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ABSTRACT

IDENTIFICATION OF ELECTROMAGNETIC SCATTERING MECHANISMS
BY TWO DIMENSIONAL WINDOWED FOURIER TRANSFORM
APPROACH

GERMEC, Egemen
M.S. Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mustafa Kuzuoglu

December 2004, 65 pages

In this thesis, it is demonstrated that the two-dimensional Windowed Fourier
Transform (WFT) can be effectively used to analyze the local spectral
characteristics of electromagnetic scattering signals in the two-dimensional spatial
frequency domain. The WFT is the extension of the Short Time Fourier
Transform (STFT), which was originally derived to analyze the local spectral
characteristics of one dimensional time functions. Since the WFT focuses on the
local spectral behavior of the scattered field, the signal localization maps
produced in the spectral domain by the WFT can be used to identify the
contributions of the rays, at a given location in space, arising from various

scattering mechanisms in high frequency applications.

Keywords: Windowed Fourier Transform, Electromagnetic Scattering
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0z

ELEKTROMANYETIK SACINIM MEKANIZMALARININ iKi BOYUTLU
PENCERELENMI$ FOURIER DONUSUMU YONTEMI iLE
TANIMLANMASI

GERMEC, Egemen
Yiiksek Lisans, Elektrik Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Mustafa Kuzuoglu

Aralik 2004, 65 sayfa

Bu tezde, iki boyutlu Pencerelenmis Fourier Doniisiimii (WFT) yonteminin, iki
boyutlu spektral frekans uzayinda, elektromanyetik sa¢inim sinyallerinin lokal
spektral karakteristiklerini analiz etmek amaciyla etkili bir gsekilde
kullanilabilecegi gosterildi. Burada kullamilan WFT yontemi, tek boyutlu ve
sadece zamana gore degisen sinyallerin lokal spektral 6zelliklerini incelemek i¢in
gelistirilmis olan Kisa Zamanh Fourier Doniisiim (STFT) yonteminin gelistirilmis
bicimidir. WFT yontemi sacimim alanlarimin lokal spektral davranislarina
odaklandig1 i¢in, koordinatlar1 verilen bir uzay noktasina karsilik gelen spektral
uzaydaki sinyal yayilma haritalar1t WFT ile elde edilebilir. Bu haritalar yardimiyla
da, yiiksek frekans uygulamalarinda toplam elektromanyetik sacimim sinyalini
olusturan ve farkli mekanizmalardan kaynaklanan isinlarin bireysel katkilar

belirlenebilir.

Anahtar Kelimeler: Pencerelenmis Fourier Doniisiimii, Elektromanyetik Saginim
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CHAPTER 1
INTRODUCTION

1.1 Spatial Signal Analysis in Electromagnetic Scattering

In electromagnetic scattering applications, the scattered field is a vector-valued
function of the space coordinate variables. The field variation is a superposition of
several components related to the scattering mechanisms introduced by the
scattering object. These mechanisms become more pronounced when the scatterer
size is much larger than the wavelength. In this case, it is possible to interpret the
field variation in terms of ray optics. Therefore, at a certain point in space, it is
possible to express the field as a linear combination of rays emanating from the

scattering centers of the object [1].

The main aim of this thesis is to identify these rays from the values of the
scattered field. These values may be measured or numerically calculated by using
the well-known numerical solution techniques. In this thesis, it is demonstrated
that the Windowed Fourier Transform (WFT) can be utilized to extract the

information related to the ray-optical structure of the field variation.

The WFT provides the means to determine the local field behavior by yielding
the approximate plane wave directions. The theoretical basis of this result lies in
the representation of electromagnetic field components by plane wave expansions.
The validity of this approach is shown via two examples, namely the Sommerfeld
half-plane problem, and the scattering of a plane wave by an infinitely long
circular perfectly conducting cylinder. In these examples, it has been possible to

identify the ray directions by the WFT approach.



1.2 The Windowed Fourier Transform (WFT)

It is well-known that the Fourier transform (FT) X (w)of a function

x(t) yields the spectral characteristics of that function via the expression

X (@) = j‘: x(t) exp(— jor)dt (1.1)

In several applications, the independent variable ¢ is interpreted as time, and
correspondingly @ represents the angular frequency. The Fourier transform of a

function is the inner product of x(r) with the complex exponential function
exp(jat), which, when interpreted as a projection in the function space,
represents the weight of the function exp(jat) in the spectral representation of
x(t). It is important to note that x(z) is used globally in the expression of the

Fourier transform and in order to extract the local spectral information, the Short
Time Fourier Transform (STFT) has been introduced [2]. The STFT of a function

x(t) is obtained by evaluating the FT of x(¢#) multiplied by a window function

w(t) which slides along the time axis, as shown in (1.2) below:

X(t, ) = [; w(t’ = )x(t)exp(— jeax)dt’ (1.2)

The window function w(t) is a function which is non-zero over a finite duration
and the time localization of the function x(¢) is achieved by the product
w(t'=t)x(t)). It is clear that the STFT of x(¢t) is the Fourier transform of

w(t' —t)x().



The STFT is a well-known example of a class of signal processing approaches
known as time-frequency representations. However, there are several applications
where the independent variable is not time. For instance, the independent variable
may be one of the space coordinates for representing spatial variations of a
quantity. In this case, the term STFT is replaced by the Windowed Fourier
Transform (WFT), which yields the local spectral characteristics of a function
whose independent variable is not time in general. If the independent variable is a
space coordinate, the WFT is a representation yielding the space vs. spatial

frequency variation of that function.

The higher dimensional versions of the WFT may be used in the analysis of
functions representing spatial variations in two- or three-dimensional space. In
this thesis, the WFT is used to analyze the electromagnetic field variations in
scattering applications, for the identification of the local ray directions. This
information is closely related to the geometric properties of the scatterer, and ray
directions may be used to identify the scattering centers (i.e. those points from

which the rays emanate) [3-5].

1.3 Outline of This Thesis

The first chapter of this thesis contains the introductory information related to the
thesis work. The theoretical analysis related to scattered field calculations and the
WEFT is given in the second chapter. The examples validating the theoretical work
are demonstrated in the third chapter. Finally, the fourth chapter is devoted to the

conclusions.



CHAPTER 2
THEORY

2.1 Windowed Fourier Transform (WFT)

2.1.1 Time-Frequency Signal Representations

In real-time signal analysis, the Fourier transform is one of most widely used
signal-analysis tool [6]. The basic idea behind the Fourier transform is that any
arbitrary signal can be expressed as a superposition of weighted sinusoidal
functions. Since its value at a particular frequency is a measure of the similarity of
the signal to the sinusoidal basis at that frequency, the frequency attributes of the

signal are exactly described.

While the Fourier transform is a very useful concept, the Fourier transform does
not explicitly indicate how the frequency content of a signal evolves in time,
since the sinusoidal basis functions spread into the entire time domain and are

not concentrated in time.

Many signals, mostly the non-stationary signals, encountered in real world
situations have frequency content that changes over time. Because of the need to
represent this particular nature of the signal, joint time-frequency transforms have
been developed that reflects the behavior of the time-varying frequency content of

the signal [7].

The spectrum, obtained from the Fourier transform technique, allows us to
determine the frequency components that exist for the whole duration of the

signal but a joint time-frequency analysis allows us to determine the
4



frequency components at a particular time, so that the frequencies of the

dominant sinusoidal components can be displayed at each time instant.

A natural way of characterizing a signal simultaneously in time and frequency
domains, based on the expansion and inner product concepts, iS to compare
elementary functions that are concentrated in both time and frequency

domains with the signal.

2.1.1.1 Time Analysis

Time analysis is the investigation of the properties of time-varying
quantities. Fundamental physical quantities, such as electric and magnetic
fields, change as a function of time and one can call these functions of time

as signals, or time waveforms, denoted by the symbol x(7).

Time analysis techniques provide the information related to the time variation of
that particular quantity, such as its magnitude at specific time instants, its rate of
change with respect to time, its duration, ...etc. In order to obtain further
information about the signal, it is essential to study the signal in terms of a
different representation. A powerful approach in this direction is the spectral

representation, which is called frequency analysis.

2.1.1.2 Frequency Analysis

In order to extract further information about a signal, frequency analysis
or spectral analysis, is a major requirement. Frequency analysis provides
the information related to the frequency content of a signal via the

Fourier transform.



2.1.1.3 Linear Time-Frequency Representations (TFRs)

In many signal processing applications, separate time and frequency analysis
approaches may not be sufficient. In these cases, it may be useful to combine
these two methods to yield the Time-Frequency Representations (TFRs). For

any function x(t), a corresponding TFR T (¢, f) may be obtained, which

basically is a representation of the spectral behavior of that signal localized at

t.

An important subset of TFRs is a group of representations known as linear
TFRs. Linear TFRs satisfy the superposition or linearity principle which states

that if x(¢z) is a linear combination of some signal components, then the TFR of
x(t) is the same linear combination of the TFRs of individual signal

components by the same weights.

x()=cx () +c,x, ) =>T (¢, f)=cT, @ f)+c,T, (f) 2.1

Linearity is a desirable property in many applications involving multi-
component signals, especially when the isolation of the signal components is
needed. The Short-time Fourier Transform is the mostly used linear TFR used to

study non-stationary signals [8].

2.1.2 The Short-Time Fourier Transform (STFT)

The Fourier Transform does not give any information on the time interval over
which a particular frequency component exists. It does not explicitly reflect the
time-varying nature of a signal. It only indicates the presence of various

frequency components within the signal, since the basis functions used in the



classical Fourier analysis cannot be associated with any particular time

instant.

The motivation behind the Short-Time Fourier Transform (STFT) is to obtain the
frequency content at a particular time. To this end, the signal is localized around that
time instant and Fourier analysis is carried out over this localized signal, neglecting
the rest of the signal. Since the time interval which is the support of the
localized signal is short compared to the whole signal, this process is called Short-

Time Fourier Transform.

The STFT is a formulation that can represent signals of arbitrary duration by
breaking them into sub-signals of shorter durations, and applying the FT to each
sub-signal. It is based upon a series of overlapped and segmented Fourier
transforms that occur across the data stream. In the STFT, the individual Fourier
transforms from these multiple segments give a good indication of the time-

frequency properties of the signal.

The STFT of a signal x(¢) is defined as [9],

X g 6, ) = [ x(tywit’ = t)exp(—j2t )t 2.2)

where x(¢) is a time signal and w(¢) is a suitably chosen window function.

The function w(t) could be simply a rectangular pulse of finite duration, although

often a Gaussian or Hamming function is used in order to get rid of the undesired

effects of the Gibbs phenomenon [10]. The window function simply limits the

7



duration over which the Fourier Transform occurs. This window is then translated

along the time axis. By moving w(¢) and repeating the same process, one could

obtain an idea about the evolution of the frequency contents of the signal.

2.1.2.1 Time-Dependent And Window-Dependent Uncertainty
Principle [ 6]

The time-bandwidth product theorem, or Heisenberg uncertainty principle, has
played a prominent role in discussions of joint time-frequency analysis.
According to this principle, the product of time and frequency resolution is always
greater than a minimum value. The uncertainty principle for the short-time Fourier
transform is a function of time, the signal, and the window. Since the uncertainty
principle prohibits the existence of windows with arbitrarily small duration and
arbitrarily small bandwidth, the joint time-frequency resolution of the short time

Fourier transform is inherently limited.

From the original signal x(7), one defines a short duration signal around the time of

interest ¢ by multiplying it by a window function that is peaked around the
time¢ and falls off rapidly. This has the effect of emphasizing the signal at time ¢

and suppressing it for times far away from that time.

The choice of a window function indicates both the time and the frequency
resolution for the entire representation. Since there is an inherent trade-off
between time and frequency localization in short time Fourier transform for a
particular window, the window function cannot be chosen arbitrarily. The degree

of trade-off depends on the window, signal, time, and frequency.

To summarize, in STFT applications, narrow window means good time resolution

but poor frequency resolution and wide window means poor time resolution but

8



good frequency resolution. For a given window, time and frequency resolution of

STFT is fixed.

2.1.2.2 Analysis Window Selection

Since the choice of the analysis window directly affects the trade-off between
frequency resolution and time resolution as well as the side-lobe attenuation, one

has to know the effect of the window.

Let us examine such effects based on a complex exponential signal given in

discrete time domain as

x(n) = Ae™" (2.3)

If one multiplies this signal with a window function w(n) and takes the discrete

time Fourier transform of the resulting product, one obtains the result stated

below:

Xy ()= x(myw(n).e™™ (2.4)
= AD w(n).e " (2.5)
=AW(w—-w,) (2.6)

where W (w) is the discrete-time Fourier transform of the window.

9



So, the transform of a windowed sinusoid is equal to the transform of the window

function shifted by an amount equal to the frequency of the sinusoid.

2.1.2.3 An Example for One Dimensional STFT

In the following example, we use a Hamming window but other windows can also
be used. Once we have decided on a window function and a window length, we
can compute the DFT of this frame. The number of samples of DFT should at
least be equal to the window length, with any additional samples being produced
via zero padding. The details of the STFT approach are demonstrated in the

example given below, based on a joint time-frequency signal representation.

Consider a time domain signal x(¢), which is plotted in Figure 2.1, consisting of
sinusoids with two different frequencies, the first one with a frequency f; = 50Hz
existing over an interval T} = [1,128] seconds, and the second one with a frequency
f, =100Hz existing over the interval T, = [129,256]sec0nds. The Fourier
transform of x(z) is computed and presented in Figure 2.2. It is clearly seen that
the plot for the magnitude of the FT indicates the presence of two distinct
frequency components of frequencies f; and f, But it does not give any

information about the time range over which a specific frequency component

exists.

2j7x.f,. <t <
= exp( ] fix) 1< <128 2.7)
exp(2jr.f,.x)  129<r<256

One approach, which can give information on the time localization of the

spectrum, is the short-time Fourier transform.

10



In this example, STFT is computed using a MATLAB code, and the magnitude of
the STFT output is plotted in Figure 2.3.

real(signal)

0.8

0.6

0.4

0.2

-0.2H

-0.4H

0.6

0.8

-> time

Figure 2.1 Time characteristic of the signal (Real part of the signal).

abs (fft(signal))
150 T T

100

50+

- W™
0 50 100 150 200 250

--> frequency
Figure 2.2 Frequency characteristic of the signal (Magnitude of FFT of the

signal).
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STFT of signal

--> frequency

--> time

Figure 2.3 Time-frequency characteristics of the signal (Magnitude of STFT of

signal).

By using the STFT approach, we can see that, two different time-frequency

components can be clearly located. It gives information about when these

different frequencies fjand f, occur or how they change over time.

If the window is too wide, we get good frequency resolution, but we lose the
information of any locality, and if the stationary part of the signal is shorter than
the window width, the results start to become useless. If the window is shorter
than the stationary part of the signal, the frequency information that was important

is lost, at the expense of knowing when it occurred.

12



2.1.2.4 Space-Spatial Frequency Distributions

In some applications, the signal to be analyzed may be a function of one or
more space variables. Then, in contrast to the conventional frequency
concept used in the spectral analysis of time signals, the variables in the
Fourier transform will be spatial frequencies. In this case, the STFT

approach is replaced by the WFT as explained below.

2.1.3 The Windowed Fourier Transform (WFT)

To extract local-frequency information from a signal (the independent variable
may be time, space coordinate, ...etc.) , the Windowed Fourier Transform represents
an analysis technique. The approach is identical to the STFT in the sense that a

sliding window function is used in the FT to obtain the local spectral properties.

2.1.3.1 Shannon Sampling Theorem and Nyquist Sampling Rate

According to the Shannon sampling theorem, it is possible to reconstruct a
function exactly from its samples, provided that the function is band-limited and
the sampling frequency is sufficiently high to resolve its highest frequency

components.

The sampling theorem gives a directive for selecting sufficiently small grid

spacing Axonce the band-limit Q is known. It states that Ax must be chosen

to satisfy the critical sampling rate AX:éwhich is called the Nyquist

sampling rate and the frequency % is known as the Nyquist frequency. The

Nyquist frequency is the highest frequency that can be resolved using a given
sample spacing Ax and all higher frequencies will be aliased to lower
frequencies. The Nyquist sampling rate is the largest grid spacing that can

13



resolve the frequency and this also implies that in order to resolve a single
sinusoidal function, one must have at least two sample points per period of the

wave.

Assume that f is a band-limited function whose Fourier transform is zero

outside of the interval {—% 5} If Ax is chosen as:

AX < —, (2.8)

then f may be reconstructed exactly from its samples as follows

[, =f(nAx) = f(x,) (2.9)

£ = Z nsmc(ﬂ(xAxx )) Axi fnsin(ﬂ(x—x”)/Ax) .10

oo T(x—x,)

n=—oo

sin(x)

where the sinc function is given by sinc(x)= , shown in Figure 2.4

X

below.

14



--> sinc (x)

Figure 2.4 The sin ¢ function sin c¢(x) = sin c(x)/ x

2.1.3.2 Two Dimensional Windowed Fourier Transform
The two dimensional windowed Fourier transform of a signal f(x,y) is defined

by

WET, (. 3.k, .k, )= [ [ fle. @~ x. = y)e "““Paadp  @.11)

where w(a, B) denotes a two-dimensional, usually even and real-valued, window

function.

The standard procedures used to realize one dimensional WFT approaches, can be
suitably generalized to the two dimensional case as demonstrated in the example

below.

15



2.1.3.3 An Example for the Two Dimensional WFT

Consider a spatial signal, as shown in Figure 2.5, consisting of two localized

sinusoids with frequencies ( 1, fyl) and ( Jfx,, fyz).

The first component has frequency fxl1=10(1/m) and fyl = O(I/m) existing over
an interval x = [0,2] meters and y = [0,2] meters (Region 1) and the second a
frequency fx2= 20(1/m) and fy2=0(1/m) existing over another interval

x= [— 2,0] meters and y = [— 2,0] (Region 3).

The Fourier Transform gives two approximate 2D sinc functions without any
implication of localization. Space and frequency characteristics of the signal are

different in the regions below:

Regionl: x>0& y >0
Region2:x <0& y >0
Region3:x <0& y <0

Regiond:x >0& y <0

We simulate this 2D signal, which exists in x =[-2,42] and y=[-2+2] with

256x256 samples by a Matlab code.

16



2
15F -~

1.5

.5

X (m)

Figure 2.5 Spatial characteristic of the 2D signal (Real part of the signal).

316000
114000

fx (1/m)

Figure 2.6 Frequency characteristic of 2D signal (Magnitude of FFT of signal ).
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In this example, we use a Hamming window in the Matlab code, but other
windows can possibly be used. Once we have decided on a window function and a
length, we can compute the 2D DFT of this frame. The size of this 2D DFT is
chosen to be at least window length, with any additional samples being produced

via zero padding.

One approach, which can give information on the space resolution of the
spectrum, is the 2D WFT. A moving 2D window can be applied to the signal and
the Fourier transform is applied to the signal within the window as the window is

moved.

In order to have an idea of what can be achieved by the 2D WFT, the following
results are obtained. The grid is 256x256 and the window function is Hamming

with a length occupying 65 samples in xand y.

The 2D WFT is evaluated at [x =1.5,y= 1.5], which is in the first region, and

then at [x =-1.5,y= —1.5] which is in the third region.

When we plot the windowed Fourier Transform at [x =15y= 1.5] which is in the
first region, we can see only the frequency characteristic of the signal focused
around ( X1, fyl), as shown in Figure 2.7, and when we plot the windowed
Fourier Transform around center [x:—l.S,y :—1.5], which is in the second
region, we can see only the frequency characteristic of the signal focused around

( fxa, fy2) as expected, as shown in Figure 2.8.
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Figure 2.8 Magnitude of 2D WFT of signal around center x =—1.5,y



As a result, by using the 2D WFT, we can see that the two space-frequency
components can be clearly identified, located around the locus of the two

frequencies. It gives information about when these different frequencies ( 1, fyl)

and ( fx2, fn ), occur or how they change over the spatial domain.

2.2 Electromagnetic Scattering

2.2.1 Introduction

If an electromagnetic wave is incident on an object, which may be perfectly
conducting or dielectric, the wave is scattered because of the presence of the

object. The sum of the incident and the scattered fields form the total field.

Most of the scattering problems can not be solved exactly due to the complex
shape (or material parameter variations) of the scatterer, and approximate
numerical approaches are used to analyze scattering problems. The most well-

known approaches are

1. Finite Difference Time Domain (FDTD) method [12],
2. Method of Moments (MoM) [13],

3. Finite Element Method (FEM) [14].

Finite Difference Time Domain (FDTD) method is one of the most successful
numerical approaches to the direct solution of Maxwell’s curl equations governing

the electric and magnetic field in time domain.
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Method of Moments (MoM) is used to solve a certain class of integro-differential

equations to analyze (mostly) perfectly conducting structures.

Finite Element Method (FEM) is commonly used for modeling complex, in-
homogenous structures for the solution of the Maxwell’s differential equations. In
this method the unknown function is approximated on a domain, which is
represented by a set of elements of simple shape with a finite number of

parameters.

2.2.2 Mathematical Formulation

In scattering problems the incident field is usually taken as a plane wave given by

E,(F) = é, exp(—jki.r) (2.12)

The amplitude ‘E‘ is chosen to be 1 (volt/m), k = w./u,e, = (27)/ 4 1S the wave

number, A is a wavelength in the medium, i is a unit vector in the direction of

wave propagation, and ¢, is a unit vector in the direction of its polarization [11].

Associated WithE, there is a magnetic field H,, which is perpendicular to Ei,

given by:

H,(F) = (ixé,) exp(— jki.r) (2.13)
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v

/,

iXe,
Figure 2.9 Directions of E and H fields and the propagation.

Both E, and H ; satisfy Maxwell’s curl equations in free space:
VXE, = —jwu,H, (2.14.a)
VxH, = —jwi, E, (2.14.b)

If H, is eliminated, E satisfies the homogeneous vector wave equation given

by:

VX(VXE,)—k’E, =0 (2.15)

Now, consider a non-magnetic dielectric object with permittivity € and

permeability 4, , occupying a region Q inR*, as shown in Figure 2.10 below.
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Figure 2.10 A non-magnetic dielectric scatterer with permittivity &€ and
permeability 4, , occupying a region Q inIR>.

where the incident field components are given by the equations (2.12—2.13) in

the absence of the scattering object and (Es,ﬁs) are the scattered field

components whose sources are in €.

The total field components (E t,Hy ) are defined as:

Ei=Ei+E; (2.16.a)

Hi=H;+Hg (2.16.b)

which satisfy:

VXE, =—jwuH, (2.17.2)
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VxH, = — jwéE, (2.17.b)

where 1 =y, everywhere and € = g, outside Q and &= ¢ within Q.

After substituting (2.16)in (2.17), the following equations are obtained

VX(E, +E,)=—jwi,(H, + H,) everywhere (2.18.a)
Vx(H, +H,) = jwe,(E, + E,) outside Q (2.18.b)
Vx(H, +H,)= jwé(E, +E,) inside Q (2.18.¢)

Using (2.16) and (2.18a —2.18b), the following equation is generated:

VXE, = —jwi,H, (2.19.2)

VxH , =—jwe,E, outside Q (2.19.b)

Finally, for the scattered field inside Q, we obtain
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VxH, +VxH = jwéE, + jwéE, (2.19¢)

and using (2.13), we obtain:

VxH, = jw(é—¢&,)E, + jwéE, inside Q (2.19d)
The term jw(€—¢g, )E acts as a source term for the scattered field [15].
Equations (2.19a —2.195—2.19¢) are the governing partial differential equations
of the scattered field. It is noted that outside the scatterer, the equations turn out to

be free-space Maxwell’s equations, and inside the scatterer, the equation (2.194)

is not homogenous, containing a source term creating the scattered field.

If Q represents a PEC object, the total field vanishes within Q and the scattered

field satisfies (2.19a)and (2.195). The sources of the scattered field lie on 9Q

(representing the boundary of €) and they are represented by the boundary

condition

(AXE,) = —(AxE,) (2.19)

where 7 is the unit outward normal on 9Q2.
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2.2.3 Dependence of the Scattering Characteristics to Object

Geometry and Material Properties

The scattering characteristics of an object depend on its geometry (size, shape,

etc.) and its material properties (&, &, and ¢ ). For a PEC object, the scattered field

variation is a complicated function of the shape of the scatterer. In addition, for
time-harmonic excitations (i.e. when the excitations are sinusoidally varying with
an angular frequency @), the scattered field also exhibits a dependence on the

wave number k (which is directly proportional to @ ).

The scattering characteristics are determined by comparing the object size with
the wavelength of the electromagnetic excitation. The parameter representing the
object size is d, which is a dimension characterizing the PEC object. For
example,d may represent the side-length for a cube. If d << A, the frequency
domain calculations are carried out in the low-frequency region, where the
magnitude of the scattered field is very small compared to the magnitude of the
incident plane wave. The Born and Rytov approximations are used to handle low

frequency scattering problems [11].

If d=A (ie. if d is comparable to wavelengthA), the calculations are
performed in the resonance region, implying that there is considerable interaction

between the object and the electromagnetic excitation.

The high-frequency region (d >> A) is also called the optical region, since the

scattering mechanism is similar to the scattering of visible light by objects to be

detected by the human eye.

The calculation of the scattered field is not an easy task, because of the

complicated dependence of the field variation to the geometry of the scatterer. The
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analytical solution of scattering problems can be obtained only for a few specific
cases. The field scattered by a PEC sphere or an infinite cylinder for plane wave
incidence, can be obtained by solving the governing partial differential equations
by using separation of variables and the complete solution is obtained in the form

of an infinite series [15].

There are other problems such as the Sommerfield half-plane problem, or the edge
scattering problem, that can be solved analytically. If the analytical solution is not
achievable, one may try to obtain an approximate solution via FEM, MoM or
FDTD as explained earlier. In all these methods, the computational domain is
discretized (i.e. it is represented as a union of smaller sub-domains) and the

unknown function (which is either E and H field variation, or an equivalent

surface or volume current density, J ). Finally, the integral or differential equation
is solved approximately, yielding the unknowns. The numerical solution
techniques are effective for low or medium frequency range, and for high
frequency applications they become formidable, because of the necessity to
employ a large number of unknowns to model the problem. For high frequency
applications, methods based on ray-optical approaches are quite popular, and the
most well-known ray-optical approach is the Geometric Theory of Diffraction

(GTD) introduced by Keller [3].

The geometrical theory of diffraction is an extension of geometrical optics,
which accounts for diffraction. It introduces diffracted rays in addition to
the usual rays of geometrical optics. These rays are produced by incident rays
which hit edges, corners, or vertices of boundary surfaces or which graze such

surfaces.

Various laws of diffraction, analogous to the laws of reflection and refraction,

are employed to characterize the diffracted rays. A modified form of Fermat's
27



principle, equivalent to these laws, can also be used. Diffracted wave fronts
are defined, which can be found by a Huygens wavelet construction. There is
an associated phase or eikonal function, which satisfies the eikonal equation. In
addition, complex or imaginary rays are introduced. A field is associated with
each ray and the total field at a point is the sum of the fields on all rays
through the point. The phase of the field on a ray is proportional to the optical
length of the ray from some reference point. The amplitude varies in
accordance with the principle of conservation of energy in a narrow tube of
rays. The initial value of the field on a diffracted ray is determined from the
incident field with the aid of an appropriate diffraction coefficient. These
diffraction coefficients are determined from certain canonical problems. They

all vanish, as the wavelength tends to zero.

2.2.4 Examples of Scattering Applications

In this section, two scattering problems will be studied, namely 1) the scattering of
a TM , plane wave by an infinite PEC circular cylinder whose axis is paralled to
the z-axis, and ii) the Sommerfeld half-plane problem. In both cases, the ray

optical approach will be underlined, since our ultimate aim is to identify the ray

directions by the 2D WFT.

2.2.4.1 The Circular Cylinder Scattering Problem

Consider the diffraction of a plane electromagnetic wave by an infinite conducting
cylinder of radiusa as shown in Figure 2.11. Let (r,,z) be a system of
cylindrical coordinates such that the z-axis coincides with the axis of the cylinder
and the angle ¢ is measured from the direction of propagation of the incident
wave. We assume that the time dependence is described by the factorexp(jat),

where w is the angular frequency of the incident field, and that the electric field

vector of the incident wave is parallel to the axis of the cylinder.
28



Then the problem reduces to finding the complex amplitude of the scattered field

E satisfying Helmholtz’s equation

2
231 L km =0 (220)
ro\_ ar) r’ade

and the boundary condition
E|,_ +E,exp(—jkacosp) =0 (2.21)

The solution of our problem has the form

E=Y N,H? (kr)cosng (2.22)

n=0
where the Hankel function is defined as H 22) (kr)y=J, (kr)— jY (kr).

The unknown coefficients can be evaluated by using the boundary condition and

the following equality, which gives the incident field:

exp(— jkacos @) = J (ka) +2)_ (= j)" J, (ka)cosng
n=l1 (223)
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Therefore, the required solution for the scattered field is given by:

=—E J (ka) H(z)(k)‘l‘ZZ( ” Jn(ka)

T HP (kr)cosn
H (ka) 2D gy T D 4

(2.24)

A

(L2
Incident wave \J "

Figure 2.11 An incident plane wave in the presence of a PEC circular cylinder.

The series solution is exact in the sense that the series expansion yields the
analytical solution for all frequencies. The ray-optical approach may be applied

for the case where 2a >> A as outlined below.

Let us denote the scattered field by u#* and the total field by u. The asymptotic
theory is based on geometrical optics and the geometrical theory of diffraction [4-
— jkx

5]. In the asymptotic theory, one seeks the solution for u#* in u=e¢” +u’, as a

superposition of the form:
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L
W’ (x,y) =D A (x, y)e (2.25)

=1

Here L denotes the number of fields. In our specific example, the sum consists of
a reflected field and possibly one or two diffracted fields, and a shadow forming

field.

Each field A(x, y)e”* ™ is a solution to the equation

Vu+k*u=0 (2.26)

JkS (x.y) 3

where, A is called the amplitude, k is the wavenumber, e is the phase

factor, and S is the phase. To determine the phase of each field we can use the

JkS (x,)

methods of the asymptotic theory. First we substitute A(x,y)e into
Vu+k*u=0 and cancel the phase factor to obtain:
—k’[(VS)* =1]A+2ikVS VA +ikAVS + VA =0 (2.27)

Equating the leading order term of equation(2.27), to zero, yields the eikonal

equation of geometrical optics:

(VS)*-1=0. (2.28)
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This is a first order non-linear partial differential equation for the phase S, which
we can solve by the method of characteristics. To do so, we introduce the two-

parameter family of characteristic curves or rays X(o,7), Y(0,7) and the

equations

dX (0,7) _ s dY(o,7) _ S, (2.29)
do ) do '

In this case,

S,=S.(r)and S, =S (1) (2.30)

are independent of the arc-length o, because the index of refraction is a constant.

Hence the rays propagate along straight lines in the direction VS

X(0,7) = X(0,7)+0S,(1), (2.31a)

Y(0,7)=Y(0,7)+0S (7) (2.31b)

On each ray, the phase is determined from the equation

ds(o,7) _1 2.32)
do '
S(o,71)=S5,(r)+0 (2.33)
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The initial condition S,(7)=SI. is determined on the surface of the

scattererI'(7):

I'(7) =(X(0,7),Y(0,7)) (2.34)

From the boundary condition

u' =—e ™ (x,y)eT (2.35)
for the reflected field,
S,(7)=X(0,7) (2.36)

Arguments pertaining to the geometrical theory of diffraction yield S,(7) for the

diffracted fields.

To determine the ray direction VS, (7) we use

(VS)’=1=0 (2.37)

33



and the strip condition on I

ds, (1)

dX dy
=S5.(0)—+S,(0)— 2.38
dt X()dr ’()dr (2.35)

2.2.4.2 Rays of the Scattered Field

The scattered field consists of four terms

Ug =Up +Uy +u,, +u, , (2.39)

which are the reflected field u,, the shadow forming field Uy, the diffracted field

u,, originating at (0,1), and the diffracted field u ,_originating at (0,-1). The

fields u, and u satisfy the boundary conditions
uR(x,y):—e_ﬂ“ (x,y)e I' x<0, (2.40)
u,(x,y)=—e’ (x,y)eT x20. (2.41)

Both diffracted fields vanish on the surface of the cylinder. The field u, in the

region x>0, | y| <1 is called the shadow forming field because u , +u, vanishes

in that region.
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The rays

X(o,7)=cost—0ocos2t  m/2<t<37/2 (2.42a)

Y(o,7)=sint—osin 27 w/2<7<37m/2 (2.42b)

are shown in the Figure 2.12 below.

Fefeted Rays dffated +@s
T T T

Figure 2.12 The figure on the left shows the rays reflected by the circular cylinder,
and the rays of the shadow forming field. The figure on the right, shows the
diffracted rays emanating from (0,1).

For reflected rays, if we find out the angle,7 = @, for each point, (x, y), in the

suggested regions , we can determine corresponding reflected rays by using the

equations given below:
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(cos@sinQ) 05T

Qi
Qr

a,

P(x,y) st

Figure 2.13 Geometrical explanation of the construction of reflected rays, where

ay is the unit reflected ray vector and a,, is the unit normal vector.
. _P-N
Ay =7—=—
[P~

(x, y)—(cos 6,sin )
o

(x—cos@,y—sin8)
0 9

where

0'=\/x2 —2xcos@+1+y> —2ysinb
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and
ap = (cos 0,sin 9) ,
then

i, a, = (cos 4,sin H)O(x—cos 6,y —sin 9)

o

_cos O(x—cos8)+sinf(y—sin)
o

&R.&U :&R.(_&X)

xcos@+ ysind—1 — o3

\/x2 —2xcos@+1+y> —2ysinb

=d,®(-a,)=—cos@

f :xcoséH—ysiné’—1+cosé?\/x2 —2xcos@+1+y> —2ysin@ =0
(2.44)

For a given point, (x,y), the angle @ can be found, by using f solve function of

Matlab.

Similarly for u, the rays are

X(o,7)=cost+0  -m/2<t<7m/2 (2.45a)

Y(o,7)=sint —7/2<t<7w/2 (2.45b)

In the shadow region, |y| <1, x>0, Uy +u,;=0. However, the exact solution is
nonzero there, in view of diffraction effects. The additional terms u,, and u,_

account for the diffracted field. The rays associated with u,, , u, are called
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diffracted rays. Each incident ray, which is tangent to the cylinder, gives rise to a
surface diffracted ray. Here the incident rays are tangent at (0,1) and (0,~1) and

bound the shadow region.

Each surface diffracted ray travels along the surface of the cylinder starting at the
point of diffraction. As it travels along the surface, it sheds additional diffracted
rays into the domain. These new rays leave the surface of the cylinder

tangentially.

The surface diffracted ray emanating from (0,1) travels in the clockwise direction

along the surface of I and sheds the family of rays

X(o,7)=sint+0ocost 7,0>0 (2.46a)

Y(o,7)=cost —osint (2.46b)

The surface ray emanating from (0,—1) travels in the anticlockwise direction and

sheds the family of diffracted rays

X(o,r)=0cost —sint  7,0202. (2.47a)

Y(o,7)=0sint —cost (2.47b)

For diffracted rays, if we find out the angle,z =90 — @, for each point, (x, y), in

the suggested regions, we can determine corresponding diffracted rays by using

the equations given below:
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Figure 2.14 Geometrical explanation of the construction of diffracted rays,
emanating from (0,1) where a, is the unit reflected ray vector and a, is the unit

normal vector.

x—cosé’,y—siné’)

a,®d, = (cosé’,siné’)'(

A, (2.48)
o
_cos 0(x —cos8)+sinB(y —sin ) 0 (2.49)
o
f =xcosb,, +ysinf,, —1=0 (2.50)
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Therefore, for a given point, (x, y), the angles 6, , can be found, by using f solve

function of Matlab.

- A

Figure 2.15 Geometrical explanation of the construction of diffracted rays,
emanating from (0,—1) where a, is the unit reflected ray vector and a,, is the unit

normal vector.

2.2.4.4 The Sommerfeld Half-plane Problem

The geometry of the Sommerfeld half-plane problem is given in Figure 2.16

below:
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Screen

Figure 2.16 The geometry of the Sommerfeld half-plane problem.

The screen is a PEC object with zero thickness occupying the negative vertical

axis (i.e. x=0,y<0). general, the angles between the incident and diffracted

rays and the normal to the screen are & and €, respectively.

We assume that the incident field is a TMz plane wave given by the equation:

E"™ (x,y) = exp(— jkx) (2.51)

It is clear that the incident wave travels in + x direction, which implies thatax =0 .

Using geometric optics, the reflected field can be evaluated as:

41



E! (x,y) = —exp(jkx) (2.52)

in the quadrant x <0, y <0.

The edge-diffracted field is given by:

E!(x,y)=D.g""*.exp(jkg) (2.53)

where g =+/x”> +y? and the diffraction coefficient D is

__exp(—jkz/4)

2270 [sec(8/2)+csc(8/2)] (2.54)

It is important to note that the diffracted field is defined everywhere (i.e. for all
(x,y). The region x = 0and y <0 is the shadow region with the shadow forming

field:

EY (x,y) =—exp(— jkx) (2.55)

In summary, the incident and diffracted fields are defined everywhere, and the

reflected and shadow-forming fields are defined in the third (x <0,y <0) and

fourth (x =20, y £0) quadrants, respectively.
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CHAPTER 3

UTILIZATION OF THE 2D WFT FOR THE

IDENTIFICATION OF SCATTERING MECHANISMS

In this chapter, the applicability of the 2D WFT for the identification of the ray
directions is demonstrated via the two specific examples discussed in the previous
chapter. The analysis approach will be given in detail for the scattering problem

where the scatterer is an infinite PEC cylinder with circular cross-section. In this
problem the input is the incident field E and the output is the scattered field E,

which is also z-polarized (as the incident fieldEi) and can be expressed as a

linear combination of Bessel functions.

E — éze—jloc — ﬁze—jkrcosg — ﬁze—jz; (3'1)

E"=E +E' (3.2)
where

k:‘];‘:g:ﬁ (3.3)

43



The total field,fmt, is the sum of the incident and scattered fields and it satisfies

the Helmholtz Equation, where the boundary conditions are:

E"=0 for |p| <a

E"=0 at p=a

(3.4)

Then, the resulting solution for the scattered field can be approximately expressed

as a linear combination of cylindrical waves for kp >>1. This is the large

argument case for Hankel functions.

In order to check the validity for the large argument assumption, let k =327 be

chosen in the simulations and p =1.5m Then,

kp = 327[% =487

kp =151>>1
The wavelength and frequency are evaluated as

oW 24 _2x

c c

and
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(3.5)

(3.6)
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f=5 = 4.8GHz. (3.8)

The scattered field can be expressed as the superposition of cylindrical waves as

5 ﬁzzam exp(— jkﬁm.;)
m

(3.9)
Jko

where the position vectorr is :

r=xdy +yd, = pip (3.10)

and the wave number is

@3.11)

where k =k = k(umxﬁx +u, a ), o, isaconstant, and @ is the unit vector in

the direction of propagation of the m” scattered component.

The above expression can be deduced from the large argument approximation for

a v" order 2™ kind Hankel function:
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In our case, { =kp

Then,
— Jk (Xt x+ yipy )
E*(x,y)=d D, bn \/Z(x2+y2)i
Let
1
glp)=——
Jkp

then z-component of the scattered field will be:

EX =Y B8 (p)exp(—jk(xu,, +yu,,))

where
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1 T
[2 jovr j=
B, =a, 2274 (3.16)
z

FT{E; }: Zﬁm FT{g(\/xz + y2 je_jk(UmxHUmyy)} (3.17)

where the 2-D Fourier Transform is defined as:

G(fx, fy)= i [ [ e’y ej2r(xfx + y'fy) dx‘dy’ (3.18)
FT{e(x, y).e e " } = G(f, + %=, f, +%5)) (3.19)
where
ku =-2Zy =2xim and ku =2 = _Qglm (3.20)

mx c mx A my c A :

However, in this problem for instance, the basic scattering mechanisms are
reflection and surface waves originating from (x=0,y=1) and (x=0,y=-1)
points. All these three scattering mechanisms lead to cylindrical waves (all z-
polarized), whose propagation directions keep changing with respect to the

observation points.
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A simple 2-D FT cannot isolate these components as integrals in equations are

computed over the ranges (— co,+o0) .

Instead, the 2-D WFT must be computed over smaller regions in the x-y plane,

chosen by the window function of the WFT [16].

WFT {E:} =3 fin WFT (/x4 yHye e b 300

Assume that window of WFT is narrow enough to take

g(Jx*+y?) = ip = constant around the center point (x,y).

5

Then,

EXxy, fof) =, pm [[e ™ wie -y - )
x'y'

—j2m(x' ' f, )dx'dy’
oI LAY Sy )dedy 3.22)

where W(x—x",y—y’) is a properly chosen window function centered around

(x, y).
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Let us further assume that the window function is separable in x, y coordinates as:

W—x\y—=y)=W, (x=x)W, (y-y) (3.23)

An example of a separable window function is the rectangular window function

given below

1 —x< —v]<
W(x—x’,y—y')={ i (3.24)
0 elsewhere
In the expression of the scattered field variation,
—s o ikim T
E = azzm/)’m T (3.25)

. . . o h .
0, denotes the unit vector in the propagation direction of the m" scattered field

component as

(3.26)

E* will asymptotically tend to a plane wave in the far field as
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=4,y fme (3.27)
Using the linearity of the WFT, we get

WET{E!} =3 fn WET fo | (3.28)

24

where k = - The expression above can be written as

_jk(x'”mx"‘y'”my) —J27(x' fx+Y' fydx'dy")

ES(x,y, [ fy)=D, B [[e Wix—r.y=ye
x'y'

(3.29)

where f,,f, are spatial frequencies, and W(x—x",y—y’) is a window function

centered around the point x, y.

Then the scattered field will be:

' ' - -27[[)"(% fo\"(% fy) ' ’
ES(x,y, foo Fy) =, B [[W(x—x,y=y)e 00 G0 g gy
x'y'
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. , Umy
-2y ry

:Zm fm wa (x'—x)e_jm'(%ﬁ*) dx'IWy(y'—y)e A dy (3.30)

If the windows are infinitely large, (i.e. FT case), then:

[W, (x—x)exp(=j2m' (@ + £) )= [ exp(—j2rigex’) e /27 Fay

—oo

=27 O (w+2m&x)
=276 Qaf, +2r%m) (3.31)

Note that & (27 +27x%>) is non-zero only at f, = -4«

EJ(xy, fr- fy)=D, An 21)* 8 (24, +274) 6 27f, +27%)

(3.32)

. 27
isnon-zeroat f= —5=—-2k and f, = -2 =—-92k whered = -

2
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In our specific applications the number of samples, is chosen as N =256 .

For extension in x-direction is taken as X =4 (i.e. —2 < x <2) which yields

Af = % , and maximum frequency fx__ = %Afx =32,

max

Similarly the extension in y -direction is taken as Y, =4 (i.e. —2<y<2),

max

Afy = i , and maximum frequency fy__ = %Afy =32.

Reading f and f, from the WFT map, direction vectors, Umx andUmy can be

found as:

and Umy = — 2@ where Y™ = 1 (3.33)

Umx= — .
k Umx fx

In the simulations, we chose

kp = 3272% =487 (3.34)

Therefore the wave number will be:
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k=z=ﬁ=2—ﬂ=32ﬂ' A=0.0625m. (3.35)
c c A

and the frequency will be

=4.8GHz. (3.36)

where the diameter of the cylinder is 2 meters.

. . . d
Since the condition for the resonance region is 0.1 < 1 <10. Then we can say

. . . . d 2
that, we are in the near optical region, since z = T =32.
16
mx? my? _ k2 2 2
fxz%—fy2 =U4—”I<2+U4—,’rk2 —#(umx +u,,") (3.37)

1’fx2+f:y2 :%:;2”:16:% (3.38)

2 2 A . .
w, +u,” =1 as uisaunit vector.

mx m
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It is also straightforward to conclude that this analysis can be extended to the
Sommerfeld Half-plane Problem to identify the ray directions at different space

points.

The results for the scattering problem where the scatterer is an infinite PEC

cylinder with circular cross-section, are shown in Figures 31.-3.22.

The spatial domain is a square —2 < x,y <2, and the PEC cylinder occupies the

region x° +y’> <1. The wavenumber is k =327 . The real part of the scattered

field is shown in Figure 3.1, and the absolute value of its Fourier transform is

given in Figure 3.2.

The non-zero components of the Fourier transform are located approximately on
the circle with radius 327, demonstrating the impossibility of the localization of
the ray directions. In fact, all possible ray directions appear in the Fourier
transform application due to the fact that the Fourier transform reflects the
spectral properties of the function globally. Similar arguments hold for the total
field and its Fourier transform shown in Figures 3.3. and 3.4. In Figures 3.5-3.22,
the 2D WFT magnitude plots are given, where the window function center point
moves on a circle of radius 1.5m, and the window function is Gaussian with

extension 1m.

It is clear from these figures that, depending on the location of the center point,
the ray directions corresponding to the reflected, surface diffracted or shadow

forming fields are identified accurately via the WFT.
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Figure 3.1 The real part of the scattered Figure 3.2 The absolute value
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Figure 3.3 The real part of the total field Figure 3.4 The absolute value of the
Fourier transform of the total field
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Figure 3.5 2D WFT of the scattered field Figure 3.6 2D WFT of the scattered
with window center at x=1.500, y= 0.000. field with window center at x= 1.410,
y=0.513.
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Figure 3.7 2D WFT of the scattered field Figure 3.8 2D WFT of the scattered
with window center at x= 1.149, y= 0.964. field with window center at x= 0.750,
y=1.299.
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Figure 3.9 2D WEFT of the scattered field Figure 3.10 2D WFT of the scattered
with window center at x= 0.261, y= 1.477. field with window center at x=-0.261,

y=1.477.
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Figure 3.11 2D WFT of the scattered field Figure 3.12 2D WFT of the scattered
with window center at x=-0.750, y=1.299. field with window center at x=-1.149,
y=0.964.
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Figure3.13 2D WEFT of the scatered field  Figure 3.14 2D WFT of the scattered
with window center at x=-1.409, y= 0.513. field with window center at x=-1.500,

y=0.000.
angle=200 angle=220
350 350
300 300
250 250
200 200
150 150
100 100
50 50

Figure 3.15 2D WFT of the scattered field Figure 3.16 2D WFT of the scattered
with window center at x=-1.410, y=-0.513. field with window center at x=-1.149,
y=-0.964
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Figure 3.17 2D WFT of the scattered field Figure 3.18 2D WFT of the scattered

with window center at x=-0.750, y=-1. field with window center at x=-0.261,
y=-1.477.
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Figure 3.19 2D WFT of the scattered field Figure 3.20 2D WFT of the scattered
with window center at x=0.261, y=-1.477. field with window center at x= (0.750,
y=-1.299.
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Figure 3.21 2D WFT of the scattered field Figure 3.22 2D WFT of the scattered
with window center at x= 1.149, y=-0.964. field with window center at x= 1.410,
y=-0.513.

The results for the Sommerfeld half-plane problem also demonstrate the
effectiveness of the WFT in the identification of different scattering mechanisms.

The wavenumber is again chosen as k =327 .

The 2D WFT magnitude plots are given in Figures 3.23-3.26, by choosing the
center points of the Gaussian window function (with extension 1m) as the centers

of the four quadrants of the square spatial domain.

It is clear from the results that the WFT is able to identify the different ray

components successfully.
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Figure 3.24 The absolute value of
the Fourier transform of the scattered

field Figure.

Figure 3.23 The real part of the scattered

field Figure.
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Fourier transform of the scattered
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Figure 3.25 The real part of the total field Figure 3.26 The absolute value of the
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CHAPTER 4

CONCLUSIONS

In this thesis the WFT has been used for the local spectral analysis of scattered
electromagnetic field variations. It has been demonstrated that, the local field
variation can be represented as a superposition of rays in high frequency

scattering problems and the ray directions can be extracted by means of the WFT.

The theoretical justification of the approach is explained in detail in Chapter 2, by
demonstrating that the ray directions may be obtained by using the plots of the
WFEFT of the scattered field. The validity of the approach is shown in two specific
examples which have analytical solutions with relatively easy ray-optical
analysis. In the PEC circular cylinder scattering problem, the rays corresponding
to the reflected, surface diffracted, and shadow-forming fields can be easily
identified. Similarly, in the Sommerfeld half-plane problem, the ray directions
corresponding to the reflected, edge-diffracted and shadow-forming fields can be
found at any space point by means of simple geometric reasoning. In these
examples, the WFT approach successfully identified the ray directions of the

components of the scattered field.
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It is important to notice that the spatial localization provided by the WFT is
crucial in the identification of the ray directions. This information cannot be
extracted from the Fourier transform, since the Fourier transform yields the global
spectral characteristics of a function. It is clear from the examples in Chapter 3
that the Fourier transform yields all possible ray directions, which is not a very
useful information. The local ray directions are achievable by the WFT through

the spectral analysis of the localized spatial function.

The results related to the specific applications have been obtained by user-friendly
MATLAB codes with graphic outputs for the visualization of the relationship
between the WFT intensity and ray directions. These results clearly demonstrate
the applicability of this method to identify the ray directions in scattering

applications.

One of the potential applications of this approach is to use the identified ray
directions in ray tracing. In this way it may be possible to trace the rays back to
the points where they emerge. This information may be used in object recognition

to extract the geometry of the scatterer.
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