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ABSTRACT

OPTIMAL DESIGN OF TRUSS STRUCTURE WITH ACTUATORS

Akgoz, Asli
M. Sc., Department of Mechanical Engineering Department
Supervisor  : Prof. Dr. Tuna Balkan

Co-Supervisor: Prof. Dr. E. Bllent Platin

November 2004, 157 pages

Smart structures become highly popular with the developing technology. The aim of
this study is to develop a basic model, which can be also used in the design of more
complex systems by performing simultaneous optimization of a structure and

associated controller with respect to some design parameters and feedback gains.

In this thesis work, two smart structures are used as case studies and their results are
compared with the available results in the literature. The first case study is simple two-
bar truss problem controlled by either one or two actuators. This problem is solved
both numerically and analytically. The latter is a twenty-element parabolic truss, which

is controlled by four actuators. This problem is solved numerically only.

In the optimization process, the design parameters are taken as the cross sectional

areas of bar elements, positions and/or number of actuators, and the elements of



closed loop gain matrix. In the second case study, in addition to these parameters,

shape design parameters are also optimized.

A coordinate transformation is applied in both cases from the displacement space to
the modal space. The modal model reduction method is used in the design of second

problem.

The optimization goal in both cases studies is to minimize the system energy while
satisfying some frequency and mass constraints. In the second case study, in addition
to the original objective function, system controllability and stability robustness are

also maximized.

In the solution of design problem, two optimization algorithms are used one
embedded within the other. In the outer loop, a hide and seek simulated annealing
algorithm optimizes structural design parameters, and positions and/or number of
actuators. In order to generate a candidate design family for this level, optimal closed

loop gain matrices are calculated by using MATLAB®.

Keywords: Simultaneous structure/controller optimization, hide and seek simulated

annealing algorithm, quadratic optimal controller.
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EYLEYICILI CUBUK-KAFES YAPININ ENIYILENEREK TASARIMI

Akgoz, Asli
Yiksek Lisans, Makina Muhendisligi BolUmu
Tez Yoneticisi : Prof. Dr. Tuna Balkan
Ortak Tez Ydéneticisi: Prof. Dr. E. Bllent Platin

Kasim 2004, 157 sayfa

Akilli yapilarin kullanimi geligsen teknoloji ile birlikte olduk¢a yayginlagmigtir. Bu tezin
amaci bu tdr bir problemin eniyilenmis yapisal ve denetleyici tasarimini
gerceklestirerek daha karmasik sistemlerin ¢ézimuine temel olusturacak bir yéntem

gelistirmektir.

Bu c¢alismada, eyleyici ile denetlenen iki farkli gubuk-kafes yapinin hem yapisal hem
de denetleyici tasarim degiskenlerinin beraber eniyilenmesi yapiimistir. Cozllen bu
problemler daha énce vyapilan calismalardaki c¢dziimlerle karsilastinilmistir. ilk
problemde, tek eyleyici ile denetlenen, iki elemanli dizlemsel bir gubuk-kafes yapi
analitik ve sayisal yontemler kullanilarak ¢ozulmustlr. Diger problemde ise, dort
eyleyici ile denetlenen yirmi elemanli parabolik sekilli bir dizlemsel cubuk-kafes yapi

saylisal ydntemler kullanilarak ¢dzllmustar.

vi



Tasarim parametreleri olarak, cubuk elemanlarin kesit alanlari, eyleyicilerin yerleri
ve/veya eyleyici sayisi ile durum dediskenlerinin geri besleme kazan¢ katsayilari
alinmigtir. Ikinci problemde, bunlarin yanisira sekil tasarim degiskenleri de
kullanilmistir. Her iki calismada da modele, yerdegistirme uzayindan modal uzaya,
koordinat dénlisimii uygulanmigtir. ikinci problemde yilksek mertebedeki dogal

frekanslar gbézardi edilerek modal model disirme ydntemi uygulanmistir.

Her iki problemde eniyilemenin amaci hem frekans hem kutle sinirlamasini saglarken
sistem enerjisini en az seviye getirmektir. ikinci problemde, bunlarin yaninda, sistemin
denetlenebilirliginin ve kararlihk gurbizlagunin artirlmaya c¢alisildigi  bir durum

incelenmistir.

Problemin ¢éziminde i¢ ice iki eniyileme yontemi kullaniimistir. Dis dénglide yapisal
tasarim degiskenleri ile eyleyicinin yeri velveya eyleyici sayisini belirleyen arastir ve
sakla tavlama benzetimi ydntemi kullaniimistir. i¢ déngiide ise, yaratilan bu tasarim
degiskenleri kullanilarak olusturulmus modelin eniyi denetleyici kazang katsayilari
MATLAB® kullanilarak hesaplanmaktadir.

Anahtar Kelimeler: Yapi ve Denetleyici Beraber Eniyilemesi, Arastir ve Sakla Tavlama

Benzetimi Yéntemi, ikinci Dereceden Eniyilenmis Denetleyici

Vii



To my Family,

viii



ACKNOWLEDGMENTS

| would like to express my sincere thanks and appreciation to my supervisor Prof. Dr.
Tuna Balkan and co-supervisor Prof. Dr. E. Bllent Platin for being a continuous
source of support and encouragement while this work was being completed. | am
deeply grateful for the time and effort they have taken to teach me and provide

direction for my research.

The greatest thanks go to my family for their love, support, and thrust. Their role in

this study is inestimable.
Thanks to Glilnihal Odabasi, Cengiz Tendiris, Anil Unal, and the other friends in
Roketsan Inc. for creating me a good environment to love my job and sharing their

talents and experiences during this thesis work.

Very special thanks to my special friends Gizem Karsli, Danish Ahmed and A. Ozgiir

Vural for giving me strength to complete this work.

Finally, | would like to thanks to C. Gorkem Bingdl for being part of my life.



TABLE OF CONTENTS

F N = 1S 3 1 ¥ 2 O USRS v
(@ )ROSRSO VI
ACKNOWLEDGMENTS ..ottt e e et e e e e e e e e s e e e e e e e e e nnnnssenees IX
TABLE OF CONTENTS ..o ittt e ettt e e e e e e s st e e e e e e e e e nnnnnnaeeeaeas X
LIST OF TABLES ... e e XV
LIST OF FIGURES ... ..o e e e e aaaas XVI
NOMENCLATURE ... e e e e e e e e e e e XVIII
ABBREVIATIONS ... e e e e e e e e e et e e e eraaas XXI
CHAPTER
1. INTRODUCTION ...ttt et e e e e e e e e e e e e e s st b e e e e e e e e e aannes 1
1.1 OPTIMIZATION PROBLEM.......coiiiiiiieeee et 4
1.1.1 Design Parameters ... 5
1.1.2 CONSIrAINTS ... e 6
1.1.3  Objective function ..............c 8
1.1.4  Solution Algorithm ... 11
1.2 MATHEMATICAL MODELING......ccoiiiiiieiee e 13
1.2.1 Structural MOAEIING ......uee e 13
1.2.2  Controller Modeling............oooo 14
1.2.3  Modal State Transformation and Model Reduction..............cccccceeeeenn. 16
1.3 DEFINITION OF THE CURRENT PROBLEM.........c.c.cvviiiiiiiiiiiiieee e 18
2. MATHEMATICAL MODELING .....outtiiiiiiiee et eeieveee e e e e nieeeeaaa e 20
2.1 FINITE ELEMENT MODEL ....ccotiiiiiiiiiiieee e 21



2.1.1 Bar EIEMENt ... 24
2.1.2  Actuatorelement............ooo 27
213 MaSS €lEMENT.... ... 28
2.2 CONTROLLER MODELLING .....coiiiiiiieeieeee ettt 29
2.2.1 Proportional Control ACHON ............euviiiiiiiiiiiiiiiiieiiiiieeeeeeeeeee 31
2.3 MODAL STATE SPACE TRANSFORMATION ........cuviiiiiieeiiiiiiiiieee e 31
2.3.1 Principal Coordinates: Decoupled Equations........cc.ccccevvvveviiiviieiiennnen. 32
2.3.2  State Space Transformation ...............cccc i, 33
2.3.3 Y/ [oTo E=1 1Y FoTo [=T I ad=To [¥ o i o] o IHS 36
3. OPTIMIZATION ALGORITHM ...ttt 37
3.1  GENERAL PROBLEM STATEMENT ....cooiiiiiiieee e 37
3.2 THEITERATIVE OPTIMIZATION PROCEDURE ..........ccccviiiiiiieeeeeeieee 38
3.3  SEARCHMETHODS ...t 40
3.3.1 Zero Order MethOods.........eeiiiiiiiiiieeee e 41
3.3.2 RaANAOM SEAICH ......ooiiiiii e 41
3.3.2.1 Hide and Seek Simulating Annealing ........cccccooeeiiiiiiiiiiiiinieenieennn. 43
3.3.2.1.1  Nonlinear optimization of a spring weight system by HSSA....... 45

3.3.3  Quadratic Performance INdeX ...........cceuueeeiiiiiiiiiiiiee e 55
3.34 Robustness Measure of Patel and Toda............ccccceeeeeeiiiiiiiiiiiieeeee, 57
3.3.5  Controllability Measure Of LiU............ccouiiiiiiiiiiiiieeeeee e 59
3.3.6 Frequency Constraint..............ooiiiiiiii e 61
3.3.7 Mass CONSErAINT .........oiiiiiiei e 61
3.4 COMPUTATIONAL PROCEDURE ......ccoiiiiiiiiiiiieeee et 62
4., TWO BAR TRUSS CASE STUDY ..ouniiii et 64
4.1 PROBLEMDEFINITION ...ttt e e 64
4.2 MATHEMATICAL MODELING........cooiieeeeee et 68
421 Finite Element Modeling ... 68
4.3 RESULTS OF OPTIMIZATION ALGORITHM........cvtiiiiiieeeeieiciiiieeeee e 73
4.4 DISCUSSION ...ttt e e e e e e e e s e e e e e e e eaaaes 80
5. PARABOLIC SHAPE MULTI-TRUSS CASE STUDY ....cccoccviiieeiiiiiiieieeee e 82
5.1  PROBLEM DEFINITION ....cotiiiiiiiiiiiiiiiee e 82
52 MATHEMATICAL MODELING........cottiiiiiieiiiiiiiieee e 85

Xi



5.3 OPTIMIZATION RESULTS OF PARABOLIC SHAPE MULTI-BAR TRUSS
CASE STUDY .ottt e e e e e e st e e e e e e e e s nnsrareeaaeeeeeannnsnnees 87
5.3.1 Single Objective Optimization Using QPI...........cccciiiiiiie, 87
5.3.2  Multiobjective Optimization Using QPI, Robustness and Controllability
ST T 94
5.3.2.1 Optimization Results without Removing Actuator Placed Bar
=T 0 0= o) 94

5.3.2.2 Optimization Results by Removing Actuator Placed Bar Elements

101
5.4 DISCUSSION ..ottt 107
6. CONCLUSION. ..ottt 110
6.1  SUMMARY AND DISCUSSION.......ccooiiiiiiiiiii e 110
6.2 CONCLUSION ... 114
6.3 FUTUREWORK ... ..o s 115
REFERENCES ... 117
APPENDIX
A. DEFINITIONS OF FINITE ELEMENT METHOD. .......cccooiiiiiieee e, 124
B. MODAL STATE SPACE TRANSFORMATION ......cccooiiiiiiiiiiiiiiee e 126
B.1 NORMALIZED MODE SHAPES ... 126
B.2  MODAL MATRIX ..o e 127
B.3 PROPORTIONAL DAMPING ...t 128

C. HIDE AND SEEK SIMULATED ANNEALING OPTIMIZATION ALGORITHM. 130

C.1  SIMULATED ANNEALING OPTIMIZATION ALGORITHM ........coccuiviennnne. 130
C.2 HIDE-AND-SEEK SIMULATED ANNEALING ALGORITHM ........cccceeeneee. 132
C.3 AN EXAMPLE OF SINGLE-OBJECTIVE HSSA .....cooiiieieiieeeeeeee e 134
C.3.1  Zermelo’s Trajectory Optimization Algorithm .............ccoooiiiiiiiiiinnnnn. 134
C.3.2  Solution of the Problem with Simulated Annealing ............cccccceeeennee 136

D. LINEAR QUADRATIC REGULATOR FUNCTION .....cccooiiiiiiiiiiiieeiee e 139
E. MATHEMATICAL MODELLING OF TWO BAR CASE STUDY .......cccceviuveennnn 141

Xii



E.1  FINITE ELEMENT MODELLING........cciiiiiiiiiiiiiee e 141
E.1.1 Configuration 1: Single ACtUator .............oooiiiiiiiiiiieeeeeeee s 141
E.1.2  Configuration 2: TWO ACUALON .........ccoiiiiiiiiiiiiiieeeee e 144

E.2 STATE SPACE TRANSFORMATION. ..ottt 145
E.2.1 Configuration 1: One ACUALON ..........cooiiiiiiiiiiiiie e 145
E.2.2  Configuration 2: TWO ACUALON .........coeiiiiiiiiiiiiiiiieeeee e 146

E.3 CALCULATION OF CONSTRAINTS ... 147
E.3.1  Configuration 1: One ACtUAtOr ..........ccooeiiiiiiiiiiiiiiiie e 147
E.3.2  Configuration 2: TWO ACUALON .........ceeiiiiiiiiiiiiiieieeeiee e 147

F. OPTIMIZATION INPUTS OF PARABOLIC TRUSS EXAMPLE.........c..ccevunee. 148
F.1 NODAL COORDINATES ...t 148
F.2 DESIGN PARAMETER LINKING OF PARABOLIC SHAPE TRUSS .......... 149

G. OPTIMIZATION RESULTS OF PARABOLIC SHAPE TRUSS .........ccoociiveene 151
G.1  SINGLE OBJECTIVE OPTIMIZATION USING QPI ......oooviiiiiiiiiiiiieeee 151

Xiii



LIST OF TABLES

TABLE

3-1 Inputs of HSSA algorithm for 50,000 function evaluation..........ccccccceevvveeviereennnnee. 48
3-2 Optimum design parameters for 50,000 function evaluation............ccccccevveeeeee..n. 49
3-3 Termination criteria for 50,000 function evaluation...............cccccvviiiiiiiiiiiiiiiiiiiines 49
3-4 Optimization results of several optimization algorithms [48] and HSSA............... 52

3-5 lteration history of objective functions of different optimization algorithms [48] and
HSSA 53

3-6 Inputs of HSSA algorithm for 1,000 function evaluation.............ccccvvvviiiiiiiiiinnnnn. 54
3-7 Optimum design parameters for 1,000 function evaluation..........cccccceeveevvereeee..e. 54
3-8 Termination criteria for 1,000 function evaluation............cccoooeeiiiiiiieiieeeeeeee, 55
4-1 Inputs of optimization algorithm for different case studies..........cccccoeeiiiiiiiiniiennnn. 73
4-2 Results of optimization for different case studies .........cccccoeeeiiiiiiiiiiiiiiiiiiieeeee, 74
4-3 Optimum structural design parameters ............cccuueveuriinriiiii s 76
4-4 Optimum controller design Parameters ...............ueuuvuuriiueiiiiiaaes 76
4-5 Structural parameters of optimum system.........cccccooiiiiiiiiiii . 76
4-6 Closed loop poles of the optimum system.........cccccooiiiiiiiiiiiiiii e, 76
5-1 Inputs of optimization algorithm................oooviiiiiiiiiiii s 85

5-2 Optimal structural design parameters for single objective optimization, Case |.. 92
5-3 Optimal and Suboptimal closed loop poles for second case of multi-objective
OPLMIZALION ... e 92
5-4 Optimal and Suboptimal structural natural frequencies of structure for single
objective optimization, Case l...... .. 93
5-5 Optimal structural design parameters for multi-objective optimization, Case Il 99

5-6 Optimal and Suboptimal closed loop poles for multi-objective optimization, Case Il

5-7 Optimal and Suboptimal structural natural frequencies of structure for multi-
objective optimization, Case Il........ ... 101

5-8 Optimal structural design parameters for multi-objective optimization, Case Ill. 106

Xiv



5-9 Optimal and Suboptimal closed loop poles for multi-objective optimization,Case Il

optimization, Case ... 107
C-1 Results of the analytical SOIUtION ...........coooiiiiiiii e 136
C-2 Initial parameters used in Hide and SeekK .............oovvviviiiiiiiiiiiiiiiiiiiiiiiieieeeee 137
C-3 Results of Hide and SEeK .........oovvviiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeee e 137
F-1 Nodal Coordinates in spatial coordinates..............cccccoeeeeii 148
F-2 Design parameter linking SCheme ... 149

XV



LIST OF FIGURES

FIGURE

2-1 Bar €lEMENT ... e 25
2-2 State space model of basic CONtrol SYSteM ...........uuuuiiiiiiiiiiiiciccccceeee e, 30
3-1 Flowchart of the HSSA algorithm ... 44
3-2 Spring and Weight SYSIEM ... 46
3-3 Objective function versus update number for 50,000 iterations ..............ccceveeeeees 50
3-4 Zoomed obijective function versus update number for 50,000 iterations.............. 50
3-5 Objective function versus update number for 1,000 iterations ..............ccvvvvvvvnnnnns 55
g T IV Yo T o = | g {1 L 65
4-2 POSItioNs Of @CUALOIS .. ..uviiiiiiii e 67
4-3 Finite element MOEL ...... ... 68
4-4 Two bar problem structural constraints plot ...........ccccooeiiiiiiiiiiiiii e, 71
4-5 Graphical solution for one actuator CaSE............uuuuiiiiiiiiciieeee e 72
4-6 Graphical solution for two actuator Case ..............uuuuuiiiiiiiiiciiicccccce e, 72
4-7 lteration history of cross sectional area of element number 1.............cccooeeeeennnnn. 77
4-8 lteration history of cross sectional area of element number 2..............ccccccoeennnin. 77
4-9 lteration history of objective fUNCHON ...........cccooiiiiiii e, 78
4-10 lteration history of frequency constraint ............ccccoeoiiiiiiiiiiiiiiiiiiccceccccceeceee e, 78
4-11 lteration history of mass Constraint...........cccccooeiiiiiiiiiiiiiiice e, 79
4-12 lteration history of penalty funClioN.............uiiiiiicccccce e, 79
4-13 lteration history of relative acCuracy.........ccccocooeeieiiiiiiiiiiieiee e, 80
5-1 Parabolic shape truss StruCtUre .............oooiiiiiiiiiii e 83
5-2 Finite element model of parabolic shape multi-bar truss case......................... 83

5-3 Iteration history of objective function for single objective optimization, Case I.... 88
5-4 Iteration history of frequency constraint for single objective optimization, Case | 88
5-5 Iteration history of mass constraint for single objective optimization, Case I ....... 89

5-6 Iteration history of top shape parameter for single objective optimization, Case 189

Xvi



5-7 lteration history of bottom shape parameter for single objective optimization,

5-8 Iteration history of performance index for single objective optimization, Case I... 91
5-9 lteration history of relative accuracy for single objective optimization, Case 191
5-10 Ilteration history of QPI for multiobjective optimization, Case Il .......................... 95

5-11 Iteration history of controllability of system for multiobjective optimization, Case Il

............................................................................................................................. 95
5-12 Iteration history of stability robustness of system for multiobjective optimization,
CaASE Il e 96

5-13 Iteration history of performance index for multiobjective optimization, Case Il... 97
5-14 Iteration history of relative accuracy for multiobjective optimization, Case Il .. 97

5-15 lteration history of frequency constraint for multiobjective optimization, Case Il 98

5-16 Iteration history of mass constraint for multiobjective optimization, Case Il ....... 99
5-17 Iteration history of QPI for of multiobjective optimization, Case lll ................... 102
5-18 lteration history of controllability for multiobjective optimization, Case lll......... 102
5-19 lteration history of robustness for multiobjective optimization, Case ll............. 103

5-20 Iteration history of performance index for multiobjective optimization, Case Ill 103
5-21 lteration history of relative accuracy for multiobjective optimization, Case Il .. 104
5-22 Iteration history of mass constraint for multiobjective optimization, Case lll .... 105

5-23 lteration history of frequency constraint for multiobjective optimization, Case Il

........................................................................................................................... 105
C-1 Zermelo’s trajectory optimization problem ............cccccciiiiiiiiiiieeeen 135
C-2 Final trajectory of the Zermelo optimization problem.............ccccccciiiiiiiiiiiennnn. 138
C-3 Final steering angle-time graph of Zermelo optimization problem..................... 138
E-1 Single actuator placed CaSe..........couiiiiiiiiiiiii e 141
E-2 Two actuator placed Case ... 144
F-1 Design parameter linkig SCheme ... 144

G-1 Iteration history of cross sectional area of a bar element for single objective case,

XVii



NOMENCLATURE

system matrix
closed loop system matrix

cross sectional area of a bar element

actuator distribution matrix
design parameter vector
structural damping matrix

Young modulus of elasticity

closed loop eigenvalue vector of controller
general force vector

directional global actuator force matrix
external force vector

directional elemental actuator force vector
constraint function

closed loop gain matrixr

identity matrix

objective function

structural stiffness matrix

elemental stiffness matrix

length of a bar element

structural mass matrix
mass of truss structure

external mass matrix

Xviii



elemental mass matrix
elemental actuator mass matrix
actuator mass

point mass

mass of a bar element

cross penalty weight of states and inputs
total number of state variables

total number of bar elements

total number of constraints

total number of design parameters
total number of objective function
observation matrix

penalty weight of control inputs
penalty weight of objective functions
penalty weight of constraints
penalty weight matrix of states
vector of nodal displacements
vector of nodal velocities

vector of nodal accelerations
Riccati matrix

number of control inputs

modal matrix
eigenvectors of system matrix

search direction vector

singular value decomposition of actuator distribution matrix

vector of principal (modal) coordinates

dimensionless time

XiX



t, direction cosine with respect to x-axis

t, direction cosine with respect to y-axis
t, direction cosine with respect to z-axis
u displacement in x-direction

{U} control input vector

V] normalized mode shape matrix

v displacement in y direction

w displacement in z direction

X dimensionless spatial coordinate

{x} state variable vector

{x} vector of first derivatives of state variables
Y dimensionless spatial coordinate

dimensionless spatial coordinate

Greek

a stiffness proportional damping

B mass proportional damping

0 Kronecker delta

p material density of bar element

Q square of structural natural frequency

w structural natural frequency
modal damping coefficient

Subscript

i number of bar element

J number of nodes

/ lowest/lower

0 initial condition

o required constraint value

Superscript

* optimum values

T transpose

XX



dof
EA
FEM
HSSA
LQR
MIMO
mdof
PZT
QPI
SA

ABBREVIATIONS

degree of freedom

Evolutionary algortihm

Finite Element Model

Hide and seek Simulated Annealing
Linear quadratic regulator
Multi-Input-Multi-Output

multi degree of freedom

lead zirconate titanate

Quadratic Performance Index

Simulated Annealing

XXi



CHAPTER 1

INTRODUCTION

The function of a structure usually determines the general features of its geometry.
The enviroment and the current technology determine its material. The past
experience with the enviroment and the structure’s function define the loads.
Considering the loads with worst case scenarios, a structural engineer designs the
structure by determining the free geometrical parameters of the structure’s material
volume such that the structural response never exceeds the limits set to ensure the
structure’s functionality and integrity. The structure is constructed according to its
design, and let unattended to complete its design life. In a modern manner of
speaking, this is called as the passive design. Historically, this has been the only

design paradigm avaliable to the structural engineers.

The experience with space structures since early Sixties has shown that a passively
designed space structure can be monitored continuously, and its response can be
controlled actively if some means of to do so are provided during its construction. With
the advances in sensor, actuator, and microprocessor technologies, it became
economically feasible to actively control some of the responses of a passively
designed space structure in real time. Initially, the telemetry data obtained from
spacecrafts was evaluated by human operators on the earth’s surface, and corrective
actions were relayed to the spacecrafts through radio signals. Later, using reliable
excitation-response relations of spacecrafts and various feedback control algorithms,
on-board microprocessors took over the job of human operator. In order to keep the
structure at the close proximity of its nominal state, computers continuously evaluate
the outputs of sensors which monitor deviations from the nominal state, and issue

commands to the actuators when required to eliminate these deviations. This modern



approach may be called as the design by incorporating intelligence into the system. It
is very likely that this design by incorporating intelligence into the engineering
products will be the new design paradigm for all engineering branches in this

millenium.

The new design paradigm of incorporating intelligence into engineering products is
basically the result of the availability of extremely capable microprocessors at a
minute fraction of the total cost of many engineering products, and the result of
advances in sensor and actuator technologies. This situation encourages the
engineers to use active means in controlling the response of their products in addition
to the passive means. Modern passive design techniques rely heavily on digital
simulations of products’ behavior under speculated loading conditions. By
incorporating the microprocessors into engineering products for inteligent and user-
friendly behavior, a new area opens for microprocessors beyond their current use in

numerical simulations [1].

Intelligent structures are those which incorparate actuators and sensors that are
highly integrated into the structure and have structural functionality, as well as highly
integrated control logic, signal conditioning, and power amplification electronics. Such
actuating, sensing, and signal processing elements are incorporated into a structure
for the purpose of influencing its states or characteristics, which can be mechanical,
termal, optical, chemical, electrical, or magnetic. For example, a mechanically
intelligent structure is capable of alternating both its mechanical states (its position or

velocity) or its mechanical characteristics (its stiffness or damping).

Because of difficulties in lifting and deploying heavy objects such as space stations,
which can contain large solar arrays, antennas, precision lasers, and optical systems,
the spacecraft structures must be highly flexible. Moreover, stringent performance
requirements for pointing accuracy, vibration suppression, shape control, etc.,
demand active controls to augment any passive damping. The goal of integrated
design is to take advantage of any synergistic interaction between the flexible

structure and its active control system.



When disturbed, a large structure is likely to continue vibrating for some time because
of its low frequencies and possibly small damping. Therefore, the objective of
vibration control is to design the structure and its control to reduce dynamic responses
in the structure. An effective way to achieve this goal is using damping augmentation

that can be obtained by active or passive means.

In addition to the space technology with a recent increases in demand for machines
having an integrated control system, a mutual interaction of the structure and control
system has become an essential factor and plays important role in the design of
machines and mechanical systems. Especially in vibration control, simultaneous
optimum design of structures and their control systems has attracted the attention of

researchers in recent decades.

An adaptive structure may be considered as an intelligent variant of its passively
designed counterpart. It is passively designed considering most of the loading
scenerios, but some active means are considered and incorporated into the design in

order to control random loading effects.

A wide variety of applications exist for intelligent structure technologies. Despite the
fact that truly intelligent structures (i.e., those with embedded controllers as well as
actuators and sensors) have not yet been built, a number of experimental
implementations of active structures (i.e., those with distributed actuators and
sensors) were successfully demonstrated [2]. Notable experimental implementations
include aeroelastic control and maneuver enhancement, reduction of vibrations and
structure borne noise and acoustic transmission, jitter reduction in precision pointing
systems, shape control of plates and mirrors, trusses, and lifting surfaces, isolation of

offending machinery and sensitive instruments, and robotic control [3], [4].

Onada, Sano, and Kamiyama [5] made some experiments and analyses to show the
effectiveness of active systems with respect to passive ones in terms of vibration
suppression. Furthermore, they proposed a new semiactive vibration suppression
technique to overcome the disadvantages of the passive system. Finally, they

concluded that, active system was the best one in the damping augementation while



the semiactive vibration technique gave quite satisfactory results, although it was

primitive.

Structural modeling and optimization algorithms are the two main challenging issues
of this subject. A review of the work that is carried out is given in next section. It will
be logical to define the optimization problem first and then explain the mathematical

modeling of structural part.

1.1 OPTIMIZATION PROBLEM

Integrated structure/controller design problems are handled in three different
methodologies in the literature up to now. These methods can be classified as

simultaneous, sequential, and multilevel optimization.

In the simultaneous methods, the control law design and the structural design are
directly combined into a single problem. Both the control and structural design
parameters are then selected to satisfy an integrated design objective, which is
usually some combination of structural and controller design objectives. With this
approach, the design problem may be high order since the mathematical model must
include not only the dynamics of both the control system and the structure, but also
the combined constraint and design parameter sets. Examples of simultaneous

methods were given by Haftka et. al [6] and Liu and Begg [7].

The sequential methods solve the integrated controller/structural design problem by
first structural (or controller) design followed sequentially by a control (or structural)
design. The process is then repeated iteratively until a satisfactory integrated solution
is found. Although these methods retain the original sizing of the structure and control
law design problems, their main drawback is that the integrated solution is dependent

on the sequential ordering of the control and structure design solutions.

Gilbert and Schmidt [8] designed both the structure and controller independently.

Integration of the independently obtained control and structural designs was achieved



by formulation and solution of a higher-level design coordination problem using the

multilevel optimization methods.

An optimization problem begins with a set of independent parameters which, are
design parameters, and often includes conditions or restrictions that define acceptable
values of the parameters. Such restictions are termed the constraints of the problem.
The other essential component of an optimization problem is a single measure of
“‘goodness”, termed as the objective function, which depends in some way on the

design parameters.

Final part of the optimization and computationally the most challenging part is the
solution of the problem. Many optimization algorithms are available in the literature. In

this thesis work, the hide and seek simulated annealing algorithm is used.

Optimization problem can be summarized under four main topics: design parameters,

objective fuction, constraints and solution algorithm .

1.1.1 Design Parameters

Design parameters are the physical characteristics of a system that can be changed
to improve its design. It will be adequate to categorize design parameters under two

groups as follows:

= Structural design parameters

= Controller design parameters

The structural design parameters typically characterize the material distribution and/or
geometry of the structure. For the past 30 years, an optimization using sizing
parameters such as cross sectional areas or thicknesses has been the most popular
form of structural design optimization. This type of optimization is called as the “size

optimization® in the literature.



The shape and topology optimizations are more complex types of structural
optimizations, which end up with changes in the layout of structures. In the shape
optimization, nodal coordinates, support positions, or shape parameters are taken as
design parameters while connections of nodes or number of elements are the design

parameters in the topology optimization.

The aim of controlling of elastic modes in a structure is to increase its damping and/or
stiffness to achieve a desired time response. This behavior depends on the number
and position(s) of sensor(s) and actuator(s) as well as on the structural dynamics of
the controller. Therefore, controller design parameters may be taken as feedback gain
matrix and/or position(s)/number of actuator(s)/sensor(s). Schulz and Heimbold [9]
worked on dislocated actuator/sensor positioning and many other researches worked

on actuator positioning and sizing [5], [10]-[16].

Structural and controller parameter linking schemes are used in order to avoid a
prohibitively large increase in the total number of independent design parameters.
Cross sectional areas, actuator and sensor positions or controller gain matrix may be
linked with an engineering intuition such that the optimal system will not be affected
much. This is applied in structural design when symmetrical systems are available
[17]. The tendency to subordinate gains to a dependent parameter status can be
attributed to the fact that for system models with a large number of degrees of
freedom, the feedback gain matrix contains prohibitively large numbers of
independent design parameters. The main ideas underlying the creation of alternative
control design parameter linking schemes are 1) separation of velocity and position
parts of gain matrix, 2) various row and column schemes corresponding to actuator
and degree of freedom linking, and 3) linking schemes based on only allowing

changes in various sets of velocity gains [18], [19].

1.1.2 Constraints

Constraints are the conditions that must be satisfied for the design to be acceptable

(inequality-one sided, equality-precisely, side bounds on the design parameters)

which can also be grouped as:



= Structural constraints

= Controller constraints

Any quantity characterizing the response of the structure, such as stress,
displacement, or frequency, may be constrained to preclude a structural failure.
Weight, structural natural frequency, tensile/compresive stresses, buckling loads and
displacement are the most common type of constraints in structural optimization

problems [20].

Weight can be used as either equality or inequality constraint in the optimization
problems. It can be also used as an objective in the optimization problem according to
definition of the design problem. In structural analysis, weight is used as an objective
function since its minimization without losing the structural integrity means money.

However, in smart structures it is commonly used as a constraint.

The design optimization of structures with fundamental or multiple-frequency
constraints is extremely useful when improving the dynamic performance of
structures. Modifying a particular frequency can significantly improve its overall
performance under dynamic external force excitations. Generally, the control of the
critical ranges of the natural frequencies is equivalent to the control of the dynamic
response in most narrowband forced excitation problems. A structural optimization
under some frequency constraints gives the ability to a designer to control the
selected frequencies in a desired fashion in order to improve the dynamic

characteristics of the structure [21]-[24].

In the linear quadratic regulator (LQR) theory, control gains relating actuator forces to
sensor outputs by means of a linear transformation are taken as typical control design
parameters. The control input, location of closed loop poles, number of actuators and
sensors are some common design constraints used by control engineers. Closed loop
poles of system effect transient and frequency response of the optimized system [14],

[25]. They can be applied as either equality or inequality constraints. Limits on a



control input are directly related to the available actuator. It usually has a maximum
limit, in other words, it is used in optimization problems as an inequality constraint
[25].

Some design parameters may have bounds; i.e., cross sectional areas of bar
elements must be greater than zero or applied actuator force must be smaller than
actuator maximum force capacity. These upper and lower bounds may be entered to
the problem as inequality constraints. These type constraints are called side or bound
constraints in the optimization terminology. Defining bounds is useful for the search

algorithm performace; in terms of reduced evaluation steps .
1.1.3 Objective function

In the structural optimization, the objective function is often related to the cost of the

structure, and it may involve the mass of the structure or the volume of the material.

The structural response may be static or dynamic, although time usually plays no
particular role in the formulation of the structural optimization problems. In contrast, in
modern optimal control, optimizing some performance index over a given time interval
is synthesized. The performance index is rendered independent of time by integrating

over the control time.

Quadratic performance index (QPI) is used frequently as the simplest, positively
defined objective function of the intelligent structure optimum design. It minimizes
magnitude of controller input, nodal displacements and velocities or outputs of the

system.

By solving reduced matrix Riccati equation, one can determine a control law that

minimizes QPI for a given positive definite or semidefinite state weighting matrix [Q]
and a positive definite control-weighting matrix [P] The choice of weighting matrices

is at the discretion of controller designer. Each choice produces a different optimal

control. In practice, the designer alters [Q] and [P] to balance system performance



and control effort. As an example, one particular choice might result in saturation of
an actuator in some simulations. Then, the designer might increase the weighting
factor(s) associated with that particular actuator. In this sense, the performance index
is not used to compare candidate control laws. Canfield and Merovitch [26] used an
independent modal space control, Sunar and Rao [27] worked on the optimal

selection of weighting matrices due to these reasons.

Cheng and Liu [28] summarized most popular objective functions that are used in
integrated structure/control design as follows:
= To better utilize materials and reduce costs of a structure, structural mass can

be chosen as the objective function:
fi=W, :ZpiaiLi (1-1)
i=1

wherep,, A, L;, and n, are density, cross sectional area, length of member/,

and total number of bar elements respectively.
= |n a given structure, when the internal work (strain energy) done by stresses
and strains has a minimum value, the structure has an optimal shape. For

example, minimizing the strain energy of a truss structure produces a natural

structural shape. Strain energy is given by
f,=E, = Zb:o,s,VI, (1-2)
i=1

whereo,, & and VI, are stress, strain, and volume of member i respectively.

= Minimizing potential structural energy can reduce the effects of external forces

and increase the safety level of a structure. If given loads



are {P}T ={P.,Ps-sPpe}» and  the  coressponding  displacements

are{A}T ={0,,0,,...,0, | » the potential energy of the structure is written as

’ ~ noel

noel

f=E,={P)' {a}=2.p5 (1-3)

To minimize changes in the shape of a structure under the action of different
loading conditions, displacement(s) at a selected point(s) on a region of the

structure are taken as the objective function(s) as follows.
f4,i =9 (1-4)

To design a controller using a linear quadratic regulator over a finite time

interval t € (0,t,), an objective function (J) can be defined as

= (0 [+ 0 [P

(1-5)
where [Q] is a positive semidefinite state weighting matrix, [P] is the positive

definite control weighting matrix, {x} is the state vector, and {U} is the control

input vector. Minimizing the quadratic performance index and satisfying the
structural system state equation gives an optimal linaer state feedback control

law
(U} =—[P]"[B]' [R]{x} =-[G]{x} (1-6)

where [G] is the closed loop gain matrix and [R] satisfies the algerabic

matrix Riccati equation. The optimized objective function for a structure to
minimize the control effort supplied by the actuators as a response to a set of

arbitrary initial conditions can be taken as

10



f={x} [Rl{x.) (1-7)
Here {x,} is the initial state vector (disturbance vector).

Obviously, a designer has to deal with more than one objective functions to meet the
design requirements of a structure or a structure/control system in most real world
optimization problems. Therefore, when an optimization is concerned with real

structures, a multiobjective optimization problem is formulated.

Slater and Mc Laren [29] used both weight and quadratic performance index as
objective functions of their optimization problem. However, their solution algorithm

does not need any engineering judgment on weighting of objective functions.

Optimum quadratic performance index depends on initial condition of the system as
given in Eq. (1-7). This result is not very useful since the initial state is not always
known or it changes. To compare performance indeces for each candidate structure
trace of Riccati matrix is used. By this way two level optimization is carried out. In the
inner loop closed loop gain matrix is optimized by solving reduced matrix Riccati
equation and in the outer loop other design variables are optimized by using trace of
Ricatti matrix. Many of researches in the literature used this approximation as their
optimization criteria, i.e. [7], [16], [26], [27], [30].

1.1.4 Solution Algorithm

Structural/controller optimization problems can be formulated as an integer
programming problem. When the number of bar members is large, it is almost
impossible to obtain the global optimal placement because of the discrete nature of
available actuator positions and the resulting huge number of possible configurations.
Therefore, many approaches have been proposed to obtain a nearly optimal solution

with a reasonable amount of calculation.

11



Heuristic optimization algorithms, especially evolutionary algorithms(EA) and
simulated annealing (SA), are the most preferred techniques for the multi-objective
optimization. The main reason behind the popularity of the EAs as a multi-objective
optimization technique is their population-based nature. This idea gives the
opportunity of finding the trade-offs within the problem in a single run. Their working
procedure is built on the operators such as, mutation, and crossover. The parameters
that define how to use these operators affect the convergence of the algorithm and
shall be selected according to the problem. This is the main drawback of the EAs. In
addition, the quality of the results that are generated by evolutionary algorithms
usually depends on the initial population. If the population is initialized with some
known good solutions, then the results are often also good. But, if the initial population
has a poor fitness then the quality of the results may be quite poor or it may converge

rather slowly [31].

The Simulated Annealing technique simulates the physical annealing process. It
generates new points in search space by applying operators to current points and
statistically moving toward more optimal positions in the search space. It does not
require the derivatives of the cost function and can thus deal with discrete parameters
as well as discontinuous cost functions. Bélisle et. al developed a SA algorithm for
continuous optimization, called hide and seek [32]. This method was used by Karsli
[33] in the optimization of a multi-objective satellite optimization problem. They
showed that hide and seek simulated annealing (HSSA) algorithm works efficently

independent from initial design family.

Onada and Hanawa [34] used genetic and improved SA algorithms and compare
these with SA, worst out best in, and exhaustive single-point substitution based on a

realistic example. The improved SA algorithm gave the best results.

Liu and Begg [7], [17] studied five different solution algorithms and compared these
algorithms with each other. These algorithms were namely guided random search
techniques, sequential mathematical programming and their mixtures. They described
multiobjective, constraint simultaneous optimization problem which included both

structural and controller design parameters. They showed that, all of these algorithms

12



work efficiently in the integrated structure/controller design even where there are

conflicting design requirements.

The sensitivity of the structural response to changes in the design parameters is
frequently the major computational cost in an optimization process. From the control
theory viewpoint, the sensitivity is concerned with the variations in the controller
objective function caused by variations in the plant and control influence matrices. A
systematic sensitivity analysis is essential for the development of well-behaved
algorithms in the solution of integrated structural/controller design problems [15], [17],
[35], [36].

1.2 MATHEMATICAL MODELING

Mathematical modeling may be explained under three main subjects: structural

modeling, controller modeling and modal state space transformation.

1.2.1 Structural Modeling

Finite element modeling (FEM) is used for modeling the dynamics of the structure.
Stiffness, mass and force matrices of the structure are derived by using finite element

method.

A typical strategy for the solution of an optimization problem is to use an iterative
approach where the optimum is found by calculating the performance index
repetitively until it cannot be improved any further [17]. Depending on the number of
variables, such an iterative technique may require a large number of structural
analyses that are generally costly and time consuming. The cost of a structural
analysis depends on the type of analysis required to determine the constraints and/or
the objective function. For example, the non-linear structural analysis of complex
structural shapes using finite element method procedures is a real handicap for the
structural optimization process. For those cases in which the analysis becomes
complex and computationally expensive, displacement based optimization methods

were used to improve the efficiency of the process. This optimization process
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searches for the optimal structure in the displacement space only. Then
corresponding set of sizing variables are found for this optimum displacement field
[37].

Finite element force method is another type of solution used in literature. Sedagathati,
Suleman, and Tabarrok [21] were used this method in the optimization of a truss
structure with multiple frequency constraints. This method is not so popular due to its
computational difficulties. They showed that the structural optimization based on finite
element force method gives lighter structures. They showed that this method should
be preffered when optimization goal based on element forces; e.g., adaptive geometry

optimization.

1.2.2 Controller Modeling

Most researches have focused on linear control laws, based on output or state
feedback. In the case of output feedback, several studies have been made, where the
structural dimensions and the control gains are treated as strictly independent design
parameters in optimization. On the other hand, in the case of full-state feedback
control, a sequential approach is usually adopted in which the control gains are
determined by solving Riccati equations corresponding to the changing structural

system during design iterations.

Actuators and sensors are the heart of control systems. With increasing technology
on materials and electronics very efficient actuator and sensors have become

available in the market today.

Actuators for intelligent structures must be capable of being highly distributed and
influencing the mechanical states of the structure. An ideal mechanical actuator would
directly convert electrical inputs into strain or displacement in the host structure. Its
primary performance parameters include its maximum achievable stroke or strain,
stiffness, and bandwith. Secondary performance parameters include linearity,

temperature sensitivity, strength, density, and efficiency [3]. The actuators, located at
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specified structural elements can be sized so that they produce control forces or

torques in order to suppress vibration levels of selected nodes.

Onada and Watanabe [10] used variable-stiffness members, Darby and Pellegrino
[11] used inertial slip-stick actuators, Sun and Wang [12] used a bar element
consisting extension-contraction device, Hyde and Anderson [13] used active D-strut
and Matanuga, Yu, and Ohkami [14] used proof-mass actuators in their vibration

suppression studies.

Sensory elements of intelligent structures must be sensitive to the mechanical states
of a structure and also capable of being highly distributed. An ideal sensor for an
intelligent structure converts the strain or displacement (or their temporal derivatives)
at a point directly into electrical outputs. The primary functional requirements for such
sensors are their sensitivity to the strain or displacement (or their time derivatives),
spatial resolution, and bandwidth. Secondary requirements include the transverse and
temperature sensitivity, linearity and hysteresis, electromagnetic compatibility, and
size of sensor packaging. It is desirable to make sensors small enough to placed

unobtrusive positions [3].

Piezoelectric devices (actuator/sensor pairs) seem to be more suitable for controling
precision structures, where very small displacement requirements are to be satisfied.
These materials have added new dimensions to the control problem, which comes
from the fact that not only positioning but also sizing of the distributed actuator/sensor

should be considered in the optimal design [15], [16].

There exists several studies in which the state feedback control is used [7], [8], [11].
Most of these studies assume a perfect knowledge about the states, even though
these states have to be reconstructed from the sensor signals by an observer in the
actual situation. Onada and Watanabe [38] included observer design to the integrated

structure/controller design of a large flexible spacecraft.

Robust optimization is a very essential subject in a smart structure design because of

plant uncertainties. The control system is said to be robust if it can maintain its
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stability and performance in the presence of plant uncertainties. The plant model of a
smart structure is a function of structural frequencies, damping, and vibration modes.
The uncertainties can be generally characterized into two groups: structured and
unstructured. A structured uncertainty is defined as the variation of the real
parameters in the plant. This may be due to the inaccuracies in the calculation of the
frequencies and damping due to approximations in the structural model, material
properties, mass, damping, etc. Neglecting the actuator and sensor dynamics and
higher-order structural modes are the reasons of the unstructured uncertainties. Khot
and Heise [39] designed a minimum weight integrated structure/control system, which
is robust under both structured and unstructured plant uncertainties. Several new
ideas in the definition and optimization of robustness for structures and structural
controllers were presented in Lim and Junkin’s work [40]. They showed that
maximizing stability robustness measure produces more robust designs than
minimizing eigenvalue sensitivity directly. Rao, Pan, and Venkayya [41] worked on
effect of structural modifications on robustness of controller and showed that stability
and performance robustness indexes can be used to decide structural design

parameters effectively.

A complex issue in the control of large flexible space structures is that there may exist
repeated or closely spaced modes clumping together in the lower range of the natural
frequency spectrum. In practice, only a few modes can be selected for control
because of the limited capacity of the hardware. One of the criteria for mode selection
is the modal controllability and observability, quantitatively. Liu, Wang, Hu and Yu [42]
used the singular value decomposition of the input matrix to define a measure for
controllability of the structure. Similar treatment can be done for observability measure

for sensor positioning [17].

1.2.3 Modal State Transformation and Model Reduction

Optimization can be carried on original spatial model of the structure which is
constructed from large degree of freedom (dof). However, a modern complex system
may have many inputs and many outputs, and these may be interrelated in a

complicated manner. To analyze such a system, it is essential to reduce the
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complexity of the mathematical expressions as well as to resort to computers for most
of the tedious computations necessary in the analysis. The modal state-space

approach is the best suited from this viewpoint.

While the conventional control theory is based on the input-output relationship, or
transfer function, the modern control theory is based on the description of system
equations in terms of n first-order differential equations. The use of vector-matrix
notation greatly simplifies the mathematical representation of systems of equations.
The increase in the number of state variables, the number of inputs, or the number of
outputs does not increase the complexity of the equations. In fact, the analysis of a
complicated multiple-input-multiple-output systems can be carried out by the
procedures that are only slightly more complicated than those required for the

analysis of systems of first-order scalar differential equations.

A modal transformation can be performed by using all dof's of the system. Since
engineering problems are often set from large number of dof, using all dofs would not
be practical. A reduced modal model is used frequently in the literature which includes

only low-order natural frequencies in designing the control system [43].

Kajiwara, Tsujioka, and Nagamatsu [25] include the effects of higher order natural
modes of structure on the stability check of the system. They used reduced modal
model with small dof of which the control system is composed. All design parameters
are optimized by using this model. Original modal model of medium dof used for
judging stability of the higher order poles which have been ignored in composing the

control system.

The model reduction methods directly use a set of physical coordinates as the states
of a reduced order model to be constructed such that it will provide the same
frequency response characteristics as the original full model within the frequency
range of interest. Frequency characteristics of a reduced order model constructed
using these methods are independent of the selection of the physical dofs used for

construction a reduced order model [44].
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It was shown that the number of modes that have to be taken into account depends
very much on the type of actuator and sensor pair considered. The number of modes
needed to reach the same accuracy in damping prediction was much higher for
bending actuator pairs like lead zirconate titanate (PZT) plates than for transverse
actuator-sensors pairs like proof-mass actuators and accelerometers. The error
caused by modal reduction could be compensated taking into account a feed through
element in the state space representation of the controlled system. Physically, this is
due to the collocation of actuator and sensor and it represents a direct proportionality
between input and output. This feed through or static correction of the transfer
function allows using a much lower number of modes to calculate modal damping

accurately [45].

1.3 DEFINITION OF THE CURRENT PROBLEM

In this study, both structural and controller optimizations will conducted
simultaneously. The main goal of the optimization problem is suppressing vibration

levels in large truss structures using active damping.

Design optimization can be defined as follows:

= Design parameters: Cross sectional areas of bar elements are chosen as
structural design parameters; controller gain matrix, positions and/or number

of actuators are chosen as controller design parameters.

= Constraints: Structural lowest natural frequency (inequality and equality) and
mass of truss structure (equality) are used as structural constraints; controller

constraint is not set.

» Objective function: Trace of Riccati matrix is minimized. Full state feedback
controller is used. Multi objective design is also carried out by using weighting
sum method. Other objective functions are controllability and stability

robusttness of the system which are maximized.
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Solution algorithm; HSSA algorithm is used in the determination of cross
sectional areas of bar elements and positions and/or number of actuators.
LQR theory is used for the calculation of optimal closed loop gain matrix of
actuators for the candidate design family. Penalty weights are chosen positive

definite in order to assure the system stability after controller design.

States of system matrix are chosen as displacements and velocities of active

nodes of structure.

Proportional damping is assumed for modal transformation and same modal

damping ratio is used for all controlled modes.

Modal reduction is used in the controller design. Number of actuators is
equated to number of modes that are desired to be controlled; i.e., truncation

order of modal transformation. Effects of higher order modes are neglected.

Design parameter linking scheme is used for both cross sectional areas of bar

elements and actuator positions.

A mathematical model is established for every candidate design family and

performance index is calculated for this structure.

Actuators are modeled such that their masses are lumped into respective
junction nodes of the bar element on which actuator is inserted. Actuator force
is applied as an external force to a system whose direction is parallel to
connected bar element’s centerline. In the second case study, optimization

problem is solved only for optimal placement of the actuators.

Full state feedback is applied. Therefore, positions and/or number of sensors

are not optimized.
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CHAPTER 2

MATHEMATICAL MODELING

In integrated structural/controller optimization problems, the system should be
modeled in terms of optimization design parameters to be able to calculate
performance indices, which are mainly related with the system energy, dynamic and
static characteristics of the system. A mathematical model of a dynamic system is
defined as a set of equations that represents the dynamics of the system accurately
or, at least, fairly well [46]. The dynamics of physical systems can be described in
terms of differential equations, which are obtained from basic physical laws governing
them. In this thesis work, the finite element method is used for arranging this set of

equations for representing the dynamics of a truss system.

Mathematical models may set in many different forms. Depending on the application
one mathematical model may be better suited than other models. Since a controller
optimization will be done in this thesis work, a modal state space representation is the

best one in terms of analyzing system performance.

Bars and actuators are the elements of structure of which, physical parameters will be
optimized. Finite element method is used for the mathematical modeling of the
structure, which requires the calculation of the structural stiffness, mass, and force
matrices. The stiffness and mass matrices include both mass and stiffness values of
bars and actuators. Since the optimization problem involves the positioning of the
actuators and the sizing of the truss members, structural mass and stiffness matrices
change in every iteration step. The force matrix has two components, which are
actuator and external forces. The actuator forces are also dynamic due to reason

stated for mass and stiffness matrices.
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In this chapter, firstly a brief introduction will be done about FEM and then the modal

state space transformation and modal model reduction methods will be explained.
2.1 FINITE ELEMENT MODEL

The finite element method is a numerical procedure for analyzing structures and
continua. The finite element method is probably the most widely used form of
computer-based engineering analysis. Most engineers, from all disciplines, will touch
on the method at some point in their careers. The method can be used for analysis of

a broad range of engineering problems.

Finite element methods are predominantly used to perform analysis of structural,
thermal, and fluid flow situations. They are used mainly when hand calculations
cannot provide accurate results. This is often the case when the geometry or process

in question is very complex.

The solution techniques differ between FEM computer programs, but much of the
fundamental mathematics behind structural finite element analysis is common. In

Appendix A definitions of terms used in FEM are given.

In the modeling equilibrium equation, the sum of the forces is equal to the

contributions of the stiffness [K] and deflection {q}, damping [C] and velocity {q},
and mass [M] and acceleration {G}, is used as given in Eq. (2-1). Total force {F} is

summation of external forces {F } and actuator force matrix.

e

[M{g} +[Clig}+[Kl{a} = {F} =[R]{U} +{F} (2-1)

where {F,}is directional global actuator force matrix and {U} is the control input

vector.
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In a dynamic analysis, inertia becomes important. The mass matrix, written as [m] for

an element and [M] for a structure, accounts for inertia and is a discrete

representation of the continuous distribution of mass in a structure. The effects of

damping, if important, are accounted for damping matrices [c] and [C] similarly.

Dynamic problems can be categorized as wave propagation problems and structural
dynamics problem. In wave propagation problems the loading is often impact or an
explosive blast. The excitation and the structural response are rich in high
frequencies. A problem that is not a wave propagation problem, but for which inertia is
important, is called structural dynamics problem. In this category, the frequency of
excitation is usually of the same order as the structure’s lowest natural frequencies of

vibration.

Problems of structural dynamics can be subdivided into two broad classifications. In
one, it is tried to find structural natural frequencies of vibration and the corresponding
mode shapes. Usually, it is desirable to compare natural frequencies of the structure
with frequencies of excitation. In design, these frequencies usually should be well
separated. In the other classification, it is tried to found how a structure moves with
time under prescribed loads and/or motions of its supports, which is called as time

history analysis.

In this study, structural dynamic analysis will be carried on and a structural constraint
is applied on the lowest natural frequency. If a natural frequency of the structure is
close to an excitation frequency, then a severe vibration and “beating” are likely. This
usually necessitates alteration of the structure’s natural frequencies by resizing or by
adding members or dampers. If frequencies of the structure and the excitation are
well separated, the structure still vibrates, but the amplitude of the response is likely to

be tolerable.

The damping in structures is not viscous; rather, it is due to mechanisms such as
hysterics in the material and slip in connections. These mechanisms are not well

understood. Moreover, they are improper to incorporate into the equations of
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structural dynamics, or they make the equations computationally difficult. Therefore,

the actual damping mechanism is usually approximated by viscous damping.

The treatment of damping in computational analyses can be categorized as
phenomenological damping methods, in which the actual physical dissipative
mechanisms such as elastic-plastic hysterics loss, structural joint friction, or material
microcracking are modeled, or spectral damping methods, in which viscous damping
is introduced by means of specified fractions of critical damping. Phenomenological
methods require detailed models for the dissipative mechanisms and usually result in
nonlinear analyses; hence, they are seldom used. With spectral damping approaches,
experimental observations of the vibratory response of structures are used to assign a
fraction of critical damping as a g-function of frequency, or more commonly, a single

damping fraction for the entire frequency range of a structure. The damping ratio {
depends on the material and stress level. In steel piping, { ranges from 0.5% at low

stress levels to about 5% at high stress levels. In bolted or riveted steel structures,

and in reinforced or prestressed concrete, ¢ has the approximate range 2% to 15%

[47].

A popular spectral damping scheme, called Rayleigh or proportional damping, is to

form damping matrix [C] as a linear combination of stiffness and mass matrices, that

is,

[C]=a[K]+B[M] (2-2)

Matrix [C] given in Eq. (2-2) is an orthogonal damping matrix because it permits

modes to be uncoupled by eigenvectors associated with the undamped eigen

problem.

In the first case study, damping is neglected while in the second one proportional

structural damping is assumed for all modes. Therefore, damped natural frequencies
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are the same as undamped natural frequencies and damped mode shapes are the

same as undamped mode shapes.

In static analysis, symmetry can be exploited for example, by analyzing half of the
entire structure. In vibration analysis, symmetry of structure and supports does not
imply symmetry of all vibration modes. By imposing symmetry, one would exclude all

anti-symmetric modes, which are probably as important as symmetric modes.

Finite element model sets firstly calculating elemental mass stiffness and force
matrices. Than, these elemental matrices are assembled to form structural mass,
stiffness, damping, and force matrices. Therefore, it will be logical to define elements

that are used in this thesis firstly.

2.1.1 Bar Element

The simplest structure type planar truss is examined which does not have any
complicated formulation. Any pin-connected structure made of bar elements carrying
axial loads is referred to as a truss. Unquestionably, this is the most thoroughly
investigated structure in relation to design optimization. There are three principal
reasons for this. First, many practical structures are trusses or can be approximated
as trusses, including many bridge supports, transmission towers, ship masts, and roof
supports. Second, a finite-element code for truss analysis is easily written, so the
researcher in automated design does not have to spend a major effort on writing the
analysis portion of the design program. Finally, truss structures can be created which
span the range of complexity from very simple to highly nonlinear and indeterminate.
Thus, these structures provide excellent test cases for the study of optimization

techniques.

Figure 2-1 shows a uniaxial bar element, which has two nodes at the ends. Bar
elements can carry only axial loads. It cannot carry moments in both ends. In addition,
it is assumed that it does not buckle. Therefore, the entire length of the modeled
component can be modeled as a single element. This member will transmit only axial

loads and can be defined simply by its material, cross sectional area, and its length.

24



e L _— 4, Node?2
Node 1
\ «
Vlﬂ VZA
— L—>
Uz uz

Figure 2-1 Bar element

Each node can move in two directions, x andy . Therefore, it can be said that each
node has two dof (one in the x, and one in the y direction). The element has four

dofs. For the case of a planar bar element, in static analysis the equilibrium equation

would be written as:

F % ki K ki ki || U u
F, _ kio Ky Ky Ky ||V _ [kJ Vi (2-3)
F., kis Ky Kiz ks ||U, ',
F ki Ky ki Ky 2 Va

Y2

where [k.

,j] is the element of elemental stiffness matrix, u is displacement in x-

direction, and v is displacement in y -direction

Eq. (2-3) represents a set of four linear simultaneous equations. The number of

equations is equal to the number of dof in the problem.
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Let the left end of the bar element is pinned to the ground. It is known that, there will

be no displacement at this node, so u, and v, can be set to zero. Then equation Eq.

(2-3) reduces to:

F :[kss ksﬂ {Uz} (2-4)
F, Ky K| |V,

The matrix [k] is called the stiffness matrix, which defines the geometric and material

properties of the bar. These matrices always define inherent properties of the system

being studied. For the system at hand, stiffness matrix can be derived as

1 0 10
aE| 0 0 O O
kl=— -
[] L|{-10 1 O (2-5)
0 0 0O

where a is the cross sectional area, E is the Young modulus of elasticity, and L is

the length of the bar element.

Deriving the stiffness matrix was easy in this case, partly because the bar is oriented
parallel to the x-axis. If the bar were placed at an angle to the axis, then the
equations would involve trigonometric terms. Through a similar derivation, it can be

shown that the stiffness matrix for any bar oriented at an angle is given in Eq. (2-6)

2 tt, -t -tt,

[k]:ﬁ ~tt, -t2 —tt, -t
L| -2 —tt, £

tt, 2ttt

(2-6)

where f; are the direction cosines of bar element with respect to global axis of the

structure. These are calculated as follows:
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t = (2-7)

where X and Y are the nodal coordinates of bar element.

Once the stiffness matrix is calculated, the solution may be performed via matrix

solution techniques. After the displacements {q} are calculated, the stresses can be

found. Above explanations are done for planar trusses but it can be extended to
space trusses by adding z coordinates to formulation easily. In this study, all
programs are written for space trusses, but it can be dealt with the planar trusses,

simply by equating z coordinates of nodes to zero.

A mass matrix is a discrete representation of a continuous distribution of mass. A
consistent mass matrix is used in finite element model. It is called consistent since the
same shape function is used in the derivation of both mass and stiffness matrices.
Elemental mass matrix is given in Eq. (2-9) has no transformation terms since mass

matrix of bar element independent from element positions.

2 010
0 2 01
[m]=paL (2-9)
10 2 0
010 2

where p is the density of the bar element.

2.1.2 Actuator element

The actuator element is used in the model to control structure. It exerts force into the
system when necessary at an appropriate level and fashion. The actuator force, which

is assumed to be generated by a full state feedback control, will be calculated
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optimally in this study. Therefore, the force matrix is established from direction
cosines rather than the value of actuator force. Actuators are placed parallel to bar
elements. Therefore, they have same nodal coordinates and direction cosines with

these elements. Actuator force matrix is calculated as follows for each element
-1
[L]=IT] {JU (2-10)
where
t, t, 0 O
T — 1 2 _
[T] {0 0t tj (2-11)

and U is the magnitude of the actuator force.

Only the mass of the actuator is added to system as a physical property of it. Mass of

the actuator is modeled as lumped mass as follows

1000
[m,]= T [0 190 (2-12)

> lo 010

000 1

where m__, is the unit mass of the actuator element.

act

2.1.3 Mass element

The primary use of mass elements is to idealize the mass of a component that
provides a contribution to the loading of the part being studied, which is much more
rigid and/or too complex to include as a mesh. Mass elements are used to represent

engines in cars or motorcycles, display tubes in televisions or monitors, and pumps
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and motors on models of machinery. Mass elements are typically single node

elements and they cannot affect rigidity.

External masses are added to system mass matrix at the corresponding nodal dofs as
shown at (2-13).

10
M, |=m 2-1
[M.] {0 J (2-13)
where m, is the unit mass of the mass element.

2.2 CONTROLLER MODELLING

An automatic controller compares the actual value of the plant output with the
reference input (desired value), determines the deviation, and produces a control
signal that will reduce this deviation. The manner in which the controller produces the

control signal is called the control action [46].
Industrial controllers may be classified according to their control actions as:

=  Two-position or on-off controllers

= Proportional controllers

= Integral controllers

= Proportional-plus-integral controllers

= Proportional-plus-derivative controllers

» Proportional-plus-integral-plus-derivative controllers

= Compensators
Controllers may also be classified according to the kind of power employed in the

operation, such as pneumatic controllers, hydraulic controllers, or electronic

controllers. In this study, actuator modeling is not considered in detail. It is assumed
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that, there is an actuator, which can provide an axial force and modeled by only its

mass property while controller gain consists of stiffness and damping characteristics.

Figure 2-2 is a state space model of an industrial control system, which consists of a
error detector, a controller, a plant, and a sensor. The controller detects the actuating
error signal, which is usually at a very low power level, and amplifies it to a sufficiently
high level. The output of an automatic controller is fed to an actuator. The actuator is
a power device that produces the input to the plant according to the control signal so
that the output signal will approach the reference input signal. The sensor is a device
that converts the output variable into another suitable variable, such as a
displacement, pressure, or voltage, that can be used to compare the output to the

reference input signal.

Plant model is drawn by using finite element method as mentioned before. Full state
feedback proportional controller is used to generate control force while reference input
is set to zero. In fact, in the case studies, control system consists of a plant, a

proportional controller, and the unity feedback sensors.

Plant

Error Controller
detector

{Xer} Ci) e} ] 6] [1Y,] (g LI i

A

v

v

2,
X

[H]

A

Sensor

Figure 2-2 State space model of basic control system
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2.2.1 Proportional Control Action

For a controller with proportional control action, the relationship between the output of

the controller {U(t)} and the actuating error signal {e(t)} is

{ut) =[Gl{et) (2-14)

where [G] is the closed loop gain matrix.

Whatever the actual mechanism may be and whatever the form of the operating

power, the proportional controller is essentially an amplifier with an adjustable gain.

Since reference input is set to zero, which is equilibrium condition for states for truss

structure, e(t) reduces to —x(t) and Eq. 2-21 becomes

Ut} =-[G]{x)} (2-15)

{U(t)} is the actuators force vector in the direction of parallel truss.

2.3 MODAL STATE SPACE TRANSFORMATION

A complex system may have many inputs and many outputs, and these may be
interrelated in a complicated manner. To analyze such a system, it is essential to
reduce the complexity of the mathematical expressions as well as to resort to
computers for most of the tedious computations necessary in the analysis. The modal

state-space approach to system analysis is best suited from this viewpoint.
While conventional control theory is based on the input-output relationship in Laplace

domain, or transfer function, modern control theory is based on the description of

system in the time domain in terms of n first-order differential equations, which may
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be combined into a first order vector-matrix differential equation. The use of vector-
matrix notation greatly simplifies the mathematical representation of systems of
equations. The increase in the number of state variables, the number of inputs, or the
number of outputs does not increase the complexity of the equations. In fact, the
analysis of complicated multiple-input-multiple-output systems (MIMO) can be carried
out by the procedures that are only slightly more complicated than those required for

the analysis of systems of first-order scalar differential equations [46].

The most useful method for determining the forced-vibration response of a linear
multi-degree-of-freedom (mdof) system is modal analysis. The orthogonally conditions
between the mode shapes determined from the free-vibration analysis are used to
define a transformation between the generalized and a new set of coordinates, called
the principal coordinates. When the principal (modal) coordinates are used as the
dependent variables, the differential equations are uncoupled. The resulting

uncoupled differential equations are solved by standard techniques.
2.3.1 Principal Coordinates: Decoupled Equations

The principal coordinates for an mdof system are a set of coordinates related to the

chosen generalized coordinates a linear transformation as

{a}=[S]{s} (2-16)

where [S] is the modal matrix and {s} is the vector of principal (modal) coordinates.

The general matrix form of the differential equation for forced vibrations of an
undamped mdof linear system is given in Eq. (2-1). These differential equations are
written using the principal coordinates as dependent variables by substituting first

equation into above equation, leading to

[M][S]{s}+[ClIS]is) +[K][S]{s} = {F) (2-17)
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Premultiplying above equation by [S]T yields

[ST [M][S]{8} +[ST [C][S]{s} +[ST [KI[S]is} =[ST {F} (2-18)

By using a energy scalar product, above equation can be reduced to Eq. (2-19).

Derivation of this equation is given in Appendix B.
(81 +[A){s} +[Q){s} =[ST {F) (2-19)

where [A] and [Q] are the diagonal matrices which elements are 2§w, andw?,

respectively.
2.3.2 State Space Transformation

Eq. (2-19) can be transformed to state space by defining states as displacement and

velocity of nodes for all dofs such that,

i Xi
(2-20)

»- »

wherei=1...n.

By using these states, the system[A], actuator distribution [B] and external force

{Fe} matrices are found as shown in Eq. (2-22)-(2-25) for following state equation,

X} =[Alix} +[BHU; +1iF.) (2-21)

where
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where i =1...n. Derivation of these terms is given in Appendix B.

2nx2n

In this thesis work the gravitational force is taken as the external force. Let

34

(2-22)

(2-23)

(2-24)



[B]{u}’ =[B]{U}+{F.} (2-25)

e

by assuming that the system is controllable Eq. (2-21) reduces to
(i) =[Al{x} + [B]{U} (2-26)

where T is the transpose of corresponding matrix.

From LQR theory, the observed {x} is fed back to generate the control forces as

necessary
{u}" =-[e][o]{x} (2-27)

in which [O] is the observation matrix. In this thesis work regulator design is not

carried out. It is assumed that all states are measured. Therefore observation matrix

is equal to identity matrix.

The solution to a set of initial conditions x, of the structure under this control is given

by
{x(t)} =exp([A,]t){x, } (2-28)
where

[A.]=[A]-[B][G] (2-29)
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2.3.3 Modal Model Reduction

The modal model reduction is applied to large dof systems. Since, the size of system
matrices increases with increasing dof’s, computational times become too long, and

even sometimes impossible to handle.

The logic behind the modal model reduction is the modeling system only with low
order natural frequencies. Neglecting high order natural frequencies does not change
the response of the system so much. Depending on the application, the size of the
reduced model may be changed. Whatever the system is, it would not be meaningful

to solve a system with thousands dof’s using the full size matrices.

The modal model reduction is applied such that modal matrix, [S], consists of the

eigenvalues of desired number of low order natural frequencies. Then, the modal

space transformations is applied by using this truncated modal matrix.
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CHAPTER 3

OPTIMIZATION ALGORITHM

Optimization gives designers an ordered approach to make a design decision instead
of relying on intuition and experience. Much of the design task in engineering is
quantifiable, and so it is possible to use a computer to analyze alternative designs
rapidly. The purpose of numerical optimization is to aid engineers in rationally

searching for the best design to meet system needs.

Optimization in design can be defined as the process of finding the minimum or
maximum of some parameter, which maybe called as the “objective function”. For a
design to be acceptable, it must also satisfy a certain set of specified requirements

called “constraints”.

Numerical optimization techniques offer a systematic approach to design automation,
and many algorithms have been proposed. Some of these techniques, such as linear,
quadratic, dynamic, and geometric programming algorithms, have been developed to
deal with specific classes of optimization problems. A more general category of
algorithms referred to as nonlinear programming has evolved for the solution of
general optimization problems. Methods for numerical optimization are referred to

collectively as mathematical programming techniques.

3.1 GENERAL PROBLEM STATEMENT

A nonlinear constrained optimization problem can be expressed as follows:
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Minimize a scalar objective function (3-1)

F(D)
subject to
h,(D)<0 j=1-m inequality constraints (3-2)
h.(D)=0 k=1---t equality constraints (3-3)
d <d <d' i=1--r side constraints (3-4)
where
d1
% desi t (3-5)
esign parameters -
(D} ={d. e
d,

The vector {D} is referred to as the vector of design parameters. The objective
function F(D) is given by (3-1), as well as the constraint functions defined by (3-2)
and (3-3) may be linear or nonlinear functions of the design parameters{D}. These
functions may be explicit or implicit in {D} and may be evaluated by any analytical or

numerical techniques. However, except for special classes of optimization problems, it

is important that these functions be continuous and has continuous first derivatives

in{D}. Equation (3-4) defines bounds on the design parameters {D} and so is

referred to as a side constraint. Although side constraints could be included in the
equality constraint set given by (3-2), it is usually convenient to treat them separately
because they define the region of search for the optimum, which minimize the

computational burden.

3.2 THE ITERATIVE OPTIMIZATION PROCEDURE

Most optimization algorithms require that an initial set of design parameters, {DO}, be

specified. Beginning from this starting point, the design is updated iteratively. The

most common form of this iterative procedure is given by
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{D}* ={D}"" + a{Sd}’ (3-6)

where q is the iteration number and {Sd} is a vector search direction in the design
space. The scalar quantity o defines the distance that we wish to move in
direction{Sd} . The choice of {Sd} is somewhat arbitrary as long as a small move in

this direction will reduce the objective function without violating any constraints. By

searching in a specified direction, the problem is actually converted from n,

parameters {D} to one parameter a. New search direction must be found when

entered to infeasible region until objective function is no more reduced without

violating constraints.

Nonlinear optimization algorithms based on (3-1) can be separated into two basic

parts. The first is determination of a direction of search{Sd} , which will improve the

objective function subject to constraints. The second is determination of the scalar

parameter a  defining the distance of travel in the direction{Sd}. Each of these

components plays a vital role in the efficiency and reliability of a given optimization
algorithm. There are other considerations in developing the actual optimization

program. The most important of these is deciding when to stop the iteration process.

Computationally, it is desirable to normalize the vector{Sd} . The simplest approach is
to find the maximum absolute Component|Sd,|, i=1---n,, then normalize {Sd} by
dividing all components of {Sd} by the scaling factor. This will aid to find the scalar
a, because a unit value of a, will always make roughly the same change in{D}. This

normalization has the further attribute to see which design parameter is being
changed most rapidly. Therefore, the normalization provides a simple means of

identifying the important parameters in the design.
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3.3 SEARCH METHODS

It is convenient to categorize algorithms according to the type of information that must

be provided in searching for the minimum of the function.

The simplest approach to minimizing F(D) is to select randomly a large number of
candidate {D} vectors and evaluate the objective fuction for each of them. The {D}

corresponding to the minimum F(D) obtained from this set is called the

optimum,{D'} . Obviously, if a precise solution to the problem is to be found, great

many {D} vectors may have to be considered. Methods such as this, which require

only function values in searching for the optimum, are referred to as zero-order

methods.

A more difficult but usually more efficient approach to the minimization problem is to
use the gradient information in seeking the optimum. For example, the gradient of

objective function, VF(D), can be calculated and then a search can be done in the
negative VF(D) direction. Using this information to choose a new {D} vector leads to

a more rapid solution of the problem. By this way, the search area can be limited next

to randomly searching the entire design space. If F(D) is highly nonlinear then a new
gradient should be calculated at every new {D} vector and this process would be

repeated up to no more reduction is encountered. Methods, which use gradient or

first-derivative information, are called first-order methods.

The last class of algorithms is called second-order methods, which use second-
derivatives of the objective function F(D). Second-order methods are more efficient
with respect to zero and first order methods since they use second order information,
which shows type of the point such as minimum, maximum, or saddle. However,
calculation of second order derivative of objective function is seldom available

analytically and numerical methods are usually too costly to be useful in most cases.
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3.3.1 Zero Order Methods

Optimization techniques, which require function values, only have enjoyed a long
history of usefulness. These methods are usually reliable and easy to program, often
can deal effectively with nonconvex and discontinuous functions, and in many cases
can work with discrete values of the design parameters. The price paid for this
generality is that these methods often require thousands of function evaluations to
achieve the optimum, even for the simplest of problems. Therefore, these methods
are considered most useful for problems in which the function evaluation is not

computationally expensive.

Most commonly used zero order methods are random search and Powell's method.
Many additional these type methods have been proposed which are conceptually
similar to these methods. In this work, the random search method is used as an

optimization algorithm.

3.3.2 Random Search

Random search methods are considered to be the most inefficient but are the most
easily implemented of the zero order methods. These methods are very useful due to

its ease of implementation.

The simplest of these methods is to select {D} vectors randomly throughout the
design space. To avoid searching longer than necessary, some reasonable side

bounds such that {D}' <{D} <{D}" should be provided. To produce a value for the i

parameter between d andd!, the following equation is used:
d?=d +r(d'-d) (3-7)

where r is the random number between zero and one.
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This method is effective also for problems where relative minima may exist, because
every point in the design space has an equal likelihood of being selected as a

candidate design.

If some tighter bounds can be imposed to parameters, the efficiency of the program is
improved. Thus, the more the designer knows about the problem the better able he or

she is to solve it.

Random search methods have an additional advantage that they can deal with integer
or discrete parameters contained in a table. The only modification needed is that a
random number generator must provide integer numbers in the feasible region (also,
o must be an integer). The resulting designs are then used directly or as pointers to

positions in a table, where any design outside the table is automatically rejected.

In the random search methods, a sequence of points in the feasible region following
some prespecified probability distribution (which can change during the course of the
algorithm) is generated. Pure random search, pure adaptive search and methods

based on SA are the examples of random search methods.

SA is a sequential search technique that avoids being trapped in local maxima by
accepting, in addition to transitions corresponding to an increase in function value,
transitions corresponding to a decrease in function value. The later is done in a limited
way by means of a probabilistic acceptance criterion. In the course of maximization
process, the probability of accepting deteriorations descends slowly towards zero.
These deteriorations make it possible to move away from local optima and explore the

feasible region S in its entirely.

SA is originated from an analogy with the physical annealing process of finding low
energy states of solid in a heat bath. One of the principal problems in the practical
implementation of simulated annealing is the choice of a cooling schedule for the
temperature parameter (which parameterizes the decrease of the acceptance
probabilities for deteriorations). For discrete SA necessary and sufficient conditions

for a cooling schedule that guarantee convergence to the global optimum provided for
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the case of a deterministic cooling schedule; i.e., when the sequence of temperature
is known in advance. In the HSSA method, adaptive cooling schedule for continuous
optimization is used where the temperature employed depends upon the real time

progress of the algorithm.

3.3.2.1 Hide and Seek Simulating Annealing

Hide and seek is a powerful yet simple and easily implemented continuous simulated
annealing algorithm for finding the maximum of a continuous function over a compact
body. The algorithm begins with any feasible interior point. At each iteration, program
generates a candidate successor point by generating a uniformly distributed point
along a direction chosen randomly at the current iteration point. The candidate point is
then accepted as the next iteration point according to the Metropolis criterion
parameterized by an adaptive cooling schedule. The temperature changes as the
process progress, depending on the closeness of the solution to the global optimum.
It is the only algorithm with a statistical proof of convergence of the algorithm to the
global optimum. Theory of the algorithm can be found in Appendix C. The flowchart

given in Figure 3-1, summarizes the general structure of HSSA algorithm.

Relative accuracy and temperature are decision criteria of HSSA algorithm, as if it
finds global optimum or not. One of them can be used as convergence criterion.
Maximum iteration number should also used to avoid program crash. Decision of the
relative accuracy is not so straight forward. Since it may be to small that numerically it
cannot be satisfied. Although, solution may be near the global solution. If similar
results are achieved after certain number of run it will be convenient to say result is a

global optimum.
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Figure 3-1 Flowchart of the HSSA algorithm
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Performance index (Pl) is the total cost of the optimization problems. It includes all
design requirements such that structural/controller objective function(s), (J) and

constraint(s), (fc) A general type performance index is used in this study, which is

based on weighting sum method. It can be defined as
PI=> pw?.J =Y pw/f, (3-8)

where pw° and pw° are denoted as penalty weight of objective function(s) and

constraint(s), respectively. If the minimization of objective function is required pw®

should have negative sign, since HSSA algorithm is a maximization type optimization

method. If the constraint is an equality constraint, then the absolute value of f, should

(o]

be used. While, if the inequality constraint is requisited, max(0,f,) should be used.

The optimal solution of the objective function depends on the values of the penalty
coefficients used. Users usually try different penalty coefficients to find the reasonable
value, which requires some experimentation. In fact a coefficient that brings the
constraints to the same order of magnitude with the objective function usually gives
satisfactory results. If small penalty coefficients are used the distortion of the objective
function is also small, while the optimum of it may not be near the true constraint
optimum. On the other hand, when a large penalty coefficient is used, while the
calculated optimum is closer to the true constrained optimum, the distortion may be so

severe that objective function value may at its true global optimum.

A test problem is solved to compare HSSA algorithm with the other optimization
algorithms used by Vanderplaats [48]. A parametric study will be carried out in this
problem to see response of the program to its inputs.

3.3.2.1.1 Nonlinear optimization of a spring weight system by HSSA

Figure 3-2 shows a simple spring system supporting weights at the connections

between the springs. This system was analyzed in the book of Vanderplaats [48] to
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determine the equilibrium position by minimizing potential energy(PE). It is

comprised of equally spaced five weights and six springs, shown in the undeformed
position in Figure 3-2 (a) and the deformed position in Figure 3-2 (b).Problem

definition is completely taken from Vanderplaats [48].

{6} Deformed Position

Figure 3-2 Spring and weight system

The deformation of spring i is

AL = (X, = X, P+ (Y, — Y, =L (3-9)

where the length L° is taken to be 10 m for each spring, and there are a total of N +1

springs, with N being the number of weights (in Figure 3-2, N =5).
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The stiffness of spring i is taken to be

K, =500+200(g—i)2 N/m (3-10)
Weight W, is defined to be
W,=50j N (3-11)
where j corresponds to the joint where W, is applied.
PE is
W 1 (3-12)

N
PE =Y ZKAL + Z}Wij
Jj=

i=1

where PE has units of Nm and the coordinates are positive as shown in the

Figure 3-2.
Hide and seek annealing algorithm needs following inputs to run

¢ Initial guess for design parameters
e Upper/lower bound of design parameters
¢ Maximum iteration number to terminate program

e Maximum relative accuracy to terminate program

Since the program carries out a random walk in the design space an initial guess for
design parameters does not affect the solution. It is only used to initiate program in a
feasible region. Upper and lower bounds affect computation time directly with respect
to the convergence of the program. When the problem is more definite for the
designer finding global minimum will be also become easier. If designer does not

know anything about the problem, he or she begins with a larger bound and run the
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program a handful times. Then, according to results, some tighter bounds are set to

get global optimum.

The maximum iteration number and relative accuracy are used for terminating the
program. If program is terminated from the relative accuracy then the solution will be a

global optimum. The convergence of the HSSA is verified theoretically by Belisie [32].

The program is run for 8 times with same inputs. Bounds are set to be reasonable

physical values and initial design parameters are arithmetic average of bounds.
Maximum iteration number and relative accuracy 50,000 and 10® are used for

program convergence criteria, respectively. Other inputs of optimization algorithm are

summarized in Table 3-1.

Table 3-1 Inputs of HSSA algorithm for 50,000 function evaluation

Design
parameters| X, | X; | X, | X5 | X Y, Y, Y, Y, Y,
(m)
Initial |4 | o | 34 | 42 | 51| 3| 5 | 75| 75| 5
solution
Upper | 44 | o2 [ 32 | 43 | 52| o | o | o o o
bound
Lower O | 20 | 30 | 41 | 50 | -6 | 10 | -15 | -15 | -10
bound

Program ends up with same optimal objective function for three different runs. Values
of design parameters are close to each other. Differences between optimal design
parameters are due to a large number of design parameters and significant digits of
objective function. Results of the optimization are summarized in Table 3-2 and
Table 3-3. Objective function values are converged to the same value in all iterations,
which can be easily seen from Figure 3-3 and Figure 3-4. Figure 3-4 is rectangular
zoomed region of Figure 3-3. In all iterations the objective function converged to 4,416
(Nm). In all runs program is terminated because the maximum number of iteration is

exceeded the set limit.
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Table 3-2 Optimum design parameters for 50,000 function evaluation

Optimum
design
! Run1| Run2 | Run3 | Run4 | Run5 | Run6 | Run7 | Run 8
variables
(m)
X 10.25| 10.39 | 10.31 | 10.32 | 10.35 | 10.27 | 10.34 | 10.27
X 20.91| 21.10 | 21.02 | 21.01 | 21.08 | 20.97 | 21.05 | 20.94
X, 31.53| 31.70 | 3162 | 31.62 | 31.67 | 31.58 | 31.65 | 31.55
X, 41.94 | 4210 | 42.02 | 42.02 | 42.08 | 41.99 | 42.05 | 41.95
Xs 51.63| 51.79 | 51.71 | 51.70 | 51.76 | 51.68 | 51.73 | 51.65
Y/ 433 | -424 | -429 | -432 | -428 | -435 | -4.25 | -4.34
Y, -7.94 | -7.87 | -7.91 -797 | -7.89 | -796 | -7.89 | -7.95
Yy -9.78 | -986 | -9.86 | -986 | -9.86 | -9.80 | -9.84 | -9.83
Yy -9.22 | -9.41 932 | -9.31 | -9.38 | -9.26 | -9.33 | -9.23
Ys -5.83| -6.03 | -594 | -593 | -599 | -5.89 | -596 | -5.86
Table 3-3 Termination criteria for 50,000 function evaluation
Run1 [Run2|{Run 3| Run4 |Run5|Run 6| Run7 |Run 8
Optimum objective | 110 | 4416 | 4415 | 4415 | 4416 | 4413 | 4416 |4411
function
Relative accuracy | 0.009 |0.007 |0.057| 0.068 |0.016|0.008 | 0.016 |0.750
Number of accepted | 4o, | 439 | 127 | 166 | 135 | 174 | 165 | 207
function evaluations
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Design parameters can be also examined in a similar way. If history plots of ten
design parameters are drawn, it is seen that all design parameters are converged to a

constant value. Therefore, the final solution is the global optimum.

HSSA algorithm uses random walk to determine the next search point. Therefore, it
may find the optimum solution in its first attempt. For example in these runs, the
optimum solution is found at 39,887" function evaluation in the 1% iteration while it is

found 49,979" function evaluation in the 7™ iteration.

This example is a useful tool to see advantages and disadvantages of HSSA and also

to verify it. Following six algorithms were used in [48] to solve defined problem:

Powell’s method

Steepest descent

Fletcher-Reeves conjugate direction method
Davidon-Fletcher-Powell variable metric method

Broydon-Fletcher —Goldfarb-Shanno variable metric method

o a0k wbh =

Newton’s method

Type of first algorithm is the zero-order, 2™ -5 algorithms are the first-order, and 6™
one is the second order optimization method. Table 3-4 gives the values of the design
parameters and the optimum objective function for each of the seven methods.
Bounds are taken similar to Table 3-1. Initial conditions are taken same as in

reference [48], and are given in Table 3-4.

Table 3-5 gives the iteration history for each method. The number of function
evaluations is listed only as a general purpose and is considered as an upper bound
on the computational expense. In practice, the efficiency of the optimization
algorithms is improved by careful programming, scaling of the variables, and less

conservative termination criteria.
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Table 3-4 Optimization results of several optimization algorithms [48] and HSSA

Design | | itial Optimization method

par?r?:)e flsolution| 1 | 2 3 4 5 6 | HSSA
X, 10 |10.30{10.30 | 10.40|10.20 | 10.20 | 10.40 | 10.35
X, 20 [21.10/20.70 | 21.10 | 20.80 | 20.80 | 21.10 | 21.08
X, 30 [31.70{31.00 |31.60 [31.40|31.40 | 31.70 | 31.67
X, 40 ]42.10{41.30 [42.00 [41.80 [41.70 [42.10 | 42.08
Xs 50 [51.80[51.10 |51.60 |51.40 |51.40 |51.80 | 51.76
Y, 0 |-4.28]-2.65|-3.96|-4.64 |-4.64|-4.28 | -4.28
Y, 0 |-7.90|-5.25|-7.77 | -8.19 | -8.19 | -7.90 | -7.89
Y, 0 |-9.86|-7.35|-10.20|-10.00|-10.00| -9.86 | -9.86
Y, 0 |-9.40|-7.63|-9.52 |-9.18|-9.19|-9.40 | -9.38
Y, 0 |-6.01/-4.97|-579|-542|-543|-6.01| -5.99

It is important to understand that this is only one simple problem to indicate the
characteristics of the methods. It would not be meaningful to draw too many
conclusions from this. However, it is probably safe, based on this and numerous other
problems, to conclude that the more sophisticated methods usually converge more
rapidly, and provide results that are more accurate. This is particularly true if the

gradient information can be provided analytically rather than by finite difference.

HSSA algorithm converges to the final solution after a large number of function
evaluations. But the number of accepted function evaluations becomes small. In a few
accepted generation, the objective function decreased noticeably. A high number of
function evaluation is required when bounds are vast. By making bounds tight then
the final solution can be achieved in a smaller number of iterations. Bounds are made
tighter by using information found in 50,000 iterations to validate this outcome.
Program convergence criteria, maximum iteration number and relative accuracy are

taken as 1,000 and 10°%, respectively. Altered inputs of optimization algorithm are

given in Table 3-6.
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Table 3-5 lteration history of objective functions of different optimization algorithms
[48] and HSSA

Optimization method

Iteration no. p 5 3 4 5 6 HSSA

0 0 0 0 0 0 0 -2,492

1 0 -60 -60 -60 -60 -1,256 | -2,712

2 0 -126 -292 -292 -292 -1,618 | -2,805

3 0 -151 -661 -666 -666 -1,987 | -2,811

4 0 -194 -1,148 -941 -941 -2,175 | -2,879

5 0 -223 -1,559 | -1,430 | -1,432 | -2,330 | -3,136

6 -78 -318 -1,895 | -1,812 | 1,812 | -2912 | -3,330

7 -306 -398 -2,439 | -2,123 | -2,119 | -3,076 | -3,437

8 -683 -1,618 | -2,828 | -2,469 | -2,471 | -3,297 | -3,675

9 -1,139 | -1,900 | -3,179 | -2,519 | -2,519 | -3,402 | -3,698

10 -1,722 | -1,958 | -3,540 | -2,573 | -2572 | -3,539 | -3,703

11 -1,728 | -2,010 | -3,792 | -3,202 | -3,203 | -4,219 | -3,751

12 -1,732 | -2,043 | -4,014 | -3,703 | -3,700 | -4,306 | -3,796

13 -1,732 | -2,101 | -4,158 | -3,823 | -3,820 | -4,355 | -3,846

14 -1,734 | -2,141 | -4,198 | -3,904 | -3,902 | -4,377 | -3,860

15 -1,734 | -2,355 | -4,216 | 4,149 | 4,415 | -4,391 | -3,868

16 -1,739 | -2,490 | -4,307 | -4,299 | 4,298 | -4,414 | -3,871

17 -1,835 | -2,540 | -4,361 | 4,336 | -4,336 | -4,416 | -3,886

18 -1,987 | -2,557 | -4,390 | 4,340 | 4,340 | -4,416 | -3,941

19 -2,306 | -2,588 | -4,393 | 4,340 | 4,340 | -4,416 | -3,946

20 -2,623 | -2,611 | -4,393 | 4,340 | -4,340 - -3,972

Final -4.416 | -3,964 | -4,393 | 4,378 | -4,378 | -4,416 | -4,416
Number of

accepted | 479 40 22 26 26 19 135
function

evaluations
Number of

function 465 587 331 383 383 378 50,000
evaluations
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Table 3-6 Inputs of HSSA algorithm for 1,000 function evaluation

Design
parameter | X, X, | Xy | X, | X Y, Y, Y, Y, Ys
(m)
Initial | 44 35151 15|31.65|42.05|51.75 | -4.25 | -7.85 | -9.85 | -9.40 | -6.00
solution
Upper | 10,40 | 21.20(31.70 | 42.10 | 51.80 | -4.20 | -7.80 | -9.80 | -9.30 | -5.90
bound . . . . . -“r. =l. =J. =-J. =-J.
'68‘3’:(; 10.30 [21.10|31.60 [ 42.00|51.70 | -4.30 | -7.90 | -9.90 | -9.40 |-6.00

As expected, the optimum solution is found faster when bounds are set tighter.

Program is run for three times with the same inputs. Results of these computer runs

are summarized in Table 3-7, Table 3-8, and Figure 3-5. Each run gives same results

and final design parameters are close to each other. Algorithm converged to global

optimum rapidly after tighting bounds

Table 3-7 Optimum design parameters for 1,000 function evaluation

Optimum Computer run
design parameter

(m) 1 2 3

X; 10.361 10.357 10.358
X, 21.103 21.101 21.100
X, 31.690 31.694 31.695
X, 42.093 42.094 42.096
X 51.769 51.775 51.773
Y, -4.263 -4.284 -4.287
Y, -7.846 -7.875 -7.894
Y, -9.860 -9.847 -9.850
Y, -9.405 -9.393 -9.403
Ys -6.010 -6.014 -6.013
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Table 3-8 Termination criteria for 1,000 function evaluation

Run 1 Run 2 Run 3
Optimum objective | 4 44 4416 4,416
function
Relative Accuracy 0.004 0.0006 0.002
Numper of accepted 30 62 67
function evaluations
2400 I I I I ‘ ‘ ‘ I :
B ... e — e _._.>—iAko
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Figure 3-5 Objective function versus update number for 1,000 iterations

3.3.3 Quadratic Performance Index

In designing control systems a given performance index is used minimized or

maximized via control vector. Quadratic performance index is used for minimization of
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total energy of the system by minimizing sum of squares of both states and controller

forces.

J, =

(07 (@1 x} + )" [P){u} ot (3-13)

o t—38

An advantage of using the quadratic optimal control scheme is that the system
designed will be stable, except in the case where the system is not controllable. In
designing control systems based on the minimization of quadratic performance index,

it is required to solve the reduced matrix Riccati equation given in Eq. (3-14)
-[Q]=[A] [R]+[RI[A]-[R][B][P] "[B] [R] (3-14)

In this thesis work Igr function of MATLAB® is used in the solution of Riccati equation.
Inputs of Igr function are A, B, Q, and P matrices while outputs are the Riccati
matrix, controller gain matrix and closed loop eigen values. Function reference of Iqr

is given in Appendix D.

From Eq.(3-13), optimum quadratic performance index of the stable system for an

arbitrary initial conditions, as T, - «, gives

J; = (%) [R]{x) (3-15)
where [R] satisfies the Riccati equation.

Eq. (3-15) shows that optimal performance index depends on the initial states. This
result is not very useful since the initial state is not available for practical problems. A
simple way to compare performance indeces is taking trace of Riccati matrix [30]. By
this way for any initial condition order of Ricatti matrix is minimized. Since Ricatti

matrix is used in the calculation of feedback force, by minimizing trace of Riccati
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matrix, dissipated actuator energy is also minimized. Hence, an upper bound on the

dissipation energy can be expressed as
J, = 1trace([R]) (3-16)
2

Consequently, two step optimization is carried out to minimize energy dissipation.
Firstly, by solving reduced matrix Riccati equation closed loop gain matrix is optimized
for any initial conditions. Then, in the upper level by using Eq. (3-16) other design
parameters are optimized.

3.3.4 Robustness Measure of Patel and Toda

There are many works are done to guarantee various properties of a control system
under finite ignorance. In this thesis work Patel and Toda’s [49] robustness measure

is used in controller design.

Consider the system described by
()} = ([A]+[EO]) {x(t) (3-17)

where [AC] represents closed loop state matrix as defined by Eq. (2-29) and the
uncertainty of the system assumed representable by[E(t)]. It can be shown that the

system in Eq. (3-17) remains stable if [E(t)] satisfies

[E®], < v (3-18)

where
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B 1
H= maxA([Ly}) (3-19)

and [L

Yy

] is the solution of the Lyapunov equation given in Eq, (3-20), {/\} denotes

the eigenvalues of [ L, |

(AT [L, ]+]L, ][A]=-2[1] (3-20)
where [/] is the identity matrix.
It is also shown by Toda and Patel [49] that

p<min[-Re A(A,)] (3-21)

Eq. (3-21) gives a bound on achievable robustness with this kind of measure. It is
apparent that the ideas of robustness and stability margin are closely related. For pole

placement designs by active feedback where eigenvalues are specified, the

robustness measure u in principle can be maximized up to min[—ReA([Ac])] by

seeking a normal matrix with the desired eigenvalues, provided no additional

constraints are imposed.

In this thesis, the same stability robustness measure is used with Liu and Begg [7].
They chosen first representation of the uncertainty margin. By maximizing Eq. (3-22)

margin for the variation of the sytem uncertainity also maximized.

1
M= max A([ L, ]) (3-22)

where M, is the measure of stability robustness.
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3.3.5 Controllability Measure of Liu

A system is said to be controllable at time ¢, if it is possible by means of an

unconstrained control vector to transfer the system from any initial state {x(t0 )} to any

other state in a finite interval of time.

It is proved that in [46] system is completely state controllable if and only if the

matrices [B],[A][B],...,[A]n_1[B] are linearly independent, or the nxn matrix

[8] : [A][B] i - i [A]"'[B]] (3-23)
is of rank n . This matrix is commonly called as the controllability matrix.

Hamdan and Nayfeh [50] propose a new measure of modal controbality which has
connections with degree of controllability given in Eq. (3-23). Their controllability
measure gives useful information on controllability of each mode with respect to each

input.

It is known that the entries of the matrix [S,] [B] give information about the

controllability of the modes from the inputs, where [SA] is the eigenvectors of system
i .th . T . T .

matrix. If the i" entry of the matrix [S,] [B] is zero ({SAI_} {b;} =0, where {b,} is the

j" column of [B]), then the i" mode is not controllable from the j" input. If the i row of

the [S, ]T [B] is a zero row, then this means that the i mode is not controllable from

all inputs.

One of the proposed method of controllability at [50], which is based on above

.
information, uses magnitude of {s, | {b;}.
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‘{SA, }T b}

Jfsa}

;] coss, (3-24)

where 0 is taken to be acute; it gives indication of the distance between two one-

dimensional subspaces. If the two subspaces are orthogonal, then {SA,} lies in the left

null-space of {b,

J} and the i" mode is uncontrollable from the " input. If the angle is

not 90 deg but near to it, then again this indicates that i mode is not easily

controllable from the " input. The effect of H{b]}u on modal controllability can be
appreciated if u; is considered to be a unit current, then the two-norm of the vector
{bj} represents the power injected by the j input into the different channels of the

state variables. Thus, if it is required to be compare the controllability of a mode from

different inputs, the angles calculated from Eq. (3-24) give an indication of the

suitability of the subspaces spanned by each {b; |. Another factor is the norm of {b,}.

Higher norm indicates more power injected by the input, and thus more controllability.

Liu and Begg [42] used the singular value decomposition of the input matrix [B] in

defining controllability. This method can be used for both distinct and repeated

modes. By using propesed technique modal controllability can be quantatitavely
measured by associated singular values. Taking singular value decomposition of [B]
yields

[B]=[U][svd, |[V] (3-25)

where [U] [U]=[1], [V] [V]=]/], and

_|[z] 0| [diag(c;,) O
[Svdc]_{o I B (3-26)
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where o, is the singular values of [B].

By making same transformation and assumptions Liu found out that controller force is

proportional to [Svdc]. Therefore, the larger the value of the Euclidean nom

M, =|[Z]|. the less energy is required to produce control forces and systems

controllability increases as stated before.by Hamdan and Nayef, [50].
3.3.6 Frequency Constraint

Structural natural frequencies are calculated by solving Eq. (3-27) in structural

analysis.
(M]"[K]-w*[{g} =0 (3-27)

Frequency constraint can be applied as both equality constraint and inequality
constraint depending on the design criteria. Equality and inequality constraint are

inserted to performance index as

w-w,=0 or w-w,<0 (3-28)

where w is structural natural frequency and w, is desired structural natural

frequency. Frequency constraint is nonlinear with respect to design parameters.
3.3.7 Mass constraint

Structural mass is used as equality constraint in both case studies. The formulation is
given in Eq.(3-29)

Mt = ZpiaiLi (3-29)
i=1

61



where p, a and L are density, cross sectional area, and length of the i" bar element,

respectively and n, is the number of bar elements in the truss structure.

3.4 COMPUTATIONAL PROCEDURE

Visual Fortran® and MATLAB® are used to write modeling and optimization
algorithms. There are three main programs are written by using these programs.

These are

* Finite element modeler in MATLAB®
» Hide and Seek Algorithm in Visual Fortran®

= Performance index calculator in MATLAB®

HSSA algorithm is written in Visual Fortran® to accelerate the iteration part of the

whole program. Other parts are written in MATLAB® by using its built-in functions.

The following analysis procedure is used in the optimization of structure/controller

problem:

1. Initialize the optimization program by sending the following inputs to HSSA
program
= Upper/lower bound of design parameters
= Initial guess of design parameters
= Maximum number of iteration/relative accuracy

= Number of design parameters

2. Calculate all initial values of the following optimization parameters
= Objective function
= Violation of frequency constraint
» Violation of mass constraint

= Performance index
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Normalize all constraints by giving small perturbations to design parameters

and recalculating optimization parameters

Send the performance index to HSSA program to set initial optimum value of

the objective function

Check the relative accuracy and the maximum number of iteration, if satisfied

gotostep 9
Guess a new design family
Calculate optimization parameters
Compare the last maximum performance index with the current one.
= [f the current one is larger, set this design family and performance
index as optimum. Calculate relative accuracy. Go back to step 5

= [f the current one is smaller go back to step 5

Quit from optimization program
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CHAPTER 4

TWO BAR TRUSS CASE STUDY

In this chapter asimultaneous structure/controller optimization of a well-known two bar

truss example is solved.

The geometry and material properties of this truss structure and all optimization
parameters are taken the same as in Liu and Begg’s work [17]. This basic problem is

useful to understand both the theory and physics of the problem.

4.1 PROBLEM DEFINITION

The two bar truss structure shown in Figure 4-1 is 2-dof planar truss. A point mass is
attached to intersection point of bar elements and the vibration level of this point is
controlled by an axial force actuator. Actuator and external masses are taken as 0.5,

50 kg, respectively. Elastic modulus and density of material are taken as 73 MPa and

2700 kg/m?®, respectively. Damping effects are completely neglected.

Design parameters are chosen as cross sectional areas of bar elements, number, and

positions of actuators and closed loop gain matrix of controller.
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1m 0,—

N 1m

Figure 4-1 Two bar truss

Optimization problem can be defined as:

min[tr(R)}

2

such that
M, -0.3019=0 (kg)
w,—-161.08=0 (rad/s)
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where R is the Riccati matrix, M,is mass of truss structure, and w, is the lowest

structural natural frequency.

Quadratic cost function given in Eq. (3-13) is set for minimizing states and control
forces. Cost of QPI is chosen such that every state is penalized in same order while

actuator energy is penalized 10 times smaller; i.e.,

1000
0100
Q=15 0 1 0 (#-4)
000 f
(4-5)
[P]=10"1,

where r is the number of actuators, [Q]and [P] are the state and control weighting

matrices of QPI, respectively.

A linear state feedback control law is assumed to be applied such that
() =-[GJ x(t)} (4-6)

States are chosen as modal displacements and velocities of nodes. Therefore QPI
includes both structural and controller objective function which are minimum

displacements and velocities at nodes and minimum controller energy.

Structural type constraints are used in the design. Two structural design parameters
are tried to be selected for three alternative placements of actuators. Since system is
symmetrical, theoretically two different actuator positions are available as shown in
Figure 4-2. For each configuration of actuators, the problem reduces to a two
equation (one linear, one nonlinear) - two unknown set of equations in terms of
structural constraints. Then the optimum closed loop gain matrix can be found by

solving LQR problem by using solution of these equations for the each actuator
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configuration. Therefore, the problem is reduced to a dynamic programming problem.
Liu and Begg [17] did not include actuator positioning into their work and they solved
problem for the configuration shown in Figure 4-1. Consequently, they run their

programs to find exact solution, which can be found analytically.

COMNFIGURATION 2

Figure 4-2 Positions of actuators
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4.2 MATHEMATICAL MODELING

The mathematical modeling is carried out analytically to verify finite element, modal

transformation, and optimization code.

4.2.1 Finite Element Modeling

Before modeling, elements and nodes are numerarized as custom case for all finite

element models as shown in Figure 4-3.

Figure 4-3 Finite element model
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Derivation of elemental matrices and assembling of global structure matrices are
given in Appendix D. Results of finite element code and these analytical solutions are

crosschecked for verification.

Structural mass, stiffness, and direction of actuator force matrices for one actuator
case are derived as given through Eq. (4-7)- (4-9).

_|92.235(a, +a,) 26.117(a, —a,)
[K]= [26.1 17(a, —a,) 13.059(a, +a, )} (N/mm) (4-7)
[M]{o.omoosz(@+a2)+50.25 0 } (o) @9
0 0.0010062(a, + a,) + 50.25
(F}- [0.89} (4-9)
171045

where a; are the elemental cross sectional areas.

Then by using equations above a modal state transformation can be carried out. To
avoid the calculation of eigenvalues symbolically a modal transformation is not
applied in the analytical solution. Therefore, a state space transformation in spatial
coordinates can be derived by choosing states as nodal displacements and velocities.
System and input matrices are given in Eq. (4-10)-(4-11) and the derivation of

matrices is given in Appendix D.
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i 0 0 i1 0]
0 0 0 1
: (4-10)
[A]= 52235(a, + a,) 26117 (a, —a,) 0 0
0.0010062(a, +a,)+50.25 0.0010062(a, + a,)+ 50.25
26117(a, - a,) 13059(a, + a,) 0 0
| 0.0010062(a, +a,)+50.25  0.10062(a, +a,) +50.25 ]
- 0 -
0
{B} = 0.89 (4-11)
0.0010062(a, +a,) +50.25
0.45
| 0.0010062(a, +a,)+50.25 |

These matrices can be used in design of the optimal controller. Constraints can be

also derived analytically. Again, the derivations are given in Appendix D.

W, =(m,), +(m,), = 0.0030187(a, +a,) (kg) (4-12)

w, - \/65300(a1 +a,)— \/(39200(a1 +a,))’ +(52200(a, - a,))? (4-13)

2(0.0010062(a, + a,) + 50.25)

Then, this two equation two unknown system can be solved by using MATLAB®.
Cross sectional areas of bar elements are found approximately 50 mm? Similar
derivations can be done for two-actuator case, which are given in Appendix D.
Frequency and mass constraints cannot be satisfied for two actuators case at the
same time. Constraint plots both configurations are given Figure 4-4. For two actuator
case, as it can be seen from the figure, constraint curves does not intersect. However,
when penalty weight of the constraints are small, program may choose this

configuration also as a solution..
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Contour plots of objective functions can be drawn also by using MATLAB® contour
function for each positions of actuators. Graphical solution of the optimization problem
is given in Figure 4-5 and Figure 4-6 for both configurations. For a two-actuator case,
as mentioned before, by accepting some error in both constraints an optimal solution
can be found. Value of the optimum objective function for one-actuator and two-
actuator cases are approximately 3840 and 210, respectively. This means that, if
penalty weight of constraints is decreased, then program will choose two-actuator
case. Because, improvement of the objective function is greater than the penalization

of constraints.

120 : : ; ; ;
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Frequency EEII'l:'-.TI'iiII'lT i HEN
for one actuator ! ! ! ' ' |
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: ! ! P Frequency constraint
for ohe actuator
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Figure 4-4 Two bar problem structural constraints plot
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a (mmz)

Figure 4-5 Graphical solution for one actuator case
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Figure 4-6 Graphical solution for two actuator case
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4.3 RESULTS OF OPTIMIZATION ALGORITHM

HSSA requires some inputs as mentioned in Chapter 3. A parametric study of the
algorithm is carried out for this simple example. These parameters and

optimization results are summarized in Table 4-1 through Table 4-4. Lower and

upper bounds of cross sectional

mm? respectively in case 12. Whereas, in other case studies they are taken as

areas are taken as 40 mm?and 60

0.000001 mm? and 200 mm?, respectively.

Table 4-1 Inputs of optimization algorithm for different case studies

Frequency constraint Mass constraint o) Initial values
'g c of cross
S5 O H
Case| Penalty |Normalization| Penalty Normalization| < & sectional
. . £ = areas
no. weight constant weight constant S Qo 2\ «
£z (mm?)
.; o
pw, nc pw, nc ‘E" (a1)0 (a2)0
1 100 113 100 21,240 1,000 | 100 | 100
2 1 113 1 21,241 1,000 | 100 | 100
3 0.01 113 0.01 21,241 1,000 | 100 | 100
4 0.01 220 0.01 29,021 1,000 | 200 | 200
5 0.01 17 0.01 10,291 1,000 | 10 10
6 0.01 1 0.01 566 1,000 | 10 10
7 1 1 1 566 1,000 | 10 10
8 1 17 1 10,291 1,000 | 10 10
9 1 17 1 10,291 5,000 | 10 10
10 1 17 1 10,291 10,000 | 10 10
11 100 17 100 10,291 10,000 | 10 10
12 100 70 100 10,291 10,000 | 60 60

* actuator placed bar elements are shown in bold characters.
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Table 4-2 Results of optimization for different case studies

OB e | et s ! ecuency
Case 2\« objective | constraint | constraint | Relative [Update
no. (mm ) function (kg) (rad/s) |accuracy| no
(a), (), S \W-W),| w-uw,
1 52.59 47.27 3893 0.05 -0.0004 | 270049 6
2 55.20 45.39 3963 0.58 0.0018 89 8
3 70.56 30.36 220 16.51 0.0276 982 6
4 83.15 25.64 250 24.54 0.0265 1827 8
5 80.25 8.59 208 78.63 0.0337 151 2
6 10.00 10.00 31 89.12 -0.0242 1 0
7 46.52 57.35 220 -1.45 0.1164 89 3
8 36.01 61.53 3520 9.23 -0.0007 61 5
9 39.97 62.90 3623 7.33 -0.0004 0.9 13
10 | 36.65 63.25 3618 7.67 0.0003 0.7 12
11 48.05 52.05 3829 0.13 0.0003 | 879148 7
12** | 51.05 48.97 3875 0.06 0.0000 2799 8

* actuator placed bar elements are shown in bold characters.

**selected optimum solution of the problem is highlighted.

Following conclusions are derived from these case studies:

= Case 1 through 3 show that if the penalty weights of constraints decrease,

solution of the optimization problem switches from one actuator to two-

actuator case. This conclusion is also made in the analytical solution.

» Changing the initial guess; (i.e., case 3-7), affects normalization constants and
this changes penalty weight of the constraints. Therefore, results of the
optimization problem may switch according to the penalty weights. If violation

of the constraints larger than the desired, the penalty weight should be

increased.

=  The maximum number of iteration is increased from case 8 to case 10. This

input affects convergence of the problem. This can be seen from the change in
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the final relative accuracy of the optimization problem. As the maximum
number of iteration increases, the relative accuracy of the optimization

algorithm decreases.

* Violation of the constraints strictly depends on the penalty weight of
constraints. Therefore, as it can be seen from case 10 and 11, increasing

penalty weights forces the optimization algorithm to satisfy the constraints.

» Side bounds of the design parameters and maximum number of iteration
strictly depend on each other. If bounds of the design parameters become
tighter; i.e., case 12, for the same number of function of evaluation, a more
accurate result is found. Therefore, if the design parameters are not bounded,
then the number of function evaluation should increased. Then, according to

the results, bounds can be made tighter to find the optimal solution.

Consequently, the optimum solution of the problem is given in case 12. lteration
histories are shown in Figure 4-7 through Figure 4-13. All parameters converge to the

constant value. Figure 4-13 shows that HSSA algorithm finds global optimum.

Optimum gain values for the controller can be transformed from modal coordinates to
spatial coordinates or can be used as they are. Optimum design parameters are
summarized in Table 4-3 and Table 4-4. In Table 4-4, highlighted elements of closed

loop gain vector correspond to nodal velocities in x and y direction, respectively.
Other two elements correspond to displacement of node 2 in x and y direction,

respectively.

Optimal structural and controller characteristics are given in Table 4-5. The closed
loop poles are placed on left side of the complex plane, indicating a stable system. If
the controlled system matrix is examined, it can be seen that insertion of an actuator

adds damping and stiffness besides mass to the system.
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Table 4-3 Optimum structural design parameters

Optimum cross
Notation sectional areas of bar elements
(mm?)
a; 51.05
a, 48.97

*actuator placed bar element is highlighted.

Table 4-4 Optimum controller design parameters

Coordinate Notation| Optimum Closed Loop Gain Vector
System
Modal G:, |-17.7640|-91,919| -560 | -579
coordinates
Spatial G., | 785900 |420,570| 2461 | 2,617
coordinates

Table 4-5 Structural parameters of optimum system

Mass of truss structure (kg) 0.3019
Total mass of structure (kg) 0.8019
: 161.01

Structural natural frequencies (rad/s)
322.15

Table 4-6 Closed loop poles of the optimum system

Closed loop poles
of the optimum

system

P1= -601

Do= -219 + 57i
Ds= -219 — 57i
ps= -88

76




o
A

:
7

Update number

!
i

3
;

-

B&

BOG------
55

—~ S0p--b---
a5|---
4=t
3B|------
30

=
E
@

Figure 4-7 Iteration history of cross sectional area of element number 1

77

Update number

Figure 4-8 lteration history of cross sectional area of element number 2



|

|

|

|

|
S

|

|

|

|

|
N —

|

|

|

|

|
e e md - - =]

|

|

|

|

1

1

RSN RN S

Update number

e

it

U | s [ p—

v

Figure 4-9 lteration history of objective function

!

15
] SEIEE
2 .
al---

5

Aok

5000
4800 fr-- - - -

R CITRE TS (s/pel) wiensuoa Aauanbal 4

Update number
78

Figure 4-10 lteration history of frequency constraint



T T T T T T K3 T T

i i i i i i 1 i i

1 1 1 1 1 1 _ 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
F---rFr---rT--=-a----I—~--rF-~--T7T---§fF--- m---r----

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 A 1 1

1 1 1 1 1 1 | 1 1

1 1 1 1 1 1 ___ 1 1

1 1 1 1 1 ' 1 1
L e R S~ S I E

1 1 1 1 1 1 1" 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 ___ 1 1

1 1 1 1 1 1 | 1 1

1 1 1 1 1 1 " 1 1
I S [ | PR N —

1 1 1 1 1 1 ﬂ.._.u 1 1

1 1 1 1 1 1 | 1 1

1 1 1 1 1 1 __ 1 1

1 1 1 1 1 1 | 1 1

1 1 1 1 1 1 " 1 1

1 1 1 1 1 1 | 1 1
e S S B Lt . I B S

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 \ 1 1 1

1 1 1 1 1 a 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
F---F--——f-- A= ——-Fm = m =A== = -m == - F - - -

1 1 1 1 1 1 1 1 1

1 1 1 1 [ 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 _ 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
|III_IIII._.III|_IIII_IIII_|®|I._.IIIJIIII_IIII_|IIII

1 1 1 1 1 Tl 1 1 1

1 1 1 1 1 1 - 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 T 1

1 1 1 1 1 1 1 1 1

[l L 1 1 L ! ! ! Mt
I|||_||||_|||||_||||_||||_|||||_||||_||||_|.U|||L_|.H,Lmut|

1 1 1 1 1 1 L A 1

1 1 1 1 1 L= 1 1

1 1 1 [ 1 1 1

1 1 1 — 1 1 1 1 1

1 - 1 1 1 1 1 1

I | 1 1 I I I I I

w Loy =+ [an] i — = — ] [an]

& o o o o 0§ o o o

0.07

Wiensuod WhEEAL

Update number

11 Iteration history of mass constraint

Figure 4

T T T T T
1 1 1 [ 1 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
F---r- [l i e hl 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
1 [ 1 [ 1 1
1 [ ! [ ! |
L R S AN R N [ 1 T
[ 1 [N
[ 1 [N
[ 1 [N
[ 1 [N
[ 1 [N
- - - L _ —— Ll a_ I_LLLiuy
[ IR
[ IR
[ IR
[ IR
[ IR
[ IR
---- B e = -k + 4+ e
[ IR
[ IR
[ IR
[ IR
- IR
[ NN IR
1= F + + -
IR
IR
IR
IR
IR
IR
ITFTT
1 [
1 [
1 [
1 [
1
|

B L T T L T ————
B s e e e e e S e i e e e e e [ e e e

Aotk

unijauny Ayeuad fo|

Update number

Figure 4-12 lteration history of penalty function

79



10°

log relative accuracy

B e R T}

Ll = b A FHE = =

Figure 4-13 lteration history of relative accuracy

4.4 DISCUSSION

Optimization of a two-bar truss problem is verified analytically. It is shown that the

optimal system satisfies performance requirements with one actuator case.

Liu and Begg [17] solved this problem for one actuator case. They found the same
optimal cross sectional areas, but did not give the resulting optimal closed loop gain
values. The results of two solutions for cross sectional areas of bar elements are
equal, which shows that in both cases same mathematical model is used in the
controller design. The minimum value of the quadratic performance index found by Liu
and Begg is 5,874, however in this study the same quantity is found as 3875. The
reason for difference may be explained by the usage of elements of closed loop gain
vector as design parameters and reduced matrix Riccati equation as constraint, so Liu
and Begg’s result cannot be defined as global optimum closed loop gain values. In

fact, there is a unique solution for reduced matrix Ricatti equation, which minimizes
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QPI optimally. In other words, they could optimize all design parameters by using

single level optimization procedure.

HSSA algorithm works efficiently except its termination criterion. Convergence of the
algorithm to the global optimum is rigorously proved. But it is terminated by the
maximum number of iterations in all runs. Relative accuracy cannot be satisfied
thoroughly although program finds global optimum. For complicated optimization
problems relative accuracy cannot be satisfied in reasonable number of iteration.
Therefore, results of different runs should be compared to accept the solution as

optimum.
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CHAPTER 5

PARABOLIC SHAPE MULTI-TRUSS CASE STUDY

In this chapter, a simultaneous structural/controller optimization problem of a
parabolic shape truss structure controlled by four identical axial force actuators is

considered.

The geometry and material properties of this truss structure and optimization
parameters are again taken similar to Liu and Begg’s work [17]. This problem is used
to show the efficiency of the optimization method for large-scale problems; i.e.,

vibration suppression of a large truss structure.
5.1 PROBLEM DEFINITION

The parabolic shape truss structure considered is shown in Figure 5-1. It is a 20-dof

planar truss. Elastic modulus and density of the material are taken as 73MPa and

2,700 kg / m®, respectively. Nodal coordinates are given in Appendix F.

Design parameters are chosen as the cross sectional areas of bar elements(a, ),
shape parameters (h,andh,), positions of actuators and closed loop gain matrix of

the controller. Actuator number may be also used as a design parameter, but it would
increase computational time. Therefore, the number of actuators is assumed equal to

the number of modes which is required for the system to be controllable.
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2
y, = h, (1-x"/900)

Figure 5-1 Parabolic shape truss structure

The optimization problem is very similar to the two-bar truss problem handled in
Chapter 4, but only the frequency constraint is switched to an inequality constraint. A
multiobjective optimization problem is solved in the second case study, which is also
solved, by Liu and Begg [17]. The objective function and constraints of the first case
study are defined by Eq. (5-1), Eq.(5-3), and Eq. (5-4), respectively. Corresponding
optimization parameters for the second and third case studies are given by Eq.(5-2),
Eq.(5-3), and Eq. (5-4). In the first and second case studies, actuator placed truss
elements are not removed from the truss structure by the optimization algorithm.

While in the third case study, actuator placed bar elements are removed from the

structure.
.| tr(R)
mln[ > } (5-1)
min[tr(zR)} ~10,000(M, +M,) (5-2)
such that
M, —3,000 =0 (kg) (5-3)
-w, +10<0 (rad/s) (5-4)
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Performance indeces of these optimization problems are given in Eq. (5-5) and Eq.
(5-6).

Pl = {” (2R)} + pwiabs (M, - 3,000) + pwf max (0,10 - w, ) (5-5)

Pl = {%} —10,000(M, + M, )+ pw;abs (M, —3,000) + pw; max (0,10 - w,) (5-6)

Since the number of design parameters is large, it is necessary to apply side
constraints to size and shape parameters in order to bound the design space. Also
structural design parameter linking is used between the cross sectional areas of the
bar elements. Cross sectional areas of the symmetric bar elements about y axis are
linked. Actuator positions are linked similar way. Hence, possible position of actuators
decrease from 25 to 12 and two actuator are placed. Design parameter linking

scheme is given in Appendix E.

States are chosen as the modal displacements and velocities of the nodes again and
linear state feedback is applied. Therefore, QPI minimizes the energy of the structure

and the controller.

Effects of high order natural frequencies are neglected and the controller design is
carried out for lowest four natural frequencies. In the Liu and Begg’s design, structural
damping ratio is assumed as 0.1% for all modes. This is a conservative estimate of

damping, which is mostly used in aerospace industry.
Structural type constraints are used in the design. Total mass of the structure is
required to be 3,000 kg. Lowest natural frequency of the damped structure is required

to be greater than 10 rad/s (1.6 Hz).

Optimization parameters are summarized in Table 5-1.
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5.2 MATHEMATICAL MODELING

Mathematical modeling of the system is carried out in two steps, which are FEM and
modal transformation. FEM is carried out by using the full dof's of the system.
Element and node numbers can be seen in Figure 4-3. Modal reduction is used in
modal state transformation. Controller is designed for the reduced model which is

formed by using the lowest four lowest natural frequencies.

Table 5-1 Inputs of optimization algorithm

Bounds Initial Guess
o | Cross sectional 0.0001< g, <100 50
& | areas(a,i="1:13) (cm?) '
= o " 4<h <6 h =5
© ape variables (m
g pe varl (m) 0<h, <2 h,=15
S Shown in
‘w | Actuator positions On elements 1-12 .
o) Figure 5-1
O [Closed loop gain matrix (8x4) No bounds Not applicable
Mass constraint (kg ) W, —3,000=0
(2]
€ | Frequency constraint (rad/s) w? >100
® .
@ Penalty.welght of mass 100
S | constraint
O | Penalty weight of frequency 1
constraint
fzj § | State weighting matrix [Q]=1[1],..
)
a5 _ . 4
O = | Control weighting matrix [P]=10"1]1],,,
< 8 | Maximum number of iterations 20,000
3
L £ | Relative accuracy 10

* penalty weights of constraints are taken different from [17].
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5.3 OPTIMIZATION RESULTS OF PARABOLIC SHAPE MULTI-BAR
TRUSS CASE STUDY

The results of both the optimization problems given in the following section are the

final results of the optimization after certain number of runs.

5.3.1 Single Objective Optimization Using QPI

An optimization of parabolic shape truss is achieved very successfully after 20,000
iteration. The HSSA algorithm updates the design 32 times and converges to an
optimum solution. The objective function of the optimization problem improved by
99%. Penalty weights of frequency and mass constraints are 1 and the normalization
constants are 10’ and 6,500, respectively. Both constraints are satisfied. The
convergence histories of the objective function and constraints are shown in Figure
5-2 through Figure 5-4.

The iteration histories of the cross sectional areas of the bar elements are given in
Appendix F. Optimal actuator positions are parallel to the 4" and the 6" bar
elements. The cross sectional areas of these truss members becomes very small; i.e,
2 cm?and 6 cm?, respectively. This means the diameters of these truss members are
approximately 2.5 cm and 4.8 cm, respectively. In fact, for such long truss members

these diameters are not practical.

Optimal shape parameters, h, and h, are found as 5.6 and 0.9 m, respectively.

Convergence histories of shape parameters are given in Figure 5-5 and Figure 5-6.
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Figure 5-3 Iteration history of frequency constraint for single objective optimization,
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optimization, Case |

The lteration history of performance index is given in Figure 5-7. It converges to the
final solution smoothly. The relative accuracy of the optimization algorithm is 1,562.
The plot of relative accuracy versus update number is given in Figure 5-8. Although,

the relative accuracy is not converged, its fluctuation decreases.

Finally, optimal solutions of cross sectional areas and actuator positions are

summarized in Table 5-2.
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Table 5-2 Optimal structural design parameters for single objective optimization,

Case |
Optimal cross sectional areas of the bar elements (cm?)
a1 aZ a3 a4 aS aG a7 a8 a9 a1 0 a1 1 a‘l 2 a
25
a1 3 a1 4 a1 5 a1 6 a1 7 a1 8 a1 9 aZO aZ1 a22 a23 aZ4
36 | 83 | 33 2 57 6 51 95 | 85 | 54 | 72 | 47 | 23

*actuator placed bar elements are highlighted.

Optimal closed loop gains and optimal closed loop poles are calculated by using

same precision with the optimization algorithm. While suboptimal closed loop gains

and optimal closed loop poles are calculated firstly by using values given in Table 5-2

and than by removing 4", 6", 16™ and 18" bar elements. Optimal closed loop poles of

optimal and suboptimal (truncated) systems are given in Table 5-3. Closed loop poles

of optimal system lie in the left-side of the complex plane which means stable system.

For suboptimal systems optimal closed loop gain matrix is calculated again.

Therefore, closed loop poles of suboptimal system also lie in the left-side of the

complex plane and system is stable. Optimal closed loop gain matrix is given in

Eq.(5-7) and suboptimal closed loop gain matrices for bar elements removed and

unremoved cases are given in Eq. (5-9) and Eq.(5-8), respectively.

Table 5-3 Optimal and Suboptimal closed loop poles for second case of multi-

objective optimization

Suboptimal
Closed loop Optimal Suboptimal system (Bar
poles system system elements are
removed)
P -68.87 -68.57 -108.46
P, -66.69 -66.39 -105.16
Ps -115.75 -115.86 -57.66
P, -112.79 -112.89 -55.33
Ps -9.72 -9.50 -1.12+0.44i
P -10.42 -10.21 -1.12-0.44i
o -17.24 -16.82 -4.63
Pg -15.95 -15.52 -3.84
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[ 2,787 -27,203 211,620 -728,720 278 1,642 -3,126 -6,384]
G = 22,779 27,049 -265170 327,010 2,267 1,633 3,917 2,865 (5-7)
2,788 27,203 211,620 728,720 278 1,642 -3126 6,384
122,779 -27,049 -265,170 -327,010 2,267 -1,633 3,917 -2,865|
[ 2,489 -25373 210,270 -722,270 253 -1,572 3,120 -6,322 ]
G - 21,757 25578 -262,150 327,040 2,213 15585 -3,889 2,862
° 2,489 25373 210,270 722,270 253 1,572 3,120 6,322 (5-8)
121,757 25,578 -262,150 -327,040 2,213 -1,585 -3,889 -2,862 |
36 111 140,300 430,560 56 26 2,487 4,036
. |—62 -3,338 -156,760 247,480 -95 -796 -2,779 -2,320
Gy = (5-9)

To1-36 111
62 3,338

140,300 430,560 -56 26
-156,760 247,480 95 -796

2,487 4,036
-2,779 2,320

Lowest four structural natural frequencies of optimal and suboptimal systems are
given in Table 5-4. Lowest structural natural frequency of the system is greater than
zero for optimal and first suboptimal system, which means that system has not any
rigid body modes. While suboptimal system nearly losts its structural integrity when
bar elements are removed from the system. Furthermore, this system violates

frequency constraint. Therefore, these elements can not removed from the structure.

Table 5-4 Optimal and Suboptimal structural natural frequencies of structure for single

objective optimization, Case |

Structural Suboptimal
natural Optimal Suboptimal system (Bar
frequencies system system elements are
(rad/s) removed)
w, 10.07 9.87 0.13
w, 16.59 16.16 4.21
Wy 67.77 67.42 56.48
w, 114.26 114.37 106.8
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5.3.2 Multiobjective Optimization Using QPI, Robustness and

Controllability Measures

This case is solved in two different manners. In the first case, problem is solved
similar to Liu and Begg’s [17] work in which truss members parallel to actuators are
not removed. While in the second case, cross sectional areas of the bar elements are
set to very small values which means that they are removed from the structure without

transforming the system to a mechanism.

5.3.2.1 Optimization Results without Removing Actuator Placed Bar

Elements

HSSA algorithm updates the design 23 times for 20,000 function evaluations and then
converges to an optimum solution. Quadratic performance index is minimized 99% of
the initial system’s performance index. Robustness of the system is improved 50%
and controllability of the system is improved 200%. Both controllability and QPI
iteration history is converged, but robustness is not converged. History plots of

objective functions are given in Figure 5-9 through Figure 5-11.
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Figure 5-10 Iteration history of controllability of system for multiobjective optimization,

Case |
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Figure 5-11 lteration history of stability robustness of system for multiobjective

optimization, Case Il

Penalty weights of frequency and mass constraints are 1 and 10,000 respectively.
Normalization constants are similar to the single objective case, since initial guesses

are not changed. Both constraints are satisfied. Constraint convergence histories are
shown in Figure 5-14 and Figure 5-15.

Iteration histories of performance index and relative accuracy are given in Figure 5-12
and Figure 5-13, respectively. Logarithmic scale is used for both performance index

and relative accuracy. Although, the relative accuracy is not converged, its fluctuation
decreases and performance index converges.
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Design parameters are also converged for this case. The cross sectional areas of the
3 and 11" bar elements attain again small values. Optimal actuator positions are
parallel to the 3" and the 4™ bar elements. Again, in the solution, one of the actuator

placed bar element is removed from the optimal system.

Optimal shape parameters h, and h, are found as 5.87 m and 0.58 m, respectively.
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Figure 5-14 lteration history of frequency constraint for multiobjective optimization,

Case |
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Finally, optimal solutions of cross sectional areas and actuator positions are

summarized in Table 5-5.

Table 5-5 Optimal structural design parameters for multi-objective optimization,

Case |

Optimal cross sectional areas of the bar elements (cm?)
a1 a2 a3 a4 aS aG a7 aS a9 a1 0 a1 1 a1 2

a1 3 a1 4 a1 5] a1 6 a1 7 a1 8 a1 9 aZO aZ1 a22 a23 aZ4
7 61 | 03 | 16 | 37 | 62 | 99 | 79 | 76 | 89 |0.05] 97 |75
*actuator placed bar elements are highlighted.

Optimal closed loop gains and optimal closed loop poles are calculated by using
same precision with the optimization algorithm. While suboptimal closed loop gains
and optimal closed loop poles are calculated firstly by using values given in Table 5-5

and than by removing 3™, 4™ 15" and 16" bar elements. Optimal closed loop poles of
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optimal and suboptimal (truncated) systems are given in Table 5-6. Optimal closed
loop gain matrix is given in Eq.(5-7) and suboptimal closed loop gain matrices for bar
elements removed and unremoved cases are given in Eq. (5-9) and Eq.(5-8),

respectively.

Table 5-6 Optimal and Suboptimal closed loop poles for multi-objective optimization,

Case ll

Suboptimal

Closed loop Optimal Suboptimal system (Bar

poles system system elements are

removed)

P, -10.24 -10.24 -1.12
P, -12.25 -12.25 -2.08
Ps -59.34 -59.33 -56.04
Py -55.27 -55.27 -52.12
Ps -53.75 -53.75 -55.37
Pe -56.13 -56.13 -52.97
o -21.27 -21.27 -21.27
Pg -20.76 -20.76 -20.76

[-10,932 -26,875 -182,430 -157,980 -979 -1,280 -3,325 -2,762]
- -6,3567 121,810 -1,235 -49,107 -570 5,803 -23  -858 510
110,932 -26,875 -182,430 157,980 979 -1,280 -3,325 2,762 (5-10)

16,357 121,810 -1,235 49,107 570 5,803 -23 858

[-10,932 -26,875 -182,430 -157,980 -979 -1,280 -3,325 -2,762]
- 6,357 121,810 -1,235 -49,107 -570 5803 -23  -858 >y
° 110,932 -26,875 -182,430 157,980 979 -1,280 -3,325 2762 (5-11)

16,357 121,810 -1,235 49,107 570 5,803 -23 858

66 26,516 -176,700 -108,730 90 1,263 -3,267 -2,015
o - 31 -121,680 705 24420 42 5796 13  -453 510
|66 26516 -176,700 108,730 -90 1,263 -3,267 2,015 (5-12)

-31 -121,680 705 24,420 -42 5796 13 453
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Lowest four structural natural frequencies of optimal and suboptimal systems are
given in Table 5-7. Lowest structural natural frequency of the system is greater than
zero for optimal and first suboptimal system, which means that system has not any
rigid body modes. While suboptimal system nearly losts its structural integrity when
bar elements are removed from the system. Furthermore, this system violates

frequency constraint. Therefore, these elements can not removed from the structure.

Table 5-7 Optimal and Suboptimal structural natural frequencies of structure for multi-

objective optimization, Case Il

Structural Suboptimal
natural Optimal Suboptimal system (Bar
frequencies system system elements are
(rad/s) removed)
w, 11.20 10.82 0.26
w, 21.01 21.01 21.02
W, 54.93 57.37 54.05
w, 57.26 55.37 54.15

5.3.2.2 Optimization Results by Removing Actuator Placed Bar Elements

HSSA algorithm updates the design 15 times for 10,000 number of iterations and
converges to optimum solution. QPI is minimized 98.6% of the initial system’s
performance index. While the robustness of the system is improved 96.97%, the
controllability of the system is improved 227%. Graphs of these objective functions
are given in Figure 5-16 through Figure 5-18. although the objective functions
controllability, and trace of Riccati matrix do not converge, performance index and
relative accuracy are converged as shown Figure 5-19 and Figure 5-20, which are the

convergence criteria of the optimization algorithm.
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Case

Penalty weights of frequency and mass constraints are 1 and 10,000, respectively.
Normalization constants are similar to the others since initial guesses are not
changed. Both mass and frequency constraints are satisfied and their iteration

histories are shown in Figure 5-21 and Figure 5-22, respectively.

Design parameters are also converged to optimal solutions for this case. There is no
actuator removed from the system except to automatically removed actuator placed
bar elements. Optimal actuator positions are parallel to the 7" and the 11" bar

elements.

Optimal shape parameters h, and h, are found as 4.68 m and 1.74 m, respectively.

Finally, optimal solutions of the cross sectional areas of the bar elements and actuator

positions are summarized in Table 5-8.
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Table 5-8 Optimal structural design parameters for multi-objective optimization,

Case

Optimal cross sectional areas of the bar elements (cm?)

a a, a, a, as 8 a, 8y 8 8y ay, ay, a
25

83 | Ay 85 | G 87 | Qi Qg | 8y | Gy | 8y | Gy | Gy

48 | 63 75 36 6 16 0 47 96 89 0 93 | 76

* actuator placed bar elements are highlighted.

Optimal closed loop gains and optimal closed loop poles are calculated for exactly

same optimal design parameters and truncated design parameters. Optimal closed

loop poles of optimal and suboptimal (truncated) system are given in Table 5-9.

Results are close to each other and system does not become unstable due to

truncation. Optimal closed loop gain matrix is given in Eq.(5-14) and suboptimal

closed loop gain matrix is given in Eq.(5-13).

Table 5-9 Optimal and Suboptimal closed loop poles for multi-objective optimization,

Case lll

Closed loop Optimal Suboptimal

poles system system

P -46.52 -47 .46

P, -42.37 -43.28

Ps -79.51 -80.27

Py -70.69 -71.51

Ps -12.65 -12.50

P -14.31 -14.14

o -16.30 -16.65

Pg -13.87 -14.20
-16,289 -19,406 96,136 134,880 -1,212 -1,293 2,169
G -19,159 2,956 52,703 -11,261 -1,427 197 1,188
-16,289 19,406 96,136 -134,880 -1,212 1294 2,169
-19,159 -2,956 52,703 11,261 -1,426 -197 1,188
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15,891 -20,259 -98,250 139,320 1,197 -1,321 -2,171 1,842
. [18,598 3,155 -53,156 -1,1923 1,402 206  -1,174 -158
s 15,891 20,259 -98,250 -139,320 1,197 1,321 -2,171 -1,842
18,598 -3,156 -53,156 11,923 1,402 -206 -1,174 158

(5-14)

Lowest four structural natural frequencies of optimal and suboptimal system are given
in Table 5-10. Lowest structural natural frequency of the system is greater than zero
which means that system has not any rigid body modes. Therefore, structural

integrity is preserved while removing bar elements.

Table 5-10 Optimal and Suboptimal structural natural frequencies of structure for

multi-objective optimization, Case llI

Structural , .
natural Optimal Suboptimal
frequencies system system
(rad/s)
w, 13.46 13.29
w, 15.04 15.38
W, 44 .40 45.32
w, 74.98 75.76

5.4 DISCUSSION

In this case study, a parabolic shape truss structure is optimized by three different
methods. In the first case, single objective, QPI, is used and the global optimum is
found. The result requires removal of the all actuator placed truss elements from the
system. In the second case, a multi-objective optimization is applied. Performance
index is converged, and elements of the performance index are also converged,
except robustness. Both mass and frequency constraints are satisfied exactly. In this
case, the result requires removal of one of the actuator placed elements from the
structure. Therefore, as a third case, this problem is solved by initially removing
actuator placed bar elements from the system. Improvement percentages of objective

functions are calculated by using initial performance criterion and optimal one. If initial
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performance indexes are taken equal, in the third case improvement of the objective

functions becomes better.

The second case is the one solved by Liu and Begg. They used five different
optimization algorithms and compared the results. One of them is SA, which improves
QPI 95.3%, robustness 1141% and controllability 26.8%. However, it violates mass
constraint -2.4% which is equal to 72 kg. All other algorithms are violating mass
constraint while two of them also violate frequency constraint. Maximum improvement

on performance index is 97.3%, robustness is 2521.9% and controllability is 68.4%.

It seems that the objective function is optimized similarly in our case, the robustness
is improved better, but controllability becomes worse. However, this conclusion
cannot be done with the available results given in this paper [17]. The initial
performance index of case Il and Liu and Begg’s are not equal. The reason for the
difference may be explained by the usage of elements of closed loop gain matrix as
design parameters and reduced Riccati equation as constraint. Therefore, their result
cannot be declared as the global optimum closed loop gain matrix. In fact, there is a
unique solution for Ricatti equation, which minimizes QPI optimally. In other words,
they could optimize all design parameters by using single level optimization
procedure. As a result, the difference between the optimized solution and the initial
performance index becomes large, which seems like better improvement is achieved

by them.

In the solutions of three case studies, if optimal cross sectional area of a bar element
is attained physically meaningless value, this element may be removed from the
structure. But, if an actuator is not placed parallel to this element, system may
become unstable or lost its structural integrity. In such a case, system should have

rigid body modes or closed loop poles lie in the left-half of the complex plane. When

OPI is minimized for positive-definete [Q] matrix, closed loop system always

becomes stable. For three case studies, system becomes stable after optimal and
suboptimal systems as expected. But, structural natural frequencies become near to

zero when bar elements are removed from the system for case | and Il. This means
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that structure is very sensitive to these design parameters. While these cross
sectional areas seems negligible in engineering sense, it affects structural
performance drastically. Therefore, for this type optimization problems sensitivity

analysis should carried out before removing smaller elements from the structure.
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CHAPTER 6

CONCLUSION

6.1 SUMMARY AND DISCUSSION

In this thesis, a simultaneous structure and controller optimization is carried out. Two
case studies are considered to see interaction between the structural and the
controller design parameters. First case study is a simple two bar truss problem,
which can be also solved analytically. Second case study is a larger one, in which

different performance indices and solution methodologies are used.

In the structural analysis, finite element modeling of the truss structures is carried out
by using bar elements. Actuators and external masses are also added to the finite
element model. In the model, actuators are defined only by their masses, and it is
assumed that they only exert axial force. External masses are lumped into the

corresponding nodes.

A mathematical modeling is carried out by using displacement based finite element
modeling procedure. Firstly, elemental stiffness, mass, and force matrices are

calculated and then structural ones are assembled from these matrices.

From the equation of motion, a modal state transformation is performed to decouple
differential equations. By using modal model, large-scale problems can easily be
reduced to smaller models, based on system dominant eigenvalues. For the first case
study, which is a 2 dof model, modal model reduction does not performed. For the
second case study, system model is reduced from twenty dof to four dof. This

simplifies calculation of the performance index. However, this procedure can lead to
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errors due to the reduction of high order natural frequencies, whose value is

acceptable.

In the first case study, the number of actuators is selected as a design parameter. The
two-bar truss structure is a two dof system. Hence, it may be uncontrollable by using
single actuator. If the structural natural frequencies become identical, single actuator
cannot control the structure. However, when the system is examined in this manner, it
can be seen that the geometry does not allow identical natural frequencies for any
cross sectional area combination. In fact, in such a case controller forces will become
very large, which means that the performance index becomes very large.

Consequently, optimization algorithm eliminates these type of solutions.

The equality of the system dof with the number of actuators guarantees system
controllability for any value of design parameters, which is applied for the second case
study. Since modal reduction is also applied for this case, the number of actuators is
taken as four which is defined as twenty at the beginning. Design parameter linking is
also considered for this problem. Cross sectional areas and actuator elements are
linked about the symmetry axis. Modal reduction is applied by using lowest four
eigenvalues of the system. As a result, the controllable system is optimized in a

shorter time with a reasonable accuracy.

In both case studies, a sensor model is not used and it is assumed that all states can
be measured exactly. In fact, this is not a realistic case, but the problem renders

complexity including regulator design.

The definition of the optimization includes controller objective functions and two
structural constraints. The controller objective function is based on LQR theory, which
aims minimization of the system energy and controller forces. For the second case
study, measure of controllability and stability robustness are also added to the
performance index as an objective function. Maximization of these performance
indices guarantees system performance against to the uncertainities of the system
model. The lowest structural natural frequency and the mass of the truss structure are

used as structural constraints. Mass constraint is used frequently in structural
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analysis. In fact, it is usually selected as an objective function of the structural
optimization problems. Because, it is directly related to the cost or the functionality of
the structure; as in the case of satellites. A frequency constraint affects dynamic
characteristics of the system. Cross sectional areas of bar elements, the number and
the positions of the actuators, and closed loop gain matrix are used as the design

parameters.

A penalty weight is used to emphasize order of the required fullflment of the
optimization parameters with respect to conflicting design requirements. However, in
optimization, physics of the problem is lost when performance index is calculated.
Therefore, next to penalizing weight, optimization parameters should be multiplied by
a normalization factor to get them to the same order of magnitude. This factor is
calculated before the iteration loop of the optimization by giving small perturbation to
the initial design family and calculating elements of performance index for both cases,
namely initial and perturbated ones. Then, the ratio of the initial and perturbated

design optimization parameters is used as the normalization factor.

Two-optimization programs are used in the solution of problems. HSSA algorithm is
used for guessing new design families randomly by using Metropolis criteria. This
program can solve both linear and nonlinear optimization problems in discrete or
continuous design space. However, it has drawbacks in satisfying inequality
constraints, since it generates design families randomly. This increases iteration
number and computation time. HSSA algorithm ends up with global optimum, if the
relative accuracy of the system is converged to a value, which is verified theoretically.
Second optimization algorithm includes the solution of reduced matrix Riccati
equation by MATLAB® Igr function. According to the LQR theory, by solving reduced
matrix Riccati equation QPI is globally optimized for an arbitrary initial condition.
System is optimized in higher level again by averaging out all initial conditions by
optimizing trace of the Riccati matrix. In summary, HSSA algorithm guesses the cross
sectional areas of the bar elements, the positions, and the number of actuators. Then,
Igr function finds global optimum closed loop gain matrix for this candidate design
family. If HSSA algorithm converges, then all design parameters are certainly said to

be global optimum.
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Firstly, a two bar truss problem is solved analytically to verify the solution method and
the mathematical modeling and optimization codes. Same results are attained from
the graphical solution and the numerical solution. The optimization problem includes a
nonlinear frequency constraint, a nonlinear objective function and a linear mass
constraint. Both constraints are applied as equality constraints. Therefore, the
violation of constraints can take positive or negative values. Since both cases should
be penalized, absolute value of the vialotion is used in the performance index. If the
constraint and design parameters for each actuator position are examined, a set of
equations for two unknowns are obtained. For a single actuator case one solution can
be found for this set of equations, while there is no unique solution for the two

actuator case.

Parametric study is carried out to see the sensitivity of the optimization code to its
inputs. Optimization inputs are bounds and initial guesses of design parameters,
maximum number of iterations, relative accuracy, and penalty weights of constraints.
Bounds and maximum number of iterations are proportional to each other. The
iteration number is increased by increasing bounds of the design parameters. The
initial guess does not affect the system performance. This parameter is used only for
the search inside the bounds. The first case study is very proper to show the effect of

penalty weights to the results of the optimization.

The two-bar truss problem was solved by Liu and Begg [17] to compare five different
optimization algorithms. They did not optimize neither number nor positions of
actuators in their work. One actuator is placed on one of the bar elements. They found
the same cross sectional areas by using different algoritms, but they did not give
resulting optimum values of the closed loop gain matrix in their paper. They found
optimum objective function as 5,874. However, corresponding value found in this
study is 3875. Since they used random search methods for the solution of Lyapunov

equation, they could not find global optimum gain values and objective function.

In the second case study, a twenty-bar and four-actuator element system is
optimized. This problem is solved for three different cases. In the first case, the

objective function is QPI and constraints are the frequency and the mass constraint.
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The frequency constraint is applied as an inequality constraint while mass constraint
is applied as an equality constraint. In the second and third case studies, this problem
is solved for three objective functions, which are QPI, measure of stability robustness
and controllability. The mass and frequency constraints remained same as the first
case study. Since from the results of the first two cases, it is seen that algorithm
forces to removal of the bar elements, which are parallel to the actuators, in the third
case study, optimization problem is solved by removing actuator parallel bar elements
automatically. As seen from the results, removing bar elements parallel to the

actuators give smaller performance index.

In case | and 11 same bar elements are attained small values. In engineering sense,
these elements should removed from the structure. But, when these elements
removed from the stsructure and controller is optimized for this system. As expexted
system becomes stable. However, structural natural frequencies become very small
and frequency constraint is violated for this case. This sitution is due to sensitivity of
the structure to these design parameters. In the case Il stability robustness is
maximized. Therefore, this system become more robust to variation in the design

parameters. Only first natural frequency is affected from the removal of the actuators.

6.2 CONCLUSION

This basic structural/controller model is studied properly in the optimization of coupled
systems. Although, the performance index is quite complicated, the optimization
algorithm finds the optimal solution in a small number of iteration for heurastic type
optimization. Selection of penalty weights drastically affects result of optimization
problems. Constraints should multiplied by a normalization constant to decide penalty
weights according to design requirements only. Program always terminated from

maximum number iterations. Relative accuracy criterion should improved.

Two-bar truss problem and parabolic shape multi-bar truss problem are considered.
For the first case both constraints are satisfied when single actuator is used. While for
the two actuator case it is satisfied with 0.6% error, which is meaningless according to

engineering intuition. If penalty weights of constraints are decreased, improvement of
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the objective function becomes more important. Since objective function is smaller for
two actuator case than single actuator case, program finds two actuator case as a
solution of the optimization problem. Liu and Begg [17] solved this problem for one
actuator case. The quadratic performance index of Liu and Begg is 5,874, however in
this study it is found as 3875.

Parabolic shape multi-bar truss problem is optimized for three different cases. In the
first case, QPI is optimized globally. Actuator placed bar elements are removed from
the structure. In the second case study, multiobjective optimization is carried out. This
case is also solved by Liu and Begg [17]. If the results are compared, it is seen that
they could not satisfy mass constraint for all algorithms. Only robustness is maximized
and a better result are obtained than the one obtained in this work. It seems objective
function is optimized same order in our case, robustness is improved better, but
controllability becomes worse. They used elements of closed loop gain matrix as
design parameters and reduced Riccati equation as constraint. So Liu and Begg’s
closed loop gain values cannot be global optimum and they may optimize all design
parameters by using single level optimization procedure. As a result, the difference
between the optimized solution and the initial performance index becomes large,
which seems like better improvement is achieved. In the third case, actuator placed
bar elements are removed from the structure automaticaly, in which optimization ends

up with smaller performance index.
Sensitivity analysis should carried out in the structure/controller simultaneous design

to decide removal of the small sized bar elements. Also, closed loop gain matrix

should calculated again after fixing size of structural design parameters.

6.3 FUTURE WORK

Simultaneous structure and controller optimization is a very wide subject, which
becomes highly popular in the last century. This thesis subject can be improved from

many different directions from this basic model.
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FEM can be improved by adding other element types; i.e., beam, shell, solid, etc.
Actuator and sensor dynamics can be considered. From the controller point of view,

regulator design may be included.

Optimization algorithms used in this work are proper for the solution of these type
problems. However, different optimization parameters may be used in the design.
Different objective functions and constraints can be added. Finally, laboratory tests

should be carried out to verify results of the optimization.

116



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

Utku, S., Incorporating Intelligence into Engineering Products: Adaptive
Structures, 1st Ed., 1998 Fulbright Lectures.

Dunn, H. J., “Experimental Results of Active Control on a Large Structure to
Suppress Vibration”, Journal of Guidance, Control, and Dynamics, Vol. 15, No.
6, 1992, pp. 1334-1341.

Crawley, E. F., "Intelligent Structures for Aerospace: A technology Overview and
Assessment”, AIAA Journal, Vol. 32, No.8, 1994, pp.1689-1699.

Burdisso, R. A. and Haftka, R. T., “Optimal Location of Actuators for Correcting
Distortions in Large Truss Structures”, AIAA Journal, Vol. 27, No. 10, 1989,
pp.1406-1411.

Onada, J., Sano, T., and Kamiyana, K., “Active, Passive, and Semiactive
Vibration Suppression by Stiffness Variation”, AIAA Journal, Vol. 30, No. 12,
1992, pp. 2922-2929.

Haftka, R., Martinovic, Z., and Hallauer, W., “Enhanced Vibration Controllability
by Minor Structural Modifications,” AIAA Journal, Vol. 23, No. 8, pp. 1260-1266.

Liu, X. and Begg, D. W., “On Simultaneous Optimization of Smart Structures-
Part I: Theory”, Computer Methods in Applied Mechanics and Engineering, 184,
2000, pp. 15-24.

Gilbert, M. G. and Schmidt, D. K., “Integrated Structure/Control Law design by

Multilevel Optimization”, Journal of Guidance, Control, and Dynamics, Vol. 14,
No. 5, 1991, pp. 1001-1007.

117



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Schulz, G. and Heimbold, G., “Dislocated Actuator/Sensor Positioning and
Feedback Design for Flexible Structures”, Journal of Guidance, Control and
Dynamics, Vol. 6, No.5, 1983, pp. 361-367.

Onada, J. and Watanabe, N., “Vibration Suppression by Variable-Stiffness
Members,” AIAA Journal, Vol. 29, No. 6, pp. 977-983.

Darby, A. P. and Pellegrino, S., “Modeling and Control of a Flexible Structure
Incorporating Inertial Slip-Stick Actuators”, Journal of Guidance, Control and
Dynamics, Vol. 22, No. 1, 1999, pp. 36-42.

Sun, C. T. and Wang, R. T., “Enhancement of Frequency and Damping in Large
Space Structures with Extendible Members”, AIAA Journal, Vol. 29, No 12,
1991, pp. 2269-2271.

Hyde, T. T and Anderson, E. H., “Actuator with Built-In Viscous Damping for
Isolation and Structural Control”, AIAA Journal, Vol. 34, No. 1, 1996, pp.129-
135.

Matunaga, S., Yu, Y., and Ohkami, Y., “Vibration Suppression Using
Acceleration Feedback Control with Multiple Proof- Mass Actuators”, AIAA
Journal, Vol. 35, No. 5, 1997, pp. 856-862.

Sepulveda, A. E., Jin, I. M., and Schmit, L. A., “Optimal Placement of Active
Elements in Control Augmented Structural Synthesis”, AIAA Journal, Vol. 31,
No. 10, 1993, pp. 1906-1915.

Li, Y., Onada, J, and Minesugi, K., “Simultaneous Optimization of Piezoelectric

Actuator Placement and Feedback for Vibration Suppression”, Acta
Astronautica, Vol. 50, No. 6, pp. 335-341.

118



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Liu, X. and Begg, D. W., “On Simultaneous Optimization of Smart Structures-
Part II: Algorithms and Examples”, Computer Methods in Applied Mechanics
and Engineering, 184, 2000, pp. 25-37.

Jin, I. M. and Schmit, L. A., “Control Design parameter Linking for Optimization
of Structural/Control Systems, AIAA Journal, Vol. 30, No. 7, 1992, pp. 1892-
1900.

Jin, I. M. and Schmit, L. A., “Improved Control Design parameter Linking for
Optimization of Structural/Control Systems”, AIAA Journal, Vol. 31, No. 11,
1993, pp. 2111-2120.

Vanderplaats, G. N., Numerical Optimization Techniques for Engineering
Design: With Applications, 1st Ed., 1984, McGraw Hill, Inc.

Sedaghati, R., Suleman, A., and Tabarrok, B., “Structural Optimization with
Frequency Constraints Using the Finite Element Force Method”, AIAA Journal,
Vol. 40, No. 2, 2002, pp. 382-388.

Canfield, R. A., “High-Quality Approximation of Eigenvalues in Structural
Optimization,” AIAA Journal, Vol. 28, No. 6, 1990, pp. 1116-1122.

Wang, B. P., “Closed Form Solution for Minimum Weight Design with a
Frequency Constraint,” AIAA Journal, Vol. 29, No. 1, pp. 152-154.

Czyz, J. A. and Lukasiewicz, S. A., “Multimodal Optimization of Structures with
Frequency Constraints”, AIAA Journal, Vol. 33, No. 8, 1995, pp. 1496-1502.

Kajiwara, |., Tsujiko, K., and Nagamatsu, A., “Approach for Simultaneous

Optimization of a Structure and Control Systems”, AIAA Journal, Vol. 32, No.4,
1994, pp. 866-873.

119



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Canfield, R. A. and Meirovitch, L., “Integrated Structural Design and Vibration
Suppression Using Independent Modal Space Control”, AIAA Journal, Vol. 32,
No. 10, 1994, pp. 2053-2060.

Sunar, M. and Rao, S. S.,”Optimal Selection of Weighting Matrices in Integrated
Design of Structures/Controls”, AIAA Journal, Vol. 31, No. 4, 1993, pp. 714-720.

Cheng, F. Y. and Li, D., “Multiobjective Optimization of Structures with and
without Control”, Journal of Guidance, Control, and Dynamics, Vol. 19, No. 3,
1996, pp. 392-397.

Slater, G. L. and McLaren, M. D., “Disturbance Model for Control/Structure
Optimization with Full State Feedback”, Journal of Guidance, Control and
Dynamics, Vol. 16, No. 3, 1993, pp. 523-533.

Rao, S. S., Pan, T., and Venkayya, V. B., “Optimal Placement of Actuators in
Actively Controlled Structures Using Genetic Algorithms”, AIAA Journal, Vol. 29,
No.6, 1991, pp. 942-943.

Fleming P. J., Purshouse R. C., “Evolutionary algorithms in control systems
engineering: a survey”, Control Engineering Practice, Vol. 10, 2002, pp. 1223-
1241.

Bélisle C. J. P., Romeijn H. E., and Smith R.L., Hide-and-Seek: A Simulated
Annealing Algorithm for Global Optimization, Department of Industrial and
Operations Engineering, Technical Report 90-25, University of Michigan, Ann
Arbor, 1990.

Karsl, G., Simulated Annealing for the Generation of Pareto Fronts with

Aerospace Applications, M.S. Thesis, Aeronautical Engineering Department,
METU, Ankara, January 2004.

120



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Onada, J. and Hanawa, Y., “Actuator Placement Optimization by Genetic and
Improved Simulated Annealing Algorithms”, AIAA Journal, Vol. 31, No.6, pp.
1167-1169.

Fonseca, I. M. and Bainum, P. M., “Large Space Structure Integrated Structural
and Control Optimization, Using Analytical Sensitivity Analysis,” Journal of
Guidance, Control and Dynamics, Vol. 24, No. 5, 2001, pp. 978-982.

Sobieszczanski-Sobieski, J., Bloebaum, C. L., and Hajela, P., “Sensitivity of
Control-Augmented Structure Obtained by a System Decomposition Method”,
AIAA Journal, Vol. 29, No. 2, 1991, pp. 264-270.

Missoum, S. and Gurdal, Z., “Displacement- Based Optimization for Truss
Structures Subjected to Static and Dynamic Constraints”, AIAA Journal, Vol. 40,
No. 1, 2002, pp. 154-161.

Onada, J. and Watanabe, N., “Integrated Direct Optimization of
Structure/Regulator/Observer for Large Flexible Spacecraft’, AIAA Journal, Vol.
28, No. 9, 1990, pp. 1677-1685.

Khot, N. S. and Heise, S. A., “Consideration of Plant Uncertainties in the
Optimum Structural-Control Design”, AIAA Journal, Vol. 32, No. 3, 1994, pp.
610-615.

Lim, K. B. and Junkins, J. L., "Robustness Optimization of Structural and
Controller Parameters”, Journal of Guidance, Control and Dynamics, Vol.12,
No.1, 1989, pp. 89-96.

Rao, S. S., Pan, T., and Venkayya, V. B., “Robustness Improvement of Actively

Controlled Structures through Structural Modifications”, AIAA Journal, Vol. 28,
No. 2, 1990, pp. 353-361.

121



[42]

[43]

[44]

[49]

[46]

[47]

[48]

[49]

[50]

[51]

Liu, Z., Wang, D, Hu, H., and Yu, M., "Measures of Modal Controllability and
Observability in Vibration Control of Flexible Structures”, Journal of Guidance,
Control and Dynamics, Vol. 17, No. 6, 1994, pp. 1377-1380.

Onada, J. and Haftka, R. T., “ An Approach to Structure/Control Simultaneous
Optimization for Large Flexible Spacecraft’, AIAA Journal, Vol. 25, No. 8, 1987,
pp. 1133-1138.

Liu, W. and Hou, Z., “Model Reduction in Structural Vibration Control and Its
Application”, 16th ASCE Engineering Conference, 2003.

Locatelli, G., Langer, H., Miller, M., and Baier, H., “Simultaneous Optimization
of Actuator Placement and Structural Parameters by Mathematical and Genetic
Optimization Algorithms”, Institute of Lightweight Structures, Aerospace

Department, Munich University.

Ogata, K., Modern Control Theory, 3rd Ed., 1997, Prentice Hall, Inc.

Cook, R. D., Malkus, D. S., and Plesha, M. E., Concepts and Applications of
Finite Element Analysis, 1989, 3rd Ed., John Wiley and Sons.

Vanderplaats, G. N., Numerical Optimization Techniques for Engineering

Design: with Applications, 1st Edition, 1984, McGraw-Hill, Inc.

Patel, R. V. and Toda, M., “Quantitative Measures of Robustness for
Multivariable Systems”, TP8-A, Proceedings of JACC, San Francisco, CA, 1980.

Hamdan, A: M. A. and Nayfeh, A. H., “Measures of Modal Controllability and
Observability for First- and Second-Order Linear Systems”, Journal of

Guidance, Control and Dynamics, Vol. 12, No. 3, May-June 1989.

Carmichael, D. G., Structural Modeling and Optimization: A General

methodology for Engineering and Control, 1st Ed., 1981, Ellis Horward Limited.

122



[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Nicholas M. B., Finite Element Analysis on Microcomputers, 1988, McGraw-Hill

Book Company.

Pantling, C.M. and Shin, Y.S., “Active Vibration Control Method and Verification
for Space Truss Using APDL”.

Irons, B. and Shrive N., Finite Element Primer, 1983, John Wiley & Sons, Inc.
Lu, P. and Khan, A., “Nonsmooth Trajectory Optimization: An Approach Using
Continuous Simulated Annealing”, Journal of Guidance, Control and Dynamics,
Vol. 17, No. 4, July-August 1994,

Utalay S., Trajectory and Multidisciplinary Design Optimization of Missiles Using
Simulated Annealing, M.S. Thesis, Aeronautical Engineering Department,

METU, Ankara, January 2000.

Midkiff, J., www.eng.vt.edu/eng/materials/classes/MSE2094 NoteBook/
97ClassProj/num/midkiff/theory.html, Last updated:2000, Last accessed:2001.

Adams, V. and Askenazi, A., Building Better Products with Finite Element
Analysis, 1st Ed., 1999, OnWord Press.

Kelly, S. G., Fundamentals of Mechanical Vibrations, International editions
1993, McGraw-Hill.

MATLAB® Manual, Version 6.5.0 Release 13, 2002.

123



APPENDIX A

DEFINITIONS OF FINITE ELEMENT METHOD

These definitions are completely taken from references [57] and [47]

degree-of-freedom (dof) - name given to the freedom of movement for an object in
any given direction. Any unconstrained object has six degrees-of-freedom (translation

in three directions and rotation in three directions).

design parameters - variables that can be created to aid in testing multiple design

variations. Can be on geometry (dimensions), material properties, etc

element - one individual piece used in a finite-element analysis model.

geometric nonlinearity - type of nonlinearity in structural analysis caused by large
deformation. If the geometry changes enough during the course of the analysis, the
stiffness will also change (even if the material property does not). Imagine a thin piece
of sheet metal. It may stay within the linear range of the material property, but still
show a large deflection. This results in nonlinearity because the stiffness (which is a

function of both material and geometry), changes during the simulation.

material nonlinearity - type of nonlinearity in structural analysis caused by nonlinear
relationship between stress and strain for the material used. The material property
(Young’s Modulus) changes over the course of the analysis, and cannot be input as
one number. This can be caused by a material (such as a metal) being loaded above

it's yield stress value. It can also be caused by a material that has an inherently
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nonlinear stress-strain curve. This nonlinearity requires an iterative solution

(performed in many steps).

matrix algebra - a form of mathematics where sets of simultaneous equations are

represented by rows and columns of numbers.

mesh - collection of finite-elements that together represent a geometric body for FEA.

node — connection points of finite elements.

nodal dof — displacements or rotations at a node.

optimization - design study where software automatically finds the best design.

two-dimensional element - element whose geometry is defined by a 2-d area.

Represents a solid whose cross section is unchanging in the direction into the page.

Can be used for linearly extruded cross section solids or axisymmetric solids of

revolution. Only valid if geometry, loads, and boundary conditions are symmetric.
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APPENDIX B

MODAL STATE SPACE TRANSFORMATION

This part is completely taken from reference [59]

B.1 NORMALIZED MODE SHAPES

A mode shape corresponding to a specific natural frequency of an n-dof system is
unique only to a multiplicative constant. The arbitrariness can be alleviated by
requiring the mode shape to satisfy the normalization constraint. It is convenient to

normalize mode shapes by requiring that the kinetic energy scalar product of a mode

shape with itself is equal to one. That is,
ViV = (V)T [M]{} =1 (B-1)

If the mode shape, {V;}, is normalized according to above equation, then from

Rayleigh’s quotient,
VI KV, = (V3 VD = ! (B-2)

The orthogonality relations, the normalization constraint and the subsequent result of

the choice of normalization, are summarized by

(Vi Vi =6, (B-3)
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and

where 6,/. is the Kronecker delta.

B.2 MODAL MATRIX

The modal matrix [S] for an n-dof system is the nxn matrix whose columns are the

normalized mode shapes. Let
[E]=[S] [M][s] (B-5)

Let e, represent the element in the i row and | column of[E] . Then

Using the definition of the kinetic energy scalar product, the preceding equation
becomes

& =({V1.{V, D (B-7)

i = 9 (B-8)
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Thus [E] is the nxn identity matrix and Eq. (B-1) becomes

[ST [M][s]=[/] (B-9)
In a similar fashion it is shown that

[s]' [K][s]=[a] (B-10)

where [Q] is a nxn diagonal matrix with the squares of the natural frequencies along

the diagonal. That is,

w? 0 0 0

0 w? 0 0
[Q]=10 0 w? 0 (B-11)

0 0 0 w?

B.3 PROPORTIONAL DAMPING

The diferential equations for a linear n dof system with proportional viscous damping

[MI{g} +(a[K]+B[M]{g}+[K]{q} = {F| (B-12)

The undamped system has n natural frequenciews and normalized mode shapes.

The nonsingular modal matrix [S] exists. Principal coordinates for the undamped
syatem are defined by Eq. (2-16). Using the principal coordinates as dependent

variables in Eq. (B-12) and premultiplying by [S]T leads to
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[ST [MI[S]{8} + (a[ST [KI[S]+ B[ST [M][SDs +[ST [KI[S)s} =[S g.43)

Eq. (B-9) and (B-10) allow Eq. (B-13) to be rewritten as
(8} + (aw/[S]+ B) {8} + w/ {s} = {H] (B-14)

The differential equations represente by Eq. (B-14) are uncoupled. The ith equation

for the forced vibrations of a one dof system

S, +2(w’s + w?s =h, (B-15)
where (; is called the modal damping coefficient for mode i :

4 =%(dwi +£J (B-16)
Then Eq. (B-14) can be written as

{8} +[A]{s}+[Q]{s} =[S] {F} (B-17)

where A is a nxn diagonal matrix with the twice of the modal damping coefficient

multiply by the natural frequency along the diagonal. That is,

20w, 0 0 - 0
0 20w, 0 - 0

[A]=] © 0 20w, - O (B-18)
0 0 0 - 20w
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APPENDIX C

HIDE AND SEEK SIMULATED ANNEALING OPTIMIZATION
ALGORITHM

C.1 SIMULATED ANNEALING OPTIMIZATION ALGORITHM

This part is completely taken from reference [48].

Simulated annealing is a class of stochastic optimization algorithm for the following

problem

minf(x)
xeS (C-1)

where the feasible region ScR" is a compact set, and f a continuous function
defined onS. The problem is to find an x €S so that f =f(x )<f(x) forallxeS.

The algorithm searches for a global optimum by simulating the physical phenomenon

of annealing.

Simulated Annealing is an optimization algorithm, which is suitable for large-scale
optimization problems, especially ones where a desired global extreme is hidden
among many poorer, local extremes. It is applicable both to continuous and discrete

optimization problems.

SA depends on the analogy with thermodynamics, specifically with the way that
liquids freeze and crystallize, or metals cool and anneal. At high temperatures, the

molecules of a liquid move freely with respect to one another. If the liquid is cooled
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slowly, thermal mobility is lost. The atoms line themselves up and form a pure crystal,
which is the state of minimum energy for this system. For slowly cooled systems,
nature is able to find this minimum energy state. In fact, if a liquid metal is cooled
quickly or quenched, it does not reach this state but rather ends up in a polycrystalline
state having higher energy. So the essence of the process is slow cooling, allowing
sample time for redistribution of the atoms as they lose mobility. SA simulates this

physical annealing process ensuring that a low energy state will be achieved.

The minimization algorithm is based on Boltzmann probability distribution;
Prob(E)C exp(—£) (C-2)
KT

which expresses the idea that a system in thermal equilibrium at temperature T has
its energy probabilistically distributed among all different energy states E . Even at low
temperature, there is a chance of a system being in a high energy state, so, for the
system to get out of a local energy minimum in favor of finding a better, more global,
one. The quantityk, Boltzmann’s constant, is a constant of nature that relates
temperature to energy. In other words, the system sometimes goes uphill as well as
downhill; but the lower the temperature, the less likely is any significant uphill

excursion.

Metropolis, in 1953, incorporated these principles into numerical calculations. A
simulated thermodynamic system was assumed to change its configuration from

energy E, to energy E, with probability,

Ez — E1
p=exp| —— — (C-3)

Notice that ifE, < E,, this probability is greater than unity, in such cases the change is

arbitrarily assigned a probability equal to unity. This general scheme of always taking

a downhill step while sometimes taking an uphill step, has come to be known as the
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Metropolis criterion. To make use of Metropolis criterion, one must provide the

following elements:

= A description of possible system configurations

»= A generator of random changes in the configuration

= An objective function E whose minimization is the goal of the procedure

= A control parameter T and an annealing schedule which tells how it is lowered

from high to low values.

In simulated annealing, the state of a system corresponds to the design vector x,

energy to the value of the augmented cost function, f, and the metropolis criterion to

f(x2)-f(x)
,BT:min(LO,e ; J (C-4)

where x, and x, are two different design points.

C.2 HIDE-AND-SEEK SIMULATED ANNEALING ALGORITHM

Past applications of simulated annealing have been mainly in discrete optimization
problems such as famous traveling salesman problem. For application in trajectory
optimization for a continuous dynamic system, a continuous SA algorithm is required.
One of the major differences between a discrete and continuous SA algorithm is the
choice of a cooling schedule for the temperature parameter, which parameterizes the

decrease of acceptance probabilities for deteriorations.

More recently, a SA algorithm for continuous optimization (maximization), called Hide-
and-Seek, was developed by Bélisle et. al [16]. This algorithm has two distinct
features: an adaptive cooling schedule and a continuous random walk process for
generating a sequence of feasible points. Convergence of the algorithm to the global

optimum is rigorously proved. The user supplies the bounds on the design vector.
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Within the bounded design space, the feasible region is specified by criteria set up by

the user, and disjoint feasible regions are allowed.

Hide-and-Seek is a powerful yet simple and easily implemented continuous simulated
annealing algorithm for finding the maximum of a continuous function over a compact
body. The algorithm begins with any feasible interior point. In each iteration it
generates a candidate successor point by generating a uniformly distributed point
along a direction chosen at random from the current iteration point. The candidate
point is then accepted as the next iteration point according to the Metropolis criterion
parameterized by an adaptive cooling schedule. The sequence of iteration points

converges in probability to a global optimum.

Hide-and-Seek proceeds roughly as follows. The stating point, xq, is generated

randomly and a large initial temperature, T,, is selected. In the K™ step, a direction,
®, , on the surface of the unit sphere in the search space is chosen from the uniform
distribution. Then choose A, from the uniform distribution A, =(AeR:x, + A®, €S)

Sety,.,=x, + A®, . The next search point, x,,, is determined by

Yi f Vke[O’BT(Xk’yk+1)]

(C-9)

k1 =

X if Ve [BT(Xk’ka)’ﬂ

where V, is a random variable with uniform distribution on[0,1]; and T is the current

temperature. It should be noted that from the above equation, even if f(y,,,)
represents a deterioration in the objective function; i.e.,f(y,.,) <f(x,) , the probability
of acceptance of y, ., as the next iteration point is high if the temperature T is high.

T is updated (decreased) by the cooling schedule

133



TZQ.W (C-6)

only when f(xk) is greater than all previous objective function values, where

0<p<1and x;,(n) is the 100.(1-p) percentile point of the chi-square distribution

with n dof [49]. This cooling schedule generates the next point that would give an

improvement in function value over current iteration point with probability at least p.

Performance of the algorithm is insensitive to different choices of p. When f~ is not

known, the authors of Hide-and-Seek have developed a heuristic estimator f for f

fofonh

7 )

where f, andf, are the current two largest function values and the parameter p

corresponds to the probability that the real maximum is larger than this estimator.

C.3 AN EXAMPLE OF SINGLE-OBJECTIVE HSSA

C.3.1 Zermelo’s Trajectory Optimization Algorithm

Zermelo’s problem is well known problem in literature. In this trajectory optimization
problem, a ship must travel through a region of strong currents. The magnitude and
the direction of the currents, known as function of position, are as below;

u=u(xy) , v=v(xy) (C-8)

In the Eq. (C-8), (x,y)are rectangular coordinates and (u,v) are the velocity
components of the current in the x and y directions, respectively. The magnitude of

the ship’s velocity relative to water isV, a constant. The optimal control problem is to
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steer the ship in such a way as to minimize the time necessary to go from an initial

point (x;,y;) to final point(x,,y, ). the equations of motion are as below;

x =V cosO+u(x,y)

' (C-9)
y=Vsin@+v(x,y)

6, in the above equation is the heading angle of the ship’s axis relative to the fixed

coordinate axes, and (x,y) represents the position of the ship shown in Figure C-1.

A y
u=-y
=0
# u ‘ . . " X
[\ current Final point
(xs, y)=(0, 0)
[
Initial point
0 (x;, yi)=(3.66, -1.86)

Figure C-1 Zermelo’s trajectory optimization problem

Analytic solution that is obtained by Bryson [50] for this problem is given in Table C-1.
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Table C-1 Results of the analytical solution

t, 5.46
X; 0.0
v, 0.0
6, 105°
6, 240°

C.3.2 Solution of the Problem with Simulated Annealing

To solve the Zermelo’s optimal control problem by Hide and Seek continuous

simulated annealing, the problem is transformed into nonlinear programming problem.
Then the nonlinear problem is as below;

minimize t,
s.t. G(p)=0 (C-10)
P sp=p,

where p is the optimization parameters and includes the steering angles 6, (1---N)

andt,, G is the equality constraint and equals to range error [51].

N is the number of evenly-spaced time nodal points on the trajectory. The optimization

parameters are total time and the value of the steering angles at these nodes.

In the solution procedure of the Zermelo’s trajectory problem 10 nodes are used and
the state values between the nodes found by the cubic spline interpolation between
the just right and left nodes. To handle the equality constraints a penalty function
approach is used. According to this approach the nonlinear problem is converted as
Eqg. (C-11);
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f=—t _k1|X(tf)|_k2|y(tf)| (C-11)

where, k,and k, are penalty coefficients and have positive values. The choices of k;

affect the accuracy of the i" constraints.

Initial parameters that are used in Hide and Seek Simulated Annealing are tabulated
in Table C-2 and the results are in Table C-3.

Table C-2 Initial parameters used in Hide and Seek

Number of intervals 10
Initial 6, i=1---10 3°
X; 3.66
Yi -1.86

Table C-3 Results of Hide and Seek

t; (s) 5.458
X; 0.004
v, 0.01
6. 105.9°
6, 237.1°
number of functlon 43189
evaluations
number of accepted
) ) 87
function evaluation number

The resultant trajectory of the problem is given in Figure C-2. In Figure C-3 final
steering angle vs. time graph is given.
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APPENDIX D

LINEAR QUADRATIC REGULATOR FUNCTION

This part is completely taken from reference [60].

Iqr

Design linear-quadratic (LQ) state-feedback regulator for continuous plant

Syntax
[G.R,e]=Iqr(A,B,Q,P) (D-1)
[G.R,e]=1Iqr(A,B,Q,P,N) (D-2)
Description

Eq.(D-2) calculates the optimal closed loop gain matrix G such that the state-

feedback law given at Eq.(2-15) minimizes the quadratic cost function
J(t)=[(x"Qx+UTPU + 2x"NU ) dt (D-3)
0

for the continuous-time state-space model given at Eq. (2-26)

The default value N =0 is assumed when N is omitted.
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In addition to the state-feedback gain G, Igr returns the solution R of the associated

Riccati equation

[A]"[R]+[R][A]-(RI[B]+[ND[P] " (B] [R]+[N])+[Q]=0 (D-4)
and the closed loop eigenvalues

le]=eig((A]-[B][G]) (D-5)
Note that G is derived from R by

[6]=[P]" (B8] [R]+[N]") (D-6)
Limitations
The problem data must satisfy:

= The pair (A,B) is stabilizable.

= P>0and Q-NP'N" >0

. (Q ~NP'N ,A-BP'N' ) has no unobservable mode on the imaginary axis.
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APPENDIX E

MATHEMATICAL MODELLING OF TWO BAR CASE STUDY

Mathematical modelling of the two bar case study is given below for each

configuration of actuator.

E.1 FINITE ELEMENT MODELLING

FEM is drawn symbolically for cross sectional areas of bar elements. Structural

matrices are derived for each configuration by hand is given below.

E.1.1 Configuration 1: Single Actuator

Positions of the actuator is given in Figure E-1.

CONFIGURATION 1

Figure E-1 Single actuator placed case
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Elemental structural matrices for bar elements are calculated as follows:

ELEMENT-1

L, = /(1000 — 0) + (0 —500)2 =1118.03 (mm)

_ X, =X, _1000-0 _,

t = =0.
! L, 1118.03

89

_Y,~Y,_0-500 _

t = -
2L, 1118.03

-0.45

(k]

Ea | t? tt, 52235 -26.117
= —a1
t1t2 _t22

N/
L, -26.117 13.059}( mm)

of kg
m.), =a,p.L, =a, (mm?)2700 10°| —— [1118.03(mm*
(m,), P14 1( ) (”7'173) ( )

(m,), =0.0030187a, (kg)

aol,[2 0] [0.0010062 0
[mi]= 1,21 {o 2}231[ 0 00010062} (k9)

ELEMENT-2

L, =+/(1000 - 0Y + (0 — (~500))> =1118.03 (mm)

_Y,-Y, _0-(-500) _
L, 1118.03

[k]:E232 tr tt, |__ [52235 26.117 (N mm)
2L, |tt, 2| ?[26.117 13.059

t, 0.45
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_ _ 2 9| kg 3
(m,), = a,p,L, = a,[ mm* | 2700 10 {W}1118.03[mm ]

(E-10)
(m,), =0.0030187a, (kg)
2 0010062
[mz]:azfssz [o g}: 2{0 00o006 ooo?ooez} (ko)
. (E-11)
m,[1 0] [025 O
[ma]:T{o 1}{ 0 0.25} (ko) (E-12)
0 0] [-1] (0.89
wle o) [7)-fose) €1

Next step is assembling elemental structural mass and stiffness matrices, controller

force matrices and external mass matrices.

EXTERNAL MASS:

1. 0] |50 O
[Me]=m{0 1H0 50}(1@) (E-14)

SYSTEM MATRICES:

[M]=[m,]+[m,] +[(m,), ]+ [M,]

0.0010062(a, + a,) +50.25 0 (E-15)

M) { 0 0.0010062(a, +a2)+50.25} (k9)

0.89
{F)= {0_45} (E-16)
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E.1.2 Configuration 2: Two Actuator

Two actuators are placed on both bar elements as shown Figure E-2.

CONFIGURATION 2

Figure E-2 Two actuator placed case

Element stiffness and mass matrices are calculated in similar way as mentioned
above. Since actuator element does not have stiffness and damping contribution to
finite element model, stiffness matrix is same as one-actuator case. Only mass matrix
is changed such that half of the actuator mass will be added to both nodal dof.

Consequently, mass matrix of the two-actuator configuration is as follows:
[M]=[mi]+[m,]+[(m, )]+ [(m,), ]+ [M,]

0.0010062(a, +a,)+50.5 0
1 2 :| (kg)

[M]=
0 0.0010062(a, + a,)+50.5

Actuator force matrix should also revise. Since two actuators are placed into system

size of actuator force matrix is increased. Actuator force matrix is found as follows:
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0.89 0.89
[F.]= {0.45 —0.45} (E-18)

E.2 STATE SPACE TRANSFORMATION
Similar to FEM modal state transformation is done for two configuration.
E.2.1 Configuration 1: One Actuator

Let nodal displacement and velocities are states of the stytem. Then,

X, =q, i=1--n
X, =X, (E-19)
[M]{q}+[K]{a} =[F.]{U}
(E-20)
%o ==[M]"[K]x, +[M][F,){U}
[A] I O [I]I‘an]
= , (E-21)
__[M] [K] 0 2nx2n
CHp
= (E-22)
_[M] [Fa] 2nxr
V]-[M] [K] (1/s?)
52.235 10°%(a, +a,) 26.117 10%(a, — a,) (E-23)
V- 0.10062 102(a, + a,)+ 50.25 0.10062 10 %(a, + a,) + 50.25
- 26.117 10%(a, - a,) 13.059 10%(a, + a,)

0.10062 10 %(a, +a,)+50.25 0.10062 10(a, +a,)+50.25
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0
0

52235(a, +a,)

0
0

26117(a, —a,)

0.0010062(a, + a,) + 50.25
26117(a, —a,)

0.0010062(a, + a,) + 50.25
13059(a, + a,)

| 0.0010062(a, +a,)+50.25

0
0

0.89

0.0010062(a, +a,) +50.25

0.45

0.0010062(a, + a,)+ 50.25

0.0010062(a, +a,)+50.25 |

E.2.2 Configuration 2: Two Actuator

[vV]=

v]-

[A]

[M][K] (1/s?)

52235(a, +a,)

26117 (a, —a,)

26117(a, —a,)

0.0010062(a, +a,)+50.5 0.0010062(a, +a,)+50.5

13059 (a, +a,)

0
0

52235(a, +a,)

0.0010062(a, +a,)+50.5 0.0010062(a, +a,)+50.5

0
0

26117(a, —a,)

26117(a, —a,)

0.0010062(a, +a,)+50.5 0.0010062(a, +a,)+50.5

13059(a, + a,)

0.0010062(a, +a,)+50.5 0.0010062(a, +a,)+50.5

146

(E-24)

(E-25)

(E-26)

(E-27)



{B} = 0.89 (E-28)
0.0010062(a, +a,)+50.5
0.45
| 0.10062(a, +a,)+50.5 |

E.3 CALCULATION OF CONSTRAINTS

Two structural constraints are submitted in optimization problem as mentioned in
Chapter 4.

E.3.1 Configuration 1: One Actuator

W, =(m,), +(m,), =0.0030187(a, + a,) (kg) (E-29)
Wyp = \eig(T)
(E-30)

_|65.3 10°(a, +a2)i\/(39.2 10%(a, +a,))* +(52.2 10%(a, — a,))’
v 2(0.0010062(a, + a,) + 50.25)

" - 653 10°(a, +a,)—/(39.2 10°(a, + &, +(52.2 10°.(a, - a,))? (E-31)

: 2(0.0010062(a, +a,) + 50.25)
E.3.2 Configuration 2: Two Actuator

W, =(m,), +(m,), =0.0030187(a, + a,) (kg) (E-32)

w,, =+/eig(T)

L _ |853 10°(a, +a,) +/(39.210°(a, + a,))* + (52.2 10°(a, - a,))* (E-33)
12 2(0.0010062(a, + a,) + 50.5)

" 65.3 10°(a, +az)—\/(39.2 10%(a, +a,))* +(52.2 10°(a, — a,))? (E-34)
: 2(0.0010062(a, + a, )+ 50.5)
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APPENDIX F

OPTIMIZATION INPUTS OF PARABOLIC TRUSS EXAMPLE

Some important inputs of the parabolic shaped multi truss example are given.

F.1 NODAL COORDINATES

Nodal coordinates are taken similar to Liu and Begg [17].

Table F-1 Nodal Coordinates in spatial coordinates

Nodal coordinates (m)

Node number X Y
1 -30 0
2 ~20 %,
3 ~10 8¢h,
4 0 h,
5 0 h,
6 ~10 8¢h
7 ~20 %h
8 10 %hb
9 20 %hb
10 30 0
11 20 5%h
12 10 h
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F.2 DESIGN PARAMETER LINKING OF PARABOLIC SHAPE TRUSS

Structural design parameter linking scheme is used in this problem as shown in the

Figure F-1. It is also shown in tabulated version in Table F-2.

Table F-2 Design parameter linking scheme

Linked Linked Used symbol of
variable 1 variable 2 design parameter

& K a
a, 8y a,
a3 a15 a3

4 16 4

5 a17 5
86 a18 aG
a7 a19 a7
a8 aZO aB
ag a21 a9
a9 8y a9
a11 aZ3 a11
a12 aZ4 a12
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APPENDIX G

OPTIMIZATION RESULTS OF PARABOLIC SHAPE TRUSS

The iteration histories of the cross sectional areas of the bar elements are given for

the single objective optimization, Case | of the parabolic shape truss.

G.1 SINGLE OBJECTIVE OPTIMIZATION USING QPI

i) T T T T T T
L ! ! ! !
m--}@q--:-g-w?-‘? ----- R I D o]
o TFoohoo
3 S Eeees Seees R R e e et
| W - ! ! |
S FURNINS  JUNUUN V.-V S SRS SRR SO
. ! ! N ! !
NE I 1 1 . 1 1 1
A omoe- SRRERR oo Forooooe- oo SRR
e | : : | obooo? |
E0G------- Seoee SEeeoces Seeeees e s SEoeec—
! ! | ! ¥ |
/| et e . R L e
! ! : ! I :
Ap------- m———--- Ammmme - L EECCEEE dEaEeaas ST
! ! ! ! : !
] g 10 15 20 25 30 35

Lpdate number

Figure G-1 Iteration history of cross sectional area of a bar element for single

objective case, Case |
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Figure G-1 Iteration history of cross sectional area of a bar element for single

objective case, Case | (continued)
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objective case, Case | (continued)
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Figure G-1 Iteration history of cross sectional area of a bar element for single



