

FEATURE BASED DESIGN OF ROTATIONAL PARTS
BASED ON STEP

TAHİR FİDAN

DECEMBER 2004

 T. FİD
A

N
 M

ETU
 2004

FEATURE BASED DESIGN OF ROTATIONAL PARTS
BASED ON STEP

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TAHİR FİDAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

Director

 iii

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof.Dr. Kemal İder
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. S. Engin Kılıç
 Supervisor

Examining Committee Members

Prof.Dr. Metin Akkök (METU, ME)

Prof. Dr. S. Engin Kılıç (METU, ME)

Prof. Dr. Ömer Anlağan (TÜBİTAK)

Prof. Dr. Mustafa İlhan Gökler (METU, ME)

Assoc. Prof. Tayyar D. Şen (METU, IE)

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Tahir FİDAN

 iv

ABSTRACT

FEATURE BASED DESIGN OF ROTATIONAL PARTS
BASED ON STEP

Fidan, Tahir

M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. S. Engin Kılıç

December 2004, 153 pages

The implicit and low-level part definition data, provided by geometric modeling

cannot be used by downstream applications. Therefore, feature based modeling

concept has been introduced to integrate CAD and downstream applications.

However, due to the lack of implicit and explicit standard representations for

features and unmanageable number of possible predefined features without

standardization, feature based modeling approach has proved to be inadequate.

STEP AP224 provides a standard for both implicit and explicit representations for

manufacturing features. This thesis presents STEP AP224 features based modeling

for rotational parts. The thesis covers features extracted from STEP AP224 for

rotational parts and their definitions, classifications, attributes, generation

techniques, attachment methods and geometrical constraints. In this thesis a feature

modeler for rotational parts has been developed. STEP AP224 features generated

are used as the basic entities for part design. The architecture of the proposed

system consists of two three phases: (1) feature library, (2) feature modeler and (3)

preprocessor. Preprocessor responsible from STEP-XML data file creation. The

data file created can be used in the integration CAPP/CAM systems without using a

complex feature recognition process. An object-oriented design approach is used in

developing the feature modeler to provide incremental system development and

reusability.

Keywords: STEP, AP224, Feature Based Modeling, Rotational Parts

 v

ÖZ

DÖNEL PARÇALARIN STEP’E DAYALI
UNSUR TABANLI TASARIMI

Fidan, Tahir

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Engin Kılıç

Aralık 2004, 153 sayfa

Geometrik modelleme tarafından sağlanan yüzeysel ve üstü örtülü parça tanım

verisi, tasarım-imalat zincirindeki uygulamalarca doğrudan kullanılamamaktadır.

Bu uygulamaları ve CAD sistemlerini entegre edebilmek için unsur tabanlı

modelleme geliştirilmiştir. Unsurların açık ve örtülü gösterimleri için bir standart

olmaması ve standardizasyon olmadan da önceden tanımlanması gereken unsur

sayısının kontrol edilemeyecek kadar çok olması, unsur tabanlı modellemenin

yetersiz kalmasına yol açmıştır. STEP (Ürün Model Verisinin Aktarımı için

Standart) AP224 imalat unsurlarının hem açık hem de örtülü gösterimleri için bir

standart sağlamaktadır. Bu tezde dönel parçaların STEP AP224 unsurlarına dayalı

modellenmesi sunulmaktadır. Tez, dönel parçalar için STEP AP224’den seçip

çıkarılan unsurları, onların tanımlarını, sınıflandırılmasını, özelliklerini,

oluşturulma, eklenme tekniklerini ve geometrik kısıtlamalarını içermektedir. Bu

tezde aynı zamanda dönel parçalar için STEP’e dayalı unsur modelleyici de

geliştirilmiştir. Parça tasarımı için temel olarak oluşturulan STEP AP224 unsurları

kullanılmıştır. Sistem yapısı ana olarak üç bileşenden oluşur; (1) unsur kitaplığı, (2)

unsur modelleyici, ve (3) STEP-XML veri dosyasının oluşturulması. Oluşturulan

veri dosyası, CAD/CAPP (Bilgisayar Destekli İşlem Planlama) entegrasyonunda

karmaşık bir unsur tanıma işlemine gerek kalmadan, kullanılabilecektir. Artımlı

sistem geliştirilebilmesini ve tekrar kullanabilirliği sağlayabilmek için unsur

modelleyici geliştirilirken nesne yönelimli tasarım yaklaşımı kullanılmıştır.

Anahtar Kelimeler: STEP, AP224, Unsur Tabanlı Modelleme, Dönel Parçalar

 vi

To My Family

 vii

ACKNOWLEDGMENTS

I would like to express my gratefulness and appreciation to my supervisor Prof. Dr.

S. Engin Kılıç for his guidance throughout the completion of this thesis.

I am also indebted to my colleagues in Integrated Manufacturing Technologies

Research Group (IMTRG) and mechanical engineering department for their endless

support all through this hard work.

Finally, my greatest thanks go to my girlfriend and to my family who shaped me

with their never ending patience.

 viii

TABLE OF CONTENTS

PLAGIARISM... iii

ABSTRACT... iv

ÖZ.. v

ACKNOWLEDGMENTS ...vii

TABLE OF CONTENTS..viii

CHAPTER

1. INTRODUCTION.. 1

1.1 Design and Manufacturing .. 1

1.2 CAD/CAM Integration ... 2

1.3 Feature Based Approach.. 3

1.4 Part Representation Scheme .. 4

1.5 Objective of the Thesis ... 5

1.6 Scope of the Thesis ... 7

1.7 Outline of the Thesis... 9

2. LITERATURE SURVEY .. 10

2.1 Product Design Representation ... 10

2.1.1 Geometric modeling.. 10

2.1.1.1 Wireframe Models ... 10

2.1.1.2 Surface Models... 11

2.1.1.3 Solid Models .. 11

2.1.2 Feature modeling... 13

2.1.2.1 Feature Recognition ... 14

2.1.2.2 Feature Based Design... 14

2.1.2.3 Review of Feature Modeling Approaches.................................... 15

2.2 Product Data Models ... 16

2.2.1 Initial Graphics Exchange Specification – IGES 16

2.2.2 Standard D'Exchange et de Transfert – SET....................................... 17

2.2.3 Verband Der Automobilindustrie-Flachen-Schnittstella - VDA-FS... 17

 ix

2.2.4 Data Exchange Format – DXF.. 18

2.2.5 Standard for the Exchange of Product Model Data – STEP 18

2.2.6 Review of Product Data Models ... 20

2.3 Object Oriented Programming .. 20

2.4 Unified Modeling Language .. 21

2.4.1 Class Diagrams.. 22

2.5 Extensible Markup Language .. 24

3. SYSTEM MODEL ... 26

3.1) General System Architecture .. 26

3.2) Features Library ... 29

3.2.1) Feature Definitions Library ... 30

3.2.1.1) Manufacturing Features Geometry Data..................................... 35

3.2.1.2) Tolerance Data.. 43

3.2.1.3) Manufacturing Part Properties Data ... 44

3.2.2) Features Dynamic Link Library... 45

3.2.2.1) Object Oriented Structure of Features Dll 45

3.2.2.2) Methodology to Create Features Dll... 50

3.2.2.3) Capabilities of Features Dll .. 51

3.3) Feature Modeler ... 52

3.3.1) Feature Modeler Architecture.. 53

3.3.1.1) Feature Creation.. 55

3.3.1.2) Part Creation ... 58

3.3.1.3) Error Handling .. 61

3.3.2) Feature Modeler Implementation... 63

3.4) Preprocessor and STEP-XML File ... 66

4. SYSTEM DEVELOPMENT.. 72

4.1) Feature Definition... 73

4.1.1) STEP AP224 Definition... 74

4.1.2) Feature Library Definition ... 75

4.2) Feature Class Creation... 85

4.3) Implementation in Feature Modeler ... 87

 x

4.4) Exporting STEP-XML... 89

5. SAMPLE APPLICATIONS... 91

5.1) First Sample.. 91

5.2) Second Sample .. 97

6. CONCLUSION .. 101

6.1) Conclusion .. 101

6.2) Recommendations on Future Work... 103

REFERENCES... 105

APPENDICES

A. SAMPLE CODE.. 109

A.1) Machining Features Class.. 109

A.2) Preprocessor .. 110

A.3) Outer Diameter Class... 111

B. FEATURE GEOMETRIES LIBRARY .. 109

 1

CHAPTER 1

INTRODUCTION

1.1 Design and Manufacturing

In the engineering aspect of production, design and manufacturing are two major

components [1]. Manufacturing processes cannot be effective without a thoughtful

design for manufacturing. Likewise, a product design that cannot be realized

through manufacturing processes is not a good design.

Traditionally, design and manufacturing are treated as two separate stages, which

are usually handled by two distinct groups of people. The design group often does

not anticipate the manufacturing implications of its decisions. After the detailed

design is completed, it is passed onto the manufacturing group where product

knowledge is stored in annotated drawings, binders, manuals and supplier data

sheets. The manufacturing group then has to determine a way to manufacture the

parts based on its interpretation of the design group's drawings, which may not be

the same as the designer's intent. It usually takes a few passes back and forth

between the two groups in order to reach a satisfactory part. Each pass may also

mean a few scrapped parts and some retooling. Moreover, the design could be

modified frequently, sometimes even before an acceptable part is manufactured.

With improved computer technologies and better understanding of its usages for

design and manufacturing, the methods mentioned above are largely being replaced

by Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM)

systems and various databases [2]. CAD systems are powerful geometric modeling

tools and are used to allow interactive design of geometric models. Using a CAD

 2

system, a part design can be created, modified interactively and graphically on a

computer. This increases the productivity of the designer, improves the quality of

design, and creates a database for manufacturing, which leads direct or indirect use

of the model data in manufacturing processes. However, internally CAD and CAM

applications works independently and uses their own data representation, which

means CAD language is not same with CAPP (Computer Aided Process Planning)

common language. In addition, unfortunately computers are not intelligent enough

to recognize the CAM common language from the CAD language.

1.2 CAD/CAM Integration

A production cycle containing distinct steps, whether two separate groups of people

responsible for design and manufacturing or CAD and CAM applications working

separately, is a slow and costly process. It is clear that to reduce the time and cost, it

is important to achieve a good integration of CAD and CAM applications, which

provides a common language for both sides in which they can interact with each

other and also anticipate design changes and reflects them to the manufacturing

processes.

Computer Integrated Manufacturing (CIM) was introduced to further increase the

degree of automation in production processes beyond CAD/CAM systems. [3]. The

CIM concept is that all of the operations related to the production could be

incorporated in an integrated computer system to assist, augment, and automate the

processes. The same information could be shared throughout the entire life cycle of

a product. One of the major challenges of computer-integrated manufacturing

(CIM) is to make the languages of CAD and CAM common through CAD/CAM

integration. CIM addresses the needs for communication, data exchange, and

management between design and manufacturing, as well as other aspects of a

product. It integrates design and manufacturing by shortening the transitions

between them. One problem of existing CAD/CAM systems is, when the resulting

data exported from CAD systems are imported into CAM systems, this procedure

creates many incompatibility problems. Even if the geometrical data could be

 3

transferred successfully, the data does not include much of the necessary data

required for process planning like; part properties data (material, surface finish,

etc.), tolerance data, etc. These problems in data format conversion build barriers

against a full implementation of the CIM concept.

CAD/CAM integration raises two major issues, which are both to be resolved in

order to manage a full integration. The first of these issues relates to the

methodologies used to formalize the integration process through techniques for

problem decomposition, the building of integrated information models and the

establishment of appropriate information sharing techniques [4]. The second issue is

formation of a part representation scheme, which is capable of acting as a carrier of

information. A single representation is sought that serves the purposes of Computer

Aided Design and Computer Aided Manufacturing as an effective way of unifying

the information needs of CAD/CAM [5].

1.3 Feature Based Approach

In the early eighties, it was widely considered that the newly emerging geometric

modeling techniques, that the CAD systems use, would provide the necessary

complete and unambiguous part descriptions [6]. However, it is now generally

accepted that geometric models require information enhancement before they are

suited to the exacting requirements of concurrent engineering. Therefore, newer

approaches related to the integration of CAD/CAM systems started using feature

based approach that is feature based modeling instead of geometric modeling. They

provide an integrated environment and framework for concurrent product design

and manufacturing process planning.

In feature based modeling, feature based design and feature recognition, mechanical

parts are represented as related sets of components each of which is represented as

related sets of features. These features, when supported by a geometric solid

modeler, have an enhanced information content including geometric information

and attributes relevant to some or many manufacturing planning activities.

 4

1.4 Part Representation Scheme

Feature based approaches are having difficulties in the formation of a suitably rich

feature representation that might be capable of supporting many of the design and

process planning activities, due to the lack of a universal feature library. These

difficulties causes the current research work on feature based approach to show a

definite bias to a small number of activities, which conflicts with the full

CAD/CAM integration objective.

International recognition of these difficulties, in CAD/CAM integration, has

resulted in standardization attempts to broaden the scope of CAD systems beyond

geometric modeling and one step further than the feature based approaches by

providing them a comprehensive universal feature library. Over the years many

product representation schemas standing as the standard product data exchange

formats have been developed. The first ones were national and focused on

geometric data exchange. They included SET in France, VDAFS in Germany and

the Initial Graphics Exchange Specification (IGES) in the USA. Later a grand

unifying effort was started under the International Standards Organization (ISO) to

produce one International Standard for all aspects of technical product data and

named Standard for the Exchange of Product Data (STEP) for the Standard for

Product Model Data [7]. Then, ISO introduced STEP that would serve the needs of

all applications as the most promising answer to the integration problems

mentioned. STEP Application Protocol (AP) 224, the ISO standard for Mechanical

Product Definition for Process Planning using Form Features provides a feature

library consisting of 98 manufacturing features generally classified as shown in

Figure 1.1. In addition to feature library, STEP AP 224 provides geometrical and

topological entities required to represent manufacturing features implicitly in

boundary representation format, explicit representation of manufacturing features,

information necessary to identify he dimensional and geometrical tolerances of the

manufacturing features, information necessary to define material, hardness, surface

finish and other technological data.

Figure 1.1 STEP AP 224 Manufacturing Features

1.5 Objective of the Thesis

CAE (Computer Aided Engineering) can be thought as a collection of computer

assisted techniques each of which addresses a particular aspect of the realization of

a product in its lifecycle. In a manufacturing engineering environment, this might

include geometric modeling, process planning and CNC part programming. To

increase productivity and cost effectiveness “Concurrent Engineering” approach

should seek the integration of these functions such that there is some parallelism in

their application. As it is mentioned, key to integration lies first in the methodology

to formulate the integration process then in determination of representation schema

 5

 6

for products. Feature based modeling, considered as an indispensable tool for

CAD/CAPP systems, is the methodology used to formulate the integration process.

STEP AP224, providing a universal feature library for both implicit and explicit

representations of manufacturing features, is the determined part representation

schema for product data. Harmonizing these two, the main objective of the thesis is

to develop a “STEP-Based Feature Modeler for Rotational Parts”.

In order to achieve this goal, the following specific objectives have to be

accomplished:

1) Developing an integrated feature library by using object-oriented approach and

STEP AP224. The main tasks of this library are:

a. to provide a standard product data representation for the feature modeler,

b. to provide the feature modeler the ability to integrate with other systems

in CIM environment efficiently.

2) Developing a STEP based feature modeler for rotational parts by enhancing the

modeling capabilities of a conventional solid modeler, AutoCAD. Features in

the developed feature library will be used as the basic entities for the part

design.

3) Developing a unidirectional STEP AP224 translator. This translator includes a

pre-processor, which exports data from feature modeler to STEP-XML format.

The exported neutral STEP-XML file facilitates the generation of process plan

of rotational parts by using STEP based Computer Aided Process Planning

(CAPP) systems, which are being developed in Middle East Technical

University Mechanical Engineering Department Computer Integrated

Manufacturing Laboratory (METUCIM). STEP based CAPP system will map

the product information in the neutral file generated by the feature modeler and

will produce the corresponding machining operations to generate the process

plan.

 7

1.6 Scope of the Thesis

The scope of this study is to develop a feature modeler for rotational parts based on

STEP. There are two main steps to be followed to develop the feature modeler: (1)

building up a feature library for rotational parts, (2) development of the modeler

using the features in the feature library.

A feature library based on STEP AP224 standard is developed for rotational parts in

terms of manufacturing features. The feature library includes features extracted

from STEP AP224 for rotational parts and their definitions, classifications,

attributes, generation techniques, in every detail. Features are so selected that

almost every possible rotational part feature, which is defined in STEP AP224, is

included into the feature library. Figure 1.2 provides a general view for the

manufacturing features for rotational parts in the feature library. EXPRESS is an

object-oriented data descriptive language, which classifies and constructs product

data in terms of entities. EXPRESS enables precision and consistency of product

data representation and facilitates implementation. [8] By means of EXPRESS

language that STEP AP224 provides for every feature, the feature library is being

developed in an object-oriented manner, which makes the feature library easy to

maintain and extend. By this way, the feature library is implemented as an object-

oriented data type library. It is created as a “dynamic link library”, called

“RotSTEPFeat.dll”, which can be used as the data source of the proposed feature

modeler. In the “RotSTEPFeat.dll”, each feature is defined as class modules,

keeping the hierarchical architecture defined in the standard and the file is compiled

by using Visual Basic 6.0. This feature library provides the feature modeler to be

“STEP-based”.

A STEP-based feature modeler is developed to use the defined feature library in an

environment fulfilling the requirements of concurrent design. The feature modeler

is implemented in AutoCAD environment, to implement the feature modeler in

AutoCAD environment, Visual Basic 6.0 and ActiveX technology is used. By this

way, AutoCAD became capable of providing “feature based design of rotational

parts based on STEP”. Developed feature modeler provides the designer an easy to

design environment, which is 3D, based on rotational manufacturing features,

which removes the geometry based mass and complexity of traditional CAD

systems. Moreover, since the part is designed by using predefined standard features,

it also removes the manufacturability problems that may occur after the design

process. In addition to all these, the ability to export STEP-XML file based on

STEP AP224, of the feature modeler facilitates to obtain a file combining both

implicit and explicit features’ data with technological attributes. This file can

directly be used by STEP based CAPP systems and the process plan of the designed

part can be obtained in an integrated manner.

MANUFACTURING_FEATURES FOR ROTATIONAL PARTS

Transition_features Machining_features
Outer_diameter... Edge_round...

Outer_round
Fillet... Outer_diameter_to

_shoulder Spherical_cap Chamfer...

Revolved_flat

Revolved_round Revolved_

feature Groove...

Round_hole...

Hole Counterbore_hole...

Multi_axis_ Countersunk_hole...

feature

Slot
Circular_slot...

Figure 1.1 Manufacturing Features for Rotational Parts

Linear_slot...

 8

 9

1.7 Outline of the Thesis

In Chapter 2, a survey related to product design representation approaches, product

data models and software technologies used like object oriented programming,

unified modeling language (UML), extensible markup language (XML) is

presented.

In Chapter 3, model of the developed system, including the architecture of both the

feature library and the feature modeler, is described in every detail.

In Chapter 4, steps followed for the system developed is described in a detailed

manner, proving example work done for one of the manufacturing features for

rotational parts, selected form the feature library.

In Chapter 5, sample drawings and their corresponding STEP XML files are

presented and the relation between these outputs is described, to demonstrate the

operational performance of the developed system.

In Chapter 6, concluding remarks and possible future work plans recommended to

complete the integration process are given.

In Appendix A, sample source codes are given, describing different steps of the

software developed. In Appendix B, for each feature in the feature library figures

describing the feature geometries are presented.

 10

CHAPTER 2

LITERATURE SURVEY

2.1 Product Design Representation

There are two main approaches used in the product design representation: geometric

modeling and feature modeling. A detailed explanation of the models will be

presented in the following section.

2.1.1 Geometric modeling

Geometric models are classified as 2D or 3D models. 2D geometric models are

wireframe models and 3D geometric models are classified as wire frame, surface or

solid models [9].

2.1.1.1 Wireframe Models

Wireframe models are the earliest type of geometric model, dating back to 1960.

Both 2D and 3D wireframe models represent objects by the edge lines, arcs, and

points on the surface of the object. A wireframe model is the same as skeletal

descriptions of the product being designed. It should be noted that there are no

visible surfaces on the wireframe model, only geometric entities such as lines, arcs

and points. Although wireframe models do not look like a solid object, they do

contain an accurate geometric description of the object being modeled.

Wireframe models are practical because of the speed with which they can be

displayed. Since a design workstation does not need a sophisticated color video

 11

monitor to display complex wireframe models; it is inexpensive to model objects

using the 3D wireframe technique. The display of a wireframe model is often an

ambiguous representation, because it can be impossible for the viewer to determine

which lines are in the foreground and which are in the background. Since wireframe

models do not contain any information about the space between the edges, it can be

difficult to determine, for instance, if two objects will interfere with each other. In

addition, it is possible to create a wireframe model of a nonsense object, that is, an

object that is a physical impossibility.

2.1.1.2 Surface Models

Surface models were first developed in the early 1960’s. Surface models improve

on wireframe models by including face information. They can model a 3D object

without any ambiguity. In a surface model, it can be determined whether or not a

point is on the surface. When several surfaces form an object, it cannot generally be

determined whether a point is inside or outside the object unless some additional

information is available indicating this. The mathematical representations for

surface models are a set of surface equations. As far as computer representations are

concerned, most of the plane surfaces can be represented or approximated using

polygons. A surface model is represented in the computer by vertices, edges and

faces.

An advantage of surface models is that they are easy to construct by creating plane

surfaces, as well as by sweeping, revolving, or extruding entities. Surface models

are also useful for finding the intersection of surfaces in space and creating models

for shaded rendering. Surface modeling approach’s main fault is that it cannot

represent the interior of the model as solid. Therefore, surface models cannot

represent properties needed to analyze a product’s internal structure.

2.1.1.3 Solid Models

Solid models were developed in the early 1970’s. Solid models are a complete and

 12

unambiguous description of the object being represented. The construction

procedure for solid modeling is different from these for wireframe and for surface

modeling. Instead of having to generate specific lines, arcs, and surfaces that

define the object, the designer uses mathematically predefined solid primitives,

such as locks, cylinders, cones, wedges, spheres and son on. Most CAD modeling

packages have a limited number of primitives available, but the designer can use

them creatively to model very complex shapes. To create complex shapes, the

designer can combine primitives using the Boolean operations: union (the sum of

two primitives), intersection (the common mass shared by two primitives), and

difference (subtracts a primitives from another). Since solid contain more

information about the closure and connectivity of shapes than wireframe and

surface models, they have become the most important type of model for

designing, analyzing, and manufacturing products. Solid models offer a number of

advantages over surface models, including the ability to calculate mass properties

such as weight and center of gravity.

There are several representation schemes developed and used in the solid

modeling software such as constructive solid geometry (CSG), boundary

representation (B-rep), primitive instancing, cell decomposition, etc. The most

popular representation schemes for CAD solid modeling packages are CSG and

B-rep.

Solid models have the following inadequacies:

 Incomplete database: Solid models can only be used to define the nominal

geometry. Information regarding surface finish, tolerances, material

properties, surface conditions, etc., is important parts of the definition of

mechanical parts, but these cannot be incorporated in a solid model database.

 Mismatch in abstraction level: Solid models store data in terms of low-level

entities such as vertices, edges, faces, etc., or binary trees that contain

primitives and Boolean operators. It is difficult to extract the engineering

meaning of this data from the solid models database.

 13

2.1.2 Feature modeling

CAD systems use the geometric modeling approach, several of which were

discussed in the previous section, for product design representation. These models

make the CAD systems powerful in geometric modeling. However, the design

information provided by CAD systems is implicit and in terms of low-level

primitives, which has limited use in conducting comprehensive manufacturing

analysis and cannot directly support many manufacturing applications where

technical, functional and other information is crucial to shape data. Therefore, the

design information provided by the CAD system need to be translated into explicit

manufacturing information such as part features in order to be understood by

various downstream application (CAM, process planning, CNC programming,

group technology, inspection, assembly etc.) . Thus, features serve as a link

between the CAD and downstream applications. Features in general sense have

been variously defined. Among many others, one definition of feature is “recurring

patterns of information related to a part’s description” [10]. Features retain a high

level of abstraction of part’s description that means features provide not only

geometric and topological entities but also dimensions, tolerances, materials,

surface finishes…etc.

Downstream applications deal with high-level manufacturing applications such as

features as described, instead of pure geometric entities. In this sense, feature

modeling approach has been developed towards representing high-level design

information and significant research efforts have been done on feature modeling.

Significant research efforts have been made towards representing the high-level

design information, commonly available in engineering drawings, in a CAD system.

These efforts have resulted in various types of feature representations. There is a

rich literature in applying feature concepts to the integration of design, process

planning and CNC programming. Feature modeling is essentially grouped into two

distinct approaches, namely feature recognition and feature-based design [11].

 14

2.1.2.1 Feature Recognition

Feature recognition, examines the topology and geometry of a part and matches

them with the appropriate definition of predefined features. Part-feature recognition

algorithm for rotational parts has been developed in previous researches [12].

Advantage of feature recognition is that the designers can work directly on the

current CAD system, which they have been using. However, it has couple of

disadvantages. Challenging feature recognition algorithms need to be developed and

it is a complex and time consuming process, tough further refinements of the

recognition algorithms is necessary. In case of feature interactions, incremental

feature validation is required that is the partially recognized part has to be checked

whether any features are interacting or not. Furthermore, feature model conversion

has to be done to convert the recognized form features into manufacturing features

in order to provide them as useful to downstream applications [13].

2.1.2.2 Feature Based Design

Feature based design, builds a part from predefined features where their attributes

are attached. Features can capture the functional intent of the part within its

geometry based representation. This property of features can facilitate high-level

communication between design and manufacturing. However, feature based design

limits designers’ ability to create complex parts due to the limited number of

predefined features that can be stored in the feature library. The existing CAD

systems cannot be used by the designers, a new CAD system should be developed

(or an existing one should be modified) in order to embed the feature library with

predefined features and their attributes. Feature modeling approaches have their

own advantages and limitations but the difficulties facing both approaches are the

lack of implicit and explicit standard representations for features and unmanageable

number of possible predefined features without standardization. Researchers

attempted to define a comprehensive library of their own features from mechanical

parts. In one research, computer integrated manufacturing system for rotational

parts have been established [14]. The same part data is used in all the CAD, CAM

 15

and CAPP modules. The basic primitives and manufacturing features are used to

define the feature library. Same with the other attempts the problems are that each

new part gives rise to several new features, in addition to ones previously defined

and in order to deal with other CAD systems’ outputs, feature recognition

algorithms had to be developed due to the lack of universal feature library.

Therefore, research on this subject were leaving local to the particular

manufacturing plants where feature library is designed accordingly as much as the

limitations of feature recognition is concerned.

2.1.2.3 Review of Feature Modeling Approaches

Presented feature modeling approaches have their own advantages and limitations,

however the difficulties facing both feature recognition and feature based design

approaches are:

 The lack of implicit/explicit standard representation for features, the lack of

universal feature library,

 The necessity of defining a comprehensive feature library, which has its own

difficulties;

 Unmanageable number of possible features to be predefined without

standardization,

 Each new part gives a rise to several new features in addition to the

ones previously defined.

 The need for feature recognition algorithms to make the developed feature

modeling system compatible with other CAD systems’ outputs.

These difficulties limit the developed systems to being application specific, a

characteristic that is in conflict with the integration objectives. The following

section provides an insight into Product Data Models that are in existence,

developed to overcome these difficulties.

 16

2.2 Product Data Models

The purpose of a product data model is to provide a means for representing and

exchange information about a product gathered during, and used in, the design and

manufacture of that product. Therefore, the contents of this product model must be

able to support the information needs of a large variety of computerized

manufacturing applications (i.e., CAPP, part programming, etc.). The popularity of

using CAD systems as a means for creating, representing and exchanging product

designs has created various standard product data exchange formats such as IGES,

SET, DXF, etc. These standards have shown a success in transferring data between

CAD systems, but they have failed to transfer product data from CAD to CAM

applications. This is because current CAD systems are not able to support all the

information concerning a part that is needed to support the CAM activities. As a

solution, the International Standards Organization (ISO) first proposed Product Data

Exchange Specification (PDES) [15]. Since PDES contains both feature model and

dimension/tolerance model, it is potentially very useful in providing a link between

CAD and downstream applications. PDES however is relatively complex and uses

terms that are not familiar to a designer. Research work done on mapping design-

feature taxonomy of rotational parts onto PDES-features in order to make terms

familiar to designer [16]. Offering the most promising answer to these problems,

ISO introduced the Standard for the Exchange of Product Data (STEP) that would

serve the needs of all applications

In the following section, standards in existence that have been approved (either by

national or international standards committees) and accepted as defacto, will be

presented. A defacto standard is an unofficial standard that is widely used

throughout industry.

2.2.1 Initial Graphics Exchange Specification – IGES

Efforts to define a formal standard for product data exchange began in 1979 with

the development of IGES. IGES development was based upon the concepts, which

 17

used a neutral format and half translators. Upon development, the CAD vendors

implemented the standard realizing that the provision of the ability to transfer data

across different systems was a valuable product feature and sales hinged upon the

provision of the feature. The initial IGES standard was launched in January of 1980.

Problems such as limited scope (CAD only), accuracy, and inability to certify or

provide a conformance check on the software to assure consistent implementations

by the various vendors. These problems arose as a consequence of an initial effort

in a large domain. Research efforts began to correct these shortcomings, lead

predominantly by American bodies, such as the United States Air Force, Army and

Navy, and the National Aeronautics and Space Administration (NASA). As it

improved, IGES use was embraced by many industries around the world as a

solution to the data exchange problem. IGES became an accepted American

national standard under ANSI Y14 (American National Standards Institute), it was

adopted by many of the national standard bodies throughout the world. It is

currently being revised in to version 6. Version 6 is likely to be the last

version/upgrade to IGES. STEP is now the focus of most of the data exchange due

to its increased scope and incorporation of lessons learned.

2.2.2 Standard D'Exchange et de Transfert – SET

SET was a French effort to create a standard to exchange CAD data. These efforts

were driven by French industry, most notably the automotive and aerospace

industries. This requirement is due to the industries' high usage of CAD systems.

SET, like IGES in the US became a French national standard. In recognition of the

need for a single international data exchange standard, the French efforts are now

focused on developing the STEP standard and they are very active in the

development of STEP.

2.2.3 Verband Der Automobilindustrie-Flachen-Schnittstella - VDA-FS

The development of the VDA-FS standard was a German effort in response to the

data exchange requirements of their automobile industry in the 1980's. VDA is the

 18

German automotive industry trade association, and was the principle developer of

the VDA-FS standard. VDA focused on defining a standard that allows for

transferring surface/shell data. The Germans are now also directing their data

exchange standards development efforts to STEP.

2.2.4 Data Exchange Format – DXF

The use of the DXF format for data exchange has evolved as a defacto standard. It

is a proprietary format published by AutoDesk, a major CAD vendor. Early

versions of AutoCAD focused on drafting with later attention being focused on

solid 3D models. As the most widely used CAD packages, it is used throughout

industry, including, building and construction, aerospace, automotive, process,

shipbuilding, electrical, industrial, and consumer products. While addressing CAD

data exchange, DXF does not include the scope of product model data that is

included in STEP.

2.2.5 Standard for the Exchange of Product Model Data – STEP

STEP, standing for Standard for the Exchange of Product Model Data, is officially

titled ISO 10303. The aim of STEP is to provide a representation of product

information along with the necessary mechanisms and definitions to enable product

data to be exchanged. The exchange is among different computer systems and

environments associated with the complete product lifecycle including design and

manufacture. The information generated about a product during these processes is

used for many computer systems, including some that may be located in different

organizations. In order to support such uses, organizations must be able to represent

their product information in a common computer-interpretable form that is required

to remain complete and consistent when exchanged among different computer

systems [17].

STEP is organized as a series of parts, each published separately. These parts fall

into one of the following series: description methods, integrated resources,

 19

application protocols (APs), abstract test suites, implementation methods, and

conformance testing. STEP uses a formal specification language, EXPRESS [18], to

specify the product information to be represented. The use of a formal language

enables precision and consistency of representation and facilitates development of

implementations. To transfer this information, STEP usually employs the neutral

file approach. Transfer of data from one application to another is usually a two-step

process requiring a post-processing and pre-processing.

The overall objective of STEP is to provide a mechanism that is capable of

describing product data throughout the life cycle of product, independent from any

particular system. The nature of this description makes it suitable not only for

neutral file exchange, but also as a basis for implementing and sharing product

databases and archiving. The ultimate goal is an integrated product information

database that is accessible and useful to all the resources necessary to support a

product over its lifecycle [17].

STEP uses application protocols to specify the representation of product

information for one or more applications. The APs define the scope, the information

to be exchanged, the means of testing and a user guide for implementing the

application. The STEP Application Protocol of main interest for this thesis is

Application Protocol 224 (Mechanical Product Definition for Process Planning

using Machining Features) and Application Protocol 238 (Application Interpreted

Model for Computerized Numerical Controllers) is referred for lacking information

in AP224. STEP AP224 contains all the information needed to manufacture the

required part, including [19]:

• Geometrical and topological entities required to represent manufacturing

features implicitly in boundary representation format.

• Explicit representation of manufacturing features.

• Information necessary to identify the dimensional and geometrical

tolerances of the manufacturing features.

• Information necessary to define material, hardness, surface finish and other

technological data.

 20

STEP AP238 defines the context, scope, and information requirements for

numerical controlled machining and associated processes and specifies the

integrated resources necessary to satisfy these requirements. It is still a draft work

of ISO and is being developed. STEP AP238 provides features information from

manufacturing point of view and harmonizes the data with other standards. Some

lacking information in STEP AP224 about feature geometries is being extracted

from STEP AP238.

2.2.6 Review of Product Data Models

The following is a brief summary of the product data models described:

 IGES, SET, DXF, VDA-FS: Shown a success in transferring data between

CAD systems, however failed to transfer product data form CAD to CAPP

systems. Because current CAD systems are not capable of storing CAPP

applications related information concerning a part.

 STEP: Most recent and promising standard for representing part data that

would serve to needs of variety of applications and as an answer to all the

difficulties stated.

2.3 Object Oriented Programming

Object-oriented programming is claimed to be the software technology for the

1990s and beyond. Object-oriented programming approach is a general term for a

set of analysis, design and programming methodologies. Using object-oriented

programming approach, design and develop a system from the object perspective,

can be analyzed. Objects are intelligent, self-contained entities responsible for

performing particular system tasks [20]. Thereby, an object is defined as an identity,

encapsulating some private data and a set of operations to access that data. Four

main features of objects are [21]:

 21

1. Messaging: A message specifies what is to be done and the object decides

how it is to be done. Calling programs need not to be aware with the internal

representations of the internal functions the object uses.

2. Encapsulation: It involves the ability to hide the implementation details of

a system so that it is accessed in terms of its properties rather than of its

syntactical obligations. So, that each object is an independent entity in its

own, regardless of which language is used in implementing it.

3. Dynamic Binding: Binding is the determination of which piece of code to

run for a particular task in a program. Bindings to an object can be removed

instantaneously to limit the use of valuable run-time memory.

4. Inheritance: Objects are organized into a hierarchy of classes that share

characteristics among its members. Inheritance is a technique for defining

new data type differs from some pre-existing type. From a software

engineering point of view, inheritance allows a developer to reuse a piece of

code that incorporates only a slight modification or extension to previously

written code.

The common interfaces of objects are:

• Properties: Changeable / retrievable features,

• Methods: Actions, functions which are performed by the object,

• Events: External inputs, to which the object is susceptible.

2.4 Unified Modeling Language

The Unified Modeling Language (UML) is the industry-standard language for

specifying, visualizing, constructing, and documenting the artifacts of software

systems. It simplifies the complex process of software design, making a "blueprint"

for construction. UML is the most widely known and used standardized notation for

object-oriented analysis and design. Yet it does provide several types of diagrams

that, when used within a given methodology, increase the ease of understanding an

application under development. The most useful, standard UML diagrams are; use

case diagram, class diagram, sequence diagram, state chart diagram, activity

diagram, component diagram, and deployment diagram. There is more to UML than

these diagrams, for the purpose of this thesis, class diagrams and their notation will

be described in the following section [22].

 2.4.1 Class Diagrams

The purpose of the class diagram is to show the static structure of the system being

modeled. A class is a collection of objects with common structure, common

behavior, common relationships, and common semantics. The UML representation

of a class, a class diagram, is a rectangle containing three compartments stacked

vertically. The top compartment shows the class's name, pointing to the object

mentioned in the Object Oriented Programming approach. The middle compartment

lists the class's attributes with its variable types, pointing to the object properties

mentioned in the Object Oriented Programming approach. The bottom compartment

lists the class's operations, pointing to the object methods mentioned in the Object

Oriented Programming approach. In Figure 2.1, a simple example of a class

diagram is shown [23].

Figure 2.1 A generic class diagram showing a single class

ClassName

Attribute1 : String

Attribute2 : Integer

Attribute3 : Object

Operation1 () : String

Operation2 ()

Operation3 ()

 22

The UML modeling elements found in class diagrams include:

 Classes, their structure and behavior.

 Association, aggregation, dependency and inheritance relationships.

 The Inheritance is related modeling element of the class diagram with this thesis.

As it is mentioned in the previous section, as a very important concept in object-

oriented programming approach, inheritance, refers to the ability of one class (child

class) to inherit the identical functionality of another class (super class), and then

add new functionality of its own. To model inheritance on a class diagram, a solid

line is drawn from the child class (the class inheriting the behavior) with a closed

triangular arrowhead pointing to the super class. Consider types of shapes in the

simple example Figure 2.2, it shows how both Circle and Square classes having

their own attributes inherit methods from the Shape class.

Shape

Draw ()

Erase ()

Circle

 23

Figure 2.2 Inheritance is indicated by a solid line with a triangular arrowhead

pointing at the super class

Radius : Real

Square

Width : Real

 24

2.5 Extensible Markup Language

EXtensible Markup Language (XML) is a cross-platform, software and hardware

independent tool for transmitting information. XML is a markup language much

like HyperText Markup Language (HTML). However, while HTML was designed

to display data and to focus on how data looks, XML is designed to describe data

and to focus on what data is. XML is self-descriptive. Unlike HTML, XML tags are

not predefined and XML allows the author to define his own tags and his own

document structure, in other words XML tags are invented by the author of the

XML document. XML uses a Document Type Definition (DTD) or an XML

Schema to describe the data. [24] These bring simple syntax for XML, like; all

XML tags must have an opening tag and closing tag enclosed in angle brackets,

XML tags are case sensitive, XML elements must be properly nested, all XML

documents must have a root element and XML tags may have attributes defined in

quotation marks. Below is a simple sample XML document describing the book, to

illustrate the syntax mentioned above. Book, title, chapter, paragraph are the tags

used in this example. Book is the root element. Title, product and chapter are child

elements of book. Book is the parent element of title and chapter. Title, product and

chapter are siblings (or sister elements) because they have the same parent.

Paragraph is the child element of chapter. Product has attributes like “id” and

“media”, defined in quotation marks.

<book>

<product id=”1-1” media=”paper”></product>

<title>My First XML</title>

<chapter>Introduction to XML

<paragraph>What is HTML</paragraph>

<paragraph>What is XML</paragraph>

</chapter>

</book>

 25

XML does not do anything, XML was created to structure, store and to send

information. In the real world, computer systems and databases contain data in

incompatible formats. One of the most time-consuming challenges for developers

has been to exchange data between such systems. Converting the data to XML can

greatly reduce this complexity and create data that can be read by many different

types of applications Since XML data is stored in plain text format, XML provides

a software- and hardware-independent way of sharing data. This makes it much

easier to create data that different applications can work with. It also makes it easier

to expand or upgrade a system to new operating systems, servers, applications, and

new browsers. Other clients and applications can access XML files created as data

sources, like they are accessing databases. XML data can be made available to all

kinds of "reading machines" (agents) by means of processors.

 26

CHAPTER 3

SYSTEM MODEL

3.1) General System Architecture

Three main objectives of this study were: (1) developing an integrated feature

library, providing standard product data representation and facilitating the

CAD/CAM integration process, (2) developing a STEP based feature modeler for

rotational parts using the features in the feature library, (3) generating a neutral

STEP-XML file that will directly be used by the STEP based CAPP systems. To

achieve these objectives, a system architecture, which is presented in Figure 3.1, is

developed. In the following sections of this chapter, each building block that

constructs the whole system architecture will be defined; the idea behind the

working principles of the system and their components will be described, in every

detail. In the next chapter, Chapter 4, one of the manufacturing features for

rotational parts in the feature library will be selected and every stage followed in the

development of the system, described in this chapter, will be demonstrated on that

feature in an illustrative and detailed manner. One of the features will be selected,

because there are so many numbers of features with their subtypes and they show

similarities in application. Following is a brief description of the main system

components shown in Figure 3.1:

Feature Library: This integrated feature library will serve as the basis of the whole

system, fulfilling the first objective of the study. “Feature Definitions Library”

together with the “Feature Dynamic Link Library (dll)” builds up the “Feature

Library”. STEP AP 224 documentation, object oriented approach, MS Visual Basic

 27

6.0 and EXPRESS Schemas are the tools used in an organized manner to bring the

feature library up to a state satisfying the requirements of being a comprehensive

library. By comprehensive library, at this stage, what is meant is a library

facilitating the whole system to be “feature based”, “STEP based” and “object

oriented”.

Feature Modeler: Feature Modeler is a software package enabling high-level 3D

solid manufacturing features based design of rotational parts, fulfilling the second

objective of the study. The feature modeler uses the manufacturing features in the

developed feature library as the basic entities of the rotational part design. MS

Visual Basic for Applications, ActiveX Automation, AutoCAD 2000i environment

and error handling methods are the technologies used to develop the feature

modeler provided that an easy to use, efficient and 3D environment is implemented.

The inside structure of the feature modeler will be described in the following

sections of this chapter.

Preprocessor: This is a unidirectional translator, which takes features data from the

feature modeler as an input and creates STEP-XML file as an output. EXPRESS

Schemas, used to determine the hierarchical structure, relations and attributes of the

features while the feature library is developed, is now used in the same way to

reflect this structure to the output file. This way most appropriate XML

representation for each EXPRESS definition can be chosen and mapping of feature

data into XML file can be achieved. For each feature in the feature library,

algorithms are created to provide the creation of corresponding output data

including all of the feature attributes. Preprocessor appends the outputs of each

algorithm in a logical order and results with an overall STEP-XML file.

STEP-XML File: This file is the final output of the system and is created in XML

format invented for STEP, which is descriptive and which will pioneer the data

exchange to other systems, especially STEP based CAPP systems, from the feature

modeler. The output file is generated in XML format due to the emergence of XML

as standard for describing data exchange files.

FEATURE
DEFINITIONS

LIBRARY

 28

Figure 3.1 General System Architecture

MS Visual Basic for
Applications

ActiveX Automation
AutoCAD 2000i

Environment

STEP XML
DATA FILE

STEP AP224
Documentation

FEATURES
DLL

Object-Oriented
Approach

MS Visual Basic
6.0

FEATURE
MODELER

PREPROCESSOR

E
X

PR
E

SS SC
H

E
M

A
S

FEATURE
LIBRARY

Algorithms
Created for

Each Feature

3.2) Features Library

The structure of the feature library is shown in Figure 3.2. Feature library, in

general, enables rotational parts to be designed by three types of data namely: (1)

manufacturing features geometry data, (2) tolerance data and (3) part properties data

by means of its “Features Definitions Library” component. While the

manufacturing features geometry data is included into the feature definitions library

STEP AP 224, STEP AP 238 documentations and related EXPRESS Schema are

used. While the tolerance and part properties data are included into the feature

definitions library STEP AP 224 documentation and related EXPRESS Schemas are

used to construct the general data structure.

 29

Figure 3.2 Structure of the Feature Library

FEATURE LIBRARY
STEP

AP224 FEATURE DEFINITIONS LIBRARY

Manufacturing

Features

Geometry Data

Tolerance

Data

Part

Properties

Data

FEATURES DLL

 Objects

Objects

Objects

Objects

Objects

Objects

...
STEP

AP238

E
X

PR
E

SS SC
H

E
M

A

 30

Feature library is also a predefined library of objects, which remain resident during

a session started in the system by means of its “Features Dll” component. Within

the modeled feature definitions library, every feature is considered as an object, but

these can be categorized as classes, superclasses, subclasses or instances. In terms

of manufacturing features, a class is a generic description of one or more similar

objects (features) defined in the feature library. In fact, these definitions are

validated through EXPRESS Schema that is used in the definitions of the features

and their attributes, during the development of the features dll component. This

approach provides the developed system to be “object oriented”, which will be

detailed in the following subsections.

3.2.1) Feature Definitions Library

Feature definitions library is a library in which every feature that will construct the

primitives for the development of features dll, though the feature modeler is

explicitly defined. The feature definitions library is created:

 To provide a good documenting that will guide throughout the study.

 To provide a database for Features Dll file creation and facilitate

programming.

 To facilitate unambiguous and effective design for the feature modeler.

In feature definitions library, a product data model based on STEP is developed. It

includes almost all the information required to design rotational parts and some

information required to facilitate the development of a CAPP system for rotational

parts (this content of the feature definitions library should be enhanced to achieve

full integration). STEP AP 224, STEP AP 238 documentation as reference standard

and data modeling language called EXPRESS as product data modeling language

are used to create the feature definitions library. By this way, product data model

capable of storing three types of data:

1. manufacturing features geometry data,

2. tolerance data,

3. part properties data

 31

are developed in the feature definitions library. The content of these three

components of data types will be described in the following subsections. A brief

insight into both the STEP documentation and EXPRESS is provided in this

section.

STEP Documentation: The STEP AP 224 and AP 238 documentations are quite

long and most of them describe the Application Interpreted Model (AIM). Before,

becoming familiar with AIM, Application Reference Model (ARM) parts of the

documentation are covered. ARM describes the basic application objects.

Application objects stands for manufacturing features or other objects used defining

tolerance or part properties data, in the scope of this study. In general, what each

application object represents and where the information contained in it will come

from or go to, is reviewed as much as the ARM parts of the documentation is

concerned.

Once ARM and application objects are understood the related parts of AIM is

considered. The AIM is considerably more involved than the ARM, but it represents

the same basic information. The AIM is an EXPRESS information model that

formally describes the application objects in terms of a library of pre-existing

definitions, called the generic resources or integrated resources. This highly

normalized representation contains the structures as well as the constraints that

those structures must obey. The AIM is used as the basis for the implementation

and data exchange. EXPRESS-G diagrams, for which an example on one of the

manufacturing features will be represented in Chapter 4, in AP document, provided

an easier way to cover AIM. EXPRESS-G is a formal diagrammatic form for the

EXPRESS language. EXPRESS-G diagrams contain the data structures, inheritance

relationships, attributes and relationships between structures in the EXPRESS

information model. The EXPRESS-G diagrams are very good at conveying the data

structures associated with an information model.

By following the methodology defined, the necessary standardized features data

could be extracted from the related STEP documentation.

 32

EXPRESS: EXPRESS is a data modeling language defined by ISO and published

as ISO 10303-11 [18]. The EXPRESS language allows defining a data model in

terms of data structures constraints, and rules. The EXPRESS language is not case

sensitive. As a convention, EXPRESS keywords are often written in uppercase to

improve readability. EXPRESS is not a programming language; it is a data

modeling language. EXPRESS is readable and fully computer interpretable. A brief

introduction to EXPRESS is made below, which will describe the structure that is

claimed to lead the whole system to be object oriented. This introduction will guide

through the examples presented in the system development chapter.

EXPRESS Schema: EXPRESS specifications are organized into schemas. An

EXPRESS schema is a name space of named data types. Data types may be simple

types such as strings and integers or entity types, representing more complex

collections of attributes (properties). Schemas can be related together to form

models.

Entities: An entity is analogous to an object in object oriented programming. Each

entity has a name and a set of attributes. Each attribute has a name and a data type.

An entity, in EXPRESS schema, definition has the following form:

SCHEMA SchemaName; -- Schema declaration

 ENTITY Entityname;-- Entity declaration

 a1: data_type;

 a2: data_type;

(*Number of, attributes may go up to any number *)

 aN: data_type;

 END_ENTITY; -- End of entity declaration

 END_SCHEMA; -- End of schema declaration

As it is seen above, there are two types of comments in EXPRESS. A tail remark is

 33

written at the end of a line. Two consecutive hyphens “--” start the remark and a

new line terminates it. An embedded remark begins with the character pair “(*” and

ends with the same character pair “*)”.

Data Types: The data type of an attribute can be either a simple type, an aggregate

type, an entity type, a defined type, an enumeration type, or a select type. The first

three data types are the mostly related ones in the scope of this study. These three

data types are described below:

Simple Data Types: EXPRESS has several implicitly defined primitive data types.

These are integer, real, Boolean, logical, string, and binary. These are analogous

to ordinary variables in programming languages. Throughout the examples, integer

and real data types are represented under the same name “numeric_parameter” to

provide uniformity.

Aggregate Data Types: An aggregate is a container that holds multiple elements of

the same type. They are defined in closed square brackets with a lower and upper

bound values. The EXPRESS aggregate types are:

Bag: Bag is an unordered collection, in which duplicate values are allowed, but null

values are not allowed.

List: List is an ordered collection, in which duplicate values are allowed, but null

values are not allowed.

Set: Set is an unordered collection, in which neither null values nor duplicate values

are allowed.

Array: Array is an ordered collection of fixed size, in which both null values and

duplicate values are allowed.

Entity Data Type: Any entity declared in a schema can be used to specify the data

type of an attribute. Using an entity as an attribute's data type establishes a

relationship between the two entities. For instance, using an Entity named "Point";

another Entity named "Line" can be defined as it is presented in the example that

follows.

 34

 ENTITY Point;

 x: numeric_parameter;

 y: numeric_parameter;

 END_ENTITY;

 ENTITY Line;

 start_point: Point;-- defined as Entity Point

 end_point: Point;-- establishes the relation between Line and Point

 END_ENTITY;

Inheritance: Subtypes in EXPRESS allow new types to be derived from existing

types. The derived types are "almost like" other existing types, with some

incremental changes. They inherit attributes and functionality from their supertypes.

Subtypes can define additional attributes and functionality, thereby extending or

restricting the existing data types.

The EXPRESS language supports several types of inheritance relationships. The

following example shows one type of inheritance relationship supported by

EXPRESS:

 ENTITY Point3D

 SUBTYPE OF (Point);

 z : numeric_parameter;

 END_ENTITY;

The Entity “Point3D” will have three attributes: “x” and “y” which are inherited

from the Entity “Point”, which was presented at the top of this page, and “z”,

which is declared locally.

Overall mentioned functions of EXPRESS, facilitates the development of the

feature library by means of clear and hierarchical definition it provides for the

manufacturing features in STEP documentation.

 35

3.2.1.1) Manufacturing Features Geometry Data

Manufacturing features geometry data contains the information necessary to

identify shapes, which represent volumes of materials that shall be removed from a

part by machining or shall result from machining.

To extract rotational part manufacturing features with their attributes from the

STEP AP224 documentation, to make the features a member of the feature library,

to bring feature definitions up to a state that can be used in the dynamic link library

(dll) file and most generally to construct the manufacturing features and part

geometry data component of the feature definitions library the following

preliminary work has to be done for each feature in the feature library:

1. Selecting and extracting the feature from the standard, STEP AP 224

documentation, with its definitions and attributes.

2. Referring to related EXPRESS documentation in order to find out inheritance

structure of the feature.

3. Combining the collected data in order to completely define the geometry of the

feature.

4. Referring to the STEP AP 238 documentation, if there are lacking attributes

during the definition of the geometry of the feature,

5. Creating a 2D profile that will result as the 3D feature geometry after being

revolved or extruded along or around an axis, after collecting all the necessary

parameters to completely define the feature geometry,

6. Determining the generation technique for each feature that is, extrusion or

revolution.

7. Determining the attachment Boolean operation for each feature that is

subtraction, addition or intersection.

8. Determining the insertion point for each feature in FCS (Feature Coordinate

System)

9. Determining the geometrical constraints that will be used

a. in the definition of 2D profile,

b. in the placement of 3D feature on the part

 36

to avoid creation of meaningless geometries and possible designer errors that

may occur during the use of feature modeler.

10. Creating test interfaces to determine all the necessary geometrical constraints

and to test the constraints designed on paper and make trial designs to find out

new constraints. According to the results of the trial designs made, modifying

the geometrical constraints.

11. Documenting the:

 Selected STEP AP224 rotational part features,

 Hierarchical and object-oriented structure of selected features,

 Parameters necessary to completely define the 3D solid geometry for

each feature including;

 Attributes to define the 2D profile,

 Geometrical definition of the 2D profile (points, driven

parameters…),

 Generation technique and attributes for 3D solid feature

creation (extrusion or revolution),

 Geometrical constraints for each feature,

 Attachment technique (addition, subtraction, intersection) and

insertion point for each feature,

 Geometrical constraints related to both 2D profile creation and

feature interactions to provide the precision of design process.

Following each step stated above, “manufacturing features and part geometry data”

component of the feature definitions library documentation is prepared. Resulting

documentation stands as the building block for the dynamic link library, thus for the

proposed feature modeler and covers features and their subtypes extracted from

STEP AP224 for rotational parts and their definitions, classifications, attributes,

generation and attachment techniques, in detail. Since, the resulting work and

documentation adds up to a huge amount, it will only be demonstrated on one of the

selected manufacturing features, in the next chapter, Chapter 4, to illustrate the

developed methodology clearly. In the following part of this chapter, a brief

summary about the results of the documentation will be presented. Manufacturing

 37

features for rotational parts will be classified into its subtypes and each feature that

is a member of the feature library will be defined in a few words. 2D sketches of

features, their geometrical attributes, generation techniques and insertion points of

each feature in the library, which is a part of feature dentitions library

documentation, will be presented in the figures included in Appendix B. While

defining the features the corresponding figure for that feature will be referenced to

the Appendix B.

A manufacturing_feature identifies the types of features necessary to manufacture a

machined rotational part. Each manufacturing_feature is either a machining_feature

or a transition_feature. A machining_feature is a type of manufacturing_feature

that identifies a volume of material that shall be removed to obtain the final part

geometry from the initial stock. Machining_features requires both direction and

location in placing them on a part. Each machining_feature may be one of the

following: outer_round, spherical_cap, revolved_feature, or a multi_axis_feature.

A transition_feature is a type of manufacturing_feature that is a transition area

between two surfaces. This feature differs from machining_feature objects in that it

requires no orientation for placement instead a feature or two features are selected

to attach the transition feature to a position that has no other alternative. Each

transition_feature is either an edge_round, fillet, or a chamfer. Below, types of

machining_features and transition_features will be defined respectively.

An outer_round is a type of machining_feature that is an outline or significant

shape that is swept through a complete revolution about an axis. Each outer_round

is either an outer_diameter or an outer_diameter_to_shoulder. The outer_diameter

is a subtype of outer_round and may have a constant diameter around the axis of

rotation that is straight_outer_diameter, or it may be tapered that is

tapered_outer_diameter. Straight_outer_diameter is a subtype of outer_diameter

that is not tapered. Tapered_outer_diameter is a subtype of outer_diameter that

describes a continual transition from one diameter to another diameter across a

certain feature_length. An outer_diameter_to_shoulder is a subtype of outer_round

that is a sweeping of a shape one complete revolution about an axis. The shape shall

 38

be specified by two lines that connect at a point and extend finitely defined by

diameters or lengths. 2D sketches, geometrical attributes, generation techniques and

insertion points for the types of outer_round feature are presented in the Appendix

B, in Figures B.1 to B.4.

A spherical_cap is a type of machining_feature that is circular about an axis of

rotation. A spherical_cap consists of all points a given distance from a point

constituting its center. 2D sketch, geometrical attributes, generation technique and

insertion point for the spherical_cap feature is presented in the Appendix B, in

Figure B.5.

A revolved_feature is a type of machining_feature that is a sweeping of a planar

shape one complete revolution about an axis. Each revolved_feature is one of the

following: revolved_flat, revolved_round or a groove. A revolved_flat is a subtype

of revolved_feature that is the sweeping of a straight line about an axis. A

revolved_round is a subtype of revolved_feature that is the sweeping of an arc

about an axis. The groove is a type of revolved_feature that is a narrow channel or

depression that is swept through one complete revolution about an axis. Grooves are

classified into square_u_groove, rounded_u_groove, partial_circular_groove, tee_

groove, and vee_groove depending on their sweep shape. The groove feature may

be defined on different faces of a part depending on the orientation of the profile

and material side as shown in Figure 3.3 and groove can be further classified as

outer_groove and inner_groove, accordingly. At the end of these two level

classifications a groove may be one of, inner_square_u_groove, outer_square_u_

groove, inner_rounded_u_groove, outer_rounded_u_groove, inner_partial_circular

_groove, outer_partial_circular_groove, inner_tee_groove, outer_tee_groove,

inner_vee_groove or outer _vee_groove. 2D sketches, geometrical attributes,

generation techniques and insertion points for these types of revolved_ feature are

presented in the Appendix B, in Figures B.6 to B.17.

Figure 3.3 Inner_groove (left) and Outer_groove (right)

A multi_axis_feature is a type of machining_feature that identifies milling features

for rotational parts. A hole is a type of multi_axis_feature that is the removal of a

cylindrical volume from a part. Each hole is either a round_hole, counterbore_hole,

or a countersunk_hole. A round_hole is a type of hole that is a removal of a volume

of cylindrical shape from a part, which is represented by a circular_closed_profile

swept along a linear_path. A counterbore_hole is a type of hole that is a

combination of two round_holes. The first round_hole shall have either a

through_bottom_condition or a blind_bottom_ condition; the second shall have a

blind_bottom_condition, and a larger diameter than the first round_hole. A

countersunk_hole is a type of hole that is a combination of two round_holes. The

first round_hole shall have either a through_bottom_condition or a blind_bottom_

condition and it is not tapered; the second shall have a blind_bottom_condition, and

it is tapered. Firstly, depending on the bottom_condition, holes are classified into

subtypes, and then each subtype is further classified depending on their

change_in_diameter. Each bottom_condition may be one of the following:

blind_bottom_condition or through_bottom_condition. Each blind_bottom_

condition is either a flat_hole_bottom, flat_with_radius_hole_bottom, flat_with_

taper_hole_bottom, conical_hole_bottom, or a spherical_hole_bottom. 2D sketches,

geometrical attributes, generation techniques and insertion points for the resulting

types, after the two level classifications, of holes are presented in the Appendix B,

in Figures B.18 to B.47.

 39

 40

A slot is a type of multi_axis_feature that is a channel or depression with

continuous direction of travel. Firstly, depending on the course_of_travel the slot

follows, slot is classified into subtypes such as linear_slot and circular_slot,

secondly these two subtypes are classified first depending on open_profile, and then

each is further classified depending on the first_end_type and second_end_type. The

subtypes are listed and defined in the following pages. Linear_slot is a subtype of

slot, which has linear_path as course_of_travel. A linear_path is a direction of

travel along a line. Depending on the open_profile, linear_slot is either a square_

linear_slot, square_u_linear_slot, round_u_linear_slot, partial_circular_ linear_

slot, tee_linear _slot, or vee_linear_slot. Circular_slot is a subtype of slot, which

has circular_path as course_of_travel. Depending on the open_profile, circular_

slot is also classified in the same way like the linear_slot. All slot types other than

the square_u_linear_slot, have open_slot_end_type at both sides of the slot.

Depending on first_end_type and second_end_type, different possible square_linear

_slot subtypes are summarized in Table 3.1. 2D sketches, geometrical attributes,

generation techniques and insertion points for the resulting types, at the end of

classifications, of slots are presented in the Appendix B, in Figures B.48 to B.66.

Table 3.1 Square_linear_slot subtypes depending on end_condition

First_end_type Second_end_type Feature(Subtype) Name

open_slot_end_type open_slot_end_type square_linear_slot_type1

open_slot_end_type flat_slot_end_type square_linear_slot_type2

open_slot_end_type radiused_slot_end_type square_linear_slot_type3

open_slot_end_type woodruff_slot_end_type square_linear_slot_type4

flat_slot_end_type open_slot_end_type square_linear_slot_type5

flat_slot_end_type flat_slot_end_type square_linear_slot_type6

flat_slot_end_type radiused_slot_end_type square_linear_slot_type7

radiused_slot_end_type open_slot_end_type square_linear_slot_type8

radiused_slot_end_type flat_slot_end_type square_linear_slot_type9

radiused_slot_end_type radiused_slot_end_type square_linear_slot_type10

woodruff_slot_end_type open_slot_end_type square_linear_slot_type11

woodruff_slot_end_type woodruff_slot_end_type square_linear_slot_type12

 41

An edge_round is a type of transition_feature that is a convex circular arc transition

between two intersecting surfaces. The blend surface is tangent to both of the

adjacent surface edges. Depending on the edge_round_feature and outer contour of

the feature, different possible edge_round subtypes are summarized in Table 3.2.

2D sketches, geometrical attributes, generation techniques and insertion points for

the resulting types, shown in the Table 3.2, of edge_rounds are presented in the

Appendix B, in Figures B.67 to B.71.

Table 3.2 Edge_round subtypes

Edge_round_feature
Outer

Contour

Feature (Subtype)

Name

Straight_outer_diameter Both Edge_round_type1

Tapered_outer_diameter (decr. diameter) Right Edge_round_type2

Tapered_outer_diameter (decr. diameter) Left Edge_round_type3

Tapered_outer_diameter (incr. diameter) Right Edge_round_type4

Tapered_outer_diameter (incr. diameter) Left Edge_round_type5

Outer_diameter_to_shoulder Right Edge_round_type6

Outer_diameter_to_shoulder Left Edge_round_type7

Revolved_flat (decr. diameter) Right Edge_round_type2

Revolved_flat (decr. diameter) Left Edge_round_type3

Revolved_flat (increasing diameter) Right Edge_round_type4

Revolved_flat (increasing diameter) Left Edge_round_type5

A fillet is a type of transition_feature that is a concave circular arc transition

between two intersecting surfaces. The blend surface may or may not be tangent to

both of the adjacent surface edges. Firstly, depending on the answer of the question,

“Does fillet require additional manufacturing operation or does it result from the

geometry of the tool?”; fillet is classified into subtypes m_fillet and g_fillet.

Secondly these two subtypes are classified first depending on first_feature and

second_feature, and then each is further classified depending on whether blend

surface is tangent to both of the adjacent surface edges or not. The results of this

 42

classification is summarized in Table 3.3 and Table 3.4. Instead of every

tapered_outer_diameter, outer_diameter_to_shoulder or revolved_ flat can be

written in the tables. 2D sketches, geometrical attributes, generation techniques and

insertion points for the resulting types, shown in the Table 3.3 and Table 3.4, of

fillets are presented in the Appendix B, in Figures B.72 to B.87.

Table 3.3 M_fillet subtypes

First_feature Second_feature
Blend

Surface

Feature

(Subtype)

Name

Straight_outer_diameter Tapered_outer_diameter Tangent m_fillet_type1

Straight_outer_diameter Tapered_outer_diameter Not Tangent m_fillet_type2

Tapered_outer_diameter Straight_outer_diameter Tangent m_fillet_type3

Tapered_outer_diameter Straight_outer_diameter Not Tangent m_fillet_type4

Tapered_outer_diameter Tapered_outer_diameter Tangent m_fillet_type5

Tapered_outer_diameter Tapered_outer_diameter Not Tangent m_fillet_type6

Table 3.4 G_fillet subtypes

First_feature Second_feature
Blend

Surface

Feature

(Subtype)

Name

Straight_outer_diameter Straight_outer_diameter Tangent (+) g_fillet_type1

Straight_outer_diameter Straight_outer_diameter Not Tangent g_fillet_type2
Straight_outer_diameter Straight_outer_diameter Tangent (-) g_fillet_type3

Straight_outer_diameter Straight_outer_diameter Not Tangent g_fillet_type4
Straight_outer_diameter Tapered_outer_diameter Tangent g_fillet_type5
Straight_outer_diameter Tapered_outer_diameter Not Tangent g_fillet_type6
Tapered_outer_diameter Straight_outer_diameter Tangent g_fillet_type7
Tapered_outer_diameter Straight_outer_diameter Not Tangent g_fillet_type8
Tapered_outer_diameter Tapered_outer_diameter Tangent g_fillet_type9
Tapered_outer_diameter Tapered_outer_diameter Not Tangent g_fillet_type10

3.2.1.2) Tolerance Data

Tolerance data component of the feature definitions library defines the data of the

tolerances information for a part specified by the STEP AP224. Tolerance data

consists of two types: dimensional tolerances and geometrical tolerances. Types of

tolerance data is shown in Figure 3.4.

1. Dimensional tolerance is the total amount a specific dimension permitted to

vary, which is the difference between maximum and minimum permitted limits

of the size.

2. Geometrical tolerance is the maximum or minimum variation from true

geometric form or position that may be permitted in manufacturing. Geometric

tolerance should be employed only for those requirements of a part critical to its

functioning.

Figure 3.4 Types of Tolerance Data

 Tolerance Data

Dimensional
Tolerances

Geometrical
Tolerances

Size
Tolerance

Location
Tolerance

Circularity
Tolerance

Perpendicularity
Tolerance

Flatness
Tolerance

Surface Profile
Tolerance

Angularity
Tolerance

Linear Profile
Tolerance

Symmetry
Tolerance

Total Runout
Tolerance

Position
Tolerance

Circular Runout
Tolerance

Concentricity
Tolerance

Straightness
Tolerance

Parallelism
Tolerance

Cylindericity
Tolerance

 43

 44

3.2.1.3) Manufacturing Part Properties Data

The manufacturing part properties data component of the feature definitions library

contains the description of characteristics of the rotational part that is being

designed. These characteristics specify requirements of manufacturing that apply to,

either the state of the part at a particular time prior or after the manufacture of the

part, or a process that is required to be executed during the manufacture of the part.

To fully define part information scheme and integrate it into the features definitions

library a huge work has to be done, as it has been conducted for manufacturing

features geometry data. It is also required to have a process planning strategy

already developed in order to define an integrated part properties data library

accordingly, at this stage. Therefore, within the scope of this study part properties

data is just described in the sake of completeness of the definition of the feature

library. To fully integrate the part properties data into the developed system, future

work on this topic has to be conducted. As an example, besides many others some

part characteristics covered in the standard as manufacturing part properties data is

described below:

 Material is the identification of the raw stock from which a part is produced.

Material identifies primary and substitution material. The material information

is very important to be included in the part data that is resulting STEP-XML

file. Because for process planning activities, it significantly affects the selection

of the cutting tools, cutting parameters, etc…Material related data is defined by

material_id, material_description and stock_size attributes in the standard. In

addition, an alternate material with alternate_ranking and material_substitute

attributes can be defined.

 The surface information related to representation of the surface of the part, such

as surface finish, hardness and heat treatment conditions. These factors should

be included in the part data that is resulting STEP-XML file. Because, while

selecting manufacturing operations in process planning this data should be

considered seriously. Hardness has scale, high_value, low_value and nominal

attributes, surface property has surface_finish and parameter_name attributes to

be defined in the standard.

 45

3.2.2) Features Dynamic Link Library

Up to this point, Application Interpreted Model (AIM) and Application Reference

Model (ARM) of STEP AP 224, has been covered and resulting feature definitions

library has been developed for rotational parts. The important problem raised at this

stage was, how the feature modeler will be tied to the EXPRESS information model

of STEP AP 224 thus to the product data model developed in the feature definitions

library. It was the question, which prompted the development of Feature Dynamic

Link Library (Dll) in an object oriented manner. At the end, the product data model

developed in the feature definitions library is implemented as an object oriented

data type library, that is Features Dll, called “RotSTEPFeat.dll”.

The following subsections describe the object oriented approach used in

constructing the structure of the Features Dll, methodology developed to create

Features Dll and capabilities of Features Dll respectively.

3.2.2.1) Object Oriented Structure of Features Dll

In general, object oriented concepts are accepted to be well suited to engineering

activities because object structures are readily able to model the real world, support

communication and provide interfacing and manipulation of different data types

[25]. From the creation of feature modeler point of view, which is the main

objective of this study, the object oriented representation gives the flexibility to

define the system in a hierarchical manner, such that:

• Features in the feature definitions library can be represented as objects,

• Functions of the features in the feature definitions library can be represented as

methods on objects such as drawing functions, export to STEP-XML

functions…,

• The relationship between features in the feature definitions library can be

represented as messages passed between objects,

• System architecture can be represented by the use of UML diagrams and class

hierarchy.

 46

By using the mentioned benefits gained using object oriented approach,

manufacturing features defined in the feature library are transformed into solid

objects, which will facilitate the implementation during the feature modeler

development. In the following parts of this subsection, the general structure of the

Features Dll and object oriented approach used in the development of the structure

will be described.

Object oriented approach can be viewed as a software design methodology or

programming style with particular disciplines. The basic principle of the object

oriented approach used developing the Features Dll is, every element of the product

data model environment (manufacturing features, tolerances defined in the feature

definitions library for rotational parts) must be regarded as an object, which

contains properties and methods. The properties of the objects stand for the

attributes of the features (like attributes defining feature geometry) and methods of

the objects stand for both the necessary actions that the features should perform

(like creating 3D solids, storing tolerance information) and implemental behaviors

of features (like exporting STEP XML file, returning necessary information about

its definition). An object can only be accessed by activating one of the methods

defined for that object.

In object oriented systems, by going one step further, classes are allowed to be

defined in terms of other classes. Using this terminology within the Features Dll,

although everything is considered as an object, objects are categorized as “classes”,

“instances”, ”superclasses” or “subclasses”.

 A class is a generic software blueprint for one or more similar objects, such as

outer_diameter, groove, spherical_cap, hole etc. in terms of manufacturing

features. Objects are defined in terms of classes; it means that a lot is known

about an object by knowing its class. Even what a “tapered round hole” is not

known, if it is told that it is a member of “hole” class, it would be known that it

had diameter, hole depth etc. as its attributes. A typical definition of a class

object includes its class name, superclass, properties and methods.

 An instance is a “real” representation of an object, that is 3D CAD solid

 47

representation for manufacturing features in the scope of this study, such as

tapered round hole with a conical bottom, outer square-u groove etc., which has

specific values for their definition. Class definition describes the location for

specifying data storage and method. Two kinds of variables are supported: class

variables and instance variables. The class variable is used to hold information

shared by all instances of that class. (All holes have a diameter and hole depth)

The instance variable contains information, which is specific to a particular

instance. (A tapered round hole with a conical bottom would have a bottom tip

radius and bottom tip angle as its instance variable.)

 Superclass is the highest category that groups objects at the most generic level.

Each subclass inherits properties and methods from its superclass. However,

subclasses are not limited to the state and behaviors provided to them by their

subclasses. Subclasses can add properties and methods to the ones they inherit

from the superclass. The structure is not limited to just one level of inheritance.

The inheritance tree, or class hierarchy, can be as deep as needed. Methods and

properties are inherited down through the levels. In general, the farther down in

the hierarchy a class appears, the more specialized its behavior. By this way,

subclasses provide specialized behaviors form the basis of common elements

provided by the superclass. Using inheritance, the code in the superclass can be

used many times.

From this description of objects, the object oriented structure of the Features Dll can

now be explained. First, the general view of the Features Dll will be presented, and

then the four hierarchical levels will be explained. In most general means, using

object oriented approach described and the data provided in the feature library has

resulted the hierarchical UML structure shown in Figure 3.5 and Figure 3.6. Due to

the extensive inheritance structure of the system and excessive number of classes,

the entire system structure can not be presented in a UML diagram. Therefore,

UML diagrams in Figure 3.5 and Figure 3.6 only show the uppermost structure in

the hierarchy of features and tolerance classification. Notice that, each hierarchical

structure shown in this subsection is validated through EXPRESS Schemas besides

using the documentation provided by the features library.

Figure 3.5 UML Diagram of Manufacturing Features for Rotational Parts

Figure 3.6 UML Diagram of Tolerance Data

 48

 49

UML diagram shown in Figure 3.5 exactly reflects the data provided in the

manufacturing feature geometries data component of the feature library. In the

diagram, manufacturing_features for rotational parts superclass takes its place in

the highest category, the first hierarchical level. Machining_features and

transition_features are subclasses of manufacturing_ features superclass. However,

machining_features also act as superclass of many other subclasses such as

outer_round, revolved_ feature, spherical_cap and multi_axis_feature;

transition_features act as superclass of edge_round, fillet and chamfer, in the

second hierarchical level. The major difference of the whole system structure from

the general one shown in Figure 3.5 is that some of the subclasses in the second

hierarchical level (e.g. outer_round and groove) also act as superclasses of various

subtypes of that features (e.g. outer_diameter_to_shoulder and outer_groove), in

the third hierarchical level. Therefore, a further fourth hierarchical level

classification is performed. The resulting classification in the third hierarchical level

may lead to creation of instances or new superclasses. For instance while

outer_diameter _to_shoulder is an instance in third hierarchical level , outer_

groove is a superclass of its subtypes, outer_square_u_groove, outer_round_u_

groove, outer_partial_ circular_groove, outer_tee_groove and outer_vee_groove in

the fourth hierarchical level. Thus, for some classes the hierarchical level goes up to

four, until the instances are created. This structure for rotational manufacturing

features was defined in the manufacturing feature geometries data subsection of

feature library section in this chapter. To avoid complexity, the detailed UML

diagram, including the inheritance relation between classes, of only one selected

feature will be presented in system development chapter, Chapter 4.

UML diagram shown in Figure 3.6 exactly reflects the data provided in the

tolerance data component of the feature library. Dimensional_ tolerances and

geometrical_tolerances superclasses take their place in the highest category. These

are subclasses of many other tolerance types as shown in Figure 3.6 and defined in

tolerance data subsection of feature library section in this chapter. The relation of

tolerance classes with the manufacturing_feature subclasses will be shown in the

example UML diagram provided in Chapter4, for a particular feature selected.

 50

By using the terminology described, features dynamic link library (Dll) a file of

code containing objects that can be called from other executable code (either an

application or another dll) is developed. In general, Dll is used to provide code to be

reused and to parcel out distinct jobs. Unlike an executable (exe) file, a dll file

cannot be directly run. Features Dll must be called from other code that is already

executing, that is feature modeler software in this case. Sample code containing the

implementation and structure of one the most general class “machining_features”

library is given in the Appendix A.1. This code consists of predefined classes of

objects, which have been structured to form a hierarchical class library, which will

be available within the feature modeler at run-time.

Generally, Features Dll is a predefined library of objects, which remains resident

during a session of the feature modeler. The objects are class level objects as

defined, including methods and variables applicable to the class, allowing instances

of the object to be generated. In the objective of this study, class objects map

directly to manufacturing features in the feature definitions library. The following

subsection defines the methodology developed to create the features Dll.

3.2.2.2) Methodology to Create Features Dll

To create an integrated feature library for the feature modeler, for which the

structure is described, a dynamic link library (dll) file should be created. The

following are the steps required to generate the dll file:

1. Creating UML diagrams for each feature depending on the related EXPRESS

documentation and feature definition, which includes the inheritance structure

of the feature.

2. Validating UML diagrams through the EXPRESS Schemas in order to double

check and avoid any errors.

3. Depending on the UML diagrams and the feature library documentation created,

programming each feature by means of classes using Visual Basic 6.0 and the

object oriented approach described.

 51

4. Using Visual Basic 6.0 creating properties, methods and events for each feature

class, which will help to;

 assign values to feature attributes,

 create 2D profiles from given points,

 create 3D features from 2D profiles,

 modify feature (for ex: rotation in necessary cases),

 calculate, return required data about feature’s geometry,

 check geometrical constraints at each step and warn the designer about

possible errors,

 create STEP-XML file during creation of feature to append it to the resulting

STEP-XML file of the designed rotational parts (the details of this process

will be explained in the preprocessor section of this chapter),

 store manufacturing features and part geometry, part properties and

tolerance data.

5. Generating an algorithm for each feature that uses the EXPRESS class files as

reference to generate the required STEP feature data format

6. Compiling “RotSTEPFeat.dll”, dynamic link library file which will be used as

the integrated feature library and the heart of the feature modeler in AutoCAD

ActiveX Automation

The steps for generating the dll file have been followed for each feature and the

“RotSTEPFeat.dll” file has been created.

3.2.2.3) Capabilities of Features Dll

 Creates 2D profiles from the points defined in feature definitions library and

converts them into 2D regions,

 Creates 3D features from 2D regions created as the basic 3D entities of

rotational parts in feature modeler,

 Has the ability to modify features if rotation or move functions are required in

placement, movement and orientation depending on whether a feature is, right

or left, or inner or outer,

 52

 Returns geometrical information about feature geometry to facilitate error

handling, which will be conducted to check feature interactions in the feature

modeler,

 Provides features to store part geometry and all described types of tolerance data

that designer will attach on it, which will upgrade them from being basic entities

to high level entities,

 Checks for errors during the design process using the geometrical constraints

defined in the feature definitions library,

 Facilitates creation of STEP-XML file by means of the algorithms developed

and embedded in the dll for each feature, which will pioneer the development of

the preprocessor,

 Most generally, integrates the feature library component of the overall system

with the feature modeler component, playing the most critical bridging role

throughout the system.

3.3) Feature Modeler

In previous sections, the first building block of the overall system, Feature Library,

is described in detail by covering its components, Feature Definitions Library and

Features Dll. When generalized, Feature Definitions Library is recognized to be the

first fundamental component, which makes the overall system “STEP Based” and

Features Dll is recognized to be the second fundamental component, which makes

the overall system “ Feature Based” and “Object Oriented”, thus “Integrated”. At

this stage, after creating a complete and integrated feature library, the third

fundamental component, which is the opening window of the system to the world,

that means makes the overall system “Functional” and “Useful”.

By feature modeler, what is meant is a software package, which is required to:

 cover as much manufacturing features as possible,

 enable the creation of 3D manufacturing features in AutoCAD 2000 design

environment,

 bring them together facilitating the creation of the whole 3D rotational part,

 53

 provide interfaces that are user friendly and isolates the designer from the

complicated processes running behind the scene,

 permit attachment of tolerance attributes to features, presents an easy to design

feature based design environment,

 avoids errors by means of comparing them with predefined cases,

 ensure that no feature interactions occur and no illogical or unmanufacturable

parts can be designed

 warn the user by predicting the possible errors occurred during the design

process,

 offer as various design alternatives as possible,

 present a continuous design environment by offering the designer to chain the

diameters between succeeding features,

 provide flexible design environment for rotational parts by providing them both

left hand and right hand feature attachment opportunity.

With the aim of developing a feature modeler, which is able to satisfy all the stated

requirements, feature modeler architecture is developed and that architecture is

implemented in AutoCAD 2000i environment by using MS Visual Basic for

Applications, ActiveX Automation and error handling methods. The following

sections provide insight to the feature modeler architecture and feature modeler

implementation, respectively.

3.3.1) Feature Modeler Architecture

The feature modeler architecture is mainly organized in three major components:

1. Features Creation Phase,

2. Part Creation Phase,

and one mechanism working in between these components:

3. Error Handling.

The general architecture of the feature modeler is presented in Figure 3.7.

FEATURE CREATION

Feature Selection

Feature Attributes Definition

Call Drawing Functions

From Features DLL

 54

No

is
Yes ErrorRaised?

(in Features DLL)

PART CREATION

Feature Placement Option Selection

Feature Placement Attributes Definition

Performing Boolean Operation

is do

ErrorRaised? Features Interact?

(in Features DLL) (in Feature Modeler)

No No

Yes

Figure 3.7 Feature Modeler Architecture

Yes

 55

At first glance, feature creation is generation of manufacturing features one by one

and part creation is bringing the generated manufacturing features together to form

the resulting rotational part. In between these two stages and before the Boolean

operation is performed, there are error handling mechanisms to justify the required

reliable design in the feature modeler. Feature and part creation components of the

feature modeler will be detailed in the following subsections. The working principle

of the error handling used will be explained also in the following subsections.

3.3.1.1) Feature Creation

As it is shown in Figure 3.7, three steps are required to create a feature, namely: (1)

Feature Selection, (2) Feature Attributes Definition and (3) Call Drawing Functions

from Features Dll

Feature Selection: Feature selection is done by pointing to the required feature from

a pull-down menu, which is already generated in the feature modeler’s AutoCAD

interface, by mouse or keyboard. A collapsed view of the pop-up menu is shown in

Figure 3.8.

The selected feature corresponds to the matching class in Features Dll. By selecting

a feature the corresponding Boolean operation, which will then be used while

performing Boolean operation in part creation phase, related to that feature is also

selected.

Feature Attributes Definition: By clicking on the required feature in the pull-down

menu, a macro is executed and a pop-up form interface appears. An example pop-

up form interface, for the feature revolved_flat, is shown in Figure 3.9. The

appearing form includes input form elements like text boxes, combo boxes, check

boxes and option buttons and frames grouping these elements. There exist also

labels that inform the user about related actions and preview images, which

illustrate the required parameters on a feature sketch, to guide and help the designer

in selecting the right attributes.

Figure 3.8 Exploded View of Pull-down Menu Designed in AutoCAD for

Rotational Manufacturing Features

Figure 3.9 Example Pop-up Form Interface designed in AutoCAD for one of

Rotational Manufacturing Features, Revolved_flat

 56

 57

Each input form element in the pop-up form stands for a property of the selected

feature (class) necessary to completely define its geometry. The interface includes

some default values for each attribute to give designer an idea about the possible

values. The interface also offers some design alternatives for the attribute

definitions, for example, taper condition may be selected by entering a taper angle

or final diameter, which presents flexible design options to the designer. In the

interface depending on these design alternatives, some input form elements may be

enabled or disabled to prevent possible errors before they occur. There are

command buttons to perform the required actions in the interface. Cancel Button

closes the form and returns the process to the features selection phase.

After entering all the required parameters on the interface and clicking on the OK

Button feature attributes definition phase is completed.

Call Drawing Functions: When the OK Button on the interface is clicked, the

following process, behind the mouse click, is performed in the feature modeler

respectively:

1. Feature attributes defined are set to the corresponding class properties,

considering what the different design alternatives provide,

2. To create an instance of selected feature, the corresponding function, which

creates the solid feature, is called from the Features Dll. The attributes,

which are already set, are sent to the class in the Features Dll. They are

processed and the feature is created.

As it was mentioned in Features Dll section, when one of its methods is called the

corresponding object is activated and it creates a 2D region from the basic

dimensions of feature, which are also sent. Then it creates a 3D feature solid by

revolving or extruding the 2D region created, in AutoCAD’ active document.

However, if it finds any errors while checking each attribute with the predefined

constraints it raises en error and sends an error description and an error message

back to the feature modeler, which will take the whole process back to feature

attributes definition phase.

 58

3.3.1.2) Part Creation

Once the feature is generated, it has to be attached to the main rotational part. Part

creation phase is composed of three main steps as it is shown in Figure 3.7, namely:

(1) Feature Placement Option Selection, (2) Feature Placement Attributes Definition

and (3) Performing Boolean Operation.

The manufacturing features for rotational parts were classified as machining_

features and transition_features in the features library section. At this stage, in the

feature model a further classification of the machining_features into parent_

machining_features and member_machining_features, is performed to develop an

effective method for part creation. Machining_features, which creates the outer

contour of the rotational part, in other words which are protrusion features are

defined as “parent_machining_features”, these are outer_diameter, outer_diameter

_to_shoulder, revolved_flat, revolved_round and spherical_cap. The other

machining_features, which are subtraction features, in other words, which should

be subtracted from the parent_machining_features, are defined as “member_

machining_features”; these are grooves, holes and slots. However, this should not

be taken as a classification in the feature library, which only depends on the STEP.

This classification is made just to facilitate implementation; it is only a logical

classification. While simplifying part creation, this classification may limit the

flexible design environment, for example a hole going through more than one

feature was not allowed, since it can be a member of only one parent_machining_

feature at the design stage. These kinds of limitations are overcome by making it a

member of the other parent_machining_feature it passes through in run time.

Transition_features are treated as they are defined in the feature library. They may

be protrusion or subtraction feature depending on their definitions in the feature

definitions library. Parent_machining_features, member_machining_features and

transition_features show differences in three steps of part creation.

In this subsection, three steps of part creation and how differently the types of

different manufacturing features are handled in these steps, will be described.

 59

Feature Placement Option Selection: Feature modeler provides different feature

placement options to different types of manufacturing features. Providing placement

options simplifies the design process, prevents errors and makes the feature modeler

more flexible.

For parent_machining_features, feature placement options provided are selecting

the feature to be left feature or right feature and taking its starting diameter from

previous feature or not. Left or right feature selection is made through combo boxes

placed in the interface and the diameter of the previous feature is automatically

offered to the designer as its starting diameter. These options can be seen in the

example pop-up form shown in Figure 3.9. For member_machining_features,

feature placement option provided is selecting the parent_machining_feature on

which the feature will be placed (if the member_machining_features will be placed

to wall surface of the parent_machining_feature, left or right wall surfaces are also

provided as options). For transition_features, feature placement option provided is

selecting the parent_machining_feature on which the feature will be placed (if the

transition_features is a fillet, two parent_machining_features between which the

fillet will be placed are provided as options). In last two cases, the possible

alternative parent_machining_features are automatically loaded to the design

interfaces and the designer just makes a selection among them. This intelligent

loading process examines the whole part and offers the designer every possible

option for placement, for example, inner_grooves may be placed to the wall

surfaces left between two parent_machining_features having different diameter

values at the transition. By selecting one of the defined options, the feature

placement option selection, step is completed.

Feature Placement Attributes Definition: Feature placement attributes are the

attributes needed to exactly place the feature to the desired position on the rotational

part. Feature modeler provides different feature placement attributes to different

types of manufacturing features.

After selecting the feature placement options, for parent_machining_features and

 60

transition_features there is no need to define any additional attributes to correctly

place the feature on the part. Because the positions for placement are already

known, such that the insertion point of the parent_machining_features is moved the

center of the final diameter of the previous parent_machining_feature and the

insertion point of transition_ features is moved to the point of transition. However,

for member_machining_ features, definition of the feature placement attributes with

respect to the parent_machining_feature selected may be required. It is “may be”

because while this definition is not required for holes, for grooves and slots it is

required to find out the distances and the orientation with respect to Feature

Coordinate System (FCS) of the parent_machining_feature. These are the feature

placement attributes and when they are defined according to FCS, feature insertion

point is moved to the calculated placement point to complete the attachment

process. To correctly place the feature on the part, feature placement attributes

should be defined in the required cases and then feature placement attributes

definitions step is completed.

Performing Boolean Operation: As soon as the feature insertion point is moved to

the placement point, after the first steps are completed, Boolean operation is

performed at that intersecting point, provided that the feature does not interact with

any other previously created feature on the part or the feature dimensions does not

exceed the part dimensions. Boolean operation is either addition or subtraction

depending on the manufacturing feature type selected. Boolean operation type for

each feature is defined in feature definition library and when the feature is first

selected in the feature creation phase; Boolean operation information is stored to be

used at this step. Performing the Boolean operation, this step and part creation

phase is completed.

Feature creation and part creation phases are performed simultaneously for each

feature provided that the designer is shielded from the explained complexities and

details of the system and the designer only interacts with the interface elements and

resulting 3D rotational part.

 61

3.3.1.3) Error Handling

In the feature modeler, there are two stages of error handling where error handling

mechanisms are placed to track for possible errors, as it is shown in the feature

modeler architecture Figure 3.7. The first stage is performed in the Features Dll,

which is associated with the geometrical constraints of the feature, defined in the

features definitions library. When feature modeler calls drawing functions, it sends

feature geometrical attributes to the Features Dll as class properties, Feature Dll

verify this data by checking it against the feature geometrical constraints,

predefined “if” statements checking attributes according to geometrical definitions.

If it passes from this verification, then feature can be delivered to the part creation

phase. However, if this verification fails, means if the feature attributes are

incorrectly defined, Features Dll raises a public error and sends this error back to

the feature modeler attaching the error description in an error message. Error

descriptions are created so that the designer can be informed about the possible

problem. The feature modeler sets every variable, property etc. back to its initial

state when it receives the public error, to avoid any errors because of cached

definitions and the overall process goes back to feature attributes definition step.

The second stage of error handling is performed before the Boolean operation. It

has two levels of error tracking mechanisms. The first level is again performed by

the Features Dll, verify feature placement attributes by checking the created feature

geometry against part geometry this time, for example if the feature exceeds the

boundaries of the part etc. If the feature passes from this verification, then the

Boolean operation is performed. However, if this verification fails, means if the

feature exceeds the part, Features Dll raises a public error and sends this error back

to the feature modeler attaching the error description in an error message and the

overall process goes back to feature placement attributes definition step. The second

level is performed by the feature modeler this time; the feature modeler verifies the

feature by checking its rightmost, leftmost, topmost and bottommost coordinates

against the same coordinates of the previously created features to ensure that no

feature interactions occur. If the feature passes from this verification, then the

Boolean operation is performed. However, if this verification fails, means if there is

feature interaction, feature modeler raises an error and pops up an error message

including the error description and the overall process goes back to feature

placement options selection step. Some of the example error messages are shown in

Figure 3.10.

Figure 3.10 Example Error Messages

There also other error tracking mechanisms placed in the feature modeler. For

example, if rightmost or leftmost diameter of the rotational part becomes zero,

feature modeler pops up an error with description and does not allow the user to add

more features at that direction or if there are no proper placement options for

member_machining_features, feature modeler warns the designer about this

condition and does not allow that features form to appear.

 62

 63

3.3.2) Feature Modeler Implementation

To implement the proposed feature modeler in AutoCAD 2000i environment,

Visual Basic for Applications and ActiveX technology is used. By this way,

AutoCAD became capable of providing “feature based design of rotational parts

based on STEP”. To achieve this goal following steps have to be fulfilled:

1. Uninstalling the AutoCAD default menus, toolbars, and creating, on purpose,

AutoCAD menus including the pull-down menu shown in Figure 3.8

2. Designing the user interfaces in AutoCAD environment, using Visual Basic for

Applications for AutoCAD, like the pop-up form interface shown in Figure 3.9.

They will provide different design alternatives, to the designer for each feature

and they will provide designers an easy to design tool for defining necessary

feature attributes.

3. Making the feature modeler, able to design complex rotational parts in a reliable

manner, using features in the feature library, by means of programming

necessary feature creation, part creation and placement program in the

AutoCAD environment and placing necessary error tracking and handling

mechanisms at defined levels. Developing this program satisfying the

requirements and covering the capabilities defined in the three phases of feature

modeler architecture.

4. Integrating the tolerance data related interfaces and code within the “feature

modeler for prismatic parts” developed in METU CIMLAB, by Saleh Amaitik

[26, 27, 8], to the feature modeler for rotational parts.

These steps to create the feature modeler are followed and the feature modeler is

created within the scope of this study. In feature modeler architecture section,

details about first step, second step and error tracking and handling mechanisms

have been provided. In the following part of this section, the general methodology

used to develop the program mentioned in the third step and general messaging

protocols used to achieve the exchange of data throughout the system will be

explained, a more detailed picture of the developed program in the feature modeler

will be drawn.

 64

There are two types of messages used in the feature modeler. The first one is

between the pull-down menus and pop-up forms, and the second one is in between

the interface and the features Dll. The first type of messages is send by means of

macros created in AutoCAD environment. Once a selection on the pull-down menu

is made, a macro generating a message is executed and this message is send to

public module in the program, which calls the show function of the corresponding

pop-up form, and the form appears. The second types of bidirectional messages are

sent by means of function calls, forward and error messages, backwards. The

function call messages activate the classes in the Features Dll, and class properties

are attached in these messages. Error messages sent from Features Dll to the feature

modeler facilitate correct design and error descriptions are attached to these

messages. The interface is so designed that it automatically generates the necessary

messages protocol and perform to establish the required communication throughout

the system, saving the designer from composing messages.

In the part creation subsection of the feature modeler architecture, it was mentioned

that according to the general logic behind the rotational part design, manufacturing

features are logically classified into three: parent_machining_features,

member_machining_features and transition_features from the part creation point of

view. Member_machining_features are accepted to the members of parent_

machining_features. To be able to transfer this “belonging” behavior” to the

programming environment, parent_machining_features and member_machining_

features are defined in two dimensional arrays, like it is shown below: (assuming

maximum number of twenty five right and left features and twenty member features

on a parent feature)

Public MFeatures(-25 To 25, 0 To 20) As New Machining_Features

In this variable definition each machining_feature instance that will be created in

the feature modeler is defined in terms of the machining_feature class in the feature

library, in a two dimensional array. The first index of the array indicates the parent_

machining_feature and the second index indicates the member_machining_feature.

Parent features index has the same structure like in the line scale shown in Figure

3.11. At the starting point of the design process, if a the designer chooses the

alternative of designing a right feature then the parent feature’s index will be (1,0)

in the array and the following right feature will have (2,0) as the index number.

(vice versa is valid for left features that are (-1,0), (-2,0)…) If a member feature is

attached on the first right feature created, member feature’s index will be (1,1) and

the following member feature on the same parent feature will have the index (1,2)

(vice versa is valid for the left features (-1,1), (-1,2)…)

 65

Figure 3.11 Parent_machining_features index definition

Transition_features are defined in an other array; the upper bound of the array is

one less then the upper bound index of the array that indicates parent_machining_

feature. The first member of this array indicates the transition_ feature between the

first and second right parent_machining_features. One dimensional transition_

feature array definition is shown below:

Public TFeatures(-24 To 24) As New Transition_Features

These array definitions for manufacturing features facilitate to store and exchange

manufacturing features design information data throughout the system. Once the

array elements are set with the corresponding features data, this data is stored in the

array during run time, until the program is terminated or new part is started to be

designed.

 First Right Feature

0 1 2 3 -1 -2

 Left Features Right Features

 -3

 First Left Feature WCS

 66

The described approach in developing the feature modeler provided a clear and

natural way to organize data in the feature modeler. It also allows users to interact

easily with the AutoCAD environment. Relating the feature modeler with the

Features Dll and feature definitions library, the feature modeler gain the

functionality to be “STEP Based”, “Feature Based” and “Object Oriented”, which

improves its organization and clarity. By this way, the main objective of the thesis

has also been achieved.

3.4) Preprocessor and STEP-XML File

The main goal of developing a preprocessor is to create self-descriptive, clear,

reliable, neutral output file including all the manufacturing features used in the

entire rotational part design, their placement location coordinates, feature types and

their identifications, data defining feature geometry and additional attributes

attached to the feature like tolerance data. While including all these data, to include

absolute dimensions, especially for the placement coordinates, with respect to

World Coordinate System (WCS) used in feature modeler, is important to facilitate

the appropriate and efficient use of these dimensions in CAM or CAPP systems.

XML and EXPRESS, for which the basic concepts were described in Chapter 2 and

in this chapter respectively, are now used as the fundamental technologies behind

the preprocessor. The raising characteristics of these technologies and other

standard technical data formats, in the scope of selection of a standard output file

format, can be summarized as follows. EXPRESS is a very comprehensive

language, when its inheritance and rule-based definition model is concerned.

However, it is hard to learn and due to the extensive inheritance relationships

between geometric entities, it is not fully implemental. Unlike languages such as

XML, EXPRESS is rarely used in other domains [28]. This means, an output file

directly in EXPRESS format is not feasible and not acceptable from the

preprocessor objectives point of view. Therefore, it was decided that a new

language was desirable as a standard output file format and EXPRESS Schema has

been converted into that format. As an alterative, STEP’s Part 21 file format that

 67

uses a style, which writes the information one at a time, avoiding the possibility of

any contradictions in the data is selected. However, the style assumes that the data

will only be processed by software that designers will only look at the data to create

test examples or find bugs, and that making the data more easily readable by

designers is less important than eliminating redundancies. This minimalist

assumption contradicts with the design requirements of the output file style and it

was popular before the advent of XML, which is created as a descriptive format for

technical data that could be understood with less difficulty than other technical data

formats. XML is a standard for describing data exchange files, nowadays. Since

there is a semantic gap between EXPRESS and XML, simply converting EXPRESS

data into XML data adds a lot of additional tags without making XML easier to be

understood. Therefore, additional technologies have to be used to bridge this gap,

like STEP Part 21. However, STEP Part 21 also puts many tags into XML

definition. International recognition of this problem and the success of XML,

resulted in the introduction of STEP Part 28, which best fits with the objectives of

the preprocessor defined. Therefore, the preprocessor uses the STEP Part 28

standard, included recently into STEP, to map EXPRESS Schema into XML

Schema and to create the STEP-XML output file.

In this section first, the structure of the XML Schema invented, which establishes

the basic working methodology of the preprocessor and stands for the standard

format of the STEP-XML output file, will be described. Then, how the processor

creates the STEP-XML output file in the invented format will be explained.

To map EXPRESS Schema to STEP-XML output file, using the rules set in STEP

Part 28, a mapping algorithm is developed. According to this simple mapping

algorithm the main idea is, each element is the XML equivalent of an entity in

EXPRESS. First owner elements and child elements are identified among the

EXPRESS entities defining the feature, to establish a nesting relationship. Pick a tag

name for each element from the available EXPRESS names. Finally, place the

nested sequence rows in a logical manner, taking the nesting relationships created

into account for each feature forming the entire rotational part.

 68

Each STEP-XML file starts with a STEP-XML tag with an attribute defining the

related STEP Part standard used while creating it. In the entire STEP-XML file,

nothing can appear outside of this tag. Then file file_schema and file_description

tags defining the output file are placed, respectively as shown below:

-<STEP-XML xmlc="ISO 10303-28">

<file_schema>feature_based_design_of_rotational_parts</file_schema>

<file_description>AP224 file</file_description>

</STEP-XML>

Then, according to the STEP AP 224 EXPRESS schema used, the outermost

element appearing after the STEP-XML tag will be the tag for one of the machining

_feature or transition_feature elements. This means that every possible feature used

in the feature modeler is one child element of one the owner elements,

machining_feature or transition_feature. These element’s tag names are selected so

that they are the same with their EXPRESS entity names to ease understanding, this

way of naming the tags are preferred throughout the entire STEP-XML output file.

Inside one of these elements, placement coordinates, feature geometrical attributes

definition and tolerance information elements are placed, respectively. Placement

coordinates are the first appearing elements and they are placed in between

placement tags, which act as an owner of the location element this time, with

location tag. The only thing appears different from the traditional XML format, is

the use of Object Serialization Early Binding (OSEB), a rule set defined in STEP

Part 28. OSEB is used to simplify the STEP-XML output file by taking all the child

elements of an element as its attributes inside the tag, and closing the tag without

any tag name declaration. The features of STEP-XML file mentioned above are

presented in a simple sample illustration part taken from the output file; the use of

OSEB is shown for the element location:

-<machining_feature>

-<placement>

<location x="0" y="0" z="50" />

</placement>

</machining_feature>

 69

At this stage, in the STEP-XML output file, elements mapping to the feature

geometry attributes appear. These elements and their tags show differences for

different features. Therefore, this part of the STEP-XML file will be illustrated on a

real example in the next chapter, Chapter 4. The most general tags that can be seen

at this stage are, a comment telling which feature is defined and a feature name tag

describing the feature id as its attribute. A simple example for these general tags is

shown below:

<!-- Round Hole Feature Definition -->

-<round_hole id="RDH1">

</round_hole>

Lastly, elements mapping the tolerance data attached on the feature appear in the

STEP-XML output file. The tolerance representation starts with an its_tolerance tag

and continues with a comment explaining the type of the tolerance attached on the

feature. Then according to the tolerance type attached on the feature, corresponding

EXPRESS entities are mapped as tolerance elements. In the example below,

cylindricity_tolerance, one of the geometrical tolerances and its child elements are

shown:

-<its_tolerance>

<!-- Geometric Tolerance -->

-<cylindricity_tolerance>

<significant_digits>1</significant_digits>

<unit_of_measure>Millimeter</unit_of_measure>

<tolerance_value>0.1</tolerance_value>

</cylindricity_tolerance>

</its_tolerance>

The “-” signs shown in all of the examples before the tag names of owner elements

means that they are expanded views of that element. When viewed in any of the

browsers or editors, XML provides the ability to be displayed with color coded

owner and child elements. A plus (+) or minus sign (-) to the left of the elements

can be clicked to expand or collapse the element structure.

 70

Once the STEP-XML output file structure is developed, the resulting rotational part

design data should be translated into STEP-XML data, by means of a unidirectional

preprocessor. In the preprocessor STEP-XML output file creation process, is carried

out in two stages. First, features data related to its geometrical definition is

translated into STEP-XML format, by analyzing each feature forming the resulting

rotational part and translating their geometrical entities into the described format.

Then, additional attributes, tolerance data, attached to the features are analyzed for

each feature and translated into STEP-XML format. By translation, it is meant that

mapping the EXPRESS format for each feature to the defined STEP-XML format.

The following part of this section, describes the two stages of output file creation in

a detailed manner

When the rotational part design in the feature modeler is completed and the

designer selects the “Export STEP-XML AP224”, pull-down menu option placed

under the “File Menu” in AutoCAD interface, output file creation process is

triggered with a message sent to the Preprocessor by means of execution of a macro

developed in the feature modeler. As soon as the preprocessor receives this

message, it first creates the header part, describing the output file, of the STEP-

XML file. Then, for each feature exists in the rotational part, it calls the

corresponding “EXPORT_XML” function of that features, in the Features Dll.

Preprocessor attaches the STEP-XML output file name selected by the designer and

a tab position indicating the last position of the cursor in the nested sequence. As it

was mentioned in previous sections, in Features Dll “EXPORT_XML” functions

were created for each feature using the STEP-XML mapping algorithm defined in

this section. At this stage, when the feature class in Features Dll is activated by

calling one of its method, “EXPORT_XML” function, receiving the STEP-XML

file name and tab position, opens the output file and appends the features

geometrical data XML elements to the end of the file at its correct position in the

nested sequence. A similar process is performed for the tolerance data. This time, a

general “EXPORT_Tolerances_XML” called for each feature, it first examines if

any tolerance data is attached on that feature or not. Then, for each type of tolerance

data attached on the feature, it opens the output file and appends the

 71

features tolerance data XML elements to the end of the file at its the correct position

in the nested sequence. Once, this process is completed the STEP-XML output file,

representing the same structure with the STEP AP224, is successfully created. A

sample part of the developed code to implement the preprocessor is given in the

Appendix A.2, including the two stages of messaging described in this section.

When a CAPP system, STEP-NC or G-Code generator need to be developed for

rotational parts, the resulting STEP-XML file will be a highly appropriate input data

for integration, which is self-describing and a programmer can parse it without the

need for understanding EXPRESS. This way the data exchange, thus the integration

between Feature Modeler, CAM and CAPP systems for rotational parts, has been

facilitated.

 72

CHAPTER 4

SYSTEM DEVELOPMENT

In the previous chapter, Chapter 3, a comprehensive system model has been

presented. Each component, acting as a building block in constructing the entire

system, is described in every detail, in a logical order. The architectures of the

components, the methodologies developed to build up those components, the

capabilities of the components, the benefits that the system gain through the

existence, functions or outputs of those components and the developed

implementation methods were the main topics in describing each component. Even

though the system components are explained in every detail, while doing this in

some cases the necessity of giving illustrative examples out from the work done,

arouse. However, due to the extensive number of features and the sequential and

inheritably conjunctive structure of the work done, for the sake of readability,

understandability and completeness it is found more appropriate not to break the

chain in the structure of the work done. Therefore, work done in developing the

system is collected under this chapter to present it in the same order followed while

the system components are described in Chapter 3. In addition, by this way it will

be possible to come up a task list that guides through the system development,

which means the sections of chapter also provides a checklist used during the

development of the system.

In Chapter 3, at each section describing the methodology related to the illustrative

material, presented in this chapter, Chapter 4 is referred to establish a relationship

between the work done in system development and the corresponding methodology

and functionality developed.

 73

In this chapter, to explain the work done to develop the entire system, an example

manufacturing feature for rotational parts, that is outer_round, will be selected and

the sample work done for each feature, during the system development will be

illustrated on that feature. To present the system development steps, this method is

selected because most of the steps followed in the system development are

repeating each other and to prevent the resulting document adding up to a huge

amount. Therefore, projection of the total work done on outer_round will not cause

any information lack for the sake of completeness. The following first two sections

in this chapter will take the outer_round feature from just being a definition in

STEP AP 224 documentation to becoming a superclass in the hierarchy. Then, the

latter section makes it a member of the designed rotational part in the feature

modeler. Lastly, it will be represented in STEP-XML output file.

4.1) Feature Definition

In previous sections, it was emphasized that the STEP AP224 is chosen as the best

alternative product data model for the feature library, which will provide the

standard definitions for feature based design in feature modeler. After this decision,

Application Reference Model (ARM) and Application Interpreted Model (AIM) of

the AP 224 are reviewed. This study lead to an understanding about, how the

information located in the standard could be used to develop the system and how to

track the information related to features throughout the system. Then, the

comprehensive process of extracting features with their definitions from the

standard is completed. Finally, the collected feature definitions data is documented

in features definitions library, for each feature. A brief summary of the

documentation about the feature classifications and their definitions is provided in

Chapter 3. Also in Appendix B, feature geometries library is presented which is a

part of the documentation created. However, it is certain that this documentation

includes much more details for every feature. In the following subsections, the

explained process will be illustrated on the example outer_round feature step by

step.

 74

4.1.1) STEP AP224 Definition

First, ARM representation of outer_round is found out in the STEP AP 224

documentation, as an application object. ARM representations lists application

objects alphabetically, they are not listed feature by feature and application objects

may be used to define the attributes of other application objects. Therefore, to

understand the flow of information between application objects and identify the

where the appropriate data is coming from or going to, AIM representations of each

feature is referred at this stage. The EXPRESS-G Diagram, located in the AIM

representation of STEP AP 224, for outer_round is shown in Figure 4.1 [19]. In the

EXPRESS-G Diagram, it is first recognized that outer_diameter_to_shoulder and

outer_diameter are subtypes of outer_round feature. Diameter, feature_length and

reduced_size are the attributes defining the feature outer_diameter. It is also seen

that, while diameter and feature_length are the attributes defined directly under the

ARM description of outer_diameter, reduced_size attribute refers to another

application object, “taper_select”. Thus, the attributes defining the taper_select

application object should also be included into the definition of outer_diameter. In

the same way, v_shape_boundary and diameter are the attributes defining the

feature outer_diameter_to_shoulder. While diameter attribute is defined directly

under the ARM description of outer_diameter_to_shoulder, v_shape_boundary

attribute refers to another application object, “vee_profile”. Thus, the attributes

defining the vee_profile application object should also be included to the definition

of outer_diameter_to_shoulder. At the end applications objects, which are used to

define the outer_round, are brought together with the help of associated EXPRESS-

G Diagram, to completely understand its definition. By this way, all of the attributes

defining outer_round are identified and defined.

The output of the work stated above, for outer_round, will be presented in the next

subsection in the feature definitions library documentation, together with the

additional attributes defined for it to facilitate programming in the later stages of

system development.

Figure 4.1 EXPRESS-G Diagram for the feature outer_round

4.1.2) Feature Library Definition

After discovering the STEP definition of the features with all of its attributes

resulting from the inheriting structure of STEP AP 224, by including some

additional attributes to the definition of the features and by identifying the

EXPRESS Schemas for the features, feature definitions library documentation is

prepared. In this subsection, as a part of the entire documentation, documentation

for outer_round will be presented. By additional attributes, what is meant is, the

attributes created for each feature to facilitate its representation and use during the

development of Features Dll and Feature Modeler. Additional attributes include:

 2D sketches with geometrical definitions attached to be able to create

2D regions in Features Dll,

 Generation techniques to create the 3D solid from 2D region in Features

Dll,

 Insertion points to stand as the base point while feature placed on the

part in Feature Modeler,

 Boolean operations to identify if the feature will be added to or

subtracted from the part in Feature Modeler,

 75

 76

 Geometrical constraints to prove the reliable design environment in

feature Modeler by means of providing bases for the error tracking and

handling mechanisms placed throughout the system.

The following documentation harmonizes both the STEP definition and feature

library definition of outer_round.

An outer_round is a type of machining_feature that is an outline or significant

shape that is swept through a complete revolution about an axis. Each outer_round

is either an outer_diameter or an outer_diameter_to_shoulder. These words can be

translated into EXPRESS language as follows:

ENTITY outer_round;

ABSTRACT SUPERTYPE OF (ONEOF (outer_diameter, outer_diameter

_to _shoulder));

SUBTYPE OF (machining_feature);

END_ENTITY; -- Outer_round

The outer_diameter is a subtype of outer_round that is a sweeping of an outline

specified by a line segment one complete revolution about an axis. The line is finite

in length and coplanar with the axis. The outer_diameter may have a constant

diameter around the axis of rotation that is straight_outer_diameter, or it may be

tapered that is tapered_outer_diameter. Diameter, feature_length and reduced_size

are the parameters necessary to completely define the outer_diameter geometry.

The STEP AP 224 ARM representation of outer_diameter feature is shown in

Figure 4.2 [19]. The diameter (D) specifies the maximum diametric size of an

outer_ diameter. The feature_length (L) specifies the size of an outer_diameter

feature, measured along the feature's axis. Reduced_size can be selected between

two possibilities. If a diameter_taper is selected, this is the diameter of the opposite

side of the feature’s placement co-ordinate system that is final_diameter (DF). If an

angle_taper is selected for describing the cone, this angle is the taper_angle (α)

between the negative x-axis and the line on the positive y-side of the x-axis defined

by the intersection of the cone with the xy-plane of the feature, extended to meet the

http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_diameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_diameter_to_shoulder.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_diameter_to_shoulder.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Machining_feature.html

x-axis. An angle greater than 0 degrees and less than 90 degrees indicates a

tapered_ outer_diameter with decreasing diameter for increasing x-values, an angle

between 90 degrees and 180 degrees indicates a tapered_outer_diameter with

increasing diameter for increasing x-values. The way of saying all these words in

EXPRESS language is given below:

ENTITY outer_diameter

SUBTYPE OF (outer_round);

reduced_size: OPTIONAL taper_select;

feature_length: numeric_parameter;

diameter: numeric_parameter;

END_ENTITY; -- Outer_diameter

TYPE taper_select = SELECT (angle_taper, diameter_taper);

END_TYPE; -- taper_select

ENTITY angle_taper;

angle: numeric_parameter;

END_ENTITY; -- Angle_taper

ENTITY diameter_taper;

final_diameter: numeric_parameter;

END_ENTITY; -- Diameter_taper

Figure 4.2 STEP AP 224 ARM Representation of outer_round

 77

http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_round.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Taper_select.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Angle_taper.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Diameter_taper.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html

In 3D outer_diameter feature creation, a planar profile enclosed by points P1, P2, P3,

and P4 is created and a feature volume is generated by revolution of the planar

profile 3600 about x-axis. Figure 4.3, Figure 4.4 and Figure 4.5 demonstrates the

generation process for the different types of outer_diameter and the required

parameters for generation. The resulting feature will be added to the part for all

there types of outer_diameter.

y

P2

P1

P3

P4 x
360
0

D/2

L

Figure 4.3 Straight_outer_diameter

Geometrical definitions for the outer_diameter feature in Figure 4.3:

P1 (0, 0, 0) (insertion point)

P2 (0, D/2, 0)

P3 (L, D/2, 0)

P4 (L, 0, 0)

Geometrical constraints for the outer_diameter feature in Figure 4.3:

0,0 >> LD

 78

y

P2

P1

P3

P4 x
360
0

D/2

L

DF/2

α

Figure 4.4 Tapered_outer_diameter, decreasing diameter

y

P2

P1

P3

P4 x
360
0

D/2

L

DF/2

α

Figure 4.5 Tapered_outer_diameter, increasing diameter

Geometrical definitions for the outer_diameter feature in Figure 4.4 and Figure 4.5:

P1 (0, 0, 0) (insertion point)

P2 (0, D/2, 0)

P3 (L, DF/2, 0)

P4 (L, 0, 0)

()LDDF ××−=)tan(2 α

⎟
⎠
⎞

⎜
⎝
⎛

×
=

L
D

2
arctan)max(α

 79

Geometrical constraints for the outer_diameter feature in Figure 4.4 and Figure 4.5:

0,0 >> LD

)18090(0≤<α , for increasing diameter case

)90)max(0(0<≤≤ αα , for decreasing diameter case

An outer_diameter_to_shoulder is a subtype of outer_round that is a sweeping of a

shape one complete revolution about an axis. The shape shall be specified by two

lines that connect at a point and extend finitely defined by diameters or lengths. The

enclosed angle shall be smaller than a straight angle. The intersection of the two

lines need not be blended with a radius. Vee_profile specifies the v_shape_

boundary of the outer_diameter_to_shoulder. The STEP AP 224 ARM

representation of vee_profile is shown in Figure 4.6 [19]. Diameter and attributes

inherited from vee_profile those are, profile_radius, tilt_angle, profile_angle

(optional) are the parameters necessary to completely define geometry. However,

the definition for vee_profile is lacking information to completely define the

outer_diameter_to_shoulder feature geometry. Thus, STEP AP 238 is referenced in

this case, as it is mentioned in previous chapters. The STEP AP 238 ARM

representation of vee_profile is shown in Figure 4.7. As it is seen from Figure 4.7,

AP 238 adds first_side_length (diameter_previous_feature), and second_side_

length (final_diameter) attributes to the definition. These attributes are adapted to

more feasible ones, for the designer to input without further calculations.

Nevertheless, in the output file, the attributes are exported in the represented way.

The diameter (D) specifies the size of the part at the point of the vee, or where the

two sides come together, swept about an axis of rotation. The profile_angle (α)

specifies the size of the angle between the two sides of the vee_profile. The angle

shall be greater than 0 and not more than 180 degrees. The profile_radius (r)

specifies the size of the blend radius at the point of the vee, or where the two sides

come together (profile origin, I). The tilt_angle (β) specifies the size of the angle

between one side of the vee_profile and the x-axis of the local coordinate system

that defines the vee_profile orientation on the part. The first_side_length (L1)

indicates the distance, as measured from the profile origin, along the side of the vee

 80

 81

located by the sum of the tilt_angle and profile_angle. The first_side_length

parameter can be calculated when the diameter_previous_feature (DP) parameter is

known. The second_side_length (L2) indicates the distance, as measured from the

profile origin, along the side of the vee located by the tilt_angle parameter. The

second_side_length parameter can be calculated when the final_diameter (DF)

parameter is known.

Design using diameters or design using lengths are the two possible choices to

complete the geometry definition of feature outer_diameter_to_ shoulder. The

STEP AP 224 ARM representation of outer_diameter_to_shoulder feature is shown

in Figure 4.8 [19]. The way of saying all these words in EXPRESS language is

given below:

ENTITY outer_diameter_to_shoulder

SUBTYPE OF (outer_round);

diameter: numeric_parameter;

v_shape_boundary: vee_profile;

END_ENTITY; -- Outer_diameter_to_shoulder

ENTITY vee_profile

SUBTYPE OF (open_profile);

profile_radius: OPTIONAL numeric_parameter;

tilt_angle: numeric_parameter;

profile_angle: numeric_parameter;

first_side_length: numeric_parameter;

second_side_length: numeric_parameter;

END_ENTITY; -- Vee_profile

http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_round.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Vee_profile.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Open_profile.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html

Figure 4.6 STEP AP 224 ARM Representation of Vee_profile

Figure 4.7 STEP AP 238 ARM Representation of Vee_profile

Figure 4.8 STEP AP 224 ARM Representation of Outer_diameter_to_shoulder

 82

In 3D outer_diameter_to_shoulder feature creation, a planar profile enclosed by

points P1, P2, P3, P4, P5, P6 and P7 is created and feature volume is generated by

revolution of the planar profile 3600 about x-axis. Figure 4.9 demonstrates the

generation process and the required parameters for generation. The resulting feature

will be added to the part.

β

L3
L4

L5

P6

P7

y
P2

P1

P3 P5

x
3600

DP/2

L1

DF/2

α

r

D/2

P3
P5

K
M M

y

α/2

r
r r

P4

I

I

P4
Y

X

L2

θ
α

x

Figure 4.9 Outer_diameter_to_shoulder

Geometrical Definitions for the outer_diameter_to_shoulder feature in Figure 4.9:

P1 (0, 0, 0) (insertion point)

P2 (0, DP/2, 0)

P3 (L3, D/2+K, 0)

P4 (L1 + X, D/2 + Y, 0)

P5 (L4, D/2 + N, 0)

P6 (L5, DF/2, 0)

P7 (L5, 0, 0)

Case a: Design Using Diameters

)tan(2
)(

1 βα +×−
−

=
DDL P

 83

)tan(2
)(

15 β×
−

+=
DDLL F

Case b: Design Using Lengths

1)tan(2 LDDP ×+×−= βα

2)tan(2 LDDF ××+= β

215 LLL +=

For Both Cases:

)
2

tan(α
rM =

)sin(β×= MN

)sin(βα +×= MK

)tan(13 βα +
+=

KLL

)tan(14 β
NLL +=

)
2

sin()
)

2
sin(

(βα
α +×−= rrY

)
2

cos()
)

2
sin(

(βα
α +×−= rrX

Geometrical Constraints for the outer_diameter_to_shoulder feature in Figure 4.9:

0,0,0,0 21 ≥>>> rLLD

DDDD PF >> ,
0900 <≤ β , , 0900 <≤ θ 01800 << α

0180=++ θβα

() 01800 ≤+< βα

()() 00 90180 <+− βα

()⎟
⎠
⎞

⎜
⎝
⎛ ×≤≤ 62 ,min)

2
tan(0 IPIPr α

 84

4.2) Feature Class Creation

To create the feature class with respect to the object oriented approach explained in

Chapter 3, objects, their properties and methods, classes, superclasses and

subclasses has to be identified out of the documentation presented in the previous

section. As it was explained, the best way to do it is to create UML Diagrams,

representing the inherited structure of the classes with properties and methods

attached on them. For each feature, UML Diagrams are created to facilitate the class

creation corresponding to that feature. In Figure 4.10, UML diagram for outer_

round is shown, which is created by using the documentation presented in the

previous section, especially EXPRESS Schemas for outer_round. Some other

properties and methods other than the ones in the EXPRESS schemas are also

included in the UML Diagram, because they are required when the feature is placed

on the part and when the STEP-XML output file is created.

Figure 4.10 UML Diagram for the feature outer_round

 85

The object oriented approach used in developing the Features Dll file and the

functionality of the Features Dll file has been covered in every detail, in Chapter 3.

That general methodology is valid for each feature in the features library. After

carrying out the necessary steps explained in Chapter 3, outer_diameter and

outer_diameter_to_shoulder classes are created, taking the presented UML

Diagram as basis reference for this programming process. Sample code out of the

outer_ diameter class in the Features Dll, including 2D feature region creation and

3D feature solid creation using geometrical definitions presented, is given in

Appendix A.3. The created classes can be used throughout the entire system,

especially from the feature modeler.

Figure 4.11 demonstrates the use of outer_diameter class in one of the system

components. When a variable, “OuterDiameter”, is defined in terms of the

outer_diameter class, that variable gain access to the properties and methods of that

class. Each time “OuterDiameter” variable calls any of the methods of the outer_

diameter class, the messaging protocol defined in Chapter 3, play its role and the

necessary action is performed. This process provides the basic answer to the

question, “How does the Features Dll and its classes are used from the feature

modeler?”.

Figure 4.11 Outer_diameter class usage

 86

4.3) Implementation in Feature Modeler

Feature modeler first creates the feature in World Coordinate System (WCS) of the

active document in AutoCAD, by calling the associated drawing function of the

feature class and sending the feature attributes defined by the designer. Then, the

feature is automatically moved to the position according to the feature placement

options selected and feature placement attributes defined by the user. This process

is extensively defined in Chapter 3. In this section the creation of an instance,

tapered_outer_diameter, feature will be demonstrated on an example run scenario,

without going deep into the processes executing behind, which have already been

described in Chapter 3.

The design process in the feature starts with the selection of the feature from the

pull-down menu developed and installed into AutoCAD environment. Therefore, to

create the tapered_outer_diameter feature, the pull-down menu selection shown in

Figure 4.12 has to be done first. When this menu option is selected a macro, calling

the pop-up form is executed. The macro is presented below:

Sub tapered_outer_diameter0()

 tapered_outer_diameter_form.Show

End Sub

Figure 4.12 Pull-down Menu in Feature Modeler to Select outer_round

 87

When called by the macro, tapered_outer_diameter_form appears, shown in Figure

4.14 and waits for designer input. The attributes defined for tapered_outer_

diameter in the feature definition section are all designed on the form interface.

Additionally, attributes related to part creation are included. According to the

logical classification done in the feature modeler section of Chapter 3, tapered_

outer_diameter is a parent_machining_feature. Therefore, placement options

provided are to be a right/left feature and taking its starting diameter from previous

feature or not. There is no need to define the placement attributes (these properties

of parent_machining_features were explained in Chapter 3). When the designer

inputs all the desired field and press “OK”, the code embedded into the interface is

activated. The feature modeler first sets the entered variables to the properties of

outer_diameter class. One example is shown below:

MFeatures(FeatSequence, 0).OuterDiameter.feature_length = Val(Length)

How the MFeatures array is set to machining_features class and the meaning of the

indexes of the array were described in Chapter 3. Here, feature_length property of

the outer_diameter class is set to the value of the input in the “Length” textbox.

Figure 4.14 Pop-up Form Interface used to create tapered_outer_diameter, named

tapered_outer_diameter_form

 88

 89

Setting all the properties of outer_diameter class, the feature modeler calls the

TaperedOuterDiameter function of the outer_diameter class, which will first create

the feature and then place it on the part according to the options selected. Below

example shows how this function is called:

Set CurrPFeat=MFeatures(FeatSequence,0).outerdiameter.TaperedOuterDiameter

Set FeatureSolids (FeatSequence, 0) = CurrentPFeat

CurrPFeat (current parent function), which is an AutoCAD 3D solid object, is

made to the store tapered_outer_diameter, by setting it to the function. Then, the

feature is taken into an array into a 3D solid objects array, with a correct index. This

will make the tapered_outer_diameter accessible whenever necessary.

By this way, the tapered_outer_diameter feature is created and placed on the part,

by the feature modeler. Additionally, the data related to the feature is stored in

arrays to be used in the creation of other features, first to calculate placement

location automatically and then to prevent feature interactions.

4.4) Exporting STEP-XML

In Chapter 3, the format of STEP-XML output file, the structure of the preprocessor

creating the STEP-XML file and the elements and their tags appearing in the output

file has been described. However, elements mapping to the feature geometry was

lacking. In this section a simple output file including the XML elements and their

tags, which maps to the definition of the feature outer_diameter is shown. The

sample STEP-XML output file is given below:

-<STEP-XML xmlc="ISO 10303-28">

<file_schema>feature_based_design_of_rotational_parts</file_schema>

<file_description>AP224 file</file_description>

-<machining_feature>

-<placement>

<location x="0" y="0" z="100" />

</placement>

 90

<!-- Outer Diameter Feature Definition -->

-<outer_diameter id="SOD2">

<feature_length length="200" />

<diameter diameter="100" />

</outer_diameter>

</machining_feature>

</STEP-XML>

In this file, an outer_diameter with a feature ID, “SOD2” is represented. By looking

at the file, it is easily understood that the feature is designed with a feature_length

attribute value of “200 mm” and with a diameter value of “100 mm”. These

definitions are placed in between the tags of the child elements of outer_diameter

element, they are feature_length and diameter, as it was defined for a straight_outer

_diameter. It is also recognized that, it is a right feature, but not the first right

feature and placed “200 mm” away from the WCS. This information is placed in

between the tags of the child element of placement, which is location.

 91

CHAPTER 5

SAMPLE APPLICATIONS

In this chapter, two sample rotational parts, which are designed by using the

developed feature modeler and some parts out from their correspondent STEP XML

file generated using the developed preprocessor, will be presented. These two

examples are so chosen that they enable to figure out the design capabilities of the

feature modeler, how effective and rather complex rotational parts could be

designed by means of using variety of features in an orderly manner. First sample

rotational part consists of an outer (parent) manufacturing feature and a number of

inner (member) manufacturing features and the second one consists of number of

outer and inner manufacturing features, provided that most of the design

alternatives that the feature modeler offers are covered. The STEP XML outputs for

selected features in the part will provide an understanding about how the output file

is organized and how to read the data in the output file. In the following two

sections, sample parts and their output files will be presented.

5.1) First Sample

First sample provides an understanding about the wide variety of possible inner

features and their orientations those can be used in rotational part design. In Figure

6.1 and Figure 6.2, dimensions necessary to design the rotational part in the feature

modeler are given in two different views. These dimensions are given considering

the feature geometric attributes and absolute placement attributes of features with

respect to World Coordinate System (WCS). Placement attributes are given

considering machining and tool aspects. In Figure 6.3, each feature constructing the

overall sample part is labeled. The sample part is fully designed using the feature

modeler and the layout drawings are obtained using the functionality of AutoCAD,

in which the feature modeler is embedded.

Figure 6.1 Dimensions to Design Sample Part 1 in Feature Modeler (front view)

Figure 6.2 Dimensions to Design Sample Part 1 in Feature Modeler (right view)

 92

Figure 6.3 Top(upper) and Section(lower) Views of Sample Part 1

Figure 6.4 presents the 3D solid and isometric views of the sample part to provide a

better understanding about its 3D geometry. As is it seen in the sample part figures,

the rotational part designed may consist of an outer manufacturing feature and many

inner features attached on it. Inner features may be outer or inner grooves those may

have different types of profiles (like partial circular, tee, vee profiles...) or axial

round, counterbore or countersunk holes those have a variety of bottom and taper

conditions. The inner features may be attached to any orientation on the part, unless

it interacts with a pre-designed feature on the part.

 93

Figure 6.4 Isometric (upper) and Solid (lower) Views of Sample Part 1

The developed error handling mechanisms mentioned in previous chapters, check

feature interactions as each feature is created to avoid design of meaningless part

geometries. In case of feature interactions, the feature modeler warns and informs

the designer about the condition by means of error messages and by showing the

interacting case on the screen. When, the designer is made to recognize the

interacting case the newly attached interacting feature is deleted from the overall

part.

 94

Once the design process is successfully completed, the feature information may be

exported as an STEP XML design output file within the feature modeler. By means

of triggering the preprocessor with a button and entering a name for the output file

the related data is exported into a neutral file. The preprocessor first places the outer

feature definition in the output file, and then places the inner features in the order of

their creation on the outer feature. The STEP XML file including every necessary

feature data is fairly long therefore, in the following part of this section, sample

portion of the output file will be presented. The sample STEP XML output

representation includes definitions for machining feature straight outer diameter and

vee groove, which are placed on the first sample rotational part. (third and fifth

features in Figure 6.3, respectively)

- <machining_feature>

- <!-- Straight Outer Diameter, SOD1 -->

- <placement>

 <location x="0" y="0" z="0" />

- <!-- Right Feature -->

- <axis>

 <x angle_x="0" angle_y="90" angle_z="-90" />

 <y angle_x="-90" angle_y="0" angle_z="90" />

 <z angle_x="90" angle_y="-90" angle_z="0" />

 </axis>

 </placement>

- <!-- Outer Diameter Feature Definition -->

- <outer_diameter id="SOD1">

 <feature_length>400</feature_length>

 <diameter>200</diameter>

 </outer_diameter>

 </machining_feature>

 95

- <machining_feature>

- <!-- Vee Groove, VEG1,(1)-->

- <placement>

 <location x="80" y="0" z="180" />

- <!-- Outer Groove, Parent Right -->

- <axis>

 <x angle_x="90" angle_y="-90" angle_z="0" />

 <y angle_x="0" angle_y="90" angle_z="-90" />

 <z angle_x="-90" angle_y="0" angle_z="90" />

- <!--Outer Groove Orientation, indicates alignment if necessary -->

 </axis>

 </placement>

- <!-- Vee Groove Feature Definition -->

- <vee_groove id="VEG1,(1)">

- <material_side>

 <direction_element x="-1" y="0" z="0" />

- <!-- Outer Groove -->

 </material_side>

 <radius>80"</radius>

- <vee_profile>

 <profile_radius>15</profile_radius>

 <profile_angle>120</profile_angle>

 <tilt_angle>30</tilt_angle>

 <depth>20</depth>

 </vee_profile>

 </vee_groove>

 </machining_feature>

 96

5.2) Second Sample

Second sample provides an understanding about the wide variety of possible outer

features and their placements those can be used in rotational part design. Second

sample also presents how inner features are oriented when more then one outer

features exists in the part designed. In Figure 6.5 and Figure 6.6, dimensions

necessary to design the rotational part in the feature modeler are given in two

different views. These dimensions are given considering the feature geometric

attributes and absolute placement attributes of features with respect to WCS.

Placement attributes are given considering machining and tool aspects. In Figure

6.7, each feature constructing the overall sample part is labeled. The second sample

part is fully designed by using the feature modeler. Figure 6.8 presents the 3D solid

and isometric views of the sample part to provide a better understanding about its

3D geometry. As is it seen in the figures, the rotational part designed may consist of

a number of outer manufacturing feature and many inner features attached on the

selected outer manufacturing features, unless it interacts with a pre-designed feature

on the part. Variety of outer manufacturing features can be used in the feature

modeler to obtain the desired outer contour of the part. These feature are placed to

the left or right of each other, and the feature modeler offers to keep the diameter

same by default. However, depending on the requirements outer features with

different diameters may also be attached to each other. Feature modeler also has the

ability to place grooves on the wall surfaces, resulting from diameter differences.

Figure 6.5 Dimensions to Design Sample Part 2 in Feature Modeler (front view)

 97

Figure 6.6 Dimensions to Design Sample Part 2 in Feature Modeler (right view)

Figure 6.7 Top(upper) and Section (lower) Views of Sample Part 2

 98

Figure 6.8 Isometric (upper) and Solid (lower) Views of Sample Part 2

Error handling mechanisms work same as it was mentioned for the first sample

feature. However, if an inner feature exceeds an outer feature (this is allowed for

holes) the feature modeler automatically creates the exceeding part of this feature as

a member of that feature it goes through. This makes the check of the feature

interactions for the whole inner feature possible.

As it was mentioned for the first sample, after completing the design process STEP

XML file can be exported. In general, preprocessor arranges the outer features from

left to right and places the inner features attached on the outer features in the order

of their creation in between the outer feature. The STEP XML file for second

sample part is very long, so just a portion of the file for the inner square u groove

feature is presented: (eighteenth feature in Figure 6.7)

 99

- <machining_feature>

- <!-- Square U Groove, SUG2,(4) -->

- <placement>

 <location x="40" y="0" z="680" />

- <!-- Right Inner Groove, Parent Right -->

- <axis>

 <x angle_x="-180" angle_y="-90" angle_z="90" />

 <y angle_x="90" angle_y="-90" angle_z="0" />

 <z angle_x="-90" angle_y="0" angle_z="90" />

- <!-- Right Inner Groove Orientation -->

 </axis>

 </placement>

- <!-- Square U Groove Feature Definition -->

- <square_u_groove id="SUG2,(4)">

- <material_side>

 <direction_element x="0" y="0" z="-1" />

- <!-- Right Inner Groove -->

 </material_side>

 <radius>40"</radius>

- <square_u_profile>

 <first_angle>90</first_angle>

 <first_radius>2</first_radius>

 <second_angle>90</second_angle>

 <second_radius>2</second_radius>

 <width>10</width>

 <depth>20</depth>

 </square_u_profile>

 </square_u_groove>

 </machining_feature>

 100

 101

CHAPTER 6

CONCLUSION

6.1) Conclusion

In design and manufacturing, many systems are used to manage technical product

data. Each system has its own data formats so the same information has to be

entered multiple times into multiple systems leading to redundancy and errors. The

novel idea of feature based solid modeling by using STEP AP224 manufacturing

features for rotational parts, which stands as the main objective of this study arouse

after the recognition of this problem. With the purpose of developing a feature

modeler offering STEP AP224 manufacturing features as an aid to design rotational

parts, a methodology, first collecting the standard manufacturing features for

rotational parts in a feature library in a hierarchical manner and bringing them up to

a functional state, then providing an efficient design environment using these

features, has been developed. Following the methodology developed, feature library

and feature modeler are developed respectively in the scope of this study.

The developed feature library covers features extracted from STEP AP224 for

rotational parts, their definitions, classifications, attributes, generation techniques,

attachment techniques and constraints for their geometries. Object-oriented

approach has been used in the definition of features, by means of EXPRESS

language, which makes the system easy to be implemented, extended and reused.

By this way, each feature is represented by class libraries and a dynamic link library

(dll) file is created, facilitating to transfer the feature definition structure of features

from STEP AP224 documentation to programming environment. By means of the

dll file created, each feature and resulting part is provided to store manufacturing

.

 102

features and their attributes. The dll file will also assist the integration of developed

system for rotational parts with the feature modeler for prismatic parts developed by

Saleh Amaitik in Middle East Technical University, Mechanical Engineering

Department, Computer Integrated Manufacturing Laboratory (METUCIM), Ankara,

Turkey.

The design environment is developed by embedding STEP based feature modeler

for rotational parts as a design tool in AutoCAD. The feature modeler for rotational

parts uses STEP AP224 manufacturing features in the feature library as the basic

entities for part design. Features offer designers a higher level of graphical entity

than points, lines and arcs. If properly selected, features can have additional

information associated with them. Features also offer a ready means of linking to

manufacturing. By this way, designers can consider design and manufacturing

aspects in the earlier stages of design, which will remove manufacturability

problems that may occur after the design process. Both in the feature modeler and

feature library, error tracking and handling mechanisms are involved, validating the

geometrical constraints and checking feature interactions, to provide an effective

design environment.

In order not to leave features just as an aid to create the model, not to loose the

information attached on them once the rotational part is fully designed, a

preprocessor has also been developed in the scope of this study. Most importantly,

the preprocessor should facilitate the use of design data in CAM/CAPP systems,

which led the creation of STEP-XML design output file.

STEP-XML file will be a highly appropriate input data for integration, which is

self-describing and a programmer can parse it without the need for further

understanding of EXPRESS or any feature recognition algorithms. CAPP system,

STEP-NC and G-Code generators are being developed and will be developed in

METUCIM laboratory, using the STEP XML design output file as their only input.

This way the data exchange, thus the integration between Feature Modeler, CAM

and CAPP systems for rotational parts, has been facilitated.

 103

6.2) Recommendations on Future Work

Recommended future work for both the feature library and the STEP-based feature

modeler for rotational parts are stated below:

Future work that can be done on the feature library

1. Features like threads, marking, knurl and compound feature may be added to the

feature library.

2. Replicate features may be added to the feature library.

3. Some inner features that may result from boring operations may be added as

alternative feature subtypes to the existing feature library.

Future work that can be done on the feature modeler

1. Features like slots and transition features, which exist in the feature library but

could not be added to the feature modeler, may be added to the feature modeler

design environment

2. Part properties data in the standard may be integrated into the feature library and

then to the feature modeler,

3. A translator may be developed that will generate STEP-NC file from the STEP-

XML file created.

4. A translator may be developed that will generate traditional G-Code file from

STEP-XML file created to make the feature modeler compatible with the

traditional NC and CNC machine tools

5. To make the feature modeler a parametric modeling tool a post-processor may

be developed in order to provide the designer to continue some incomplete

designs as feature based as it were during the initial design process. During the

save action for an incomplete design, an automatically generated STEP-XML

file may be post-processed in order to make it possible to continue the design

action with the previously designed features and their attributes.

 104

6. Saving, editing, modifying options for features may be added in order to make

the feature modeler more flexible. The program in the feature modeler is so

developed that the arrays storing the feature data is apt to include these

functionalities by means of further processing.

7. The dependency of the feature modeler to AutoCAD may be removed by means

of using a standalone 3D drawing ActiveX environment.

 105

REFERENCES

[1] El Wakil, S. D., “Processes and Design for Manufacturing”, Prentice-Hall Inc.,

Englewood Cliffs, New Jersey, 1989

[2] Mantyla, M., Nau, D., Shah, J., “Challenges in feature-based manufacturing

research”, Communications of the ACM, February 1996, Vol 39, No.2

[3] Groover, M.P., “Automation, Production Systems and Computer Integrated

Manufacturing”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987

[4] 4 Coutts, I.A., Weston, R.H., Murgatroyd, I.S. and Gascoigne, J.D., “Open

applications within soft integrated manufacturing systems.”, Proceedings of the

International Conference on Manufacturing Automation, Hong Kong, August 10-

12, 1992. pp 800-805.

[5] K Case, J X Gao and N N Z Gindy, “The Implementation of a Feature-Based

Component Representation for CAD/CAM Integration”, IMechE Proceedings, Part

B: Journal of Engineering Manufacture, Vol 208, pp71-80, ISSN 0954-4054, 1994

[6] Voelcker, H.B., “New directions in solid modeling?”, Proceedings of the

International Conference on Manufacturing Automation, Hong Kong, August 10-

12, 1992. pp 157-168.

[7] ISO 10303-1:1994, “Industrial automation systems and integration Product data

representation and exchange - Overview and Fundamental Principles, International

Standard”, ISO TC184/SC4, 1994.

[8] Amaitik S. M., Kilic S. E., (2002), “STEP: a key to CAD/CAM systems

integration”, Proc. MicroCAD-2002 Conf. Miskolc, Hungary, 2002, 1-6.

 106

[9] Gu, P. and Norrie, D.H. “Intelligent Manufacturing Planning”, Chapman & Hall,

NY 1995

[10] Shah, J. J., Rogers, M. T., Sreevalson, P.C., Hsiao, D.W., Mathew, A.,

Bhatnagar, A., Liou, B. B., 1990, “The ASU features testbed: an overview”,

Computer in Engineering,1, 233-241

[11] Febransyah, A., “A feature based approach to automating high-level process

planning”, PhD Thesis, NCSU

[12] Li, R. K., “A part-feature recognition system for rotational parts”, International

Journal of Production Research, Vol.26, No.9, pp.1451-1475

[13] Han, J. H., “Survey of feature Research”, Technical Report IRIS-96-346,

Institute for Robotics and Intelligent Systems, USC, USA, 1996

[14] Sheu, J. J., “A computer integrated manufacturing system for rotational parts”,

International Journal of Computer Integrated Manufacturing, 1998, Vol.11, No.6,

534-547

[15] PDES (1998) Product Data Exchange Specification: first working draft, PB89-

144794, US Department of Commerce, Gaithersburg

[16] Kim, J-Y, O’grady, P., Young, R. E., “Feature taxonomies for rotational parts:

a review and proposed taxonomies”, International Journal of Integrated

Manufacturing, 1991, Vol.4, No.6, 341-350

[17] ISO TC184/SC4/WG7 N262, (1992) ISO 10303–Part 1-Overview and

Fundamentals Principles.

 107

[18] ISO TC 184/SC4/WD, (1997), ISO 10303 – Part 11 – Descriptive Methods:

The EXPRESS Language Reference Manual.

[19] ISO TC 184/SC4/WG3 N854, (2000), ISO 10303, Part 224–Mechanical

Product Definition for Process Planning Using Machining Features.

[20] Puopolo, J. P., 1997, Writing OLE Controls, Prentice Hall, p. 3

[21] O'Grady, P., Seshadri, R., 1991, “X-Cell – intelligent cell control using object-

oriented programming (Part I)”, Computer Integrated Manufacturing Systems,

Vol.4 No.3, pp. 157-163

[22] Quatrani Terry, UML Evangelist, "Introduction to the Unified Modeling

Language”, IBM Rational Software, UML Resource Center, “http://www3.software

.ibm.com/ibmdl/pub/software/rational/web/whitepapers/2003/intro_rdn.pdf”, July

2004 (last accessed date)

[23] Bell Donald, “UML Basics, Part III: The Class Diagram”, IBM Rational

Software, UML Resource Center, “http://www.ibm.com/developerworks/rational/

library/content/RationalEdge/nov03/t_modelinguml_db.pdf”, August 2004 (last

accessed date)

[24] Bergholz Andre, “Extending Your Markup: An XML Tutorial”, IEEE Internet

Computing, “http://www.computer.org/internet/xml/xml. tutorial.PDF”, June 2004

(last accessed date)

[25] Latif, M. N., Hannam, R. G., Bergholz, “Feature based Design and The Object

Oriented Approach”, Journal of Engineering Design, 1996, Vol. 7 Issue 1, p 27

[26] Amaitik S. M., Kilic S. E., (2003), “A Review of STEP Features Technology”,

Proc. WESIC-2003 Conf. Miskolc, Hungary, 53-60.

http://www.computer.org/internet/xml/xml

 108

[27] Amaitik S. M., Kilic S. E., (2002), “STEP-based feature modeler for CAPP”,

Proc. ICRM-2002 Conf. Gaziantep, Turkey, 243-248.

[28] Martic Hardwick, “A Modular XML Implementation Method for STEP”,

STEP Tools Inc., August 2004

 109

APPENDIX A

SAMPLE CODE

A.1) Machining Features Class

The following code is taken as example, from one the most general class

“machining_features” library. In the code, Parent machining features and member

machining features are declared as public variables respectively, to be able to call

them from anywhere in the feature modeler. This will also makes each parent

feature a subclass of machining_features class. This code also presents how the

inheritance structure is constructed all over the Dll file.

'Parent machining Features

Public Outerdiameter As New outer_diameter

Public OuterDiametertoShoulder As New outer_diameter_to_shoulder

Public RevolvedFlat As New revolved_flat

Public RevolvedRound As New revolved_round

Public SphericalCap As New spherical_cap

'Member machining Features

Public SquareUGroove As New square_u_groove

Public RoundUGroove As New round_u_groove

Public PartialCircularGroove As New partial_circular_groove

Public TeeGroove As New tee_groove

Public VeeGroove As New vee_groove

Public RoundHole As New round_hole

Public CounterboreHole As New counterbore_hole

Public CountersunkHole As New countersunk_hole

 110

A.2) Preprocessor

A sample part of preprocessor code that creates the STEP XML tags and fills the

necessary information in between the tags for the feature outer_diameter is shown

below:

Public Sub EXPORT_XML(XMLFileName As String, TabPos As Integer)

' Outer Diameter Features STEP XML Format (Partial) Function

Print #1, String(TabPos, Chr(9)) & "<outer_diameter id=" & Chr(34) &

Me.featureID & Chr(34) & ">" ' Puts the outer_diameter and places Feature ID

info

' Following part of the code check feature related information and places related

tags and information.

Print #1, String(TabPos + 1, Chr(9)) & "<reduced_size>"

If Me.reduced_size.taper_type = 2 Then ' 2 stands for angle_taper

Print #1, String(TabPos + 2, Chr(9)) & "<angle_taper angle=" & Chr(34) &

Me.reduced_size.angle_taper.angle & Chr(34) & "/>"

End If

If Me.reduced_size.taper_type = 3 Then ' 3 stands for diameter_taper

Print #1, String(TabPos + 2, Chr(9)) & "<diameter_taper final_diameter=" &

Chr(34) & Me.reduced_size.diameter_taper.final_diameter & Chr(34) & "/>"

End If

Print #1, String(TabPos + 1, Chr(9)) & "</reduced_size>"

…..

The code continues checking every information related to the feature, it is omitted

here. Tab Positions indicate where the cursor left in the XML file, so that necessary

information is placed in the right position in the XML file. The above function is

called from the feature modeler as it is given below:

If MFeatures(i, 0).FeatureType = outer_diameter Then Call MFeatures(i, 0).

Outerdiameter.EXPORT_XML(FileName, 2)

 111

A.3) Outer Diameter Class

A sample part of the code out of the outer_diameter class, in the Features Dll,

including 2D feature region creation and 3D feature solid creation using the

geometry definitions presented in Chapter 4, is provided below:.

Public Function StraightOuterDiameter() As Acad3DSolid

 'This function is used to generate Straight Outer Diameter and

 'add it from the main part as the specified location and orientation

 On Error GoTo ErrorHandler

 'Declaration of point arrays

 Dim p1(0 To 2) As Double ' insertion point

 Dim p2(0 To 2) As Double

 Dim p3(0 To 2) As Double

 Dim p4(0 To 2) As Double

'Definitions of points (l and d are defined in the code before)

 p1(0) = 0

 p1(1) = 0

 p1(2) = 0

 p2(0) = 0

 p2(1) = d / 2

 p2(2) = 0

 p3(0) = l

 p3(1) = d / 2

 p3(2) = 0

 p4(0) = l

 p4(1) = 0

 p4(2) = 0

 112

 ' Define the lines constructing the 2D region

 Dim curves(0 To 3) As AcadEntity

 Set curves(0) = ThisDrawing.ModelSpace.AddLine(p1, p2)

 Set curves(1) = ThisDrawing.ModelSpace.AddLine(p2, p3)

 Set curves(2) = ThisDrawing.ModelSpace.AddLine(p3, p4)

 Set curves(3) = ThisDrawing.ModelSpace.AddLine(p4, p1)

 ' Create the2D region

 Dim regionObj As Variant

 regionObj = ThisDrawing.ModelSpace.AddRegion(curves)

 ' Define the rotation axis

 Dim axisPt(0 To 2) As Double

 Dim axisDir(0 To 2) As Double

 Dim angle As Double

 'Temporary position of the feature

 axisPt(0) = 0: axisPt(1) = 0: axisPt(2) = 0

 ' axis of revolution is x-axis (0 1 0 for y-axis, 0 0 1 for z-axis)

 axisDir(0) = 1: axisDir(1) = 0: axisDir(2) = 0

 angle = 44 / 7 ' for 360 degree full revolution

 ' Create the feature solid(3D) checking if it is right or left feature

 If Me.Right_Feature Then Set StraightOuterDiameter =

ThisDrawing.ModelSpace.AddRevolvedSolid(regionObj(0), axisPt, axisDir, angle)

 If Me.Left_Feature Then

 Set StraightOuterDiameter =

ThisDrawing.ModelSpace.AddRevolvedSolid(regionObj(0), axisPt, axisDir, angle)

 StraightOuterDiameter.Rotate3D p1, p2, 180 * DegToRad 'Rotates the feature

180 degrees around the line between points p1 and p2 if it is a left feature

 End If

APPENDIX B

FEATURE GEOMETRIES LIBRARY

In Chapter 3, “Manufacturing Features Geometry Data” component of the “Feature

Library” has been introduced and the manufacturing features for rotational parts are

classified and defined. In Appendix B, 2D sketches, generation techniques and

insertion points for each manufacturing feature that is a member of the feature

library is presented, all which are referenced from the “Manufacturing Features

Geometry Data” subsection of Chapter 3. In all of the figures presented in this

Appendix, the points with an asterisk (“*”) stands for the insertion point for that

feature and the dimensions placed on the features stand for the geometrical

attributes required to create the feature in the feature modeler. These dimensions

also stands for the feature attributes that the designer have to input the feature

modeler to create the feature with same letter conventions appearing in the

interfaces.

y

P2

*P1

P3

P4 x
3600

D/2

L

Figure B.1 Straight_outer_diameter

 113

y

P2

*P1

P3

P4 x
360
0

D/2

L

DF/2

α

Figure B.2 Tapered_outer_diameter, decreasing diameter

y

P2

*P1

P3

P4 x
3600

D/2

L

DF/2

α

Figure B.3 Tapered_outer_diameter, increasing diameter

 114

β

L3
L4

L5

P6

P7

y
P2

*P1

P3 P5

x
3600

DP/2

L1

DF/2

α

r

D/2

P3
P5

K
M M

y

α/2

r
r r

P4

I

I

P4
Y

X

L2

θ
α

x

Figure B.4 Outer_diameter_to_shoulder

*P1 P4 z P2

1800

y

P3

Figure B.5 Spherical_cap

 115

y
P2

*P1

P3

P4 x
3600

DP/2

L

r

X

Material
side

Figure B.6 Revolved_flat

 y
P2

*P1

P3

P4 x
3600

DP/2
rc r

α

X

P2

P3

C
C

α/2

X

L Material
side

Figure B.7 Revolved_flat

 116

*P1

P4

x

P2

3600

y

P3

r

P5

P6
P7

w/2
L4

w/2

L3 L1
L2

d r2 r1
α1 α2

L6 L5

L2

L4

Y1

X1

Y2

X2

P2

P6

P7

P3

Figure B.8 Outer_square_u_groove

*P1

P4

x

P2

3600

y

P3

P5

P6

P7

2
w

L4

2
w

L3

L1

L2

d

r2

r1

α1

α2L6

L5

L2
L4

Y1

X1

Y2

X2
P2 P6

P7
P3

r

Figure B.9 Inner_square_u_groove

 117

P4

x

P2

3600

y
P3

r

P5

w

d

*P1

Figure B.10 Outer_rounded_u_groove

P4

x

P2

y

P3 r

P5

2
w

d

*P1w

3600

Figure B.11 Inner_rounded_u_groove

 118

x

P2

3600

y

r

P3

rs

*P1

θ Y

X X

Figure B.12 Outer_partial_circular_groove

x

P2

3600

y

r

P3

rs
*P1 θ

Y

X

X

Figure B.13 Inner_partial_circular_groove

 119

y

*P1

P4

x

P2

3600

P3

r

P5 P6
P7

w1/2

d1
a2

rc

α1

α2 d2

P8

P9 P10

P12
P14

P15
P16

P17

P13

P11

w1/2

a1

w2/2 w2/2

L

Figure B.14 Outer_tee_groove

P4

*P1

x

P2

3600

P3
rP5

P6
P7

2
1w

d1

a2

rc

α1

α2

d2

P8 P9

P10 P12

P14

P15 P16

P17

P13
P11

a1

22w

L M

2
1w

22w

y

Figure B.15 Inner_tee_groove

 120

x

P2

3600

y

r

P3

rv

*I

d
α

β

P4

P5

K L

X1 X2

N M

Y

X

I

P5 P2

Z Z

P1

Figure B.16 Outer_vee_groove

P5

x

P2

3600

y

r

P3

rv
*I

d

α

β

P4

K

L

X1

X2

N

M

Y

X

I

P5

P2

Z

Z

P1

Figure B.17 Inner_vee_groove

 121

 y

P2

*P1

P3

P4 x
3600

D/2

h

Figure B.18 Straight_through_round_hole

y

P2

*P1

P3

P4 x
3600

D/2

h

Df/2

α

Figure B.19 Tapered_through_round_hole

y

P2

*P1

P3

P4 x
3600

D/2

h

Figure B.20 Straight_blind_round_hole_with_flat_bottom

 122

y

P2

*P1

P3

P4 x
3600

D/2

h

Df/2

α

Figure B.21 Tapered_blind_round_hole_with_flat_bottom

y

P2

*P1

P3

P4

x
3600

D/2

h

P5

rb
rb

Figure B.22 Straight_blind_round_hole_with_radiused_bottom

 y

P2

*P1

P3

P4

x
3600

D/2

h

P5

rb
rb

α

Df/2

Figure B.23 Tapered_blind_round_hole_with_radiused_bottom

 123

 y

P2

*P1

P3
P4

x
3600

D/2

h

P5

Dfb/2

αb

X

Figure B.24 Straight_blind_round_hole_with_tapered_bottom

 y
P2

*P1

P3
P4

x
3600

D/2

h

P5

Dfb/2

αb
α

X

Df/2

Figure B.25 Tapered_blind_round_hole_with_tapered_bottom

rb
y

P2

*P1

P3

P4

x
3600

D/2

h

P5

rb

αb

X1

P4

P5 X3
X2

Y 2bα

Figure B.26 Straight_blind_round_hole_with_conical_bottom

 124

α

αb

rb
y

P2

*P1

P3

P4

x
3600

D/2

h

P5

rb
X1

P4

P5 X3
X2

Y 2bα

Df/2

Figure B.27 Tapered_blind_round_hole_with_conical_bottom

y

P2

*P1

P3

P4
x

3600
D/2

h

rb

Figure B.28 Straight_blind_round_hole_with_spherical_bottom

 125

y
P2

*P1

P3

P4
x

3600

D/2

h

rb Df/2

α

Figure B.29 Tapered_blind_round_hole_with_spherical_bottom

hs

y

P2

*P1

P5

P6 x
3600

Dl/2

hl

Ds/2

P4

P3

Figure B.30 Straight_through_counterbore_hole

 126

y

P2

*P1

P3

P6 x
3600

Dl/2

hl

Df/2
Ds/2

P4

P5

hs

α

Figure B.31 Tapered_through_counterbore_hole

hs

y

P2

*P1

P5

P6 x
3600

Dl/2

hl

Ds/2

P4

P3

Figure B.32 Straight_blind_counterbore_hole_with_flat_bottom

y

P2

*P1

P3

P6 x
3600

Dl/2

hl

Df/2
Ds/2

P4

P5

hs

α

Figure B.33 Tapered_blind_counterbore_hole_with_flat_bottom

 127

 y

P2

*P1

P3

P4

x
3600

Dl/2

hl

P7

rb P5

P6

hs

Ds/2

rb

Figure B.34 Straight_blind_counterbore_hole_with_radiused_bottom

 y
P2

*P1

P3

P4

x
3600

Dl/2

hl

P7

rb P5

P6

hs

Df/2

rb

Ds/2

α

Figure B.35 Tapered_blind_counterbore_hole_with_radiused_bottom

y

P2

*P1

P4 P5

x
3600

Dl/2

hl

P7

Ds/2
αb

Dfb/2

P6

P3 hs X

Figure B.36 Straight_blind_counterbore_hole_with_tapered_bottom

 128

y

P2

*P1

P4
P5

x
3600

Dl/2

hl

P7

Df/2
αb

Dfb/2

P6

P3 hs X

α

Ds/2

Figure B.37 Tapered_blind_counterbore_hole_with_tapered_bottom

 y
P2

*P1

P3

P6

x
3600

Dl/2

hs

P7

rb

αb
Ds/2

hl

P4 P5

rb
P6

P7 X3
X2

Y 2bα

X1

Figure B.38 Straight_blind_counterbore_hole_with_conical_bottom

 129

y
P2

*P1

P3

P6

x
3600

Dl/2

hs

P7

rb

αb
Df/2

hl

P4

P5

rb
P6

P7 X3
X2

Y 2bα

X1

α

Ds/2

Figure B.39 Tapered_blind_counterbore_hole_with_conical_bottom

y

P2

*P1

P5

P6 x
3600

Dl/2

hl

rb

P3

P4

hs

Ds/2

Figure B.40 Straight_blind_counterbore_hole_with_spherical_bottom

 130

y
P2

*P1

P5

P6 x
3600

Dl/2

hl

rb

P3

P4

hs

Ds/2
Df/2

α

Figure B.41 Tapered_blind_counterbore_hole_with_spherical_bottom

y

P2

*P1

P4

P5 x
3600

Dt/2

hc

ht

Dc/2

P3

Df/2

α

Figure B.42 Through_countersunk_hole

 131

y

P2

*P1

P4

P5 x
3600

Dt/2

hc

ht

Dc/2

P3

Df/2

α

Figure B.43 Blind_countersunk_hole_with_flat_bottom

y

P2

*P1

P3

x
3600

Dt/2

ht

P6

rb
P4

P5

hc

Dc/2

rb

Df/2

α

Figure B.44 Blind_countersunk_hole_with_radiused_bottom

y

P2

*P1

P3 P4

x
3600

Dt/2

ht

P6

Dc/2
αb

Dfb/2

P5

hc

Df/2

X

α

Figure B.45 Blind_countersunk_hole_with_tapered_bottom

 132

y

P2

*P1

P5

x
3600

Dt/2

hc

P6

rb

αb
Dc/2

ht

P3 P4

rb
P5

P6 X3
X2

Y 2bα

Df/2

X1

α

Figure B.46 Blind_countersunk_hole_with_conical_bottom

y

P2

*P1 P5 x
3600

Dt/2

ht

rb

P3 P4

hc

22
cf DD

=

α

Figure B.47 Blind_countersunk_hole_with_spherical_bottom

 133

P4 x

P2
y

P3

w/2

*P1

w/2

d Direction:-z
Length: L

Figure B.48 Square_linear_slot_type1

P4

x

P2

z

P3

P5

w/2

r2

*P1

r1

P6
w/2

L

Direction:-y
Length: d

Figure B.49 Square_linear_slot_type2

 134

P4 x

P2

z

P3

w/2

rr

*P1
w/2

L

Direction:-y
Length: d

Figure B.50 Square_linear_slot_type3

P4 z

P2

y

P3

L

rw

*P1

Direction:-x
Length: w

d Z

Figure B.51 Square_linear_slot_type4

 135

*P1 P8 x

P3

z

P6

w/2 w/2

L

Direction:-y
Length: d

r2 P2 P7
r1

r1 r2

P4 P5

Figure B.52 Square_linear_slot_type6

*P1 P6 x

P3

z

P4

w/2

rr

w/2

L

Direction:-y
Length: d r2

r1 P2 P5

Figure B.53 Square_linear_slot_type7

 136

x

P2

z

P3

w/2

rr

w/2

L

*P1 P4

rr Direction:-y
Length: d

Figure B.54 Square_linear_slot_type10

P4

z

*P1

y

P2

L

rw

Direction:-x
Length: w

d

rw

P3

Z Z

Figure B.55 Square_linear_slot_type12

 137

Y2

*P1

P4

x P2

y

P3

P5

P6
P7

w/2
L4

w/2

L3 L1
L2

d r2 r1 α1 α2

L6 L5

L2

L4

Y1

X1

X2

P2

P6

P7

rv

Direction:-z
Length: L

Figure B.56 Square_u_linear_slot

P4

x

P2

y
P3

P5

w

d

*P1

Direction:-z
Length: L

Figure B.57 Rounded_u_linear_slot

 138

x

P2

y

P3

rs

*P1

θ Y

X X

Direction:-z
Length: L

Figure B.58 Partial_circular_linear_slot

*P1

P4

x P2
P3

P5 P6
P7

w1/2

d1
a2

rc

α1

α2 d2

P8

P9 P10

P12
P14

P15
P16

P17

P13

P11

w1/2

a1

w2/2 w2/2

L
Direction:-z
Length: L

y

Figure B.59 Tee_linear_slot

 139

x
P2

y

P3

I*

d
α

β

P4

P5

K L

X1 X2

N M

Y

X

I

P5 P2

Z Z
P3

Figure B.60 Vee_linear_slot

P4

x

P2
y

P3

w/2

*P1

w/2

d

r

λ0

Figure B.61 Square_circular_slot_type1

 140

r

*P1

P4

x

P2

λ0

y

P3

P5

P6
P7

w/2
L4

w/2

L3 L1
L2

d r2 r1
α1 α2

L6 L5

L2

L4

Y1

X1

Y2

X2

P2

P6

P7

Figure B.62 Square_u_circular_slot

P4

x

P2

λ0

y
P3

r

P5

w

d

*P1

Figure B.63 Rounded_u_circular_slot

 141

x

P2

λ0

y

r

P3

rs

*P1

θ Y

X X

Figure B.64 Partial_circular_circular_slot

*P1

P4

x

P2

λ0

P3

r

P5 P6
P7

w1/2

d1
a2

rc

α1

α2 d2

P8

P9 P10

P12
P14

P15
P16

P17

P13

P11

w1/2

a1

w2/2 w2/2

L

Figure B.65 Tee_circular_slot

 142

x

P2

λ0

y

r

P3

rv

I*

d
α

β

P4

P5

K L

X1 X2

N M

Y

X

I

P5 P2

Z Z

P1

Figure B.66 Vee_circular_slot

 y

P2* P1

P3

x
3600

D/2

L

r

Feature
Origin

Figure B.67 Edge_round_type1

 143

Feature
Origin

y

x
3600

D/2

L

r

DF/2

P1

P2*

P3

α

Y2 Y1

X

Figure B.68 Edge_round_type2

y

Feature
Origin

x
3600

D/2

L

DF/2

r

*P2
P3

P1 α

Y1 Y2

X

Figure B.69 Edge_round_type3

 144

 y

Feature
Origin

x
3600

DF/2

L

D/2

r

P2*
P1

P3 α

Y1 Y2

X

Figure B.70 Edge_round_type4

y

Feature
Origin

x
3600

DF/2

L

r1

D/2

P3
*P2

P1

α

Y2 Y1

X

Figure B.71 Edge_round_type5

 145

y

Feature Origin x
3600

D/2

L

r

DF/2

P2*

P3

P1

α

Figure B.72 M_fillet_type1

y

Feature Origin x
3600

D/2

L

r

DF/2

P2*
P3

P1

α

o2

o1

Figure B.73 M_fillet_type2

 146

 y

Feature Origin x
360
0

DF/2

L

r

D/2

*P2 P3

P1

α

Figure B.74 M_fillet_type3

y

Feature Origin x
3600

DF/2

L

r

D/2

*P2
P1

P3

α

o2

o1

Figure B.75 M_fillet_type4

 147

 y

Feature Origin x
3600

D/2

L

r

DF/2

*P2

P3 P1 α2 α1

Figure B.76 M_fillet_type5

y

Feature Origin x
3600

D/2

L
r

DF/2

*P2

P3 P1 α2 α1

o1 o2

Figure B.77 M_fillet_type6

 148

 y

Feature Origin x
3600

D/2

L

r

DF/2

*P2 P3

P1

Figure B.78 G_fillet_type1

y

Feature Origin x
3600

D/2

L

r

DF/2

*P2 P3

P1

o1

o2

Figure B.79 G_fillet_type3

 149

 y

Feature Origin x
360

L

r

D/2

*P2 P1

P3

Figure B.80 Outer_tee_groove

 y

Feature Origin x
360

L

r

D/2

*P2

P3

P1

o1

o2

Figure B.81 G_fillet_type4

 150

 y

Feature Origin x
360

D/2

L

r

DF/2

*P2 P3

P1 α

Figure B.82 G_fillet_type5

y

Feature Origin x
3600

D/2

L
r

DF/2

*P2 P3

P1
α

o1

o2

Figure B.83 G_fillet_type6

 151

y

Feature Origin x
3600

L

r

D/2

*P2 P1

P3
α

Figure B.84 G_fillet_type7

y

Feature Origin x
3600

L

r

D/2

*P2 P1

P3
α

o2

o1

Figure B.85 G_fillet_type8

 152

 y

Feature Origin x
3600

D/2

L

r DF/2

*P2
P3 P1
α2

α1

Figure B.86 G_fillet_type9

Feature Origin x
3600

D/2

L

r

DF/2

*P2
P3 P1
α2

α1

o1 o2

y

Figure B.87 G_fillet_type10

 153

	INTRODUCTION
	Design and Manufacturing
	1.2 CAD/CAM Integration
	Feature Based Approach
	Part Representation Scheme
	1.5 Objective of the Thesis
	1.6 Scope of the Thesis
	1.7 Outline of the Thesis

	CHAPTER 2
	LITERATURE SURVEY
	2.1 Product Design Representation
	2.2 Product Data Models
	2.3 Object Oriented Programming
	2.4 Unified Modeling Language
	2.5 Extensible Markup Language

	CHAPTER 3
	SYSTEM MODEL
	3.1) General System Architecture
	3.2) Features Library
	3.3) Feature Modeler
	3.4) Preprocessor and STEP-XML File

	CHAPTER 4
	SYSTEM DEVELOPMENT
	4.1) Feature Definition
	4.2) Feature Class Creation
	4.3) Implementation in Feature Modeler
	4.4) Exporting STEP-XML

	CHAPTER 5
	SAMPLE APPLICATIONS
	5.1) First Sample
	5.2) Second Sample

	CHAPTER 6
	CONCLUSION
	6.1) Conclusion
	6.2) Recommendations on Future Work

	REFERENCES
	SAMPLE CODE
	A.1) Machining Features Class
	A.2) Preprocessor
	A.3) Outer Diameter Class

