

HUMAN ARM MIMICKING USING VISUAL DATA

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALGAN USKARCI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan ÖZGEN
 Director

I certify that this thesis satisfies all the requirements as a thesis for the
degree of Master of Science.

Prof. Dr. İsmet Erkmen

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is
fully adequate, in scope and quality, as a thesis for the degree of Master
of Science.

Assoc.Prof. Dr. Aydın ALATAN Prof. Dr. Aydın Ersak
Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. Aydan Erkmen (METU,EE)

Prof. Dr. Aydın Ersak (METU,EE)

Assoc.Prof. Dr. Aydın Alatan (METU,EE)

Prof. Dr. İsmet Erkmen (METU,EE)

Haluk Zontul, M.S. (TÜBİTAK,BİLTEN)

 iii

I hereby declare that all information in this document has been
obtained and presented in accordance with academic rules and
ethical conduct. I also declare that, as required by these rules
and conduct, I have fully cited and referenced all material and
results that are not original to this work.

 Name, Last name :

Signature :

 iv

ABSTRACT

HUMAN ARM MIMICKING USING VISUAL DATA

USKARCI, Algan

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Aydın ERSAK

Co-Supervisor: Doç. Dr. Aydın ALATAN

December 2004, 85 pages

This thesis analyzes the concept of robot mimicking in the field of

Human-Machine Interaction (HMI). Gestures are investigated for HMI

applications and the preliminary work of the mimicking of a model joint

with markers is presented. Two separate systems are proposed finally

which are capable of detecting a moving human arm in a video sequence

and calculating the orientation of the arm. The angle of orientation found

is passed to robot arm in order to realize robot mimicking. The

simulations show that it is possible to determine human arm orientation

either by using some markers or some initial background image

information or tracking of features.

Keywords: Robot Mimicking, Computer Vision, Human-Machine
Interaction

 v

ÖZ

GÖRSEL VERİ KULLANILARAK İNSAN KOLU TAKLİDİ

USKARCI, Algan

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü Bölümü

Tez Yöneticisi : Prof. Dr. Aydın ERSAK

Ortak Tez Yöneticisi: Doç. Dr. Aydın ALATAN

Aralık 2004, 85 sayfa

Bu tez İnsan-Makine Etkileşimi (İME) çerçevesinde robot taklidi konusunu

incelemektedir. EMİ uygulamaları açısından el ve kol hareketeleri

incelenmiş ve bir model eklemin taklidi üzerine yapılan ön çalışmayla ilgili

bilgiler sunulmuştur. Son olarak bir video sekansı içerisinde hareket eden

bir insan kolunu bulan ve kolun yönelme açısını hesaplayan iki farklı

sistem önerilmiştir. Bulunan yönelme açısı bir robot kola aktarılarak taklit

hareketinin gerçekleşmesi sağlanmıştır. Simulasyonlar sonucunda insan

kolu yönelme açısının işaretler, fon imgesiyle ilgili bilgi veya imge

özelliklerinin takibi kullanılarak bulunabileceği anlaşılmıştır.

Anahtar Kelimeler: Robot Taklidi, Bilgisayarlı Görüş, İnsan-Makine
Etkileşimi

 vi

TABLE OF CONTENTS

PLAGIARISM………………………………………………………………………………. iii

ABSTRACT………………………………………………………………………………….. iv

ÖZ……………………………………………………………………………………………… v

TABLE OF CONTENTS………………………………………………………………….. vi

LIST OF TABLES…………………………………………………………………………. x

LIST OF FIGURES……………………………………………………………………….. xi

CHAPTER

1. INTRODUCTION……………………………………………………………….. 1

1.1 Problem Definition……………………………………………………… 1

1.2 Scope of the Thesis…………………………………………….……… 2

1.3 Outline………………………………………………………….…………… 3

2. HUMAN GESTURE ANALYSIS AND ROBOT MIMICKING…………. 4

2.1 Introduction…………………………………………………….………… 4

2.2 Human Gesture Analysis……………………………………………… 5

2.3 Robot Mimicking…………………………………………………………. 7

2.4 Previous Work on Gesture Analysis and Robot Mimicking.. 8

3. IMAGE ANALYSIS FOR HUMAN ARM LOCALIZATION…….……… 11

3.1 General……………………………………………………………………… 11

3.2 Thresholding……………………………………………………………… 11

3.3 Connected Component Analysis and Flood Filling…………… 12

 vii

3.4 Image Analysis by Moments………………………………………… 13

3.5 Morphological Operations……………………………………………. 16

3.6 Convex Hull Analysis………………………………………….……….. 21

3.7 Median Filtering…………………………………………………………. 23

3.8 Intel’s Open Source Computer Vision Library…………………. 23

4. MODEL ARM ORIENTATION ESTIMATION
 WITH MARKERS……………………………………..………………………… 25

4.1 Motivation…………………………………………………………………. 25

4.2 Visual Analysis……………………………………………………………. 25

4.3 Image Processing for Determining Bending and Yaw
Angles……………………………………………………………………………..

26

4.3.1 Extraction of Marker Points………………………………….. 27

4.3.2 Determining Yaw and Bending Angles………………….. 30

4.4 Results………………………………………………………….…………… 32

4.4.1 PUMA 760……………………………………………….…………. 32

4.4.1.1 Controller Computer……………………………….…… 33

4.4.1.2 Robot Arm………………………………………….………. 34

4.4.1.3 The Operating System…………………………………. 37

4.4.1.4 External Control of PUMA 760………………………. 37

4.4.2 Simulations on Determination of Visual Angles………. 38

4.4.3 Simulations of Mimicking the Model Joint………………. 40

5. HUMAN ARM ORIENTATION DETERMINATION BY
 BACKGROUND SUBTRACTION…………………………………………….

42

5.1 Introduction…………………………………………………….………… 42

 viii

5.2 The Algorithm………………………………………………….………… 42

5.2.1 Background Estimation………………………………………… 43

5.2.2 Human Body Extraction………………………………….…… 43

5.2.3 Moving Part Extraction………………………………………… 45

5.2.4 Removal of Erroneous Segmentation Regions………… 46

5.2.5 Contour Detection and Convex Hull Analysis………….. 47

5.2.6 Orientation Analysis……………………………………………. 48

5.2.7 Determination of the Shoulder Position…………………. 50

5.3 Performance of the Algorithm..………………………….………… 51

6. HUMAN ARM ORIENTATION DETERMINATION BY
 FEATURE TRACKING………………………………………………………….

59

6.1 Introduction…………………………………………………….………… 59

6.2 Lucas Kanade Feature Tracking…………………………….…….. 59

6.2.1 Pyramidal Implementation of Iterative Lucas Kanade
Feature Tracker..………………………………………….……………..

60

6.3 The Algorithm…………………………………………………….……… 62

6.3.1 Finding Suitable Features…………….………………………. 63

6.3.2 Feature Tracking and Separation of the Forearm
and Upper Arm…………………………………………………….……..

63

6.3.3 Determination of the Orientation Angles…………….…. 64

6.4 Performance of the Algorithm……………………………………… 67

7. CONCLUSIONS…………………………………………………….…………… 71

7.1 Conclusions……………………………………………………………….. 71

7.2 Proposed Future Work………………………………………………… 72

 ix

REFERENCES………………………………………………………….………………….. 74

APPENDICES

A. SPECIFICATIONS OF PUMA 760 SERIES ROBOTS………………… 78

B. THE APPLICATION SOFTWARE FOR BACKGROUND
 SUBTRACTION ALGORITHM.……………………………………………..

79

C. THE ROBOT INTERFACE PROGRAM………………….………………… 84

 x

LIST OF TABLES

TABLES

3-1 Summary of Orientation Calculation……….……………………………….. 16

4-1 Joint Limits and Angular Resolutions……………….………………………. 36

5-1 Calculated angles and error for the first sequence……….…………… 53

5-2 Calculated angles and error for the second sequence.........………. 55

6-1 Calculated angles and error……………………………………………………. 69

A-1 Specification of PUMA 700 Series Robots…………………………………. 78

 xi

LIST OF FIGURES

FIGURES

 2-1 Taxonomy of Gestures……………………..…………………………………… 5

 2-2 Visual Gesture Analysis Stages………………………………………………. 7

 3-1 Semi-axes and orientation……………………………………………….……. 15

 3-2 A test image A and a structuring element B…............................ 18

 3-3 The dilation of A by B…………………………………………………………… 19

 3-4 Closing of A by B……………………………………………………….…………. 19

 3-5 The erosion of A by B…………………………………………………………… 20

 3-6 Opening of A by B………………………………………………………………… 20

 3-7 Polygons and Convex Hull…..………………………………………………… 21

 3-8 Median Filtering Example……………………………………………….……… 23

 4-1 The model joint and its image……………………………………………….. 26

 4-2 The program interface………………………………………………………….. 27

 4-3 Steps for visual analysis………………………………………………………… 29

 4-4 Calculation of yaw degree……………………………………………….……. 30

 4-5 Adjusting image due to yaw………………………………………………….. 31

 4-6 Calculation of bending degree……………………………………………….. 32

 4-7 PUMA 760 Robot……………………………………………………….…………. 33

 4-8 The robot arm……………………………………………………………………… 35

 4-9 Control program interface……………………………………………………… 38

 xii

 4-10 Failure with a different illumination………………………………………. 39

 4-11 Example results for mimicking……………………………………………… 41

 5-1 Mask1………………………………………………………………………………….. 43

 5-2 Human waiting in front of camera………………..……………………….. 44

 5-3 Arm Length Extraction………………………………………………….………. 45

 5-4 Moved from a standstill position…………………………………………….. 46

 5-5 Arm detected as the largest connected component…………………. 47

 5-6 Convex hull analysis…………………………………………………….………. 48

 5-7 Calculation of yaw angle……………………………………………………….. 49

 5-8 Arm partitioned…………………………………………………….……………… 50

 5-9 Determination of the shoulder position………..…………………………. 51

 5-10 Error plot for the first sequence………………..…………………………. 54

 5-11 Error plot for the second sequence………………..…………………….. 56

 5-12 Separation problem……………………………………………………………. 57

 6-1 Suitable features determined……………………………………………..…. 63

 6-2 Accumulated moving parts……………………………………………………. 68

 6-3 Error plot for the test sequence.……………………………………………. 70

 B-1 The program interface………………………………………………………….. 79

 B-2 Open video file dialog box…………………………………………………….. 80

 B-3 Video source properties dialog box-1……………………………………… 81

 B-4 Video source properties dialog box-2……………………………………… 81

 B-5 Program interface during orientation estimation……………………… 82

 xiii

 C-1 Arm posture and orientation………………………….……………………… 84

 C-2 Robot interface program……………………………….……………………… 85

 1

CHAPTER 1

INTRODUCTION

1.1 Problem Definition

Robot mimicking has been a hot research topic in the previous years and

is an important application area for robotic systems. Robot mimicking is a

convenient way to teach the robots the operations they are to perform.

Instead of cumbersome programming a human may demonstrate the

operation of a robot working in an assembly line, or a physically impaired

person may direct a robot to accomplish movements he/she is unable to

do such as lifting a heavy object. Also robots may be taught to perform

actions such as playing musical instruments (e.g. drums). Another

advantage, which may be obtained by robot mimicking, is the direct

control of the teaching process. If the human, who is being mimicked, is

observing the robot at the same time unwanted or dangerous situations

may be avoided by actively changing the movements at that instance.

Although early years of robot mimicking research was based on

mechanical devices such as data gloves, recent advancements in the

capabilities of computers and new algorithms developed in the field of

computer vision has made a true mimicking system possible, where

robots mimic humans by observing them visually. That kind of mimicking

is a more natural and humanoid way since human learning from early

childhood begins with visually observing other humans and mimicking

them.

 2

In this thesis, a system capable of visually observing a human’s arm

movements and then mimicking these movements with a PUMA 760

robot arm is proposed.

1.2 Scope of the Thesis

In order to mimic a human arm, first a marker-based approach was

followed. Markers were placed on a 2 degree of freedom stationary

model joint and two parameters, namely yaw and bending degrees, are

obtained by machine vision techniques.

After the research on the model joint, the mimicking of a real human arm

without markers is studied. The system is designed to operate on a video

sequence, where only one arm of a human is moving. It is also assumed

that the largest moving region in the sequence is the human arm to be

mimicked.

After being supplied with a background image and a stationary image of

the human target, the system detects the moving parts in a video

sequence by background subtraction. Then orientation analysis is

conducted on the moving part (i.e. arm) in order to obtain information on

the posture of the arm. This information is passed to a robot control

software frame by frame, and the software directs PUMA 760 to achieve

the same posture, thus realizing mimicking.

The third method studied is the tracking of human arm by using Lucas

Kanade feature tracking. The arm is detected by considering the features

with a movement greater than a threshold, and the movement

information is used to obtain the orientation angles through a linear

system solution.

 3

1.3 Outline

Introduction is given within this chapter (Chapter 1). Chapter 2 details

the concept of human gesture analysis and robot mimicking. Previous

research and applications on the subject are also presented in Chapter 2.

Many different computer vision techniques and algorithms are used

throughout this research. The details of the mainly used ones are given

in Chapter 3 as background information.

Chapter 4 is a detailed analysis of the mimicking of a 2 degree of

freedom model joint. Visual analysis of the captured images of the model

joint is detailed and results obtained from the tests are presented. Also

the robot arm used in this research is detailed in this chapter.

Chapter 5 is where the robot mimicking system is proposed. The visual

analysis of the video sequence is detailed step-by-step and the

performance of the system is evaluated.

Chapter 6 presents the mimicking system where motion information is

used by a Lucas Kanade feature tracker in order to obtain the orientation

angles for the upper arm and forearm.

Finally, Chapter 7 concludes the thesis and presents future work

directions on the subject.

 4

CHAPTER 2

HUMAN GESTURE ANALYSIS AND ROBOT
MIMICKING

2.1 Introduction

One of the most important research fields in the development of

successful robotic systems is Human-Machine Interaction area. In the

early years of robotics teach pendants and programming were the

primary methods for interaction [1]. In fact, mechanical devices such as

mice and keyboards are still the most common Human-Computer

(Machine) Interaction medium. However, as computer capabilities

improve better methods are being developed. In the last several years,

there has been an increased interest in adapting means of human-to-

human interaction to HMI. An important non-verbal mean of interaction

among humans is gestures. Gestures range from simple actions, such as

pointing at objects and moving them around to more complex ones,

which express human feelings and emotions [2].

The HMI interpretation of gestures requires that the dynamic and/or

static configurations of the human hand, arm and sometimes the body be

measurable by the machine. Early research on this problem focused on

using mechanical devices, which measure human hand/arm position.

However these devices required the user to carry heavy equipment,

which hinders naturalness. In order to overcome the limitations of the

above systems, vision based approach has been proposed in which video

cameras and computer vision techniques are used to interpret gestures.

 5

Vision based approaches are promising, since vision is the primary

method of interaction among humans [2].

2.2 Human Gesture Analysis

In an HMI application, it is desired that gestures be used in order to

perform tasks that mimic both the natural use of the hand as a

manipulator, and its use in the human-machine communication (control

of human/machine functions through gestures). In a taxonomy given in

[2], hand/arm movements are classified as follows:

Fig. 2-1 Taxonomy of Gestures

Unintentional movements are those that do not carry any information.

Gestures are two subclasses; manipulative gestures are the ones used to

affect an object in the real world, such as moving a pencil.

Communicative gestures, which are usually accompanied by speech, may

be either acts or symbols. Symbols are gestures that have a linguistic

 6

role. They may either symbolize some referential action or used as

modalizers. Acts are gestures, which are directly related to the

interpretation of the movement itself. These are either mimetic (imitating

some actions) or deictic (pointing acts). This thesis is mainly focused on

mimetic acts, captured by a camera.

A typical visual gesture analysis consists of three stages:

� Hand/Arm Localization and Segmentation: In this process

hands/arms are extracted from the rest of the image. Since this

step is a complex task, restrictions on background, user or

imaging can be imposed in order to simplify the task. Skin color or

motion information is widely used in this stage.

� Hand/Arm Image Feature Extraction: The features to be extracted

in this step depend on the parameters, which are to be found in

the next step. If a model, which requires finger trajectories, is to

be used fingertip positions are extracted or for moment and

contour computation image silhouettes may be extracted in this

step.

� Hand/Arm Model Parameter Computation: The parameters

computed in this step depend on the application. For a tracking

system the position of the hand may be sufficient while for a

recognition system required parameters for a following recognition

step might be computed.

 7

Fig. 2-2 Visual Gesture Analysis Stages

2.3 Robot Mimicking

Webster dictionary defines mimicking as “imitating closely”. Hence, robot

mimicking may be defined as robots imitating other robots or humans.

Since mimicking is the most basic method for learning among humans,

applying it to human-machine interaction is desirable in order to develop

humanoid robots. Research on robot mimicking covers a large area of

robotics, such as artificial intelligence, computer vision, pattern

recognition and machine learning.

In order to mimic other robots or humans, a robotic system must be

supplied with information defining the movement to be mimicked. For a

true mimicking operation, the robot must obtain and evaluate this

information by itself. Considering the constraints of mechanical devices

explained before, the most natural way for mimicking may be

accomplished by visually observing the target of mimicking and analyzing

its movement in order to retrieve the information required for mimicking

[3].

 8

The target of mimicking may be either a human or another robot. If the

target is a human, the parameters to be observed should be carefully

chosen since it is impossible to totally mimic human motion. This is due

to the fact that humans do not compose of articulated rigid bodies while

today’s robots mainly consist of articulated rigid bodies. If the target is a

robot of the same architecture the mimicking is merely observation of the

target’s movement and applying computer vision techniques to correctly

detect that movement. The target may also be a similar robot but not

same kind of robot. In this case, the selection of parameters to be

observed gains importance as in the human target case.

2.4 Previous Research on Gesture Analysis and Robot
Mimicking

In [4], a system is proposed where human pointing gestures are used in

order to control a PUMA 560 robot arm. A human, by using his/her index

finger, points to one of the objects placed in the working environment

and the robot arm picks that object. Then, the human points to a location

within the environment and the robot places the picked object at that

location. Two cameras are used to supply the visual information to the

system. An artificial neural network realizes the processing of that

information in order to detect the pointing human hand, and then the

positions it is pointing. The system operates with an accuracy of 1±0.4

cm. in a working environment of 50x50 cm.

A system capable of mimicking the upper body of a human is presented

in [5]. The system employs a 24 degree of freedom humanoid robot,

which is similar to the upper part of a human body with two arms, head

and torso. The system detects the head and arms of a human by using

 9

color, aspect ratio and depth information. Then the motion of these parts

is detected by using stereo vision techniques. The system also has

auditory input and is able to detect sound sources. Although the system

operates at real-time speed, a very advanced hardware structure is used.

In another system [6], a mobile robot is directed by using hand gestures.

The system is able to detect commands such as approach, retreat, grasp,

release, follow and travel. The gestures are captured by the robot’s

vision system and classified in order to determine the command by using

a Hidden Markov Model. The system is also capable of observing a set of

commands and then executing them in order, thus, realizing the robot

teaching by gestures concept.

In another approach [7], a human arm tracking system is designed

where the arm is modeled as two truncated right-circular cones,

constructed with spherical joints. The image of the human arm and an

imaginary image of the model are compared and the model joint is

iteratively moved until it matches with the human arm. Although the

system is successful in estimating the human arm posture, it requires the

knowledge of the position of the shoulder and the parameters of the

model should be manually configured.

In a research [8], focused on imitation learning, motions of a full human

body are visually analyzed and learned by using Hidden Markov Models.

Then same motions are realized by a virtual robot, which is a 3D human

body simulator software.

Another robot mimicking system is proposed in [9], where visual input of

the hand movements of a human are analyzed by using shape and color

information. The system determines the trajectory of the human hand

and a humanoid robot follows the same trajectory in order realize the

 10

mimicking. Although the system operates successfully the need for using

stereo vision is its drawback.

As seen from the work mentioned above, most of the research is directed

to obtaining hand postures. The work directed on arm mimicking is

usually accomplished by using stereo vision. In this thesis, a visual

analysis system, capable of extracting human arm motions from a video

sequence of monocular vision, is proposed. In order to achieve this goal,

localization of a human arm should be determined by a number of

machine vision algorithms.

 11

 CHAPTER 3

IMAGE ANALYSIS ALGORITHMS FOR HUMAN ARM
LOCALIZATION

3.1 General

This chapter details the specific algorithms and techniques of machine

vision field, which are used throughout this research and frequently

mentioned in the following chapters.

3.2 Thresholding

Thresholding is a method to convert a gray scale image into a binary

image so that objects of interest are separated from the background. For

thresholding to be effective in object-background separation, it is

necessary that the objects and background have sufficient contrast and

one should know the intensity levels of either the objects or the

background. In a fixed thresholding scheme, these intensity

characteristics determine the value of the threshold [10].

Thresholding may be based on a single threshold or a lower and upper

threshold. Let []jiB , be a gray scale image and 1T and 2T be threshold

values, then the thresholded image []jiBT , may be defined as follows;

[] []
⎩
⎨
⎧ ≤

=
otherwise

TjiBif
jiBT ,0

,,1
, 1 (3-1)

or for a two level thresholding;

 12

[] []
⎩
⎨
⎧ ≤≤

=
otherwise

TjiBTif
jiBT ,0

,,1
, 12 (3-2)

The threshold values are usually selected on the basis of experience

within the application domain. In some cases, the first few runs of the

system may be used for interactively analyzing a scene and determining

the appropriate values for threshold. There are also more robust

automatic thresholding methods such as p-tile, iterative or adaptive

thresholding. [10] These methods usually rely on histogram analysis of

images and are applied to more general thresholding problems, such as

document processing. For a brief review one should revise [11]

3.3 Connected Component Analysis and Flood Filling

A set of pixels in which each pixel is connected to all other pixels is called

a connected component [10]. In a grayscale image for two pixels to be

defined as connected their values should be within a certain range and

there must a traceable path of pixels within this range between these

two pixels.

Flood filling [12] is a recursive algorithm, which aims at detecting the

connected components (i.e. regions) within an image. The algorithm may

be detailed as below:

� Given a seed pixel []ji, in an image and a pixel value range, check

all the unchecked neighbors of the seed pixel for their values. If

the difference of value of pixel []ji, and its neighbor is within the

give range mark the neighbor pixel as connected and checked.

� When all the neighbors of pixel []ji, are checked, pass to a

connected pixel and repeat the previous step.

� If all the neighbors of all connected pixels are checked and there

is no new pixel fit for the criteria then exit.

 13

If all the pixels in an image, which were not found to be part of

connected components in the previous runs of the algorithm, are chosen

as seed pixels, then the image may be segmented into connected

components.

3.4 Image Analysis by Moments

The definition of moments of the gray value-function),(yxf of an object

is the following [13]:

∫∫= dxdyyxfyxm qp
qp),(, (3-3)

The integration is calculated over the area of the object. Generally each

other pixel-based feature instead of the gray value could be used to

calculate the moments of the object.

Moments are generally denoted by the order of the moments. The order

of a moment depends on the indices p and q of the moment qpm , and

vice versa. The sum qp + of the indices is the order of the moment

qpm , . Considering this, moments up to second order may be defined as:

� Zero order moment ()0,0(),(=qp)

∫∫= dxdyyxfm),(0,0 (3-4)

� First order moment ()1,0()0,1(),(orqp =)

∫∫= dxdyyxxfm),(0,1 (3-5)

∫∫= dxdyyxyfm),(1,0 (3-6)

� Second order moments ()1,1()2,0()0,2(),(ororqp =)

∫∫= dxdyyxfxm),(2
0,2 (3-7)

∫∫= dxdyyxfym),(2
2,0 (3-8)

 14

∫∫= dxdyyxxyfm),(1,1 (3-9)

Above definitions describe general spatial moments of the object. From

the spatial moments the central moments can be derived by reducing the

spatial moments with the center of gravity),(cc yx of the object, so all

the central moments refer to the center of gravity of the object.

Expressed as formula the central moments are calculated as follows:

∫∫ −−= dxdyyxfyyxx q
c

p
cqp),()()(,µ (3-10)

The main advantage of central moments is their invariancy to translations

of the object. Therefore, they are suited well to describe the form of the

object.

The moments are features of the object, which allow a geometrical

reconstruction of the object. They do not have a direct understandable

geometrical meaning, but usual geometrical parameters can be derived

from them [13].

� The zero order moment 0,0m is the area A of the object.

0,0mA = (3-11)

� The coordinates cx and cy of the center of gravity of the object

are simply described by the first order moments 0,1m and 1,0m

divided by the zero order moment 0,0m . (i.e. the area of the

object)

0,0

0,10,1

m
m

A
m

xc == (3-12)

0,0

1,01,0

m
m

A
m

yc == (3-13)

� The main inertial axis could be derived by calculating the

eigenvalues of the inertial tensor [13]:

 15

2
2,00,2

2
1,12,00,22,1)(4)(

2
1 µµµµµλ −−±+= (3-14)

The main inertial axes of the object correspond to the semi-major

and semi-minor axes a and b of the image ellipse, which can be

used as an approximation of the considered object. The main

inertial axes are those axes, around which the object can be

rotated with minimal (major semi-axis a) or maximal (minor semi-

axis b) inertia [13].

Fig. 3-1 Semi-axes and orientation

� The orientation θ of the object is defined as the tilt angle between

the x-axis and the axis, around which the object can be rotated

with minimal inertia (i.e. the direction of the major semi-axis a).

This corresponds to the eigenvector with minimal eigenvalue. In

this direction the object has its largest extension. It is calculated

as follows:

2,00,2

1,11 2
tan

2
1

µµ
µ

θ
−

= − (3-15)

 16

There is an ambiguity in the tilt angle θ of the object, which can

be resolved by choosing θ always to be the angle between the x-

axis and the semi major axis a (i.e. by definition ba ≥). Secondly,

the principal value of the arc tangent is chosen such that

2
tan

2
1 ππ

≤≤− − x [13].

A summarized tabulation for orientation is given in Table 3-1.

Table 3-1 Summary of Orientation Calculation

2,00,2 µµ − 1,1µ θ
Zero Zero o0
Zero Positive o45+
Zero Negative o45−

Positive Zero o0
Negative Zero o90−

Positive Positive
2,00,2

1,11 2
tan

2
1

µµ
µ
−

− o450 <<θ

Positive Negative
2,00,2

1,11 2
tan

2
1

µµ
µ
−

− 045 <<− θo

Negative Positive o90
2

tan
2
1

2,00,2

1,11 +
−

−

µµ
µ

9045 <<θo

Negative Negative o90
2

tan
2
1

2,00,2

1,11 −
−

−

µµ
µ

oo 4590 −<<− θ

3.5 Morphological Operations

Mathematical morphology gets its name from the study of shape. A

morphological approach facilitates shape-based or iconic solutions to

computer vision problems. There are four basic morphological operators,

which are normally applied to binary images [10].

 17

� The intersection of two binary images A and B , written as

BA∩ , is the binary image which is 1 at all pixels p which are 1

in both A and B . Thus,

{ }BpandAppBA ∈∈=∩ | (3-16)

� The union of A and B , written BA∪ , is the binary image, which

is 1 at all pixels p which are 1 in A or 1 in B (or 1 in both).

Thus,

{ }BporAppBA ∈∈=∪ | (3-17)

� The complement of A is the binary image, which interchanges the

1s and 0s in A . If Ω is a universal binary image (all 1), then

{ }ApandppA ∉Ω∈= | (3-18)

� The translation of binary image A by pixel p is given by

{ }AapaAp ∈+= | (3-19)

By using the above operators other morphological operations may be

constructed, such as dilation and erosion [10]:

� Dilation: Translation of a binary image A by a pixel p shifts the

origin of A to p . If
1bA ,

2bA ,…,
nbA are translations of the binary

image A by the 1 pixels of the binary image { }nbbbB ,...,, 21= ,

then the union of the translations of A by the 1 pixels of B is

called dilation of A by B and is given by

i
i

b
Bb

ABA
∈

=⊕ U (3-20)

� Erosion: The opposite of dilation is erosion. The erosion of a

binary image A by a binary image B is 1 at a pixel p if and only

if every 1 pixel in the translation of B to p is also 1 in A . Erosion

is given by

{ }ABpBA p ⊆=Θ | (3-21)

 18

Often the binary image B is a regular shape, which is used as a probe on

image A and is referred to as a structuring element [10].

The basic operations of morphology can be combined into complex

sequences. For example, an erosion followed by a dilation with the same

structuring element (probe) will remove all of the pixels in regions, which

are too small to contain the probe, and it will leave the rest. This

sequence is called opening [10]. The opposite sequence, a dilation

followed by an erosion, will fill in holes and concavities smaller than the

probe. This is referred to as closing [10].

Fig. 3-2 A test image A (left) and a structuring element B (right). The

origin of the structuring element is darker than other pixels.

 19

Fig. 3-3 The dilation of A by B

Fig. 3-4 Closing of A by B (Note that, this is erosion applied to Fig. 3-3)

 20

Fig. 3-5 The erosion of A by B

Fig. 3-6 Opening of A by B (Note that, this is dilation applied to Fig.3-5)

 21

3.6 Convex Hull Analysis

In order to define a convex hull, first of all, terms, such as polygon and

convex should be defined. A polygon is a closed path of straight line

segments [14]. These segments are also called edges of the polygon,

and the intersection of two adjacent edges is a vertex of the polygon.

Thus, every polygon with n vertices has n edges. A polygon, which has

no intersecting non-adjacent edges, is called a simple polygon and a

simple polygon is convex if the internal angle formed at each vertex is

smaller than 180P

o
P. Based on these definitions, the convex hull of a

polygon P is the smallest-area simple convex polygon, which encloses P

[14].

Fig. 3-7 From left to right a simple polygon, convex hull of that polygon

and the convex polygon.

Different algorithms have been developed since 1970’s in order to find

the convex hulls of polygons [14]. One of them, which is used in this

research, is the 3-Coins Algorithm or Sklansky’s Scan proposed in [15].

 22

USklansky’s Scan U (for a n-vertex simple polygon)

� Find a convex vertex and label it 0p . (A vertex ip is convex if a

right turn is made at ip while going from 1−ip to 1+ip where the

interior of the simple polygon P is to the right)

� Label the remaining n-1 vertices in a clockwise order, starting at

0p .

� Place three coins on vertices 0p , 1p , 2p and label them “back”,

“center”, and “front” respectively.

� Do:

If the 3 coins form a right turn (or if the 3 coins lie on collinear

vertices),

� Take “back”, place it on the vertex ahead of “front”.

� Relabel: “back” becomes “front”, “front” becomes

“center”, “center” becomes “back”.

Else (the 3 coins form a left hand turn)

� Take “center”, place it on the vertex behind “back”.

� Remove (or ignore hereafter) the vertex (and

associated edges) that “center” was on.

� Relabel: “center” becomes “back”, “back” becomes

“center”.

Until “front” is on vertex 0p (starting vertex) and the 3 coins

form a right turn.

� The remaining vertices and edges form the convex hull of the

original simple n-polygon.

 23

3.7 Median Filtering

Median filters replace each pixel value with the median of the values in

the local neighborhood [10]. They are very effective in removing salt and

pepper and impulsive noise while preserving edges because the median

operation easily rejects outliers, avoiding blurring across edges. In a

median filter, a window slides along the image, and the median intensity

value of the pixels within the window becomes the output intensity of the

pixel being processed [16].

For example, if a 3-by-3 median filter is applied to the window given in

Fig. 3-8, the output of the filter will be 37. The pixel being processed,

which has an intensity value of 20, will be set to 37.

Fig. 3-8 Median Filtering Example

3.8 Intel’s Open Source Computer Vision Library

During the implementation of the computer vision algorithms mentioned

above Intel’s Open Source Computer Vision Library (OpenCV)[17] is

used. OpenCV is a C/C++ library, still in the development phase

designed, specifically for computer vision applications. During its early

 24

development it was based on Intel’s Image Processing Library (IPL).

However, new versions of OpenCV are distributed as a standalone library.

OpenCV offers a variety of functions applicable to image processing and

computer vision research and applications. These functions are

summarized in 8 groups:

� Basic Structures and Operations

� Image Processing and Analysis

� Structural Analysis

� Motion Analysis and Object Tracking

� Object Recognition

� Camera Calibration and 3D Reconstruction

� Experimental Functionality

� GUI and Video Acquisition

The functions from these groups may be used in many areas from image

handling to camera calibration. During this research functions especially

from the groups Image Processing and Analysis (cvFloodFill(),

cvGetSpatialMoment()),Structural Analysis (cvConvexHull2()),

Motion Analysis and Object Tracking (cvCalcOpticalFlowPyrLK()),

and GUI and Video Acquisition are used quite decreasing the coding

burden of such complex algorithms.

 25

CHAPTER 4

MODEL ARM ORIENTATION ESTIMATION WITH
MARKERS

4.1 Motivation

Before advancing to a real human arm mimicking, the mimicking of a

model joint with markers to show the orientation was implemented in

order to make an introduction to the mimicking concept with such a

constrained case. The visual analysis is applied on the captured image of

a model joint and the angles of bending and yaw are determined.

4.2 Visual Analysis

Visual processing of captured images is used to determine the bending

and yaw angles of the model joint. The model joint consists of two equal

length cylindrical parts (Fig. 4-1). In this model, the lower joint can

rotate around the base and an upper one can bend. Thus, one has two

parameters for this model joint: a yaw angle and a bending angle. In

order to be able to determine these two angles by using a visual capture

system, two black circular markers are placed at the bottom side of the

lower part and one black marker is placed on the upper side of the top

part (Fig. 4-1).

 26

(a) (b)

Fig. 4-1 The Model Joint (a) and its image (b)

4.3 Image Processing for Determining Bending and Yaw
Angles

In order to determine the bending and yaw angles of the model joint,

first an image of the model joint (Fig. 4-1 (b)) is captured by using a

camera (COHU 4710 model B/W solid state). The captured image is then

passed to an application software (written in Visual C++) (Fig. 4-2). This

software uses Intel’s Open Source Computer Vision Library (OpenCV)

[17] for image processing and machine vision operations. The user can

select a previously captured image file or capture a new image by using

the program. All the parameters of the algorithm are adjustable through

the interface.

 27

Fig. 4-2 The program interface

4.3.1 Extraction of Marker Points

The major steps in the visual processing stage can be summarized as

below:

1. A median filter (5-by-5) is applied to the image in order to remove

camera and environment noise. A median filter is chosen for noise

removal, since a boxcar or Gaussian filter blurs the image, which

leads to the detection of dots to be more difficult.

2. Thresholding is applied, based on the pixel values of the image.

Although, there are more sophisticated automatic thresholding

methods, the threshold levels in the simulations are chosen

 28

manually after inspecting the environmental effects, such as

illumination and background. During the entire experiments, the

values for minimum and maximum threshold levels to detect black

markers are set to 20 and 80, respectively.

3. Thresholding is followed by a connected component analysis, in

order to determine the connected components within the

thresholded image. The connected component analysis is realized

by using 4-connectedness and a pixel value range of –10 to +10 is

chosen to determine the homogeneity of neighboring pixels

relative to the seed pixel.

4. Finally, some of the determined connected components are

eliminated by some heuristics in order to determine the set of

candidate connected components representing 3 markers on the

model joint. Elimination heuristics are

o Area of the connected component for an upper and a lower

limit,

o Ratio of the width of the bounding box of the connected

component to the height of the bounding box,

o Ratio of the area of the connected component to the area

of the bounding box (only a lower limit is utilized).

For a 320x240-pixel image, typical values of these constraints are

selected as

o Area limits of the connected component = 10 (min), 200

(max)

 29

o Ratio of the width of the bounding box of the connected

component to the height of the bounding box = 3 (max),

0.2 (min)

o Ratio of the area of the connected component to the area

of the bounding box = 0.7 (min)

From the set of candidate connected components, 3 of them having the

largest area are selected as the markers on the model joint. The centers

of the bounding boxes of these 3 connected components are assumed to

be the centers of the dots. From these 3 dots, the marker having the

smallest y-value (origin is the upper-left corner of the image) is chosen

as the dot on the upper part of the model joint and the other two dots

are chosen as the ones on the lower part of the model joint.

(a)

(b)

(c)

(d)

Fig. 4-3 Steps for Visual Analysis (a) Input Image, (b) After

Thresholding, (c) After connected-component analysis (all the

connected components found are bounded with green boxes.), (d) The

determined markers (The regions with the largest area are chosen as

markers and are bounded with red boxes.)

 30

4.3.2 Determining Yaw and Bending Angles

After the coordinates of the marker are determined, yaw and bending

angles of the model joint are determined by using the algorithm in [18].

In this algorithm, first the yaw angle is calculated. Referring to Fig. 4-4

the variable N represents the distance between the lower markers at a

zero degree of yaw.

Fig. 4-4 Calculation of Yaw Degree

Forming a right triangle one can show that

)/(cos 1 Nnyaw
−=α (4-1)

where n is the distance between the observed markers at a given yaw

angle. Next, the bending angle is determined. Since the image of the

model joint will appear skewed for non-zero yaw angles, the bending

angle will appear slightly greater than the actual value.

 31

(a)

(b)

Fig. 4-5 Adjusting Image due to Yaw (a) Top view, (b) Side view

Referring to Fig. 4-5, this error can be corrected by

)cos(/ yawea α= (4-2)

After the error correction the actual bending angle can be calculated by

using the following set of equations. (Fig. 4-6)

θα 2180 −=bend (4-3)

)/(cos 1 cd−=θ (4-4)

222 dac += (4-5)

where a is found previously and d is calculated by using the coordinates

of the markers determined by image processing.

 32

Fig. 4-6 Calculation of Bending Degree

4.4 Results

The simulations are conducted in two phases. In the first of experiments,

the visual information is tested for its performance against angle

calculation. In the second part of these experiments, the results of the

first part are fed to PUMA 760 robot arm for testing the response for the

given inputs. Before presenting the results, a brief overview for this robot

arm is given next.

4.4.1 PUMA 760

Throughout this research a PUMA (Programmable Universal Machine for

Assembly) 760 robot is used for application. PUMA 760 is a model from

the PUMA 700 series, which is one of the three main series of PUMA

robots with PUMA 200 and PUMA 500 [19]. PUMA 760 consists of two

separate parts; the robot arm and the controller computer [20].

Specifications can be found in Appendix A.

 33

Fig. 4-7 PUMA 760 Robot

4.4.1.1 Controller Computer

The controller computer is a Unimation Mark II controller, which is a

typical industrial robot controller. It is the master component of the

electrical system. All signals to and from the robot pass through the

controller and are used by it to perform real-time calculations to control

arm movement and position. Operating controls and indicators are

located on the front and top panel of the controller. Connections for the

robot arm, terminal, floppy disk drive and accessories are located on the

controller rear panel. Software is stored in the computer memory located

 34

in the controller. The software interprets the operating instructions for

the robot arm, and the controller transmits these instructions to the arm.

From incremental encoders and potentiometers in the robot arm, the

controller/computer receives data about arm position. This provides a

closed loop control of arm motions. A floppy disk drive is available to

record the programs on diskettes [19].

4.4.1.2 Robot Arm

The robot arm, which is connected to the controller, is a mechanical

chain of links and joints incorporating 6 degrees of freedom (DOF). A DC

servomotor controls each joint. It is similar to a human torso, shoulder,

arm, and wrist. The components of the robot arm are the trunk,

shoulder, upper arm, forearm, wrist, and mounting flange. The robot arm

members contain the various servomotors and gear trains.

 35

Fig.4-8 The Robot Arm

Each joint is driven by a permanent magnet DC servomotor through an

associated gear train, and each motor contains an incremental encoder

and a potentiometer driven through a gear reduction. The position at

each joint is measured relative to an initially known absolute position.

The potentiometers, incorporated in the motors are used to determine

this initial absolute position. The incremental encoder mounted on the

shaft of each motor provides information about the changes in position

involved with the respective joint. The joint velocity is, however,

computationally derived from the positional changes. Joint encoder

 36

readings are sampled at every 28 msec. And compared with the

calculated positions [19].

Power for the motors is supplied through the cable connecting the robot

arm and the controller. This cable bundle, containing the data cables,

also carries feedback signals from the incremental encoders and

potentiometers.

Table 4-1 Joint Limits and Angular Resolutions

Joint number Joint Limits Joint Angular Resolution
Joint 1 320 degrees 0.0050 degrees (min)
Joint 2 220 degrees 0.0035 degrees (min)
Joint 3 270 degrees 0.0092 degrees (min)
Joint 4 532 degrees 0.0082 degrees (min)
Joint 5 200 degrees 0.0080 degrees (min)
Joint 6 532 degrees 0.0111 degrees (min)

As a last element in this mechanical chain structure a pneumatic-

controlled hand (gripper) takes place. This hand has two stable states:

open or close. A stand-alone air compressor supplies the compressed air

necessary to open and close the two fingers of the gripper.

In this part of the thesis, yaw angle is realized by the 1 P

st
P joint and

bending angle is realized by the 2P

nd
P joint, since it is assumed that the 1P

st
P

joint is identical to the rotation of the model joint (i.e. yaw angle) and

the 2 P

nd
P joint is identical to the bending of the model joint (i.e. bending

angle). The 3P

rd
P joint of PUMA is kept with the same alignment with that

of 2P

nd
P in order to better visualize the mimicking.

 37

4.4.1.3 The Operating System

The system software that controls the PUMA robot arm is called VAL,

which is supplied by Unimation to be used with its controller computer.

The software is a sophisticated programming language and a complete

robot control system, but has disadvantages mostly due to age of the

product. VAL is stored in the controller computer memory. The controller

also houses operating controls for the robot system. The VAL

programming language consists of a full set of English language

instructions for teaching and editing. Work programs are entered into the

computer/controller using either of two different procedures, or a

combination of both. The programs can be entered with a teach pendant

using the teach-by-showing method, or using the keyboard inputs. Full

programming versatility can only be achieved through keyboard inputs

[19].

4.4.1.4 External Control of PUMA 760

The controller computer has two ports, which are used to communicate

with external computers. These are the Alter port and the Supervisory

port. Supervisory communication interface is normally used to send

information or commands to the controller system. If, however, the

command or information, sent in real-time, is to modify the path of the

robot while it is moving then the interfacing must be done using the alter

port, not through the supervisory port. The communication through alter

port is basically for real-time path control.

Throughout this research a program developed in [19] is used in order to

control the robot. The program is coded by using MATLAB and uses the

supervisory port of PUMA 760. Positions to be taken by the robot may be

given point by point, using the interface or as a sequence of VAL

 38

commands assembled previously. The program is also able to simulate

the movement of PUMA 760 through its interface without actually

operating the robot. The control program interface is given in Fig. 4-9.

Fig. 4-9 Control Program Interface

4.4.2 Simulations on Determination of Visual Angles

The yaw and bending angles are determined successfully with acceptable

errors. After simulations on 25 different images with various yaw and

bending angles, the average errors are determined as 1.2 degrees for the

yaw and 3.3 degrees for the bending angle. For the same set of

 39

experiments, the maximum errors are measured as 4.5 degrees for the

yaw angle and 5.2 degrees for the bending angle. The results are

satisfying considering the previous work, where the average error for

bending angle is 5 degrees and the average error for yaw angle is 6

degrees [18].

Although the results are successful, it is also observed that the system is

susceptible to the changes in the background and illumination. For a case

where the algorithm fails with different illumination conditions see Fig. 4-

10. Further research might be devoted to make this algorithm robust

against illumination and background changes. Another problem is the

limitation on yaw angle due to the loss of visibility of the lower markers.

If the yaw angle is more than 35º the marker in the side of turning is not

visible. Thus, the yaw and bending angles cannot be determined.

However, utilization of markers on human arm basically makes this

algorithm unfavorable for daily applications.

(a)

(b)

Fig. 4-10 Failure with a different illumination (a) input image (b) output

image

 40

4.4.3 Simulations of Mimicking the Model Joint

After determining the yaw and bending angles correctly, the mimicking

step is performed on PUMA 760 robot arm. The mimicking gives

satisfying results, as can be seen from some typical results in Fig. 4-11.

The system works offline so it is possible to process a set of input images

and record the resulting yaw and bending angles. Then, these angles

may be passed to the robot arm, resulting in not a standstill mimicking

but a continuous mimicking motion.

 41

(a)

(b)

(c)

Fig. 4-11 Example Results for Mimicking with (a) 0º yaw, 44º

bending (b) 17º yaw, 88º bending (c) 0º yaw, 108º bending

 42

CHAPTER 5

HUMAN ARM ORIENTATION DETERMINATION BY
BACKGROUND SUBTRACTION

5.1 Introduction

The method proposed in the previous chapter has certain limitations.

First of all, the method requires the use of markers, which limits

naturalness. Since naturalness is a basic need for an ideal robot

mimicking system this is a major drawback of that algorithm. Also the

number of postures, which may be mimicked, is limited by the visibility of

markers. As mentioned in section 4.4.2, certain postures with high yaw

degrees may not be mimicked since the markers are not visible.

In this chapter a more natural algorithm is proposed. Although this

algorithm has also limitations, it does not require the usage of markers

and is directly applicable to a real moving human arm. The basic

assumption of the proposed algorithm is that the largest moving region in

the processed video sequence is the human arm to be mimicked. Also

the background image of the operation environment and the human at a

standstill are required. The limitations on the possible arm movements

are given in section 5.3.

5.2 The Algorithm

In order to detect the human arm in a video sequence, it is assumed that

the largest moving object in the sequence is the human arm to be

mimicked. The implemented algorithm tries to find the largest moving

 43

object in the sequence by background subtraction and defines it as the

human arm. Later, an orientation analysis is conducted in order to find

the angles, which are to be used as parameters for mimicking. The

algorithm is detailed in the following subsections.

5.2.1 Background Estimation

The background of the operation scene is determined, when there are no

humans in the foreground. This is accomplished by averaging the

intensities of the frames of the video sequence (for 45 frames). The

average is denoted as mask B1 B.

Fig. 5-1 Mask B1 B

5.2.2 Human Body Extraction

The human, whose arm is to be mimicked, should wait in front of the

camera (for a duration of 60 frames) before moving his arm. During this

time the frames are again averaged as in the previous step, in order to

 44

obtain the human body at a standstill position (See Fig. 5-2). At the next

step, the difference of this average image and maskB1B is obtained. For

every pixel in the difference image, if the pixel value is greater than a

threshold that pixel is marked. The mask obtained which is the human

body standing in front of the camera is named as maskB2 B. Finally, another

image of the human whose arm is to be mimicked is taken in which the

arm is at the same plane with the body (i.e. 0 yaw degree), whereas it

should be bended away from the body (Fig. 5-3). This image is used in

order to find the length of the arm by differencing it with maskB2 B and

obtaining the semi-major axis, in the later stages. These are the only

obligatory stages the user should perform before utilizing this system.

Fig. 5-2 Human waiting in front of camera

 45

Fig. 5-3 Arm Length Extraction

5.2.3 Moving Part Extraction

The mask obtained in section 5.2.2 and the image obtained in chapter

5.2.1 is used in order to detect the moving parts in the video sequence

(after the 60 P

th
P frame). The difference of the frame and mask B1 B is obtained

(starting at 61P

st
P frame) and thresholding is applied similar to step 5.2.2.

The resulting image is the human body probably with a different arm

posture than mask B2 B(Fig. 5-4). Then difference of that image and maskB2 B

is obtained and thresholding is applied in order to obtain an image where

only the moved body parts (e.g. arm) are visible. This two-step

differencing is conducted in order to better extract the moved parts.

 46

Fig. 5-4 Moved from a standstill position

5.2.4 Removal of Erroneous Segmentation Regions

Region filling is applied to the resultant image from section 5.2.3 in order

to obtain the connected components in the image. Among these

components the one with the largest area is assumed to be moving arm.

The other components are eliminated and morphological closing

operation is applied to better outline the moving arm.

 47

Fig. 5-5 Arm detected as the largest connected component

5.2.5 Contour Detection and Convex Hull Analysis

Contour of the arm in the image obtained in the previous step is

determined. The contour is required, since the convex hull is defined on a

set of points (i.e. a polygon) and the contour (i.e. outline) of the arm

constitutes a set points. After the contour is detected the convex hull of

the arm is determined by using Sklansky’s Scan (Section 3.6). The largest

distance of the convex hull defect in the image is assumed to be at the

interior of the elbow. Hence, by finding this point the elbow is obtained.

If that distance is smaller than a certain threshold (which is %30 of the

semi-major axis) the arm is assumed to be straight otherwise it is

assumed to be bended.

 48

Fig. 5-6 Convex hull analysis (elbow found)

5.2.6 Orientation Analysis

If the arm is found to be straight in the previous step, a single orientation

analysis is enough in order to retrieve the angle between the arm and

the body. The bending angle of the elbow is assumed to be zero in that

case. The yaw angle, yawθ of the arm is calculated by comparing the

semi-major axis length a to the length b found in Section 5.2.2 by using

the following equation:

⎟
⎠
⎞

⎜
⎝
⎛= −

b
a1cosθ (5-1)

as illustrated by the top view of a human in Fig. 5-7.

 49

Fig. 5-7 Calculation of yaw angle

On the other hand, if the arm is determined as bending, an orientation

analysis is conducted. This time, the arm is divided into two parts by a

line, which is perpendicular to the major axis of orientation and passing

through elbow point found in the previous step. Thus, the forearm and

the upper arm are detected. Then, separate orientation analyses are

conducted on both of these parts to obtain the two mimicking

parameters, which are the orientation angles of the upper arm and the

forearm. A typical result is shown in Fig. 5-8 for the image in Fig. 5-4.

Body
Head

Arm

 50

Fig. 5-8 Arm partitioned

5.2.7 Determination of the Shoulder Position

After the orientation of the two segmented arm parts is found, the region

corresponding to the upper arm or forearm is not known. In order to

overcome this problem the approximate position of the shoulder is

determined and the region nearer to the shoulder is assumed to be the

upper arm. The approximate shoulder position is found by using the

difference image of the human at standstill and the background. On this

image, the shoulders are assumed to be at the 3/5 of the height and 1/6

and 5/6 of the width of the bounding rectangle as seen in Fig. 5-9.

Among these two shoulder points the one nearer to the center of the

image is assumed to be the shoulder of the moving arm.

 51

Fig. 5-9 Determination of the shoulder position

5.3 Performance of the Algorithm

It is observed that the detection of arm by background subtraction yields

satisfying results. The main challenges faced during the tests are the

detection of bending of the arm at the elbow and the correct separation

of the upper arm with the forearm. If the detection and separation is

accomplished successfully, the determination of the orientation angles

turns out to be a simple application of a well-known moment analysis.

Two example output sets are given in tables 5-1 and 5-2 where the

orientation angles are given for the upper arm and the forearm. The

error plots are also given in Fig. 5-10 and 5-11 for these two sets. The

results at Table 5-1 are over 32 frames and the average error is found to

be 11.675. The results at Table 5-2 are over 12 frames and the average

error is found to be 4.746. If the two sets are considered together the

average error is found to be 9.785, which yields a 5.4% error.

 52

Comparing the above result with similar previous research, it is seen that

satisfactory error rates are obtained. For example, the results of the work

of [7] states that a 7.5% error is obtained. Thus, the proposed algorithm

has a lower error while it is more robust, not requiring as much a priori

information as the system in [7].

Although the error rates are satisfactory, problems are faced at various

steps of the algorithm. These problems are faced mainly at the

separation of the upper arm and the forearm. In the first test sequence,

15P

th
P frame constitutes an example of a separation problem (Fig. 5-10). At

this frame, the upper arm is not segmented correctly yielding the high

error rate.

 53

Table 5-1 Calculated angles and error for the first sequence

Frame Orientation Angles Calculated Angles Error

1 -41
-41

-43.1
-43.1

2.1
2.1

2 8
8

5.7
5.7

2.3
2.3

3 0
90

-13.9
88.3

13.9
1.7

4 0
-51

31.2
-70.2

31.2
19.2

5 -5
60

-25.5
60.7

20.5
0.7

6 -4
-18

-14.4
-14.4

10.4
3.6

7 -56
-56

-63
-63

7
7

8 -63
-49

-58.3
-58.3

4.7
9.3

9 -19
0

-11.2
-11.2

7.8
11.2

10 14
39

22.3
22.3

8.3
16.7

11 46
46

42
42

4
4

12 25
25

20.7
20.7

4.3
4.3

13 -24
0

-8.7
-8.7

15.3
8.7

14 -62
0

7.7
7.7

54.3
7.7

15 -34
84

78.7
78.7

112.7
5.3

16 4
-74

12.2
-76.8

8.2
2.8

17 13
55

-3.1
56.1

16.1
1.1

18 -1
-1

-2.5
-2.5

1.5
1.5

19 -46
45

-58.5
46.3

12.5
1.3

20 -55
-22

-39.5
11.9

15.5
33.9

21 -59
-59

-63
-63

4
4

 54

22 -24
-5

-13.2
-13.2

9.8
8.2

23 -9
85

-17
85.5

8
0.5

24 0
-90

-14.4
-89.8

14.4
0.2

25 10
48

-25
46.1

35
1.9

26 -5
-5

-5.4
-5.4

0.4
0.4

27 -56
-40

-46.4
-46.4

9.6
6.4

28 -50
-36

-44.8
-44.8

5.2
8.8

29 -12
0

-9.8
-9.8

2.2
9.8

30 -10
55

-20.5
61.6

10.5
6.6

31 -5
-51

-66.1
-66.1

61.1
15.1

32 -10
-78

14.4
-81.7

24.4
3.7

Average error

11.675

15

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Frames

Er
ro

r (
de

gr
ee

s)

Upper Arm Forearm

Fig. 5-10 Error plot for the first sequence

 55

Table 5-2 Calculated angles and error for the second sequence

Frame Orientation Angles Calculated Angles Error

1 -39
-39

-41.7
-41.7

2.7
2.7

2 6
6

6.3
6.3

0.3
0.3

3 10
-75

4.9
-69.8

5.1
5.2

4 15
-70

8
-68.4

7
1.6

5 19
19

17.1
17.1

1.9
1.9

6 18
41

30.1
30.1

12.1
10.9

7 18
-45

20.1
-31.7

2.1
13.3

8 7
-52

6.8
-49.6

0.2
2.4

9 0
0

-1.1
-1.1

1.1
1.1

10 -64
-64

-71.6
-71.6

7.6
7.6

11 -73
-73

-81.1
-81.1

8.1
8.1

12 -6
-6

-11.3
-11.3

5.3
5.3

Average error

4.746

 56

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Frames

Er
ro

r (
D

eg
re

es
)

Upper Arm Forearm

Fig. 5-11 Error plot for the second sequence

The most common problem with the separation of the upper arm and

forearm is faced when the arm is bended too much at the elbow. For

such a case, the algorithm defines some parts of the shoulder as parts of

the forearm. (See Fig. 5-9) This problem might be solved by a further

connected component analysis and some heuristics.

 57

Fig. 5-12 Separation problem

Another possible problem, which is faced rarely, may occur if the human

involuntarily moves other parts of his body (such as head) while his arm

is stationary. In that case the algorithm also detects that part as the arm

since it is the largest region moving in the sequence. Imposing a

minimum area constraint on the moving region can reduce the conditions

at which this problem may be faced. However, it is still possible to occur

since the exact viewed size of the arm cannot be known beforehand.

Since only one camera is used in this research, the determination of the

yaw angle is not promising. Normally, stereo vision techniques using at

least two cameras are employed for three-dimensional problems.

Addition of the calculation of the yaw angle carries the problem to three-

dimensional space. The determination of the yaw angle is also considered

by observing the shrinkage in the viewed length of the arm. However,

the problems, like missing of hands in some frames, make the calculation

of viewed arm length unstable. Such problems do not affect the

 58

calculation of orientation angles, but still impose a serious drawback for

the calculation of yaw degree.

Although the aim of this research was to develop a real-time system, it is

also observed that this is not possible with the high complexity

operations applied during the algorithm. With the system, mentioned in

Appendix B, the processing rate of the application is approximately 2

frames per second. A higher rate may be obtained by running the

application on a computer with higher processing capabilities but still it

does not look promising that a real-time processing rate may be

achieved.

 59

CHAPTER 6

HUMAN ARM ORIENTATION DETERMINATION BY
FEATURE TRACKING

6.1 Introduction

The methods proposed in the previous chapters are based on comparison

of a single frame against a background model. Thus, they do not

explicitly take into account the motion information, which may be

obtained by observing two consecutive frames. In this chapter, an

algorithm using the motion information of the human arm is proposed.

The algorithm uses Lucas Kanade Feature tracking [21] and finds the

orientation of the arm by using the motion vectors of individual features

within the image.

As in the previous method, this method also makes use of a background

image and the mask of the human at standstill. However, these are used

only to find the location of shoulder, which is used in distinguishing

between the upper arm and forearm. The detection of the moving arm

and determination of orientation angles are realized only by using motion

information.

6.2 Lucas Kanade Feature Tracking

Given a point),(yxI in an image I , Lucas Kanade Feature tracking is

used to find the new location,),(yxJ of that point in image J after the

 60

motion. The new location of that point is),(yx dydx ++ where the vector

T
yx ddd][= is equal to the optical flow at),(yxI . The tracker finds the

optical flow vector d , which minimizes the residual function ∈ on an

image neighborhood of)12()12(+×+ yx ωω for an image point),(yx uu

[22]. The residual function ∈ is defined as:

∑∑
+

−=

+

−=

++−=∈
yy

yy

xx

xx

u

uy
yx

u

ux
yx dydxJyxIdd

ω

ω

ω

ω

2)),(),((),((6-1)

6.2.1 Pyramidal Implementation of Iterative Lucas Kanade
Feature Tracker

The two key components to any feature tracker are accuracy and

robustness [22]. Intuitively, a small integration window would be

preferable in order not to smooth out the details contained in the images

(i.e. small values xω and yω). The robustness component relates to

sensitivity of tracking with respect to changes of lighting, size of image

motion, etc. In particular, in order to handle large motions, it is intuitively

preferable to choose a large integration window. Therefore, there is a

natural tradeoff between local accuracy and robustness when choosing

the integration window size. In order to provide a solution to that

problem, pyramidal implementation of the classical Lucas Kanade

algorithm is proposed [22].

For an image I of size yx nn × , 0I is the zero P

th
P level image, which is the

same as the original image I . The next image, in the pyramidal

representation is 1I which has a size of 2/2/ yx nn × and is basically the

result of sub-sampling of 0I . The following steps are created recursively

based on the previous step. The pyramidal representation provides the

handling of large pixel motions (larger than the integration window sizes

 61

xω and yω). The overall pyramidal tracking algorithm proceeds as

follows: First, the optical flow is computed at the lowest pyramid level

mL . Then, the result of that computation is propagated to the upper level

1−mL in a form of an initial guess for the pixel displacement at level

1−mL . Given that initial guess, the refined optical flow is computed at

level 1−mL , and the result is propagated to level 2−mL , and so on up to

the level 0 , which is the original image. Assuming that an initial guess

for optical flow at level L , TL
y

L
x

L ggg][= is available from the

computations done at the lower layers. Then, in order to compute the

optical flow at level L , it is necessary to find the pixel displacement

vector TL
y

L
x

L ddd][= that minimizes the new residual function L∈ :

∑∑
+

−=

+

−=

++++−=∈
y

L
y

y
L
y

x
L
x

x
L
x

u

uy

L
y

L
y

L
x

L
x

LL
u

ux

L
y

L
x

L dgydgxJyxIdd
ω

ω

ω

ω

2)),(),((),((6-2)

The optical flow at level L , is the value of TL
y

L
x

L ddd][= for which the

first derivative of),(L
y

L
x

L dd∈ is equal to zero. That is;

]00[
)(
=

∂
∈∂

L

LL

d
d

 (6-3)

Defining;

),(),(yxIyxA L= (6-4)

),(),(L
y

L
x

L gygxJyxB ++= (6-5)

Then by dropping the L superscripts,

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

++−−=
∂
∈∂ ∑∑

+

−=

+

−= y
B

x
BdydxByxA

d
d yy

yy

xx

xx

u

uy
yx

u

ux

.)),(),((2)(ω

ω

ω

ω

 (6-6)

After a set of derivations including a Taylor series expansion of the above

term, it is found that;

bGd
d
d T

−≈⎥⎦
⎤

⎢⎣
⎡

∂
∈∂)(

2
1

 (6-7)

 62

where

∑∑
+

−=

+

−=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
yy

yy

xx

xx

u

uy

u

ux

y
A

y
A

x
A

y
A

x
A

x
A

G
ω

ω

ω

ω
2

2

 (6-8)

∑∑
+

−=

+

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

−

∂
∂

−
=

yy

yy

xx

xx

u

uy

u

ux

y
AyxByxA

x
AyxByxA

b
ω

ω

ω

ω)),(),((

)),(),((
 (6-9)

Then, the optimum optical flow vector becomes equal to

bGdopt
1−= (6-10)

The above derivation assumes that the pixel displacement is small in

order to use Taylor series expansion. However, that may not always be

the case. In order to overcome this problem the algorithm is applied

iteratively until the result of each step decreases to a threshold. After

each iteration, the found displacement is added to),(yxB in the form of

),(yx dydxB ++ and this new value is used for the new iteration.

6.3 The Algorithm

In order to determine the orientation of the arm, the motion information

of two consecutive frames are used. This information is obtained by

Lucas Kanade feature tracker. However, suitable pixels (i.e. features) are

determined first, for the tracker to operate efficiently. Later, the

algorithm is directed on the clustering of motion vectors in order to

distinguish the upper arm and forearm. Lastly, the linear system formed

by the set of tracked features is solved for the orientation angles.

 63

6.3.1 Finding Suitable Features

Edges and specifically corners are suitable features for tracking within an

image. In order to find corners, first the minimal eigenvalue for every

source image pixel is calculated [23]. Then, non-maxima suppression is

performed only leaving local maxima in 3x3 neighborhood and corners

with an eigenvalue, which is less than a threshold, or corners which are

too close to another stronger corner are eliminated.

Fig. 6-1 Suitable features determined

6.3.2 Feature Tracking and Separation of the Forearm and
Upper Arm

During the conducted simulations, first tracking of features between only

two consecutive frames is studied. In this approach, suitable features for

tracking are determined for each new frame and these features are

tracked in the next frame by using Lucas Kanade feature tracking. Any

 64

feature, which has a movement greater than a certain threshold, is

assumed to be on the arm. The position of each feature (x and y) and

their movement vectors (xd and yd) constitute a 4 dimensional vector.

The space generated by all the moving features is clustered into 2

subspaces by 2-means clustering [24]. One of these subspaces form the

upper arm while the other forms the forearm. This operation is repeated

from the start for each new frame.

The second approach studied, provided a better tracking operation. In

this approach, previously tracked features are tried to be followed in the

consequent frames. Similar to the previous approach, suitable features

for tracking are determined and tracked by Lucas Kanade feature

tracking for each new frame. However, the information on features,

which are found to be moving are propagated to the next frame, where

they are being kept tracked in addition to the new features determined

for this frame. Thus, a feature, which is found to be moved in a previous

frame, is tracked for all consecutive frames even if its movement is less

than the pre-determined threshold. Similar to the previous approach, 2-

means clustering is applied with each new frame and upper arm and

forearm is determined.

6.3.3 Determination of the Orientation Angles

Once the found features are classified as forearm or upper arm, the

orientation angles of these body parts may be determined by using the

position and motion information of these features. When a point),(yx is

rotated by θ degrees, the new position),(yx ′′ of the point may be found

by the following affine relation:

 65

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
′
′

y
x

y
x

θθ
θθ

cossin
sincos

 (6-11)

In this equation, x and y are known terms while x′ and y′ are found

by adding the motion vectors xd and yd to x and y .

⎥
⎦

⎤
⎢
⎣

⎡
+
+

=⎥
⎦

⎤
⎢
⎣

⎡
′
′

y

x

dy
dx

y
x

 (6-12)

The above equation is modified in order to include error terms. Errors

may be caused by camera noise or the movement of the shoulder. The

error terms also take into account, the movement of the upper arm while

the calculations are made for the forearm.

⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
′
′

y
x

y
x

y
x

θθ
θθ

cossin
sincos

 (6-13)

Renaming θcos as a and θsin as b , the above equation my be

rewritten as:

⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
′
′

y
x

y
x

ab
ba

y
x

 (6-14)

By converting this equation into a linear system of the form BAX =

where X is the unknown matrix, we obtain;

⎥
⎦

⎤
⎢
⎣

⎡
′
′

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
∆⎥

⎦

⎤
⎢
⎣

⎡
− y

x

y
x

b
a

xy
yx

10
01

 (6-15)

 66

It is observed that there are 4 unknown terms (a , b , x∆ , y∆); hence, in

order to solve the above linear system at least 2 sets of points are

required. Assuming that n different sets of points are available where

2>n , the system becomes an over determined linear system.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
′

′
′
′
′

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

n

n

nn

nn

y
x

y
x
y
x

y
x

b
a

xy
yx

xy
yx
xy

yx

.

.

10
01
10..
01..
10
01
10
01

2

2

1

1

22

22

11

11

 (6-16)

Since the first matrix is not square, its pseudo-inverse is used in order to

solve this system, which results with the following relation;

BAAAX TT 1)(ˆ −= (6-17)

The values of a and b are found by solving this system, and the

orientation angle (θ) is obtained by;

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛= −−

θ
θθ

cos
sintantan 11

a
b

 (6-18)

The above set of calculations determines the change in θ for two

consecutive frames. In practice, the human starts moving his arm from a

known value of θ (typically 0 or 90 degrees). Therefore, by adding up

the found changes in θ up to current frame, the value of θ is found.

These calculations are done for both the upper arm and the forearm and

the orientation angles are obtained for each of them.

 67

6.4 Performance of the Algorithm

During the simulations, it is observed that Lucas Kanade feature tracking

algorithm is successful while tracking the determined features. Table 6-1

summarizes the results of these experiments and it can be observed that

the average error is around 13 degrees. The main problem was faced

during the separation of the upper arm and the forearm. As mentioned in

Section 6.3.2, two different methods are examined. However, both

methods were unable to give a reliable separation.

When the first approach is used, it is impossible to detect the upper arm

while it is stationary. Since only the moved features are taken into

consideration while determining the angle the features in the upper arm

are lost while it is stationary. This situation causes 2-means clustering

algorithm to operate on the features from the forearm and the forearm is

separated into two parts.

In order to solve the above problem, the second method is developed

where not only the moving features between frame pairs but any feature

which has moved throughout the video sequence is being tracked. The

main disadvantage of this approach is that any feature, whether on the

arm or not, is being tracked if it has moved in any frame of the video

sequence. This causes points, which has showed up as moving due to

error, or other factors such as the shadow of the moving arm to be

tracked throughout the video sequence. These kind of features

accumulate as the video sequence continues and becomes to constitute a

large portion of tracked features (See Fig. 6-2).

 68

Fig. 6-2 Accumulated moving parts

In order to overcome this problem, the number of consecutive frames for

which each point stays stationary is calculated. If a feature is stationary

for more than 10 consecutive frames, this feature is not tracked

anymore. Although, such a discard reduces the tracking of noisy or

unnecessary features, it also eliminates features on the arm, if the arm is

stationary for more than 10 frames. Therefore, this approach is also not

capable of solving the problem of tracking the arm, while its stationary.

The main problem of separation of the arm is caused by the nature of

the tracking of movement information. Since the algorithm totally

depends the tracking of moving features, it is natural to experience

problems when dealing with non-moving features within the image.

Assuming that the arm is moving at any instant, tests are conducted in

order to evaluate the performance of the orientation angle determination

algorithm of section 6.3.3. During the tests, the arm is kept straight at all

times and moved throughout the sequence. The average error is found to

 69

be 13.621 degrees (7.6% error), which is higher than expected (see

Table 6-1 and Fig. 6-3),. However, this result is satisfactory comparing it

to the 7.5% error of the research in [7]. The error is high due to the fact

that at each frame, the change in orientation angle is found instead of its

real value. Then, the real value is constructed by adding up all the

changes up to that frame. Therefore, errors within the calculations for

each frame accumulate and cause a large total error as orientation angle

greatly differs from the initial posture (0 degree for the below example).

Table 6-1 Calculated angles and error

Frame Orientation Angles Calculated Angles Error
1 38 53.6 15.6
2 45 57 12
3 10 25.5 15.5
4 -25 -9.6 15.4
5 -46 -26.5 19.5
6 -29 -10.4 18.6
7 5 10.1 5.1
8 16 26.2 10.2
9 -3 2.2 5.2
10 0 8.3 8.3
11 29 37.1 8.1
12 34 42 8
13 -46 -30 16
14 -55 -36.9 18.1
15 -28 -13.9 14.1
16 26 34.3 8.3
17 -31 -17.5 13.5
18 -71 -47 24
19 -49 -25.7 23.3

Average error 13.621

 70

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Frames

Er
ro

r (
D

eg
re

es
)

Fig. 6-3 Error plot for the test sequence

 71

CHAPTER 7

CONCLUSIONS

7.1 Conclusions

Robot mimicking by using visual data is an active research area, covering

many different fields of science and engineering such as artificial

intelligence, computer vision, machine learning, kinematics and image

processing. However, when the target to be mimicked is a human,

intrinsic difficulties for describing the human dynamics arise. In order to

overcome these difficulties and accomplish robot mimicking by using

visual data, in this thesis three methods have been proposed.

First, the results of a preliminary research on mimicking are presented,

where a 2-DOF model joint with markers is mimicked by a PUMA 760

robot arm. The images of the model joint are processed and the locations

of the markers are determined. By using these locations two parameters,

which are the yaw and bending angles, defining the posture of the model

joint are obtained. The same posture is taken by the robot arm in order

realize the mimicking. The results were satisfactory and guided us for the

aim of creating a system where the movements of a real human arm are

mimicked.

The secondly proposed mimicking system employs basic computer vision

algorithms in order to detect a moving human arm in a video sequence.

The arm is detected by using background subtraction and the upper arm

and forearm are segmented by using convex hull analysis. Afterwards,

 72

the orientations of the upper arm and forearm are determined which are

used as mimicking parameters by a PUMA 760 robot arm.

Although problems, limiting the movement of the arm or in finding the

elbow, are experienced, it is also observed that the system is satisfactory

considering the aforementioned difficulties in this field.

The last proposed system makes use of Lucas Kanade feature tracking in

order to track points on the moving human arm. After finding the position

and movement of points on the arm, the system finds the orientation by

using a simple rotation matrix. Problems were encountered in the

segmentation of the arm when the upper arm is stationary, since the only

information used in this system is movement.

A comparison of the two proposed systems shows that background

subtraction is a more efficient system. This result is due to the fact that

the human arm may be stationary during the operation and background

subtraction is capable of handling such a case, while feature tracking has

still problems with segmentation. However, background subtraction

requires preliminary information on the background and the human at

standstill before operation, while feature tracking system is capable of

operating with small or even no preliminary information. It is also

observed that, assuming proper segmentation, background subtraction

has a smaller average error.

7.2 Proposed Future Work

The arm detection and orientation estimation algorithms may be

improved to be more robust against illumination and background changes

or unexpected arm movements conducted by the human target.

 73

Moreover, additions to the employed algorithms might allow detection

and identification of both arms in a single sequence, thus nearing the

final aim of true mimicking of humans. However, for such a system to be

operational a more humanoid robot than PUMA 760 must be used as the

mimicking robot.

Based upon the experience gained through this research, a hybrid

mimicking system may be constructed using the advantageous properties

of each proposed system while reducing their drawbacks.

Another important drawback of both of the systems is their inability to

work real-time both due to the complexity of the algorithms and the

separation of the visual analysis and robot control programs. The visual

analysis may be modified for a reduction in complexity and different

algorithms may be exploited to accelerate the operation. Moreover, the

integration of the visual analysis and robot control software constitute a

good direction for future work.

 74

REFERENCES

[1] Wu, Y.; Huang, T.S.; “Hand Modeling, Analysis, and Recognition”,

IEEE Signal Processing Magazine, Vol.18, Issue 3, May, 2001

[2] Pavlovic, V.I.; Sharma, R.; Huang, T.S.; “Visual Interpretation of

Hand Gestures for Human-Computer Interaction: A Review”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Volume

19, Issue 7, pp. 677 – 695, July 1997

[3] Triesch, J.; Von der Malsburg, C.; “A Gesture Interface for Human-

Robot-Interaction”, Proceedings of The IEEE Third International

Conference on Automatic Face and Gesture Recognition, April,

1998

[4] Littmann, E.; Drees, A.; Ritter, H.; “Robot Guidance by Human

Pointing Gestures”, Proceedings of NICROSP, IEEE Computer

Society Press, 1996

[5] Cheng, G.; Kuniyoshi, Y.; “Real-Time Mimicking of Human Body

Motion by a Humanoid Robot”, Proceedings of The 6P

th
P International

Conference on Intelligent Autonomous Systems, pp.273-280, July,

2000

[6] Rybski, P.E.; Voyles, R.M.; “Interactive Task Training of a Mobile

Robot through Human Gesture Recognition”, Proceedings of the

1999 IEEE International Conference on Robotics and Automation,

Vol. 1, pp. 664-669, 1999

 75

[7] Di Bernardo, E.; Goncalves, L.; Perona, P.; “Monocular Tracking of

the Human Arm in 3D: Real-Time Implementation and

Experiments”, Proceedings of the International Conference on

Pattern Recognition, ICPR ‘96, pp. 622-626, August, 1996

[8] Amit, R.; Mataric, M.; “Learning Movement Sequences from

Demonstration”, Proceedings of The 2P

nd
P International Conference

on Development and Learning, pp.203-208, 2002

[9] Ude, A.; Atkeson, C.G.; “Real-Time Visual System for Interaction

with a Humanoid Robot”, Proceedings of the 2001 International

Conference on Intelligent Robots and Systems, 2001

[10] Jain, R.; Kasturi, R.; Schunck, B.G.; “Machine Vision”, McGrawHill,

1995

[11] Sankur, B.; Sezgin, M.; “A Survey Over Image Thresholding

Techniques And Quantitative Performance Evaluation”, Journal of

Electronic Imaging, 13(1), pp.146-165, January, 2004

[12] Foley, J.D.; van Dam, A.; Feiner, S.K.; Hughes, J.F.; “Computer

Graphics: Principles and Practices”, Addison-Wesley, 1990

[13] Kilian, J.; “Simple Image Analysis By Moments”, OpenCV Library

Document, March 15, 2001

[14] Bronnimann, H.; Iacono, J.; Katajainen, J.; Morin, P.; Morrison, J.;

Toussaint, G. T.; “Optimal in-place planar convex hull algorithms,”

Proceedings of Latin American Theoretical Informatics, LATIN2002,

pp. 494-507, Cancun, Mexico, April 3-6, 2002

 76

[15] Sklansky, J.; “Measuring Concavity on a Rectangular Mosaic”, IEEE

Transactions on Computers 21, pp 1355-1364, 1972

[16] Lim, J.S.; “Two-Dimensional Signal and Image Processing”,

Prentice Hall, 1990

[17] Intel’s Open Source Computer Vision Library (OpenCV),

http://www.intel.com/research/mrl/research/opencv, December

2004

[18] Arseneau, S.C.; Nicholls, R.J.; Farooq, M.; Hopkinson, A.; “Robotic

Mimicking Control System”, Proceedings of the 44 P

th
P IEEE Midwest

Symposium, Vol. 2, pp.547-550, 2001

[19] Gebizlioğlu, Ö.E.; “External Control of PUMA 700 Series Robot

Based on the Communication Protocols LUN and DDCMP”, M.S.

Thesis, Middle East Technical University, Ankara, Turkey, 2003

[20] Dindaroğlu, M. S.; “Control of PUMA Mark II Robot with an External

Computer”, M.S. Thesis, Middle East Technical University, Ankara,

Turkey, 2002

[21] Lucas, B.D.; Kanade, T.; “An Iterative Image Registration

Technique with an Application to Stereo Vision”, Proceedings of

Imaging Understanding Workshop, pp.121-130, 1981

[22] Bouguet, J.Y.; “Pyramidal Implementation of the Lucas Kanade

Feature Tracker, Description of the Algorithm”, OpenCV Library

Document, February, 2003

 77

[23] Harris, C.; Stephens, M.; “A Combined Corner and Edge Detector”,

Proceedings of The Fourth Alvey Vision Conference, pp.147-151,

1988

[24] Schalkoff, R.J.; “Pattern Recognition: Statistical, Structural and

Neural Approaches”, John Wiley & Sons, 1992

 78

APPENDIX A

SPECIFICATIONS OF PUMA 700 SERIES ROBOTS

Table A-1. Specification of PUMA 700 series robots.

DOF 6

Drives DC Motors

Control Numerical

Positional Control Incremental Encoders

Coordinates Cartesian

Configuration Revolute

Minimum Reach 0.125 mm (Between Joint 1 and 5)

Maximum Reach 360 deg Working Volume

Limit Joint 1 320 deg

Limit Joint 2 220 deg

Limit Joint 3 270 deg

Limit Joint 4 532 deg

Limit Joint 5 200 deg

Limit Joint 6 600 deg

Repeatability -762 model +/- 0.2mm
-761 model +/- 0.2mm

Maximum Speed 1.8 m/s

Auxiliary Processors 6 Slave Microprocessors

Programming Teach Pendant VAL II language

Serial Interface RS232 or RS423

Memory Buffer 46KB

Battery Buffer 30 Days

Arm Weight -762 model 590kg
-761 model 600kg

Controller Cabinet Weight 200kg

 79

APPENDIX B

THE APPLICATION SOFTWARE FOR
BACKGROUND SUBTRACTION ALGORITHM

The program performing the human arm orientation determination by

background subtraction is written in Microsoft’s Visual C++ 6.0 by using

OpenCV library. The platform used both for coding and running is Intel

Pentium3 733 Mhz, with 128 MB of RAM and a Windows 2000 operating

system. The only input parameter to be adjusted by the user is the

threshold level, which is used in the various steps of the algorithm. The

program is capable of processing video files in AVI format or directly

capturing from a video camera connected to the computer through a TV-

card.

Fig. B-1 The program interface

 80

The program has a single user interface where the threshold value,

operation mode and the source of the video sequence may be selected

and video sequence being processed may be viewed. If the user desires

to make background estimation, he/she should select the appropriate

checkbox. After this step, either “Load From File” button or “Capture

From Camera” button must be clicked to start the operation. If the “Load

From File” button is clicked an open file dialog-box is displayed for the

selection of the AVI file to be used. If the “Capture From Camera” button

is clicked two consecutive dialog boxes for the selection of video source

properties are displayed. When the operation is complete a save file

dialog-box is displayed in order to select where the resultant (Bitmap)

image will be stored.

Fig. B-2 Open Video File Dialog Box

 81

Fig. B-3 Video Source Properties Dialog Box-1

Fig. B-4 Video Source Properties Dialog Box-2

 82

If the user desires to process a video sequence for orientation analysis,

he/she should click either the “Load From File” button or the “Capture

From Camera” button without selecting the “Background Estimation”

check box. Upon clicking the appropriate button two open file dialog-

boxes are displayed consecutively in addition to the dialog boxes

mentioned above. These open file dialog-boxes enable the user to select

the image file to be used as the background estimate and the image file

in which the human exposes his arm length for length estimation. When

all the files are chosen the operation begins and the processed video

sequence can be viewed in the interface with additional information

overlaid. This information is

� The frame count on the upper left corner

� The yaw angle on the middle right

� The orientation of upper arm and forearm on the lower right.
� The center of masses of the upper arm and forearm are displayed

with circular markers.

Fig. B-5 Program interface during orientation estimation

 83

During the operation the calculated angles are stored in a text file in

order to be used by the robot communication program for actual

mimicking.

 84

APPENDIX C

THE ROBOT INTERFACE PROGRAM

A program is developed in order to process the results of the two

orientation determination algorithms by using Borland’s C++ Builder. The

programs implementing the algorithms saves the output orientation

angles in the form of a text file. In order to convert these angles into

robot position information orientation, orientation is checked for sign

changes since two different arm postures may yield the same orientation

angle as seen in Fig. C-1.

Fig. C-1 Arm posture and orientation

 85

As the initial position of the arm is known the correct orientation is

obtained by checking through the angle sequence for sign changes.

Following this operation a low pass filter is applied in order to smooth the

output and reduce the erroneous orientation angle values. Finally, an

output text file is prepared, which is compatible with Ö. Gebizlioğlu’s

PUMA 760 Control program.

Fig. C-2 Robot Interface Program

	THESIS.pdf
	THESIS.pdf
	CHAPTER 1
	INTRODUCTION
	Problem Definition
	Scope of the Thesis
	Outline

	CHAPTER 2
	HUMAN GESTURE ANALYSIS AND ROBOT MIMICKING
	2.1 Introduction
	2.2 Human Gesture Analysis
	2.3 Robot Mimicking
	2.4 Previous Research on Gesture Analysis and Robot Mimickin

	CHAPTER 3
	IMAGE ANALYSIS ALGORITHMS FOR HUMAN ARM LOCALIZATION
	3.1 General
	3.2 Thresholding
	3.3 Connected Component Analysis and Flood Filling
	3.4 Image Analysis by Moments
	3.5 Morphological Operations
	3.6 Convex Hull Analysis
	3.7 Median Filtering
	3.8 Intel’s Open Source Computer Vision Library

	CHAPTER 4
	MODEL ARM ORIENTATION ESTIMATION WITH MARKERS
	4.1 Motivation
	4.2 Visual Analysis
	4.3 Image Processing for Determining Bending and Yaw Angles
	4.3.1 Extraction of Marker Points
	4.3.2 Determining Yaw and Bending Angles

	4.4 Results
	4.4.1 PUMA 760
	4.4.1.1 Controller Computer
	4.4.1.2 Robot Arm
	4.4.1.3 The Operating System
	4.4.1.4 External Control of PUMA 760
	4.4.2 Simulations on Determination of Visual Angles
	4.4.3 Simulations of Mimicking the Model Joint

	CHAPTER 5
	HUMAN ARM ORIENTATION DETERMINATION BY BACKGROUND SUBTRACTIO
	5.1 Introduction
	5.2 The Algorithm
	5.2.1 Background Estimation
	5.2.2 Human Body Extraction
	5.2.3 Moving Part Extraction
	5.2.4 Removal of Erroneous Segmentation Regions
	5.2.5 Contour Detection and Convex Hull Analysis
	5.2.6 Orientation Analysis
	5.2.7 Determination of the Shoulder Position

	5.3 Performance of the Algorithm

	CHAPTER 6
	HUMAN ARM ORIENTATION DETERMINATION BY FEATURE TRACKING
	6.1 Introduction
	6.2 Lucas Kanade Feature Tracking
	6.2.1 Pyramidal Implementation of Iterative Lucas Kanade Fea

	6.3 The Algorithm
	6.3.1 Finding Suitable Features
	6.3.2 Feature Tracking and Separation of the Forearm and Upp
	6.3.3 Determination of the Orientation Angles

	6.4 Performance of the Algorithm

	CHAPTER 7
	CONCLUSIONS
	7.1 Conclusions
	7.2 Proposed Future Work

	REFERENCES
	APPENDIX A
	SPECIFICATIONS OF PUMA 700 SERIES ROBOTS
	APPENDIX B
	THE APPLICATION SOFTWARE FOR BACKGROUND SUBTRACTION ALGORITH
	APPENDIX C
	THE ROBOT INTERFACE PROGRAM

