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ABSTRACT 
 
 

FEATURE BASED DESIGN OF ROTATIONAL PARTS  
BASED ON STEP 

 
 
 

Fidan, Tahir 

M.S., Department of Mechanical Engineering 

Supervisor: Prof. Dr. S. Engin Kılıç 

 
December 2004, 153 pages 

 
The implicit and low-level part definition data, provided by geometric modeling 

cannot be used by downstream applications. Therefore, feature based modeling 

concept has been introduced to integrate CAD and downstream applications. 

However, due to the lack of implicit and explicit standard representations for 

features and unmanageable number of possible predefined features without 

standardization, feature based modeling approach has proved to be inadequate. 

STEP AP224 provides a standard for both implicit and explicit representations for 

manufacturing features. This thesis presents STEP AP224 features based modeling 

for rotational parts. The thesis covers features extracted from STEP AP224 for 

rotational parts and their definitions, classifications, attributes, generation 

techniques, attachment methods and geometrical constraints. In this thesis a feature 

modeler for rotational parts has been developed. STEP AP224 features generated 

are used as the basic entities for part design. The architecture of the proposed 

system consists of two three phases: (1) feature library, (2) feature modeler and (3) 

preprocessor. Preprocessor responsible from STEP-XML data file creation. The 

data file created can be used in the integration CAPP/CAM systems without using a 

complex feature recognition process. An object-oriented design approach is used in 

developing the feature modeler to provide incremental system development and 

reusability. 
 
Keywords: STEP, AP224, Feature Based Modeling, Rotational Parts 
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ÖZ 
 
 

DÖNEL PARÇALARIN STEP’E DAYALI  
UNSUR TABANLI TASARIMI 

 
Fidan, Tahir 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Engin Kılıç 

 
Aralık 2004, 153 sayfa 

 
Geometrik modelleme tarafından sağlanan yüzeysel ve üstü örtülü parça tanım 

verisi, tasarım-imalat zincirindeki uygulamalarca doğrudan kullanılamamaktadır. 

Bu uygulamaları ve CAD sistemlerini entegre edebilmek için unsur tabanlı 

modelleme geliştirilmiştir. Unsurların açık ve örtülü gösterimleri için bir standart 

olmaması ve standardizasyon olmadan da önceden tanımlanması gereken unsur 

sayısının kontrol edilemeyecek kadar çok olması, unsur tabanlı modellemenin 

yetersiz kalmasına yol açmıştır. STEP (Ürün Model Verisinin Aktarımı için 

Standart) AP224 imalat unsurlarının hem açık hem de örtülü gösterimleri için bir 

standart sağlamaktadır. Bu tezde dönel parçaların STEP AP224 unsurlarına dayalı 

modellenmesi sunulmaktadır. Tez, dönel parçalar için STEP AP224’den seçip 

çıkarılan unsurları, onların tanımlarını, sınıflandırılmasını, özelliklerini, 

oluşturulma, eklenme tekniklerini ve geometrik kısıtlamalarını içermektedir. Bu 

tezde aynı zamanda dönel parçalar için STEP’e dayalı unsur modelleyici de 

geliştirilmiştir. Parça tasarımı için temel olarak oluşturulan STEP AP224 unsurları 

kullanılmıştır. Sistem yapısı ana olarak üç bileşenden oluşur; (1) unsur kitaplığı, (2) 

unsur modelleyici, ve (3) STEP-XML veri dosyasının oluşturulması. Oluşturulan 

veri dosyası, CAD/CAPP (Bilgisayar Destekli İşlem Planlama) entegrasyonunda 

karmaşık bir unsur tanıma işlemine gerek kalmadan, kullanılabilecektir. Artımlı 

sistem geliştirilebilmesini ve tekrar kullanabilirliği sağlayabilmek için unsur 

modelleyici geliştirilirken nesne yönelimli tasarım yaklaşımı kullanılmıştır. 

Anahtar Kelimeler: STEP, AP224, Unsur Tabanlı Modelleme, Dönel Parçalar 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

1.1 Design and Manufacturing 
 

In the engineering aspect of production, design and manufacturing are two major 

components [1]. Manufacturing processes cannot be effective without a thoughtful 

design for manufacturing. Likewise, a product design that cannot be realized 

through manufacturing processes is not a good design. 

 

Traditionally, design and manufacturing are treated as two separate stages, which 

are usually handled by two distinct groups of people. The design group often does 

not anticipate the manufacturing implications of its decisions. After the detailed 

design is completed, it is passed onto the manufacturing group where product 

knowledge is stored in annotated drawings, binders, manuals and supplier data 

sheets. The manufacturing group then has to determine a way to manufacture the 

parts based on its interpretation of the design group's drawings, which may not be 

the same as the designer's intent. It usually takes a few passes back and forth 

between the two groups in order to reach a satisfactory part. Each pass may also 

mean a few scrapped parts and some retooling. Moreover, the design could be 

modified frequently, sometimes even before an acceptable part is manufactured. 

 

With improved computer technologies and better understanding of its usages for 

design and manufacturing, the methods mentioned above are largely being replaced 

by Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM) 

systems and various databases [2]. CAD systems are powerful geometric modeling 

tools and are used to allow interactive design of geometric models. Using a CAD
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system, a part design can be created, modified interactively and graphically on a 

computer. This increases the productivity of the designer, improves the quality of 

design, and creates a database for manufacturing, which leads direct or indirect use 

of the model data in manufacturing processes. However, internally CAD and CAM 

applications works independently and uses their own data representation, which 

means CAD language is not same with CAPP (Computer Aided Process Planning) 

common language. In addition, unfortunately computers are not intelligent enough 

to recognize the CAM common language from the CAD language. 

 

1.2 CAD/CAM Integration 
 

A production cycle containing distinct steps, whether two separate groups of people 

responsible for design and manufacturing or CAD and CAM applications working 

separately, is a slow and costly process. It is clear that to reduce the time and cost, it 

is important to achieve a good integration of CAD and CAM applications, which 

provides a common language for both sides in which they can interact with each 

other and also anticipate design changes and reflects them to the manufacturing 

processes. 

 

Computer Integrated Manufacturing (CIM) was introduced to further increase the 

degree of automation in production processes beyond CAD/CAM systems. [3]. The 

CIM concept is that all of the operations related to the production could be 

incorporated in an integrated computer system to assist, augment, and automate the 

processes. The same information could be shared throughout the entire life cycle of 

a product. One of the major challenges of computer-integrated manufacturing 

(CIM) is to make the languages of CAD and CAM common through CAD/CAM 

integration. CIM addresses the needs for communication, data exchange, and 

management between design and manufacturing, as well as other aspects of a 

product. It integrates design and manufacturing by shortening the transitions 

between them. One problem of existing CAD/CAM systems is, when the resulting 

data exported from CAD systems are imported into CAM systems, this procedure 

creates many incompatibility problems. Even if the geometrical data could be  
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transferred successfully, the data does not include much of the necessary data 

required for process planning like; part properties data (material, surface finish, 

etc.), tolerance data, etc. These problems in data format conversion build barriers 

against a full implementation of the CIM concept. 

 

CAD/CAM integration raises two major issues, which are both to be resolved in 

order to manage a full integration. The first of these issues relates to the 

methodologies used to formalize the integration process through techniques for 

problem decomposition, the building of integrated information models and the 

establishment of appropriate information sharing techniques [4]. The second issue is 

formation of a part representation scheme, which is capable of acting as a carrier of 

information. A single representation is sought that serves the purposes of Computer 

Aided Design and Computer Aided Manufacturing as an effective way of unifying 

the information needs of CAD/CAM [5]. 

 

1.3  Feature Based Approach 
 

In the early eighties, it was widely considered that the newly emerging geometric 

modeling techniques, that the CAD systems use, would provide the necessary 

complete and unambiguous part descriptions [6]. However, it is now generally 

accepted that geometric models require information enhancement before they are 

suited to the exacting requirements of concurrent engineering. Therefore, newer 

approaches related to the integration of CAD/CAM systems started using feature 

based approach that is feature based modeling instead of geometric modeling. They 

provide an integrated environment and framework for concurrent product design 

and manufacturing process planning.  

 

In feature based modeling, feature based design and feature recognition, mechanical 

parts are represented as related sets of components each of which is represented as 

related sets of features. These features, when supported by a geometric solid 

modeler, have an enhanced information content including geometric information 

and attributes relevant to some or many manufacturing planning activities. 
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1.4  Part Representation Scheme 
 

Feature based approaches are having difficulties in the formation of a suitably rich 

feature representation that might be capable of supporting many of the design and 

process planning activities, due to the lack of a universal feature library. These 

difficulties causes the current research work on feature based approach to show a 

definite bias to a small number of activities, which conflicts with the full 

CAD/CAM integration objective. 

 

International recognition of these difficulties, in CAD/CAM integration, has 

resulted in standardization attempts to broaden the scope of CAD systems beyond 

geometric modeling and one step further than the feature based approaches by 

providing them a comprehensive universal feature library. Over the years many 

product representation schemas standing as the standard product data exchange 

formats have been developed. The first ones were national and focused on 

geometric data exchange. They included SET in France, VDAFS in Germany and 

the Initial Graphics Exchange Specification (IGES) in the USA. Later a grand 

unifying effort was started under the International Standards Organization (ISO) to 

produce one International Standard for all aspects of technical product data and 

named Standard for the Exchange of Product Data (STEP) for the Standard for 

Product Model Data [7]. Then, ISO introduced STEP that would serve the needs of 

all applications as the most promising answer to the integration problems 

mentioned. STEP Application Protocol (AP) 224, the ISO standard for Mechanical 

Product Definition for Process Planning using Form Features provides a feature 

library consisting of 98 manufacturing features generally classified as shown in 

Figure 1.1. In addition to feature library, STEP AP 224 provides geometrical and 

topological entities required to represent manufacturing features implicitly in 

boundary representation format, explicit representation of manufacturing features, 

information necessary to identify he dimensional and geometrical tolerances of the 

manufacturing features, information necessary to define material, hardness, surface 

finish and other technological data. 

 

 



 
 

Figure 1.1 STEP AP 224 Manufacturing Features 

 

1.5 Objective of the Thesis 
 

CAE (Computer Aided Engineering) can be thought as a collection of computer 

assisted techniques each of which addresses a particular aspect of the realization of 

a product in its lifecycle. In a manufacturing engineering environment, this might 

include geometric modeling, process planning and CNC part programming. To 

increase productivity and cost effectiveness “Concurrent Engineering” approach 

should seek the integration of these functions such that there is some parallelism in 

their application. As it is mentioned, key to integration lies first in the methodology 

to formulate the integration process then in determination of representation schema 
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for products. Feature based modeling, considered as an indispensable tool for 

CAD/CAPP systems, is the methodology used to formulate the integration process. 

STEP AP224, providing a universal feature library for both implicit and explicit 

representations of manufacturing features, is the determined part representation 

schema for product data. Harmonizing these two, the main objective of the thesis is 

to develop a “STEP-Based Feature Modeler for Rotational Parts”. 

 

In order to achieve this goal, the following specific objectives have to be 

accomplished: 

 

1) Developing an integrated feature library by using object-oriented approach and 

STEP AP224. The main tasks of this library are: 

a. to provide a standard product data representation for the feature modeler, 

b. to provide the feature modeler the ability to integrate with other systems 

in CIM environment efficiently. 

 

2) Developing a STEP based feature modeler for rotational parts by enhancing the 

modeling capabilities of a conventional solid modeler, AutoCAD. Features in 

the developed feature library will be used as the basic entities for the part 

design. 

 

3) Developing a unidirectional STEP AP224 translator. This translator includes a 

pre-processor, which exports data from feature modeler to STEP-XML format. 

The exported neutral STEP-XML file facilitates the generation of process plan 

of rotational parts by using STEP based Computer Aided Process Planning 

(CAPP) systems, which are being developed in Middle East Technical 

University Mechanical Engineering Department Computer Integrated 

Manufacturing Laboratory (METUCIM). STEP based CAPP system will map 

the product information in the neutral file generated by the feature modeler and 

will produce the corresponding machining operations to generate the process 

plan. 
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1.6 Scope of the Thesis 
 

The scope of this study is to develop a feature modeler for rotational parts based on 

STEP. There are two main steps to be followed to develop the feature modeler: (1) 

building up a feature library for rotational parts, (2) development of the modeler 

using the features in the feature library. 

 

A feature library based on STEP AP224 standard is developed for rotational parts in 

terms of manufacturing features. The feature library includes features extracted 

from STEP AP224 for rotational parts and their definitions, classifications, 

attributes, generation techniques, in every detail. Features are so selected that 

almost every possible rotational part feature, which is defined in STEP AP224, is 

included into the feature library. Figure 1.2 provides a general view for the 

manufacturing features for rotational parts in the feature library. EXPRESS is an 

object-oriented data descriptive language, which classifies and constructs product 

data in terms of entities. EXPRESS enables precision and consistency of product 

data representation and facilitates implementation. [8] By means of EXPRESS 

language that STEP AP224 provides for every feature, the feature library is being 

developed in an object-oriented manner, which makes the feature library easy to 

maintain and extend. By this way, the feature library is implemented as an object-

oriented data type library. It is created as a “dynamic link library”, called 

“RotSTEPFeat.dll”, which can be used as the data source of the proposed feature 

modeler. In the “RotSTEPFeat.dll”, each feature is defined as class modules, 

keeping the hierarchical architecture defined in the standard and the file is compiled 

by using Visual Basic 6.0. This feature library provides the feature modeler to be 

“STEP-based”. 

 

A STEP-based feature modeler is developed to use the defined feature library in an 

environment fulfilling the requirements of concurrent design. The feature modeler 

is implemented in AutoCAD environment, to implement the feature modeler in 

AutoCAD environment, Visual Basic 6.0 and ActiveX technology is used. By this 

way, AutoCAD became capable of providing “feature based design of rotational 



parts based on STEP”. Developed feature modeler provides the designer an easy to 

design environment, which is 3D, based on rotational manufacturing features, 

which removes the geometry based mass and complexity of traditional CAD 

systems. Moreover, since the part is designed by using predefined standard features, 

it also removes the manufacturability problems that may occur after the design 

process. In addition to all these, the ability to export STEP-XML file based on 

STEP AP224, of the feature modeler facilitates to obtain a file combining both 

implicit and explicit features’ data with technological attributes. This file can 

directly be used by STEP based CAPP systems and the process plan of the designed 

part can be obtained in an integrated manner.  

 

 

MANUFACTURING_FEATURES FOR ROTATIONAL PARTS 

Transition_features Machining_features 
Outer_diameter... Edge_round... 
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Figure 1.1 Manufacturing Features for Rotational Parts 
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1.7 Outline of the Thesis 
 

In Chapter 2, a survey related to product design representation approaches, product 

data models and software technologies used like object oriented programming, 

unified modeling language (UML), extensible markup language (XML) is 

presented. 

 

In Chapter 3, model of the developed system, including the architecture of both the 

feature library and the feature modeler, is described in every detail. 

 

In Chapter 4, steps followed for the system developed is described in a detailed 

manner, proving example work done for one of the manufacturing features for 

rotational parts, selected form the feature library.  

 

In Chapter 5, sample drawings and their corresponding STEP XML files are 

presented and the relation between these outputs is described, to demonstrate the 

operational performance of the developed system. 

 

In Chapter 6, concluding remarks and possible future work plans recommended to 

complete the integration process are given. 

 

In Appendix A, sample source codes are given, describing different steps of the 

software developed. In Appendix B, for each feature in the feature library figures 

describing the feature geometries are presented.  
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CHAPTER 2 
 

 

LITERATURE SURVEY 
 

 

2.1 Product Design Representation 
 

There are two main approaches used in the product design representation: geometric 

modeling and feature modeling. A detailed explanation of the models will be 

presented in the following section. 

 

2.1.1 Geometric modeling 

 

Geometric models are classified as 2D or 3D models. 2D geometric models are 

wireframe models and 3D geometric models are classified as wire frame, surface or 

solid models [9].  

 

2.1.1.1 Wireframe Models

 

Wireframe models are the earliest type of geometric model, dating back to 1960. 

Both 2D and 3D wireframe models represent objects by the edge lines, arcs, and 

points on the surface of the object. A wireframe model is the same as skeletal 

descriptions of the product being designed. It should be noted that there are no 

visible surfaces on the wireframe model, only geometric entities such as lines, arcs 

and points. Although wireframe models do not look like a solid object, they do 

contain an accurate geometric description of the object being modeled. 

 

Wireframe models are practical because of the speed with which they can be 

displayed. Since a design workstation does not need a sophisticated color video
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monitor to display complex wireframe models; it is inexpensive to model objects 

using the 3D wireframe technique. The display of a wireframe model is often an 

ambiguous representation, because it can be impossible for the viewer to determine 

which lines are in the foreground and which are in the background. Since wireframe 

models do not contain any information about the space between the edges, it can be 

difficult to determine, for instance, if two objects will interfere with each other. In 

addition, it is possible to create a wireframe model of a nonsense object, that is, an 

object that is a physical impossibility. 

 

2.1.1.2 Surface Models 

 

Surface models were first developed in the early 1960’s. Surface models improve 

on wireframe models by including face information. They can model a 3D object 

without any ambiguity. In a surface model, it can be determined whether or not a 

point is on the surface. When several surfaces form an object, it cannot generally be 

determined whether a point is inside or outside the object unless some additional 

information is available indicating this. The mathematical representations for 

surface models are a set of surface equations. As far as computer representations are 

concerned, most of the plane surfaces can be represented or approximated using 

polygons. A surface model is represented in the computer by vertices, edges and 

faces.  

 

An advantage of surface models is that they are easy to construct by creating plane 

surfaces, as well as by sweeping, revolving, or extruding entities. Surface models 

are also useful for finding the intersection of surfaces in space and creating models 

for shaded rendering. Surface modeling approach’s main fault is that it cannot 

represent the interior of the model as solid. Therefore, surface models cannot 

represent properties needed to analyze a product’s internal structure. 

 

2.1.1.3 Solid Models 

 

Solid models were developed in the early 1970’s. Solid models are a complete and 
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unambiguous description of the object being represented. The construction 

procedure for solid modeling is different from these for wireframe and for surface 

modeling. Instead of having to generate specific lines, arcs, and surfaces that 

define the object, the designer uses mathematically predefined solid primitives, 

such as locks, cylinders, cones, wedges, spheres and son on. Most CAD modeling 

packages have a limited number of primitives available, but the designer can use 

them creatively to model very complex shapes. To create complex shapes, the 

designer can combine primitives using the Boolean operations: union (the sum of 

two primitives), intersection (the common mass shared by two primitives), and 

difference (subtracts a primitives from another). Since solid contain more 

information about the closure and connectivity of shapes than wireframe and 

surface models, they have become the most important type of model for 

designing, analyzing, and manufacturing products. Solid models offer a number of 

advantages over surface models, including the ability to calculate mass properties 

such as weight and center of gravity. 

 

There are several representation schemes developed and used in the solid 

modeling software such as constructive solid geometry (CSG), boundary 

representation (B-rep), primitive instancing, cell decomposition, etc. The most 

popular representation schemes for CAD solid modeling packages are CSG and 

B-rep. 

 

Solid models have the following inadequacies: 

 Incomplete database: Solid models can only be used to define the nominal 

geometry. Information regarding surface finish, tolerances, material 

properties, surface conditions, etc., is important parts of the definition of 

mechanical parts, but these cannot be incorporated in a solid model database. 

 Mismatch in abstraction level: Solid models store data in terms of low-level 

entities such as vertices, edges, faces, etc., or binary trees that contain 

primitives and Boolean operators. It is difficult to extract the engineering 

meaning of this data from the solid models database. 
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2.1.2 Feature modeling 

 

CAD systems use the geometric modeling approach, several of which were 

discussed in the previous section, for product design representation. These models 

make the CAD systems powerful in geometric modeling. However, the design 

information provided by CAD systems is implicit and in terms of low-level 

primitives, which has limited use in conducting comprehensive manufacturing 

analysis and cannot directly support many manufacturing applications where 

technical, functional and other information is crucial to shape data. Therefore, the 

design information provided by the CAD system need to be translated into explicit 

manufacturing information such as part features in order to be understood by 

various downstream application (CAM, process planning, CNC programming, 

group technology, inspection, assembly etc.) . Thus, features serve as a link 

between the CAD and downstream applications. Features in general sense have 

been variously defined. Among many others, one definition of feature is “recurring 

patterns of information related to a part’s description” [10]. Features retain a high 

level of abstraction of part’s description that means features provide not only 

geometric and topological entities but also dimensions, tolerances, materials, 

surface finishes…etc.  

 

Downstream applications deal with high-level manufacturing applications such as 

features as described, instead of pure geometric entities. In this sense, feature 

modeling approach has been developed towards representing high-level design 

information and significant research efforts have been done on feature modeling. 

Significant research efforts have been made towards representing the high-level 

design information, commonly available in engineering drawings, in a CAD system. 

These efforts have resulted in various types of feature representations. There is a 

rich literature in applying feature concepts to the integration of design, process 

planning and CNC programming. Feature modeling is essentially grouped into two 

distinct approaches, namely feature recognition and feature-based design [11]. 
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2.1.2.1 Feature Recognition  

 

Feature recognition, examines the topology and geometry of a part and matches 

them with the appropriate definition of predefined features. Part-feature recognition 

algorithm for rotational parts has been developed in previous researches [12]. 

Advantage of feature recognition is that the designers can work directly on the 

current CAD system, which they have been using. However, it has couple of 

disadvantages. Challenging feature recognition algorithms need to be developed and 

it is a complex and time consuming process, tough further refinements of the 

recognition algorithms is necessary. In case of feature interactions, incremental 

feature validation is required that is the partially recognized part has to be checked 

whether any features are interacting or not. Furthermore, feature model conversion 

has to be done to convert the recognized form features into manufacturing features 

in order to provide them as useful to downstream applications [13]. 

 

2.1.2.2 Feature Based Design  

 

Feature based design, builds a part from predefined features where their attributes 

are attached. Features can capture the functional intent of the part within its 

geometry based representation. This property of features can facilitate high-level 

communication between design and manufacturing. However, feature based design 

limits designers’ ability to create complex parts due to the limited number of 

predefined features that can be stored in the feature library. The existing CAD 

systems cannot be used by the designers, a new CAD system should be developed 

(or an existing one should be modified) in order to embed the feature library with 

predefined features and their attributes. Feature modeling approaches have their 

own advantages and limitations but the difficulties facing both approaches are the 

lack of implicit and explicit standard representations for features and unmanageable 

number of possible predefined features without standardization. Researchers 

attempted to define a comprehensive library of their own features from mechanical 

parts. In one research, computer integrated manufacturing system for rotational 

parts have been established [14]. The same part data is used in all the CAD, CAM 
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and CAPP modules. The basic primitives and manufacturing features are used to 

define the feature library. Same with the other attempts the problems are that each 

new part gives rise to several new features, in addition to ones previously defined 

and in order to deal with other CAD systems’ outputs, feature recognition 

algorithms had to be developed due to the lack of universal feature library. 

Therefore, research on this subject were leaving local to the particular 

manufacturing plants where feature library is designed accordingly as much as the 

limitations of feature recognition is concerned. 

 

2.1.2.3 Review of Feature Modeling Approaches 

 

Presented feature modeling approaches have their own advantages and limitations, 

however the difficulties facing both feature recognition and feature based design 

approaches are: 

 

 The lack of implicit/explicit standard representation for features, the lack of 

universal feature library, 

 The necessity of defining a comprehensive feature library, which has its own 

difficulties; 

 Unmanageable number of possible features to be predefined without 

standardization, 

 Each new part gives a rise to several new features in addition to the 

ones previously defined. 

 The need for feature recognition algorithms to make the developed feature 

modeling system compatible with other CAD systems’ outputs. 

 

These difficulties limit the developed systems to being application specific, a 

characteristic that is in conflict with the integration objectives. The following 

section provides an insight into Product Data Models that are in existence, 

developed to overcome these difficulties. 
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2.2 Product Data Models  
 

The purpose of a product data model is to provide a means for representing and 

exchange information about a product gathered during, and used in, the design and 

manufacture of that product. Therefore, the contents of this product model must be 

able to support the information needs of a large variety of computerized 

manufacturing applications (i.e., CAPP, part programming, etc.). The popularity of 

using CAD systems as a means for creating, representing and exchanging product 

designs has created various standard product data exchange formats such as IGES, 

SET, DXF, etc. These standards have shown a success in transferring data between 

CAD systems, but they have failed to transfer product data from CAD to CAM 

applications. This is because current CAD systems are not able to support all the 

information concerning a part that is needed to support the CAM activities. As a 

solution, the International Standards Organization (ISO) first proposed Product Data 

Exchange Specification (PDES) [15]. Since PDES contains both feature model and 

dimension/tolerance model, it is potentially very useful in providing a link between 

CAD and downstream applications. PDES however is relatively complex and uses 

terms that are not familiar to a designer. Research work done on mapping design-

feature taxonomy of rotational parts onto PDES-features in order to make terms 

familiar to designer [16]. Offering the most promising answer to these problems, 

ISO introduced the Standard for the Exchange of Product Data (STEP) that would 

serve the needs of all applications 

 

In the following section, standards in existence that have been approved (either by 

national or international standards committees) and accepted as defacto, will be 

presented. A defacto standard is an unofficial standard that is widely used 

throughout industry. 

 

2.2.1 Initial Graphics Exchange Specification – IGES 

 

Efforts to define a formal standard for product data exchange began in 1979 with 

the development of IGES. IGES development was based upon the concepts, which
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used a neutral format and half translators. Upon development, the CAD vendors 

implemented the standard realizing that the provision of the ability to transfer data 

across different systems was a valuable product feature and sales hinged upon the 

provision of the feature. The initial IGES standard was launched in January of 1980. 

Problems such as limited scope (CAD only), accuracy, and inability to certify or 

provide a conformance check on the software to assure consistent implementations 

by the various vendors. These problems arose as a consequence of an initial effort 

in a large domain. Research efforts began to correct these shortcomings, lead 

predominantly by American bodies, such as the United States Air Force, Army and 

Navy, and the National Aeronautics and Space Administration (NASA). As it 

improved, IGES use was embraced by many industries around the world as a 

solution to the data exchange problem. IGES became an accepted American 

national standard under ANSI Y14 (American National Standards Institute), it was 

adopted by many of the national standard bodies throughout the world. It is 

currently being revised in to version 6. Version 6 is likely to be the last 

version/upgrade to IGES. STEP is now the focus of most of the data exchange due 

to its increased scope and incorporation of lessons learned. 

 

2.2.2 Standard D'Exchange et de Transfert – SET 

 

SET was a French effort to create a standard to exchange CAD data. These efforts 

were driven by French industry, most notably the automotive and aerospace 

industries. This requirement is due to the industries' high usage of CAD systems. 

SET, like IGES in the US became a French national standard. In recognition of the 

need for a single international data exchange standard, the French efforts are now 

focused on developing the STEP standard and they are very active in the 

development of STEP. 

 

2.2.3 Verband Der Automobilindustrie-Flachen-Schnittstella - VDA-FS 

 

The development of the VDA-FS standard was a German effort in response to the 

data exchange requirements of their automobile industry in the 1980's. VDA is the 
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German automotive industry trade association, and was the principle developer of 

the VDA-FS standard. VDA focused on defining a standard that allows for 

transferring surface/shell data. The Germans are now also directing their data 

exchange standards development efforts to STEP.  

 

2.2.4 Data Exchange Format – DXF 

 

The use of the DXF format for data exchange has evolved as a defacto standard. It 

is a proprietary format published by AutoDesk, a major CAD vendor. Early 

versions of AutoCAD focused on drafting with later attention being focused on 

solid 3D models. As the most widely used CAD packages, it is used throughout 

industry, including, building and construction, aerospace, automotive, process, 

shipbuilding, electrical, industrial, and consumer products. While addressing CAD 

data exchange, DXF does not include the scope of product model data that is 

included in STEP.  

 

2.2.5 Standard for the Exchange of Product Model Data – STEP 

 

STEP, standing for Standard for the Exchange of Product Model Data, is officially 

titled ISO 10303. The aim of STEP is to provide a representation of product 

information along with the necessary mechanisms and definitions to enable product 

data to be exchanged. The exchange is among different computer systems and 

environments associated with the complete product lifecycle including design and 

manufacture. The information generated about a product during these processes is 

used for many computer systems, including some that may be located in different 

organizations. In order to support such uses, organizations must be able to represent 

their product information in a common computer-interpretable form that is required 

to remain complete and consistent when exchanged among different computer 

systems [17]. 

 

STEP is organized as a series of parts, each published separately. These parts fall 

into one of the following series: description methods, integrated resources, 
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application protocols (APs), abstract test suites, implementation methods, and 

conformance testing. STEP uses a formal specification language, EXPRESS [18], to 

specify the product information to be represented. The use of a formal language 

enables precision and consistency of representation and facilitates development of 

implementations. To transfer this information, STEP usually employs the neutral 

file approach. Transfer of data from one application to another is usually a two-step 

process requiring a post-processing and pre-processing. 

 

The overall objective of STEP is to provide a mechanism that is capable of 

describing product data throughout the life cycle of product, independent from any 

particular system. The nature of this description makes it suitable not only for 

neutral file exchange, but also as a basis for implementing and sharing product 

databases and archiving. The ultimate goal is an integrated product information 

database that is accessible and useful to all the resources necessary to support a 

product over its lifecycle [17]. 

 

STEP uses application protocols to specify the representation of product 

information for one or more applications. The APs define the scope, the information 

to be exchanged, the means of testing and a user guide for implementing the 

application. The STEP Application Protocol of main interest for this thesis is 

Application Protocol 224 (Mechanical Product Definition for Process Planning 

using Machining Features) and Application Protocol 238 (Application Interpreted 

Model for Computerized Numerical Controllers) is referred for lacking information 

in AP224. STEP AP224 contains all the information needed to manufacture the 

required part, including [19]: 

• Geometrical and topological entities required to represent manufacturing 

features implicitly in boundary representation format. 

• Explicit representation of manufacturing features. 

• Information necessary to identify the dimensional and geometrical 

tolerances of the manufacturing features. 

• Information necessary to define material, hardness, surface finish and other 

technological data. 
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STEP AP238 defines the context, scope, and information requirements for 

numerical controlled machining and associated processes and specifies the 

integrated resources necessary to satisfy these requirements. It is still a draft work 

of ISO and is being developed. STEP AP238 provides features information from 

manufacturing point of view and harmonizes the data with other standards. Some 

lacking information in STEP AP224 about feature geometries is being extracted 

from STEP AP238. 

 

2.2.6 Review of Product Data Models 

 

The following is a brief summary of the product data models described: 

  

 IGES, SET, DXF, VDA-FS: Shown a success in transferring data between 

CAD systems, however failed to transfer product data form CAD to CAPP 

systems. Because current CAD systems are not capable of storing CAPP 

applications related information concerning a part. 

 STEP: Most recent and promising standard for representing part data that 

would serve to needs of variety of applications and as an answer to all the 

difficulties stated.  

 

2.3 Object Oriented Programming  
 

Object-oriented programming is claimed to be the software technology for the 

1990s and beyond. Object-oriented programming approach is a general term for a 

set of analysis, design and programming methodologies. Using object-oriented 

programming approach, design and develop a system from the object perspective, 

can be analyzed. Objects are intelligent, self-contained entities responsible for 

performing particular system tasks [20]. Thereby, an object is defined as an identity, 

encapsulating some private data and a set of operations to access that data. Four 

main features of objects are [21]: 
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1. Messaging: A message specifies what is to be done and the object decides 

how it is to be done. Calling programs need not to be aware with the internal 

representations of the internal functions the object uses. 

2. Encapsulation: It involves the ability to hide the implementation details of 

a system so that it is accessed in terms of its properties rather than of its 

syntactical obligations. So, that each object is an independent entity in its 

own, regardless of which language is used in implementing it. 

3. Dynamic Binding: Binding is the determination of which piece of code to 

run for a particular task in a program. Bindings to an object can be removed 

instantaneously to limit the use of valuable run-time memory. 

4. Inheritance: Objects are organized into a hierarchy of classes that share 

characteristics among its members. Inheritance is a technique for defining 

new data type differs from some pre-existing type. From a software 

engineering point of view, inheritance allows a developer to reuse a piece of 

code that incorporates only a slight modification or extension to previously 

written code. 

 

The common interfaces of objects are: 

• Properties: Changeable / retrievable features, 

• Methods: Actions, functions which are performed by the object, 

• Events: External inputs, to which the object is susceptible. 

 

2.4 Unified Modeling Language 
 

The Unified Modeling Language (UML) is the industry-standard language for 

specifying, visualizing, constructing, and documenting the artifacts of software 

systems. It simplifies the complex process of software design, making a "blueprint" 

for construction. UML is the most widely known and used standardized notation for 

object-oriented analysis and design. Yet it does provide several types of diagrams 

that, when used within a given methodology, increase the ease of understanding an 

application under development. The most useful, standard UML diagrams are; use 

case diagram, class diagram, sequence diagram, state chart diagram, activity 



diagram, component diagram, and deployment diagram. There is more to UML than 

these diagrams, for the purpose of this thesis, class diagrams and their notation will 

be described in the following section [22].  

 

 2.4.1 Class Diagrams 

 

The purpose of the class diagram is to show the static structure of the system being 

modeled. A class is a collection of objects with common structure, common 

behavior, common relationships, and common semantics. The UML representation 

of a class, a class diagram, is a rectangle containing three compartments stacked 

vertically. The top compartment shows the class's name, pointing to the object 

mentioned in the Object Oriented Programming approach. The middle compartment 

lists the class's attributes with its variable types, pointing to the object properties 

mentioned in the Object Oriented Programming approach. The bottom compartment 

lists the class's operations, pointing to the object methods mentioned in the Object 

Oriented Programming approach. In Figure 2.1, a simple example of a class 

diagram is shown [23]. 

 

 
 

 

Figure 2.1 A generic class diagram showing a single class 

ClassName 

Attribute1 : String 

Attribute2 : Integer 

Attribute3 : Object 

Operation1 () : String 

Operation2 ()  

Operation3 ()  
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The UML modeling elements found in class diagrams include: 

 Classes, their structure and behavior. 

 Association, aggregation, dependency and inheritance relationships. 

 

 The Inheritance is related modeling element of the class diagram with this thesis. 

As it is mentioned in the previous section, as a very important concept in object-

oriented programming approach, inheritance, refers to the ability of one class (child 

class) to inherit the identical functionality of another class (super class), and then 

add new functionality of its own. To model inheritance on a class diagram, a solid 

line is drawn from the child class (the class inheriting the behavior) with a closed 

triangular arrowhead pointing to the super class. Consider types of shapes in the 

simple example Figure 2.2, it shows how both Circle and Square classes having 

their own attributes inherit methods from the Shape class. 

 

 

Shape 

Draw ()  

Erase ()  

Circle
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Figure 2.2 Inheritance is indicated by a solid line with a triangular arrowhead 

pointing at the super class 

 

Radius : Real 

Square

Width : Real 
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2.5 Extensible Markup Language 
 

EXtensible Markup Language (XML) is a cross-platform, software and hardware 

independent tool for transmitting information. XML is a markup language much 

like HyperText Markup Language (HTML). However, while HTML was designed 

to display data and to focus on how data looks, XML is designed to describe data 

and to focus on what data is. XML is self-descriptive. Unlike HTML, XML tags are 

not predefined and XML allows the author to define his own tags and his own 

document structure, in other words XML tags are invented by the author of the 

XML document. XML uses a Document Type Definition (DTD) or an XML 

Schema to describe the data. [24] These bring simple syntax for XML, like; all 

XML tags must have an opening tag and closing tag enclosed in angle brackets, 

XML tags are case sensitive, XML elements must be properly nested, all XML 

documents must have a root element and XML tags may have attributes defined in 

quotation marks. Below is a simple sample XML document describing the book, to 

illustrate the syntax mentioned above. Book, title, chapter, paragraph are the tags 

used in this example. Book is the root element. Title, product and chapter are child 

elements of book. Book is the parent element of title and chapter. Title, product and 

chapter are siblings (or sister elements) because they have the same parent. 

Paragraph is the child element of chapter. Product has attributes like “id” and 

“media”, defined in quotation marks.  

 

<book> 

<product id=”1-1” media=”paper”></product> 

<title>My First XML</title> 

<chapter>Introduction to XML 

<paragraph>What is HTML</paragraph> 

<paragraph>What is XML</paragraph> 

</chapter> 

</book> 
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XML does not do anything, XML was created to structure, store and to send 

information. In the real world, computer systems and databases contain data in 

incompatible formats. One of the most time-consuming challenges for developers 

has been to exchange data between such systems. Converting the data to XML can 

greatly reduce this complexity and create data that can be read by many different 

types of applications Since XML data is stored in plain text format, XML provides 

a software- and hardware-independent way of sharing data. This makes it much 

easier to create data that different applications can work with. It also makes it easier 

to expand or upgrade a system to new operating systems, servers, applications, and 

new browsers. Other clients and applications can access XML files created as data 

sources, like they are accessing databases. XML data can be made available to all 

kinds of "reading machines" (agents) by means of processors. 
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CHAPTER 3 
 

 

SYSTEM MODEL 
 

 

3.1) General System Architecture 
 

Three main objectives of this study were: (1) developing an integrated feature 

library, providing standard product data representation and facilitating the 

CAD/CAM integration process, (2) developing a STEP based feature modeler for 

rotational parts using the features in the feature library, (3) generating a neutral 

STEP-XML file that will directly be used by the STEP based CAPP systems. To 

achieve these objectives, a system architecture, which is presented in Figure 3.1, is 

developed. In the following sections of this chapter, each building block that 

constructs the whole system architecture will be defined; the idea behind the 

working principles of the system and their components will be described, in every 

detail. In the next chapter, Chapter 4, one of the manufacturing features for 

rotational parts in the feature library will be selected and every stage followed in the 

development of the system, described in this chapter, will be demonstrated on that 

feature in an illustrative and detailed manner. One of the features will be selected, 

because there are so many numbers of features with their subtypes and they show 

similarities in application. Following is a brief description of the main system 

components shown in Figure 3.1:  

 

Feature Library: This integrated feature library will serve as the basis of the whole 

system, fulfilling the first objective of the study. “Feature Definitions Library” 

together with the “Feature Dynamic Link Library (dll)” builds up the “Feature 

Library”.  STEP AP 224 documentation, object oriented approach, MS Visual Basic  
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6.0 and EXPRESS Schemas are the tools used in an organized manner to bring the 

feature library up to a state satisfying the requirements of being a comprehensive 

library. By comprehensive library, at this stage, what is meant is a library 

facilitating the whole system to be “feature based”, “STEP based” and “object 

oriented”. 

 

Feature Modeler: Feature Modeler is a software package enabling high-level 3D 

solid manufacturing features based design of rotational parts, fulfilling the second 

objective of the study. The feature modeler uses the manufacturing features in the 

developed feature library as the basic entities of the rotational part design. MS 

Visual Basic for Applications, ActiveX Automation, AutoCAD 2000i environment 

and error handling methods are the technologies used to develop the feature 

modeler provided that an easy to use, efficient and 3D environment is implemented. 

The inside structure of the feature modeler will be described in the following 

sections of this chapter. 

 

Preprocessor: This is a unidirectional translator, which takes features data from the 

feature modeler as an input and creates STEP-XML file as an output. EXPRESS 

Schemas, used to determine the hierarchical structure, relations and attributes of the 

features while the feature library is developed, is now used in the same way to 

reflect this structure to the output file. This way most appropriate XML 

representation for each EXPRESS definition can be chosen and mapping of feature 

data into XML file can be achieved. For each feature in the feature library, 

algorithms are created to provide the creation of corresponding output data 

including all of the feature attributes. Preprocessor appends the outputs of each 

algorithm in a logical order and results with an overall STEP-XML file. 

 

STEP-XML File: This file is the final output of the system and is created in XML 

format invented for STEP, which is descriptive and which will pioneer the data 

exchange to other systems, especially STEP based CAPP systems, from the feature 

modeler. The output file is generated in XML format due to the emergence of XML 

as standard for describing data exchange files. 



 

FEATURE 
DEFINITIONS 

LIBRARY 
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Figure 3.1 General System Architecture 
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3.2) Features Library 
 

The structure of the feature library is shown in Figure 3.2. Feature library, in 

general, enables rotational parts to be designed by three types of data namely: (1) 

manufacturing features geometry data, (2) tolerance data and (3) part properties data 

by means of its “Features Definitions Library” component. While the 

manufacturing features geometry data is included into the feature definitions library 

STEP AP 224, STEP AP 238 documentations and related EXPRESS Schema are 

used. While the tolerance and part properties data are included into the feature 

definitions library STEP AP 224 documentation and related EXPRESS Schemas are 

used to construct the general data structure.  
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Figure 3.2 Structure of the Feature Library 
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Feature library is also a predefined library of objects, which remain resident during 

a session started in the system by means of its “Features Dll” component. Within 

the modeled feature definitions library, every feature is considered as an object, but 

these can be categorized as classes, superclasses, subclasses or instances. In terms 

of manufacturing features, a class is a generic description of one or more similar 

objects (features) defined in the feature library. In fact, these definitions are 

validated through EXPRESS Schema that is used in the definitions of the features 

and their attributes, during the development of the features dll component. This 

approach provides the developed system to be “object oriented”, which will be 

detailed in the following subsections. 

 

3.2.1) Feature Definitions Library 

 

Feature definitions library is a library in which every feature that will construct the 

primitives for the development of features dll, though the feature modeler is 

explicitly defined. The feature definitions library is created: 

 To provide a good documenting that will guide throughout the study. 

 To provide a database for Features Dll file creation and facilitate 

programming. 

 To facilitate unambiguous and effective design for the feature modeler. 

 

In feature definitions library, a product data model based on STEP is developed. It 

includes almost all the information required to design rotational parts and some 

information required to facilitate the development of a CAPP system for rotational 

parts (this content of the feature definitions library should be enhanced to achieve 

full integration). STEP AP 224, STEP AP 238 documentation as reference standard 

and data modeling language called EXPRESS as product data modeling language 

are used to create the feature definitions library. By this way, product data model 

capable of storing three types of data: 

1. manufacturing features geometry data, 

2. tolerance data, 

3. part properties data 
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are developed in the feature definitions library. The content of these three 

components of data types will be described in the following subsections. A brief 

insight into both the STEP documentation and EXPRESS is provided in this 

section. 

 

STEP Documentation: The STEP AP 224 and AP 238 documentations are quite 

long and most of them describe the Application Interpreted Model (AIM). Before, 

becoming familiar with AIM, Application Reference Model (ARM) parts of the 

documentation are covered. ARM describes the basic application objects. 

Application objects stands for manufacturing features or other objects used defining 

tolerance or part properties data, in the scope of this study. In general, what each 

application object represents and where the information contained in it will come 

from or go to, is reviewed as much as the ARM parts of the documentation is 

concerned.  

 

Once ARM and application objects are understood the related parts of AIM is 

considered. The AIM is considerably more involved than the ARM, but it represents 

the same basic information. The AIM is an EXPRESS information model that 

formally describes the application objects in terms of a library of pre-existing 

definitions, called the generic resources or integrated resources. This highly 

normalized representation contains the structures as well as the constraints that 

those structures must obey. The AIM is used as the basis for the implementation 

and data exchange. EXPRESS-G diagrams, for which an example on one of the 

manufacturing features will be represented in Chapter 4, in AP document, provided 

an easier way to cover AIM. EXPRESS-G is a formal diagrammatic form for the 

EXPRESS language. EXPRESS-G diagrams contain the data structures, inheritance 

relationships, attributes and relationships between structures in the EXPRESS 

information model. The EXPRESS-G diagrams are very good at conveying the data 

structures associated with an information model. 

 
By following the methodology defined, the necessary standardized features data 

could be extracted from the related STEP documentation. 
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EXPRESS: EXPRESS is a data modeling language defined by ISO and published 

as ISO 10303-11 [18]. The EXPRESS language allows defining a data model in 

terms of data structures constraints, and rules. The EXPRESS language is not case 

sensitive. As a convention, EXPRESS keywords are often written in uppercase to 

improve readability. EXPRESS is not a programming language; it is a data 

modeling language. EXPRESS is readable and fully computer interpretable. A brief 

introduction to EXPRESS is made below, which will describe the structure that is 

claimed to lead the whole system to be object oriented. This introduction will guide 

through the examples presented in the system development chapter. 

 

EXPRESS Schema: EXPRESS specifications are organized into schemas. An 

EXPRESS schema is a name space of named data types. Data types may be simple 

types such as strings and integers or entity types, representing more complex 

collections of attributes (properties). Schemas can be related together to form 

models. 

 

Entities: An entity is analogous to an object in object oriented programming. Each 

entity has a name and a set of attributes. Each attribute has a name and a data type. 

An entity, in EXPRESS schema, definition has the following form: 

 

SCHEMA SchemaName; -- Schema declaration 

    ENTITY Entityname;-- Entity declaration 

        a1: data_type; 

        a2: data_type; 

(*Number of, attributes may go up to any number *) 

        aN: data_type; 

    END_ENTITY; -- End of entity declaration  

 END_SCHEMA; -- End of schema  declaration 

 

As it is seen above, there are two types of comments in EXPRESS. A tail remark is 
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written at the end of a line. Two consecutive hyphens “--” start the remark and a 

new line terminates it. An embedded remark begins with the character pair “(*” and 

ends with the same character pair “*)”.  

 

Data Types: The data type of an attribute can be either a simple type, an aggregate 

type, an entity type, a defined type, an enumeration type, or a select type. The first 

three data types are the mostly related ones in the scope of this study. These three 

data types are described below: 

 

Simple Data Types: EXPRESS has several implicitly defined primitive data types. 

These are integer, real, Boolean, logical, string, and binary. These are analogous 

to ordinary variables in programming languages. Throughout the examples, integer 

and real data types are represented under the same name “numeric_parameter” to 

provide uniformity.  

 

Aggregate Data Types: An aggregate is a container that holds multiple elements of 

the same type. They are defined in closed square brackets with a lower and upper 

bound values. The EXPRESS aggregate types are: 

Bag: Bag is an unordered collection, in which duplicate values are allowed, but null 

values are not allowed.  

List: List is an ordered collection, in which duplicate values are allowed, but null 

values are not allowed. 

Set: Set is an unordered collection, in which neither null values nor duplicate values 

are allowed.  

Array: Array is an ordered collection of fixed size, in which both null values and 

duplicate values are allowed.  

 

Entity Data Type: Any entity declared in a schema can be used to specify the data 

type of an attribute. Using an entity as an attribute's data type establishes a 

relationship between the two entities. For instance, using an Entity named "Point"; 

another Entity named "Line" can be defined as it is presented in the example that 

follows. 
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   ENTITY Point; 

        x: numeric_parameter; 

        y: numeric_parameter; 

   END_ENTITY; 

 

    ENTITY Line; 

         start_point: Point;-- defined as Entity Point 

         end_point: Point;-- establishes the relation between Line and Point 

    END_ENTITY; 

 

Inheritance: Subtypes in EXPRESS allow new types to be derived from existing 

types. The derived types are "almost like" other existing types, with some 

incremental changes. They inherit attributes and functionality from their supertypes. 

Subtypes can define additional attributes and functionality, thereby extending or 

restricting the existing data types. 

  

The EXPRESS language supports several types of inheritance relationships. The 

following example shows one type of inheritance relationship supported by 

EXPRESS: 

 

     ENTITY Point3D 

         SUBTYPE OF (Point); 

          z : numeric_parameter; 

     END_ENTITY; 

 

The Entity “Point3D” will have three attributes: “x” and “y” which are inherited 

from the Entity “Point”, which was presented at the top of this page, and “z”, 

which is declared locally. 

 

Overall mentioned functions of EXPRESS, facilitates the development of the 

feature library by means of clear and hierarchical definition it provides for the 

manufacturing features in STEP documentation.  
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3.2.1.1) Manufacturing Features Geometry Data 

 

Manufacturing features geometry data contains the information necessary to 

identify shapes, which represent volumes of materials that shall be removed from a 

part by machining or shall result from machining.  

 

To extract rotational part manufacturing features with their attributes from the 

STEP AP224 documentation, to make the features a member of the feature library, 

to bring feature definitions up to a state that can be used in the dynamic link library 

(dll) file and most generally to construct the manufacturing features and part 

geometry data component of the feature definitions library the following 

preliminary work has to be done for each feature in the feature library: 

1. Selecting and extracting the feature from the standard, STEP AP 224 

documentation, with its definitions and attributes. 

2. Referring to related EXPRESS documentation in order to find out inheritance 

structure of the feature. 

3. Combining the collected data in order to completely define the geometry of the 

feature. 

4. Referring to the STEP AP 238 documentation, if there are lacking attributes 

during the definition of the geometry of the feature, 

5. Creating a 2D profile that will result as the 3D feature geometry after being 

revolved or extruded along or around an axis, after collecting all the necessary 

parameters to completely define the feature geometry,  

6. Determining the generation technique for each feature that is, extrusion or 

revolution. 

7. Determining the attachment Boolean operation for each feature that is 

subtraction, addition or intersection. 

8. Determining the insertion point for each feature in FCS (Feature Coordinate 

System)  

9. Determining the geometrical constraints that will be used  

a. in the definition of 2D profile, 

b. in the placement of 3D feature on the part 
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to avoid creation of meaningless geometries and possible designer errors that 

may occur during the use of feature modeler. 

10. Creating test interfaces to determine all the necessary geometrical constraints 

and to test the constraints designed on paper and make trial designs to find out 

new constraints. According to the results of the trial designs made, modifying 

the geometrical constraints. 

11. Documenting the:  

 Selected STEP AP224 rotational part features, 

 Hierarchical and object-oriented structure of selected features, 

 Parameters necessary to completely define the 3D solid geometry for 

each feature including; 

 Attributes to define the 2D profile, 

 Geometrical definition of the 2D profile (points, driven 

parameters…), 

 Generation technique and attributes for 3D solid feature 

creation (extrusion or revolution), 

 Geometrical constraints for each feature, 

 Attachment technique (addition, subtraction, intersection) and 

insertion point for each feature, 

 Geometrical constraints related to both 2D profile creation and 

feature interactions to provide the precision of design process. 

 

Following each step stated above, “manufacturing features and part geometry data” 

component of the feature definitions library documentation is prepared. Resulting 

documentation stands as the building block for the dynamic link library, thus for the 

proposed feature modeler and covers features and their subtypes extracted from 

STEP AP224 for rotational parts and their definitions, classifications, attributes, 

generation and attachment techniques, in detail. Since, the resulting work and 

documentation adds up to a huge amount, it will only be demonstrated on one of the 

selected manufacturing features, in the next chapter, Chapter 4, to illustrate the 

developed methodology clearly. In the following part of this chapter, a brief 

summary about the results of the documentation will be presented. Manufacturing 
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features for rotational parts will be classified into its subtypes and each feature that 

is a member of the feature library will be defined in a few words. 2D sketches of 

features, their geometrical attributes, generation techniques and insertion points of 

each feature in the library, which is a part of feature dentitions library 

documentation, will be presented in the figures included in Appendix B. While 

defining the features the corresponding figure for that feature will be referenced to 

the Appendix B. 

 

A manufacturing_feature identifies the types of features necessary to manufacture a 

machined rotational part. Each manufacturing_feature is either a machining_feature 

or a transition_feature. A machining_feature is a type of manufacturing_feature 

that identifies a volume of material that shall be removed to obtain the final part 

geometry from the initial stock. Machining_features requires both direction and 

location in placing them on a part. Each machining_feature may be one of the 

following: outer_round, spherical_cap, revolved_feature, or a multi_axis_feature. 

A transition_feature is a type of manufacturing_feature that is a transition area 

between two surfaces. This feature differs from machining_feature objects in that it 

requires no orientation for placement instead a feature or two features are selected 

to attach the transition feature to a position that has no other alternative. Each 

transition_feature is either an edge_round, fillet, or a chamfer. Below, types of 

machining_features and transition_features will be defined respectively. 

 

An outer_round is a type of machining_feature that is an outline or significant 

shape that is swept through a complete revolution about an axis. Each outer_round 

is either an outer_diameter or an outer_diameter_to_shoulder. The outer_diameter 

is a subtype of outer_round and may have a constant diameter around the axis of 

rotation that is straight_outer_diameter, or it may be tapered that is 

tapered_outer_diameter. Straight_outer_diameter is a subtype of outer_diameter 

that is not tapered. Tapered_outer_diameter is a subtype of outer_diameter that 

describes a continual transition from one diameter to another diameter across a 

certain feature_length. An outer_diameter_to_shoulder is a subtype of outer_round 

that is a sweeping of a shape one complete revolution about an axis. The shape shall 
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be specified by two lines that connect at a point and extend finitely defined by 

diameters or lengths. 2D sketches, geometrical attributes, generation techniques and 

insertion points for the types of outer_round feature are presented in the Appendix 

B, in Figures B.1 to B.4.  

 

A spherical_cap is a type of machining_feature that is circular about an axis of 

rotation. A spherical_cap consists of all points a given distance from a point 

constituting its center. 2D sketch, geometrical attributes, generation technique and 

insertion point for the spherical_cap feature is presented in the Appendix B, in 

Figure B.5. 

 

A revolved_feature is a type of machining_feature that is a sweeping of a planar 

shape one complete revolution about an axis. Each revolved_feature is one of the 

following: revolved_flat, revolved_round or a groove. A revolved_flat is a subtype 

of revolved_feature that is the sweeping of a straight line about an axis. A 

revolved_round is a subtype of revolved_feature that is the sweeping of an arc 

about an axis. The groove is a type of revolved_feature that is a narrow channel or 

depression that is swept through one complete revolution about an axis. Grooves are 

classified into square_u_groove, rounded_u_groove, partial_circular_groove, tee_ 

groove, and vee_groove depending on their sweep shape. The groove feature may 

be defined on different faces of a part depending on the orientation of the profile 

and material side as shown in Figure 3.3 and groove can be further classified as 

outer_groove and inner_groove, accordingly. At the end of these two level 

classifications a groove may be one of, inner_square_u_groove, outer_square_u_ 

groove, inner_rounded_u_groove, outer_rounded_u_groove, inner_partial_circular 

_groove, outer_partial_circular_groove, inner_tee_groove, outer_tee_groove, 

inner_vee_groove or outer _vee_groove. 2D sketches, geometrical attributes, 

generation techniques and insertion points for these types of revolved_ feature are 

presented in the Appendix B, in Figures B.6 to B.17. 

 

 



 

Figure 3.3 Inner_groove (left) and Outer_groove (right) 

 

 

A multi_axis_feature is a type of machining_feature that identifies milling features 

for rotational parts. A hole is a type of multi_axis_feature that is the removal of a 

cylindrical volume from a part. Each hole is either a round_hole, counterbore_hole, 

or a countersunk_hole. A round_hole is a type of hole that is a removal of a volume 

of cylindrical shape from a part, which is represented by a circular_closed_profile 

swept along a linear_path. A counterbore_hole is a type of hole that is a 

combination of two round_holes. The first round_hole shall have either a 

through_bottom_condition or a blind_bottom_ condition; the second shall have a 

blind_bottom_condition, and a larger diameter than the first round_hole. A 

countersunk_hole is a type of hole that is a combination of two round_holes. The 

first round_hole shall have either a through_bottom_condition or a blind_bottom_ 

condition and it is not tapered; the second shall have a blind_bottom_condition, and 

it is tapered. Firstly, depending on the bottom_condition, holes are classified into 

subtypes, and then each subtype is further classified depending on their 

change_in_diameter. Each bottom_condition may be one of the following: 

blind_bottom_condition or through_bottom_condition. Each blind_bottom_ 

condition is either a flat_hole_bottom, flat_with_radius_hole_bottom, flat_with_ 

taper_hole_bottom, conical_hole_bottom, or a spherical_hole_bottom. 2D sketches, 

geometrical attributes, generation techniques and insertion points for the resulting 

types, after the two level classifications, of holes are presented in the Appendix B, 

in Figures B.18 to B.47. 
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A slot is a type of multi_axis_feature that is a channel or depression with 

continuous direction of travel. Firstly, depending on the course_of_travel the slot 

follows, slot is classified into subtypes such as linear_slot and circular_slot, 

secondly these two subtypes are classified first depending on open_profile, and then 

each is further classified depending on the first_end_type and second_end_type. The 

subtypes are listed and defined in the following pages. Linear_slot is a subtype of 

slot, which has linear_path as course_of_travel. A linear_path is a direction of 

travel along a line. Depending on the open_profile, linear_slot is either a square_ 

linear_slot, square_u_linear_slot, round_u_linear_slot, partial_circular_ linear_ 

slot, tee_linear _slot, or vee_linear_slot. Circular_slot is a subtype of slot, which 

has circular_path as course_of_travel. Depending on the open_profile, circular_ 

slot is also classified in the same way like the linear_slot. All slot types other than 

the square_u_linear_slot, have open_slot_end_type at both sides of the slot. 

Depending on first_end_type and second_end_type, different possible square_linear 

_slot subtypes are summarized in Table 3.1. 2D sketches, geometrical attributes, 

generation techniques and insertion points for the resulting types, at the end of 

classifications, of slots are presented in the Appendix B, in Figures B.48 to B.66. 

 

Table 3.1 Square_linear_slot subtypes depending on end_condition 

 
First_end_type Second_end_type Feature(Subtype) Name 

open_slot_end_type open_slot_end_type square_linear_slot_type1 

open_slot_end_type flat_slot_end_type square_linear_slot_type2 

open_slot_end_type radiused_slot_end_type square_linear_slot_type3 

open_slot_end_type woodruff_slot_end_type square_linear_slot_type4 

flat_slot_end_type open_slot_end_type square_linear_slot_type5 

flat_slot_end_type flat_slot_end_type square_linear_slot_type6 

flat_slot_end_type radiused_slot_end_type square_linear_slot_type7 

radiused_slot_end_type open_slot_end_type square_linear_slot_type8 

radiused_slot_end_type flat_slot_end_type square_linear_slot_type9 

radiused_slot_end_type radiused_slot_end_type square_linear_slot_type10 

woodruff_slot_end_type open_slot_end_type square_linear_slot_type11 

woodruff_slot_end_type woodruff_slot_end_type square_linear_slot_type12 
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An edge_round is a type of transition_feature that is a convex circular arc transition 

between two intersecting surfaces. The blend surface is tangent to both of the 

adjacent surface edges. Depending on the edge_round_feature and outer contour of 

the feature, different possible edge_round subtypes are summarized in Table 3.2. 

2D sketches, geometrical attributes, generation techniques and insertion points for 

the resulting types, shown in the Table 3.2, of edge_rounds are presented in the 

Appendix B, in Figures B.67 to B.71. 

 

Table 3.2 Edge_round subtypes  
 

Edge_round_feature 
Outer 

Contour 

Feature (Subtype) 

Name 

Straight_outer_diameter Both Edge_round_type1 

Tapered_outer_diameter (decr. diameter) Right Edge_round_type2 

Tapered_outer_diameter (decr. diameter) Left Edge_round_type3 

Tapered_outer_diameter (incr. diameter) Right Edge_round_type4 

Tapered_outer_diameter (incr. diameter) Left Edge_round_type5 

Outer_diameter_to_shoulder Right Edge_round_type6 

Outer_diameter_to_shoulder Left Edge_round_type7 

Revolved_flat (decr. diameter) Right Edge_round_type2 

Revolved_flat (decr. diameter) Left Edge_round_type3 

Revolved_flat (increasing diameter) Right Edge_round_type4 

Revolved_flat (increasing diameter) Left Edge_round_type5 

 

 

A fillet is a type of transition_feature that is a concave circular arc transition 

between two intersecting surfaces. The blend surface may or may not be tangent to 

both of the adjacent surface edges. Firstly, depending on the answer of the question, 

“Does fillet require additional manufacturing operation or does it result from the 

geometry of the tool?”; fillet is classified into subtypes m_fillet and g_fillet. 

Secondly these two subtypes are classified first depending on first_feature and 

second_feature, and then each is further classified depending on whether blend 

surface is tangent to both of the adjacent surface edges or not. The results of this 
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classification is summarized in Table 3.3 and Table 3.4. Instead of every 

tapered_outer_diameter, outer_diameter_to_shoulder or revolved_ flat can be 

written in the tables. 2D sketches, geometrical attributes, generation techniques and 

insertion points for the resulting types, shown in the Table 3.3 and Table 3.4, of 

fillets are presented in the Appendix B, in Figures B.72 to B.87. 

 

Table 3.3 M_fillet subtypes  
 

First_feature Second_feature 
Blend 

Surface 

Feature 

(Subtype) 

Name 

Straight_outer_diameter Tapered_outer_diameter Tangent m_fillet_type1 

Straight_outer_diameter Tapered_outer_diameter Not Tangent m_fillet_type2 

Tapered_outer_diameter Straight_outer_diameter Tangent m_fillet_type3 

Tapered_outer_diameter Straight_outer_diameter Not Tangent m_fillet_type4 

Tapered_outer_diameter Tapered_outer_diameter Tangent m_fillet_type5 

Tapered_outer_diameter Tapered_outer_diameter Not Tangent m_fillet_type6 

 

 
Table 3.4 G_fillet subtypes  

 

First_feature Second_feature 
Blend 

Surface 

Feature 

(Subtype) 

Name 

Straight_outer_diameter Straight_outer_diameter Tangent (+) g_fillet_type1 

Straight_outer_diameter Straight_outer_diameter Not Tangent g_fillet_type2 
Straight_outer_diameter Straight_outer_diameter Tangent (-) g_fillet_type3 

Straight_outer_diameter Straight_outer_diameter Not Tangent g_fillet_type4 
Straight_outer_diameter Tapered_outer_diameter Tangent g_fillet_type5 
Straight_outer_diameter Tapered_outer_diameter Not Tangent g_fillet_type6 
Tapered_outer_diameter Straight_outer_diameter Tangent g_fillet_type7 
Tapered_outer_diameter Straight_outer_diameter Not Tangent g_fillet_type8 
Tapered_outer_diameter Tapered_outer_diameter Tangent g_fillet_type9 
Tapered_outer_diameter Tapered_outer_diameter Not Tangent g_fillet_type10 



3.2.1.2) Tolerance Data  

 

Tolerance data component of the feature definitions library defines the data of the 

tolerances information for a part specified by the STEP AP224. Tolerance data 

consists of two types: dimensional tolerances and geometrical tolerances. Types of 

tolerance data is shown in Figure 3.4. 

1. Dimensional tolerance is the total amount a specific dimension permitted to 

vary, which is the difference between maximum and minimum permitted limits 

of the size.  

2. Geometrical tolerance is the maximum or minimum variation from true 

geometric form or position that may be permitted in manufacturing. Geometric 

tolerance should be employed only for those requirements of a part critical to its 

functioning.  

 

 

Figure 3.4 Types of Tolerance Data 

 Tolerance Data 
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3.2.1.3) Manufacturing Part Properties Data 

 

The manufacturing part properties data component of the feature definitions library 

contains the description of characteristics of the rotational part that is being 

designed. These characteristics specify requirements of manufacturing that apply to, 

either the state of the part at a particular time prior or after the manufacture of the 

part, or a process that is required to be executed during the manufacture of the part. 

To fully define part information scheme and integrate it into the features definitions 

library a huge work has to be done, as it has been conducted for manufacturing 

features geometry data. It is also required to have a process planning strategy 

already developed in order to define an integrated part properties data library 

accordingly, at this stage. Therefore, within the scope of this study part properties 

data is just described in the sake of completeness of the definition of the feature 

library. To fully integrate the part properties data into the developed system, future 

work on this topic has to be conducted. As an example, besides many others some 

part characteristics covered in the standard as manufacturing part properties data is 

described below: 

 Material is the identification of the raw stock from which a part is produced. 

Material identifies primary and substitution material. The material information 

is very important to be included in the part data that is resulting STEP-XML 

file. Because for process planning activities, it significantly affects the selection 

of the cutting tools, cutting parameters, etc…Material related data is defined by 

material_id, material_description and stock_size attributes in the standard. In 

addition, an alternate material with alternate_ranking and material_substitute 

attributes can be defined. 

 The surface information related to representation of the surface of the part, such 

as surface finish, hardness and heat treatment conditions. These factors should 

be included in the part data that is resulting STEP-XML file. Because, while 

selecting manufacturing operations in process planning this data should be 

considered seriously. Hardness has scale, high_value, low_value and nominal 

attributes, surface property has surface_finish and parameter_name attributes to 

be defined in the standard. 
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3.2.2) Features Dynamic Link Library 

 

Up to this point, Application Interpreted Model (AIM) and Application Reference 

Model (ARM) of STEP AP 224, has been covered and resulting feature definitions 

library has been developed for rotational parts. The important problem raised at this 

stage was, how the feature modeler will be tied to the EXPRESS information model 

of STEP AP 224 thus to the product data model developed in the feature definitions 

library. It was the question, which prompted the development of Feature Dynamic 

Link Library (Dll) in an object oriented manner. At the end, the product data model 

developed in the feature definitions library is implemented as an object oriented 

data type library, that is Features Dll, called “RotSTEPFeat.dll”.  

 

The following subsections describe the object oriented approach used in 

constructing the structure of the Features Dll, methodology developed to create 

Features Dll and capabilities of Features Dll respectively.  

 

3.2.2.1) Object Oriented Structure of Features Dll 

 

In general, object oriented concepts are accepted to be well suited to engineering 

activities because object structures are readily able to model the real world, support 

communication and provide interfacing and manipulation of different data types 

[25]. From the creation of feature modeler point of view, which is the main 

objective of this study, the object oriented representation gives the flexibility to 

define the system in a hierarchical manner, such that: 

• Features in the feature definitions library can be represented as objects, 

• Functions of the features in the feature definitions library can be represented as 

methods on objects such as drawing functions, export to STEP-XML 

functions…, 

• The relationship between features in the feature definitions library can be 

represented as messages passed between objects, 

• System architecture can be represented by the use of UML diagrams and class 

hierarchy. 
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By using the mentioned benefits gained using object oriented approach, 

manufacturing features defined in the feature library are transformed into solid 

objects, which will facilitate the implementation during the feature modeler 

development. In the following parts of this subsection, the general structure of the 

Features Dll and object oriented approach used in the development of the structure 

will be described. 

 

Object oriented approach can be viewed as a software design methodology or 

programming style with particular disciplines. The basic principle of the object 

oriented approach used developing the Features Dll is, every element of the product 

data model environment (manufacturing features, tolerances defined in the feature 

definitions library for rotational parts) must be regarded as an object, which 

contains properties and methods. The properties of the objects stand for the 

attributes of the features (like attributes defining feature geometry) and methods of 

the objects stand for both the necessary actions that the features should perform 

(like creating 3D solids, storing tolerance information) and implemental behaviors 

of features (like exporting STEP XML file, returning necessary information about 

its definition). An object can only be accessed by activating one of the methods 

defined for that object.   

 

In object oriented systems, by going one step further, classes are allowed to be 

defined in terms of other classes. Using this terminology within the Features Dll, 

although everything is considered as an object, objects are categorized as “classes”, 

“instances”, ”superclasses” or “subclasses”.  

 A class is a generic software blueprint for one or more similar objects, such as 

outer_diameter, groove, spherical_cap, hole etc. in terms of manufacturing 

features. Objects are defined in terms of classes; it means that a lot is known 

about an object by knowing its class. Even what a “tapered round hole” is not 

known, if it is told that it is a member of “hole” class, it would be known that it 

had diameter, hole depth etc. as its attributes. A typical definition of a class 

object includes its class name, superclass, properties and methods. 

 An instance is a “real” representation of an object, that is 3D CAD solid 
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representation for manufacturing features in the scope of this study, such as 

tapered round hole with a conical bottom, outer square-u groove etc., which has 

specific values for their definition. Class definition describes the location for 

specifying data storage and method. Two kinds of variables are supported: class 

variables and instance variables. The class variable is used to hold information 

shared by all instances of that class. (All holes have a diameter and hole depth) 

The instance variable contains information, which is specific to a particular 

instance. (A tapered round hole with a conical bottom would have a bottom tip 

radius and bottom tip angle as its instance variable.) 

 Superclass is the highest category that groups objects at the most generic level. 

Each subclass inherits properties and methods from its superclass. However, 

subclasses are not limited to the state and behaviors provided to them by their 

subclasses. Subclasses can add properties and methods to the ones they inherit 

from the superclass. The structure is not limited to just one level of inheritance. 

The inheritance tree, or class hierarchy, can be as deep as needed. Methods and 

properties are inherited down through the levels. In general, the farther down in 

the hierarchy a class appears, the more specialized its behavior. By this way, 

subclasses provide specialized behaviors form the basis of common elements 

provided by the superclass. Using inheritance, the code in the superclass can be 

used many times.  

 

From this description of objects, the object oriented structure of the Features Dll can 

now be explained. First, the general view of the Features Dll will be presented, and 

then the four hierarchical levels will be explained. In most general means, using 

object oriented approach described and the data provided in the feature library has 

resulted the hierarchical UML structure shown in Figure 3.5 and Figure 3.6. Due to 

the extensive inheritance structure of the system and excessive number of classes, 

the entire system structure can not be presented in a UML diagram. Therefore, 

UML diagrams in Figure 3.5 and Figure 3.6 only show the uppermost structure in 

the hierarchy of features and tolerance classification. Notice that, each hierarchical 

structure shown in this subsection is validated through EXPRESS Schemas besides 

using the documentation provided by the features library.  



 
 

Figure 3.5 UML Diagram of Manufacturing Features for Rotational Parts   

 

 

 
 

Figure 3.6 UML Diagram of Tolerance Data  
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UML diagram shown in Figure 3.5 exactly reflects the data provided in the 

manufacturing feature geometries data component of the feature library. In the 

diagram, manufacturing_features for rotational parts superclass takes its place in 

the highest category, the first hierarchical level. Machining_features and 

transition_features are subclasses of manufacturing_ features superclass. However, 

machining_features also act as superclass of many other subclasses such as 

outer_round, revolved_ feature, spherical_cap and multi_axis_feature; 

transition_features act as superclass of edge_round, fillet and chamfer, in the 

second hierarchical level. The major difference of the whole system structure from 

the general one shown in Figure 3.5 is that some of the subclasses in the second 

hierarchical level (e.g. outer_round and groove) also act as superclasses of various 

subtypes of that features (e.g. outer_diameter_to_shoulder and outer_groove), in 

the third hierarchical level. Therefore, a further fourth hierarchical level 

classification is performed. The resulting classification in the third hierarchical level 

may lead to creation of instances or new superclasses. For instance while 

outer_diameter _to_shoulder is an instance in third hierarchical level , outer_ 

groove is a superclass of its subtypes, outer_square_u_groove, outer_round_u_ 

groove, outer_partial_ circular_groove, outer_tee_groove and outer_vee_groove in 

the fourth hierarchical level. Thus, for some classes the hierarchical level goes up to 

four, until the instances are created. This structure for rotational manufacturing 

features was defined in the manufacturing feature geometries data subsection of 

feature library section in this chapter. To avoid complexity, the detailed UML 

diagram, including the inheritance relation between classes, of only one selected 

feature will be presented in system development chapter, Chapter 4. 

 

UML diagram shown in Figure 3.6 exactly reflects the data provided in the 

tolerance data component of the feature library. Dimensional_ tolerances and 

geometrical_tolerances superclasses take their place in the highest category. These 

are subclasses of many other tolerance types as shown in Figure 3.6 and defined in 

tolerance data subsection of feature library section in this chapter. The relation of 

tolerance classes with the manufacturing_feature subclasses will be shown in the 

example UML diagram provided in Chapter4, for a particular feature selected. 
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By using the terminology described, features dynamic link library (Dll) a file of 

code containing objects that can be called from other executable code (either an 

application or another dll) is developed. In general, Dll is used to provide code to be 

reused and to parcel out distinct jobs. Unlike an executable (exe) file, a dll file 

cannot be directly run. Features Dll must be called from other code that is already 

executing, that is feature modeler software in this case. Sample code containing the 

implementation and structure of one the most general class “machining_features” 

library is given in the Appendix A.1. This code consists of predefined classes of 

objects, which have been structured to form a hierarchical class library, which will 

be available within the feature modeler at run-time.  

 

Generally, Features Dll is a predefined library of objects, which remains resident 

during a session of the feature modeler. The objects are class level objects as 

defined, including methods and variables applicable to the class, allowing instances 

of the object to be generated. In the objective of this study, class objects map 

directly to manufacturing features in the feature definitions library. The following 

subsection defines the methodology developed to create the features Dll.  

 

 

3.2.2.2) Methodology to Create Features Dll 

 

To create an integrated feature library for the feature modeler, for which the 

structure is described, a dynamic link library (dll) file should be created. The 

following are the steps required to generate the dll file: 

1. Creating UML diagrams for each feature depending on the related EXPRESS 

documentation and feature definition, which includes the inheritance structure 

of the feature. 

2. Validating UML diagrams through the EXPRESS Schemas in order to double 

check and avoid any errors. 

3. Depending on the UML diagrams and the feature library documentation created, 

programming each feature by means of classes using Visual Basic 6.0 and the 

object oriented approach described. 
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4. Using Visual Basic 6.0 creating properties, methods and events for each feature 

class, which will help to;  

 assign values to feature attributes,  

 create 2D profiles from given points,  

 create 3D features from 2D profiles,  

 modify feature (for ex: rotation in necessary cases), 

 calculate, return required data about feature’s geometry, 

 check geometrical constraints at each step and warn the designer about 

possible errors, 

 create STEP-XML file during creation of feature to append it to the resulting 

STEP-XML file of the designed rotational parts ( the details of this process 

will be explained in the preprocessor section of this chapter),  

 store manufacturing features and part geometry, part properties and 

tolerance data. 

5. Generating an algorithm for each feature that uses the EXPRESS class files as 

reference to generate the required STEP feature data format 

6. Compiling “RotSTEPFeat.dll”, dynamic link library file which will be used as 

the integrated feature library and the heart of the feature modeler in AutoCAD 

ActiveX Automation 

 

The steps for generating the dll file have been followed for each feature and the 

“RotSTEPFeat.dll” file has been created.  

 

3.2.2.3) Capabilities of Features Dll 

 

 Creates 2D profiles from the points defined in feature definitions library and 

converts them into 2D regions, 

 Creates 3D features from 2D regions created as the basic 3D entities of 

rotational parts in feature modeler,  

 Has the ability to modify features if rotation or move functions are required in 

placement, movement and orientation depending on whether a feature is, right 

or left, or inner or outer, 
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 Returns geometrical information about feature geometry to facilitate error 

handling, which will be conducted to check feature interactions in the feature 

modeler, 

 Provides features to store part geometry and all described types of tolerance data 

that designer will attach on it, which will upgrade them from being basic entities 

to high level entities, 

 Checks for errors during the design process using the geometrical constraints 

defined in the feature definitions library, 

 Facilitates creation of STEP-XML file by means of the algorithms developed 

and embedded in the dll for each feature, which will pioneer the development of 

the preprocessor, 

 Most generally, integrates the feature library component of the overall system 

with the feature modeler component, playing the most critical bridging role 

throughout the system. 

 

3.3) Feature Modeler  
 

In previous sections, the first building block of the overall system, Feature Library, 

is described in detail by covering its components, Feature Definitions Library and 

Features Dll. When generalized, Feature Definitions Library is recognized to be the 

first fundamental component, which makes the overall system “STEP Based” and 

Features Dll is recognized to be the second fundamental component, which makes 

the overall system “ Feature Based” and “Object Oriented”, thus “Integrated”. At 

this stage, after creating a complete and integrated feature library, the third 

fundamental component, which is the opening window of the system to the world, 

that means makes the overall system “Functional” and “Useful”. 

 

By feature modeler, what is meant is a software package, which is required to: 

 cover as much manufacturing features as possible, 

 enable the creation of 3D manufacturing features in AutoCAD 2000 design 

environment,  

 bring them together facilitating the creation of the whole 3D rotational part, 
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 provide interfaces that are user friendly and isolates the designer from the 

complicated processes running behind the scene,  

 permit attachment of tolerance attributes to features, presents an easy to design 

feature based design environment, 

 avoids errors by means of comparing them with predefined cases, 

 ensure that no feature interactions occur and no illogical or unmanufacturable 

parts can be designed 

 warn the user by predicting the possible errors occurred during the design 

process, 

 offer as various design alternatives as possible, 

 present a continuous design environment by offering the designer to chain the 

diameters between succeeding features, 

 provide flexible design environment for rotational parts by providing them both 

left hand and right hand feature attachment opportunity. 

 

With the aim of developing a feature modeler, which is able to satisfy all the stated 

requirements, feature modeler architecture is developed and that architecture is 

implemented in AutoCAD 2000i environment by using MS Visual Basic for 

Applications, ActiveX Automation and error handling methods. The following 

sections provide insight to the feature modeler architecture and feature modeler 

implementation, respectively. 

 

3.3.1) Feature Modeler Architecture 

 

The feature modeler architecture is mainly organized in three major components: 

1. Features Creation Phase, 

2. Part Creation Phase, 

and one mechanism working in between these components: 

3. Error Handling. 

 

The general architecture of the feature modeler is presented in Figure 3.7. 

 



FEATURE CREATION

Feature Selection 

Feature Attributes Definition 

Call Drawing Functions 

From Features DLL
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At first glance, feature creation is generation of manufacturing features one by one 

and part creation is bringing the generated manufacturing features together to form 

the resulting rotational part. In between these two stages and before the Boolean 

operation is performed, there are error handling mechanisms to justify the required 

reliable design in the feature modeler. Feature and part creation components of the 

feature modeler will be detailed in the following subsections. The working principle 

of the error handling used will be explained also in the following subsections. 

 

3.3.1.1) Feature Creation 

 

As it is shown in Figure 3.7, three steps are required to create a feature, namely: (1) 

Feature Selection, (2) Feature Attributes Definition and (3) Call Drawing Functions 

from Features Dll 

 

Feature Selection: Feature selection is done by pointing to the required feature from 

a pull-down menu, which is already generated in the feature modeler’s AutoCAD 

interface, by mouse or keyboard. A collapsed view of the pop-up menu is shown in 

Figure 3.8.  

 

The selected feature corresponds to the matching class in Features Dll. By selecting 

a feature the corresponding Boolean operation, which will then be used while 

performing Boolean operation in part creation phase, related to that feature is also 

selected. 

 

Feature Attributes Definition: By clicking on the required feature in the pull-down 

menu, a macro is executed and a pop-up form interface appears. An example pop-

up form interface, for the feature revolved_flat, is shown in Figure 3.9. The 

appearing form includes input form elements like text boxes, combo boxes, check 

boxes and option buttons and frames grouping these elements. There exist also 

labels that inform the user about related actions and preview images, which 

illustrate the required parameters on a feature sketch, to guide and help the designer 

in selecting the right attributes. 

 



 

Figure 3.8 Exploded View of Pull-down Menu Designed in AutoCAD for 

Rotational Manufacturing Features 

 

 

 
 

Figure 3.9 Example Pop-up Form Interface designed in AutoCAD for one of 

Rotational Manufacturing Features, Revolved_flat 
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Each input form element in the pop-up form stands for a property of the selected 

feature (class) necessary to completely define its geometry. The interface includes 

some default values for each attribute to give designer an idea about the possible 

values. The interface also offers some design alternatives for the attribute 

definitions, for example, taper condition may be selected by entering a taper angle 

or final diameter, which presents flexible design options to the designer. In the 

interface depending on these design alternatives, some input form elements may be 

enabled or disabled to prevent possible errors before they occur. There are 

command buttons to perform the required actions in the interface. Cancel Button 

closes the form and returns the process to the features selection phase. 

 

After entering all the required parameters on the interface and clicking on the OK 

Button feature attributes definition phase is completed.  

 

Call Drawing Functions: When the OK Button on the interface is clicked, the 

following process, behind the mouse click, is performed in the feature modeler 

respectively: 

1. Feature attributes defined are set to the corresponding class properties, 

considering what the different design alternatives provide, 

2. To create an instance of selected feature, the corresponding function, which 

creates the solid feature, is called from the Features Dll. The attributes, 

which are already set, are sent to the class in the Features Dll. They are 

processed and the feature is created.  

 

As it was mentioned in Features Dll section, when one of its methods is called the 

corresponding object is activated and it creates a 2D region from the basic 

dimensions of feature, which are also sent. Then it creates a 3D feature solid by 

revolving or extruding the 2D region created, in AutoCAD’ active document. 

However, if it finds any errors while checking each attribute with the predefined 

constraints it raises en error and sends an error description and an error message 

back to the feature modeler, which will take the whole process back to feature 

attributes definition phase. 
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3.3.1.2) Part Creation 

 

Once the feature is generated, it has to be attached to the main rotational part. Part 

creation phase is composed of three main steps as it is shown in Figure 3.7, namely: 

(1) Feature Placement Option Selection, (2) Feature Placement Attributes Definition 

and (3) Performing Boolean Operation. 

 

The manufacturing features for rotational parts were classified as machining_ 

features and transition_features in the features library section. At this stage, in the 

feature model a further classification of the machining_features into parent_ 

machining_features and member_machining_features, is performed to develop an 

effective method for part creation. Machining_features, which creates the outer 

contour of the rotational part, in other words which are protrusion features are 

defined as “parent_machining_features”, these are outer_diameter, outer_diameter 

_to_shoulder, revolved_flat, revolved_round and spherical_cap. The other 

machining_features, which are subtraction features, in other words, which should 

be subtracted from the parent_machining_features, are defined as “member_ 

machining_features”; these are grooves, holes and slots. However, this should not 

be taken as a classification in the feature library, which only depends on the STEP. 

This classification is made just to facilitate implementation; it is only a logical 

classification. While simplifying part creation, this classification may limit the 

flexible design environment, for example a hole going through more than one 

feature was not allowed, since it can be a member of only one parent_machining_ 

feature at the design stage. These kinds of limitations are overcome by making it a 

member of the other parent_machining_feature it passes through in run time. 

Transition_features are treated as they are defined in the feature library. They may 

be protrusion or subtraction feature depending on their definitions in the feature 

definitions library. Parent_machining_features, member_machining_features and 

transition_features show differences in three steps of part creation. 

 

In this subsection, three steps of part creation and how differently the types of 

different manufacturing features are handled in these steps, will be described. 
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Feature Placement Option Selection: Feature modeler provides different feature 

placement options to different types of manufacturing features. Providing placement 

options simplifies the design process, prevents errors and makes the feature modeler 

more flexible. 

 

For parent_machining_features, feature placement options provided are selecting 

the feature to be left feature or right feature and taking its starting diameter from 

previous feature or not. Left or right feature selection is made through combo boxes 

placed in the interface and the diameter of the previous feature is automatically 

offered to the designer as its starting diameter. These options can be seen in the 

example pop-up form shown in Figure 3.9. For member_machining_features, 

feature placement option provided is selecting the parent_machining_feature on 

which the feature will be placed (if the member_machining_features will be placed 

to wall surface of the parent_machining_feature, left or right wall surfaces are also 

provided as options). For transition_features, feature placement option provided is 

selecting the parent_machining_feature on which the feature will be placed (if the 

transition_features is a fillet, two parent_machining_features between which the 

fillet will be placed are provided as options). In last two cases, the possible 

alternative parent_machining_features are automatically loaded to the design 

interfaces and the designer just makes a selection among them. This intelligent 

loading process examines the whole part and offers the designer every possible 

option for placement, for example, inner_grooves may be placed to the wall 

surfaces left between two parent_machining_features having different diameter 

values at the transition. By selecting one of the defined options, the feature 

placement option selection, step is completed. 

 

Feature Placement Attributes Definition: Feature placement attributes are the 

attributes needed to exactly place the feature to the desired position on the rotational 

part. Feature modeler provides different feature placement attributes to different 

types of manufacturing features. 

 

After selecting the feature placement options, for parent_machining_features and 
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transition_features there is no need to define any additional attributes to correctly 

place the feature on the part. Because the positions for placement are already 

known, such that the insertion point of the parent_machining_features is moved the 

center of the final diameter of the previous parent_machining_feature and the 

insertion point of transition_ features is moved to the point of transition. However, 

for member_machining_ features, definition of the feature placement attributes with 

respect to the parent_machining_feature selected may be required. It is “may be” 

because while this definition is not required for holes, for grooves and slots it is 

required to find out the distances and the orientation with respect to Feature 

Coordinate System (FCS) of the parent_machining_feature. These are the feature 

placement attributes and when they are defined according to FCS, feature insertion 

point is moved to the calculated placement point to complete the attachment 

process. To correctly place the feature on the part, feature placement attributes 

should be defined in the required cases and then feature placement attributes 

definitions step is completed. 

 

Performing Boolean Operation: As soon as the feature insertion point is moved to 

the placement point, after the first steps are completed, Boolean operation is 

performed at that intersecting point, provided that the feature does not interact with 

any other previously created feature on the part or the feature dimensions does not 

exceed the part dimensions. Boolean operation is either addition or subtraction 

depending on the manufacturing feature type selected. Boolean operation type for 

each feature is defined in feature definition library and when the feature is first 

selected in the feature creation phase; Boolean operation information is stored to be 

used at this step. Performing the Boolean operation, this step and part creation 

phase is completed. 

 

Feature creation and part creation phases are performed simultaneously for each 

feature provided that the designer is shielded from the explained complexities and 

details of the system and the designer only interacts with the interface elements and 

resulting 3D rotational part. 
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3.3.1.3) Error Handling  

 

In the feature modeler, there are two stages of error handling where error handling 

mechanisms are placed to track for possible errors, as it is shown in the feature 

modeler architecture Figure 3.7. The first stage is performed in the Features Dll, 

which is associated with the geometrical constraints of the feature, defined in the 

features definitions library. When feature modeler calls drawing functions, it sends 

feature geometrical attributes to the Features Dll as class properties, Feature Dll 

verify this data by checking it against the feature geometrical constraints, 

predefined “if” statements checking attributes according to geometrical definitions. 

If it passes from this verification, then feature can be delivered to the part creation 

phase. However, if this verification fails, means if the feature attributes are 

incorrectly defined, Features Dll raises a public error and sends this error back to 

the feature modeler attaching the error description in an error message. Error 

descriptions are created so that the designer can be informed about the possible 

problem. The feature modeler sets every variable, property etc. back to its initial 

state when it receives the public error, to avoid any errors because of cached 

definitions and the overall process goes back to feature attributes definition step.  

 

The second stage of error handling is performed before the Boolean operation. It 

has two levels of error tracking mechanisms. The first level is again performed by 

the Features Dll, verify feature placement attributes by checking the created feature 

geometry against part geometry this time, for example if the feature exceeds the 

boundaries of the part etc. If the feature passes from this verification, then the 

Boolean operation is performed. However, if this verification fails, means if the 

feature exceeds the part, Features Dll raises a public error and sends this error back 

to the feature modeler attaching the error description in an error message and the 

overall process goes back to feature placement attributes definition step. The second 

level is performed by the feature modeler this time; the feature modeler verifies the 

feature by checking its rightmost, leftmost, topmost and bottommost coordinates 

against the same coordinates of the previously created features to ensure that no 

feature interactions occur. If the feature passes from this verification, then the 



Boolean operation is performed. However, if this verification fails, means if there is 

feature interaction, feature modeler raises an error and pops up an error message 

including the error description and the overall process goes back to feature 

placement options selection step. Some of the example error messages are shown in 

Figure 3.10. 

 

 

 
 

Figure 3.10 Example Error Messages 

 

There also other error tracking mechanisms placed in the feature modeler. For 

example, if rightmost or leftmost diameter of the rotational part becomes zero, 

feature modeler pops up an error with description and does not allow the user to add 

more features at that direction or if there are no proper placement options for 

member_machining_features, feature modeler warns the designer about this 

condition and does not allow that features form to appear. 
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3.3.2) Feature Modeler Implementation 

 

To implement the proposed feature modeler in AutoCAD 2000i environment, 

Visual Basic for Applications and ActiveX technology is used. By this way, 

AutoCAD became capable of providing “feature based design of rotational parts 

based on STEP”. To achieve this goal following steps have to be fulfilled: 

1. Uninstalling the AutoCAD default menus, toolbars, and creating, on purpose, 

AutoCAD menus including the pull-down menu shown in Figure 3.8 

2. Designing the user interfaces in AutoCAD environment, using Visual Basic for 

Applications for AutoCAD, like the pop-up form interface shown in Figure 3.9. 

They will provide different design alternatives, to the designer for each feature 

and they will provide designers an easy to design tool for defining necessary 

feature attributes. 

3. Making the feature modeler, able to design complex rotational parts in a reliable 

manner, using features in the feature library, by means of programming 

necessary feature creation, part creation and placement program in the 

AutoCAD environment and placing necessary error tracking and handling 

mechanisms at defined levels. Developing this program satisfying the 

requirements and covering the capabilities defined in the three phases of feature 

modeler architecture. 

4. Integrating the tolerance data related interfaces and code within the “feature 

modeler for prismatic parts” developed in METU CIMLAB, by Saleh Amaitik 

[26, 27, 8], to the feature modeler for rotational parts. 

 

These steps to create the feature modeler are followed and the feature modeler is 

created within the scope of this study. In feature modeler architecture section, 

details about first step, second step and error tracking and handling mechanisms 

have been provided. In the following part of this section, the general methodology 

used to develop the program mentioned in the third step and general messaging 

protocols used to achieve the exchange of data throughout the system will be 

explained, a more detailed picture of the developed program in the feature modeler 

will be drawn. 
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There are two types of messages used in the feature modeler. The first one is 

between the pull-down menus and pop-up forms, and the second one is in between 

the interface and the features Dll. The first type of messages is send by means of 

macros created in AutoCAD environment. Once a selection on the pull-down menu 

is made, a macro generating a message is executed and this message is send to 

public module in the program, which calls the show function of the corresponding 

pop-up form, and the form appears. The second types of bidirectional messages are 

sent by means of function calls, forward and error messages, backwards. The 

function call messages activate the classes in the Features Dll, and class properties 

are attached in these messages. Error messages sent from Features Dll to the feature 

modeler facilitate correct design and error descriptions are attached to these 

messages. The interface is so designed that it automatically generates the necessary 

messages protocol and perform to establish the required communication throughout 

the system, saving the designer from composing messages.  

 

In the part creation subsection of the feature modeler architecture, it was mentioned 

that according to the general logic behind the rotational part design, manufacturing 

features are logically classified into three: parent_machining_features, 

member_machining_features and transition_features from the part creation point of 

view. Member_machining_features are accepted to the members of parent_ 

machining_features. To be able to transfer this “belonging” behavior” to the 

programming environment, parent_machining_features and member_machining_ 

features are defined in two dimensional arrays, like it is shown below: (assuming 

maximum number of twenty five right and left features and twenty member features 

on a parent feature) 

Public MFeatures(-25 To 25, 0 To 20) As New Machining_Features 

 

In this variable definition each machining_feature instance that will be created in 

the feature modeler is defined in terms of the machining_feature class in the feature 

library, in a two dimensional array. The first index of the array indicates the parent_ 

machining_feature and the second index indicates the member_machining_feature. 



Parent features index has the same structure like in the line scale shown in Figure 

3.11. At the starting point of the design process, if a the designer chooses the 

alternative of designing a right feature then the parent feature’s index will be (1,0) 

in the array and the following right feature will have (2,0) as the index number. 

(vice versa is valid for left features that are (-1,0), (-2,0)…) If a member feature is 

attached on the first right feature created, member feature’s index will be (1,1) and 

the following member feature on the same parent feature will have the index (1,2) 

(vice versa is valid for the left features (-1,1), (-1,2)…) 
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Figure 3.11 Parent_machining_features index definition 

 

Transition_features are defined in an other array; the upper bound of the array is 

one less then the upper bound index of the array that indicates parent_machining_ 

feature. The first member of this array indicates the transition_ feature between the 

first and second right parent_machining_features. One dimensional transition_ 

feature array definition is shown below: 

Public TFeatures(-24 To 24) As New Transition_Features 

 

These array definitions for manufacturing features facilitate to store and exchange 

manufacturing features design information data throughout the system. Once the 

array elements are set with the corresponding features data, this data is stored in the 

array during run time, until the program is terminated or new part is started to be 

designed.  

 

 First Right Feature 

0 1 2 3  -1    -2 

 Left Features  Right Features 

 -3 ... ... 

 First Left Feature  WCS 
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The described approach in developing the feature modeler provided a clear and 

natural way to organize data in the feature modeler. It also allows users to interact 

easily with the AutoCAD environment. Relating the feature modeler with the 

Features Dll and feature definitions library, the feature modeler gain the 

functionality to be “STEP Based”, “Feature Based” and “Object Oriented”, which 

improves its organization and clarity. By this way, the main objective of the thesis 

has also been achieved. 

 

3.4) Preprocessor and STEP-XML File 
 

The main goal of developing a preprocessor is to create self-descriptive, clear, 

reliable, neutral output file including all the manufacturing features used in the 

entire rotational part design, their placement location coordinates, feature types and 

their identifications, data defining feature geometry and additional attributes 

attached to the feature like tolerance data. While including all these data, to include 

absolute dimensions, especially for the placement coordinates, with respect to 

World Coordinate System (WCS) used in feature modeler, is important to facilitate 

the appropriate and efficient use of these dimensions in CAM or CAPP systems. 

 

XML and EXPRESS, for which the basic concepts were described in Chapter 2 and 

in this chapter respectively, are now used as the fundamental technologies behind 

the preprocessor. The raising characteristics of these technologies and other 

standard technical data formats, in the scope of selection of a standard output file 

format, can be summarized as follows. EXPRESS is a very comprehensive 

language, when its inheritance and rule-based definition model is concerned. 

However, it is hard to learn and due to the extensive inheritance relationships 

between geometric entities, it is not fully implemental. Unlike languages such as 

XML, EXPRESS is rarely used in other domains [28]. This means, an output file 

directly in EXPRESS format is not feasible and not acceptable from the 

preprocessor objectives point of view. Therefore, it was decided that a new 

language was desirable as a standard output file format and EXPRESS Schema has 

been converted into that format. As an alterative, STEP’s Part 21 file format that 
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uses a style, which writes the information one at a time, avoiding the possibility of 

any contradictions in the data is selected. However, the style assumes that the data 

will only be processed by software that designers will only look at the data to create 

test examples or find bugs, and that making the data more easily readable by 

designers is less important than eliminating redundancies. This minimalist 

assumption contradicts with the design requirements of the output file style and it 

was popular before the advent of XML, which is created as a descriptive format for 

technical data that could be understood with less difficulty than other technical data 

formats. XML is a standard for describing data exchange files, nowadays. Since 

there is a semantic gap between EXPRESS and XML, simply converting EXPRESS 

data into XML data adds a lot of additional tags without making XML easier to be 

understood. Therefore, additional technologies have to be used to bridge this gap, 

like STEP Part 21. However, STEP Part 21 also puts many tags into XML 

definition. International recognition of this problem and the success of XML, 

resulted in the introduction of STEP Part 28, which best fits with the objectives of 

the preprocessor defined. Therefore, the preprocessor uses the STEP Part 28 

standard, included recently into STEP, to map EXPRESS Schema into XML 

Schema and to create the STEP-XML output file. 

 

In this section first, the structure of the XML Schema invented, which establishes 

the basic working methodology of the preprocessor and stands for the standard 

format of the STEP-XML output file, will be described. Then, how the processor 

creates the STEP-XML output file in the invented format will be explained. 

 

To map EXPRESS Schema to STEP-XML output file, using the rules set in STEP 

Part 28, a mapping algorithm is developed. According to this simple mapping 

algorithm the main idea is, each element is the XML equivalent of an entity in 

EXPRESS. First owner elements and child elements are identified among the 

EXPRESS entities defining the feature, to establish a nesting relationship. Pick a tag 

name for each element from the available EXPRESS names. Finally, place the 

nested sequence rows in a logical manner, taking the nesting relationships created 

into account for each feature forming the entire rotational part.  
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Each STEP-XML file starts with a STEP-XML tag with an attribute defining the 

related STEP Part standard used while creating it. In the entire STEP-XML file, 

nothing can appear outside of this tag. Then file file_schema and file_description 

tags defining the output file are placed, respectively as shown below: 

-<STEP-XML xmlc="ISO 10303-28"> 

<file_schema>feature_based_design_of_rotational_parts</file_schema>  

<file_description>AP224 file</file_description>  

</STEP-XML> 

 

Then, according to the STEP AP 224 EXPRESS schema used, the outermost 

element appearing after the STEP-XML tag will be the tag for one of the machining 

_feature or transition_feature elements. This means that every possible feature used 

in the feature modeler is one child element of one the owner elements, 

machining_feature or transition_feature. These element’s tag names are selected so 

that they are the same with their EXPRESS entity names to ease understanding, this 

way of naming the tags are preferred throughout the entire STEP-XML output file. 

Inside one of these elements, placement coordinates, feature geometrical attributes 

definition and tolerance information elements are placed, respectively. Placement 

coordinates are the first appearing elements and they are placed in between 

placement tags, which act as an owner of the location element this time, with 

location tag. The only thing appears different from the traditional XML format, is 

the use of Object Serialization Early Binding (OSEB), a rule set defined in STEP 

Part 28. OSEB is used to simplify the STEP-XML output file by taking all the child 

elements of an element as its attributes inside the tag, and closing the tag without 

any tag name declaration. The features of STEP-XML file mentioned above are 

presented in a simple sample illustration part taken from the output file; the use of 

OSEB is shown for the element location:  

-<machining_feature> 

-<placement> 

<location x="0" y="0" z="50" />  

</placement> 

</machining_feature> 



 69

At this stage, in the STEP-XML output file, elements mapping to the feature 

geometry attributes appear. These elements and their tags show differences for 

different features. Therefore, this part of the STEP-XML file will be illustrated on a 

real example in the next chapter, Chapter 4. The most general tags that can be seen 

at this stage are, a comment telling which feature is defined and a feature name tag 

describing the feature id as its attribute. A simple example for these general tags is 

shown below: 

<!--  Round Hole Feature Definition  -->  

-<round_hole id="RDH1"> 

</round_hole> 

 

Lastly, elements mapping the tolerance data attached on the feature appear in the 

STEP-XML output file. The tolerance representation starts with an its_tolerance tag 

and continues with a comment explaining the type of the tolerance attached on the 

feature. Then according to the tolerance type attached on the feature, corresponding 

EXPRESS entities are mapped as tolerance elements. In the example below, 

cylindricity_tolerance, one of the geometrical tolerances and its child elements are 

shown: 

-<its_tolerance> 

<!-- Geometric Tolerance -->  

-<cylindricity_tolerance> 

<significant_digits>1</significant_digits>  

<unit_of_measure>Millimeter</unit_of_measure>  

<tolerance_value>0.1</tolerance_value>  

</cylindricity_tolerance> 

</its_tolerance> 

 

The “-” signs shown in all of the examples before the tag names of owner elements 

means that they are expanded views of that element. When viewed in any of the 

browsers or editors, XML provides the ability to be displayed with color coded 

owner and child elements. A plus (+) or minus sign (-) to the left of the elements 

can be clicked to expand or collapse the element structure. 
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Once the STEP-XML output file structure is developed, the resulting rotational part 

design data should be translated into STEP-XML data, by means of a unidirectional 

preprocessor. In the preprocessor STEP-XML output file creation process, is carried 

out in two stages. First, features data related to its geometrical definition is 

translated into STEP-XML format, by analyzing each feature forming the resulting 

rotational part and translating their geometrical entities into the described format. 

Then, additional attributes, tolerance data, attached to the features are analyzed for 

each feature and translated into STEP-XML format. By translation, it is meant that 

mapping the EXPRESS format for each feature to the defined STEP-XML format. 

The following part of this section, describes the two stages of output file creation in 

a detailed manner  

 

When the rotational part design in the feature modeler is completed and the 

designer selects the “Export STEP-XML AP224”, pull-down menu option placed 

under the “File Menu” in AutoCAD interface, output file creation process is 

triggered with a message sent to the Preprocessor by means of execution of a macro 

developed in the feature modeler. As soon as the preprocessor receives this 

message, it first creates the header part, describing the output file, of the STEP-

XML file. Then, for each feature exists in the rotational part, it calls the 

corresponding “EXPORT_XML” function of that features, in the Features Dll. 

Preprocessor attaches the STEP-XML output file name selected by the designer and 

a tab position indicating the last position of the cursor in the nested sequence. As it 

was mentioned in previous sections, in Features Dll “EXPORT_XML” functions 

were created for each feature using the STEP-XML mapping algorithm defined in 

this section. At this stage, when the feature class in Features Dll is activated by 

calling one of its method, “EXPORT_XML” function, receiving the STEP-XML 

file name and tab position, opens the output file and appends the features 

geometrical data XML elements to the end of the file at its correct position in the 

nested sequence. A similar process is performed for the tolerance data. This time, a 

general “EXPORT_Tolerances_XML” called for each feature, it first examines if 

any tolerance data is attached on that feature or not. Then, for each type of tolerance 

data attached on the feature, it opens the output file and appends the 
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features tolerance data XML elements to the end of the file at its the correct position 

in the nested sequence. Once, this process is completed the STEP-XML output file, 

representing the same structure with the STEP AP224, is successfully created. A 

sample part of the developed code to implement the preprocessor is given in the 

Appendix A.2, including the two stages of messaging described in this section.  

 

When a CAPP system, STEP-NC or G-Code generator need to be developed for 

rotational parts, the resulting STEP-XML file will be a highly appropriate input data 

for integration, which is self-describing and a programmer can parse it without the 

need for understanding EXPRESS. This way the data exchange, thus the integration 

between Feature Modeler, CAM and CAPP systems for rotational parts, has been 

facilitated. 
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CHAPTER 4 
 

 

SYSTEM DEVELOPMENT 
 

 
In the previous chapter, Chapter 3, a comprehensive system model has been 

presented. Each component, acting as a building block in constructing the entire 

system, is described in every detail, in a logical order. The architectures of the 

components, the methodologies developed to build up those components, the 

capabilities of the components, the benefits that the system gain through the 

existence, functions or outputs of those components and the developed 

implementation methods were the main topics in describing each component. Even 

though the system components are explained in every detail, while doing this in 

some cases the necessity of giving illustrative examples out from the work done, 

arouse. However, due to the extensive number of features and the sequential and 

inheritably conjunctive structure of the work done, for the sake of readability, 

understandability and completeness it is found more appropriate not to break the 

chain in the structure of the work done. Therefore, work done in developing the 

system is collected under this chapter to present it in the same order followed while 

the system components are described in Chapter 3. In addition, by this way it will 

be possible to come up a task list that guides through the system development, 

which means the sections of chapter also provides a checklist used during the 

development of the system. 

 

In Chapter 3, at each section describing the methodology related to the illustrative 

material, presented in this chapter, Chapter 4 is referred to establish a relationship 

between the work done in system development and the corresponding methodology 

and functionality developed.  
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In this chapter, to explain the work done to develop the entire system, an example 

manufacturing feature for rotational parts, that is outer_round, will be selected and 

the sample work done for each feature, during the system development will be 

illustrated on that feature. To present the system development steps, this method is 

selected because most of the steps followed in the system development are 

repeating each other and to prevent the resulting document adding up to a huge 

amount. Therefore, projection of the total work done on outer_round will not cause 

any information lack for the sake of completeness. The following first two sections 

in this chapter will take the outer_round feature from just being a definition in 

STEP AP 224 documentation to becoming a superclass in the hierarchy. Then, the 

latter section makes it a member of the designed rotational part in the feature 

modeler. Lastly, it will be represented in STEP-XML output file. 

 

4.1) Feature Definition 
 

In previous sections, it was emphasized that the STEP AP224 is chosen as the best 

alternative product data model for the feature library, which will provide the 

standard definitions for feature based design in feature modeler. After this decision, 

Application Reference Model (ARM) and Application Interpreted Model (AIM) of 

the AP 224 are reviewed. This study lead to an understanding about, how the 

information located in the standard could be used to develop the system and how to 

track the information related to features throughout the system. Then, the 

comprehensive process of extracting features with their definitions from the 

standard is completed. Finally, the collected feature definitions data is documented 

in features definitions library, for each feature. A brief summary of the 

documentation about the feature classifications and their definitions is provided in 

Chapter 3. Also in Appendix B, feature geometries library is presented which is a 

part of the documentation created. However, it is certain that this documentation 

includes much more details for every feature. In the following subsections, the 

explained process will be illustrated on the example outer_round feature step by 

step. 
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4.1.1) STEP AP224 Definition 

 

First, ARM representation of outer_round is found out in the STEP AP 224 

documentation, as an application object. ARM representations lists application 

objects alphabetically, they are not listed feature by feature and application objects 

may be used to define the attributes of other application objects. Therefore, to 

understand the flow of information between application objects and identify the 

where the appropriate data is coming from or going to, AIM representations of each 

feature is referred at this stage. The EXPRESS-G Diagram, located in the AIM 

representation of STEP AP 224, for outer_round is shown in Figure 4.1 [19]. In the 

EXPRESS-G Diagram, it is first recognized that outer_diameter_to_shoulder and 

outer_diameter are subtypes of outer_round feature. Diameter, feature_length and 

reduced_size are the attributes defining the feature outer_diameter. It is also seen 

that, while diameter and feature_length are the attributes defined directly under the 

ARM description of outer_diameter, reduced_size attribute refers to another 

application object, “taper_select”. Thus, the attributes defining the taper_select 

application object should also be included into the definition of outer_diameter. In 

the same way, v_shape_boundary and diameter are the attributes defining the 

feature outer_diameter_to_shoulder. While diameter attribute is defined directly 

under the ARM description of outer_diameter_to_shoulder, v_shape_boundary 

attribute refers to another application object, “vee_profile”. Thus, the attributes 

defining the vee_profile application object should also be included to the definition 

of outer_diameter_to_shoulder. At the end applications objects, which are used to 

define the outer_round, are brought together with the help of associated EXPRESS-

G Diagram, to completely understand its definition. By this way, all of the attributes 

defining outer_round are identified and defined.  

 

The output of the work stated above, for outer_round, will be presented in the next 

subsection in the feature definitions library documentation, together with the 

additional attributes defined for it to facilitate programming in the later stages of 

system development. 

 

 



 

Figure 4.1 EXPRESS-G Diagram for the feature outer_round 

 

4.1.2) Feature Library Definition 

 

After discovering the STEP definition of the features with all of its attributes 

resulting from the inheriting structure of STEP AP 224, by including some 

additional attributes to the definition of the features and by identifying the 

EXPRESS Schemas for the features, feature definitions library documentation is 

prepared. In this subsection, as a part of the entire documentation, documentation 

for outer_round will be presented. By additional attributes, what is meant is, the 

attributes created for each feature to facilitate its representation and use during the 

development of Features Dll and Feature Modeler. Additional attributes include: 

 2D sketches with geometrical definitions attached to be able to create 

2D regions in Features Dll, 

 Generation techniques to create the 3D solid from 2D region in Features 

Dll, 

 Insertion points to stand as the base point while feature placed on the 

part in Feature Modeler, 

  Boolean operations to identify if the feature will be added to or 

subtracted from the part in Feature Modeler, 
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 Geometrical constraints to prove the reliable design environment in 

feature Modeler by means of providing bases for the error tracking and 

handling mechanisms placed throughout the system. 

 

The following documentation harmonizes both the STEP definition and feature 

library definition of outer_round. 

 

An outer_round is a type of machining_feature that is an outline or significant 

shape that is swept through a complete revolution about an axis. Each outer_round 

is either an outer_diameter or an outer_diameter_to_shoulder. These words can be 

translated into EXPRESS language as follows: 

ENTITY outer_round; 

ABSTRACT SUPERTYPE OF (ONEOF (outer_diameter, outer_diameter 

_to _shoulder));  

SUBTYPE OF (machining_feature);  

END_ENTITY; -- Outer_round 

 

The outer_diameter is a subtype of outer_round that is a sweeping of an outline 

specified by a line segment one complete revolution about an axis. The line is finite 

in length and coplanar with the axis. The outer_diameter may have a constant 

diameter around the axis of rotation that is straight_outer_diameter, or it may be 

tapered that is tapered_outer_diameter. Diameter, feature_length and reduced_size 

are the parameters necessary to completely define the outer_diameter geometry. 

The STEP AP 224 ARM representation of outer_diameter feature is shown in 

Figure 4.2 [19]. The diameter (D) specifies the maximum diametric size of an 

outer_ diameter. The feature_length (L) specifies the size of an outer_diameter 

feature, measured along the feature's axis. Reduced_size can be selected between 

two possibilities. If a diameter_taper is selected, this is the diameter of the opposite 

side of the feature’s placement co-ordinate system that is final_diameter (DF). If an 

angle_taper is selected for describing the cone, this angle is the taper_angle (α) 

between the negative x-axis and the line on the positive y-side of the x-axis defined 

by the intersection of the cone with the xy-plane of the feature, extended to meet the  

http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_diameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_diameter_to_shoulder.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_diameter_to_shoulder.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Machining_feature.html


x-axis. An angle greater than 0 degrees and less than 90 degrees indicates a 

tapered_ outer_diameter with decreasing diameter for increasing x-values, an angle 

between 90 degrees and 180 degrees indicates a tapered_outer_diameter with 

increasing diameter for increasing x-values. The way of saying all these words in 

EXPRESS language is given below: 

ENTITY outer_diameter 

SUBTYPE OF (outer_round);  

reduced_size: OPTIONAL taper_select;  

feature_length: numeric_parameter;  

diameter: numeric_parameter;  

END_ENTITY; -- Outer_diameter 

TYPE taper_select = SELECT (angle_taper, diameter_taper); 

END_TYPE; -- taper_select 

ENTITY angle_taper; 

angle: numeric_parameter;  

END_ENTITY; -- Angle_taper 

ENTITY diameter_taper; 

final_diameter: numeric_parameter;  

END_ENTITY; -- Diameter_taper 

 

 

 
 

Figure 4.2 STEP AP 224 ARM Representation of outer_round 
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http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_round.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Taper_select.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Angle_taper.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Diameter_taper.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html


In 3D outer_diameter feature creation, a planar profile enclosed by points P1, P2, P3, 

and P4 is created and a feature volume is generated by revolution of the planar 

profile 3600 about x-axis. Figure 4.3, Figure 4.4 and Figure 4.5 demonstrates the 

generation process for the different types of outer_diameter and the required 

parameters for generation. The resulting feature will be added to the part for all 

there types of outer_diameter. 
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Figure 4.3 Straight_outer_diameter 

 

 

Geometrical definitions for the outer_diameter feature in Figure 4.3: 

P1 (0, 0, 0) (insertion point) 

P2 (0, D/2, 0) 

P3 (L, D/2, 0) 

P4 (L, 0, 0) 

 

Geometrical constraints for the outer_diameter feature in Figure 4.3: 

0,0 >> LD  
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Figure 4.4 Tapered_outer_diameter, decreasing diameter 
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Figure 4.5 Tapered_outer_diameter, increasing diameter 

 

Geometrical definitions for the outer_diameter feature in Figure 4.4 and Figure 4.5: 

P1 (0, 0, 0) (insertion point) 

P2 (0, D/2, 0) 

P3 (L, DF/2, 0) 

P4 (L, 0, 0) 
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Geometrical constraints for the outer_diameter feature in Figure 4.4 and Figure 4.5: 

0,0 >> LD  

)18090( 0≤<α , for increasing diameter case 

)90)max(0( 0<≤≤ αα , for decreasing diameter case 

 

An outer_diameter_to_shoulder is a subtype of outer_round that is a sweeping of a 

shape one complete revolution about an axis. The shape shall be specified by two 

lines that connect at a point and extend finitely defined by diameters or lengths. The 

enclosed angle shall be smaller than a straight angle. The intersection of the two 

lines need not be blended with a radius. Vee_profile specifies the v_shape_ 

boundary of the outer_diameter_to_shoulder. The STEP AP 224 ARM 

representation of vee_profile is shown in Figure 4.6 [19]. Diameter and attributes 

inherited from vee_profile those are, profile_radius, tilt_angle, profile_angle 

(optional) are the parameters necessary to completely define geometry. However, 

the definition for vee_profile is lacking information to completely define the 

outer_diameter_to_shoulder feature geometry. Thus, STEP AP 238 is referenced in 

this case, as it is mentioned in previous chapters. The STEP AP 238 ARM 

representation of vee_profile is shown in Figure 4.7. As it is seen from Figure 4.7, 

AP 238 adds first_side_length (diameter_previous_feature), and second_side_ 

length (final_diameter) attributes to the definition. These attributes are adapted to 

more feasible ones, for the designer to input without further calculations. 

Nevertheless, in the output file, the attributes are exported in the represented way. 

The diameter (D) specifies the size of the part at the point of the vee, or where the 

two sides come together, swept about an axis of rotation. The profile_angle (α) 

specifies the size of the angle between the two sides of the vee_profile. The angle 

shall be greater than 0 and not more than 180 degrees. The profile_radius (r) 

specifies the size of the blend radius at the point of the vee, or where the two sides 

come together (profile origin, I). The tilt_angle (β) specifies the size of the angle 

between one side of the vee_profile and the x-axis of the local coordinate system 

that defines the vee_profile orientation on the part. The first_side_length (L1) 

indicates the distance, as measured from the profile origin, along the side of the vee 
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located by the sum of the tilt_angle and profile_angle. The first_side_length 

parameter can be calculated when the diameter_previous_feature (DP) parameter is 

known. The second_side_length (L2) indicates the distance, as measured from the 

profile origin, along the side of the vee located by the tilt_angle parameter. The 

second_side_length parameter can be calculated when the final_diameter (DF) 

parameter is known.  

 

Design using diameters or design using lengths are the two possible choices to 

complete the geometry definition of feature outer_diameter_to_ shoulder. The 

STEP AP 224 ARM representation of outer_diameter_to_shoulder feature is shown 

in Figure 4.8 [19]. The way of saying all these words in EXPRESS language is 

given below: 

 

ENTITY outer_diameter_to_shoulder 

SUBTYPE OF (outer_round);  

diameter: numeric_parameter;  

v_shape_boundary: vee_profile;  

END_ENTITY; -- Outer_diameter_to_shoulder 

 

ENTITY vee_profile 

SUBTYPE OF (open_profile);  

profile_radius: OPTIONAL numeric_parameter;  

tilt_angle: numeric_parameter;  

profile_angle: numeric_parameter; 

first_side_length: numeric_parameter; 

second_side_length: numeric_parameter;  

END_ENTITY; -- Vee_profile 

 

http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Outer_round.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Vee_profile.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Open_profile.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html
http://www.lksoft.com/api_ref/jsdai/SAp224_arm/Numeric_parameter.html


 
 

Figure 4.6 STEP AP 224 ARM Representation of Vee_profile 

 

 
 

Figure 4.7 STEP AP 238 ARM Representation of Vee_profile 

 

 
 

Figure 4.8 STEP AP 224 ARM Representation of Outer_diameter_to_shoulder 
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In 3D outer_diameter_to_shoulder feature creation, a planar profile enclosed by 

points P1, P2, P3, P4, P5, P6 and P7 is created and feature volume is generated by 

revolution of the planar profile 3600 about x-axis. Figure 4.9 demonstrates the 

generation process and the required parameters for generation. The resulting feature 

will be added to the part. 
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Figure 4.9 Outer_diameter_to_shoulder 

 

Geometrical Definitions for the outer_diameter_to_shoulder feature in Figure 4.9: 

P1 (0, 0, 0) (insertion point) 

P2 (0, DP/2, 0) 

P3 (L3, D/2+K, 0) 

P4 (L1 + X, D/2 + Y, 0) 

P5 (L4, D/2 + N, 0) 

P6 (L5, DF/2, 0) 

P7 (L5, 0, 0) 

Case a: Design Using Diameters 

)tan(2
)(

1 βα +×−
−

=
DDL P  
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Geometrical Constraints for the outer_diameter_to_shoulder feature in Figure 4.9: 

0,0,0,0 21 ≥>>> rLLD  

DDDD PF >> ,  
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4.2) Feature Class Creation 
 

To create the feature class with respect to the object oriented approach explained in 

Chapter 3, objects, their properties and methods, classes, superclasses and 

subclasses has to be identified out of the documentation presented in the previous 

section. As it was explained, the best way to do it is to create UML Diagrams, 

representing the inherited structure of the classes with properties and methods 

attached on them. For each feature, UML Diagrams are created to facilitate the class 

creation corresponding to that feature. In Figure 4.10, UML diagram for outer_ 

round is shown, which is created by using the documentation presented in the 

previous section, especially EXPRESS Schemas for outer_round. Some other 

properties and methods other than the ones in the EXPRESS schemas are also 

included in the UML Diagram, because they are required when the feature is placed 

on the part and when the STEP-XML output file is created. 

 

 

 

Figure 4.10 UML Diagram for the feature outer_round 
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The object oriented approach used in developing the Features Dll file and the 

functionality of the Features Dll file has been covered in every detail, in Chapter 3. 

That general methodology is valid for each feature in the features library. After 

carrying out the necessary steps explained in Chapter 3, outer_diameter and 

outer_diameter_to_shoulder classes are created, taking the presented UML 

Diagram as basis reference for this programming process. Sample code out of the 

outer_ diameter class in the Features Dll, including 2D feature region creation and 

3D feature solid creation using geometrical definitions presented, is given in 

Appendix A.3. The created classes can be used throughout the entire system, 

especially from the feature modeler.  

 

Figure 4.11 demonstrates the use of outer_diameter class in one of the system 

components. When a variable, “OuterDiameter”, is defined in terms of the 

outer_diameter class, that variable gain access to the properties and methods of that 

class. Each time “OuterDiameter” variable calls any of the methods of the outer_ 

diameter class, the messaging protocol defined in Chapter 3, play its role and the 

necessary action is performed. This process provides the basic answer to the 

question, “How does the Features Dll and its classes are used from the feature 

modeler?”. 

 

 

 
 

Figure 4.11 Outer_diameter class usage 
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4.3) Implementation in Feature Modeler 
 

Feature modeler first creates the feature in World Coordinate System (WCS) of the 

active document in AutoCAD, by calling the associated drawing function of the 

feature class and sending the feature attributes defined by the designer. Then, the 

feature is automatically moved to the position according to the feature placement 

options selected and feature placement attributes defined by the user. This process 

is extensively defined in Chapter 3. In this section the creation of an instance, 

tapered_outer_diameter, feature will be demonstrated on an example run scenario, 

without going deep into the processes executing behind, which have already been 

described in Chapter 3. 

 

The design process in the feature starts with the selection of the feature from the 

pull-down menu developed and installed into AutoCAD environment. Therefore, to 

create the tapered_outer_diameter feature, the pull-down menu selection shown in 

Figure 4.12 has to be done first. When this menu option is selected a macro, calling 

the pop-up form is executed. The macro is presented below: 

Sub tapered_outer_diameter0() 

    tapered_outer_diameter_form.Show 

End Sub 

 

 

 

Figure 4.12 Pull-down Menu in Feature Modeler to Select outer_round 
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When called by the macro, tapered_outer_diameter_form appears, shown in Figure 

4.14 and waits for designer input. The attributes defined for tapered_outer_ 

diameter in the feature definition section are all designed on the form interface. 

Additionally, attributes related to part creation are included. According to the 

logical classification done in the feature modeler section of Chapter 3, tapered_ 

outer_diameter is a parent_machining_feature. Therefore, placement options 

provided are to be a right/left feature and taking its starting diameter from previous 

feature or not. There is no need to define the placement attributes (these properties 

of parent_machining_features were explained in Chapter 3). When the designer 

inputs all the desired field and press “OK”, the code embedded into the interface is 

activated. The feature modeler first sets the entered variables to the properties of 

outer_diameter class. One example is shown below: 

MFeatures(FeatSequence, 0).OuterDiameter.feature_length = Val(Length) 

 

How the MFeatures array is set to machining_features class and the meaning of the 

indexes of the array were described in Chapter 3. Here, feature_length property of 

the outer_diameter class is set to the value of the input in the “Length” textbox.  

 

 

 

Figure 4.14 Pop-up  Form Interface used to create tapered_outer_diameter, named 

tapered_outer_diameter_form 
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Setting all the properties of outer_diameter class, the feature modeler calls the 

TaperedOuterDiameter function of the outer_diameter class, which will first create 

the feature and then place it on the part according to the options selected. Below 

example shows how this function is called: 

Set CurrPFeat=MFeatures(FeatSequence,0).outerdiameter.TaperedOuterDiameter 

Set FeatureSolids (FeatSequence, 0) = CurrentPFeat 

 

CurrPFeat (current parent function), which is an AutoCAD 3D solid object, is 

made to the store tapered_outer_diameter, by setting it to the function. Then, the 

feature is taken into an array into a 3D solid objects array, with a correct index. This 

will make the tapered_outer_diameter accessible whenever necessary. 

 

By this way, the tapered_outer_diameter feature is created and placed on the part, 

by the feature modeler. Additionally, the data related to the feature is stored in 

arrays to be used in the creation of other features, first to calculate placement 

location automatically and then to prevent feature interactions.  

 

4.4) Exporting STEP-XML  
 

In Chapter 3, the format of STEP-XML output file, the structure of the preprocessor 

creating the STEP-XML file and the elements and their tags appearing in the output 

file has been described. However, elements mapping to the feature geometry was 

lacking. In this section a simple output file including the XML elements and their 

tags, which maps to the definition of the feature outer_diameter is shown. The 

sample STEP-XML output file is given below: 

-<STEP-XML xmlc="ISO 10303-28"> 

<file_schema>feature_based_design_of_rotational_parts</file_schema>  

<file_description>AP224 file</file_description>  

-<machining_feature> 

-<placement> 

<location x="0" y="0" z="100" />  

</placement> 
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<!--  Outer Diameter Feature Definition  -->  

-<outer_diameter id="SOD2"> 

<feature_length length="200" />  

<diameter diameter="100" />  

</outer_diameter> 

</machining_feature> 

</STEP-XML> 

 

In this file, an outer_diameter with a feature ID, “SOD2” is represented. By looking 

at the file, it is easily understood that the feature is designed with a feature_length 

attribute value of “200 mm” and with a diameter value of “100 mm”. These 

definitions are placed in between the tags of the child elements of outer_diameter 

element, they are feature_length and diameter, as it was defined for a straight_outer 

_diameter. It is also recognized that, it is a right feature, but not the first right 

feature and placed “200 mm” away from the WCS. This information is placed in 

between the tags of the child element of placement, which is location. 
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CHAPTER 5 
 

 

SAMPLE APPLICATIONS 
 

 

In this chapter, two sample rotational parts, which are designed by using the 

developed feature modeler and some parts out from their correspondent STEP XML 

file generated using the developed preprocessor, will be presented. These two 

examples are so chosen that they enable to figure out the design capabilities of the 

feature modeler, how effective and rather complex rotational parts could be 

designed by means of using variety of features in an orderly manner. First sample 

rotational part consists of an outer (parent) manufacturing feature and a number of 

inner (member) manufacturing features and the second one consists of number of 

outer and inner manufacturing features, provided that most of the design 

alternatives that the feature modeler offers are covered. The STEP XML outputs for 

selected features in the part will provide an understanding about how the output file 

is organized and how to read the data in the output file. In the following two 

sections, sample parts and their output files will be presented.  

 

5.1) First Sample 
 

First sample provides an understanding about the wide variety of possible inner 

features and their orientations those can be used in rotational part design. In Figure 

6.1 and Figure 6.2, dimensions necessary to design the rotational part in the feature 

modeler are given in two different views. These dimensions are given considering 

the feature geometric attributes and absolute placement attributes of features with 

respect to World Coordinate System (WCS). Placement attributes are given 

considering machining and tool aspects. In Figure 6.3, each feature constructing the 

overall sample part is labeled. The sample part is fully designed using the feature  

 



modeler and the layout drawings are obtained using the functionality of AutoCAD, 

in which the feature modeler is embedded. 

 

 

Figure 6.1 Dimensions to Design Sample Part 1 in Feature Modeler (front view) 

 

 

 

Figure 6.2 Dimensions to Design Sample Part 1 in Feature Modeler (right view) 
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Figure 6.3 Top(upper) and Section(lower) Views of Sample Part 1 

 

Figure 6.4 presents the 3D solid and isometric views of the sample part to provide a 

better understanding about its 3D geometry. As is it seen in the sample part figures, 

the rotational part designed may consist of an outer manufacturing feature and many 

inner features attached on it. Inner features may be outer or inner grooves those may 

have different types of profiles (like partial circular, tee, vee profiles...) or axial 

round, counterbore or countersunk holes those have a variety of bottom and taper 

conditions. The inner features may be attached to any orientation on the part, unless 

it interacts with a pre-designed feature on the part.  
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Figure 6.4 Isometric (upper) and Solid (lower) Views of Sample Part 1 

 

The developed error handling mechanisms mentioned in previous chapters, check 

feature interactions as each feature is created to avoid design of meaningless part 

geometries. In case of feature interactions, the feature modeler warns and informs 

the designer about the condition by means of error messages and by showing the 

interacting case on the screen. When, the designer is made to recognize the 

interacting case the newly attached interacting feature is deleted from the overall 

part.  
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Once the design process is successfully completed, the feature information may be 

exported as an STEP XML design output file within the feature modeler. By means 

of triggering the preprocessor with a button and entering a name for the output file 

the related data is exported into a neutral file. The preprocessor first places the outer 

feature definition in the output file, and then places the inner features in the order of 

their creation on the outer feature. The STEP XML file including every necessary 

feature data is fairly long therefore, in the following part of this section, sample 

portion of the output file will be presented. The sample STEP XML output 

representation includes definitions for machining feature straight outer diameter and 

vee groove, which are placed on the first sample rotational part. (third and fifth 

features in Figure 6.3, respectively) 

 

- <machining_feature> 

 

- <!-- Straight Outer Diameter, SOD1 -->  

- <placement> 

  <location x="0" y="0" z="0" />  

- <!-- Right Feature  -->   

- <axis> 

  <x angle_x="0" angle_y="90" angle_z="-90" />  

  <y angle_x="-90" angle_y="0" angle_z="90" />  

  <z angle_x="90" angle_y="-90" angle_z="0" />  

  </axis> 

  </placement> 

 

- <!-- Outer Diameter Feature Definition  -->  

- <outer_diameter id="SOD1"> 

  <feature_length>400</feature_length>  

  <diameter>200</diameter>  

  </outer_diameter> 

 

  </machining_feature> 
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- <machining_feature> 

 

- <!-- Vee Groove, VEG1,(1)-->  

- <placement> 

  <location x="80" y="0" z="180" />  

- <!-- Outer Groove, Parent Right -->  

- <axis> 

  <x angle_x="90" angle_y="-90" angle_z="0" />  

  <y angle_x="0" angle_y="90" angle_z="-90" />  

  <z angle_x="-90" angle_y="0" angle_z="90" />  

- <!--Outer Groove Orientation, indicates alignment if necessary -->  

  </axis> 

  </placement> 

 

- <!-- Vee Groove Feature Definition -->  

- <vee_groove id="VEG1,(1)"> 

- <material_side> 

  <direction_element x="-1" y="0" z="0" />  

- <!-- Outer Groove  -->  

  </material_side> 

  <radius>80"</radius>  

- <vee_profile> 

  <profile_radius>15</profile_radius>  

  <profile_angle>120</profile_angle>  

  <tilt_angle>30</tilt_angle>  

  <depth>20</depth>  

  </vee_profile> 

  </vee_groove> 

 

  </machining_feature> 
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5.2) Second Sample 
 

Second sample provides an understanding about the wide variety of possible outer 

features and their placements those can be used in rotational part design. Second 

sample also presents how inner features are oriented when more then one outer 

features exists in the part designed. In Figure 6.5 and Figure 6.6, dimensions 

necessary to design the rotational part in the feature modeler are given in two 

different views. These dimensions are given considering the feature geometric 

attributes and absolute placement attributes of features with respect to WCS. 

Placement attributes are given considering machining and tool aspects. In Figure 

6.7, each feature constructing the overall sample part is labeled. The second sample 

part is fully designed by using the feature modeler. Figure 6.8 presents the 3D solid 

and isometric views of the sample part to provide a better understanding about its 

3D geometry. As is it seen in the figures, the rotational part designed may consist of 

a number of outer manufacturing feature and many inner features attached on the 

selected outer manufacturing features, unless it interacts with a pre-designed feature 

on the part. Variety of outer manufacturing features can be used in the feature 

modeler to obtain the desired outer contour of the part. These feature are placed to 

the left or right of each other, and the feature modeler offers to keep the diameter 

same by default. However, depending on the requirements outer features with 

different diameters may also be attached to each other. Feature modeler also has the 

ability to place grooves on the wall surfaces, resulting from diameter differences.  

 

 

Figure 6.5 Dimensions to Design Sample Part 2 in Feature Modeler (front view) 
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Figure 6.6 Dimensions to Design Sample Part 2 in Feature Modeler (right view) 

 

 

Figure 6.7 Top(upper) and Section (lower) Views of Sample Part 2 
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Figure 6.8 Isometric (upper) and Solid (lower) Views of Sample Part 2 

 

Error handling mechanisms work same as it was mentioned for the first sample 

feature. However, if an inner feature exceeds an outer feature (this is allowed for 

holes) the feature modeler automatically creates the exceeding part of this feature as 

a member of that feature it goes through. This makes the check of the feature 

interactions for the whole inner feature possible. 

 

As it was mentioned for the first sample, after completing the design process STEP 

XML file can be exported. In general, preprocessor arranges the outer features from 

left to right and places the inner features attached on the outer features in the order 

of their creation in between the outer feature. The STEP XML file for second 

sample part is very long, so just a portion of the file for the inner square u groove 

feature is presented: (eighteenth feature in Figure 6.7) 
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- <machining_feature> 

 

- <!-- Square U Groove, SUG2,(4)  -->  

- <placement> 

  <location x="40" y="0" z="680" />  

- <!-- Right Inner Groove, Parent Right  -->  

- <axis> 

  <x angle_x="-180" angle_y="-90" angle_z="90" />  

  <y angle_x="90" angle_y="-90" angle_z="0" />  

  <z angle_x="-90" angle_y="0" angle_z="90" />  

- <!-- Right Inner Groove Orientation -->  

  </axis> 

  </placement> 

- <!-- Square U Groove Feature Definition -->  

- <square_u_groove id="SUG2,(4)"> 

- <material_side> 

  <direction_element x="0" y="0" z="-1" />  

- <!-- Right Inner Groove -->  

  </material_side> 

  <radius>40"</radius>  

- <square_u_profile> 

  <first_angle>90</first_angle>  

  <first_radius>2</first_radius>  

  <second_angle>90</second_angle>  

  <second_radius>2</second_radius>  

  <width>10</width>  

  <depth>20</depth>  

  </square_u_profile> 

  </square_u_groove> 

 

  </machining_feature> 
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CHAPTER 6 
 

 

CONCLUSION 
 

 

6.1) Conclusion 
 

In design and manufacturing, many systems are used to manage technical product 

data. Each system has its own data formats so the same information has to be 

entered multiple times into multiple systems leading to redundancy and errors. The 

novel idea of feature based solid modeling by using STEP AP224 manufacturing 

features for rotational parts, which stands as the main objective of this study arouse 

after the recognition of this problem. With the purpose of developing a feature 

modeler offering STEP AP224 manufacturing features as an aid to design rotational 

parts, a methodology, first collecting the standard manufacturing features for 

rotational parts in a feature library in a hierarchical manner and bringing them up to 

a functional state, then providing an efficient design environment using these 

features, has been developed. Following the methodology developed, feature library 

and feature modeler are developed respectively in the scope of this study. 

 

The developed feature library covers features extracted from STEP AP224 for 

rotational parts, their definitions, classifications, attributes, generation techniques, 

attachment techniques and constraints for their geometries. Object-oriented 

approach has been used in the definition of features, by means of EXPRESS 

language, which makes the system easy to be implemented, extended and reused. 

By this way, each feature is represented by class libraries and a dynamic link library 

(dll) file is created, facilitating to transfer the feature definition structure of features 

from STEP AP224 documentation to programming environment. By means of the 

dll file created, each feature and resulting part is provided to store manufacturing 

.
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features and their attributes. The dll file will also assist the integration of developed 

system for rotational parts with the feature modeler for prismatic parts developed by 

Saleh Amaitik in Middle East Technical University, Mechanical Engineering 

Department, Computer Integrated Manufacturing Laboratory (METUCIM), Ankara, 

Turkey. 

 

The design environment is developed by embedding STEP based feature modeler 

for rotational parts as a design tool in AutoCAD. The feature modeler for rotational 

parts uses STEP AP224 manufacturing features in the feature library as the basic 

entities for part design. Features offer designers a higher level of graphical entity 

than points, lines and arcs. If properly selected, features can have additional 

information associated with them. Features also offer a ready means of linking to 

manufacturing. By this way, designers can consider design and manufacturing 

aspects in the earlier stages of design, which will remove manufacturability 

problems that may occur after the design process. Both in the feature modeler and 

feature library, error tracking and handling mechanisms are involved, validating the 

geometrical constraints and checking feature interactions, to provide an effective 

design environment. 

 

In order not to leave features just as an aid to create the model, not to loose the 

information attached on them once the rotational part is fully designed, a 

preprocessor has also been developed in the scope of this study. Most importantly, 

the preprocessor should facilitate the use of design data in CAM/CAPP systems, 

which led the creation of STEP-XML design output file.  

 

STEP-XML file will be a highly appropriate input data for integration, which is 

self-describing and a programmer can parse it without the need for further 

understanding of EXPRESS or any feature recognition algorithms. CAPP system, 

STEP-NC and G-Code generators are being developed and will be developed in 

METUCIM laboratory, using the STEP XML design output file as their only input. 

This way the data exchange, thus the integration between Feature Modeler, CAM 

and CAPP systems for rotational parts, has been facilitated. 
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6.2) Recommendations on Future Work 
 

Recommended future work for both the feature library and the STEP-based feature 

modeler for rotational parts are stated below: 

 

Future work that can be done on the feature library 

 

1. Features like threads, marking, knurl and compound feature may be added to the 

feature library. 

2. Replicate features may be added to the feature library. 

3. Some inner features that may result from boring operations may be added as 

alternative feature subtypes to the existing feature library. 

 

Future work that can be done on the feature modeler 

 

1. Features like slots and transition features, which exist in the feature library but 

could not be added to the feature modeler, may be added to the feature modeler 

design environment 

2. Part properties data in the standard may be integrated into the feature library and 

then to the feature modeler,  

3. A translator may be developed that will generate STEP-NC file from the STEP-

XML file created. 

4. A translator may be developed that will generate traditional G-Code file from 

STEP-XML file created to make the feature modeler compatible with the 

traditional NC and CNC machine tools 

5. To make the feature modeler a parametric modeling tool a post-processor may 

be developed in order to provide the designer to continue some incomplete 

designs as feature based as it were during the initial design process. During the 

save action for an incomplete design, an automatically generated STEP-XML 

file may be post-processed in order to make it possible to continue the design 

action with the previously designed features and their attributes. 
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6. Saving, editing, modifying options for features may be added in order to make 

the feature modeler more flexible. The program in the feature modeler is so 

developed that the arrays storing the feature data is apt to include these 

functionalities by means of further processing. 

7. The dependency of the feature modeler to AutoCAD may be removed by means 

of using a standalone 3D drawing ActiveX environment. 
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APPENDIX A 
 

 

SAMPLE CODE 
 

 

A.1) Machining Features Class 
 

The following code is taken as example, from one the most general class 

“machining_features” library. In the code, Parent machining features and member 

machining features are declared as public variables respectively, to be able to call 

them from anywhere in the feature modeler. This will also makes each parent 

feature a subclass of machining_features class. This code also presents how the 

inheritance structure is constructed all over the Dll file. 

 

'Parent machining Features 

Public Outerdiameter As New outer_diameter 

Public OuterDiametertoShoulder As New outer_diameter_to_shoulder 

Public RevolvedFlat As New revolved_flat 

Public RevolvedRound As New revolved_round 

Public SphericalCap As New spherical_cap 

'Member machining Features 

Public SquareUGroove As New square_u_groove 

Public RoundUGroove As New round_u_groove 

Public PartialCircularGroove As New partial_circular_groove 

Public TeeGroove As New tee_groove 

Public VeeGroove As New vee_groove 

Public RoundHole As New round_hole 

Public CounterboreHole As New counterbore_hole 

Public CountersunkHole As New countersunk_hole 
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A.2) Preprocessor 
 

A sample part of preprocessor code that creates the STEP XML tags and fills the 

necessary information in between the tags for the feature outer_diameter  is shown 

below: 

 

Public Sub EXPORT_XML(XMLFileName As String, TabPos As Integer) 

' Outer Diameter Features STEP XML Format (Partial) Function 

Print #1, String(TabPos, Chr(9)) & "<outer_diameter id=" & Chr(34) & 

Me.featureID & Chr(34) & ">" ' Puts the outer_diameter and places Feature ID 

info 

' Following part of the code check feature related information and places related 

tags and information. 

Print #1, String(TabPos + 1, Chr(9)) & "<reduced_size>" 

If Me.reduced_size.taper_type = 2 Then ' 2 stands for angle_taper 

Print #1, String(TabPos + 2, Chr(9)) & "<angle_taper angle=" & Chr(34) & 

Me.reduced_size.angle_taper.angle & Chr(34) & "/>" 

End If 

If Me.reduced_size.taper_type = 3 Then ' 3 stands for diameter_taper 

Print #1, String(TabPos + 2, Chr(9)) & "<diameter_taper final_diameter=" & 

Chr(34) & Me.reduced_size.diameter_taper.final_diameter & Chr(34) & "/>" 

End If 

Print #1, String(TabPos + 1, Chr(9)) & "</reduced_size>" 

….. 

 

The code continues checking every information related to the feature, it is omitted 

here. Tab Positions indicate where the cursor left in the XML file, so that necessary 

information is placed in the right position in the XML file. The above function is 

called from the feature modeler as it is given below: 

 

If MFeatures(i, 0).FeatureType = outer_diameter Then Call MFeatures(i, 0). 

Outerdiameter.EXPORT_XML(FileName, 2) 
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A.3) Outer Diameter Class 
 

A sample part of the code out of the outer_diameter class, in the Features Dll, 

including 2D feature region creation and 3D feature solid creation using the 

geometry definitions presented in Chapter 4, is provided below:. 

 
Public Function StraightOuterDiameter() As Acad3DSolid 

     'This function is used to generate Straight Outer Diameter and 

    'add it from the main part as the specified location and orientation 

    On Error GoTo ErrorHandler 

    'Declaration of point arrays 

    Dim p1(0 To 2) As Double                ' insertion point 

    Dim p2(0 To 2) As Double 

    Dim p3(0 To 2) As Double 

    Dim p4(0 To 2) As Double 

 

'Definitions of points (l and d are defined in the code before) 

    p1(0) = 0 

    p1(1) = 0 

    p1(2) = 0 

     

    p2(0) = 0 

    p2(1) = d / 2 

    p2(2) = 0 

     

    p3(0) = l 

    p3(1) = d / 2 

    p3(2) = 0 

     

    p4(0) = l 

    p4(1) = 0 

    p4(2) = 0 
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    ' Define the lines constructing the 2D region 

    Dim curves(0 To 3) As AcadEntity 

    Set curves(0) = ThisDrawing.ModelSpace.AddLine(p1, p2) 

    Set curves(1) = ThisDrawing.ModelSpace.AddLine(p2, p3) 

    Set curves(2) = ThisDrawing.ModelSpace.AddLine(p3, p4) 

    Set curves(3) = ThisDrawing.ModelSpace.AddLine(p4, p1) 

     

    ' Create the2D region 

    Dim regionObj As Variant 

    regionObj = ThisDrawing.ModelSpace.AddRegion(curves) 

 

    ' Define the rotation axis 

    Dim axisPt(0 To 2) As Double 

    Dim axisDir(0 To 2) As Double 

    Dim angle As Double 

     

    'Temporary position of the feature 

    axisPt(0) = 0:      axisPt(1) = 0:      axisPt(2) = 0 

    ' axis of revolution is x-axis  (0 1 0 for y-axis,  0 0 1 for z-axis) 

    axisDir(0) = 1:     axisDir(1) = 0:     axisDir(2) = 0 

    angle = 44 / 7      ' for 360 degree full revolution 

         

    ' Create the feature solid(3D) checking if it is right or left feature 

  If Me.Right_Feature Then Set StraightOuterDiameter = 

ThisDrawing.ModelSpace.AddRevolvedSolid(regionObj(0), axisPt, axisDir, angle) 

        If Me.Left_Feature Then 

        Set StraightOuterDiameter = 

ThisDrawing.ModelSpace.AddRevolvedSolid(regionObj(0), axisPt, axisDir, angle) 

        StraightOuterDiameter.Rotate3D p1, p2, 180 * DegToRad  'Rotates the feature 

180 degrees around the line between points p1 and p2 if it is a left feature 

        End If 

 



APPENDIX B 
 

 

FEATURE GEOMETRIES LIBRARY 
 

 

In Chapter 3, “Manufacturing Features Geometry Data” component of the “Feature 

Library” has been introduced and the manufacturing features for rotational parts are 

classified and defined. In Appendix B, 2D sketches, generation techniques and 

insertion points for each manufacturing feature that is a member of the feature 

library is presented, all which are referenced from the “Manufacturing Features 

Geometry Data” subsection of Chapter 3. In all of the figures presented in this 

Appendix, the points with an asterisk (“*”) stands for the insertion point for that 

feature and the dimensions placed on the features stand for the geometrical 

attributes  required to create the feature in the feature modeler. These dimensions 

also stands for the feature attributes that the designer have to input the feature 

modeler to create the feature with same letter conventions appearing in the 

interfaces. 
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Figure B.1 Straight_outer_diameter 
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Figure B.2 Tapered_outer_diameter, decreasing diameter 
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Figure B.3 Tapered_outer_diameter, increasing diameter 
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Figure B.4 Outer_diameter_to_shoulder 
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Figure B.5 Spherical_cap 
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Figure B.6 Revolved_flat 
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Figure B.7 Revolved_flat 
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Figure B.8 Outer_square_u_groove 
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Figure B.9 Inner_square_u_groove 
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Figure B.10 Outer_rounded_u_groove 
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Figure B.11 Inner_rounded_u_groove 
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Figure B.12 Outer_partial_circular_groove 
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Figure B.13 Inner_partial_circular_groove 
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Figure B.14 Outer_tee_groove 
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Figure B.15 Inner_tee_groove 
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Figure B.16 Outer_vee_groove 
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Figure B.17 Inner_vee_groove 
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Figure B.18 Straight_through_round_hole 
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Figure B.19 Tapered_through_round_hole 
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Figure B.20 Straight_blind_round_hole_with_flat_bottom 
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Figure B.21 Tapered_blind_round_hole_with_flat_bottom 
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Figure B.22 Straight_blind_round_hole_with_radiused_bottom 
 

 

 y 

P2 

*P1 

P3 

P4 

x
3600 

D/2 

h 

P5 

rb 
rb 

α 

Df/2 

 
 

Figure B.23 Tapered_blind_round_hole_with_radiused_bottom 
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Figure B.24 Straight_blind_round_hole_with_tapered_bottom 
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Figure B.25 Tapered_blind_round_hole_with_tapered_bottom 
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Figure B.26 Straight_blind_round_hole_with_conical_bottom 
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Figure B.27 Tapered_blind_round_hole_with_conical_bottom 
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Figure B.28 Straight_blind_round_hole_with_spherical_bottom 
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Figure B.29 Tapered_blind_round_hole_with_spherical_bottom 
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Figure B.30 Straight_through_counterbore_hole 
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Figure B.31 Tapered_through_counterbore_hole 
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Figure B.32 Straight_blind_counterbore_hole_with_flat_bottom 
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Figure B.33 Tapered_blind_counterbore_hole_with_flat_bottom 
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Figure B.34 Straight_blind_counterbore_hole_with_radiused_bottom 

 

 

 y 
P2 

*P1 

P3 

P4 

x 
3600 

Dl/2 

hl 

P7 

rb P5 

P6 

hs 

Df/2 

rb 

Ds/2 

α 

 
 

Figure B.35 Tapered_blind_counterbore_hole_with_radiused_bottom 
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Figure B.36 Straight_blind_counterbore_hole_with_tapered_bottom 
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Figure B.37 Tapered_blind_counterbore_hole_with_tapered_bottom 
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Figure B.38 Straight_blind_counterbore_hole_with_conical_bottom 
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Figure B.39 Tapered_blind_counterbore_hole_with_conical_bottom 
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Figure B.40 Straight_blind_counterbore_hole_with_spherical_bottom 
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Figure B.41 Tapered_blind_counterbore_hole_with_spherical_bottom 
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Figure B.42 Through_countersunk_hole 
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Figure B.43 Blind_countersunk_hole_with_flat_bottom 
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Figure B.44 Blind_countersunk_hole_with_radiused_bottom 
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Figure B.45 Blind_countersunk_hole_with_tapered_bottom 
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Figure B.46 Blind_countersunk_hole_with_conical_bottom 

 

 

 

y 

P2 

*P1 P5 x 
3600 

Dt/2 

ht 

rb 

P3 P4 

hc 

22
cf DD

=  

α 

 
 

Figure B.47 Blind_countersunk_hole_with_spherical_bottom 
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Figure B.48 Square_linear_slot_type1 

 

 

 

 
P4 

x 

P2 

z 

P3 

P5 

w/2 

r2 

*P1 

r1 

P6 
w/2 

L 

Direction:-y 
Length: d 

 
 

Figure B.49 Square_linear_slot_type2 
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Figure B.50 Square_linear_slot_type3 
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Figure B.51 Square_linear_slot_type4 
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Figure B.52 Square_linear_slot_type6 
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Figure B.53 Square_linear_slot_type7 
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Figure B.54 Square_linear_slot_type10 
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Figure B.55 Square_linear_slot_type12 
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Figure B.56 Square_u_linear_slot 
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Figure B.57 Rounded_u_linear_slot 
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Figure B.58 Partial_circular_linear_slot 
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Figure B.59 Tee_linear_slot 
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Figure B.60 Vee_linear_slot 
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Figure B.61 Square_circular_slot_type1 
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Figure B.62 Square_u_circular_slot 
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Figure B.63 Rounded_u_circular_slot 

 

 141



 

 

 

 

x 

P2 

λ0 

y 

r 

P3 

rs

*P1 

θ Y 

X X 

 
 

Figure B.64 Partial_circular_circular_slot 
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Figure B.65 Tee_circular_slot 
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Figure B.66 Vee_circular_slot 
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Figure B.67 Edge_round_type1 

 

 

 143



 

 

Feature 
Origin 

y 

x 
3600 

D/2 

L 

r 

DF/2 

P1 

P2* 

P3 

α 

Y2 Y1 

X 

 
 

Figure B.68 Edge_round_type2 

 

 

y 

Feature 
Origin 

x
3600 

D/2 

L 

DF/2 

r 

*P2 
P3 

P1 α 

Y1 Y2 

X 

 

 
 

Figure B.69 Edge_round_type3 
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Figure B.70 Edge_round_type4 
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Figure B.71 Edge_round_type5 
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Figure B.72 M_fillet_type1 
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Figure B.73 M_fillet_type2 
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Figure B.74 M_fillet_type3 
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Figure B.75 M_fillet_type4 
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Figure B.76 M_fillet_type5 
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Figure B.77 M_fillet_type6 
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Figure B.78 G_fillet_type1 
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Figure B.79 G_fillet_type3 
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Figure B.80 Outer_tee_groove 
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Figure B.81 G_fillet_type4 
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Figure B.82 G_fillet_type5 
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Figure B.83 G_fillet_type6 
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Figure B.84 G_fillet_type7 
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Figure B.85 G_fillet_type8 
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Figure B.86 G_fillet_type9 
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Figure B.87 G_fillet_type10 
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