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ABSTRACT 
 
 

HUMAN ARM MIMICKING USING VISUAL DATA 
 
 
 

USKARCI, Algan 

M.S., Department of Electrical and Electronics Engineering 

 

Supervisor      : Prof. Dr. Aydın ERSAK 

Co-Supervisor: Doç. Dr. Aydın ALATAN 

 

December 2004, 85 pages 
 
 
 
 
This thesis analyzes the concept of robot mimicking in the field of 

Human-Machine Interaction (HMI). Gestures are investigated for HMI 

applications and the preliminary work of the mimicking of a model joint 

with markers is presented. Two separate systems are proposed finally 

which are capable of detecting a moving human arm in a video sequence 

and calculating the orientation of the arm. The angle of orientation found 

is passed to robot arm in order to realize robot mimicking. The 

simulations show that it is possible to determine human arm orientation 

either by using some markers or some initial background image 

information or tracking of features. 

 
 
 
Keywords: Robot Mimicking, Computer Vision, Human-Machine 
Interaction 
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ÖZ 

 
 

GÖRSEL VERİ KULLANILARAK İNSAN KOLU TAKLİDİ 
 
 
 
 

USKARCI, Algan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü Bölümü 

 

Tez Yöneticisi          : Prof. Dr. Aydın ERSAK 

Ortak Tez Yöneticisi: Doç. Dr. Aydın ALATAN 

 
Aralık 2004, 85 sayfa 

 
 
 

 
Bu tez İnsan-Makine Etkileşimi (İME) çerçevesinde robot taklidi konusunu 

incelemektedir. EMİ uygulamaları açısından el ve kol hareketeleri 

incelenmiş ve bir model eklemin taklidi üzerine yapılan ön çalışmayla ilgili 

bilgiler sunulmuştur. Son olarak bir video sekansı içerisinde hareket eden 

bir insan kolunu bulan ve kolun yönelme açısını hesaplayan iki farklı 

sistem önerilmiştir.  Bulunan yönelme açısı bir robot kola aktarılarak taklit 

hareketinin gerçekleşmesi sağlanmıştır. Simulasyonlar sonucunda insan 

kolu yönelme açısının işaretler, fon imgesiyle ilgili bilgi veya imge 

özelliklerinin takibi kullanılarak bulunabileceği anlaşılmıştır. 

 
 
 
Anahtar Kelimeler: Robot Taklidi, Bilgisayarlı Görüş, İnsan-Makine 
Etkileşimi 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Problem Definition 
 
Robot mimicking has been a hot research topic in the previous years and 

is an important application area for robotic systems. Robot mimicking is a 

convenient way to teach the robots the operations they are to perform. 

Instead of cumbersome programming a human may demonstrate the 

operation of a robot working in an assembly line, or a physically impaired 

person may direct a robot to accomplish movements he/she is unable to 

do such as lifting a heavy object. Also robots may be taught to perform 

actions such as playing musical instruments (e.g. drums). Another 

advantage, which may be obtained by robot mimicking, is the direct 

control of the teaching process. If the human, who is being mimicked, is 

observing the robot at the same time unwanted or dangerous situations 

may be avoided by actively changing the movements at that instance. 

 

Although early years of robot mimicking research was based on 

mechanical devices such as data gloves, recent advancements in the 

capabilities of computers and new algorithms developed in the field of 

computer vision has made a true mimicking system possible, where 

robots mimic humans by observing them visually. That kind of mimicking 

is a more natural and humanoid way since human learning from early 

childhood begins with visually observing other humans and mimicking 

them. 
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In this thesis, a system capable of visually observing a human’s arm 

movements and then mimicking these movements with a PUMA 760 

robot arm is proposed.  

 

1.2 Scope of the Thesis 
 
In order to mimic a human arm, first a marker-based approach was 

followed. Markers were placed on a 2 degree of freedom stationary 

model joint and two parameters, namely yaw and bending degrees, are 

obtained by machine vision techniques. 

 

After the research on the model joint, the mimicking of a real human arm 

without markers is studied. The system is designed to operate on a video 

sequence, where only one arm of a human is moving. It is also assumed 

that the largest moving region in the sequence is the human arm to be 

mimicked. 

 

After being supplied with a background image and a stationary image of 

the human target, the system detects the moving parts in a video 

sequence by background subtraction. Then orientation analysis is 

conducted on the moving part (i.e. arm) in order to obtain information on 

the posture of the arm. This information is passed to a robot control 

software frame by frame, and the software directs PUMA 760 to achieve 

the same posture, thus realizing mimicking. 

 

The third method studied is the tracking of human arm by using Lucas 

Kanade feature tracking. The arm is detected by considering the features 

with a movement greater than a threshold, and the movement 

information is used to obtain the orientation angles through a linear 

system solution. 
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1.3 Outline 
 
Introduction is given within this chapter (Chapter 1).  Chapter 2 details 

the concept of human gesture analysis and robot mimicking. Previous 

research and applications on the subject are also presented in Chapter 2. 

 

Many different computer vision techniques and algorithms are used 

throughout this research. The details of the mainly used ones are given 

in Chapter 3 as background information. 

 

Chapter 4 is a detailed analysis of the mimicking of a 2 degree of 

freedom model joint. Visual analysis of the captured images of the model 

joint is detailed and results obtained from the tests are presented. Also 

the robot arm used in this research is detailed in this chapter. 

 

Chapter 5 is where the robot mimicking system is proposed. The visual 

analysis of the video sequence is detailed step-by-step and the 

performance of the system is evaluated. 

 

Chapter 6 presents the mimicking system where motion information is 

used by a Lucas Kanade feature tracker in order to obtain the orientation 

angles for the upper arm and forearm. 

 

Finally, Chapter 7 concludes the thesis and presents future work 

directions on the subject. 
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CHAPTER 2 

 

HUMAN GESTURE ANALYSIS AND ROBOT 
MIMICKING 

 

2.1 Introduction 
 
One of the most important research fields in the development of 

successful robotic systems is Human-Machine Interaction area. In the 

early years of robotics teach pendants and programming were the 

primary methods for interaction [1]. In fact, mechanical devices such as 

mice and keyboards are still the most common Human-Computer 

(Machine) Interaction medium. However, as computer capabilities 

improve better methods are being developed. In the last several years, 

there has been an increased interest in adapting means of human-to-

human interaction to HMI. An important non-verbal mean of interaction 

among humans is gestures. Gestures range from simple actions, such as 

pointing at objects and moving them around to more complex ones, 

which express human feelings and emotions [2]. 

 

The HMI interpretation of gestures requires that the dynamic and/or 

static configurations of the human hand, arm and sometimes the body be 

measurable by the machine. Early research on this problem focused on 

using mechanical devices, which measure human hand/arm position. 

However these devices required the user to carry heavy equipment, 

which hinders naturalness. In order to overcome the limitations of the 

above systems, vision based approach has been proposed in which video 

cameras and computer vision techniques are used to interpret gestures. 
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Vision based approaches are promising, since vision is the primary 

method of interaction among humans [2]. 

2.2 Human Gesture Analysis 
 
In an HMI application, it is desired that gestures be used in order to 

perform tasks that mimic both the natural use of the hand as a 

manipulator, and its use in the human-machine communication (control 

of human/machine functions through gestures). In a taxonomy given in 

[2], hand/arm movements are classified as follows: 

 

 

 

Fig. 2-1 Taxonomy of Gestures 

 

 

 

Unintentional movements are those that do not carry any information. 

Gestures are two subclasses; manipulative gestures are the ones used to 

affect an object in the real world, such as moving a pencil. 

Communicative gestures, which are usually accompanied by speech, may 

be either acts or symbols. Symbols are gestures that have a linguistic 
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role. They may either symbolize some referential action or used as 

modalizers.  Acts are gestures, which are directly related to the 

interpretation of the movement itself. These are either mimetic (imitating 

some actions) or deictic (pointing acts). This thesis is mainly focused on 

mimetic acts, captured by a camera. 

 

A typical visual gesture analysis consists of three stages: 

� Hand/Arm Localization and Segmentation: In this process 

hands/arms are extracted from the rest of the image. Since this 

step is a complex task, restrictions on background, user or 

imaging can be imposed in order to simplify the task. Skin color or 

motion information is widely used in this stage. 

� Hand/Arm Image Feature Extraction: The features to be extracted 

in this step depend on the parameters, which are to be found in 

the next step. If a model, which requires finger trajectories, is to 

be used fingertip positions are extracted or for moment and 

contour computation image silhouettes may be extracted in this 

step. 

� Hand/Arm Model Parameter Computation: The parameters 

computed in this step depend on the application. For a tracking 

system the position of the hand may be sufficient while for a 

recognition system required parameters for a following recognition 

step might be computed. 
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Fig. 2-2 Visual Gesture Analysis Stages 

 

 

2.3 Robot Mimicking 
 
Webster dictionary defines mimicking as “imitating closely”. Hence, robot 

mimicking may be defined as robots imitating other robots or humans. 

Since mimicking is the most basic method for learning among humans, 

applying it to human-machine interaction is desirable in order to develop 

humanoid robots. Research on robot mimicking covers a large area of 

robotics, such as artificial intelligence, computer vision, pattern 

recognition and machine learning. 

 

In order to mimic other robots or humans, a robotic system must be 

supplied with information defining the movement to be mimicked. For a 

true mimicking operation, the robot must obtain and evaluate this 

information by itself. Considering the constraints of mechanical devices 

explained before, the most natural way for mimicking may be 

accomplished by visually observing the target of mimicking and analyzing 

its movement in order to retrieve the information required for mimicking 

[3]. 
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The target of mimicking may be either a human or another robot. If the 

target is a human, the parameters to be observed should be carefully 

chosen since it is impossible to totally mimic human motion. This is due 

to the fact that humans do not compose of articulated rigid bodies while 

today’s robots mainly consist of articulated rigid bodies. If the target is a 

robot of the same architecture the mimicking is merely observation of the 

target’s movement and applying computer vision techniques to correctly 

detect that movement. The target may also be a similar robot but not 

same kind of robot. In this case, the selection of parameters to be 

observed gains importance as in the human target case. 

 

2.4 Previous Research on Gesture Analysis and Robot 
Mimicking 

 

In [4], a system is proposed where human pointing gestures are used in 

order to control a PUMA 560 robot arm. A human, by using his/her index 

finger, points to one of the objects placed in the working environment 

and the robot arm picks that object. Then, the human points to a location 

within the environment and the robot places the picked object at that 

location. Two cameras are used to supply the visual information to the 

system. An artificial neural network realizes the processing of that 

information in order to detect the pointing human hand, and then the 

positions it is pointing. The system operates with an accuracy of 1±0.4 

cm. in a working environment of 50x50 cm. 

 

A system capable of mimicking the upper body of a human is presented 

in [5]. The system employs a 24 degree of freedom humanoid robot, 

which is similar to the upper part of a human body with two arms, head 

and torso. The system detects the head and arms of a human by using 
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color, aspect ratio and depth information. Then the motion of these parts 

is detected by using stereo vision techniques. The system also has 

auditory input and is able to detect sound sources. Although the system 

operates at real-time speed, a very advanced hardware structure is used.  

 

In another system [6], a mobile robot is directed by using hand gestures. 

The system is able to detect commands such as approach, retreat, grasp, 

release, follow and travel.  The gestures are captured by the robot’s 

vision system and classified in order to determine the command by using 

a Hidden Markov Model. The system is also capable of observing a set of 

commands and then executing them in order, thus, realizing the robot 

teaching by gestures concept. 

 

In another approach [7], a human arm tracking system is designed 

where the arm is modeled as two truncated right-circular cones, 

constructed with spherical joints. The image of the human arm and an 

imaginary image of the model are compared and the model joint is 

iteratively moved until it matches with the human arm. Although the 

system is successful in estimating the human arm posture, it requires the 

knowledge of the position of the shoulder and the parameters of the 

model should be manually configured. 

 

In a research [8], focused on imitation learning, motions of a full human 

body are visually analyzed and learned by using Hidden Markov Models. 

Then same motions are realized by a virtual robot, which is a 3D human 

body simulator software. 

 

Another robot mimicking system is proposed in [9], where visual input of 

the hand movements of a human are analyzed by using shape and color 

information. The system determines the trajectory of the human hand 

and a humanoid robot follows the same trajectory in order realize the 
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mimicking. Although the system operates successfully the need for using 

stereo vision is its drawback. 

 

As seen from the work mentioned above, most of the research is directed 

to obtaining hand postures. The work directed on arm mimicking is 

usually accomplished by using stereo vision. In this thesis, a visual 

analysis system, capable of extracting human arm motions from a video 

sequence of monocular vision, is proposed. In order to achieve this goal, 

localization of a human arm should be determined by a number of 

machine vision algorithms. 
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 CHAPTER 3 

 

IMAGE ANALYSIS ALGORITHMS FOR HUMAN ARM 
LOCALIZATION 

 

3.1 General 
 
This chapter details the specific algorithms and techniques of machine 

vision field, which are used throughout this research and frequently 

mentioned in the following chapters. 

 

3.2 Thresholding 
 
Thresholding is a method to convert a gray scale image into a binary 

image so that objects of interest are separated from the background. For 

thresholding to be effective in object-background separation, it is 

necessary that the objects and background have sufficient contrast and 

one should know the intensity levels of either the objects or the 

background. In a fixed thresholding scheme, these intensity 

characteristics determine the value of the threshold [10].  

 

Thresholding may be based on a single threshold or a lower and upper 

threshold. Let [ ]jiB ,  be a gray scale image and 1T  and 2T  be threshold 

values, then the thresholded image [ ]jiBT ,  may be defined as follows; 

[ ] [ ]
⎩
⎨
⎧ ≤

=
otherwise

TjiBif
jiBT ,0

,,1
, 1  (3-1) 

 

or for a two level thresholding; 
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[ ] [ ]
⎩
⎨
⎧ ≤≤

=
otherwise

TjiBTif
jiBT ,0

,,1
, 12  (3-2) 

The threshold values are usually selected on the basis of experience 

within the application domain. In some cases, the first few runs of the 

system may be used for interactively analyzing a scene and determining 

the appropriate values for threshold. There are also more robust 

automatic thresholding methods such as p-tile, iterative or adaptive 

thresholding. [10] These methods usually rely on histogram analysis of 

images and are applied to more general thresholding problems, such as 

document processing. For a brief review one should revise [11] 

 

3.3 Connected Component Analysis and Flood Filling 
 
A set of pixels in which each pixel is connected to all other pixels is called 

a connected component [10]. In a grayscale image for two pixels to be 

defined as connected their values should be within a certain range and 

there must a traceable path of pixels within this range between these 

two pixels. 

 

Flood filling [12] is a recursive algorithm, which aims at detecting the 

connected components (i.e. regions) within an image. The algorithm may 

be detailed as below: 

� Given a seed pixel [ ]ji,  in an image and a pixel value range, check 

all the unchecked neighbors of the seed pixel for their values. If 

the difference of value of pixel [ ]ji,  and its neighbor is within the 

give range mark the neighbor pixel as connected and checked. 

� When all the neighbors of pixel [ ]ji,  are checked, pass to a 

connected pixel and repeat the previous step. 

� If all the neighbors of all connected pixels are checked and there 

is no new pixel fit for the criteria then exit. 
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If all the pixels in an image, which were not found to be part of 

connected components in the previous runs of the algorithm, are chosen 

as seed pixels, then the image may be segmented into connected 

components. 

 

3.4 Image Analysis by Moments 
 
The definition of moments of the gray value-function ),( yxf of an object 

is the following [13]: 

∫∫= dxdyyxfyxm qp
qp ),(,  (3-3) 

The integration is calculated over the area of the object. Generally each 

other pixel-based feature instead of the gray value could be used to 

calculate the moments of the object. 

 

Moments are generally denoted by the order of the moments. The order 

of a moment depends on the indices p  and q  of the moment qpm ,  and 

vice versa. The sum qp +  of the indices is the order of the moment 

qpm , . Considering this, moments up to second order may be defined as: 

� Zero order moment ( )0,0(),( =qp ) 

∫∫= dxdyyxfm ),(0,0  (3-4) 

� First order moment ( )1,0()0,1(),( orqp = ) 

∫∫= dxdyyxxfm ),(0,1  (3-5) 

∫∫= dxdyyxyfm ),(1,0  (3-6) 

� Second order moments ( )1,1()2,0()0,2(),( ororqp = ) 

∫∫= dxdyyxfxm ),(2
0,2  (3-7) 

∫∫= dxdyyxfym ),(2
2,0  (3-8) 
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∫∫= dxdyyxxyfm ),(1,1  (3-9) 

 

Above definitions describe general spatial moments of the object. From 

the spatial moments the central moments can be derived by reducing the 

spatial moments with the center of gravity ),( cc yx  of the object, so all 

the central moments refer to the center of gravity of the object. 

Expressed as formula the central moments are calculated as follows: 

∫∫ −−= dxdyyxfyyxx q
c

p
cqp ),()()(,µ  (3-10)

The main advantage of central moments is their invariancy to translations 

of the object. Therefore, they are suited well to describe the form of the 

object. 

 

The moments are features of the object, which allow a geometrical 

reconstruction of the object. They do not have a direct understandable 

geometrical meaning, but usual geometrical parameters can be derived 

from them [13]. 

 

� The zero order moment 0,0m  is the area A  of the object. 

0,0mA =  (3-11)

� The coordinates cx  and cy  of the center of gravity of the object 

are simply described by the first order moments 0,1m  and 1,0m  

divided by the zero order moment 0,0m . (i.e. the area of the 

object) 

0,0

0,10,1

m
m

A
m

xc ==  (3-12)

0,0

1,01,0

m
m

A
m

yc ==  (3-13)

� The main inertial axis could be derived by calculating the 

eigenvalues of the inertial tensor [13]: 
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2
2,00,2

2
1,12,00,22,1 )(4)(

2
1 µµµµµλ −−±+=  (3-14)

The main inertial axes of the object correspond to the semi-major 

and semi-minor axes a  and b  of the image ellipse, which can be 

used as an approximation of the considered object. The main 

inertial axes are those axes, around which the object can be 

rotated with minimal (major semi-axis a ) or maximal (minor semi-

axis b ) inertia [13].  

 

 

 

Fig. 3-1 Semi-axes and orientation 

 

 

 

� The orientation θ  of the object is defined as the tilt angle between 

the x-axis and the axis, around which the object can be rotated 

with minimal inertia (i.e. the direction of the major semi-axis a ). 

This corresponds to the eigenvector with minimal eigenvalue. In 

this direction the object has its largest extension. It is calculated 

as follows: 

2,00,2

1,11 2
tan

2
1

µµ
µ

θ
−

= −  (3-15)
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There is an ambiguity in the tilt angle θ  of the object, which can 

be resolved by choosing θ  always to be the angle between the x-

axis and the semi major axis a  (i.e. by definition ba ≥ ). Secondly, 

the principal value of the arc tangent is chosen such that 

2
tan

2
1 ππ

≤≤− − x  [13]. 

A summarized tabulation for orientation is given in Table 3-1. 

 

 

 

Table 3-1 Summary of Orientation Calculation 

2,00,2 µµ −  1,1µ  θ   
Zero Zero o0   
Zero Positive o45+   
Zero Negative o45−   

Positive Zero o0   
Negative Zero o90−   

Positive Positive 
2,00,2

1,11 2
tan

2
1

µµ
µ
−

−  o450 <<θ  

Positive Negative 
2,00,2

1,11 2
tan

2
1

µµ
µ
−

−  045 <<− θo  

Negative Positive o90
2

tan
2
1

2,00,2

1,11 +
−

−

µµ
µ

9045 <<θo  

Negative Negative o90
2

tan
2
1

2,00,2

1,11 −
−

−

µµ
µ

oo 4590 −<<− θ

 

 

 

3.5 Morphological Operations 
 
Mathematical morphology gets its name from the study of shape. A 

morphological approach facilitates shape-based or iconic solutions to 

computer vision problems. There are four basic morphological operators, 

which are normally applied to binary images [10]. 
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� The intersection of two binary images A  and B , written as 

BA∩ , is the binary image which is 1 at all pixels p  which are 1 

in both A  and B . Thus, 

{ }BpandAppBA ∈∈=∩ |  (3-16)

� The union of A  and B , written BA∪ , is the binary image, which 

is 1 at all pixels p  which are 1 in A  or 1 in B  (or 1 in both). 

Thus, 

{ }BporAppBA ∈∈=∪ |  (3-17)

� The complement of A  is the binary image, which interchanges the 

1s and 0s in A . If Ω  is a universal binary image (all 1), then 

{ }ApandppA ∉Ω∈= |  (3-18)

� The translation of binary image A  by pixel p  is given by 

{ }AapaAp ∈+= |  (3-19)

 

By using the above operators other morphological operations may be 

constructed, such as dilation and erosion [10]: 

� Dilation: Translation of a binary image A  by a pixel p  shifts the 

origin of A  to p . If 
1bA ,

2bA ,…,
nbA  are translations of the binary 

image A  by the 1 pixels of the binary image { }nbbbB ,...,, 21= , 

then the union of the translations of A  by the 1 pixels of B  is 

called dilation of A  by B  and is given by 

i
i

b
Bb

ABA
∈

=⊕ U  (3-20)

� Erosion: The opposite of dilation is erosion. The erosion of a 

binary image A  by a binary image B  is 1 at a pixel p  if and only 

if every 1 pixel in the translation of B  to p  is also 1 in A . Erosion 

is given by 

{ }ABpBA p ⊆=Θ |  (3-21)
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Often the binary image B  is a regular shape, which is used as a probe on 

image A  and is referred to as a structuring element [10]. 

 

The basic operations of morphology can be combined into complex 

sequences. For example, an erosion followed by a dilation with the same 

structuring element (probe) will remove all of the pixels in regions, which 

are too small to contain the probe, and it will leave the rest. This 

sequence is called opening [10]. The opposite sequence, a dilation 

followed by an erosion, will fill in holes and concavities smaller than the 

probe. This is referred to as closing [10]. 

 

 

 

         

 

Fig. 3-2 A test image A  (left) and a structuring element B  (right). The 

origin of the structuring element is darker than other pixels. 
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Fig. 3-3 The dilation of A  by B  

 

 

 

 

 

Fig. 3-4 Closing of A  by B  (Note that, this is erosion applied to Fig. 3-3) 
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Fig. 3-5 The erosion of A  by B  

 

 

 

 

 

Fig. 3-6 Opening of A  by B  (Note that, this is dilation applied to Fig.3-5) 
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3.6 Convex Hull Analysis 
 
In order to define a convex hull, first of all, terms, such as polygon and 

convex should be defined. A polygon is a closed path of straight line 

segments [14]. These segments are also called edges of the polygon, 

and the intersection of two adjacent edges is a vertex of the polygon. 

Thus, every polygon with n vertices has n edges. A polygon, which has 

no intersecting non-adjacent edges, is called a simple polygon and a 

simple polygon is convex if the internal angle formed at each vertex is 

smaller than 180P

o
P. Based on these definitions, the convex hull of a 

polygon P  is the smallest-area simple convex polygon, which encloses P  

[14]. 

 

 

 

 

 

Fig. 3-7 From left to right a simple polygon, convex hull of that polygon 

and the convex polygon. 

 

 

 

Different algorithms have been developed since 1970’s in order to find 

the convex hulls of polygons [14]. One of them, which is used in this 

research, is the 3-Coins Algorithm or Sklansky’s Scan proposed in [15]. 
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USklansky’s Scan U (for a n-vertex simple polygon) 

� Find a convex vertex and label it 0p .  (A vertex ip  is convex if a 

right turn is made at ip  while going from 1−ip  to 1+ip  where the 

interior of the simple polygon P  is to the right)  

� Label the remaining n-1 vertices in a clockwise order, starting at 

0p . 

� Place three coins on vertices 0p , 1p , 2p  and label them “back”, 

“center”, and “front” respectively.  

� Do: 

If the 3 coins form a right turn (or if the 3 coins lie on collinear 

vertices),   

� Take “back”, place it on the vertex ahead of “front”.   

� Relabel: “back” becomes “front”, “front” becomes 

“center”, “center” becomes “back”.  

Else (the 3 coins form a left hand turn)   

� Take “center”, place it on the vertex behind “back”.   

� Remove (or ignore hereafter) the vertex (and 

associated edges) that “center” was on.   

� Relabel: “center” becomes “back”, “back” becomes 

“center”.  

  

Until  “front” is on vertex 0p  (starting vertex) and the 3 coins 

form a right turn.  

� The remaining vertices and edges form the convex hull of the 

original simple n-polygon. 
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3.7 Median Filtering 
 

Median filters replace each pixel value with the median of the values in 

the local neighborhood [10]. They are very effective in removing salt and 

pepper and impulsive noise while preserving edges because the median 

operation easily rejects outliers, avoiding blurring across edges. In a 

median filter, a window slides along the image, and the median intensity 

value of the pixels within the window becomes the output intensity of the 

pixel being processed [16]. 

 

For example, if a 3-by-3 median filter is applied to the window given in 

Fig. 3-8, the output of the filter will be 37. The pixel being processed, 

which has an intensity value of 20, will be set to 37. 

 

 

 

 

Fig. 3-8 Median Filtering Example 

 

 

 

3.8 Intel’s Open Source Computer Vision Library 
 

During the implementation of the computer vision algorithms mentioned 

above Intel’s Open Source Computer Vision Library (OpenCV)[17] is 

used. OpenCV is a C/C++ library, still in the development phase 

designed, specifically for computer vision applications. During its early 
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development it was based on Intel’s Image Processing Library (IPL). 

However, new versions of OpenCV are distributed as a standalone library. 

 

OpenCV offers a variety of functions applicable to image processing and 

computer vision research and applications. These functions are 

summarized in 8 groups: 

� Basic Structures and Operations 

� Image Processing and Analysis 

� Structural Analysis  

� Motion Analysis and Object Tracking  

� Object Recognition  

� Camera Calibration and 3D Reconstruction  

� Experimental Functionality  

� GUI and Video Acquisition 

The functions from these groups may be used in many areas from image 

handling to camera calibration. During this research functions especially 

from the groups Image Processing and Analysis ( cvFloodFill(), 

cvGetSpatialMoment() ),Structural Analysis ( cvConvexHull2() ),  

Motion Analysis and Object Tracking ( cvCalcOpticalFlowPyrLK() ), 

and GUI and Video Acquisition are used quite decreasing the coding 

burden of such complex algorithms. 
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CHAPTER 4 

 

MODEL ARM ORIENTATION ESTIMATION WITH 
MARKERS 

 

4.1 Motivation 
 
Before advancing to a real human arm mimicking, the mimicking of a 

model joint with markers to show the orientation was implemented in 

order to make an introduction to the mimicking concept with such a 

constrained case. The visual analysis is applied on the captured image of 

a model joint and the angles of bending and yaw are determined.  

 

4.2 Visual Analysis 
 
Visual processing of captured images is used to determine the bending 

and yaw angles of the model joint. The model joint consists of two equal 

length cylindrical parts (Fig. 4-1). In this model, the lower joint can 

rotate around the base and an upper one can bend. Thus, one has two 

parameters for this model joint: a yaw angle and a bending angle. In 

order to be able to determine these two angles by using a visual capture 

system, two black circular markers are placed at the bottom side of the 

lower part and one black marker is placed on the upper side of the top 

part (Fig. 4-1). 
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(a) (b) 

 

Fig. 4-1 The Model Joint (a) and its image (b) 

 

 

4.3 Image Processing for Determining Bending and Yaw 
Angles 

 
In order to determine the bending and yaw angles of the model joint, 

first an image of the model joint (Fig. 4-1 (b)) is captured by using a 

camera (COHU 4710 model B/W solid state). The captured image is then 

passed to an application software (written in Visual C++) (Fig. 4-2). This 

software uses Intel’s Open Source Computer Vision Library (OpenCV) 

[17] for image processing and machine vision operations. The user can 

select a previously captured image file or capture a new image by using 

the program. All the parameters of the algorithm are adjustable through 

the interface. 

 



 27

 
 

Fig. 4-2 The program interface 

 

 

4.3.1 Extraction of Marker Points 
 

The major steps in the visual processing stage can be summarized as 

below: 

1. A median filter (5-by-5) is applied to the image in order to remove 

camera and environment noise. A median filter is chosen for noise 

removal, since a boxcar or Gaussian filter blurs the image, which 

leads to the detection of dots to be more difficult. 

 

2. Thresholding is applied, based on the pixel values of the image. 

Although, there are more sophisticated automatic thresholding 

methods, the threshold levels in the simulations are chosen 
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manually after inspecting the environmental effects, such as 

illumination and background. During the entire experiments, the 

values for minimum and maximum threshold levels to detect black 

markers are set to 20 and 80, respectively. 

 

 

3. Thresholding is followed by a connected component analysis, in 

order to determine the connected components within the 

thresholded image. The connected component analysis is realized 

by using 4-connectedness and a pixel value range of –10 to +10 is 

chosen to determine the homogeneity of neighboring pixels 

relative to the seed pixel. 

 

 

4. Finally, some of the determined connected components are 

eliminated by some heuristics in order to determine the set of 

candidate connected components representing 3 markers on the 

model joint. Elimination heuristics are  

 

o Area of the connected component for an upper and a lower 

limit,  

o Ratio of the width of the bounding box of the connected 

component to the height of the bounding box,  

o Ratio of the area of the connected component to the area 

of the bounding box (only a lower limit is utilized). 

  

For a 320x240-pixel image, typical values of these constraints are 

selected as 

o Area limits of the connected component = 10 (min), 200 

(max) 
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o Ratio of the width of the bounding box of the connected 

component to the height of the bounding box = 3 (max), 

0.2 (min) 

o Ratio of the area of the connected component to the area 

of the bounding box = 0.7 (min) 

 

From the set of candidate connected components, 3 of them having the 

largest area are selected as the markers on the model joint. The centers 

of the bounding boxes of these 3 connected components are assumed to 

be the centers of the dots. From these 3 dots, the marker having the 

smallest y-value (origin is the upper-left corner of the image) is chosen 

as the dot on the upper part of the model joint and the other two dots 

are chosen as the ones on the lower part of the model joint. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4-3 Steps for Visual Analysis (a) Input Image, (b) After 

Thresholding, (c) After connected-component analysis (all the 

connected components found are bounded with green boxes.), (d) The 

determined markers (The regions with the largest area are chosen as 

markers and are bounded with red boxes.) 
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4.3.2 Determining Yaw and Bending Angles 
 

After the coordinates of the marker are determined, yaw and bending 

angles of the model joint are determined by using the algorithm in [18]. 

In this algorithm, first the yaw angle is calculated. Referring to Fig. 4-4 

the variable N  represents the distance between the lower markers at a 

zero degree of yaw. 

 

 

Fig. 4-4 Calculation of Yaw Degree 

 

 

Forming a right triangle one can show that 

)/(cos 1 Nnyaw
−=α  (4-1) 

where n  is the distance between the observed markers at a given yaw 

angle. Next, the bending angle is determined. Since the image of the 

model joint will appear skewed for non-zero yaw angles, the bending 

angle will appear slightly greater than the actual value. 
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(a) 

 

(b) 

Fig. 4-5 Adjusting Image due to Yaw (a) Top view, (b) Side view 

 

 

 

Referring to Fig. 4-5, this error can be corrected by 

)cos(/ yawea α=  (4-2) 

After the error correction the actual bending angle can be calculated by 

using the following set of equations. (Fig. 4-6) 

θα 2180 −=bend  (4-3) 

)/(cos 1 cd−=θ  (4-4) 

222 dac +=  (4-5) 

where a  is found previously and d  is calculated by using the coordinates 

of the markers determined by image processing. 
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Fig. 4-6 Calculation of Bending Degree 

 

 

4.4 Results 
 
The simulations are conducted in two phases. In the first of experiments, 

the visual information is tested for its performance against angle 

calculation. In the second part of these experiments, the results of the 

first part are fed to PUMA 760 robot arm for testing the response for the 

given inputs. Before presenting the results, a brief overview for this robot 

arm is given next. 

 

4.4.1 PUMA 760 
 
Throughout this research a PUMA (Programmable Universal Machine for 

Assembly) 760 robot is used for application. PUMA 760 is a model from 

the PUMA 700 series, which is one of the three main series of PUMA 

robots with PUMA 200 and PUMA 500 [19]. PUMA 760 consists of two 

separate parts; the robot arm and the controller computer [20]. 

Specifications can be found in Appendix A. 
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Fig. 4-7 PUMA 760 Robot 

 

 

4.4.1.1 Controller Computer 
 
The controller computer is a Unimation Mark II controller, which is a 

typical industrial robot controller. It is the master component of the 

electrical system. All signals to and from the robot pass through the 

controller and are used by it to perform real-time calculations to control 

arm movement and position. Operating controls and indicators are 

located on the front and top panel of the controller. Connections for the 

robot arm, terminal, floppy disk drive and accessories are located on the 

controller rear panel. Software is stored in the computer memory located 
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in the controller. The software interprets the operating instructions for 

the robot arm, and the controller transmits these instructions to the arm. 

From incremental encoders and potentiometers in the robot arm, the 

controller/computer receives data about arm position. This provides a 

closed loop control of arm motions. A floppy disk drive is available to 

record the programs on diskettes [19]. 

 

4.4.1.2 Robot Arm 
 
The robot arm, which is connected to the controller, is a mechanical 

chain of links and joints incorporating 6 degrees of freedom (DOF). A DC 

servomotor controls each joint. It is similar to a human torso, shoulder, 

arm, and wrist. The components of the robot arm are the trunk, 

shoulder, upper arm, forearm, wrist, and mounting flange. The robot arm 

members contain the various servomotors and gear trains. 
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Fig.4-8 The Robot Arm 

 

 

Each joint is driven by a permanent magnet DC servomotor through an 

associated gear train, and each motor contains an incremental encoder 

and a potentiometer driven through a gear reduction. The position at 

each joint is measured relative to an initially known absolute position. 

The potentiometers, incorporated in the motors are used to determine 

this initial absolute position. The incremental encoder mounted on the 

shaft of each motor provides information about the changes in position 

involved with the respective joint. The joint velocity is, however, 

computationally derived from the positional changes. Joint encoder 
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readings are sampled at every 28 msec. And compared with the 

calculated positions [19]. 

 

Power for the motors is supplied through the cable connecting the robot 

arm and the controller. This cable bundle, containing the data cables, 

also carries feedback signals from the incremental encoders and 

potentiometers. 

 

 

Table 4-1 Joint Limits and Angular Resolutions 

Joint number Joint Limits Joint Angular Resolution
Joint 1 320 degrees 0.0050 degrees (min) 
Joint 2 220 degrees 0.0035 degrees (min) 
Joint 3 270 degrees 0.0092 degrees (min) 
Joint 4 532 degrees 0.0082 degrees (min) 
Joint 5 200 degrees 0.0080 degrees (min) 
Joint 6 532 degrees 0.0111 degrees (min) 

 

 

 

As a last element in this mechanical chain structure a pneumatic-

controlled hand (gripper) takes place. This hand has two stable states: 

open or close. A stand-alone air compressor supplies the compressed air 

necessary to open and close the two fingers of the gripper. 

 

In this part of the thesis, yaw angle is realized by the 1 P

st
P joint and 

bending angle is realized by the 2P

nd
P joint, since it is assumed that the 1P

st
P 

joint is identical to the rotation of the model joint (i.e. yaw angle) and 

the 2 P

nd
P   joint is identical to the bending of the model joint (i.e. bending 

angle). The 3P

rd
P joint of PUMA is kept with the same alignment with that 

of 2P

nd
P in order to better visualize the mimicking. 
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4.4.1.3 The Operating System 
 
The system software that controls the PUMA robot arm is called VAL, 

which is supplied by Unimation to be used with its controller computer. 

The software is a sophisticated programming language and a complete 

robot control system, but has disadvantages mostly due to age of the 

product. VAL is stored in the controller computer memory. The controller 

also houses operating controls for the robot system. The VAL 

programming language consists of a full set of English language 

instructions for teaching and editing. Work programs are entered into the 

computer/controller using either of two different procedures, or a 

combination of both. The programs can be entered with a teach pendant 

using the teach-by-showing method, or using the keyboard inputs. Full 

programming versatility can only be achieved through keyboard inputs 

[19].  

 

4.4.1.4 External Control of PUMA 760 
 
The controller computer has two ports, which are used to communicate 

with external computers. These are the Alter port and the Supervisory 

port. Supervisory communication interface is normally used to send 

information or commands to the controller system. If, however, the 

command or information, sent in real-time, is to modify the path of the 

robot while it is moving then the interfacing must be done using the alter 

port, not through the supervisory port. The communication through alter 

port is basically for real-time path control. 

 

Throughout this research a program developed in [19] is used in order to 

control the robot. The program is coded by using MATLAB and uses the 

supervisory port of PUMA 760. Positions to be taken by the robot may be 

given point by point, using the interface or as a sequence of VAL 
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commands assembled previously. The program is also able to simulate 

the movement of PUMA 760 through its interface without actually 

operating the robot. The control program interface is given in Fig. 4-9. 

 

 

 

 
 

Fig. 4-9 Control Program Interface 

 

 

4.4.2 Simulations on Determination of Visual Angles 
 
The yaw and bending angles are determined successfully with acceptable 

errors. After simulations on 25 different images with various yaw and 

bending angles, the average errors are determined as 1.2 degrees for the 

yaw and 3.3 degrees for the bending angle. For the same set of 
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experiments, the maximum errors are measured as 4.5 degrees for the 

yaw angle and 5.2 degrees for the bending angle. The results are 

satisfying considering the previous work, where the average error for 

bending angle is 5 degrees and the average error for yaw angle is 6 

degrees [18]. 

 

Although the results are successful, it is also observed that the system is 

susceptible to the changes in the background and illumination. For a case 

where the algorithm fails with different illumination conditions see Fig. 4-

10. Further research might be devoted to make this algorithm robust 

against illumination and background changes. Another problem is the 

limitation on yaw angle due to the loss of visibility of the lower markers. 

If the yaw angle is more than 35º the marker in the side of turning is not 

visible. Thus, the yaw and bending angles cannot be determined. 

However, utilization of markers on human arm basically makes this 

algorithm unfavorable for daily applications. 

 

 

 

 

(a) 

 

(b) 

Fig. 4-10 Failure with a different illumination (a) input image (b) output 

image  
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4.4.3 Simulations of Mimicking the Model Joint 
 
After determining the yaw and bending angles correctly, the mimicking 

step is performed on PUMA 760 robot arm. The mimicking gives 

satisfying results, as can be seen from some typical results in Fig. 4-11.  

 

The system works offline so it is possible to process a set of input images 

and record the resulting yaw and bending angles. Then, these angles 

may be passed to the robot arm, resulting in not a standstill mimicking 

but a continuous mimicking motion. 
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(a) 

 

(b) 

 

(c) 

Fig. 4-11 Example Results for Mimicking with (a) 0º yaw, 44º 

bending (b) 17º yaw, 88º bending (c) 0º yaw, 108º bending  
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CHAPTER 5 

 

HUMAN ARM ORIENTATION DETERMINATION BY 
BACKGROUND SUBTRACTION 

 

5.1 Introduction 
 
The method proposed in the previous chapter has certain limitations. 

First of all, the method requires the use of markers, which limits 

naturalness. Since naturalness is a basic need for an ideal robot 

mimicking system this is a major drawback of that algorithm. Also the 

number of postures, which may be mimicked, is limited by the visibility of 

markers. As mentioned in section 4.4.2, certain postures with high yaw 

degrees may not be mimicked since the markers are not visible. 

 

In this chapter a more natural algorithm is proposed. Although this 

algorithm has also limitations, it does not require the usage of markers 

and is directly applicable to a real moving human arm. The basic 

assumption of the proposed algorithm is that the largest moving region in 

the processed video sequence is the human arm to be mimicked. Also 

the background image of the operation environment and the human at a 

standstill are required.  The limitations on the possible arm movements 

are given in section 5.3. 

 

5.2 The Algorithm 
 
In order to detect the human arm in a video sequence, it is assumed that 

the largest moving object in the sequence is the human arm to be 

mimicked. The implemented algorithm tries to find the largest moving 
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object in the sequence by background subtraction and defines it as the 

human arm. Later, an orientation analysis is conducted in order to find 

the angles, which are to be used as parameters for mimicking. The 

algorithm is detailed in the following subsections. 

 

5.2.1 Background Estimation 
 
The background of the operation scene is determined, when there are no 

humans in the foreground. This is accomplished by averaging the 

intensities of the frames of the video sequence (for 45 frames). The 

average is denoted as mask B1 B. 

 

 

 

 

Fig. 5-1 Mask B1 B 

 

 

5.2.2 Human Body Extraction 
 
The human, whose arm is to be mimicked, should wait in front of the 

camera (for a duration of 60 frames) before moving his arm. During this 

time the frames are again averaged as in the previous step, in order to 
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obtain the human body at a standstill position (See Fig. 5-2). At the next 

step, the difference of this average image and maskB1B is obtained. For 

every pixel in the difference image, if the pixel value is greater than a 

threshold that pixel is marked. The mask obtained which is the human 

body standing in front of the camera is named as maskB2 B. Finally, another 

image of the human whose arm is to be mimicked is taken in which the 

arm is at the same plane with the body (i.e. 0 yaw degree), whereas it 

should be bended away from the body (Fig. 5-3). This image is used in 

order to find the length of the arm by differencing it with maskB2 B and 

obtaining the semi-major axis, in the later stages. These are the only 

obligatory stages the user should perform before utilizing this system. 

 

 

 

 

 

Fig. 5-2 Human waiting in front of camera 
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Fig. 5-3 Arm Length Extraction 

 

 

5.2.3 Moving Part Extraction 
 
The mask obtained in section 5.2.2 and the image obtained in chapter 

5.2.1 is used in order to detect the moving parts in the video sequence 

(after the 60 P

th
P frame). The difference of the frame and mask B1 B is obtained 

(starting at 61P

st
P frame) and thresholding is applied similar to step 5.2.2. 

The resulting image is the human body probably with a different arm 

posture than mask B2 B(Fig. 5-4). Then difference of that image and maskB2 B 

is obtained and thresholding is applied in order to obtain an image where 

only the moved body parts (e.g. arm) are visible. This two-step 

differencing is conducted in order to better extract the moved parts. 
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Fig. 5-4 Moved from a standstill position 

 

 

5.2.4 Removal of Erroneous Segmentation Regions  
 
Region filling is applied to the resultant image from section 5.2.3 in order 

to obtain the connected components in the image. Among these 

components the one with the largest area is assumed to be moving arm. 

The other components are eliminated and morphological closing 

operation is applied to better outline the moving arm. 
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Fig. 5-5 Arm detected as the largest connected component 

 

 

5.2.5 Contour Detection and Convex Hull Analysis 
 
Contour of the arm in the image obtained in the previous step is 

determined. The contour is required, since the convex hull is defined on a 

set of points (i.e. a polygon) and the contour (i.e. outline) of the arm 

constitutes a set points. After the contour is detected the convex hull of 

the arm is determined by using Sklansky’s Scan (Section 3.6). The largest 

distance of the convex hull defect in the image is assumed to be at the 

interior of the elbow. Hence, by finding this point the elbow is obtained. 

If that distance is smaller than a certain threshold (which is %30 of the 

semi-major axis) the arm is assumed to be straight otherwise it is 

assumed to be bended. 

 



 48

 

 

Fig. 5-6 Convex hull analysis (elbow found) 

 

 

5.2.6 Orientation Analysis 
 
If the arm is found to be straight in the previous step, a single orientation 

analysis is enough in order to retrieve the angle between the arm and 

the body. The bending angle of the elbow is assumed to be zero in that 

case. The yaw angle, yawθ  of the arm is calculated by comparing the 

semi-major axis length a  to the length b  found in Section 5.2.2 by using 

the following equation: 

⎟
⎠
⎞

⎜
⎝
⎛= −

b
a1cosθ  (5-1) 

as illustrated by the top view of a human in Fig. 5-7. 
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Fig. 5-7 Calculation of yaw angle 

 

 

 

On the other hand, if the arm is determined as bending, an orientation 

analysis is conducted. This time, the arm is divided into two parts by a 

line, which is perpendicular to the major axis of orientation and passing 

through elbow point found in the previous step. Thus, the forearm and 

the upper arm are detected. Then, separate orientation analyses are 

conducted on both of these parts to obtain the two mimicking 

parameters, which are the orientation angles of the upper arm and the 

forearm. A typical result is shown in Fig. 5-8 for the image in Fig. 5-4. 

 

 

 

 

Body 
Head 

Arm 
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Fig. 5-8 Arm partitioned 

 

 

5.2.7 Determination of the Shoulder Position 
 
After the orientation of the two segmented arm parts is found, the region 

corresponding to the upper arm or forearm is not known. In order to 

overcome this problem the approximate position of the shoulder is 

determined and the region nearer to the shoulder is assumed to be the 

upper arm.  The approximate shoulder position is found by using the 

difference image of the human at standstill and the background. On this 

image, the shoulders are assumed to be at the 3/5 of the height and 1/6 

and 5/6 of the width of the bounding rectangle as seen in Fig. 5-9. 

Among these two shoulder points the one nearer to the center of the 

image is assumed to be the shoulder of the moving arm. 
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Fig. 5-9 Determination of the shoulder position 

 

 

 

5.3 Performance of the Algorithm 
 

It is observed that the detection of arm by background subtraction yields 

satisfying results. The main challenges faced during the tests are the 

detection of bending of the arm at the elbow and the correct separation 

of the upper arm with the forearm. If the detection and separation is 

accomplished successfully, the determination of the orientation angles 

turns out to be a simple application of a well-known moment analysis. 

 

Two example output sets are given in tables 5-1 and 5-2 where the 

orientation angles are given for the upper arm and the forearm. The 

error plots are also given in Fig. 5-10 and 5-11 for these two sets. The 

results at Table 5-1 are over 32 frames and the average error is found to 

be 11.675.  The results at Table 5-2 are over 12 frames and the average 

error is found to be 4.746.  If the two sets are considered together the 

average error is found to be 9.785, which yields a 5.4% error.  
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Comparing the above result with similar previous research, it is seen that 

satisfactory error rates are obtained. For example, the results of the work 

of [7] states that a 7.5% error is obtained. Thus, the proposed algorithm 

has a lower error while it is more robust, not requiring as much a priori 

information as the system in [7]. 

 

Although the error rates are satisfactory, problems are faced at various 

steps of the algorithm. These problems are faced mainly at the 

separation of the upper arm and the forearm. In the first test sequence, 

15P

th
P frame constitutes an example of a separation problem (Fig. 5-10). At 

this frame, the upper arm is not segmented correctly yielding the high 

error rate. 
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Table 5-1 Calculated angles and error for the first sequence 

Frame Orientation Angles Calculated Angles Error 

1 -41 
-41 

-43.1 
-43.1 

2.1 
2.1 

2 8 
8 

5.7 
5.7 

2.3 
2.3 

3 0 
90 

-13.9 
88.3 

13.9 
1.7 

4 0 
-51 

31.2 
-70.2 

31.2 
19.2 

5 -5 
60 

-25.5 
60.7 

20.5 
0.7 

6 -4 
-18 

-14.4 
-14.4 

10.4 
3.6 

7 -56 
-56 

-63 
-63 

7 
7 

8 -63 
-49 

-58.3 
-58.3 

4.7 
9.3 

9 -19 
0 

-11.2 
-11.2 

7.8 
11.2 

10 14 
39 

22.3 
22.3 

8.3 
16.7 

11 46 
46 

42 
42 

4 
4 

12 25 
25 

20.7 
20.7 

4.3 
4.3 

13 -24 
0 

-8.7 
-8.7 

15.3 
8.7 

14 -62 
0 

7.7 
7.7 

54.3 
7.7 

15 -34 
84 

78.7 
78.7 

112.7 
5.3 

16 4 
-74 

12.2 
-76.8 

8.2 
2.8 

17 13 
55 

-3.1 
56.1 

16.1 
1.1 

18 -1 
-1 

-2.5 
-2.5 

1.5 
1.5 

19 -46 
45 

-58.5 
46.3 

12.5 
1.3 

20 -55 
-22 

-39.5 
11.9 

15.5 
33.9 

21 -59 
-59 

-63 
-63 

4 
4 
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22 -24 
-5 

-13.2 
-13.2 

9.8 
8.2 

23 -9 
85 

-17 
85.5 

8 
0.5 

24 0 
-90 

-14.4 
-89.8 

14.4 
0.2 

25 10 
48 

-25 
46.1 

35 
1.9 

26 -5 
-5 

-5.4 
-5.4 

0.4 
0.4 

27 -56 
-40 

-46.4 
-46.4 

9.6 
6.4 

28 -50 
-36 

-44.8 
-44.8 

5.2 
8.8 

29 -12 
0 

-9.8 
-9.8 

2.2 
9.8 

30 -10 
55 

-20.5 
61.6 

10.5 
6.6 

31 -5 
-51 

-66.1 
-66.1 

61.1 
15.1 

32 -10 
-78 

14.4 
-81.7 

24.4 
3.7 

 
Average error 

 
11.675 
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Fig. 5-10 Error plot for the first sequence 
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Table 5-2 Calculated angles and error for the second sequence 

Frame Orientation Angles Calculated Angles Error 

1 -39 
-39 

-41.7 
-41.7 

2.7 
2.7 

2 6 
6 

6.3 
6.3 

0.3 
0.3 

3 10 
-75 

4.9 
-69.8 

5.1 
5.2 

4 15 
-70 

8 
-68.4 

7 
1.6 

5 19 
19 

17.1 
17.1 

1.9 
1.9 

6 18 
41 

30.1 
30.1 

12.1 
10.9 

7 18 
-45 

20.1 
-31.7 

2.1 
13.3 

8 7 
-52 

6.8 
-49.6 

0.2 
2.4 

9 0 
0 

-1.1 
-1.1 

1.1 
1.1 

10 -64 
-64 

-71.6 
-71.6 

7.6 
7.6 

11 -73 
-73 

-81.1 
-81.1 

8.1 
8.1 

12 -6 
-6 

-11.3 
-11.3 

5.3 
5.3 

 
Average error 

 
4.746 
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Fig. 5-11 Error plot for the second sequence 

 

 

 

The most common problem with the separation of the upper arm and 

forearm is faced when the arm is bended too much at the elbow. For 

such a case, the algorithm defines some parts of the shoulder as parts of 

the forearm. (See Fig. 5-9) This problem might be solved by a further 

connected component analysis and some heuristics. 
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Fig. 5-12 Separation problem 

 

 

 

Another possible problem, which is faced rarely, may occur if the human 

involuntarily moves other parts of his body (such as head) while his arm 

is stationary. In that case the algorithm also detects that part as the arm 

since it is the largest region moving in the sequence. Imposing a 

minimum area constraint on the moving region can reduce the conditions 

at which this problem may be faced. However, it is still possible to occur 

since the exact viewed size of the arm cannot be known beforehand. 

 

Since only one camera is used in this research, the determination of the 

yaw angle is not promising. Normally, stereo vision techniques using at 

least two cameras are employed for three-dimensional problems. 

Addition of the calculation of the yaw angle carries the problem to three-

dimensional space. The determination of the yaw angle is also considered 

by observing the shrinkage in the viewed length of the arm. However, 

the problems, like missing of hands in some frames, make the calculation 

of viewed arm length unstable. Such problems do not affect the 
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calculation of orientation angles, but still impose a serious drawback for 

the calculation of yaw degree. 

 

Although the aim of this research was to develop a real-time system, it is 

also observed that this is not possible with the high complexity 

operations applied during the algorithm. With the system, mentioned in 

Appendix B, the processing rate of the application is approximately 2 

frames per second. A higher rate may be obtained by running the 

application on a computer with higher processing capabilities but still it 

does not look promising that a real-time processing rate may be 

achieved. 
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CHAPTER 6 

 

HUMAN ARM ORIENTATION DETERMINATION BY 
FEATURE TRACKING 

 
 

6.1 Introduction 
 
The methods proposed in the previous chapters are based on comparison 

of a single frame against a background model. Thus, they do not 

explicitly take into account the motion information, which may be 

obtained by observing two consecutive frames. In this chapter, an 

algorithm using the motion information of the human arm is proposed. 

The algorithm uses Lucas Kanade Feature tracking [21] and finds the 

orientation of the arm by using the motion vectors of individual features 

within the image. 

 

As in the previous method, this method also makes use of a background 

image and the mask of the human at standstill. However, these are used 

only to find the location of shoulder, which is used in distinguishing 

between the upper arm and forearm. The detection of the moving arm 

and determination of orientation angles are realized only by using motion 

information. 

 

6.2 Lucas Kanade Feature Tracking 
 
Given a point ),( yxI  in an image I , Lucas Kanade Feature tracking is 

used to find the new location, ),( yxJ  of that point in image J  after the 
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motion. The new location of that point is ),( yx dydx ++  where the vector 

T
yx ddd ][=  is equal to the optical flow at ),( yxI . The tracker finds the 

optical flow vector d , which minimizes the residual function ∈ on an 

image neighborhood of )12()12( +×+ yx ωω  for an image point ),( yx uu  

[22]. The residual function ∈ is defined as: 

∑∑
+

−=

+

−=

++−=∈
yy

yy

xx

xx

u

uy
yx

u

ux
yx dydxJyxIdd

ω

ω

ω

ω

2)),(),((),(  (6-1) 

 

6.2.1 Pyramidal Implementation of Iterative Lucas Kanade 
Feature Tracker 

 
The two key components to any feature tracker are accuracy and 

robustness [22]. Intuitively, a small integration window would be 

preferable in order not to smooth out the details contained in the images 

(i.e. small values xω and yω ). The robustness component relates to 

sensitivity of tracking with respect to changes of lighting, size of image 

motion, etc. In particular, in order to handle large motions, it is intuitively 

preferable to choose a large integration window. Therefore, there is a 

natural tradeoff between local accuracy and robustness when choosing 

the integration window size. In order to provide a solution to that 

problem, pyramidal implementation of the classical Lucas Kanade 

algorithm is proposed [22].  

 

For an image I  of size yx nn × , 0I  is the zero P

th
P level image, which is the 

same as the original image I . The next image, in the pyramidal 

representation is 1I  which has a size of 2/2/ yx nn ×  and is basically the 

result of sub-sampling of 0I . The following steps are created recursively 

based on the previous step. The pyramidal representation provides the 

handling of large pixel motions (larger than the integration window sizes 
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xω and yω ). The overall pyramidal tracking algorithm proceeds as 

follows: First, the optical flow is computed at the lowest pyramid level 

mL . Then, the result of that computation is propagated to the upper level 

1−mL  in a form of an initial guess for the pixel displacement at level 

1−mL . Given that initial guess, the refined optical flow is computed at 

level 1−mL , and the result is propagated to level 2−mL , and so on up to 

the level 0 , which is the original image. Assuming that an initial guess 

for optical flow at level L , TL
y

L
x

L ggg ][=  is available from the 

computations done at the lower layers. Then, in order to compute the 

optical flow at level L , it is necessary to find the pixel displacement 

vector TL
y

L
x

L ddd ][=  that minimizes the new residual function L∈ : 
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The optical flow at level L , is the value of TL
y

L
x

L ddd ][=  for which the 

first derivative of ),( L
y

L
x

L dd∈  is equal to zero. That is; 

]00[
)(
=

∂
∈∂

L

LL

d
d

 (6-3) 

Defining; 

),(),( yxIyxA L=  (6-4) 

),(),( L
y

L
x

L gygxJyxB ++=  (6-5) 

Then by dropping the L  superscripts, 
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After a set of derivations including a Taylor series expansion of the above 

term, it is found that; 

bGd
d
d T
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⎤
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∂
∈∂ )(

2
1

 (6-7) 
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where 
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Then, the optimum optical flow vector becomes equal to 

bGdopt
1−=  (6-10)

The above derivation assumes that the pixel displacement is small in 

order to use Taylor series expansion. However, that may not always be 

the case. In order to overcome this problem the algorithm is applied 

iteratively until the result of each step decreases to a threshold. After 

each iteration, the found displacement is added to ),( yxB  in the form of 

),( yx dydxB ++  and this new value is used for the new iteration.  

 

6.3 The Algorithm 
 
In order to determine the orientation of the arm, the motion information 

of two consecutive frames are used. This information is obtained by 

Lucas Kanade feature tracker. However, suitable pixels (i.e. features) are 

determined first, for the tracker to operate efficiently. Later, the 

algorithm is directed on the clustering of motion vectors in order to 

distinguish the upper arm and forearm. Lastly, the linear system formed 

by the set of tracked features is solved for the orientation angles. 

 

 



 63

6.3.1 Finding Suitable Features  
 

Edges and specifically corners are suitable features for tracking within an 

image. In order to find corners, first the minimal eigenvalue for every 

source image pixel is calculated [23]. Then, non-maxima suppression is 

performed only leaving local maxima in 3x3 neighborhood and corners 

with an eigenvalue, which is less than a threshold, or corners which are 

too close to another stronger corner are eliminated.  

 

 

 

 

 

Fig. 6-1 Suitable features determined 

 

 

6.3.2 Feature Tracking and Separation of the Forearm and 
Upper Arm 
 

During the conducted simulations, first tracking of features between only 

two consecutive frames is studied. In this approach, suitable features for 

tracking are determined for each new frame and these features are 

tracked in the next frame by using Lucas Kanade feature tracking. Any 
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feature, which has a movement greater than a certain threshold, is 

assumed to be on the arm. The position of each feature ( x  and y ) and 

their movement vectors ( xd  and yd ) constitute a 4 dimensional vector. 

The space generated by all the moving features is clustered into 2 

subspaces by 2-means clustering [24]. One of these subspaces form the 

upper arm while the other forms the forearm. This operation is repeated 

from the start for each new frame. 

 

The second approach studied, provided a better tracking operation. In 

this approach, previously tracked features are tried to be followed in the 

consequent frames. Similar to the previous approach, suitable features 

for tracking are determined and tracked by Lucas Kanade feature 

tracking for each new frame. However, the information on features, 

which are found to be moving are propagated to the next frame, where 

they are being kept tracked in addition to the new features determined 

for this frame. Thus, a feature, which is found to be moved in a previous 

frame, is tracked for all consecutive frames even if its movement is less 

than the pre-determined threshold. Similar to the previous approach, 2-

means clustering is applied with each new frame and upper arm and 

forearm is determined. 

 

6.3.3 Determination of the Orientation Angles 
 

Once the found features are classified as forearm or upper arm, the 

orientation angles of these body parts may be determined by using the 

position and motion information of these features. When a point ),( yx  is 

rotated by θ  degrees, the new position ),( yx ′′  of the point may be found 

by the following affine relation: 
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In this equation, x  and y  are known terms while x′  and y′  are found 

by adding the motion vectors xd  and yd  to x  and y . 
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The above equation is modified in order to include error terms. Errors 

may be caused by camera noise or the movement of the shoulder. The 

error terms also take into account, the movement of the upper arm while 

the calculations are made for the forearm. 
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Renaming θcos  as a  and θsin  as b , the above equation my be 

rewritten as: 
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By converting this equation into a linear system of the form BAX =  

where X  is the unknown matrix, we obtain; 
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It is observed that there are 4 unknown terms ( a , b , x∆ , y∆ ); hence, in 

order to solve the above linear system at least 2 sets of points are 

required. Assuming that n  different sets of points are available where 

2>n , the system becomes an over determined linear system. 
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Since the first matrix is not square, its pseudo-inverse is used in order to 

solve this system, which results with the following relation; 

BAAAX TT 1)(ˆ −=  (6-17)

The values of a  and b  are found by solving this system, and the 

orientation angle (θ ) is obtained by; 
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The above set of calculations determines the change in θ  for two 

consecutive frames. In practice, the human starts moving his arm from a 

known value of θ  (typically 0 or 90 degrees). Therefore, by adding up 

the found changes in θ  up to current frame, the value of θ  is found.  

 

These calculations are done for both the upper arm and the forearm and 

the orientation angles are obtained for each of them. 
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6.4 Performance of the Algorithm 
 

During the simulations, it is observed that Lucas Kanade feature tracking 

algorithm is successful while tracking the determined features. Table 6-1 

summarizes the results of these experiments and it can be observed that 

the average error is around 13 degrees. The main problem was faced 

during the separation of the upper arm and the forearm. As mentioned in 

Section 6.3.2, two different methods are examined. However, both 

methods were unable to give a reliable separation. 

 

When the first approach is used, it is impossible to detect the upper arm 

while it is stationary. Since only the moved features are taken into 

consideration while determining the angle the features in the upper arm 

are lost while it is stationary. This situation causes 2-means clustering 

algorithm to operate on the features from the forearm and the forearm is 

separated into two parts.  

 

In order to solve the above problem, the second method is developed 

where not only the moving features between frame pairs but any feature 

which has moved throughout the video sequence is being tracked. The 

main disadvantage of this approach is that any feature, whether on the 

arm or not, is being tracked if it has moved in any frame of the video 

sequence. This causes points, which has showed up as moving due to 

error, or other factors such as the shadow of the moving arm to be 

tracked throughout the video sequence. These kind of features 

accumulate as the video sequence continues and becomes to constitute a 

large portion of tracked features (See Fig. 6-2).  
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Fig. 6-2 Accumulated moving parts 

 

 

 

In order to overcome this problem, the number of consecutive frames for 

which each point stays stationary is calculated. If a feature is stationary 

for more than 10 consecutive frames, this feature is not tracked 

anymore. Although, such a discard reduces the tracking of noisy or 

unnecessary features, it also eliminates features on the arm, if the arm is 

stationary for more than 10 frames. Therefore, this approach is also not 

capable of solving the problem of tracking the arm, while its stationary. 

 

The main problem of separation of the arm is caused by the nature of 

the tracking of movement information. Since the algorithm totally 

depends the tracking of moving features, it is natural to experience 

problems when dealing with non-moving features within the image. 

 

Assuming that the arm is moving at any instant, tests are conducted in 

order to evaluate the performance of the orientation angle determination 

algorithm of section 6.3.3. During the tests, the arm is kept straight at all 

times and moved throughout the sequence. The average error is found to 
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be 13.621 degrees (7.6% error), which is higher than expected (see 

Table 6-1 and Fig. 6-3),. However, this result is satisfactory comparing it 

to the 7.5% error of the research in [7]. The error is high due to the fact 

that at each frame, the change in orientation angle is found instead of its 

real value. Then, the real value is constructed by adding up all the 

changes up to that frame. Therefore, errors within the calculations for 

each frame accumulate and cause a large total error as orientation angle 

greatly differs from the initial posture (0 degree for the below example).  

 

 

 

 

Table 6-1 Calculated angles and error 

Frame Orientation Angles Calculated Angles Error 
1 38 53.6 15.6 
2 45 57 12 
3 10 25.5 15.5 
4 -25 -9.6 15.4 
5 -46 -26.5 19.5 
6 -29 -10.4 18.6 
7 5 10.1 5.1 
8 16 26.2 10.2 
9 -3 2.2 5.2 
10 0 8.3 8.3 
11 29 37.1 8.1 
12 34 42 8 
13 -46 -30 16 
14 -55 -36.9 18.1 
15 -28 -13.9 14.1 
16 26 34.3 8.3 
17 -31 -17.5 13.5 
18 -71 -47 24 
19 -49 -25.7 23.3 

 
Average error 13.621 
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Fig. 6-3 Error plot for the test sequence 
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CHAPTER 7 

 

CONCLUSIONS 
 

7.1 Conclusions 
 
Robot mimicking by using visual data is an active research area, covering 

many different fields of science and engineering such as artificial 

intelligence, computer vision, machine learning, kinematics and image 

processing. However, when the target to be mimicked is a human, 

intrinsic difficulties for describing the human dynamics arise. In order to 

overcome these difficulties and accomplish robot mimicking by using 

visual data, in this thesis three methods have been proposed.  

 

First, the results of a preliminary research on mimicking are presented, 

where a 2-DOF model joint with markers is mimicked by a PUMA 760 

robot arm. The images of the model joint are processed and the locations 

of the markers are determined. By using these locations two parameters, 

which are the yaw and bending angles, defining the posture of the model 

joint are obtained. The same posture is taken by the robot arm in order 

realize the mimicking. The results were satisfactory and guided us for the 

aim of creating a system where the movements of a real human arm are 

mimicked. 

 

The secondly proposed mimicking system employs basic computer vision 

algorithms in order to detect a moving human arm in a video sequence. 

The arm is detected by using background subtraction and the upper arm 

and forearm are segmented by using convex hull analysis. Afterwards, 
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the orientations of the upper arm and forearm are determined which are 

used as mimicking parameters by a PUMA 760 robot arm. 

 

Although problems, limiting the movement of the arm or in finding the 

elbow, are experienced, it is also observed that the system is satisfactory 

considering the aforementioned difficulties in this field.  

 

The last proposed system makes use of Lucas Kanade feature tracking in 

order to track points on the moving human arm. After finding the position 

and movement of points on the arm, the system finds the orientation by 

using a simple rotation matrix. Problems were encountered in the 

segmentation of the arm when the upper arm is stationary, since the only 

information used in this system is movement. 

 

A comparison of the two proposed systems shows that background 

subtraction is a more efficient system. This result is due to the fact that 

the human arm may be stationary during the operation and background 

subtraction is capable of handling such a case, while feature tracking has 

still problems with segmentation. However, background subtraction 

requires preliminary information on the background and the human at 

standstill before operation, while feature tracking system is capable of 

operating with small or even no preliminary information. It is also 

observed that, assuming proper segmentation, background subtraction 

has a smaller average error. 

 

7.2 Proposed Future Work 
 

The arm detection and orientation estimation algorithms may be 

improved to be more robust against illumination and background changes 

or unexpected arm movements conducted by the human target. 
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Moreover, additions to the employed algorithms might allow detection 

and identification of both arms in a single sequence, thus nearing the 

final aim of true mimicking of humans. However, for such a system to be 

operational a more humanoid robot than PUMA 760 must be used as the 

mimicking robot. 

 

Based upon the experience gained through this research, a hybrid 

mimicking system may be constructed using the advantageous properties 

of each proposed system while reducing their drawbacks.  

 

Another important drawback of both of the systems is their inability to 

work real-time both due to the complexity of the algorithms and the 

separation of the visual analysis and robot control programs. The visual 

analysis may be modified for a reduction in complexity and different 

algorithms may be exploited to accelerate the operation. Moreover, the 

integration of the visual analysis and robot control software constitute a 

good direction for future work. 
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APPENDIX A 

 

SPECIFICATIONS OF PUMA 700 SERIES ROBOTS 
 

Table A-1. Specification of PUMA 700 series robots. 

DOF 6 

Drives DC Motors 

Control Numerical 

Positional Control Incremental Encoders 

Coordinates Cartesian 

Configuration Revolute 

Minimum Reach 0.125 mm (Between Joint 1 and 5) 

Maximum Reach 360 deg Working Volume 

Limit Joint 1 320 deg 

Limit Joint 2 220 deg 

Limit Joint 3 270 deg 

Limit Joint 4 532 deg 

Limit Joint 5 200 deg 

Limit Joint 6 600 deg 

Repeatability -762 model +/- 0.2mm 
-761 model +/- 0.2mm 

Maximum Speed 1.8 m/s 

Auxiliary Processors 6 Slave Microprocessors 

Programming Teach Pendant VAL II language 

Serial Interface RS232 or RS423 

Memory Buffer 46KB 

Battery Buffer 30 Days 

Arm Weight -762 model 590kg 
-761 model 600kg 

Controller Cabinet Weight 200kg 
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APPENDIX B 

 

THE APPLICATION SOFTWARE FOR 
BACKGROUND SUBTRACTION ALGORITHM 

 
The program performing the human arm orientation determination by 

background subtraction is written in Microsoft’s Visual C++ 6.0 by using 

OpenCV library. The platform used both for coding and running is Intel 

Pentium3 733 Mhz, with 128 MB of RAM and a Windows 2000 operating 

system. The only input parameter to be adjusted by the user is the 

threshold level, which is used in the various steps of the algorithm. The 

program is capable of processing video files in AVI format or directly 

capturing from a video camera connected to the computer through a TV-

card. 

 

 

 

 

 

Fig. B-1 The program interface 
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The program has a single user interface where the threshold value, 

operation mode and the source of the video sequence may be selected 

and video sequence being processed may be viewed. If the user desires 

to make background estimation, he/she should select the appropriate 

checkbox. After this step, either “Load From File” button or “Capture 

From Camera” button must be clicked to start the operation. If the “Load 

From File” button is clicked an open file dialog-box is displayed for the 

selection of the AVI file to be used. If the “Capture From Camera” button 

is clicked two consecutive dialog boxes for the selection of video source 

properties are displayed. When the operation is complete a save file 

dialog-box is displayed in order to select where the resultant (Bitmap) 

image will be stored. 

 

 

 

 
 

Fig. B-2 Open Video File Dialog Box 

 

 

 



 81

 

 
 

Fig. B-3 Video Source Properties Dialog Box-1 

 
 
 

 
 

Fig. B-4 Video Source Properties Dialog Box-2 
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If the user desires to process a video sequence for orientation analysis, 

he/she should click either the “Load From File” button or the “Capture 

From Camera” button without selecting the “Background Estimation” 

check box. Upon clicking the appropriate button two open file dialog-

boxes are displayed consecutively in addition to the dialog boxes 

mentioned above. These open file dialog-boxes enable the user to select 

the image file to be used as the background estimate and the image file 

in which the human exposes his arm length for length estimation. When 

all the files are chosen the operation begins and the processed video 

sequence can be viewed in the interface with additional information 

overlaid. This information is 

� The frame count on the upper left corner 

� The yaw angle on the middle right 

� The orientation of upper arm and forearm on the lower right. 
� The center of masses of the upper arm and forearm are displayed 

with circular markers. 

 

 

 

 

Fig. B-5 Program interface during orientation estimation 
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During the operation the calculated angles are stored in a text file in 

order to be used by the robot communication program for actual 

mimicking. 
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APPENDIX C 

 

THE ROBOT INTERFACE PROGRAM 

 
A program is developed in order to process the results of the two 

orientation determination algorithms by using Borland’s C++ Builder. The 

programs implementing the algorithms saves the output orientation 

angles in the form of a text file. In order to convert these angles into 

robot position information orientation, orientation is checked for sign 

changes since two different arm postures may yield the same orientation 

angle as seen in Fig. C-1. 

 

 

 

 

 

Fig. C-1 Arm posture and orientation 
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As the initial position of the arm is known the correct orientation is 

obtained by checking through the angle sequence for sign changes. 

Following this operation a low pass filter is applied in order to smooth the 

output and reduce the erroneous orientation angle values. Finally, an 

output text file is prepared, which is compatible with Ö. Gebizlioğlu’s 

PUMA 760 Control program.  

 

 

 

 
 

Fig. C-2 Robot Interface Program 
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