

FUZZY QUERYING IN XML DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
 MIDDLE EAST TECHNICAL UNIVERSITY

BY

EKİN ÜSTÜNKAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Ayşe Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Adnan Yazıcı

Supervisor

Examining Committee Members

Assoc. Prof. Dr. Ferda Nur Alpaslan(Chairman) (METU, CENG)

Prof. Dr. Adnan Yazıcı (METU, CENG)

Assoc. Prof. Dr. Nihan Kesim Çiçekli (METU, CENG)

Dr. Ayşenur Birtürk (METU, CENG)

Levent Çarkacıoğlu, M.S. (T.C.M.B.)

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Ekin Üstünkaya

iv

ABSTRACT

FUZZY QUERYING IN XML DATABASES

ÜSTÜNKAYA, Ekin

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazıcı

December 2004, 91 pages

Real-world information containing subjective opinions and judgments has emerged

the need to represent complex and imprecise data in databases. Additionally, the

challenge of transferring information between databases whose data storage methods

are not compatible has been an important research topic. Extensible Markup

Language (XML) has the potential to meet these challenges since it has the ability to

represent complex and imprecise data.

In this thesis, an XML based fuzzy data representation and querying system is

designed and implemented. The resulting system enables fuzzy querying on XML

documents by using XQuery, a language used for querying XML documents. In the

system, complex and imprecise data are represented using XML combined with the

v

fuzzy representation. In addition to fuzzy querying, the system enables restructuring

of XML Schemas by merging of elements of the XML documents. By using this

feature of the system, one can generate a new XML Schema and new XML

documents from the existing documents according to this new XML Schema. XML

data used in the system are retrieved from Internet by Web Services, which can make

use of XML’s capabilities to transfer data and, XML documents are stored in a

native XML database management system.

Keywords: Fuzzy Query, XML, XML Databases

vi

ÖZ

XML VERİTABANLARINDA BULANIK SORGULAMA

ÜSTÜNKAYA, Ekin

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Adnan Yazıcı

Aralık 2004, 91 sayfa

Gerçek dünyadaki bilgilerin öznel kanı ve yargılar içermesi, kompleks ve belirsiz

verilerin veritabanlarında temsil edilmesi ihtiyacını doğurmuştur. Buna ek olarak,

veri depoloma teknikleri birbiriyle uyumsuz olan veritabanları arasındaki bilgi

transferi de önemli bir araştırma konusu oluşturmaktadır. Extensible Markup

Language (XML), kompleks ve belirsiz verileri temsil etme yeteneği ile bu

konularda çözüm olma potansiyeline sahiptir.

Bu çalışmada, XML tabanlı bir bulanık veri sunumu ve sorgulama sistemi

tasarlanmış ve gerçekleştirilmiştir. Sonuçta geliştirilmiş olan sistem, XML

dokümanlarını sorgulama amaçlı kullanılan XQuery dilini kullanarak bulanık

vii

sorgulama yapmayı sağlamaktadır. Sistemde kompleks ve belirsiz veriler bulanık

betimlemeyle birleştirilerek, XML kullanılarak temsil edilmiştir. Bulanık

sorgulamaya ek olarak, sistem, XML dokümanlarının elemanlarının

birleştirilmesiyle, XML şemalarının yeniden yapılandırılmasına olanak verir.

Sistemin bu özelliği kullanılarak yeni bir XML şeması ve varolan XML

dokümanlarından bu şemaya uygun yeni XML dokümanları yaratılabilir. Sistemde

kullanılan XML verileri, XML’in veri taşımadaki yeteneklerini kullanabilen Web

Servisleri aracılılığıyla, İnternet’den alınmıştır ve XML dökümanları yerel bir XML

veritabanı sisteminde saklanmaktadır..

Anahtar Kelimeler: Bulanık Sorgulama, XML, XML Veritabanları

viii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Adnan Yazıcı for all his guidance and support

during this study.

I would also like to thank my parents and my brother, for all their support during this

study.

ix

TABLE OF CONTENTS

ABSTRACT..iv

ÖZ ...vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS..ix

LIST OF FIGURES ..xi

LIST OF TABLES ... xiii

CHAPTER

1. INTRODUCTION...1

2. THEORETICAL BACKGROUND ..6

2.1 XML and XML Technologies ..6

2.1.1 XML (Extensible Markup Language) ...6

2.1.2 XML Querying Languages..8

2.1.3 Stylesheet for XML ...13

2.1.4 Document Object Model (DOM) ..14

2.2 ExNF2 Model..15

2.2.1 The Extended NF2 Algebra..18

2.2.2 Basic Set Operations..19

2.2.3 Restructuring Operations...22

2.3 XML Databases ..26

2.4 Fuzzy Querying ..31

2.5 Web Services ..35

x

3. DESIGN AND IMPLEMENTATION OF XML-BASED FUZZY QUERYING

SYSTEM ...37

3.1 System Objectives ..37

3.2 Modeling Complex and Uncertain Data in XML...37

3.3 System Architecture ...42

3.4 Data Objects & Database Design ...44

3.5 Implementation...46

3.5.1 Retrieving Data through Web Services ...47

3.5.2 Mapping of the Data to the XML Schema ..48

3.5.3 Querying the Data..48

3.5.3.1 Fuzzy Queries ...56

3.5.4 Merging XML Schemas ..60

3.6 Programming Environment ..64

4. CONCLUSION ...65

REFERENCES...67

APPENDICES

A. AN EXAMPLE XML DOCUMENT FOR A PRODUCT69

B. THE XML SCHEMA CODE FOR PRODUCTS ...70

C. XML DOCUMENT FOR COLOUR SIMILARITY TABLE72

D. THE XML SCHEMA CODE FOR COLOUR SIMILARITY TABLE74

E. XML DOCUMENT FOR SUBJECT SIMILARITY TABLE75

F. THE XML SCHEMA CODE FOR SUBJECT SIMILARITY TABLE................78

xi

LIST OF FIGURES

FIGURE

Figure 1: An Example XML Document ..7

Figure 2: DTD Representation of Product Information ..8

Figure 3: Sample XML-QL Query ..9

Figure 4: Sample XPath Expressions ..10

Figure 5: XQuery Example ...12

Figure 6: XSL Document Format ...14

Figure 7: Sales Order Document ...30

Figure 8: Example XML for Atomic Values ..38

Figure 9: Example XML for Empty Values ..39

Figure 10: Example XML for Set-Valued Attributes ...39

Figure 11: Example XML for Fuzzy-Valued Attributes ...40

Figure 12: Example XML for Range-Valued Attributes ..41

Figure 13: Example XML for Relation-Valued Attributes41

Figure 14: System Architecture ..42

Figure 15: XML Schema Representation of a Product ...45

Figure 16: XML Schema Representation of Colour Similarity Table46

Figure 17: XML Schema Representation of Subject Similarity Table46

Figure 18: Call and Request Format of Amazon Web Services48

Figure 19: Architectural Overview of the Query Processing49

Figure 20: XQuery Example(1) ..50

xii

Figure 21: Query Results for Query Example(1) ..50

Figure 22: XQuery Example(2) ..51

Figure 23: Query Results for Query Example(2) ..52

Figure 24: Details Form ..55

Figure 25: XML Representation of Book-“Deception Point”57

Figure 26: “OR” Predicate Query Example ..58

Figure 27: “AND” Predicate Query Example (1) ...59

Figure 28: “AND” Predicate Query Example (2) ...60

Figure 29: Merge Schema Form ...61

Figure 30: XML Schema Representation of a PublisherInfoSchema62

Figure 31: XML Schema Structure Before Merging ..63

Figure 32: New XML Schema Structure ..63

Figure 33: XML Schema Structure Regarding Primary Key64

xiii

LIST OF TABLES

TABLE

Table 1: Employee Relation ..18

Table 2: Similarity Matrix for Age Attribute ..34

Table 3: Explanation of Fields on the Query Form ..53

Table 4: Explanation of Fields on the Details Form ...56

 1

CHAPTER 1

INTRODUCTION

A database is any organized collection of information. There are many traditional

database management systems that can represent crisp data using well-understood

structures. However, real-world information containing subjective opinions and

judgments may contain complex and imprecise data along with crisp data. The

representation of such uncertain and complex data, in a database still, has been a

research issue. One of the proposed models for the representation of uncertain and

complex data is the Extended Non First Normal Form (ExNF2) data model, an

extended relational database model [1].

Another important issue is the sharing of information between databases. Because

different databases store data in different, and sometimes incompatible, formats,

which makes exchanging information a challenge. In many businesses, data from a

large number of heterogeneous databases need to be integrated in connection with

data warehousing, or system integration. Many organizations and enterprises

establish distributed working environments, where different users need to exchange

information based on a common model. The Information Brokerage project is an

example which is built around an open systems architecture developed to allow a

 2

collaborating group of legacy systems, based on heterogeneous database and server

platforms, to offer an integrated query service over the Internet [25].

Extensible Mark-up Language (XML) is a proposed solution as a data representation

and exchange format through the Internet and different database models to meet this

challenge. The Lore system is one example of a database model implemented in

XML [2]. Unlike HTML, XML allows the separation of content and presentation,

that is, XML documents simply define the data representation and do not deal with

the presentation. XML can also be used to represent complex and imprecise data

formats in addition to crisp data formats. Not only can XML process complex and

hierarchical information, it can also be used for commercial transactions. Therefore

XML documents can be used to transfer data between the Internet applications and

different database models.

In order to make use of advantages of XML, information in XML documents must

be made available quickly, reliably and in large amounts when necessary, for

transactions. As is true for management of other forms of data, management of

persistent XML data requires capabilities for data independence, integration, access

rights, versions, views, integrity, redundancy, consistency, and recovery standards.

Functionality, consistency, restart capability, data security, and recovery tools of a

database management system can be utilized by the XML data.

An approach for integrating XML into conventional database technologies would be

to implement XML structures within data models, such as the relational model [3].

 3

To achieve this, XML-formatted objects have to be converted before they fit into

relational database structures, so it is necessary to map the XML document schema

(DTD [4], XML Schemas [5], etc.) to the database schema. Mappings between

document schemas and database schemas are performed on element types, attributes,

and text. Object-oriented databases (ODBMS) are another alternative for storing

XML information. XML-formatted objects also have to be converted before they fit

into object-oriented databases.

It is also possible to store data in XML documents in a native XML database

management system. Native XML databases use some storage strategies to increase

database retrieval speed. Native XML databases store entire documents physically or

use physical pointers between the parts of the document. Choosing the most

appropriate database management system depends on your application and data

structure.

With a large amount of data represented as XML documents, it becomes necessary

to store and query these XML documents. To better query XML data, several XML

query languages have been proposed. XML-QL [6], XPath [7] and XQuery [8] are

among XML querying languages. One of the great strengths of XML is its flexibility

in representing many different kinds of information from diverse sources. To exploit

this flexibility, an XML query language must provide features for retrieving and

interpreting information from these diverse sources. XQuery [8] language has been

endorsed by W3C as a standard for XML querying.

 4

Traditional query languages in database domain allow data selection based on

precise data. The evaluation of the query produces a clear-cut partition of the target

data those fully satisfy the query condition and those which do not. In general,

information may be both complex and imprecise when representing personalities,

physical features of individuals, subjective opinions, and judgments concerning

medical diagnosis, economic forecasting or personal evaluation and in many other

knowledge-intensive applications [1]. A vague predicate represented by a fuzzy set

expresses a softer condition. In other words, fuzzy querying allows the user to define

goals and constraints, and provide them with relative importance weights on a scale

of 1 (least) to 9 (most).

In this thesis, methods to map complex and uncertain data to an XML representation

are discussed. The structure of XML so closely resembles that of traditional

relational database tuples, therefore the mapping from 1NF tuples to XML elements

is almost trivial. However, the ExNF2 model [1] introduces extensions for

representing complex, uncertain and fuzzy data not so easily represented in XML. In

this work, XML documents are adapted to include elements and attributes for

representing imprecise and complex data formats.

In this thesis, a system, which enables fuzzy querying in XML documents is

designed and implemented. XML documents in the system contain fuzzy attributes.

The user can select the fuzzy attribute and threshold value for it and then perform the

query. In addition to fuzzy querying, the system enables restructuring of XML

Schemas by merging of elements of the XML documents. By using this feature of

 5

the system, one can generate a new XML Schema and new XML documents are

generated from the existing documents according to this new XML Schema. XML

documents to be queried are retrieved from Internet via Web Services. XML

documents are stored in a native XML database management system.

The following summarizes the organization of the thesis. Chapter 2 gives theoretical

background information on XML, XML technologies, representation of uncertainty

in databases, fuzzy querying and Web Services. Chapter 3 details the design and

implementation of the work done in this study. And finally Chapter 4 covers the

conclusion.

 6

CHAPTER 2

THEORETICAL BACKGROUND

2.1 XML and XML Technologies

XML is a markup language for documents containing structured information. The

XML world is made up of a series of separate “sub-standards” describing various

aspects of document representation and reproduction. In this section XML and XML

related technologies are explained.

2.1.1 XML (Extensible Markup Language)

XML is a meta-language, which can be used to describe the logical structure of

documents and data, using tag names and attribute names. Unlike HTML, XML

allows users to define their own tags. As a result, data can be structured not only

according to format criteria (such as header, body text, etc.), but also by referring to

its content. An example XML document is shown in Figure1.

 7

 <?xml version="1.0" ?>
 <!----data begins here----->
 <product>

 <name> Karce</name>
 <price valid-from = “15/10/2004”>14,95 </price>
 ……
 </product>

Figure 1: An Example XML Document

When XML documents are used in data exchange, there should be a consensus on

the usage of element names and their hierarchical relations. This means some

constraints need to be declared on XML documents for avoiding confusions on the

usage of elements and attributes. DTD (Document Type Definition) [4] documents

are used to avoid such confusions. DTDs are schemas for defining document types

[3]. If an XML document is declared to be conforming to a DTD, metadata in the

XML should satisfy the constraints declared in the DTD. Roughly a DTD defines

which tag names and attribute names can be used and in what order they should

occur in an XML document. DTDs are laid down at the time the XML applications

are developed. XML documents can also be processed without a DTD, but in this

case the structure information stored in there is lost. DTDs are normally only used to

control XML tools and to verify the structural validity of XML documents – they are

not necessary to understand these documents. DTD representation of product

information is provided in Figure 2.

 8

<!ELEMENT product(name,description?,product-number, availability?,price?)>
 <!ELEMENT name(#PCDATA)>
 <!ELEMENT description(#PCDATA)>
 <!ELEMENT product-number(#PCDATA)>
 <!ELEMENT availability(#PCDATA)>
 <!ELEMENT price(#PCDATA)>
 <!ATTLIST product price valid-from #required>

Figure 2: DTD Representation of Product Information

XML Schema [5] is another information modeling method for XML documents

developed by W3C. Although XML DTDs (Document Type Definitions) allow the

tags and structure of a document class to be specified, the content of document

elements and the values of attributes are plain text (strings) [3]. The XML Schema

introduces types such as number, date, time, etc. into XML and also permits user

defined data types. The XML Schema additionally supports modularization, which

makes a schema easier to reuse. XML Schemas are written in XML and can thus be

processed using XML tools.

2.1.2 XML Querying Languages

The need for querying XML documents is emerged after XML documents are started

to use for data storing. As increasing amounts of information are stored, exchanged,

and presented using XML, the ability to intelligently query XML data sources

becomes increasingly important. Several query languages for querying XML

documents are proposed so far.

 9

XML-QL [6] is one of those query languages, which is proposed for querying XML

documents. The significant characteristics in its syntax to other languages are its

SELECT-WHERE construct, like SQL. The basic idea is to provide a syntax to

locate nodes (elements and text) within an XML document, using a notation inspired

by directory path expressions. A sample query in XML-QL is given in Figure 3. The

query searches the name the products for book whose “Publication_Date” attribute is

equal to 2004.

 WHERE
 <Product >
 <Name >$b</Name>

<Book Publication_Date=”2004”>$a</Book>
 </Product>
 IN “product.xml”
 CONSTRUCT
 <Result>
 <Product> $b </Product>
 </Result>

Figure 3: Sample XML-QL Query

Another language, XPath [7] provides a common syntax and semantics for

functionality shared between XSL Transformations [9] and XPointer [10]. The main

functionality of XPath is to acquire parts of an XML document. It also provides

basic facilities for manipulation of strings, numbers and Boolean. XPath uses a non-

XML syntax to make it easy to use of XPath within URIs (Uniform Resource

Identifiers) and XML attribute values. The primary structure in XPath is the

expression. An expression is computed to obtain an object, which can be one of the

 10

following basic types: node-set, Boolean, floating-point number, string. Figure 4

shows examples of XPath expressions used in an XSL document.

<!--Match the element named A nested within the B element -->

<xsl:value-of select=”A/B”/>

<!--Match the C attribute of the B element -->

<xsl:value-of select =”B/@C”/>

Figure 4: Sample XPath Expressions

Another proposed query language is XQuery [8], which involves features taken from

several other languages. XQuery is designed by the W3C XML Query Working

Group to be a language in which queries are concise and easily understood. It is also

flexible enough to query a broad spectrum of XML information sources, including

both databases and documents. XQuery is a flexible, functional language that allows

one to generate query expressions, which are often composed of many other

expressions [3].

The W3C Query Working Group has identified requirements [11] for W3C XML

Query (XQuery) data model, algebra, and query language. The requirements for

XQuery can be summarized as follows:

• at least one XML syntax (at least one human-readable syntax)

• must be declarative

• must be protocol independent

• must respect XML data model

 11

• must be namespace aware

• must coordinate with XML Schema

• must work even if schemas are unavailable

• must support simple and complex data types

• must support universal and existential quantifiers

• must support operations on hierarchy and sequence of document structures

• must combine information from multiple documents

• must support aggregation

• must be able to transform and to create XML structures

• must be able to traverse ID references

XQuery inherits path expression syntax suitable for hierarchical documents from

XPath and XQL [12]. It takes the binding variables concept and then using the bound

variables to create new structures from XML-QL. It has series of clauses based on

keywords that provide a pattern for restructuring data similar to the SELECT-

FROM-WHERE pattern in SQL. The basic building block of XQuery is the

expression, which is a string of Unicode characters [8]. A FLWR expression (the

letters in FLWR stand for the XQuery keywords for, let, where, and return) iterates

over a sequence of items and binds variables that can be used in the scope of the

current expression. If the item sequence is empty, the result of the FLWR expression

is an empty sequence. A FLWR expression consists of one or more for and let

clauses in any combination, followed by an optional where clause, and a return

clause. Briefly, these clauses are interpreted as follows:

• A for clause binds one or more variables to each value of the result of the

following expression.

• A let clause binds one or more variables to the complete result of the

expression.

 12

• A where clause retains only those intermediate results that satisfy the

following condition.

• A return clause evaluates the following expression and returns the result.

 XQuery is a functional language, which means that expressions can be nested with

full generality. However, unlike a pure functional language, it does not allow

variable substitutability if the variable declaration contains construction of new

nodes. XQuery is also a strongly-typed language in which the operands of various

expressions, operators, and functions must conform to the expected types [8].

Figure 5 shows an XQuery example. This query returns all book/title elements of the

collection together with the year of publication provided that the year of publication

is 2000 or later.

for $b in input()/bib/book

let $y := $b/year where $y > 2000

RETURN

<book>

 { $y }

 { $a/title }

</book>

Figure 5: XQuery Example

 13

2.1.3 Stylesheet for XML

The layout of an XML document is not defined in the document itself or in its DTD

or XML Schema. It is one of the fundamental principles of XML that content should

be absolutely separate from presentation. Extensible Stylesheet Language (XSL) was

proposed in order to specify how the elements of an XML document would look like

when shown in an output media, such as screen display, printouts, etc.

XSL involves two main functionalities. It is a language for transforming XML

documents and it is an XML vocabulary for specifying formatting semantics. It can

be used to transform XML documents to other formats like HTML. XSLT [13] (XSL

for Transformations) is a subset of XSL designed for transformation of XML

documents into other XML documents. The second functionality is similar to CSS

(Cascading Style Sheets) [14], but it has more features than CSS. Although CSS

provides a mechanism for how the elements are displayed, it has not enough

capabilities for controlling what to display and in what order to display. On the other

hand XSL provides reordering the elements of the document tree and showing the

desired elements. Figure 6 shows the format of an XSL document.

 14

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<xsl:template match="[XPath Expression]">
 <!-- Define your rules for transformation here -->
</xsl:template>
…
</xsl:stylesheet>

Figure 6: XSL Document Format

As shown in Figure 6, an XSL document consists of a set of XSL templates. Each

template element defines a set of rules and these rules are applied to XML document

when the specified XPath expression is satisfied.

2.1.4 Document Object Model (DOM)

W3C's Document Object Model (DOM) is a standard Application Programming

Interface (API) to the structure of documents; it aims to access components and to

delete, add, or edit their content, attributes and style [15]. DOM provides writing

applications, which work properly on all browsers and servers and on all platforms.

The DOM represents a tree view of the XML document. The documentElement is

the top-level of the tree. This element has one or many childNodes that represent the

branches of the tree. A Node Interface Model is used to access the individual

elements in the node tree. As an example, the childNodes property of the

documentElement can be accessed with a for/each construct to enumerate each

individual node.

 15

2.2 ExNF2 Model

Normal Forms are introduced by Codd for database design [17]. The First Normal

Form (1NF) restricts attribute values to atomic values. The Non-First Normal Form

(NF2) relaxes this restriction to allow relation-valued and non-atomic values for

attributes.

For representing uncertain data in a NF2 database, ExNF2 model has been introduced

by Yazici et. al [1]. For example, if a person's telephone number is not available, that

field has to be left blank or defined as null. If a person doesn't have a phone, then the

field is again left blank. If we don't know whether the number is unavailable at the

time, or if a number does not exist at all, then, the field is left blank again. The

resulting ambiguity as to how to interpret this blank field is where the NF2 database

schema falls short [1].

Another problem with NF2 databases is dealing with multi-valued fields. It is a

problem for representation when a person has two or three telephone numbers. One

solution is to use multiple tuples, which leads to other concerns. For example, if

information for the person changes, then this update has to be reflected in all tuples

related to the person, which is inefficient. Another concern is dealing with tuples

with more than one multi-valued field. Then many tuples are required to represent

this information.

 16

Representing uncertainty within field data and queries is another limitation of NF2

database schemas. It is difficult to perform a query to find all the "young" employees

of a company based on a numerical value.

Complex and uncertain data can be represented in databases by extending the NF2

model. This model, the Extended Non-First Normal Form (ExNF2) [1], provides the

extensions necessary to include uncertainty in the model. An extended NF2 relation

can be defined as follows [1]:

Definition: Let Sch R be a relation schema of relation R with attributes

(A1,A2,…,An). Each attribute Aj may be simple or set-valued or fuzzy-valued or

range-valued or relation-valued which are all defined below. Again D1, D2, …, Dn is

a finite set of domains. Let r, an instance of R, be composed of a set of ordered

k-tuples of the form <a1, a2, …, an>, which is a subset of (D1 x D2 x … x Dn). The

domains, Dj (1 ≤j ≤ k), can be one of the following:

1. Dj is the domain of an atomic-valued attribute. Each value aj is an element of

Dj; that is, it is a typical simple crisp attribute value.

2. Dj
’ is the domain of a null-valued attribute. Domain Dj consisting of crisp

values {a1, a2, …, an } is extended to the domain Dj
’ = Dj

 ∪ {unk, dne, ni}.

3. Dj is the domain of an incomplete (range)-valued attribute whose values may

be atomic or an interval. Interval representation is [aj1 - aj2], where aj1 is the

minimum and aj2 is the maximum of the range. Both values are taken from

the domain Dj.

4. Dj is the domain of a fuzzy-valued attribute. The domain subtends a set of

fuzzy linguistic terms. A fuzzy attribute value is a nonempty subset of Dj and

represented as [aj1, aj2, …, ajm].

 17

5. Dj is the domain of a set-valued attribute whose values are crisp sets

represented as {aj1, aj2, …, ajm}. Any value of this attribute is a subset of the

power set of Dj.

6. Dj is the domain of a relation-valued (composite) attribute. Any value of this

attribute, aj, is a tuple of the form <aj1, aj2, …, ajm> which is an element of

(Dj1 x Dj2 x … x Djm), where 1 < m and 1 ≤j ≤ k.

When Dj is the domain of a relation-valued (composite) set attribute where each

value aj is a set of tuples, {<aj1, aj2, …, ajm>, …, <ak1, ak2, …, akm>} which are a subset

of (Dj1 x Dj2 x … x Djm), one can form such attribute values by using a combination

of domains of relation-valued and set-valued attributes.

Examples of various attribute types discussed above are represented in the extended

NF2 relations, as shown in Table 1. For example, in the Employee relation shown in

the Table 1, the Name and SSN are simple crisp atomic-valued attributes, TelNo is a

null-valued attribute, Salary is an incomplete-valued attribute, Degrees is a relation-

valued (or composite) attribute, Languages is a set-valued attribute, Age is a fuzzy-

valued attribute.

 18

Table 1: Employee Relation

2.2.1 The Extended NF2 Algebra

Here the relation names R and S, attributes in Rel A and in Att A, and constants in

dom are used [1]. The types are more complex than those of the relational data

model. Their abstract syntax is given by:

 τ = dom ⏐fdom ⏐ndom ⏐ idom ⏐〈B1 : τ1, …, Bm : τm〉 ⏐{τs},

where τs ≠ fdom ⏐idom ⏐{τ} and B1, …,Bm are distinct attributes. Intuitively, an

element of dom is a constant (traditional atomic crisp attribute), fdom is the sort of a

fuzzy-valued attribute (may form a set with OR semantics) in the form of [v1,

…, vm], where vi is the sort of dom and an element is any subset of this set; ndom is

 Employee

 Degrees
Name SSN Telno Salary

Univ GPA Year

Languages

Age

 G.
Dark 1781 Dne [2000-

3000] ITU 3.24 1988 {Fr.,
Eng.}

[MidYoung,
Young]

 W.
Fischer 1834 2214 [3000-

3500] E.U. 3.40 1990 {Ger.} [MidYoung]

 T.
Smith 1858 Ni [3700] METU 3.54 1991 {Ger.,Fr.,

Eng.}
[MidYoung,
Old]

 Y.
Tomson 1979 3327 [3500-

3750] CWRU 2.80 1991 {Eng.} [Young]

 19

the sort of a null-valued attribute in the form of {unk, dne, ni, τ}, where τ is of sort

dom; idom is the sort of an incomplete-valued attribute in the form of [v1 − vj], where

vi’s are of sort dom and an element is vi, where v1 ≤ vi ≤ vj; an element of sort

〈B1 : τ1, …, Bm : τm〉 is a k-tuple with an element of sort τi in entry Bi, 1 ≤ i ≤ m; and

an element of sort {τi} is a finite set of elements of sort τ. Formally, the set of values

of sort τ, (i.e. the interpretation of τ), denoted as t[τ], is defined as follows:

1. t[dom] = dom,

2. t[fdom] = {[v1, ..., vj] ⎪ ∀i: 1 ≤ i ≤ j : vi ∈ t[dom]},

3. t[ndom] = {vi ⎪ ∀i: 1 ≤ i ≤ j : vi ∈ t [{ unk, dne, ni } ∪ dom }]},

4. t[idom] = {[v1 − vj] ⎪ ∀i: 1 ≤ i ≤ j : v1 ≤ vi ≤ vj, vi ∈ t[dom]},

5. t[{τs}] = {{v1, …, vj} ⎪ ∀i,j: 1 ≤ i ≤ j : vi ∈ t[τs]. If t[{τs}] = {},

then vi = dne},

6. t[〈B1 : τ1, …, Bm : τm〉] = { 〈 B1 : τ1, …, Bm : τm〉 ⎪ ∀i : 1 ≤ i ≤ m : vi ∈ t[τi]}.

R is a relation name and a database schema consists of a finite set of relation names.

A relation over relation name R is a finite set of values of sort(R). An instance I of a

schema of R is a function of R, where I is a relation instance over R. When relation R

has a sort which is sort(R) = 〈 B1 : τ1, …, Bm : τm〉, the relation is composed of the set

of tuples, where each τi may be one of the above given interpretations.

2.2.2 Basic Set Operations

Let I1, I2, …, In be relations of sort τ1, τ2, …,τn, respectively. Assume that relation Ij

has a set of values of sort τj = 〈 B1 : τ1, …, Bm : τm〉. For j ∈ [1, 2], if τ1 = τ2, then

I1 ∩ I2, I1 ∪ I2, I1 − I2 are relations of sort τ1 (or τ2, since they must be union

 20

compatible.) For more formal definition of the fuzzy equality, let us consider the

intersection operator, ‘∩’. I3 = I1 ∩ I2 results in a set of tuples, I3 = { ti ⎪ ∀ti : ti ∈

I1 ∧ ti ∈ I2 }. The redundant tuples are eliminated from the result relation I3 by using

the fuzzy equality of the attribute values of the tuples, which is the generalization of

the ordinary equality. That is, a tuple in a nonfuzzy (crisp) database is redundant if it

is exactly the same as another tuple. Any two tuples t1 ∈ I3 and t2 ∈ I3 in database

model are redundant, if min∀i{min(s(t1[Bi], t2[Bi]))} ≥ λi, where 1 ≤ i ≤ m.

Informally, any two tuples in the model are redundant, if, for pair of corresponding

attribute values, the minimum similarity is greater than or equal to the threshold

value, λi. Note that in a nonfuzzy database, ∀i, the cardinality of t1[Bi] = 1 and

s(x, x) = 1 so λi = 1. The cases for I1 ∪ I2 and I1 − I2 are similar to I1 ∩ I2.

Selection: If I is a relation of sort τ = 〈B1 : τ1, …, Bm : τm〉, (where only one Bi may

be the attribute for denoting membership degrees), then σγ(I) is a relation of sort τ.

The selection condition γ is of the form Bi = d, Bi = Bj, Bi ∈ Bj or Bi = Bj . C, where

d is a constant value, and it is required in the last case that τc be a tuple sort with a C

field. Then, σγ(I) = { v ⎪ v ∈ I , v ⇒ γ} where ‘⇒’ stands for logical implication and

γ is defined by:

1. 〈…, Bi : vi , …〉 ⇒ Bi = d if vi = d, depending on τi, the definition of equality is

 as follows:

 (a) if sort(τi) = dom, then it is the traditional equality, i.e., Bi = d if vi = d,

 (b) if sort(τi) = fdom, then Bi = d with level value L(Bi) = λi if ∃vi ∨ s(vi, d) ≥ λi,

 where L(Bi) is the level value specified in the query,

 (c) if sort(τi) = ndom, then Bi = d if vi = d or vi = unk,

 21

 (d) if sort(τi) = idom, then Bi = d if d ∈ vi.

2. 〈…, Bi : vi , …, Bj : vj , …〉 ⇒ Bi = Bj if vi = vj, where depending on τi, the

 definition of equality is as follows:

(a) if sort(τi) = sort(τj) = dom, then it is the traditional equality, i.e. Bi = Bj if

 vi = vj,

(b) if sort(τi) = sort(τj) = fdom, then Bi = Bj with level value L(Bi) = λi , if

∀x ∈ vi, ∀y ∈ vj : s(x,y) ≥ λi,

(c) if sort(τi) = sort(τj) = ndom, then Bi = Bj if vi = vj (if vi = unk and/or vj = unk,

then Bi = Bj),

 (d) if sort(τi) = sort(sj) = idom, then Bi = Bj if vi ⊆ vj or vi ⊇ vj.

3. 〈…, Bi : vi , …, Bj : vj , …〉 ⇒ Bi ∈ Bj if vi ∈ vj, where we need to examine the

 case where sort(τi) = sort(τj) = fdom, in which case we have Bi ∈ Bj with level

 value, L(Bi) = λi if ∀x ∈ vi, ∃y ∈ vj: s(x, y) ≥ λi.

4. 〈…, Bi : vi , …, Bj : vj , …〉 ⇒ Bi ∈ Bj, for sort(τi)=sort(τj) = idom,∀x ∈ vi : x ∈ vj.

5. 〈…, Bi : vi , …, Bj : 〈…, C : vc, …〉, …〉 ⇒ Bi = Bj . C if vi = vc, where the

 definitions are similar to those in above point 2.

Projection: If I is a relation of sort τ = 〈B1 : τ1, …, Bm : τm〉, then ∏Bi, …, Bg (I), where

1 ≤ i and g ≤ m is a relation of sort 〈B1 : τ1, …, Bg : τg〉. The redundant tuples are

eliminated from result relation I after the projection operation by using the fuzzy

equality of the attribute values of the tuples; that is, any two tuples t1 ∈ I and t2 ∈ I

are redundant, if 1 ≤ i ≤ m and min∀i{min s(t1[Bi], t2[Bi])} ≤ λi.

Cartesian Product: Let Ij be a relation of sort τj = 〈B1
j : τ1

j
, …, Bk

j : τk
j〉 for j ∈ [1,2].

Then Sort (I1 X I2) = 〈B1
1 : τ1

1
, …, Bk

1 : τk
1, B1

2 : τ1
2

, …, Bk
2 : τk

2〉 and

I1 X I2 = {〈 B1
1 : x1

1, …, Bk
1 : xk

1, B1
2 : x1

2, …, Bk
2 : xk

2〉 ⎪ 〈B1
j : τ1

j, …, Bk
j : τk

j〉 ∈ Ij

for j ∈ [1,2]}

 22

2.2.3 Restructuring Operations

Two restructuring operators, namely, Merge and Unmerge are defined. The Merge

operator can be considered as a combination of Nest [18,19,20,21] and Pack [22]

operators. It may also interact with similarity relationships to manipulate imprecise

information. That is, the Merge operator can not only change the levels of nesting in

a relation as the Nest operator does, but it can also be used for uncertain querying.

The functionality of the Unmerge operator defined here is similar to the Unnest

operator of [19,20,21].

Merge Operator: For a relation schema Sch R, the schema of relation R having

attributes (A1, A2, …, Am), let each Aj be either a simple, set-valued or higher-order

(relation-valued) attribute. Let Rel A denote the set of higher-order attributes in R

and Att A be the remaining attributes on the topmost level of an NF2 relation. In the

description of the Merge operation that follows, an uncertainty level, λj, between

zero and one [0,1] may be specified. When it is not specified explicitly it is equal to

1 (one) by default. A level value, Lj(Aj) is chosen based on the following rule:

Lj(Aj) = {

 where Aj : { τj } means that attribute Aj is set-valued.

This rule states that the level value Lj(Aj), is 1 (one) or 0 (zero) if either attribute Aj

is a higher order attribute or a set-valued attribute. When the level value is not

0 or 1 if (Aj ∈Att A ∧ Aj : {τj}) ∨ (Aj ∈Rel A),
λj otherwise, 0 ≤ λj ≤ 1,

 23

specified, it is assumed to be 1 (one) by default. Otherwise, the level value may be

equal to value λj. The level value of an attribute is 0 (zero) when one wants to merge

all pairs of the values of an attribute. Lj(Aj) for attribute Aj is given a priori and

determines which tuples may be combined through the set union of the respective

attribute values. This value is specified in the query language by the user and never

exceeds the threshold value. The threshold value is the minimum similarity over all

values in the domain. The result is obtained by merging as many tuples as possible

without violating the constraint, which states that the threshold value for domain Dj

(of attribute Aj) is always greater than or equal to Lj(Aj).

Definition: Suppose we have relation S with sort Sort(S) = 〈A1 : τ1, …, Ai : τi, …,

Ak : τk, …, An : τn〉, where the scheme Sch S : (A1, ..., Ai, ..., Ak, ..., An) and 1 ≤ j,

k ≤ n. Then for instances s of S, we have the following:

R = MERGE (S) [Ai, ..., Ak) → B] WITH L(A1) = λj, …, L(An) = λn

 = {〈A1 : x1, …, Ai-1 : xi-1, B : y, …, Ak+1 : xk+1, …, An : xn〉 ⏐y

 = 〈Ai : xi, …, Ak : xk 〉 ∧ 〈 A1 : x1, …, An : xn 〉 ∈ s(S)},

t’[R] = t’[SchR − (Ai, . . . , Ak) ∪ B] ⏐ t’[B] =

 ∪ { tj [B] ⏐ ∀ti ∈ s(S) ∧ ∀tj ∈ s(S) ∧ tj [Sch R − B] ≅ ti [Sch R − B] }

where 1 ≤ k ≤ n, 1 ≤ i, j ≤ k and produces a relation r with scheme SchR = SchR –

(Ai, ..., Ak) ∪ B, where B is a sub-relation with attributes (Ai, ..., Ak) and does not

occur in the scheme of S. Observe that in the process of merging, the attributes

〈Ai : xi, …, An : xn〉 are merged for m-similar tuples, i.e., ti and tj, depending on the

 24

sort of the respective τi’s. The definition of m-similarity that we used in the above

definition is as follows:

Definition: (m-similarity, ≅)

 ti ≅ tj, if (∀ti[Aj], ∀tj[Aj], min(s(ti[Aj], tj[Aj])) ≥ Lj(Aj)), where ti ∈ r ∧ tj ∈ r.

The level value Lj(Aj) should be specified in the query for the attributes of the

relations specified in the query (if it is not specified, it is assumed to be 1 (one) by

default). Depending on sort of τ, there are some different cases for m-similarity:

Case 1: If τ is the domain of an atomic crisp attribute or a null-valued attribute, then

m-similarity becomes the classical equality. That is,

 t and v are m-similar iff t = v; since min(s(t[Aj], v[Aj])) = 1.0.

Case 2: If τ is the domain of an incomplete (range)-valued attribute, where

t = [x1 − x2] and v = [y1 − y2], where x1 ≤ x2 and y1 ≤ y2, then there may be two

approaches:

(a) We may require that x1 = y1 and x2 = y2 for t and v to be m-similar, which is the

 case for strict equality.

(b) t and v are m-similar, when the resulting range-value (needed in the merge),

say z, is defined as z = t ∪ v = [z1 − z2], where z1 = min(x1, y1) and z2 = min(x2,

y2). It should be noted that in this case, the result of the Merge operator may

not be reversible by the Unmerge operation.

In the definition of the Merge operator, if Lj(Aj)= 1, then tuples are merged only

when the values of all attributes except the one being merged are equivalent. If the

values that are being merged are already merged, that is, in the form of sets or a

subrelation, then the level value is assigned as 1 (one) by definition, while

 25

restructuring the relation. However, for fuzzy queries, Lj(Aj) = 0 is assigned to all of

the prime attributes (attributes that participate in a key attribute) and Li(Ai) = λi is

assigned to uncertain attributes, where λi is between 0 (zero) and 1(one). Thus, any

pair of the values of the prime attributes can be merged if the similarity relations of

the values of uncertain attributes are greater than or equal to the level value (assigned

to those attributes) specified in the fuzzy query. This additional capability of the

Merge operator allows us to handle fuzzy queries that may operate on uncertain

information as well as precise information.

If each Lj(Aj) = 1 and the schema redefinition clause, [B = (Ak+1, ..., An)], is not null,

then the Merge operator is equivalent to the Nest operator [19,20,21]. If the schema

redefinition clause is null and each Lj(Aj) = 1, tuples in R are combined but the

schema remains unchanged (the second rule above is not applied). In this case the

Merge operator becomes equivalent to the Pack operator [22].

Unmerge Operator: There exists another restructuring operator, called Unmerge, that

under certain conditions, is an inverse of Merge. This condition is that the NF2

relation be in Partitioned Normal Form (PNF) [21]. A relation is in PNF if and only

if (1) all or a subset of the zero-order attributes forms a relation key and (2) every

subrelation is in PNF. This operator takes a relation structure nested on a set of

attributes and desegregates the structure to make it ''flatter''. The definition of the

Unmerge operation is as follows.

 26

Definition: Suppose that we have relation R with the sort; Sort(R) = 〈A1 : τ1, …,

B :{ 〈Ai : τi, …, Ak : τk 〉}, …, An : τn}〉, where the schema of R is Sch R : (A1, ..., B,

... , An). Then for instances r of R, we have the following:

S = UNMERGE(R)[B] = {〈A1 : x1, …, Ai : xi , …, Ak : xk, …, An : xn〉 ⏐ 〈A1 : x1, …,

B : y, …, An : xn〉 ∈ r(R) ∧ 〈Ai : xi , …, Ak : xk〉 ∈ y(B) ∧ B ∈ RelA ∧ B : (Ai, ...,

Ak)}, where 1 ≤ i, k ≤ n.

tm[S] = tm[{SchR –B } ∪ (Ai, ..., Ak)] ⏐tv ∈ r ∧ tm ∈ s ∧ (tm [Ai, ..., Ak] ∈ {tv[B]}).

The Unmerge operator produces a relation s with scheme S = SchR − B ∪ (Ai, ...,

Ak). It takes a relation structure nested on a set of attributes and desegregates the

structure to make it flatter.

2.3 XML Databases

XML’s great flexibility opens up a range of applications for this standard, far

broader than that available to HTML. Not only can XML process complex,

hierarchical information, it can also be used for commercial transactions. To get

maximum gain from these advantages there are two requirements that must be

satisfied by the XML infrastructure:

• XML information must be made available quickly and reliably

• XML information must be integrated with existing corporate data.

Whereas HTML pages can still be managed in a file system, more powerful concepts

are needed for complex XML documents. The present state of the art is to use

 27

databases whose functionality, consistency, restart capability, data security and

recovery tools can be utilized by the XML data.

The simplest way to accommodate XML objects in a database would be to save them

as “character large objects“. The tags in these objects would be interpreted as

straightforward running text, which could be handled using the retrieval methods for

full text. A database offers further possibilities for indexing the information objects

and thus facilitates more flexible access paths. This would permit these objects to be

accessed both via their structures (structure-based retrieval) and via their content

(content-based retrieval). In this case all relevant information would have to be

managed in separate fields or tables. On the other hand, it would not be possible to

use this method to map the hierarchical structures of XML documents. Although a

solution of this kind could be implemented (relatively) easily with the means

currently available, it would certainly not be adequate to cope efficiently with large

volumes of data or, above all, XML transaction data.

The most obvious approach for integrating XML into conventional database

technologies would be to implement XML structures within data models that are in

common use, such as the relational model. To achieve this, XML-formatted objects

have to be converted before they fit into relational database structures. Since, with

relational data, complex data objects are composed of “flat” tables in the application

logic, either additional definition is required in the form of data maps or different

data records must be joined together with a JOIN operator integrated in an XQuery

statement. On the other hand, implementing every possible tree structure that is

 28

supported by XML in a relational data model is a complex but solvable problem.

XML allows information to be graded hierarchically to any required depth. In order

to reproduce such hierarchies in a relational database, complex table links would

have to be not simply created but also maintained. This kind of model would only be

suitable for managing very simple XML documents.

The locking mechanisms of RDBMSs represent a further serious obstacle. Locks at

the document level are not supported, since documents are irrelevant to the RDBMS

methodology. In order to modify an XML document mapped in an RDBMS, a large

number of locks would have to be checked in several different tables – yet another

cause of deteriorations in performance which would also entail an enormous amount

of internal administration.

At first glance, the world of hierarchically structured XML objects suggests a direct

relationship with object-oriented databases (ODBMS). The latter do indeed offer the

almost generic option for XML of implementing the structures of persistent objects

in a server. Persistent objects could thus be made available with XML at a

transparent interface and accessed by a large number of users either locally or via the

Web. On the other hand, the familiar drawbacks of ODBMSs cannot be avoided if

the data passes via an XML interface. In practice, ODBMSs are inadequate for high

throughput or large volumes of data, as well as being particularly unsuitable for

transaction tasks of the kind essential for electronic business.

 29

It is also possible to store data in XML documents in a native XML database. There

are several reasons to do this. The first of these is when your data is semi-structured.

That is, it has a regular structure, but that structure varies enough that mapping it to a

relational database results in either a large number of columns with null values

(which wastes space) or a large number of tables (which is inefficient). Although

semi-structured data can be stored in object-oriented and hierarchical databases, you

can also choose to store it in a native XML database in the form of an XML

document.

The second reason to store data in a native XML database is retrieval speed.

Depending on how the native XML database physically stores data, it might be able

to retrieve data much faster than a relational database. The reason for this is that

some storage strategies used by native XML databases store entire documents

together physically or use physical (rather than logical) pointers between the parts of

the document. This allows the documents to be retrieved either without joins or with

physical joins, both of which are faster than the logical joins used by relational

databases.

For example, consider the sales order document shown in Figure 7. In a relational

database, this information would be stored in four tables: a table for sales orders, a

table for items in the sale order, a table for customers and a table for the parts of the

sale order and retrieving the document would require joins across these tables.

 30

 <SalesOrder SONumber="12345">
 <Customer CustNumber="543">
 <CustName>ABC Industries</CustName>
 <Street>123 Main St.</Street>
 <City>Chicago</City>
 <State>IL</State>
 <PostCode>60609</PostCode>
 </Customer>

<OrderDate>981215</OrderDate>
<Item ItemNumber="1">
<Part PartNumber="123">
<Description>
 <p>Turkey wrench:

 Stainless steel, one-piece construction, lifetime guarantee.</p>
</Description>
<Price>9.95</Price>
</Part>
<Quantity>10</Quantity>

 </SalesOrder >

Figure 7: Sales Order Document

In a native XML database, the entire document might be stored in a single place on

the disk, so retrieving it or a fragment of it requires a single index lookup and a

single read to retrieve the data. A relational database requires four index lookups and

at least four reads to retrieve the data.

The drawback in this case is that the increased speed applies only when retrieving

data in the order it is stored on disk. If you want to retrieve a different view of the

data, such as a list of customers and the sales orders that apply to them, performance

will probably be worse than in a relational database. Thus, storing data in a native

XML database for performance reasons applies only when one view of the data

predominates in your application.

 31

An XML server provides an ideal basis for storing and exchanging XML objects of

different types. Database queries and instructions are not formulated as a string of

SQL queries, but are sent to the server as URL. This means that a single query can

be applied not just to the documents actually on the XML server, but also to other

data sources such as remote XML servers, relational databases and multimedia

elements installed on special multimedia servers. As far as the user is concerned, the

data appears to come from one server only – XML is the glue that holds the different

elements together.

One problem with storing data in a native XML database is that most native XML

databases can only return the data as XML. If the application needs the data in

another format it must parse the XML before it can use the data. This is clearly a

disadvantage for local applications that use a native XML database instead of a

relational database, as it incurs overhead not found in for example an ODBC

application. It is not a problem with distributed applications that use XML as a data

transport, since they must incur this overhead regardless of what type of database is

used.

2.4 Fuzzy Querying

Most of the traditional tools for formal modeling, reasoning and computing are crisp,

deterministic and precise in nature. However, real situations are very often not crisp

and deterministic and cannot be described precisely, i.e., real situations are very

often uncertain or vague in a number of ways and a complete description of a real

 32

system would require far more detailed data than a human being could recognize and

process simultaneously.

Fuzziness can be defined as the vagueness concerning the semantic meaning of

events, phenomenon or statements themselves. It is particularly frequent in all areas

in which human judgment, evaluation and decisions are important. Fuzzy Set Theory

whose objects fuzzy sets are sets with boundaries that are not precise and the

membership in this fuzzy set is not a matter of true or false, but rather a matter of

degree was first introduced by Lofti A Zadeh [23].

A querying system is a kind of information retrieval system that may be used to

retrieve relevant objects from a database. The database stores a collection of objects,

some of which are of interest to the current user. Each object in database contains the

index component that can be used to help identify and select the objects that may be

relevant to a user. The essential problem in data retrieval processes is to find the

subset of objects in the database that is relevant to a given user. Data retrieval

operations are defined by particular user’s queries, which identify search criteria in

terms of features (attributes) of interest used to describe the objects through own

index component.

 A search criterion with respect to current relational database being tabular

representation of information where objects or records (tuples) are represented on

rows consisted of Boolean expression involving attribute names and their values,

which cover the index component. One characteristic of these queries, being crisp

 33

queries, is that their search criteria involve precisely defined certain attributes

(features) presented through their numerical values. There, atomic query is used with

respect to each certain attribute, each of which is expressed quite clear by employing

ordinary (crisp) set theory. The result of search executed according to this criterion,

which is supported by standard structured query language (SQL), is simply a subset

with a crisply-defined collection of objects in the database that satisfy all

correspondent atomic queries.

 Fuzzy querying allows usage of fuzzy features to describe objects such that a

database querying system may then select a subset of the database objects (records),

which conform to vague or imprecise description of the objects. The selections of a

subset of relevant objects, features of, which are approximately similar, have been

provided by fuzzification of numerical attributes of the objects in entire database

based on fuzzy set theory [23]. A vague predicate represented by a fuzzy set

expresses a softer condition. In other words, fuzzy querying allows the user to define

goals and constraints, and provide them with relative importance weights on a scale

of 1 (least) to 9 (most).

Two kinds of fuzziness can be found in a relational model, one is to associate

membership degrees with individual tuples and another is to represent attribute

values with possibility distributions. A membership degree associated with a tuple is

interpreted to mean the possibility of the tuple being a member of the corresponding

relation. A possibility distribution represented an attribute value means that a crisp

 34

value is not known but the range of values that the attribute may take and the

possibility of each value being true are known [24].

In order to make uncertain queries on uncertain data, a similarity matrix is used. An

example is given in Table 2.

Table 2: Similarity Matrix for Age Attribute

 young midyoung midage old

young 1 0.7 0.3 0

midyoung 0.7 1 0.5 0.2

midage 0.3 0.5 1 0.5

Old 0 0.2 0.5 1

The similarity between two values is a number from zero and one, inclusive. A

similarity value of one indicates the two values are identical, and a value of zero

indicates that the two values are not similar. A value in between indicates a degree of

similarity. For example, "young" is fairly similar to "midyoung", but not very similar

to "midage". "young" is not at all similar to "old". Queries are made with a similarity

threshold, and matches are returned based on the matrix. To support a crisp query on

fuzzy data, or a fuzzy query on crisp data, a membership function mapping crisp

ages to membership values within the possible fuzzy categories are used.

 35

2.5 Web Services

Web services are applications whose logic and functions are accessible using

standard Internet protocols and data formats such as Extensible Markup Language

(XML) over Hypertext Transfer Protocol (HTTP), and SOAP (Simple Object Access

Protocol). Like component-based development, Web services represent black-box

functionality that can be reused without knowledge about how the service is

implemented.

A Web service interface is defined strictly in terms of the messages that the service

accepts and generates. Applications using a Web Service can be implemented on any

platform in any programming language, as long as they can create and consume

messages defined for the service interface. A Web service can also aggregate other

services to provide a higher-level set of features.

Most Web services make use of either SOAP or REST (also known as XML over

HTTP) to make requests and deliver responses via the Internet. REST (or XML over

HTTP or XML/HTTP) uses URLs with specific name/value pairs to invoke methods

The URL is the primary method used for message passing. Once the URL is

processed, a well-formatted XML document is returned as a response.

SOAP (Simple Object Access Protocol), a more complex method of sharing

messages between client and server, was developed to deal with the limitations of

REST. SOAP is a lightweight protocol intended for exchanging structured

 36

information in a decentralized, distributed environment. It uses XML technologies to

define an extensible messaging framework providing a message construct that can be

exchanged over a variety of underlying protocols. The framework has been designed

to be independent of any particular programming model and other implementation-

specific semantics.

 37

CHAPTER 3

DESIGN AND IMPLEMENTATION OF XML-BASED FUZZY

QUERYING SYSTEM

In this chapter, design and implementation details of our study will be explained.

3.1 System Objectives

In this study, main objective is to develop a system, which can model the data in

XML, including the extensions introduced by the Extended Non First Normal Form

(ExNF2) [1], perform fuzzy queries on XML data and restructure the XML Schemas.

The system provides the user a graphical user interface for performing fuzzy queries

on XML data stored in a native XML database management system and restructuring

the XML Schemas.

3.2 Modeling Complex and Uncertain Data in XML

In this section XML representation of data including the attribute types introduced in

ExNF2 model, are explained. The attribute types introduced in ExNF2 model are

 38

atomic, null-valued, set-valued, relation-valued, fuzzy-valued, and range-valued

attributes.

The data is crisp in an atomic attribute, and it resides directly within the field.

Atomic attributes are put in a string as the value of the element in XML document.

An example is given in Figure 8; title of a book is an atomic attribute.

<ProductInfo>
<book>
 <title> Angels </title>
 ………….
 ………….
 </book>
</ProductInfo>

Figure 8: Example XML for Atomic Values

For representing empty values in XML, new values are introduced as parsed

character data, such as ni (no information), unk (unknown), and dne (does not exist).

For instance, image description of the cover of a book can have one of these values.

An example is shown in Figure 9.

 39

<ProductInfo>
<book>
 
</book>
<book>
 
</book>
</ProductInfo>

Figure 9: Example XML for Empty Values

A set-valued attribute is one in which an attribute has several values. For the set-

valued attributes, putting the values in a string is unnecessary. Each value in the set

can be added as an element to the XML. For instance a book may have several

authors; then each author is added in an “author” tag inside “authors” tag. An

example is shown in Figure 10.

<ProductInfo >
<book>
 <authors>
 <author> Thomas H. Cormen </author>
 <author> Charles E. Leiserson </author>
 <author> Ronald L. Rivest </author>
 <author> Clifford Stein </author>
 </ authors >
 ………….
</book>
</ProductInfo>

Figure 10: Example XML for Set-Valued Attributes

 40

Fuzzy-valued attributes are used to represent imprecise or vague data. For

representing fuzzy-valued attributes, linguistic terms exist such as "red" or "green",

for representing colour of a book; the fuzzy value is stored as the value of the

element. The semantics of the fuzzy data is represented by ”FuzzyPredicate”

attribute in “colour” element as a fuzzy term. The fuzzy-valued attributes may have

various semantics, such as “OR”, “XOR”, “AND” for relating the fuzzy values. An

example is given in Figure 11.

<ProductInfo>
<book>
 
 ………….
</book>
</ProductInfo>

Figure 11: Example XML for Fuzzy-Valued Attributes

As for range-valued attributes, a string format is used to designate range values. We

store ranged-valued attributes for price information of a book with “minPrice” and

“maxPrice” tags. An example is shown in Figure 12.

 41

<ProductInfo >
<book>
 <minPrice>$12.95</minPrice>
 <maxPrice>$80.00</maxPrice>
 ………….
</book>
</ProductInfo>

Figure 12: Example XML for Range-Valued Attributes

In Relation-valued attributes, contents of the fields are pointers to other tuples.

Relation-valued attributes are represented like set-valued attributes. That is, for each

value, one complete relation appears as an element in the tuple. For instance, the

relation-valued attribute is represented in the “image” element with “image_url”,

“colors”, “image_description” elements. An example is shown in Figure 13.

<ProductInfo>

 ………….
</book>
</ProductInfo>

Figure 13: Example XML for Relation-Valued Attributes

 42

3.3 System Architecture

The major modules associated with the system and their functions are as follows:

• Module 1: Retrieving data through a web service.

• Module 2: Mapping of retrieved data according to the appropriate

 XML Schema.

• Module 3: Querying and restructuring XML data that involve

 complex and uncertain information.

The system architecture is depicted in Figure 14.

Figure 14: System Architecture

In Module 1, Web Services are used, which is Amazon Web Services in our study, to

retrieve the data. We use REST interface in our system. REST (or XML over HTTP

 43

or XML/HTTP) uses URLs with specific name/value pairs to invoke methods and

processes within the web services framework. The URL is the primary method used

for message passing. Once the URL is processed, a well-formatted XML document

is returned as a response. In Module 1, a series of URL’s are processed and the well-

formatted XML documents returned as response are saved as XML files.

In Module 2, transformation of data retrieved from Amazon’s database to our XML

schema is implemented. Although the data retrieved is in XML format, we have to

map the elements and attributes of the XML document to elements and attributes in

our XML Schema because some elements are unnecessary or need reformatting.

In Module 3, the mapped XML documents are loaded into Tamino XML Server.

The system provides the user a graphical use interface to query the data stored as

XML documents in Tamino native XML database management system. The most

important property of this query is its ability to query fuzzy attributes. After

performing the query, the user can see the details of the search results. Module 3 also

provides the user to restructure the XML Schemas. The user can select the elements

of the XML Schema to be merged in a new element tag, and then a new XML

Schema is generated and loaded in the Tamino Server. The system also generates

new XML documents from the existing XML data and stores them in the database.

 44

3.4 Data Objects & Database Design

In this study, all data are designed to be in XML, stored in a native XML database

management system. Other than data, similarity tables for fuzzy attributes are also

stored in the database in XML.

In our system books are selected as the data objects. We get the product information

from the XML documents retrieved by Web Services. We transform retrieved data to

our XML Schema to make it suitable for our application and then insert these

documents to our database. An example XML document stored in the database is

included in Appendix A. The XML Schema representation of an XML document for

storing product information in our system is shown in Figure 15. The code for this

XML Schema is included in Appendix B.

 45

Figure 15: XML Schema Representation of a Product

We use fuzzy “colour” attribute for the cover of a book. The cover of a book may

have many colours. Since “colour” is fuzzy attribute, similarity values of the colours

are stored in an XML document. This XML document is included in Appendix C.

The XML Schema representation of an XML document for storing similarity values

of fuzzy “colour” attribute in our system is shown in Figure 16. The code for this

XML Schema is included in Appendix D.

 46

Figure 16: XML Schema Representation of Colour Similarity Table

We also use fuzzy “subject” attribute for books. A book may have several subjects.

Since “subject” is fuzzy attribute, similarity values of the subjects are stored in an

XML document. This XML document is included in Appendix E. The XML Schema

representation of an XML document for storing similarity values of fuzzy “subject”

attribute in our system is shown in Figure 17. The code for this XML Schema is

included in Appendix F.

Figure 17: XML Schema Representation of Subject Similarity Table

3.5 Implementation

In this section, the implementation details including user interfaces and modules

described previously will be explained in detail.

 47

3.5.1 Retrieving Data through Web Services

In this system, Web Services, which is Amozon Web Services in our study, are used

the retrieve the data of the books. We use REST (also known as XML over HTTP)

interface to access information in Amazon.com’s catalog and databases. REST

(representational state transfer) is an approach for getting information content from a

Web site by reading a designated Web page that contains an XML file that describes

and includes the desired content [16]. We have retrieved data of book with the

Author Search request. Each request returns an XML file and these files are saved to

our directory system. Figure 18 shows call and response formats for the Author

Search. In the request; “Associates ID” can be obtained from Amazon.com and when

a product is sold directed with this ID, you get a commission; “Developer Token”

can be obtained by registering to Amazon Web Services. The resulting XML can

come in two forms - a "lite" document that contains essential catalog information

such as a product's name or price, and a "heavy" document that contains more

complete product information such as sales ranking and customer reviews. We have

selected “heavy” form in our application.

 48

Request Format http://xml.amazon.com/onca/xml3?t=[Associates ID]&dev-

t=[Developer Token]&AuthorSearch=[author/artist

name]&mode=[product line]&type=[lite or heavy]&page=[page #

]&f=xml

Response The AuthorSearch request returns a ProductInfo node. The

ProductInfo node contains an array of Detail nodes.

Figure 18: Call and Request Format of Amazon Web Services

3.5.2 Mapping of the Data to the XML Schema

The XML documents including data of the books should be transformed to our

“ProductInfo” XML Schema because the data retrieved need to be reformatted

accordingly. It may contain unnecessary data or data types should be changed. We

reformat data using Altova MAPFORCE; in this tool XML Schemas/documents can

be mapped to each other on a graphical user interface and then tool can generate the

necessary code for the transformation. After implementing the necessary

transformations we have generated the Java code and applied it to our XML

documents retrieved by web services. After this transformation XML documents are

suitable for inserting them into Tamino XML Server.

3.5.3 Querying the Data

In this system, users can query the books whose data are stored as XML documents

in Tamino XML Server with a graphical user interface. The user selects or enters

 49

his/her search criteria on the user interface and an XQuery expression is formed

according to this search criteria. This XQuery expression is sent to Tamino XML

Server and query results are displayed on the user interface. Tamino API for Java is

used for accessing, querying data stored in the database. Figure 19 shows the

architectural overview of the query processing in our system.

Figure 19: Architectural Overview of the Query Processing

Figure 20 shows the XQuery expression for the query “Show all books, whose

publisher is ‘Thomas Dunne Books”. Figure 21 shows the results of this query.

 50

 for $b in input()/ProductInfo/book
 where
 $b/publisher ="Thomas Dunne Books"
 return $b"

Figure 20: XQuery Example(1)

Figure 21: Query Results for Query Example(1)

If the query includes search criteria for fuzzy-valued attributes, the query is

performed as follows: At first the values of the attributes that are not fuzzy are

 51

retrieved. Then this result set from the first step is “AND”ed with the result of the

fuzzy-valued attributes. For fuzzy-valued attributes we need to use similarity tables

for fuzzy values. For instance, if the query is “Show all books, whose publisher is

‘Thomas Dunne Books and subject is ‘Science’ with threshold value 0,7”, first the

books satisfying publisher criteria are retrieved, and then the books satisfying subject

criteria are retrieved using the similarity matrix for subject attribute. If the similarity

between “Science” the other subjects are greater or equal to the specified threshold

value in query, then those tuples are also included in the resulting answer set. Figure

22 shows an example XQuery expression for the finding the similarity value of

“Science” and “History” subjects. The result of this expression is “0,5” as shown in

Appendix E. Figure 23 shows the results of the query “Show all books, whose

publisher is ‘Thomas Dunne Books and subject is ‘Science’ with threshold value

0,7”. As seen in Figure 21, there are 7 records that satisfy search criteria “books with

‘Thomas Dunne Books’ as publisher”, but the number of records is 3 in Figure 23.

Four books do not satisfy the criteria “subject science with threshold 0,7”. Since the

similarity between science and computers are 0.9 (which is greater than the specified

threshold 0.7), the second tuple in Figure 23 (the author is “C.J. Date”) is among the

retrieved tuples.

 for $b in input()/Subject_SimilarityTable/cell
 where
 $b/@first_subject = "Science" and
 $b/@second_subject ="History"
 return $b/@similarity_value";

Figure 22: XQuery Example(2)

 52

Figure 23: Query Results for Query Example(2)

The details of each field on the “Fuzzy Book Search” form are explained in Table 3.

 53

Table 3: Explanation of Fields on the Query Form

Name Explanation Values

Author The author of the book is
entered in this field.

String

Title The title of the book is entered
in this field.

String

Subject
(*fuzzy attribute)

The subject of the book and
the threshold value for this
subject is selected from the
combo boxes. If no threshold
value is selected, “1” is default
value.

Multiple Choice
Subject: Art, Business,
Classics, Computers,
Cooking, History,
Medicine, Science, Travel
Threshold Value:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9

Subject Table Each subject and associated
threshold value is listed as a
row in this table.

Add Button for
Subject

Each subject and associated
threshold value can be added
to the subject table with this
button.

“AND”, “OR”
radio buttons for

subject.

Each entry in the subject table
can be searched with the
option of logical “AND” or
“OR” operator.

ISBN The ISBN of the book is
entered in this field.

String

Publisher The publisher of the book is
entered in this field.

String

Publication Date
The publication date of the
book is entered in this field.

Multiple Choice
All dates,
Before the year, During the
year, After the year

Format The format of the searched
book is entered/selected from
this field.

Multiple Choice
Hardcover, Paperback,
Mass Market Paperback

 54

Table 3: cont.

Name Explanation Values

Price

The price range for the
searched book can be selected
from this field.

Multiple Choice
Min Price: 5$, 10$, 15$,
20$, 25$, 30$, 35$, 40$,
45$
Max Price: 10$, 20$, 30$,
40$, 50$, 60$, 80$, 100$,
150$, 200$

Cover Colour
(*fuzzy attribute)

The colour of the cover of the
book and the threshold value
for this colour is selected from
the combo boxes. If no
threshold value is selected, “1”
is default value.

Multiple Choice
Colour: black, blue, brown,
green, red, yellow, white
Threshold Value:
0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9

Cover Colour
Table

Each colour and associated
threshold value is listed as a
row in this table.

Add Button for
Cover Colour

Each colour and associated
threshold value can be added
to the colour table with this
button.

“AND”, “OR”
radio buttons for
cover colour.

Each entry in the colour table
can be searched with the
option of logical “AND” or
“OR” operator.

Books Table
Query results are listed in this
table. Each row of the table
corresponds to a book
satisfying the search criteria.

Search Button This button is used to perform

the query.

Clean Button This button is used to clean

search criteria.

 55

After performing the query, user can see the details of the products satisfying the

search criteria by double-clicking the selected list item. Figure 24 shows the form

designed for showing the details of a book. The details of each field on the “Book”

form are explained in Table 4.

Figure 24: Details Form

 56

Table 4: Explanation of Fields on the Details Form

Name Explanation

Title The title of book is displayed in this field.

Subjects The subject(s) of the book is listed in this table.

ISBN The ISBN of the book is displayed in this field.

Publisher The publisher of the book is displayed in this field.

Publication Date The publication date of the book is displayed in this field.

Format The format of the book is displayed from in this field.

Price The price range of the book is displayed in this field.
Description The description of the book is displayed in this field.

Buy Button While viewing the details of a book, user can click “Buy”
button to go the Amazon’s page to buy the product.

OK Button This button is used to close the form.

3.5.3.1 Fuzzy Queries

As explained above fuzzy attributes “subject” and “colour” can be queried with

threshold values and “AND”, “OR” predicates. Example queries are performed on

fuzzy “colour” attribute in the following part. The queries are performed for the book

named “Deception Point”. XML representation of the data of this book is given in

Figure 25.

 57

<ProductInfo
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<book>
 <title>Deception Point</title>
 
 ………….
 ………….
</book>
</ProductInfo>

Figure 25: XML Representation of Book-“Deception Point”

Figure 26 shows the query for “black”, “blue” colours and “OR” predicate. This

query returns the record for “Deception Point” because the book has colours “black”

and “blue” with “OR” fuzzy predicate as shown in Figure 25.

 58

Figure 26: “OR” Predicate Query Example

When the query is performed for “black”, “blue” colours and “AND” predicate, no

record is returned as the result of the query because the book does not have the

“black”, “blue” colours with “AND” predicate. This query is shown in Figure 27.

 59

Figure 27: “AND” Predicate Query Example (1)

When we change the threshold values for colours in Figure 27 to “0.3”, the query

returns the record for “Deception Point”. Although the book has these colours with

“OR” predicate, “black” and “blue” has the similarity value “0.6” as given in

Appendix C. Since the threshold value in the query is smaller than the similarity

value, the query criteria is satisfied. This query is shown in Figure 28.

 60

Figure 28: “AND” Predicate Query Example (2)

3.5.4 Merging XML Schemas

 In this system, users can merge the elements of the XML Schemas stored in Tamino

XML Server. Users can merge the elements of an XML Schema from the graphical

user interface and new XML Schema is generated and loaded into the database. In

addition to new XML Schema, new XML documents are generated according to new

XML Schema and loaded into the database.

 61

In order to restructure an XML Schema user first chooses the XML Schema file to

be changed. The chosen XML Schema’s elements are shown on the form opened and

user can select the elements to be merged by clicking check boxes. User can also

disregard primary key, which is “ISBN” in our case, in merge by checking “Ignore

Primary Key” check box. By this way, primary key is disregarded when it is not

chosen to be merged. The form for choosing XML Schema elements is shown in

Figure 29.

Figure 29: Merge Schema Form

If the user clicks the “Merge” button after selecting the elements to be merged, a

dialog is opened asking for the name of the new element, which is formed with the

merging of selected elements. Then new XML schema, and XML documents

generated according to this new XML Schema are stored into the database.

 62

For example, if the user selects all elements except “publisher” element to be merged

with the name “PublisherInfo”, a new XML schema named PublisherInfoSchema is

generated. Figure 30 shows the XML Schema structure of this new schema:

Figure 30: XML Schema Representation of a PublisherInfoSchema

Then the user can view the new XML Schema structure with the XML documents

formed according to new XML Schema in a new form. XML documents stored

according to original XML Schema and new XML Schema are shown in Figure 31

and Figure 32 respectively.

If the user deselects “ISBN” element and checks “Ignore Primary Key” checkbox in

the former example, the views of XML documents are same as in Figure 32. But if

the user does not check “Ignore Primary Key” checkbox, primary key is considered

during merge, and the view of XML documents are shown in Figure 33.

 63

Figure 31: XML Schema Structure Before Merging

Figure 32: New XML Schema Structure

 64

Figure 33: XML Schema Structure Regarding Primary Key

3.6 Programming Environment

Java programming language is chosen for the development of system in order to

achieve the platform independency. The system is implemented as a standalone

application on Borland JBuilder 9 Enterprise Edition. Tamino API for Java is used to

access and manipulate the data stored in Tamino database. The jar files included in

this API are used in the project libraries. The Tamino implementation of XQuery,

called Tamino XQuery 4 is used for performing the queries, which can also be

accessed in Tamino API for Java. Software AG’s Tamino XML Server 4.1.4 is used

as the XML database system. Software AG’s Tamino Schema Editor 4.1.4.2 is used

for designing the XML schemas. Altova MAPFORCE Enterprise Edition 2004 is

used for transforming the XML Schemas.

 65

CHAPTER 4

CONCLUSION

There are many traditional database management systems that store crisp data.

However, real-world information containing subjective opinions and judgments

contain complex and imprecise data. One of the proposed models for the

representation of uncertain and complex data is the Extended Non First Normal

Form (ExNF2) data model, an extended relational database model [1].

Sharing of information between databases is also an important issue. Different

databases store data in different, and sometimes incompatible, formats, which makes

exchanging information a challenge. Many organizations and enterprises establish

distributed working environments, where different users need to exchange

information based on a common model.

Extensible Mark-up Language (XML) is a proposed solution as a data representation

and exchange format through the Internet and different database models to meet this

challenge. XML documents simply define the data representation and do not deal

with the presentation. XML can also be used to represent complex and imprecise

data formats in addition to crisp data formats. XML can process complex,

 66

hierarchical information, and also be used for commercial transactions. Therefore,

XML documents can be used to transfer data between the Internet applications and

different database models.

In this thesis, complex and uncertain data are represented in XML. In this system,

users can perform fuzzy queries on XML documents. XML documents in the system

contain fuzzy attributes. The user can select a fuzzy attribute and a threshold value

for it and then perform a query. In addition to fuzzy querying, the system enables

restructuring of XML Schemas by merging of elements of the XML documents.

Using this feature of the system can generate a new XML Schema and new XML

documents are generated from the existing documents according to this new XML

Schema. XML documents in the system are retrieved from Internet via Web

Services. XML documents are stored in a native XML database management system.

 67

REFERENCES

[1] Yazici, Adnan, Alper Soysal, Bill P. Buckles, and Fred E. Petry. "Uncertainty in
nested relational database model." Data & Knowledge Engineering 30, pp. 275-301,
1999.

[2] Widom, Jennifer. "Data Management for XML: Research Directions." Stanford
University, http://www-db.stanford.edu/~widom/xml-whitepaper.html, 1999.

[3] Frank Jung, XML Backgrounder, Software AG,
http://www1.softwareag.com/Corporate/Images/e-XML_Backgrounder_XML-
WP05E0803_tcm16-7780.pdf, August 2003.

[4] Guide to the W3C XML Specification ("XMLspec") DTD, Version 2.1,
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm, 1998.

[5] Charter of the XML Schema Working Group,
http://www.w3.org/2003/09/xmlap/xml-schema-wg-charter.html, June 2004.

[6] XML-QL: A Query Language for XML, http://www.w3.org/TR/1998/NOTE-
xml-ql-19980819, August 1998.

[7] J. Clark, S. DeRose, “XML Path Language (XPath) Version 1.0”, W3C
Recommendation, http://www.w3.org/TR/xpath, November 1999.

[8] XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery/, July
2004.

[9] Extensible Stylesheet Language Transformations,
http://www.w3.org/TR/1999/REC-xslt-19991116, November 1999.

[10] XML Pointer Language, http://www.w3.org/TR/2001/WD-xptr-20010108,
January 2001.

[11] XML Query (XQuery) Requirements W3C Working Draft,
http://www.w3.org/TR/xquery-requirements/, November 2003.

 68

[12] J. Robie, J. Lapp, D. Schach, XML Query Language (XQL),
http://www.w3.org/TandS/QL/QL98/pp/xql.html, 1998.

[13] XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt,
November 1999.

[14] Cascading Style Sheets, http://www.w3.org/Style/CSS, June 2001.

[15] Document Object Model (DOM) Activity Statement,
http://www.w3.org/DOM/Activity, March 2004.

[16] REST, http://searchwebservices.techtarget.com/sDefinition/0,sid26_gci823682,
00.html, May 2002.

[17] Elmasri, Ramez and Shamkant B. Navathe. Fundamentals of Database Systems,
Second Edition. CA: Addison-Wesley, 1994.

[18] L.S. Colby, A recursive algebra for nested relations, Information Systems 15 (5)
567-662, 1990.

[19] M.A. Roth, H.F. Korth, D.S. Batory, SQL/NF: a query language for non-1NF
relational databases, Information Systems 12 99-114, 1987.

[20] H.J. Schek, M.H. Scholl, The relational model with relational-valued attributes,
Information Systems 11 (2) 137-147, 1986.

[21] S.J. Thomas, P.C. Fischer, Nested relational structures, Advances in Computing
Research, vol. 3, JAI Press, pp. 269-307, 1986.

[22] G. Ozsoyoglu, Z.M. Ozsoyoglu, V. Matos, Extending relational algebra and
relational calculus with set-valued attributes and aggregate functions, ACM
Transactions on Database Systems 12 (4) 566-592, 1987.

[23] Zadeh, L.A. “Fuzzy Sets” Information and Control, 8(3), pp. 338-353, 1965.

[24] Z. M. Ma, Weiyin Ma, Wenjun Zhang, An Extended Conceptual Model for
Fuzzy Data Modeling, WISE (2) 75-80, 2000.

[25] G.M. Bryan, J.M. Curry, C. McGregor, D. Holdsworth, R. Sharply, “Modeling
Fuzzy Data in XML”,
http://csdl.computer.org/comp/proceedings/hicss/2002/1435/04/14350119.pdf, 2004.

 69

APPENDIX A

AN EXAMPLE XML DOCUMENT FOR A PRODUCT

<? xml version="1.0" encoding="UTF-8"?>
<ProductInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C://ProductInfo.TSD"
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
 <book>
 <title>Introduction to Algorithms, Second Edition</title>
 <authors>
 <author>Thomas H. Cormen</author>
 <author>Charles E. Leiserson</author>
 </authors>
 <publicationDate>2001</publicationDate>
 <book_url>http://www.amazon.com/exec/obidos </book_url>
 <publisher>MIT Press</publisher>


 <minPrice>$12.95</minPrice>
 <maxPrice>$80.00</maxPrice>
 <format>Hardcover</format>
 <ISBN>0262032937</ISBN>

 <productDescription>Aimed at any serious programmer or computer
science student, the new second edition of Introduction to Algorithms
builds on the tradition of the original with a truly magisterial guide to the
world of algorithms.</productDescription>

 <subjects>
 <subject_name>Computers</subject_name>
 </subjects>
 </book>
</ProductInfo>

 70

APPENDIX B

THE XML SCHEMA CODE FOR PRODUCTS

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name="ProductInfo">
 <tsd:collection name="deneme"/>
 <tsd:doctype name="ProductInfo">
 <tsd:logical> <tsd:content>closed</tsd:content> </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name="ProductInfo"> <xs:complexType>
 <xs:sequence>
 <xs:element ref="book" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence></xs:complexType> </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="authors"><xs:complexType><xs:sequence>
 <xs:element ref="author" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence></xs:complexType>
 </xs:element>
 <xs:element name="publicationDate" type="xs:gYear"/>
 <xs:element name="book_url" type="xs:string"/>
 <xs:element name="publisher" type="xs:string"/>
 <xs:element name="image"><xs:complexType><xs:sequence>
 <xs:element ref="image_url" minOccurs="0"/>
 <xs:element ref="colors" maxOccurs="unbounded"/>
 <xs:element ref="image_description" minOccurs="0"/>
 </xs:sequence></xs:complexType></xs:element>
 <xs:element name="minPrice" type="xs:string"/>
 <xs:element name="maxPrice" type="xs:string"/>
 <xs:element name="format" type="xs:string"/>

 71

 <xs:element name="ISBN" type="xs:string"/>
 <xs:element name="productDescription" type="xs:string"/>
 <xs:element name="subjects"><xs:complexType><xs:sequence>
 <xs:element ref="subject_name" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence></xs:complexType></xs:element>
 <xs:element name="book"><xs:complexType><xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:element ref="authors"/>
 <xs:element ref="publicationDate" minOccurs="0"/>
 <xs:element ref="book_url" minOccurs="0"/>
 <xs:element ref="publisher" minOccurs="0"/>
 <xs:element ref="image" minOccurs="0"/>
 <xs:element ref="minPrice" minOccurs="0"/>
 <xs:element ref="maxPrice" minOccurs="0"/>
 <xs:element ref="format" minOccurs="0"/>
 <xs:element ref="ISBN" minOccurs="0"/>
 <xs:element ref="productDescription" minOccurs="0"/>
 <xs:element ref="subjects" minOccurs="0"/>
 </xs:sequence></xs:complexType>
 </xs:element>
 <xs:element name="image_url" type="xs:string"/>
 <xs:element name="colors"><xs:complexType><xs:sequence>
 <xs:element ref="colour" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence></xs:complexType></xs:element>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="image_description" type="xs:string"/>
 <xs:element name="subject_name"><xs:complexType>
 <xs:simpleContent><xs:extension base="xs:string">
 <xs:attribute name="FuzzyPredicate" type="xs:string"/>
 </xs:extension></xs:simpleContent></xs:complexType>
 </xs:element>
 <xs:element name="colour"><xs:complexType><xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="FuzzyPredicate" type="xs:string"/>
 </xs:extension></xs:simpleContent> </xs:complexType>
 </xs:element>
</xs:schema>

 72

APPENDIX C

XML DOCUMENT FOR COLOUR SIMILARITY TABLE

<?xml version="1.0" encoding="UTF-8"?>
 <Colour_SimilarityTable>
 <cell first_colour = "black" second_colour = "black" similarity_value = "1"/>
 <cell first_colour = "black" second_colour = "blue" similarity_value = "0.6"/>
 <cell first_colour = "black" second_colour = "brown" similarity_value = "0.9"/>
 <cell first_colour = "black" second_colour = "green" similarity_value = "0.6"/>
 <cell first_colour = "black" second_colour = "red" similarity_value = "0.4"/>
 <cell first_colour = "black" second_colour = "yellow" similarity_value = "0.1"/>
 <cell first_colour = "black" second_colour = "white" similarity_value = "0"/>
 <cell first_colour = "blue" second_colour = "black" similarity_value = "0.6"/>
 <cell first_colour = "blue" second_colour = "blue" similarity_value = "1"/>
 <cell first_colour = "blue" second_colour = "brown" similarity_value = "0.4"/>
 <cell first_colour = "blue" second_colour = "green" similarity_value = "0.7"/>
 <cell first_colour = "blue" second_colour = "red" similarity_value = "0.4"/>
 <cell first_colour = "blue" second_colour = "yellow" similarity_value = "0.4"/>
 <cell first_colour = "blue" second_colour = "white" similarity_value = "0.2"/>
 <cell first_colour = "brown" second_colour = "black" similarity_value = "0.9"/>
 <cell first_colour = "brown" second_colour = "blue" similarity_value = "0.4"/>
 <cell first_colour = "brown" second_colour = "brown" similarity_value = "1"/>
 <cell first_colour = "brown" second_colour = "green" similarity_value = "0.6"/>
 <cell first_colour = "brown" second_colour = "red" similarity_value = "0.5"/>
 <cell first_colour = "brown" second_colour = "yellow" similarity_value = "0.2"/>
 <cell first_colour = "brown" second_colour = "white" similarity_value = "0"/>
 <cell first_colour = "green" second_colour = "black" similarity_value = "0.6"/>
 <cell first_colour = " green" second_colour = "blue" similarity_value = "0.7"/>
 <cell first_colour = "green " second_colour = "brown" similarity_value = "0.6"/>
 <cell first_colour = "green" second_colour = "green" similarity_value = "1"/>
 <cell first_colour = "green" second_colour = "red" similarity_value = "0.4"/>
 <cell first_colour = "green" second_colour = "yellow" similarity_value = "0.2"/>
 <cell first_colour = "green" second_colour = "white" similarity_value = "0.1"/>
 <cell first_colour = "red" second_colour = "black" similarity_value = "0.4"/>
 <cell first_colour = "red" second_colour = "blue" similarity_value = "0.4"/>
 <cell first_colour = "red" second_colour = "brown" similarity_value = "0.5"/>
 <cell first_colour = "red" second_colour = "green" similarity_value = "0.4"/>

 73

 <cell first_colour = "red" second_colour = "red" similarity_value = "1"/>
 <cell first_colour = "red" second_colour = "yellow" similarity_value = "0.7"/>
 <cell first_colour = "red" second_colour = "white" similarity_value = "0.3"/>
 <cell first_colour = "yellow" second_colour = "black" similarity_value = "0.1"/>
 <cell first_colour = "yellow" second_colour = "blue" similarity_value = "0.4"/>
 <cell first_colour = "yellow" second_colour = "brown" similarity_value = "0.2"/>
 <cell first_colour = "yellow" second_colour = "green" similarity_value = "0.2"/>
 <cell first_colour = "yellow" second_colour = "red" similarity_value = "0.7"/>
 <cell first_colour = "yellow" second_colour = "yellow" similarity_value = "1"/>
 <cell first_colour = "yellow" second_colour = "white" similarity_value = "0.7"/>
 <cell first_colour = "white" second_colour = "black" similarity_value = "0"/>
 <cell first_colour = "white" second_colour = "blue" similarity_value = "0.2"/>
 <cell first_colour = "white" second_colour = "brown" similarity_value = "0"/>
 <cell first_colour = "white" second_colour = "green" similarity_value = "0.1"/>
 <cell first_colour = "white" second_colour = "red" similarity_value = "0.3"/>
 <cell first_colour = "white" second_colour = "yellow" similarity_value = "0.7"/>
 <cell first_colour = "white" second_colour = "white" similarity_value = "1"/>
 </Colour_SimilarityTable>

 74

APPENDIX D

THE XML SCHEMA CODE FOR COLOUR SIMILARITY TABLE

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd =
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition" xmlns:xs =
"http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "Colour_SimilarityTable">
 <tsd:collection name = "deneme"></tsd:collection>
 <tsd:doctype name = "Colour_SimilarityTable">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "Colour_SimilarityTable">
 <xs:complexType> <xs:sequence>
 <xs:element ref = "cell" maxOccurs = "unbounded"></xs:element>
 </xs:sequence> </xs:complexType>
 </xs:element>
 <xs:element name = "cell">
 <xs:complexType> <xs:simpleContent>
 <xs:extension base = "xs:string">
 <xs:attribute name = "first_colour" type = "xs:string" use =
"required"></xs:attribute>
 <xs:attribute name = "second_colour" type = "xs:string" use =
"required"></xs:attribute>
 <xs:attribute name = "similarity_value" type = "xs:string" use =
"required"></xs:attribute>
 </xs:extension> </xs:simpleContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

 75

APPENDIX E

XML DOCUMENT FOR SUBJECT SIMILARITY TABLE

<?xml version="1.0" encoding="UTF-8"?>
<Subject_SimilarityTable>
 <cell first_subject = "Art" second_subject = "Art" similarity_value = "1"/>
 <cell first_subject = "Art" second_subject = "Business" similarity_value = "0.2"/>
 <cell first_subject= "Art" second_subject="Computers" similarity_value= “0.5"/>
 <cell first_subject = "Art" second_subject = "Cooking" similarity_value = "0.6"/>
 <cell first_subject = "Art" second_subject = "History" similarity_value = "0.9"/>
 <cell first_subject = "Art" second_subject = "Medicine" similarity_value = "0.4"/>
 <cell first_subject = "Art" second_subject = "Science" similarity_value = "0.1"/>
 <cell first_subject = "Art" second_subject = "Travel" similarity_value = "0.7"/>
 <cell first_subject = "Art" second_subject = "Classics" similarity_value = "0.8"/>
 <cell first_subject = "Business" second_subject = "Art" similarity_value = "0.2"/>
 <cell first_subject ="Business" second_subject="Business" similarity_value="1"/>
 <cell first_subject="Business" second_subject="Computers"
similarity_value="0.7"/>
 <cell first_subject="Business" second_subject="Cooking" similarity_value="0.4"/>
 <cell first_subject="Business" second_subject="History" similarity_value="0.2"/>
 <cell first_subject="Business" second_subject="Medicine"
similarity_value="0.7"/>
 <cell first_subject="Business" second_subject="Science" similarity_value="0.4"/>
 <cell first_subject="Business" second_subject="Travel" similarity_value= "0.5"/>
 <cell first_subject="Business" second_subject= "Classics" similarity_value="0.2"/>
 <cell first_subject="Computers" second_subject="Art" similarity_value="0.5"/>
 <cell first_subject="Computers" second_subject="Business"
similarity_value="0.7"/>
 <cell first_subject="Computers" second_subject="Cooking"
similarity_value="0.1"/>
 <cell first_subject="Computers" second_subject="History"
similarity_value="0.2"/>
 <cell first_subject="Computers" second_subject="Medicine"
similarity_value="0.8"/>
 <cell first_subject="Computers" second_subject="Science"
similarity_value="0.9"/>
 <cell first_subject="Computers" second_subject="Travel" similarity_value="0.1"/>

 76

 <cell first_subject="Computers" second_subject="Classics"
similarity_value="0.1"/>
 <cell first_subject="Cooking" second_subject="Art" similarity_value="0.6"/>
 <cell first_subject="Cooking" second_subject="Business" similarity_value="0.4"/>
 <cell first_subject="Cooking" second_subject="Computers"
similarity_value="0.1"/>
 <cell first_subject="Cooking" second_subject="Cooking" similarity_value= "1"/>
 <cell first_subject="Cooking" second_subject="History" similarity_value="0.3"/>
 <cell first_subject="Cooking" second_subject="Medicine"
similarity_value="0.5"/>
 <cell first_subject="Cooking" second_subject="Science" similarity_value="0.2"/>
 <cell first_subject="Cooking" second_subject="Travel" similarity_value = "0.1"/>
 <cell first_subject="Cooking" second_subject="Classics" similarity_value="0.1"/>
 <cell first_subject="History" second_subject="Art" similarity_value="0.9"/>
 <cell first_subject="History" second_subject="Business" similarity_value="0.2"/>
 <cell first_subject="History" second_subject="Computers"
similarity_value="0.2"/>
 <cell first_subject="History" second_subject="Cooking" similarity_value="0.3"/>
 <cell first_subject = "History" second_subject ="History" similarity_value = "1"/>
 <cell first_subject="History" second_subject="Medicine" similarity_value="0.5"/>
 <cell first_subject="History" second_subject = "Travel" similarity_value = "0.5"/>
 <cell first_subject="History" second_subject="Classics" similarity_value= "0.8"/>
 <cell first_subject="History" second_subject="Science" similarity_value = "0.5"/>
 <cell first_subject = "Medicine" second_subject = "Art" similarity_value = "0.4"/>
 <cell first_subject="Medicine" second_subject="Business"
similarity_value="0.7"/>
 <cell first_subject="Medicine"second_subject="Computers"
similarity_value="0.8"/>
 <cell first_subject="Medicine" second_subject="Cooking"
similarity_value="0.5"/>
 <cell first_subject="Medicine" second_subject="History" similarity_value="0.5"/>
 <cell first_subject="Medicine" second_subject="Medicine" similarity_value="1"/>
 <cell first_subject="Medicine" second_subject="Science" similarity_value="0.8"/>
 <cell first_subject="Medicine" second_subject="Travel" similarity_value="0.1"/>
 <cell first_subject="Medicine" second_subject="Classics" similarity_value="0.1"/>
 <cell first_subject = "Science" second_subject = "Art" similarity_value = "0.1"/>
 <cell first_subject="Science" second_subject="Business" similarity_value="0.4"/>
 <cell first_subject="Science" second_subject="Computers"
similarity_value="0.9"/>
 <cell first_subject="Science" second_subject="Cooking" similarity_value="0.2"/>
 <cell first_subject="Science" second_subject="History" similarity_value = "0.5"/>
 <cell first_subject="Science" second_subject="Medicine" similarity_value="0.8"/>
 <cell first_subject ="Science" second_subject ="Science" similarity_value = "1"/>
 <cell first_subject ="Science" second_subject ="Travel" similarity_value= "0.1"/>
 <cell first_subject="Science" second_subject="Classics" similarity_value="0.6"/>
 <cell first_subject = "Travel" second_subject = "Art" similarity_value = "0.7"/>
 <cell first_subject="Travel" second_subject="Business" similarity_value= "0.5"/>

 77

 <cell first_subject="Travel" second_subject="Computers" similarity_value="0.1"/>
 <cell first_subject="Travel" second_subject="Cooking" similarity_value = "0.1"/>
 <cell first_subject = "Travel" second_subject ="History" similarity_value= "0.5"/>
 <cell first_subject="Travel" second_subject="Medicine" similarity_value="0.1"/>
 <cell first_subject="Travel" second_subject= "Science" similarity_value = "0.1"/>
 <cell first_subject = "Travel" second_subject = "Travel" similarity_value = "1"/>
 <cell first_subject ="Travel" second_subject ="Classics" similarity_value="0.7"/>
 <cell first_subject = "Classics" second_subject = "Art" similarity_value = "0.8"/>
 <cell first_subject="Classics" second_subject="Business" similarity_value="0.2"/>
 <cell first_subject="Classics" second_subject="Computers"
similarity_value="0.1"/>
 <cell first_subject="Classics" second_subject="Cooking" similarity_value="0.1"/>
 <cell first_subject="Classics" second_subject="History" similarity_value= "0.8"/>
 <cell first_subject="Classics" second_subject="Medicine" similarity_value="0.1"/>
 <cell first_subject="Classics" second_subject="Science" similarity_value="0.6"/>
 <cell first_subject = "Classics" second_subject="Travel" similarity_value="0.7"/>
 <cell first_subject = "Classics" second_subject= "Classics" similarity_value="1"/>
<Subject_SimilarityTable>

 78

APPENDIX F

THE XML SCHEMA CODE FOR SUBJECT SIMILARITY TABLE

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = http:// namespaces.softwareag.com/ tamino/
TaminoSchemaDefinition xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "Subject_SimilarityTable">
 <tsd:collection name = "deneme"></tsd:collection>
 <tsd:doctype name = "Subject_SimilarityTable">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "Subject_SimilarityTable">
 <xs:complexType> <xs:sequence>
 <xs:element ref = "cell" maxOccurs = "unbounded"></xs:element>
 </xs:sequence></xs:complexType>
 </xs:element>
 <xs:element name = "cell">
 <xs:complexType><xs:simpleContent>
 <xs:extension base = "xs:string">
 <xs:attribute name="first_subject" type="xs:string" use =
"required"></xs:attribute>
 <xs:attribute name = "second_subject" type = "xs:string" use =
"required"></xs:attribute>
 <xs:attribute name = "similarity_value" type = "xs:decimal" use =
"required"></xs:attribute>
 </xs:extension>
 </xs:simpleContent></xs:complexType>
 </xs:element>
</xs:schema>

