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ABSTRACT

THREE-DIMENSIONAL RETARDING WALLS AND
FLOW IN THEIR VICINITY

TOKER, Kemal Atilgan
Ph.D., Department of Mechanical Engineering
Supervisor: Prof. Dr. M. Haluk AKSEL

December 2004, 164 pages

The performance prediction of solid propellant rocket motor depends on the
calculation of internal aerodynamics of the motor through its operational life. In
order to determine the control volume boundaries, in which the solutions will be
carried out, a process called “grain burnback calculation” is required. During the
operation of the motor, as the interface between the solid and gas phase moves
towards the solid propellant in a direction normal to the surface, the combustion
products are generated and the control volume expands. This phenomenon requires

handling of moving boundaries as the solution proceeds.
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In this thesis, Fast Marching Method is implemented to the problem of grain
burnback. This method uses the upwind nature of the propellant interface motion
and solves the Eikonal type equations on a fixed three-dimensional tetrahedron
mesh. The control volume is coupled to a one-dimensional and a three-
dimensional Euler aerodynamic solver in order to evaluate the performance of the
engine. The speed by which the interface moves depends on the static pressure on
the surface of the propellant which is provided by the flow solver. An iterative
method has been proposed between the interface capturing algorithms and the flow
solver. Computed solutions from zero-dimensional, one-dimensional and three-

dimensional flow solvers are compared and validated with experimental data.

Key-words: Solid Propellant Rocket Motor, Grain Burnback, Fast Marching
Methods, Finite Volume Method.
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UC-BOYUTLU GERILEYEN DUVARLAR VE
CEVRELERINDEKI AKIS

TOKER, Kemal Atilgan
Doktora, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. M. Haluk AKSEL

Aralik 2004, 164 sayfa

Kati yakith roket motorlar1 icin performans tahmini, motor igerisindeki
aerodinamik hesaplamalar sayesinde yapilir. Hesaplamalarin yapilacagi kontrol
hacminin olusturulmasi igin, geriye dogru yanma hesaplamalarinin yapilmasi
gerekmektedir. Motor ¢alistig1 siire boyunca kat1 ve gaz fazlar arasinda kalan ara
ylizey, yakita dogru yiizeye normal yonde hareket ederken, yanma {irtinleri ters
yonde kontrol hacme akarlar. Bu durumda hareket eden yiizeylerin, ¢oziim

ilerlerken takip edilmesi gerekmektedir.

Bu tez icerisinde geriye yanma problemi “Hizli ilerleme Metodu (Fast Marching
Method)” ile ¢oztimlenmistir. Bu metod yakit-gaz arayiiziiniin tek yone hareket
etme Ozelliginden faydalanip 3-boyutlu sabit tetrahedron ag tizerinde Eikonal tipi

denklemleri ¢6zmektedir. Kontrol hacim tek-boyutlu ve {i¢-boyutlu Euler akis
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coziiciiler ile performans tahmini yapmak i¢in birlestirilmistir. Yakit yanma hiz1
bu ¢oziiciilerden gelen yiizey statik basincina bagli kalarak giincellenir. Bu ytizden
ara yiizli takip eden ve akig ¢6zen programlar birbirini takip ederek calisirlar.
Coziictilerden elde edilen sonuglar gergek roket atesleme verileri ile karsilastirilmis

ve sonuglarin dogrulugu ispatlanmistir.

Anahtar Kelimeler: Kati Yakitli Roket Motoru, Geriye Yanma, Hizli Ilerleme

Metodu, Sonlu Hacim Metodu.
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CHAPTER 1

INTRODUCTION

Solid propellant rocket motor (SRM) is widely used in military and civil
applications where high thrust is required in order to transfer payloads. The solid
propellant is a combination of fuel and oxidizer, which enables the motor to
operate in all environmental conditions. Due to its relatively simple design, when
compared to other types of rocket motors, the operational reliability of a SRM is

very high.

The SRM consists of five main parts, which are given as follows (Figure 1.1):

1. Grain: The solid propellant, which generates high temperature

and high-pressure gas upon ignition.

2. Igniter: The combustion of the grain is initiated by the igniter.
3. Motor Case: The high pressure builds up in the motor case,

which sustains the combustion, and eventually the thrust is
created by this high pressure.

4. Nozzle: The high-pressure gas products are expanded to ambient
pressure and thrust is efficiently obtained.

5. Insulation: The motor case is protected from hot gases by

insulation which has a low thermal conductivity.



The performance characteristics of a SRM, which can be simplified to the thrust-
time curve of the motor, depend on the geometry of the grain, propellant properties
and flow variables. Any design or performance prediction effort, couple all of the
above mentioned topics and the applied science devoted to these problems is called

internal ballistics [1].

Case Interior  FPropellant
Cavity Grain

Nozzle

i i Combustion
AA Interface :

Figure 1.1 Main Parts of a Solid Propellant Rocket Motor

Provided that propellant properties and geometry are known, the performance
characteristic is obtained by the solution of the flow internally. The flow solution
should consider subsonic to supersonic compressible turbulent flow, combustion,
reactive multi-phase flow, and acoustic properties in order to fully capture the

nature of the operation of the SRM.

The objective of the solid propellant grain designer is to provide rocket motor with
a propellant grain geometry that will evolve combustion products consistent with

the thrust-time schedule required for the mission [2].

In a SRM during the operation, although nozzle and motor case insulation change
their shape, all the parts can be considered stationary except for the grain. The
grain changes its shape as the burning surface at each point recedes in a direction
normal to the surface at that point. Thus the control volume of flow expands as the
combustion process continues. Accurate prediction of internal flow properties

depends on, determination of propellant burning surface or flow control volume
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[3]. The flow control volume can be found by tracking or capturing the interface

between the gas side and the propellant side.

The performance prediction requires a control volume in which the flow solutions
will be carried out. The analysis can be performed in two- and three-dimensions.
The two dimensional cases consist of grains with constant port area, axi-symmetric
grains and end-burning grains. Analytical calculations give accurate results for
these types of grain geometry. However, most of the high performance SRM
requires much more complex grain configurations, which have burning surfaces in

all three dimensions and numerical solution techniques are required.

1.1 LITERATURE SURVEY

The solution techniques applied to moving boundary problems are suitable for the
investigation of SRM and a useful classification is given by Smolianski [4], which

considers the solution process under three main topics:

1. Flow Modeling: is used for solving the physics of the problem to obtain

flow properties. Methods fall into Eulerian, Lagrangian or mixed
Eulerian-Lagrangian category. Eulerian methods use a fixed frame of
reference and the fluid travels between computational cells. In
Lagrangian methods, the cells carry the same fluid elements. Thus the
coordinate system moves with the fluid. The mixed methods carry
characteristics of both methods.

2. Interface Modeling: is used for finding the location and shape of

interface. Methods fall into interface tracking and interface capturing
category. In interface tracking methods, the moving front is explicitly
tracked by following the nodes along the path of each fluid particle. In
interface capturing methods the grid is kept stationary and the fluid
particles on the front are captured. Both sides of the domain are

computed. A representative comparison is given in Figure 1.2.



3. Flow-Interface Coupling: The flow and interface solutions can be

coupled by segregated or integrated methods. In the former method as
the calculations for the flow proceeds, the interface is kept frozen and a
new position of interface is found while the flow properties are kept
frozen. In integrated methods the flow and interface are solved

simultaneously.

a) Interface Capturing b)Interface Tracking

Figure 1.2 Interface Modeling Techniques

Considering the characteristics of the two approaches used for interface motion, the

following comparison is done by Shyy et al [5].

* Interface Definition: The interface tracking methods define the interface as

a discontinuity and explicitly track its evolution. All the information
regarding the interface is already known, whereas in interface capturing
methods even to find the interface location may need complicated
procedures.

e Interfacial Boundary Conditions: In the interface tracking methods,

boundary conditions can be applied at the exact location of the interface
since the interface position is known at each instant. In the interface

capturing methods, the boundary conditions are manipulated to appear in
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the governing transport equations. This may lead to the smearing of the
boundary information and again complicated procedures are required in
order to minimize diffusion of the interface.

* Discretization of the Domain: In the interface tracking methods, the grid

adapts to the interface and hence grid re-arrangement and motion terms
have to be incorporated. When the interface begins to distort, the grid
needs to be regenerated each time. The resulting grid may be skewed and
unevenly distributed where several procedures are required in order to
preserve the connectivity and intensity. The interface capturing methods
have an advantage in this regard since the computations are performed on
fixed grid; hence the need for grid rearrangement is eliminated. However
when the interface is arbitrarily shaped, improved resolution in desired
regions is difficult to obtain, unless complicated local refinements are
adopted.

* Movement and Deformation of the Interface: Interface tracking methods

have so far experienced difficulty in handling topological changes, mainly
due to the breakdown of the grid arrangement and the need for
redistribution of field information in the vicinity of the interface for
unstructured grid methods. In interface capturing methods merged and

separated grids are taken care of automatically.

The advantages of these methods are dependent on the application that they are
utilized. For a general review of these methods one may refer to Shyy [5], Hou [6]

and Sethian [7].

A clear classification of methods used in literature is difficult to obtain since each
technique is a mixture of several other methods. In this report, the classification is

made according to the type of method by which the interface motion is solved.



1.1.1 Interface Tracking Methods

The most known interface tracking methods are Lagrangian Method, Smoothed
Particle Hydrodynamics (SPH) Method, Arbitrary Lagrangian-Eulerian (ALE)

Method and Front Tracking Method. The related references are given below.

Okamoto [8] analyzed the sloshing problem in closed containers with a Lagrangian
finite element method. The node elements follow the fluid particles therefore new
node positions are calculated at each time interval by the flow solver for the whole
domain. This method is suitable if the deformation in the domain is limited so that
the connectivity of elements does not change. For large deformations, the methods
using Lagrangian flow solvers require a re-meshing and re-zoning procedure

proposed by Fyfe [9].

Christodoulou [10] uses boundary fitted finite element discretization for free
surface flows. An integrated solution method is used, where structured elliptic
mesh generation and flow equations are coupled and solved simultaneously. This
method produces accurate results if the boundary deformation is small. Camacho
[11] wused unstructured boundary-conforming curvilinear grids for ductile
penetration where large deformations occur. The mesh is adapted or generated
automatically at each time step according to the level of deformation. By this way

accuracy increases at the cost of mesh generation.

Hirt et al [12] proposed Arbitrary Lagrangian-Eulerian (ALE) method which
reconstructs the mesh at locations near the interface with respect to the fluid in a
prescribed manner, the mesh is kept fixed at all other locations. The interface is

tracked by Lagrangian motion of vertices initially at the front.

Cristini et al. [13] presents an algorithm for adaptive restructuring of meshes on

evolving surfaces. The resolution of the relevant local length scale is maintained



everywhere with prescribed accuracy through the minimization of an appropriate

mesh energy function by a sequence of local restructuring operations.

Monaghan [14] applies Smoothed Particle Hydrodynamics (SPH) method to
incompressible fluid for free surface motion. This method does not require a grid
since the properties are obtained by interpolation from the set of particles, which
are disorderly scattered in the domain. The flow solutions are carried in purely
Lagrangian manner and several phases or species can be solved simultaneously.
Morris [15] extended SPH method to incorporate surface tension effects by
coupling continuum surface force method and removing the instabilities created at

the interface particles.

In front tracking methods the flow solutions are carried on a fixed grid where the
interface is tracked separately. Hyman [16] gives an overview of early front

tracking methods on fixed mesh.

The boundary conditions may be applied to inner cells where all domains are
solved simultaneously in immersed boundary method. Peskin [17] proposed
momentum forcing where interface is conserved and Goldstein [18] proposed
feedback forcing in order to represent solid bodies. Unverdi [19] and Juric [20]
applied this technique to several multi-fluid problems. Kim [21] has increased the
stability of immersed boundary technique by applying a second order interpolation
scheme for evaluating the momentum forcing on the body surface and inside the

body.

Udaykumar [22] [23] uses circular arcs in order to obtain shape information such as
normal and curvature. The Eulerian grid aids the merger/ breakup procedures at
the interface. Both sides of the domain require refining or coarsening of cells in
orthogonal domain. Tryggvason et al [24] implemented front tracking method with
solutions of Navier-Stokes equations on a fixed mesh for free surface flow

solutions.



Glimm et al [25], [26] uses a front tracking algorithm where the reconstruction of
the interface is performed by initially projecting the front on to a fixed mesh and
then reconstructing the interface by using this projected information. By this way,
the even distribution of surface mesh is guaranteed. Torres [27] uses a point-set
method where the connectivity of points by using an indicator function is not
required. Shin [28] et al. uses a level-contour reconstruction method, which allows
one to redistribute or delete interfacial points, based on a fixed mesh behind the

tracking particles.

Popinet [29] uses a front-tracking algorithm for the solution of the two-dimensional
incompressible Navier Stokes equations with interface forces. The interface is
represented using an ordered list of marker points. A parametric representation of
the interface is obtained using polynomials to connect marker points, which require
a re-distribution step due stretching and compression of the interface. The volume
fraction can be calculated by using the parametric form of the interface and surface

forces are calculated on the interface after the flow solutions are performed.

Cruchaga [30] proposes a Lagrangian interface technique defined in fixed mesh
finite element formulation. Johnson [31] used overset meshes for tracking
interface on a fixed Cartesian mesh. Yang [32] proposed a cut cell method in
Cartesian grid where the cells are split by the interface and boundary conditions

applied at each cut surface.

1.1.2 Interface Capturing Methods

The most known interface capturing methods are Marker and Cell (MAC) Method,
Volume of Fluid (VOF) Method, Level Set Method and Phase Field Method. The

related references are given below.

The marker is a virtual particle to represent liquid regions. They have no
quantifiable properties such as mass or energy, and serve only as a tool

emphasizing the fluid region. First the governing equations are solved on the fixed
8



grid containing the markers and the velocity field is calculated. Next each particle
is moved according to the velocity field. The interface of the free surface is

observed through marker distribution.

Marker-and-cell method is an extended version of marker particle method based on
finite difference methods, which requires orthogonal grid domain. Nakayama [33]
proposed a new technique by combining marker particle method with finite
element methods, which generalize the treatment of curved wall boundaries and the

viscous stresses.

York et al [34] proposes material-point method, which has evolved from particle-
in-cell method developed by Brackbill [35], in which material points have mass
and velocity and carry stress, strain. The interaction of these points and momentum
equations are solved on a fixed mesh at the background. Brackbill [36] proposed a

continuum method for modeling surface tension in marker and cell methods.

Dai [37] et al solves Navier-Stokes equations for the liquid phase on a deforming
unstructured mesh. The technique tracks the boundary precisely, similar to marker
and cell method. However the adaptive mesh follows the interface. Furthermore,
this new method avoids the surface reconstruction required in volume of fluid
methods. By locally fitting the free surface to a parabola when evaluating
curvature, problems with numerical noise in the solution are avoided. A new time

step criterion is introduced based on free surface numerical stability.

In free surface flows where coalescence and detachment of interface occurs, a
deforming mesh may not be used. Hirt [38] proposed volume of fluids (VOF)
method which uses a fixed grid where each cell is assigned a value based on the
fraction of that cell containing the material inside. The cell fractions are used to

characterize the interface as the flow solutions continue.

VOF is diffusive on the sharp interface locations therefore several methods are

devised to reconstruct an approximation to the interface accurately. Ashgriz[39]
9



proposed flux line-segment (FLAIR) technique, Rudman [40] proposed flux-
corrected transport (FCT) technique, Puckett [41] proposed least squares volume-
of-fluid interface reconstruction (LVIRA) technique, Rider [42] proposed
piecewise linear interface calculation (PLIC) technique, Aliabadi [43] proposed
stabilized-finite-element/interface-capturing (SFE/IC) technique and Scardovelli
[44] proposed Eulerian implicit- Lagrangian explicit (EI-LE) technique. Maronnier
[45] proposed an implicit splitting algorithm in order to decouple advection and
diffusion phenomena. Advection is solved using a fixed structured grid, where
diffusion is solved on unstructured mesh. Smaller grids may be used for the
diffusion solutions, which decrease smearing of the interface, and the algorithm

becomes unconditionally stable.

Kelecy [46] proposed a surface capturing method, which uses artificial
compressibility for phase definitions. Both sides of the domain are solved

simultaneously where the interface is captured by the discontinuity in density.

In contrast to discontinuous interface definition, a continuous interface may be
defined as a zero level set of a continuous function. Osher [47] [48] and Sethian
[7] [49] described the interface as Hamilton-Jacobi type equations. The equations
can be in the form of either boundary value problem, which are solved by fast
marching methods, or initial value problem which are solved by narrow band level
set method. Level set methods are suitable for moving boundaries which move
under the speed with varying sign whereas the fast marching method can only deal

with positive speed problems.

The level set formulation is extended to triangular unstructured mesh by Barth [50]
and Sethian [51]. If the velocity of the interface is only defined on the front itself,
in order to conserve the continuous nature of the solution an auxiliary step is
required. Extended velocity technique, which is developed by Adalsteinsson [52],
finds a velocity field dependent on the features of the front itself by extrapolation.
The level set method has been applied to two-phase flows [53], diffusion [54],

fatigue crack propagation [55], geodesic paths [56] and several other physical
10



phenomena. The accuracy required at the interface may be increased by mesh
adaptation around the interface only. Sethian [7] proposed techniques for
triangular mesh and Kohno [57] proposed techniques for orthogonal mesh

adaptation.

Kobayashi [58] proposed phase-field method, which defines a phase function for
the definition of interface. The phase function has a value of 0 at fluid regions and
1 at solid regions. The sharp change of the values in between 0 and 1 defines the
interface thickness. The shape of the phase function is conserved through the
solution of free energy equation. For recent developments in phase field technique

one may refer to Kobayashi [59] and Shyy [5].

1.1.3 Rocket Performance Prediction

The motion of the interface depends on several factors. The geometry of the
surface is not the only information required for the motion. It is required to obtain
the speed by which the interface moves where the propellant and flow properties
play a huge role in its definition. Chemical composition of the propellant,
manufacturing processes, initial temperature of propellant and many more

parameters should be taken into consideration [60].

Advanced models using both finite element and finite volume approaches have
been developed by the solid rocket propulsion contractors. It is difficult for outside
organizations to gain detailed information regarding these models due to their
proprietary nature [61]. Therefore, information on application of moving interface

to SRM and on coupled performance prediction methods is limited

Stone [62] describes mathematical equations that relate solid propellant grain
geometry to the progressivity ratio and burn area in two dimensions. These
equations are solved by computers of the time and burn area vs. web data is
presented in tabulated form for the use of designers. Star and Wagon Wheel

designs were considered in the investigation. Up until to this investigation,
11



empirical correlations were used by the designers. Therefore new geometric grain

designs were not feasible.

Zarda [63] describes a solid modeling program, which is similar to solid modeling
tools. This program generates the propellant grain by using primitives such as
sphere, cylinder and rectangular blocks. The basic operations such as join, cut and
intersection are used to form complicated geometry. By changing the dimension of
primitives and basic operation constraints, each burning interval can be obtained.
Each burn instant is another solid model, which can be used to find inertial and
surface properties. This method is widely used in motor design. The procedure
can be automated and results are most reliable. However this procedure can not be
coupled with variable burn rate through the domain since the primitives will

deform after a while.

Hejl [61] uses a marker and cell method in order to follow the interface. At sharp
corners, the model refines the mesh and continues to operate with less error. This
method can handle variations in burn rate however following each node in the
domain is tedious and time consuming for 3-dimensions. These types of models

best suited for two-dimensional cases.

Saintout [64] uses a body fitted coordinate system in order to solve the moving
interface. Equations similar to Hamilton-Jacobi equations, which describe the
surface growing normal to itself according to the local burning rate, are then solved
on the mesh at each step of the regression. The update of the mesh is as follows:
surface mesh is generated and curvilinear coordinate system is created. Each node
is displaced along its normal vector proportional to its burning rate: the junctions
between this updated mesh and the restricted surfaces, and the crossings between
parts of the mesh are controlled. The mesh which is corrected becomes the new
burn surface area. This method is suitable for variable burn rate. However the
mesh correction procedure is tedious, mesh smoothing and mesh adaptation is

required due to nature of the solution method.

12



The Solid Performance Program (SPP) has become the standard reference
computer program in United States for predicting the delivered performance of
solid propellant rocket motors. Dunn [65] describes the grain design module of
this program. The grain geometry is described by the frustum of a right circular
cone, a right circular cylinder, a right triangular prism, a sphere and a thorus.
Burning is assumed to be normal to the surface and the volume of propellant is
calculated by integrating the propellant area along the grain axis. The propellant
burning surface is obtained from the derivative of the volume with respect to the
burn distance. The calculations are general in that any grain can be evaluated if the
initial grain geometry is described by using any combination of the five basic
figures. The ballistic module is supplied with burning surface area, cross sectional
area and perimeter from the grain design module. The ballistic module solves the
one-dimensional flow problem with energy and mass addition. The analysis
employs a pseudo-transient treatment of the start-up problem and quasi-steady state
solution thereafter. The SPP code is a preliminary design and analysis code, which

is fast and easy to use.

Le Breton [60] describes a method to predict the performance of large-scale solid
rocket motors by using the results of the 3-dimensional surface burnback results
coupled with a simple ballistic model. The problem that they considered is the
effect of filling of the motor chamber with batches of propellant with different
burning rates. Their 3-D burnback code is the same one, which is developed by

Saintout [64].

Alavilli et al. [66] adopted a finite volume, multi-block, structured mesh approach
in obtaining the 3-dimensional flow simulation in SRM. The N-S equations are
solved on dynamic meshes whose boundaries adapt to conform to the propellant
surface that deforms due to the loads imposed on it and also regresses due to
burning. Re-meshing is handled by the solver, which is performed on parallel

computers.
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1.2 PURPOSE OF THE STUDY

The purpose of this study is to describe and develop a methodology, which
combines interface-capturing methods with flow solution techniques in order to

analyze the Solid Propellant Rocket Motor performance.

Given the propellant properties and geometry of all the parts, the aim is to solve the
flow internally with moving grain boundary. The motion of the propellant during
the combustion is followed in three-dimensions by an interface capturing algorithm
which is called “Fast Marching Method”. The domain in which the flow solutions
will be carried out is obtained by a cut cell method on unstructured domain. A
Finite Volume solver is used to obtain flow properties in the fluid domain in a

segregated fashion.

The results obtained from the methodology, which is described in this thesis, are
compared with actual rocket firing data and with results of previously validated
performance prediction codes. The data and information supplied in this thesis

report covers only the unclassified part of the work achieved.

1.3 CONTENTS OF THE THESIS REPORT

In Chapter 2, the theory of moving front and numerical solution methods are given.
The Fast Marching Algorithm is described for the efficient solution of the interface
on structured and unstructured mesh. The interface capturing methodology is
described so that the control volumes in which the flow solvers will operate are
obtained. In Chapter 3, the flow solvers for the performance prediction are
described for zero-, one- and three-dimensional domains. Test cases for validation
of the flow solvers are given. In Chapter 4, the coupled test case results are
compared with experimental data and validated calculation results. In Chapter 5, a

conclusion and suggestions for future applications are presented.
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CHAPTER 2

RETARDING WALLS

The retarding walls are considered as the interfaces, which separate two different
phases. The Fast Marching is used as the interface capturing method. The aim in
interface capturing methods is to compute the location of this interface, which is

moving with speed ¢X, t) in the local normal direction as shown in Figure 2.1.

", Phase 2

by

Phase 1

Figure 2.1 Moving Interface with Speed @

2.1 PROPERTIES OF CURVES

In two-dimensions the interface is a curve and in three-dimensions the interface
becomes a surface. In this section the general properties of curves are given for a

complete discussion of the problem.
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2.1.1 Velocity of Interface

The rate of interface regression depends on:

1. Geometric Parameters: The surface normal and curvature of
interface,
il. Physical Parameters: The physical and chemical properties

of the solid region,

iil. Flow Parameters: Pressure, temperature and acceleration

effects.

Calculation of interface regression rate is described in Chapter 3, which is
independent of the interface modeling due to the segregated nature of the solution

technique.

2.1.2 Parametric Representation of Curve Evolution

Assume that [" is a simple, smooth, closed curve. Let x(s, ) is the parametric
representation of I', n(s, ¢) is the parameterization of outward normal, K (s, ¢) be the
parameterization of curvature and @'k) is the speed of interface as a function of

curvature. The equation of motion can be written as [7] :

dx )
= K _ ss 2_1
dr (x> +y,)" .
dy (=x,)
Y =Z@PK)———— 2.2
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is shown in Figure 2.2.

where Kk = . This is the Lagrangian representation of motion, which

The front tracking methods use Equations (2.1) and (2.2) in order to calculate the
position of marker points for the next time interval. By using these equations,

some important parameters and characteristics of curves may be obtained.

Figure 2.2 Parametric Representation of a Curve

2.1.3 Growth of Oscillations

Initial instabilities in a curve may increase thus avoiding the solution to converge.
If the curve can be parametrically described, the total variation can be calculated

as:

Var(t) = J'|K(s, t)|g(s, t)ds (2.3)

where g(s.0) = (x,” +»,))".
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Var(t) is a measure of the wrinkling of the curve. If the value of Var(?) increases,
the stability of the solution decreases. The wrinkling is shown in Figure 2.3. It has

dVar(t) <

been shown by Sethian [7] that, if @ < 0 when k=0, then 7

0, which

suggests that the curve smoothens out and the energy of the front dissipates.

(a) Original Curve (b) Smoocth out curve {c) Increase in Variation

Figure 2.3 Effect of Variation

The motion of the front during the combustion process is independent of the
curvature of the surface and the speed function has a positive sign at all times.
Therefore the condition @< 0 will be satisfied in our solutions. This suggests that

our calculations will be stable at all times with decreasing variation.
2.1.4 Entropy Condition

During the motion of a curve, except for all-convex curves, the smoothness is soon
lost. As can be seen in Figure 2.4, the cosine curve creates a sharp nose through its
motion with constant speed. Once the corner develops, the normal can not be
defined at the point of discontinuity. At this point, a weak solution is required in

order to continue the solution.

One of the weak solutions is obtained by allowing a swallowtail to be generated,
which permits the curve pieces coming from opposite directions to cross each
other. However this solution is not applicable for our purposes.

18



Figure 2.4 Entropy Condition

Another weak solution is obtained through Huygens ° Principle, which suggests
drawing of circular wave-fronts at each point on the curve with their radius
proportional to the speed ¢(x,t). The envelope of these wave-fronts is taken as the
new position of the curve as shown in Figure 2.5. The entropy condition means
that once a corner has developed, the solution is no longer reversible. The problem
cannot be run backward in time without the loss of initial data. The sharp corner in
Figure 2.4 can not be reversed because information is lost at the corner. A

mathematical discussion can be found in reference [7].

Similar to Huygens’ principal, Fast Marching Method satisfies the entropy
condition. Since the grain burnback calculations does not require generation of the

initial front, the method is satisfactory.

The Huygens’ solution also satisfies the viscosity solution at initially sharp corners,
which smoothens out at discontinuities. In the limit of this process the Eikonal
solution is obtained. The numerical test cases given in Section 2.5, show both

entropy and viscosity satisfying results.
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Figure 2.5 Huygens’ Solution to Propagation

2.1.5 Boundary Value Formulation

If the speed of the interface is positive throughout the solution domain, a boundary
value formulation can be established. In this method the time, 7(x, ¢, at which the
interface arrives at each point in space is to be calculated. In 1-dimension the

equation of motion is defined [7] as:

P =1 2.4)

T

Ax

Figure 2.6 Wave Motion in one-dimension
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which is similar to the motion of a wave front in one-dimension as shown in Figure

2.6. In multiple dimensions, 07 is orthogonal to level surfaces of 7, and can be

written as,
#ET‘ =1 (2.5)

with the boundary condition 7=0 on I', where I is the initial location of interface.

The type of this equation is referred to as Eikonal type [51].

2.1.6 Initial Value Formulation

If the speed by which the interface moves changes sign, initial value formulation
should be adapted. The initial position of the interface is embedded as the zero
level set of a higher dimensional function ¢ which transforms the governing

equations into initial value problem. It is required that the level set value of a

particle on the interface with path x (z) must always be zero. Therefore
% (x(1),1) =0 (2.6)

By the chain rule,

W, +i¢adizo (2.7)

where Xx'(¢) h = @ and n= iw/‘i (/l‘. By inserting these relations into equation

(2.7) the following evolution equation is obtained for (.

w, +¢iy|=0 (28)
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given ((x,t =0) as the initial condition. In order to obtain the position of the

interface, the zero level set of the Equation (2.8) has to be solved.

2.1.7 Advantages of Both Formulations

The obvious advantages of these formulations, apart from both of them using

Eulerian view are as follows:

ii.

iil.

1v.

Both of the formulations are unchanged in all dimensions.

Changes in the topology are handled naturally. Breaking up or
merging of curves and surfaces need no special attention.

Both formulations can be approximated by computational schemes,
which use numerical solutions of hyperbolic conservation laws.
Both methods are made efficient by using adaptive methods.

Both methods guarantee a unique, entropy satisfying weak solution.

2.1.8 Comparison of Formulations

Comparison between the two methods can be given as:

i.

ii.

Initial value formulation allows both positive and negative speed
functions, whereas boundary value formulation allows only positive
speed because it requires a single crossing time. The solid rocket
grain burnback deals with positive speed functions only and
therefore both methods can be applied.

On the other hand while handling positive speed function which
depends on position, the boundary value formulation is
advantageous because it requires no CFL condition due to the lack
of time step. Furthermore the boundary value formulation can be

made extremely computationally efficient.
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Therefore for the retarding wall calculations described in this thesis,

boundary value formulation is selected.

2.2 NUMERICAL ALGORITHMS FOR BOUNDARY VALUE PROBLEM

The general Hamilton-Jacobi equation is

ar, +(T,.T,,T,,x,y,z) =0 (2.9)

The function © is the “Hamiltonian™ and for the boundary value problem

O=@|1 +T +T, -1 (2.10)

and @ is zero.

A first order upwind finite difference scheme for the Hamiltonian is given by

Sethian [7] as:

Cnax(D ™ T,0)? +min(D™ i T,0)> O
O 0

F max(D "% T,0)° +min(D ™ T,0)°Q =— (2.11)
3 max(D 4 T,0)* +min(D** i T.,0)*

where D™ is the backward difference and D™ is the forward difference in x-

direction and are given as

_ T(x+Ax)—T(x)
Ax

DT

2.12)
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T(x) = T(x - )
Ax

DT = (2.13)

This is the scheme described by Sethian [7] for the solution of Eikonal equations.

2.3 FAST MARCHING METHOD

It is required to solve quadratic Equation (2.11) iteratively through the whole
domain, which takes up O (N°) labor for one iteration in three dimensions where N
is the number of nodes. Assuming that it will take another N iterations to reach a

solution the iteration count will be close to O (V).

Equation (2.11) constructs the solution using only upwind values, which means that
the update occurs from smaller values of 7. The information is propagated in one

direction. The Fast Marching Method (FMM) exploits this property.

Known Close Far

O

O

O

O
o o O O
o O O O

e
@ & O
®

D O
Interface \M

Figure 2.7 Fast Marching Method Update Procedure

The points in a thin zone around the interface are selected and the solution marches
in this zone only where the downwind points are not solved until the interface

reaches there.
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2.3.1 The Update Procedure

The nodes where the boundary lies are tagged as known. The nodes, which are one
grid point away as close points. Finally tag all the nodes which are in the

downwind as far points since they will not be used for the recent iteration.

The solution is initialized by obtaining a 7T value for the close set points. The
information comes from the interface initial position. Then the solution algorithm

proceeds as follows:

1. Select the trial point with the smallest value of 7.

il. Add the trial point to the known set and all the neighbors of the trial
point, which are not known to close points set.

iil. Calculate values of T at each neighbor, which are in the close set by
using Equation (2.11).

iv. Return to the top of the loop.

In order to find the trial point with the smallest value of 7, a sorting algorithm is
used which requires O (log N) labor. Since each node is visited once, the total

operation count is reduced to O (N°logN) for the three-dimensional case.

2.3.2 Approximation on Triangulated Domains

Previous definitions use fixed and logically rectangular meshes. Such techniques
have high accuracy and programming ease. However, in our solution procedure,
which will be described in this section, unstructured mesh is used due to the

reasons given by Barth [50] as follows:

1. When increased accuracy is required at certain locations, adaptation

is applied which is easier to handle in unstructured meshes.
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il. Interface fitted meshes can be applied similar to adaptation if
required. This will help to define the properties easily on the
interface and the solution of the flow in the gas side could be
managed by regular unstructured flow solvers.

iii. Due to the complexity of the geometry the mesh generation is easier
in triangulated techniques. Nearly all geometries can be discretized

by triangulation.

2.3.3 Derivative Approximations on Unstructured Mesh

The gradient is calculated as a combination of directional derivatives since there is

no natural choice of the coordinate system for an unstructured mesh [51].

+
[_)‘? vT .
1 U,
X
X2 Xy

Figure 2.8 Directional Derivative Definitions

Consider the triangular mesh given in Figure 2.8, the unit vectors defining the

directions are given as follows:

U =

] ||

=1
|
=1

(2.14)

=1
|
=l
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The directional derivatives of interface arrival time in the direction of unit vectors

U; and U, is be calculated as:

U DT (x) = v(x) (2.15)

If Equations (2.5) and (2.15) are combined, the directional derivative for any

unstructured mesh is obtained as:

v(x) (UU")"v(x) = (2.16)

1
@ (x)

In order to discretize this equation, the directional derivative can be written in the

linear form.
v=al(x)+b (2.17)

where a and b are discretization constants. If Equation (2.17) is substituted into

Equation (2.16) the following quadratic equation is obtained.
@' (U a)T? +2a’ (UU")'D)T +(b" (UU" ) 'b)-1/¢" =0 (2.18)

The solution of this quadratic equation will yield answers for time variable in the

considered elements for any dimension.

In order to compute values of a and b in Equation (2.18), first or second order

discretization may be used.

First order accurate solution defines directional derivative as:
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_Tx)-T(x)

P =

|%-x

where a and b is obtained as:

- % -]

Second order accurate solution defines directional derivative as:

T(x)-T(x,)

v, =2—=2 - [MT(x,)
¥ - %]
where a and b is obtained as:
A= and b:w_ﬁj DET(X])
¥ - %] ¥ - %]

where

OT(x,) =0 [aT(x,) +b]

The gradient values are not defined on the boundary. The solution starts with first

order accurate discretization at the neighboring nodes of the boundary and converts

back to second order solution once the gradient values are present for inner nodes.

Therefore in order to have accurate solutions the mesh intensity near the boundary

should be higher than rest of the domain.

2.3.4 Upwind Criteria

The updating procedure should follow certain criteria in order for the solution to

protect the upwind nature of the problem and thus enabling Fast Marching Method
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to work correctly. Assume that 7(x) is being updated from 7;, 7> and 73 in a
tetrahedron. The following criteria should hold true in order for 7(x) to be updated

from these values.

Criteria 1 : The value of T(x) calculated from the tetrahedron element should be
larger than 7;, T, and T3 This criterion is required so that the nature of Fast
Marching updating procedure hold true. Otherwise accepting the trial value with

the smallest value will be incorrect.
Criteria 2 : The gradient of 7, which is calculated from the set of vertices should

lie in the element as shown in Figure 2.9. Otherwise the information obtained from

this element may be incorrect. This restriction is equivalent to

OwH'v=0 (2.19)

VT
¥

|
=]

(@ )

Figure 2.9 (a)Acceptable and (b)Non-Acceptable Gradient Approximations

Criteria 3 : While the above criteria hold, the calculated values from different
elements may result in different values. At the vicinity of sharp corners and
colliding interfaces this problem is encountered several times during the iterations.

Therefore the result with the minimum value should be accepted as the true value.
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The first arriving interface overtakes the next coming interface, which is physically

what happens in real life.

All three criteria mentioned above should be met in order to accept any calculated
value from the FMM. Sometimes these criteria can not be obtained by using

regular solution method due to two reasons:

Problem 1: The triangular or tetrahedron element has inner angles larger than 90°.

This brings conflicts with the second criteria.

Solution: The solution extends backwards towards the previously accepted

vertices such that a new element is created which satisfies upwind criteria.

Problem 2: The element is on the boundary of the volume therefore insufficient
information is arriving to that position due to the lack of neighboring elements on

the free side. This brings conflicts with first and second criteria.

Solution: This problem is inherent only in three-dimensional problems.
The boundaries are solved by two-dimensional FMM in three-dimensional space.
The information obtained from the surface solution is used whenever the original

solution encounters problems on the boundaries.

24 CUT-CELL METHODOLOGY

The flow-interface coupling is performed by a segregated approach where the flow
is computed with a frozen interface and the new position of the interface is found
using last computed flow properties. In order to apply boundary conditions at
intermediate locations in the domain, cut-cell methodology is used. In this method
the cells are allowed to be sliced by the interface and at the sliced surfaces of each
element boundary conditions are applied. An intermediate tool is required to

maintain the communication between the solvers and the burnback codes. In order
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to achieve the mentioned communication, cut-cell methods are used to generate
the control volume in which the flow solvers perform calculations for performance
prediction. The cut-cell methods are used for three different types of solvers,

which are given as follows:

1. Zero-dimensional Solvers: Combustion surface area versus propellant

burned distance which is called web data is required.

2. One-dimensional Solvers: Burn perimeter versus web at stations along

the axis of the motor is required.

3. 3-dimensional Unstructured Solvers: Unstructured volume mesh with

boundary condition definitions is required.

In this section the algorithms, which are capable of generating mesh and data files

for all the solvers above are described.

2.4.1 Interface in an Element

The elements, in which interface capturing is performed, are tetrahedrons only.
Therefore the interface search is limited to this element type. The interface may
slice an element in several ways creating scenarios to be handled. The number of
scenarios for different element types and the amount of work they will require are

listed in Table 2.1.

Table 2.1 Scenarios for Different Element Types

No. of No. of Virtual Work
Element
Scenarios | Nodes Required

Point 3 1 3

Line 6 2 12
Triangle 10 3 30
Tetrahedron 15 4 60
Hexahedron 28 8 224
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As an example for a point element;

1. The time (7},) value which defines the interface can be higher than the
time value of the point,
2. It can be equal to time value of the point,

3. It can be below the time value of the point.

Therefore 3 scenarios are possible and with only one node to deal with, the work
required is calculated to be 3. The similar discussion can be made for all element
types. Table 2.1 is generated by a computer program which searched through all

possibilities encountered in different element types.

The tetrahedron element has 15 scenarios. However some of the scenarios are
impossible to occur with the tetrahedrons generated by a mesh generator; such as
all values at the nodes being equal to interface value which suggests that the
element has zero volume. Therefore we get rid of some of the work by deciding
which scenarios are likely to occur. There are 8 scenarios, which are possible for

real tetrahedrons.

Assume that the interface is recently at a time interval, which is equal to 7. Also
assume that time values on the element’s vertices are selected so that 7p>T->T>T

and it is required to find the interface with the value 7j.

Scenario -1: If Tp>T) then all the vertices of the element are considered to be inside

the gas zone and added to the list of mesh where flow solutions will be carried out.

Scenario -2: If 7)<T, then the element is considered to be inside the solid grain and

added to the list of propellant mesh, where structure solutions will be performed.

Scenario -3: If Tp>Ty>T¢ then a triangular surface element and a triangular prism

volume element are created, which is shown in Figure 2.10.a.
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Figure 2.10 Scenarios of Interface in an Element

Scenario -4: If Tp>Tc=Ty>Tp then a triangular surface and a pyramid volume

element are created as shown in Figure 2.10.b.

Scenario -5: If 7¢>Ty>Tp then a quadrilateral surface element and a triangular

prism volume element, which is shown in Figure 2.10.c are generated.

Scenario -6: If Tp>Tc=T3=Ty>T4 then a triangular surface and a tetrahedron

volume element are generated as shown in Figure 2.10.d.

Scenario -7: If Tp>Tc>Tp=Ty>T4 then a triangular surface and a tetrahedron

volume element are generated as shown in Figure 2.10.e.

Scenario -8: If T3>T,>T, then a triangular surface element and a tetrahedron

volume element, which is shown in Figure 2.10.f are generated.
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2.4.2 Capturing Interface for Zero-dimensional Solvers

Zero-dimensional flow solvers require web versus burn surface area information.
As the solution proceeds, it marches through the web values by linear interpolation
according to the rate of burn and at each time step the area of the burn surface
obtained from the stationary data which is then used to calculate the amount of

mass flux input to the control volume.

Each element is visited once and checked for the scenarios described above. If any
of the above scenarios holds true for the element the interface area is calculated.
For all the scenarios which are shown in Figure 2.10, except Scenario 5, the
interface is a triangular element and by cross product the interface area is

calculated.

A,,, =0.50EF, xGF,| (2.20)

int,i

where E, F and G are shown in Figure 2.11.

Figure 2.11 Area of Interface
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For Scenario 5, the interface is a quadrilateral area, which is calculated with the
same method. However it should be kept in mind that two triangles form a

quadrilateral and summation of areas of two triangles is used in such a case.

2.4.3 Capturing Interface for One-dimensional Solvers

Similar to calculations for web vs. area, the perimeter information can also be

obtained at stations along the motor axis as shown in Figure 2.12.

Figure 2.12 Stations along the Axis of the Motor

The interface is captured, and the elements, which carry the interface inside, are
marked. Then a second iteration procedure visits only these elements for every
station position along x-direction. The area information is sliced with the station
location information, which yields a line with the length equal to the burn

perimeter.

2.4.4 Capturing Interface for Three-Dimensional Flow

Three-dimensional flow solver used in this work requires boundaries to be defined
at the interface and the domain in which solutions will be carried out. After
interface capturing, the gas side and solid side elements are separated and

boundaries are defined.

In order to obtain three-dimensional mesh for flow solver, the mesh is sliced

through the interface. The mesh elements are divided into 3 parts as follows:
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1. Mesh elements, which are inside the propellant side.
2. Mesh elements, which are inside the gas side.

3. Mesh elements, which are sliced by the interface.

Each element in the domain is visited once and the elements, which reside in the
propellant side, are skipped and stored to an array where no solver calculations will
be performed. If the element is inside the flow side, it will be stored into captured

array, which also requires no modification.

Figure 2.13 Hybrid Mesh near Interface

However, if the interface passes through an element, special care should be taken.
According to the scenarios described above, the element is sliced. The original
element is removed from the mesh file. The new node points (E, F, G, and H)
which lay on the interface are used to create a new element. Thus this process may
cause generation of unstructured elements with 4, 5 and 6 surfaces as can be seen

in Figure 2.13.

While generating new elements, nodal points which coincide are also generated.
These node points should be found and connectivity matrix should be re-organized
accordingly. Also some elements may have 3 surfaces left in the mesh file, which

suggest that the volume disappear with a slice coincident to one of the surfaces of
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the element. The connectivity matrix and the node arrays should be re-arranged in

order to preserve finite volumes and their neighboring information.

Three methods can be used to modify the sliced elements which are shown in
Figure 2.14. If the elements are left as they are, hybrid mesh is created with

different number of nodes creating each element (Figure 2.14.b).

Interface

=

{(a) Interface in Mesh {b} Hybrid Mesh

{¢) Slicing into Tetrahedrons {d) Moving Nodes to Interface

Figure 2.14 Methods of Mesh Modification

The hybrid elements can be divided into tetrahedrons therefore the homogeneity
can be restored (Figure 2.14.c). However the number of elements is increased in
such a case. For viscous solutions this may be advantageous. Also the hybrid part
of the mesh can be pushed outside the flow control volume into the propellant side
by moving the nodes on to the interface (Figure 2.14.d). This method requires that
the node elements follow the boundary strictly which requires extra amount of
work and in order to keep the generic form of the capturing extra boundary

definitions may be required.

37



The hybrid mesh method is found to be efficient since no extra work is required to
modify mesh elements. Since no reconstruction is performed, the errors are
minimized and the number of elements is kept constant. The hybrid mesh requires
a flow solver, which is capable of accepting any shaped element. This solver is

described in the next chapter.

The hybrid mesh is composed of elements with different geometric shapes. The
elements may have nodes between 8 and 4. 8 nodes create a rectangular prism, 6
nodes create a wedge, 5 nodes create a pyramid and 4 nodes create a tetrahedron.
When a tetrahedron element is sliced, the new elements are forced to have 6 nodes

at maximum. Therefore our application is sufficient for all scenarios.

Table 2.2 Hybrid Mesh Connectivity

Element Type Connectivity

Rectangular Prism 123|456 7]|38

Wedge( Triangular Prism) | 1 | 2 | 2 | 3 | 4 | 5| 5 | 6

Pyramid 11234 |5]|5]5]|5

Tetrahedron 1 2 2 3 4 4 4 4

The definitions of connectivity are same for all elements. In the connectivity
matrix 8 nodes are given for all elements. However some nodes are repeated if an
element different than a rectangular prism is to be formed. The Figure 2.15
summarizes the procedure that is followed in describing the connectivity for each

element and Table 2.2 shows the connectivity of each type of element.
However it should be mentioned that the hybrid mesh obtained by cutting the cells

may have elements with zero or near to zero volume. In the present algorithm,

these elements are searched for and they are removed from the grid.
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Figure 2.15 Hybrid Mesh Formation

2.5 NUMERICAL TEST CASES FOR FAST MARCHING METHOD

The test cases given in this section are solved by using the derivative
approximation. These problems are selected such that their solution can be found
analytically and a comparison can be made between the calculated values.
Although these problems are simple, they inherit all the problems that may be

encountered in real physical problems.

2.5.1 Error Definitions

Error is defined as the difference between the numerical calculation result and the
analytical result at each nodal position when the solution is converged. The error

definition is given below:

error, =T,

-T(x) (2.21)

J,analytic

In order to define a single value defining the error, L,-norms are used. L, and L,

norms which are used in this work and are defined as follows:
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L, = /i(errorj)z /N (2.22)

L,=max|e | j=L.N (2.23)

(<)

Since the area of the interface is more important for aecrodynamic calculations,
another error definition is used. The interface error is defined as the ratio of the
difference of numerically calculated and analytically calculated interface area to
the analytically calculated interface area. By applying interface error to our
solutions, the total error, which is encountered during mass flux addition through
the surface of the propellant, can be estimated. The interface error is given as

follows:

]E — (Aim,m,mcm- - Aint,ana/ync) (224)

int,analytic

2.5.2 Grid Size

The grid size is defined as the largest edge of an element in the domain. When the
grid size of 100 units is defined for the domain, there can be no elements with an
edge whose length is larger than 100 units. This definition is used in defining mesh

intensity in the following test cases.

2.5.3 Two-Dimensional Test Cases

2.5.3.1 Test Case 0 — Flat Interface

This test case is two-dimensional and the geometry is given in Figure 2.16. The
cube is 1000 units x 1000 units in size where the interface is placed at the centre of

the cube. The upper portion is called the “Propellant” side because the interface
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will move in this domain only whereas the lower part is called the “Fluid” part in

which no solutions will be carried out by the FMM algorithms.

Pro pellant:

In_térface '

Fluid

Figure 2.16 Test Case 1 Geometry

The results are shown in Figure 2.17 where the contours show the arrival time of

the interface at each node point.
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Figure 2.17 Test Case 0: Results

The error estimates are given are given in Table 2.3. It has been found that the
solution possesses only numerical errors due to round off errors on an interface

with no slope change.
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Table 2.3 Two-dimensional Test Case 0: Error Estimates

L-2 1.141107
L-o0 6.6(107"
I-E Capture Time Error
0.1 sec. 1.13010°°
0.48 sec. 1.141107°

2.5.3.2 Test Case 1 —90° Bend Interface

This test case is two-dimensional and the geometry is given in Figure 2.18. The

cube is 1000 units x 1000 units in size where the fluid phase is a 500 units x 500

units cube placed at the lower left corner of the larger cube.

.In'ferface _'

Fluid

y P'ro_p__e_.llan_t

Figure 2.18 Test Case 1

The results for test case 1 are shown in Figure 2.19, Figure 2.20 and Figure 2.21 for

different mesh intensities. The contours show the arrival time of the interface at

each node point. The dark lines correspond to

dashed lines correspond to real solution.
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Figure 2.19 Test Case 1: Results for Grid Size of 100 units
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Figure 2.20 Test Case 1: Results for Grid Size of 50 units
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Figure 2.21 Test Case 1: Results for Grid Size of 10 units
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The error estimates are given in Table 2.4. Discontinuities in a surface cause
severe errors in all regression problems. The real solution is obtained by assuming
that the viscous solution would be obtained by the FMM method. However if the
mesh intensity is low, the viscous solution may not be obtained near the surface
since the solution does not have enough space to pass the information at the sharp
point of the interface. Therefore the mesh intensity is increased and L-2 error

decreased considerably which suggests that increasing mesh intensity enhances the

solution.
Table 2.4 2-dimensional Test Case 1 Error Estimates
Grid Type L-2 L- Capture Time I-E
Outward 5.06x 10" 0.07245 0.1 0.0414
Size = 100 units 0.2 0.0457
# of Elements =826 0.3 0.0415
0.4 0.0391
Outward 1.85x 107 0.0574 0.1 0.0345
Size = 50 units 0.2 0.0412
# of Elements =4984 0.3 0.0365
0.4 0.0326
Outward 2.32x107 0.0147 0.1 0.0116
Size = 10 units 0.2 0.0094
# of Elements =20204 0.3 0.0081
0.4 0.0071

The solutions to this test case exhibit Huygens * Principle where sharp corners do
not generate sharp corners. It can be assumed that no sharp corner exists in the

nature but will always have a radius.
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2.5.3.3 Test Case 2 — Circle Interface

In this test case the circle (radius = 250 units) is regressed outwards and inwards in

a box 1000 units x 1000 units in size which is shown in Figure 2.22.

- ’Pfqpella_nt
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Fluid

Figure 2.22 (a) Outward Burning Circle  (b)Inward Burning Circle

The outward burning circle present no difficulty for the algorithms of Fast
Marching since the curvature is constant through the whole domain. However the
inward burning circle present difficulties since the interface disappears at the end

of the process.
In most interface tracking algorithms the loss of any geometry is handled with

complicated mesh re-structuring algorithms. The present work uses no extra

handling procedure, the nature of the algorithm handles the surface loss naturally.
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Figure 2.23 Test Case 2: Outward Burning Results with Grid Size of 100 units
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Figure 2.24 Test Case 2: Outward Burning Results with Grid Size of 10 units
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Figure 2.25 Test Case 2: Inward Burning Results with Grid Size of 10 units
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The results are given in Figure 2.23, Figure 2.24 and Figure 2.25. The dark colored

contour lines are calculated values whereas the dashed contour lines represent the

actual value for the arrival time. The error estimates are given in Table 2.5.

Table 2.5 2-dimensional Test Case 2 Error Estimates

Grid Type L-2 L-o0 Capture Time | I-E
Outward 231x10" |0.01335 0.1 0.01339
Size = 100 units 0.2 0.01321
# of Elements =244 0.25 0.01377
Outward 6.78 x 10° | 0.006247 | 0.1 0.00769
Size = 50 units 0.2 0.00821
# of Elements =916 0.25 0.00822
Outward 3.02x10° [0.001147 |o0.1 0.00169
Size = 10 units 0.2 0.00175
# of Elements =22126 0.25 0.001746
Inward 4.09x 10" |0.0541 0.05 0.04419
Size = 100 units 0.1 0.143

# of Elements =244 0.2 1.0
Inward 3.83x10° [0.011208 |0.05 0.009987
Size = 50 units 0.1 0.0245

# of Elements =916 0.2 0.2218
Inward 1.58x10° |0.003276 |0.05 0.001433
Size = 10 units 0.1 0.00416
# of Elements =22126 0.2 0.03528
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2.5.3.4 Test Case 3 — Smooth Interface

The third test case consists of 3 quarter circles (radius = 250 units) combined
smoothly in a box of 1000 units x 1000 units. The interface is regressed outwards

and inwards as shown in Figure 2.26.
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Fluid R 'Propeliant o

Figure 2.26 (a) Outward Burning Smooth (b) Inward Burning Smooth

The solution is problematic since the middle circle disappears after outward
regression and side circles disappear after inward regression. All other methods
especially interface tracking methods have to take special precautions in order to
handle this problem. The solutions obtained are in good agreement with the actual
values in all mesh intensities due to the smoothness of the problem. However with
low intensity mesh at the interface, the circles are not defined properly. The results
are given in Figure 2.27, Figure 2.28 and Figure 2.29. The dark colored contour
lines are calculated values whereas the dashed contour lines represent the actual

value for the arrival time. The error estimates are given in Table 2.6.
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Figure 2.27 Test Case 3: Outward Regression Results with Grid Size of 50 units
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Figure 2.28 Test Case 3: Outward Regression Results with Grid Size of 10 units
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Figure 2.29 Test Case 3: Inward Regression Results with Grid Size of 10 units
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Table 2.6 2-dimensional Test Case 3 Error Estimates

Grid Type L-2 L-o0 Capture Time | I-E
Outward 1.12x 107 | 0.00912 0.05 0.00636
Size = 50 units 0.1 0.00824
# of Elements = 796 0.2 0.0141
Outward 1.83x 107 | 0.0047 0.05 0.00239
Size = 20 units 0.1 0.00375
# of Elements =4944 0.2 0.00603
Outward 4.84x107° | 0.00438 0.05 0.00159
Size = 10 units 0.1 0.00225
# of Elements =19228 0.2 0.00335
Inward 6.27x 107 | 0.01123 0.05 0.00691
Size = 50 units 0.1 0.0124
# of Elements =614 0.2 0.028
Inward 1.04x 10 | 0.00461 0.05 0.00239
Size = 20 units 0.1 0.0048
# of Elements =3646 0.2 0.0131
Inward 2.86x 10° | 0.003857 | 0.05 0.00128
Size = 10 units 0.1 0.00294
# of Elements =14030 0.2 0.0058

2.5.3.5 Test Case 4 — Colliding Circles

The most difficult problem in interface regression is handled in this two-
dimensional problem, where two circles (radius=500 units) at the upper right and

lower left corners of a cube of 1000 units x 1000 units, expands towards each other.

The problem is encountered when two interfaces meet somewhere in space. The
exact location is unknown, therefore no precautions can be taken before hand. The

FMM algorithm has the solution in its nature since the smallest arrival time is
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accepted for any node position and the node is not visited twice. By this way the
interface which reaches a node first, claims the node for itself, thus the result is

correct. The geometry is given in Figure 2.30.
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Ih}eﬁébe e

Figure 2.30 Colliding Circles

The results are given in Figure 2.31 and Figure 2.32. The dark colored contour
lines are calculated values whereas the dashed contour lines represent the actual

value for the arrival time.

1000 - 1000
a00 900 [
800 800
700 | 700 F
600 600
>-500 |- >500
I Time o Time
400 F 705 705
o & 04 400 o 6 04
o 5 03 I 5 03
300 4 025 300 4 025
o 3 02 I 3 02
o 2 01 = 2 01
200 3 1 1E-05 200 F 1 1E-05
100 F 100
ok . oL . 1 . .
1000 0 250 500 750 1000
X

Figure 2.31 Test Case 4: Regression Results with Grid Size of 50 units
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Figure 2.32 Test Case 4: Regression Results with Grid Size of 10 units

The contour island, which is seen in Figure 2.31, is due to a plotting error. While
generating a contour plot, interpolation is performed at the site of collision.
However the real answer can be found by extrapolation at this location. The only
solution is to increase mesh intensity thus reducing the error to a minimum. The

error estimates are given in Table 2.7.

Table 2.7 2-dimensional Test Case 4 Error Estimates

Grid Type L-2 L-o0
Size = 50 units s

9.53x 107 0.0417
# of Elements = 760
Size = 20 units S

1.17x 10° 0.0206
# of Elements = 4548
Size = 10 units 6

3.17x 107 0.00838
# of Elements = 12252
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2.5.4 Three-Dimensional Test Cases
In this section the similar test cases in three-dimension are investigated. Test Case

— 0 is skipped, since the solver does not make any error for a constant slope

surface.

The three-dimensional test cases are obtained by extruding the similar two-

dimensional test cases in the z-direction by 500 units.

2.5.4.1 Test Case I — Cube In a Rectangular Prism

Test case 1 results are given in Figure 2.33 and Figure 2.34. The dark lines

represent the calculated values whereas the dashed lines are exact values.

1000 1ooo

=0 o

2m 2m

Figure 2.33 Test Case 1: Regression Results with Grid Size of 100 units

The error estimates are given in Table 2.8. It can be seen that as the mesh intensity

increases the accuracy of the solution gets better at a cost of operation time.
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Figure 2.34 Test Case 1: Regression Results with Grid Size of 25 units

The L-2 error increases as the mesh intensity increases, due to the reason that the
increase of number of elements is much higher than the two-dimensional cases

where the accuracy is not sufficient to lower the overall effect.

The accuracy of the solutions for burn area may be achieved through increasing

mesh intensity. The interface area comparison is given in Figure 2.35.
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Figure 2.35 Burn area versus Web for Test Case 1
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Table 2.8 3-dimensional Test Case 1 Error Estimates

Grid Type L-2 L-o

Outward 1.15x 107 | 0.04407
Size = 100 units

# of Elements = 3390

Outward 242x10°  |0.02803
Size = 50 units

# of Elements = 24298

Outward 3.86x10° | 0.01268
Size = 25 units

# of Elements = 187950

2.5.4.2 Test Case 2 — Cylinder in a Rectangular Prism

Test Case 2 results are given in Figure 2.36 for the outward regression and in

Figure 2.37 and Figure 2.38 for inward regression.

Figure 2.36 Test Case 2: Outward Regression Results with Grid Size of 25 units
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Figure 2.38 Test Case 2 Inward Regression Results with Grid Size of 25 units

The error estimates are given in Table 2.9. The L-oo error for inward regression
with low mesh intensity is high due to the reason that the algorithm is unable to

find enough space to have a mature solution.
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Figure 2.39 Burn area vs. Web for Test Case 2 —Outward

The interface error, which is made while solving inward burning, is considerably
high when low intensity mesh is used. The locations where disappearing pieces
exist in a model are critical, therefore the size of mesh elements should be

decreased in such areas.
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Figure 2.40 Burn area vs. Web for Test Case 2 —Inward
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Table 2.9 3-dimensional Test Case 2 Error Estimates

Grid Type L-2 L-o0

Outward Size =100
# of Elements = 3967

476x10° |  0.02038

Outward Size = 50

# of Elements = 27727
Outward Size =25

# of Elements = 191127
Inward Size =100

# of Elements = 2040

6.35x10° | 0.007889

9.52x107 |  0.00323

1.52x10™ 0.129

Inward Size = 50

# of Elements = 13559

2.73x10° | 0.07534

Inward Size =25

# of Elements = 89702

6.94x 10 0.0561

2.5.4.3 Test Case 3 — Smooth Interface in a Rectangular Prism

The test case results are given in Figure 2.41 and Figure 2.42 for outward

regression and in Figure 2.43 and Figure 2.44 for inward regression.

Figure 2.41 Test Case 3: Outward Regression Results with Grid Size of 100 units
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Figure 2.44 Test Case 3: Inward Regression Results with Grid Size of 25 units
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The upwind criteria cause errors to occur on the boundaries of the solution since
the information required for acceptance criteria may not be sufficient on the
boundaries. Increasing the mesh intensity solves for the problem most of the time.

The error estimates are given in Table 2.10.
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Figure 2.45 Burn area vs. Web for Test Case 3 —Outward
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Table 2.10 3-dimensional Test Case 3 Error Estimates

Grid Type L-2 L-o

Outward, Size =100
# of Elements = 3423

7.27x 107 0.0558

Outward, Size =50
# of Elements = 22719

1.57x 107 0.0427

Outward, Size =25
# of Elements = 162410

2.53x10° 0.0125

Inward, Size =100
# of Elements = 2207

8.29x 107 0.0589

Inward, Size =150

# of Elements = 13601

1.90x 10° 0.0423

Inward, Size =25

# of Elements = 89547

453x10° 0.0287

2.5.4.4 Test Case 4 — Colliding Cylinders in a Rectangular Prism
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Figure 2.47 Test Case 4: Regression Results with Grid Size of 25 units
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The test case results are given in Figure 2.47 and error estimates are given in Table
2.11. The L-o error with mesh size 100 units is very high due to low mesh
intensity. The solution is not capable of finding the correct gradient direction in
such a case. The gradient at the point of collision has two values each coming from
different burning surfaces. In order for the solution to give a decision more
information is required which the high intensity mesh should supply. Mesh

adaptation can be useful at the position of collision.

Table 2.11 Three-dimensional Test Case 4 Error Estimates
Grid Type L-2 L-o0
Outward, Size =100
# of Elements = 2900
Outward, Size =50
# of Elements = 22297
Outward, Size =25
# of Elements = 131591

1.82x10™ 0.215

1.84x10° | 0.0846

3.58x10°| 0.0580

The interface errors and L- errors decrease as the mesh intensity increases. The run
time increase is linearly proportional to the number of elements in the solution
domain for the interface capturing algorithms. However for the three-dimensional
flow solver the time required for convergence increases exponentially as the
number of elements increase. Therefore a decision has to be made according to the

accuracy requirement of the coupled solution.

An alternative is to solve the interface capturing on a fine mesh and transferring the
interface data onto a different coarser mesh for the flow solutions or vice versa.
This method is used in all applications given in next chapters which reduced run

time for the flow solver and increased interface accuracy.
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CHAPTER 3

FLOW SOLVERS FOR ROCKET MOTOR PERFORMANCE
PREDICTION

For interface capturing purposes, the speed by which the interface moves have to
be calculated, which is called the burning rate of the propellant. It is sensitive to

several factors:

e Chemical composition of the propellant: The propellant is a mixture of

several compounds and the combination of several products, which causes
the burning rate to alter. Also, physical effects such as particle size
distribution of the mixed materials may cause differences in the burn rate.

* Pressure: As the pressure inside the chamber increases the burning rate
enhances. In the pressure range in which rocket motors operate, de Saint
Robert’s burning rate law is applicable. It is also possible to directly use
plots of actually measured burning rates versus pressure [3].

* Temperature: It is necessary to know the burning rate sensitivity to initial
propellant temperature.

* Acceleration: At acceleration levels higher than 10g, the propellant
sensitivity to acceleration becomes significant.

* Internal Flow: Combustion products interact with propellant combustion
and may lead local change in the burning rate. Also, the high speed of

internal flow parallel to the burn surface may enhance burning, which is
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called erosive burning, due to increase of heat transfer from the flame zone
to the propellant surface. The pressure drop between forward and aft-end of
the central port due to the increase in flow velocity also affects the burning
rate, as described previously .

* Manufacturing Process: It has been widely reported that the ballistic

response of solid rocket motors depends on the process used to manufacture
it. Usually empirical parameters necessary to predict the performance of a
motor (hump effect) are linked to the manufacturing process. Voids in the
propellant, uneven distribution of propellant matrix, cracks in the propellant
and mixture ratio differences in several batches are some of the problems

that may be encountered [60].

Three flow solvers are proposed in this thesis. The zero-dimensional [95] and one-
dimensional [92] flow solvers are previously validated codes. The last one is the

three-dimensional flow solver, which is developed and validated in this work.

3.1 ZERO-DIMENSIONAL FLOW SOLVER

This program calculates the pressure-time and thrust-time history of the motor by
using zero-dimensional equations of flow and empirical relations. The code
requires burn area vs. web data from burnback solvers, thermo-chemical properties
of propellants and dimensions of nozzle in order to achieve its purpose. The main

assumptions are given as follows [95].

1. The combustion products are ideal gases.

2. Burning rate follows the empirical correlation for the pressure range
described as r, = ap” and pressure is constant throughout the motor.

3. Effects of transient mass addition and erosive burning can be neglected.

4. The chamber gases have negligible inertia.

5. Propellant burn rate may be corrected for ambient temperate of the

propellant by the relation:
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r, =1, (T, ) lexp(0.0110, (T =T,,,)) 3.1)

where 0 , =(1-n)c, and c; is the propellant temperature sensitivity.

6. The properties of the gases in the chamber can be found by using

weighted averages.

3.1.1 Governing Equations

In a radial burning solid rocket motor with subsonic flow (M<1.0), it can be
assumed that the properties of gases are constant (d( )/dx = 0) along the grain
length. The total pressure at the throat of the nozzle is also assumed to be equal to

the chamber pressure.

L =X
! - PN
v v Y
mg M
A A 4
| - | E
e M

Figure 3.1 Zero-dimensional SRM Conservative Relations

The conservation of mass for isentropic flow is given by

m, =——+m, (3.2)
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where 1, is the rate of mass addition by burning of propellant, M is the stored

mass in the chamber and 71, is the mass flow through the nozzle with m, =0 until

the pressure in the chamber reaches the closure blowout pressure.

The rate of mass generation is calculated by the relation
m, = p,A,r, = p,4,ap," (3.3)

where o, is the propellant density and A4, is the burn area of the grain at that

instant. The mass flow through the nozzle is calculated by the relation

4
i, = L (3.4)

where p, is the chamber pressure, A4, is the throat area and C* is the

th
characteristic speed of the propellant. The throat area may change due to erosion
of the nozzle insulation material and the characteristic speed is a function of

chamber pressure.

The rate of change of mass stored in the chamber is given by the relation

A _dpy) _ v, dp

3.5
dr dr dr dr (3.3)

where g is the gas density and U is the gas volume.

Combining these equations, Equation (3.2) can be re-written as
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where m =r,A,. Equation (3.6) is integrated with infinitesimal time steps as the
4

propellant burn.

The thrust is calculated by the following simple relation,

Thrust(1) = C , p,, (1) 4,(6)C, (3.7)

where C is the thrust coefficient and C, is the divergence loss coefficient.

3.2  ONE-DIMENSIONAL FLOW SOLVER

The flow solver, which is described in this section, is called IBS1D, which is
developed [80] in order to predict performance of SRM, which uses empirical and
analytical relations efficiently. The program requires the control volume data in

the form of web vs. perimeter at stations along the axis of the motor.

3.2.1 Program Definitions

Assuming that the transient behavior of solid rocket motor consists of a small time
interval, compared to the steady flow period, steady flow solutions are preferred for
performance prediction purposes.

It can be assumed that the flow-field in the motor is parallel to the axis of the motor

which is true with high /ength-to-diameter ratio motors. The vertical component of

momentum does not have any effect on the thrust of the rocket motor. By this
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assumption another simplification can be used: one-dimensional flow in a variable

area duct.

The gas products are in multi-phase within a SRM. Most of the products are in gas
phase, however liquid and solid particles exist in the flow. In order to keep the

solution simple, ideal gas assumption is accepted.

Another simplification is to assume the flow as adiabatic and inviscid. At high
flow velocities the heat transfer can be neglected. Since the gas phase has low
viscosity the inviscid assumption can be acceptable. As the flow velocity increases

the inviscid assumption is more acceptable.

Considering the assumptions described above, the conservation equations and

equation of state may be written as:

d(p¥4) = p,r,C,,.dx (3.8)

per

d(pV>A)+ Adp =0 (3.9)

dlevach+0.57%)|= p,r,C, hydx (3.10)

per

w=0 —Dhp (3.11)

where C . is the perimeter of the burning interface at each station, V' is the
velocity of the flow parallel to the axis, 7, is the propellant burn rate, g, is the

propellant density and A is the cross-sectional area. The above equations can be

solved for p, p, V, and A.
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3.2.2 Flow Solver Formulation

Equations (3.8), (3.9), (3.10) can be written as follows:

pVA=a (3.12)

aVv +Ap=b (3.13)
|

h+EV =cla (3.14)

where A is the arithmetic average of port area at inlet and exit of each volume
element. The parameters a, b, ¢ are dependent on properties of combustion and
flow-field. The initial values for these parameters at a reference point in the motor
are assumed to be known. By using Equations (3.12), (3.13), (3.14), (3.15), A, p

and p variables can be eliminated which leaves a quadratic equation in terms of V.

aé yo14 bV+cEL% (3.15)
2y A

The Equation (3.16) has two solutions. One solution is for the subsonic and the
other solution is for the supersonic case. If the discriminant is zero, the flow is

sonic.

After solving V' and knowing the parameters a, b and ¢, the Equations (3.12),
(3.13), (3.14) and (3.15) can be used to solve for p, p, h
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p="= (3.16)
c 1 _,
’OZV;“A (3.18)

3.2.3 Solution Technique

The domain has to be discretized in order to solve for the flow variables. For this

purpose, the motor is divided into segments in the axial direction (see Figure 3.2).

Figure 3.2 Stations for One-dimensional Solver

In order to start the solution a reference position is selected (node 0) and the flow
properties at this point are supplied. This point is selected, as the head end of the

motor since the properties at this location can be estimated.

Once the reference point is selected, the solution marches towards the end of the

grain. The g, b, ¢ parameters are calculated for the next point as follows:

a=i,_ +i (3.19)
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b=im_V+Ap (3.20)

port

¢ =i, h+iing,h (3.21)

port

where 71, is the mass flow rate passing through the port area and 1, .is the

generated mass flow rate coming from the propellant. They are defined as:

1t (2 ) = () i, () (3:22)
mgen :Cpcrpprbdx (323)
h=c,T. (3.24)

Equation (3.24) is written assuming that reference temperature is at 0 K. The
calculated parameters are inserted into Equation (3.16), and V' is obtained for the
next point. By using Equations (3.17), (3.18), (3.19), the properties are calculated.
The solution can proceed up to the end of the grain. The solution is steady up to

this point.

3.2.4 Nozzle Flow and Thrust Calculations

In all SRM, a converging-diverging nozzle is used. In order to calculate the mass
flow rate, it is necessary to find out if the nozzle is choked or not. If the throat is
choked, then the flow rate is fixed. In this case the conditions inside the motor and
the nozzle exit are not related to each other. If the throat is not choked, the mass

flow rate is dependent on nozzle exit conditions.
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The flow rate in a nozzle throat can be expressed as
iy, = pyd (1/CT) (3.25)

In order to calculate the nozzle exit properties, the isentropic compressible flow

equations can be used in order to find thrust
Thrust = A" p,C,. A (3.26)

where

where A is nozzle divergence loss factor and.

3.2.5 Time Dependence

In this section, addition of time dependence is described by using the steady flow
solution. The basic idea is to update the properties at the reference position at each
time interval and steady solution at this time interval is calculated. The static

pressure inside the chamber can be calculated by:

dp _RT. 4. p .
=< - m 3.28
dr v B’ gen E ( )

P
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The change of mass of the control volume with respect to time is

=i, =, (3.29)

By using Equation (3.29), at each time interval the pressure value at the reference

point is updated.

3.3 THREE-DIMENSIONAL FLOW SOLVER

The motion of the interface is governed by the physical properties of the flow
passing over the surface. In the case of solid propellant rocket motors, the burn
rate by which the propellant surface regresses is affected by the static pressure of

the flow by following the empirical de Saint Robert relation [94].

r, =alp" (3.30)

where a and »n are experimentally defined for a fixed propellant initial temperature.

The static pressure affecting the burn rate can be calculated locally and variation in
the burn rate can be achieved on the surface of the combustion. The three-
dimensional aerodynamic solver is coupled with the burnback code. The mesh
required for the aerodynamic solution is obtained from the burnback code whereas

the burn rate results at every node on the surface are obtained from the flow solver.
The code previously was a two-dimensional, inviscid, cell-centered finite volume,

tetrahedron mesh, external flow solver [91]. The flow solver is upgraded to a

three-dimensional internal flow solver, operating on hybrid mesh.
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In order to obtain the flow field properties without viscosity and heat transfer
considerations, Euler equations are used. In this section the governing equations
are described.

3.3.1 Conservative Form of Euler Equations

In three dimensions the Euler equations can be written in differential form in terms

of conservative flow variables as [88]:

a_Q+a_F+a_G+a_K:O (3.31)
ot Ox Ody Oz

where

o=[p pu pv ow pe] (3.32)

where p is the density, u, v, w are three velocity components in x, y and z direction

. . u’ +v+w
respectively and ey is the total energy defined as e, =e + ————

The flux vectors are given by

F=lp p+p pwv puw pun,] (333)
G=lp o pi+p pw v ] (3.34)
k=lp pov pow pwi+p pwh,] (335)
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where 4, is the total enthalpy defined as &, = ¢, + p/p.

By using the ideal gas relation p=pRT, the static pressure can be calculated as:
0 15, 2 U
=(y-1 ——Ww v +w 3.36
p=W )pgu > )F (3.36)

where Y is the specific heat ratio.

Assume that H = Fi +Gj + Kk and the conservative form of equations can be

written in the gradient form as:
99 L Amgi=o (337)

Integrating the above equation over a control volume 2 and applying divergence

theorem gives the integral form of governing equations.
9 0dQ + [[(H.#)ds =0 (3.38)
Py L[J' [J’ . .

Equation (3.39) shows that the net flux into finite volume through the surfaces S is

balanced with the rate of change of conservative variables in the finite volume Q.

3.3.2 Jacobian Matrices

The governing Equation (3.38) can be expressed in quasi-linear form as follows:
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2 0 5590, 90,520 ,c%0 _,
ot aQ ot Ox oy Gz

where A, B and C are Jacobian matrices in conservative variables.

oF,
:r:[ai,j]
O 0 1 0 0 0 O
Oy-1 O
DVTW — G-pu  (A-yy (A-yw (¥-Dg
:S —uv \ u 0 0 B
0 —uw w 0 u 0 O
éyz;lul/z—uho h-(-Did (-puv (A-puw E
B= b
aQ [l/]
O 0 0 1 0 0 O
By_l—uv % u 0 0 B
= BTVZ v (-pu GB=ywp (I=pw (V—l)g
O - VW 0 w % 0 O
éyz;lsz -vh, (=puv h, —(y-1v’ 1-yww w E
C:aiz[c ]
00
O 0 0 0 1 0 O
B —uw w 0 u 0 B
S —-vw 0 w Y 0 B
=0y-1
0 VTVZ -w -y (A-yp G-pw  (y-DQ
B O
?%sz—who A=yyw (A=ypw b, =(y=Dw' [
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where V =+u’ +v> +w” . It is complicated to obtain eigenvalues in conservative

form, therefore primitive variable form of Euler equations will be obtained.

Similar to conservative matrix Q let us define P = [,0 u v ow p]T in terms of

primitive variables. The transformation matrices are defined as:

M=% - (3.43)
oP
o1 o0 0 0 0 [
Qe p 0 0 0 F
_ Oy 0 p 0 0 0O
=0 0
- pu v opw O
F2 y-1f
m- =92 - (3.44)
00
0 o1 0 0 0 00O
Q-ulp  1Up 0 0 0o
_O-vip 0 1/p 0 0 O
=0 0
& 0
BV'DT A=y A=yp A=pw y-1g

By inserting the transformation matrices into Equation (3.40) the following

expression is obtained:

Ma—P+AMa—P+BMa—P+CMa—P:O (3.45)
ot Ox dy 0z
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Multiply Equation (3.46) by M from left, the governing equations are obtained in

primitive form:

Ly - LU L (3.46)
ot Ox dy 0z

where the Jacobians of primitive variables are

@ p 0 0 00
9w 0 0 1/pH
A=MT'AM=0 0 « 0 00O (3.47)
%) 0 0 u og
B pc? 00 uf
& 0 p 0 00
Hovo0 0 0p
B=M"'BM=0 0 v 0 1/p0 (3.48)
%) 0 0 v OB
00 p? 0 vH
v 0 0 p 0 O
Dowo 0 0g
C=M'CM=00 0 w 0 0 O (3.49)
Ep 0 0 w 1/,05
0 0 o wH

3.3.3 Characteristics of Euler Equations

The eigenvalues and eigenvectors of the Euler Equations can be obtained from the

primitive Jacobians obtained in previous section. The primitive Jacobians can be
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summed up and the relations will still hold true. Since the aim is to formulate the
relations for finite volume method, it is important to calculate characteristics along

a direction, letting this direction be the normal to any surface.

g/n pn, pn, pn, 0 B
R 0 0 n/pg
D=An +Bn, +Cn, = SO 0 v, 0 n, /,OB (3.50)
DO 0 0 v, n, /'OD

S}
8]
S}

o pc’n, pc’n, pc’n, ¥, H

where V, =V [l = un, +vn, +wn_. The hyperbolic equation system would have

n

linearly independent eigenvectors and real eigenvalues.

The eigenvalues of matrix D can be found from the relation:
det‘]N)—/\I‘ =0 (3.51)

which gives

A=V, L, =V , A=V ,
- - (3.52)
A, =V0i+ce, Ay,=V0l-c
The left eigenvectors of D can be found by solving
LD = AL (3.53)

where A is the diagonal matrix with eigenvalues A,
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¥, 0 0 0 0 O
0 0
o V., 0 0 0 g
A=00 0 V7, 0 0 O (3.54)
So 0 0 V,+c 0 E
H o o 0 ¥V -cH

After carrying out the calculations in Equation (3.54), the following eigenvectors

are obtained.

a o -1/c*0
%) 0 —n, /(ny2 +n22) n, /(ny2 +n22) 0 B
L= %) 1 -nn, /(ny2 +n') —nn. /(ny2 +n.%) 0 U (3.55)
0 n, n, 1(pe) D
0 -n, -n, ~n, 1/(pc)H
The inverse of L will give the right eigenvectors of D as follows:
g o 0 p/(2c) p/(2c)0
%) 0 ny2+nz2 n /2 —nx/ZS
R=00 -n, nn, n/2 -n /20 (3.56)
O
%) n, n.n. n /2 -n/2g
B0 0 pcl2  pc/2 B

The left and right eigenvectors can be used to find the diagonal vector A such that

LDR = A (3.57)
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3.3.4 Finite Volume Solution

The normal components of velocity can be used to calculate the flux normal to

each surface of the finite volume element Q such that
H =HIh& (3.58)

Equation (3.39) can be written as:

% J’z[IQdQ + J’JH,,ds =0 (3.59)

In order to discretize the above equation the flow properties are assumed to be
constant in the finite volume element, and the property is calculated at the centre of
this element. The second integral expression in Equation (3.41) is replaced by the

summation operator and the resulting equation is given as follows:

L]

00, ¢ _
Qi7+;[H”]UAS =0 (3.60)

where AS, | is the i" cell’s j" surface area and [H ., ],- , 1s the net flux flowing into i"

cell from j™ surface of the same cell.

The residual R; as given below:

Ni
R = JZI[H”]”J AS, (3.61)
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By coupling the residual term with Equation (3.42) the following explicit form can

be obtained.

Q]-n+l — an _%Rln (362)

1

The explicit solution method requires discretization of flow equations in time and

in space.
3.3.5 Time Integration by Runge-Kutta Method
The solution at time step n+/ can be evaluated starting from the initial data at time

step n by using an explicit algorithm through Runge-Kutta (RK) Method. The

general RK scheme of order m is given by:

Q(O) = Qn

k) — () At (k=1 —
0" =0 ~a, RO k=1.2.m (3.63)
Q(n+1) - Q(m)

where the constant 0 <a, <1 and a,, =1.

In the present flow solver, fourth order scheme is used with the standard constants

a, =14, a,=1/3 , a;=1/2 , a,=1

It is shown [88] that for different constants of RK the stability margin can be
increased. The following optimal constants are proposed to increase the CFL

number.
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a, =012 , a,=026 , a,=1/2 , a,=1
where CFL is the Courant number coefficient and defined as follows

CFL = ﬂV”max
Ax

V" max 1s defined as the maximum wave speed throughout the domain at time level

n for each cell.
3.3.6 Van Leer Flux Splitting

In Van Leer’s method [84] the flux vector H, is expressed in terms of density,

speed of sound and Mach number such that
H,=H,(Q")+H, (0" (3.64)

where Q" and Q" are conservative information coming from within the cell and

its neighbor respectively.

The splitting of the mass flux for |M | <1.0 is achieved by

S = Yy pe(l+ MY (3.65)
f_mass = _% pC(l - M)2 (366)

The splitting of the momentum flux is achieved by cubic polynomials
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. + 2ely -l 0
mom = mass — M + 1 (3 .67)
7 ST

. 2edy-) 0
mom — mass — M - 1 3 68
o=l B M 569

The splitting of the energy flux is achieved by

2

f o = ﬁ (7 omentan | 1(f %) (3.69)

For three-dimensional Euler equations, the x-split flux formula is given in vector

form for |M”| <1.0 as:

O 1 O
E s iy S
. 0 yO?2 O =
H =+—pc(1+ M) v O (3.70)
4 O W 0
A 2 _ [l
n2 [y 1M+1g+l(vz+wz)j
B -10 2 O =

If the Mach number in the normal direction to surface is M, 21.0, then
H =H H, =0

n n n

If the Mach number in the normal direction to surface is M, < —1.0, then
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Van Leer[84] defined a practical stability criterion, which can be given as:

_2v+[M|B-y)

A
e+ e)s =

CFL=—
Ax

3.3.7 Riemann Solver of Roe

In this section the algorithm of original Roe’s method by following Toro [89] is
described. The structure of the exact solution of the Riemann Problem for the x-
split three-dimensional Euler equations is given in Figure 3.3. The vectors of

conserved variables and fluxes are given as:

Op O 0 0
0. O O >, 0O
Edn oPu + P
O=Opw0 and H,=0 pw O (3.71)

N N N
PO 0o puw g
FEF @’(eo'*'p)a

t

¥

Figure 3.3 Structure of Riemann Problem for x-split Euler Equations
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The piece-wise initial data is given as :

~

~

and

=

~

=
I

PRooang

OOOOOdOd

~

According to the original Roe’s method, the inter-cell flux is given as:

H,=0.50H, +H,)-0.5 DZcT,\/T,\I?“)

]
L]
S
MOO0O000

20

=

HE

~

The Roe averages of flow variables are given as

pLuL + pRuR

u =
o i
V:\/p_LVL T\ PrVir
Vo, +p
W:\/IO_LWL T\ PrWp
NIENA
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(3.72)

(3.73)

(3.74)

(3.75)

(3.76)
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Ez(y—l)?ﬁo -

v

N | —

di

[

(3.78)

The eigenvalues of x-direction Jacobian matrix of A in terms of averaged values

arec

A

=u-¢ ., A=u,

The averaged eigenvectors are

kv=f z-¢
ko=[ 7 ¥
K=o 0 1
K9=[p 0 0
ko =f w+e

The wave strengths are given as:

=Auy —vhAuy,
=Au, —whuy,
y

c

A;

<|

g

<|

W hy,—iic
]

vl

w]'

W }_10+W]1

_zl[Aul(}_zo—LTZ)+ﬁAu2 ~Dug
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(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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@, = zl—E[Aul (@ +¢)-Du, —a, | (3.88)

a, =0, - (@ +a,) (3.89)

where

Aug = Dus — (Duy —vAu, v — (Du, —wlhu, )w (3.90)

A modification to the above solution technique is required at sonic flow regions

which is called entropy fix technique.

3.3.7.1 Entropy Fix

Linearized solutions to Riemann problem give results in discontinuous jumps
which is preferable in shocks and contacts. However for expansion waves, this
procedure creates errors. Roe’s solver can be modified in order to avoid solutions
with entropy violation. The Harten-Hyman entropy fix solution is described in this

section.

At each surface the presence of a rarefaction wave is checked according to the
relations given below. If a rarefaction wave is present the entropy fix process is
used instead of the original Roe’s method.

The left speeds are calculated as

L _ _ R _ _
A" =u, —c and A" =u, —e

where
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P =P, +0,

— pPLu, +ﬁ1(1,7—5)

(3.91)

", < (3.92)
p, ta,
o =y =1)e,, +a,(h, —©) -1 pyu, | (3.93)
e, = L (3.94)
o.,

If A" <0<A" then the left wave is a transonic or a rarefaction wave. The

following procedure is followed in such a case.

H,=H, +Ad,K"

n

where

The right speeds are calculated as

L R
A =g, ey and As

where

&9

(3.95)

(3.96)

=u, te,



Psp = Pr — 05 (3.97)

_ PrlUp —as(u+c)

", (@ (3.98)
Pr —as
Ppor = =1)ey , s (y +70) ~ 1 poyuy’ ] (3.99)
c., = | Pm (3.100)
Lo

If A" <0<A" then the right wave is a transonic or a rarefaction wave. The

following procedure is followed in such a case.
H, =H,-A&,K® (3.101)

where

. A -2t
A=A TS 3.102
=BT o

3.3.8 [Initial and Boundary Conditions

In order to start the numerical solutions, initial conditions should be defined. In
SRM the static pressure values are higher at the motor case whereas in the nozzle
the pressure decreases rapidly. If both of the domains are started with the same
initial pressure the convergence of the solution takes a long time for the motor case.

Therefore for the domain with sub-sonic flow, high-pressure values estimated by
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previous solutions are given. In the super-sonic flow region the exit pressure is

assigned.

If there is no neighboring element on the surface of an element, then boundary
condition implementation is applied. The boundary conditions used in this solver
are injection boundary condition, subsonic flow exit boundary condition,
supersonic flow exit boundary condition, symmetry boundary condition and wall

boundary condition. These conditions are explained in the next sections.

3.3.8.1 Injection Boundary Condition

Zero pressure gradient at the injecting surface is assumed. The injected gas density

is found through the solution of relations given below.

V2
T =T+ (3.103)
2C,
2
T :£R+ ((2;/cp) (3.104)
p

P

where 7, is the flame temperature and G is the injection mass flux given as input
data. Once the density is calculated, momentum flux terms can be calculated. The

energy flux is calculated by using the flame temperature.

3.3.8.2 Symmetry Boundary Condition

The normal flux term passing through the surface is set to zero whereas the
gradient of other flux terms are set to zero for the symmetry boundary condition.

This is achieved through phantom elements on the symmetry where flux terms
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tangent to the surface are kept as they are and the mirror image of the normal terms

are taken.

3.3.8.3 Wall Boundary Condition for the Inviscid Flow

For an inviscid flow all the flux terms passing through the surface are set to zero,

whereas the tangential flux terms are kept as they are.

3.3.8.4 Subsonic Outflow Boundary Conditions

Subsonic flow should reach the ambient pressure as the code converges. Therefore
pressure value at the boundary is enforced by the ambient pressure. The velocity

and temperature gradients are normal to the surface are kept zero.

a—lf:O anda—T:O
on on

The density value at the boundary should be computed with the ambient pressure

and temperature.

3.3.8.5 Supersonic Outflow Conditions

Supersonic flows do not interact with outflow conditions. Thus, all the exit flow

parameters are extrapolated from interior points.
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3.3.9 Non-Dimensional Parameters

Given the reference states of 7.5 p,s other reference parameters are defined as :

Crp =A|WRT,,
'Oref = pref /RTref

The parameters are converted to non-dimensional form by the following relations:

u =ufc,, v =v/e,, w =w/c,,
p* :p/'onffcﬂff'z '0* :p/lonff T* :T/Trqf

* 2
€= e/ Prey Crer
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3.3.10 Test Cases for Three-Dimensional Flow Solver

Zero-dimensional and one-dimensional solvers are validated previously. Therefore
test cases present in this section are used in order to validate the three-dimensional
flow solver.

The results, which are used for comparison, are validated by numerical results and
experimental data of Onera [92]. For comparison purposes the flow solver of
Yumusak [92] which is called IBS2D is used. The three-dimensional flow solver

developed in this study is called three-dimensional hybrid internal ballistic solver

(HIBS3D).

3.3.10.1 Residual Definitions

The definition of the residual, which is tracked as the convergence criteria, is given

L, :‘/ 2(ﬂux(l),)2 /Ncc[/

where N, 1s the number of elements in the domain and

below:

flux(1) = i(,oLﬁL + pyiiy), Area, (3.105)

for any hybrid element. The overall residual, which is used in test cases, is given

as:
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RESIDUAL = log

palmniay

=15
Ii'/_‘\i
—O0

where (L,)" is the initial L.

3.3.10.2 CUBE TEST CASE

(3.106)

The cube test case is used to validate the solver during debugging level. The cube

sides are 1000 mm. in length with the boundary conditions shown in Figure 3.4.

The mass flux is 100 kg/(m®.s) and outlet pressure is 100 kPa. The reference

pressure and temperature are 100 kPa and 300 K respectively. The specific heat

ratio is 1.4 and gas constant is 286.7 J/kg. K.

o+ 1000

1000

Symmetry

Wall

Ptetetatats

Masg Injection

Figure 3.4 Cube Test Case Geometry

Prezssure
Outlet

The solutions are performed on a hexahedron mesh with two intensities. First

solutions are performed on a 10 x 10 x 10 grid (Figure 3.5.a) and second solutions
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are performed on a 20 x 20 x 20 grid (Figure 3.5 b). The IBS2D solver is second
order accurate in space whereas the code which is developed in this study is first
order accurate in space. The solutions used for comparison are taken from the first

grid set only.

1000~ 1000 1000~ 1000

2) 10 x 10 x 10 Grid b) 20 x 20 x 20 Grid

Figure 3.5 Cube Test Case Grid

The Mach contours are given in Figure 3.6 and static pressure along the symmetry
axis is given in Figure 3.7 for low intensity grid. The dark line is obtained from
IBS2D, thin solid line is HIBS3d with Roe’s original method and the dotted line is
HIBS3D with Van Leer flux splitting.
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Figure 3.6 Cube Test Case (10x10x10)— Mach Contours
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Figure 3.7 Cube Test Case (10x10x10)— Pressure at Symmetry Axis

The Mach contours are given in Figure 3.8 and static pressure along the symmetry

axis is given in Figure 3.9 for high intensity grid.
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Figure 3.8 Cube Test Case (20x20x20) — Mach Contours
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Figure 3.9 Cube Test Case (20x20x20) — Pressure at Symmetry Axis

From the results it can be seen that as the intensity of the grid increases the results

are getting better. Also the Roe’s method generates better results for this test case.
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Figure 3.10 Residual for Cube Test Case (20x20x20) with Van Leer’s Method
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Figure 3.11 Residual for Test Case (20x20x20) with Roe’s Method

The residuals are given in Figure 3.10 and Figure 3.11 for Van Leer and Roe

respectively.

3.3.10.3 T-108 TEST CASE 14

Test case 1A of T-108 project is a planar injection problem where the flow is
subsonic. The geometry is given in Figure 3.12. The grid which is used by
Yumusak [92] is given in Figure 3.13. The grid, which is used by our flow solver,

is given in Figure 3.14.
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In order to compare results with planar two-dimensional solutions, a three-

dimensional grid with hexahedron elements is generated with the same initial and

boundary conditions.

Three-dimensional results are given as a two-dimensional

slice at the centre of solution domain so that a comparison can be made.

20 mm

Symmetry
/P _ |, Pressure
Pttt rtttraprrattrg | O
< 581 mm 2

Figure 3.12 Geometry of Test Case 1

The physical properties of the flow and grid properties are given in Table 3..

Table 3.1 Geometric and Flow Properties for Test Case 1

2-D Planar | 3-D Solver
Geometric Parameters
Length 581 mm 581 mm
Height 20 mm 20 mm
Width - 20 mm
Grid Size 51x16 51x16x16
Flow Parameters
Mass flux 2.42 kg/m*/s
Exit Pressure 150000 Pa
Gamma 1.4
Gas Constant 286.7 J/kgK
Reference pressure 100000 Pa
Flame Temperature 303K
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Figure 3.13 Two-dimensional Grid of Test Case 1

Figure 3.14 Three-dimensional Grid of Test Case 1

The Mach number contours are given in Figure 3.15 and static pressure along the x-

axis is presented in Figure 3.16 for comparison.
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Figure 3.15 T-108 Test Case 1A- Mach Contours
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Figure 3.16 T-108 Test Case 1A - Static Pressure

The results of IBS2D and HIBS3D with Roe’s method are in good agreement

whereas the Van Leer flux splitting results are not satisfactory. It has been reported
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that van Leer flux splitting scheme is considerably less accurate than Godunov’s

method with Roe’s approximate Riemann solver [89]. The residuals for the

solution are given in Figure 3.17 and Figure 3.18.

Residual

TR A TR N N
0 100000 200000 300000
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Figure 3.17 Residual for T-108 Test Case 1A with Van Leer’s Method

Residual
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Figure 3.18 Residual for T-108 Test Case 1A with Roe’s Method
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3.3.10.4 T-108 TEST CASE 2

Test case 2 of T-108 project is an axi-symmetric mini SRM problem where the
flow is subsonic to supersonic. The grid, which is used by IBS2D and HIBS3D, is

given in Figure 3.19.

In order to compare results with axis-symmetric solutions two-dimensional
solutions, a three-dimensional grid with tetrahedron elements is generated. Three-
dimensional results are given as a two-dimensional slice at the x-y plane so that a
comparison can be made.

The physical properties of the flow and grid properties are given in Table 3.2.

Table 3.2 Geometric and Flow Properties for Test Case 2

2-D Axi-symmetric 3-D Solver
Geometric
Length 270 mm 270 mm
Radius 20 mm 20 mm
Grid Size 99 x 16 7271 Nodes

32332 Elements

Flow
Mass flux 11.39 kg/m*/s
Exit Pressure 100000 Pa
Gamma 1.14
Gas Constant 299.5 J/(kg.K)
Reference pressure 100000 Pa
Flame Temperature 3387 K
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Figure 3.19 T-108 Test Case 2 — Grid Representation

The Mach number contours are given in Figure 3.20 and the pressure along the axis

of symmetry is given Figure 3.21. The Van Leer’s method is not considered for

this case due to its inaccuracy and the solver with Roe’s method is used for further

applications.
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Figure 3.20 T-108 Test Case 2 — Mach Contours
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Figure 3.21 T-108 Test Case 2 — Pressure along Symmetry Axis

The convergence history for test case 2 is given in Figure 3.22.
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Figure 3.22 Residual for T-108 Test Case 2 — Roe’s Method
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CHAPTER 4

COUPLED TEST CASES AND RESULTS

The flow solutions and interface capturing solutions are coupled in a segregated
manner. Each solution procedure takes turns, while the other is frozen. The
following test cases are presented to show performance prediction capability of
coupled solutions. The results are compared with the zero-dimensional program,

one-dimensional program, analytical results and experimental data.

4.1 INCREASING INTERFACE CAPTURING ACCURACY

The interface solutions require high intensity grid whereas the flow solutions
require less intense grid. Therefore the grids which are used by the interface
capturing and the flow solvers are different. The results obtained from the
interface solutions are transferred to the grid where flow solutions will be carried

out.

Also the grid, where interface solutions are carried out, is separated. Since at
location where high curvature and discontinuities exist, the solution requires high
resolution grid. However if the surface is smooth the intensity requirement
decreases rapidly. The problem is solved by separating the problem into several

segments with different mesh resolution.

An algorithm based on the volume information of a cell is used to couple each

segment with flow grid. The grid domains are placed on top of each other where
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nodes do not coincide. The nodes in the flow domain are questioned in order to
find in which cell in the interface modeling domain they reside in. This is done
through forming tetrahedrons by connecting nodes in each cell of the interface grid,

with the node under questioning. The procedure is shown in Figure 4.1.

Ny N,

Figure 4.1 Locating Node Position

If the summation of the volumes of newly generated tetrahedrons is equal to the
cell’s original volume then the node is inside the element. If the summation of the
volumes is greater than the original tetrahedron volume, the node is outside the
element. Once locating the cells of the interface grid, in which the nodes of the
flow grid are residing, interpolation according to a distance function is performed

to transfer the interface arrival time.

The procedure is presented with an example which is shown in Figure 4.3. Similar
to Test Case 1 of Chapter 2, a sharp corner is required to be solved whereas most of
the domain has flat surfaces. The interface solutions are carried out in two
different grids as shown in Figure 4.2. Once each solution is obtained for the

interface modeling, interface arrival times are transferred to the flow grid.
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Figure 4.3 Coupled Interface Solution on Flow Domain

4.2 RELATED PARAMETERS

In order to define thermo-chemical parameters at least specific heat at constant
pressure (Cy), characteristic speed (C*) and molecular mass (M,,) is required.
Given these values, other related parameters can be calculated as given in Table

4.1.
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Table 4.1 Thermo-chemical Parameters

Gas constant per unit weight R= R,
Mm
Universal gas constant R, =8.314 kJ.kmol' K"
Specific heat at constant volume C,=C,-R
Specific heat ratio y=C,/C,
F1 t ture y+)/(y=D
ame temperatu . :C*zz B!i+19
‘ R/ T 2L

The burn rate is defined through the empirical relation of Saint Robert [1], which is

given as:
r, =ap" 4.1)

The pressure exponent is calculated by using two motor firing with constant

pressure such that:

V1 /rb,Z = (pch,l/pch,z )1 4.2)

When the pressure of the chamber and burn rate values are experimentally
obtained, by using Equation (4.2) the pressure exponent n can be obtained. By
using Equation (4.1) and one of the firing data the constant a, can be obtained. The
pressure and burn rate which are used while obtaining the constant a, are called

reference pressure and reference burn rate.

110




4.3 TEST CASE 1-6C4 TEST MOTOR

The 6C4 test motor has a cylindrical grain with two burning ends 4” inner
diameter and outer diameter of 6”. The test motor is used to analyze properties of
the propellant at constant pressure. The grain geometry which is given in Figure
4.4 produces a neutral burning profile. By using different geometry nozzles the

pressure adjustments can be performed.

Motor Case

i /

L A | Propellant

Section A-A

Figure 4.4 6C4 Test Motor

The Fast Marching algorithms are used to solve the interface motion and the hybrid
flow solver is used to obtain flow parameters at each time interval. The properties

of the propellant are given in Table 4.2 and mesh files are presented in Figure 4.5.
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Table 4.2 Input Parameters for 6C4 Motor

Geometric Properties Unit

Outer Radius of Propellant mm 76.2
Inner Radius of Propellant mm 50.8
Length of Propellant mm 285.0
Propellant Properties

Flame Temperature K 3078
Mass flux (at 3.0 MPa) kg/m”.s 16.8
Mass flux (at 6.0 MPa) kg/m®.s 21.8
Mass flux (‘at 9.0 MPa) kg/m®.s 254
Ratio of Specific Heat 1.169
Gas Constant Jkg K 319.8

The mesh file is generated by tetrahedron elements and the domain is divided into
three parts; nozzle, propellant and subsonic flow side. The mesh has 10002 nodes

and 45518 elements.

a0
g0
40

20

L1
]
rl
INNNN ANNN] ANEN ANNN

1] 100 200 300 400

Figure 4.5 6C4 Flow Mesh
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Figure 4.9 6C4 Convergence History at 0.2 s
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Figure 4.11 6C4 Pressure Along the x-axis at 0.6 s.
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Figure 4.12 6C4 Mass Flow Rate Convergence at 0.6 s.
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Figure 4.13 6C4 Convergence History at 0.6 s
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Figure 4.21 6C4 Convergence History at 1.4 s
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The thrust is obtained from cell surfaces which are at the pressure outlet boundary

and it is calculated by the following relation:

Thrust, =mV, + A (P. - P, ,..) (4.3)

The total thrust is calculated as the summation of thrust coming from all the cell
surfaces. It is observed that the thrust levels are in good agreement with the test
results and with the prediction codes. The pressure levels are higher than the test

results and prediction codes’ estimations.

The nozzle throat area is given to the prediction codes exactly, however the grid
intensity defines the throat area for the three-dimensional solver. Finite volumes
generated at the nozzle throat do not follow the real shape, thus the throat is
narrower. A test case is solved with different mesh intensity at the throat with
constant mass flow rate. The result is given in Figure 4.24 and the grid size of 1

mm is used in nozzle throat for the present calculations.
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Figure 4.24 Effect of Mesh Intensity at the Throat
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During the firing of the motor, the nozzle throat expands as the hot gas erodes and
ablates material from the surface. This effect is excluded in all solutions, therefore

the pressure drop seen at the end of the firing is not captured with prediction codes.

The real physics in a SRM is complicated with two-phase flow, turbulence and
combustion instabilities. Using Euler equations idealizes the problem, thus the
results obtained from such analysis would only be estimates and errors made are

justified.
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4.4 TEST CASE 2 - BOOSTER SRM

In this test case, a conceptual design of a booster SRM is investigated. Since the
design is conceptual, the predictions are compared to previously validated codes of

performance prediction.

The motor case has a diameter of 400 mm and a length of 3150 mm. The nozzle is
a contoured nozzle, which is designed by NCDT code [100]. In order to obtain
higher pressure to sustain ignition, 5 slots are placed at the end of the grain;
therefore the geometry is not axis-symmetric. The grain and motor geometry are

given Figure 4.25.

Nozile
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Section A-A

Figure 4.25 Geometry of Space Launcher Rocket Motor

The properties of the propellant are given in Table 4.3 and flow mesh is presented
in Figure 4.26. The mach contour results for each captured time interval is given

with pressure along the axis of the motor.
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Table 4.3 Input Parameters for Booster SRM

Geometric Properties Unit

Radius of Propellant mm 397
Length of Propellant mm 2600
Length of Slotted Side mm 400
Length of Cylindrical Side mm 2200
Number of Slots 5
Width of Stars mm 50

Propellant Properties

Flame Temperature K 2886.0
Mass flux (at 3.0 MPa) kg/m”.s 14.0
Mass flux (‘at 6.0 MPa) kg/m®.s 17.2
Mass flux (at 9.0 MPa) kg/m®.s 19.3
Ratio of Specific Heat 1.12
Universal Gas Constant J/kg K 325.4

X

Figure 4.26 Booster SRM Flow Mesh
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The booster SRM test case has typical three-dimensional grain geometry where
analytical or two-dimensional numerical solvers fail to capture the combustion
surface motion accurately. A contoured nozzle is used in order to increase thrust
efficiency by reducing the radial component of momentum. The optimization of
the nozzle geometry is performed based on the criteria that the convergence
location of the expansion waves lays outside the nozzle. The expansion waves
intercept the pressure outlet boundary and a lower CFL number is required for the
solution to achieve stable convergence in the nozzle. Once the expansion waves

are formed behind the choked region of the throat, the CFL number is increased.

In the early stages of the combustion, the cylindrical part of the grain is dominant
and produces a progressive performance characteristic whereas the aft end takes
over the regime during the late stages of the combustion. The comparison of
results with zero-dimensional and one-dimensional solvers is in good agreement
during the progressive region of the combustion because axi-symmetric
assumptions are accurate in this region. However as the aft end of the grain

becomes dominant, a difference in the results become visible.

4.5 TEST CASE 3 - DEFECTS IN GRAIN

This coupled solver can be used for Failure Modes and Effects Analysis for SRM
manufacturing processes. Several failure modes related to grain structural defects
such as voids or cracks in the grain can be modeled and their effects on the

performance can be investigated.

In this test case one of the manufacturing problems where air voids are trapped in
the grain during the filling operation is investigated. Assuming that the voids have
spherical shape, two cases are investigated: 1 void with 10 mm diameter and 3
voids with diameters 10 mm and 6 mm are placed in the grain. Considering the
grain model is 1/8 of the real model, the overall effect would be like having 8 voids

and 24 voids respectively. The geometry and locations of voids are shown in
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Figure 4.37and Figure 4.38. The grid which is used for the solutions is given in
Figure 4.39.

80 mm

Figure 4.37 Location of Air Void for Test Case 3-A
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Figure 4.38 Location of Air Void for Test Case 3-B
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Figure 4.39 Grid for Test Case 3
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Figure 4.41 Comparison of Pressure for Test Case 3

The burn area results are given in Figure 4.40 and performance prediction results
are given in Figure 4.41 and Figure 4.42. It is evident that having voids in the
grain increases the burn surface area suddenly, thus changing the pressure and
thrust history of the motor significantly. A detailed investigation can be made for
quality control procedures of a SRM after the molding process by using X-ray

imaging of the grain. No comparison is given in the context of this study
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considering the voids in the grain.

This test case is solved only to show the

capabilities of the proposed model. The arrival time contours are given in Figure

4.43 and Figure 4.44. The three-dimensional results are given in Appendix B.
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Figure 4.44 Burn Back Results for Test Case 3-B

134



4.6 TEST CASE 4 -HUMP EFFECT

At contact locations with walls of the mandrel and of the metal case, binder rich
zones are created. This is due to the fact that during the casting processes the
binders in the propellant stick to metal surfaces [3]. The binder rich zone burn
slower, which explains the fact why the burn rate is dependent on the web, burned.
Also the head end of the motor is initially closed by a metal piece during the filling
process, therefore the burn rate decreases at these locations. The burn rate effect is

defined through the relation

% = £(R,8,2) (4.4)

r

0

where 7, is the actual burn rate, 7, is the known burning rate without hump effect,
(R, Bz) is the function controlling the hump effect. The hump effect function can
be found empirically as a rule, it varies between 0.95 and 1.05 and follows a

sinusoidal shape.

In the R-direction the hump function is defined as

- HPTR-R) 7
f(R) =1+0.05 Bln% 5 E (45)

where R; is the inner radius of the grain and R, is the outer radius of the motor.

In the z-direction the hump function is defined as

£(2)=0.95+0.025 E@in% _%TEHE <R -R (4.6)
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Figure 4.46 Hump Parameter as a Function of the Axial Direction

For 6C4 motor, the axial burn rate change is effective on 10 % of the whole motor
length, and the maximum difference of 5 % occurs at z=0. Therefore total effect is

less than 0.5 % in the overall performance prediction.
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The change of burn rate along the radial direction is dominant in the flow solutions.
The whole length of the motor is affected by this change of rate therefore the

maximum change of 5 % can be seen in performance prediction.

The following results are obtained for the test case with hump effect.
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Figure 4.47 6C4 Pressure Time History with Hump Effect
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Figure 4.48 6C4 Thrust Time History with Hump Effect

Combining hump effect with the burn rate calculations, enhances the results
significantly. The error which is made between the experimental and the prediction
is mostly due to the fact that the nozzle erosion and ablation is not modeled in this
test case. Another factor may be due to the expansion of the motor case and
propellant grain due to high pressure built up in the motor. However the numerical

analysis neglects any effect related to structural expansion.
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CHAPTER 5

CONCLUSION AND DISCUSSION

The methodology described in this work is applicable to all moving boundary
problems. However the intention is to solve three-dimensional grain burnback
effects in a solid rocket motor. The interface capturing algorithm of Fast Marching
Method is coupled to zero-, one-, and three-dimensional flow solvers in a
segregated fashion. The results obtained from the present calculations and

previous analyses are in good agreement.

The interface calculations are performed by an interface-capturing algorithm
therefore the solutions are mesh dependent. Better accuracy can be achieved by
using higher number of elements which will increase the run time. Otherwise the

interface tends to smear out.

The three-dimensional flow solver (HIBS3D) is an explicit type flow solver
therefore number of iterations for convergence is high. The elements generated on
the boundaries are smaller than the ones in the rest of the solution domain.
Therefore the flow solver loses time while trying to analyze these elements. The
algorithm removes very small elements on the boundary however the real position
of the boundary may be altered due to this process. The flow solver is first order

accurate in space therefore in order to obtain the same results as the second order
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accurate solvers, more elements are required. The problem can be solved through a

second order implicit solver or a parallel solver.

Since the grid is stationary, previous results are used as initial conditions for the
next calculation. This reduces the time for convergence drastically. However the
results from the previous run should be ready for such a process, whereas at some
test cases all the captured domains for each time interval are solved on different
computers simultaneously without the initial values from previous runs. This way

as the run time increases for each computer, overall run time is reduced.

The interface capturing methodology does not require keeping track of connectivity
of elements. Therefore errors due to break up of surface are not present in our
method. Since the grid is stationary all properties of propellant such as crack,

voids and other manufacturing deficiencies may be implemented prior to run.

The flow solver of Roe with entropy fix method has been found to work effectively
in transonic solutions. The solver is adapted to the cut-cell method used in
tetrahedron mesh effectively by converting the tetrahedron solver into a hybrid
solver. The hybrid solver is robust and the results are accurate where any type of

mesh element can be used provided that the notation for the mesh is followed.

5.1 SUGGESTIONS FOR FUTURE WORK

The suggestions for future work can be proposed as follows:

e The flow solver should be upgraded to second order accurate in space.

* The flow solver should be converted to an implicit solver.

* The flow solver should be parallelized.

* Initial value formulation for interface capturing should be implemented and

the interface solver should be applied to other moving boundary problems.
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e The flow solver should be coupled to combustion, two-phase flow,
turbulence and acoustic models as well.

* The interface-capturing program should implement mesh adaptivity in order
to reduce smearing of the interface and reducing the amount of elements
used.

* The nozzle erosion and ablation should also be modeled.

e The structural analysis should be coupled to the flow analysis, thus changes

in the grain and motor case can be modeled.

5.2 CONCLUSION

The achievements and contributions of this study can be summarized as:

* The method of Fast Marching is applied to rocket motor grain
burning surface modeling for the first time.

* The method of Fast Marching is applied on tetrahedron elements.

e The cut-cell method is applied on tetrahedron elements.

* A coupled model, which uses three-dimensional finite volume
solver with a Fast Marching interface capturing method which uses

cut-cell method, has been developed.
The coupled model can be used to solve rocket motor performance as well as any

other problem with moving boundaries, since all the procedures are set in a generic

manncr.
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APPENDIX A

USER’S MANUAL

In this section the input files and the programs for the coupled solutions is
presented briefly. The pre-processing procedures, processing procedures and post

processing procedures are described separately.

A.1 PRE-PROCESSING STEP

The aim of the pre-processing is to prepare mesh files for the regression codes to
process. These files include node positions, connectivity of elements and boundary
conditions for each node. The solid model is generated with the I-DEAS" Master
Modeler and unstructured tetrahedron mesh is generated with I-DEAS” Simulation
module. The boundary conditions are set and a text file in universal file format is

exported from [I-DEAS, which is imported to the regression code.

A.1.1 I-Deas Universal File Format

Universal files are ASCII data files, that can be used to store selected information
from a model file to interface with programs of your own or to transfer information

between different types of computers [96]

Universal files are designed so that they may be easily read and written using user-

written programs. Each universal file is a sequential formatted file with records of
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maximum 80 characters. The file is compatible with the text editors on PC and

UNIX systems.

Blocks of information, called data sets make up the basic structure of a universal
file. Each block begins with a row, containing a minus sign in column 5 and a 1 in
column 6 (-1). The second row has a number, which is the data set number. For
example, the connection grid specifications for mesh volumes are written with data
set number 785. Following the data type record, the body of the data set contains
data, which is dependent on the data set type. The final record of the data set is the
similar row with a “-1". The following is the beginning statement of all the
universal files (unv.). "151" is the data set number, which is the header data set.
The model file from which the mesh is generated, the modeler version number and

date of processing are given. The data set ends with the -1 as usual.

-1

151
fdiskilffor/example/purposes/dool
I-DEALS HMaster 3ZJeries 21mwl: Jimulation
D2-Apr-03 10:07:33
I-DELRS Master Series 21mwl: Simulation
03-Apr-03 0O7:36:12 8 1 3 1 3

-1

Figure A.1 Data Set Example for UNV Format

The surface and volume meshes are generated on I-DEAS and the mesh files are
exported using universal file format. Most of the information is skipped since it
involves properties, which are not relevant to the investigation such as material
properties. The node positions and element connectivity is removed from the
universal file and written to a separate file with “.haz” extension. The data set code
numbers for these data are 2411 for the “node positions™” and 2412 for the “element
connectivity* information. The format rules for these data set numbers are listed

here from the I-DEAS help files for convenience.
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If the mesh generation is done by parts in the I-DEAS program then the mesh
numbers are not sorted and some of the unused meshes are deleted. Therefore a
sorting algorithm has been added to the “mesh _3d” program.

A.1.2 Universal Data Set Number 2411

Node positions in any coordinate system are given under this data set.

Table A.1 Format for Data Set 2411

Record 1 FORMAT (4110)
Field 1 node label
Field 2 export coordinate system number
Field 3 displacement coordinate system number
Field 4 color of each node
Record 2 FORMAT (1P3D25.16)
Fields 1-3 node coordinates

A.1.3 Universal Data Set Number 2412

Connectivity of each element is defined under this data set.

Table A.2 Format for Data Set 2412

Record 1 FORMAT (6110)
Field 1 element label
Field 2 FE descriptor ID (111 tetrahedron)
Field 3 physical property table number (1-2d, 2-3d)
Field 4 material property table number
Field 5 color
Field 6 number of nodes on the element
Record 2 FORMAT (8110)
Fields 1ton node labels defining element
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A.1.4 Defining Boundary Conditions

The boundary conditions are required separately for the flow solver (H-IBS3D) and
the FMM solver. They are defined by modifying the color of each node and
surface element, which lays on the boundary. Similarly the inner nodes are also
defined by using the color codes in I-DEAS. For a list of color codes see Table

below.

Table A.3 Color Codes for Boundary Condition Definitions in [-DEAS

HIBS3D BC Color No
Pressure Exit Gray Blue 2
Symmetry Light Blue 3
Mass Flux Green 7
Flow Inlet Orange 10
Propellant Symmetry Surface Light Blue 3
Wall Light Magenta 13
Propellant on Wall Surface Light Magenta 13
Metal Case Light Magenta 13
Wall with Surface Regression Pink 14
FMM3 VOLUME NODE COLORS

Flow field Blue 1
Propellant itself Red 11
Nozzle Insulation Magenta 12
FMM3 AREA NODE COLORS

Void and Crack Black 0
Flow Field Blue 1
Propellant Burn Surface Green 7
Nozzle Insulation Burn Surface Yellow 8
Metal Case White 15

A.1.S Program “ MESH_3D ”

This FORTRAN program reads the node positions and element connectivity
information from universal file format and converts the mesh information into a
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compressed form for the Fast Marching Algorithms to work on. This new mesh

file has extension of “ha2”.

The “ha2” format contains information on node positions, connectivity of elements

and neighboring elements. This information is gathered from two sources:

1. In the “unv” file format the connectivity is used to gather information
about neighboring cells to each face of the tetrahedron element.

2. In the “unv” file format the color codes of each surface element is
defined according to the boundary conditions they represent. This
information is used and if a boundary condition exists, negative of the

color code is adopted as the neighborhood information.

i 64 ha? - Motepad =] 3
File Edit Format Help
INPUT MESH FILE= 6Cd4_all. urmy d

MEIGH= 1,DIM= 3,S0URCE = IDEAS
12311 /WMUMEBER OF MODES.
56529, MUMEER OF ELEMENTS.

1/THE WODE POSITIONS

1 2581, 00000000000 359.96381570000 25, 00000000000 7
2 2581.00000000000 547901994 58000 25, 00000000000 7
3 2181, 00000000000 515.32125032000 25, 00000000000 7
2/CONNECTIVITY OF EACH ELEMENT
1 157 338 333 1334 48414 1150 -3 2
2 157 1a2 338 1836 4 1145 1 3

Figure A.2 Example HA2 File

The neighboring information is given in the connectivity list. Negative values
represent boundary conditions and positive numbers represent elements in the

neighborhood. Neighbors are sorted as follows:

For a tetrahedron element

Neighbor 1 : Nodes (1 -2-3)
Neighbor2 Nodes (2-3-4)
Neighbor 3 Nodes 3—-4-1)
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Neighbor 4 Nodes (4—1-2)

For a hexahedron element

Neighbor 1 Nodes (1-2-3-4)
Neighbor2 Nodes (5—-6—-7-28)
Neighbor 3 : Nodes (1 -2-5-06)
Neighbor 4 Nodes 2-3-6-7)
Neighbor 5 Nodes 3—-4—-7-138)
Neighbor 6 Nodes (4—1-8-5)

For hybrid elements the neighboring connectivity for hexahedrons is used strictly at

all times.
A.2 PROCESSING STEP
The HA2 format file is the mesh file for the interface capturing algorithms. The

input file given in Figure A.3 is used for the interface capturing code FMM3. The

variables are described in Table A.4.

Table A.4 Parameters for Fast Marching Input File

TVALUE Initial Time Value
FTYPE Burn rate type (0=Constant burn rate / 1=Pressure
dependent burn rate)
F Constant burn rate
RBREF Reference burn rate
PREF Reference pressure for burn rate calculations
PEX Pressure exponent for burn rate calculations
RHO_PROP Propellant density
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Table 6.4 (Continued) Parameters for Fast Marching Input File

PINIT Initial pressure in the motor
IT SHOW Iteration show interval
SCALE Mesh dimension multiplier (Used for unit conversion)
I CAPT Volume capturing. (0=NO / 1=Yes)
IMOVE Movable inner nodes. (0=NO / 1=Yes)
N_TO Number of captured time
TO Capture time
IRUN Flow solver coupled. (0=NO / 1=Yes)
IPRE Previous run to be used for later runs
IAREA Capture area vs. web data. (0=NO / 1=Yes)
DT Capturing time interval
IPERI Capture perimeter vs. web for stations data.  (0=NO
/' 1=Yes)
TIAXIS Along which axis the stations are placed for perimeter
capturing. (1=x-axis / 2=y-axis / 3=z-axis)
ISKIN Solve interface on the boundaries for 3-d surfaces
(0=NO / 1=Yes)
IWHAT Solve for interface capturing. (0=NO / 1=Yes)
IORDER Order of accuracy for fast marching method

(1=first order / 2=second order)
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& input_FM33_txt - Notepad _ O]

File Edit Format Help

R R R TR R TR R TR TR TR TR R R T T ™
®FMZ  IWPUT FILE —
R R R TR R TR R TR TR TR TR R R T T

C_Acd_4,ha? AMesh File

SIL_out.plt Joutput file

si1. had AHAd4 file

SIL_c.plt JCaptured tecplot file

ST _c.unv JCaptured unv file

50000 JITER:

5000, 0dog STWALLE:

1. 0001 FaRr

0 SFTYPE

10.2329d00 AF

10, 2329d00 SREREF

13, 7o00dos /PREF

0.100d00 SPEX

1111, Sdo SRHO_PROP

95, S0do3 SPINIT

250 SIT_SHOW

1. 0odo SSCALE

ul SI_CAPT

0 SIMOVE

1 SMUMBER OF CAPTURED TIME STEPS

0,100 SCAPTURE TIME 1

0 SRUN_SOLVER

0 FSIPRE

WHHCAPTIURE AREA WS WEE

0 SIAREA

0,025 AD0T

SIL_AREA.PLT JCaptured argA Tile

WHWCAPTURE PERIMETER WS WEE FOR STATIOMS

0 FSIPERI

SIL_PER.PLT APERIMETER FILE

SIL_PORT.PLT APORT AREA

3 ASAT WHICH AxIS SLICES WILL BE TAKENM 1=x,2=Y,3=Z

2 S OF STATIONS

195.0 A1 =
400.0 A2

WHHSOLWER MUMERIC OPTIOMS

1 JISKIN r

Figure A.3 Fast Marching Code Input File

The input file name is “input_fm3.txt” at all times. When the FMM3 program runs

it generate several output files. These files are given as:
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Table A.5 Output files of Fast Marching Program

* out.plt The mesh file with time values to define
interface location

* had Capture mesh file for flow solver

* c.plt Captured domain mesh file for Tecplot
presentation

* cunv Universal file for captured domain.

* area.plt Area vs. web data file

* per.plt Perimeter vs. web along stations data
file

* por.plt Port area at each station data file
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APPENDIX B

THREE DIMENSIONAL SOLUTIONS

B.1 6C4 RESULTS

[ N Y R I A N B |
Mach Mumber. 001 002 003 004 005 080 080 100 110 120 150 150 200 250 240

Figure B.1 6C4 Mach Contours at 0.2 s

[ [ I O Y N N |
50 280

Mach Mumber, 001 002 003 004 005 060 090 100 140 120 1.50 1.50 200 2

Figure B.2 6C4 Mach Contours at 0.6 s.
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[ | Y I Y N O |
a0 2480

Mach Mumber. 001 002 003 004 005 080 080 100 1190 120 150 1.50 200 2.

Figure B.3 6C4 Mach Contours at 1.0 s

Mach Mumber. 001 002 003 004 005 080 050 100 140 120 150 150 200 250 280

Figure B.4 6C4 Mach Contours at 1.4 s

B.2 BOOSTER SRM RESULTS

Mach Nurnber 014 0.56 087 1.39 1.80 222 263

o

Figure B.5 Booster Mach Contours at 0.5 s
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Mach Murnber  0.14 0.55 n.a7 1.39 1.60 222 263

o

Figure B.6 Booster Mach Contours at 18.18 s

Mach Murnber 014 0.55 087 1.39 1.80 222 263

.

Figure B.7 Booster Mach Contours at 24.96 s

Mach Nurmber 014 0.55 na7 1.39 1.80 222 263

¥

\%}/z

Figure B.8 Booster Mach Contours at 28.86 s
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B.3 BUBBLE IN PROPELLANT RESULTS

Grain burn surface arrival time, for a burn rate of 1.0 mm/s is given below.

Time: 159 3146 477 656 7895 954 1113 1272 14532 1591 17.50 19.09 2065 2227 23.66

Figure B.9 Single Void in 6C4 Grain

Time: 159 318 477 636 795 954 11135 1272 14352 15.91 17.50 15.09 2068 2227 2586

Figure B.10 3 Voids in 6C4 Grain
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