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     ABSTRACT 

 

 

INCREASING THE ACCURACY OF VEGETATION CLASSIFICATION USING 

GEOLOGY AND DEM 

 

 

Domaç, Ayşegül 

 

 

M. Sc., Department of Geodetic and Geographic Information Technologies 

Supervisor: Assist. Prof. Dr. M. Lütfi Süzen 

Co-Supervisor: Assoc. Prof. Dr. C. Can Bilgin 

 

December 2004, 80  pages 

 

The difficulty of gathering information on field and coarse resolution of Landsat images 

forced to use ancillary data in vegetation mapping. The aim of this study is to increase 

the accuracy of species level vegetation classification incorporating environmental 

variables in the Amanos region. In the first part of the study, coarse vegetation 

classification is attained by using maximum likelihood method with the help of forest 

management maps. Canonical Correspondence analysis is used to explore the 

relationships among the environmental variables and vegetation classes. Discriminant 

Analysis is used in the second part of the study in two different stages. Firstly Fisher’s 

linear equations for each of the previously defined nine groups calculated and the pixels 

are included in one of these groups by looking at the probability of that pixel being in 

that group. In the second stage Distance raster value of maximum likelihood 

classification is used. Distance raster pixels having a value less than one is accepted as 

misclassified and replaced with a value of first stage result of that pixel. As a result of 

this study 19.6 % increase in the overall accuracy is obtained by using the relationships 

between environmental variables and vegetation distribution. 

 

Keywords: Vegetation Classification, Amanos Region, Discriminant Analysis, Ancillary 

Data 
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     ÖZ 

 

 

BİTKİ ÖRTÜSÜ SINIFLANDIRMASININ DOĞRULUĞUNU JEOLOJİ VE SAYISAL 

YÜKSEKLİK MODELİ KULLANARAK ARTTIRMA 

 

 

Domaç, Ayşegül 

 

 

Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Yrd. Doç. Dr. M. Lütfi Süzen 

Ortak Tez Yöneticisi: Doç. Dr. C. Can Bilgin 

 

Aralık 2004, 80 sayfa 

 

Araziden veri toplamanın zorluğu ve Landsat görüntülerinin çözünürlüğünün yetersiz 

olması, vejetasyon haritalaması çalışmalarında yardımcı katmanların kullanılmasını 

gerekli kılmıştır. Bu çalışmanın amacı çevresel faktörleri kullanarak Amanos bölgesinde 

yapılan tür bazlı vejetasyon sınıflandırmasının doğruluğunun arttırılmasıdır. Çalışmanın ilk 

kısmında Maksimum Benzerlik metodu kullanılarak, orman işletme haritalarının 

yardımıyla kaba ölçekte bir vejetasyon haritası yapmıştır. Kanonik Karşılık Analizi ile 

çevresel değişkenlerin vejetasyon ile ilişkileri araştrılmıştır. İkinci kısımda ise 

Diskriminant analizi iki ayrı aşamada kullanılarak daha detaylı vejetasyon sınıflandırma 

haritaları elde edilmiştir. Önceden belirlenmis dokuz grup için Fisher doğrusal 

denklemleri hesaplanmış ve hücreler ait olma olasılıkları yüksek olan sınıflara 

atanmışlardır. İkinci aşamada ise Maksimum Benzerlik sonucunda elde edilen Uzaklık 

Matrisi kullanılmıştır. Uzaklık Matrisi değerleri birden küçük olan hücrelerin yanlış 

sınıflandırıldığı kabul edilmiş ve bu hücreler ilk aşama sonucundaki sınıf değeriyle 

değiştirilmiştir. Bu çalışmanın sonucunda, çevresel faktörlerle vejetasyon dağılımı 

arasındaki ilişkiyi kullanarak genel sınıflandırmanın doğruluğu 19.6% oranında 

arttırılmıştır. 

 

Anahtar kelimeler: Vejetasyon Sınıflandırması, Amanos Bölgesi, Diskriminant Analizi, 

Yardımcı Veri   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1. Purpose and Scope 

Throughout the prolonged use of satellite images, mapping earth features and 

infrastructure, researching environmental changes, gathering information about land 

use, land cover and vegetation information at different spatial scales and temporal 

resolutions became easier in the last few decades. Amongst these macro activities, 

thoroughly classification processes seek to identify land cover classes range from broad 

life-form categories to narrow floristic classes (Carpenter et al., 1997). 

Remote sensing has been used in vegetation research for many years to map the 

vegetation cover, forest fires, and detecting the change in the vegetation through 

different periods (Janssen et. al., 1990; Dorren et. al., 2003; Pfeffer et. al., 2003). 

Decrease in the prices of satellite images, easy access to current images, improvements 

in image processing software’s, and increased CPU speed of the computers flourished 

the use of remote sensing in ecological studies not very different from the rest of the 

earth science related research. Mapping vegetation by using remote sensing is a widely 

used technique in ecological research since it could determine the distribution, 

formation, and change of vegetation for very large areas in a short time, moreover this 

offers the possibility to extrapolate results of mapping, especially in large and hardly 

accessible areas (Hoersch et. al., 2002). 

Among various satellite images, Landsat TM or Landsat ETM images have some 

advantages over the rest of the satellites in vegetation classification. Such that 30 m 

ground resolution accepted as a convenient resolution for regional vegetation mapping 

studies with a minimum mapping unit of 100 ha; the spectral coverage fits well to the 

vegetation spectra; and the swath width yields in less number of images to process 

which maintains the coherence of the imagery. Although the above is concentrated on 

the fitness of Landsat system for vegetation mapping, the system is still inadequate as 

the results of the classification studies are not sufficient to identify the individual plant 
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species other than groups of trees (Franklin, 1995; Nagendra, 2001; Pfeffer et. al., 

2003). For the regional scale vegetation mapping studies, spectral resolutions of current 

images might seem to be sufficient, however, when leveling up the regional mapping 

campaign into a local scale, either the spectral or spatial resolution of data retrieved 

from common commercial satellite images and aerial photographs are insufficient. 

Although recent innovative approaches in remote sensing society such as the usage of 

LIDAR and Hyperspectral sensors theoretically solves this inadequacy, the inherent 

problems of vegetation classification studies such as the closeness and different crown 

sizes still hamper the regional vegetation mapping problem (Dorren et. al., 2003; Pfeffer 

et. al., 2003). 

At this point, addition of some extra information is vital to provide some insight in the 

classification of heterogeneous vegetation cover. Incorporation of the relevant 

information into the classification process can increase the discrimination possibilities for 

cover types with irregular, overlapping spectral signatures (Maselli et. al.; 1995). Pre-

classification scene stratification, post-classification class sorting and classification 

modifications are the common approaches used to combine ancillary data for 

classification to improve the accuracy (Hutchinson, 1982). Information from ancillary 

data sources has been widely shown to aid discrimination of classes that are difficult to 

classify using remotely sensed data (Strahler, 1980). 

Studies related with the relationship of species composition and forest structure to 

topographic and geological features are quite sparse in literature (Pinder et. al., 1997; 

Fahsi et. al., 2000; Tayku et. al., 2002). Correlations of species with environmental 

variables are used to get information about the distributions of vegetation in different 

scales, furthermore it is quite wise to incorporate the terrain attributes (e.g., elevation, 

gradient, local relief) into the statistical decision rules to classify ecological units using 

remote sensing data (Moore et. al., 1991).  

Despite all of these issues large scale vegetation mapping studies are made available for 

some regions of Turkey, both by governmental and non governmental organizations. 

The vegetation classification of Aegean region is carried out by Ministry of Forestry and 

Environment while for Mediterranean and South Eastern Anatolia region WWF-Turkey 

had completed the task (Zeydanlı and Domaç, 2004). 

The main objective of this study is to increase the accuracy of vegetation classification 

in the alliance level with Landsat 7 ETM by using ancillary data with the scope of 

evaluating the use of environmental variables and raw Enhanced Thematic Mapper 
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(ETM) band combinations to find out discriminating functions to determine nine 

vegetation classes in the postclassification sorting process.  

 

1.2. Study Area 

 
The study area is located in the southern portion of the Amanos Mountains (Figure 1.1), 

ranging from E 31° 05′ to E 36° 35′ and N 36°30′ to N 36° 58′, having a coastal zone to 

Mediterranean Sea. The main settlements of the study area are İskenderun, Dörtyol and 

Hassa. 

Amanos Mountains are significantly important area in terms of plant diversity, as it 

harbors Black Sea enclave, which is the heritage of Ice Age, intact forest cover with 

deep and protected valleys, high endemism ratio, and typical representative of the 

diverse Eastern Mediterranean flora 

(http://www.wwf.org.tr/en/ormanlar_dunya_sn_ad.asp (visited on 23. 10.2004)). 

In aspect of Geology, Kahramanmaraş and surrounding areas may be regarded as a key 

region to show the geological evolution of the South-east Anatolia, because it is a place 

where different tectonic units with a diversity of lithological units together with their 

relationships observed (Yilmaz et al, 1988). 

 

1.3. Organization of the Thesis 

 

In the first chapter of the thesis, the research problem was defined, the purpose and 

scope of this research was presented, the geographical setting of the project area was 

defined and the organization of this thesis was presented.  

The second chapter includes the previously performed studies related with the use of 

ancillary data and statistical methods in the vegetation classification. 

Third chapter explains the data used in this study. Related information is given about 

satellite images, geology, elevation, and slope and aspect layers. 
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Figure 1.1. Location of the study area 
 



 5

 
Fourth chapter was composed of methods and analysis where the brief information was 

given in methodological snapshot. Details and results of coarse classification, fine 

classification and integration steps were presented with accuracy assessment values. 

The multivariate statistical analyses (i.e. Canonical Correspondence and Discriminant 

Analysis) used in statistical classification was explained and the relationships between 

species and variables was discussed. Finally discriminating functions extracted from the 

results of the analysis explained and presented.  

In fifth chapter the results obtained from chapter four was discussed, while in sixth 

chapter the conclusions of this research thesis were presented.  
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CHAPTER 2 

 

 

BACKGROUND INFORMATION 

 

 

 

This chapter includes the selected previous researches related with the subject of this 

thesis. These researches were grouped under the headings of vegetation classification, 

use of ancillary data in the classification process and statistical methods used in the 

classification process.  

 

2.1. Vegetation Classification with Remote Sensing 

 

Remote sensing is a technique used to collect data from the Earth surface by measuring 

the reflected energy of the features on each part of the electromagnetic spectrum. 

Recent developments in remote sensing technology allow the use of images in land-

cover and land-use changes, city planning, mapping of soil, geology, forestry and 

conservation planning moreover it has the potential to be used for continuous surveying 

of the Earth surface. 

Digital image classification is the process of assigning a pixel (or groups of pixels) of 

remote sensing image to one of the previously defined land cover classes. This could be 

performed by various algorithms based on the spectral analysis of individual pixels; 

hence by using the spectral reflectance curves of earth materials. The maximum 

likelihood classifier is one of the most popular methods of classification in remote 

sensing. This method is preferred in classification process because unlike the minimum 

distance and the parallelepiped classifiers this technique takes into account the spectral 

variability both within and between classes (Fahsi et. al., 2000).  

Since 1970’s remote sensing have been used for the contribution to the forest mapping 

and among the satellites Landsat images are the most suitable one. However the spatial 
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resolution of Landsat group imagery in many cases is low to derive a useful forest map, 

which yields in a low accuracy result by using per-pixel classification methods.  

At this point, Dorren et. al. (2003) suggests two different methods to improve the 

accuracy of vegetation classification in steep mountainous terrain; the first is to assess 

topographic correction and to add DEM as an additional band, and the other is to use 

object-based classification instead of pixel-based classification. Among various 

topographic correction methods, Sun-Canopy-Sensor-correction (SCS-correction) 

performed the best in reducing the correlation between incidence angle and reflectance 

value. When the classification results of his trials were compared, the one with 

topographic correction and additional band used yielded the highest accuracy among 

them. In object based trial, first the image objects are created by means of 

segmentation. Then the forest mask, which was obtained by classification, was 

segmented into forest and non-forest objects. Classification was performed on two 

different levels. In level 2 large objects were identified, and in the first level forest types 

are separated into four different classes. In the object-based classification, smaller and 

larger objects produced lower accuracies whereas the best object-based was based on 

the segmented objects with an average size of 21.6 pixels. 

Dymond et. al. (2002), compares the effectiveness of image differencing and vegetation 

indices to improve the forest classification with the input set of phenologically significant 

TM scenes. NDVI and Tasseled Cap indices (Brightness (B), Greenness (G), Wetness 

(W)) were computed using the TM image for each phenological period to test the 

effectiveness of indices to improve the forest classification. Besides, the changes in TM 

color composite 3-4-5 and each of the four indices values were subtracted from one 

phenological period to the next. The area was subdivided into smaller lands which 

reduced the number of categories and variation within each class. By using hybrid 

classification, vegetation type map was composed; whereas maximum likelihood 

method was used for the genera level classification. These procedures were repeated 

for 6 different input data sets. According to the results of this study the image 

differencing of the Tasseled Cap indices may have produce the best vegetation 

classification.  

Liu et. al. (2002) tests the new integrated approaches like consensus builder system 

(CSB) and a combined expert system (CES) and neural network system (NNC) to 

improve the classification accuracy. First of the classifiers is Maximum Likelihood 

Classifier (MLC), in which each pixel is assigned to the class with the shortest modified 

“Mahalanobis distance” from the pixel to the class mean. The second classifier used in 
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this study is NNC which is composed of two stages; training stage and classification 

stage. Once the training system is complete, the trained system is used for 

classification. The third classification system is the expert system classifier (ESC). The 

structure of this system composed of two parts. First part is the “knowledge base” to 

store expert knowledge, and rules, and the “inference engine” for system processing. 

Classification was performed by the tree individual classifier and two new integrated 

classifiers using the same training set. An integrated classifier called ESNNC produced 

the highest accuracy of 80% when compared with the individual classifiers. 

Wang et. al. (2001), aims to generate a method to determine appropriate plot size and 

spatial resolution for mapping multiple vegetation using remote sensing data for large 

areas. There were six vegetation cover types which are different in spatial variability. 

The appropriate plot size and spatial resolution were studied for each vegetation type in 

order to capture the structures of spatial variability and to improve map accuracy. Semi-

variogram method was used to model spatial variability. If there is a high correlation 

between field and image data, the appropriate plot size obtained using the field data 

will be consistent with the appropriate spatial resolution using the images. The 

comparison of the vegetation classification at different plot and image sizes by cross 

validation further proved the appropriate spatial resolution. The appropriate plot size 

was about 60 m for grass and shrub, 70 m for forbs, and 80 m for tree and half-shrub, 

and would not be less than 80 m for wood; and the TM images led to an appropriate 

spatial resolution of 90 m in this study. 

Treitz and Howarth (2000) determined an extent to which texture and terrain variables 

could improve the forest ecosystem mapping within the boreal forest of north-western 

Ontario. Linear Discriminant analysis (LDA) was performed within a program to explore 

the discriminatory power of (1) spectral-spatial, (2) texture, (3) terrain, (4) combination 

of these features. This method first derives a transform that minimizes the ratio of 

difference between group multivariate means and their within group multivariate means 

and also this is used to find a discriminant function. Discriminant analysis as a 

classification technique has been shown to be less sensitive to the number of variables 

and deviations from the normal (Gaussian) distribution as opposed to other methods 

such as maximum likelihood. 
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2.2. Ancillary Data in Classification Process 

 

Shrestha and Zinc (2001), assumed that the amount of energy received by the sensor 

depends on slope gradient, and exposition with respect to sun elevation. In this study 

intensity normalization for the spectral bands for removing the variations in the solar 

illumination angle is implemented. Because of the topographic effects, training samples 

results in elongated clusters. After normalization of the bands elongation disappears and 

the training samples could be assumed to be approximately normally distributed. 

Maximum likelihood method was performed on the bands both before and after 

normalization. Overall accuracy of the final classification was increased to 94 % from 67 

%. It is concluded that the variation on the solar illumination angle could be easily 

corrected by the normalization of the bands by using total intensity. 

De Bruin and Gorte (2002) used geologic map units to improve land cover classification. 

In classification process, use of prior probabilities related to slope and aspect classes 

improves the classification accuracy, over the obtained with spectral data alone 

(Strahler, 1980). The objective of their study was to demonstrate: a) The use of 

stratification combined with iterative estimation of prior probabilities to improve 

classification accuracy; b) The use of posterior probability vectors to represent 

uncertainty in image classifications and in the result of subsequent analysis and c) To 

reduce the number of geological units, increase the minimum size, and to harmonize 

the level of detail while the original map was generalized. Two Landsat images were 

classified independently using iteratively estimated prior probabilities per geologic unit. 

Two main results of this study is as follows: a) Iterative estimation of prior probabilities 

after stratification according to map units carrying information relevant to the 

classification theme provides a practical approach to improve classification accuracy and 

b) Posterior probability of class membership provides useful estimates of the magnitude 

and spatial distribution of local uncertainty in the classification results. 

Fahsi et. al. (2000), present that, DEM could be used to improve the classification 

accuracy by reducing the effect of relief on satellite images. In higher relief, the pixels 

of same cover type could have different spectral value and the pixels of different cover 

types could have a same spectral value because of the effect of the topography. Three 

components are affecting the spectral radiance of the surface yielding in direct 

radiation, diffuse radiation, and the radiation reflected from the adjacent surfaces. 

Topographical shapes of the surfaces are the main factor and have influences on these 
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components. In order to normalize the topographic effect on each pixel a model 

proposed by Yang et. al. (1993) were used in the study. Statistically, removal of the 

topographic effect is accepted as successful if, the spectral variability within the same 

cover type extending over varying terrain is substantially reduced after image 

correction. Principal Components, vegetation index, and the brightness index were used 

in the classification process. As a result, integration of DEM with the satellite images 

reduced the shadow effect by decreasing the brightness values of surfaces facing the 

sun and increasing those of the surfaces facing away from the sun. The increase in the 

accuracy is more noticeable in rugged areas, which are more affected by the 

topographical variation. Hence by using topographic correction method, the accuracy of 

the classification was increased from 64% to 82%. 

Maselli et al. (2000) considered that different vegetation types are affecting the risk of 

fires. Supervised statistical classification was carried out using TM scenes and ancillary 

data layers. The effects of conventional processing of data were investigated on a 

different image acquisition periods of spring and summer season. First four principal 

components of the two scenes were used in the classification. The algorithm was first 

applied in a conventional method using the TM scenes and scenes plus ancillary data. 

Four classification results were gathered with 16 land cover classes. Improvement of 

accuracy is observed with the addition of ancillary data so TM plus ancillary data were 

used for the rest of the study. The results of the study showed that the addition of 

ancillary data yielded in Kappa improvements, and the result of classification can be 

used to estimate the risk of fire by assigning risk values to each vegetation class. 

Lewis (1998), demonstrates the vegetation mapping methodology by using multispectral 

imagery. Two contrasting Landsat scenes of summer and winter were used in the study. 

The effects of atmospheric haze removed from the imagery. One hundred sample points 

were chosen to be representative of the range of vegetation types. Half of them were 

used as training samples and the remaining half were used as an validation sites to test 

the spectral classification. The biotic and physical ground cover components of the 100 

points were estimated by using wheelpoint apparatus to detect the objective groupings 

of the sites. 50 training sites were labeled according to their corresponding groudcover 

class. Canonical variate analysis used to develop a spectral discrimination functions that 

would separate the classes. Then these training sites were used in maximum likelihood 

classification resulting in 9 map classes. Accuracy of vegetation mapping was tested in 

three different way; by testing the discriminant function developed on the training sites, 
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by comparing image class with field class using 50 validation sites, and by comparing 

the image classification with an existing land system map. 

Pinder et. al. (1997), studied the relationships between the relative distribution of 

vegetation types mapped from satellite images with elevation, slope and aspect 

parameters. Topographic Relative Moisture Index (TRMI) was computed by using 

aspect, slope steepness, slope configuration, and slope position values which are 

changing for xeric (being deficient in moisture) to mesic (having well-balanced supply of 

moisture) conditions. The TRMI values ranges between 0-60 and divided into quarters 

which represented 4 classes denoted as most xeric (TRMI<15), xeric (TRMI of 16 to 

30), mesic (TRMI of 30 to 44) and most mesic (TRMI>45). The classification was done 

using Landsat TM images and five vegetation classes were identified. The statistical 

significance of the relationships between vegetation types and topographic variables 

were tested using χ2 contingency tables. Statistical significances of χ2 for the Linear test 

and Residual test determines a trend of either decreasing or decreasing abundance of 

vegetation related to the moisture gradient. The results showed that the topographic 

positions affect the distribution of all the vegetation types in all elevation intervals. 

Maselli et. al. (1995) aims to find relative frequencies of the training sets on the 

ancillary layers can be transformed into modified priors by a strategy similar to that 

utilized for the spectral data. In this work an extension of the Maselli classifier is 

presented which allows the statistical integration of ancillary data layers into a 

classification process of remotely sensed scenes. Being nonparametric in nature, Mutual 

Information Analysis (MIA) was applied with this objective. MIA uses the concept of 

common entropy to estimate the statistical information shared by the different variables 

and can be applied to the processing of remotely sensed images for ecological 

investigations (Davis and Dozier, 1990). The first classification was based on the 

spectral data and its accuracy was measured by means of an error matrix compared to 

the test pixels. And then a new classification performed based on the same spectral 

data plus the ancillary information. In this situation, the inclusion of the ancillary 

information of the data layers yields a notable improvement in the classification 

accuracy. Among the layers considered separately, the incorporation of the soil map 

produces the maximum increase in accuracy. 

Janssen et. al. (1990), aims to derive a more accurate land-cover classification using 

geographical data from a GIS and enable feed back of remote sensing derived 

information to a GIS. For this purpose two different test areas were selected, both 

representing agricultural regions. In the first test area, the agricultural fields were small 
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and irregular, whereas the other test area was having more regular and larger 

agricultural areas. In an object based classification, the geometry of the objects were 

digitized and stored in the GIS. Then per-pixel classification was performed on the 

images. Incorrectly classified pixels are corrected by using the label of largest frequency 

in the object and assigning that label to all of the pixels within that boundary. In both of 

the test areas the accuracy of object based classification is higher than the per-pixel 

classification. Since the objects in the first area were small and with irregular shapes, 

the increase in the overall accuracy of this test site is less than the other site. 

Hutchinson (1982), suggested the use of ancillary data in classification in three different 

stages. The incorporation of data could be either before, during or after the 

classification process.  

Use of ancillary data before classification could be utilized to divide the area into smaller 

areas or strata, so each stratum could be processed independently, which is named as 

pre-classification scene stratification. 

 Ancillary data could also be included in a process during the classification stage. Most 

widely used approaches are increasing the number of channels of observation, or the 

modification of maximum likelihood decision rule by using prior probabilities, or 

generating some new feature components (Domaç et. al., 2004).  

The use of ancillary data after multispectral classification is based on the discrimination 

of spectral confusion between different classes. In post classification, problematic 

spectral classes are treated as separate special cases. If there exist these special classes 

are treated via some other intrinsic decision rules that have been derived from other 

ancillary data.  

 

 

2.3. Statistical Methods Used in the Classification Process 

 

Cingolani et. al. (2004), proposed a method for defining discrete landcover units 

discernible by satellite. Firstly they performed unsupervised classification with a 10 class 

legend and select 251 patches to be used in the field for sampling. By examining these 

patches in the field 13 ecologically meaningful structural types were identified. Also the 

topographic position, slope, aspect, and altitude values for each stand were recorded. 
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In order to extract the signatures for statistical analysis and landcover mapping, another 

image of the area was used. Spectral signatures for 3x3 pixels surrounding each stand 

for each band are produced, which is named as ‘brightness matrix’. This matrix is 

subjected to Principal Component Analysis to summarize the brightness variation in two 

axes. To find out the best combination of terrain attributes predicting the spectral 

characteristics of bands multiple regression analysis is performed on PCA axis and 14 

structural variables. Newly generated groups are defined considering the knowledge of 

the area. Then new training areas are defined according to new generated groups. 

Maximum likelihood and Discriminant Analysis (DA) is performed on the images. The 

comparison through the field validation showed that the DA classification produced 

better results than the traditional Maximum Likelihood method. 

Hietel et al. (2004), developed a method to characterize the major spatial-temporal 

processes of land-cover changes, identify a correlation between attributes and land-

cover changes, and to derive concept of environmental factors of land-cover changes 

between 1945 and 1998. Land cover changes between these years were interpreted 

from aerial photographs and six different system included. Eight temporal images were 

used to define ‘trajectories of change’ that is the temporal sequences of eight 

successive land cover types of the patches. In order to group the trajectories cluster 

analysis were performed by coding the land cover data of the patch trajectories by their 

frequencies. Then the trajectories are grouped into land-cover types. To find the 

general land-cover pattern cluster analysis were used. Canonical Correspondence 

Analysis (CCA) was performed on the land cover data and environmental variables to 

find the relationships between them. Results of CCA show clear spatial and temporal 

correlations between environmental variables and land-cover data. From 1945 to 1998 

CCA differentiated tree periods with a stable correlation between variables. Also CCA 

diagram reflects the typical stable sites of the land-cover classes.  

Intraset correlations of environmental variables are used for which environmental 

variables were more important in structuring the ordination of land cover trajectories. A 

joint plot showed the general land-cover trajectory types over the whole observation 

time period and their correlations with environmental variables. Single joint plots at 

individual time intervals showed correlations between land-cover transitions and 

environmental variables.  

Domaç et al. (2004), studied to improve the accuracy of vegetation classification by 

using future components which were constituted by using raw bands and various 

vegetation indices. The main inputs of the feature components are the indices. Two sets 
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of indices were used; the first set includes the vegetation indices which directly give the 

spectral response of chlorophyll by using the ratio between red and NIR bands. The 

second set was used to remove the soil noise by changing slope value of red and NIR 

bands. The relationship between vegetation cover and the indices appears to change 

over the area according to the certain conditions such as soil cover type. To minimize 

the effect of soil on vegetation reflectance, second set of indices were used. Besides 

these feature extraction oriented indices, PCA were performed on raw bands in order to 

find if vegetation related information could be collected in few explanatory bands. At the 

end of these analyses it is assumed that; selecting PC1 and PC2 of vegetation indices, 

PC1 of soil indices, PC2 and PC3 of raw bands and DC3 and DC4 as feature components 

will remove the redundant data among multivariate datasets, such as multispectral 

remote sensing images and increase the accuracy of the classification. By using these 

feature components overall accuracy was increased to 76.92 % from 62.96 %. This rise 

shows that the new formed bands were successful in the discrimination of vegetation 

classes with very similar spectral reflectance values.  

Dirnböck et. al. (2003), evaluated the use of correlation between plant communities and 

topography for vegetation mapping in Alpine regions. Two main techniques were 

employed in this study; 1) the gradient analysis by means of Canonical Correspondence 

Analysis (CCA) as a prediction tool, 2) image segmentation as a filter for reducing the 

number of incorrect predictions. The positions of each sample pixel in the CCA space 

were calculated, since its spectral and topographical variables are known. Extrapolation 

algorithm is constructed by using canonical coefficients and each pixel is assigned to a 

vegetation class which is in the nearest neighbor to this pixel in the ordination space. 

Region growing multiple pass segmentation algorithms was used in the image 

segmentation part to define regions in an image that correspond to objects, plant 

communities on the ground. The advantage of this method is to control the minimum 

and maximum number of polygons especially heterogeneous and patchy environments. 

Total area was divided into 162,000 regions by using orthophoto images. After 

overlaying the vegetation types derived from CCA results, 24 vegetation types were 

determined. In this study the accuracy of the result of CCA classification is calculates as 

57 %. Combination of image segmentation and post-processing stages, overall accuracy 

increased by 12 %. 

Pfeffer et. al. (2003), developed a procedure for moderate to high resolution vegetation 

mapping, where access is difficult and field data collection is expensive. In this study 

the topographic attributes were derived from a digital elevation model and nominal 
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vegetation data were reduced to normalized scores by Detrended Correspondence 

Analysis (DCA). In the first step of the study, ecologically important derivatives of DEM 

were computed. DCA was used to reduce the vegetation scores to a limited number of 

major axis. Then DCA axis scores were related with the topographical attributes using 

multiple linear regressions. Spatial correlation structures of the regression residuals 

were examined using semi-variograms. In the final stage the semi-variograms and 

regression models were combined using kriging interpolation. DCA scores are classified 

into vegetation classes. Topographic attributes; altitude, slope, planform curvature, 

solar radiation, distance to ridges, mean wetness index and mean sediment transport 

were derived from the digital elevation model. The result of the field studies identified 

147 species; most of them are common among the study area. Although all species has 

its own preferences, some of them are rather tolerant, which makes it difficult to 

identify correlation between these species and topographic attributes. 

Takyu et. al. (2002), examined the differences in soil nutrient and moisture conditions 

along topographical gradient on different substrates, and compared the magnitude of 

changes among the substrates. Each substratum is divided into three topographical 

units (ridge, middle- and lower-slope) and the core samples were taken on the chosen 

plot areas. The mineral content of these samples were tested. The supply of soil is 

decreasing in the upslope direction with a decreasing order of Quaternary sedimentary, 

Tertiary sedimentary, ultrabasic rocks. To compare the composition of species among 

the nine plots, Detrended Correspondence Analysis (DCA) was performed to ordinate 

the plots based on the relative basal area of the species. Relationships between the 

number of species and sample area were compared among the nine plots by ANOVA. 

Hoersch et. al. (2002) analyzed the overall influence of topography and landform on 

vegetation distribution using contingency tables and principal component analysis. In 

high mountain areas, site information is generally lacking, so DEM is an invaluable 

potential substitute for use in vegetation analyses. In the study appropriate landform 

parameters have been derived, indicating temperature and moisture distribution, 

exposure towards wind, snow and etc. Using contingency tables and principal 

component analysis the overall influence of topography and landform on vegetation 

distribution was analyzed. Throughout the study analysis of the correlation between 

vegetation types, distribution patterns and landform characteristics in an alpine 

environment is stressed. Besides primary parameters like elevation like slope amount 

and curvature indices, its first and second derivatives were created. As radiation and 

moisture supply can impose major restrictions for vegetation growth, some combined 
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parameters were developed. Band wise topographic normalization was performed to 

minimize the problems arose because of the illumination effects and topographic 

shading. To find out the correlation between the landform parameters and vegetation 

types three main steps were performed within statistical analysis: a) Qualitative 

Analysis, b) Contingency tables and c) Principal Component Analysis. Landform variables 

showing high correlation with the first principal components are likely to be most 

important for the relevant vegetation class. For the whole vegetation dataset nearly all 

the landform parameters show high correlation with contingency coefficients. The PCA 

results show that in order to explain all of the information within the original landform 

dataset there has to be 8-9 principal components; this means there is not much 

redundancy in the data. 
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CHAPTER 3 

 

 

DATA 

 

 

 

Throughout the analyses of the thesis, six main data sets were used. The first one was 

the satellite images that were used to extract the vegetation classification map and the 

rest were topographic and geologic data set, which were used as an ancillary data in 

the post classification sorting step. 

 

3.1. Satellite Data 

 

The image used in this study was acquired from Landsat 7 Enhanced Thematic Mapper 

(ETM), which is the latest in a series of Landsat earth observation satellites. The 

acquisition date of the 174/35 image used in this study was 2000/8/7. Landsat ETM is 

composed of nine bands, six of them having the spatial resolution of 30 m and detecting 

the reflectance values both in the visible and infrared portions of the electromagnetic 

spectrum, one of them is panchromatic band and has 15 m resolution, and two of them 

are thermal bands with 60 m resolution. 

Digital images collected from airborne or space borne sensors often contain systematic 

and unsystematic geometric errors. Some of these errors can be corrected 

systematically by giving calibrations data or parameter for correction. Other errors can 

only be corrected by matching image coordinates of physical features recorded by the 

image to the geographic coordinates of the same features collected from a map or from 

the field by using Global Positioning System.  

In this study the scene was registered to the earth coordinates by using 1/25.000 scaled 

topographical base maps. The geometric correction was performed using a second-

degree polynomial with a Root Mean Square Error (RMSE) of 0.5 pixels. Since the 

original DN values are not preserved during the resampling process, classification 
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process was performed on uncorrected image. Geometrically corrected coordinates were 

given to the resulting classification map. ETM 5/4/3 color-composite of the study area is 

given in Figure 3.1. 

 

 

 

 

 

Figure 3.1. Landsat ETM 5/4/3 color-composite 
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3.2. Forest Data 

 
The study area was covering 163,263 ha of areas and this corresponds to ten 1/25.000 

scaled forest management maps which were gathered from the Ministry of Forest and 

Environment, Department of Mapping and Photogrammetry. Since middle upper portion 

forest management map of the study area could not be found, this part was not 

included in the thesis. These maps were then scanned and registered to the exact earth 

coordinates. Digitization process was completed in TNTmips software and the polygons 

were digitized according to the type, age, and canopy of forests. At the end of 

digitization process 26 different classes were determined, including settlement and 

agriculture areas (Figure 3.2). Following this, 26 different raw legend classes were 

merged into 9 modified uniform classes according to type, canopy and degradation of 

the vegetation which were given in Table 3.1 and Table 3.2 respectively (Figure 3.3).  

This process is important for the ecological validity of the classification. Forest 

management plans are prepared for the timber production purposes and they do not 

always bear ecologically meaningful classes. Classes such as degraded maquis, coppice 

can be considered as an example to this situation. Based on this fact some of the 

classes have to be revised and converted or merged to acquire ecologically meaningful 

classes as discussed in the previous paragraph. 

In the legend of the forest management maps some polygons are labeled as degraded 

forests. This class mainly determined according to the canopy closure; if the forest has 

open canopy with less than 40 % crown closure, it is called degraded. However this 

degradation could be result of two reasons, the areas could be either under the effect of 

severe human impact or the physical conditions of these areas were not suitable for the 

recovery of the formation prior to any sort of impact (i.e. natural or human induced). In 

order to carry out ecologically meaningful classification it was important to separate 

naturally open canopy forest types from the human induced open canopy. For finding 

the reason of degradation, these polygons were examined one by one and the new 

codes were assigned according to Table 3.2. 

For ÇBÇz, (Highly Degraded Callabrian Pine) the polygons in the Eastern part of the 

study area are seems to be suitable for the growth of CP (Callabrian Pine) forest even 

though these areas classified as degraded in the forest management maps. These 

classes were added to CP in the second table considering the neighborhood of these 

polygons to CP forests, the suitability of elevation values and proximity of these 

polygons to the settlement points. Using the same logic with the CP species, the 
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degraded OB, BP and O polygons were searched one by one to be included in BP, OB 

and O classes. 

 

 

 

Table3.1. Legend of digitized raw forest management maps. 

 

Raw legend Classes and ID numbers 

1 Forestation Area 14 Settlement and Agriculture Areas 

2 Highly Degraded Black Pine 15 Oriental Beech 

3 Highly Degraded Callabrian Pine 16 Oriental Beech Black Pine 

4 Highly Degraded Other Broad-Leaved Trees 17 Oriental Beech Other Broad Leaved Trees 

5 Highly Degraded Coppice 18 Oriental Beech Oak 

6 Highly Degraded Oriental Beech 19 Oak 

7 Highly Degraded Oak 20 Oak Black Pine 

8 Highly Degraded Taurus Cedar 21 Oak Other Broad Leaved Trees 

9 Black Pine 22 Oak Oriental Beech Other Broad Leaved Trees 

10 Black Pine ( Forestation Areas) 23 Normal Oak Coppice 

11 Callabrian Pine 24 Forest Soil 

12 Callabrian Pine( Forestation Areas) 25 Taurus Cedar 

13 Callabrian Pine-Oak 26 Taurus Cedar Black Pine 
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Table 3.2. Modified uniform classes of forest management maps. 
 
 

Class Code Classes Definition Original class ID’s 

OB-O-C Oriental Beech- Oak-
Carpinus 

Mixed Broad-Leaved 
Forest 17,18, 21, 22, 23 

O Oak Broad-Leaved Forest 19 

CP Callabrian Pine Needle-Leaved Forest 11, 12 

FS Forest Soil Empty area within a 
forest 24 

HD-OB-O-BP-C-Copp 

Highly Degraded-
Oriental Beech-Oak- 
Black Pine-Carpinus-

Coppice 

Mixed Needle and Broad-
Leaved Forest 4, 5, 7 

TC-O-OB-BP-CP 

Taurus Cedar-Oak-
Oriental Beech- 

Black Pine-Callabrian 
Pine 

Mixed Needle and Broad-
Leaved Forest 13, 16, 20 

OB Oriental Beech Broad-Leaved Forest 6, 15 

HD-TC-CP Highly Degraded-Taurus 
Cedar- Callabrian Pine 

Mixed Needle-Leaved 
Forest 3, 8 

TC-BP Taurus Cedar-Black Pine Mixed Needle-Leaved 
Forest 2, 9, 10, ,25, 26 

S&A Settlement and 
Agriculture Areas 

Settlement and 
Agriculture Areas 14 
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Figure 3.2. Digitized forest map of the study area 
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Figure 3.3. Reclassified forest Management Map of the study area 

 

 

 

Due to its mosaic feature and the continuity it is usually difficult to identify discrete, 

repeatable classes to describe the vegetation cover (Whittaker, 1970 and Kimmins, 

1997). Especially in the floristic level classification issue gets more complicated due to 

species that are physiognomically and physiologically similar to each other. Black Pine 

and Callabrian Pine, Oak and Hornbeam species, Oriental Beech and Hornbeam are the 
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species of the study area that are highly similar to each other from remote sensing 

perspective. Figure 3.4 and Figure 3.5; give more information about the similarity of the 

above species. Besides above problems, forests management maps, only source of 

vegetation maps can be found extensively for Turkey, has many problems from the 

ecological classification perspective that does not help in the remote sensing 

classification exercises.  

 

 

 

a b c 
 

Figure 3.4. A figure showing needle-leaved species: a) Taurus Cedar, b) Callabrian 
Pine, c) Black Pine 
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a b c 
 

Figure 3.5. A figure showing broad-leaved species: a) Oak, b) Oriental Beech, c) 
Carpinus 

 

 

 

3.3. Geologic Data  

The 1/100,000 scaled geologic map of Amanos Mountains was acquired from the MTA 

General Directorate archive (Aksay et. al., 1988). This map then was scanned, extracted 

according to the boundary of the study area and registered to its exact coordinates 

using 1/100,000 scaled topographical maps. The extracted geologic map was digitized 

and the boundaries of the units obtained. Actually the original map consists of 17 

distinct geological units given in Figure 3.6 (Table 3.3). This map was reclassified into a 

material map as some of the geological classes are made up of same rock material but 

different in age. All of the units were checked both by definitions from MTA reports and 

field based expert knowledge had been gathered from geologists who had been worked 

in the study area (oral communication, Dr. Bora Rojay, 2004), based on physical 

characteristics. Finally geological units have been merged, the final legend is decreased 

down to 11 classes (Table 3.4) and geological map is reclassified as a material map that 

is presented in Figure 3.7. 
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Table 3.3. Legend of geology map taken from MTA. 

 

Code Age and map code Short Description 

1 Lower Jurassic-Triassic Tra Quartz Arenite, quartzite conglomerate 

2 Lower Jurassic-Triassic Trk Dolomite, dolomitic limestone 

3 Eosene Ta Cherty nodular limestone 

4 Cambrian Ee Conglomeratic quartzite, quartz arenite 

5 Cambrian Ec Shale, siltstone, sandstone, greywacke 

6 Cambrian Ek Dolomite, dolomitic limestone 

7 Cambrian Et Shale, siltstone, greywacke , argillaceous limestone 

8 Cretaceous-Upper Jurassic Kjk Limestone, dolomitic limestone 

9 Quaternary Qal,Qm Alluvium, debris 

10 Miocene Te Macro fossiliferous limestone 

11 Miocene Ty Marn, sandstone, claystone, limestone 

12 Ordovisian Ok Quartzite, sitstone, shale 

13 Paleocene-Maastrichtian Tka Limestone with basal conglomerate 

14 Pliocene Ts Conglomerate, sandstone, claystone 

15 Quaternary Qb Basalt 

16 Cenonian Kol Serpantinite, limestone, ophiolite 

17 Upper Cretaceous Kof Tectonic peridotite, gabbro, diabase 
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Figure 3.6. Figure showing the digitized geology map of the study area 
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Figure 3.7. Reclassified geologic map of the study area.  
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Table 3.4. Legend of reclassified geology map 

 

Original units 
code Description 

2,8 Dolomite, dolomitic limestone, limestone 

9 Alluvium, debris 

16 Serpantinite, limestone, ophiolite 

4,12 Conglomeratic quartzite, quartz arenite, quartzite , siltstone, shale 

17 Tectonic peridotite, gabbro, diabase 

5,6,7 Shale, siltstone ,sandstone, greywacke, Dolomite, dolomitic limestone 

15 Basalt 

13 Limestone with basal conglomerate 

3 Cherty nodular limestone 

10,11,14 Macro fossiliferous limestone, Marn, sandstone, claystone, limestone 

1 Quartz Arenite, quartzite conglomerate 

 

 

 

3.4. Digital Elevation Model (DEM) 

 

The Digital Elevation Model (DEM) used in this study was taken from the Shuttle Radar 

Topography Mission (SRTM) data. SRTM obtains Earth surface data by remote sensing 

technology utilizing synthetic aperture radar. Obtained data is converted into height 

data called a Digital Elevation Model (DEM), having a resample resolution of 90 meters 

(Figure 3.8) (http://iss.sfo.jaxa.jp/shuttle/flight/sts99/mis_srtm_e.html). Absolute 

vertical accuracy of SRTM data is ±16 m and relative vertical accuracy is ±6 m, 

horizontal positional accuracy is about ±20 m (Kääb, 2004). 

Elevation of the study area ranges from 0 to 2214 m. The lowest elevations are 

dominant around the eastern part of the area generally covered by the agricultural 

areas and the western most areas where the Mediterranean Sea exists; whereas the 

highest elevations can be observed around the central and central north regions of the 

study area which are the Amanos Mountains.  
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Figure 3.8. Digital Elevation Model of the study area 
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75 

3.5. Slope Data 

 

Slope data was constituted using DEM of the area. Elevation values in adjacent cells are 

compared for the slope output and slope value ranges between 0 to 75 degrees. Slope 

map of the region is given in Figure 3.9. 

 

 

 

 

 

Figure 3.9. Slope map of the study area 

75° 

0 
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3.6. Aspect Data 

Aspect values (or compass direction of a slope) of the region vary between 1° to 360° 

(Figure 3.10). This circular distribution is misleading in the statistical analysis stage. For 

example even though 2°and 358° are very close values in real world, but in interval 

scale analysis stage these two values would gain totally different ranks. In order to 

overcome this problem aspect should be transformed by trigonometric functions 

(Roberts, 1986) into its components. The simplest way to do this is to create two new 

variables, called “northness” and “eastness”. These components are calculated as:  

Northness=cos (aspect) 

Eastness = sin (aspect) 

Northness will take values close to 1 if the aspect is generally northward, close to -1 if the 

aspect is southward, and close to 0 if the aspect is either east or west. On the other hand 

eastness behaves similarly, except that values close to 1 represent east-facing slopes. 

Eastness and northness maps of the study area was given in Figure 3.11. 
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360° 

 

 

 
 

Figure 3.10. Aspect map of the study area.  

360° 
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a 

b 
 

Figure 3.11. a) Northness component of aspect map, b) Eastness component of 
aspect map 
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CHAPTER 4 

 

 

ANALYSIS 

 

 

 

4.1.  Methodological Snapshot 

The flowchart of the study explains the structure of the thesis with a graphical 

representation (Figure 4.1.). 

In the data preparation part of the study, two main sets of data are used. The first set 

is the Landsat ETM images and SRTM DEM, slope, geology, forest, northness, and 

eastness are the second set of data used as ancillary information in the study.  

Coarse classification of the Landsat images is performed using maximum likelihood 

classification algorithm in the second part. The class raster which is the result of this process 

is the taken as the coarse classification result of the study and named as stage 1. A bi- 

product was also produced called distance raster showing the probability of each class. 

For the statistical analysis, tree sets of data are prepared, two of which are sampled by 

random stratified method and the other is prepared with an expert knowledge. These 

data sets are evaluated by canonical correspondence analysis to find out the general 

relationships between environmental variables and species distribution.  

In the second part discriminant analysis is used to determine which environmental 

variables differentiate the vegetation classes. Determined Fisher’s coefficients are used 

to classify the vegetation cover and named as stage 2 classification. 

Integration of maximum likelihood classification and the results of the statistical analysis 

are applied in part three by using the distance raster values. The pixels with a distance 

raster value of 1 are considered as correctly classified by maximum likelihood 

classification and taken from stage 1 result. Pixels having a distance raster value less 

than 1 are accepted as not correctly classified with a maximum likelihood classification 

and result of stage 2 is used instead of those pixels and stage 3 is formed. Accuracy 
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assessment of all stages results are calculated for each data set, and discussed in this 

chapter. 

 

 

 

 

Figure 4.1. Flowchart of the study. 
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4.2. Coarse Classification 

 

In this study the vegetation classification is performed using the subscene of Landsat 7 

ETM, extracted from the 174/35 scene. TM1, TM2, TM3, TM4, TM5, and TM7 bands of 

the Landsat image with a spatial resolution of 30 meters were used in the classification 

of the image. 

 

4.2.1. Training Set 

 

Supervised classification method performs the classification using the spectral values of 

the training areas. Known points are signed to train and the method uses these known 

pixels to classify the unknown areas into one of the previously defined classes. The aim 

of defining a training set is to gather the statistical information of the spectral responses 

of the vegetation classes. Despite Jensen, (2000) recommended that the minimum 

number of the training pixels should be ten times the number of the used bands, to get 

the statistical information of the spectral bands it would be useful to take the training 

pixels ten or hundred times the number of bands. 

Training set of the coarse classification was constituted using the data coming from the 

field and 1/25,000 forest management maps. Since the quality of training data affects 

the accuracy of classification, it is important to choose pixels from homogeneous, 

representative areas and away from the areas of mixed classes. Visual interpretation of 

TM 543 color composite with the use of forest management maps helped to find the 

best fitting training set. Table 4.1 gives the number of training pixels taken from each of 

the classes in this study.  

The relationships of the classes could be understood from the spectral characteristics of 

the training pixels. In the training set dendogram in Figure 4.2, seperability of each 

class is calculated. The pair classes that join together near the left edge of the diagram 

are closely related with each other and the degree of relatedness decreases to the right. 

According to this figure; spectral reflectance values of CP and TC-BP pair and TC-O-OB-

BP-CP and OB-O-C pair are very similar to each other. On the other hand; FS and OB 

classes could be easily discriminated from the rest of the classes. 
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Table 4.1. Number of training pixels.  

 

Class Value Number of Training Pixels

Oriental Beech-Oak-Carpinus (OB-O-C) 37 

Oak (O) 24 

Callabrian Pine (CP) 51 

Forest Soil (FS) 64 

Highly Degraded Oriental Beech-Oak-Carpinus Coppice (HD-OB-O-C-Copp) 45 

Taurus Cedar-Oak-Oriental Beech-Black Pine-Callabrian Pine (TC-O-OB-BP-CP) 43 

Oriental Beech (OB) 48 

Highly Degraded Taurus Cedar-Callabrian Pine (HD-TC-CP) 43 

Taurus Cedar-Black Pine (TC-BP) 37 

Total Number of Pixels 392 

 

 

 

 

 

Figure 4.2. Training set dendogram 
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4.2.2. Maximum Likelihood Classification 

 

After the selection of training pixels, classification was performed on the raw bands of 

the image. Nine vegetation classes were discriminated using maximum likelihood 

classification classifier. The resulting map of this process is given in Figure 4.3. 

 

 

 

 

 

Figure 4.3. Coarse Classification result 
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4.3. Statistical Analyses 

 

4.3.1. Sampling 

 

In order to perform the Discriminant analysis, tree different sets of data were prepared 

to be used as statistical training sets in the analysis. In Set 1, the sample sizes were 

equal for each of the classes and stratified random sampling was used while generating 

the samples. In stratified random sampling, prior knowledge about the study area is 

used to divide the area into groups, and then each group is randomly sampled 

(Congalton and Green, 1999). 

In Set 2, the numbers of points are proportional to the total area of those class 

polygons. The points were selected by using again by stratified random sampling. A 

minimum amount of 15 points were used as local minimum normalizer relative to the 

area, hence regardless of size any class is represented by at least 15 random points.  

In Set 3, the points were taken in equal size from each of the classes, but in this case 

instead of stratified random sampling, the points were selected considering the 

representativeness of the point to which class it belongs to. The number of points for 

each set is given in Table 4.2. 

After forming the data sets by sampling, a table covering the elevation, slope, aspect, 

forest management map classes, geology classes, TM1, TM2, TM3, TM4, TM5, and TM7 

values of the points were prepared and saved for each of the set separately. Figure 4.4 

is showing the point values of one of the sample point. 
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Figure 4.4. Table showing the point values of the Data Set3 

 

 

 

Table 4.2. Number of points taken from the classes for each Data Set  

 

 

O
B

-O
-C

 

O
 

C
P

 

FS
 

H
D

-O
B

-O
-C

-
C

op
p 

TC
-O

-O
B

-B
P

-
C

P
 

O
B

 

H
D

-T
C

-C
P

O
 

TS
-B

P
 

To
ta

l 
sa

m
pl

e 
si

ze
 

Data Set 1 40 40 40 40 40 40 40 40 40 360 

Data Set 2 21 15 104 30 120 16 21 15 22 364 

Data Set 3 20 20 20 20 20 20 20 20 20 180 

 

 

 

4.3.2. Canonical Correspondence Analysis 

 

In harmony with the research problem in order to improve the mapping action of the 

vegetation species classes, basic topographical information is needed to be combined with 

the vegetation data. Just before this combination the relationship between the vegetation 

cover and environmental variables were explored by using Canonical Correspondence 
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Analysis (CCA) (Ter Braak, 1986), to figure out if there exist any significant relationship. 

CCA is a multivariate direct gradient analysis which is widely used in ecological studies. In 

this analysis, ordination axes are generated using the linear combinations of 

environmental variables, and calculates the centroids of the species or communities within 

the ordination space. The resulting ordination diagram shows the patterns of variation and 

also the main relationships between the species and each environmental variable 

(Dirnböck et. al., 2003;).  

In the diagram obtained from CCA (bi-plot) contains the environmental variables plotted 

as arrows, along with points for the samples or species. Each sample point lies at the 

centroid of the points for species that occur in those samples. Arrows representing the 

environmental variables indicate the direction of maximum change of that variable 

within the diagram. The length of the arrow is proportional to the rate of change and 

the position of the species points in relation to the arrows indicates the environmental 

preference of that species (MVSP User’s Manual, 1986-1998). 

The sum of canonical eigenvalues indicates the amount of variation explained by the site 

variables supplied (Ter Braak, 1986). According to the table 4.3, 62.63% of the variation 

in the species distribution is explained by using 5 environmental variables, in the first two 

Canonical Correspondence Axes (CCA) where 76.19 % is explained in the first three axes.  

 

 

 

Table 4.3. Eigenvalues of CCA axis  

 

 Axis 1 Axis 2 Axis 3 

Eigenvalues 0,54 0,37 0,18 

Percentage 6,75 3,84 2,29 

Cum.Constr.Percentage 39,94 62,63 76,19 

Spec.-env. correlations 0,75 0,55 0,43 

 

 

 

Although the CCA literally explains the relation of vegetation species classes with 

environmental variables, the quantification of this relation in terms of crisp decision 
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rules are hardly possible. The graph of multivariate analysis of environmental variables 

with the species distribution didn’t give clear relations between species and variables 

(Figure 4.5). This is probably due to the fact that the interaction within the variables are 

quite complex and could not be modeled by original feature components in three axes 

dimensions. Further factorials of features and interactions between variables might be 

attributed to this non-selective nature of this modeling space. 
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Figure 4.5. Biplot of species vs. environmental variables as a result of multivariate 
analysis 

 

 

 

So each environmental variable univariately analyzed with the species distribution, in 

order to see if there exist any significant relation that could be utilized as an embryonic 

decision rule. The results of these analysis, express the occurrence of the species 

according to DEM, Slope and Aspect individually. After analyzing these graphs with an 
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expert, some decision rules were extracted (Oral communication, Uğur Zeydanlı, 2004). 

The results of CCA can be explained by: 

• Forest Soil: 

Areas with lower elevation are more easily accessible thus suspect to human impact. 

Because of that these areas usually lost their forest cover and covered with the 

herbecous vegetation and usually occur below 500 m elevation (Figure 4.6). 

 

 

 

 

Figure 4.6. Graph of DEM vs. Species distribution 

 

 

 

• Callabrian Pine: 

Its distribution rarely exceeds 1000 m. According to Figure 4.6, CCA shows that 

elevation of 0-500 and 500-1000 m gives information about the distribution of the 

Callabrian Pine but it is not affected by the slope. 

On the other hand Callabrian Pine prefers the areas under the effect of sea because of 

humidity. According to Figure 4.7 distribution of the Callabrian Pine is explained by the 

W-NW and W-SW aspects because of the sea effect. 
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• Oak: 

For the distribution of Oak DEM gives good information (Figure 4.6). According to this 

figure, 1000-1500 m explains the Oak’s distribution sufficiently. 

Although Oak’s distribution does not show much relationship with the slope (Figure 4.8), 

it can be characterized in between 20-40 degrees, of which this is a wide range that 

many species falls in. 

According to aspect diagram (Figure 4.7) Oak’s distribution related with the W-NW and 

W-SW. However from an ecological perspective this does not yield any meaningful 

criteria that can be successfully generalized  

 

 

 

 

Figure 4.7. Graph of aspect vs. species distribution  

 

 

 

• Oriental Beech: 

According to DEM CCA diagram 1000-1500 m and 1500-2022 m range gives information 

about the distribution of the Oriental Beech. The figure 4.6 shows that it is not found 

below 1000 m. 
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The Slope diagram of CCA result (Figure 4.8) does not give any explanatory rule about 

the distribution of Oriental Beech. 

Aspect CCA diagram gives very good information about the distribution of this species. 

Since Oriental Beech prefers humid environments thus humid aspects, they usually 

occur in the N-NW directions in the study region (Figure 4.7). 

 

 

 

 

 

Figure 4.8. Graph of slope vs. species distribution 

 

 

 

• Taurus Cedar-Black Pine (TC-BP): 

CCA DEM diagram explains that TC-BP distribution occurs between 1500-2022 m 

elevations (Figure 4.6). The results of aspect and slope diagram are not giving clear 

rules for the distribution of TC-BP species. 
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• Highly Degraded Taurus Cedar-Callabrian Pine (HD-TC-CP) 

Callabrian Pine usually occurs up to 1000 m elevation and Taurus Cedar prefers 

elevations higher than 1000 m. The diagram gives the distribution of these species 

between 500-1000 m ranges which is quite meaningful. But since these altitudes are 

low, these areas could easily affected by the human factor, which could be the reason 

of degradation.  

According to the diagram of slope (Figure 4.8), it has no effect on the distribution of the 

HD-TC-CP. The occurrences of HD-TC-CP species are in the aspects facing S-SW 

direction according to diagram (Figure 4.7). 

 

• Over Degraded Oriental Beech-Oak-Carpinus Coppice (HD-OB-O-C-Copp): 

According to DEM CCA diagram (Figure 4.6), 0-1000 m is the elevation in which the HD-

OB-O-C-Copp distribution usually occurs. Meanwhile, this range is also explaining the 

reason of degradation.  

0-10° is the slope where the distribution of HD-OB-O-C-Copp species occurs according 

to CCA diagram (Figure 4.7).  

The aspects facing in the west direction are generally humid and important for the 

deciduous forests. The result of CCA Aspect diagram shows that HD-OB-O-C-Copp is 

occurring in west aspects (Figure 4.8).  

 

• Taurus Cedar-Oak-Oriental Beech-Black Pine-Callabrian Pine (TC-O-OB-BP-CP): 

According to DEM CCA diagram 1000-1500 m is a suitable environment for the 

distribution of TC-O-OB-BP-CP which is consistent with the elevation range of the 

species composition (Figure 4.6)  

Although TC-O-OB-BP-CP distribution does not show much relationship with the slope, it 

can be seen between 20-40 degrees. However this is a wide range that many species 

falls in (Figure 4.7). 

Such as HD-OB-O-C-Copp case, the result of CCA Aspect diagram shows that these 

species occurring in west aspects (Figure 4.8). 
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Although the results of the Canonical Correspondence Analysis show a distinct 

separation between certain species qualitatively, it is not giving exact rules when the 

mixed forests are considered. For example it could successfully discriminate Callabrian 

pine from the species occurring in higher altitudes. But when considering the species 

occurring in high elevation this analysis become inadequate in discrimination of Oak 

from Taurus Cedar-Black Pine class. These results prevent the use of CCA in the post 

classification sorting stage of the vegetation classification. 

 

4.3.3. Evaluation of Discriminant Analysis 

 

Discriminant analysis is used to determine which variables discriminate between two or 

more naturally occurring groups. Multiple Discriminant Analysis (MDA) is used to classify 

a categorical dependent which has more than two categories, using as predictors a 

number of interval or dummy independent variables. MDA is sometimes called 

discriminant factor analysis or canonical discriminant analysis. 

Discriminant analysis uses two types of variables; first one is a dependent “grouping 

variable” score in categorical form which is the Forest Management Classes in this 

study. Scores on a grouping variable are used to identify the groups by predicting the 

membership of each variable (Huberty, 1994). Second type of variable is a 

“discriminating variable”, which is the independent data that gives the characteristics of 

the cases to be used to distinguish the groups. 

Ultimately Discriminant Analysis (DA) is used to classify the given cases, and try to find 

out a linear equation or a series of linear equations that would be discriminating the 

groups. The backbone of DA is to find out the peculiar functions that would minimize 

within group variance and maximize the differences between groups. 

The major assumptions that should be fulfilled in order to apply this analysis is that the 

cases should be independent, discriminating variables should have a multivariate normal 

distribution, and within-group variance-covariance matrices should be equal across 

groups.  

Discriminant analysis explores the data in two steps; in the first step, the significance of 

the Discriminant functions are tested by comparing the matrix of total variances and 
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covariances and the matrix of pooled within-group variances and covariances using a 

multivariate F-test. Once seeing that group means are statistically significant, functions 

had been determined by using the combination of variables to provide discrimination 

between groups.  

It is known that Fisher’s Linear Discriminant functions are the best for discrimination 

among all linear functions of the original variables (Kanal and Krishnaiah, 1982). 

Besides, its ease in practical applications, these functions is derived without an 

assumption of normality which makes it attractive to users.  

Fisher (1936) (in Klecka, 1990), proposed to use linear combinations that maximize 

group differences while minimizing the variation within the groups while quantization of 

the discriminating functions. This idea leads the derivation of separate linear 

combinations which are classification functions for each group. Assigning each case into 

one of the group means assigning it to the group which it has the highest probability of 

belonging (Klecka, 1990). After assigning all of it into the groups, the discriminant 

analysis perform a classification process either to predict the group membership for the 

unknown cases or to test the accuracy of the classification procedure. 

In the previous stages, the sample sets were prepared to be used in the statistical 

analysis with SPSS 11.0 software. The analysis was performed for each of the three 

data sets individually by using the environmental variables as discriminating variables. 

After applying steps of statistical analysis and checking the validity of the tests, DA 

performs a classification process with given cases and calculate the correctly classified 

points. The results of this DA classification shows that only 52.2% of the cases were 

classified correctly which was not successful in discrimination of the data. It is obvious 

that other discriminating variables are in need to increase the success of the DA, which 

was considered as the raw Landsat ETM bands. The degree of success of the DA 

classification results for each Data Set is given in Table 4.4. According to the table, 

addition of ETM Bands increased the performance of the analysis. Furthermore, among 

the three data sets, third one with ETM Bands classified the 90% of the cases correctly 

which is quite successful. Resulting functions of this data set 3 were considered to be 

used in the next steps and outputs of statistical analysis are going to be explained in 

detail in proceeding sections. 
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Table 4.4. DA classification results for each data set 

 

 Without TM’s With TM’s % improvement 

Data Set 1 49.7% 57.1% 7.4 % 

Data Set 2 44.0% 63.1% 19.1 % 

Data Set 3 52.2% 90.0% 37.8 % 

 

 

 

Box’s M test (Table 4.5), tests the assumption of homogeneity of covariance matrices. 

This test is very sensitive to meeting the assumption of multivariate normality. For the 

data below, the test is significant so it could be concluded that the groups do differ in 

their covariance matrices, which is an assumption of DA. 

 

 

 

Table 4.5. Box’s M test results   

 

 

 

 

 

 

Eigenvalue shows the discrimination power of the function. The larger the eigenvalue, 

the greater the discrimination is. The square root of each eigenvalue is an indication of 

the length of the corresponding eigenvector. The % of variance column allows 

evaluating which canonical variable accounts for most of the spread, and % of variance 

Test Results

1226,386
1,764

528
29607,39

,000

Box's M
Approx.
df1
df2
Sig.

F
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column allows evaluating which canonical variable accounts for most of the spread. In 

this case the first eigenvector gives the 95.6% of the total variance explained by the 

variables. The eigenvalues for the Discriminant functions are given in Table 4.6. 

Table 4.6. Eigenvalues of Discriminant functions. 

 

Eigenvalues

17,540a 68,7 68,7 ,973
6,851a 26,8 95,6 ,934
,568a 2,2 97,8 ,602
,259a 1,0 98,8 ,454
,170a ,7 99,5 ,381
,095a ,4 99,8 ,295
,031a ,1 100,0 ,173
,011a ,0 100,0 ,105

1

2

3

4

5

6

7

8

Function

Eigenvalue
% of

Variance Cumulative %
Canonical

Correlation

First 8 canonical discriminant functions were used in the analysis.a. 
 

 

 

 

Wilks‘s lambda is a multivariate measure of group differences by calculating the ratio of 

the within-groups sum of squares to the total sum of squares. The value of lambda is an 

inverse measure, which means while the values near zero denote the higher 

discrimination, the values close the one shows less discrimination. By looking at the 

Wilks‘s lambda values in Table 4.7, it could be understood that the discrimination power 

of band 3 is highest and northness is lowest among the variables. The significance of 

lambda could be tested by converting it into F distribution  

In this table also the significances of the variables are given. The low significance value 

indicates the significant group differences. By looking at the significance values of 

discriminating variables in Table 4.7, the variable differences could be considered as 

significant. 
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Table 4.7. Wilks’ lambda values 

 

Tests of Equality of Group Means

,525 19,330 8 171 ,000
,838 4,145 8 171 ,000
,884 2,808 8 171 ,006
,919 1,895 8 171 ,064
,772 6,313 8 171 ,000
,154 117,365 8 171 ,000
,146 124,970 8 171 ,000
,099 193,970 8 171 ,000
,129 143,763 8 171 ,000
,132 140,881 8 171 ,000
,101 190,366 8 171 ,000

DEM

SLOPE1

GEOLOGY1
Northness

EASTNESS

TM1

TM2

TM3

TM4
TM5

TM7

Wilks'
Lambda F df1 df2 Sig.

 

 

 

 

In Table 4.8 Fisher Linear function coefficients are given. Columns of the table contain 

the coefficients of each group for a classification function. According to these 

coefficients, functions for each case are calculated and then case is assigned to the 

class whose value is higher.  
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Table 4.8. Fisher’s Linear function Coefficients 

 

Classification Function Coefficients

,0584 ,0580 ,0583 ,0622 ,0585 ,0605 ,0612 ,0577 ,0648
-1,0557 -1,0410 -1,1671 -1,0295 -1,0595 -1,0787 -1,1287 -1,1051 -1,0672
-2,5095 -2,5000 -2,7422 -3,3341 -2,8544 -2,6408 -2,5863 -2,4037 -2,6624
-5,0782 -6,0241 -5,3602 -1,2040 -5,6528 -5,1469 -4,6645 -5,6423 -5,7250

-28,9139 -29,1696 -27,6386 -32,7034 -28,8484 -28,7784 -28,2694 -27,0282 -26,7224
22,4861 22,5667 22,7887 22,2715 22,7467 22,5377 22,9139 22,2503 22,4413

,8779 ,8307 ,9277 -,2989 ,7608 ,6428 ,5998 1,1209 ,6385
-11,3349 -11,2899 -10,9433 -9,4949 -11,1730 -11,0441 -11,6246 -10,8777 -10,6611

2,9218 2,9433 2,3456 1,9147 2,5977 2,7557 3,4394 2,3955 2,4434
-1,7643 -1,8289 -1,9257 -1,3092 -1,8427 -1,9104 -1,8952 -1,9103 -2,0542
2,3995 2,4121 2,2661 2,6287 2,6006 2,4396 2,6526 2,3517 2,3509

-1429,05 -1434,07 -1420,98 -1391,81 -1428,1 -1399,16 -1512,02 -1379,66 -1368,82

DEM
SLOPE

GEOLOGY
NORTHNESS
EASTNESS

TM1
TM2

TM3
TM4
TM5

TM7
(Constant)

1 2 3 4 5 6 7 8 9
Forest Management Map Classes

Fisher's linear discriminant functions
 

 

 

 

By using the coefficients of the Forest Management Classes in the Table 4.8, functions 

for each group could be written. The equation of first class is given as an example:  

051429739952576431
49218233349112877901486122913928

07825509520557158401

,,,
,,,,,

,,,,

−×+×
−×+×−×+×+×
−×−×−×−×=

TMTM
TMTMTMTMEASTNESS

NORTHNESSGEOLOGYSLOPEDEMGroup

 

To evaluate how well the Discriminant function works, analysis performs a classification 

by using the known cases. According to the results of the table 4.9 about 90% of the 

cases correctly classified when Data set 3 is used in the analysis. The result of the 

Discriminant Analysis of the other sets is given in Table 4.4. 
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Table 4.9. DA classification result of Data set 3 

 

Classification Resultsa

14 5 0 0 0 1 0 0 0 20
3 16 0 0 0 1 0 0 0 20
0 0 17 0 0 0 0 2 1 20
0 0 0 20 0 0 0 0 0 20
0 0 0 0 18 2 0 0 0 20
0 0 0 0 0 19 0 1 0 20
0 0 0 0 0 0 20 0 0 20
0 0 0 0 0 0 0 19 1 20
0 0 1 0 0 0 0 0 19 20

70 25 0 0 0 5 0 0 0 100
15 80 0 0 0 5 0 0 0 100
0 0 85 0 0 0 0 10 5 100
0 0 0 100 0 0 0 0 0 100
0 0 0 0 90 10 0 0 0 100
0 0 0 0 0 95 0 5 0 100
0 0 0 0 0 0 100 0 0 100
0 0 0 0 0 0 0 95 5 100
0 0 5 0 0 0 0 0 95 100

1

2
3
4
5

6

7
8
9

MESCERE1

1
2
3

4
5
6
7

8
9

MESCERE1

Count

%

Original

1 2 3 4 5 6 7 8 9
Predicted Group Membership

Total

90,0% of original grouped cases correctly classified.a. 
 

 

 

 

4.4. The Use of DA Results in the Classification of Satellite Images 

 

After gathering the Fisher linear discrimination functions from the results of Discriminant 

Analysis, the next step was to use these functions in the classification of the satellite 

images. The incorporation of these results with the satellite images was used in two 

different stages. In the stage 2 the satellite images directly classified only with the 

classification functions gathered from the DA. A geoformula (Appendix) is prepared to 

calculate the class value of each pixel and assign it into one of the nine classes which 

has a higher Fisher’s Linear Function value. The output of this classification is given in 

Figure 4.9. 
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Figure 4.9. Figure of DA classification result (Stage 2) 

 

 

 

In stage 3, both the outputs of Maximum likelihood and Discriminant analyses was used. 

The basic outputs of the maximum likelihood classification are class raster and distance 

raster. Class raster was constituted by assigning each cell into one of the predefined 

classes, whereas the distance raster gives the probability of each cell of belonging to the 

assigned class. If distance raster value of a pixel is one, this means that the pixel is 100 % 

correctly classified according to the Maximum Likelihood classifier. In Figure 4.10, areas 
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with a green color shows the pixels having a probability of one, and the black areas are 

showing the pixels having a distance raster value less than 1. According to the histogram 

of the distance raster values; 47.38 % of the classified pixel values are one. Thus, these 

pixels could be considered as correctly classified with the Maximum Likelihood classifier.  

 

 

 

 

 

Figure 4.10. Distance raster showing the pixel values of 1  

 

In this stage of this study, the pixels having a distance raster value less than one was 

reclassified according to the Fisher’s linear functions which could be called as a Post 
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Classification Sorting. In the prepared geoformula, it is asked to take original 

classification values where the distance raster value is one, and take the “same data 

set” classification value of Stage 2 where the distance raster value is less than one. The 

result of the second stage classification with data set 3 is given in Figure 4.11. 

 

 

 

 

 

Figure 4.11. Classification map of Data Set 3 Stage 1 
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4.5.  Accuracy Assessment 

 

During the classification process many errors could be happened due to the quality of 

the training pixels, presence of mixed pixels and quality of ancillary data. Image 

classification is not considered as complete until an accuracy assessment has been 

performed as in Tso and Mather (2001), the accuracy term is explained as the level of 

agreement between the labels assigned by the classifier and the class allocations based 

on the ground data collected by the user. 

The most common way to represent the accuracy of a Landsat classification is in the 

form of an error matrix or contingency table (Congalton et al, 1983). This is an array of 

numbers in a form of rows and columns providing a comparison between the results of 

classification and known reference data. The main diagonal of the matrix gives the 

correctly classified pixels. Dividing the number of correctly classified pixel into the total 

number of sample points, gives the overall accuracy of the classification. For calculating 

the accuracy of each class separately, producer’s accuracy, and user’s accuracy can be 

used. The producer’s accuracy is calculated by dividing the entry (i,i) by the sum of 

column i, while the user’s accuracy is obtained by dividing the entry (i,i) by the sum of 

row i (Tso and Mather, 2001). In addition to overall accuracy, Kappa statistics were also 

calculated which is a discrete multivariate technique used in accuracy assessment for 

determining if one error matrix is significantly different than another (Congalton and 

Green, 1999). 

In order to assess the accuracy of classification, accurate ground truth or reference data 

is needed. The data set which used to measure the accuracy of this classification could 

be gathered from the field studies with the help of GPS’s, from the large scaled maps or 

from the aerial photograph. In this study the accuracies of the classification results were 

calculated using the Data Set 4. This data set is prepared to check the accuracies of the 

classification results from the 1/25.000 scaled forest management maps with stratified 

random sampling and field studies carried out in the summer of year 2002 and 2003 by 

WWF-TR ecologists (Figure 4.11). In total, 225 points were used in the measurement of 

the accuracy. 
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Figure 4.12. Sample points for accuracy assessment 

 

 

 

4.5.1. Accuracy of Coarse Classification (Stage 1) 

 

According to data set 4, the accuracy of the coarse classification result is 44.4 % and is 

presented in Table 4.10, with a 0.37 KHAT value. 
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Table 4.10. Error matrix of coarse classification 
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OB-O-C 4 8 0 0 6 0 3 2 0 23 17,4 
O 3 1 0 0 0 2 3 0 0 9 11,1 
CP 0 0 16 0 1 0 0 2 2 21 76,2 
FS 0 0 1 23 0 0 1 1 0 26 88,5 
HD-OB-O-C-Copp 7 10 1 0 10 2 1 4 2 37 27,0 
TC-O-OB-BP-CP 8 5 0 0 5 13 0 1 1 33 39,4 

OB 2 0 1 0 0 0 16 0 0 19 84,2 
HD-TC-CP 1 0 4 1 4 4 0 12 14 40 30,0 
TC-BP 0 0 2 0 3 4 0 3 5 17 29,4 
Row Total 25 24 25 24 29 25 24 25 24 225  

C
la

ss
if
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n

 

Producer’s 
Accuracy (%) 16,0 4,2 64,0 95,8 34,5 52,0 66,7 48,0 20,8  44,4 

 

 

 

4.5.2. Accuracy of Statistical analyses (stage 2) 

 

The accuracies of statistical analyses classification are calculated with the same data 

set, and the error matrix for each classification is given in separate tables. Overall 

accuracy of the statistical analysis classification Data Set 1 Stage2 is 39.1 % and KHAT 

statistics is 0.32 (Table 4.11), where overall accuracy of the statistical analysis 

classification Data Set2 Stage2 is 37.3 % and KHAT statistics is 0.30 (Table 4.12), and 

overall accuracy of the statistical analysis classification Data Set3 Stage2 is 62.2 % and 

KHAT statistics is 0.58 (Table 4.13). 
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Table 4.11. Error matrix of statistical analysis classification Data Set 1, Stage 2 classification 
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OB-O-C 12 13 1 0 4 4 10 0 0 44 27,3 
O 0 0 0 0 1 0 0 0 0 1 0,0 
CP 0 1 11 4 5 0 0 6 0 27 40,7 
FS 0 0 1 10 0 0 1 0 0 12 83,3 
HD-OB-O-C-Copp 1 1 0 0 4 1 1 1 0 9 44,4 
TC-O-OB-BP-CP 5 3 0 0 5 12 1 2 2 30 40,0 

OB 6 5 0 0 2 3 11 0 0 27 40,7 
HD-TC-CP 1 0 11 4 5 1 0 14 8 44 31,8 
TC-BP 0 1 1 6 3 4 0 2 14 31 45,2 
Row Total 25 24 25 24 29 25 24 25 24 225   
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Producer’s 
Accuracy (%) 48,0 0,0 44,0 41,7 13,8 48,0 45,8 56,0 58,3   39,1 

 

 

 

Table 4.12. Error matrix of statistical analysis classification Data Set2, Stage 2 classification 
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OB-O-C 7 11 1 0 0 1 8 1 0 29 24,1 

O 8 5 0 0 8 8 0 0 0 29 17,2 

CP 0 0 17 2 8 0 0 6 4 37 45,9 

FS 0 0 1 20 0 0 1 1 0 23 87,0 

HD-OB-O-C-Copp 1 1 0 0 4 1 0 2 1 10 40,0 

TC-O-OB-BP-CP 2 3 1 0 3 1 0 0 6 16 6,3 

OB 6 4 0 0 3 7 15 0 0 35 42,9 

HD-TC-CP 1 0 5 2 3 7 0 15 13 46 32,6 

TC-BP 0 0 0 0 0 0 0 0 0 0 0,0 

Row Total 25 24 25 24 29 25 24 25 24 225  
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Producer’s 
Accuracy (%) 28,0 20,8 68,0 83,3 13,8 4,0 62,5 60,0 0,0  37,3 
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Table 4.13. Error matrix of statistical analysis classification Data Set3, Stage 2 classification 
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OB-O-C 17 5 0 0 4 5 2 0 2 35 48,6 

O 4 16 1 0 3 4 0 0 0 28 57,1 

CP 0 0 20 1 1 0 0 3 4 29 69,0 

FS 0 0 0 23 0 0 1 2 0 26 88,5 

HD-OB-O-C-Copp 0 1 1 0 11 3 0 5 2 23 47,8 

TC-O-OB-BP-CP 2 1 0 0 3 8 0 1 2 17 47,1 

OB 1 1 0 0 1 0 19 0 0 22 86,4 

HD-TC-CP 0 0 2 0 4 0 0 13 1 20 65,0 

TC-BP 1 0 1 0 2 5 2 1 13 25 52,0 

Row Total 25 24 25 24 29 25 24 25 24 225   

C
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Producer’s 
Accuracy (%) 

68,0 66,7 80,0 95,8 37,9 32,0 79,2 52,0 54,2   62,2 

 

 

 

4.5.3. Accuracy of Integration (stage 3) 

 

Overall accuracy of the Integration stage for Data Set1 is 32.9 % with a KHAT statistics 

of 0.25 (Table 4.14), where the overall accuracy of the Integration stage for Data Set 2 

is increased to 39.1 % (KHAT statistics is 0.32) (Table 4.15) and the overall accuracy of 

the Integration stage for Data Set3 is 64,00 % with a KHAT statistics of 0.60 (Table 

4.16). 
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Table 4.14. Error matrix of Data Set1, integration Stage classification 
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OB-O-C 12 14 1 0 5 4 9 0 0 45 26,7 

O 0 0 0 0 1 0 3 0 0 4 0,0 

CP 0 1 9 1 5 0 0 6 0 22 40,9 

FS 0 0 2 0 0 0 0 0 0 2 0,0 

HD-OB-O-C-Copp 1 1 0 1 4 1 1 1 0 10 40,0 

TC-O-OB-BP-CP 5 3 0 0 5 12 1 2 2 30 40,0 

OB 6 5 1 21 2 3 10 1 0 49 20,4 

HD-TC-CP 1 0 11 0 5 1 0 13 8 39 33,3 

TC-BP 0 0 1 1 2 4 0 2 14 24 58,3 

Row Total 25 24 25 24 29 25 24 25 24 225  
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Producer’s 
Accuracy (%) 48,0 0,0 36,0 0,0 13,8 48,0 41,7 52,0 58,3  32,9 

 

 

 

Table 4.15. Error matrix of Data Set2, Integration Stage classification 
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OB-O-C 7 11 1 0 0 1 7 1 0 28 25,0 

O 8 5 0 0 8 8 0 0 0 29 17,2 

CP 0 0 17 0 8 0 0 6 4 35 48,6 

FS 0 0 1 23 0 0 1 1 0 26 88,5 

HD-OB-O-C-Copp 1 2 0 0 5 2 0 2 1 13 38,5 

TC-O-OB-BP-CP 2 2 1 0 2 0 0 0 6 13 0,0 

OB 6 4 0 0 3 7 16 0 0 36 44,4 

HD-TC-CP 1 0 5 1 3 7 0 15 13 45 33,3 

TC-BP 0 0 0 0 0 0 0 0 0 0 0,0 

Row Total 25 24 25 24 29 25 24 25 24 225  
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Producer’s 
Accuracy (%) 28,0 20,8 68,0 95,8 17,2 0,0 66,7 60,0 0,0  39,1 
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Table 4.16. Error matrix of Data Set3, Integration Stage classification 
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OB-O-C 16 4 0 0 3 5 4 2 1 35 40,00 

O 4 16 0 0 4 3 1 0 0 28 46,43 

CP 0 0 21 0 1 0 0 2 3 27 66,67 

FS 0 0 1 23 0 1 0 2 0 27 85,19 

HD-OB-O-C-Copp 0 1 1 0 12 3 0 4 2 23 47,83 

TC-O-OB-BP-CP 4 2 0 0 2 9 0 0 0 17 41,18 

OB 1 1 0 0 1 0 19 0 0 22 86,36 

HD-TC-CP 0 0 1 1 4 1 0 12 2 21 52,38 

TC-BP 0 0 1 0 2 3 0 3 16 25 44,00 

Row Total 25 24 25 24 29 25 24 25 24 225  
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Producer’s 
Accuracy (%) 64,0 66,7 84,0 95,8 41,4 36,0 79,2 48,0 66,7  64,00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 65

 

 

 

CHAPTER 5 

 

 

DISCUSSION 

 

 

 

The purpose of this research was to discriminate the classes of vegetation in formation 

or dominant species level. Even as distinguishing the broad-leaved forest from needle-

leaved forest is maintained with higher accuracies, (Dymond et. al., 2002; Jensen, 

2000), classifying them within themselves is not a very simple task as all of them are 

chlorophyll bearing spectral objects having similar spectral reflectance curves. The aim 

of this chapter is to endure step by step through this rigorous vegetation classification 

procedures used in this study while lightening the possible errors with their reasons, 

and evaluating the significance and success of all the sequential process.  

 

5.1. Data 

 

In this study a new approach is experimented on Amanos Mountains to map the 

vegetation types which are discriminated using Landsat ETM images with a spatial 

resolution of 30 meters. Globally in vegetation classification suitability of both the 

spectral and spatial resolution of the image to the desired map content and scale are of 

the key parameters of high accuracy. In recent operational satellites spectral choice is 

not too much as either Landsat like satellites operating in visible region or hyperspectral 

sensors should be chosen. On the other hand in spatial domain theoretically the spatial 

resolution of the image must be smaller than the size of the feature being classified to 

fully cover the classified objects. However in practice area that could be obtained by 

classifying the one Landsat image pixel is 900 m2 in which the gradations from one 

species to another or even complete different association of 3 other species is possible. 

Hence these naturally mixed pixels would always create problems and they will reduce 

to some extent the accuracy of classifications due to spectral confusion they create. 
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Bearing the above constraints in mind the possible optimum scale that can be obtained 

from result of these images is around 1/100.000. Also the scale of the ancillary and 

ground truth data should be coherent to explain the variance within the data set and to 

get consistent results.  

Forest management maps with a 1/25.000 scale was the main input of this study, which 

is a result of detailed field studies discriminating the forest stands according to species, 

age class and canopy of the vegetation type. After digitization of these maps, 26 

vegetation classes were attained but since some of the classes were not ecologically 

meaningful and besides gaining this detail is impossible with the spatial and spectral 

resolution of the Landsat images, this layer is generalized into 10 variables of interest, 

including settlement and agriculture. Despite this reclassification is based on the 

ecological criteria and removes the unnecessary details of the map, this process is 

completely expert dependent causing heterogeneous vegetation groups, which makes 

the discrimination difficult with the satellite images. Another problem about the forest 

management map is that some of the classes could be named as another class 

intentionally to protect some species by the forest management department staff, which 

in turn completely hampers the efforts to collect correct training signatures, statistically 

analyze the data and to collect objective accuracy assessment data sets. Both deciduous 

shrublands and maquis with the coracious leaves are called “Coppice” although 

ecologically they are two separate classes. 

Similar scale and reclassification problems are also effectual for the lithology layer. The 

only complete coverage of the region was available at a scale of 1/100.000 and consists 

of 17 classes some of which are distinct in geological aspect but of no interest or 

relation to ecology. The best effort to use this lithostratigraphical map as an 

environmental predictor was to reclassify into some ecologically meaningful legend, 

which could be the rock material itself. Consequently this reclassification was completely 

based on expert field knowledge, which could easily be addressed as a deficiency about 

the universal appliance of this variable. The resulting map consists of 11 classes that 

may lead to the loss of geological information but seems to be informative behind the 

scope of ecological interest. 

Elevation is a valuable data that could increases the accuracy of classification in a 

significant amount, since the elevation differences cause climatic variations influencing 

the vegetation type, aspect differences creates differential illumination regarding 

reflectance amount and sun capture, slope differences yield in different density of 

vegetation and different reflectance again. In this study Shuttle Radar Topography 
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Mission DEM is used which is having the highest resolution amongst all publicly available 

sources. As stated by the product description in web site of Jet Propulsion Laboratory at 

NASA the vertical accuracy of this product is approximately 10 meters in rough terrain 

ranging down to 5 meters in flat areas. These values of vertical accuracy sufficiently 

fulfills the needs of such an ecological characterization of the cover units as the 

resulting data would have a scale of 1:100.000. However the derivatives of this 

elevation model namely the Slope and Aspect, were also produced from the SRTM data. 

As expected the vertical accuracy constraints have migrated also to these derivatives, 

but the final mapping scale compensates these small errors.  

 

5.2 Classification 

 

The gathered accuracy result of vegetation classification with Maximum likelihood 

classifier is calculated as 44.4 %, which could be considered as a lower value. This 

result could be affected by various reasons. 

Although the Landsat ETM bands of the region registered to the UTM coordinates, 

classification was performed on the unregistered images, to preserve the original digital 

number values. Other layers which are used as an ancillary data were all registered to 

the 1/25.000 scaled topographical maps. While selecting the spectral signatures from 

the image and in the forming the Discriminant Analysis samples, this could result a 

minute amount of shifting from the original coordinate which is ignored in the study, but 

controlled individually at every single observation point. However, although minor, there 

exists a chance of misalignment, which could be attributed as operator error that would 

migrate down to final accuracy. 

Another main factor of this low accuracy is probably the rigidity of the legend used. The 

classification legend is based on the aggregated classes of forest inventory map, hence 

the classes are quite different in definition and on map, but the 44.4 % accuracy shows 

that they are not so much different in real world. The different pine species are the 

least distinguishable classes whereas forest soil is the best discriminated class among 

the others. The heterogeneity of the forest management classes also affects the 

classification accuracy. An additive factor related to the effect of the forest management 

maps on classification accuracy is in forest management maps the canopy closure of the 

forest units are also used. If the forest has open canopy with less than 40 % crown 

closure it is called degraded. While merging these degraded areas class type are 
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generally disregarded. The degree of subjectivity in forest management classes such as 

“highly degraded” does not reveal any quantitative difference relative to “less degraded” 

class. Different stages of degradation lead some problems in the classification since 

according to the canopy closure of the vegetation, soil and lithology type becomes a 

more important factor helping the discrimination of vegetation. 

The maximum likelihood classifier is one of the most popular methods of classification in 

remote sensing but one of the drawbacks of the method is normal distribution assumed 

for the each class in the method but in nature matching with normal distribution is a 

little probability, where the same assumption is valid for Discriminant analysis also. 

Both maximum likelihood classification and DA classification only consider the pixel itself 

regardless of the neighboring pixels. When classifying the contents of imagery, there 

are only a few attributes accessible to human interpreters. For any single set of imagery 

these are shape, size, color, texture, pattern, shadow, and association. Traditional 

image processing techniques incorporate only color (spectral signature) and perhaps 

texture or pattern into a process. Using ancillary data could be accepted as a way of 

adding contextual data into classification. As an example some of the neighboring pixels 

having same land cover type could be assigned as different classes due to some 

additional factors. Elevation, slope and aspect are the data types gradually varying 

rather than nominal nature. When these data types added to classification as ancillary 

data, similar pixels are classified in the same class regardless of the additional factors. 

Even though the spectral bands shows correlation with each other, their correlation with 

elevation, slope and aspect is low, means that they are covering different information 

channels, which is in fact quite valuable to discriminate the vegetation species type.  

 

5.3 Analysis and Accuracy 

 

Low accuracy value of maximum likelihood classification forced researchers to search 

alternative methods to be used in the classification. Addition of ancillary data in the 

classification by increasing the number of channels is a widely used method and it is 

believed that increases the accuracy. But addition of non-spectral information into 

classification could create some problems and require additional field study since the 

results are unpredictable. Instead of direct addition of the ancillary data, it is preferred 

to examine the statistical properties of the sample points and relationships of the 

environmental variables and species distribution.  
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Another recommended way to increase the accuracy is to use the multi-seasonal 

satellite images. Species show different spectral responses in different seasons 

according to their phenological stages which could be used to separate the species with 

similar spectral response (Nagendra, 2001). The selection of species specific 

phenological seasons could increase the accuracy obviously but also the cost of the 

study. 

Canonical Correspondence Analysis is used before applying the Discriminant Analysis to 

see if there exists any relationship between environmental variables and the species 

distribution. Bi-plots of the CCA analysis showed that the distribution of vegetation is 

highly effected by DEM, slope, and aspect variables. Since this analysis doesn’t give any 

quantitative result Discriminant analysis is applied on the data sets.  

Statistical analysis classification was performed in two different stages. In the first stage 

(Stage 2) Discriminant analysis functions are used to classify the image, and in the 

second stage (Stage 3) only the misclassified pixels of the Maximum likelihood method 

is replaced with the first stage results. It was expected that the second stage results will 

be higher than the first stage. Unfortunately according to the accuracy results of these 

two stages there is not any significant increase is observed (Table 5.1). This means that 

the pixels having a distance raster value of one is classified as the same class according 

to the Discriminant Analysis results. 

 

Table 5.1. Accuracy changes through different classification methods 

 

 
Stage 1 

(MLC Classification) 
Stage 2 

(Stat. Analy.Class) 
Stage 3 

(Integration of st1&st2) 

MLC 44,4 % - - 

Data Set 1 
(random stratified) 

- 39,1 % 32,9 % 

Data Set 2 
(random stratified area 
normalized) 

- 37,3 % 39,1 % 

Data Set 3 
(random stratified area 
normalized, expert oriented) 

- 62,2 % 64 % 
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First and second data set which are used in the Discriminant Analysis are prepared by 

using stratified random sampling method. It could generate problems especially in the 

inter-grading regions, mixed pixels and in the areas where land cover class has changed 

since the date of the formation of the forest management maps. Vegetation map is a 

choropletic map which means that each polygon has a discrete value (Hutchinson, 

1982). So each polygon has one attribute but actually these polygons could include 

different vegetation or land cover classes with a little difference in their nature. In 

random sampling, points could have an attribute of the polygon but the actual case in 

the nature could be different. It is seen that doing analysis with this data sets decreases 

the accuracy. When the sample points selected using an expert knowledge from the 

most representative areas of that groups the increase of accuracy is significant. 

In this study only 10 % of the ground truth data were collected from the field and the 

remaining was dependent on forest management maps. Selection of ground truth data 

was performed by stratified random sampling thus again it is difficult to be sure about 

the attributes of those points because of the nominal nature of the reference maps. 

While calculating the accuracy of classification these mislabeled samples would decrease 

the accuracy of the classification. 

When the accuracies of the individual classes are examined, maximum increase is 

observed in OB-O-C class with a 62.5 % and then 48 % in O class. On the other hand in 

heterogeneous classes the individual accuracies do not change much which means that 

discrimination of these classes are troublesome with all classification methods. As a 

result, overall accuracy increase between coarse classification and fine classification are 

around 20 %, but increase in producers and users accuracies of individual classes are in 

significant amount, which helps mapping the vegetation except the problematic classes. 

It could be thought that the amount of increase in vegetation classification is not that 

much high when considering the effort spend on this issue. By using only the Landsat 

bands accuracy could be increased up to 44.4 % in a species level vegetation 

classification. But if the discrimination is in floristic level, classification issue gets more 

complicated and addition of additional information and further improvements such as 

use of statistical analysis is highly required. 

Even though this application increased the overall accuracy of the classification in 

Amanos Mountains with these environmental variables; different study areas could 

require different variables affecting distribution of vegetation. For the regional scale 

biodiversity studies the minimum mapping unit of the study could be increased up to 
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100 ha, which require filtering of the resultant map. As the extent of the study 

increased, the level of detail must be deceased (Nagendra, 2001). Filtering process 

removes the unnecessary detail of the map, removing or assigning the outlier pixels to 

majorities and consequently it directly increases the accuracy while decreasing the level 

of detail.  

Generalizations of the legend units stands as a way to increase the general accuracy of 

the produced maps, however they are standing far away from the real purpose of the 

classification efforts. Although this study demonstrates that with a moderate effort level 

and with the help of few environmental variables, the overall accuracy increases nearly 

50 % from its initial stage. Where as it is obvious that addition of more environmental 

variables would yield in a more accurate mapping campaign of the species, bearing in 

mind that the statistical models will be saturated in further stages, yielding in such a 

fact that no more effort or variable inclusion would improve the accuracy.  
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CHAPTER 6 
 
 
 

CONCLUSION 
 

 
 

Improvement in vegetation classification accuracy is achieved with the use of ancillary 

data. Although the spectral resolution of Landsat images is considered as low in species 

level classification, use of additional information is increasing the discrimination power 

of Landsat bands. Ancillary data could be used to reduce the effects of correlation 

between spectral bands and as a way of adding contextual information in the analysis 

stage. 

 

The improvement in classification could be performed in various ways, but in this study 

environmental variables are incorporated into classification process by modeling the 

effect of these variables via Discriminant analysis. The result of Maximum Likelihood 

Classification, which is named as Stage 1 classification is 44.4 %. After the use of 

Fisher’s Discriminating functions the accuracy is increased up to 62.2 % in the Stage 2. 

Integrating these two classification map give the higher accuracy with the usage of 

distance raster which is a bi-product of Maximum Likelihood Classifier and named as 

Stage 3. The resulting classification map both includes statistical outcome of the 

environmental variables and information of satellite bands with a value of 64 %. 

 

The composition and the structure of vegetation could be influenced by various 

environmental variables hence there is no perfect correlation between environment and 

species, since some species are tolerant to varying extreme conditions. The correlation 

between species and environmental variables helped in mapping the vegetation at 

unobserved locations; ultimately with the use of elevation, slope, aspect, and lithological 

units as an ancillary data, 19.6 % increase in the vegetation classification was obtained 

in this study.  

 

Although the overall increase in the accuracy is about 20 %, in classes such as Oriental 

Beech-Oak-Carpinus (OB-O-C), Oak (O), Callabrian Pine (CP), Tauruc Cedar-Black Pine 
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(TC-BP) this value increases up to 62.5 %, whereas in Highly Degraded Oriental Beech-

Oak-Carpinus-Coppice (HD-OB-O-C-Copp), Taurus Cedar-Oak-Oriental Beech-Black Pine-

Callabrian Pine (TC-O-OB-BP-CP) and Highly Degraded Taurus Cedar-Callabrian Pine 

(HD-TC-CP) classes the increase is not noticeable. From these values it could be 

concluded that the approach gives good result in relatively homogeneous classes which 

includes less than 3 different species. 

 

This method could be recommended for areas where the traditional approaches are 

unsuccessful and where laborious field work is necessary.  
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[GeoFormula] 

 

Script=if ( s1_class_1_mref_Value > s1_class_2_mref_Value ) 

Script__2=Value = s1_class_1_mref_Value 

Script__3=else 

Script__4=Value = s1_class_2_mref_Value 

Script__5=if ( s1_class_3_mref_Value > Value ) 

Script__6=Value = s1_class_3_mref_Value 

Script__7=else 

Script__8=Value = Value 

Script__9=if ( step1_class_5_Value > Value ) 

Script__10=Value = step1_class_5_Value 

Script__11=else 

Script__12=Value = Value 

Script__13=if ( step1_class_6_Value > Value ) 

Script__14=Value = step1_class_6_Value 

Script__15=else 

Script__16=Value = Value 

Script__17=if ( step1_class_8_Value > Value ) 

Script__18=Value = step1_class_8_Value 

Script__19=else 

Script__20=Value = Value 

Script__21=if ( step1_class_9_Value > Value ) 

Script__22=Value = step1_class_9_Value 

Script__23=else 

Script__24=Value = Value 

Script__25=if ( step1_class_10_Value > Value ) 

Script__26=Value = step1_class_10_Value 

Script__27=else 

Script__28=Value = Value 

Script__29=if ( step1_class_11_Value > Value ) 

Script__30=Value = step1_class_11_Value 

Script__31=else 

Script__32=Value = Value 

Script__33= 

Script__34=if 
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Script__35=( Value == s1_class_1_mref_Value ) 

Script__36=Value = 1 

Script__37=else if 

Script__38=( Value == s1_class_2_mref_Value ) 

Script__39=Value = 2 

Script__40=else if 

Script__41=( Value == s1_class_3_mref_Value ) 

Script__42=Value = 3 

Script__43=else if 

Script__44=( Value == step1_class_10_Value ) 

Script__45=Value = 4 

Script__46=else if 

Script__47=( Value == step1_class_11_Value ) 

Script__48=Value = 5 

Script__49=else if 

Script__50=( Value == step1_class_5_Value ) 

Script__51=Value = 6 

Script__52=else if 

Script__53=( Value == step1_class_6_Value ) 

Script__54=Value = 7 

Script__55=else if 

Script__56=( Value == step1_class_8_Value ) 

Script__57=Value = 8 

Script__58=else if 

Script__59=( Value == step1_class_9_Value ) 

Script__60=Value = 9 

Script__61=else 

Script__62=Value = 100 

 

 

 

 

 

 

 

 


