

IMPLEMENTATION OF AN 8-BIT MICROCONTROLLER WITH SYSTEM C

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

LOKMAN KESEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NOVEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. İsmet Erkmen

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Murat Aşkar

Supervisor

Examining Committee Members

Prof. Dr. Tayfun Akın (METU, EE) ________________________

Prof. Dr. Murat Aşkar (METU, EE) ________________________

Yrd. Doç. Cüneyt Bazlamaçcı (METU, EE) ________________________

Dr. Ece Güran (METU, EE) ________________________

M.Sc. Ali Yazıcı (ASELSAN) ________________________

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Lokman Kesen

Signature :

iv

ABSTRACT

IMPLEMENTATION OF AN 8-BIT MICROCONTROLLER WITH SYSTEM C

Kesen, Lokman

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Murat Aşkar

November 2004, 122 pages

In this thesis, an 8-bit microcontroller, 8051 core, is implemented using SystemC

programming language. SystemC is a new generation co-design language which is

capable of both programming software and describing hardware parts of a

complete system. The benefit of this design environment appears while developing

a System-on-Chip (SoC), that is a system consisting both custom hardware parts

and embedded software parts. SystemC is not a completely new language, but

based on C++ with some additional class libraries and extensions to handle

hardware related concepts such as signals, multi-valued logic, clock and delay

elements. 8051 is an 8 bit microcontroller which is widely used in industry for many

years. The 8051 core is still being used as the main controller in today’s highly

complex chips, such as communication and bus controllers. During the

development cycles of a System-on-Chip, instead of using separate design

v

environments for hardware and software parts, the usage of a unified co-design

environment provides a better design and simulation methodology which also

decreases the number of iterations at hardware software integration. In this work,

an 8-bit 8051 microcontroller core and external memory modules are developed

using SystemC that can be re-used in future designs to achieve more complex

System-on-Chip’s. During the development of the 8051 core, simulation results are

analyzed at each step to verify the design from the very beginning of the work,

which makes the design processes more structured and controlled and faster as a

result.

Keywords: SystemC, 8051, System-on-Chip, Microcontroller, Hardware-Software

Co-design

vi

ÖZ

8-BİT MİKRO DENETLEYECİNİN SYSTEM C İLE GERÇEKLEŞTİRİLMESİ

Kesen, Lokman

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez yöneticisi: Prof. Dr. Murat Aşkar

Kasım 2004, 122 sayfa

Bu tezde SystemC programlama dili kullanılarak 8051 8-bit mikro denetleyici

çekirdeğinin tasarımı gerçekleştirilmiştir. SystemC, bütün bir sistemin hem

donanımı tanımlamaya hem yazılımını programlamaya yetkin yeni nesil bir

tümleşik tasarım dilidir. Bu tasarım ortamının faydaları, özel donanım modülleri ve

tümleşik yazılımlardan oluşan “Tek Yongada Sistem”lerin (SoC, System-on-Chip)

geliştirilmesinde ortaya çıkmaktadır. SystemC tamamen yeni bir dil değildir, aksine,

C++ programlama dilini temel alır ve çok seviyeli mantık devreleri, saat sinyalleri ve

gecikme öğeleri gibi donanıma ilişkin konuları desteklemek üzere bir takım nesne

kütüphaneleri ve eklentiler içermektedir. 8051 mikro denetleyicisi 8 bit tabanlıdır ve

uzun yıllardır sanayide yaygın ölçüde kullanılmaktadır. 8051 çekirdeği, veri yolu

denetleyicileri ve iletişim denetleyicileri gibi günümüzün karmaşık yongalarında

halen temel denetleyici olarak kullanılmaktadır. Tek Yongada Sistem’lerin

vii

geliştirilme sürecinde, donanım ve yazılım modülleri için ayrı tasarım ortamları

kullanmak yerine, tümleşik bir tasarım ortamı kullanmak daha iyi bir tasarım ortamı

sağladığı gibi donanım ve yazılım bütünleme adımlarının sayısında da önemli

kazançlar sağlamaktadır. Bu çalışmada, 8 bit mikro denetleyici olan 8051 çekirdeği

ve çevresel bellek elemanları, ileride daha karmaşık Yonga-Sistem’lerin

tasarımında yeniden kullanılabilecek şekilde SystemC kullanılarak geliştirilmiştir.

8051 çekirdeğinin geliştirme sürecinde, tasarımı en temelinden itibaren her adımda

doğrulamak üzere simülasyon sonuçları incelenmiş, böylece süreç daha denetimli,

yapısal ve sonuç olarak hızlı olmuştur.

Anahtar Kelimeler: SystemC, 8051, Mikro Denetleyici, Donanım-Yazılım Bütünleşik

Tasarımı

viii

To My Family

ix

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Prof. Dr. Murat Aşkar

for his guidance, encouragement and support in every stage of this research.

I am also grateful to my colleagues for their encouragement and support.

I would like to express my deep gratitude to all who have encouraged and helped

me at the different stages of this work.

And finally I am grateful to my wife for everything.

x

TABLE OF CONTENTS

PLAGIARISM .. iii
ABSTRACT ... iv
ÖZ ... vi
ACKNOWLEDGEMENTS.. ix
TABLE OF CONTENTS ... x
LIST OF TABLES ...xiii
LIST OF FIGURES.. xiv
INTRODUCTION..1
THE SYSTEMC DESIGN ENVIRONMENT..6

2.1 Open SystemC Initiative Organization (OSCI).......................................7
2.2 Modeling with SystemC ...8
2.3 Hardware Software Co-Design and Co-Simulation10
2.4 Language Features..11

2.4.1 Modules, Ports and Signals ..11
2.4.2 Processes ...12
2.4.3 Data Types and Constructs...13

2.5 SystemC Synthesis..14
2.5.1 Synchronous Sequential Systems ..16
2.5.2 Synthesis Tool Operation..16
2.5.3 CoCentric SystemC Compiler ...17
2.5.4 Cadence NC SystemC Simulator ..18

2.6 Design Constrains for Synthesizable SystemC Code..........................18
2.6.1 Modules...18
2.6.2 Processes ...20
2.6.3 Ports..21

xi

2.6.4 Signals ..21
2.6.5. Sensitivity List ..22
2.6.6. Converting to a Synthesizable Subset23

2.7. A Design Example ..24
THE 8051 CORE..29

3.1 Types of Memory ...31
3.1.1 Code Memory..31
3.1.2 External RAM ..32
3.1.3 On-Chip Memory...32

3.2 Addressing Modes of 8051 ..39
3.3. Program Flow Instructions ..43

3.3.1 Conditional Branching ...43
3.3.2 Direct Jumps ...44
3.3.3 Direct Calls..44
3.3.4 Returns from Routines ..45
3.3.5 Interrupts ...45

3.4. 8051 Timers..45
3.5 Serial Ports ..49
3.6. Interrupts...50

DESIGN OF 8051 CORE WITH SYSTEMC...54
4.1 CPU Executer ..55

4.1.1 Main State Machine ..55
4.1.2 CPU Operation Mode..59
4.1.3 Internal RAM and SFR ..60
4.1.4 Interrupt Controller ..61
4.1.5 I/O Ports ..63

4.2 ALU Module ...64
4.2.1 Addition and Subtraction ...66
4.2.2 Logic and Shift Operations..66
4.2.3 Multiplication ...66
4.2.4 Division..66

4.3 Serial Port Controller ...67
4.4 Timer Operations ...69

xii

VERIFICATION OF 8051 DESIGN...70
5.1 Verification of Generated Signals ..72
5.2 Verification of ALU...76
5.3 Arithmetic Instructions ...79
5.4 Logical Instructions ..81
5.5 Data Transfer Instructions ...82
5.6 Flow Control Instructions ...83
5.7 Interrupts..84
5.8 Serial Port ..85
5.9 Timer Operations ...86
5.10 Testing The Whole Design ..87

CONCLUSIONS ...90
REFERENCES...92
APPENDICES ..95

A. Instruction Set Of 8051..95
B. Nonsynthesizable SystemC And C++ Constructs102
C. Assembly Verification Code ..104
D 8051 Variants ...119
E Standard 16-Bit CRC Code ..121

xiii

LIST OF TABLES

Table 2.1 Synthesizable Data Types..23
Table 3.1 Timer Registers ..46
Table 3.2 Timer Mode Registers ..46
Table 3.3 Timer Modes ..47
Table 3.4 Timer Control Register, TCON, 88h ...49
Table 3.5 Serial Control Register, SCON, 99h...50
Table 3.6 Serial Mode Definitions ..50
Table 4.1 Special Function Registers...60
Table 4.2 Interrupt Enable Register ...61
Table 4.3 Interrupt Priority Register..62
Table 4.4 Interrupt Vector Table...63
Table 4.5 Standard ALU Commands..65

xiv

LIST OF FIGURES

Figure 1.1 A Typical SoC (System-On-Chip)..2
Figure 2.1 Conventional Design Method ..8
Figure 2.2 Design Method with SystemC ...9
Figure 2.3 Modules, Ports, Signals and Their Relations ..12
Figure 2.4 Sample SystemC Model of an Integer Counter.......................................14
Figure 2.5 SystemC Synthesis to HDL...15
Figure 2.6 Behavioral Synthesis Example..15
Figure 2.7 Flowchart Showing the Synthesis Tool Operation...................................17
Figure 2.8 Test Bench for Counter Example ..24
Figure 2.9 Counter Source Files ..25
Figure 2.10 Source Files for Stimulus ..26
Figure 2.11 Source Files for Display Module..26
Figure 2.12 Main Source File ...27
Figure 2.13 Signal Trace of Counter Example ...28
Figure 3.1 The Original 8051 Core...30
Figure 3.2 Memory Map of 8051 Core..33
Figure 4.1 The Design of 8051 Core ..54
Figure 4.2 Cpu Signals During Code Read ..56
Figure 4.3 Cpu Signals During External Read..56
Figure 4.4 Interrupt Priority Scan..62
Figure 4.5 Design of ALU (Arithmetic Logic Unit)...64
Figure 5.1Test Bench for 8051 Core ..70
Figure 5.2 Basic CPU Signals ..72
Figure 5.3 External Code Read..73

xv

Figure 5.4 8051's External Code Read ..74
Figure 5.5 External Data Memory Read...74
Figure 5.6 8051's External Data Memory Read ...75
Figure 5.7 External Data Memory Write ...75
Figure 5.8 8051's External Data Memory Write...76
Figure 5.9 Basic ALU Signals...77
Figure 5.10 ALU Multiplication..78
Figure 5.11 ALU Division..78
Figure 5.12 External Interrupt Operation ...84
Figure 5.13 Serial Port Receive Operation...86
Figure 5.14 Serial Port Transmit Operation..86
Figure 5.15 Timer-0 Operation ...87
Figure 5.16 Simulation of 8051 in SystemC ...88
Figure 5.17 Simulation of 8051 in Keil uVision...89

1

INTRODUCTION

Integrated circuits (ICs) constitute the heart of most of the electronic devices

available today. Typical systems use many ICs to respond to the increasing

demand for high performance and low cost. Microprocessors and Digital Signal

Processors (DSPs), which are two most common types of software programmable

ICs, are used for implementing the more complex tasks such as user interfaces

and signal processing functions

As an IC replicates the functionality of a circuit consisting of at least hundreds of

thousands of transistors, designing the chip is not an easy task. Design tools are

required at many levels of the design process to simulate the circuit, verify the

constraints, and create the final layout and post layout simulations. Such software

tools are commonly called Electronic Design Automation (EDA) tools.

Usually, the functionality of a chip is implemented in hardware. In such a scenario,

the chip can be used only for the intended application and is termed an Application

Specific Integrated Circuit (ASIC). Such chips cannot be re-programmed to perform

for another function. Most of the proprietary chips fall in this category. Field

Programmable Gate Arrays (FPGAs) can be re-configured, and working scenarios

can be altered. On the other hand, Microprocessors (µP), Microcontrollers (µC) and

Digital Signal Processors (DSP) can be software programmable either at

manufacture time or at run time. Today, a typical circuit consists of one or more

processors, some discrete components, and may have DSPs and s ASICs on a

circuit board. Even though this methodology is sufficient for reasonably complex

systems, a change in design methodology is required, as systems get more and

more complex.

2

Another design method is to incorporate software as well as IP (Intellectual

Proprietary) cores, which result in the term System-on-Chip (SoC). In other words,

a SoC consists of both hardware and software modules to achieve the functionality

of the system. A typical example of a SoC design is shown in Figure 1.1. A SoC is

usually much more complex than an ASIC and is the current trend in chip design.

 SoC
RAM

Memory

Bus Interface Application Specific
Logic

MicroProcessor DSP

Glue Logic

ROM ROM

CPU Software DSP Software

Figure 0.1 A Typical SoC (System-On-Chip).

In SoC design, a given specification must be broken down to two main categories;

hardware and software. This problem is called the hardware-software partitioning

problem and is an important issue that can affect the performance of the overall

system.

The goal is to partition the components of the system to either hardware or

software so that the resulting system provides optimum performance. Usually, the

partitioning is done based on the evaluation of a cost function whose exact form

depends on the design constraints [1] As an example, execution time, data

memory, frequency of activation, etc. for a unit can be included in its cost function.

This process is not standardized and a typical analysis can yield multiple partitions,

which makes the design process an iterative one where each partition is selected

3

and evaluated one by one until the design specifications are met at the lowest cost.

Also, it is difficult to automate this process completely, most of the time; the user

interaction is required. This problem is an active research area, and success has

been achieved in some cases. Another closely related problem issue is testing

these heterogeneous components. Although it is possible to test hardware and

software independently, a complete test, which includes both, will be preferred

more. The reason is simple, as the final product will be a compound of software

and hardware, it is better to integrate them as early as possible. So, a co-

simulation environment will be beneficiary for simultaneous hardware-software

validation.

Hardware Description Languages (HDLs) are an important set of EDA tools. These

are high level programming languages that are designed to model the behavior of

hardware. Two of the most popular HDLs are the Very High Speed Integrated

Circuit Hardware Description Language (VHDL) and Verilog. HDLs have semantics

that model typical hardware features like concurrency, delay, clock, ports and

signals. Once a model is coded in an HDL, it can be simulated to verify the

intended functionality and then synthesized to hardware. This approach is suited

for creating chips that contain only hardware parts, it is inappropriate for SoC

designs which contain both hardware and embedded software. This is because;

current HDL design and simulation environments do not support hardware-

software co-design and co-simulation. In other words, although HDLs are very

powerful in creating hardware chips they do not have sufficient structures for

systems with embedded software.

Software programming languages such as C and C++ are used for embedded

software inside the SoC chip, which is also called firmware. These languages are

originally designed for sequential programming of microprocessors and not suitable

for describing the hardware behaviors. The reason is, they are having the lack of

concurrent structures, clock signals and delays. Opposite to the case in HDLs,

software programming languages are very efficient in sequential programming but

they have short comings for the design of concurrent hardware structures.

4

Because of the limitations of both Hardware Description Languages and Software

Programming Languages for designing SoCs, System Level Modeling Languages

(SLMLs) are used for this purpose. One of the recent developments in this field is

the new modeling language named SystemC [2] [3]. This language is based on

C++ and has specific constructs to model hardware-related concepts. Details of

SystemC are covered in the next chapters.

Typical systems can be represented at higher levels of abstraction than the ones

handled by HDLs. Languages such as C and C++ are commonly used to express

highly abstract systems. Because of higher simulation speed, functional verification

is always preferred at the highest level of abstraction possible[8]. Verification of

C/C++ models is much faster than those written in HDLs.

Once the chip is designed and verified in one of HDLs, the next step is translating

the written code to the real hardware components. There are tools available in the

market to perform this task and they are generally termed as synthesis tools.

Synthesis tools use predefined library components and map algorithmic code to

component instantiations. To enable this translation, the algorithmic code must be

written in a hardly restricted format specified by the tool vendor.

A new development in the synthesis market is the introduction of SystemC

compiler tools such as the Synopsys CoCentric (CCSC), Cadence NC Simulator,

Mentor’s Seamless C-Bridge [4][8][15][16]. This tool reads code written in SystemC

and translates the design to hardware, using library components. The combination

of SystemC and CCSC would be a very powerful methodology for designing

complex chips in a short time window.

The goal of this thesis is to study the effectiveness of SystemC in modeling real life

systems. While it is easy to test SystemC on simple designs, real-life designs are

often complicated, and the performance of the language in modeling these designs

decides whether it is acceptable by the industry or not. For demonstrating the

capabilities of SystemC, design of an 8 bit general purpose microprocessor, 8051

5

core is used as a case study. The reason for selecting 8051 core is the popularity

of the chip as well as its highly verified structure.

Chapter 1 is the introduction to this thesis, and provides a summary of the

background of this thesis. The task description and the thesis organization are also

provided. Chapter 2 describes the SystemC language and the synthesis process.

The features of the language are explained. Alternatives to SystemC are

considered, and the reasons for selecting SystemC for this work are summarized.

A description of the 8051 Microcontroller core is given in chapter 3. The design

structure of 8051 microcontroller core, which is used as a case study in this thesis,

is explained in Chapter 4. The implementation of the 8051 core with SystemC

language is also explained in this chapter. Chapter 5 explains how the verification

issues handled in the design and compares the signal traces of the designed 8051

core to the original one. And finally chapter 6 states the conclusions drawn from

the work done in this thesis and suggests possible directions for future research.

6

THE SYSTEMC DESIGN ENVIRONMENT

SystemC is a modeling language based on C++. It is a set of class libraries in C++

that allow users to model hardware related concepts like concurrency, timing etc.

In other words, SystemC is an extension of C++ with classes to add the desired

functions, using the object-oriented programming methods. Since this language is

basically C++, any ANSI C++ compiler can be used to run SystemC models.

Because of these features, the language offers the following advantages;

• Executable Specification: A model written in SystemC can be compiled and

made be executable. This feature implies that the executable specification

can be shared among the members of a team without the need to share the

source code or any associated script file.

• Faster simulation: Since SystemC depends on the underlying C++

framework for simulation, the simulation speed is high compared to either

VHDL or Verilog. The speedup could be higher with the use of commercial

tools.

• Higher abstraction levels: Compared to hardware description languages,

C++ has the ability to model highly abstract concepts in an elegant fashion.

This feature is inherent in SystemC.

• Implementation independence: A model specified in a hardware description

language is usually targeted for a hardware implementation. In contrast, a

SystemC model does not specify a particular implementation. It can be

implemented either in hardware or in software, using a general-purpose

processor or a DSP. This feature is very useful in hardware-software co-

design, as explained before.

7

2.1 Open SystemC Initiative Organization (OSCI)

Another important feature of SystemC is that it is provided as an open source

distribution, where users can download the source code of the SystemC language.

Users can submit their bug fixes or add their own features to the language. This

ensures that the language evolves rapidly through the collective effort of the design

community. SystemC is entirely based on C++, and the source code for the

SystemC reference simulator can be freely downloaded from SystemC official web

page under an Open Community Licensing agreement.

There are other languages that are similar to SystemC in that they allow modeling

hardware at a high level of abstraction.

SpecC is a system specification description language based on C. It is developed

as a language extension to ANSI C, with special constructs to model hardware. A

model can be described at a high level of abstraction in SpecC. It can then be

simulated using the SpecC reference compiler (SCRC). SCRC consists of an open

source pre-processor that converts the SpecC specific constructs to equivalent

ANSI C code, which is then compiled and simulated. Then, it is possible to get

executable specifications of models. The main difference of SpecC from SystemC

is that the modeling domain of SpecC covers higher levels of abstraction than that

done using SystemC.

Cynlib is another C++ based language for hardware modeling. The focus of this

language is hardware design, and not system level specification.

Superlog is a system level description language based on Verilog and C. It is a

superset of Verilog with C language-like constructs. Code written in Superlog

cannot be compiled to executable format, and requires the availability of specific

simulator tools.

Among other System Level Modeling Languages, SystemC is the best supported

one. There are many companies having specific SystemC products in design,

8

simulation, verification and language conversion fields. For the whole design cycle

for a real life project, these tools are also needed as well as basic design language

specification. These are the fundamental reasons why SystemC has been chosen

as the main issue of this thesis.

2.2 Modeling with SystemC

The features of SystemC allow designer to model the system at a higher level of

abstraction. The modeling process is an iterative one, with data and control

refinement occurring at each step. Data refinement involves improvements in the

way data types are modeled, and control refinement refers to the evolution of the

control protocols in the model. The refinements can be evaluated by performing

simulation at each design step. Once the refined model is finalized, it can be

partitioned and synthesized.

Manual
Conversion

VHDL / Verilog

Simulation

Synthesis

Rest of the
Process

C/C++
System Level Model

Analysis

Result

Refine

Figure 0.1 Conventional Design Method.

In conventional design method, which is shown in Figure 2.1, the first step of the

project is the validation of the main idea in the project. This process is also called

as “proof of concept”. In most cases, the designer prepares the models for the

modules used in the system. The best way is to use a programming language like

C/C++ or Pascal to simulate the behavior of the modules. Another alternative is to

9

prepare the prototype of the module under development. In both cases, after

having the results from the analysis step, the designer makes necessary

refinements to the model. When this process results with satisfied outputs,

designer manually converts the proven model to the design environment

programming language i.e. Verilog or VHDL. Then simulation and synthesis steps

are activated to have the final design.

On the other hand, in proposed design method, validation of the new concept and

design process are combined in a single task. The SystemC design flow is shown

in Figure 2.2. In this method the designer starts preparing a SystemC model of the

system under development. Indeed this is very similar to the one in conventional

design method. Moreover the design has modules, ports and signals from the very

beginning of the process, which will clarify the design activities.

SystemC

Simulation

Synthesis

Synthesis

Rest of the
Process

Figure 0.2 Design Method with SystemC.

10

As SystemC is providing a modular design concept, development of big systems in

multi team environments is a well defined task. Each team can grab one ore more

modules then start the design process in their own design environment. After

teams have mature SystemC models they can combine their models to have the

final design.

2.3 Hardware Software Co-Design and Co-Simulation

SystemC is a modeling platform consisting of a set of C++ class libraries, plus a

simulation kernel that supports hardware modeling concepts at the system level,

behavioral level and register transfer level. The C/C++ programming languages are

widely used by systems architects and software engineers in their domains, but

these languages lack semantics to adequately describe hardware modeling

concepts. SystemC offers a solution that uses C++ extensions to add hardware

modeling constructs.

In classical design methodologies, once a system has been partitioned and handed

off to the hardware and software teams, software engineers re-describe the

system-level architecture before proceeding with their work. Moreover, the

hardware engineers re-write the high-level C/C++ description into an entirely

different language like VHDL or Verilog. As a result, there occurs a distance

between systems and software engineers and hardware engineers. It means there

is a possibility of introducing errors and inconsistencies into the design, as C/C++

code is manually re-written. SystemC is a solution that cures this split by providing

a refinement methodology from the original C/C++ functional and architectural

descriptions to enable hardware/software co-design.

SystemC offers the ability to describe both hardware and software in the same

high-level language, providing well-defined C-based constructs in a familiar and

consistent programming environment. In addition, SystemC is open, available to

everyone and it provides the ability to take advantage of a wide range of EDA tools

11

that are being developed around it. SystemC provides a robust software

environment for hardware/software co-design, but its greatest strength is the fact

that it is being widely adopted by a large and growing group of system houses,

semiconductor companies, IP providers, embedded systems and EDA tool

vendors. In addition, the underlying source code is open and available through the

Open SystemC Community Licensing model. Unlike proprietary design languages

that require designers to depend on one company for tools and support, the open

community licensing approach ensures that the SystemC modeling platform will

evolve quickly and that many companies will provide a wide range of tools, libraries

and services based on this standard.

2.4 Language Features

As SystemC is an open source design language, the documentation about the

language, the basic simulation kernel and design methodologies mostly used with

SystemC, are also open to public and may be found on the organization’s web

page [6],[7]. The important features of SystemC that are useful for modeling are

briefly discussed here.

2.4.1 Modules, Ports and Signals

The basic block of a SystemC program is a module. A module is similar to the

concept of entity in VHDL and module in Verilog. It is an abstract representation of

a functional unit, without specifying any implementation details. Each module has a

set of ports through which it interacts with the outside world. Ports can be input

ports, output ports, or input/output (I/O) ports. If a module reads data, it must have

at least one input or I/O port, and if it writes data, it should have one or more output

or I/O ports. Individual modules communicate with one another through signals that

connect the ports of the modules.

12

Adder
Module

Reset Clock Enable

A

B

Y

Ready

Display
Module

Input

Enable

S_Output

S_Ready

S_Rst S_Clk S_En

S_A

S_B

Test Bench
Module

Reset Clock Run

Number 1

Number 2

Test Bench Module has 5 port, these
ports are connected to the Adder
Module's ports by signal separate
signals.

Display Module's input ports are
connected to Adder Module's output
ports

Adder Module is the module under
development, Test Bench and Display
modules are used during tests and
simulations

Figure 0.3 Modules, Ports, Signals and Their Relations.

Thus, signals are similar to the wires that interconnect different hardware units on a

circuit board, and the ports correspond to the pins of these units. A simple

SystemC design is given in Figure 2.3.

2.4.2 Processes

The code that implements the algorithm of a module is encapsulated in one or

more processes. There are three types of processes in SystemC. This

classification is based on how the underlying SystemC simulation kernel calls and

executes the processes.

13

• Method Process (SC_METHOD) – Each method process has a sensitivity

list that lists the signals that can activate this process. Whenever there is a

change in one of the signals in this list, the process is executed. Once the

process starts execution, it cannot be suspended and it runs until it returns.

• Thread Process (SC_THREAD) – This process is similar to SC_METHOD

in that it also has a sensitivity list to control its activation. It can be

suspended and reactivated by the user by adding relevant language

constructs in the code. When the process is suspended, it waits until one of

the signals in its sensitivity list changes. It then resumes execution from the

point where it was suspended.

• Clocked Thread Process (SC_CTHREAD) – This process is a special case

of SC_THREAD where the sensitivity list has only one signal, and it is

activated when a specific edge (low to high or high to low) of that signal

occurs. This activation scheme allows the modeling of synchronous designs

in a simple manner.

2.4.3 Data Types and Constructs

SystemC is not a completely new programming language but C++ with additional

classes, so all C++ data types are supported. For modeling hardware, additional

data types are available. These include types for representing bits, bit vectors, 4-

valued logic, variable precision integers, etc. In addition to these data types, the

language also provides constructs that enable representing the hardware behavior.

There are wait() statements that suspend execution, write() and read() functions to

send and receive data from ports, and so on. More details of the language are

discussed in [6], and a complete list of features can be found in the SystemC

user’s guide [7].

The language features can be illustrated with an example. Typically, the code is

split to two files – a header file that describes the ports and the processes, and a

C++ file that provides the implementation.

14

The example in Figure 2.4, represents a counter module. The code is split to two

files counter.h and counter.cpp. The header file defines a module named counter.

The module has an SC_METHOD process named action and it is declared to be

sensitive to the positive edge of the signal clock. Every time the clock signal makes

a low to high transition, the process is invoked. The implementation of the process

action is given in the file counter.cpp.

//************
// counter.h
//************

SC_MODULE(counter) {

 sc_in<bool> reset;
 sc_in<bool> enable;
 sc_out<int> result;
 sc_in_clk CLK;

 SC_CTOR(counter)
 {
 SC_CTHREAD(entry, CLK.pos());
 }

 void entry();
};

//*************
// counter.cpp
//*************

#include <systemc.h>
#include "counter.h"

int counter_value;

void counter::entry() {

 // main functionality
 while(1) {
 wait();
 if(reset.read() == 1){
 printf("Counter :\n");
 counter_value = 0 ;
 }else{
 if(enable.read() == 1){
 counter_value += 1 ;
 printf("Counter : value
 %d\n", counter_value);
 }
 }
 result.write((int)counter_value);
 }
}

Figure 0.4 Sample SystemC Model of an Integer Counter.

2.5 SystemC Synthesis

In general, synthesis tool reads the behavioral description of a model and

translates that to an equivalent netlist. The tool has a set of hardware building

blocks with well-defined parameters. The parameters include timing, area, power

dissipation information, etc. When the tool parses the behavioral code, it maps the

statements to the appropriate hardware components. The conceptual diagram for

synthesis operation is given in Figure 2.5.

15

As shown in Figure 2.6, the code shown on the left side is mapped to the hardware

circuit on the right side. In general, the tool generates hardware based on the

coding style used in the model. The same model can be written in different ways

without affecting the simulation results, but the synthesized circuit may be different

in each case. This is because the tool is basically a piece of software that performs

the hardware mapping based on a pre-defined algorithm. Hence care has to be

taken to follow the correct coding style that is suited for a given scenario.

Figure 0.5 SystemC Synthesis to HDL.

Figure 0.6 Behavioral Synthesis Example.

16

2.5.1 Synchronous Sequential Systems

While the above task of mapping software code to hardware library components is

ideal for simple combinational circuits, additional considerations have to be taken

to synthesize synchronous sequential circuits. These circuits have at least one

clock signal that controls the operation of the circuit. Typically, each clock cycle

causes specific sub-units of the circuit to execute. Hence the hardware

implementation of such a model consists of;

• Hardware components to perform the actions at each clocked state

• Control unit to control the operation of the state machine, to ensure that the

components in step 1 are activated at the appropriate clock cycles.

While the first point can be addressed by mapping the relevant lines of code to

hardware, the second issue is more complicated, and is termed scheduling. A

given set of hardware units can be scheduled in different ways to perform trade-off

analysis.

2.5.2 Synthesis Tool Operation

In general, a synthesis tool performs at least the two tasks mentioned in the

previous section. The general operation flow for a synthesis tool is given in Figure

2.7.

The synthesis tool first reads the model and performs a syntax check to ensure

that only synthesizable constructs are used in the model. If this check fails, the

user is notified, and it is the task of the user to correct the code and run the tool

again. After this, the tool maps the code to hardware components. The next step is

scheduling the design to synthesize the control unit for the system. The result of

this step is the netlist of the synthesized design. This is an equivalent hardware

representation of the system modeled at the behavioral level.

17

2.5.3 CoCentric SystemC Compiler

Synthesis from SystemC is a relatively new area, and hence the availability of

synthesis tools that support SystemC is limited. One of the SystemC synthesis tool

suites is the CoCentric [4] SystemC Compiler and the design compiler (DC). CCSC

reads a model written in SystemC and allocates hardware, and DC performs the

scheduling operation. In addition, there is another tool, BCView that provides a

graphical user environment for analysis after the scheduling step. Using this

feature, the user can visualize the hardware allocation and utilization for each clock

cycle, in addition to getting further information about the model. Some types of

scheduling errors can be analyzed using this tool.

Start

Is the model
syntax correct?

Map Model Code
to Hardware

Generate Control
Unit for the

System

End

ErrorY

N

Figure 0.7 Flowchart Showing the Synthesis Tool Operation.

18

2.5.4 Cadence NC SystemC Simulator

Among the other tools that support SystemC, The one from Cadence is important

NC SystemC Simulator [8]. It reads a specification written in SystemC and

generates synthesizable HDL code for the hardware part. So, NC can be

considered a SystemC synthesis tool. It also has provisions for hardware-software

co-design and interface synthesis.

2.6 Design Constrains for Synthesizable SystemC Code

By basic definition terms, synthesizing is the mapping operation from the SystemC

domain to the Hardware Description Language (HDL) domain. During this

operation certain predefined rules and constraints are obeyed. There are different

synthesizers from different companies in the market today, and each of them has

their specific rule sets [10]. The most general constraints are briefly explained here

2.6.1 Modules

The basic building block in SystemC is the module. A SystemC module is a

container in which processes and other modules are instantiated. A typical module

can have

• Single or multiple RTL processes to specify combinational or sequential

logic

• Multiple RTL modules to specify hierarchy

• One or more member functions that are called from within an instantiated

process or module

It is allowed to declare member functions in a module that are not processes. This

type of member function is not registered as a process in the module’s constructor.

It can be called from a process. Member functions can contain any synthesizable

19

C++ or SystemC statement allowed in a SC_METHOD process. A member

function that is not a process can return any synthesizable data type.

In the module implementation file, the functionalities of SC_METHOD process and

member functions are defined.

In the module implementation description, the programmer can read from or write

to a port or signal by using the read and write methods or by assignment. In order

to read or write a port, as a recommended coding practice, the programmer is

advised to use the read() and write() methods. The assignment operator should be

used for variables.

It is possible to read or write all bits of a port or signal. It is not allowed to read or

write the individual bits, regardless of the type. To do a bit-select on a port or

signal, the port value should be read into a temporary variable and a bit-selection

may be done on the temporary variable.

When a value is assigned to a signal or port, the value on the right side is not

transferred to the left side until the process ends. This means the signal value as

seen by other processes is not updated immediately, but it is deferred.

When a value is assigned to a variable, the value on the right side is immediately

transferred to the left side of the assignment statement within the process.

A hierarchical module can be created with multiple instantiated modules. To create

such a hierarchical module;

1. Create data members in the top-level module that are pointers to the

instantiated modules.

2. Allocate the instantiated modules inside the constructor of the top-level

module, giving each instance a unique name.

3. Bind the ports of the instantiated modules to the ports or signals of the top-

level module. Use either binding by position or binding by name coding

style

20

2.6.2 Processes

SystemC provides processes to describe the parallel behavior of hardware

systems. This means processes execute concurrently rather than sequentially like

C++ functions. The code within a process, however, executes sequentially.

Defining a process is similar to defining a C++ function. A process is declared as a

member function of a module class and registered as a process in the module’s

constructor. Registering a process means that it is recognized as a SystemC

process rather than as an ordinary member function. Programmer can register

multiple different processes, but it is an error to register more than one instance of

the same process. To create multiple instances of the same process, enclose the

process in a module and instantiate the module multiple times.

It is possible to define a sensitivity list that identifies which input ports and signals

trigger execution of the code within a process. It is also possible to define level-

sensitive inputs to specify combinational logic or edge-sensitive inputs to specify

sequential logic.

A process can read from and write to ports, internal signals, and internal variables.

Processes use signals to communicate with each other. One process can cause

another process to execute by assigning a new value to a signal that interconnects

them. It is not advised to use data variables for communication between

processes, because the processes execute in random order and it can cause non-

determinism (order dependencies) during simulation.

SystemC provides three process types; SC_METHOD, SC_CTHREAD, and

SC_THREAD, that execute whenever their sensitive inputs change. For simulation,

any of the process types can be used. For RTL synthesis, only the SC_METHOD

process can be used. The SC_METHOD process is sensitive to either changes in

signal values (level-sensitive) or to particular transitions (edges) of the signal

(edge-sensitive) and executes when one of its sensitive inputs changes.

21

2.6.3 Ports

Each module has any number of input, outputs, and inout ports which determine

the direction of data into or out of the module. A port is a data member of

SC_MODULE. Any number of sc_in, sc_out, and sc_inout ports can be declared.

To read from an output port, declare it as an sc_inout rather than an sc_out port.

Ports connect to signals and have a data type associated with them. For synthesis,

programmer should declare each port as one of the synthesizable data types.

2.6.4 Signals

Modules use ports to communicate with other modules. In hierarchical modules,

signals are used to communicate between the ports of instantiated modules.

Internal signals are used for peer-to-peer communication between processes

within the same module,

A signal’s bit-width is determined by its corresponding data type. Data type can be

specified as any of the synthesizable SystemC or C++ data types. Signals and the

ports they connect must have the same data types.

Inside a module, data member variables of any synthesizable SystemC or C++

type can be declared. These variables can be used for internal storage in the

module. It is not advised to use data variables for peer-to-peer communication in a

module. This can cause pre- and post-synthesis simulation mismatches and non-

determinism (order dependency) in the design.

SystemC processes are declared in the module body and registered as processes

inside the constructor of the module. Programmer must declare a process with a

return type of void and no arguments. To register a function as an SC_METHOD

process, the SC_METHOD macro that is defined in the SystemC class library, is

used. The SC_METHOD macro takes one argument, the name of the process.

22

2.6.5. Sensitivity List

An SC_METHOD process reacts to a set of signals called its sensitivity list.

Designer can use the sensitive(), sensitive_pos(), or sensitive_neg() functions or

the sensitive, sensitive_pos, or sensitive_neg streams in the sensitivity declaration

list.

For combinational logic, define a sensitivity list that includes all input ports, inout

ports, and signals used as inputs to the process. It is possible to use the sensitive

method to define the level-sensitive inputs. Programmer may specify any number

of sensitive inputs for the stream-type declaration, and specify only one sensitive

input for the function-type declaration. The sensitive function can be made multiple

times with different inputs.

To eliminate the risk of pre- and post-synthesis simulation mismatches, the

programmer should include all the inputs to the combinational logic process in the

sensitivity list of the method process.

For sequential logic, sensitivity list should be defined for the input ports and signals

that trigger the process. One of the sensitive_pos, sensitive_neg, or both the

sensitive_pos and sensitive_neg methods should be used to define the edge-

sensitive inputs that trigger the process. Ports and the edge-sensitive inputs should

be declared as type sc_in<bool>. Any number of sc_in<bool> inputs may be

declared. The sensitivity list may be defined by using either the function or the

stream syntax.

Note that, It is not allowed to specify both edge-sensitive and level-sensitive inputs

in the same process for synthesis. It is not possible to declare an sc_logic type for

the clock or other edge-sensitive inputs. Only sc_in<bool> data type can be

declared.

23

2.6.6. Converting to a Synthesizable Subset

To prepare for synthesis, all non-synthesizable code should be converted into

synthesizable code. This is required only for functionality that is to be synthesized.

Although any SystemC class or C++ construct can be used for simulation and

other stages of the design process, only a subset of the language can be used for

synthesis. To comment out code that is needed only for simulation, #ifdef and

#endif precompiler commands can be used by the programmer. The full list of the

non-synthesizable C++ and SystemC constructs is given in Appendix-B,

Table 0.1 Synthesizable Data Types.

SystemC type Description

sc_bit A single-bit true or false value. Supported but not recommended. Use
the bool data type.

sc_bv<n> Arbitrary-length bit vector. Use sc_uint<n> when possible.
sc_logic A single-bit 0, 1, X, or Z.
sc_lv<n> Arbitrary-length logic vector.
sc_int<n> Fixed-precision integers restricted in size up to 64 bits and 64 bits of

precision during operations.
sc_uint<n> Fixed-precision integers restricted in size up to 64 bits and 64 bits of

precision during unsigned operations.
sc_bigint<n> Arbitrary-precision integers recommended for sizes over 64 bits and

unlimited precision.
sc_biguint<n> Arbitrary-precision integers recommended for sizes over 64 bits and

unlimited precision, unsigned.
bool A single-bit true or false value.
int A signed integer, typically 32 or 64 bits, depending on the platform.
unsigned int An unsigned integer, typically 32 or 64 bits, depending on the platform.
long A signed integer, typically 32 bits or longer, depending on the platform.
unsigned long An unsigned integer, typically 32 bits, depending on the platform.
char 8 bits, signed character, platform-dependent.
unsigned char 8 bits, unsigned character, platform-dependent.
short A signed short integer, typically 16 bits, depending on the platform.
unsigned short An unsigned short integer, typically 16 bits, depending on the platform.
struct A user-defined aggregate of synthesizable data types.
enum A user-defined enumerated data type.

24

SystemC supports most of the regular data types used in C++. SystemC provides

a set of limited-precision and arbitrary-precision data types that allows the designer

to create integers, bit vectors, and logic vectors of any length. SystemC also

supports all common operations on these data types. The supported set of data

types are given in Table 2.1.

2.7. A Design Example

In order to demonstrate design flow with SystemC, a small example is given here.

For this purpose, a 4 bit counter is selected because of its simple operation. With

the counter module designed, a test bench is also designed with SystemC in order

to test the module under development. The design of the test bench is given in

Figure 2.8.

Figure 0.8 Test Bench for Counter Example.

Counter module simply counts up when Enable, Reset and CLK inputs are driven

with proper signals as their names imply. Indeed these are the basic requirements

for the project under development.

25

//-----------
// counter.h
//-----------

SC_MODULE(counter) {

 sc_in<bool> reset;
 sc_in<bool> enable;
 sc_out<bool> d3;
 sc_out<bool> d2;
 sc_out<bool> d1;
 sc_out<bool> d0;
 sc_in_clk CLK;

 SC_CTOR(counter)
 {
 SC_CTHREAD(entry, CLK.pos());
 }

 void entry();
};

//-------------
// counter.cpp
//-------------

#include <systemc.h>
#include "counter.h"
sc_uint<4> counter_value;

void counter::entry() {

 // main functionality
 while(1){
 wait();
 if(reset.read() == 1){
 counter_value = 0 ;
 }else{
 if(enable.read() == 1){

 counter_value += 1;
}

 }
 d3 = counter_value[3];
 d2 = counter_value[2];
 d1 = counter_value[1];
 d0 = counter_value[0];
 }// while
}

Figure 0.9 Counter Source Files.

For the test bench operation stimulus.h and stimulus.cpp files are created to have

the reset and enable functionalities. Source files are shown in Figure 2.10, Reset

and Enable output ports are driven depending on an internal counter. This stimulus

module is only used for testing the counter module, so not too much effort is spent

on it.

Starting with the counter module; to define the input and output ports and register

the necessary methods to handle the counting function counter.h and counter.cpp

files are introduced as shown in Figure 2.9. In the header file the input ports Reset

and Enable are declared as well as output ports d3 to d0. In the source file the

functionality is implemented. At each clock cycle, which is controlled by the

wait() statement, internal counter value is incremented by one, and the output

ports are updated.

26

Figure 0.10 Source Files for Stimulus.

Similar to Stimulus module, there is one Display module for testing purposes. This

module takes the counter output and display them to the user with printf()

functions. Because Counter module is the module under design it is not advisable

to use C++ library functions. Instead these type of informing functions are used in

test bench modules to indicate the test results to the user. Source files are shown

in Figure2.11.

Figure 0.11 Source Files for Display Module.

27

Finally all these modules are instantiated in main.cpp file and the ports are

connected to each other by dedicated signals. Main file is shown in Figure 2.12. In

the main.cpp file, one copy of each module is created then their connections are

made with their method calls.

Figure 0.12 Main Source File.

SystemC open source library comes with the free SystemC simulator, this means

when this project is compiled and linked, then the output executable is already a

standalone simulator for the system under design. In order to have signals traced,

they should be explicitly indicated to the SystemC simulator kernel.

When the executable is run it produces a trace file called counter.vcd, which is a

standard trace file and viewed by any trace file viewer. During the thesis work, an

open source free vcd viewer is used. The trace for the signals is shown in Figure

2.13.

28

Figure 0.13 Signal Trace of Counter Example.

29

THE 8051 CORE

Despite it’s relatively old age, the 8051 is one of the most popular microcontrollers

in use today. Many derivative microcontrollers have since been developed that are

based on--and compatible with--the 8051. Thus, the ability to program an 8051 is

an important skill for anyone who plans to develop products that will take

advantage of microcontrollers.

The original 8051 core is an accumulator-based design with 255 instructions. Each

basic instruction cycle takes 12 clocks. The CPU has four banks of eight 8-bit

registers in on-chip ram for context switching; these registers reside within the

8051's lower 128 bytes of ram along with a bit-operation area and scratchpad ram.

The architecture of the 8051 processor core is given in Figure 3.1.

The popularity of 8051 microprocessor core is one of the reasons for choosing it as

the case study object for this thesis. For many years there occurred 8051 variants

employing the original core and some peripheral elements such as, Analog Digital

Converters, Specific Communication Buses, Extended RAM and ROM etc. A list for

known variants is given in Appendix-D. Although 8051 core is being there for many

years and it may be thought that the popularity is because of its legacy codes and

backward compatibility, this is not the truth. Even in today’s high end technologies

8051 core is selected because of its effective structure. Most of the Smart Cards

employ 8051 core inside to handle secure communication and transaction [19].

Also most of the SIM Cards used in GSM mobile phones uses 8051 core inside.

Philips’ new Contactless Smart Card project, which is known as MIFARE and

heavily used in public transportation area, uses 8051 cores in card reader/writer

modules [20].

30

Port 0
Drivers

Port 2
Drivers

RAM Address
Register

EPROM/
ROMRAM Port 0

Latch
Port 2
Latch

B
Register TMP2

ACC

TMP1

Stack
Pointer

Program
Address
Register

Buffer

PC
Incrementer

Stack
Pointer

TCON

PSW

ALU

DPTR

Oscillator

Port 1 Latch

Port 1
Drivers

Port 1 Latch

Port 1
Drivers

Timing
And

Control

Instruction
Register

PSEN
ALE

EA

RST
PD

P0.0-P0.7 P2.0-P2.7

P1.0-P1.7 P3.0-P3.7

Vcc

Vss

SCON TMOD

TH0 TL0

SBUF IE

Interrupt, Serial
Port and Timer

Blocks

PCON

T2CON

PCON

TH1

TL1

IP

XTAL1 XTAL2

Figure 0.1 The Original 8051 Core.

The other reason is, although there are many C++ simulators, VHDL and Verilog

models of 8051 core, a SystemC model is not available yet [17].[18]. One of those

HDL models for 8051, which also encourages our work, was studied in a thesis

given to Middle East Technical University [9] The real power of SystemC appears

while designing a system composing of one microprocessor and some customized

digital peripheral circuits. Having a 8051 model in SystemC will provide a

31

fundamental design platform for those type of projects in the future, so this is also

encouraging our work.

3.1 Types of Memory

The 8051 has three very general types of memory. To effectively program the 8051

it is necessary to have a basic understanding of these memory types. They are:

• On-Chip Memory refers to any internal memory. It can be code, RAM, or

any other memory that physically exists on the microcontroller itself.

• External Code Memory is program memory that resides off-chip. This is

often in the form of an external EPROM.

• External RAM is RAM memory that resides off-chip. This is often in the form

of standard static RAM or flash RAM

3.1.1 Code Memory

Code memory is the memory that holds the actual 8051 programs that is to be run.

This memory is limited to 64K and comes in many shapes and sizes: Code

memory may be found on-chip, either burned into the microcontroller as ROM or

EPROM. Code may also be stored completely off-chip in an external ROM or, more

commonly, an external EPROM. Flash RAM is also another popular method of

storing a program. Various combinations of these memory types may also be used-

-that is to say, it is possible to have 4K of code memory on-chip and 64k of code

memory off-chip in an EPROM.

When the program is stored on-chip the 64K maximum is often reduced to 4k, 8k,

or 16k. This varies depending on the version of the chip that is being used. Each

version offers specific capabilities and one of the distinguishing factors from chip to

chip is how much ROM/EPROM space the chip has.

32

However, code memory is most commonly implemented as off-chip EPROM. This

is especially true in low-cost development systems and in systems developed by

students.

3.1.2 External RAM

As an obvious opposite of Internal RAM, the 8051 also supports what is called

External RAM. As the name suggests, External RAM is any random access

memory which is found off-chip. Since the memory is off-chip it is not as flexible in

terms of accessing, and is also slower. For example, to increment an Internal RAM

location by 1 requires only 1 instruction and 1 instruction cycle. To increment a 1-

byte value stored in External RAM requires 4 instructions and 7 instruction cycles.

In this case, external memory is 7 times slower. What External RAM loses in speed

and flexibility it gains in quantity. While Internal RAM is limited to 128 bytes, the

8051 supports External RAM up to 64K.

3.1.3 On-Chip Memory

As mentioned at the beginning of this chapter, the 8051 includes a certain amount

of on-chip memory. On-chip memory is really one of two types: Internal RAM and

Special Function Register (SFR) memory. The layout of the 8051's internal

memory is presented in the following memory map:

As is illustrated in this map, the 8051 has a bank of 128 bytes of Internal RAM.

This Internal RAM is found on-chip on the 8051 so it is the fastest RAM available,

and it is also the most flexible in terms of reading, writing, and modifying it’s

contents. Internal RAM is volatile, so when the 8051 is reset this memory is

cleared.

The 128 bytes of internal ram is subdivided as shown on the memory map. The

first 8 bytes (00h - 07h) are "register bank 0". By manipulating certain SFRs, a

program may choose to use register banks 1, 2, or 3. These alternative register

33

banks are located in internal RAM in addresses 08h through 1Fh. Bit Memory is

also a part of internal RAM, from addresses 20h through 2Fh.

Figure 0.2 Memory Map of 8051 Core

The 80 bytes remaining of Internal RAM, from addresses 30h through 7Fh, may be

used by user variables that need to be accessed frequently or at high-speed. This

area is also utilized by the microcontroller as a storage area for the operating

stack. This fact severely limits the 8051’s stack since, as illustrated in the memory

map, the area reserved for the stack is only 80 bytes--and usually it is less since

this 80 bytes has to be shared between the stack and user variables.

Register Banks

The 8051 uses 8 "R" registers which are used in many of its instructions. These "R"

registers are numbered from 0 through 7 (R0, R1, R2, R3, R4, R5, R6, and R7).

These registers are generally used to assist in manipulating values and moving

data from one memory location to another. For example, to add the value of R4 to

the Accumulator, following instruction should be executed:
ADD A,R4

34

If the Accumulator (A) contained the value 6 and R4 contained the value 3, the

Accumulator would contain the value 9 after this instruction was executed.

However, as the memory map shows, the "R" Register R4 is really part of Internal

RAM. Specifically, R4 is address 04h. This can be see in the bright green section

of the memory map. Thus the above instruction accomplishes the same thing as

the following operation:
ADD A,04h

This instruction adds the value found in Internal RAM address 04h to the value of

the Accumulator, leaving the result in the Accumulator. Since R4 is really Internal

RAM 04h, the above instruction effectively accomplished the same thing.

As the memory map shows, the 8051 has four distinct register banks. When the

8051 is first booted up, register bank 0 (addresses 00h through 07h) is used by

default. However, your program may instruct the 8051 to use one of the alternate

register banks; i.e., register banks 1, 2, or 3. In this case, R4 will no longer be the

same as Internal RAM address 04h. For example, if your program instructs the

8051 to use register bank 3, "R" register R4 will now be synonomous with Internal

RAM address 1Ch.

The concept of register banks adds a great level of flexibility to the 8051, especially

when dealing with interrupts. However, note that the register banks really reside in

the first 32 bytes of Internal RAM.

Bit Memory

The 8051, a communications-oriented microcontroller, gives the user the ability to

access a number of bit variables. These variables may be either 1 or 0.

There are 128 bit variables available to the user, numbered 00h through 7Fh. The

user may make use of these variables with commands such as SETB and CLR.

For example, to set bit number 24 (hex) to 1 you would execute the instruction:

35

SETB 24h

It is important to note that Bit Memory is really a part of Internal RAM. In fact, the

128 bit variables occupy the 16 bytes of Internal RAM from 20h through 2Fh. Thus,

if you write the value FFh to Internal RAM address 20h you’ve effectively set bits

00h through 07h. That is to say that:
MOV 20h,#0FFh

is equivalent to:
SETB 00h
SETB 01h
SETB 02h
SETB 03h
SETB 04h
SETB 05h
SETB 06h
SETB 07h

As illustrated above, bit memory isn’t really a new type of memory. It’s really just a

subset of Internal RAM. But since the 8051 provides special instructions to access

these 16 bytes of memory on a bit by bit basis it is useful to think of it as a separate

type of memory. However, always keep in mind that it is just a subset of Internal

RAM--and that operations performed on Internal RAM can change the values of

the bit variables.

Bit variables 00h through 7Fh are for user-defined functions in their programs.

However, bit variables 80h and above are actually used to access certain SFRs on

a bit-by-bit basis. For example, if output lines P0.0 through P0.7 are all clear (0)

and user want to turn on the P0.0 output line then execute:
MOV P0,#01h

or:
SETB 80h

Both these instructions accomplish the same thing. However, using the SETB

command will turn on the P0.0 line without effecting the status of any of the other

P0 output lines. The MOV command effectively turns off all the other output lines

which, in some cases, may not be acceptable.

36

Special Function Register (SFR) Memory

Special Function Registers (SFRs) are areas of memory that control specific

functionality of the 8051 processor. For example, four SFRs permit access to the

8051’s 32 input/output lines. Another SFR allows a program to read or write to the

8051’s serial port. Other SFRs allow the user to set the serial baud rate, control

and access timers, and configure the 8051’s interrupt system.

When programming, SFRs have the illusion of being Internal Memory. For

example, if you want to write the value "1" to Internal RAM location 50 hex you

would execute the instruction:
MOV 50h,#01h

Similarly, to write the value "1" to the 8051’s serial port, write this value to the

SBUF SFR, which has an SFR address of 99 Hex. Thus, to write the value "1" to

the serial port you would execute the instruction:
MOV 99h,#01h

It appears that the SFR is part of Internal Memory. This is not the case. When

using this method of memory access (it’s called direct address), any instruction that

has an address of 00h through 7Fh refers to an Internal RAM memory address;

any instruction with an address of 80h through FFh refers to an SFR control

register.

The Accumulator

The Accumulator, as it’s name suggests, is used as a general register to

accumulate the results of a large number of instructions. It can hold an 8-bit (1-

byte) value and is the most versatile register the 8051 has due to the shear number

of instructions that make use of the accumulator. More than half of the 8051’s 255

instructions manipulate or use the accumulator in some way.

37

The "R" Registers

The "R" registers are a set of eight registers that are named R0, R1, etc. up to and

including R7.These registers are used as auxillary registers in many operations.

The "B" Register

The "B" register is very similar to the Accumulator in the sense that it may hold an

8-bit (1-byte) value. The "B" register is only used by two 8051 instructions: MUL AB

and DIV AB. Thus, to quickly and easily multiply or divide A by another number,

store the other number in "B" and make use of these two instructions. Aside from

the MUL and DIV instructions, the "B" register is often used as another temporary

storage register much like a ninth "R" register.

The Data Pointer (DPTR)

The Data Pointer (DPTR) is the 8051’s only user-accessable 16-bit (2-byte)

register. The Accumulator, "R" registers, and "B" register are all 1-byte values.

DPTR, as the name suggests, is used to point to data. It is used by a number of

commands which allow the 8051 to access external memory. When 8051 accesses

external memory it will access it at the address indicated by DPTR.

While DPTR is most often used to point to data in external memory, many

programmers often take advantage of the fact that it’s the only true 16-bit register

available. It is often used to store 2-byte values which have nothing to do with

memory locations.

The Program Counter (PC)

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next

instruction to execute is found in memory. When the 8051 is initialized PC always

starts at 0000h and is incremented each time an instruction is executed. It is

38

important to note that PC isn’t always incremented by one. Since some instructions

require 2 or 3 bytes the PC will be incremented by 2 or 3 in these cases.

The Program Counter is special in that there is no way to directly modify it’s value.

That is to say, it is not possible to do something like PC=2430h. On the other

hand, if user executes LJMP 2430h you’ve effectively accomplished the same

thing.

It is also interesting to note that while you may change the value of PC (by

executing a jump instruction, etc.) there is no way to read the value of PC. That is

to say, there is no way to ask the 8051 "What address are you about to execute?"

As it turns out, this is not completely true:

The Stack Pointer (SP)

The Stack Pointer, like all registers except DPTR and PC, may hold an 8-bit (1-

byte) value. The Stack Pointer is used to indicate where the next value to be

removed from the stack should be taken from. When a value pushed onto the

stack, the 8051 first increments the value of SP and then stores the value at the

resulting memory location.

When a value popped off the stack, the 8051 returns the value from the memory

location indicated by SP, and then decrements the value of SP.

This order of operation is important. When the 8051 is initialized SP will be

initialized to 07h. If you immediately push a value onto the stack, the value will be

stored in Internal RAM address 08h. This makes sense taking into account what

was mentioned two paragraphs above: First the 8051 will increment the value of

SP (from 07h to 08h) and then will store the pushed value at that memory address

(08h).

39

SP is modified directly by the 8051 by six instructions: PUSH, POP, ACALL,

LCALL, RET, and RETI. It is also used intrinsically whenever an interrupt is

triggered

3.2 Addressing Modes of 8051

As is the case with all microcomputers from the PDP-8 onwards, the 8052 utilizes

several memory addressing modes. An "addressing mode" refers to how the

programmer accesses (.addresses.) a given memory location or data value. In

summary, the addressing modes are listed below with an example of each:

• Immediate Addressing MOV A,#20h

• Direct Addressing MOV A,30h

• Indirect Addressing MOV A,@R0

• External Direct MOVX A,@DPTR

• External Indirect MOVX A,@R0

• Code Indirect MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility to the programmer.

3.2.1 Immediate Addressing

Immediate addressing is so-named because the value to be stored in memory

immediately follows the opcode in memory. That is to say, the instruction itself

dictates what value will be stored in memory. For example:

 MOV A,#20h

This instruction uses Immediate Addressing because the Accumulator (A) will be

loaded with the value that immediately follows; in this case 20h (hexadecimal).

40

Immediate Addressing is very fast since the value to be loaded is included in the

instruction. However, since the value to be loaded is fixed at compile-time it is not

very flexible. It is used to load the same, known value every time the instruction

executes.

3.2.2 Direct Addressing

Direct addressing is so-named because the value to be stored in memory is

obtained by directly retrieving it from another memory location. For example:

 MOV A,30h

This instruction will read the data out of Internal RAM address 30h (hexadecimal)

and store it in the Accumulator (A). Direct addressing is generally fast since,

although the value to be loaded is not included in the instruction, it is quickly

accessible since it is stored in the 8051’s Internal RAM. It is also much more

flexible than Immediate Addressing since the value to be loaded is whatever is

found at the given address--which may change.

Also, it is important to note that when using direct addressing any instruction that

refers to an address between 00h and 7Fh is referring to Internal RAM. Any

instruction that refers to an address between 80h and FFh is referring to the SFR

control registers that control the 8051 itself

3.2.3 Indirect Addressing

Indirect addressing is a very powerful addressing mode that in many cases

provides an exceptional level of flexibility. Indirect addressing appears as follows:

 MOV A,@R0

This instruction causes the 8051 to analyze the value of the R0 register. The 8051

will then load the Accumulator (A) with the value from Internal RAM that is found at

41

the address indicated by R0. As an example, suppose R0 holds the value 40h and

Internal RAM address 40h holds the value 67h. When the above instruction is

executed the 8051 will check the value of R0. Since R0 holds 40h the 8051 will get

the value out of Internal RAM address 40h (which holds 67h) and store it in the

Accumulator.So, the Accumulator ends up holding 67h.

Indirect addressing always refers to Internal RAM; it never refers to an SFR. A

simple example, SFR 99h can be used to write a value to the serial port. Thus one

may think that the following would be a valid solution to write the value .1. to the

serial port:

 MOV R0,#99h ; Load the SBUF address to R0

 MOV @R0,#05h ; Send data to Serial Port , WRONG!

On an 8051 these two instructions would produce an undefined result since the

8051 only has 128 bytes of Internal RAM. This is not valid. Since indirect

addressing always refers to Internal RAM these two instructions would write the

value 01h to Internal RAM address 99h on an 8052 processor which has 256 bytes

of Internal RAM.

3.2.4 External Direct

With this addressing mode, external memory is accessed using DPTR register.

There are only two commands that use External Direct addressing mode:

 MOVX A,@DPTR

 MOVX @DPTR,A

Both commands utilize DPTR. In these instructions, DPTR must first be loaded with

the address of external memory that is to be read or written. Once DPTR holds the

correct external memory address, the first command will move the contents of that

external memory address into the Accumulator. For example, to read the contents

of external RAM address 1516h, the following instructions are executed:

42

 MOV DPTR,#1516h ; Adjust DPRT

 MOVX A,@DPTR ; Move the external data to Acc

In order to to write the contents of the Accumulator to external RAM address 1516,

the following instructions are executed:

 MOV DPTR,#1516h ; Adjust DPRT

 MOVX @DPTR,A ; Move the Acc value external RAM

3.2.5 External Indirect

External memory can also be accessed using a form of indirect addressing that is

usually used in projects that have a small amount of external RAM. An example of

this addressing mode is:

 MOVX @R0,A

Once again, the value of R0 is first read and the value of the Accumulator is written

to that address in External RAM. Since the value of @R0 can only be 00h through

FFh the project would effectively be limited to 256 bytes of External RAM.

3.2.6 Code Indirect

Two additional 8052 instructions allow the developer to access the program code

itself. This is useful for accessing data tables, strings, etc. The two instructions are:

 MOVC A,@A+DPTR

 MOVC A,@A+PC

As an example, to access the data stored in code memory at address 1200h,

following instructions are executed:

 MOV DPTR,#1200h ; Adjust DPTR

 CLR A ; Clear The Acc to point first element

43

 MOVC A,@A+DPTR

The MOVC A,@A+DPTR instruction moves the value contained in the code memory

address that is pointed to by adding DPTR to the Accumulator.

3.3. Program Flow Instructions

When an 8051 is first initialized the PC SFR is reset to 0000h. The 8051 then

begins to execute instructions sequentially in memory unless a program instruction

causes the PC to be otherwise altered. There are various instructions that can

modify the value of the PC; specifically, conditional branching instructions, direct

jumps and calls, and "returns" from subroutines. Additionally, interrupts, when

enabled, can cause the program flow to deviate from its otherwise sequential

scheme.

3.3.1 Conditional Branching

The 8051 contains a suite of instructions which, as a group, are referred to as

"conditional branching" instructions. These instructions cause program execution to

follow a non-sequential path if a certain condition is true. Take, for example, the JB

instruction. This instruction means "Jump if Bit Set." An example of the JB

instruction might be:

Conditional branching is the fundamental building block of program logic since all

"decisions" are accomplished by using conditional branching. Conditional

branching can be thought of as the "IF...THEN" structure in 8051 assembly

language. An important note worth mentioning about conditional branching is that

the program may only branch to instructions located within 128 bytes prior to or

127 bytes after the address that follows the conditional branch instruction.

44

3.3.2 Direct Jumps

While conditional branching is extremely important, it is often necessary to make a

direct branch to a given memory location without basing it on a given logical

decision. In this the program continue at a given memory address without

considering any conditions. This is accomplished in the 8051 using "Direct Jump

and Call" instructions.

The LJMP instruction means "Long Jump" When 8051 executes this instruction the

PC is loaded with the address of new address and program execution continues

sequentially from there. The obvious difference between the Direct Jump and Call

instructions and the conditional branching is that with Direct Jumps and Calls

program flow always changes. With conditional branching program flow only

changes if a certain condition is true. It is worth mentioning that, aside from LJMP,

there are two other instructions that cause a direct jump to occur: the SJMP and

AJMP commands. Functionally, these two commands perform the exact same

function as the LJMP command--that is to say, they always cause program flow to

continue at the address indicated by the command. However, these instructions

differ from LJMP in that they are not capable of jumping to any address. They both

have limitations as to the .range. of the jumps;

1. The SJMP command, like the conditional branching instructions, can only

jump to an address within +/- 128 bytes of the SJMP command.

2. The AJMP command can only jump to an address that is in the same 2k

block of memory as the AJMP command.

3.3.3 Direct Calls

Another instruction is the LCALL instruction which makes the long call operations.

When the 8051 executes an LCALL instruction it immediately pushes the current

Program Counter onto the stack and then continues executing code at the address

indicated by the LCALL instruction. Similar in format to the AJMP instruction that

was described in the previous section, the ACALL instruction provides a way to

45

perform the equivalent of an "LCALL" with a two-byte instruction instead of three as

long as the target routine is within the same 2k block of memory.

3.3.4 Returns from Routines

Another structure that can cause program flow to change is the "Return from

Subroutine" instruction, known as RET in 8051 Assembly Language. The RET

instruction, when executed, returns to the address following the instruction that

called the given subroutine. More accurately, it returns to the address that is stored

on the stack. The RET command is direct in the sense that it always changes

program flow without basing it on a condition, but is variable in the sense that

where program flow continues can be different each time the RET instruction is

executed depending on from where the subroutine was called originally.

3.3.5 Interrupts

An interrupt is a special feature that allows the 8051 to break from its normal

program flow to execute an immediate task, providing the illusion of "multi-tasking."

The word "interrupt" can often be substituted with the word "event." An interrupt is

triggered whenever a corresponding event occurs. When the event occurs, the

8051

temporarily puts "on hold" the normal execution of the main program and executes

a special section of code referred to as the "Interrupt Service Routine" (ISR). The

ISR performs whatever special functions are required to handle the event and then

returns control to the 8051 at which point program execution continues as if it had

never been interrupted.

3.4. 8051 Timers

The 8051 core is equipped with two timers, which may be controlled, set, read, and

configured individually. The timers have three general functions:, keeping time

46

and/or calculating the amount of time between events, counting the events

themselves, or generating baud rates for the serial port. Timers always count up. It

does not matter whether the timer is being used as a timer, a counter, or a baud

rate generator: A timer is always incremented by the microcontroller.

Table 0.1 Timer Registers.

SFR Description SFR Address Bit Addressable

TH0 Timer 0 High Byte 8Ch No

TL0 Timer 0 Low Byte 8Ah No

TH1 Timer 1 High Byte 8Dh No

TL1 Timer 1 Low Byte 8Bh No

TCON Timer Control 88h Yes

TMOD Timer Mode 89h No

Table 0.2 Timer Mode Registers.

Bit Name Function Timer

7 GATE1 When this bit is set the timer will only run when
INT1 (P3.3) is high. When this bit is clear the
timer will run regardless of the state of INT1.

1

6 C/T1 When this bit is set the timer will count events on
T1(P3.5). When this bit is clear the timer will be
incremented every machine cycle.

1

5 T1M1 Timer mode bit for Timer1 1

4 T1M0 Timer mode bit for Timer1 1

3 GATE0 When this bit is set the timer will only run when
INT0 (P3.2) is high. When this bit is clear the
timer will run regardless of the state of INT0.

0

2 C/T0 When this bit is set the timer will count events on
T0 (P3.4). When this bit is clear the timer will be
incremented every machine cycle.

0

1 T0M1 Timer mode bit for Timer 0 0

0 T0M0 Timer mode bit for Timer 0 0

The two timers in 8051 core share two SFRs (TMOD and TCON) which control the

timers, and each timer also has two SFRs dedicated solely to maintaining the value

of the timer itself (TH0/TL0 and TH1/TL1). The SFRs used to control and

47

manipulate the timers are presented in Table 3.1. If a timer contains the value

65,535 and is subsequently incremented, it will reset or overflow back to 0.

Timer Mode register, TMOD (0x0089), is used to control the mode of operation of

both timers. Each bit of the SFR gives the microcontroller specific information

concerning how to run a timer. The high four bits relate to Timer 1 whereas the low

four bits perform the exact same functions for Timer 0. These functions are given in

Table 3.2.

As noted in timer mode registers table four bits are used to specify a mode of

operation of the two timers, these are explained in Table 3.3.

Table 0.3 Timer Modes.

M1 M0 Timer Mode Description

0 0 0 13-bit Timer

0 1 1 16-bit Timer

1 0 2 8-bit auto-reload

1 1 3 Split timer mode

13-bit Timer Mode (mode 0):

This mode is kept around in 8051 core to maintain compatibility with its

predecessor, the 8048. In this mode, THx will count from 0 to 31. When THx is

incremented from 31, it will "reset" to 0. Effectively, only 13 bits of the two timer

bytes are being used: bits 0-4 of THx and bits 0-7 of TLx. This means, the timer

can only contain 8192 values. If a 13 bit timer is set to 0, it will overflow back to

zero 8192 instruction cycles later.

16-bit Time Mode (mode 1)

This is a very commonly used mode and It functions just like 13-bit mode except

that all 16 bits are used. TLx is incremented from 0 to 255. When TLx is

48

incremented from 255, it resets to 0 and causes THx to be incremented by 1. Since

this is a full 16-bit timer, the timer may contain up to 65536 distinct values.

8-bit Time Mode (mode 2)

This is 8-bit auto-reload mode. When a timer is in this mode, THx holds the "reload

value" and TLx is the timer itself. TLx starts counting up. When TLx reaches 255

and is subsequently incremented instead of resetting to 0 it will be reset to the

value stored in THx.

Split Timer Mode (mode 3)

Timer mode-3 is a split-timer mode. When Timer 0 is placed in mode 3, it

essentially becomes two separate 8-bit timers. That is to say, Timer 0 is TL0 and

Timer 1 is TH0. Both timers count from 0 to 255 and overflow back to 0. All the bits

that are related to Timer 1 will now be tied to TH0 and all the bits related to Timer 0

will be tied to TL0. While Timer 0 is in split mode, the real Timer 1 (i.e. TH1 and

TL1) can be put into modes 0, 1 or 2 normally--however, you may not start or stop

the real timer 1 since the bits that do that are now linked to TH0. The real timer 1,

in this case, will be incremented every machine cycle no matter what. The only

benefit of using split timer mode is, while having two separate timers; additionally a

baud rate generator is also available.

Finally, there is one more SFR that controls the two timers and provides valuable

information about them. The TCON SFR has the following structure:

Note that, only 4 bits of TCON are defined instead of 8, this is because the other 4

bits of the TCON do not have anything to do with timers, they are related with

interrupts

49

Table 0.4 Timer Control Register, TCON, 88h.

Bit Name Address Function Timer

7 TF1 8Fh Timer 1 Overflow. This bit is set by the
microcontroller when Timer 1 overflows.

1

6 TR1 8Eh Timer 1 Run. When this bit is set Timer
1 is turned on. When this bit is clear
Timer 1 is off.

1

5 TF0 8Dh Timer 0 Overflow. This bit is set by the
microcontroller when Timer 0 overflows.

0

4 TR0 8Ch Timer 0 Run. When this bit is set Timer
0 is turned on. When this bit is clear
Timer 0 is off.

0

3.5 Serial Ports

One of the 8051’s many powerful features is its integrated UART, otherwise known

as a serial port. The fact that the 8051 has an integrated serial port means that you

may very easily read and write values to the serial port. If it were not for the

integrated serial port, writing a byte to a serial line would be a rather tedious

process requiring turning on and off one of the I/O lines in rapid succession to

properly "clock out" each individual bit, including start bits, stop bits, and parity bits.

However, the designer does not have to do this. Instead, he/she need to configure

the serial port’s operation mode and baud rate. Once configured, writing to an SFR

will write a value to the serial port or, similarly reading the same SFR will read a

value from the serial port. The 8051 will generate an interrupt when it finishes

sending the character or received a character from the other party.

Setting the Serial Port Mode

The Serial Control Register, SCON, controls the serial port operation and

definitions are given in Table 3.5.

Serial Port mode bits define in which mode it will work, this is given in Table 3.6.

50

Table 0.5 Serial Control Register, SCON, 99h.

Bit Name Address Function

7 SM0 9Fh Serial port mode bit 0

6 SM1 9Eh Serial port mode bit 1.

5 SM2 9Dh Mutliprocessor Communications Enable

4 REN 9Ch Receiver Enable. This bit must be set in
order to receive characters.

3 TB8 9Bh Transmit bit 8. The 9th bit to transmit in
mode 2 and 3.

2 RB8 9Ah Receive bit 8. The 9th bit received in mode
2 and 3.

1 TI 99h Transmit Flag. Set when a byte has been
completely transmitted.

0 RI 98h Receive Flag. Set when a byte has been
completely received.

Table 0.6 Serial Mode Definitions.

SM0 SM1 Serial Mode Description Baud Rate

0 0 0 8-bit Shift Register Oscillator / 12

0 1 1 8-bit UART Set by Timer 1

1 0 2 9-bit UART Oscillator / 32

1 1 3 9-bit UART Set by Timer 1

3.6. Interrupts

As the name implies, an interrupt is some event that interrupts normal program

execution. As stated earlier, program flow is always sequential, being altered only

by those instructions that expressly cause program flow to deviate in some way.

However, interrupts give us a mechanism to "put on hold" the normal program flow,

execute a subroutine, and then resume normal program flow as it had been never

left. This subroutine, called an interrupt handler or interrupt service routine (ISR), is

only executed when a certain event (interrupt) occurs. The event may be one of the

timers "overflowing," receiving a character via the serial port, transmitting a

character via the serial port, or one of two "external events." The 8051 may be

51

configured so that when any of these events occur the main program is temporarily

suspended and control passed to a special section of code, which presumably

would execute some function related to the event that occurred. Once complete,

control would be returned to the original program. The main program never even

knows it was interrupted. The ability to interrupt normal program execution when

certain events occur makes it much easier and much more efficient to handle

certain conditions. If there were no interrupts then the programmer would have to

manually

check in main program whether the timers had overflowed, whether serial port had

received another character or if some external event had occurred. Besides

making the main program ugly and hard to read, such a situation would make the

program inefficient.

There are several events that can trigger 8051 interrupts;

1. Timer 0 Overflow.

2. Timer 1 Overflow.

3. Reception/Transmission of Serial Character.

4. External Event 0.

5. External Event 1.

Obviously it is needed to be able to distinguish between various interrupts and be

able to execute different code depending on what interrupt is triggered. This is

accomplished by jumping to a fixed address when a given interrupt occurs, this is

explained in detail in next chapter.

By default, at power-up, all interrupts are disabled. This means that even if, for

example, the TF0 bit is set, the 8051 will not execute the interrupt. The software

program must specifically tell the 8051 that it wishes to enable interrupts and

specifically which interrupts it wishes to enable. It is possible to enable and disable

interrupts by modifying the IE SFR (A8h):

52

The 8051 automatically evaluates whether an interrupt should occur after every

instruction. When checking for interrupt conditions, it checks them in the following

order:

1. External 0 Interrupt

2. Timer 0 Interrupt

3. External 1 Interrupt

4. Timer 1 Interrupt

5. Serial Interrupt

This means that if a Serial Interrupt occurs at exactly the same instant that an

External 0 Interrupt occurs, the External 0 Interrupt will be executed first and the

Serial Interrupt will be executed once the External 0 Interrupt has completed.

The 8051 offers two levels of interrupt priority: high and low. By using interrupt

priorities the programmer may assign higher priority to certain interrupt conditions

When an interrupt is triggered, the following actions are taken automatically by the

microcontroller:

1. The current Program Counter is saved on the stack, low-byte first, high-byte

second.

2. Interrupts of the same and lower priority are blocked.

3. In the case of Timer and External interrupts, the corresponding interrupt flag

is cleared.

4. Program execution transfers to the corresponding interrupt handler vector

address.

5. The Interrupt Handler routine, written by the developer, is executed.

If the interrupt being handled is a Timer or External interrupt, the microcontroller

automatically clears the interrupt flag before passing control to your interrupt

handler routine. This means it is not necessary that you clear the bit in your code.

53

An interrupt ends when your program executes the Return from Interrupt, RETI

instruction. When the RETI instruction is executed the following actions are taken

by the microcontroller:

1. Two bytes are popped off the stack into the Program Counter to restore

normal program execution.

2. Interrupt status is restored to its pre-interrupt status.

Serial Interrupts are slightly different than the rest of the interrupts. This is due to

the fact that there are two interrupt flags: RI and TI. If either flag is set, a serial

interrupt is triggered. The RI bit is set when a byte is received by the serial port and

the TI bit is set when a byte has been sent. This means that when serial interrupt is

executed it may have been triggered because of either of RI and TI or both flags

set. So the interrupt service routine must check the status of these flags to

determine what action is appropriate. Also, the RI and TI flags should be cleared

with in the interrupt service routine since they are not automatically cleared by

8051.

54

DESIGN OF 8051 CORE WITH SYSTEMC

As SystemC is a modular programming language, in the design of 8051 core, a

modular methodology is selected. The core processor is divided into modules and

those modules are divided into sub modules where needed. The top level design is

shown in Figure 4.1.

 8051

ALU

Adder LogicALU
Controller

Multiplier Divider
Serial Port

CPU Controller

Instruction
Fetch

Instruction
Decode

Instruction
Execute

Interrupt
Controller

Cpu Mode
Controller

Internal RAM

SFR

Instr. Reg Tmp. Reg

Timers

Timer-0

Timer-1

RxD

TxD

_INT0

_INT1

T0

T1

_WR

_RD

Reset

EA

PSEN

ALE

P0 P2

P
1

Figure 0.1 The Design of 8051 Core.

55

The partitioning of the problem into sub modules is another problem indeed. In

general the final partition map of a certain design may differ from designer to

designer. In this thesis, the top level 8051 core is divided into four main modules,

namely, CPU Executer where the main state machine of the processor is

implemented, ALU in which arithmetic and logical operations are done as well as

shift operations, Serial Port and Timer modules as their names indicates their

roles.

4.1 CPU Executer

CPU Executer is the primary module of 8051 processor core. Most important

activities in this module are; execution of instructions, interrupt operations,

accessing to the internal RAM blocks and I/O ports.

4.1.1 Main State Machine

In order to execute an instruction, first of all it should be fetched from the code

memory with necessary operands if available. This property is modeled in a main

state machine, which is driven directly by the oscillator clock. In early cycles of the

state machine pre-fetch and fetch operations are applied for the current PC

(Program Counter). In the next cycle, or CPU state in other words, instruction is

read from the code memory. Current instruction is copied to the internal instruction

register and then decoded.

If any operands are needed for the execution of the current instruction, they are

read in the trailing cycles and copied to the temporary internal registers. After

having the enough number of operands, execution takes places. Most of the time

an execution includes an access to the ALU (Arithmetic Logic Unit) at correct CPU

cycles. Then the result is copied to the destination, which is known as either a part

of instruction itself or an operand.

56

State 1

P1 P2

State 2

P1 P2

State 3

P1 P2

State 4

P1 P2

State 5

P1 P2

State 2

P1 P2

State 6

P1 P2

State 1

P1 P2

XTAL2:

ALE:

PSEN:

PCL
Out

PCL
Out

PCL
Out

Data Sampled Data SampledData Sampled

P0:

PCH Out PCH OutP2: PCH Out

Figure 0.2 Cpu Signals During Code Read.

In 8051 CPU Core, one machine cycle consists of 12 oscillator cycles. During a

typical machine cycle ALE and PSEN pulses twice, Port2 outputs high byte of the

address twice, Port0 outputs low byte of the address twice and reads the program

code from external memory twice [11].

State 4

P1 P2

State 5

P1 P2

State 6

P1 P2

State 1

P1 P2

State 2

P1 P2

State 5

P1 P2

State 3

P1 P2

State 4

P1 P2

XTAL2:

ALE:

RD:

P0:

PCH or P2
SFR

DPR or P2 SFR OutP2:

DPL or RI
Out

Data Sampled

Float Float

PCL Out if Program
Memory Is External

PCH or P2
SFR

Figure 0.3 Cpu Signals During External Read.

57

In some instructions the second read byte is ignored and in some instructions one

more byte may be read in the following machine cycle that will certainly occupy one

more set of 12 oscillator cycles. Some instructions will last in one machine cycle

and some in two. There are definitely two exceptions; multiplication and division

instructions, they will last in four machine cycles that is 48 oscillator cycles.

The timing diagram of reading code bytes from external program memory is shown

in Figure 4.2. In fact there is an exception for this timing diagram in MOVX

instructions. While executing external data transfer instructions, instead of pulsing

PSEN, external RD and WR signals are used to access external data memory.

This variant of timing diagram is shown in Figure 4.3.

As, 8051 core has 48 oscillator cycles in the longest instruction, it makes sense to

have a fundamental state machine having 48 basic states which is shown in the

pseudo code below;

 switch(cpu_state){

case 0 : Fetch Instruction

case 1 : Decode

case 2 : Execute-1 & Prefetch-1

case 3 : Execute-2 & Prefetch-2

case 4 : Execute-3 & Prefetch-3

case 5 : Prefetch-4

case 6 : Fetch Operand if necessary

case 7 : Execute-1

case 8 : Execute-2 & Prefetch-1

case 9 : Execute-3 & Prefetch-2

case 10 : Execute-4 & Prefetch-3

case 11 : Prefetch-4

 if (one cycle instruction) cpu_state = 0

case 12 : Fetch Operand-2 if necessary

58

case 13 : Decode

case 14 : Execute-1 & Prefetch-1

case 15 : Execute-2 & Prefetch-2

case 16 : Execute-3 & Prefetch-3

case 17 : Execute-4 & Prefetch-4

case 18 : Fetch (Discard)

case 19 : Wait

case 20 : Prefetch-1

case 21 : Prefetch-2

case 22 : Prefetch-3

case 23 : Prefetch-4

 if (two cycle instruction) cpu_state = 0

 case 24 : Wait
 .
 .

 .
case 43 : Wait

case 44 : Prefetch-1

case 45 : Prefetch-2

case 46 : Prefetch-3

case 47 : Prefetch-4

 cpu_state = 0

}

One byte one cycle instructions, such as INC A are executed just after fetching the

instruction from the code memory. In cases of theses types of instructions,

execution at steps between 7 and 9 are not operated as it has already been carried

out. The operand fetched at step 6 is also discarded for this case.

Two byte one cycle instructions such as ADD A,#data do not execute between

steps 2 and 4, but simply runs after reading the necessary operand. Similarly three

byte two cycle instructions like MOV direct,#data fetch both operand-1 and

59

operand-2 and then execute. The four cycle operations such as MUL A,B and DIV

A,B discards all read operands in between.

4.1.2 CPU Operation Mode

8051 CPU has six distinct operational modes, each having their own behavior;

• Reset Mode: In this mode CPU is set to its preset values. Program

Counter is set to 0x0000 where RESET interrupt vector lies. Internal

cpu_state is set to 44 in order to have necessary prefetch cycles before

fetching the instruction at state zero.

• Normal Mode: In this mode, main state machine runs step by step,

instructions and operands are fetched and executed.

• Interrupt Start Mode: When an interrupt input pin changes state and

an interrupt should be generated, this mode is executed. The reason for

jumping interrupt start mode instead of jumping to interrupt service

mode directly is to let CPU enough time to complete the current

instruction. After having completed the current instruction the Program

Counter is loaded with the vector of the pending interrupt and program

branches to that location. The only exception is RETI instruction, which

will postpone interrupt service routine for one instruction time.

• Interrupt Service Mode: Indeed, this mode is same as normal mode

except for interrupts are disabled.

• Idle Mode: As the name implies CPU is idle in this mode. Main state

machine is not running but interrupts, serial ports and timers are active.

It may be possible to get out from idle mode in one of interrupt routines

or by reset. Although CPU is not active in this state, all internal RAM

and SFR contents are kept.

60

• PowerDown Mode: CPU is in power down mode, where all activities

are stopped and only lasts with a CPU reset.

4.1.3 Internal RAM and SFR

Internal RAM and SFR are implemented as a memory array consisting of 256

registers each 8 bit wide. 8051 CPU has eight general purpose registers named as

R0-R7. Moreover, for a flexible usage they are organized as four distinct set of

registers. Two bits of PSW status register shows which set of general purpose

registers are active. The first 32 bytes of the RAM are used for this register bank.

Table 0.1 Special Function Registers.

Name Address Definition Name Address Definition

P0 0x80 Port-0 Register P1 0x90 Port 1 Register

SP 0x81 Stack Pointer SCON 0x98 Serial Port Control
Register

DPL 0x82 Data Pointer Low
part

SBUF 0x99 Serial Port Buffer

DPH 0x83 Data Pointer High
part

P2 0xA0 Port 2 Register

PCON 0x87 Power Control
Register

IE 0xA8 Interrupt Enable

TCON 0x88 Timer Control
Register

P3 0xB0 Port 3 Register

TMOD 0x89 Timer Mode
Register

IP 0xB8 Interrupt Priority Register

TL0 0x8A Timer-0 Low part PSW 0xD0 Processor Status Word

TL1 0x8B Timer-1 Low part ACC 0xE0 Accumulator

TH0 0x8C Timer-0 High part B 0xF0 B Register

TH1 0x8D Timer-1 High part

Next 16 registers are a type of special memory that can be addressable either bit

by bit or as byte by byte. The memory region from 0x30 to 0x7F is used as a

general purpose RAM area. System stack is also placed within this memory.

61

Special Function Registers (SFR) are placed at addresses 0x80 to 0xFF as shown

in Table 4.1.

4.1.4 Interrupt Controller

To many system designers, interrupts are the most valuable part of a processor

because almost every designed system needs external stimulation. In 8051

processor there are five interrupt resources that can be set either high or low

priority. It is possible to enable or disable each of the interrupt resources as well as

disabling or enabling all of the interrupts at a time. This is done by setting or

resetting the relevant bits in the IE register which is shown in Table 4.2.

Table 0.2 Interrupt Enable Register.

BIT SYMBOL BIT ADDRESS DESCRIPTION

IE.7 EA 0xAF Global Enable/disable

IE.6 - 0xAE Undefined

IE.5 - 0xAD Reserved

IE.4 ES 0xAC Enable Serial Port interrupt

IE.3 ET1 0xAB Enable Timer-1

IE.2 EX1 0xAA Enable External Interrupt-1

IE.1 ET0 0xA9 Enable Timer-0

IE.0 EX0 0xA8 Enable External Interrupt-0

Two of the interrupts may have external connections; namely External Interrupt 0

and 1. These interrupt pins may be selected either level sensitive or edge sensitive

by setting the relevant bits in TCON registers.

Two other interrupt resources are on chip timers. When the timers are activated

they generate interrupts at the states where the timer mode indicates. These

interrupts are also enabled/disabled and prioritized by setting the relevant bits in

TCON and IE registers The other interrupt resource is also internal and pointed to

the Serial Port of the 8051 chip. All these interrupts are prioritized by IP register as

shown in Table 4.3.

62

Table 0.3 Interrupt Priority Register.

BIT SYMBOL BIT ADDRESS DESCRIPTION

IP.7 - - Undefined

IP.6 - - Undefined

IP.5 - 0xBD Reserved

IP.4 PS 0xBC Priority for Serial Port interrupt

IP.3 PT1 0xBB Priority Timer-1

IP.2 PX1 0xBA Priority External Interrupt-1

IP.1 PT0 0xB9 Priority Timer-0

IP.0 PX0 0xB8 Priority External Interrupt-0

INT0 IE0

IE1INT1

RI

TI

TF1

TF0

Accept
InterruptGlobal Enable

High Priority

Low Priority

Figure 0.4 Interrupt Priority Scan.

63

At every clock cycle interrupt pins are scanned as shown in Figure 4.4, any change

that may trigger an interrupt event initiates Interrupt Start Mode, which will watch

the suitable state to start interrupt mode. The basic rules to have an interrupt are;

Global Interrupt Enable should be enabled as well as particular Interrupt Enable,

then the edge or level event should occur and the interrupt has appropriate

interrupt priority.

When an interrupt event occurs, the current Program Counter will be saved on the

stack and updated with the respective vector address of the interrupt. At this time

interrupt service routine is started with fetching the instruction where interrupt

vector points. This vector table is shown in Table 4.4.

Table 0.4 Interrupt Vector Table.

INTERRUPT FLAG VECTOR ADDRESS

System Reset RST 0x0000

External 0 IE0 0x0003

Timer 0 TF0 0x000B

External 1 IE1 0x0013

Timer 1 TF1 0x001B

Serial Port RI or TI 0x0023

4.1.5 I/O Ports

In 8051 chips, there four general purposes I/O ports, which can be used for special

purposes as well as address and data output/input buses. In most of the designs

P0 and P2 are used for address and data bus. 8051 processor can address up to

65536 bytes of external memory by using 16 bit address bus and 8 bit wide data

bus. P2 is dedicated to high byte of the 16 bit address; P0 is shared between data

and low byte of address. This mechanism is used with Address Latch Enable pin

which will indicate the low byte address is outputted at P0. Most of the time there is

64

an external circuit to handle this latching operation if external RAM or ROM is

being used.

Sharing of Port-0 between data and address is coded in the main state machine

functions of the 8051 core. As explained in 4.1.1 Main State Machine section, ALE,

PSEN and P0 outputs are driven such that external circuit captures the necessary

low byte address and declares it when needed.

Port1 is a general purposes eight bit wide bidirectional port. Port3 is also a

bidirectional general purpose port. Moreover it has some alternate functions. Read,

write, ALE , PSEN, reset, EA and serial RX TX signals are outputted by this port

4.2 ALU Module

Arithmetic Logic Unit (ALU) is designed as a separate module with in the 8051core.

It has the standard signal and command interface so that it can be interchanged by

any standard ALU unit in the future, although there is no technical requirement for

that. This is shown in Figure 4.5.

ALU

Adder LogicALU Controller

A B

C
m

d

C A
C

O
V A B C A
C

O
V

Lo
gi

c

Multiplier Divider
CLK

Figure 0.5 Design of ALU (Arithmetic Logic Unit).

CPU Executer commands ALU with the standard command set given in Table 4.5.

65

Table 0.5 Standard ALU Commands.

Code Command Description

0x00 Alu_INC_DEC_EQZ Increment 8-bit operand-0 by 1
Decrement 8-bit operand-1 by 1
Logic is 1 if operand-0 is equal to 0 otherwise 0

0x01 Alu_ADD Twos complement addition of two 8 bit operands
0x02 Alu_ADDC Twos complement addition with carry of two 8 bit operands
0x03 Alu_SUBB Twos complement subtraction with borrow of two 8 bit

operands
0x04 Alu_MUL_1 Start of 8 bit multiplication of two operands
0x05 Alu_MUL_2 Enable of 8 bit multiplication
0x06 Alu_DIV_1 Start of 8 bit division of two operands
0x07 Alu_DIV_2 Enable of 8 bit division
0x08 Alu_ANL_ORL Bitwise logical AND operation of two operands

Bitwise logical OR operation of two operands
0x09 Alu_XRL_SWAP_NE Bitwise logical XOR operation of two operands

Swap nibbles of second operand
Logic is 1 if two operands not equal else 0

0x0A Alu_ROL_ROR_NEQZ Rotate the 8-bit operand to left by one bit.
Rotate the 8-bit operand to right by one bit.
Locig is 0 if the operand is equal to 0, else0.

0x0B Alu_ROLC Rotate the 8-bit operand to left by one bit through carry.
0x0C Alu_RORC Rotate the 8-bit operand to right by one bit through carry.
0x0D Alu_XCHD Exchange low-order nibbles of two 8-bit operands.
0x0E Alu_CLR_CPL Clears the 8-bit operand as 0.

Logical complement of each bit in 8-bit operand.
0x0F Alu_DA Decimal adjust operation for addition.
0x10 Alu_INC16_BNS Increment 16-Bit operand by 1.

Logic is if the specified bit in the operand is zero, else 0.
0x11 Alu_CLRC Clear carry flag.
0x12 Alu_CLRB_CS Clear the specified bit in the 8-bit operand.

Logic is 1 if carry is 1, else 0.
0x13 Alu_SETC Sets the carry flag.
0x14 Alu_SETB_CNS Sets the specified bit in the 8-bit operand.

Logic is 0 if carry is 0, else 1.
0x15 Alu_CPLC Complement the carrr flag.
0x16 Alu_CPLB_MOVBC_BS Complement the specified bit in the 8-bit operand.

Store the carry flag into the specified bit in the 8-bit operand.
Logic is the specified bit in the operand is 1, else 0.

0x17 Alu_ANDCB Logical 'AND' of the carry with the specified bit.
0x18 Alu_ANDCNB Logical 'AND' of the carry with the complement of the

specified bit.
0x19 Alu_ORCB Locical 'OR' of the carry with the specified bit.
0x1A Alu_ORCNB Locical 'OR' of the carry with the complement of the specified

bit.
0x1B Alu_MOVCB Move the specified bit to the carry
0x1C Alu_BNSC Set logic as 0, clear the bit if the bit is 0 else set logic to 0
0x1D Alu_PASS Pass the operands without change
0x1E Alu_LT_GTE Set carry if operand_1 is greater than operand_2 else clear

carry
0x1F Alu_NOP No Operation for ALU

66

4.2.1 Addition and Subtraction

Addition and subtraction operations are handled with in the Arithmetic Logic Unit.

For both operations the two 8 bit operands of ALU are used, carry input is also

used where needed. For addition and subtraction operations no special circuit used

but instead regular plus and minus signs are used in order to let the synthesizer

generate necessary addition and logic.

4.2.2 Logic and Shift Operations

Similar to addition operations, logic and shift operations are also handled by

SystemC, so no special circuit is used. During the simulation, SystemC compiler

handles these operations and at RTL conversion, the synthesizer generates

necessary logic for these operations.

4.2.3 Multiplication

For 8 bit multiplication the regular successive addition and shifting algorithm is

used [12]. The main idea is same with the multiplication with paper and pencil. The

multiplication is handled at eight steps since there are 8 bits to multiply. Before

starting the operations, a temporary 16 bit register representing the sum is reset to

zero. Then the most significant bit of the multiplier is selected, if this bit is zero no

operation is done, if it is one, the sum is added by the multiplicand. After then the

sum is shifted to left by one. Then the second most significant bit of the multiplier is

selected and tested, if it is one, the sum is incremented by the multiplicand. After

then the sum is shifted to left by one. This goes down to the least significant bit of

multiplier. At the end, the 16 bit temporary register holds the multiplication of the

two unsigned 8 bit integers.

4.2.4 Division

Division is based on the following formula;

67

 D = A x B + R

The problem can be viewed as finding B and R from given D and A. From this point

of view, the problem is reduced to the inverse of multiplication and can be thought

as eight successive subtractions.

At the beginning a 16 bit temporary register holds the 8 bit dividend, the division is

set to zero and the divisor is left untouched. At first step, 16 bit dividend is shifted

to left by one and high byte is compared to divisor, if it is equal or greater than

divisor, the most significant bit of division is set to one, and high byte of dividend is

decremented by divisor. Then at the second step 16 bit dividend is shifted left once

more and the high byte is compared to divisor, if it is greater than or equal to

divisor, then the second most significant bit of division is set to one and the high

byte of dividend is decremented by divisor. This continues down to the least

significant bit of division. At that time, division holds the result, the high byte of

dividend holds the remainder.

4.3 Serial Port Controller

Serial Port of the 8051 CPU is designed as a separate module in order to make the

design modular. This serial port is hundred percent compatible with the original one

for compatibility reasons, although some serial modes are not likely to be used in

today’s new designs. The benefit of using SystemC as a design language shows

up here, in future use of this processor core, those unused modes of the serial port

can easily be taken from the design.

There are four fundamental functionalities in serial port module. Two of them are

receive shift register and transmit shift register functions. The other one is the clock

generation, there are two different possibilities as baud rate generators, one is to

get the clock from the CPU oscillator the other is to get the ticks from the internal

timer. The last function is arranging the serial operation mode.

68

8051’s serial port is configured via the Serial Control Register, SCON at 99. The

transmit data or receive data is taken or given by using the SBUF register. This

register is indeed two separate registers although they are seen as a single

combined register.

As given in Table 3.6, the four operation modes are;

• Shift register at fixed rate oscillator frequency / 12

• 8 bit UART at variable rate

• 9 bit UART at fixed rate

• 9 bit UART at variable rate selected by Timer

In mode-0, the Shift Register mode, there is only one possible baud rate which is

set by oscillator frequency divided by 12. Receiver of this mode is handled by a

state machine composing of 18 internal states. The state machine starts when

REN bit is set in SCON register, after that the receiver data pin of the 8051 core is

sampled at half clock cycle time and the register is shifted by one. The transmitter

state machine having 18 internal states will start after SBUF is written, then at each

cycle one more of the serialized bits is sent via the transmit data pin of serial port

of 8051 core. This will continue until all 8 bits are sent. In this mode, the baud rate

is fixed by oscillator /12.

In either 8-bit or 9-bit UART modes, a more complicated scheme is followed. First

of all, before sending the data, a start bi is asserted in the transmit line, after one

clock cycle the serialized bits are started to be sent one by one. After completing

the 8 bits, one stop bit should be asserted to the transmit line. All these operations

are controlled by a 12-state internal state machine. At each state, the suitable clock

cycle is waited and the serialized bit is prepared to send.

For UART receive operations, the line is always polled by the serial port receive

module. If any start condition is caught, which is a high to low edge, the receiver

gets ready to start. Before starting to receive line is double checked by false start

bit logic. If this test is also passed, then receive operation is started, one bit is

sampled in the middle of the successive each cycles.

69

The fixed rate may be either the oscillator frequency /64 or oscillator frequency /

32 which is set by SMOD bit in PCON register. Similarly the variable rate may be

divided either by 32 or by 16 by setting or resetting the SMOD bit .

4.4 Timer Operations

In 8051 core there are two timers operate independently. The two timers are

designed in one single Timers module to have it a handy module for 8051 core. As

in the case for Serial Port module, Timer modules also have some modes which

are not suitable for new designs but implemented with in the module for

compatibility reasons. In future, these un needed functionalities of timers can be

drawn back without affecting the operation of 8051 core.

Operation of timers are explained in 3.4. 8051 Timers section, The module

designed here is hundred percent compatible with the original 8051 timer. This

functionality is achieved by incrementing the relevant timer registers upon the clock

events. The incremented register is tested whether it makes an overflow or not

concerning the current operation mode. If overflow occurs the flags are set and

internal interrupt is generated.

70

VERIFICATION OF 8051 DESIGN

In order to verify the designed 8051 core, a test bench is used. This is shown in

Figure5.1. In real life designs, the 8051 CPU is not used alone, conversely it is

used by some peripheral components such as a ROM to have the software code, a

RAM for user data area, an address latch logic for handling multiplexed data and

address buses. In real life systems some asynchronous events are happing, and

these are tied to interrupt pins of the CPU to process them.

 Test Bench Modules

RxD

TxD

_INT0

_INT1

T0

T1

 Reset

EA

Serial
Monitor

 8051

ALU Serial
Port

CPU Controller Timers
Timer-0

Timer-1Stimuli
Generator

External ROM

Address Latch

P0 P2

D7-0

A15-8

A7-0

D7-0

A15-8

A7-0

ALE

PSEN

External RAM

RDWR

Figure 0.1Test Bench for 8051 Core.

71

The test bench for the 8051 core is designed such that almost all real life

components are available and all possible scenarios can be run. For this purpose a

ROM and a RAM modules are designed in SystemC. To convert the multiplexed

data and address buses to separate busses an Address Latch module is also

created. To generate the interrupts and reset inputs for the processor to run in a

more complicated environment, a stimulator module is used.

Since, 8051 core is the module under design, it is not a good idea to have printf or

any other debugging statements inside that module, instead a serial monitor

module is created. This module has two missions, one is to test the serial port

operations of the 8051 core, the other is informing the user about the test results.

All these modules are the hardware part of the design indeed. The processor

should have some software to be loaded and run. This is supplied by a test

program which has almost all possible 8051 assembly instructions called at least

once. It also has some interrupt service routines included to test the interrupt

hardware. This software program is developed using Keil 8051 development

environment outside of SystemC environment. This is the original code

development tool that 8051 programmers use. The test code is written in

assembly, compiled and linked with the tool mentioned above, and a hex file is

achieved. When this hex file is loaded to an EPROM or ROM in a real life system,

the 8051 processor grabs it and runs it. Here it works the same, that hex file is

shown to the ROM module in SystemC, at the beginning this module reads the hex

file parses it, and locates the content to an internal memory. During the run time

each time 8051 core try to read external ROM, this module gives the defined byte.

All these operations happen just as in real hardware happens, that means all

signals are hundred percent compatible with the real hardware signals as shown in

the coming sections.

During the development of the 8051 core with SystemC, the test bench mentioned

above, is used with a test software to run on the microcontroller to span all possible

instructions. The aim of this software is to verify the design by analyzing both the

signals traces and register contents as each type of instruction is executed. After

72

the completion of the design of 8051 core, a standard 16-bit CRC software is

loaded to the microcontroller in order to verify the execution of a program as a

whole.

5.1 Verification of Generated Signals

In order 8051 processor to read external code memory, it should generate a set of

signals with correct transactions. These are, ALE, PSEN, RD and WR signals

which are used for, address latch enable, program memory select, read and write

functions respectively. With SystemC, it is possible to trace selected signals, so

that the designer can evaluate the design. To do so, a set of function calls are

made at the beginning of the code, as shown below;
 sc_trace(tf, clk.signal(), "clock");
 sc_trace(tf, s_p0, "p_0");
 sc_trace(tf, s_p2, "p_2");
 sc_trace(tf, s_rx, "read");
 sc_trace(tf, s_wx, "write");
 sc_trace(tf, s_ea, "ea");
 sc_trace(tf, s_ale, "ale");
 sc_trace(tf, s_psen, "psen");
 sc_trace(tf, s_rxd, "serial_rx");
 sc_trace(tf, s_txd, "serial_tx");
 sc_trace(tf, s_int0, "Ext_Int_0");
 sc_trace(tf, s_int1, "Ext_Int_1");

Figure 0.2 Basic CPU Signals.

73

As SystemC is an open source programming language, the SystemC library is both

open source and free to use. When the library once added to the design, after the

project is compiled and linked as a regular C++ project, the output executable

works as the fundamental simulator for SystemC language. When this executable

runs, it will generate a standard trace file and this file can be analyzed with both

commercial and open source free tools. The basic CPU signals are traced to verify

the CPU operation as shown in Figure 5.2.

8051 core is using multiplexed data and address buses to reach external

memories. There are only two 8 bit wide ports to handle both 16 bit wide address

and 8 bit wide data. The first step is declaring the address; CPU outputs both low

and high bytes of the address then changes Address Latch Enable (ALE) from high

to low to tell the peripheral circuit that low part of the address is available at Port-0.

When ALE signal makes a negative edge the output address latch circuit stores the

low part of the address. Then CPU lowers the _PSEN signal in order to select the

program memory, at this time Port-2 is holding the high byte of the address, latch

circuit is outputting the recently stored low byte of the address and Port-0 is the

data byte put by the external program memory. Data byte is read from Port-0 to

either internal instruction or operand register depending on the internal CPU cycle.

Reading of the external code bytes as shown in Figure 5.3, continues just like this

as far as no MOVC or MOVX instructions are executed.

Figure 0.3 External Code Read.

74

As explained above, external code read is the very fundamental operation of 8051

processor, the verification of these signals is done by comparing the SystemC

simulation output signals and the original 80C51 processor's code read signals

which is shown in Figure 5.4, copied from Philips 80C51 data sheet[14].

Figure 0.4 8051's External Code Read.

Figure 0.5 External Data Memory Read.

8051 CPU can distinguish between the program memory and data memory chips

both are externally connected. In order to read the program memory, which is

typically a ROM, 8051 uses Program Select (_PSEN) control signal, to read or

write to external data memory, that is a static RAM, 8051 uses Read (_RD) and

75

Write (_WR) signals in combination with the _PSEN signal. There is only one type

of external data read and write instruction in 8051 assembly language, the MOVX

command. It either reads a data byte from the external RAM or writes a data byte.

Both cases are shown in Figure 5.5 and Figure 5.7.

Figure 0.6 8051's External Data Memory Read.

Figure 0.7 External Data Memory Write.

Our 8051 processors external read and write signal diagrams are compared with

the original 80C51’s read and write signal diagrams which are given in Figure 5.6

and Figure 5.8, which are copied from Philips’ 8051 data sheet. As easily seen, all

the read, write and port signals are compatible to the original ones.

76

Figure 0.8 8051's External Data Memory Write.

5.2 Verification of ALU

8051's ALU is designed as a separate module and connected to the core with a set

internal data buses. The 8051's Executer Module calls ALU module where an

arithmetic or logical instruction is executed. This interface has two 8 bit wide

operand, two 8 bit wide result, one 5 bit wide ALU command busses, and carry,

auxiliary carry, overflow, new carry, new auxiliary carry and new overflow control

and data signals. Executer module puts the necessary operands to the operand

data paths and the command to the command port with the supplementary carry

signals. In the next clock cycle, if ALU command is different from the ALU_NOP

instruction, then ALU module executes the command and stores the result to the

result ports with carry and overflow signals. This flow is shown in Figure 5.9.

In the figure above, ALU_INC_DEC_EQZ operation is executed. Most of the ALU

commands define more than one command. As an example, this command defines

both increment and decrement instructions and also a comparison to zero

instruction. The operand given in alu_a is incremented by one and is put to

result_a port, similarly it is decremented by one and is put to result_b port,

77

moreover a logic output generated depending on the comparison of operand_a and

zero.

Figure 0.9 Basic ALU Signals.

From the Executer’s point of view; it puts 2Bh unsigned integer value to the

operand port, ALU_INC_DEC_EQZ, (00h) command to the command port, and

gets the 2Ch from one of the result operands and 2Ah from the other. At this point

Executer module knows which result is the valid one since it has called the ALU to

do either an increment instruction or a decrement instruction.

Multiplication operation is somewhat more complex than other arithmetic

operations. A multiplication operation is indeed eight successive addition and shift

operations, so it is not possible to do it in a single clock cycle. Unlike other

operations, for multiplication, Executer module puts the operands and MUL_1

command to the ALU module to start the operation. After a predefined time period,

Executer module asks for the result with an other command MUL_2. At this time it

reads the results from the dedicated result ports. Signal diagram of multiplication is

shown in Figure 5.10.

78

Figure 0.10 ALU Multiplication.

As shown in Multiplication signal diagrams, Executer puts, 50h and A0h unsigned

integer values to the operand ports and ALU_MUL_1 (04h) command to the

command port. Beginning from the next clock cycle ALU module calculates this

operation. After 12 clock cycles have passed, Executer module asks for the result

by putting ALU_MUL_2 (05h) command. The ALU module stores the result to the

result ports as 32h and 00h as shown in the figure. This is the correct result of the

multiplication of 50h and A0h.

Figure 0.11 ALU Division.

79

Similar to multiplication operation, division is also a complicated instruction which is

composed of eight successive compare subtract and shift operations. The timing

diagrams between the Executer and ALU modules, is shown in Figure 5.11. As

shown in division signal diagrams, Executer puts, FBh and 12h unsigned integer

values to the operand ports and ALU_DIV_1 (06h) command to the command port.

Beginning from the next clock cycle ALU module calculates this division. After 12

clock cycles passed, Executer module asks for the result by putting ALU_DIV_2

(07h) command. Then the ALU module stores the result to the result ports as 0Dh

and 11h as shown in the figure. This is the correct result of the division of FBh by

12h, result is 0Dh and the remainder is 11h.

5.3 Arithmetic Instructions

8051’s arithmetic instructions include add, subtract, increment, decrement, multiply

and divide operations. There are a variety of these instructions depending on

operands that are used. In order to verify execution of these instructions, one or

more of the registers are set to predefined values, then the operation is executed

with necessary operands and the result is compared to the solution.

In case of an error, error number is saved to Port1 which is not currently used by

any other function, then jumps to an error reporting location where the error code is

sent via serial port. In this section, the verification processes are explained by

pseudo codes for simplicity, the complete assembly codes are given in Appendix C

The verified addition operations are;
ADD A,Rn
ADD A,direct
ADD A,@Ri
ADD A,#data
ADDC A,Rn
ADDC A,direct
ADDC A,@Ri
ADDC A,#data

In order to verify these operations, the following sample code is used;

80

 MOV A,#10 ; Load A by 10
 MOV R0,#10 ; Load R0 by 10
 ADD A,R0 ; A = A + R0
 SUBB A,#20 ; A = A - 20
 JZ DONE_1 ; Goto DONE_1 if A == 0
 MOV P1,#1 ; Error Code
 JMP FAILED ; Goto End

ADDC type instructions are using the carry input so for the verification of those

instructions, carry is set to one before addition is done so that adding of the carry is

also verified. .

The verified subtraction operations are;
SUBB A,Rn
SUBB A,direct
SUBB A,@Ri

In order to verify these operations, the following sample code is used;
 MOV PSW,#0 ; Clear Status Register
 MOV A,#10 ; Load A by 10
 MOV R0,#10 ; Load R0 by 10
 SUBB A,R0 ; A = A - R0
 JZ DONE ; Goto DONE if A == 0
 MOV P1,#2 ; Error Code
 JMP FAILED ; Goto End

The verified increment operations are;
 INC A
 INC Rn
 INC direct
 INC @Ri
 INC DPTR

To verify increment operations, the following sample code is used;
 MOV PSW,#0 ; Clear Status Register
 MOV A,#10 ; Load A by 10
 INC A ; Increment A by 1
 SUBB A,#11 ; A = A - 11
 JZ DONE ; Goto DONE if A == 0
 MOV P1,#2 ; Error Code
 JMP FAILED ; Goto End

The verified decrement operations are;
 DEC A
 DEC Rn
 DEC direct

81

 DEC @Ri

To verify decrement operations, the following sample code is used;
 MOV PSW,#0 ; Clear Status Register
 MOV A,#10 ; Load A by 10
 DEC A ; Increment A by 1
 SUBB A,#9 ; A = A - 9
 JZ DONE ; Goto DONE if A == 0
 MOV P1,#4 ; Error Code
 JMP FAILED ; Goto End

Multiplication and division operations are verified as in the sample code below;
 MOV PSW,#0 ; Clear Status Register
 MOV A,#50h ; Load A by 80
 MOV A,#A0h ; Load A by 160
 MUL AB ; Result = 3200h, A=00h B=32h
 JNZ ERROR ; Goto ERROR if A is not zero
 MOV A,B
 SUBB A,#32h ; A = A - 32h
 JZ DONE ; Goto DONE if A == 0
 MOV P1,#5 ; Error Code
 JMP FAILED ; Goto End

There is one very special instruction in 8051 processor, the DA , decimal adjust

instruction. This will adjust two nibbles of a byte such that each representing BCD

values. DA instruction is verified as shown in the pseudo code below.
 MOV PSW,#0 ; Clear Status Register
 MOV A,#80h ; Load A by 80h
 ADD A,#99h ; A = A + 99h
 DA A ; Decimal Adjust
 SUBB A,#78H ;Will clr ACC if C set
 JZ DONE ; Goto DONE if A == 0
 MOV P1,#4 ; Error Code
 JMP FAILED ; Goto End

5.4 Logical Instructions

Logical and shift operations in 8051 processor are verified with the same method

used for arithmetic operations. The following and, or, exclusive or, clear,

complement, rotate left, rotate right, and swap instructions are verified
ANL A,Rn
ANL A,direct
ANL A,@Ri
ANL A,#data

82

ANL direct,A
ANL direct,#data
ANL C,bit
ANL C,/bit
ORL A,Rn
ORL A,direct
ORL A,@Ri
ORL A,#data
ORL direct,A
ORL direct,#data
ORL C,bit
ORL C,/bit
XRL A,Rn
XRL A,direct
XRL A,@Ri
XRL A,#data
XRL direct,A
XRL direct,#data
CLR A
CLR C
CPL C
CLR bit
CPL bit
CPL A
RL A
RLC A
RR A
RRC A
SWAP A

5.5 Data Transfer Instructions

There are basically three types of data transfer operations, first one is MOV

operations which moves data between registers, internal RAM, external RAM and

also code memory, second type is XCH operations which will exchange values of

two data operands and lastly the push/pop operations that saves and restores

data values to/from stack. Verification of these instructions is done by the same

method with arithmetic instructions. The following instructions are verified
MOV A,Rn
MOV A,direct
MOV A,@Ri
MOV A,#data
MOV Rn,A
MOV Rn,direct
MOV Rn,#data
MOV direct,A
MOV direct,Rn

83

MOV direct,direct
MOV direct,@Ri
MOV direct,#data
MOV @Ri,A
MOV @Ri,direct
MOV @Ri,#data
MOV C,bit
MOV bit,C
MOVX @DPTR,A
MOVX A,DPTR
MOVC A,@A+DPTR
MOVC A,@A+PC

In order to verify the data transfer operations, a predefined byte is first loaded to

one of the registers, then the content of this register is moved to another register

with the MOV instruction under test. Then either an addition or a subtraction is

done to have zero content in the register. Now it is time to compare the register

with zero, and jump to either error location or test passed location. The whole

assembly code for testing these instructions are given in Appendix C

5.6 Flow Control Instructions

Flow control instructions like call, jump and return are indeed already tested with in

tests of other instructions because every fragment of a test code need to jump

some certain location that will indicate whether the test is correct or not. But more

complex instructions like “compare and jump if equals to zero” are verified with the

code given in Appendix C. Verified instructions are given below;
AJMP direct
CJNE A,direct,rel
CJNE A,#data,rel
CJNE Rn,#data,rel
CJNE @Ri,#data,rel
DJNZ Rn,rel
DJNZ direct,rel
JB bit,rel
JBC bit,rel
JC rel
JMP @A+DPTR
JNB bit,rel
JNC rel
JNZ rel
JZ rel
LJMP direct

84

5.7 Interrupts

There are five interrupt resources in 8051 CPU, two external, two timers and one

from serial port events. In this thesis a test bench is designed in SystemC design

language, as well as the 8051 CPU core. The stimulator module generates

necessary test signals such as interrupt and reset, to 8051 processor. External

interrupt is generated by this stimulator module, when interrupt event occurs,

program counter jumps to interrupt vector after completing the current instructions

Figure 0.12 External Interrupt Operation.

A fragment of the trace output file of SystemC simulation of 8051 core is given in

Figure 5.12. As easily can be followed, before the interrupt event occurs, 8051 core

is fetching instructions at address 0x0899 and 0x089A and executing those

instructions. At that time an interrupt event occurs, the CPU completes the current

instruction and then jumps to the interrupt vector table. Since External Interrupt-0

occurred, the PC is loaded with 0x0003 and the instruction is fetched there. As

seen from the external Port-0 and Port-2 signals, CPU reads the jump instruction

with operands 0x0F and 0xC1 which is the address of relevant interrupt service

routine. In the next machine cycle PC is loaded with 0x0FC1 and 8051 fetches the

instruction over there.

In order to test the interrupt operation a test code is written such that, it changes a

predefined register of the 8051 CPU with a predefined value. Since interrupt is

asynchronous to the running program, the exact time is not known by the software.

85

While CPU is running the test software for other instructions, an interrupt is

generated by the external circuit, then the program branches to the interrupt

service routine executes the commands there, and finally return back to the test

code as if it had not been interrupted. Before ending the program the predefined

register is checked whether it is been altered by the Interrupt Service Routine (ISR)

or not. If the expected value is read from the register the interrupt test is passed

otherwise error code is given. This test code is given in Appendix C.

5.8 Serial Port

Two different test programs are prepared for testing the serial port operations; one

of them is used for verifying the serial transmit operations, the other is used for

serial receive operations. A Serial Monitor module is implemented in the test bench

to have the serial transmit and receive functions. The Serial Monitor module sends

a serial data to the 8051 core when it is started. This operation will be

asynchronous to the 8051 core. Serial Port module of the 8051 core is always

watching for a serial data.

When the transmitted byte is captured in the Serial Port module of 8051, a Serial

Interrupt with a RI flag is generated to the processor core. At this point, Executer

module completes the execution of current instruction and then jumps to interrupt

vector table. There it fetches the address of serial port interrupt service routine,

then CPU branches to that routine. In this ISR routine, a predefined register is set

to a predefined value to indicate that ISR has been run. Finishing the ISR, CPU

returns to the software program it has been executing just before the serial

interrupt event occurred. This is shown in Figure 5.13.

At the end of the test program, the predefined register is read and compared to the

predefined test value. The program branches to a passed location if the serial

interrupt service routine has been run or to a failed location if not.

86

Figure 0.13 Serial Port Receive Operation.

The transmit operation of the serial port is tested by sending some data byte to the

remote serial monitor module. At the end of the assembly test program, an

information byte about the internal tests, is written to SBUF register. If any data is

written to SBUF, the serial port is activated if it has been configured.

Figure 0.14 Serial Port Transmit Operation.

As seen on the signal diagram in Figure 5.14, SystemC simulation of 8051 core

and its test bench, near to the end of the running program, a serial byte is sent to

the Serial Monitor module.

5.9 Timer Operations

In order to verify the timer operations, Timer-0 is configured for mode-2, reload

mode, with a reload value of 0x10 in the assembly test file. This will generate

87

periodic timer interrupts as shown in Figure 5.15. When a timer interrupt occurs,

the program will branch to the interrupt vector, there it will pick the address of timer

interrupt service routine, then finally branch to that location. In this function a

register is set to a predefined value to indicate that timer interrupt service routine

has been executed. After completing the timer ISR, 8051 core returns back to

running program. Finally just before the end of the program, the register is tested

whether it has been altered by the ISR or not. If the expected value is found a pass

mark is given otherwise an error code is given.

Figure 0.15 Timer-0 Operation.

5.10 Testing The Whole Design

During the verification of 8051 core, a test software is used to span all possible

states of the microcontroller. Although this software has already tested how 8051

core executes a software program, a standard code from an independent source

would be very beneficial for verifying the design under development.

For this purpose, standard 16-bit Cyclic Redundancy Check (CRC) algorithm is

selected because of its very well known structure. The code is downloaded from

the internet site of Keil Elektronik GmbH, which is one of the largest suppliers of

8051 microcontroller development environments. 8051 core is capable of doing 8

bit arithmetic operations but there are library functions for handling 16 bit data

sizes or more. One of the reasons for selecting the 16 bit CRC algorithm for testing

88

the designed core, is to have a more complicated software using those type of

library functions. These codes are supplied in Appendix-E.

Figure 0.16 Simulation of 8051 in SystemC.

The software is compiled and linked in Keil µVision2 development and simulation

environment. The output hex file is loaded to both Keil’s simulator and to our 8051

core designed for this thesis. Then the two simulators are executed with the same

input streams, and happily they generated exactly the same output. Additionally,

the intermediate values of the variables and states of the 8051 CPU registers are

also checked with the Keil’s simulator and found hundred percent compatible. This

is shown in Figure 5.16 and Figure 5.17.

89

Figure 0.17 Simulation of 8051 in Keil uVision.

90

CONCLUSIONS

Today’s high performance devices and systems force the designers to use multi

disciplinary development methodologies. SystemC provides a compound design

environment for both hardware and software modules of a system. In other words,

SystemC is used for co-design and co-simulation processes of the development

cycle for highly complicated systems.

In this thesis, the experience of modeling an 8 bit microcontroller using SystemC is

discussed. Before going deep in the design process, the basics of SystemC design

environment is given and the original 8051 core is explained. Then the design of

the 8051 core is described in details and the verification and test issues are

discussed.

The top level design of the 8051 core includes independent modules such as the

executer unit, arithmetic logic unit (ALU), timer modules and serial communication

unit. This modular design approach provides flexibility both to the designer and to

the future users of the core. Although all the modules are developed by the author

of the thesis in this work, SystemC provides a modular design environment so that

the designers can merge their individual works easily. Moreover, each of these

modules can be improved or completely changed to keep up with the developing

requirements without affecting other modules.

Verification of a certain designed system is an important problem and must be

handled carefully as a part of the development process. SystemC provides a

perfectly integrated and easy to use verification method. Similar to the

development of the system under focus, a suitable and on purpose test bench can

be easily created using SystemC. The value of the verification process is getting

91

higher as early it became available to the designer, in this sense; SystemC adds a

significant worth to the whole design process.

In our work in this thesis, a test bench is developed using SystemC to verify the

operation of the designed 8051 core. During the development cycle, simulation

results such as signal traces and viewing internal register contents helped to

improve the design. These are compared with the original signal traces supplied by

the vendor companies. The results are also compared with the results of the

simulations run on industry proven simulators. After having completely compatible

results, a standard 16 bit CRC code, which is downloaded from one of the vendors

companies, is loaded and ran on our 8051 core giving successful results.

Although SystemC is proven to be a good language for system level modeling

which may include both hardware and software tasks, it should not be thought as a

replacement for the current HDLs. Instead, it is a development environment on a

higher level of abstraction which may use microprocessors, DSPs and complicated

bus and bridge systems to achieve complex systems consist of hardware and

software modules as well.

The designer can make executable specifications with low simulation times, and

construct very well integrated test benches for the verification of the system. As the

language is based on C++, the learning curve is relatively short. The support for

SystemC in the EDA industry is widening, which means more SystemC familiar

development and simulation tools will be on the market in the near future. Also the

support for SystemC synthesis is growing with giving the signs of more featured

SystemC Compiler tools in coming years.

The 8051 core and external memory elements designed in SystemC can be used

as a general platform for designing various ‘System-on-Chip’s (SoC), which may

include software or “firmware” as it is so called in embedded systems world, to

achieve complicated jobs, such as bus controllers and communication controllers.

92

REFERENCES

[1] J. Tirado, M, Serra, A. Portero, Q. Saiz, Rapid Prototyping Platform for
Reactive Systems with a POLIS based HW-SW Co-design Approach, IP
Based Design Seminars, 2000.

[2] Overview of the Open SystemC Initiative, SystemC Organization, 1999

[3] Guido Arnout, C for System Level Design, Design, Automation and Test in
Europe (DATE), March 09, 1999.

[4] Synopsis CoCentric SystemC Compiler, Synopsis Inc, 2002.

[5] John Connell, ARM, Bruce Johnson, Synopsis, Early Hardware/ Software
Integration Using SystemC 2.0, 2002.

[6] SystemC User’s Guide for Version 2.0, SystemC Organization,2002.

[7] Functional Specification For SystemC Version 2.0, SystemC
Organization,2002.

[8] P NC-SystemC Simulator Data Sheet, Cadence Design Systems Inc 4538C
10/03, 2003.

[9] Mustafa Badaroğlu, Design of a 8-Bit CMOS Embedded Microcontroller
Chip, A Thesis Submitted To The Graduate School of Natural and Applied
Sciences of Middle East Technical University in The Department of
Electrical and Electronics Engineering,1998.

[10] Describing Synthesizable RTL in SystemC™ Version 1.2, Synopsis Inc,
November 2002.

[11] 80C51 Based 8 bit Microcontrollers, Philips Data Handbook, 1998

[12] M.Morris Mano, Digital Design, Second Edition, Prentice Hall International
Editions, 1991.

[13] I. Scott MacKenzie, The 8051 Microcontroller, Second Edition, Prentice
Hall, 1995.

[14] 80C51 Family Hardware Description, SU00557, SU00558, SU00559,
Philips 8051 Datasheet, 1998.

93

[15] Seamless C-Bridge Technology Enabling C in Hardware/Software Co-
Verification Datasheet, Mentor Graphics, 2-02 HDG 1020010, 2002.

[16] Prosilog’s SystemC Compiler Datasheet, Prosilog Inc, 2002.

[17] 8051 IP Core 8 Bit Micro-Controller Datasheet, Aldec Design Verification
Company, 2004.

[18] DW8551_DS Datasheet, The Synthesizable VHDL 8051 Core, Synopsis
Inc, 2002.

[19] Smart Card IC features 256 kbyte of pure flash memory, Thomas Net,
March 2004.

[20] MIFARE PROX 8-bit Dual Interface IC Datasheet, Philips Inc., 2004.

[21] A Varma, J.R. Armstrong, J.M. Baker, A SystemC GSM Model For
Hardware/Software Co-Design International HDL Conference and
Exhibition (HDLCon), 2002.

[22] K. Bartleson, A New Standard for System-Level Design. SystemC
Organization, Design, Automation and Test in Europe (DATE), 2003.

[23] Allan Cochrane, John Connell, Andy Nightingale, Capturing Design Intent
and Evaluating Performance with SystemC, ARM, 2003.

[24] Ramaswamy Ramaswamy, Russel Tessier, Department of Electrical and
Computer Engineering, University of Massachuattes, The Integration of
SystemC and Hardware Assisted Verification, Proceedings of the
Reconfigurable Computing, 2002.

[25] Jan Lundgren, Bengt Oelmann, Behavioral Simulation of Power Line Noise
Coupling in Mixed Signal Systems using SystemC, Proceedings. IEEE
Computer Society, 2003.

[26] George Economakos, Petros Oikonomakos, Behavioral Synthesis with
SystemC, National Technical University of Athens, Department of Electrical
and Computer Engineering, Proceedings in , Design, Automation and Test
in Europe (DATE), 2001

[27] Tim Kogel Andreas Wieferink, Heinrich Meyr, Andrea Kroll, SystemC Based
Architecture Exploration of a 3D Graphic Processor, Workshop on Signal
Processing Systems, IEEE, 2001.

[28] Luca Benini, Davide Bertozzi, Davide Bruni, University Di Bologna,
SystemC Co-simulation and Emulation of Multiprocessor SoC Designs,
IEEE Computer Society, April 2003

[29] Efficient Automatic Visualization of SystemC Designs, Institute of
Computer Science, University of Bremen, Germany, 2003.

94

[30] Rolf Drechsler, Daniel Grobe, Connecting the Value Chain with SystemC,
Rick Jamison, Geoffrey Moore, Synopsis Inc, September 1999.

[31] Sudep Pasricha, Transaction Level Modeling for SoC with SystemC 2.0,
Design Flow and Reuse/ R&D ST Microelectronics Ltd, Synopsys User
Group Conference, 2002.

[32] Joachim Gerlach, University of Tubingen, Germany, System Level design
using the SystemC Modeling Platform, Worshop on System Design
Automation SDA, 2000.

[33] C Norris Ip, Stuart Swan, Cadance Design Systems, A tutorial Introduction
on the New SystemC Verification Standard, Design, Automation and Test in
Europe (DATE) 2003.

[34] Ando Ki, Empirical Study of SystemC, R&D Center Dynalith Systems, April
2003.

95

APPENDICES

A. Instruction Set Of 8051

OpCode Operation Bytes Clocks

00 H NOP NOP 1 1

01 H AJMP addr11 AJMP addr11 2 3

02 H LJMP addr16 LJMP addr16 3 4

03 H RR A RR A 1 1

04 H INC A INC A 1 1

05 H INC direct INC direct 2 3

06 H INC @R0 INC @Ri 1 3

07 H INC @R1 1 3

08 H INC R0 INC Rn 1 2

09 H INC R1 1 2

0A H INC R2 1 2

0B H INC R3 1 2

0C H INC R4 1 2

0D H INC R5 1 2

0E H INC R6 1 2

0F H INC R7 1 2

10 H JBC bit,rel JBC bit,rel 3 4

11 H ACALL addr11 ACALL addr11 2 6

12 H LCALL addr16 LCALL addr16 3 6

13 H RRC A RRC A 1 1

14 H DEC A DEC A 1 1

15 H DEC direct DEC direct 1 2

16 H DEC @R0 DEC @Ri 2 3

17 H DEC @R1 2 3

18 H DEC R0 DEC Rn 1 1

19 H DEC R1 1 1

1A H DEC R2 1 1

1B H DEC R3 1 1

1C H DEC R4 1 1

1D H DEC R5 1 1

96

1E H DEC R6 1 1

1F H DEC R7 1 1

20 H JB bit,rel JB bit,rel 3 4

21 H AJMP addr11 2 3

22 H RET RET Return 1 4

23 H RL A RL A 1 1

24 H ADD A,#data ADD A,#data 2 2

25 H ADD A,direct ADD A,direct 2 2

26 H ADD A,@R0 ADD A,@Ri 1 2

27 H ADD A,@R1 1 2

28 H ADD A,R0 ADD A,Rn 1 1

29 H ADD A,R1 1 1

2A H ADD A,R2 1 1

2B H ADD A,R3 1 1

2C H ADD A,R4 1 1

2D H ADD A,R5 1 1

2E H ADD A,R6 1 1

2F H ADD A,R7 1 1

30 H JNB bit,rel JNB bit,rel 3 4

31 H ACALL addr11 2 6

32 H RETI RETI Return 1 4

33 H RLC A RLC A 1 1

34 H ADDC A,#data ADDC A,#data 2 2

35 H ADDC A,direct ADDC A,direct 2 2

36 H ADDC A,@R0 ADDC A,@Ri 1 2

37 H ADDC A,@R1 1 2

38 H ADDC A,R0 ADDC A,Rn 1 1

39 H ADDC A,R1 1 1

3A H ADDC A,R2 1 1

3B H ADDC A,R3 1 1

3C H ADDC A,R4 1 1

3D H ADDC A,R5 1 1

3E H ADDC A,R6 1 1

3F H ADDC A,R7 1 1

40 H JC rel JC rel 2 3

41 H AJMP addr11 2 3

42 H ORL direct,A ORL direct,A 2 3

43 H ORL direct,#data ORL direct,#data 3 4

97

44 H ORL A,#data ORL A,#data 2 2

45 H ORL A,direct ORL A,direct 2 2

46 H ORL A,@R0 ORL A,@Ri 1 2

47 H ORL A,@R1 1 2

48 H ORL A,R0 ORL A,Rn 1 1

49 H ORL A,R1 1 1

4A H ORL A,R2 1 1

4B H ORL A,R3 1 1

4C H ORL A,R4 1 1

4D H ORL A,R5 1 1

4E H ORL A,R6 1 1

4F H ORL A,R7 1 1

50 H JNC rel JNC rel 2 3

51 H ACALL addr11 2 6

52 H ANL direct,A ANL direct,A 2 3

53 H ANL direct,#data ANL direct,#data 3 4

54 H ANL A,#data ANL A,#data 2 2

55 H ANL A,direct ANL A,direct 2 2

56 H ANL A,@R0 ANL A,@Ri 1 2

57 H ANL A,@R1 1 2

58 H ANL A,R0 ANL A,Rn 1 1

59 H ANL A,R1 1 1

5A H ANL A,R2 1 1

5B H ANL A,R3 1 1

5C H ANL A,R4 1 1

5D H ANL A,R5 1 1

5E H ANL A,R6 1 1

5F H ANL A,R7 1 1

60 H JZ rel JZ rel 2 3

61 H AJMP addr11 2 3

62 H XRL direct,A XRL direct,A 2 3

63 H XRL direct,#data XRL direct,#data 3 4

64 H XRL A,#data XRL A,#data 2 2

65 H XRL A,direct XRL A,direct 2 2

66 H XRL A,@R0 XRL A,@Ri 1 2

67 H XRL A,@R1 1 2

68 H XRL A,R0 XRL A,Rn 1 1

69 H XRL A,R1 1 1

6A H XRL A,R2 1 1

98

6B H XRL A,R3 1 1

6C H XRL A,R4 1 1

6D H XRL A,R5 1 1

6E H XRL A,R6 1 1

6F H XRL A,R7 1 1

70 H JNZ rel JNZ rel 2 3

71 H ACALL addr11 2 6

72 H ORL C,direct ORL C,direct 2 2

73 H JMP @A+DPTR JMP @A + DPTR 1 2

74 H MOV A,#data MOV A,#data 2 2

75 H MOV direct,#data MOV direct,#data 3 3

76 H MOV @R0,#data MOV @Ri,#data 2 3

77 H MOV @R1,#data MOV @Ri,#data 2 3

78 H MOV R0,#data MOV Rn,#data 2 2

79 H MOV R1,#data MOV Rn,#data 2 2

7A H MOV R2,#data MOV Rn,#data 2 2

7B H MOV R3,#data MOV Rn,#data 2 2

7C H MOV R4,#data MOV Rn,#data 2 2

7D H MOV R5,#data MOV Rn,#data 2 2

7E H MOV R6,#data MOV Rn,#data 2 2

7F H MOV R7,#data MOV Rn,#data 2 2

80 H SJMP rel SJMP rel 2 3

81 H AJMP addr11 2 3

82 H ANL C,bit ANL C,bit 2 2

83 H MOVC A,@A+PC MOVC A,@A + PC 1 3

84 H DIV AB DIV A,B 1 5

85 H MOV direct,direct MOV direct,direct 3 4

86 H MOV direct,@R0 MOV direct,@Ri 2 4

87 H MOV direct,@R1 2 4

88 H MOV direct,R0 MOV direct,Rn 2 3

89 H MOV direct,R1 2 3

8A H MOV direct,R2 2 3

8B H MOV direct,R3 2 3

8C H MOV direct,R4 2 3

8D H MOV direct,R5 2 3

8E H MOV direct,R6 2 3

8F H MOV direct,R7 2 3

90 H MOV DPTR,#data16 MOV DPTR,#data16 3 3

99

91 H ACALL addr11 2 6

92 H MOV bit,C MOV bit,C 2 3

93 H MOVC A,@A+DPTR MOVC A,@A + DPTR 1 3

94 H SUBB A,#data SUBB A,#data 2 2

95 H SUBB A,direct SUBB A,direct 2 2

96 H SUBB A,@R0 SUBB A,@Ri 1 2

97 H SUBB A,@R1 1 2

98 H SUBB A,R0 SUBB A,Rn 1 1

99 H SUBB A,R1 1 1

9A H SUBB A,R2 1 1

9B H SUBB A,R3 1 1

9C H SUBB A,R4 1 1

9D H SUBB A,R5 1 1

9E H SUBB A,R6 1 1

9F H SUBB A,R7 1 1

A0 H ORL C,bit ORL C,bit 2 2

A1 H AJMP addr11 2 3

A2 H MOV C,bit MOV C,bit 2 2

A3 H INC DPTR INC DPTR 1 3

A4 H MUL AB MUL A,B 1 5

A5 H1 – A5 H1 – -

A6 H MOV @R0,direct MOV @Ri,direct 2 5

A7 H MOV @R1,direct MOV @Ri,direct 2 5

A8 H MOV R0,direct MOV Rn,direct 2 4

A9 H MOV R1,direct MOV Rn,direct 2 4

AA H MOV R2,direct MOV Rn,direct 2 4

AB H MOV R3,direct MOV Rn,direct 2 4

AC H MOV R4,direct MOV Rn,direct 2 4

AD H MOV R5,direct MOV Rn,direct 2 4

AE H MOV R6,direct MOV Rn,direct 2 4

AF H MOV R7,direct MOV Rn,direct 2 4

B0 H ANL C,bit ANL C,bit 2 2

B1 H ACALL addr11 2 6

B2 H CPL bit CPL bit 2 3

B3 H CPL C CPL C 1 1

B4 H CJNE A,#data,rel CJNE A,#data,rel 3 4

B5 H CJNE A,direct,rel CJNE A,direct,rel 3 4

B6 H CJNE @R0,#data,rel CJNE @Ri,#data,rel 3 4

B7 H CJNE @R1,#data,rel 3 4

100

B8 H CJNE R0,#data,rel CJNE Rn,#data rel 3 4

B9 H CJNE R1,#data,rel 3 4

BA H CJNE R2,#data,rel 3 4

BB H CJNE R3,#data,rel 3 4

BC H CJNE R4,#data,rel 3 4

BD H CJNE R5,#data,rel 3 4

BE H CJNE R6,#data,rel 3 4

BF H CJNE R7,#data,rel 3 4

C0 H PUSH direct PUSH direct 2 4

C1 H AJMP addr11 2 3

C2 H CLR bit CLR bit 2 3

C3 H CLR C CLR C 1 1

C4 H SWAP A SWAP A 1 1

C5 H XCH A,direct XCH A,direct 2 3

C6 H XCH A,@R0 XCH A,@Ri 1 3

C7 H XCH A,@R1 1 3

C8 H XCH A,R0 XCH A,Rn 1 2

C9 H XCH A,R1 1 2

CA H XCH A,R2 1 2

CB H XCH A,R3 1 2

CC H XCH A,R4 1 2

CD H XCH A,R5 1 2

CE H XCH A,R6 1 2

CF H XCH A,R7 1 2

D0 H POP direct POP direct 2 3

D1 H ACALL addr11 2 6

D2 H SETB bit SETB bit 2 3

D3 H SETB C SETB C 1 1

D4 H DA A DA A 1 1

D5 H DJNZ direct,rel DJNZ direct,rel 3 4

D6 H XCHD A,@R0 XCHD A,@Ri 1 3

D7 H XCHD A,@R1 1 3

D8 H DJNZ R0,rel DJNZ Rn,rel 2 3

D9 H DJNZ R1,rel 2 3

DA H DJNZ R2,rel 2 3

DB H DJNZ R3,rel 2 3

DC H DJNZ R4,rel 2 3

DD H DJNZ R5,rel 2 3

DE H DJNZ R6,rel 2 3

101

DF H DJNZ R7,rel 2 3

E0 H MOVX A,@DPTR MOVX A,@DPTR 1 4

E1 H AJMP addr11 2 3

E2 H MOVX A,@R0 MOVX A,@Ri 1 4

E3 H MOVX A,@R1 1 4

E4 H CLR A CLR A 1 1

E5 H MOV A,direct MOV A,direct 2 2

E6 H MOV A,@R0 MOV A,@Ri 1 2

E7 H MOV A,@R1 1 2

E8 H MOV A,R0 MOV A,Rn 1 1

E9 H MOV A,R1 1 1

EA H MOV A,R2 1 1

EB H MOV A,R3 1 1

EC H MOV A,R4 1 1

ED H MOV A,R5 1 1

EE H MOV A,R6 1 1

EF H MOV A,R7 1 1

F0 H MOVX @DPTR,A MOVX @DPTR,A 1 4

F1 H ACALL addr11 2 6

F2 H MOVX @R0,A MOVX @Ri,A 1 4

F3 H MOVX @R1,A 1 4

F4 H CPL A CPL A 1 1

F5 H MOV direct,A MOV direct,A 2 3

F6 H MOV @R0,A MOV @Ri,A 1 3

F7 H MOV @R1,A MOV @Ri,A 1 3

F8 H MOV R0,A MOV Rn,A 1 2

F9 H MOV R1,A MOV Rn,A 1 2

FA H MOV R2,A MOV Rn,A 1 2

FB H MOV R3,A MOV Rn,A 1 2

FC H MOV R4,A MOV Rn,A 1 2

FD H MOV R5,A MOV Rn,A 1 2

FE H MOV R6,A MOV Rn,A 1 2

FF H MOV R7,A MOV Rn,A 1 2

102

B. Nonsynthesizable SystemC And C++ Constructs

Category

Comment Construct Corrective action

Thread process Used for modeling and
test benches

SC_THREAD
SC_CTHREAD

SC_METHOD

Main function Used for simulation. sc_main()

Clock generators Used for simulation sc_start()

Communication Used for modeling
communication

sc_interface sc_port
sc_mutex
sc_fifo“

Watching
Not supported for RTL
synthesis

watching()
W_BEGIN,
W_END,
W_DO,
W_ESCAPE

Synchronization
Used for
synchronization of
events

Master-slave library of
SystemC

Tracing
Creates waveforms of
signals, channels, and
variables for simulation.

sc_trace,
sc_create
trace_file

Local class declaration Not allowed. Replace global class

Nested class declaration Not allowed. Replace global class

Derived class Not allowed. Replace global class

Dynamic storage
allocation

Not allowed. The new
construct is allowed
only to instantiate a
module to create
hierarchy.

malloc(),
free(), new,
new[],
delete,
delete[]

Use static memory
allocation

Exception handling Not allowed

Recursive function call Not allowed

Function overloading Not allowed Unique function calls

C++ built-in functions

Math library, I/O library,
file I/O, and similar built-
in C++ functions not
allowed.

 Replace with synthesizable
functions

Virtual function Not allowed Replace with a nonvirtual
function.

Inheritance Not allowed Create independent
modules.

103

Multiple inheritance Not allowed Create independent
modules.

Member access control
specifiers

Allowed in code but
ignored for synthesis.
All member access is
public.

public,
protected,
private,
friend

the (->) operator Not allowed, except for
module instantiation. Replace with access using

the period (.) operator.

Static member Not allowed. Replace with non-static
member

Dereferenceoperator Not allowed. * and & operators Use array accessing

Unbounded loop Not allowed. Replace with a bounded
loop,

Out-of-bound array access Not allowed. Replace with in-bound
array access.

Operator overloading
Not allowed (except the
classes overloaded by
SystemC).

 Replace with unique
function calls.

Operator, sizeof Not allowed. Determine size statically for
use in synthesis.

Pointer

Pointers are allowed
only in hierarchical
modules to instantiate
other modules.

*

Replace all other pointers
with accessto array
elements orindividual
elements.

Pointer type conversions Not allowed.

this pointer Not allowed.

Reference Allowed only for passing
parameters to functions. & Replace in all other cases.

Static variable Not allowed in
functions.

User-defined template
class

Only SystemC
templates classes such
as sc_int<> are
supported.

Type casting at runtime Not allowed

Type identification at
runtime Not allowed

Unconditional branching Not allowed goto

Unions Not allowed Use structs

Global Variables Not allowed Use local variables

Member variable
access to member
variables by only one
process is supported.

Use signals instead of
variables for
communication between
processes.

Volatile variable Not allowed Use only non-volatile
variables

104

C. Assembly Verification Code

ADD Instructions

To verify ADD instructions, following code is used;

;//
 MOV PSW,#0 ;INST 1 // ADD A,Rn (1)
 MOV A,#10
 MOV R0,#10
 ADD A,R0
 SUBB A,#20
 JZ DONE_1
 MOV P1,#1
 LJMP FAILED
DONE_1:
;//
 MOV PSW,#0 ;INST 2 // ADD A,direct (2)
 MOV A,#10
 MOV 100,#10
 ADD A,100
 SUBB A,#20
 JZ DONE_2
 MOV P1,#2
 LJMP FAILED
DONE_2:
;//
 MOV PSW,#0 ;INST 3 // ADD A,@Ri (3)
 MOV A,#10
 MOV R0,#100
 MOV 100,#10
 ADD A,@R0
 SUBB A,#20
 JZ DONE_3
 MOV P1,#3
 LJMP FAILED
DONE_3:
;//
 MOV PSW,#0 ;INST 5 // ADD A,#data (5)
 MOV A,#10
 ADD A,#5
 SUBB A,#15
 JZ DONE_5
 MOV P1,#5
 LJMP FAILED
DONE_5:
;//
 MOV PSW,#0 ;INST 6 // ADDC A,Rn (6)
 MOV A,#10
 MOV R0,#10
 CPL C
 ADDC A,R0
 SUBB A,#21
 JZ DONE_6
 MOV P1,#6
 LJMP FAILED
DONE_6:
;//
 MOV PSW,#0 ;INST 7 // ADDC A,direct (7)
 MOV A,#10
 MOV 100,#10
 CPL C
 ADDC A,100
 SUBB A,#21

105

 JZ DONE_7
 MOV P1,#7
 LJMP FAILED
DONE_7:
;//
 MOV PSW,#0 ;INST 8 // ADDC A,@Ri (8)
 MOV A,#10
 MOV R0,#100
 MOV 100,#10
 CPL C
 ADDC A,@R0
 SUBB A,#21
 JZ DONE_8
 MOV P1,#8
 LJMP FAILED
DONE_8:
;//
 MOV PSW,#0 ;INST 9 // ADDC A,#data (9)
 MOV A,#10
 CPL C
 ADDC A,#5
 SUBB A,#16
 JZ DONE_9
 MOV P1,#9
 LJMP FAILED
DONE_9:

Subtract Instructions

Subtract instructions are tested with the code below;

;//
 MOV PSW,#0 ;INST 97 // SUBB A,Rn (97)
 MOV A,#10
 MOV R0,#10
 SUBB A,R0
 JZ DONE_97
 MOV P1,#97
 LJMP FAILED
DONE_97:
;//
 MOV PSW,#0 ;INST 98 // SUBB A,direct (98)
 MOV A,#10
 MOV 127,#10
 SUBB A,127
 JZ DONE_98
 MOV P1,#98
 LJMP FAILED
DONE_98:
;//
 MOV PSW,#0 ;INST 99 // SUBB A,@Ri (99)
 MOV A,#10
 MOV R0,#127
 MOV 127,#10
 SUBB A,@R0
 JZ DONE_99
 MOV P1,#99
 LJMP FAILED
DONE_99:

Increment Operations

Increment operations are verified with the code below ;

;//

106

 MOV PSW,#0 ;INST 37 // INC A (37)
 MOV A,#10
 INC A
 SUBB A,#11
 JZ DONE_37
 MOV P1,#37
 LJMP FAILED
DONE_37:
;//
 MOV PSW,#0 ;INST 38 // INC Rn (38)
 MOV R0,#10
 INC R0
 MOV A,R0
 SUBB A,#11
 JZ DONE_38
 MOV P1,#38
 LJMP FAILED
DONE_38:
;//
 MOV PSW,#0 ;INST 39 // INC direct (39)
 MOV 127,#10
 INC 127
 MOV A,127
 SUBB A,#11
 JZ DONE_39
 MOV P1,#39
 LJMP FAILED
DONE_39:
;//
 MOV PSW,#0 ;INST 40 // INC @Ri (40)
 MOV 127,#10
 MOV R0,#127
 INC @R0
 MOV A,@R0
 SUBB A,#11
 JZ DONE_40
 MOV P1,#40
 LJMP FAILED
DONE_40:
;//
 MOV PSW,#0 ;INST 41 // INC DPTR (41)
 MOV DPTR,#12FFH
 INC DPTR
 MOV A,DPH
 SUBB A,#13H
 JZ DPH_OK_41
 MOV P1,#41
 LJMP FAILED
DPH_OK_41:
 MOV A,DPL
 JZ DONE_41
 MOV P1,#41
 LJMP FAILED
DONE_41:

Decrement Operations

Decrement operations are tested with the code below ;

;//
 MOV PSW,#0 ;INST 30 // DEC A (30)
 MOV A,#10
 DEC A
 SUBB A,#9
 JZ DONE_30
 MOV P1,#30
 LJMP FAILED
DONE_30:
;//
 MOV PSW,#0
 MOV R0,#10 ;INST 31 // DEC Rn (31)
 DEC R0
 MOV A,R0

107

 SUBB A,#9
 JZ DONE_31
 MOV P1,#31
 LJMP FAILED
DONE_31:
;//
 MOV PSW,#0 ;INST 32 // DEC direct (32)
 MOV 127,#10
 DEC 127
 MOV A,127
 SUBB A,#9
 JZ DONE_32
 MOV P1,#32
 LJMP FAILED
DONE_32:
;//
 MOV PSW,#0
 MOV R0,#127 ;INST 33 // DEC @Ri (33)
 MOV 127,#10
 DEC @R0
 MOV A,@R0
 SUBB A,#9
 JZ DONE_33
 MOV P1,#33
 LJMP FAILED
DONE_33:

Multiplication and Division Operations

Multiplication and division operations are verified as follows;

;//
 MOV PSW,#0 ;INST 76 // MUL AB (76)
 MOV A,#80
 MOV B,#160
 MUL AB ; = 3200H
 JNZ ERROR_76
 MOV A,B
 SUBB A,#32H
 JZ DONE_76
ERROR_76:
 MOV P1,#76
 LJMP FAILED
DONE_76:
;//
 MOV PSW,#0
 MOV A,#251 ;INST 34 // DIV AB (34)
 MOV B,#18
 DIV AB
 SUBB A,#13
 JZ CHECK_B_34
 MOV P1,#34
 LJMP FAILED
CHECK_B_34:
 MOV A,B
 SUBB A,#17
 JZ DONE_34
 MOV P1,#34
 LJMP FAILED
DONE_34:

Logical and Shift Operations

Logical and shift operations in 8051 processor are verified with the code below.

108

;//
 MOV PSW,#0 ;INST 11 // ANL A,Rn (11)
 MOV R0,#255
 MOV A,#170
 ANL A,R0
 SUBB A,#170
 JZ DONE_11
 MOV P1,#11
 LJMP FAILED
DONE_11:
;//
 MOV PSW,#0 ;INST 12 // ANL A,direct (12)
 MOV 127,#0
 MOV A,#255
 ANL A,127
 JZ DONE_12
 MOV P1,#12
 LJMP FAILED
DONE_12:
;//
 MOV PSW,#0 ;INST 13 // ANL A,@Ri (13)
 MOV R0,#127
 MOV 127,#1
 MOV A,#254
 ANL A,@R0
 JZ DONE_13
 MOV P1,#13
 LJMP FAILED
DONE_13:
;//
 MOV PSW,#0 ;INST 14 // ANL A,#data (14)
 MOV A,#255
 ANL A,#255
 SUBB A,#255
 JZ DONE_14
 MOV P1,#14
 LJMP FAILED
DONE_14:
;//
 MOV PSW,#0 ;INST 15 // ANL direct,A (15)
 MOV 50,#255
 MOV A,#0
 ANL 50,A
 MOV A,50
 JZ DONE_15
 MOV P1,#15
 LJMP FAILED
DONE_15:
;//
 MOV PSW,#0 ;INST 16 // ANL direct,#data (16)
 MOV 25,#128
 ANL 25,#255
 MOV A,25
 SUBB A,#128
 JZ DONE_16
 MOV P1,#16
 LJMP FAILED
DONE_16:
;//
 MOV PSW,#0 ;INST 17 // ANL C,bit (17)
 MOV A,#128
 CPL C
 ANL C,ACC.7
 SUBB A,#127
 JZ DONE_17
 MOV P1,#17
 LJMP FAILED
DONE_17:
;//
 MOV PSW,#0 ;INST 18 // ANL C,/bit (18)
 MOV A,#128
 CPL C
 ANL C,/ACC.7
 SUBB A,#128
 JZ DONE_18
 MOV P1,#18
 LJMP FAILED
DONE_18:

109

;//
 MOV PSW,#0 ;INST 78 // ORL A,Rn (78)
 MOV A,#90H
 MOV R0,#9H
 ORL A,R0
 SUBB A,#99H
 JZ DONE_78
 MOV P1,#78
 LJMP FAILED
DONE_78:
;//
 MOV PSW,#0 ;INST 79 // ORL A,direct (79)
 MOV A,#9H
 MOV 127,#90H
 ORL A,127
 SUBB A,#99H
 JZ DONE_79
 MOV P1,#79
 LJMP FAILED
DONE_79:
;//
 MOV PSW,#0 ;INST 80 // ORL A,@Ri (80)
 MOV A,#90H
 MOV R0,#127
 MOV 127,#06H
 ORL A,@R0
 SUBB A,#96H
 JZ DONE_80
 MOV P1,#80
 LJMP FAILED
DONE_80:
;//
 MOV PSW,#0 ;INST 81 // ORL A,#data (81)
 MOV A,#11H
 ORL A,#22H
 SUBB A,#33H
 JZ DONE_81
 MOV P1,#81
 LJMP FAILED
DONE_81:
;//
 MOV PSW,#0 ;INST 82 // ORL direct,A (82)
 MOV A,#90H
 MOV 127,#9H
 ORL 127,A
 CLR A
 MOV A,127
 SUBB A,#99H
 JZ DONE_82
 MOV P1,#82
 LJMP FAILED
DONE_82:
;//
 MOV PSW,#0 ;INST 83 // ORL direct,#data (83)
 MOV 127,#90H
 ORL 127,#9H
 MOV A,127
 SUBB A,#99H
 JZ DONE_83
 MOV P1,#83
 LJMP FAILED
DONE_83:
;//
 MOV PSW,#0 ;INST 84 // ORL C,bit (84)
 ORL C,ACC.0
 JC ERROR_84
 MOV A,#1
 ORL C,ACC.0
 JNC ERROR_84
 ORL C,ACC.1
 JC DONE_84
ERROR_84:
 MOV P1,#84
 LJMP FAILED
DONE_84:
;//
 MOV PSW,#0 ;INST 85 // ORL C,/bit (85)
 MOV A,#1
 ORL C,/ACC.0

110

 JC ERROR_85
 ORL C,/ACC.1
 JNC ERROR_85
 ORL C,/ACC.0
 JC DONE_85
ERROR_85:
 MOV P1,#85
 LJMP FAILED
DONE_85:

;//
 MOV PSW,#0 ;INST 106 // XRL A,Rn (106)
 MOV A,#35H
 MOV R0,#53H
 XRL A,R0
 SUBB A,#66H
 JZ DONE_106
 MOV P1,#106
 LJMP FAILED
DONE_106:
;//
 MOV PSW,#0 ;INST 107 // XRL A,direct (107)
 MOV A,#53H
 MOV 127,#35H
 XRL A,127
 SUBB A,#66H
 JZ DONE_107
 MOV P1,#107
 LJMP FAILED
DONE_107:
;//
 MOV PSW,#0 ;INST 108 // XRL A,@Ri (108)
 MOV A,#35H
 MOV R0,#127
 MOV 127,#53H
 XRL A,@R0
 SUBB A,#66H
 JZ DONE_108
 MOV P1,#108
 LJMP FAILED
DONE_108:
;//
 MOV PSW,#0 ;INST 109 // XRL A,#data (109)
 MOV A,#35H
 XRL A,#53H
 SUBB A,#66H
 JZ DONE_109
 MOV P1,#109
 LJMP FAILED
DONE_109:
;//
 MOV PSW,#0 ;INST 110 // XRL direct,A (110)
 MOV A,#35H
 MOV 127,#53H
 XRL 127,A
 CLR A
 MOV A,127
 SUBB A,#66H
 JZ DONE_110
 MOV P1,#110
 LJMP FAILED
DONE_110:
;//
 MOV PSW,#0 ;INST 111 // XRL direct,#data (111)
 MOV 127,#35H
 XRL 127,#53H
 MOV A,127
 SUBB A,#66H
 JZ DONE_111
 MOV P1,#111
 LJMP FAILED
DONE_111:

;//
 MOV A,#128 ;INST 23 // CLR A (23)
 CLR A
 JZ DONE_23
 MOV P1,#23
 LJMP FAILED

111

DONE_23:
;//
 CLR C ;INST 25 // CLR C (24)
 CPL C ;INST 24 // CPL C (24)
 JC DONE_24
 MOV P1,#24
 LJMP FAILED
DONE_24:
;//
 CLR ACC.6 ;INST 26 // CLR bit (26)
 CPL ACC.6 ;INST 27 // CPL bit (27)
 JNZ DONE_26
 MOV P1,#26
 LJMP FAILED
DONE_26:
;//
 MOV PSW,#0 ;INST 28 // CPL A (28)
 MOV A,#255
 CPL A
 JZ DONE_28
 MOV P1,#28
 LJMP FAILED
DONE_28:

;//
 MOV PSW,#0 ;INST 90 // RL A (90)
 MOV A,#129
 RL A
 SUBB A,#3
 JZ DONE_90
 MOV P1,#90
 LJMP FAILED
DONE_90:
;//
 MOV PSW,#0 ;INST 91 // RLC A (91)
 MOV A,#129
 RLC A
 SUBB A,#1 ;A(2)-C(1)-1
 JZ DONE_91
 MOV P1,#91
 LJMP FAILED
DONE_91:
;//
 MOV PSW,#0 ;INST 92 // RR A (92)
 MOV A,#129
 RR A
 SUBB A,#192
 JZ DONE_92
 MOV P1,#92
 LJMP FAILED
DONE_92:
;//
 MOV PSW,#0 ;INST 93 // RRC A (93)
 MOV A,#3
 RRC A
 SUBB A,#0 ;A(1)-C(1)-0
 JZ DONE_93
 MOV P1,#93
 LJMP FAILED
DONE_93:

;//
 MOV PSW,#0 ;INST 101 // SWAP A (101)
 MOV A,#23H
 SWAP A
 SUBB A,#32H
 JZ DONE_101
 MOV P1,#101
 LJMP FAILED
DONE_101:

112

Data Transfer Operations

Following assembly code fragment is used to verify various data transfer

instructions

;//
 MOV PSW,#0
 MOV R0,#10 ;INST 52 // MOV A,Rn (52)
 MOV A,R0
 SUBB A,#10
 JZ DONE_52
 MOV P1,#52
 LJMP FAILED
DONE_52:
;//
 MOV PSW,#0 ;INST 53 // MOV A,direct (53)
 MOV 127,#10
 MOV A,127
 SUBB A,#10
 JZ DONE_53
 MOV P1,#53
 LJMP FAILED
DONE_53:
;//
 MOV PSW,#0 ;INST 54 // MOV A,@Ri (54)
 MOV R0,#127
 MOV 127,#10
 MOV A,@R0
 SUBB A,#10
 JZ DONE_54
 MOV P1,#54
 LJMP FAILED
DONE_54:
;//
 MOV PSW,#0 ;INST 55 // MOV A,#data (55)
 MOV A,#10
 SUBB A,#10
 JZ DONE_55
 MOV P1,#55
 LJMP FAILED
DONE_55:
;//
 MOV PSW,#0 ; INST 56 // MOV Rn,A (56)
 MOV A,#10
 MOV R0,A
 CLR A
 MOV A,R0
 SUBB A,#10
 JZ DONE_56
 MOV P1,#56
 LJMP FAILED
DONE_56:
;//
 MOV PSW,#0 ;INST 57 // MOV Rn,direct (57)
 MOV 127,#10
 MOV R0,127
 MOV A,R0
 SUBB A,#10
 JZ DONE_57
 MOV P1,#57
 LJMP FAILED
DONE_57:
;//
 MOV PSW,#0 ;INST 58 // MOV Rn,#data (58)
 MOV R0,#10
 MOV A,R0
 SUBB A,#10
 JZ DONE_58
 MOV P1,#58
 LJMP FAILED
DONE_58:
;//
 MOV PSW,#0 ;INST 59 // MOV direct,A (59)
 MOV A,#10

113

 MOV 127,A
 CLR A
 MOV A,127
 SUBB A,#10
 JZ DONE_59
 MOV P1,#59
 LJMP FAILED
DONE_59:
;//
 MOV PSW,#0 ;INST 60 // MOV direct,Rn (60)
 MOV R0,#10
 MOV 127,R0
 MOV A,127
 SUBB A,#10
 JZ DONE_60
 MOV P1,#60
 LJMP FAILED
DONE_60:
;//
 MOV PSW,#0 ;INST 61 // MOV direct,direct (61)
 MOV 127,#10
 MOV 126,127
 MOV A,126
 SUBB A,#10
 JZ DONE_61
 MOV P1,#61
 LJMP FAILED
DONE_61:
;//
 MOV PSW,#0 ;INST 62 // MOV direct,@Ri (62)
 MOV 127,#10
 MOV R0,#127
 MOV 126,@R0
 MOV A,126
 SUBB A,#10
 JZ DONE_62
 MOV P1,#62
 LJMP FAILED
DONE_62:
;//
 MOV PSW,#0 ;INST 63 // MOV direct,#data (63)
 MOV 127,#10
 MOV A,127
 SUBB A,#10
 JZ DONE_63
 MOV P1,#63
 LJMP FAILED
DONE_63:
;//
 MOV PSW,#0 ;INST 64 // MOV @Ri,A (64)
 MOV A,#10
 MOV R0,#127
 MOV @R0,A
 CLR A
 MOV A,127
 SUBB A,#10
 JZ DONE_64
 MOV P1,#64
 LJMP FAILED
DONE_64:
;//
 MOV PSW,#0 ;INST 65 // MOV @Ri,direct (65)
 MOV 127,#10
 MOV R0,#126
 MOV @R0,127
 MOV A,126
 SUBB A,#10
 JZ DONE_65
 MOV P1,#65
 LJMP FAILED
DONE_65:
;//
 MOV PSW,#0 ;INST 66 // MOV @Ri,#data (66)
 MOV R0,#127
 MOV @R0,#10
 MOV A,127
 SUBB A,#10
 JZ DONE_66
 MOV P1,#66

114

 LJMP FAILED
DONE_66:
;//
 MOV PSW,#0 ;INST 67 // MOV C,bit (67)
 MOV A,#1
 MOV C,ACC.0
 JC DONE_67
 MOV P1,#67
 LJMP FAILED
DONE_67:
;//
 MOV PSW,#0 ;INST 68 // MOV bit,C (68)
 CPL C
 MOV ACC.0,C
 CPL C
 SUBB A,#1
 JZ DONE_68
 MOV P1,#68
 LJMP FAILED
DONE_68:
;//
 MOV PSW,#0 ;INST 69 // MOVX @DPTR,A (69)
 MOV DPTR,#1234H ; MOVX A,DPTR
 MOV A,#55h
 MOVX @DPTR,A
 MOV A,#0
 MOVX A,@DPTR
 SUBB A,#55h
 JZ DONE_69
ERROR_69:
 MOV P1,#69
 LJMP FAILED
DONE_69:
;//
 MOV PSW,#0 ;INST 70 // MOVC A,@A+DPTR (70)
 MOV A,#0
 MOV DPTR,#DB_TBL
 MOVC A,@A+DPTR
 SUBB A,#66H
 JZ DONE_70
DB_TBL:
 DB 66H
 DB 77H
ERROR_70:
 MOV P1,#70
 LJMP FAILED
DONE_70:
;//
 MOV PSW,#0 ;INST 71 // MOVC A,@A+PC (71)
 MOV A,#4
 MOVC A,@A+PC
 SUBB A,#66H
 JZ DONE_71
 DB 66H
ERROR_71:
 MOV P1,#71
 LJMP FAILED
DONE_71:

Flow Control Instructions

To test the flow control instructions following assembly codes are used;

;//
 MOV PSW,#0 ;INST 10 // AJMP (10)
 AJMP DONE_10
 MOV P1,#10
 LJMP FAILED
DONE_10:

;//
 MOV PSW,#0 ;INST 19 // CJNE A,direct,rel (19)

115

 MOV A,#128
 MOV 100,#128
 CJNE A,100,ERROR_19
 MOV A,#127
 CJNE A,100,CHECK_C_19
ERROR_19:
 MOV P1,#19
 LJMP FAILED
CHECK_C_19:
 JC DONE_19
 MOV P1,#19
 LJMP FAILED
DONE_19:
;//
 MOV PSW,#0 ;INST 20 // CJNE A,#data,rel (20)
 MOV A,#128
 CJNE A,#128,ERROR_20
 MOV A,#127
 CJNE A,#128,CHECK_C_20
ERROR_20:
 MOV P1,#20
 LJMP FAILED
CHECK_C_20:
 JC DONE_20
 MOV P1,#20
 LJMP FAILED
DONE_20:
;//
 MOV PSW,#0 ;INST 21 // CJNE Rn,#data,rel (21)
 MOV R1,#128
 CJNE R1,#128,ERROR_21
 MOV R1,#127
 CJNE R1,#128,CHECK_C_21
ERROR_21:
 MOV P1,#21
 LJMP FAILED
CHECK_C_21:
 JC DONE_21
 MOV P1,#21
 LJMP FAILED
DONE_21:
;//
 MOV PSW,#0 ;INST 22 // CJNE @Ri,#data,rel (22)
 MOV R1,#100
 MOV 100,#128
 CJNE @R1,#128,ERROR_22
 MOV 100,#127
 CJNE @R1,#128,CHECK_C_22
ERROR_22:
 MOV P1,#22
 LJMP FAILED
CHECK_C_22:
 JC DONE_22
 MOV P1,#22
 LJMP FAILED
DONE_22:

;//
 MOV PSW,#0 ;INST 35 // DJNZ Rn,rel (35)
 MOV R0,#10
 DJNZ R0,JUMP_35 ;Should jump
 MOV P1,#35
 LJMP FAILED
JUMP_35:
 MOV R0,#1
 DJNZ R0,NOT_JUMP_35 ;Should not jump
 AJMP DONE_35
NOT_JUMP_35:
 MOV P1,#35
 LJMP FAILED
DONE_35:
;//
 MOV PSW,#0 ;INST 36 // DJNZ direct,rel (36)
 MOV 127,#10
 DJNZ 127,JUMP_36 ;Should jump
 MOV P1,#36
 LJMP FAILED
JUMP_36:
 MOV 127,#1

116

 DJNZ 127,NOT_JUMP_36 ;Should not jump
 AJMP DONE_36
NOT_JUMP_36:
 MOV P1,#36
 LJMP FAILED
DONE_36:

;//
 MOV A,#16 ;INST 42 // JB bit,rel (42)
 JB ACC.4,DONE_42
 MOV P1,#42
 LJMP FAILED
DONE_42:
;//
 MOV A,#8 ;INST 43 // JBC bit,rel (43)
 JBC ACC.3,CHECK_BIT_43
 MOV P1,#43
 LJMP FAILED
CHECK_BIT_43:
 JZ DONE_43
 MOV P1,#43
 LJMP FAILED
DONE_43:
;//
 MOV PSW,#0 ;INST 44 // JC rel (44)
 JC ERROR_44
 CPL C
 JC DONE_44
ERROR_44:
 MOV P1,#44
 LJMP FAILED
DONE_44:

;//
 MOV A,#4 ;INST 45 // JMP @A+DPTR (45)
 MOV DPTR,#JMP_TBL
 JMP @A+DPTR
JMP_TBL:
 AJMP JUMP_0
 AJMP JUMP_2
 AJMP JUMP_4
 AJMP JUMP_6
JUMP_0:
JUMP_2:
JUMP_6:
 MOV P1,#43
 LJMP FAILED
JUMP_4:
;//
 MOV A,#4 ;INST 46 // JNB bit,rel (46)
 JNB ACC.2,ERROR_46
 JNB ACC.1,DONE_46
ERROR_46:
 MOV P1,#46
 LJMP FAILED
DONE_46:
;//
 MOV PSW,#0 ;INST 47 // JNC rel (47)
 CPL C
 JNC ERROR_47
 CPL C
 JNC DONE_47
ERROR_47:
 MOV P1,#47
 LJMP FAILED
DONE_47:
;//
 MOV PSW,#0 ;INST 48 // JNZ rel (48)
 MOV A,#0
 JNZ ERROR_48
 MOV A,#1
 JNZ DONE_48
ERROR_48:
 MOV P1,#48
 LJMP FAILED
DONE_48:
;//
 MOV PSW,#0 ;INST 49 // JZ rel (49)
 MOV A,#2

117

 JZ ERROR_49
 MOV A,#0
 JZ DONE_49
ERROR_49:
 MOV P1,#49
 LJMP FAILED
DONE_49:
;//
 LJMP DONE_51 ;INST 51 // LJMP (51)
 MOV P1,#51
 LJMP FAILED
DONE_51:

ISR Routines and CPU Configuration

;//
 RSEG STACK
 DS 10H ; 16 Bytes Stack

 CSEG AT 0 ; Reset
 USING 0 ; Register-Bank 0
; Execution starts at address 0 on power-up.
 JMP START

 ; 0 EXTERNAL INT 0 0003h
 ; 1 TIMER/COUNTER 0 000Bh
 ; 2 EXTERNAL INT 1 0013h
 ; 3 TIMER/COUNTER 1 001Bh
 ; 4 SERIAL PORT 0023h
 CSEG AT 0x03 ;//Interrupt-0
 JMP ISR_INT0

 CSEG AT 0x0B ;//Timer Interrupt-0
 JMP ISR_TINT0

 CSEG AT 0x23 ;//Serial Interrupt
 JMP ISR_SINT

 RSEG PROG
START:
 MOV SP,#STACK-1 ; first set Stack Pointer
 MOV IE,#0x93 ; Enable ints, enable serial int, tint-0, ext-0
 MOV SCON,#0x90 ; mode 2: 9-bit UART, fixed rate, enable receiver
 MOV TH1,#0xF3 ; reload value 2400 baud
 MOV TH0,#0x08 ; reload value 2400 baud
 MOV TMOD,#0x22 ; timer 1 mode 2: 8-Bit reload
 MOV P2,#01 ; this is to check Serial Int
 MOV P3,#01 ; this is to check Int-0
 MOV P0,#01 ; this is to check Timer Int-0
 MOV TCON,#0x15 ; enable Timer 0, Ext-Ints are Edge Sensitive

;/////////////// INTERRUPTS //////////////////////////////
 RSEG PROG

ISR_INT0:
 MOV P3,#02
 RETI

ISR_TINT0:
 MOV P0,#02
 RETI

ISR_SINT :
 MOV P2,#02
 RETI

;///////////////// DONE /////// All instructions passed
 MOV P1,#127 ;
 MOV A,P2 ; check serial int result
 SUBB A,#2
 JZ S_DONE
 MOV P1,#112
S_DONE:

118

 MOV A,P3 ; check int-0 result
 SUBB A,#2
 JZ INT0_DONE
 MOV P1,#113
INT0_DONE:

 MOV A,P0 ; check timer int-0 result
 SUBB A,#2
 JZ TINT0_DONE
 MOV P1,#114
TINT0_DONE:

;///////////////// FAIL ////// P1 shows which one failed
FAILED: NOP
 MOV SBUF, P1

WAIT_HERE:
 MOV A,#127
WAIT1: DEC A
 JNZ WAIT1

 NOP

119

D 8051 Variants

Variant Pins Mfg RAM CODE XRAM Notes

C8051F0X 64 Cygnal 256 32KF 0 20 Mips,12bADC.DAC,SPI,i2c,PCA
MCS251 44 Intel 1K 16K 0 16 Bit 80x51FX, also Temic
MCS151 44 Intel 1K 16K 0 Fast 80x51FX

SABC509L 100qf Siemens 256 64Kx 3K ALU, PWM, CaptComp 2UART, 10b A/D
SABC517A 84 Siemens 256 64Kx 2K ALU, 8 PWM, 2UART, 10b A/D
SABC515 80qf Siemens 256 64Kx 2K 10A/D,XRAM,OWD,CAN V2B, Xt2
73D2910 100qfp SSI 256 128Kx 0 80C52+Ports+HDLC
78C438 84.100 Winbond 256 64Kx 1Mx 40Mhz, more ports C52
78E354 68.48 Winbond 256 16KF 256 20MHz, Video Monitor

SABC515A 68 Siemens 256 64Kx 1K 515+10bA/D,1K XRAM,BRG,OWD
MAX7651 Qfp64 Maxim 256 16KF 256 Turbo+ 12 Bit ADC, Dual UART
SABC508 64 Siemens 256 32K 1K
SS89C578 68 Siliconians 256 32KF 256 10ChA/D,256XRAM,SPIx2 FLASH
DS87C550 PLC68 Dallas 256 8K 1K Turbo 80C552, -i2c,+UART,PWM
80CE558 80qfp Philips 256 64Kx 768 Enhanced 80C552, Sep i2c, RSO
80C535A 68 Siemens 256 32K 1K 515+10bA/D,1K XRAM,BRG,OWD
80C592 68 Philips 256 64Kx 256 NOT FOR NEW DESIGNS!!
80C552 68 Philips 256 64Kx 0 10 Bit A/D, WDOG, PWM
87C552 68 Philips 256 8K 0 10b A/D, i2c, CaptComp, PWM
80C562 68 Philips 256 64Kx 0 8b A/D, i2c, CaptComp, PWM

SABC505 44 Siemens 256 64Kx 256 8bA/D,XRAM,OWD,CAN V2B, Xt2
SABC504 44 Siemens 256 64Kx 256 10bA/D,XRAM,OWD,DC Motor PWM
ADUC812 44 AnaDev 256 8KF 0 c51+FLash+EE+ADC+DAC
SABC541 44 Siemens 256 8K 256 USB Bus Controller 1.5/12MHz
87C451 68 Philips 128 4K 0 7 Ports, 1 Handshake
80C451 68 Philips 128 64Kx 0 7 Ports, 1 Handshake
87C453 68 Philips 256 8K 0 7 Ports, 1 Handshake

83CL580 56,64 Philips 256 6K 0 LV 8052+ADC+i2c+More INTs, WDOG
W77LE58 40 Winbond 256 64Kx 1K FAST, 2 DPTR 2 UART P4
80C320 40 Dallas 256 64Kx 0 FAST, 2 DPTR 2 UART VRST
80C310 40 Dallas 256 64Kx 0 Simpler 80C320 e62.5Mhz
87C520 40 Dallas 256 16K 1K 16K OTP enhanced 80C320

T89C51RD 40 Temic 256 64KF 1K X
P89C51RD 40 Philips 1K 64KF 0 80C51FX+PCA,1K, Flash
P89C51RC 40 Philips 512 32KF 0 80C51FX+PCA,512 Flash
87C51FX 40 Philips 256 32K 0 87C51FA,FB,FC FAMILY

T89C51CC 44 Temic 256 32KF 1K 2K EE, and PCA ISP.IAP
T89C51RB 40 Temic 256 16KF 1K SPI, PCA ISP.IAP
T89C51RC 40 Temic 256 32KF 1K SPI, PCA ISP.IAP

80C575 40 Philips 256 64Kx 0 8052+PCA,AnalogComp,WDOG,RSTLo
87C575 40 Philips 256 8K 0 8052+PCA,AnalogComp,WDOG,RSTLo
80C576 40 Philips 256 8K 0 8052+PCA,UPI,A/D,PWM,WDOG,VRSTLo
87C576 40 Philips 256 8K 0 8052+PCA,UPI,A/D,PWM,WDOG,VRSTLo

SABC501 40 Siemens 256 64Kx 0 40MHz Enhanced 8052 U/D
SABC502 40 Siemens 256 64Kx 256 8052+XRAM+8DP+WD+BRG+OWD
80C528 40 Philips 256 64Kx 256 8052+Wdog, XRAM
87C528 40 Philips 256 32K 256 8052+Wdog, XRAM

87F51RC 44 Atmel 256 32KF 256 OTP Flash, XRAM
87C524 40 Philips 256 16K 256 16K 87C528
80C550 40 Philips 128 4K 0 8b A/D WDog

80CL781 40 Philips 256 64Kx 0 Low Voltage 8052, More INTs, WDOG
83CL781 40 Philips 256 16K 0 Low Voltage 8052, More INTs, WDOG

120

80CL782 40 Philips 256 64Kx 0 Low Voltage, faster 781
89S8252 40.44 Atmel 256 8KF 2KE FLASH,8K+2KEE,WDOG,SPI,ISP

89S53 40.44 Atmel 256 12KF 0 89S8252 minus EEPROM
89S52 40.44 Atmel 256 8KF 0 WDog ISP Std C52
89S51 40.44 Atmel 256 4KF 0 WDog ISP Std C51
89C55 40.44 Atmel 256 20KF 0 FLASH, Fast,LV 87C52+20K
89C52 40.44 Atmel 256 8KF 0 FLASH, Fast,LV 87C52
87C54 40 Intel 256 16K 0 16K 87C52i
87C58 40 Intel 256 32K 0 32K 87C52i
87C52 40 Intel 256 8K 0 8052+U/D+OscO+4Li

80C154 40 Temic 256 64Kx 0 Enhanced 8052 (also OKI)
83C154D 40 Temic 256 32K 0 Enhanced 8052
83C154 40 OKI 256 16K 0 Enhanced 8052
80C654 40 Philips 256 64Kx 0 i2c
87C652 40 Philips 256 8K 0 i2c
87C654 40 Philips 256 16K 0 i2c

83CE654 44qfp Philips 256 16K 0 i2c, low RFI 654
DS5000 40 Dallas 128 32KR 32K 80x51 Secure+ NV support, BootLdr
DS2250 40sim Dallas 128 32K 32K As 5000, but smarter package
DS5001 80qfp Dallas 128 64Kx 64K Better 5000, + RPC + BatSw
80C851 40 Philips 128 64Kx 0 8051+256B EEPROM
83C852 6 Philips 256 6K 0 2K EEPROM SmartCard 80x51, Die, ALU

8052 40 All 256 64Kx 0 8051+Timer2
8752 40 Intel 256 8K 0 8051+Timer2

80C52 40 Siemens 256 64Kx 0 8051+Timer2,Philips,Oki,Temic
78E52 40 Winbond 256 8KF 0 40Mhz, FLASH C52
78C32 40 Winbond 256 64Kx 0 40MHz C32, Static

80CL410 40 Philips 128 64Kx 0 Low Voltage, More INTs i2c-UART
80CL31 40 Philips 128 64Kx 0 Low Voltage, More Ints 80x51

80CL610 40 Philips 256 64Kx 0 Low Voltage, More INTs i2c-UART
83CL411 40 Philips 256 64Kx 0 80CL31 with 256 RAM, No T2

89C51 40.44 Atmel 128 4KF 0 FLASH,Fast,LV 87C51
87C51 40 All 128 4K 0 Core processor,UART,Tmr0,Tmr1
78E51 40 Winbond 128 4KF 0 40MHz FLASH C51

T87C5112 52 Temic 256 16K 0 LPC with ADC,PCA
T87C5111 24 Temic 256 4K 0 LPC with ADC,PCA

87C752 28 Philips 64 2KE 0 87751+ A/D, PWM
87C749 28 Philips 64 2KE 0 87C752 - i2c
87C751 24 Philips 64 2KE 0 Small size, bit i2c
87C748 24 Philips 64 2KE 0 87C751 - i2c
87C750 24 Philips 64 1KE 0 Small size,

87LPC76X 20 Philips 128 4K 0 X
89C4051 20 Atmel 128 4KF 0 4K version of 89C2051
89C2051 20 Atmel 128 2KF 0 20Pin 89C51,+AnaComp+LED

89C1051U 20 Atmel 64 1KF 0 20Pin 1051+UART
89C1051 20 Atmel 64 1KF 0 20Pin 2051 -uart,timer1

121

E Standard 16-Bit CRC Code

;// crc16.a51
;// ASSEMBLY CODE FOR CRC-16 FOR SDLC
;// http://www.keil.com/support/docs/488.htm
;// Copyright 1995-1999 Keil Software, Inc.

$title(16 bit crc for polynomial X16+X12+X5+1 for SDLC)
public crc_gen,?crc_gen?byte,crc16
 ;CRC subroutine
 ;CRC uses most significant bit
 ;r6, r7 is CRC residue
 ;acc is data byte

crc_code segment code
crc_data segment data

 rseg crc_data
?crc_gen?byte:
cdat: ds 1
cres: ds 2

 rseg crc_code
 using 0

crc_gen:mov a,cdat
 mov r1,cres
 mov r0,cres+1
crc16: xrl a,r1 ; xor data byte
 mov r3,a ; temp store in r3
 swap a ; rotate right four bits
 mov r2,a ; temp save in r2
 xrl a,r3
 anl a,#0f0h
 xrl a,r0
 mov r4,a ; temp save
 mov a,r2
 rl a
 anl a,#1fh ; mask
 xrl a,r4
 mov r4,a ; save
 mov a,r3
 rl a
 anl a,#1
 xrl a,r0
 xrl a,r4
 mov r7,a ;low byte is complete
 mov a,r2
 anl a,#0fh
 xrl a,r3
 mov r1,a
 mov a,r2
 xrl a,r3
 rl a
 anl a,#0e0h
 xrl a,r1
 mov r6,a

 ret

122

 end

// C sample code for using CRC functions
// http://www.keil.com/support/docs/488.htm
// Copyright 1995-1999 Keil Software, Inc.

#include <reg51.h>
#include <stdio.h>

extern alien unsigned int crc_gen(unsigned char b,unsigned int residue);

void main (void) { /* main program */

unsigned char i, test;
unsigned char message[50] =

{0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,
 0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,
 0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,
 0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
 0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99 };
 // 16 bit CRC of given array is 0xE664

 unsigned int residue;

 SCON = 0x90; /* SCON */ /* setup serial port control */
 TMOD = 0x20; /* TMOD */
 TCON = 0x69; /* TCON */
 TH1 = 0xf3; /* TH1 */

 residue=0;
 for(i=0;i<sizeof(message);i++)
 {
 residue=crc_gen(message[i],residue);
 }

 if(residue == 0xE664){
 // 0xE664 is the correct result of 16 bit CRC of the given array
 SBUF = 127 ; // test passed mesage to serial monitor
 }else{
 SBUF = 0 ; // test failed
 }

 // delay elements
 for(i = 0; i <255; i++){
 residue ++ ;
 }
}

