecast accuracy result says that there is 

no significant difference between the forecast performances of these two estimated 

models.  

 
Table 3.18: Comparison Statistics for Linear and Nonlinear Models for TL/£ 
 Forecast Performance 

22 ˆ/ˆ LNL σσ  Nonlinear RMSE 
Nonlinear/Linear 

RMSE 
S1(p-value) 

0.699 0.01697 1.0955 0.835 

 

However, the estimated nonlinear ESTAR model gives lower residual variances and 

lower RMSE value in especially crises periods and seems to imitate the wrinkles in 

the data. This supports the fact that the forecast performance of nonlinear models 

depends on the forecast period. The nonlinear dynamics captured by our model may 

not be exhibited during the forecast period and therefore these poor results might be 

arising. This can be supported with the fact that while linear models can be adequate 

for normal periods, for crises periods nonlinear models are more preferable, which 

can be seen also from the Figure 3.15. Moreover, the additional nonlinearity test 

results show that multiple regime models may be needed but short sample size does 

not allow to specify such a model with large number of parameters.  
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Figure 3.15: Forecast Results for TL/£ 
 
 
3.5 Conclusion 

Our examination of nonlinearity in the three monthly seasonally adjusted Turkey 

macroeconomic series showed that while consumer price index series does not seem 

to be exhibiting nonlinear behavior, exchange rate series contain nonlinearity in their 

generating mechanisms and they can adequately be characterized by STAR models. 

The results show that exchange rates series can be represented by ESTAR models 

and does have similar dynamics in the outer regimes, with middle ground having 

distinct dynamics. 

 

In general, the estimated models provide substantial improvements over the linear 

counterparts. Therefore, we conclude that STAR models are more adequate than 

linear models for describing the characteristics of variables considered here.   
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CHAPTER IV 
 

CONCLUSION 
 

Over the last fifteen years, the interest in nonlinear time series models has been 

steadily incresing. The reason behind this rising interest is the inadequacy of linear 

models in capturing the observed asymmetric in macroeconomic data in practice. 

Therefore, in applications to economic time series, models which allow for state-

dependent or regime switching behaviour have been most popular in the literature. 

 

This study provides a survey of most prominent nonlinear models in the literature. 

These are Markov-switching regime model, threshold autoregressive (TAR) model 

and smooth Transition autoregressive (STAR) model. In the study the emphasis is on 

STAR models because they are more flexible than TAR and Hamilton type Markov-

switching models and therefore more appropriate for modelling macroeconomic 

variables. We attempt to model three monthly macroeconomic variables of Turkey 

which includes consumer price index (CPI), nominal exchange rates; US Dollar and 

British Pound. There are two main reasons behind this selection. Firstly, nonlinear 

modelling requires a large sample and these varaiables are appropriate for modelling 

with large number of data points. Secondly, inflation and nominal exchange rate are 

the forming variables of PPP hypothesis. Recent literature indicates that deviation 
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from the PPP should contain significant nonlinearities. To pinpoint the source of 

nonlinearity we decided to examine the component variables seperately. The 

logarithmic form of the series with sample period January 1987 to June 2001 is 

considered. Under the deterministic seasonality assumption, all series are 

deseasonalized. 

 

The conclusion for consumer price index gives the evidence that there is a mild or no 

significant nonlinearity. However, the estimation results indicate that the selected 

nonlinear model is as good as the linear one. The most appropriate model which best 

fits to the data is an ESTAR model. The estimation results show that the dynamics of 

inflation differs according to the period in which economy is in. Altough same 

variables contained in both linear models corresponding to different phases, the 

coefficients show great differences both in size and sign. High and low inflation 

periods are represented in one regime and moderate inflation period in other regime. 

Both regimes are locally stationary, which implies that to move inflation from one 

regime to another a huge external shock is needed. According to the estimation 

results, ESTAR model seems to be more preferable than the linear one because it 

gives low residual variances and better forecast performance especially in abnormal 

periods and imitating the fluctuations in the data.  

 

The empirical results for TL / $ and TL / £ series show that there are strong evidence 

of nonlinearities and the most suitable models are ESTAR models. According to the 

estimation results, the series exhibit different dynamics in different phases. That is a 

highly depreciated or appreciated currency shows a nonstationary behaviour. 

However, if the process is near to its equilibrium point, it does not tend to move to 
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outer regime unless there is a big external shock or a sequence of minor ones with 

same signs. Ignoring nonlinearity can result in a conclusion that exchange rate series 

are nonstationary. However, the dynamic structure of ESTAR models indicate that 

the series can be stationary or nonstationary depending on the regime in which the 

currency is in. The need for nonlinear models is also supported with lower residual 

variances obtained from the nonlinear specifications. Moreover, the estimated 

ESTAR models give better forecasts than their linear counterparts in crises periods 

and change points. 

 

To sum up, we conclude that the variables under consideration have nonlinear 

structures in their generating mechanisms. This is important on the following 

grounds. First, if one use linear models than it is very likely to have poor forecasts 

compared nonlinear ones. Second, since these variables contain different regimes, 

one should argue the effect of macroeconomic policies in the different regimes. 

Because unlike linear models, the impulse response function is allowed to be time 

varying. In other words, a current shock will have a different impact on future 

observations depending on the sign and/or magnitude of this shock, as well as, on the 

past observations. This implies that there is no room for fixed fiscal and monetary 

policies. Third, it is now heavily discussed in the literature that a nonlinear process 

may be identified as a nonstationary process. This in turn may lead to misleading 

inferences about the dynamics of data. Fourth, if economic variables are nonlinear, 

economists should consider nonlinear economic models. 

 

 



 80 

 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
 
Astatkie, T., Watts, D.G., Watt, W.E. (1997), ‘ Nested Threshold Autoregressive 
NeTAR Models’, International Journal of Forecasting, Vol.13, pp.105-116. 
 
 
Bacon, D.W., Watts, D.G. (1971), ‘ Estimating the Transition Between Two 
Intersecting Straight Lines’, Biometrika, Vol. 58, pp.525-534. 
 
 
Bates, D.M., Watts, D.G. (1988), ‘Nonlinear Regression and Its Applications’, John 
Wiley: New York. 
 
 
Baum, C.F., Barkoulas, J.T, Caglayan, M. (2001), ‘ Nonlinear Adjustment to 
Purchasing Power Parity in the post-Bretton Woods Era’, Journal of International 
Money and Finance, Vol.20, pp.379-399. 
 
 
Chan, K.S., Tong, H. (1986), ‘ On Estimating Thresholds in Autoregressive Models’, 
Journal of Time Series Analysis, Vol.7, pp.179-190. 
 
 
Chan, K. S. (1993), ' Consistency and Limiting Distribution of the Least Squares 
Estimator of a Threshold Autoregressive Model', The Annals of Statistics, Vol.21, 
pp.520-533. 
 
 
Charemza, W.W. and Deadman, D.F. (1997), ' New Directions in Econometric 
Practise', Edward Elgar Publishing Limited. 
 
 
Davies, R.B. (1977), ‘ Hypothesis Testing When a Nuisance Parameter Is Present 
Only under the Alternative’, Biometrika, Vol.64, pp.247-254. 
 
 
Davies, R.B. (1987), ‘ Hypothesis Testing When a Nuisance Parameter Is present 
Only under the Alternative’, Biometrika, Vol.74, pp.33-43. 
 



 81 

Diboglu, S., Kibritcioglu, A. (2004), ‘ Inflation, Output growth, and Stabilization in 
Turkey, 1980-2002’, Journal of Economics and Business, Vol.56, pp.43-61 
 
 
Diebold, F.X., Mariano, R.S. (1995), ‘ Comparing Predictive Accuracy’, Journal of 
Business and Economic Statistics, Vol.13, pp.253-263. 
 
 
Eitrheim, φ.,Teräsvirta, T. (1996), ' Testing the Adequacy of Smooth Transition 
Autoregressive Models', Journal of Econometrics, Vol.74, pp.59-75. 
 
  
Enders, W. (1995), ' Applied Econometric Time Series, 1st Edition', New York: John 
Wiley. 
 
 
Enders, W. (2003), ' Applied Econometric Time Series. 2nd Edition', New Jersey, 
USA: John Wiley. 
 
 
Engel, C.R., J.D. Hamilton (1990), ‘ Long Swings in the Dollar: Are They in the 
Data and Do Markets Know It?’, American Economic Review, No.80, pp.689-713. 
 
 
Erlat, H., ' Long Memory in Turkish Inflation Rates', Department of Economics, 
Middle East Technical University. 
 
 
Escribano, A., Jorda,�. (1999), ‘ Improved Testing and Specification of Smooth 
Transition Autoregressive Models’, Nonlinear Time Series Analysis of Economic 
and Financial Data. 
 
 
Filardo, A.J. (1994), ‘ Business-cycle Phases and Their Transitional Dynamics’, 
Journal of Business and Economic Statistics, Vol.12, pp.299-308. 
 
 
Granger, CWJ., Teräsvirta, T. (1993), ‘ Modeling Nonlinear Economic 
Relationships’, Oxford University Press. 
 
 
Hamilton, J.D. (1990), ' Analysis of Time Series Subject to Changes in Regimes', 
Journal of Econometrics, Vol.45, pp.39-70. 
 
 
Leybourne, S., Newbold, P., Vougas, D. (1998), ‘ Unit Roots and Smooth 
Transitions’, Journal of Time Series Analysis, Vol.19, pp.83-97. 
 



 82 

Liew, V.K.S, Chong, T.T.L, Lim, K.P. (2003), ‘ The inadequacy of Linear 
Autoregressive Model for Real Exchange Rates: Empirical Analysis from Asian 
Economies’, Applied Economics, Vol.35,pp.1387-1392. 
 
 
Liew, V.K.S, Chong, T.T.L, Baharumshah, A.Z. (2004), ‘ Are Asian Real Exchange 
Rate Stationary?’, Economics Letters, Vol.83, pp.313-316. 
 
 
Lin, C-F.J., Teräsvirta, T. (1994), ‘Testing the Constancy of Regression Parameters 
Against Continuous Structural Change’, Journal of Econometrics, Vol.62, pp.211-
228. 
 
 
Lukkonen, R., Saikkonen, P. and Teräsvirta, T. (1988b), ' Testing Linearity Against 
Smooth Transition Autoregressive Models', Biometrika, Vol.75, pp.491-499.  
 
 
Lundbergh, S., Teräsvirta, T. (1988), ‘Modeling Economic high-frequency Time 
Series with STAR-GARCH Models’, Working Paper Series in Economics and 
Finance, No.291. 
 
 
Luukkonen, R., Saikkonen, P. And Teräsvirta, T. (1988a), ' Testing Linearity in 
Univariate Time Series Models', Scandinavian Journal of Statistics, Vol.15, pp.161-
165.  
 
 
Metin, K. (1995), ‘ An Integrated Analysis of Turkish Inflation’, Oxford Bulletin of 
Economics and Statistics, Vol.57, pp.513-531. 
 
 
Michael, P., Nobay, A.R., Peel, D.A. (1994), ‘ Purchasing Power Parity yet Again: 
Evidence from Spatially Separated Markets’, Journal of International Money and 
Finance, Vol.16, pp.19-35. 
 
 
Michael, P., Nobay, A.R., Peel, D.A. (1997), ‘ Transaction Cost and Nonlinear 
Adjustment in Real Exchange Rates: An Empirical Investigation’, Journal of 
Political Economy, Vol.105, pp.862-879. 
 
 
Obstfeld, M., Taylor, A.M. (1997), ‘ Nonlinear Aspects of Goods-market Arbitrage 
and Adjustment: Heckscher’s Commodity Points Revisited’, Journal of Japanese and 
International Economies, Vol.11, pp.441-479. 
 
 
Ocal, N. (2000), ' Nonlinear Models for UK Macroeconomic Time Series', Studies in 
Nonlinear Dynamics and Econometrics, Vol.4, Issue 3. 
 



 83 

Ocal, N. (2002), ' Asymmetric Effects of Military Expenditure between Turkey and 
Greece', Defense and Peace Economics, Vol.13, pp.405-416 
 
 
Ocal, N., Osborn, D. R. (2000), ' Business Cycle Nonlinearities in UK Consumption 
and Production', Journal of Applied Econometrics, Vol.15, pp.27-43. 
 
 
Onis, Z., Ozmucur, S. (1990), ‘ Exchange Rates, Inflation and Money Supply in 
Turkey: Testing the Vicious Circle Hypothesis’, Journal of Development Economics, 
Vol.32, pp.133-154. 
 
 
Potter, S. (1995), ' A Nonlinear Approach to US GNP', Journal of Applied 
Econometrics, Vol.10, pp.109-125. 
 
 
Potter, S.M. (1999), 'Nonlinear Time Series Modeling: An Introduction', Journal of 
Economic Surveys, Vol.13, No.5. 
 
 
Sarantis, N. (1999), ‘ Modeling Nonlinearities in Real Effective Exchange Rates’, 
Journal of International Money and Finance, Vol.18, pp.27-45. 
 
 
Sarno, L. (2000), ‘ Real Exchange Rate Behaviour in Middle East: A Re-
examination’, Economic Letters, No.66, pp.313-316. 
 
 
Sarno, L., Taylor, M.P., Chowdhury, I. (2004), ‘ Nonlinear Dynamics in Deviations 
from the Law of One Price: A Broad-based Empirical Study’, Journal of 
International Money and Finance, Vol.23, pp.1-25. 
 
 
Sensier, M., Osborn, D. R., Ocal, N. (2002), ' Asymmetric Interest Rate Effects for 
the UK Real Economy', Oxford Bulletin of Economics and Statistics, Vol.64, 
pp.315-339. 
 
  
Skalin, J., Teräsvirta, T. (2001), ‘Modeling Asymmetries and Moving Equilibria in 
Unemployment Rates’, Macroeconomic Dynamics. 
 
 
Stewart, J. And Gill, L. (1998), ' Econometrics', Prentice Hall Europe. 
 
 
Taylor, M.P., Peel, D.A. (2000), ‘ Nonlinear Adjustment, Long-run Equilibrium and 
Exchange Rate Fundamentals’, Journal of International Money and Finance, Vol.19, 
pp.33-53. 



 84 

Taylor, M.P., Sarno, L. (2001), ‘ Real Exchange Rate Dynamics in Transition 
Economies: A Nonlinear Analysis’, Studies in Nonlinear Dynamics & Econometrics, 
Vol.5, Issue 3. 
 
 
Teräsvirta, T., Anderson, HM. (1992), ‘Characterizing Nonlinearities in Business 
Cycles Using Smooth Transition Autoregressive Model’, Journal of Applied 
Econometrics, Vol.7, pp.119-136. 
 
 
Terasvirta, T. and Anderson, H. M. (1993), ‘ Characterizing Nonlinearities in 
Business Cycles Using Smooth Transition Autoregressive Models’, In M.H. Pesaran 
and S.M. Potter (eds.) Nonlinear dynamics, chaos and econometrics, pp111-128. 
New York: John Wiley & Sons. 
 
 
Teräsvirta, T. (1994), ' Specification, Estimation and Evaluation of Smooth 
Transition Autoregressive Models', Journal of American Statistical Association, 
Vol.89, No.425. 
 
 
Teräsvirta, T. (1995), ' Modeling Nonlinearity in US Gross National Product 1889-
1987', Empirical Economics, Vol.20, pp.557-597. 
 
 
Teräsvirta, T. (1996a), ' Modeling Economic Relationships with Smooth Transition 
Regressions', Working Paper, No.131, Stockholm School of Economics. 
 
 
Teräsvirta, T. (1996b), ' Smooth Transition Models', Working Paper, No.132, 
Stockholm School of Economics. 
 
 
Teräsvirta, T. (1998). “Modeling economic relationships with smooth transition 
regressions.” In A. Ullah and D. E. A. Giles, Handbook of Applied Economic 
Statistics, New York: Marcel Dekker, pp. 507–552.   
 
   
Tiao, G. C. And Tsay, R. S. (1994), 'Some Advances in Nonlinear and Adaptive 
Modeling in Time Series', Journal of Forecasting, Vol.13, pp.109-131.   
 
 
Tong, H. (1978), ‘ On a Threshold Model’, In Pattern Recognition and Signal 
Processing (Edited by C.H.Chen) 
 
 
Tong, H., Lim, K.S. (1980), ‘ Threshold Autoregression, Limit Cycles and Cyclical 
Data (with discussion)’, J. Roy. Statist. Soc. Ser.B., Vol.42, pp.245-292. 
 



 85 

Tong, H. (1983), ‘ A Note on a Delayed Autoregressive Process in Continuous 
Time’, Biometrika, Vol.70, pp.710-712. 
 
 
Tsay, R. S. (1989), 'Testing and Modeling Threshold Autoregressive Processes', 
Journal of American Statistical Association, Vol.84, No.405. 
 
 
Tsay, R. S. (1998), 'Testing and Modeling Multivariate Threshold Models', Journal 
of American Statistical Association, Vol.93, No.443. 
 
 
van Dijk, D., Franses, P.H. And Lucas, A. (1999), ' Testing for Smooth Transition 
Nonlinearity in the Presence of Outliers', American Statistical Association, Vol.17, 
No.2. 
 
 
Wooldridge, J.M. (1990), ‘ A Unified Approach to Robust, Regression-based 
Specification Tests’, Econometric Theory, Vol.6, pp. 17-43. 
 
 
Wooldridge, J.M. (1991), ‘ On the Application of Robust, Regression-based 
Diagnostics to Models of Conditional Means and Variances’, Journal of 
Econometrics, Vol. 47, pp.5-46. 
 
 


