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IP multicasting is a method for transmitting the same information to multiple 

receivers over IP networks. Reliability issue of multicasting contains the challenges 

for detection and recovery of packet losses and ordered delivery of the entire data. In 

this work, existing reliable multicast protocols are classified into three main groups, 

namely tree based, NACK-only and router assisted, and a representative protocol for 

each group is selected to demonstrate the advantages and disadvantages of the 

corresponding approaches. The selected protocols are SRM, PGM and RMTP. 

Performance characteristics of these protocols are empirically evaluated by using 

simulation results. Network Simulator-2 (ns2), a discrete event simulator is used for 

the implementation and simulation of the selected protocols. The contributions of 

the thesis are twofold, i.e. the extension of the ns library with an open source 

implementation of RMTP which did not exist earlier and the evaluation of the 

selected protocols by investigating performance metrics like distribution delay and 
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recovery latency with respect to varying multicast group size, network diameter, link 

loss rate, etc. 
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IP çoklu yayılım, aynı bilginin �nternet Protokolü kullanan a�lar üzerinden 

bir çok alıcıya gönderilmesi için kullanılan bir yöntemdir. Çoklu yayılımda 

güvenilirlik sorunu paket kayıplarının belirlenmesi ve giderilmesini ve tüm verinin 

sıralı bir �ekilde aktarılmasını içerir. Bu çalı�mada mevcut çoklu yayılım 

protokolleri, a�aç yapılı, negatif bildirimli ve yönlendirici destekli olarak üç ana 

grupta sınıflandırılmı�tır ve her grubun avantaj ve dezavantajlarını incelemek için 

bir protokol seçilmi�tir. Seçilen protokoller SRM, PGM ve RMTP’dir. Bu 

protokollerin performans özellikleri benzetim sonuçları kullanılarak deneysel olarak 

de�erlendirilmi�tir. Protokollerin benzetimi için bir kesikli olay benzetim aracı olan 

Network Simulator-2 (ns2) kullanılmı�tır. Tezin iki yönlü katkısı bulunmaktadır; 

bunlar daha önceden varolmayan bir RMTP açık kaynak kodu ile ns kütüphanesinin 

geni�letilmesi ve seçilmi� protokollerin, yayılım zamanı, yenileme gecikmesi gibi 
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performans metriklerinin de�i�en grup büyüklü�ü, a� geni�li�i, hatlardaki kayıp 

oranı vb. göre incelenmesi ve de�erlendirilmesidir. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

IP multicasting is a method for transmitting the same data packets to multiple 

receivers. It refers to sending the same information to a group of receivers instead of 

a single receiver such as in unicasting or all of the receivers in the network such as 

in broadcasting. Distributed database updates, audio and video conferencing, 

distance learning, transmitting stock quotes to multiple brokers and network games 

are some examples for multicast applications. 

IP Multicasting is a network-efficient technique for distributing information 

to a large group of receivers. In IP multicasting a sender can transmit a single copy 

of each packet without knowing who will receive it. Bandwidth consumption is 

minimized since only a single copy of a multicast packet flows over each link and 

intermediate routers. Responsibility of group management is on the receivers instead 

of the sender, since it is difficult for a sender to maintain the size and membership 

state of a growing and frequently changing group. An end-to-end control 

mechanism, like TCP in unicast transmissions, is not applicable for IP multicasting. 

Because feedbacking of all control information from receivers to a single sender 

causes a burst of traffic towards the sender. Therefore a specialized transport layer 

protocol must be defined to deal with the challenges of the end-to-end reliability, 

congestion, flow control and scalability problems.  

Reliability issue of multicasting contains the challenges for detection and 

recovery of packet losses and for ordered delivery of the entire data. The basic 

definition of Reliable Multicast is delivering all data units to all receivers in a 

multicast group. In detail, reliability can be analyzed under three different concepts, 

namely total reliability, semireliability and time-bounded reliability. Total reliability 
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guarantees error-free delivery of all data to all receivers. In this kind of applications 

all other data packets are useless if at least one packet is lost. Semireliability 

supports retransmission of lost packet or some error correction codings but does not 

guarantee totally error-free delivery of data. It is used by loss-tolerant real-time 

applications. Time-bounded reliability is also used by real-time applications but with 

strict jitter requirements. In which retransmission of a lost packet is only performed 

for up to a certain time. 

In literature, there have been some proposals for the taxonomy of reliable 

multicast protocols. In this study we investigate these different classifications and 

select one of them for our comparative study. One representative protocol for each 

group of selected classification is selected and simulations for different test cases are 

applied using these protocols. The selected protocols are SRM, PGM and RMTP. 

Implementations for SRM and PGM previously exist in ns-2, our discrete event 

simulation tool, but not for RMTP. In the first stage of the work, RMTP is 

implemented for ns-2.  

In simulation study, some performance metrics are defined for comparing the 

representative protocols. These performance metrics are distribution delay, recovery 

latency, request overhead on routers or links and repair overhead on routers or links. 

Test cases are generated by varying the number of multicast group members in the 

network, the network diameter (i.e. average end-to-end delay of the whole network) 

and the average loss rate of the links.  

The organization of the thesis is as follows; 

Chapter 2 gives a brief background for IP Multicasting. In this chapter, 

definition of multicasting is given and the main concepts like multicast addresses, 

group management and multicast routing is presented. Then, some challenging 

issues of IP Multicast are defined briefly. 

Chapter 3 focuses on the reliability issue of IP Multicasting. It gives different 

definitions for reliability and analyses the methods used for error detection and 

recovery. Different classifications proposed until now are presented by figures and 

explained briefly. The representative protocols selected for simulation study are 

defined in detail. A detailed literature survey is also presented in this chapter.  
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In Chapter 4, Ns-2 implementation of RMTP is explained. The details of the 

protocol agents and the operation steps of the whole protocol are presented in this 

chapter. 

Chapter 5 contains the comparative study of the thesis. In this chapter, the 

selected network and application model, protocol parameters and performance 

metrics are explained. The design of the test cases and simulation results are 

presented. 

Chapter 6 summarizes the thesis and concludes with comments on the 

simulation results and on the performance of the protocols and states some future 

work directions. 
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CHAPTER 2 
 

 

IP MULTICAST BACKGROUND 
 

2.1. Definition 

 

In IP-based networks, data can be disseminated in three district ways, namely 

unicasting, broadcasting and multicasting. Unicast transmission is the basic one-to-

one communication i.e. a single application communicates across a network or 

internetwork with another application. Many of the widely used Internet applications 

like HTTP, SMTP, FTP or Telnet use unicast transmission. Broadcasting is one-to-

all communication where the data is sent from a single sender to all other nodes 

within the network. Therefore for wide area network applications broadcasting does 

not make much sense. More localized level applications such as ARP (Address 

Resolution Protocol) uses broadcast communication [1]. 

Multicasting stands somewhere between unicasting and broadcasting. It 

refers to sending the same information to a group of receivers instead of a single 

receiver such as in unicasting or all of the receivers in the network such as in 

broadcasting. Multicast communication is called one-to-many or many-to-many in 

case of more than one sender is supported by the protocol. Updating distributed 

databases, audio and video conferencing, distance learning, transmitting stock 

quotes to multiple brokers and network games are some examples for multicast 

applications [2] [3]. 

In multicasting, senders send each data packet once and at most one copy of 

the packets flows through the physical links under normal conditions. For example, 

assume that a sender, S, wants to send a message to receivers R1 and R2, as shown in 

Figure 2.1. In case of unicast transmission, S should transmit the same data twice 



 
 
 

5 

and the bandwidth usage between the sender and the intermediate node is doubled. 

In broadcasting, other receivers like R3 will get the packets although it is not 

relevant with the message sent, causing unnecessary bandwidth consumption. But in 

multicasting, only a single copy of the message is transmitted from the sender and it 

is copied at the intermediate node to be sent to the multicast group. A multicast 

group can range in size from a few nodes to several thousands. In the example given 

in Figure 2.1, the multicast group consists of nodes R1 and R2. 

 

 

 
 

Figure 2.1 Unicast, broadcast and multicast transmissions 

 

 

 

2.2 IP Multicast Concepts 

 

In order for a host to participate in a multicast session, there are three main 

features. These are the “multicast group address” specifying that session, the “group 

membership protocol” for informing the nearest multicast capable router that the 

host wants to join or leave the multicast session and the “multicast routing protocol” 

to build a multicast delivery tree in which the sender is the root node and the group 

members are the leaf nodes of the tree. 
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2.2.1 Multicast Address 

 

Multicast addresses specify an arbitrary group of hosts that have joined the 

group and that want to receive the packets sent to this group. Internet Protocol (IP) 

supports multicast transmissions using Class D IP addresses. Unlike the other types 

of IP addresses (Class A, B and C), an IP multicast address does not have Network 

ID and Host ID parts. As shown in Figure 2.2, a Class D IP address contains “1110” 

at higher-order four bits and the remaining 28 bits are used to identify the multicast 

group. Therefore 228 multicast addresses in the range 224.0.0.0 to 239.255.255.255 

can be generated at the same time each identifying a different multicast session. But 

some of these addresses have been reserved for specific usages by Internet Assigned 

Numbers Authority (IANA). The range of addresses from 224.0.0.0 to 224.0.0.255 

is reserved to be used by network protocols on a local network segment. Packets 

with these addresses should never be forwarded by a router; they remain local on a 

subnet. For example 224.0.0.1 is used to send a message to all hosts on the subnet 

and 224.0.0.2 is assigned to the group of all routers on the subnet. The address 

224.0.0.0 is guaranteed not to be assigned to any group [4]. Some of most common 

reserved multicast addresses are given in Table 2.1. 

 

 

 
 

Figure 2.2 IP address classes 
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Table 2.1 Most common reserved multicast addresses 

 

Address  Function 
224.0.0.1  Broadcast to all systems on the subnet 

224.0.0.2  Broadcast to all routers on the subnet 

224.0.0.5  Reserved for use by OSPF routers 

224.0.0.6  Reserved for use by OSPF designated routers 

224.0.0.12  Reserved for use by DHCP servers 

 

 

2.2.2 Group Management 

 

A host must inform the nearest multicast-capable router that it wants to join a 

group. The Internet Group Management Protocol (IGMP), a standard described by 

RFC 1112, is responsible for managing multicast group membership on a local basis 

[5]. It can be thought as a multicast protocol that is run between hosts and the local 

router on a LAN. The local router uses IGMP to discover multicast group members 

on the LAN. If at least one member of a multicast group is discovered on an attached 

LAN segment, the router then forwards packets, sent for that group, to the LAN. 

IGMP has two fundamental message types: 

1. Query messages are used to discover which devices belong to a particular 

multicast group. 

2. Report messages are used by hosts in response to queries to inform the 

querying device that it is a group member. 

The operation of IGMP goes like this; when a host wants to join a multicast 

group, it sends a report message containing the multicast address of the group to 

address 224.0.0.2, which is the all routers reserved address. After receiving this 

report message a multicast capable router starts to forward the packets sent for that 

group to that LAN. During the multicast session, router sends periodic query 

messages to check at least one host who is still a group member exists in the LAN. 

These query messages are sent to 224.0.0.1, all host reserved address, and each 

group member responds with a report message. Before responding, members start a 
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random back-off timer in order to suppress each other’s reports for the same query, 

because at least one report message is enough to inform the router that there are one 

or more group members in the LAN. Routers do not have to know the number of 

group members. In the first version of IGMP, hosts leave the groups silently i.e. no 

special messages generated for leaving the group. Routers notice a difference only 

when the last member leaves the group, since no report message would be received 

responding a query message. In IGMP version 2, group members send a leave report 

before leaving the group. Then router issues a query message immediately to check 

if there is any other group member, rather than waiting for the next query time. If 

there is no group member in a LAN segment, router stops forwarding the packets for 

that group address. 

 

2.2.3 Multicast Routing 

 

In unicasting, routing is often treated as the shortest-path problem i.e. when 

two nodes want to communicate, the shortest path connecting these nodes is 

selected. But in multicasting, a multicast group wants to communicate each other. 

Now, instead of the shortest path, the minimum-weight tree spanning all of the 

nodes in the multicast group must be detected. 

Multicast routing problem can be defined as follows [6]: 

An internetwork can be modeled as a graph, consisting of a set of nodes 

(vertices) and a set of links (edges). Let G = (V, E) be an undirected graph, where V 

is the set of nodes and E the set of links. Since graph G is undirected, it models a 

network which has symmetric links. Let M be the multicast group including the 

sources. Therefore M is a subset of set V (M⊆ V). Then the problem of multicast 

routing in communication networks is equivalent to finding a tree T in graph G such 

that T spans all vertices in the multicast group M. Such a tree is called multicast 

distribution tree. 

In Section 2.1, it is mentioned that a multicast application may require one-

to-many or many-to-many transmission i.e. there is only one sender per group or 

each group member can be both sender and receiver. Construction of the multicast 
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distribution tree differs with respect to these types of transmission. For one-to-many 

transmissions, a source-specific multicast tree can be used. A source-specific tree is 

built from each active sender to its group [7]. As seen in Figure 2.3, a source-

specific tree consists of the shortest path links between the sender and each group 

member. Since this type of trees are constructed for specific sources, in Figure 2.3 

there are two different multicast trees for senders S1 and S2. Therefore the 

complexity of source-specific tree protocols is O(S*G), where S is the number of 

sender and G is the number of groups. Distance Vector Multicast Routing Protocol 

(DVMRP) [8] and Multicast Extension for Open Shortest Path First (MOSPF) [9] 

are two examples for protocols using source-specific multicast tree approach. 

 

 

 
 

Figure 2.3 Shortest path trees in Multicast Routing 

 

 

In case of many-to-many transmissions, a group-shared multicast tree must 

be used. Figure 2.4 illustrates a group-shared tree for the same topology and the 

multicast group given in Figure 2.3. In this type of multicast trees, a center node is 

selected and it serves as the root of the tree. It is responsible for expanding the tree 

when a new sender or member joins the multicast group, and for collecting traffic 

from all sources and multicasting it to all receivers [7]. Group-shared tree protocols 

has complexity O(G), where G is the number of groups. Some examples for the 



 
 
 

10 

application of group-shared trees are Core Based Tree (CBT) [10] and Border 

Gateway Multicast Protocol (BGMP) [11]. 

 

 

 
 

Figure 2.4 Shared tree in Multicast Routing 

 

 

2.3 Challenges of Multicasting 

 

IP Multicasting is an efficient technique for distributing information to a 

group of receivers [12]. In IP multicasting a sender can transmit a single copy of 

each packet without knowing who will receive it. Bandwidth consumption is 

minimized since only a single copy of a multicast packet flows over each link and 

intermediate router. Furthermore, responsibility of group management (joining and 

leaving a multicast group) is on the receivers instead of the sender, since it is 

difficult for a sender to maintain the size and membership state of a growing and 

frequently changing group. 

An end-to-end control mechanism, like TCP in unicast transmissions, is not 

applicable for IP multicasting. Because feedbacking of all control information from 

receivers to a single sender causes a burst of traffic towards the sender. Therefore a 

specialized transport layer protocol must be defined to deal with the challenges of 

the end-to-end reliability, congestion, flow control and scalability problems. This 
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specialized transport protocol can operate over UDP (Figure 2.5.a) or be located as a 

transport layer protocol and operate directly with IP [13]. (Figure 2.5.b) 

 

 

 
(a) (b) 

 

Figure 2.5 Specialized Multicast Transport (a) Over UDP (b) Over IP  

 

 

These specialized transport protocols are implemented for meeting different 

requirements of applications. Some applications like multicast file transfer require a 

strict reliability, while some others may tolerate a small loss of data but need low 

latency, like video conferences. Some protocols deal with flow and congestion 

control by using multirate data transmission for heterogeneous receivers in a 

multicast group. Consequently, a single multicast protocol is not likely to meet the 

needs of all Internet applications [14]. Therefore different protocols have been 

implemented for different requirements. In Chapter 3, the ones related with 

reliability are analyzed in detail.  
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CHAPTER 3 
 

 

RELIABLE MULTICAST PROTOCOLS 
 

3.1 Introduction to Reliable Multicast 

 

The basic definition of Multicast Reliability is stated as delivering all data 

units to all receivers in a multicast group. But this concept can be further classified 

into three subgroups, namely total reliability, semi-reliability and time-bounded 

reliability. Total reliability guarantees error-free delivery of all data to all receivers. 

File transfer applications are an example for applications requiring total reliability 

[15]. In this kind of applications all other data packets are useless if at least one 

packet is lost. Semi-reliability supports retransmission of lost packet or some error 

correction codings but does not guarantee totally error-free delivery of data. It is 

used by loss-tolerant real-time applications [2]. Time-bounded reliability is also used 

by real-time applications but with strict jitter requirements. It states that 

retransmission of a lost packet is only performed for up to a certain time [16]. In this 

study we will focus on total reliability. 

For achieving reliable data transfer, two major tasks are required i.e. error 

detection and error recovery. Different transport layer solutions can be proposed for 

these tasks. These are Automatic Repeat Request (ARQ), Forward Error Correction 

(FEC) and sometimes combination of these two i.e. hybrid solutions. 

The basic idea of the ARQ approach is to retransmit a packet only if it is lost 

by at least one receiver. Depending on whether error detection is done by the sender 

or the receivers, reliable multicast protocols could use positive (ACK) or negative 

(NACK) acknowledgements. When using ACKs, the sender retransmits messages 

until ACKs from all receivers are received. This approach does not scale well 
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because ACKs sent by each receiver for each received packet may lead to serious 

network congestion (ACK implosion). In addition, the sender has to keep the state of 

the multicast group. Using NACKs shifts the error detection load from the sender to 

the receivers. Receivers transmit NACK packets only when a packet loss is detected. 

In order to reduce the implosion problem, different NACK suppression mechanisms 

could be applied, since the sender only needs to know that at least one receiver is 

missing data. 

FEC mechanism consists in sending redundant packets together with original 

data packets. For every k original data packets, h=n-k parity packets are constructed. 

All k data packets can be reconstructed if any k packets out of n are correctly 

received. The FEC-based approach reduces the end-to-end latency compared to the 

ARQ, since receivers do not have to wait for the retransmission of lost packets. But 

this is at the cost of bandwidth since redundant packets are sent. 

In addition to ARQ and FEC there are two hybrid methods combining FEC 

with ARQ, namely the layered approach and the integrated approach [17]. The 

layered approach considers FEC as an independent layer below the ARQ-based 

protocol. The advantage of such a solution is that FEC is transparent to the ARQ 

protocols and transparently improves ARQ performances. Besides, if an application 

does not require total reliability, the ARQ protocol may be skipped in order to only 

use the FEC layer. In the integrated approach, original data packets are transmitted 

with or without parity packets. A receiver will request more parity packets when it 

detects packet losses. In this method, FEC and ARQ operate in the same layer, as 

part of the same protocol. 

 

3.2 Classification of Reliable Multicast Protocols 

 

There are various reliable multicast protocol classifications in the literature. 

Some of them group protocols according to the application requirement, while some 

others use the way that the protocol recovers packet losses or whether it uses router 

assistance. In this section, different classification methods are investigated briefly 
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and a figure showing the location of well known protocols for each classification is 

given.  

In [18], multicast transport protocols are classified according to the 

application characteristics, namely General Purpose Protocols, Protocols for 

Multipoint Interactive Applications and Protocols for Data Dissemination. General 

Purpose Protocols are defined as message-oriented and not designed for a specific 

application. Second group of protocols are the ones that support Multipoint 

Interactive Applications. These are implemented for many-to-many transmissions 

and generally used by real-time applications. Protocols for Data Dissemination are 

designed for delivering same data to multiple receivers in a non-real-time manner. 

These protocols have a strict reliability requirement compared to other type of 

protocols. Figure 3.1 gives the classification according to application characteristics 

and lists some example protocols for each group. 

 

 

 
 

Figure 3.1 Classification of Reliable Multicast Protocols - 1 

 

 

Another way of classification is distinguishing the protocols according to the 

organization of retransmissions. In [19] and [20], reliable multicast protocols are 

analyzed under four groups; Sender-initiated, Receiver-initiated, Tree-based and 

Ring-based reliable multicast protocols. In the sender-initiated protocols, each 
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receiver sends a unicast ACK to the sender for each packet that the receiver obtains 

correctly. The sender maintains the state of all receivers to whom it has to send 

packets and from whom it has to receive ACKs. Transmissions or retransmissions 

are multicast to all receivers. But this mechanism suffers from the ACK-implosion 

problem. Therefore receiver-initiated protocols have been proposed. In this 

approach, a receiver only sends a negative acknowledgment (NACK) when it detects 

an error or a lost packet.  

However, still in some cases a burst of NACK packets may cause problems 

at sender network. Therefore transmission of control packets must be organized in a 

way that ACK/NACK implosion is prevented. In tree-based reliable multicast 

protocols, the whole multicast delivery tree is divided into subtrees and all control 

packets are transmitted within this subtree. Only one ACK or NACK packet is 

transmitted to the upper node by the root node of the subtree. On the other hand, in 

Token-Ring based protocols, there is only one token site responsible for collecting 

ACK/NACK packets and transmitting towards the sender. The token is periodically 

passed to the next node of the ring. In Figure 3.2, some example protocols for each 

group are listed. 

 

 

 
 

Figure 3.2 Classification of Reliable Multicast Protocols - 2 
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[21] classifies the protocols in a very similar way to the previous one. But it 

defines two main groups as Sender-initiated and Receiver-initiated. Other groups are 

located under Receiver-initiated protocols as seen in Figure 3.3. These subgroups are 

Cloud-based, Tree-based and Ring-based reliable multicast protocols. Cloud-based 

multicast protocols are defined as the protocols that do not require the receivers to 

be arranged in a definite structure. These protocols do not maintain the membership 

information that accounts for their good scalability. Tree-based and Ring-based 

protocols are defined as in previous classification. Figure 3.3 lists some example 

protocols for this classification. 

 

 

 
 

Figure 3.3 Classification of Reliable Multicast Protocols - 3 

 

 

A newer classification adds router-assistance and forward error correction 

methods to the taxonomy. In [16] and [22], reliable multicast protocols are divided 

into four groups; namely NACK-only protocols, Tree-based ACK (TRACK) 

protocols,  Router assisted protocols and Open Loop protocols, as given in Figure 

3.4. NACK-only protocols attempt to limit traffic by only using NACKs for 

requesting packet retransmission.  They do not require network infrastructure. 
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TRACK protocols use ACKs. In order to avoid ACK implosion, ACKs are 

suppressed in a tree shaped infrastructure.  

Router assisted protocols also use negative acknowledgments for packet 

recovery. These protocols take advantage of router software to do constrained 

negative acknowledgments and retransmissions.  Router assisted protocols can also 

provide other functionalities like congestion control. Open loop protocols use 

sender-based Forward Error Correction (FEC) methods with no feedback from 

receivers or the network to ensure good throughput. 

 

 

 
 

Figure 3.4 Classification of Reliable Multicast Protocols - 4 

 

 

3.3 Literature Survey 

 

[23] defines the criteria for an ideal reliable multicast protocol as reliability, 

efficiency and tolerance. Reliability is guaranteeing the file to be delivered entirely 

to all receivers. Being efficient means both the total number of packets each client 

needs to receive and the amount of time required to process the received packets to 

reconstruct the file should be minimal. Being tolerant means that, the protocol 

should tolerate a heterogeneous population of receivers, especially a variety of end-

to-end packet loss rates and data rates.  
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For achieving these criteria, many reliable multicast protocols have been 

proposed. Most of these protocols suffer from the feedback implosion problem 

which occurs when a large amount of receivers send feedback packets to sender 

synchronously. To overcome this problem, different approaches have been 

proposed. One of these is using hierarchical ACKs. In [24] Reliable Multicast 

Transport Protocol (RMTP) organizes the group members into a hierarchical control 

tree, which governs feedback propagation and processing. Intermediate nodes in the 

control tree, or designated receivers (DRs) are responsible for buffering data 

received from the source, processing ACKs from their children, and retransmitting 

lost packets. Therefore, DRs provide local recovery. Protocol uses window-based 

flow control and defines a maximum transmission rate set at group establishment 

time. RMTP allows dynamic group membership: receivers may join and leave a 

multicast group any time during a session, and it is guaranteed that they receive the 

entire data reliably. This feature comes at the price of having the DRs buffer 

transmitted data during the whole session. 

[25] proposes another hierarchical ACK protocol, Tree-Based Multicast 

Transport Protocol (TMTP). For error and flow control, TMTP organizes group 

members into a hierarchy of subnets or domains. Typically, all the group members 

in the same subnet belong to a domain and a single domain manager acts as a 

representative of the domain. The domain manager is responsible for recovering 

from errors and handling local retransmissions if one or more of its children do not 

receive some packets. The domain managers are organized in the form of control 

tree. The sender serves as the root of the tree and has at most K domain managers as 

children. Each domain manager will accept at most K other domain managers as 

children, resulting in a tree with maximum degree K. The degree of the tree (K) 

limits the processing load on the sender and the internal nodes of the control tree. 

Like RMTP, TMTP uses a window-based flow control and the maximum 

transmission rate is defined at group creation. It also supports dynamic group 

membership. 

Another approach for avoiding feedback implosion is NACK-based 

protocols. [26] defines the Scalable Reliable Multicast (SRM), where group 

members multicast NACKs to request retransmission of a lost packet, which can be 
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answered by any member that has the packet. To avoid generating multiple copies of 

retransmitted data, retransmissions are multicast to the group. To further reduce the 

multiple copy problem, a member waits a random period of time before sending a 

NACK or retransmitting data, and suppresses its own transmission in case it hears it 

from another member of the group. According to [27], for a large number of 

receivers spanning wide-area networks, NACK suppression alone is not very 

efficient. SRM does not specify any congestion control mechanisms.  

[28] proposes another NACK-based protocol, Multicast File Transfer 

Protocol (MFTP). The protocol consists of two parts; an administrative protocol to 

set up and tear down groups and sessions, and a data transfer protocol used to send 

the whole file reliably to the multicast group. Using the administrative protocol, the 

MFTP sender announces a file transfer session periodically during the 

announcement phase. In response to announcements, clients register to the multicast 

group to receive the file. MFTP sends data in passes. In the first pass, the sender 

sends a block of packets and collects the NACKs for that block from all receivers. 

These NACKs are logically OR-ed together to represent the collective need for 

repairs for the receiving group. These repairs are sent by the sender in a second pass 

to the group. Receivers already have the repair simply ignore the packets. Holes in 

the data due to the packet drops are filled as the repairs are received. So the protocol 

does not provide packet ordering. Furthermore, since receivers can request 

retransmissions only at the end of the passes, MFTP is suitable only for non-real 

time applications.  

Router support is another method for avoiding feedback implosion. The 

protocols that uses router support can be divided into two categories. Protocols in 

the first category use router support for only directing the retransmission requests to 

a proper replier. Lightweight Multicast Service (LMS) [29] is an example for this 

category. In LMS, each router selects one of its downstream links as the replier link. 

After detecting a loss, a receiver will send a retransmission request to a nearby 

router. On receiving a retransmission request, a router will redirect it to the replier 

link if it comes from other downstream links, or forward it to an upstream router if it 

comes from the replier link. Thus, only one retransmission request is sent upstream 

from a router for a certain lost packet and feedback implosion is reduced. LMS does 
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not function well in case of failure of the repliers directly above or under the link 

where the loss occurs or in bidirectional shared routing trees. For these problems, 

Search Party [30] and Reliable Multicast for Core-based Multicast (RMCM) [31] 

have been proposed. 

Second kind of router assisted protocols uses routers for feedback 

aggregation or suppression and for local recovery. Pragmatic General Multicast 

(PGM) [27] uses PGM-capable network elements (NEs), i.e. routers enhanced to 

support PGM, for NACK elimination and suppression. All NACKs are transmitted 

to the sender by aggregating them at the intermediate NEs. Therefore the sender is 

responsible for replying all retransmissions. The congestion control approach of 

PGM uses NACKs for rate adjustment. But in [32], it is shown that this congestion 

control approach does not scale well for large multicast groups.  

In [33], the authors propose a different method for achieving reliability, 

called Semantically Reliable Multicast. The model is based on the concept of 

message obsolescence. An obsolete message is defined as the one whose content or 

purpose is superceded by another message. This knowledge is used by the protocol 

to selectively discard some messages from buffers in the presence of overload 

conditions. By allowing obsolete messages to be discarded, the system better 

tolerates the occurrence of performance perturbations without demanding additional 

resources. In this work, it is seen that applications requiring high throughput exhibit 

message obsolescence and semantically reliable multicast protocols result in an 

improvement of throughput stability. The implementation and configuration 

parameters are also analyzed to see their effects on the performance of semantic 

reliability. 

In [19], authors compared four different groups of reliable multicast 

protocols which are classified according to the method given in Figure 3.2. They 

stated that sender-initiated protocols are not scalable because the source must listen 

every receiver. Receiver-initiated protocols are far more scalable, unless NACK 

avoidance schemes are used to avoid overloading the source with retransmission 

requests. However, because of the unbounded-memory requirement, this protocol 

class can only be used efficiently with application-layer support, and only for a 

limited set of applications. They showed that ACK trees are a good answer to the 
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scalability problem for reliable multicasting. Because tree-based protocols (e.g. 

RMTP) distribute the responsibility of retransmission to receivers and they employ 

techniques applicable to either sender-initiated or receiver-initiated protocols within 

local groups of the ACK tree. Mechanism that can be used with all the receivers of a 

session in a receiver-initiated protocol can be adopted in a tree-based protocol, with 

the added benefit that the throughput and number of supportable receivers is 

completely independent of the size of the receiver set. 

[34] presents a comparison of SRM with Bimodal Multicast, which is a 

reliable multicast protocol proposed by the authors. According to this study, when a 

network has lossy links, even if the loss rate is low, SRM can generate very high 

rates of request or repair overhead, due to the requests for retransmissions of data, 

sent using multicast and hence seen by significant numbers of processes, and repair 

messages, also sent using multicast. They concluded that as the network grows 

larger, the absolute rate of packet losses increases. These take the form of duplicate 

requests and duplicate repairs. Beside this, a significant percentage of SRM packets 

experience long delays, and many applications would thus be forced to buffer very 

large amounts of data. For applications in which data freshness is at all important, 

this would seem to be a real drawback for the protocol. 

In [35], authors compared three reliable multicast protocols, namely SRM, 

MFTP, MFTP/EC, by using Network Simulator-2. They showed that, SRM floods 

the network with repair packets substantially when loss rates are high, resulting in 

even higher loss rates due to additional traffic. According to the simulation results, 

every lost packet triggered 2.27 request packets and 2.33 repair packets on average 

in low a network traffic condition. In high traffic case, lost packets need an average 

of 3.56 request packets and 3.62 repair packets for recovery.  

In literature, there are hardly any comparative performance studies for 

RMTP. [36] investigates the delay characteristics of some reliable multicast 

protocols. According to this study, average delivery delay of RMTP is almost 

independent of group size and sending rate of the source. [37] also presents a 

comparative delay analysis of tree-based reliable multicast protocols, namely RMTP 

and TMTP. It is shown that tree-based ACK (TRACK) protocols provide low delays 

and good scalability compared to nonhierarchical approaches. NAK-based protocols 
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achieve the best scalability but TRACK protocols (i.e. RMTP) achieve the lowest 

delays. 

 

3.4 Related Work 

 

In this section, the protocols that are selected for our simulation study, 

namely RMTP, SRM and PGM are discussed in detail. Design concepts of the 

protocols like recovery methods, protocol parameters, and network and application 

models that the protocols uses are evaluated.  

 

3.4.1 Reliable Multicast Transport Protocol (RMTP) 

 

The Reliable Multicast Transport Protocol (RMTP) [24] is a one-to-many, 

tree based positive acknowledgement protocol which provides sequenced and 

lossless file transmission. It uses IP multicast to forward the multicast packets down 

on a delivery tree to all group members and provides reliability by using a packet 

based selective repeat retransmission scheme. To avoid ACK implosion problem, 

the protocol divides the whole multicast into hierarchical local regions and assigns a 

Designated Receiver (DR) to each local region. A DR is a special receiver which 

assists the sender in processing ACKs and retransmitting data. Periodic ACK 

packets are unicasted to the local DR and DRs send the ACK packets to the high 

level DR, until the DRs in the highest level of the multicast tree send ACK packets 

to the sender.  

RMTP sender divides the data to be transmitted into fixed-size data packets, 

except the last one. A data packet is identified by packet type DATA and 

DATA_EOF identifies the last data packet. All of the packet types used in RMTP 

are given in Table 3.1. 
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Figure 3.5 Local regions in RMTP 

 

 

 

Table 3.1 Packet types of RMTP 

 

Packet Type Definition 

ACK  ACK packet 

ACK_TXNOW  ACK - immediate transmission request 

DATA  Data packet 

DATA_EOF  Last data packet 

RESET  Packet to terminate a connection 

RTT_MEASURE  Packet to measure round-trip time 

RTT_ACK  ACK to RTT_MEASURE packet 

SND_ACK_TOME  Packet for selecting an AP 

 

 

RMTP achieves scalability by three important design features [24]. First, the 

state information maintained at each multicast group member is independent of the 

number of members. Therefore, joining or leaving of a group member does not 
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affect the state information of sender or other members. Second, RMTP places the 

responsibility of sequenced and lossless delivery on the receivers. So the sender does 

not have to deal with status of each receiver. Third, the concept of using a DR of 

each local region distributes the responsibility of processing ACKs and performing 

retransmissions among the sender and several DRs. 

In RMTP, the sender assigns sequence number to all packets starting from 0 

and multicast the packets to the whole group. Receivers are responsible for detecting 

packet losses by analyzing the sequence numbers of incoming packets. A gap at the 

sequence numbers means a loss and the receiver should request the retransmission of 

that packet. Receivers send periodic ACK packets to inform their local status to their 

local DRs. Each ACK packets contains a sequence number L and a bitmap V. 

Sequence number L indicates that the receiver has correctly received all packets 

with a sequence number less than L. A 0 in bitmap V means a packet loss and a 1 

indicates the successful reception of the packet. Therefore, an ACK packet carries 

both positive and negative acknowledgment. 

ACKs are periodically unicast to DR. A DR also responds to the request 

periodically but it may be either unicast or multicast transmission. Tretx is the 

connection parameter which determines the retransmission interval of a DR. During 

the Tretx interval, DR collects the ACK packets from its local region. If 

retransmission request for a data packet exceeds MCASTthres parameter, then DR 

multicasts the repair packets to its local region. Otherwise, it unicasts the packets to 

the receivers who demand that transmission. Tretx, MCASTthres and other connection 

parameters are given in Table 3.2.  

When a connection between the sender and a group of receivers is 

established and the receiver has received the first packet of the session, it starts to 

generate periodic ACK packets at Tack interval. Tack is a dynamic parameter which is 

adjusted based on a round-trip time measurement between the receiver and its 

Acknowledgement Processor (AP). AP is a member who processes ACK packets. 

So, it may be the sender or a DR. 
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Table 3.2 Connection parameters of RMTP 

 

Parameter Definition 

Wr  receive window size in packets 

Ws  send window size in packets 

Tdally  delay after sending the last packet 

Tretx  time interval to process retransmission requests 

Trtt time interval to measure RTT 

Tsap  time interval to send SND_ACK_TOME 

Tsend  time interval to send data packets 

Packet Size  data packet size in octets 

Cache Size  sender’s in-memory data cache size 

CONGthresh  congestion avoidance threshold 

MCASTthresh  multicast retransmission threshold 

 

 

In order to terminate the connection, the sender uses a timer. After sending 

the last packet, the sender starts a timer and waits for Tdally seconds. If the sender 

receives an ACK packet before the timer expires, it resets the timer to its initial 

value. Otherwise, it assumes that all receivers have received all packets and 

terminates the connection i.e. deletes all the state information about the connection. 

In addition to that, a connection can be terminated by a RESET packet in an 

unexpected case. 

RMTP uses a window-based flow control scheme. Sender has a window of 

Ws packets, which indicates the maximum numbers of packets that the sender can 

transmit without receiving ACK for them. Each receiver has a receiving window of 

Wr packet, where Wr is the buffer size of the receiver.  Receivers keep the incoming 

packets at the buffer and deliver them to the application in sequence. In a RMTP 

session, the sender initiates the data transmissions at interval Tsend. Therefore 

sender’s maximum transmission rate measured over a transmission interval can be 

adjusted by the connection parameters Tsend, Ws, Packet_Size as follows: 
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RMTP uses a slow-start congestion avoidance mechanism in order to avoid 

sending new packets to a congested network. The sender uses a congestion window 

(con_win) to limit the number of packets being sent during transmission period, 

Tsend. During Tsend it computes N, the number of ACK packets which contain a 

retransmission request. If N exceeds a connection parameter, CONGthres, it sets 

cong_win to 1. Since the sender selects the minimum of current window size and 

cong_win as the usable send window, setting cong_win to 1 reduces data 

transmission to one packet per Tsend. If N is less than CONGthres at the end of a Tsend 

interval, the sender increases cong_win by 1, until cong_win reaches Ws. 

RMTP receivers send periodic ACK packets with a period of Tack seconds. 

Sending ACKs too frequently may cause APs to retransmit the same repair packet 

without knowing the first packet was received by the receivers. Therefore Tack is 

computed using the round-trip time (RTT) between the receiver and its AP. In order 

to measure RTT, the protocol defines two packet types, namely RTT_MEASURE 

and RTT_ACK. A receiver sends RTT_MEASURE packets to its AP at a fixed 

interval, Trtt. Each RTT_MEASURE packet contains a timestamp indicating the time 

it is transmitted. When a AP receives a RTT_MEASURE packet it immediately 

changes the packet type to RTT_ACK and sends it back to the receiver. Receiver 

computes the RTT using the time it received the RTT_ACK packet and the time 

stamp stored in the packet. 

Since a DR may fail during a session, RMTP has a mechanism for selecting 

the nearest DR as AP by a receiver. For this purpose, the sender and all DRs 

multicast a SND_ACK_TOME packet to their subtrees with a period of Tsap 

seconds. Each SND_ACK_TOME packet contains an identical time-to-live (TTL) 

value. Since each router decrements the TTL value while transmitting the packets, 

the SND_ACK_TOME packet within the highest TTL value is the one, which has 

been generated by the nearest DR. The receiver selects that DR as its AP and stores 

its TTL value. If it receives a SND_ACK_TOME packet with a TTL value greater 
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than the stored one, it changes its AP and stores the new TTL value. Initially sender 

is the AP for all receivers. But since the receivers store a TTL value of 0 at the 

beginning of the session, they can select the nearest DR as AP immediately after the 

connection established. 

In [24], authors present the results of the experiment which was performed 

on the Internet by a prototype implementation of the protocol. The test setup 

contains 18 multicast receivers located at five geographic areas, namely five 

different campus networks. In each experiment, a 1 Mb file was multicast to the 

receivers, and same experiments were repeated at different times of the day, in order 

to observe the response of the protocol against different network traffics. The results 

of the experiments indicate that receivers, regardless of their geographic location, 

take about the same time to correctly receive the file, which shows that RMTP is 

able to adapt to receivers in various network environments. But as a result of this, in 

a heterogeneous environment, slow receivers and links with low bandwidth limit 

RMTP’s performance [24]. Since there is not enough information about the 

propagation delay, bandwidths and traffic characteristics of the experiment 

performed, we could not simulate the same test cases for comparing the results of a 

real experiment and our protocol implementation. Instead of this, we generated a 

new test setup and measured the performance of the protocol on this setup, whose 

details will be presented in Section 5.1. 

 

 

3.4.2 Scalable Reliable Multicast (SRM) 

 

Scalable Reliable Multicast [26] is a NACK-based reliable multicast protocol 

designed for a Many-to-Many application, using IP Multicast mechanism for packet 

transmission. SRM employs a “decentralized error recovery”; that means, a node 

that detects a packet loss, via a gap in the packet sequence, multicasts a NACK for 

that packet, and any node that has the data packet can multicast a repair packet for 

that loss. In other words, the repair process has been distributed among all group 

members.  
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In SRM, when a new packet is generated, it is multicast to the group. 

Actually all data packets defined in SRM, namely the original data, request packets 

and repair packets are multicast to the whole group. Since a repair request is 

multicast to the whole group, more than one receivers who have the desired packet 

can reply simultaneously. In order to prevent such duplicate retransmissions, SRM 

has two mechanisms:  

i. Use a delay of some random interval before transmitting a 

request/repair packet (back-off), 

ii. Suppress transmission of a request/repair packet if someone else has 

already sent the same packet (suppression).  

The timers that receivers use before transmission are adjusted based on the 

distance between the sender and the source. To measure these distances, group 

members send low-rate, periodic session messages. By using these messages, a 

group member can learn the group membership, measure the delay among group 

members and detect the sequence number of the last packet sent in the session. 

Session messages are designed to take only 5% of the traffic in the session. [26]  

Receivers decide a packet loss by detecting a gap in the sequence numbers of 

the incoming packets. Therefore the sequence number of the last packet is necessary 

for detecting the drop of the last packet. Session messages contain a Source-ID and a 

timestamp. The timestamps are used to estimate the distance between group 

members. 

Loss Recovery: A receiver who has a missing data waits for a random time 

before sending repair request, in order to detect whether another member sent a 

request for the same data. If a request for the same loss reaches during the back-off 

time it cancels the repair request. If there is no repair request or retransmission when 

the back-off timer expires, the member multicast a repair request to the whole group. 

The random back-off timer is set to a value which is a function of the member’s 

estimated distance to the source of the original packet. It is chosen from the uniform 

distribution on  

[C1dS,A , (C1+C2)dS,A]  
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seconds where dS,A is member A’s estimated distance to the original source, 

S, of the missing data. The numbers C1 and C2 are parameters for the request 

algorithm. 

When a group member receives a request for a packet that it has already 

received, it starts a back-off timer in order to prevent duplicated retransmissions. If 

no retransmission reaches during this period, it multicast the repair packet to the 

whole group. Repair timer is set to a value from the uniform distribution on  

[D1dA,B , (D1+D2)dA,B]  

seconds, where dA,B is host B’s estimate of one-way delay to host A, and the 

numbers D1 and D2 are parameters of the repair algorithm. Figure 3.6 illustrates the 

loss recovery in SRM. 

 

 

 
 

Figure 3.6 Loss recovery in SRM 

 

 

3.4.3 Pragmatic General Multicast (PGM) 

 

Pragmatic General Multicast (PGM) [27], [38] is a reliable multicast 

transport protocol for applications that require multicast data delivery from a single 

source to multiple receivers. PGM runs over a best effort datagram service, such as 

IP multicast. It obtains scalability via hierarchy, forward error correction, NACK 

elimination and NACK suppression. Hierarchy is supplied by using PGM-capable 

network elements (NE) i.e. the routers enhanced to support PGM in addition to IP 

multicast.  
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A “session" of the PGM protocol (a given data transfer from a source to a 

group of receivers) builds a tree: the source is the root of the tree, the receivers are 

the leaves, and the other network elements are intermediary nodes. This tree may 

change during the session by the dynamic join/leave of receivers. PGM has five 

different types of data packets; 

ODATA: Original Data packets, 

RDATA: Repair packets, 

NACK: Negative Acknowledgements, generated by receivers in case of a 

packet loss, 

NCF: NACK Confirmation packets, sent by a network element or source 

when a NACK received, 

SPM: Source Path Message, control messages sent in order to maintain the 

routing information and state of the source of a session. 

 

Figure 3.7 shows a distribution tree and the direction followed by the five 

basic packet types of the protocol. 

 

 

 
 

Figure 3.7 Distribution tree of the PGM with packets involved  

(S = source, NE = network element, R = receiver) 

 

 

In the normal data transfer, a source multicasts sequenced data packets 

(ODATA) along the distribution tree to the receivers by using IP multicast. When a 

receiver detects missing data packets from the expected sequence, it unicasts 

periodic negative acknowledgments (NACKs) containing the sequence number of 
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missing data to the last network element of the path. Network elements forward 

NACKs hop-by-hop to the source using the reverse path, and confirm each hop by 

multicasting a NACK confirmation (NCF) in response to the child from which the 

NACK was received. Receivers and network elements stop sending NACK at the 

reception of a corresponding NCF or RDATA. Finally, the source itself receives and 

confirms the NACK by multicasting an NCF to the group. Then the source generates 

repairs (RDATA) in response to the NACK. 

To avoid NACK implosion, PGM specifies procedures for NACK 

elimination within network elements in order to propagate just one copy of a given 

NACK along the reverse path of the distribution tree. The protocol also has a NACK 

suppression mechanism; receivers wait for a random time before delivering NACKs. 

If a RDATA or another NACK which has the same content is received during this 

period, the receiver cancels its own NACK.  

PGM uses periodic SPMs (Source Path Messages) to improve the data 

transfer operations. SPMs have two functions. First, they carry routing information 

used to maintain up-to-date PGM neighbor information and a fixed distribution tree. 

Second, they complement the role of data packets when there is no more data to 

send by holding the state of the sender window. In this way, the receiver may detect 

data losses and send further NACKs. 

PGM has three basic components, each having different functions. These 

components are source, receiver and network element. 

Source functions: The source executes five functions; multicast of ODATA 

packets, multicast of SPMs, multicast of NCFs in response to any NACKs received, 

multicast of RDATA packets, and maintain (update and advance) of the transmit 

window. The transmit window plays an important role in the PGM operations. Any 

information produced by the application using PGM (upper level in the network 

layers) is put in the transmit window and split in several ODATA packets, numbered 

circularly from 0 to 232 - 1. This data is maintained in the window TXW_SECS time 

units for further repairs and sent with a maximum transmit rate of TXW_MAX_RTE 

(bytes/seconds). The left edge of this window, TXW_TRAIL, is defined as the 

sequence number of the oldest packet available for repairs. The right edge, 

TXW_LEAD, is defined as the sequence number of the most recent data packet the 
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source has transmitted. To provide information about the sender window, 

TXW_TRAIL edge is sent with O/RDATA and SPM packets and the TXW_LEAD 

edge is included only in SPMs. If TXW TRAIL = TXW LEAD + 1, the window is 

considered empty. The edge TXW_LEAD is advanced when data is produced by the 

application. 

Two types of SPMs are sent by the source: ambient SPMs are sent to 

maintain routing information; heartbeat SPMs are transmitted in absence of data at a 

decaying rate, in order to assist detection of lost data before the advance of the 

transmit window. 

Receiver functions: The receiver executes four functions; receive ODATA 

and RDATA within the transmit window and eliminate duplicates, unicast NACKs 

repeatedly until it receives a matching NCF if it detects a loss, suppress NACKs 

sending after the reception of the NCF, maintain a local receive window. 

The receive window is determined entirely by the packets from the source, 

since it evolves according to the information received from the source (data packets 

and SPMs). For each session, the receiver maintains the buffer and the two edges of 

the window: RXW_TRAIL is the sequence number of the oldest data packet 

available for repair from the source (known from data and SPMs) and RXW_LEAD 

is the greatest sequence number of any received data packet within the transmit 

window. 

Network element functions: Network element forwards ODATA without 

intervention. They play an important role in routing, NACK reliability, and avoiding 

NACK implosion. They forward only the first copy of a NACK (Constrained NACK 

Forwarding) and discard NACKs for which they have repair data (NACK 

Elimination). They also forward RDATA only to the child which signaled by a 

NACK the loss of the corresponding data (Constrained RDATA Forwarding). 
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CHAPTER 4 
 

 

NS-2 IMPLEMENTATION OF RMTP 
 

RMTP does not exist as a reliable multicast protocol option in the latest 

version of Network Simulator version 2.27, which was released in January 2004. 

Therefore, in this study ns simulation code for RMTP has been implemented and 

appended to ns version 2.27. This section explains the details of the implementation. 

The implementation introduces a new RMTP packet type, and three new 

agents namely; sender agent, receiver agent and DR (Designated Receiver) agent. 

RMTP packet header and each of the agents are implemented as a C++ class and 

operate with some associative classes like timer classes, Tcl linkage classes and 

classes defining the sender and receiver windows. The interaction of classes is 

illustrated in Figure 4.1.  

 

4.1 RMTP Packet Type 

 

An RMTP packet is inherited  from ns2 packet class, so it has all ordinary 

packet headers of ns2, like “IP header” or “common header”. Besides, it has an 

RMTP header indicating the subtype of the packet. There are six subtypes, which are 

defined by the protocol. Some subtypes have an extra header for storing the required 

information for the protocol. Table 4.1 gives RMTP packet subtypes and headers of 

each. 
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Figure 4.1 Interaction of classes 

 

 

RMTP_DATA header consists of two fields, one of which indicates the type 

of data packet, whether DATA or DATA_EOF, and the other keeps a data ID. All 

agents maintain their receiver or sender windows according to these data IDs. If a 

data packet is lost and a retransmission request is received for the packet, the AP 

(sender or DR) sends a new data packet with the same data ID. Thus the receiver 

realizes that it receives a lost packet and updates its receiver window according to 

the ID. 
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Table 4.1 RMTP subtypes and headers 

 

RMTP Subtype Direction∗ Headers 

DATA � (RMTP header) + (RMTP_DATA header) 

RTT � (RMTP header) + (RMTP_RTT header) 

ACK � (RMTP header) + (RMTP_ACK header) 

RTT_ACK � (RMTP header) + (RMTP_RTT_ACK header) 

SND_ACK_TOME � (RMTP header) 

 

(*) Downward arrows indicate transmission from an AP to receiver(s) 

Upward arrows indicate transmission from a receiver to an AP 

Single lined arrows means unicast transmission 

Double lined arrows means multicast transmission 

 

 

RMTP_RTT and RMTP_RTT_ACK headers have a field for storing a 

timestamp. The time that a RTT packet sent is written to this fields and it is used for 

calculating the round trip delay between a receiver and its AP. 

RMTP _ACK header contains an expected packet field and a bit-map vector. 

While sending a ACK packet, a receiver writes its current expected packet value and 

a bitmap of its receiver window to these fields. 

 

4.2 RMTP Agents 

 

In ns, agents are defined as data structures that represent endpoints where 

packets are constructed or consumed [39]. In our implementation, three agents, 

namely the Sender, Receiver and DR agents fulfill the whole requirement of RMTP. 

For example, a sender agent creates the data packets and multicast them to the whole 

group. When a receiver receives a data packet, it reads the data ID of the packet and 
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updates its receiver window. If it detects a packet drop, it writes a “0” to the related 

bit of its bitmap vector and at the first ACK timer expiration, sends it to its AP in an 

ACK packet. 

Agents are implemented in C++. Tcl linkage classes, written in C++ code are 

used to modify the parameters of these agents or starting/stopping some agents 

function from Tcl scripts written by users (Figure 4.1). Since RMTP is a timer based 

protocol, each agent has a timer class for scheduling agent-specific tasks. A timer 

may start by a Tcl command or an incoming packet may trig a timer. For example 

the sender timer for sending periodic SAP packets starts when the Tcl command 

“start” is executed, while the ACK timer of a receiver starts when the first  data 

packet receives. Each timer has a timer interval which is bounded by an agent 

parameter or dynamically calculated during the simulation. 

All agent parameters like timer intervals, packet size or number of packets 

can be set to a value through the Tcl scripts by the users. A default value for each 

parameter should be defined in the necessary ns2 files. 

 

4.2.1. Sender Agent 

 

An RMTP sender agent works at the sender node of the multicast group. A 

sender agent can be created through Tcl by the following code; 

 set agent_name [new Agent/RMTP/Sender] 

 

And the parameters for this agent can be initiated in Tcl code. These are; 

i. sap_interval_ ; time interval for sending SAP packets (in seconds) 

ii. data_interval_ ; time interval for sending DATA packets (in seconds) 

iii. num_of_packets_ ; total number of packets sent during a session. 

iv. retx_interval_ ; time interval for sending retransmission packets (in 

seconds) 

v. mult_thres_ ; threshold value for multicast retransmissions 

vi. sender_win_size_ ; size of sender window  
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vii. dally_interval_ ; time for waiting before terminating a session (in 

seconds) 

viii. packet_size_ ; packet size (in bytes) 

 

Parameters “packet_size_” and “num_of_packets_” are defined for 

generating a packet traffic without using an additional ns traffic source. All other 

parameters are used as defined in protocol. 

Two other classes support the RmtpSender class, these are 

RmtpSenderTimer class and RmtpSenderWindow class (Figure 4.1). RmtpSender 

has four objects of the RmtpSenderTimer class. These are; 

i. sap_timer_ ; For sending periodic SAP packets. Starts with Tcl 

command “start” 

ii. data_timer_ ; For sending burst of data packets at Tsend interval. Starts 

with “start-data” command. 

iii. retx_timer_ ; Timer for sending retransmissions. Starts with “start-

data” command. 

iv. dally_timer_ ; Timer for terminating the session. Starts after sending 

last packet. 

 

Sender agent also has an object of RmtpSenderWindow class. This object 

keeps three main values of a sender window, namely swin_lb low bound of sender 

window (in other words, the minimum packet ID that has not been ACKed yet), 

send_next, the ID of the packet that will be send next and avail_win the number of 

packets that can be sent, when the data_timer _ expire (Figure 4.2). 

A member function of RmtpSenderWindow is called while a new data packet 

is being generated by the agent and it returns the send_next value, if avail_win is 

greater than 0. Another member function is used for updating the values of window, 

i.e. the sender agent collects the incoming ACKs during a Tsend interval and at the 

end of interval it calls this function with the minimum of the dropped packets (say n) 

that is reported by the receivers. Then the function increases the swin_lb and 

avail_win values until swin_lb reaches n. 
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Figure 4.2 Sender window 

 

 

The sender agent also has a map data structure for keeping the retransmission 

requests until the retx_timer expires. As it is illustrated in Figure 4.3, a 

retransmission map keeps a list of ns2 addresses for each data packet ID that is 

reported as lost by at least one receiver. 

 

 

 
 

Figure 4.3 Retransmission map 

 

 

For example, in Figure 4.3, all nodes from node-1 to node-k have sent a 

retransmission request for Packet-i. 

By using these objects, a sender agent performs the following functions: 
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i. Sending periodic SAP packets to the whole multicast group. 

ii. Sending RTT_ACK packet immediately after receiving a RTT 

packet. 

iii. When data_timer_ expires, sending a burst of data packets as long as 

SenderWindow class returns a valid packet ID, in other words 

avail_win value is greater than zero. 

iv. When an ACK packet is received, processing it and adding an entry 

to the retransmission map for the packet losses, and updating the 

sender window according to incoming ACKs. 

v. When retx_timer expires, sending retransmission packet by unicast 

or multicast according to the number of receivers that have lost the 

packet. 

vi. After sending the last packet, starting the dally_timer_ and 

terminating the session when the timer expires. If an ACK packet 

received while the timer is running, the dally_timer_ is reset to its 

initial value. 

 

4.2.2. Receiver Agents 

 

RMTP receiver agents work at the normal (i.e. not DR) receiver nodes. The 

Tcl code for creating a receiver agent is  

  set agent_name [new Agent/RMTP/Receiver] 

 

and the parameters for the agent are 

i. rtt_interval_ ; time interval for sending RTT packets (in seconds) 

ii. receiver_win_size_ ; size of receiver window 

 

There is no Tcl command for starting or stopping any function of a receiver 

agent. For a receiver a multicast session starts with the first incoming SAP and 

finishes when the last packet has been received and the receiver buffer is empty. 
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As sender agent the receiver agent also has two associative classes, 

RmtpReceiverTimer and RmtpReceiverWindow. There are two timer objects 

defined in a receiver agent. These are; 

 

i. rtt_timer_ ; For sending periodic RTT packets. Starts with the first 

incoming SAP packet. 

ii. ack_timer_ ; For sending ACK packets. Starts with the first incoming 

DATA packets. ACK intervals are calculated dynamically on the delay 

between receiver and its AP. 

 

A receiver window is slightly more complicated than a sender window. It 

constitutes of an integer expected value (exp_pck) and a vector representing the 

receiver buffer. exp_pck is the minimum packet ID that has not been received yet, or 

detected as lost. When a packet whose ID is equal to exp_pac received, it is 

immediately sent to the application and exp_pck value is increased by “1”. If a 

packet with an ID greater than exp_pck is received, it means one or more packets 

has been lost. In this case, the packet is kept in the receiver buffer. Receiver window 

vector is implemented as a three state vector. Initially all values are set to “-1”, 

indicating the related packets have not reached yet. A “1” means the corresponding 

packet has arrived but it is being kept in the buffer due to loss of previous packets. 

Lost packets are shown by a “0” in the vector. For example, Figure 4.4 illustrates a 

receiver window where the receiver is waiting for the packet whose packet ID is 20. 

But it receives a packet with ID=23. Thus, it keeps this packet until packets 20, 21 

and 22 arrive. 

 

 
 

Figure 4.4 Receiver window 
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During a multicast session, a receiver agent performs the following tasks: 

i. By using incoming SAP packets, selecting an AP (ACK Processor): The 

agent checks the TTL (Time To Live) field of the SAP packets. If it is 

greater than its stored TTL value, which means that the owner of that 

SAP packet is closer to the receiver, the receiver agent selects that node 

(it may be the sender or one of DRs) as its AP and stores the TTL value it 

retrieved from the SAP packet for comparing with the next SAP packets. 

ii. After the first SAP packet received, the receiver agent starts to send 

periodic RTT packets to its AP in order to measure the delay between 

itself and the AP. The measured value is used to specify the interval for 

sending ACK packets. 

iii. When a data packet is received, the agent modifies the receiver window. 

If the incoming packet is the expected one, the agent immediately sends 

the packet to the application and increases the expected packet value. In 

simulation, sending a packet to the application means deallocating the 

packet. 

iv. When the ACK timer expires, the receiver agent sends a unicast ACK 

packet to its AP. An ACK packet contains the current expected packet 

value of the agent and a vector representing the receiver buffer. 

v. When the receiver agent receives the last packet, it checks the receiver 

window. If the window is empty, that means the agent has received all 

packets. Then it stops sending periodic RTT and ACK packets.  

 

 

4.2.3. DR Agent  

 

A DR agent is a combination of a sender agent and a receiver agent with two 

trivial differences. The first one is that it has no sending new data function, i.e. it 

only sends retransmissions. And the second difference is that, before replying a 
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retransmission request, it checks the receiver window to check whether it has the 

packet or not. If it hasn’t received the packet yet, it stores the request for replying at 

the next transmission periods. 

 

4.3 Operation steps of the RMTP Implementation 

 

In order to simulate a multicast group which uses RMTP as reliable multicast 

protocol, the user should write a Tcl simulation script at first. This script contains 

the necessary Tcl codes for creating nodes and the links between them, and 

assigning the attributes for these nodes and links. More information for creating 

network topologies in Ns-2 can be found in [39]. After generating the whole 

topology, the user should create a RMTP sender agent and a group of RMTP 

receiver and DR agents, and attach them to the related nodes. The parameters of the 

agents can be set in this Tcl code. If not, the simulator uses the default values which 

are defined in Ns-2 libraries. 

After all, the user should write two commands and the simulation times for 

the execution of these commands. The first one is “start” which starts the session by 

sending and receiving the control packets of the protocol, like SAP or RTT packets, 

and the second one is “start-data”, which starts the data traffic. 

In this section the operation of the whole implementation will be explained. 

This operation can be divided into the following steps; 

 

1. Sender agent sends the first SAP packet: 

When the simulator executes the command “start”, the sender agent starts the 

session. It sets the sap_running flag to 1 and sends the first SAP packet to the whole 

group. A SAP packet contains no information, it is only used for its TTL value that 

is stored in the IP header. After sending the first SAP the agent reschedule the 

sap_timer by the sap interval parameter. At each expiration of the sap_timer, a SAP 

packet is sent and the timer is rescheduled again. This scheme provides periodic 

SAP packets as long as sap_running is equal to 1 (Figure 4.5). 
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Figure 4.5 Starting the session by a user command 

 

 

2. Receiver receives first SAP and starts periodic RTTs: 

When a receiver agent receives a SAP packet, it checks whether the TTL 

value of the packet is greater than its stored sap_ value. In constructor, a negative 

value is assigned to sap_ . So if the SAP is the first one or it is sent by a closer AP 

(ACK Processor), TTL value would be greater than the sap_ , thus the agent selects 

the owner of the SAP packet as its new AP. Then the receiver agent checks the 

rtt_running flag. If it is 0, that means the SAP packet is the first one. So the agent 

sets the flag to 1 and sends the first RTT packet. Then it reschedules the rtt_timer for 

sending periodic RTT packets (Figure 4.6). A RTT packet has a timestamp which 

indicates the send time of that packet and it is unicasted to the AP of the receiver. 
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Figure 4.6 Start of a receiver agent with first incoming SAP 
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3. Sender agent replies RTTs with RTT_ACK packets: 

When the sender agent receives a RTT packet, it immediately generates a 

RTT_ACK packet within the timestamp of the incoming RTT. Then the packet is 

sent to the owner of RTT by unicast. 

When a receiver agent receives a RTT_ACK packet it easily calculates the 

round trip delay time between itself and its AP by subtracting the timestamp written 

in the packet from the current simulation time. 

 

4. Sender agent starts sending DATA packet: 

Only SAP, RTT and RTT_ACK packets are sent until the command 

“start_data” is executed by the simulator. When the command is executed, the 

sender agent sets the data_running and retx_running flags to 1 in order to start the 

periodic data and retransmission packet bursts. As seen in Figure 4.7, after setting 

data running flag, sender agent sends the first burst of data packets and reschedules 

the data_timer. When the data timer expires, the sender agent updates the sender 

window according to the ACKs received during last period, and sends a new burst of 

data packets unless the available window value of the sender window is zero. The 

SendBurst function sets a data_finished flag if it sends the last packet, DATA_EOF. 

As seen in Figure 4.7, simulator calls StopData function in order to terminate the 

session. 
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Figure 4.7 Starting DATA flow and sending retransmissions 

 

 

When SendBurst function is called, it calls the Send member function of the 

sender window. This function returns a variable, k, which is going to be used as the 

session ID of the next data packet, if not equal to -1. A variable k, which is equals to 

-1, means the sender window is closed and no data packet can be sent until next 

data_timer expiration. If k is not equal to -1, the sender agent checks if it is last the 

packet and sends a DATA or DATA_EOF packet according to the result. As 

illustrated in Figure 4.8 if it is a DATA packet, agent calls the send function again 

for sending a new packet. 
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Figure 4.8 Sending a burst of DATA packets 

 

 

5. Receiver agent receives DATA and starts sending ACK packets: 

When a receiver agent receives a DATA packet, it checks the ack_running 

flag. If it is 0, that means the agent is not sending periodic ACKs currently. So it sets 

ack_running flag and schedules the ack_timer. After that, as seen in Figure 4.9, it 

calls Received member function of the receiver window. This function makes the 

necessary changes on the receiver window. When the ack_timer expires, the receiver 

agent sends an ACK packet and reschedules the timer (Figure 4.9). 
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Figure 4.9 Handling DATA and sending periodic ACKs 

 

 

 

When the sender agent receives an ACK packet, it adds the necessary entries 

to the retransmission map, retx_ , if the ACK packet reports any packet loss. 

 

6. Sender agent sends retransmission as the retx_timer expires: 

As it can seen in Figure 4.7, the first DATA packet starts the retransmission 

periods. When the retx_timer expires, the agent calls SendRetx function. This 

function scans the retx_ map and sends retransmissions by unicast or multicast, 

according to the number of receivers that required the corresponding retransmission. 

 

7. Termination of a session: 

In our implementation, a session may terminate in two ways. First, the user 

may write a “stop” command, to cancel all timers and stop data flows. But this is 

unreliable, since there may be some data retransmission packets that have not been 

sent yet. 

In the second way, the method proposed by RMTP is used; After sending the 

last packet sender agent starts a timer, called dally_timer, with Tdally parameter. If an 
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ACK is received while the timer is running, it is reset. When the timer expires the 

sender agent stops all running timer, i.e. sap_timer and retx_timer. On the receiver 

side, when a receiver receives the last packet, DATA_EOF, it checks its receiver 

window. If it is empty, that means it has received all packets, then it stops sending 

periodic RTT and ACK packets. Otherwise, it keeps sending periodic packets until it 

receives all packets. 
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CHAPTER 5 
 

 

SIMULATION STUDY 
 

In the comparative part of this study, three selected protocols have been 

simulated in Network Simulator-2 under different test cases, for comparing some 

characteristics of these protocols. For this purpose, a single large network topology 

was created and the experiments designed for measuring different characteristics 

were performed on the same topology for each protocol. In order to obtain some 

quantitative results related to protocols, different evaluation metrics were defined. 

In this section, details of the network topology, definition of the evaluation 

metrics, experiment design, results obtained from these experiments and the 

comments on these results are presented. 

 

5.1 Network and application model 

 

In network simulations, first step is to create a test topology on which all 

experiments will be performed. In literature, there are two different methods that are 

used for creating topologies with varying group sizes. The first one is to create the 

topology according to the number of multicast group members. In this scheme, all 

end nodes are group members. In the second method, an underlying network 

topology is created and than the group members are selected randomly from the end 

nodes of this network i.e. all nodes do not have to be a member of the multicast 

group. This method introduces the advantage of being able to analyze the behavior 

of a protocol against both a dense multicast group and a sparse one.  
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In this study, the latter method was used; a large network was created by 

using a topology generator tool, Tiers [40]. In Tiers, a network is created in a three 

level hierarchy, namely, a WAN, MANs under this WAN and LANs under each 

MAN. The tool supports only one WAN and the number of MANs, the number of 

LANs per MAN and the number of WAN, MAN and LAN nodes are specified by 

the user. In our topology, there are; 

 

• a WAN consisting of 3 WAN nodes, 

• 4 MANs, each having 2 MAN nodes, 

• and 5 LANs per MAN, each having 5 LAN nodes (end nodes) 

 

The whole topology contains 131 nodes but 100 of these are end nodes, so 

the members were selected within these 100 end nodes randomly. The network 

topology used throughout the experiments is presented in Figure 5.1.  

While generating the topology, Tiers assigns link propagation delays 

according to the type of the link, i.e. a link between two LAN nodes (LAN-LAN 

link) or a link connecting a LAN to a MAN (MAN-LAN link) etc. (Figure 5.1) 

These delays were multiplied with a coefficient in order to obtain test cases with 

varying network diameter. Bandwidths of the links were specified as follows; 

 

i. WAN-WAN links;  34368 kbps  (E3 carrier) 

ii. WAN-MAN links;  8448  kbps (E2 carrier) 

iii. MAN-MAN links;  8448  kbps (E2 carrier) 

iv. MAN-LAN links;  2048  kbps (E1 carrier) 

v. LAN-LAN links;  100 Mbps (Ethernet) 
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Figure 5.1 Underlying network topology 
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In real networks, most of the packet losses are due to the buffer overflows in 

routers. In order to simulate these events in a simulation, a background traffic, 

representing the normal traffic flow of the network, should be generated under the 

multicast traffic. But it is very difficult to generate a proper background traffic and it 

brings considerably large processing load to the simulation. Instead of this, in Ns-2, 

a user-defined loss rate can be assigned to each link. The simulator arbitrarily drops 

some packets passing over the link on an average rate that is defined by the user. In 

our simulations, all test cases are repeated under small and large loss rates, 

representing light and heavy background traffic, respectively. Furthermore, in order 

to observe the operation of a protocol on different network conditions, all evaluation 

metrics were measured with respect to varying loss rates. 

Ns-2 supports three multicast route computation methods, named as Dense 

Mode (DM), Shared tree mode (ST) and Centralized multicast routing [39]. Dense 

mode multicast routing simulates the routing protocols DVMRP [8] or PIM-DM 

[41]. While creating a routing tree, prune messages are used in case of a node 

receives a packet for a group for which it has no downstream receiver. Similarly in 

Shared tree mode, prune messages travel between nodes until the routing tree is 

completely created. On the other hand, in Centralized multicast routing method, a 

centralized computation agent is used to compute the multicast tree and set up the 

forwarding states, and prune messages are not simulated [39]. Therefore when a 

simulation starts, it looks like all nodes know the routing tree and forward packets 

according to it, there are no join or prune messages. Since in this study, we deal with 

reliability, which is a transport layer issue, the creation of the routing tree has no 

significance. Thus Centralized multicast was used in all experiments. 

Simulations were performed on one-to-many basis, i.e. a randomly selected 

sender sent a file of a predetermined size to a multicast group, which was also 

selected randomly. In SRM and PGM experiments, a CBR (Constant Bit Rate) 

traffic source was connected to the sender and it produced a packet traffic at 100 

kbps. Since RMTP is window-based and its transmission rate is directly related to its 

protocol parameters like Tsend, the RMTP sender agent was implemented in a way 

that it generates its own data traffic, without an external traffic source. But in all 



 
 
 

54 

experiments, 100 packets were generated at sender nodes and transmitted to each 

group member, successfully. Each packet contains a data of 1000 bytes. 

 

5.2 Evaluation metrics 

 

Evaluation metrics are measurable parameters about the protocols that 

provide quantitative results from simulation executions allowing to comment on 

different characteristics. The metrics used in this study have been defined as follows: 

Distribution Delay is the average time elapsed since a packet is sent from the 

sender until it has been correctly received by the whole group. The last group 

member that receives a packet specifies the distribution delay for that packet. If the 

packet has been dropped somewhere in the network, then distribution delay involves 

the time spent for recovery. From the point of view of the sender, distribution delay 

implies the minimum time for which the sender must keep the packet at memory 

before securely discarding it. Distribution delay is measured on a per packet basis. It  

is measured for each packet and then average of all is calculated. 

Recovery Latency is the average time between a packet drop being detected 

by a receiver and its repair packet reaching the receiver. In other words, it is the time 

for which a receiver should wait in order to receive retransmission for a lost packet. 

It is measured for each packet loss during a session and the average is calculated at 

the end. If there is a back-off timer, which is required by the protocol as a delay 

before sending a retransmission request, it is included in the recovery latency. 

Request overhead is the additional load on intermediate nodes (routers) 

generated by the protocol. In order to measure this parameter, the number of request 

packets processed by each router is counted and the average value is calculated over 

all routers who participate in the multicast distribution tree. The results are presented 

as the ratio of the average number of request packets to the number of original 

packets sent by the sender. Thus, it expresses the number of request packets required 

for sending a definite number of packets to a multicast group. In SRM and PGM, 

request packets are the NACK packets which are sent in case of a packet loss, 

whereas in RMTP, it is the ACK packets sent periodically by each receiver. 
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Repair overhead can be defined as similar to request overhead, except it is 

the load generated on each router by repair packets. The repair might be sent by the 

sender or another replier, like a DR in RMTP, and it might be unicast to the 

requester or multicast to the group. 

 

5.3 Experiment Design 

 

Before starting network simulations, different test cases should be generated, 

in order to determine the effects of some variable parameters of the network 

topology or the multicast group over the operation of the protocol. In this section the 

selected parameters and their range of variation will be presented. 

The selected parameters used in this study are the following: 

i. Group Size; It is the percentage of the number of group members to 

the total number of end nodes on the underlying topology. So that, 

group size gives an opinion about the density of the multicast, i.e. a 

low group size means a sparse group, and the density of the group 

increases as the group size increases. 

ii. Group Diameter: In a network, the diameter can be defined as the 

distance between the end nodes. So it is directly related to the 

propagation delays of the links. In this study, delays were assigned by 

Tiers, while creating the topology. All values were multiplied by a 

coefficient, in order to obtain varying group diameters. 

iii. Loss rate: As mentioned in Section 5.1, in order to simulate the 

background traffic on the network, a loss rate was assigned to each 

link. For observing the operation of the protocol in different network 

conditions, varying loss rates were used. 

 

Table 5.1 gives the test cases generated by changing the parameters 

described above. In the first set of experiments, group size was increased from 10% 

to 90% while delay coefficient was kept constant at 1. Each case was repeated for a 

small and large loss rate, i.e. 1% and 5% respectively. 
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At the second set, group size was kept at 30% and delay coefficient was 

changed between 0.5 and 3. Again all experiments were performed twice, for small 

and large loss rates. 

The last set of experiments were performed by altering the link loss rates for 

simulating different network conditions. In this case, group size and group diameter 

were kept constant. 

 

 

Table 5.1 Test cases 

 

 Network Parameters Evaluation Metrics observed 

Test Case 1 Group size = VARYING 
Network diameter = 1 
Loss rate = 1% 

Distribution delay, 
Recovery latency, 
Request overhead, 
Repair overhead 
 

Test Case 2 Group size = VARYING 
Network diameter = 1 
Loss rate = 5% 

Distribution delay, 
Recovery latency, 
Request overhead, 
Repair overhead 
 

Test Case 3 Group size = 30% 
Network diameter = VARYING 
Loss rate = 1% 

Distribution delay, 
Recovery latency 

Test Case 4 Group size = 30% 
Network diameter = VARYING 
Loss rate = 5% 

Distribution delay, 
Recovery latency 

Test Case 5 Group size = 30% 
Network diameter = 1 
Loss rate = VARYING 

Distribution delay, 
Recovery latency, 
Request overhead, 
Repair overhead 
 

 

 

In order to increase the reliability of the simulation results, each experiment 

was repeated many times and the average of all was calculated at the end. The seed 

of the random generator of the simulator was selected in a way that it drops different 
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packets at each repetition. The number of repetitions for each experiment was 

determined according to the confidence interval rule. This rule specifies the 

minimum number of repetitions which is required to obtain a simulation result that 

is at a predefined closeness to the real value. 

In this study, all experiments were repeated until a simulation result, whose 

probability of being at ± 10% closeness of the real value is 95%, is obtained. After 

each simulation execution, the results were controlled according to confidence 

interval rule, and a decision is made on the termination of the corresponding 

experiment. 

 

5.4 Simulation Results 

 

In this section, results obtained from the simulations are presented in 

graphics showing the variation of the evaluation metrics against the network 

parameters. Numerical values of these graphics are given in Appendix A. 

 

5.4.1 Distribution Delay 

 

In Figure 5.2 - 5.6, the results obtained for distribution delay are presented. 

As it is seen from Figure 5.2. in case of small loss rate, increasing group size causes 

a smooth increase on distribution delay. It is expected, because as the number of 

members increases, the number of the members far from the sender will also 

increase and the number of packet drops will increase since these packets spread 

more on the links. In this case, results are very similar to each other. But in case of 

large loss rate, (Figure 5.3) some important changes on the operation of protocols 

are observed. First of all, characteristic of RMTP is very similar to small loss case 

except a rise which is due to the increase in the number of packet losses and 

retransmissions. But when the SRM graph is examined, it is seen that, in spite of 

rising group size, distribution delay is decreasing, in other words the protocol 

operates faster. This is the first important result, retrieved from the simulation work. 
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Since in SRM, each receiver could reply a retransmission request, it is reasonable 

that increasing the group size will decrease the retransmission time which will 

consequently decrease distribution delay. So SRM performs better at dense multicast 

groups. If we analyze Figure 5.2 and Figure 5.3 together, it is seen that the variation 

of SRM distribution delay is opposite, i.e. it is increasing in small loss case while 

decreasing in large loss rate. So that it can be said that, SRM operates better when 

the loss rate is higher. This is the result of using back-off timers before sending 

NACKs and repair packets. In case of high loss rate, the probability of receiving the 

same request or repair packet for which a receiver is running a back-off timer is 

higher, therefore recovering a loss packet would be faster. This case will be 

observed more obviously on recovery latency graphics. 

Distribution delay for PGM is raising in both small and large loss rates, but 

rate of increase is considerably large at large loss. This is an expected result of using 

the original sender for all retransmission request. Since in this scheme, a 

retransmission packet travels a longer path between the sender and the requester, 

probability of dropping this packet somewhere on the path is much higher. This 

situation does not effect the operation at small losses but it is an important drawback 

when loss rate is high. As a result, PGM is badly effected from the changes in 

network condition. 

Figure 5.4 and Figure 5.5 give the variation of distribution delay against 

network diameter for small and large loss rates, respectively. Operation of SRM and 

RMTP are similar in both cases but in high loss rate SRM again responds better than 

RMTP. PGM operation is unstable especially at high loss case. 

Variation of a protocol against loss rate gives an opinion about the 

dependency of that protocol to the changes at network conditions. Figure 5.6 gives 

the operation at varying loss rates, or network conditions. For small loss rates, i.e. 

under 1%, results are very close to each other, which is supported by Figure 5.2 and 

Figure 5.4. But as the loss rate increases, SRM shows better performance than other 

two protocols. Furthermore, if the parts of the graphics between 2% and 4% of loss 

rates are considered, SRM graphics is almost horizontal. RMTP is also very close to 

a horizontal line but PGM distribution delay increases from 2.5 seconds to 3.1 

seconds. That means PGM strictly depends on the network condition. Since other 
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protocols use only a local part of the network while retransmitting a lost packet, they 

are less sensitive to network conditions than PGM. 

 

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0 25 50 75 100

Group Size

D
is

tr
ib

ut
io

n 
D

el
ay

 (s
ec

)
SRM

PGM

RMTP

 
 

Figure 5.2 Distribution delay vs. Group size (for small loss rates) 
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Figure 5.3 Distribution delay vs. Group size (for large loss rates) 
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Figure 5.4 Distribution delay vs. Network diameter (for small loss rates) 
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Figure 5.5 Distribution delay vs. Network diameter (for large loss rates) 
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Figure 5.6 Distribution delay vs. Loss rate (Group size=30) 

 

 

5.4.2 Recovery Latency 

 

Graphics given in Figure 5.7 – 5.11, illustrate the variation of recovery 

latencies against different network parameters. As it is seen in Figure 5.7 and 5.8, 

recovery latency for SRM and RMTP decreases as the group size increases. Since 

these protocols use local retransmission, not being effected by growing group size is 

an expected result. Since RMTP uses multicast retransmission when the demands for 

a lost packet exceeds the MCASTThres parameter, increasing group size causes more 

multicast retransmission, which consequently decreases the recovery time. But in 

both small and large loss rate cases, the characteristics of RMTP graphics are 

similar, which means recovery mechanism of the protocol is not affected from the 

network condition. The reason for the decrease at the SRM recovery times is also the 

local recovery mechanism. But SRM does not have local domains which have strict 

borders as in the case of RMTP. 

The protocol adjusts random back-off timer values in order to supply the 

locality, as described in Section 3.4.2. But the mechanism requires dense multicast 
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groups and high loss rates. As seen in Figure 5.8, SRM is the fastest protocol to 

recover a packet loss, when the group density is greater than 20%. If we consider the 

variation of PGM recovery latency against group size, it is almost doubled when 

network goes from small loss case to large loss case. That also supports the 

comment, given in previous subsection, which says increase on distribution delay 

arises from the long recovery times. 

Figure 5.11 shows the affect of loss rate on recovery latency. Recovery 

mechanism of SRM and RMTP operate very stable in high loss rates, namely over 

2%. But increasing loss rate raises the recovery time of PGM. That means PGM 

recovery mechanism is badly affected by changes in the network condition. 
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Figure 5.7 Recovery latency vs. Group size (for small loss rates) 
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Figure 5.8 Recovery latency vs. Group size (for large loss rates) 
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Figure 5.9 Recovery latency vs. Network diameter (for small loss rates) 
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Figure 5.10 Recovery latency vs. Network diameter (for large loss rates) 
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Figure 5.11 Recovery latency vs. Loss rate 
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5.4.3 Protocol Overheads 

 

In Figure 5.12 – 5.17, the variations of the request and repair overheads 

generated by each protocol against group size and loss rate are given. Since the link 

delays do not effect the number of request or repair packets generated, variation 

against network diameter was not observed in these test cases. 

In Figure 5.12 and 5.13, RMTP seems to generate more request overhead as 

the group size increases. The first reason for that is sending periodic ACKs for 

requesting lost packets, instead of sending NACKs only in case of a packet drop. 

Therefore request overhead of RMTP is higher than others in small loss rate case, 

and the difference gets higher as the group size increases (Figure 5.12). Another 

reason is not using a suppression mechanism for request packets like the other 

protocols. As a result of this, for increasing group sizes, RMTP request overhead 

increases faster than other protocols, especially in high loss case (Figure 5.13). 

Since in a dense multicast group, it is likely to get a repair or request packet 

for a SRM receiver before its back-off timer expires and consequently its 

retransmission request would be discarded, SRM has a small request overhead at 

high group sizes, with respect to other protocols (Figure 5.13). 

In case of PGM, since a request packet travels the whole network between 

the receiver and the sender, error probability for that request gets higher, as the link 

loss rates increase. Therefore especially in case of large loss rate (Figure 5.13), PGM 

generates more request overhead. For instance, request overhead for a group size of 

10 is greater than 1, which means a router processes more request packets than the 

original data packets, even for a multicast group with 10 members. On the other 

hand, as it is seen in Figure 5.14, two protocols which use local retransmission do 

not suffer from increasing loss rate, as much as PGM. Furthermore, the behaviors of 

these protocols against loss rate are very similar to each other. Request overhead of 

both protocols remain under 1 until loss rate is equal to 4%, while PGM exceeds 1 at 

a loss rate of 1.5%. 
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Figure 5.12 Request overhead vs. Group size (for small loss rates) 
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Figure 5.13 Request overhead vs. Group size (for large loss rates) 
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Figure 5.14 Request overhead vs. Loss rate 
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Figure 5.15 Repair overhead vs. Group size (for small loss rates) 
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Figure 5.16 Repair overhead vs. Group size (for large loss rates) 
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Figure 5.17 Repair overhead vs. Loss rate 
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From repair overhead graphics (Figure 5.15 and 5.16), it is seen that SRM 

generates a huge repair overhead even in small loss rates. This is a result of globally 

multicasting all repair packets. Multicast retransmission provides fast error recovery, 

because most of the receivers get retransmissions before expiration of their back-off 

timers. That can be recognized from the low request overhead of SRM. But this 

scheme costs a very high processing load on the routers. This is the trade-off of 

SRM for achieving fast error recovery.  

From the figures, it can be said that RMTP and PGM generate an acceptable 

repair overhead in both small and large loss cases. In RMTP, sending 

retransmissions by unicast and using a local group when multicast transmission is 

required by the protocol keep the number of repair packets processed by each router 

at a low level. Consequently, the repair overhead is less than half of SRM’s, which 

uses global multicast for all retransmissions. PGM also has a low repair overhead by 

taking the advantage of using router assistance. Repairs are sent by unicast and 

duplicated at routers if necessary, so repair traffic is kept low. But unicast 

retransmission causes high recovery times while generating less overhead. 
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CHAPTER 6 
 

 

CONCLUSION 
 

The overall evaluation of the results of simulation executions presented in 

previous chapter, gives some insight about the main issues of the reliable 

multicasting. In this section, these results will be summarized under the following 

distinctive titles; 

Multicast retransmission: Sending retransmission packets by multicast 

transmission decreases the recovery time. SRM uses multicasting for all 

retransmissions and from simulation results it is seen to have a good recovery 

latency performance especially at high loss rates. Similarly, RMTP has a decreasing 

recovery latency. (RMTP is likely to send multicast retransmission in large groups.) 

In case of multicast retransmission, some receivers get the lost packets 

before their back-off timers expire or while waiting for the next request sending 

period, decreasing the average recovery latency. This reduction is too obvious in 

SRM, such that it decreases the whole distribution delay. But while decreasing the 

recovery time, multicast retransmission introduces an extra repair overhead to the 

network. Especially SRM, which globally multicast all retransmissions, has a 

considerably high repair overhead. Instead of using global multicast, multicasting 

repairs to a local subgroup, such as RMTP, could keep the overhead at an acceptable 

rate.  

Similarly, unicast retransmission cause a high overhead especially at the 

sender side of the network, i.e. one of the fundamental issues of reliable 

multicasting. PGM proposes to overcome this problem by using router assistance. 

This scheme is successful with respect to repair overhead, but since the 
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retransmissions are not performed on a local-basis, recovery time is high. The effect 

of local retransmission will be investigated on the next item. 

Local Retransmission: The term of local retransmission is used for the 

protocols in which not only the original sender but also a specialized receiver or any 

receivers who has the required data is able to reply a retransmission request. The 

most important advantage of this method is to keep the recovery times at a low level, 

as it is seen in SRM and RMTP simulations. A protocol that uses the sender for 

replying all retransmission requests, like PGM, would have a high recovery latency. 

But using a replier apart from the sender requires some additional protocol 

implementation efforts. For example, in SRM, each receiver should have the ability 

of sending a previously received packet when it is necessary. The same requirement 

is valid for a RMTP designated receiver, and furthermore selecting the locations of 

these DRs and running some extra features on them are necessary for a proper 

operation. These properties should be organized by a session manager. As a result, 

decreasing the recovery time by using local retransmission creates extra loads on 

protocol implementation and session management. 

Effect of Network Conditions: In Ns-2 simulations, packet drops due to the 

network congestion are simulated by loss rates assigned to each link. Therefore 

variation of an evaluation metric against the loss rate gives an opinion about the 

response of the protocol to changing network conditions. 

From simulation executions, it is seen that recovery time of the protocols 

using local retransmission, namely SRM and RMTP, is not effected from the 

changes in loss rate. 

Out of the three protocols investigated in this study, SRM shows the best 

performance against variations of loss rate. Since in ideal operation of SRM the 

nearest receiver replies a retransmission request, the reply packet travels the 

minimum path when compared with other protocols and the effect of network 

condition is minimized. 

In case of RMTP, each Designated Receiver specifies a local retransmission 

area and answers the retransmission request generated within the area. Hence RMTP 

also takes the advantages of using local retransmission. But since in this case each 

local retransmission area is specified by a Designated Receiver, they are larger than 
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the local retransmission areas of SRM. As a result of this, effect of the network on 

RMTP recovery time is greater than it is in the SRM. But it is too little when 

compared with a protocol where the sender replies all retransmission requests. In 

PGM, for instance, recovery latency increases three times, as the average loss rate 

goes from 0.5% to 5%. So using local retransmission and decreasing the size of this 

local area decreases the dependency of a protocol on the network conditions. 

Effect of Group Density: In this study, all test cases having different number 

of group members were created on the same underlying topology. Therefore varying 

the number of multicast group members caused a change on the density of multicast 

group, allowing to observe the effect of group density to the operation of the 

selected protocols. From the results obtained, a protocol that specifies the border of 

its local retransmission areas while establishing the session, e.g. RMTP, is 

independent of group density. On the other hand, since SRM does not define the 

local areas and obtains the locality by trying to answer a retransmission request by 

the nearest receiver, in sparse multicast groups the recovery latency was measured at 

the highest level and increasing the group size, i.e. the group density, caused a drop 

at the latency. 

As a summary, using SRM, in a multicast session that requires reliable 

transmission, introduces fast error recovery, while creating a high protocol overhead. 

On the other hand, PGM is very slow at error recovery and badly affected by the 

changes at the network conditions. RMTP stays somewhere between these two 

protocols. Its error recovery times are quite low due to local retransmissions. Also, 

retransmitting repair packets to a restricted subgroup avoids generating large 

protocol overheads to the network. The only drawback of RMTP is the need of 

selecting and properly locating the DRs and the extra buffer requirement of these 

nodes. 

At the end of this study, a combination of RMTP mechanism and the router 

support may be proposed, in order to overcome the reliability problem of multicast 

transmission in a scalable way. In such a scheme, the protocol may operate with less 

number of designated receivers, decreasing the extra buffer requirement and the 

difficulties of session management. 



 
 
 

73 

In this study, all simulations were performed with a single sender, i.e. on a 

one-to-many basis. As a future work, the response of the protocols in a many-to-

many multicast session may be studied. The performance of the protocols with 

respect to some different evaluation metrics like processing load on sources, load on 

receivers or memory requirements of the protocols may be observed. Furthermore, 

CBR traffic sources were considered, during our study. The response of the 

protocols in case of different traffic types may also be studied. 
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APPENDIX A 
 

 

NUMERICAL RESULTS OF SIMULATIONS 
 

 

Table A.1 Simulation results for “Distribution Delay” 

 

Distribution Delay Group 
Size 

Delay 
Coefficient 

Loss 
Rate SRM PGM RMTP 

10 1 small 0,82045 0,70509 0,70441 
30 “ “ 1,03315 0,89780 0,86520 
50 “ “ 1,10590 0,98461 0,92141 
70 “ “ 1,22760 1,07942 1,03459 
90 “ “ 1,25755 1,29502 1,07993 

Graphic 
given in 
Figure 5.2 

 
10 1 large 1,53669 1,49673 1,44009 
30 “ “ 1,48001 2,44977 1,76581 
50 “ “ 1,37961 3,11802 1,85279 
70 “ “ 1,39116 3,28483 1,92784 
90 “ “ 1,42674 3,55178 1,93738 

Graphic 
given in 
Figure 5.3 

 
30 0,5 small 0,59272 0,48140 0,62069 
“ 1 “ 0,99297 0,87745 0,86588 
“ 2 “ 1,79260 1,16834 1,41102 
“ 3 “ 2,36665 1,72434 2,29886 

Graphic 
given in 
Figure 5.4 

 
30 0,5 large 0,94046 2,03533 1,46229 
“ 1 “ 1,50261 2,49647 1,76263 
“ 2 “ 2,48924 1,84209 2,57191 
“ 3 “ 3,18017 2,24347 3,65229 

Graphic 
given in 
Figure 5.5 

 
30 1 0,5 0,82456 0,71000 0,68424 
“ “ 1 1,16169 1,29584 1,10392 
“ “ 2 1,44703 2,51866 1,78715 
“ “ 4 1,53114 3,12533 2,07129 
“ “ 5 1,78295 3,96892 2,66876 

Graphic 
given in 
Figure 5.6 
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Table A.2 Simulation results for “Recovery Latency” 

 

 

Recovery Latency Group 
Size 

Delay 
Coefficient 

Loss 
Rate SRM PGM RMTP 

10   1,51649 0,816508 0,965684 
30 “ “ 1,14706 0,870469 0,956497 
50 “ “ 1,20004 0,797527 0,872792 
70 “ “ 1,19782 0,814778 0,833078 
90 “ “ 1,15731 0,926625 0,852444 

Graphic 
given in 
Figure 5.7 

 
10 1 large 1,42039 1,391536 1,141568 
30 “ “ 0,909948 1,408138 1,081536 
50 “ “ 0,746086 1,570705 0,971228 
70 “ “ 0,792955 1,498271 0,953857 
90 “ “ 0,801915 1,555407 0,931976 

Graphic 
given in 
Figure 5.8 

 
30 0,5 small 0,782634 0,487545 0,768435 
“ 1 “ 1,17024 0,811763 0,963149 
“ 2 “ 2,02321 0,628081 1,308198 
“ 3 “ 2,56688 0,874446 1,727937 

Graphic 
given in 
Figure 5.9 

 
30 0,5 large 0,559879 1,203091 0,914317 
“ 1 “ 0,952462 1,45463 1,033759 
“ 2 “ 1,52618 1,245698 1,424841 
“ 3 “ 1,80719 1,430183 1,905298 

Graphic 
given in 
Figure 5.10 

 
30 1 0,5 1,27171 0,777217 0,867768 
“ “ 1 0,958407 0,979694 0,916683 
“ “ 2 0,856448 1,487098 1,062336 
“ “ 4 0,885987 1,758938 1,104222 
“ “ 5 0,900743 2,255509 1,204661 

Graphic 
given in 
Figure 5.11 
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Table A.3 Simulation results for “Request Overhead” 

 

 

Request Overhead 

Group 
Size 

Delay 
Coefficient Loss Rate SRM PGM RMTP 

10 1 small 0,180392 0,251523 0,251702 
30 “ “ 0,393386 0,367701 0,471496 
50 “ “ 0,517599 0,434705 0,892522 
70 “ “ 0,595226 0,572438 1,090108 
90 “ “ 0,693548 0,717038 1,328635 

Graphic 
given in 
Figure 5.12 

 
10 1 large 0,627132 1,130749 0,331925 
30 “ “ 0,908783 1,60596 0,748384 
50 “ “ 1,032028 1,860176 1,257156 
70 “ “ 1,085299 2,243812 1,953636 
90 “ “ 1,160847 2,664076 2,635015 

Graphic 
given in 
Figure 5.13 

 
30 1 0,5 0,215062 0,200328 0,362257 
“ “ 1 0,586667 0,714596 0,624646 
“ “ 2 0,885344 1,608855 0,844411 
“ “ 4 1,000159 2,105993 0,982862 
“ “ 5 1,155397 2,763838 1,159562 

Graphic 
given in 
Figure 5.14 
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Table A.4 Simulation results for “Repair Overhead” 

 

 

Repair Overhead 

Group 
Size 

Delay 
Coefficient Loss Rate SRM PGM RMTP 

10 1 small 0,33951 0,182634 0,075245 
30 “ “ 1,236614 0,260041 0,172194 
50 “ “ 1,541505 0,301783 0,204516 
70 “ “ 1,816839 0,388993 0,323118 
90 “ “ 2,365887 0,472991 0,40866 

Graphic 
given in 
Figure 5.15 

 
10 1 large 1,159559 0,761444 0,366791 
30 “ “ 2,656455 1,020774 0,754343 
50 “ “ 3,274148 1,122434 1,03522 
70 “ “ 3,390737 1,290704 1,397097 
90 “ “ 3,899355 1,466892 1,691789 

Graphic 
given in 
Figure 5.16 

 
30 1 0,5 0,594753 0,144559 0,073372 
“ “ 1 1,795556 0,494787 0,279125 
“ “ 2 2,694656 1,02468 0,740976 
“ “ 4 2,762275 1,260168 0,988889 
“ “ 5 3,101164 1,535657 1,436936 

Graphic 
given in 
Figure 5.17 

 

 

 

 

 


