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ABSTRACT 
 

 

2D CORRELATED DIFFUSION PROCESS FOR MOBILITY MODELING IN 

MOBILE NETWORKS 

 

Çakar, Tunç 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Buyurman Baykal 

 

December 2004, 80 pages 

 

This thesis introduces a novel mobility model based on so called “2D correlated 

diffusion process”. In this model, motion components over x and y axes are 

dependent. Joint density function of the process is derived. The expected exit 

time from an arbitrary domain is characterized by a boundary value problem. 

Analytical solution of this problem is given for a specific case. Numerical 

solution of the problem is presented by several examples. The results obtained in 

these examples are verified by simulations. The expected exit time computed by 

this method holds for any given 2D domain and any given starting position 

inside. 

 

 

 

Keywords: Mobility Model, Correlated Diffusion Process, Expected Exit Time 
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ÖZ 
 

 

HÜCRESEL �EBEKELERDE HAREKETL�L�K MODEL� �Ç�N YEN� B�R 2 

BOYUTLU BA�IL YAYINIM SÜREC� 

 

Çakar, Tunç 

Y.L., Elektrik ve Elektronik Mühendisli�i Bölümü 

Tez Yöneticisi: Prof. Dr. Buyurman Baykal 

 

Aralık 2004, 80 sayfa 

 

Bu çalı�ma, hücresel �ebekelerde kullanılmak üzere yeni bir hareketlilik modeli 

sunmaktadır. Bu model, 2 boyutlu ba�ıl yayınım süreci tekni�ine dayalıdır. x ve 

y eksenleri üzerindeki hareket bile�enleri birbirine istatistiki olarak ba�ımlıdır. 

Sunulan sürecin ortak yo�unluk fonksiyonu türetilmektedir. Bir sınır de�eri 

problemi olarak ortaya konan herhangi bir alandan ortalama çıkı� süresi, özel bir 

durum için analitik olarak çözülmektedir. Bu çıkı� süresi, ayrıca bazı örnekler 

üzerinde sayısal olarak hesaplanarak elde edilen de�erler simülasyon sonuçları 

ile desteklenmektedir. Problemin bir sınır de�eri problemi olarak ortaya 

konması, çözümün iste�e göre seçilmi� bir 2 boyutlu alana ve bu alan içerisinde 

yine iste�e göre seçilmi� bir hareket ba�langıç noktasına göre yapılmasına olanak 

tanımaktadır. 

 

 

 

Anahtar Kelimeler: Hareketlilik Modeli, Yayınım Süreci, Ortalama Çıkı� Süresi 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

A mobile network must provide its subscribers a certain degree of freedom to 

move without any service interruption. To deliver an uninterrupted service, it 

must manage mobility of its users. The procedure of handling the entire group of 

tasks that a wireless network must perform to provide mobility to its users is 

called “mobility management”. Mobility management can be divided into two 

categories: location management and handover management. Location 

management tasks are handled when mobile station (MS) is in idle mode i.e., 

when it does not have an active connection. Location update, paging, routing 

area update, cell selection, cell reselection, and PLMN selection are some of the 

idle mode tasks in a cellular network. Handover management tasks are handled 

when MS is in active (or dedicated) mode. The aim of handover management 

tasks is to provide continuity of an active connection. 
 

The research in mobility management is subject to rapid developments. These 

developments rely on hardware improvements as well as new algorithms or 

strategies. Performance analysis of a proposed strategy for performing a specific 

task of mobility management requires a mobility model. A mobility model is a 

description and characterization of movements of a mobile unit. 
 

Mobility modeling is accomplished in various ways in literature. Some of the 

works attempting to model mobility are studied in the next chapter in detail. 

Motion has time-varying nature, hence characterization of MS movements is 

commonly accomplished by stochastic modeling. Stochastic processes are 

powerful tools in this subject. They can be gathered into four groups. 



The first group has discrete index set and discrete state space. Markov chain is

the most important example of this group. Random walk processes are based

on regular Markov chains. They are used extensively for mobility modeling.

They became very popular due to their simplicity and ease of use.

The second group has continuous index set and discrete state space. The most

common processes of this group are continuous-time Markov chains and Pois-

son processes. Poisson processes are mainly used for two purposes: modeling

connection arrival rates and direction change times.

The third group has discrete index set and continuous state space. An example

of this sort of stochastic processes is Halris chains. It is a special type of Markov

chains. This kind of processes are hardly used for mobility modeling purposes.

The last group has continuous index set and continuous state space. Diffu-

sion processes are of this group. Fluid-flow mobility models rely on diffusion

processes. Brownian motion process (sometimes called Wiener process in liter-

ature) is the most common diffusion process.

Brownian motion process is a suitable tool for mobility modeling. It has two

parameters: C, and D. These parameters govern the behavior of movements.

C is the mean parameter. Every time unit, the process moves C units on av-

erage. This parameter is sometimes called drift velocity or drift parameter.

It determines average velocity of a moving body. D is the variance param-

eter. Variability of motion depends on this parameter. It is called location

uncertainty in mobility modeling studies.

A common way of using Brownian motion as a mobility model is to consider

the trajectory of two independent Brownian motions over cartesian coordinate

system. The pattern resulting from this method can be of two forms. If the

independent motion components are constructed by zero-mean processes, then

the pattern will look like a drunk man wandering around. If one of the motion

components or both are constructed with nonzero means, then the pattern will

be untied. It will tend to go in a direction continuously and forever. The mo-

bility patterns generated by this technique cannot go beyond these two forms.

In this thesis, a novel mobility model is introduced. This model is based on

a so called “2D correlated diffusion process”. Considering this process over

cartesian coordinate system, x and y components are dependent on each other.
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The first-order density function of the process is a joint normal density. The x

and y components are jointly normal stochastic processes.

The main objective of presenting 2D correlated diffusion process as a mobility

modeling technique is to provide possibility of controlling the amount of cor-

relation between the motion components. This model avoids the limitation of

two possible forms of mobility patterns in independent Brownian motions case.

Analytical description of 2D correlated diffusion process is provided by deriving

its joint density function in the thesis. By this description, probability density

of the location of an MS at a given time is available in a single function of two

variables and time. Such a description has not been provided for the technique

of independent Brownian motions so far.

The derivation of the density is provided in the thesis by first constructing a

2D correlated random walk. Then, limiting behavior of the random walk is

analyzed. Taking the limit as time index goes to zero, the probability distri-

bution function of the random walk generates a partial differential equation in

two state variables and time. The solution of this differential equation is found

to be a joint normal function satisfying all requirements of a first-order density

function of a stochastic process. This solution is the first-order density function

of the process and given by

f = A exp

{
− 1

2(1− r2)

[
(x− x0 − Cxt)

2

D2
xt

− 2r(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt

+
(y − y0 − Cyt)

2

D2
yt

]}

, where

A =
1

2πDxDyt
√

1− r2
, |r| ≤ 1

The proposed model allows to generate sample mobility characteristics by al-

tering five parameters Cx, Cy, Dx, Dy, and r. These parameters appear in

the joint density function. Many MS mobility profiles can be generated by

adjusting these parameters.

In analyzing performances of mobility management strategies, residence times

(or dwell times) in a registration area, a location area, or a cell are of great

interest. After completely presenting the 2D correlated diffusion process, this

3



thesis solves exit time problem from an arbitrary closed domain. The process

can start at any given point inside any 2-dimensional domain. The expected du-

ration of time the process stays inside that domain is computed. This duration

of time corresponds to residence times in registration areas or cells.

Another motivation of the thesis was to provide flexibility in choosing the shape

of registration area or cell from which the expected exit time is wanted. This

flexibility exists also in choosing the initial position of the motion inside that

cell. The expected exit time provided in the thesis can be from any arbitrary

shaped region starting at any given point inside that region.

To solve the exit time problem, a difference equation with boundary conditions

is constructed for the corresponding random walk such that the solution is

the expected number of transitions starting at a given point until reaching

the boundary. After taking the limit as time index goes to zero, a PDE with

boundary conditions is obtained. The solution of this boundary value problem

is the expected exit time of the 2D correlated diffusion process from the given

domain.

The BVP obtained this way is a nonhomogeneous BVP with homogeneous

boundary conditions. That is to say, the PDE of the problem is nonhomo-

geneous and the boundary condition is homogeneous. The PDE is a linear,

second-order, and constant-coefficient equation. The BVP can be solved nu-

merically for any given domain. In the thesis, two example numerical solutions

are given. Analytical solution of the BVP is provided for a circular domain.

This solution involves an assumption that the variance parameters of the pro-

cess are equal.

4
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CHAPTER 2 
 

 

RELATED WORK 
 

 

There are numerous mobility models in literature. They can be divided into 

several classes. One important family of mobility models are based on random 

walk processes. Another group are called fluid-flow models which use Brownian 

motion processes. Some models try to characterize cell or registration area 

residence times directly without considering a motion pattern. There are other 

mobility models which primarily concern direction changes of mobile unit. Some 

works attempt to model motion patterns in 3D environments. 
 

A well-known strategy in random walk models is to let an MS move from one 

cell to its neighbors with the equal probability at every time unit. However, such 

an assumption does not allow setting, tuning, or altering mobility characteristics 

of the MS which is modeled by this method. Random walk models assume that 

MSs have the same mobility pattern. They move at a constant speed and do not 

retain location uncertainty. 
 

[1], [2] and [3] are typical examples of the random walk model. In these works, 

every step of an MS is from one square cell to its neighbors with probability 1/4, 

or from one hexagonal cell to its neighbors with probability 1/6. These models 

are based on a regular Markov chain. 
 

In [4], an enhancement is introduced to random walk models by considering each 

mobile unit to move roughly a straight line (with occasional backtracking) for a 

significant period of time before changing direction. It is also noted that in 

roughly an orthogonal road system, the new direction after changing direction 

tends to be roughly perpendicular to the previous direction. 



In [5], a fractional Brownian motion (FBM) mobility model is presented. In

this model, four independent Brownian motion processes are adopted to suit the

motion in four bounds (west, east, north, and south). This paper includes the

following statement which is important in expressing the motivation behind

evolution from random walk to fluid-flow models. “Empirical transportation

engineering studies show that at a given point, the mobile speed is normally

distributed with the street speed limit as the mean and some standard devia-

tion.” According to this statement, it is concluded in the paper that the location

distribution at a specific time follows a gaussian distribution. Therefore, Brow-

nian motion is a suitable way of describing MS movements.

Some works directly attempt to characterize cell residence times. [6] and [8]

propose a new mobility model, called hyper-Erlang distribution model. This

model is used to characterize the cell residence time and obtain analytical re-

sults for the channel holding time. [7] classifies the mobility behavior of the

subscribers concerning the covered travel length into three categories: type A -

completely aimless motion, type B - preferred direction with a certain deviation

and type C - completely directed motion. Given the random variable X of the

travel length or the moving distance of a subscriber within a radio cell, and

V of the velocity, the random variable T of the dwell time can be calculated

as T = X/V . [35] allows for multiple platform types each having distinct mo-

bility characteristics. These are characterized by the statistical properties of

the dwell time of a platform of the given type. The dwell time of a platform

is a random variable with three different characterizations. These are sum of

negative exponentials, hyperexponential, and sum of hyperexponentials.

A great deal of mobility models in literature solve mobility problems in 1-

dimensional or 2-dimensional environments. Other than these, [10], [19], [24],

and [25] consider 3-dimensional case in indoor building environments. They

assume proper boundary conditions on each floor and analytically model the

mobility in multi-story buildings. Users move on the square-shaped floors of a

building. A staircase region consists of staircases and passages and is located

in the center. The remaining region is called the floor region. Horizontal and

vertical speeds are uniformly distributed. Users’ moving behaviors are statis-

tically the same on each floor. They move straight until changing directions

which occur according to Poisson process. When a user arrive at the outer wall,

6



they go back to the incoming direction without delay.

Another group of works treat direction of users as a separate variable. [12] takes

a squared region with a 5 meters grid pattern serving as a base for the model.

This grid can be changed and accommodated to special conditions. Within

this region several areas with different mobility parameters are defined. These

are the approximate preferred direction of movement, the divergence from the

preferred direction, the deviation of the velocity, and the probability for staying

in this area at initialization. [21] presents a new model describing the mobility

of vehicle-borne terminals under realistic urban traffic conditions. The model

accounts for arbitrary urban street patterns and realistic terminal movements

by a limited number of parameters that can be easily measured or derived

from a city map. It introduces distribution functions of street length, direction

changes at crossroads, and terminal velocity to find an analytical formulation.

In [31] some assumptions are made to model MS mobility. A LA has the shape

of a square. Mobile users move at a constant speed straightly until the change

of moving directions. Moving direction changes occur according to a Poisson

process and with the corresponding probabilities to left, right, up, and down.

[9] proposes a meta-model that is an integration of three key elements deter-

mining the mobility of users: the spatial environment, the user trip sequences,

and the user movement dynamics (eg. speed). The framework is available for

download as a stand-alone trace generator and may be used together with any

simulation or emulation tool for mobile networks to evaluate a specific scenario.

7
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CHAPTER 3 
 

 

A NOVEL MOBILITY MODEL: 2D 

CORRELATED DIFFUSION PROCESS 
 

 

2D correlated diffusion process is constructed in this chapter. Considering the 

process over cartesian coordinate system, x and y components are dependent on 

each other. The proposed process allows to change the amount of correlation 

between the components. The overall procedure of characterizing the process is 

summarized in figure 3.1. This procedure is followed in the following sections in 

detail. The procedure starts with description of 2D correlated random walk. The 

motion of this walk is constructed such that x and y components move together. 

This motion strategy creates dependency between the components. 
 

Then, selection of the parameters such as, step sizes, transition probabilities, and 

time index of the random walk is performed. This selection step is of great 

importance since when transition from discrete-time to continuous-time is 

performed, these parameters will determine the characteristics of the resulting 

2D correlated diffusion process. 
 

The derivation procedure continues with analysis of limiting behavior of the 

random walk. Transition probability distribution of the random walk is shown to 

yield a differential equation when expanded according to Taylor's theorem and 

taking the limit as time index goes to zero. The solution of this equation is shown 

to be a joint normal function. This function is the first-order density function of 

the 2D correlated diffusion process. 



Figure 3.1: Derivation steps of the 2D correlated diffusion process.

3.1 Construction of 2D Correlated Random Walk

Let {Xn, Yn; n = 0, 1, , . . .} be a 2D correlated random walk. Moves of each

component depends on each other according to the following transition proba-

bilities.

p1 = P{Xn+1 = Xn + 1, Yn+1 = Yn + 1}
p2 = P{Xn+1 = Xn + 1, Yn+1 = Yn − 1}
p3 = P{Xn+1 = Xn − 1, Yn+1 = Yn + 1}
p4 = P{Xn+1 = Xn − 1, Yn+1 = Yn − 1}

p1 + p2 + p3 + p4 = 1

The probability of being in state (i, j), after n steps starting at (i0, j0) is com-

puted recursively as

P(i0,j0)(i,j)(n) = P{Xn = i, Yn = j | X0 = 0, Y0 = 0}

= p1P(i0,j0)(i−1,j−1)(n− 1) + p2P(i0,j0)(i−1,j+1)(n− 1)

+p3P(i0,j0)(i+1,j−1)(n− 1) + p4P(i0,j0)(i+1,j+1)(n− 1) (3.1)

9



Figure 3.2: Moving diagram of 2D correlated random walk.

Suppose in this random walk, state changes have magnitudes ∆x, ∆y for Xn, Yn,

respectively at time instants ∆t, 2∆t, . . .. Let x and x0 be multiples of ∆x, y

and y0 be multiples of ∆y, and t be a multiple of ∆t. Moving diagram of the

random walk is given in figure 3.2. Let

f(t, x, y, x0, y0) , P{Xt = x, Yt = y | X0 = x0, Y0 = y0}

= p1f(t−∆t, x−∆x, y −∆y, x0, y0) + p2f(t−∆t, x−∆x, y + ∆y, x0, y0)

+p3f(t−∆t, x+∆x, y−∆y, x0, y0)+ p4f(t−∆t, x+∆x, y +∆y, x0, y0) (3.2)

Let n(t) be the number of transitions by time t.

n(t) , t

∆t

(x0, y0) is the initial position of the random walk and will be taken as (x0, y0) =

(0, 0) in the derivations of the following sections.

3.2 Statistics of the Random Walk

The expected value of {Xn(t), n(t) = 0, 1, . . .} is

E
[
Xn(t)

]
=

[
(p1 + p2)∆x− (p3 + p4)∆x

] t

∆t

10



= (p1 + p2 − p3 − p4)
∆x

∆t
t (3.3)

and the expected value of {Yn(t), n(t) = 0, 1, . . .} is

E
[
Yn(t)

]
=

[
(p1 + p3)∆y − (p2 + p4)∆y

] t

∆t

= (p1 + p3 − p2 − p4)
∆y

∆t
t (3.4)

Each component of the process can be expressed as a sum of n(t) independent

random variables as

Xn(t) =

n(t)∑
i=1

Xi

Yn(t) =

n(t)∑
i=1

Yi

, where (Xi, Yi) pairs are generated according to the probability distribution

P{Xi = ∆x, Yi = ∆y} = p1

P{Xi = ∆x, Yi = −∆y} = p2

P{Xi = −∆x, Yi = ∆y} = p3

P{Xi = −∆x, Yi = −∆y} = p4

The variance of Xn(t) is computed as follows.

V
(
Xn(t)

)
= n(t)V

(
Xi

)

= n(t)
(
E

[
X2

i

]− E
[
Xi

]2
)

= n(t)
[
(p1 + p2)∆x2 + (p3 + p4)(−∆x)2 − (

(p1 + p2)∆x− (p3 + p4)∆x
)2

]

= n(t)
[
∆x2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸

1

−∆x2(p1 + p2 − p3 − p4)
2
]

= n(t)∆x2
[
1− (p1 + p2 − p3 − p4)

2
]

=
∆x2

∆t

[
1− (p1 + p2 − p3 − p4)

2
]
t (3.5)

Similarly, the variance of Yn(t) is

V
(
Yn(t)

)
= n(t)V

(
Yi

)

11



= n(t)
(
E

[
Y 2

i

]− E
[
Yi

]2
)

= n(t)
[
(p1 + p3)∆y2 + (p2 + p4)(−∆y)2 − (

(p1 + p3)∆y − (p2 + p4)∆y
)2

]

= n(t)
[
∆y2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸

1

−∆y2(p1 + p3 − p2 − p4)
2
]

= n(t)∆y2
[
1− (p1 + p3 − p2 − p4)

2
]

=
∆y2

∆t

[
1− (p1 + p3 − p2 − p4)

2
]
t (3.6)

For the generic random variables Xi and Yi, the covariance is

C = E
[(

Xi − ηXi

)(
Yi − ηYi

)]

, where

E
[
Xi

]
= ηXi

= ∆x(p1 + p2 − p3 − p4) (3.7)

E
[
Yi

]
= ηYi

= ∆y(p1 + p3 − p2 − p4) (3.8)

The covariance can be rewritten as

C = E
[
XiYi

]− E
[
Xi

]
E

[
Yi

]

The first term in the covariance is

E
[
XiYi

]
= p1(∆x∆y) + p2(∆x(−∆y)) + p3(−∆x∆y) + p4(−∆x(−∆y))

= ∆x∆y(p1 − p2 − p3 + p4) (3.9)

Thus

C = ∆x∆y(p1−p2−p3+p4)−∆x∆y(p1+p2−p3−p4)(p1+p3−p2−p4) (3.10)

The correlation coefficient is

rxy =
C

σxσy

, where the variances are

V
(
Xi

)
= σ2

x = E
[
X2

i

]− E
[
Xi

]2

V
(
Yi

)
= σ2

y = E
[
Y 2

i

]− E
[
Yi

]2

σ2
x = (p1 + p2)∆x2 + (p3 + p4)(−∆x)2

12



= ∆x2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

= ∆x2

σ2
y = (p1 + p3)∆y2 + (p2 + p4)(−∆y)2

= ∆y2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

= ∆y2

Then

rxy =
∆x∆y

[
(p1 − p2 − p3 + p4)− (p1 + p2 − p3 − p4)(p1 + p3 − p2 − p4)

]

∆x∆y

= (p1 − p2 − p3 + p4)− (p1 + p2 − p3 − p4)(p1 + p3 − p2 − p4) (3.11)

Having computed the expected values and the variances of the X and Y com-

ponents and the correlation coefficient of the random walk, the limiting values

of these statistics are studied in the next section.

3.3 Limiting Behavior of the Random Walk

The question is how to choose the values p1, p2, p3, p4, ∆x, and ∆y so that as

∆t → 0

E
[
Xn(t)

] −→ Cxt

E
[
Yn(t)

] −→ Cyt

V
(
Xn(t)

) −→ D2
xt

V
(
Yn(t)

) −→ D2
yt

rxy −→ r

, where Cx, Cy, Dx, Dy, and r are constants. The following constraints answer

this question.

p1 + p2 =
1

2

(
1 +

Cx

√
∆t

Dx

)
(3.12)

p3 + p4 =
1

2

(
1− Cx

√
∆t

Dx

)
(3.13)

13



∆x = Dx

√
∆t (3.14)

p1 + p3 =
1

2

(
1 +

Cy

√
∆t

Dy

)
(3.15)

p2 + p4 =
1

2

(
1− Cy

√
∆t

Dy

)
(3.16)

∆y = Dy

√
∆t (3.17)

As ∆t → 0

E
[
Xn(t)

]
= (p1 + p2 − p3 − p4)

∆x

∆t
t

=
Cx

√
∆t

Dx

Dx

√
∆t

∆t
t

= Cxt −→ Cxt

E
[
Yn(t)

]
= (p1 + p3 − p2 − p4)

∆y

∆t
t

=
Cy

√
∆t

Dy

Dy

√
∆t

∆t
t

= Cyt −→ Cyt

V
(
Xn(t)

)
=

∆x2

∆t

[
1− (p1 + p2 − p3 − p4)

2
]
t

=
D2

x∆t

∆t


1−

(
Cx

√
∆t

Dx

)2

 t

−→ D2
xt

V
(
Yn(t)

)
=

∆y2

∆t

[
1− (p1 + p3 − p2 − p4)

2
]
t

=
D2

y∆t

∆t


1−

(
Cy

√
∆t

Dy

)2

 t

−→ D2
yt

To satisfy the requirement rxy → r as ∆t → 0. Let

p1 − p2 − p3 + p4 = r (3.18)

Solving (3.18) together with

p1 + p2 + p3 + p4 = 1

14



the following equation is obtained.

p1 + p4 =
1

2
(1 + r) (3.19)

Subtracting (3.16) from (3.12)

p1 − p4 =
1

2

Cx

√
∆t

Dx

+
1

2

Cy

√
∆t

Dy

(3.20)

Solving (3.19) together with (3.20)

p1 =
1

4

Cx

√
∆t

Dx

+
1

4

Cy

√
∆t

Dy

+
1

4
(1 + r) (3.21)

p4 =
1

2
(1 + r)− p1

= −1

4

Cx

√
∆t

Dx

− 1

4

Cy

√
∆t

Dy

+
1

4
(1 + r) (3.22)

p2 =
1

2
+

1

2

Cx

√
∆t

Dx

− p1

=
1

2
+

1

2

Cx

√
∆t

Dx

− 1

4

Cx

√
∆t

Dx

− 1

4

Cy

√
∆t

Dy

− 1

4
(1 + r)

=
1

4

Cx

√
∆t

Dx

− 1

4

Cy

√
∆t

Dy

+
1

4
(1− r) (3.23)

p3 =
1

2
− 1

2

Cx

√
∆t

Dx

− p4

=
1

2
− 1

2

Cx

√
∆t

Dx

+
1

4

Cx

√
∆t

Dx

+
1

4

Cy

√
∆t

Dy

− 1

4
(1 + r)

= −1

4

Cx

√
∆t

Dx

+
1

4

Cy

√
∆t

Dy

+
1

4
(1− r) (3.24)

As a result the following set of choices of the values p1, p2, p3, p4, ∆x, and ∆y

p1 =
1

4

Cx

√
∆t

Dx

+
1

4

Cy

√
∆t

Dy

+
1

4
(1 + r)

p2 =
1

4

Cx

√
∆t

Dx

− 1

4

Cy

√
∆t

Dy

+
1

4
(1− r)

p3 = −1

4

Cx

√
∆t

Dx

+
1

4

Cy

√
∆t

Dy

+
1

4
(1− r)
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p4 = −1

4

Cx

√
∆t

Dx

− 1

4

Cy

√
∆t

Dy

+
1

4
(1 + r)

∆x = Dx

√
∆t

∆y = Dy

√
∆t

will lead to the following limiting behavior of the correlated random walk pro-

cess as ∆t → 0

E
[
Xn(t)

] −→ Cxt

E
[
Yn(t)

] −→ Cyt

V
(
Xn(t)

) −→ D2
xt

V
(
Yn(t)

) −→ D2
yt

rxy −→ r

The limiting process {X(t), Y (t), t ≥ 0} constructed in this manner is the 2D

correlated diffusion process such that its expected values and variances for the

X and Y components together with the correlation coefficient are the limiting

values of those of the 2D correlated random walk.

3.4 Taylor’s Expansion, the PDE, and the Joint

Normal Solution

To characterize the first-order density function of the 2D correlated diffusion

process, t, x, y, x0, and y0 should be treated as continuous. Remember the

function (3.2) defined in section 3.1. As ∆t → 0, this function becomes the

first-order joint density function regarding the variables t, x, y, x0, and y0 as

continuous. The corresponding first-order distribution function is

F (t, x, y, x0, y0) = P{X(t) ≤ x, Y (t) ≤ y | X(0) = x0, Y (0) = y0} (3.25)

with

f(t, x, y, x0, y0) =
∂2

∂x∂y
F (t, x, y, x0, y0)

This thesis proposes that the density is joint normal N(η1, η2; σ1, σ2; rxy), where

η1 = x0 + Cxt

16



Figure 3.3: A sample plot of the joint density with Cx=Cy=0.5, Dx=Dy=1,

r=0.7 for the process starting at the origin.

η2 = y0 + Cyt

σ1 = Dx

√
t

σ2 = Dy

√
t

rxy = r

ie.

f = A exp

{
− 1

2(1− r2)

[
(x− x0 − Cxt)

2

D2
xt

− 2r(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt

+
(y − y0 − Cyt)

2

D2
yt

]}
(3.26)

This function is positive and its integral equals 1 if

A =
1

2πDxDyt
√

1− r2
, |r| ≤ 1

A sample plot of the joint density function is given in figure 3.3 for specific

selections of the main parameters and time.

17



To prove this argument, components of (3.2) is approximated using Taylor’s

polynomial of degree two for functions of five variables. Taylor’s theorem is

given in appendix A.1 in detail. Approximations of the components are available

in appendix A.2. Then, the approximated components are put in (3.2). Both

sides of the resulting equation are divided by ∆t. Taking the limit as ∆t → 0,

the following PDE is obtained.

ft = −Cxfx − Cyfy + DxDyrfxy +
1

2
D2

xfxx +
1

2
D2

yfyy (3.27)

This procedure of obtaining (3.27) is provided in appendix A.2 in detail. The

solution of this equation is (3.26). Proof of this statement is given in ap-

pendix A.3. Hence, the 2D correlated diffusion process is fully characterized by

explicitly determining its first-order density function.

The density has five parameters Cx, Cy, Dx, Dy, and r which determine the

characteristics of motion. By adjusting these parameters, many mobility pro-

files can be generated. That is to say, these are the main controlling parameters

of the proposed model.

Cx and Cy are drift parameters over the x and y axes, respectively. They

determine the average velocities of the motion components. That is to say, the

process moves Cx and Cy units on average over the corresponding axis at every

time unit. Increasing Cx of positive value causes the motion to tend more to go

in the positive x direction. Decreasing Cx of negative value causes the motion

to tend more to go in the negative x direction. The same thing happens for the

motion component over the y axis. If both Cx and Cy are adjusted together,

their cummulative effect is observed.

Dx and Dy are the variance parameters regarding the x and y axes, respectively.

They determine variability of the corresponding motion component. These pa-

rameters are positive valued and can be called location uncertainty parameters

from MS point of view. By increasing them, larger variations during the same

duration of time towards the corresponding axis are observed. Increase of both

yields larger variation in both axes.

r is the correlation coefficient with |r| < 1. This parameter determines the

amount of correlation between the motion components. This parameter pro-

vides the most important feature of the model. It allows to generate a great

18



deal of mobility patterns formed using this model when altered within its range.

Some sample realizations of the process with respect to various combinations

of the main parameters are available in appendix C.

The proposed process has been fully described by giving its first-order den-

sity function explicitly. First, 2D correlated random walk was constructed, in

which the motion components move together in four diagonal directions. This

strategy resulted in a correlated motion pattern. Then, statistics of the walk

were computed and taking the limit as time index goes to zero, they converged

to those of the 2D correlated diffusion process. 2D correlated random walk

became 2D correlated diffusion process, when transition from discrete-time to

continuous-time was made. Finally, the probability distribution of the random

walk yielded a PDE whose solution is the joint density of 2D correlated diffu-

sion process when expanded using Taylor’s theorem. And, it has been proven

that the solution follows a joint normal density.

Diffusion processes are strong tools of mobility modeling since they allow time

varying speeds of mobile units which they model. In addition to this powerful

nature of diffusion processes, the proposed model goes one step further and

provides to change the amount of correlation between the motion components.

The proposed model is based on 2D correlated diffusion process. Motion of a

moving body can be modeled by this process such that at a given time t, the

location of him has a joint normal density as given in (3.26).

The closed form of the density function of the process can be used in many

computations related to performance analysis of mobility management strate-

gies. One famous computation is the expected duration of time an MS stays in

a registration area or cell. The residence times (or dwell times) are frequently

used in location management and handover management studies. The next

chapter focusses on this topic.
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CHAPTER 4 
 

 

STATISTICAL DESCRIPTION OF RESIDENCE 

TIME 
 

 

The residence time of an MS in a registration area or cell is an important metric 

in performance analysis of mobility management strategies. After finishing the 

complete description of the model in the previous chapter, the expected duration 

of time an MS stays in a registration area or cell is analyzed in this chapter. This 

duration of time corresponds to the exit time of the 2D correlated diffusion 

process from a given domain starting at an interior point. 
 

The computation procedure of the exit time is followed through several steps. 

These steps are summarized in figure 4.1. Firstly, a difference equation with 

boundary condition is constructed for the corresponding 2D correlated random 

walk such that the solution of this equation is the expected number of periods 

until the process reaches the boundary on which it equals zero. 
 

The difference equation constructed by this manner results in a PDE with 

boundary condition when the limit as time index goes to zero. The resulting 

equation is a linear, second-order, nonhomogeneous, and constant-coefficient 

PDE of elliptic type in two variables. And, the obtained boundary condition is 

homogeneous. 
 

Then, this BVP is analyzed extensively. It is brought to its standard form through 

several steps. These steps which are rotation of axes, change of a dependent 

variable, and scaling are followed according to the methods given in [39]. Each 

step is described clearly in appendix B.3 in detail. 



Figure 4.1: Procedure of exit time computation.

Transformation procedure of the BVP into its standard form and its numerical

solution are demonstrated by an example which assumes hexagonal domain.

The solution is verified by simulation. Furthermore, numerical solution and

verification are repeated for another example with square domain. Finally, the

BVP is solved analytically for circular-shaped domain with an assumption that

variance parameters Dx and Dy are equal.

4.1 The Difference Equation, Taylor’s Expan-

sion, and the BVP

The 2D correlated random walk was described in chapter 3. In this random

walk, state changes have magnitudes ∆x and ∆y at time instants ∆t, 2∆t,. . . .

As ∆t → 0, the resulting process becomes a 2D correlated diffusion process with

parameters Cx, Cy, Dx, Dy, and r if p1, p2, p3, p4, ∆x, and ∆y are selected as

in section 3.3.

Let T (x, y) be the expected number of steps for the walk to reach the boundary

of the domain given in figure 4.2 starting at an arbitrary point (x, y) inside.

T (x, y) equals 0 over the boundary.
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Figure 4.2: The difference equation with boundary condition.

Then, the following difference equation holds inside the domain.

T (x, y) = p1

[
T (x + ∆x, y + ∆y) + ∆t

]
+ p2

[
T (x + ∆x, y −∆y) + ∆t

]

+p3

[
T (x−∆x, y + ∆y) + ∆t

]
+ p4

[
T (x−∆x, y −∆y) + ∆t

]

= p1T (x + ∆x, y + ∆y) + p2T (x + ∆x, y −∆y) + p3T (x−∆x, y + ∆y)

+p4T (x−∆x, y −∆y) + (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

= p1T (x + ∆x, y + ∆y) + p2T (x + ∆x, y −∆y) + p3T (x−∆x, y + ∆y)

+p4T (x−∆x, y −∆y) + 1 (4.1)

Taylor’s theorem for functions of two variables is applied to the components of

T (x, y). The approximated terms are plugged in (4.1). Terms are combined

and arranged. Then, both sides of the resulting equation are divided by ∆t.

Taking the limit as ∆t → 0 and simplifying the equation further, the following

PDE is obtained.

Lf = −1 (4.2)

, where L denotes the second-order differential operator

L = Cx
∂

∂x
+ Cy

∂

∂y
+ DxDyr

∂2

∂x∂y
+

1

2
D2

x

∂2

∂x2
+

1

2
D2

y

∂2

∂y2
(4.3)
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Figure 4.3: The resulting BVP.

, and

f , T (x, y)

The complete derivation of the resulting PDE is given in appendix B.1 in detail.

The resulting BVP is shown in figure 4.3. The PDE holds inside the domain D

and vanishes over the boundary dD. The solution of this BVP is the expected

exit time of the 2D correlated diffusion process from D.

4.2 Standard Form of the BVP and Numerical

Solutions

(4.2) is a second-order, linear, constant-coefficient, and nonhomogeneous PDE

in two variables. In order to solve the resulting BVP involving (4.2), it should

be brought into its standard form. Standard forms of second-order, linear, and

constant-coefficient PDEs are explained in appendix B.2. The transformation

procedure of the BVP into its standard form is summarized in figure 4.4. Each

step of this procedure is explained in appendix B.3 in detail.

The transformation steps of the BVP into its standard form and numerical

solution of the problem are demonstrated by example 1. The steps that are ex-
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Figure 4.4: Bringing the BVP into its standard form.

plained in detail in appendix B.3 are applied to this example. Then, numerical

solution is computed and verified by simulation.

Example 1. Consider an hexagon centered at the origin as given in figure 4.5.

A motion starts inside with the setting

Cx = 1.5

Cy = 1.2

Dx = 2

Dy = 3

r = 0.5

Before the transformations, the PDE inside the hexagon is

Lu = −1

, where

L = Cx
∂

∂x
+ Cy

∂

∂y
+ DxDyr

∂2

∂x∂y
+

1

2
D2

x

∂2

∂x2
+

1

2
D2

y

∂2

∂y2

24



Figure 4.5: Description of the example 1.

, and

u = u(x, y)

u(x, y) becomes 0 at the boundary of the hexagon. In the following steps,

transformation procedure is described step-by-step.

(i) Rotation of axes. This step is described in figure 4.6. According to the

settings given at the beginning of the example, the angle of rotation A defined

in appendix B.3.1 is computed as

A = −25.0972◦

The parameters a, b, c, and d which are given in appendix B.3.1 become

a = 1.2974

b = 5.2026

c = 0.8494

d = 1.7229
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Figure 4.6: Rotation of axes for the example 1.

The resulting PDE from this transformation becomes

L̃w = −1

, where

L̃ = a
∂2

∂m2
+ b

∂2

∂n2
+ c

∂

∂m
+ d

∂

∂n

, and

w = w(m,n)

The resulting domain is obtained by rotating the initial domain through an

angle A = 25.0972◦ counterclockwise or by rotating the axes through an angle

A = 25.0972◦ clockwise both are identical in effect. The resulting BVP from

this step is sketched in figure 4.7.

(ii) Change of a dependent variable. The parameter K defined in appendix B.3.2

is computed as

K = 0.28167

The resulting PDE from this process becomes

aumm + bunn −Ku = −exp

{
c

2a
m +

d

2b
n

}
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Figure 4.7: The resulting BVP from rotation of axes step for example 1.

with the values of a, b, c, d, and K given above. Note that the domain remains

unchanged after this step.

(iii) Scaling. The related parameters defined in appendix B.3.3 are computed

as

ξ = 0.70254

η = 0.71165

The resulting PDE from this transformation becomes

˜̃Lw = f(x, y)

, where

˜̃L =
∂2

∂x2
+

∂2

∂y2
− 1 w = w(x, y)

, and

f(x, y) = − 1

K
exp{ξx + ηy}

with the values of K, ξ, and η given above. The scaling procedure is also applied

to the domain. The resulting BVP from this step is sketched in figure 4.8.
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Figure 4.8: The resulting BVP from scaling step for example 1.

After completing the three steps, the PDE is now in its standard form. The

solution of the BVP is then numerically computed and its plot over the trans-

formed domain is given in figure 4.9. Top view of this solution is also available

in figure 4.10. Selecting an arbitrary point
(

˜̃x0, ˜̃y0

)
as

(
˜̃x0, ˜̃y0

)
= (1.509, 0.1367)

, then the solution z̃ at his point is computed as

z̃ = 5.636

z̃ is the solution of the transformed equation. In order to obtain the expected

exit time from the initial domain, it should be transformed through the three

steps in the reverse order. This back transformation procedure is described in

figure 4.11. After the inverse scaling

(x̃0, ỹ0) = (3.2387, 0.5875)

, and

z̃ = 5.636
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Figure 4.9: Solution plot for the transformed BVP in example 1.

Figure 4.10: Top view of the solution for the transformed BVP in example 1.
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Figure 4.11: Back transformation of the solution into the initial case.

After the inverse change of a dependent variable

(x̃0, ỹ0) = (3.2387, 0.5875)

, and

z = 1.7714

After the inverse rotation

(x0, y0) = (3.1821,−0.8417)

, and

z = 1.7714

The result obtained eventually is z that is the expected exit time from the

hexagon described initially. To validate this result a simulation was performed

with the setting

N = 100, 000

, and

∆t = 0.0001
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Figure 4.12: Description of the example 2.

, where N is the number of times the simulation is performed and ∆t is the

time step size described in section 3.1. In each simulation, motion was started

at (x0, y0) and time was measured until the process reaches the boundary of

the hexagon. Then, average of all samples was computed. The process was

simulated using the techniques in chapter 3. Specifically, for the given setting

(Cx, Cy, Dx, Dy, r) at the beginning of the example and the ∆t value, corre-

sponding transition probabilities p1, p2, p3, p4, and step size ∆x were computed.

Based on these probabilities and the step size, the process was simulated. ∆t

value used in this simulation is selected close to 0. This small selection of ∆t

results in a close realization to 2D correlated diffusion process.

The simulation resulted in

E[τ ]sim = 1.7782

as the expected exit time from the domain. The difference between the numer-

ical solution and the simulation result is computed as 0.3824%.

Example 2. In this example, the transformation steps are skipped. Only the

mobility setting and the results are given. Consider a square centered at the
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Figure 4.13: Solution plot for the transformed BVP in example 2.

origin as given in figure 4.12, and a motion inside with the setting

Cx = 2

Cy = 1.5

Dx = 1.2

Dy = 1

r = 0.2

The numerical solution of the BVP was found as

E[τ ]num = 0.8212

for the motion started at the point

(x0, y0) = (1.0271, 0.9663)

The simulation resulted in

E[τ ]sim = 0.82124

The difference between the results is 0.00487%. The numerical solution plot for

the standard form of the equation over the transformed domain is available in

figure 4.13. Top view of the solution is also given in figure 4.14.
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Figure 4.14: Top view of the solution for the transformed BVP in example 2.

As obvious from the results, the numerical solutions match the simulation re-

sults with small errors. Therefore, the expected exit time of a motion modeled

by 2D correlated diffusion process can be computed by solving the BVP nu-

merically for any domain shape and starting position inside. This technique

provides important flexibility in selection of cell shape from which the exit time

is desired.

4.3 Analytical Solution of the BVP

Before the transformations, the initial PDE was

Lu = −1

, where

L = Cx
∂

∂x
+ Cy

∂

∂y
+ DxDyr

∂2

∂x∂y
+

1

2
D2

x

∂2

∂x2
+

1

2
D2

y

∂2

∂y2

, and

u = u(x, y)

This PDE holds inside a general closed domain D with the boundary condition

u(x, y) = 0, {x, y} ∈ dD
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Figure 4.15: BVP with circular domain.

After the transformations performed in three steps, the resulting BVP became

˜̃Lw = f(x, y) (4.4)

, where

˜̃L =
∂2

∂x2
+

∂2

∂y2
− 1 w = w(x, y)

, and

f(x, y) = − 1

K
exp{ξx + ηy}

with the boundary condition

w(x, y) = 0, {x, y} ∈ d ˜̃D

, where d ˜̃D is the boundary of the resulting domain ˜̃D from the transformation

processes. The parameters K, ξ, and η were defined in appendix B.3.

The resulting PDE from the transformations is a Helmholtz equation whose ba-

sics are given in [40]. Brief description of this equation and the solution of BVP

involving Helmholtz equation for a circular domain are given in appendix B.4.
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For the circular domain the solution is given as

w =
∞∑

n=1

pn∑
j=1

A
(j)
n

λn − λ
w(j)

n (4.5)

, where pn, A
(j)
n , λn, λ, and w

(j)
n are defined in appendix B.4. This solution of

the BVP corresponds to the expected exit time of the 2D correlated diffusion

process from the circle centered at the origin. The Helmholtz equation (B.51)

described in appendix B.4 has a constant λ and a function Φ which should be

specified. For the selections of λ = −1 and Φ = −f the equations (B.51) and

(4.4) become identical.

The solution (4.5) is given in polar coordinates. It should be transformed into

cartesian coordinate system. Then, it is the solution of the transformed BVP

involving (4.4). This solution must be transformed back into the initial case

following the chart given in figure 4.11 to obtain the expected exit time from

the circle given in figure 4.15.

The selection of a circle as the domain is for a purpose. A circle centered at

the origin is not affected by the rotation of axes. That is to say, if the initial

domain is a circle centered at the origin before the rotation of axes, then it is

the same circle after the transformation. Hence, the effect of rotation of axes

on the domain disappears.

The scaling step has an influence on the domain, too. It changes the shape of

the domain. To avoid this, a selection of Dx = Dy is sufficient. Such a selection

makes the coefficients of ∂2/∂x2 and ∂2/∂y2 equal in (4.3). Hence, the circular

domain before and after the scaling process are the same.

In this chapter, the exit time of a moving body modeled by 2D correlated

diffusion process from an arbitrary-shaped cell has been computed. For the 2D

correlated random walk, a difference equation with a boundary condition was

written such that its solution is the expected number of periods until the process

reaches the boundary of the domain. Then, each term in the difference equation

was expanded using Taylor’s theorem and taking the limit as time index goes to

zero, the equation became a PDE. Taking into account the boundary condition

which was set together with the difference equation, the problem turned into a

BVP whose solution is the expected exit time. The resulting BVP was brought

into its standard form and solved numerically in two examples. The results
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obtained in these examples were verified by simulations. Finally, analytical

solution of the BVP was provided for a specific case.

The importance of representing the exit time problem in this way is that it

allows to compute the solution of the BVP numerically for any cell shape. This

flexibility is very useful and has not been provided in any works yet. Another

flexibility is that the solution can be computed for a motion starting at any

position inside a cell. It does not have to be center of mass. At a given time,

no matter where the MS is, the expected duration of time until it reaches the

cell boundary can be computed by this method.

For the analytical solution of the problem, some assumptions were made. The

cell shape was this time restricted to a circle. And, the variance paremeters of

the motion characterized by 2D correlated diffusion process were taken equal.

These assumptions were due to the hardness of bringing the BVP into its stan-

dard form. Circular domains remain unchanged after the rotation of axes pro-

cess. And, by the equal variances, the scaling step was avoided.
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CHAPTER 5 
 

 

CONCLUSIONS 
 

 

This thesis proposed a novel mobility model based on 2D correlated diffusion 

process. In addition to the powerful nature of diffusion processes in mobility 

modeling, this process provides an important facility to alter the amount of 

correlation between motion components over x and y axes. As well as the 

correlation coefficient, there are four more parameters controlling behavior of 

the mobility pattern that is generated using this model. By adjusting these five 

parameters, many mobility patterns can be generated. Diffusion processes allow 

time varying speeds if used in mobility modeling. Therefore, the proposed model 

has also this property. 
 

The proposed process was fully described by computing its joint density 

function. The computation procedure was provided in detail. First, a 2D 

correlated random walk was specified. Then, its statistics such as, mean, 

variance, and correlation coefficient were computed. Taking the limit as time 

index goes to zero, these statistics converged to a constant value multiplied by 

time and the resulting process became a 2D correlated diffusion process. 
 

To characterize the joint density function of the process, the terms in the 

probability distribution of the random walk were expanded using Taylor's 

theorem. The expanded terms were put in the expression for the probability 

distribution. Then, both sides of the equation were divided by time index. Taking 

the limit as time index goes to zero, the expression resulted in a PDE whose 

solution is the joint density of the 2D correlated diffusion process. It was shown 

that the density has a joint normal form and it was specified explicitly. 



After the complete presentation of the model, the works in this thesis involved

computation of the expected residence time of an MS inside a general registra-

tion area or cell. The shapes of these entities were not restricted to basic shapes

such as, square, circle, or hexagon. The method presented to compute the ex-

pected residence time is valid for any cell shape and for any motion starting at

any given point inside the cell. These freedoms provide important flexibility to

apply the model for a range of cell shapes.

The expected residence time computation was performed through several steps.

First, a difference equation with boundary condition was set such that its so-

lution is the expected number of periods for the 2D correlated random walk

to reach a given closed boundary. Then, the terms in the difference equation

were expanded using Taylor’s theorem. The expanded terms were put in the

difference equation and both sides were divided by time index. Taking the limit

as the time index goes to zero, a PDE with boundary condition was obtained

such that its solution is the expected exit time of the motion modeled by 2D

correlated diffusion process from the given domain.

The resulting BVP was solved numerically by two examples. The results were

supported by simulations for these examples. The errors between the simulation

results and the numerical solutions were found to be 0.3824% and 0.00487% for

the first and the second example, respectively. The analytical solution of the

BVP was provided for a circular domain and with a constraint that the variance

parameters of the motion modeled by the 2D correlated diffusion process are

equal.
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APPENDIX A 
 

 

SUPPLEMENTARY DERIVATIONS FOR THE 

JOINT DENSITY 
 

 

This appendix includes supplementary derivations for chapter 3 discussing the 

characterization of the 2D correlated diffusion process. The derivation procedure 

of the joint density function of the 2D correlated diffusion process was 

summarized in figure 3.1. It starts with construction of the 2D correlated random 

walk. 
 

Then, expected value, variance, covariance, and correlation coefficient of the 

random walk are computed. Taking the limit as time index goes to zero, the 

random walk becomes 2D correlated diffusion process. In the fourth step, 

Taylor's theorem is applied to (3.2) and a PDE is obtained. Finally, this PDE is 

solved. 
 

In the first section, Taylor's theorem for functions of n variables is discussed. 

The theorem is given in the vector form. This theorem is used to approximate the 

components of (3.2). Since the components are functions of five variables, the 

theorem is also provided for this specific case. 
 

In the second section, Taylor's theorem is applied to the components of (3.2). 

The expressions resulting from these approximations are put into the equation. 

Then, both sides of the equation are divided by �t. Taking the limit as �t�0, a 

PDE whose solution is the joint density function of the 2D correlated diffusion 

process is obtained. 



In the last section, the statement that (3.26) is the desired solution is verified

by directly putting (3.26) in the obtained PDE. This solution is a joint normal

function and it satisfies all requirements resulting from the limiting behavior of

the random walk described in section 3.3.

A.1 Taylor’s Theorem

In [38], Taylor’s theorem for functions of n variables is given in the vector form.

This section is a summary of Taylor’s theorem quoted from [38].

Fix an integer n > 0 and let

J = (j1, . . . , jn)

be a sequence of nonnegative integers. The norm of J is defined as

|J | = j1 + . . . + jn

and J ! as

J ! = j1! . . . jn!

If |J | = k, the differential operator DJ is defined as

DJ =
∂k

∂x1
j1 · · · ∂xn

jn

Thus, if f is a real valued function of n variables

DJf =
∂kf

∂x1
j1 · · · ∂xn

jn

If v̄ = (x1, . . . xn), ā = (a1, . . . an) ∈ R, (v̄ − ā)J is defined as

(v̄ − ā)J = (x1 − a1)
j1 · · · (xn − an)jn

In particular, if n = 2 and J = (1, 3), then

|J | = 4

J ! = 1!.3! = 6
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DJf =
∂4f

∂x1∂x2
3

and

(v̄ − ā)J = (x1 − a1)(x2 − a2)
3

Let U be an open subset of Rn, let a ∈ U , and let f : U → R be a function

whose partial derivatives of order ≤ (m+1) exist on U . The Taylor polynomial

of f of degree m about a is defined as

Pm(v̄) =
∑

|J |≤m

1

J !
(DJf)(ā)(v̄ − ā)J (A.1)

, where the expression on the right is the sum over all sequences J = (j1, . . . , jn)

of nonnegative integers with |J | = j1 + · · ·+ jn ≤ m.

What follows is a couple of examples. For, m = 2 and n = 1

v̄ = x

ā = a

J = j

|J | = j

P2(x) = f(a) +
df

dx
(a)(x− a) +

1

2

d2f

dx2
(a)(x− a)2

For m = 2 and n = 2

v̄ = (x1 + x2)

ā = (a1 + a2)

J = (j1, j2)

|J | = j1 + j2

P2(v̄) = f(ā) +
∂

∂x1

f(ā)(x1 − a1) +
∂

∂x2

f(ā)(x2 − a2)

+
∂2

∂x1∂x2

f(ā)(x1 − a1)(x2 − a2) +
1

2

∂2

∂x2
1

f(ā)(x1 − a1)
2

+
1

2

∂2

∂x2
2

f(ā)(x2 − a2)
2

To characterize the joint density function, a Taylor series approximation for

functions of five variables is needed, since the density will be of five variables
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(ie. t, x, y, x0, and y0). Approximation of degree 2 is sufficient. This case

corresponds to m = 2 and n = 5.

v̄ = (x1, x2, x3, x4, x5) ā = (a1, a2, a3, a4, a5)

J = (j1, j2, j3, j4, j5) |J | = j1 + j2 + j3 + j4 + j5

P2(v̄) = f(ā) +
∂

∂x1

f(ā)(x1 − a1) +
∂

∂x2

f(ā)(x2 − a2)

+
∂

∂x3

f(ā)(x3 − a3) +
∂

∂x4

f(ā)(x4 − a4) +
∂

∂x5

f(ā)(x5 − a5)

+
∂2

∂x1∂x2

f(ā)(x1 − a1)(x2 − a2) +
∂2

∂x1∂x3

f(ā)(x1 − a1)(x3 − a3)

+
∂2

∂x1∂x4

f(ā)(x1 − a1)(x4 − a4) +
∂2

∂x1∂x5

f(ā)(x1 − a1)(x5 − a5)

+
∂2

∂x2∂x3

f(ā)(x2 − a2)(x3 − a3) +
∂2

∂x2∂x4

f(ā)(x2 − a2)(x4 − a4)

+
∂2

∂x2∂x5

f(ā)(x2 − a2)(x5 − a5) +
∂2

∂x3∂x4

f(ā)(x3 − a3)(x4 − a4)

+
∂2

∂x3∂x5

f(ā)(x3 − a3)(x5 − a5) +
∂2

∂x4∂x5

f(ā)(x4 − a4)(x5 − a5)

+
1

2

∂2

∂x2
1

f(ā)(x1 − a1)
2 +

1

2

∂2

∂x2
2

f(ā)(x2 − a2)
2 +

1

2

∂2

∂x2
3

f(ā)(x3 − a3)
2

+
1

2

∂2

∂x2
4

f(ā)(x4 − a4)
2 +

1

2

∂2

∂x2
5

f(ā)(x5 − a5)
2

A.2 Approximation of the Components

Remember the function (3.2) defined in section 3.1. Taylor’s approximation of

order 2 for functions of 5 variables is applied to the components of this function

as follows.

For f(t−∆t, x−∆x, y −∆y, x0, y0)

x̄ = (t−∆t, x−∆x, y −∆y, x0, y0)

v̄ = (x1, x2, x3, x4, x5)

ā = (t, x, y, x0, y0)
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Note that (x4 − a4) = (x5 − a5) = 0. The approximation simplifies to

f(t−∆t, x−∆x, y −∆y, x0, y0) ∼= f(ā) +
∂

∂x1

f(ā)(−∆t) +
∂

∂x2

f(ā)(−∆x)

+
∂

∂x3

f(ā)(−∆y) +
∂2

∂x1∂x2

f(ā)(−∆t)(−∆x) +
∂2

∂x1∂x3

f(ā)(−∆t)(−∆y)

+
∂2

∂x2∂x3

f(ā)(−∆x)(−∆y) +
1

2

∂2

∂x2
1

f(ā)(−∆t)2 +
1

2

∂2

∂x2
2

f(ā)(−∆x)2

1

2

∂2

∂x2
3

f(ā)(−∆y)2 (A.2)

Similarly, for f(t−∆t, x−∆x, y + ∆y, x0, y0)

x̄ = (t−∆t, x−∆x, y + ∆y, x0, y0)

v̄ = (x1, x2, x3, x4, x5)

ā = (t, x, y, x0, y0)

f(t−∆t, x−∆x, y + ∆y, x0, y0) ∼= f(ā) +
∂

∂x1

f(ā)(−∆t) +
∂

∂x2

f(ā)(−∆x)

+
∂

∂x3

f(ā)(∆y) +
∂2

∂x1∂x2

f(ā)(−∆t)(−∆x) +
∂2

∂x1∂x3

f(ā)(−∆t)(∆y)

+
∂2

∂x2∂x3

f(ā)(−∆x)(∆y) +
1

2

∂2

∂x2
1

f(ā)(−∆t)2 +
1

2

∂2

∂x2
2

f(ā)(−∆x)2

1

2

∂2

∂x2
3

f(ā)(∆y)2 (A.3)

For f(t−∆t, x + ∆x, y −∆y, x0, y0)

x̄ = (t−∆t, x + ∆x, y −∆y, x0, y0)

v̄ = (x1, x2, x3, x4, x5)

ā = (t, x, y, x0, y0)

f(t−∆t, x + ∆x, y −∆y, x0, y0) ∼= f(ā) +
∂

∂x1

f(ā)(−∆t) +
∂

∂x2

f(ā)(∆x)

+
∂

∂x3

f(ā)(−∆y) +
∂2

∂x1∂x2

f(ā)(−∆t)(∆x) +
∂2

∂x1∂x3

f(ā)(−∆t)(−∆y)

+
∂2

∂x2∂x3

f(ā)(∆x)(−∆y) +
1

2

∂2

∂x2
1

f(ā)(−∆t)2 +
1

2

∂2

∂x2
2

f(ā)(∆x)2

1

2

∂2

∂x2
3

f(ā)(−∆y)2 (A.4)
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Lastly, for f(t−∆t, x + ∆x, y + ∆y, x0, y0)

x̄ = (t−∆t, x + ∆x, y + ∆y, x0, y0)

v̄ = (x1, x2, x3, x4, x5)

ā = (t, x, y, x0, y0)

f(t−∆t, x + ∆x, y + ∆y, x0, y0) ∼= f(ā) +
∂

∂x1

f(ā)(−∆t) +
∂

∂x2

f(ā)(∆x)

+
∂

∂x3

f(ā)(∆y) +
∂2

∂x1∂x2

f(ā)(−∆t)(∆x) +
∂2

∂x1∂x3

f(ā)(−∆t)(∆y)

+
∂2

∂x2∂x3

f(ā)(∆x)(∆y) +
1

2

∂2

∂x2
1

f(ā)(−∆t)2 +
1

2

∂2

∂x2
2

f(ā)(∆x)2

1

2

∂2

∂x2
3

f(ā)(∆y)2 (A.5)

Putting the expressions (A.2), (A.3), (A.4), and (A.5) in (3.2) and rearranging

the terms

f(t, x, y, x0, y0) = f(ā) = f(ā) (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

+
∂

∂x1

f(ā)(−∆t) (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

+
∂

∂x2

f(ā)∆x(−p1 − p2 + p3 + p4) +
∂

∂x3

f(ā)∆y(−p1 + p2 − p3 + p4)

+
∂2

∂x1∂x2

f(ā)∆t∆x(p1 + p2 − p3 − p4) +
∂2

∂x1∂x3

f(ā)∆t∆y(p1 − p2 + p3 − p4)

+
∂2

∂x2∂x3

f(ā)∆x∆y(p1 − p2 − p3 + p4) +
1

2

∂2

∂x2
1

f(ā)∆t2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

+
1

2

∂2

∂x2
2

f(ā)∆x2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

+
1

2

∂2

∂x2
3

f(ā)∆y2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

(A.6)

Dividing both sides of (A.6) by ∆t after necessary simplifications

0 = − ∂

∂x1

f(ā)− ∂

∂x2

f(ā)
∆x

∆t
(p1 +p2−p3−p4)− ∂

∂x3

f(ā)
∆y

∆t
(p1 +p3−p2−p4)

+
∂2

∂x1∂x2

f(ā)∆x(p1 + p2 − p3 − p4) +
∂2

∂x1∂x3

f(ā)∆y(p1 + p3 − p2 − p4)

+
∂2

∂x2∂x3

f(ā)
∆x∆y

∆t
(p1 − p2 − p3 + p4) +

1

2

∂2

∂x2
1

f(ā)∆t +
1

2

∂2

∂x2
2

f(ā)
∆x2

∆t

+
1

2

∂2

∂x2
3

f(ā)
∆y2

∆t
(A.7)
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Taking the limit as ∆t → 0

0 = − ∂

∂x1

f(ā)− ∂

∂x2

f(ā)
∆x

∆t
(p1 + p2 − p3 − p4)

︸ ︷︷ ︸
→Cx

− ∂

∂x3

f(ā)
∆y

∆t
(p1 + p3 − p2 − p4)

︸ ︷︷ ︸
→Cy

+
∂2

∂x1∂x2

f(ā)∆x(p1 + p2 − p3 − p4)
︸ ︷︷ ︸

→0

+
∂2

∂x1∂x3

f(ā)∆y(p1 + p3 − p2 − p4)
︸ ︷︷ ︸

→0

+
∂2

∂x2∂x3

f(ā)
∆x∆y

∆t︸ ︷︷ ︸
=DxDy

(p1 − p2 − p3 + p4)︸ ︷︷ ︸
=r

+
1

2

∂2

∂x2
1

f(ā)∆t

︸ ︷︷ ︸
→0

+
1

2

∂2

∂x2
2

f(ā)
∆x2

∆t︸︷︷︸
=D2

x

+
1

2

∂2

∂x2
3

f(ā)
∆y2

∆t︸︷︷︸
=D2

y

(A.8)

Note that the terms ∂2

∂x1∂x2
f(ā)∆x(p1 +p2−p3−p4) and ∂2

∂x1∂x3
f(ā)∆y(p1 +p3−

p2− p4) go to 0 since ∆x = Dx

√
∆t and ∆y = Dy

√
∆t. (A.8) can be rewritten

as

∂

∂x1

f(ā) = −Cx
∂

∂x2

f(ā)− Cy
∂

∂x3

f(ā) + DxDyr
∂2

∂x2∂x3

f(ā) +
1

2
D2

x

∂2

∂x2
2

f(ā)

+
1

2
D2

y

∂2

∂x2
3

f(ā) (A.9)

v̄ = (x1, x2, x3, x4, x5) is the transition variable. Since there is no risk of confu-

sion, the following set of notational conversions are possible.

f(ā) = f(t, x, y, x0, y0) , f

∂

∂x1

f(ā) =
∂

∂x1

f(v̄)

∣∣∣∣
v̄=ā

=
∂

∂t
f(ā) , ft

∂

∂x2

f(ā) =
∂

∂x2

f(v̄)

∣∣∣∣
v̄=ā

=
∂

∂x
f(ā) , fx

∂

∂x3

f(ā) =
∂

∂x3

f(v̄)

∣∣∣∣
v̄=ā

=
∂

∂y
f(ā) , fy

∂2

∂x2∂x3

f(ā) =
∂2

∂x2∂x3

f(v̄)

∣∣∣∣
v̄=ā

=
∂2

∂x∂y
f(ā) , fxy

∂2

∂x2
2

f(ā) =
∂2

∂x2
2

f(v̄)

∣∣∣∣
v̄=ā

=
∂2

∂x2
f(ā) , fxx
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∂2

∂x2
3

f(ā) =
∂2

∂x2
3

f(v̄)

∣∣∣∣
v̄=ā

=
∂2

∂y2
f(ā) , fyy

According to these conversions, (A.9) can be rewritten as

ft = −Cxfx − Cyfy + DxDyrfxy +
1

2
D2

xfxx +
1

2
D2

yfyy (A.10)

(A.10) is the final form of the PDE whose solution is

f = f(t, x, y, x0, y0)

, which is the joint density function of the correlated diffusion process.

A.3 Proof for the Solution

It suffices to plug (3.26) in (3.27). Derivatives of f are computed as follows.

ft =
−f

t
− f

2(1− r2)

[
− 2Cx(x− x0 − Cxt)

D2
xt

− (x− x0 − Cxt)
2

D2
xt

2

+
2rCx(y − y0 − Cyt)

DxDyt
+

2rCy(x− x0 − Cxt)

DxDyt
+

2r(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2

−2Cy(y − y0 − Cyt)

D2
yt

− (y − y0 − Cyt)
2

D2
yt

2

]
(A.11)

fx =
−f

2(1− r2)

[
2(x− x0 − Cxt)

D2
xt

− 2r(y − y0 − Cyt)

DxDyt

]
(A.12)

fy =
−f

2(1− r2)

[
2(y − y0 − Cyt)

D2
yt

− 2r(x− x0 − Cxt)

DxDyt

]
(A.13)

fxy =
fr

(1− r2)DxDyt
+

f

4(1− r2)2

[
2(x− x0 − Cxt)

D2
xt

− 2r(y − y0 − Cyt)

DxDyt

]

[
2(y − y0 − Cyt)

D2
yt

− 2r(x− x0 − Cxt)

DxDyt

]

=
fr

(1− r2)DxDyt
+

f

4(1− r2)2

[
− 4r(x− x0 − Cxt)

2

D3
xDyt2

+
4(x− x0 − Cxt)(y − y0 − Cyt)

D2
xD

2
yt

2
+

4r2(x− x0 − Cxt)(y − y0 − Cyt)

D2
xD

2
yt

2
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−4r(y − y0 − Cyt)
2

DxD3
yt

2

]
(A.14)

fxx =
−f

(1− r2)D2
xt

+
f

4(1− r2)2

[
2(x− x0 − Cxt)

D2
xt

− 2r(y − y0 − Cyt)

DxDyt

]2

=
−f

(1− r2)D2
xt

+
f

4(1− r2)2

[
4(x− x0 − Cxt)

2

D4
xt

2
+

4r2(y − y0 − Cyt)
2

D2
xD

2
yt

2

−8r(x− x0 − Cxt)(y − y0 − Cyt)

D3
xDyt2

]
(A.15)

fyy =
−f

(1− r2)D2
yt

+
f

4(1− r2)2

[
2(y − y0 − Cyt)

D2
yt

− 2r(x− x0 − Cxt)

DxDyt

]2

=
−f

(1− r2)D2
yt

+
f

4(1− r2)2

[
4(y − y0 − Cyt)

2

D4
yt

2
+

4r2(x− x0 − Cxt)
2

D2
xD

2
yt

2

−8r(x− x0 − Cxt)(y − y0 − Cyt)

DxD3
yt

2

]
(A.16)

The terms f
(1−r2)

immediately cancel in each of ft, fx, fy, fxy, fxx, and fyy.

ft + Cxfx + Cyfy︸ ︷︷ ︸
(i)

= DxDyrfxy +
1

2
D2

xfxx +
1

2
D2

yfyy

︸ ︷︷ ︸
(ii)

After the apparent simplifications

(i) =
−(1− r2)

t
+

1

2

(x− x0 − Cxt)
2

D2
xt

2
− r(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2

+
1

2

(y − y0 − Cyt)
2

D2
yt

2

(ii) =
r2

t
− r2

1− r2

(x− x0 − Cxt)
2

D2
xt

2
+

r

1− r2

(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2

+
r3

1− r2

(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2
− r2

1− r2

(y − y0 − Cyt)
2

D2
yt

2

− 1

2t
+

1

2(1− r2)

(x− x0 − Cxt)
2

D2
xt

2
+

r2

2(1− r2)

(y − y0 − Cyt)
2

D2
yt

2

− r

1− r2

(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2
− 1

2t
+

1

2(1− r2)

(y − y0 − Cyt)
2

D2
yt

2
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+
r2

2(1− r2)

(x− x0 − Cxt)
2

D2
xt

2
− r

1− r2

(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2

=
r2 − 1

t
+

(x− x0 − Cxt)
2

D2
xt

2

[ −r2

1− r2
+

1

2(1− r2)
+

r2

2(1− r2)

]

︸ ︷︷ ︸
1
2

+
(y − y0 − Cyt)

2

D2
yt

2

[ −r2

1− r2
+

r2

2(1− r2)
+

1

2(1− r2)

]

︸ ︷︷ ︸
1
2

+
(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2

[
r

1− r2
+

r3

1− r2
− r

1− r2
− r

1− r2

]

︸ ︷︷ ︸
−r

=
r2 − 1

t
+

(x− x0 − Cxt)
2

D2
xt

2

(
1

2

)
+

(y − y0 − Cyt)
2

D2
yt

2

(
1

2

)

+
(x− x0 − Cxt)(y − y0 − Cyt)

DxDyt2
(−r)

⇒
(i) = (ii)
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APPENDIX B 
 

 

AUXILIARY INFORMATION FOR THE EXIT 

TIME PROBLEM 
 

 

The procedure of exit time computation was summarized in figure 4.1. This 

procedure starts with setting a difference equation with boundary condition 

whose solution is the expected number of steps of the random walk to reach the 

boundary starting inside the given domain. 
 

Then, the components of the difference equation are approximated using Taylor's 

theorem for functions of two variables given in appendix A.1. The approximated 

terms are put in the difference equation. Both sides of the equation is divided by 

�t. Taking the limit as �t�0, a PDE is obtained. The boundary condition for the 

difference equation is transformed to continuous time. Hence, a BVP whose 

solution is the expected exit time of a motion modeled by 2D correlated diffusion 

process from the given domain is obtained. 
 

The PDE of the BVP is a second-order, linear, constant-coefficient, nonhomo- 

geneous, and elliptic PDE in two variables. Basics of second-order PDEs and 

related properties are provided in the second section. Furthermore, standard 

forms of PDEs are discussed in this section. 
 

In order to solve the BVP, it must be transformed into its standard form first. The 

transformation procedure is described in figure 4.4 and explained in the third 

section in detail. It involves the steps of rotation of axes, change of a dependent 

variable, and scaling. 



The standard form of the PDE of the BVP can be written in the form of

Helmholtz equation whose basics are provided in the last section. Solution of

the BVP involving Helmholtz equation is given in this section for a circular

domain.

B.1 Taylor’s Approximation for the Difference

Equation

The difference equation given by (4.1) is

T (x, y) = p1T (x + ∆x, y + ∆y) + p2T (x + ∆x, y −∆y) + p3T (x−∆x, y + ∆y)

+p4T (x−∆x, y −∆y) + 1 (B.1)

Applying Taylor’s theorem for functions of two variables to the components of

T (x, y), the following results are obtained.

(i) T (x + ∆x, y + ∆y) :

ā = (x, y)

v̄ = (x + ∆x, y + ∆y)

(v̄ − ā) = (∆x, ∆y)

⇒
T (x + ∆x, y + ∆y) ∼= T (x, y) +

∂

∂x
T (x, y)∆x +

∂

∂y
T (x, y)∆y

+
∂2

∂x∂y
T (x, y)∆x∆y +

1

2

∂2

∂x2
T (x, y)∆x2 +

1

2

∂2

∂y2
T (x, y)∆y2 (B.2)

(ii) T (x + ∆x, y −∆y) :

ā = (x, y)

v̄ = (x + ∆x, y −∆y)

(v̄ − ā) = (∆x,−∆y)

⇒
T (x + ∆x, y −∆y) ∼= T (x, y) +

∂

∂x
T (x, y)∆x +

∂

∂y
T (x, y)(−∆y)
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+
∂2

∂x∂y
T (x, y)∆x(−∆y) +

1

2

∂2

∂x2
T (x, y)∆x2 +

1

2

∂2

∂y2
T (x, y)(−∆y)2 (B.3)

(iii) T (x−∆x, y + ∆y) :

ā = (x, y)

v̄ = (x−∆x, y + ∆y)

(v̄ − ā) = (−∆x, ∆y)

⇒
T (x−∆x, y + ∆y) ∼= T (x, y) +

∂

∂x
T (x, y)(−∆x) +

∂

∂y
T (x, y)∆y

+
∂2

∂x∂y
T (x, y)(−∆x)∆y +

1

2

∂2

∂x2
T (x, y)(−∆x)2 +

1

2

∂2

∂y2
T (x, y)∆y2 (B.4)

(iv) T (x−∆x, y −∆y) :

ā = (x, y)

v̄ = (x−∆x, y −∆y)

(v̄ − ā) = (−∆x,−∆y)

⇒

T (x−∆x, y −∆y) ∼= T (x, y) +
∂

∂x
T (x, y)(−∆x) +

∂

∂y
T (x, y)(−∆y)

+
∂2

∂x∂y
T (x, y)(−∆x)(−∆y) +

1

2

∂2

∂x2
T (x, y)(−∆x)2

+
1

2

∂2

∂y2
T (x, y)(−∆y)2 (B.5)

Plugging these expressions in (B.1), combining, and arranging the terms, (B.1)

becomes

T (x, y) = T (x, y) (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

+∆x(p1 + p2 − p3 − p4)
∂

∂x
T (x, y)

+∆y(p1 − p2 + p3 − p4)
∂

∂y
T (x, y) + ∆x∆y(p1 − p2 − p3 + p4)

∂2

∂x∂y
T (x, y)

+(∆x)2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

1

2

∂2

∂x2
T (x, y)

+(∆y)2 (p1 + p2 + p3 + p4)︸ ︷︷ ︸
1

1

2

∂2

∂y2
T (x, y) + ∆t (B.6)
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Dividing both sides of (B.6) by ∆t and after taking the limit as ∆t → 0,

the resulting process becomes a 2D correlated diffusion process with setting

(Cx, Cy, Dx, Dy, r). Simplifying (B.6) further, the following PDE is obtained.

0 = Cx
∂

∂x
T (x, y) + Cy

∂

∂y
T (x, y) + DxDyr

∂2

∂x∂y
T (x, y)

+
1

2
D2

x

∂2

∂x2
T (x, y) +

1

2
D2

y

∂2

∂y2
T (x, y) + 1 (B.7)

Let

f , T (x, y)

fx , ∂

∂x
T (x, y)

fy , ∂

∂y
T (x, y)

fxy , ∂2

∂x∂y
T (x, y)

fxx , ∂2

∂x2
T (x, y)

fyy , ∂2

∂y2
T (x, y)

(B.7) can be rewritten as

Cxfx + Cyfy + DxDyrfxy +
1

2
D2

xfxx +
1

2
D2

yfyy = −1 (B.8)

It is convenient to write the equation in the form

Lf = −1 (B.9)

, where L denotes the second-order differential operator

L = Cx
∂

∂x
+ Cy

∂

∂y
+ DxDyr

∂2

∂x∂y
+

1

2
D2

x

∂2

∂x2
+

1

2
D2

y

∂2

∂y2
(B.10)
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B.2 Second-order PDEs and Related Proper-

ties

This section briefly describes the classification of second-order, linear, and

constant-coefficient PDEs and their standard forms. The rest of the section

is quoted from [39].

By the introduction of new variables m, n, and w, every second-order equation

auxx + 2buxy + cuyy + hux + kuy + eu = g(x, y) (B.11)

, where a, b, c, d, e, and f are constants, can be transformed into one and only

one of the following standard forms.

wmm + wnn + γw = ϕ(m,n) (B.12)

wmm − wnn + γw = ϕ(m,n) (B.13)

wmm − wn = ϕ(m,n) (B.14)

wmm + γw = ϕ(m,n) (B.15)

The equation (B.11) is called elliptic if it can be reduced to (B.12), and this

case occurs if ac− b2 > 0. It is called hyperbolic if it can be reduced to (B.13),

and this case occurs if ac− b2 < 0. If ac = b2, then the equation can be reduced

to (B.14) or (B.15) and is called parabolic or degenerate, respectively.

It should also be stated that γ is a constant with one of the values −1, 0,

or 1. In the above list of standard forms, there are three elliptic equations,

corresponding to the three choices γ = −1, 0, 1.

The determination of the general solution of the equation (B.11) is not possible

except in special cases (constant-coefficient), and even when possible is not

widely useful.

The importance of the result stated on the transformation of second-order equa-

tions into standard form is that it indicates that except for simple changes of

variable, there are only six different nondegenerate second-order equations, col-

lected into three classes, so that the study can be limited to these equations.

Further study of equations reveals that there are essential similarities among

equations of the same class, profound differences between the equations of one

class and those of another class.
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B.3 Transformation of the BVP into Its Stan-

dard Form

The transformation process studied in this section is accomplished following the

methods in [39]. This process is fully described in the following subsections.

B.3.1 Rotation of Axes

If the (m, n)-axes are obtained from the (x, y)-axes by rotation thorough angle

A, then (m,n) and (x, y) are related by either of the pair of equations

m = xcosA + ysinA (B.16)

n = −xsinA + ycosA (B.17)

x = mcosA− nsinA (B.18)

y = msinA + ncosA (B.19)

u(x, y) is a solution of

Lu = −1 (B.20)

u = u(x, y) = f = f(x, y) = T (x, y)

u(x, y) = u(mcosA− nsinA,msinA + ncosA) = w(m,n)

With these change of variables, the differentials ∂
∂x

, ∂
∂y

, ∂2

∂x2 ,
∂2

∂y2 , and ∂2

∂x∂y

become
∂

∂x
=

∂m

∂x

∂

∂m
+

∂n

∂x

∂

∂n
= cosA

∂

∂m
− sinA

∂

∂n
(B.21)

∂

∂y
=

∂m

∂y

∂

∂m
+

∂n

∂y

∂

∂n
= sinA

∂

∂m
+ cosA

∂

∂n
(B.22)

∂2

∂x2
=

∂

∂x

∂

∂x
=

(
cosA

∂

∂m
− sinA

∂

∂n

)(
cosA

∂

∂m
− sinA

∂

∂n

)

= cos2A
∂2

∂m2
− 2sinAcosA

∂2

∂m∂n
+ sin2A

∂2

∂n2
(B.23)

∂2

∂y2
=

∂

∂y

∂

∂y
=

(
sinA

∂

∂m
+ cosA

∂

∂n

)(
sinA

∂

∂m
+ cosA

∂

∂n

)
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= sin2A
∂2

∂m2
+ 2sinAcosA

∂2

∂m∂n
+ cos2A

∂2

∂n2
(B.24)

∂2

∂xy
=

∂

∂x

∂

∂y
=

(
cosA

∂

∂m
− sinA

∂

∂n

)(
sinA

∂

∂m
+ cosA

∂

∂n

)

= sinAcosA
∂2

∂m2
+

(
cos2A− sin2A

) ∂2

∂m∂n
− sinAcosA

∂2

∂n2
(B.25)

Substituting (B.21), (B.22), (B.23), (B.24), and (B.25) in (B.20), (B.20) be-

comes

L̃w = −1 (B.26)

, where

w = w(m,n)

, and

L̃ =
1

2
D2

x

[
cos2A

∂2

∂m2
− 2sinAcosA

∂2

∂m∂n
+ sin2A

∂2

∂n2

]

+
1

2
D2

y

[
sin2A

∂2

∂m2
+ 2sinAcosA

∂2

∂m∂n
+ cos2A

∂2

∂n2

]

+DxDyr

[
sinAcosA

∂2

∂m2
+

(
cos2A− sin2A

) ∂2

∂m∂n
− sinAcosA

∂2

∂n2

]

+Cx

[
cosA

∂

∂m
− sinA

∂

∂n

]
+ Cy

[
sinA

∂

∂m
+ cosA

∂

∂n

]

=
∂2

∂m2

[
1

2
D2

xcos
2A +

1

2
D2

ysin
2A + DxDyrsinAcosA

]

+
∂2

∂n2

[
1

2
D2

xsin
2A +

1

2
D2

ycos
2A−DxDyrsinAcosA

]

+
∂2

∂m∂n

[
1

2
D2

x

(− 2sinAcosA
)

+
1

2
D2

y

(
2sinAcosA

)
+ DxDyr

(
cos2A− sin2A

)]

+
∂

∂m

(
CxcosA + CysinA

)
+

∂

∂n

(− CxsinA + CycosA
)

(B.27)

After these transformations, in order that the mixed second partial derivative

does not appear, the coefficient of ∂2

∂m∂n
should be set to zero.

1

2
D2

x

(− 2sinAcosA
)

+
1

2
D2

y

(
2sinAcosA

)
+ DxDyr

(
cos2A− sin2A

)
= 0

⇒

2sinAcosA

(
−1

2
D2

x +
1

2
D2

y

)
+

(
cos2A− sin2A

)
DxDyr = 0 (B.28)
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Using the half-angle formulas

sin2A = 2sinAcosA

cos2A = cos2A− sin2A

(B.28) becomes

sin2A

(
−1

2
D2

x +
1

2
D2

y

)
+ cos2A

(
DxDyr

)
= 0

⇒
tan2A =

2DxDyr

D2
x −D2

y

Selection of A

A =
1

2
tan−1

(
2DxDyr

D2
x −D2

y

)
(B.29)

causes the term ∂2

∂m∂n
to vanish. If the following set of parametric definitions

are made

a , 1

2
D2

xcos
2A +

1

2
D2

ysin
2A + DxDyrsinAcosA

b , 1

2
D2

xsin
2A +

1

2
D2

ycos
2A−DxDyrsinAcosA

c , CxcosA + CysinA

d , −CxsinA + CycosA

, the differential operator L̃ can be rewritten as

L̃ = a
∂2

∂m2
+ b

∂2

∂n2
+ c

∂

∂m
+ d

∂

∂n
(B.30)

It should also be noted that rotation of axes must also be applied to the domain

where the PDE holds. The boundary condition

u(x, y) = 0, {x, y} ∈ dD (B.31)

becomes

w(m, n) = 0, {m,n} ∈ dD̃ (B.32)

, where dD̃ is the boundary of the resulting domain D̃ from the transformation

(x, y) → (m,n) (ie. rotation of axes).
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B.3.2 Change of a Dependent Variable

The yielding equation from the rotation of axes was

L̃w = −1

, where

w = w(m,n)

, and

L̃ = a
∂2

∂m2
+ b

∂2

∂n2
+ c

∂

∂m
+ d

∂

∂n

The aim of the change of a dependent variable is to remove the single partial

derivatives ∂
∂m

and ∂
∂n

from L̃. To accomplish this let

w = exp
{
B1m + B2n

}
u (B.33)

, where

u = u(m,n)

Let

e , exp
{
B1m + B2n

}

Differentiating (B.33)

wm = B1eu + ume (B.34)

wn = B2eu + une (B.35)

wmm = B2
1eu + umB1e + umme + B1eum (B.36)

wnn = B2
2eu + unB2e + unne + B2eun (B.37)

Substituting (B.34), (B.35), (B.36), and (B.37) in (B.26)

aB2
1eu + aumB1e + aumme + aB1eum + bB2

2eu + bunB2e

+bunne + bB2eun + cB1eu + cume + dB2eu + dune = −1

Collecting terms together

aeumm + beunn +
(
aB1e + aB1e + ce

)
um +

(
bB2e + bB2e + de

)
un
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+
(
aB2

1e + bB2
2e + cB1e + dB2e

)
u = −1

Dividing both sides by e

aumm + bunn +
(
2aB1 + c

)
um +

(
2bB2 + d

)
un

+
(
aB2

1 + bB2
2 + cB1 + dB2

)
u = −1

e
(B.38)

In order to have the first partial derivatives vanish

2aB1 + c = 0

2bB2 + d = 0

⇒
B1 = − c

2a
(B.39)

B2 = − d

2b
(B.40)

(B.38) becomes

aumm + bunn +

[
a

c2

4a2
+ b

d2

4b2
+ c

(−c

2a

)
+ d

(−d

2b

) ]
u

= −exp

{
−

(
− c

2a
m− d

2b
n

) }

Rearranging the terms and making the necessary simplifications

aumm + bunn +

[
− c2

4a
− d2

4b

]
u = −exp

{
c

2a
m +

d

2b
n

}
(B.41)

Let

K , c2

4a
+

d2

4b

, then

aumm + bunn −Ku = −exp

{
c

2a
m +

d

2b
n

}
(B.42)

The domain resulting from the change of a dependent variable step remains

unchanged. That is to say, this process does not have any influence on the

domain of the problem.
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B.3.3 Scaling

The final step is a “change of scale”

m = µ1x (B.43)

n = µ2y (B.44)

, where µ1 and µ2 are chosen so that in the transformed equation the coefficients

of wxx and wyy are equal in absolute value. The differentials ∂2

∂m2 and ∂2

∂n2 become

∂2

∂m2
=

1

µ2
1

∂2

∂x2

∂2

∂n2
=

1

µ2
2

∂2

∂y2

The condition
a

µ2
1

=
b

µ2
2

= K

is satisfied if

µ1 =

√
a

K
(B.45)

µ2 =

√
b

K
(B.46)

Hence, after the transformation (B.42) becomes

Kwxx + Kwyy −Kw = −exp

{
c

2a

√
a

K
x +

d

2b

√
b

K
y

}

Dividing both sides by K

wxx + wyy − w = − 1

K
exp

{
c

2a

√
a

K
x +

d

2b

√
b

K
y

}
(B.47)

Let

ξ , c

2a

√
a

K

, and

η ,=
d

2b

√
b

K
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Then, (B.47) can be rewritten as

˜̃Lw = f(x, y) (B.48)

, where

˜̃L =
∂2

∂x2
+

∂2

∂y2
− 1

, and

w = w(x, y) = u(µ1x, µ2y)

f(x, y) constitutes the nonhomogeneous part of the equation.

f(x, y) = − 1

K
exp{ξx + ηy}

It should also be noted that scaling must also be applied to the domain where

the PDE holds. The boundary condition

u(m,n) = 0, {m, n} ∈ dD̃ (B.49)

becomes

w(x, y) = 0, {x, y} ∈ d ˜̃D (B.50)

, where d ˜̃D is the boundary of the resulting domain ˜̃D from the transformation

(m, n) → (x, y) (ie. scaling).

B.4 Notes on the Analytical Solution of the

BVP

This section is quoted from [40]. Any elliptic equation with constant coefficients

can be reduced to the Helmholtz equation

∆2w + λw = −Φ(x, y) (B.51)

, where ∆2 is a two-dimensional Laplace operator

∆2 =
∂2

∂x2
+

∂2

∂y2

, and λ is a constant.
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The Helmholtz equation is called homogeneous is Φ = 0 and and nonhomoge-

neous if Φ 6= 0. A homogeneous BVP is a BVP for the homogeneous Helmholtz

equation with homogeneous boundary conditions; a particular solution of a

homogeneous BVP is w = 0.

The values λn of the parameter λ for which there are nontrivial solutions (solu-

tions other than identical zero) of the homogeneous BVP are called eigenvalues

and the corresponding solutions , w = wn, are called eigenfunctions of the BVP.

There are infinitely many eigenvalues {λn}; the set of eigenvalues forms a dis-

crete spectrum for the given BVP. All eigenvalues are positive, except for the

eigenvalue λ0 = 0 (the corresponding eigenfunction w0 = const. The eigenval-

ues are numbered in order of increasing magnitudes, λ1 < λ2 < λ3 < · · · .

B.4.1 Nonhomogeneous Helmholtz Equation with Ho-

mogeneous Boundary Conditions

Three cases are possible.

1. If the equation parameter λ is not equal to any one of the eigenvalues, then

there exists the series solution.

w =
∞∑

n=1

An

λn − λ
(B.52)

, where

An =
1

‖wn‖2

∫

S

ΦwndS

, and

‖wn‖2 =

∫

S

w2
ndS

2. If λ is equal to some eigenvalue, λ = λm, then the solution of the nonhomo-

geneous problem exists only if the function Φ is orthogonal to wm, i.e.
∫

S

ΦwndS = 0

In this case the system is expressed as

w =
m−1∑
n=1

An

λn − λm

wn +
∞∑

n=m+1

An

λn − λm

wn + Cwm (B.53)
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, where C is an arbitrary constant.

3. If λ = λm and
∫

S
ΦwndS 6= 0, then the BVP for the nonhomogeneous

equation does not have solutions.

Remark If pn mutually orthogonal eigenfunctions w
(j)
n (j = 1, 2, . . . , pn) corre-

spond to each eigenvalue λn, then, for λ 6= λn, the solution is written as

w =
∞∑

n=1

pn∑
j=1

A
(j)
n

λn − λ
w(j)

n (B.54)

, where

A(j)
n =

1∥∥w
(j)
n

∥∥2

∫

S

Φw(j)
n dS

, and ∥∥w(j)
n

∥∥2
=

∫

S

[
w(j)

n

]2
dS

B.4.2 Solution of the Homogeneous BVP for a Circular

Domain

A two-dimensional nonhomogeneous Helmholtz equation in the polar coordinate

system is written as

1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2

∂ϕ2
+ λw = −Φ(r, ϕ) (B.55)

r =
√

x2 + y2

In what follows, the eigenvalues and eigenfunctions of homogeneous BVP for the

homogeneous Helmholtz equation are given. The solutions of the corresponding

nonhomogeneous problems can be constructed using the formulas presented in

appendix B.4.1.

Considering a circle of radius R centered at the origin as the domain of the

problem as given in figure 4.15 with the boundary condition

w = 0 at r = R (B.56)

Eigenvalues

λnm =
µ2

nm

R2
; n = 0, 1, 2, . . . ; m = 1, 2, 3, . . . (B.57)
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Here, the µnm are positive zeros of the Bessel functions, Jn(µ) = 0.

Eigenfunctions

w(1)
nm = Jn

(
r
√

λnm

)
cosnϕ (B.58)

w(2)
nm = Jn

(
r
√

λnm

)
sinnϕ (B.59)

The eigenfunctions possess the axial symetry property

w
(1)
0m = J0

(
r
√

λ0m

)

The square of the norm of an eigenfunction is given by

∥∥w(k)
nm

∥∥2
=

1

2
πR2(1 + δn0)

[
J ′n(µnm)

]2
, k = 1, 2 (B.60)

, where

δij =

{
1 for i = j,

0 for i 6= j
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APPENDIX C 
 

 

SAMPLE REALIZATIONS OF THE PROCESS 
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 Figure A.1: Sample realization of the process with Cx=0, Cy=0, Dx=1, Dy=1, 
r=0.7, N=10,000, and �t=0.01. 
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 Figure A.2: Sample realization of the process with Cx=0.1, Cy=0.1, Dx=1, 
Dy=1, r=0.7, N=10,000, and �t=0.01. 
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 Figure A.3: Sample realization of the process with Cx=0.3, Cy=0.1, Dx=1, 
Dy=1, r=0.9, N=10,000, and �t=0.01. 
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 Figure A.4: Sample realization of the process with Cx=0.1, Cy=0.1, Dx=3, 
Dy=1, r=0.5, N=10,000, and �t=0.01. 
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