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ABSTRACT

PROLONGATION STRUCTURES, BACKLUND TRANSFORMATIONS
AND PAINLEVE ANALYSIS OF NONLINEAR EVOLUTION EQUATIONS

YURDUSEN, Ismet
Ph.D., Department of Physics
Supervisor: Assoc. Prof. Dr. Ayse Karasu

November 2004, 127 pages.

The Wahlquist-Estabrook prolongation technique and the Painlevé analysis, used
for testing the integrability of nonlinear evolution equations, are considered and
applied both to the Drinfel’d-Sokolov system of equations, indeed known to be
one of the coupled Korteweg-de Vries (KdV) systems, and Kersten-Krasil’shchik
coupled KdV-mKdV equations. Some new Backlund transformations for the

Drinfel’d-Sokolov system of equations are also found.

Keywords: Prolongation, Backlund, Painlevé, Drinfel’d-Sokolov, Kersten-Krasil’shchik.
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oY/

DOGRUSAL OLMAYAN EVRIM DENKLEMLERININ UZATMA YAPILARI,
BACKLUND DONUSUMLERI VE PAINLEVE ANALIZI

YURDUSEN, Ismet
Doktora, Fizik Béliimii

Tez Yoneticisi: Assoc. Prof. Dr. Ayse Karasu

Kasim 2004, 127 sayfa.

Dogrusal olmayan evrim denklemlerinin integre edilebilirligini test etmede kul-
lanilan Wahlquist-Estabrook uzatma teknigi ve Painlevé analizi incelendi ve Korteweg-
de Vries (KdV) tipi denklem ¢iftlerinden biri olarak bilinen Drinfel’d-Sokolov
sistemi ile Kersten-Krasil’shchik bagimli KdV-mKdV denklemlerine uygulanda.

Ayrica Drinfel’d-Sokolov sisteminin bazi yeni Backlund dontigtimleri bulundu.

Anahtar Sozciikler: Uzatma, Backlund, Painlevé, Drinfel’d-Sokolov, Kersten-

Krasil’shchik.
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CHAPTER 1

INTRODUCTION

It is well-known that the mathematical modeling of a great variety of phenom-
ena leads to certain nonlinear evolution equations. For example in classical field
theories such as general relativity and nonabelian gauge theories the equations of
motion are nonlinear. Other than these areas nonlinear evolution equations are
also encountered in branches of physics and engineering such as fluid dynamics,
laser physics, protein dynamics, plasma physics etc [1]. These differential equa-
tions are usually solved by the use of approximation techniques and numerical
methods. However, although some valuable information can be obtained from
approximate solutions, the range of applicability and the usefulness of these solu-
tions increase the interest in closed-form solutions and in methods for generating
solutions of nonlinear partial differential equations. In fact any analytic result
is always preferable to a numerical computation. Furthermore the analytic ap-
proach often provides global knowledge of the solution, whereas the numerical
approach is always local and hence mostly insufficient. Therefore it is important
to classify nonlinear partial differential equations according to their integrability

properties.

Historically one of the major developments in the domain of integrability was



initiated by the famous observation of John Scott Russell in 1834 [2]. Approx-
imately sixty years later two Dutch mathematicians Korteweg and de Vries de-
rived their famous equation, which is now known as the Korteweg-de Vries (KdV)
equation, using Russell’s observations [3]. Their equation is a nonlinear evolution
equation describing the propagation of long, one-dimensional, small amplitude,
surface gravity waves in a shallow water channel'. From the mathematical point
of view it is the simplest nonclassical partial differential equation since it has the
minimum number of independent variables, the simplest (linear and unmixed)
and the fewest number of third-order terms (the lowest-order which is required
not to be treated classically), the lowest-order (also the simplest and fewest num-
ber) term involving differentiation with respect to an other independent variable
and the simplest additional term (uu;) to make the whole equation nonlinear [4].
Although the KdV equation is such an important equation both from physical
and mathematical points of view, it had been ignored for many years and had
to wait until 1965 to gain its own fame. The reason that makes this equation
famous is that some methods for generating solutions, which are applicable to a
large class of equations exhibiting some important properties, have been derived
from the study of it and its properties.

In 1965 Zabusky and Kruskal [5] obtained the KdV equation when they took
the continuum limit of the Fermi-Pasta-Ulam problem [6] and noticed a very re-
markable fact about the interaction properties of the localized wave solutions:

After interaction these waves regained their initial amplitude and velocity and

! Here “small” and “long” mean in comparison to the depth of the channel.



the only remaining effect of interaction was a phase shift. Because of this strange
particle-like property they called the solutions solitons. Soon after Miura, Lax,
Kruskal and his coworkers significantly contributed to the development of the sub-
ject [7, 8,9, 10, 11]. Then, Zakharov and Shabat [12] showed that this important
property was not only particular to the KdV equation by explicitly demonstrating
that the nonlinear Schrodinger equation also possessed this property. Following
the ideas starting from the observations of Kruskal Ablowitz et al [13] solved the
sine-Gordon equation. In a short time it was shown that many other equations
indeed had this property. In this way a new research area in the domain of

integrability had been opened.

During the past three decades these and many other developments in Applied
Mathematics and Mathematical Physics show that the completely integrable sys-
tems of nonlinear partial differential equations have rich mathematical structures
such as the existence of Lax pairs, Miura maps, Backlund transformations, in-
finitely many local conservation laws, bi-Hamiltonian structures and recursion

operators.

In addition to these it is also well-known in the field of Mathematical Physics
that the integrable equations can be solved by the inverse scattering method [13].
The main idea of this method is that, once the Lax pair for a nonlinear partial
differential equation is given, one can find a method to construct the soliton so-
lutions [5]. However, before attempting to solve an equation one usually needs
to know whether the equation is integrable or not. The obstacles appeared in

3



the construction of the inverse scattering transform technique and make this in-
formation more important. Thus there is a strong need for some machinery to
test the integrability of nonlinear partial differential equations. In fact there are
several approaches for this need such as numerical tests, the search of generalized
symmetries and constants of motion, Hirota’s direct method, prolongation struc-
tures, Painlevé analysis etc [1]. Although most of these methods are basically
indicators rather than being decisive tests, two of them are really very powerful
and indeed used not only for testing integrability but also in the construction of
analytical solutions.

One of these effective methods is the prolongation structure technique of
Wahlquist and Estabrook (W-E) [14] which attempts to construct a linear spec-
tral problem associated with the nonlinear equations under consideration. This
technique was originally formulated in the framework of differential forms and
Cartan’s exterior differential systems. Subsequently Dodd and Fordy [15, 16]
made the method algorithmic. The other one is the Painlevé test, which uses the
Painlevé Property in order to test the integrability of the nonlinear partial dif-
ferential equations. This method was introduced into the domain of integrability
in the sense that is used now by Ablowitz et al [17]. Both of these methods can
well lead to Backlund transformations, which are the relations among solutions
of the nonlinear differential equations under consideration.

In this thesis firstly in Chapter 2 and Chapter 3 we give the mathematical
preliminaries and the theoretical background for the prolongation structures, the
Backlund transformations and the Painlevé analysis, which are used subsequently.

4



Each of these subjects are discussed in the following manner: Firstly we briefly
present the historical development. Then we describe the motivation and the
main ideas behind. Whenever possible we intend to give basic algorithms in
order to handle the analysis more easily. Finally each discussion is finalized by
applying the techniques to the KdV equation as an example since this important
equation can be considered as a prototype for generating all of these methods
used in the field of integrability.

Next in Chapter 4 we apply the W-E prolongation method to a system of
nonlinear evolution equations given by Drinfel’d and Sokolov [18]. After showing
that this system of equations has a nontrivial prolongation structure, we try to
close the prolongation algebra. The closure process gives rise to the sf(4,C) alge-
bra which is used in deriving the scattering problem for the system of equations
under investigation [19]. We also give new nontrivial Backlund transformations
and some explicit solutions.

Finally in Chapter 5 we investigate the classical part of one of the super-
symmetric extensions of the KdV equation given by Kersten and Krasil’shchik
[20]. After giving a brief motivation for this system of equations, we discuss
the integrability of it in terms of singularity analysis. Having shown that the
system passes the Painlevé test, we find a nontrivial prolongation structure and
hence a Lax pair for this system [21] and show that the Lax pair found is indeed

nontrivial.



CHAPTER 2

WAHLQUIST-ESTABROOK PROLONGATION METHOD AND

BACKLUND TRANSFORMATIONS

The techniques for generating the corresponding hierarchy of polynomial flows for
a given nondegenerate eigenvalue problem are both easy and completely system-
atic [8, 22, 23, 24, 25]. However, finding an appropriate linear eigenvalue problem
for a given arbitrary nonlinear differential equation is very difficult. In fact, in the
absence of any completely systematic method, most linear eigenvalue problems
of physically interesting equations were found by ad hoc procedures [16]. The
reasonably systematic! method of finding the eigenvalue problem or Bicklund

transformation for a given arbitrary equation is the W-E prolongation method.

In this Chapter the W-E prolongation method, originally formulated in the
framework of differential forms and Cartan’s exterior differential systems, is in-
vestigated. Although the basic process of constructing a linear spectral problem
is algebraic, we still prefer to use the language of differential forms defined on
jet-bundles which provides a natural geometric framework for studying differen-
tial equations [26]. Even analytically this notation is superior for any treatment

of differential equations [14]. The basic idea of jet-bundles is to consider the

1 Systematic up to a certain degree.



dependent variables and the derivatives of dependent variables with respect to
independent ones as additional, algebraically independent variables. An exact
introduction to the theory of jet-bundles can be found in [26, 27] and an informal
description mainly in local coordinates is given in Appendix A. The symmetries,
conservation laws and the Biacklund problem for a differential equation can be well
understood by using jet-bundles. For example Backlund transformations require
the manipulation of the partial derivatives of dependent variables and repeated
shifts of point of view about which variables depend upon which. Clearly the

concepts involved are considerably simplified by the help of jet-bundle formalism.

In the first section we describe the W-E prolongation method, which attempts
to construct a linear spectral problem associated with the nonlinear equations un-
der consideration. The success of the method comes from the fact that a successful
application not only implies complete integrability of the equation but also gives
us a chance to integrate it. On the other hand the failure of the method strongly
suggests that the equation is not integrable; however, it does not guarantee nonin-
tegrability [1]. In the second section an algebraic procedure for closing off the free
Lie algebra is discussed. The main theme in this section is centered around the
identification of the nilpotent and the semisimple elements and their embedding
into a simple Lie algebra. When such an element is one of the generators of our
algebra, the calculations are greatly simplified. In this section the scaling symme-
tries, which are very important in the construction of the eigenvalue problem, are

also discussed. The third section is devoted to Backlund transformations which



can be defined as the transformations between the integral manifolds of differ-
ential ideals. In this section Backlund transformations are discussed both from
the classical and differential geometric points of view. A comparison between
the two procedures for finding Backlund transformations, namely the Wahlquist-
Estabrook procedure and the Rogers-Shadwick procedure [28], where the latter
is in fact the generalization of the former, is also given. Finally in the last section
the prolongation algebra and the Backlund transformation of the KdV equation

is given.

2.1 The Wahlquist-Estabrook Prolongation Method

The starting point of the W-E prolongation method is to use Cartan’s ge-
ometric theory of partial differential equations which consists of expressing the
differential equations in terms of differential forms on jet-bundles. Actually a
system of partial differential equations with any number of independent and de-
pendent variables and involving partial derivatives of any order can be written
as an exterior differential system [29]. The criteria for the equivalence of a given
set of partial differential equations with a closed set of differential forms on jet-
bundles has been deeply discussed by Cartan [30, 31]. In fact partial differential
equations and exterior differential systems with an independence condition are
essentially the same object [29]. We investigate the exterior systems firstly by
giving some definitions.

Let N be a manifold. A collection of differential forms on N is said to be an
itdeal, denoted by I, if the following conditions are satisfied:

8



e For oy and an € 1,

Pra1 + oy €1,

where ¢; and ¢, are functions on /N.

e For o € I and 7 any arbitrary form,

aAnel,

where A denotes the exterior product (antisymmetric tensor product).

e Forany a € [,

da € 1.

This is the closure condition and is necessary for closed ideals. In the literature
closed ideals are called differential ideals.
An integral manifold of the system I is a pair (M, f), where M is a submanifold

of N and f: M — N is a differentiable mapping such that

[ (@) =0, Vael, (2.1)

for which f* is the pull-back map. The terms integral submanifold or solution
manifold are also used for integral manifolds.

An exterior differential system is a pair (N, I), where N is a manifold and
I is a differential ideal. Usually it is denoted only by I. If additionally there

is a differential p-form? Q, then the pair (I,Q) is called an exterior differential

2 p denotes number of independent variables.
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system with an independence condition. An integral manifold of (7,(2) is an
integral manifold of I with the additional condition f*$2 # 0 satisfied. Note
that, while for an exterior differential system we do not specify any independent
variables, we choose independent variables for exterior differential systems with
an independence condition.

In order to represent a partial differential equation as a system of forms firstly
new variables, which can be used to write the differential equation as a set of first-
order differential equations, are defined. Next N is described to be a manifold the
local coordinates of which consist of all independent and dependent variables in
the partial differential equation and auxiliary variables introduced in the previous
step. By taking the exterior derivative of these coordinates the basis forms can be
adopted in order to define the forms o; on N. These forms generate a differential
ideal. Then it is required that any integral manifold (solution manifold) M, which
consists of independent variables, annuls this set of forms and the restriction (or
sectioning) of initial set of forms o; on N to M gives us the partial differential
equation from which we started, that is on the solution manifold (2.1) gives our
partial differential equation in the form of exterior differential equations. It is

seen that, if f*(a;) = 0, then for any form 7; on N we have

f*(; ni A ozi> =0 and f*(day) = 0. (2.2)

Hence any form in I generated by «a; vanishes when restricted to the solution
manifold M. Therefore it is the whole ideal I generated by the «; that represents
the partial differential equation [32].

10



It is possible to construct different exterior systems which generate the same
ideal. Two exterior systems, a; and o}, can be considered as algebraically equiv-
alent if they generate the same ideal [32]. Obviously algebraically equivalent
systems have the same solutions since they represent the same partial differential
equation. So there arises the question of which one to choose. A natural answer
is that we may choose the smallest exterior differential system.

To assert complete equivalence between the forms and the differential equa-
tions we require that the set of forms must be closed. This requirement is neces-
sary since on a solution manifold, if we are to have f*(«;) = 0 which gives back the
differential equation, we must also have d(f*(«;)) = f*(da;) = 0 (since the pull-
back map and the exterior derivative commute) and the equations f*(da;) = 0
cannot impose any additional conditions. Hence we need to have do; € I which
implies that the exterior derivatives of all the forms must be contained in the ring

of forms generated by the set

do; =) mig Aoy, (2.3)
j=1

where the summation runs from 1 to the number of forms in the initial set and
ni; is some set of 1-forms. This condition also says that all the integrability
conditions of the first-order partial differential equations, which we found at the

beginning by defining new variables, are satisfied.

To make these points clear we give an example. Consider the KdV equation

Ut + Uggr + 12un, = 0. (2.4)

11



Defining the variables,
2= Uy and D= Zp = Ugg, (2.5)
we can write (2.4) as a first-order equation
ut + pr + 12uz = 0. (2.6)

Now (2.5) together with (2.6) constitute a set of first-order partial differential
equations. We then define the manifold N with coordinates (z,t,u, z,p) and

express (2.5) and (2.6) by the following set of differential forms,

o = duANdt— zdx Adt,
ay = dz ANdt— pdx Adt, (2.7)

a3 = —duANdx+dpAdt+ 12uzdx A dt.

Restriction of these forms to an integral manifold M with coordinates (z, t) annuls

all of the forms because on a solution manifold M we have
du = uzdzr + udt (2.8)

and similarly for z and p. By using (2.1) we have the sectioned forms®

& = (ugy— 2)dr ANdt =0,
Gy = (2z —p)dz Adt =0, (2.9)
a3 = (ug+py+ 12uz)dz A dt = 0.

On the integral manifold M with coordinates (z,t) the independence condition is

Q) = dx A dt and, since we have f*Q # 0 on M, (2.9) implies the KdV equation.

3 The sectioned forms are denoted by a tilde.
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We also note that, since the exterior derivative of (2.7), viz

doay = dz A ao,
day = dz A ag, (2.10)
das = —12dz A (zoq + uay),

is in the form of (2.3), the initial set of forms in (2.7) constitutes a closed ideal.
In this thesis we consider only those equations of evolution type with two

independent variables z and ¢ which can be written as
ul =), — K7 ul, ul ), (2.11)

where K is an arbitrary function depending on u? and z-derivatives of u?. Clearly
the KdV equation is in this form. By considering the above example and some
others given in [16] we can generalize that equations of evolution type may be

expressed by the following set of differential forms

of = dufj_y, Adt—ujdzAdt,  i=1,2,..,n-1,

of = du’ Ndx+duf,_, Adt+ KPda A dt. (2.12)

n

After one has written the differential equation as a differential ideal, the next
idea in the W-E prolongation method is to search for the existence of 1-forms. The
motivation comes from the existence of conservation laws, which describe quanti-
ties that remain invariant during the evolution of a partial differential equation.
It is well known that integrable nonlinear evolution equations possess an infinite
set of conservation laws [8, 33, 34]. Thus it is natural to expect the existence of
various 1-forms which lead to conservation laws.

13



Any differential equation in the form of (2.11) has local conservation laws of
the form
oft  og*

—+ — = =1,2,... 2.1
6t ax OJ k ) Y ( 3)

where f* and g¢* are local expressions depending on the jet variables. In fact they
depend on the independent variables, dependent variables and the z-derivatives
of the dependent variables since the t-derivatives of the dependent variables can
be eliminated by using (2.11).

One of the important properties of these conservation laws is that, they lead
to conserved quantities with appropriate boundary conditions. For example in-

tegrating (2.13) with respect to x we get
d XB k k XB
— =0. 2.14
dt/XAde[g]XA 0 (2.14)

Under asymptotic boundary conditions in which the dependent variables are
rapidly vanishing as x — +oo or under periodic boundary conditions with (X —
X4) an integer multiple of the period, the term [gk] ?: vanishes. Hence (2.13)
gives rise to the constant of motion [ ))ff f* dx. In fact these conserved quantities
can only be defined up to exact z-derivatives since (2.13) is invariant under the

following transformation
oAl o gAY (2.15)

Another property of conservation laws is their close relation with potential
functions. A function ¢ of dependent and independent variables is called a po-
tential function if it is a constant when the differential equation is satisfied. Thus

14



cross derivative integrability condition implies that every conservation law of the

form (2.13) defines a potential function ¢*, where

Op* Op*
ot g ox =" (2.16)
such that

dot = —frdx + gFdt (2.17)

is an exact differential.
In the language of differential forms the above discussion about conservation
laws corresponds to the existence of exact 2-forms contained in the ring of the

a;s that generate the closed ideals. Therefore we can find 2-forms

BF=>"hi*aq (2.18)
izl

satisfying d8* = 0, the condition for exactness. In (2.18) h;* are arbitrary func-
tions of jet variables and the summation runs from 1 to the number of the forms
in the initial set that generates the ideal. In fact d8*¥ = 0 can be considered as

the integrability condition for the existence of 1-forms, say w*, such that

B = dw". (2.19)

Since the double exterior derivative of any differential form vanishes, (2.19) con-
versely implies that dg* = 0.
For each exact 2-form dw* the associated conservation law is obtained by using

Stoke’s theorem

]{ Wb = | duwt, (2.20)
oMy

M,

15



where M, is any two-dimensional manifold and M, is its closed one-dimensional
boundary. If M; is chosen to be the solution manifold, on which the restricted
exact 2-forms dw” are annulled, then (2.20) gives the conservation laws for w*.

In general the 1-forms w* can be taken in the form of (2.17)
Wk = Frdz + GFdt . (2.21)

Consider the KdV equation in (2.4). It has an infinite set of local conservation
laws [1] all of which are in the form of (2.13). Actually the KdV equation itself

can be written as one of those conservation laws
u + (p+6u?), =0, (2.22)
from which we can deduce its simplest potential,
$p=—u,  ¢=06u’+p, (2.23)
Now in accordance with (2.22) take the 1-form w as
w = udz — (p + 6u®)dt. (2.24)
The exterior derivative of w,
dw = = —a3 — 12uqy , (2.25)

shows that the 2-form ( is in the ring of the original set of forms «; which are

defined in (2.7) and the exterior derivative of 3,
df = —das — 12du A o — 12uday, (2.26)

vanishes identically. This can be shown by using (2.7) and (2.10).

16



As we are motivated by the conservation laws, the core idea in the method is
the prolongation of the ideal I generated by «;. The prolongation process can be
summarized as follows.

Consider a differential ideal I on a manifold N and a differential ideal I’ on a

manifold N’ with a projection map,

m: N = N, (2.27)

such that I’ is constructed by lifting the generators a; of I to N’ and by adding

k

new generators w®. In fact this is equivalent to saying that I’ is generated by

the set (m*«;,w"). Since I is constructed from a differential equation with two

k in this case is a set of 1-forms in

independent variables, the set of forms w
the form of (2.21). In order to have all the integrability conditions satisfied I’
generated by the set (7*q; ,w*) is also required to be closed [14]. However, since
I' is constructed from I which is known to be closed, it is enough to require that
dw® be in I'. Furthermore we have the freedom to add any exact set of 1-forms to
wk, say dy*, where y* are arbitrary scalar functions since they do not change the
closure relation. Thus the manifold NV is enlarged to a fibre bundle N' = N x Y,

k

where Y C R™, by adding the coordinates y*, k = 1,...m. Hence w* can be

written as

wk = dy* + Frdz + GFdt . (2.28)

This process of introducing new variables and creating a larger closed ideal is
known as the prolongation of the original ideal I.
Any integral manifold M of I' with f': M — N’ then annuls all the forms

17



that generate I', that is, when N’ is restricted to M, we have

f,*(ﬂ—*ai) = 07

W) =0. (2.29)

Therefore (M ,mof") is an integral manifold of I’ when additional equations given
by f"*w* = 0 are solved [32, 35]. Furthermore the maximal dimensional regular
integral manifolds of I and I" are the same [32, 35, 36]. Thus, if I is a completely
integrable system, its prolongation I’ is also completely integrable [32, 37].

We now investigate the closure relation for a set of 1-forms w* in (2.28) ex-
plicitly. Let F* and G* in (2.28) depend on the independent, the dependent and

the z-derivatives of the dependent variables. The closure relation,

dw* =3 hifa;, (2.30)

i=1
where h;* are arbitrary functions and n is the number of the forms «;, provides

the most convenient method to search for such 1-forms. Expanding dw* we have

dF* Ndz + dGF A dt =) hiFo; (2.31)
=1
or
OF* oGk n
9% 4SH A da + 22— s A dt) S hta; =0, 2.32
2 (35 ST 2 hita (2.32)

where S* is the set of variables upon which F* and G* depend. Solving (2.32),
that is equating the coefficients of independent 2-forms to zero, we are left with
coupled first-order linear equations for F* and G*. Then each independent solu-
tion of these equations leads to different w*s which are considered as the conser-

vation laws for the ideal 1.
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Prolongation of an ideal I can be done in two different ways. In the first
way by requiring (2.28) to be in the ring of the initial set of forms, that is using
(2.30), one may search for w and a prolongation variable y. If there exists one, it
is possible to add that w to a; and prolong the ideal I. Then one may think that
F* and G* depend on y as well as the other variables upon which they depended
before and search for new ws and new ys. However, this time the closure relation

becomes

dw* =3 hi*a; +nf Aw, (2.33)
i=1

where 7* is some 1-form. This is the closure relation for the first prolonged ideal.
If one is successful in finding new ws, it may be possible to continue in like fashion
to prolong the ideal further.

On the other hand in the second way it is possible to think from the beginning
that F* and G* in (2.28) depend on all the prolongation variables y* as well as
the other variables upon which they depended before. In this case to search for

new w¥s one has to modify the closure relation (2.30) to be

dwk - Z hikai - Z’fhk A Ww; = 0, (234)

i=1 i=1
where m is the number of prolongation variables and n;* is some set of 1-forms.
Then this equation can be used, just as (2.30), to find some set of partial differ-
ential equations for F* and G*, but this time there exist some nonlinear terms in

these equations such as

)d:v Adt. (2.35)



We note an important consequence of the existence of two different ways
for prolonging the ideal. In (2.23) and (2.24) what we call potential is indeed
the prolongation variable y. Actually the prolongation variables y* appearing
in the first way of prolonging the ideal are similar to the potential defined in
(2.23) since the functions F* and G* do not depend on the newest prolongation
variable y*. Thus it is also natural to refer to these variables as potentials. In
fact the term potential denotes an integral variable which can be defined by a
quadrature. However, this is not always the case. We see that in the second way
of prolonging the ideal we may have 1-forms w* in which F* and G* depend on
all of the prolongation variables. In this case we call those prolongation variables
pseudopotentials. They denote integral variables which cannot be defined by
quadratures but those that can only be defined by an integrable set of first-order
differential equations. The nonlinear terms in (2.35) are clearly essential for these
variables and pseudopotentials cannot be found by using the first way in which
we have only linear equations.

Till now we have discussed the basic ideas in order to construct the W-E
prolongation method. Indeed most of the discussions above constitute some of
the basic steps in the method. Now we give a brief description of the method in
the form of a recipe.

Suppose we are given a differential equation. The first step in the W-E pro-
longation method may be thought of as the representation of this differential
equation as a differential ideal. For this purpose the original differential equation
is written as a system of first-order equations by defining new variables. Then
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this set of first-order equations is represented as differential forms. Details of the
representation of the differential equation as differential forms were given at the
beginning of this section. Even in this first step, for an arbitrary equation, there
may be some problems, but, since we are dealing with only equations in the form
of (2.11), no such problems occur.

The second step is the extension of this ideal by adding a system of 1-forms w*,
which depend upon the jet variables used in the construction of the differential
forms and some new variables 3*, termed prolongation variables. The prolon-
gation of the ideal is done by using the second way discussed above. Then the
requirement that the prolonged ideal must be closed under exterior differentiation
gives some set of differential equations for F* and G¥. We have some nonlinear
terms in these equations. Fortunately all of these nonlinear terms have always
some commutatorlike structure as in (2.35) and are almost always solvable. The
major part of the job in this step is to integrate these equations to find the de-
pendence of F* and G* on the jet variables and y*. Since the set of equations for
F* and G* are overdetermined, some constraints on the constants of integration
naturally arise. Due to the fact that the nonlinear terms are always in a com-
mutatorlike structure, these constraints are in the form of commutation relations
between a set of vectors, X;, depending only on the prolongation variables 3/*.

It can be said that the integration constants, X;, generate a free Lie algebra
with constraints. Actually for the equations in the form of (2.11) the constants
of integration of F* generate the free Lie algebra and the constants of integration

of G* are elements of this free Lie algebra [16] (see also Appendix B). Since the
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constraints are not strong enough for obtaining all the commutation relations, in
general this Lie algebra is incomplete and possibly infinite-dimensional which in
fact implies the existence of infinite number of possible prolongation variables and
associated conservation laws. Thus the next step in the W-E prolongation method
is to close this algebra, that is to find the finite-dimensional algebra consistent
with the commutation relations. Unfortunately there is no general rule to attain
this process. However, a strategy can be formed by the help of the general theory
of Lie algebras.

The last step can be considered as finding a representation for the resulting
finite-dimensional Lie algebra. In order to obtain a linear scattering problem a
linear representation must be found.

On a solution manifold M all of the generators of the prolonged ideal I’
are annihilated. Thus the w”s in (2.28), which are also generators of I', are
annihilated to give

dyt = —F*dx — G*dt . (2.36)

Hence

vyt =—FF and  yt=-GF. (2.37)

Now, without loss of generality, F* and G* can be assumed to be linear in y*.
Thus, when we write y = (y',4%,...)7 and F and G for the matrices F;* and

G;*, where*

FF=F*y  and G* =G;Fy7, (2.38)

4 The Einstein summation convention is used for repeated indices.
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the linear scattering problem is achieved

Yz = —Fuy,

w = —Gy. (2.39)

In this section the first two steps in the recipe have been fully discussed and
the last two steps, which are the closure of the prolongation algebra and the
finding of the representation of the finite-dimensional Lie algebra, are left to the
next section. In the next section, by the help of Lie algebras, an algorithm for

the third step initally given by Dodd and Fordy [16] is presented.

2.2 Lie Algebras

As we discussed in the previous section, in the third step of the W-E pro-
longation method we are faced with a set of vectors, X;, which satisfy certain
commutator relations. In fact they constitute a free Lie algebra with constraints
and usually the whole multiplication table cannot be constructed. Therefore it
is necessary to close the algebra. For this purpose a nontrivial homomorphism of
this set into a finite-dimensional Lie algebra needs be found. However, this is the
most difficult part of the W-E prolongation method since there is no systematic
way of finding such a homomorphism for every example that arises. In most of
the cases ad hoc procedures are used in order to close the algebra.

It is known that in almost all examples the scattering problem is governed
by a simple Lie algebra [16]. So by the use of this fact it is possible to simplify
the problem and to achieve almost an algorithm. Firstly we consider some of the
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basic concepts of Lie algebras that are useful in the following discussions.
A vector space L over a field F, with an operation L x L. — L, denoted by
(z,y) — [z,y] and called the bracket or commutator of z and y, is called a Lie

algebra over F' if the following properties are satisfied:
i) The bracket operation is bilinear,
i) [X,Y]=-[Y,X] (VX,Y € L),
i) (X, [V, Z]]+ Y. [Z,X]|+[Z,[X,Y]]=0 (VX,Y,Z € L).

The last condition is called the Jacobt identity.

A subspace I of a Lie algebra L is called an ideal of Lif X € Land Y € 1
together imply [X,Y] € I. By using the Jacobi identity it can be shown that
the center Z(L) = {Z € L|[X,Z] =0 VX € L} is actually an ideal. If L
has no ideals except itself and 0, it is called simple. Clearly, if L is simple, then
Z(L) = 0. There exists a unique maximal solvable ideal, called the radical of L.
If the radical of L is 0, then L is called semisimple. Since simple algebras are
nonsolvable, any simple Lie algebra is semisimple.

A linear map which preserves the commutation operation is called a Lie algebra
homomorphism. A representation of a Lie algebra, L, is a homomorphism ¢ : L —
gf(V'), where gf(V') is a general Lie algebra and V is a vector space over F. For
example the linear map X — adX, X € L, is called the adjoint representation
where adX (Y) = [X,Y]. Here L itself is considered as the vector space of the
representation.

24



An element e € L is said to be nilpotent if (ade)® = 0 for some n > 1. If
n = 1, then e is in the center of L. In matrix representation nilpotent elements
are conjugate to triangular matrices. An element X € L is called semisimple if
ad X is diagonalizable.

Having discussed the basic concepts in a Lie algebra we now show that a linear
scattering problem is governed by a simple Lie algebra. Of course there is the
possibility of determining it from a solvable Lie algebra, but this case is not taken
into consideration.

We suppose that a linear scattering problem is given as®

U, = MU, U,=NU, (2.40)

where M and N are elements of a Lie algebra L. The integrability condition gives

M, — N, +[M,N] =0. (2.41)

By using Levy’s decomposition [38], which states that every Lie algebra is the
semidirect sum of its radical and a semisimple subalgebra, it is possible to write
L as

L=s®,r, (2.42)

where s is the semisimple subalgebra and r is the radical. Clearly it is seen that
the quotient algebra L/r is semisimple since r is L’s radical. Also L satisfies the

following commutation relations,

[s,s] Cs, [s,r]Cr, [rr]Cr. (2.43)

5 We follow [16] for the subsequent discussion.
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Since, as a vector space, L is the direct sum of s and r, there exists a basis of

L such that M and N can be decomposed as
M=M;+ M, and N = N,+ N, (2.44)
and the integrability condition, (2.41), takes the form

Mst_st+[MSaNs] = 0, (245)

M'rt - er + [M87 Nr] + [Mra Ns] + [Mra Nr] = 07 (246)

where (2.43) is used.

It is seen that in (2.45) there is no dependence on the variables taken from
the radical of the algebra whereas in (2.46) there is coupling. As we noted above,
(2.46) is not taken into consideration since it is related to solvable algebras. Thus
assuming there is no such coupling our whole attention is given to the semisimple
Lie algebras.

However, a further restriction to simple Lie algebras is obvious. Using the
theorem [38], which states that any semisimple Lie algebra is the direct sum of a
number of simple ideals, it is possible to think that there exists a basis of s such

that
M,=%"M,,, N,=%N,,. (2.47)

Then (2.45) takes the form
M.t — Ny, + [Ms,,N5,] =0, (2.48)

which states that all the decoupled equations are determined by a simple Lie
algebra.
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However, since most of the theory is true for semisimple Lie algebras, we work
with them. Our main task is to represent the vectors X; by matrices and to
find a complete multiplication table. To do so the vectors X; are embedded in a
semisimple Lie algebra with a known matrix representation. Since any similarity
transformation gives an equivalent embedding, there is no unique way of doing
this. Thus the main interest is given to conjugacy classes of elements and there
is the freedom to choose a representative matrix for at least one element and
sometimes two or more simultaneously. If this or these elements coincide with
the generators of the prolongation algebra, that is the integration constants of

F* (see Appendix B), this procedure gains a particular success.

In fact it is known that every complex semisimple Lie algebra contains at least
one (and usually many) subalgebra, that is isomorphic to s¢(2,C) [38]. Thus
certain elements of the prolongation algebra are identified with basis elements of
sf(2,C) and then this copy of s¢(2,C), if not the whole prolongation algebra, has
to be embedded into a larger semisimple Lie algebra. If this larger semisimple
Lie algebra is s¢(n + 1,C), where n > 2, the above discussion is easier to apply.

At the moment we give the basis elements of sé(n + 1,C). Let h be the
abelian subalgebra of all diagonal elements of sf(n + 1,C); if aq,...,a,41 € C,
diag(a1,--.,ans1) denotes the diagonal matrix with aq,...,a,.1 as its diagonal
entries. We write Ej; for the matrix the 7jth entry of whichis 1,1 <14,j <n+1

and all the remaining entries are 0. Then the matrices

L — Ez'—l—l,i—l—l (1 <1< n)7 Ez'j (Z #7,1<4,j<n+ 1) (2-49)
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form a basis for s¢(n +1,C) [39].

Thus the basis for s¢(2,C) is

h = R , e_ = (2.50)

which satisfies the following commutation relations,

[h,es] = +2e, ey, e |=h. (2.51)

In [40] the elements in (2.50) are termed neutral, nil-positive and nil-negative
respectively. In fact any three elements satisfying (2.51) are referred as such.
From now our main interest is given to embedding the nilpotent elements into
copies of s£(2,C). The following theorem and the corollary is used for this pur-

pose.

Theorem 2.2.1 FEvery nilpotent element of a complexr semisimple Lie algebra

can be embedded into a copy of st(2,C).

Corollary 2.2.1 Let e € L be nilpotent, e # 0; then X and e are respectively
the neutral and nil-positive elements if and only if the following conditions are

satisfied:

(i) X is the range of ade,

(i1) [X,e] = 2e.

Furthermore, if X and e satisfy these conditions, then the nil-negative element is
uniquely defined.
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The proof of these are given in [38]. It is, of course, also possible to state
an analogous corollary for nil-negative elements. Then the nil-positive element is
uniquely determined.

After the embedding of the nilpotent elements in a copy of s¢(2, C) it is neces-
sary to determine if it is the whole prolongation algebra. If not, then it has to be
embedded in a larger semisimple Lie algebra, for example s¢(n+1,C), n > 2. In
order to do this we may equate the nilpotent elements to the linear combinations
of basis elements of that larger algebra. However, this way seems to be very long
and is unnecessary. Instead it is possible to write these nilpotent elements in
a canonical form by using the irreducible (n + 1)-dimensional representation of
sf(2,C), which is known [40, 41], and by using the following theorem (for a proof

see [39, 41]):

Theorem 2.2.2 (Weyl) Let ¢ : L — gl(V) be a representation of a semisimple

Lie algebra L, V # 0. Then ¢ is completely reducible.

This means that there exists a basis of V' such that the representation of L
takes a block diagonal form and each block is an irreducible representation of L.
The concepts given above can be applied to the prolongation algebras. For
this purpose the nilpotent and semisimple elements have to be identified. We

give the following theorem:

Theorem 2.2.3 Let X and Y be any two elements of L such that [Y,[Y, X]] =
0. Then Y, X] is nilpotent. In particular, if [X,Y] = aY, a # 0, then Y is
nilpotent.
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The proof of this theorem is given in [40]. By the help of Corollary 2.2.1 this

theorem yields an immediate result.

Corollary 2.2.2 Let X and Y be any two elements of L such that [X,Y] =
aY, a# 0 and X € range adY . Then it is possible to identify Y with e. and X

with :I:%ah.

Therefore to close and find a representation of a given prolongation algebra

the following strategy can be used [16]:

1. Locate the elements of the center of the algebra. Assuming the algebra to

be simple equate these elements to zero.
2. Locate a nilpotent and a semisimple element.
3. Embed these into a simple Lie algebra L.

4. Express the remaining elements of the prolongation algebra as linear com-

binations of a suitable basis of L.

5. Use the fundamental representation of L to generate a linear scattering

problem.

Before closing this section we note that scaling symmetries play the major role
for having a scattering parameter. Any transformation which leaves the original
system of equations invariant is called a symmetry of the system of differential
equations. Furthermore, if it is required that the 1-forms w* in (2.28) be invariant
under such a transformation, then the coefficients of F' and G are induced as a
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symmetry, that is, the elements X; must be invariant under some transformations.
We only consider the scaling symmetry of the equations. In particular a scaling

symmetry of the form
= A, = AT, u— Ay (2.52)

induces

F — \F, G — \"G, (2.53)

which in fact induces a scaling symmetry of the elements Xj;.
It is also useful to note that the basis elements of s¢(2, C') have the following

scaling symmetry

e. = AN'le, h—h, e, —de,. (2.54)

2.3 Backlund Transformations

Backlund transformations were first developed around 1880 by considering
transformations between surfaces [42, 43]. More precisely they were developed
as a generalization of contact transformations and used in related theories of
differential geometry and differential equations. For example one of the earliest

Backlund transformations was for the sine-Gordon equation,
Ugpr = SIN U,

which originally arose in differential geometry to describe surfaces with a con-
stant negative Gaussian curvature. At the beginning of the twentieth century
the subject was subsequently developed by Goursat [44] and Clairin [45]. Later
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Lamb [46] used these ideas to construct the Bicklund transformations for certain
nonlinear evolution equations. In 1970s the main interest in Bicklund transfor-
mations was focused on the connection between the integral surfaces of certain
nonlinear partial differential equations. They have played an important role in
finding the solutions of nonlinear partial differential equations since then. In
this section we discuss Backlund transformations both from the classical and the
differential geometric points of view.

Firstly we give the classical definition of Backlund transformations. Following

Rogers and Shadwick [28] we describe the problem in R3. Let

u=u(z,1y) and u' =u'(2],x)) (2.55)

represent two smooth surfaces A and A’, respectively, in R3. A set of four relations

, Ou  Ou ou Oou

"0z Oxy Oy O

B; (xl,a:g,x'l,xg,u,u )20, 1=1,...,4, (2.56)

which connect the surface elements

! !
{xl,xz,u,% au} and {x'l,x'z,u' Ou au} (2.57)

Oy’ a—5152 ’ 8—3511 ’ 8—3312
of A and A’ respectively, is called a Bdcklund transformation.

Since we are only interested in Backlund transformations which connect the
integral surfaces of partial differential equations, we can consider (2.55) to rep-
resent these integral surfaces. In addition consider the following explicit form of
(2.56)

ou' 0 0
—“=Bé<x1,x2,u,u', . “) i=1,2, (2.58)

o] 9z, Oy
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and

ou
a:ri

ou ou
=&<%w;ww,“ “>, i=1,2, (2.59)

ox'’ 0xl,

together with

.CE; = Xz (g;l,gj%u’u' 3 = 1, 2. (260)

ou Ou
’ 8331 ’ 6332 ’
In order that these relations transform a surface v = u(z,z3) with surface

ou  Ou

element {xl,xg,u,a—wl ) 3_.182} to a surface u' = u/(z,x}) with surface element

! ! . . . .
{m’l, xh, ', g% , %} it is required that the relations,
1 2

du — Bld$1 - Ble‘Q = 0,

du' — Bidsz|, — Bydz, = 0, (2.61)

be integrable. From the mixed derivative integrability conditions

2 2
££:££ (2.62)
and
2q,! 2,1
8jﬁgx’2 - 85'2;.96'1 ’ (2.63)
we obtain
0B 0B _
Ory 01 ’
Zf’j N gf'f =0, (2.64)

which guarantee the integrability of (2.61).
In particular suppose that two uncoupled partial differential equations, in two
independent variables ;1 = z and zo = t, for the two functions v and v’ are
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expressed as

Plu)y=0 and Q(u')=0, (2.65)

where P and @) are two operators, which are in general nonlinear. Let (2.56)
be four relations between the functions v and w'. Then (2.56) is a Bécklund
transformation if it is integrable for u’ when P(u) = 0 and, if the resulting v’ is a
solution of Q(u') = 0, vice versa [47]. If P = @), so that u and v’ satisfy the same
equation, then B; = 0 is called an auto-Bdacklund transformation. Obviously it is
clear that, only if the relations in (2.56) are somewhat simpler than the original
equations in (2.65), then the method of Bicklund transformation is considered
to be useful for finding the solutions of the desired equation in (2.65). In this

connection Backlund transformations have two important applications:

e They may be used to generate different solutions for the same differential

equation.

e They may be used to link a differential equation to another differential

equation the properties of which are well known.

We give a very simple example. One of the auto-Backlund transformations is

the Cauchy-Riemann relation

Uy = Uy, U = —u (2.66)

for Laplace’s equation

Ugy + Uy =0, Ul + Uy = 0. (2.67)
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Thus, if u/(z,t) = xt is a solution of Laplace’s equation, then u(z,t) can be
determined from

Uy = T, up = —t, (2.68)
which are obtained by using the Bécklund transformation in (2.66), and so
u(z,t) = 3(2® — t?) is another solution of Laplace’s equation.

From a geometric point of view, that is in terms of differential forms, Backlund
transformations are described as follows:

Let I and I be two differential ideals on manifolds N and N respectively with
the same independent variable manifold M. Consider another differential ideal
I’ defined on N’ as a prolongation of the differential ideals I and I with a pair of
projection maps

7 : NN—= N,

# : N>N. (2.69)

Since I’ is the prolongation of I and I, the projection maps 7 and 7 must satisfy

w(I)cI' and T ({)C!. (2.70)

These data are said to define a Bicklund transformation between I and I [48].
The projection maps m and 7 are actually homomorphisms from I’ to I and I.
We concentrate on the correspondence between integral submanifolds of I and
I with these data. Let (M, f') be the integral manifold of I’ with f': M — N'.
Then (M, f = mof') is an integral manifold of I with f : M — N and (M, f = 7of")
is an integral manifold of I with f : M — N. Thus we have established some
sort of correspondence between integral manifolds (M, f) and (M, f) of I and I.
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Another way to describe Backlund transformations in terms of prolongation
could be as follows:
Suppose that I is a differential ideal on N with an integral manifold (M, f)
where f: M — N such that
fra)y=0 (2.71)
and I’ is its prolongation® defined on the fibre space N' = N x Y (Y C R™) with
a projection map 7 : N x Y — N. The generators of I" are {7*a;,w*}. If (M, f')

is an integral manifold of I’, then

fl * (ﬂ_*az) — 0 ,
W = 0. (2.72)
A diffeomorphism

T:NXxY 3 NxY (2.73)

is a Bécklund symmetry if 7*(7*q;) C I' is satisfied [48]. This is a Béacklund
transformation in the sense that, given a solution manifold (M, f), another so-
lution manifold may be generated via 7. Indeed 7 is symmetry since it maps
solutions into solutions. More precisely the map mo7rof’' : M — N defines a new

solution manifold (M, mo71of') by 7 from f’ since

(morofY () = fform*orm™(ay) = f' o ()

= f*(r*a, W) =0 (2.74)

where in the last equality we used (2.72).

6 Recall that the details of the prolongation of an ideal were given in the first Section of
this Chapter.
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The discussions above about the Backlund correspondence between I and I

can be shown in the following diagram,

II

T

Y

Figure 2.1: The Bicklund correspondence between I and 1.
where I' is the augmentation of the ideals I and I. In Fig. (2.1) I' is projected
into I and I and then this sets up a correspondence between the integral manifolds
of I and I which is called a Backlund transformation. In many cases I and I may
be isomorphic which implies an auto-Bdcklund transformation.

In practice one efficient way to find Backlund transformations is firstly to
search for a prolongation structure and for the associated pseudopotentials y/*.
Then the new variables in T (usually just the dependent variables) are assumed
to be functions of the old variables in I and of the y* and these new variables
are required to satisfy the appropriate equations by the help of the equations
for y*. From this point of view the pseudopotentials can be interpreted as the
difference of two solutions related by the Bécklund transformations [49]. Actually
this way of searching for Backlund transformations was firstly used by Wahlquist
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and Estabrook [14]. Later their ideas were generalized by Rogers and Shadwick
and their coworkers in [28] and [50] by using the jet-bundle formalism. In fact the
procedure developed by Wahlquist and Estabrook has a natural formalism within
a jet-bundle context. However, in their method only a subideal is used. On the
other hand in the generalized method of [28] and [50] the whole contact ideal is
used. Although the method of [28] and [50] provides a more general framework,
the W-E method requires fewer variables and is very efficient. Thus we use the
W-E method for searching Backlund transformations.

In the literature Bécklund transformations such as (2.58) are sometimes called
Backlund maps and the name ‘Backlund transformation’ is reserved for the corre-
spondence between systems of partial differential equations induced by Béacklund
maps. In this connection a Backlund map is defined as a transformation of the
dependent variables in a system of differential equations in which the first deriva-
tives of the new variables are given in terms of the new variables themselves
as well as of the old variables and their derivatives. Then the original system
of differential equations appears as a system of integrability conditions for the
Backlund map.

Before passing to the next section in which the prolongation structures and
Backlund transformations of the KdV equation are fully discussed we want to
mention one of the most interesting results of Bicklund transformations. They
lead to a simple superposition formula, known as the theorem of permutability,
by which multisoliton solutions may be constructed from single-soliton solutions
by purely algebraic means.
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2.4 An Example: The Korteweg-de Vries Equation

2.4.1 Prolongation Structure of the Korteweg-de Vries Equation

Consider the KdV equation

U + Ugge + 12uu, = 0. (2.75)

We showed that (2.7) constitutes a closed ideal I for this equation. Following the
W-E prolongation method, we extend this ideal I by adding to it the system of
1-forms

Wt =dy* + Frdz + G*¥dt  k=1,...,N, (2.76)

where F* and G* are functions of (u, z, p, y*). Then we require that this set of
1-forms be closed. Thus writing (2.34) explicitly and equating the coefficients
of various independent 2-forms to zero gives us some set of partial differential

equations for F* and G*. Dropping the indices for simplicity, we have

F,=F,=F,+G, = 0,

2Gy +pG, —12uzG, + [G,F] = 0, (2.77)
where’
OF 0G
G Fl=G— —-—F"—. 2.78
6=l - oS 78)

We now integrate the equations in (2.77). Immediately we have

F = F(u,y),

G = —pF,+H(u,zy), (2.79)

7 The Einstein summation convention is used for repeated indices.
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where H is the constant of integration®. Then putting G into the second equation

in (2.77) we get
p{ — 2Py + H, — [F,, F]} + zH, + 12uzF, + [H,F| =0. (2.80)

Since all of the functions in this equation are independent of p, the coefficient of

p must be zero. Thus we get
1
H = 5zQFuu + 2[Fy, Fl + A(u, ), (2.81)

where A is the constant of integration . Then putting this form of H in (2.80)

and equating the various coefficients of z to zero gives us the following relations

Fru = 0, (2.82)
[Fou, F] = 0, (2.83)
A, + 12uF, + [[F,, F],F] = 0, (2.84)
[A,F] = 0. (2.85)
From (2.82) we get
F =2X, + 2uX, + 3u*X3, (2.86)

where X;, X5 and X3 are constants of integration depending only on y. The

commutator in (2.84) gives us the freedom to define new elements such as
[XlaXZ] = _X7a [XlaX7] :X5a [XQ,X7] = XG' (287)
With the use of (2.84) and (2.81), H can be written as

H =32 X3 + 42X; — 24u X3 — 120° Xy + 4u” X5 + 8uXs + 8X, (2.88)

8 Although H is the function of integration we prefer to call it constant of integration. This
terminology is used throughout the whole thesis.
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and hence from (2.79) G becomes
G = —2(p+6u?) Xy +3(2% —8u® — 2up) X3+ 8X, + 8uXs+4u’Xg +42X;. (2.89)

The conditions (2.83) and (2.85) impose the following restrictions on the elements
X;
[X17X3] = [X27X3] = [X27X6] = [X17X4] = 0,

[Xl,X5]+ [XQ,X4] :0, [X3,X4] +[X1,X6] +X7 = O (290)
Using the Jacobi identities we obtain further relations:

[X3aX5] = [X3aX6] = [X3aX7] = 07
[Xa, X5] = [ X1, Xo], [Xe, X7] = X6, [X1,Xe] +[X5,Xs] = 0. (2.91)
We now want to find a finite-dimensional representation of this prolongation
algebra. Following the strategy given in Section 2.2 firstly we locate the elements

in the center of the algebra. Since X3 commutes with all the generators of the

algebra, it is in the center of the algebra, that is,
[Xg,Xl] - [X3,X2] - [Xg,Xg] = 0 = X3 = 0 . (292)

Clearly equating X3 to zero comes from the fact that we assume the algebra is

simple. Also from (2.87), (2.90) and (2.92) we have
[Xl, X6 - XQ] = [XQ,XG - XQ] = 0 (293)

which implies X4 = X5. Thus we have reduced the number of elements in our
algebra. Next we have to locate the nilpotent element. From (2.87) and (2.93)
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we have

[Xo, X7 = X5, [Xo, X1] = X7, (2.94)

and thus by using Corollary 2.2.2 we say that X, is nilpotent and X7 is neutral
since the second commutator in (2.94) implies that X; € range of ad Xs.
We now consider the scaling symmetry, which in fact is needed to obtain the

eigenvalue problem. The KdV equation is invariant under the following scaling
T— Az, t— A3t u— \Nu. (2.95)

Also by requiring that the 1-forms w* be invariant under this transformation we

have
Xl — )\Xl s X2 — )\_IXQ, X4 — )\3X4, X5 — )\X5, X7 — X7 . (296)

Together with (2.96) and (2.54), (2.94) says that we can identify

Xy=ec and X;= %h. (2.97)
The solution of
X0, X0] =~ X; (2.98)
gives
X = —%eJr + 7, Z € Ker ade_, (2.99)
where e_, e, and h are basis elements of s¢(2,C). In fact (2.98) gives X; = —1ey,

but we can always add an element which is in the kernel of ade_ since it does
not change the commutator in (2.98). By considering the scaling properties and
remembering that we are embedding the prolongation algebra into a copy of
s0(2,C) we can choose Z = N\e_.
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Then [X;, X7] = X; implies that

1
X5 = 56+ T Me_ (2.100)
and
[ X2, X4] = —[X1, X5] = AR (2.101)
implies that
Xy=-Xe, +C, Ce€ Kerade_. (2.102)

Using [ X1, X4] = 0 one can find C. Hence
Xy =—Ne, +2)e . (2.103)

Using the matrix representation of e_, e; and h in (2.50) we have the following:

0 —3 0 0
X, = ) Xo = )
A0 10
0 =X 0 3
X4 = ) X5: )
20" 0 A2 0
10
X; = : (2.104)
0 -

Putting these into (2.86) and (2.89) we form the matrices F' and G and by

using (2.39) we get the linear scattering problem

y? 0 —2u—2)\? y?
y2 1 0 y2
yt -2z 2p+ 8u? —8)\%u — 16)\* yt
_ . (2.105)
y? 82 — 4u 2z y?

43



Hence the scalar Lax equation can be written as
LY = (0% + 2u)¥ = —2)\*V (2.106)
with the corresponding time evolution of ¥
U, = —4(0° + 3ud + guw)\lf, (2.107)

where U = 42 and 0 represents the z-derivative.

2.4.2 Backlund Transformations for the Korteweg-de Vries Equation

In this Subsection we study the Béacklund transformations for the KdV equa-
tion within a prolongation scheme. Assuming that one particular solution of the
prolonged ideal I' {n*a;, w*} is known we search for another solution. As was de-
scribed in Section 2.3, this new solution, say u’, depends upon all of the variables
in the space of the prolonged ideal, that is, u' = u'(u, z, p, y*) and similarly 2’
and p' are defined in the same way. Then in order to have u' be a solution we

introduce this ansatz into the set of forms in (2.7)

o) = du' Ndt — Zdx A dt,
ay = dZ Adt —pldx Adt, (2.108)

a3’ = —du' ANdx +dp’ Adt+ 1202 dx A dt

and demand that this set of forms be in the ring of the prolonged ideal.
Another way is to substitute the new solution u’' into the KdV equation.
Then, after ignoring the collection of the terms in which v and u' satisfy the KdV
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equation, we can equate the coefficients of the various independent variables to
Zero.

Although the calculations in these two ways are straightforward, they are
very tedious. However, Harrison [51] suggests that one can use the ratios of
the prolongation variables instead of using all of them separately. Of course
this choice of variables considerably simplifies the calculations, but they are still
tedious. If we define v = g—; as the ratio of the prolongation variables, the result

of the calculations is that

u' = —u—y* —2)\? (2.109)

is always another solution. Actually (2.109) is a Bécklund transformation in the
sense that it relates the old solution of the KdV equation to its new solution.

It is also possible to find a Béacklund transformation in a much simpler way
than the ways discussed above by the help of the scattering equations in (2.105),
more precisely by the help of the Lax equation (2.106) and the time evolution

equation (2.107). In order to do that firstly we define
== (2.110)
as the ratio of the prolongation variables. Then using (2.105) we get
Ve = —2u — 2)% — +* (2.111)

and
v = —4zy — (8\* — 4u)y? + 2p + 8u® — 8\ %u — 161", (2.112)
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Since the time evolution of ¥ in (2.107) does not depend on the scattering pa-

rameter A2, we can eliminate it from (2.112) and have

Yy = —4zy — 4y + 2p — 12v,u — 47,2 (2.113)

Checking the compatibility condition 7,; = v, we see that it gives back the
KdV equation. It is also possible to eliminate u, z and p from (2.111) and (2.113)

in order to get

Y¢ = —Vazz T 12)‘2’Yx + 672%5 . (2.114)

Actually (2.114) is the modified-KdV (mKdV) equation when A = 0. Therefore
(2.111) is the Miura transformation between the KdV and the mKdV equation
when A = 0. In this sense (2.111) is the Bécklund transformation relating the
solutions of the KdV equation to solutions of the mKdV equation. Now it is
trivial to see that, if v is a solution of (2.114), then —v is also a solution since
(2.114) is an odd equation. Correspondingly we can find a new solution u' for

the KdV equation such that

Yy = —2u' —2X\% — (2.115)

—y = A2y 4y + 20+ 1290 — 4,7 (2.116)

Subtracting (2.115) from (2.111) we get v, = v’ — u, or v = v/ — v with
vy = u. It is seen that, as we mentioned in Section 2.3, pseudopotentials can be
interpreted as the difference of two solutions related by a Backlund transforma-
tion. Substituting these relations back into (2.111) and (2.113) we then get the
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auto-Backlund transformation for KdV equation

(W' +0v), = —2X— (v —0)?, (2.117)
W =)y = —dug(V —v) — 40 — ) (V) — v)* + 20440
—12(v" — v) vy — 4[(v — v),]?, (2.118)

where (2.117), which is in the same form with (2.109), describes the space-part
and (2.118) the time-part.

From the Backlund transformation we can construct the soliton solutions of
the KAV equation. Since soliton solutions correspond to the discrete spectrum of
the eigenvalue equation, that is (2.106), we must choose A = ik, where & is real.
Only then for (2.106) can we have bound states and hence soliton solutions. For
a known solution we take the trivial solution (seed solution) v = 0 of the KdV

equation. Then integrating (2.117) we have
v'(z,t) = V2k tanh[vV2k(z + f(t))], (2.119)
where f(t) is an arbitrary function of ¢. Using (2.118) we find that
f(t) = —8k* — zy, (2.120)
where x4 is a constant of integration. Hence v’ is written as
v'(z,t) = V2k tanh[V2k(z — zo — 8k%t)] (2.121)

from which the single soliton solution of the KdV equation is found by just taking

the space-derivative

u'(z,t) = 2k2sech?[V2k(z — zo — 8K%t)]. (2.122)
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We note that (2.122) is valid only if |v| < v/2k. On the other hand, if

[v'| > v/2k, then we have the singular solution

u'(z,t) = —2k%cosech?[V2k(z — 2o — 8K%t)] . (2.123)
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CHAPTER 3

PAINLEVE ANALYSIS

The types of singularities exhibited by the solutions of systems of differential
equations in the complex domain are very important. In fact it is possible to
identify many different classes of integrable systems on the basis of their analytic
structures. Historically the first work in this direction was started in the late
19th century by classifying ordinary differential equations on the basis of their
singularities [52, 53, 54, 55, 56]. In 1884 Fuchs showed that among all possible

first-order ordinary differential equations in the form

dw wz:P(w,z)
= F(w, z) Qw2

(3.1)

where P and () are polynomials in w with coefficients analytic in z, only the

generalized Riccati equations,

du _
dz

p2(2)w? + p1(2)w + po(2) (3.2)
have no movable critical points [52, 53, 54]. After a short time Painlevé proved
that only the movable singularities of the solutions for first-order equations of the
form
dw
F|— =0 3.3
(Gwz) 0. 33)
with F' a polynomial in dw/dz and w and analytic in z, are poles [52, 53].
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Having been influenced by the work of Fuchs and Painlevé, Kovalevskaya made
the next significant contribution while studying the integrability of a rotating rigid
body. In particular she examined the possible connection between integrability
and the presence of only poles in the solutions of the equations of the spinning top.
This was the first application of singularity analysis to a physical problem [56].

Shortly after this the next very important result was discovered by Painlevé

and his coworkers by examining second-order equations of the form

d*w dw
—=F— 3.4
dZZ <dz ’w, Z) ) ( )

where F' is a polynomial in dw/dz, w and locally analytic in z. They showed
that among all possible equations of the above form there are only fifty canonical
equations with the property of having no movable critical points [52, 53, 54, 55,
57]. This property is known as the “Painlevé Property” and ordinary differential
equations having this property are called Painlevé-type equations. Painlevé and
his coworkers further showed that of the fifty equations forty-four were either
integrable in terms of known functions (such as elliptic functions and functions
that are solutions of linear equations) or were reducible to one of six new nonlinear
differential equations which are known as the Painlevé transcendents [52, 53, 54,
55].

After the classification of first- and second-order ordinary differential equa-
tions, several attempts were made to classify higher-order equations [58, 59, 60].
However, due to many reasons [55, 56] the complete classification of higher-order
ordinary differential equations with the Painlevé Property has not yet been given.
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Having reached its final point for that period of time (about mid 1910s), the
research in this area slowed down as if it had been stopped and almost no sig-
nificant results (except that the works of Bureau) had appeared until mid 1970s.
At the end of the 1970s, starting with the work of Ablowitz, Segur and Ramani
[17, 61, 62] on completely integrable nonlinear evolution equations, singularity
analysis gained a new interest and a new area of research was opened in which
the possible connection between the Painlevé Property and integrability could be
investigated. Indeed what they observed was that every reduction of an integrable
partial differential equation solvable by inverse scattering transform leads to an
ordinary differential equation with the Painlevé Property. Since then their algo-
rithm, which actually is a generalization of the ideas of Kovalevskaya, has been
used to identify integrable cases of both ordinary and partial differential equa-
tions. However, since it is not always possible to know all reductions of a partial
differential equation, there was a strong need for a test of singularity analysis
which could be applied directly to partial differential equations. For this reason
in 1983 Weiss, Tabor and Carnevale [63] introduced the Painlevé Property for
partial differential equations as a method of applying the principles of singularity
analysis to a given partial differential equation without having to reduce it to an
ordinary differential equation. All these ideas, which might be considered as a
resurrection of the Painlevé analysis, have found many applications in the theory

2

of completely integrable systems as well as in many branches of Physics!*? and

L Such as Statistical Physics, Plasma Physics, Quantum Gravity, General Relativity, Non-
linear Optics etc.

2 The fact that physical problems were responsible for the birth of this appearingly new
theory answers not only why it has found many applications in Physics but also the question
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this renewal of interest has never decreased from then.

In this Chapter firstly we describe the Painlevé Property for ordinary differ-
ential equations. In order to do that we start with a discussion of singularities
of ordinary differential equations. Then we give the main steps of the so-called
Painlevé Test. In the second section we mainly concentrate on the Painlevé Prop-
erty for partial differential equations. For this purpose firstly we describe the two
notions of characteristic and noncharacteristic hypersurfaces and then introduce
the main steps of the Painlevé Test for partial differential equations. Finally we
conclude the Section and the Chapter by applying the singularity analysis to the

KdV equation as an example.

3.1 Painlevé Analysis for Ordinary Differential Equations

3.1.1 Singularities of Ordinary Differential Equations

The main theme in the Painlevé analysis is to express the general solution
of a differential equation as a Taylor series or more generally a Laurent series
expansion. Because of the fact that the domain of validity of these expansions are
limited by the singularities, it is appropriate to investigate the Painlevé analysis
starting with a discussion of the singularities [64]. Before proceeding we recall
that any Taylor or Laurent series, those of which are valid in some interval on
the real line, are indeed valid inside a disk. Thus any differential equation and
solutions of it should be considered in the complex plane, even if their variables

are real [64]. Therefore all of the subsequent discussions are done in the complex

of why it was developed by physicists rather than mathematicians.
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plane.

There exist four structures of singularities of solutions of ordinary differential
equations which can be classified in two categories. The first classification is the
distinction between movable or fixed singularities of the solutions of differential
equations and the second classification is the distinction between the critical
and noncritical singular points. We now investigate these four different types of
singularities.

If the singular point of the solution of an ordinary differential equation is
determined only by the equation itself and does not depend on the constant(s) of
integration, then it is called a fized singular point. On the contrary, if its location
in the complex plane depends on the constant(s) of integration, then it is called
a movable singular point.

It is well-known [52, 53] that linear ordinary differential equations can only
have fixed singularities, that is, the only singularities of solutions of linear or-
dinary differential equation are those of the coefficients in the equation. For

example consider the following equation

dw w
E-I-Q:O, (3.5)

the solution of which is w = ce'/#. Tt has a fixed singularity (isolated essential
singularity) in its general solution at z = 0.

The point at infinity is to be considered as fixed. Sometimes linear ordinary
differential equations have zeros which depend on constants of integration and
they are called movable zeros [64].
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In contrast to linear equations nonlinear differential equations can have both
fixed and movable singularities [52, 53]. For example consider the very simple

nonlinear differential equation

dw 9
= 3.6
7 +w , (3.6)
the general solution of which is
(2) : (3.7)
w(z) = . .
Z— 2

Here 2, the constant of integration (of value —w*(0)), denotes the location of the
singularity of the solution. Hence the general solution has a movable singularity.
In fact it has a movable pole.

Having discussed the first classification we pass to the second one. However,
before giving the definition of a critical point it is appropriate to recall that a
function can be viewed as a bijective map which maps a given object onto an
image. The objects are chosen from a set called the domain and the images are
the elements of a set called the range. From this definition it is clear that a
function is characterized by its single-valuedness [64].

Since the notion of a critical point is directly related to multivaluedness, it
is preferable to give its definition in the following way: Any singular point of a
bijective map is called a critical point if at least two determinations (branches)
of that map can be permuted [64]. Thus any singularity, other than a pole of
whatever order, should be considered as a critical point. Of course such a point
is an obstacle for a map to be a function.
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In order to remove this difficulty it is desirable to define from this multivalued
map a single-valued one, in fact a function. Actually there exist two ways to do
this. The first way is to prevent local turns around critical points by cutting some
lines in the domain of the map and the second way is to extend the domain by
cutting and pasting several copies of sheets, called Riemann sheets.

It is possible to have different combinations of these four different types of sin-
gularities. In fact there exist four different structures of them. They are named
as: movable critical singularity, movable noncritical singularity, fixed critical sin-
gularity and fixed noncritical singularity. However, among these four only one of
them is an obstacle for a solution of an ordinary differential equation to define a
function. This combination consists of the presence of singularities at the same
time movable and critical. Indeed, in such a case, it is not possible to know either
where to make cuts or where to paste the Riemann sheets. Hence it is impossible

to define a function [64].

3.1.2 Painlevé Test for Ordinary Differential Equations

After discussing the singularities of solutions of ordinary differential equations
and stating that they have to be free from movable critical points in order to define
a function, hence be a solution, it is now appropriate to give the definition of the
Painlevé Property for ordinary differential equations.

An ordinary differential equation in the complex domain has the Painlevé
Property if the only movable singularities of its general solution are poles [65]. Of
course this definition excludes movable essential singularities as well as movable
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branch points from the general solution of the differential equation. From this
definition it is also clear that the crucial importance in the analysis is to determine
whether the solution has movable critical points or not and actually for this
purpose there exists a very effective test, called the Painlevé Test (in the literature
sometimes it is also called the singular point analysis). However, this test is not
sensitive to movable essential singularities, the property of which prevents it to be
the sufficient condition as well. Hence the Painlevé analysis should be investigated

in two parts:

e generation of necessary conditions (Painlevé Test) for the absence of mov-

able critical singularities in the general solution and

e explicit proof of sufficiency by expressing the general solution as a finite
expression of a finite number of elementary functions such as solutions of

linear equations, elliptic functions etc.

In order to say that an ordinary differential equation has the Painlevé Property
it is required that both the necessary and sufficient conditions be satisfied. If only
the necessary condition is satisfied, then it is said that the equation passes the
Painlevé Test. Forgetting about the sufficiency conditions we now discuss the
algorithm for the singular point analysis as described by Ablowitz et al [62] in
1980.

The main idea of the algorithm is to express the general solution of an nth-

order ordinary differential equation of the form

dn dnfl
w:F<J...,w,z>, (3.8)

dz" dzn—1’
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where F is analytic in z and a polynomial in d" w/dz""!,..., w, as a Laurent

series expansion

o

w(z) = (z — 20) Z (z — z0)! (3.9)

and to determine the single-valuedness and self-consistency of this expansion.

The algorithm consists of three steps;

1. dealing with the dominant behaviors,

2. finding the resonances and

3. finding the constants of integration,
each of which can be described as follows:

Step 1) Dominant behaviors: To determine « and ao there is no need to
substitute the full expansion in (3.9) into (3.8). Instead it is better to

substitute the following ansatz

w(z) = ag(z — 20)%, ag # 0, (3.10)

as z — 2y, where zy is arbitrary. Then for certain values of a two or more
terms in (3.8) balance each other, while the rest can be ignored because
of having higher powers of (z — z5). These most singular terms are called
dominant or leading terms. After they are balanced, it is usually possible

to determine ay.

To be able to say that (3.8) passes the Painlevé Test, o must be a negative
integer. If it were not an integer, zy would be an algebraic branch point
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for the dominant terms. Hence the equation under investigation would not

pass the Painlevé Test.

In this first step, usually for systems of differential equations (but not just
for them only), there may exist more than one dominant behavior. Then
it is important to find and examine all of them separately. If any of the
possible as is not an integer, then it should be concluded that the equation
does not pass the Painlevé test. On the other hand, if one of those branches
(possible as) has the Laurent series expansion (3.9) with n constants of
integration ((n — 1) arbitrary coefficients a; together with the arbitrariness
of the location zy of the singularity), then that branch is referred to as

generic, corresponding to the general solution of (3.8).

Step 2) Resonances: In the previous step it was noted that besides the arbi-
trariness of zy there might still be (n—1) arbitrary coefficients in (3.9). The
powers of (z — zp) at which these arbitrary coefficients appear are termed
resonances. Following the arguments of the previous step, again there is no
need to use the full series in order to determine the resonances. Instead a

simple analysis can be performed by substituting
w(2) = ag(z — 20)* + p(z — 20)*"", (3.11)

where ay and o have been determined from Step 1, into the simplified
equation that keeps only the dominant terms of (3.8). After making this
substitution it is possible to set up a linear equation in p to determine the
powers, r, at which p is arbitrary. This linear equation in p can be written
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in the form

Q(r)p(z — 2)° =0, pza+r—n, (3.12)

where ()(r) is a polynomial in » and n denotes the order of (3.8). If one of
the dominant terms is the highest derivative in (3.8), then § = a+r—n and
Q(r) is a polynomial of order n. If this be not the case, then § > a+7r—n
and the order of the polynomial Q(r) is less than n. In fact its order then

equals the order of the highest derivative among the dominant terms.

The roots of Q(r) are indeed the resonances since they are responsible for
having arbitrary p, which in fact indicates the entrance of free constants into
(3.9). It should be mentioned that r = —1 is always a root® of Q(r) and
it is associated with the arbitrariness of the location, 2y, of the singularity.
Other than —1 all negative roots* should be ignored since they violate
that (z — z9)® is the dominant term. Clearly any positive nonintegral root
immediately causes the test to stop since they give rise to movable algebraic

branch singularities or worse.

Any branch (admissible values of ) having Q(r) with (n— 1) distinct posi-
tive integer roots in addition to » = —1 is called a generic branch. The pres-
ence of negative integer resonances implies that the corresponding branch
is nongeneric. Having at least one generic branch indicates that there are
no movable algebraic singularities in the general solution. However, there

might still be movable logarithmic singularities and their absence should be

3 See [66] for more discussions about why r = —1 is always a root.
1 See [66, 67, 68, 69, 70, 71] for discussions about negative resonances.
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further checked (see the next step).

Step 3) The constants of integration: In the previous step of resonance anal-
ysis only the coefficients in (3.9) which should be arbitrary were determined.
Now in this step their arbitrariness has to be verified by checking the full
recursion relations, that is, the series in (3.9) up to the last resonance has
to be substituted into the original equation (3.8). After this substitution

the recursion relation, given by

Q(j)aj —Rj(ao,al,...,aj_l,zo) = 0, (313)

has to vanish identically. If j is smaller than the first resonance, then (3.13)
determines the a;. On the other hand, if j is equal to the first resonance
(Q(j = r1) = 0), then in order to guarantee that a,, is arbitrary the so
called compatibility condition, Rj—,, = 0, has to be satisfied. If this be
the case, it is possible to proceed to determine the other coefficients until
the next resonance is reached. At each resonance it is required that all the

compatibility conditions be satisfied.

However, it may turn out that for some resonance, r, the compatibility
condition is not satisfied, indicating that the corresponding coefficient a;
is not arbitrary. In this case the series in (3.9) has to be generalized in
such a way to recapture an arbitrary coefficient at that resonance. Actually
this is done by introducing logarithmic terms into the expansion such as
¢ In(z — z9)(z — 20)*™". Then the constant ¢, is determined in such a way
that the corresponding compatibility condition is satisfied, hence ensuring

60



that the coeflicient a, is indeed arbitrary. Clearly in this case the series in
(3.9) (actually the solution) is no longer single-valued and it is impossible

to talk about the Painlevé Property.

In summary it can be said that by following the Ablowitz-Ramani-Segur
(ARS) algorithm it is possible to conclude whether or not a given ordinary dif-
ferential equation has algebraic branch points or logarithmic singularities. Hence
in a very effective way it is possible to test whether a given equation satisfies the
necessary conditions in order to have the Painlevé Property.

Before concluding this Subsection we note that although the dominant behav-
ior in the first step of the ARS algorithm is determined as z — z, this is not the
only possibility for a general analysis of the leading order behavior since it can
also be determined as z — oo [66]. This ambiguity in the determination of the
dominant terms can only be solved by an analysis of the next to the leading order
behavior [66]. For example being the next power in the analysis greater than that
of the singularity implies that the analysis should be studied in the neighborhood
of the singularity. On the other hand being it lesser implies the studying of the
analysis in the asymptotic region. In fact this is nothing but the existence of two

types of Laurent series one of which is an increasing series of the form
0 -
w=>Y aj(z—z)"*, a<0 (3.14)
j=0

and the other being a decreasing series of the form
w = Z aj(Z — Zo)_j+a . (315)

j=0
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This second possibility of having the representation of the solution as a decreasing
series was not observed by Ablowitz et al [17] (see [62, 66]) (because of this reason
we discussed the ARS algorithm in its original form). However, it was first
introduced into the literature by Lemmer and Leach in 1993 [67] and thereafter
studied in [66, 68, 69]. The series in (3.14) is called the Right Painlevé Series
and the one in (3.15) the Left Painlevé Series [69]. Of course there exist some

differences between these two approaches such as:

e In order to have the Left Painlevé Series we require that all of the terms in

the equation are dominant.

e Since in the case of a decreasing series we are determining the behavior of
the leading order term as z — oo, the constant z, loses its importance.
Therefore we need n arbitrary constants in this case as oppose to the sit-
uation in the ARS algorithm where we need n — 1 (together with z, there

are n arbitrary constants) additional arbitrary constants.

e Those terms which are most singular in the ARS algorithm become the

least singular in the case of the Left Painlevé Series.

After mentioning the Left Painlevé Series and stating some of the differences
between the two approaches we do not give the detailed analysis of having the
Left Painlevé Series. However, these are fully discussed in [66, 67, 68, 69].

Having discussed the Painlevé analysis for ordinary differential equations we
can now generalize it to partial differential equations and this is done in the next
Section.
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3.2 Painlevé Analysis for Partial Differential Equations

As was stated in the very beginning of this Chapter, the Painlevé analysis for
partial differential equations was started by the work of Ablowitz, Ramani and
Segur [17, 61, 62]. Indeed their work was remarkable in the sense that a connec-
tion between integrability and the Painlevé Property had been noted since the
work of Kovalevskaya. They realized that the reductions of many integrable equa-
tions always seemed to lead to ordinary differential equations with the Painlevé
Property and in fact it was this observation that lead them to conjecture that
“every ordinary differential equation obtained by an exact reduction of a nonlin-
ear partial differential equation solvable by inverse scattering transform method,

has the Painlevé property” [62].

Of course the transformation of variables is allowed by this conjecture and
it may well be the case that a given equation can pass the test only after some
transformations. The main idea of this conjecture is to test a partial differential
equation for integrability in the sense that an inverse scattering transform exists
by testing all of its reductions to ordinary differential equations for the Painlevé

Property.

However, the reduction of the partial differential equation before application
of the algorithm is one of the major drawbacks of the ARS approach since in some
cases the reductions are just too trivial to give interesting results. Moreover, it
is not always possible to know what all these reductions are [72]. Because of
these reasons there exists a strong need for a test which can be directly applied
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to partial differential equations without reducing them to ordinary differential
equations.

In this section the Painlevé Test for partial differential equations, introduced
by Weiss, Tabor and Carnevale (WTC) [63], is discussed. For this purpose firstly
characteristic and noncharacteristic hypersurfaces are described. Then the test
for partial differential equations is given. Finally this section concludes with the

application of this test to the KdV equation as an example.

3.2.1 Characteristic and Noncharacteristic Surfaces

After Weiss, Tabor and Carnevale introduced the Painlevé test for partial
differential equations, Ward [73] strongly suggested that the singularity manifold
must be a noncharacteristic one. From then this fact has been assumed by all
the Painlevé practitioners. Therefore, before describing the test, it is better
to discuss the two notions of characteristic and noncharacteristic surfaces for
partial differential equations. In order to have simple expressions the discussion
is restricted to first-order systems. However, it is always possible to generalize it
to systems of any order.

Although it is possible to solve for the derivatives of highest order in ordinary
differential equations, it may not be so in partial differential equations since there
are many derivatives of highest order. However, it may be possible to solve for
the highest order derivative with respect to one of the independent variables.

Consider the following system

Fi(z', ... 2P ut, oo™ vk, u) =0, i=1,...,n. (3.16)



Since ul; ,j =1,...,p are jet variables, it is clear that F* depends on p+n+ pn

variables. Suppose that the point [z}] , where [}] denotes the p-tuple (z}, ..., z5),

ou’

ol

satisfies (3.16). If the Jacobian Hﬂ = 0] , the hyperplane z! = x is said
]

[wi]=(a}

to be characteristic at the point [z7] = [¢}]. On the other hand if the Jacobian

[ (;95 # 0] , the hyperplane 2! = z} is said to be noncharacteristic at the
ol [zd]=[a})]
point [z/] = [x])].

If the hyperplane z! = z} is noncharacteristic, then by the implicit function

theorem it is possible to solve (3.16) in some neighborhood of [z}] for

L u b, U, i=1,...,n. (3.17)

i1 D
un =Gz, ..., 2P u

Now instead of the hyperplane z' = z{ consider a general hyperplane

¢'(z',...,aP) = m(a' —xp) +y(a” —ag) + - +p(a? —2f) =0,  (3.18)

and introduce new coordinates, £, ..., &P, in the form
&= ¢z, ... aP), i=1,...,p, (3.19)
where ¢?,..., ¢ are chosen arbitrarily, that is, they are linear functions of [z27].

If the Jacobian %

# 0, then by the implicit function theorem it is possible to
invert (3.19) in order to find [z’] in terms of [¢!], which can be expressed in the

form
=0, &), j=1,...p. (3.20)

Hence it is possible to replace the coordinates 27 by new coordinates & and by
the use of the chain rule it is easy to express the z-derivatives in terms of the
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&-derivatives which can be written in the form

u’ out og* i=1,...,n,
8:E9 Zagkaxﬂ’

' (3.21)
7=1,...,p.

Then replacing the coordinates 27 by new coordinates & and substituting

(3.21) into (3.16) one can obtain a new system of differential equations,

Fie, .. &, uup, . uh) =0, i=1,...,n. (3.22)
In this new system vanishing or nonvanishing situations of the Jacobian gj;i
§1

determine whether ¢! = 0 is characteristic or not which in fact determines whether
@' in (3.18) is characteristic or not. It is also useful to express the entries of the

above Jacobian in terms of the old coordinates

OF" 8FZ ou? .
P Z auk i,j=1,...,n. (3.23)

Then using (3.21) these entries can be expressed as,

OF . OF 3¢
3ugl S o, 0ok

ij=1,...,n. (3.24)

In general an hypersurface ¢(z',...,2?) = 0 is said to be characteristic or
noncharacteristic at a given point according to whether the tangent hyperplane
at that point is characteristic or not [74].

As an example consider the following simple system,

Fl('Ta Y, Uy UV, Ugy Uy, Vg, Uy) =0 ,
Fz(ac,y,u,v,ua;,uy,vm,vy) =0. (325)
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In order to decide whether a hypersurface ¢(x,y) = 0 is characteristic or not,

evaluate the following determinant

Fu e+ F, by Fdet F, ¢y 5.26)
Foba+ Fi by Fy oo+ Fpdy
at a given point (xg,yo). If the determinant vanishes, then ¢(z,y) = 0 is a
characteristic surface. If not, it is a noncharacteristic surface.

Having discussed the two notions of characteristics and noncharacteristics, we
now turn to the Painlevé analysis for partial differential equations. As we said
before, in 1984 Ward stressed that the singularity manifold, used in the Laurent
series expansion, must be noncharacteristic. In fact this must be the case since

on a characteristic manifold any type of singularity may propagate [55]. In order

to see this we consider the linear wave equation,
Uy = Ugyg » (3-27)
which has a general solution
u(z,t) = f(x +1t) + gz — 1), (3.28)

where f and ¢ are arbitrary functions. It is manifestly obvious that any type
of singularity may be possessed by the arbitrary functions f and g. Therefore
the general solution also has the same singularities on the characteristic mani-
folds. Since the characteristic manifolds are determined by the partial differential
equation itself and not by the particular solution, they can be considered as the
analogous of fixed singularities in ordinary differential equations [55].
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3.2.2 Painlevé Test for Partial Differential Equations

As in the case of ordinary differential equations the Painlevé analysis for par-

tial differential equations consists of two parts:

e generation of necessary conditions (Painlevé Test) for the absence of mov-

able critical singularities in the general solution,

e explicit proof of sufficiency by finding the transformation that linearizes the
partial differential equation or by finding the Backlund transformation from

which analytic solutions can be constructed.

The two parts of the analysis should be investigated separately and, unless the
sufficiency conditions are satisfied, it is impossible to say that the partial differ-
ential equation has the Painlevé Property. The first part of the analysis consists
of a test which is very similar to the algorithm that we described in Subsection
3.1.2. For the second part the truncation procedure, which uses only the singular
part of the Laurent series, may give constructive results. In addition to this, any
method, which explicitly finds the Lax pair or Backlund transformation, surely
serves for the purpose of proving the sufficiency conditions.

In this Subsection we do not consider the second part. However, in Section
5.2 the sufficiency condition is explicitly proved by finding the Lax pair of the
system of nonlinear partial differential equations under investigation. We now
describe the Painlevé Test for partial differential equations.

In contrast to the case of ordinary differential equations the singularities of
analytic functions of several complex variables cannot be isolated. Actually for a
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function of n complex variables they lie on analytic manifolds of real dimension

2n — 2. These manifolds are determined by conditions of the form

d(z1,---520) =0, (3.29)

where ¢ is an analytic function of (z1, ..., 2,) in a neighborhood of the manifold
[72] and is named as a singularity manifold. Thus there appears a way of gen-
eralizing the concept of a Laurent series for functions of one complex variable to
functions of many complex variables by using such singularity manifolds. All of
these considerations lead to the following definition: A partial differential equa-
tion is said to pass the Painlevé Test if solutions of it are single-valued in the
neighborhood of noncharacteristic, movable singularity manifolds [55].

In order to test whether a given equation passes the Painlevé Test, Weiss et

al [63] proposed a generalized Laurent expansion of the form

u(z1 ..., 2) = u(z) = ¢0%(2) iuj(z)qﬁj(z) : (3.30)

where u;(z) are analytic functions of z = (21,...,%,) with ug(z) # 0, in the
neighborhood of a noncharacteristic, movable singularity manifold defined by
(3.29) as a general solution of the differential equation. If the validity of this
expansion can be demonstrated, then u(z) is claimed to be single-valued about
the arbitrary movable singularity manifold (3.29) and hence to be the general
solution of the differential equation.

The method, introduced by Weiss et al, is analogous to the algorithm de-
scribed in Subsection 3.1.2 and similarly to that case this method also consists of
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three main steps. However, since these were fully discussed before, we do not dis-
cuss them again. Instead we summarize the general procedure without referring
specifically to the steps.

Substitution of (3.30) into the given differential equation determines the ad-

missible values of o and the recursion relations for u; in the form

(G+1)(G = B2) - (4 — Bn)uy; = Fj(ug,ur,. .., Un—1,0,2), (3.31)

where N is the order of the equation and Fj is some function the arguments of
which are the coefficients in the expansion together with ¢ and x. It is clear
that, since the u; are functions of (z1,...,2,), these relations are in the form of
coupled partial differential equations. They define u; unless j = f;, for some
1, being an integer between 1 and N. These values of j at which arbitrary
functions may enter are called resonances. The resonance j = —1 is always
present and it is associated with the arbitrariness of the singularity manifold ¢ =
0. For each positive resonance the condition Fj, = 0 must be identically satisfied.
These conditions are called the compatibility conditions. The satisfaction of these
conditions guarantees that the corresponding coefficient is arbitrary. On the other
hand, if one of them is not satisfied, then it is enough to conclude that the test
fails. However, in such cases the logarithmic Psi series may be used in order to
regain the arbitrariness of the corresponding coefficients.

In order to conclude that a given partial differential equation passes the test,
it is required that a be a negative integer and there exist at least one branch
(admissible values of «) with N — 1 positive resonances and all the recursion
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relations be compatible (in all possible branches), that is, in all possible branches
the compatibility conditions at the resonances must be satisfied. Having N — 1
positive resonances together with —1, the series contains the requisite number
of arbitrary functions as required by the Cauchy-Kovalevskaya theorem and thus
corresponds to the general solution of the partial differential equation.

Since the recursion relations for u; are systems of coupled partial differential
equations, the analysis becomes more difficult as we proceed to deal with higher-
order terms. However, this difficulty can be solved by using Kruskal’s gauge’,
which in fact is an application of the implicit function theorem. This is the
simplest choice for the test, but it cannot be used to obtain the Lax pair or
particular solutions.

Having discussed the Painlevé test for partial differential equations, we con-
clude this Chapter by applying this test to the KdV equation in the next Sub-

section.

3.2.3 Painlevé Test for the Korteweg-de Vries Equation

We apply the Painlevé Test to the KdV equation, given in (2.4). Assuming

that the generalized Laurent series

w(z, ) = 6°(x, 1) iuj(x, D (2,1) (3.32)

where ¢(z,t) and u;(z,t) are analytic functions of (x,¢) near the noncharacteris-

tic, movable singularity manifold defined by ¢(z,t) = 0 (¢, # 0), is the general

® In two real variables it is given as ¢(z,t) = z — 1)(t). Then, u; becomes a function of the
variable ¢ only.
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solution of (2.4), we substitute (3.32) into (2.4) and try to find the admissible
values of a and resonances r together with the full recursion relations. However,
since our aim is only to test (2.4), it is better to use Kruskal’s gauge, which
significantly simplifies the calculations by expressing x in terms of ¢. Moreover
we also follow the analogous steps of the algorithm described in Subsection 3.1.2,
which simplifies the test even further.

Following the algorithm step by step we firstly substitute uy¢®, where ug is
a function of ¢ only and ¢(z,t) = = — ¢ (t) (Kruskal’s gauge), into (2.4). It
is immediately seen that the highest order term (ugs;) and the nonlinear term
(12uu,) are the leading order terms in (2.4). Balancing these dominant terms we
find that « = —2 and ug = —1. Next we have to find the resonances. For this

reason we introduce

u=—¢"%+u;p > (3.33)

into the reduced equation (the KdV equation which keeps only the dominant

terms) and to the leading order in u; (linear in u;) we get

w7+ 1) —4)(7 - 6)]6™ =0. (3-34)

It is seen that arbitrary functions can enter the Laurent series expansion at the
points 7 = —1,4 and 6. Indeed these points are the resonances for the KdV
equation. Finally we must substitute the full series (3.32) into the original equa-
tion (2.4) and find the full set of recursion relations the compatibility conditions
of which are checked at the resonances. In order to do this, we firstly find the
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derivatives of u,

w = 3 {ud™ —uh(j - 2)7Y

7=0

we = w267,
j=0
j:O

Then inserting these derivatives into (2.4) we get

i {07 = up (G — 2)¢7>47} + i ui(j—2)(j = 3)(j —4)p7°"

j=0 §=0

+122 Zu]uk —2)¢ 7Tt =0, (3.36)
7=0k=0

which can also be written as

>~ {us spe = g2t = )+ 055 = 20 = 3 = 4) + 240
i=3

—12u;(j — 2) + 12> uj_pup(k — 2)}¢5+j
k=1

—24u(1 + ug) > — 6uy (6ug + 1) + 2(ugthy — 12usue — 6ur’)¢™> = 0.(3.37)

Hence the recursion relations take the form

G+D0 -0 —6)u; = —ug-z)+ (J — DYru;—
i—1
—12 ]Z uj,kuk(k — 2) (338)
k=1

from which (also by the help of (3.37)) we find that at

j=0:uyy=-1, j=1:u1=0, j=2 UQ_%,
C el T



Furthermore at j = 4 and j = 6 (that is at the resonances) we get the compati-

bility conditions which can be written in the following form by using (3.39)

j = 4:0u =0,

j = 6 : O'UG = 24”4’!/),5—24’[1,2114. (340)

It is clear that two of the compatibility conditions are satisfied. Even if we
did not use Kruskal’s gauge, the compatibility conditions would still be satisfied,
but in a much more complicated way.

Since all the requirements of the Painlevé Test are satisfied, we conclude that
the KdV equation passes the test successfully. Hence it must be expected to
possess a Lax pair. Although by the help of a well-known procedure, which
uses only the singular part of the Laurent series, it is possible to find the Lax
pair or Backlund transformations of the KdV equation, we do not consider this
procedure here. However, in Chapter 2 we explicitly found the Lax pair and
Backlund transformation of the KdV equation by using other methods. Thus we

must conclude that the KdV equation has the Painlevé property.
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CHAPTER 4

DRINFEL’'D-SOKOLOV SYSTEM OF EQUATIONS

Integrable systems appear not one at a time, but in big families which are called
hierarchies. Firstly the KdV hierarchy was invented and then infinitely many
generalized KdV hierarchies were found. They were unified to a single one
large Kadomtsev-Petviashvili (KP) hierarchy [75]. Very recently it was shown

by Giirses and Karasu [76] that the system of equations

Uy = —Uggy + 6U'U':c + 6”35 ;

Vg = 2Ugppe — OUV,, (4.1)

admits a recursion operator and a bi-Hamiltonian structure. Therefore it has
infinitely many constants of motion. The system (4.1) belongs to a class of
equation which is called a quasipolynomial flow [16]. The Lax pair for this system
was first given by Drinfel’d and Sokolov [18] and later by Bogoyavlenskii [77].
Under scaling transformations this system of equations reduces to a special case
of the KP hierarchy which was shown by Hirota and Satsuma [78, 79]. They
also gave the one soliton solutions. Recently auto-Backlund transformations and
certain analytical solutions were obtained by Tian and Gao [80] via the Painlevé
analysis. In this Chapter we use the prolongation method to derive the linear
scattering problem for the system (4.1). We also obtain Bécklund transformations
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by using pseudopotentials.

4.1 Prolongation Structure of the Drinfel’d-Sokolov System of Equations

When we introduce the variables

P=Ug, q=Vg, T=Pz, S=4dz, (42)
the system of equations (4.1) can be represented by the set of 2-forms

a; = duNdt—pdx Adt,

g = dpANdt—rdxAdt,

a3 = dvAdt—qdz Adt,

ay = dgANdt—sdx Adt,

as = duNdx—dr ANdt+6(up+ q)dx Adt,

ag = dvAdzr+2ds A dt — 6ugdx Adt, (4.3)
which constitutes a closed ideal I.

Following the W-E prolongation method we extend the ideal I by adding to

it the system of 1-forms,
Wk = dyf + FFdx + G*dt, k=1,...,N, (4.4)

where F* and G* are functions of (u,v,p,q,r,s,y*) and we require that this set
of 1-forms be closed. Thus writing (2.34) explicitly and equating the coefficients
of various independent 2-forms to zero gives us some set of partial differential

equations for F* and G*. Dropping the indices for simplicity we have

F,=F,=F,=F,=0,
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GSZQF'U’ Gr:_Fua

PGy +qG, + Gy + sGy — 6(up + q)F,, + 6ugF, — [F,G] =0, (4.5)

where the commutator is defined in (2.78).

Now we have to integrate these equations. Since the calculations are long and
straightforward, we do not show them here. In obtaining the result we equate
the coefficients of terms quadratic in F' to zero. Indeed we can do this since, as
we saw in Subsection 2.4.1, they are in the center of the algebra and can be set

to zero. We find the following
F = Xi+uXs+vX;,
G = Xo+ (=r+3u?+6v)X,y+ 2(s — 3uv) X3 — pX,
1
—uXs — 5u2X6 +2¢X7 + 20X5 + v2 Xg + 2uv Xy, (4.6)

where X, X1, X, and X3 are constants of integration depending on y* only. The

remaining elements are

[XlaXQ] = X4a [X17X3] :X7, [X15X4] :X5:
[XlaX7] = X8a [X27X4] :XGa [X25X7] :XIO:
[Xg,X7] = Xg . (47)

The integrability conditions impose the following restrictions on the X,
[Xs, X3] = [ Xy, Xo] = [X35, Xo] = [ X3, X0] = 0,
(X5, X4] = 6X3 —2X49, [Xo, Xo] +2[X35,Xy9] = 0,
1
[XQaXIO] - Z[X&Xﬁ] = Oa
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(X1, Xg] +2[X5, X5] —6X, = 0,
(X1, Xo] +2[X3,X5] = 0,
[X1, X5] — [X2, Xo] = 0,
2[Xy, Xg] + [ X3, Xo] +6X4 = 0,

1
[Xl,Xl()] + [XQ,XS] - §[X3,X5] - 3X7 - O . (48)

Using the Jacobi identities we obtain the further relations

(X1, Xo] = [Xa, Xo] = [X3, Xs] = [X3,X10] = 0,
(X2, X10] = [X3,Xs] = 0,
(X1, Xio] — [Xu, Xo] — [X2, Xg] = 0,
(X1, Xe] = [X2, X5] = 2X4,
(X3, Xs5] + 2[X7, Xu] + 2[X1, X19] = 6X5. (4.9)

Now to find a finite-dimensional representation of this prolongation algebra
we follow the strategy given in Section 2.2. Firstly we reduce the number of

elements. By using (4.7), (4.8), (4.9) and the Jacobi identities we get
(X1, Xo] = [X2, Xp] = [X3,X9] =0 =Xy = 0,
(X5, Xyl = X1o, [X3, Xy =6X3-2Xy =X,y = 2Xj,
[XG; XQ] = [XG; X3] = 0, [XG, X4] = 2X6 = X@ = 2X2 . (410)

Next we locate the nilpotent and the neutral elements. Together with corol-

lary 2.2.2, (4.7) and (4.10) give

[XQ,X4] = 2X, == X5 nilpotent,
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[XQ,Xl] = —X4 — X, neutral. (411)

We note that the Drinfel’d-Sokolov system of equations has the following

scaling symmetry

=Nt t= X3, u—o N Nu, v—o v, (4.12)

which implies that the elements X; must have the following transformations

Xo = XXy, Xi—=MXi, Xo—= 21Xy,
X3 — )\_3X3, X4 — X4, X5 — )\X5,

X; = 27Xy, Xg— A 'Xg. (4.13)

By using (4.13) and the scaling symmetries of the basis elements of s¢(n+1, C)
we try to embed this prolongation algebra into sf(n + 1,C). Starting from the
n = 1 case we identify

X2 =€_, X4 =h. (414)

Thus the solution of [Xs, X;1] = — X, gives

X;=e, +Ne_, (4.15)

where the constant \? is chosen to take account of the scaling properties. Then
[Xl, X4] = X5 1mphes

X5 = —2e; +2)\%e_ (4.16)

and [Xo, X;3] = [Xj3, X7] = 0 implies

X3 = Ae_ 5 X7 = Be_ 5 (417)
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where A and B are some constants. Since [Xi, X3] = X7, A and B must be zero.

So together with [ X7, X7] = Xg we have

X3 :X7:X8 :0 (418)
Finally the relation
[Xo, Xo] = [X1, X5]
= 4)\?h (4.19)
implies
Xo=—4)e, +C, C € Ker ade_ (4.20)

and [ X7, Xo] = 0 determines C. The result is

Xp= 4N, —4X'e . (4.21)

However, with these choices of elements X; we see that (4.6) is reduced to
(2.86) and (2.89). Thus s¢(2,C) cannot be the whole algebra. Similarly after
some calculations s¢(3, C) is also dismissed. The simplest nontrivial closure is in
terms of s¢(4,C).

We choose X5 and X, as follows,

0000 1 0 0 O
1 000 0 -1 0 O
X2 = , X4 = (422)
0000 0 0 1 O
0010 0 0 0 -1
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Then a solution of [X;, X5] = X4 is

A1 G 0
B A F G
X1 - s (423)
D 0 -A 1
E D C -A

where, of course, we add the general form of the element which is in the kernel of
ad X, to the solution of [X, X5] = X4. Also the most general form of X3, which
satisfies the relation [ X3, X,] = 2X3, is

0000

X5 = . (4.24)
000 0

v 0 80
Then, together with [X, X3] = X7, [X4, X7] = 0 implies that
¥G +6D =0

=G = 0, 6D=0,
vG — 6D =0

26A+BG —aG = 0,

(e —B)D = 27A. (4.25)

Considering the scaling properties, we choose G = 0 and § = 0. Moreover
[X3, X7] = 0 implies that & = § = 0. Thus assuming v # 0 we find A = 0. Also
[Xo, Xg] = 2X7 gives F' = 2. Then from the relations X; — AX;, Xy — A\*X, and
[Xo, X1] = 0 we conclude that Xy = X, which together with [ X5, Xo] = [X1, X;]
gives B=D =0 and n = —4. Finally [ X, Xg] + %[Xg,X()] = —3X, gives C =0
and y = —3.
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So we find a representation for all of our elements including an arbitrary

parameter E. We choose it as %/\4 by considering scaling properties. Thus the

representations of the matrices are

0 100 000
0 020 100
X1: aXZ_
0 001 000
A0 00 0 01
0 000 1 0
0 000 0 —1
X3: 5X4_
0 000 0 0
-3 000 0 0
0 -2 0 0 0
0 0 4 0 0
X5: 5X7—
1
0 0 0 -2 -1
M0 0 0 0
0 0 0 0 0
-10 0 0 —4)\t
X8: ,X():
01 0 0 0
0 0 -1 0 0

—2)\4

0

—4)\*

0

(4.26)

Putting these into (4.6) we form the matrices F' and G and then by using (2.39)
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we get the linear scattering problem

y? 0 —u 0 —ZX+3v y?

2 1 0 0 0 2

y3 B 0 -2 0 —u y3 |

yt 0 0 -1 0 yt

Yt p T q My + s —uw y?

y? —2u —p 22X =2 —q y?

= . (4.27)

y3 0 4u p r y?

y* 8 0 —2u —p yt

t

where I' = 4\* — 4v + r — 2u?. Hence the scalar Lax equation can be written as
LY = (0" — 2u0® — 20,0 — Uy + 1’ +v)U = N (4.28)

with the corresponding time evolution of ¥
U, = (—40° + 6ud + 3u,) ¥, (4.29)

where ¥ = y* and 0 represents the z-derivative.

4.2 Backlund Transformations for the Drinfel’d-Sokolov System of Equations

Within the prolongation scheme Bécklund transformations can be derived by
assuming the new solution variables to be functions of old ones and the ratios of

pseudopotentials [51]. For this purpose we define new variables
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By using (4.27) we can find the equations satisfied by «, § and 7,

1
ap = av—uﬁ+§(v—)\4),
Br = _a+57a
A2
Yz = 7 —25—71,,
o = —8a®+2(p+2uy)a+ (4Nt —dv 41— 2u?)B + gy
+(\u+ s —uv),

By = —2ua+2(uy—4a)B+2(X —v)y —q,
Y = 2uy? +2(p —4a)y +4ufB + (4Nt — dv 4+ — 2u?). (4.31)
The compatibility conditions oy = oy and 7, = Y, hold if u and v satisfy (4.1)

while (,; = B, holds automatically. It is possible to check that the function £

satisfies the following equation:

This means that
U = u+2y,,
v = Clﬁ + Co (433)

are the new solutions of (4.1) if

(48% + c18), = 0, (4.34)

where ¢; and ¢y are constants. We note that the same results for & and v can be
obtained if one follows the step (3) of [51]. By setting y* = ¥ and using (4.27)
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and (4.30) we obtain

u = u T 32
~ u ‘Ilzz
vo= (—5 + U ) +C2. (435)

Here v is a known solution of (4.1) and ¥, being the solution of (4.28) and (4.29),

satisfies the condition

{ﬁ[xpw w2V — ul) + cqu}w ~o0, (4.36)

which is equivalent to (4.34).
Next we consider the simple case u = v = 0 as the known solution of (4.1)

and find a new solution. With this choice we find that
U = dle—)\(4)\2t—m) + d26)\(4)\2t—z) + d3€i)\(4/\2t+z) + d4e—iA(4A2t+z) (4.37)

is a solution of (4.28) and (4.29), where d;, dy, d3 and d, are constants. Substi-
tuting (4.37) into condition (4.36) we obtain two sets of solutions for ¥ for which
{dy =dy =0,¢; = 4)?} and {d3 = dy = 0,c; = —4)\?}.

The respective solutions for # are

8d3d, 2 62»\(4/\2 t+x)
[d4 + d362i)\(4)\2t+z)]2 ’

_ 2 2\(4\2t—1)
722 _ 8d1d2)\ e (438)
[dl + d2e2)\(4/\2t7w)]2 ’

where in both cases © = ¢, — 2)\* = constant. Thus starting from a trivial
background we obtain the one soliton solution of (4.1) with ¢ = constant.

In order to find more general Bicklund transformations for the system (4.1),
we assume that the new solutions U and V are functions of old variables u, v, p, g, 7, s
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and «, §, v which are the ratios of prolongation variables satisfying (4.31). After

some straightforward but long calculations we obtain the following results:

~ Q 2
= ——A—— 2

~ A

V = Op— —0, 67, (4.39)

Y
where
1 2 2
Q = —ﬁ(p’y—i-u +4Bu+4ﬁ —404")/),

A = 268-29*+u,

0 = 4%/2 —u? +2(v* — 28)u — 4(ay + 5?)] (4.40)

and © must satisfy the condition
O = 20,4, + 300, . (4.41)

Thus, if any solutions (u,v) to the Drinfel’d-Sokolov system of equations are
known and if «, B, v are solutions of (4.31) satisfying the condition (4.41), then

U and V are the new solutions of (4.1).

If we take the trivial seed solutions u = v = 0, then we get

232

U = —?‘F?(WQ—%),
Y 1 4 3.2 2 2,2 M
V = —— Q78 +88°y —10°ay + o) + | = + — (4.42)
4 2 18
with the condition
B[-566" + 483%ya — 3872\ — 842 + '\ = 0. (4.43)
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By setting y* = ¥ one can write these expressions in terms of the solutions of the
Lax equations (4.28) and (4.29) and see that our results are more general than
those given by Tian and Gao [80].

As an example we consider the simple case, u = v = 0, as the known solutions

of (4.1) and we obtain the following two sets of explicit solutions:

b - 2¢2
(et e)?]
~ c
= é (4.44)
and
oo 30(c; + 2%){4x[5c1[2(24t — 23) — 3c1x] — (co + 32°)] + 15(2? + ¢1)3]}
B {5c1[2(24t — x3) — 3c12] — (¢ + 325)}2 ’
7o 120z[co + 32° + 153z — 10¢, (24t — 23)]3 (4.45)

{5¢1[2(24t — 23) — 3cix] — (cp + 325)}*
where ¢y, ¢; and ¢y are constants.
As we observed, there are no solitary wave solutions belonging to the class

(4.42). Very recently all the special solutions of (4.1) were obtained by Karasu

and Sakovich [81].
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CHAPTER 5

INTEGRABILITY OF KERSTEN-KRASIL’SHCHIK COUPLED
KDV-MKDV EQUATIONS: SINGULARITY ANALYSIS AND

LAX PAIR

A symmetry of a system of differential equations is a transformation acting on the
independent and dependent variables of the system with the property of trans-
forming solutions of the system to solutions. Symmetries play an important role
both from the physical and the mathematical points of view. For example they
lead to conservation laws, which are mathematical formulations of the conser-
vation of physical quantities such as energy and momentum. Indeed invariance
under time translations implies conservation of energy and invariance under space
translations implies conservation of momentum. In Physics particles and fields
are described in terms of two classes: bosons and fermions. Classical symmetry
principles do not mix these two classes. However, supersymmetry was introduced
into Physics in the middle of the 1970s in order to exchange bosons and fermions
(82].

From the point of view of nonlinear partial differential equations, supersym-
metry enlarges the notion of integrability. Over the last two decades integrable
supersymmetric differential equations, with very rich properties, have attracted
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much attention both in the field of Mathematical Physics and Soliton Theory.
The supersymmetric extension of a classical differential equation (the differential
equation for a bosonic or a commuting field) refers to a system of coupled differ-
ential equations for a bosonic and a fermionic field. Of course it is required that
this system of coupled differential equations reduce to the original bosonic equa-
tion in the limit of a zero fermionic field. A fermionic field is described in terms
of an anticommuting field. However, supersymmetry requires more than just the
coupling of a bosonic field to a fermionic field. It also refers to the existence of
a transformation relating these two fields which leaves the system of equations
invariant [83]. For example the system of equations introduced by Kupershmidt
[84] is a superintegrable system in the sense that it couples the bosonic field to
the fermionic field, but it is not supersymmetric since it is not invariant under
the superspace translation which is a supersymmetry transformation.

Naturally supersymmetric extensions of bosonic equations started with the
extension of the KdV equation. The N = 1,2 integrable supersymmetric versions
of the KdV equation have been found in the past two decades [83, 85, 86, 87, 88,
89, 90, 91]. Here N refers to the number of supersymmetries, that is the number
of odd fields. Since then many other equations have been supersymmetrized.

One of the important properties of supersymmetric extensions of known inte-
grable bosonic systems is that these extensions can generate some new integrable
bosonic systems in their zero fermionic field limits which generalize the initial
ones. In fact generalization of new integrable bosonic systems is found if the
number of supersymmetries, N, is greater than one [92]. In this connection one
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of the superextensions of the KdV equation, the N = 2, a = 1 case, where a is
a parameter, was reduced to a bosonic system in the zero fermionic field limit
by Kersten and Krasil’shchik and was later named after them as the Kersten-
Krasil’shchik coupled KdV-mKdV equation. The integrability of this new system
was proven by Kersten and Krasil’shchik [20] by finding a recursion operator and
an infinite number of symmetries.

In this Chapter firstly we discuss the N = 1 and N = 2 superextensions of
the KdV equation and show that the N = 2, a = 1 superextension of the KdV
equation reduces to the Kersten-Krasil’shchik coupled KdV-mKdV equation when
we let the odd variables vanish. Then in the second Section we investigate the
integrability of this new bosonic system in terms of singularity analysis, show
that it passes the Painlevé Test and hence is integrable. Having proven the
integrability of the system in the third Section we search for the Lax pair by
using the W-E prolongation method and the Dodd-Fordy algorithm and discuss

the removability of the spectral parameter by using gauge invariant techniques.

5.1 Supersymmetric Extensions of the KdV Equation

The supersymmetric extension of the bosonic equations requires two things:

i) The introduction of fermionic fields which are described by anticommuting
fields. For example an anticommuting field, v, satisfying {v(x),~v(y)} = 0,

so that y%(z) = 0.

ii) A symmetry transformation which maps anticommuting fields to the usual
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commuting fields and vice versa.

For the first part it is natural to think that both independent variables x and
t can be extended independently to include the anticommuting fields. However,
since we only consider the evolution equations in the form of (2.11), the timelike
supersymmetric extensions give trivial results. Hence, it is enough to consider
only spacelike supersymmetric extension in space. In order to do that the super-
space formalism is used. This means that the space variable x is extended to a
doublet (z,6), hence forming a superspace, where 6 is an anticommuting variable,
which satisfies #? = 0. Then the usual commuting fields u(z,t) are replaced by
superfields U(z,0,t). Since #* = 0, these superfields have a very simple Taylor

expansion in terms of 6,

U(x,0,t) = u(z,t) + 0y(z, 1), (5.1)

where u(z,t) and y(z,t) are called the component fields, y(z,t) is termed the
superpartner of u(z,t) and vice versa [93]. These superfields provide a compact
description of supersymmetry [94]. Note that U(z,#,t) is a bosonic superfield
and hence has the same statistics as u(z,t). The final thing that is needed in the

superspace formalism is the superderivative

D =00, + 0y (5.2)

with the property D? = 0,.
For the second part it is enough to consider translations in superspace which
are actually supersymmetry transformations. Under the superspace translations
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such as x — x—n# and 0 — 6+n, where 7 is a constant anticommuting parameter,

the superfield U(z, 0,t) changes as

Uw,0,t) — U'(x,0,t) = Uz, 0,t) + 6,U(,0,1), (5.3)

where U'(z,0,t) = U(x — nb,0 + n,t). From the Taylor expansion,

Ulx —n0,0 +n,t) =U(zx,0,t) —ndo,U(z,0,t) +nopU(z,0,t), (5.4)

it is possible to see that QQ = Jyp — 00, generates the supersymmetry transforma-
tion. Hence U(z, 6,t) transforms as 6,U(x,0,t) = nQU(z,,t) or, in component
form, as 0,u(x,t) = ny(z,t) and 6,v(z,t) = nuy(z,t). This mapping between the
bosonic and fermionic fields is called a supersymmetry transformation.

Having discussed the general properties of superextensions of classical equa-
tions, we turn to the KdV equation. Before proceeding we note that the constant
factor 12 in (2.4) can be rescaled by the transformation v — Au to be any nonzero
constant. Hence in order to reach the desired equations we choose A = —1/2 and

write the KdV equation as

Up = —Upgy + OUU, . (5.5)

In order to find a supersymmetric extension firstly replace u(x, t) by a fermionic

superfield as

O(z,0,t) = Ou(zx,t) + &(x, 1), (5.6)

where &(z,t) is an odd field. It is also possible to use the bosonic superfield, but
it gives trivial results. The KdV equation is invariant under the following scaling
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transformations

r—= A1z, t—= A3 u— Nu, (5.7)
which implies that deg 9, = 1 and deg v = 2. Thus D? = 9, implies that deg

D = % and hence deg 6 = —%. In order to have a homogeneous superfield the

fermionic field £(z, t) has degree 3.

After introducing the fermionic superfield it is not difficult to multiply each
term of the KAV equation by # and write the result in terms of the superfield.
Actually Qu, is replaced by ®, and 6Ou,,, is replaced by D®®. However, the
nonlinear term #(6uu,) can be replaced by either 3D?(®D®) or 6D®D?® since
both of them are equal to the nonlinear term in the absence of the £(x,t) field.
Thus there is no unique extension for the nonlinear term and the best way to
overcome this problem is to consider a linear combination of all the possible terms,
that is the nonlinear term can be replaced by ¢c®D?*® + (6 — ¢) D® D?*®, where c is

a free constant. Then the most general one-parameter family of superextensions

of the KdV equation can be written as
®; = —D® + c¢D*(®D®) + (6 — 2¢) DO D*® . (5.8)
In terms of the component fields this is equivalent to
U = —Uggy + 60Uy — &4y,
& = —&uuo+ (6 —c)&u+ cluy. (5.9)

This system represents the most general, N = 1, supersymmetric extension of
the KdV equation and is integrable only if ¢ = 3 [83]. Moreover, this system is
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invariant under the supersymmetric transformations d,u = n¢; and 6,§ = nu.
Now it is possible to extend z to a triplet (z,6;,6;) by adding one more odd
variable to our superspace with the property, 6:2 = 6% = 0, 6165 + 6,6, = 0.
In this enlarged superspace with two anticommuting variables and associated
fermionic fields the KdV equation can be once more supersymmetrized. For this

purpose two superderivatives

Dy = 85, + 0,0,, Dy = g, + 0,0, (5.10)

are defined with the property D? = D3 = 0, and {D;, Dy} = 0.
The N = 2 supersymmetric extension of the KdV equation is obtained by

taking an even homogeneous field ©

®=w+01w+02¢+6‘201u, (511)

where the even field © and the even and odd component fields depend on z, 8y, 6
and ¢t. Note that another bosonic field w is introduced in order to equate the num-
ber of bosonic and fermionic fields. Again, if we consider the scaling symmetries
of the KdV equation, the homogeneous even field © has the following degrees:
deg © =1, degu =2, degw =1, deg ¢ = %, deg ¢ = %, deg 6, =—%, deg

Ay = —=. The most general evolution equation for ©, which reduces to the KdV

1
5.
equation in the absence of the odd fields i) and ¢, gives the N = 2 superextension

of the KdV equation with a free parameter a,

a

-1
0: = d, (—age +30D:D;0 + =D D0 + a@3) L (512)
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In terms of the component fields we have

U = —Uggg + 6UUL — 30Dz — 3y — 3aWewey — (A + 2)WWypy

+3auyw? + bauww, + 6aw,thd + 6awi,d + 6awhd,

Wi = —Wegs + 3awwy + (a + 2)ugw + (a + 2)uw, + (a — 1)1,¢
+(CL - 1)w¢ac )
¢t = _¢www + 3uw¢ + 3’11,(]535 + 6a'www¢ + 3aw2¢z - (a + 2)ww¢ac

—(a+ 2)whgy — (a — Vwee® — (@ — Dwypthy
Yy = —Uggw + g + 3urhy + 6awwyy + 3aw? Y, + (a + 2)wedy
+(0+ 2)wdys + (@ — Dweed + (@ — 1wy - (5.13)

It has been shown that this system is integrable for only special values of a,
which are -2, 1, 4 [83, 95]. However, among the three integrable cases the most
complicated and perhaps the most interesting one is the a = 1 case [95].

The bosonic limit of (5.13) for the a = 1 case gives rise to the Kersten-

Krasil’shchik coupled KdAV-mKdV equations [20)]

U = —Uggy + 6UUE — 3WWege — SWalee + SUgw? + BUWW, ,

Wi = —Was + 3wiw, + 3uw, + Jugw . (5.14)

This system of even equations can be considered as a sort of coupling between
the KdV and the mKdV equations. Actually for w = 0 the system of equations
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reduces to the KdV equation for u, viz

Up = —Ugge + OUU , (5.15)
and for u = 0 it gives the mKdV equation for w, viz

Wi = —Wagy + 3wy . (5.16)

However, note that for u = 0 the system gives not only the mKdV equation for

w but also an ordinary differential equation in w, which is (wwy,), = 0.

5.2 Singularity Analysis of Kersten-Krasil’shchik Coupled KdV-mKdV Equa-

tions

We study the integrability of (5.14) following the Weiss-Kruskal algorithm
of singularity analysis [63, 96]. The algorithm is well known and widely used.
Therefore we omit unessential computational details.

Firstly we find that a hypersurface ¢(z,t) = 0 is noncharacteristic for the
system (5.14) if ¢, # 0. Thus we set ¢, = 1 without loss of generality. Then

substituting the expansions

u = uo(t)gpa_i_...+ur(t)(‘0’r+a+... ,

w = wot)g’ + - Fw(t) P (5.17)

into (5.14) we get the following branches, that is the admissible choices of «, 3, ug
and wy together with the positions r of resonances, at which arbitrary functions

can enter into the expansions,

a = —2, 6:—1, UO:1, w()::ti,
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r = —1,1,2,3,4,6; (5.18)

a = =2, pf=-1, wuy=2, wy==x2,

r o= —2,-1,3,3,4,8: (5.19)
a = =2, =2, u=2, VYwt),

ro= —4,-1,0,1,4,6: (5.20)
a = =2, =3, uw=2, Yw(t),

r = —5,-1,-1,0,4,6; (5.21)

besides the ones that correspond to the Taylor expansions governed by the Cauchy-
Kovalevskaya theorem.

The branch (5.18) is generic, that is, the expansions (5.17) describe the be-
havior of a generic solution near its singularity. The nongeneric branches (5.19),
(5.20) and (5.21) correspond to singularities of special solutions. The branches
(5.19) and (5.20) admit the following interpretation in the spirit of [97]: (5.19) de-
scribes the collision of two generic poles (5.18) with the same sign of wy, whereas
(5.20) describes collision of two generic poles (5.18) with opposite signs of wy.
The branch (5.21) corresponds to (5.20) with wy — 0.

Next we find from (5.14) the recursion relations for the coefficients u,(¢) and
wn(t) (n=0,1,2,...) of the expansions (5.17) separately for each of the branches
and check the consistency of those recursion relations at the resonances. The
recursion relations are found to be consistent. Therefore the expansions (5.17)
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of the solutions of (5.14) are free from logarithmic terms. We conclude that the
system (5.14) passes the Painlevé Test for integrability successfully and must be

expected to possess a Lax pair.

5.3 Prolongation Structure of Kersten-Krasil’shchik Coupled KdV-mKdV Equa-

tions

By introducing the variables

P=EUy, =Wz, T=Dpg, =4y, (5.22)

the system of equations (5.14) can be represented by the set of 2-forms

a1 = duNdt— pdx Adt,

ay = dpAdt—rdxAdt,

a3 = dwAdt—qgdx ANdt,

ay = dgANdt—sdx Adt,

as = duAdr—drAdt—3wdsAdt+ (6up — 3qs + 3pw? + 6wuq)ds A dt

as = dwAdr—dsAdt+ (3wiq+ 3uq + 3pw)dzr A dt, (5.23)

which constitutes a closed ideal I such that dI C I.

We extend the ideal I by adding to it the system of 1-forms

W* = dy* + FFdx + G*dt, k=1,...,N, (5.24)
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where y* are prolongation variables and F* and G*, which are assumed in the
form F* = F;*y?, G* = G;*y7, are functions of (u,w,p,q,7,s,y¥). The extended
ideal must be closed under exterior differentiation. This requirement gives the set
of partial differential equations for F* and G*. Dropping the indices for simplicity

we have
F,=F,=F=F=0, F,=-G,, 3wk +F,=-G;,
PGy + qGy, + Gy + sG, — (6up — 3¢s + 3pw® + 6uwq)F,
—(3w?q + 3uq + 3pw)F, — [F,G] =0, (5.25)
where the commutator is defined in (2.78). Next integrating (5.25) we find
L3 Ly
F= (uw——w)Xl—i-—w Xo+uX3+wXy + X5, (5.26)

2 2

where X, X, X3, X4 and Xj5 are constants of integration depending upon y*
only. It is immediately seen that X is in the center of the prolongation algebra.

Hence we equate X, to zero and find G to be
G=(—r—ws—q¢+2u?—w"—wu)X; — (s — w* — 3uw) Xy
1, L,
—(p+wq)Xe — uwXy; — (iw + u) Xg—qXg — iw X0
_lel + XO y (527)

where X, is a constant of integration depending on y* only. The remaining

elements are

Xo = [X5,X5], X7=[Xy,Xe], Xs=I[X5 Xq],
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Xo = [X5, Xu], Xio=[Xy,Xo], Xu=[Xs5Xo]. (5.28)
The integrability conditions impose the following restrictions on X; (i = 0,...,11)

[Xo, X351 =0, [X5 Xo]=0, [X;5[X3 X6]]=0,

X, X0 Xsll =0, [Xa, (X0, Xol) =0, (X, [Xs, [Xa, X)) =0,
[ X4, [X4, X3]], [ X3, X6]] =0, 2Xg+[X5,X2] =0,

A[ Xy, X3] 4 [X4, Xo] =0,  [X3,Xo] — [X5, Xs] =0,

(X4, Xo] = [X5, X = 0, 8X5 — 5[Xs, [ X3, Xel] - [X5, Xs] =0,
3Xy — 3[ Xy, [ X4, X3]] — [Xo, X6] + [X35,X6] =0,

(X3, Xo] — X7 — 2[ X5, [X4, X5]] =0,

[X2, Xo] — 2[ Xy, X11] — [ X5, Xs] — [ X5, X10] =0,

X, (X5, [Xa, Xol]] + (X, X+ 5[5, [Xa, Xo]] =0,

3Xy — [ X3, X11] — [Xu, Xs] — 2[ X5, [ X5, [X4, X3]]] — [X5, X7] =0,
X5, 15, [Xa, X3l]] + (X5, X+ 5[Xs, [Xs, Xel] =0,

Xo = 5 (1%, Xl + [Xs, Xl + [Xa, Xua]) = 5[5, [Xs, (X, Xo]]
— X, 4] — £ [Xs, [Xs, X)) = 0,

1

X, X5] + (X, Xa] + [Xa, Xao) + (X, [Xs, [Xs, X
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X ] £, [, Xl =0,
3Xe — %([Xz,Xs] + [ X3, Xs] + [X3, X1o0]) — [ X, [X5, [ X4, X5]]]
—[X4, X7] - 2[X5, [X4, [X4, Xg]” - 2[X5, [Xg, Xg]] - O,

8[X4,X3] + E[XQ, [X2;X9]] - %[X?n [X2aX9]]

11

—2[Xy, [Xy, [ X4, X5]]] — 5

[X47 [X37 XG]] = 0 . (529)
Using the Jacobi identities we obtain the further relations:

(X4, X3] =0, [Xo,X7]=0, [X3,X:]=0,

(X3, X10) =0, [X4,X7]=0, [X5,X7]=2X,,

[Xa, [Xo, Xo]] = 0, [Xy, [X3, Xe]] = 0,

[Xa, X] +2[X3, Xe] =0,  [Xy, X11] — [X5, X10] = 0,

[ X5, [X3, Xo]] = [ X5, Xs] =0, [ Xy, Xs] = [ X5, [Xp, Xe]] = 0,
[ X5, [X4, X3]) + [X3, Xo] — X7 =0,

[ X5, Xo] — 4[ X5, [X4, X3]] + 2X7 = 0,

[ X2, [ X5, [Xa, X]]] + 2[[ X4, X5], X6] = 0,

(X3, [Xs, [Xa, X]]] = [[X4, X3], Xe] = 0,

(X3, [Xa2, Xo]] — [Xo, [X3, Xo]] = 0,
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[X5; Xs] + [X5,X10] =0. (5.30)

In order to find the Lie algebra generated by F' and the matrix representations
of the elements X; (i = 0,...,11) of this algebra, we follow the strategy given in
Section 2.2. Firstly we reduce the number of elements. By using (5.28), (5.29)

and (5.30) we get

Next we locate the nilpotent and the neutral elements. The equations (5.28) and

(5.29) together with (5.31) give that

[X37X6] = 2X3 )

(X5, Xs] = Xs. (5.32)

Hence by using corollary 2.2.2 we identify X3 as the nilpotent and Xg as the
neutral element.
We note that the system of equations in (5.14) has the following scaling sym-

metry

oAz, t= AT, u— N, w— w, (5.33)

which implies that the elements X; must satisfy

X() — /\3X0 , X3 — /\_1X3 . Xy — Xy . X5 — )\X5 s

Xﬁ—)Xﬁ, X7—)X7, Xg—))\Xg, Xg-))\Xg,

X10 — )\X107 X11 — )\2X11 . (534)

102



By using (5.34) and the scaling symmetries of the basis elements of s¢(n+1, C)
we try to embed this prolongation algebra into sf(n + 1,C). Starting from the
case n = 1 we identify

Xs=e_, Xe¢=h. (5.35)
In general it is possible to write the other elements as linear combinations of the

basis elements of s¢(2,C) such as
X5 = AiN%e_ + Ager + A3)h, (5.36)

where A; (i = 1,2,3) are arbitrary constants. Then from various commutation
relations we get
Xy = Xr = Xo= X0 = Xy = 0, (5.37)
together with Ay = 1 and A3 = 0. If we introduce the explicit matrix forms of the
basis elements of s£(2,C), given in (2.50), together with the conditions X4 = 0
and Xy = —2Xj, (5.26) gives the explicit matrix form of F' as
0 1

F = , (5.38)
u—w?+AX 0

where we have chosen A; = 1. However, this form of F' implies that there is only
one equation and not a system of equations. Thus sf(2,C) cannot be the whole

algebra. The simplest nontrivial closure is in terms of s¢(3,C). We take
Xy=e_a,, Xo=h, (5.39)
where we use the standard Cartan-Weyl basis [41] of A;. The centralizer of e_,,,
is spanned by {€_a,, €—ay—ay, €ays P1 + 2h2} so that [ X5, X3] = Xg gives
X5 = eq, + Creq, + Col(hy + 2hy) + C3\%e_q, + CsX3e_0i—ay (5.40)
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where C; (i = 1,2,3,4) are arbitrary constants and the scaling symmetry has

been taken into account. Then we take the most general form of X, as

X4 = Dihy + Daohy + D3) teq, + Dy) ten, + Dsde_o, + DeAe_q,

+D7A%e_q,—a, + DsXeayta,,  (5.41)

where D; (i = 1,...,8) are arbitrary constants, and using various commutation

relations we find the other elements

Xy = —360y°\3(hy + 2hy) — 4C3)\%e,, — 4C5%Me_,, ,

X7 = D4)\71€a2 + D"{'/\2e—a1—a2 s

Xg = —26a1 + 203/\26—a1 y

Xg = D4)\_16a1—|—a2 — D7)\2€_a2 + 302D4€a2 — 302D7A3€_a1_a2 y

XlO = —D4D7)\(h1 + 2]’L2) — 602D4D7)\2€_a1 ,

Xll = (9022D4 + 03D4))\€a2 + 602D7)\3€_a2 + 602D4€a1+a2

+(9022D7 + 03D7))\46_a1_a2 (542)

with the following conditions on the C; and D;

01:C4ZD3:D5:D6:D8:0, D1D4:0, D1D7:0,

CiD; =0, DC;=0, DyD;=6Cy, Dy=2D;, C3=9C%. (5.43)

We choose D; = 0 and C, = D, = 1. So that, X; = X, and Xy = —36)\2X;.
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Then we obtain the matrix representations of the generators X; as

00 0 0 0 0
Xs=100 0|, Xa=| X1 0 0|
100 0 6X2 0
-\ 0 1 10 0
Xs=| 0 2x 0 |- Xe=100 0 |-
92 0 —\ 00 —1
0 0 —2 0 6X2 0
Xg = 0 0 0 |>» Xe=] -3 0 A! |,
18X2 0 0 0 —18) 0
6 0 0 0 —36)3 0
X1 = 0 —12\» 0 |, Xu=| -18x o0 6 | - (544)
—36)2 0 6\ 0  108\* 0

By substituting the matrix representations of the elements of the prolongation
algebra into equations (5.26) and (5.27) and calling X = —Ff, T = —GT and

¥ = y' we can construct the Lax pair,

U, =XV, U, =TV, (5.45)

for the system (5.14) with the following matrices X and 7T'(given in component
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form):

A wdTh w?—u—9)\?

X=1 0 -2\ —6wA? : (5.46)

Ty, = p+wqg+ 3 w? —36)3,

Ty = (WP +2uw—s)A ' —3¢—18)\w,

Tizs = r+ws+q¢® —2u%+wh + wu — INw? + 180 %u + 324\*

Ty, = 6g)% — 363w,

Ty, = —6lw?+T72)3,

Tos = 6(s—w® —2uw)\? — 18¢\* + 108\ *w,

Ty = —w?—2u+36)\2%,

T32 = q)\_1 + 6w y

Tys = —p—wq+ 3 w? —36)°. (5.47)

Since the system (5.14) defines a polynomial flow in accordance with the
definition given in [16], the matrices X and T should be expected to be polynomial
in the spectral parameter A\. Thus the forms of X and 7" are unusual in the sense
of the dependence on A\. However, it is possible to obtain equivalent matrices by

the gauge transformation,

X' =8XS, T =STS™!, (5.48)
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where

1 0 0
S=10 o -1|- (5.49)
0 At 0

The result is

X'=|1 A 0 | (5-50)

T/, = p+wq+ 3 w?— 363,

T, = —1—ws—¢ +2u? —w' —w?u+ 9Nw? — 18)\%u — 324\*,

T, = w®+2uw—s— 3¢\ — 18)\w,

T,, = w?+2u—36\%,

Ty = —p—wq+ 3 w? —36)\%,

Tys = —q— 6w,

Ty, = 6g\— 36\ %w,

Ty, = —6(s —w® — 2uw) A + 18¢)* — 108\ 3w,

Ty = —6Mw”+ 720, (5.51)

The matrices X’ and T' give us exactly the spectral problem for the KdV
equation when w = 0, but they do not reduce to the one for mKdV equation
when u = 0. This result should be expected because the Kersten-Krasil’shchik
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system, when u = 0, gives not only the mKdV equation, as stated in [20], but also
an ordinary differential equation in w, which is (ww,;), = 0. Finally we note that
the Lax pair obtained from (2.39) with (5.50) and (5.51) is a true Lax pair since
the parameter A cannot be removed from X’ and 7" by a gauge transformation

as can be proven by a gauge-invariant technique [98] (see also Appendix C).
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CHAPTER 6

CONCLUSION

In this thesis firstly the W-E prolongation method was studied. It was seen that
a systematic way for seeking pseudopotentials leads to some overdetermined set
of first-order nonlinear partial differential equations the integrability conditions
of which give rise to a set of commutator relations with constraints. This set of
commutator relations constitutes a free Lie algebra. For the closure of the pro-
longation algebra process the main interest centers around identifying nilpotent
elements and embedding of those into a simple Lie algebra the representation of
which leads to an associated linear eigenvalue equation. In particular we rederived
the linear scattering problem for Drinfel’d-Sokolov system of equations by using
the prolongation algorithm. We also found the auto-Backlund transformations
and some exact solutions of these equations. This system can be integrated by
the method of inverse scattering problem associated with the fourth-order Lax
operator, L, which was developed by Iwasaki [99]. It is known that the most
general Backlund transformation would be the one which utilizes the infinite-
dimensional algebra and not all finite algebras give rise to Backlund transforma-
tions. Without seeking whether the incomplete algebra found in Chapter 4 is
finite- or infinite-dimensional we used a finite-dimensional representation of the
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prolongation algebra and derived nontrivial Backlund transformations. Thus the
methods given in [16] and [51] are quite useful from the practical point of view
for the systems of nonlinear partial differential equations. It is also worth men-
tioning that a close connection between some stationary flows associated with
fourth-order Lax operators and generalizations of some integrable Hamiltonian
systems with quartic potentials is known [100]. Equations (4.28) and (4.29) can
be considered in this context.

Next in this thesis the Painlevé analysis was discussed for both ordinary and
partial differential equations and in particular the Painlevé Test for partial dif-
ferential equations, introduced by WTC, was applied to the classical part of one
of the supersymmetric extensions of the KdV equation, namely the Kersten-
Krasil’shchik coupled KdV-mKdV equations. We showed that this system passes
the Painlevé Test successfully. Thus we naturally expected that this system
possess a Lax pair. Indeed by using the Dodd-Fordy algorithm of the W-E pro-
longation technique we found a 3 x 3 matrix spectral problem for the Kersten
and Krasil’shchik system and hence proved its integrability. The Lax pair that
we found is unusual in the sense of the dependence on the spectral parameter \.
For this reason we obtained an equivalent Lax pair by using gauge transforma-
tions. We also showed that the Lax pair obtained is a true Lax pair since the
parameter A cannot be removed by a gauge transformation, as can be proven by
a gauge-invariant technique. More recently the solitary wave and doubly periodic

wave solutions for this system were obtained [101].
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APPENDIX A

JET-BUNDLES

In this Appendix an informal description of the jet-bundle formalism, which can
be considered as a geometric approach to systems of partial differential equations,
is given mainly in local coordinates. We begin by giving some definitions.

Two differentiable manifolds M and N together with a continuous surjective
map 7 : N — M constitute a bundle, which is denoted by the triple (N, M, ).
Here the manifold NV is called the total space and the manifold M is called the
base space. Most of the time either the total space, N, or the projection, 7, is
used as a shorthand notation for the bundle [26, 27]. If the total space, N, of the
bundle is homeomorphic to M x U, where U is a manifold called the fibre, then
the bundle is called a trivial-bundle. Sometimes the total space as a whole is not
homeomorphic to the product manifold, but each point of it has a neighborhood
which looks like a product manifold. Such a locally trivial bundle is called a
fibre-bundle. For each point a € M the subset 7~1(a) of N is called the fibre over
a. A section or a cross-section of a fibre bundle is a smooth map s : M — M x U
which satisfies ms = idy,. Clearly s(a) is an element of the fibre at a.

Before giving the definition of a jet-bundle it is useful to mention two notations

117



for jet variables. The first one is the multi-index notation. A multi-index o is
an unordered p-tuple [0y, 09, ...,0,] of integers, indicating which derivatives are
being taken. The order of such a multi-index ¢ is given by the sum of the
0; : |o| = 01+ ...+ 0, and indicates how many derivatives are being taken [102].
If we choose the independent variables ¢, = 1,...,p, as coordinates of the base
manifold and dependent variables u®, o« =17 =1,...,q as coordinates of the fibre

manifold, then the jet variable 4%, is denoted as

dlolye
e = . Al
o 8(3;1)0'1 ... 8(:547)017 ( )

The second one is the well-known repeated index notation. In this notation
the jet variable u%;.. is understood to be the derivative with respect to the
a2, 27, .... However, this notation should not be confused with the multi-index
one. The derivatives in the multi-index notation are always denoted by Greek
letters whereas in repeated-index notation they are denoted by Latin letters. It
is also possible to use the repeated-index notation for the multi-index o. For

example, if we choose p = 2 and label the coordinates as x and ¢, then the third

order multi-indices will be zxz, xxt, xtt and tit.

Now we construct the jet-bundles over a fibred-manifold. Firstly consider a
fibre-bundle 7 : M x U — M with the independent variables z*,i =1,...,p, as
coordinates of the base manifold and the dependent variables u®*, o =1,...,q,
as coordinates of the fibre-manifold. Over this bundle it is possible to construct
further bundles. For example by adding the first-order partial derivatives u%
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as new fibre coordinates the first-order jet-bundle is constructed over the fibre-
bundle M x U. Similarly by adding the jet variables u®,, which are obtained by
taking the various partial derivatives of the dependent variables with respect to
the independent variables, as the fibre coordinates representing all the derivatives
up to order n the nth-order jet-bundle is constructed over the fibre-bundle M xU.
In order to give a definition of a jet-bundle it is useful to introduce a set of
Euclidean spaces U; , the coordinates of which are u® with |o| = i . Then the
space M x U x U, is called the first-order jet-bundle over the space M x U.

Furthermore, denoting the Cartesian product of Euclidean spaces as
UMW =UxU x...xU,, (A.2)

the space M x U™ is called the nth-order jet-bundle over M x U.
It is easy to compute the dimension of this space. The number of different

partial derivatives of order n for a single dependent variable is equal to

dimU, = <p ; " 1) - (A.3)

Therefore the number of partial derivatives of ¢ dependent variables up to order

n (including the zeroth order one) is given by,

dimU(”):qZ<p+Z_1>=q<p+n>- (A4)
=0

p—1 n

Finally the dimension of the nth order jet space is
dim(MxU(”)):p+q(p+n> . (A.5)
n

As an example consider the case p = 2 and ¢ = 1 and denote the independent
variables by = and ¢ and the dependent variable by u. Then the zeroth-order
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jet-bundle M x U has coordinates (z, t, u), the first-order jet-bundle, M x U x Uy,
has coordinates (z,t,u,u,,u;) and the second-order jet-bundle, M x U ) has

coordinates (z, t,u, Uy, Uy, Ugs, Ugg, Ust)-

Alternatively it is also possible to define jet-bundles by using directly the n-
jets of functions. The n-jet of a function consists of all the equivalence classes
of functions which have the same Taylor series expansion up to order n. More

precisely they are defined as follows:

Let M and U be two differentiable manifolds and let C*°(M,U) denote the
collection of C* maps f : M — U. Two maps f,g € C*°(M,U) are said to
agree to order n at x € M if there are coordinate charts around x € M and
f(z) = g(x) € U in which they have the same Taylor expansion up to and
including order n. This agreement is independent of the coordinates chosen and
it is an equivalence relation. The equivalence class of maps which agree with f
to order n at x € M is called the n-jet of f at x and is denoted by J" f [50]. If
{z'} are local coordinates around z € M and {u®} around f(z) € U, then J" f
is determined by z',u® and u?,, where u® = f%(z) is the presentation of f. The
nth-order jet-bundle of M and U, denoted by J"(M,U), is the set of all n-jets,
J"f with n fixed, z € M and f € C°(M,U). Actually the spaces of n-jets at

each point are the fibres of the nth-order jet-bundle.

Before closing this appendix we very briefly mention the advantages of the
geometric approach to systems of differential equations. Consider a system of
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nonlinear differential equations of order n:

Fl(xia uoe, U’aU) = Oa

F.(z',u*,u%) =0,
where F; are smooth functions of independent, dependent and partial derivatives
of the dependent variables. The geometric approach to this system is to treat the
equations, Fj, not as conditions on the dependent variables, but on the nth order
Taylor expansions of these dependent variables. In fact this means that the system
of equations have to be studied on nth-order jet spaces. In this connection the
system of equations in (A.6) determines a surface £ which is a fibred submanifold

of nth-order jet-bundle. This definition has the following advantages:

e It does not distinguish between a single and a system of equations.

e The differential equation is reduced to an algebraic equation in the nth-

order jet-bundle.

e The defined submanifold being a geometric object is independent of a par-

ticular set of equations or a particular coordinate system.
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APPENDIX B

GENERATION OF THE PROLONGATION ALGEBRA BY

THE CONSTANTS OF INTEGRATION OF F

Throughout this thesis we repeatedly mentioned that the prolongation algebra is
generated by the constants of integration of F' and the constants of integration
of G are elements of this algebra. This fact is almost obvious except that the
element Xj, which is a constant of integration of G, seems not to be an element
of the prolongation algebra. In this appendix we show that it is also an element

of the prolongation algebra.

In all of the examples of this thesis we see that the constants of integration
of G which are different than those of F' are determined by some commutation
relations between the constants of integration of F' except one, which is named as
Xo. Thus X;, 2 =0,...,n generates the prolongation algebra, L, where n denotes
the number of constants of integration of F'. However, we can as well expect that
X;, 1 =1,...,n generates a subalgebra of L. We denote it by Ly and express F

and G as
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where G is an element of Lyx. In order to show that Ly is indeed equal to L
firstly we obtain the following relation by using the compatibility condition of the

linear scattering problem in (2.39)

F,—G,+[G,F]=0, (B.2)

where F; and G, denote the total derivatives with respect to ¢ and x, respectively.

Then we substitute (B.1) into (B.2) and have

Ft—pr-i-[GF,F]:[F,Xo], (B3)

from which we immediately see that [F, Xy] € Lp since the left-hand side of
(B.3) is an element of Lp. We further conclude that Ly C L is an ideal since
[X;, Xo] € Lp, VX; of Lp. Therefore assuming L is simple we equate Ly to L
and have Xy € Lp, which proves that the constants of integration of F' generate
the prolongation algebra.

In fact this means that G could be completely determined by F, a well-known
fact [8, 22, 23, 24] which states that various time evolutions of the eigenfunctions

are completely determined by the eigenvalue problem [16].
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APPENDIX C

GAUGE-INVARIANCE OF THE MATRICES FF AND T

In Chapter 5 we mentioned that it is possible to find equivalent matrices F”
and G’ for the linear scattering problem (5.45) in which we used X = —F'
and T = —G'. We also stated that the Lax pair in (5.50) and (5.51) is a true
one since the spectral parameter cannot be gauged out by performing any gauge
transformation. In this appendix we discuss these points following the ideas in
(98, 103, 104].

The compatibility condition for the linear scattering problem in (2.39) is writ-

ten as

F,—G,+[G,F]=0, (C.1)

where F; and (G, denote the total derivatives with respect to ¢ and z, respec-
tively. In the literature (C.1) is called the zero-curvature representation due to
its geometric interpretation [98, 105] and denoted by the matrix Z. It was first in-
troduced by Zakharov and Shabat [25]. If there exists a nonremovable scattering
parameter, then this representation usually leads to Béacklund Transformations
and infinite series of conservation laws. Actually it can also be interpreted as the
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linear representation of the prolongation algebra.

The following transformation of the matrices F' and G

F'=SFS'-S,8' G =SGS'-55" (C.2)

in which S is any nondegenerate (detS # 0) matrix depending on the jet-variables
forms another zero-curvature representation'. The mapping (F,G) — (F',G’) is
called a gauge transformation [104]. Tt is easily seen that the gauge transfor-
mations in (C.2) cause the following transformation 7' = SZS~! of the zero
curvature representation which indeed implies the equivalence of the represen-
tations. Thus the matrices F' and G are gauge equivalent to the matrices F’
and G’ [104]. Moreover if y in (2.39) is a linear pseudopotential for F' and G,
then Sy is the linear pseudopotential for F” and G’. Because of the existence of
this equivalence between the representations, the zero-curvature representation,
hence, the linear representation of the prolongation algebra, should be studied by
the gauge-invariant methods [103].

The other important property of the gauge-equivalent technique is the selec-
tion of the true Lax pairs among all of the possible alternatives. It is well-known
[54, 105] that the linear scattering problems such as (2.39) contain a parameter in
the matrices used in the construction of the scattering problem. This parameter
is called a spectral parameter. It is believed that only in the integrable equations
this parameter becomes an essential one [98], that is, it is not possible to gauge

out it by performing any gauge transformation. Because of this reason those Lax

L S, and S; should be understood as total derivatives.
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pairs whose spectral parameter cannot be removed are called the true Laz pairs.

In Chapter 5 we saw that it is not possible to find any transformation matrix
S which removes the parameter A from the matrices F' and G. Thus the Lax
pair that we found is the true Lax pair for the Kersten-Krasil’shchik coupled
KdV-mKdV equations. We also note that in order to find the gauge-equivalent
problem we searched for the transformation matrices those of which have only
constant entries. The reason of such restriction is just to simplify the calculations.

For example we performed the following gauge transformations

F'=SFS™', G =SGS™. (C.3)
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