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abstract

OSCILLATION OF SECOND ORDER MATRIX

EQUATIONS ON TIME SCALES

Selçuk Aysun

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Ağacık Zafer

November 2004, 43 pages

The theory of time scales is introduced by Stefan Hilger in his PhD thesis

in 1988 in order to unify continuous and discrete analysis. In our thesis, by

making use of the time scale calculus we study the oscillation of nonlinear matrix

differential equations of second order. The first chapter is introductory in nature

and contains some basic definitions and tools of the time scales calculus, while

certain well-known results have been presented with regard to oscillation of the

solutions of second order matrix equations and some new oscillation criteria for

the same type equations have been established in the second chapter.

Keywords: Differential equation, Time scales, Riccati equation, Oscillation
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öz

ZAMAN SKALASI ÜZERİNDE MATRİS

DENKLEMLERİN SALINIMI

Selçuk Aysun

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Ağacık ZAFER

Kasım 2004, 43 sayfa

Zaman skalası teorisi 1988 yılında Stefan HILGER’ in doktara tezinde sürekli

ve ayrık analizi birlestirmek üzere ortaya konmustu. Tezimizde, zaman skalasının

analizi kullanılarak lineer olmayan ikinci mertebeden denklemlerin salınımlılığını

çalıstık. Öncelikle zaman skalasının analizindeki temel tanımları ve araçları

verdik. Ikinci mertebeden matrix diferensiyel denklemlerinin çözümlerinin salınım-

Ãlılığıyla ilgili iyi bilinen sonuçları sunduk. Son olarakta aynı tip denklemlerin

salınımlılığı için yeni kriterler kurduk.

Anahtar Kelimeler: Diferensiyel denklem, Zaman skalasi, Riccati denklemi, Salınımlı

çözüm, Salınımsız çözüm.
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chapter 1

INTRODUCTION

1.1 Basic Definitions:

A time scale is an arbitrary nonempty closed subset of the real numbers.

Thus, the real numbers, the integers, the natural numbers, and the nonnegative

integers are examples of time scales, as are [0, 1]∪ [2, 3],[0, 1]∪N and the Cantor

set, while the rational numbers, the irrational numbers, and the open interval

between 0 and 1 are not time scales. We will denote a time scale by the symbol

T.

For t ∈ T, we define the forward jump operator σ : T→ T by

σ(t) = inf{s > t : s ∈ T}

and the backward jump operator ρ : T→ T is defined by

ρ(t) = sup{s < t : s ∈ T}.

If σ(t) > t, we say t is right-scattered, while if ρ(t) < t, we say t is left-

scattered. Points that are right-scattered and left-scattered at the same time are

called isolated. Also, if t < supT and σ(t) = t, then t is called right-dense, and

if t > inf T and ρ(t) = t, then t is called left-dense. Points that are right-dense

and left-dense at the same time are called dense. Finally, the graininess function

µ : T→ [0,∞) is defined by

µ(t) = σ(t)− t.

If T has a left-scattered maximum m, then by Tk we denote the set Tk =

T − {m}. Otherwise, Tk = T. Throughout the thesis we shall make use of the
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notation fσ to mean that

fσ(t) = f(σ(t)) for all t ∈ T.

Let us identify σ, ρ, and µ by considering specific time scales.

1. If T = R, then

σ(t) = inf{s ∈ R : s > t} = inf(t,∞) = t

and

ρ(t) = sup{s ∈ R : s < t} = sup(−∞, t) = t.

Hence every point t ∈ R is dense. The graininess function µ turns out to

be µ(t) ≡ 0 for all t ∈ T.

2. If T = Z, then

σ(t) = inf{s ∈ Z : s > t} = inf{t + 1, t + 2, t + 3, ...} = t + 1

and

ρ(t) = sup{s ∈ Z : s < t} = sup{..., t− 3, t− 2, t− 1} = t− 1

Hence every point t ∈ Z is isolated. The graininess function µ in this case

is µ(t) ≡ 1 for all t ∈ T.

3. If T = {2n : n ∈ Z} ∪ {0}; then

σ(2n) = 2n+1, σ(t) = 2t and ρ(2n) = 2n−1, ρ(t) =
t

2

Hence every point t ∈ T is isolated.
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4. If T =
{

1
n

: n ∈ N} ∪ {0}; then

σ(
1

n
) =

1

n− 1
, σ(t) =

t

1− t
and ρ(

1

n
) =

1

n + 1
, ρ(t) =

t

1 + t

Hence every point t ∈ T is isolated.

1.2 Differentiation

Let f : T → R and t ∈ Tk. The derivative of f at t, denoted by f4(t),

is defined to be the number with the property that given any ε > 0, there is a

neighborhood U of t such that

|[f(σ(t))− f(s)]− f4(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U

We call f4(t) the delta derivative of f at t. Moreover, we say that f is delta

differentiable on Tk provided f4(t) exists for all t ∈ Tk. The function f4 : Tk →
R is then called the derivative of f on Tk.

For a function f : T → R we shall talk about the second derivative f44

provided f4 is differentiable on Tk2
= (Tk)k with derivative f44 = (f4)4 :

Tk2 → R.

The proof of the next theorem which can be found in [3] is based on the

definition of the derivative.

Theorem 1.2.1. Assume f : T→ R is a function and let t ∈ Tk. Then we have

the following:

1. If f is differentiable at t , then f is continuous at t.

2. If f is continuous at t and t is right-scattered, then f is differentiable at t

with

f4(t) =
f(σ(t))− f(t)

µ(t)

3



3. If t is right-dense, then f is differentiable at t iff the limit

lim
s→t+

f(t)− f(s)

t− s

exists as a finite number. In this case

f4(t) = lim
s→t+

f(t)− f(s)

t− s

4. If f is differentiable at t, then

f(σ(t)) = f(t) + µ(t)f4(t).

For instance, if f(t) = t, then f4(t) = 1 since

f4(t) =
f(σ(t))− f(t)

σ(t)− t
=

σ(t)− t

σ(t)− t
= 1

and if f(t) = t2 then

f4(t) =
f(σ(t))− f(t)

σ(t)− t
=

(σ(t))2 − t2

σ(t)− t
= σ(t) + t.

Let f, g : T→ R are differentiable. It is not difficult to see that the sum f + g

is differentiable with

(f + g)4(t) = f4(t) + g4(t);

for any constant α, αf is differentiable with

(αf)4(t) = αf4(t);

the product fg is differentiable with

(fg)4(t) = f4(t)g(t) + f(σ(t))g4(t) = f(t)g4(t) + f4(t)g(σ(t));

4



1/f is differentiable whenever f(t)f(σ(t)) 6= 0 with

(
1

f
)4(t) = − f4(t)

f(t)f(σ(t))
;

f/g is differentiable whenever g(t)g(σ(t)) 6= 0 with

(
f

g
)4(t) =

f4(t)g(t)− f(t)g4(t)

g(t)g(σ(t))
.

1.3 Integration

In order to describe classes of functions that are ”integrable”, the following

two concepts are defined:

Definition 1.3.1 ([3]). A function f : T → R is called regulated provided its

right-sided limits exist at all right-dense points in T and its left-sided limits exist

at all left-dense points in T.

Definition 1.3.2 ([3]). A function f : T→ R is called rd-continuous provided it

is continuous at right-dense points in T and its left-sided limits exist at left-dense

points in T. The set of rd-continuous functions f : T→ R is denoted by

Crd = Crd(T) = Crd(T,R)

The set of functions f : T → R that are differentiable and whose derivative is

rd-continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T,R)

Theorem 1.3.1 ([3]). Let f : T→ R. Then the following statements are true:

1. If f is continuous , then f is rd-continuous.

2. If f is rd-continuous, then f is regulated.

5



3. The jump operator σ is rd-continuous.

4. If f is regulated or rd-continuous , then so is fσ.

5. Assume f is continuous . If g : T→ R is regulated or rd-continuous , then

f ◦ g is regulated or rd-continuous, respectively.

The indefinite integral of a regulated function f is defined as

∫
f(t)4(t) = F (t) + C

where C is an arbitrary constant and F is called a pre-antiderivative of f . The

Cauchy integral is defined by

∫ s

r

f(t)4(t) = F (s)− F (r) for all r, s ∈ T.

A function F : T→ R is called an antiderivative of f : T→ R provided

F4(t) = f(t) holds for all t ∈ Tk.

Theorem 1.3.2 ([3]). Every rd-continuous function has an antiderivative. In

particular if t0 ∈ T, then F defined by

F (t) =

∫ t

t0

f(τ)4τ for t ∈ T

is an antiderivative of f .

Morever, If f ∈ Crd and t ∈ Tk, then

∫ σ(t)

t

f(τ)4τ = µ(t)f(t)

6



To see this we note that

∫ σ(t)

t

f(τ)4τ = F (σ(t))− F (t)

= µ(t)F4(t)

= µ(t)f(t),

where the second equality holds because of the last part of Theorem 1.2.1.

Theorem 1.3.3 ([3]). If a, b, c ∈ T, α ∈ R, and f,g ∈ Crd, then

1.
∫ b

a
[f(t) + g(t)]4t =

∫ b

a
f(t)4t +

∫ b

a
g(t)4t,

2.
∫ b

a
(αf)(t)4t = α

∫ b

a
f(t)4t,

3.
∫ b

a
f(t)4t = − ∫ a

b
f(t)4t,

4.
∫ a

a
f(t)4t = 0,

5.
∫ b

a
f(t)4t =

∫ c

a
f(t)4t +

∫ b

c
f(t)4t,

6. If |f(t)| ≤ g(t) on [a, b) , then

|
∫ b

a

f(t)4t| ≤
∫ b

a

g(t)4t,

7. If f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)4t ≥ 0,

Theorem 1.3.4. If a, b ∈ T, and f, g ∈ Crd, and f, g are differentiable, then

1.
∫ b

a
f(σ(t))g4(t)4t = (fg)(b)− (fg)(a)− ∫ b

a
f4(t)g(t)4t,

2.
∫ b

a
f(t)g4(t)4t = (fg)(b)− (fg)(a)− ∫ b

a
f4(t)g(σ(t))4t,

Let a, b ∈ T and f ∈ Crd. Then

∫ b

a

f(t)4t =

∫ b

a

f(t)dt, if T = R.
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If T = hZ = {hk : k ∈ Z}, where h > 0, then

∫ b

a

f(t)4t =





∑ b
h
−1

k= a
h

f(kh)h, if a < b,

0, if a = b,

−∑ a
h
−1

k= b
h

f(kh)h, if a > b.

If f(t) = 1, F (t) = t is an antiderivative of 1, since F4(t) = 1 = f(t). Hence

∫ t

a

4s = F (t)− F (a) = t− a

Let us evaluate
∫ t

0
s4s for t ∈ T = Z

∫ t

0

s4s =
t−1∑
s=0

s =
(t− 1)t

2
=

t2

2
− t

2
.

1.4 Regressive Matrices

Let A be an m× n matrix valued function on T. The matrix A is said to be

rd-continuous on T if each element is so, and the class of all such rd-continuous

m× n matrix valued functions defined on T is denoted by

Crd = Crd(T) = Crd(T,Rm×n).

As in the classical case we say that A is differentiable on T provided each

entry of A is differentiable on T, and in this case we put

A4(t) = (a4ij (t))1≤i≤m,1≤j≤n, A = (aij)1≤i≤m,1≤j≤n.

If A is differentiable at t ∈ Tk, then Aσ(t) = A(t) + µ(t)A4(t). We observe that
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at t,

Aσ = (aσ
ij)

= (aij + µa4ij )

= (aij) + µ(a4ij )

= A + µA4.

Theorem 1.4.1 ([3]). Suppose A and B are differentiable n×n matrices. Then

1. (A + B)4 = A4 + B4;

2. (αA)4 = αA4 if α is constant;

3. (A.B)4 = A4Bσ + AB4 = AσB4 + A4B;

4. (A−1)4 = −(Aσ)−1A4A−1 = −A−1A4(Aσ)−1 if AAσ is invertible;

5. (AB−1)4 = (A4 − AB−1B4)(Bσ)−1 = (A4 − (AB−1)σB4))B−1 if BBσ is

invertible.

An n × n matrix valued function A on a time scale T is called regressive

provided

I + µ(t)A(t) (1.1)

is invertible for all t ∈ Tk, and the class of all such regressive and rd-continuous

functions is denoted by

< = <(T) = <(T,Rn×n).

Lemma 1.4.1 ([3]). An n×n matrix valued function A is regressive if and only

if the eigenvalues λi(t) of A(t) are regressive for all 1 ≤ i ≤ n.

Definition 1.4.1 ([3]). Let T be a time scale and X be a Banach space. A

function f : T × Rn → Rn is called rd continuous if g(t) = f(t, x(t)) is rd

continuous for any continuous function x : T → X, it is called regressive at

9



t ∈ Tk, if the mapping

I + µ(t)f(t, .) : X→ X is invertible

(where I is the identity function), and f is called regressive on Tk, if f is regressive

at each t ∈ Tk.

Theorem 1.4.2 ([3]). (A global existence and uniqueness theorem) Let f : T×
Rn → Rn be rd continuous and regressive. Suppose that there exists L(t, x) > 0

such that the Lipschitz condition

|f(t, x1)− f(t, x2)| ≤ L(t, x)|x1 − x2| for all (t, x1), (t, x2) ∈ T×Rn

holds. Then the IVP

x4 = f(t, x), x(t0) = x0 (1.2)

has exactly one solution defined on T.

Theorem 1.4.3 ([3]). Let A ∈ < be an n× n matrix valued function on T and

suppose that f : T → Rn is rd continuous. Let t0 ∈ T and y0 ∈ Rn. Then the

initial value problem

y4 = A(t)y + f(t), y(t0) = y0

has a unique solution y : T→ Rn.

It follows that The matrix initial value problem

Y 4 = A(t)Y, Y (t0) = Y0, (1.3)

where Y0 is a constant n× n matrix, has a unique solution Y.

Definition 1.4.2 ([3]). Let t0 ∈ T and assume that A ∈ < is an n × n matrix

valued function. The unique matrix valued solution of the IVP

Y 4 = A(t)Y, Y (t0) = I,

10



where I denotes as usual the n×n identity matrix, is called the matrix exponential

function, and it is denoted by eA(., t0).

Definition 1.4.3. Assume A and B are regressive n×n matrix valued functions

on T. Then we define A⊕B by

(A⊕B)(t) = A(t) + B(t) + µ(t)A(t)B(t) for all t ∈ Tk,

and ªA by

(ªA)(t) = −A(t)[I + µ(t)A(t)]−1 for all t ∈ Tk.

Definition 1.4.4. If the matrix valued functions A and B are regressive on T,

then we define AªB by

(AªB)(t) = (A⊕ (ªB))(t) for all t ∈ Tk.

If A is a matrix , then we let A∗ denote its conjugate transpose.

Theorem 1.4.4 ([3]). If A,B ∈ < are matrix valued functions on T, then

1. e0(t, s) ≡ I and eA(t, t) ≡ I;

2. eA(σ(t), s) = (I + µ(t)A(t))eA(t, s);

3. e−1
A (t, s) = e∗ªA∗(t, s);

4. eA(t, s) = e−1
A (s, t) = e∗ªA∗(s, t);

5. eA(t, s)eA(s, r) = eA(t, r);

6. eA(t, s)eB(t, s) = eA⊕B(t, s) if eA(t, s) and B(t) commute.

Proof We only prove (1) and (5). If we use Theorem 1.1,

eA(σ(t), s) = eA(t, s) + µ(t)e4A (t, s)

= eA(t, s) + µ(t)A(t)eA(t, s)

= (I + µ(t)A(t))eA(t, s)

11



To prove (5), consider Y (t) = eA(t, s)eB(t, s) and assume that eA(t, s) and B(t)

commute. By using Theorem 1.4.1

Y 4(t) = e4A (t, s).eσ
B(t, s) + eA(t, s)e4B (t, s)

= A(t)eA(t, s)(I + µ(t)B(t))eB(t, s) + eA(t, s)B(t)eB(t, s)

= A(t)(I + µ(t)B(t))eA(t, s)eB(t, s) + B(t)eA(t, s)eB(t, s)

= [A(t)(I + µ(t)B(t)) + B(t)]eA(t, s)eB(t, s)

= (A⊕B)(t)eA(t, s)eB(t, s)

= (A⊕B)(t)Y (t)

Also Y (s) = eA(s, s)eB(s, s) = I.I = I. So Y is a unique solution of the IVP

Y 4 = (A⊕B)(t)Y, Y (s) = I,

and therefore we have eA⊕B(t, s) = Y (t) = eA(t, s)eB(t, s).

Theorem 1.4.5 ([3]). If A ∈ < and a, b, c ∈ T, then

[eA(c, .)]4 = −[eA(c, .)]σA

and ∫ b

a

eA(c, σ(t))A(t)4t = eA(c, a)− eA(c, b).

We shall also consider the nonhomogeneous equation

y4 = A(t)y + f(t) (1.4)

where f : T→ Rn is a vector valued function. If f(t) ≡ 0, then

y4 = A(t)y (1.5)

is called the homogeneous equation corresponding 1.4.

Theorem 1.4.6 ([3]). (Variation of constants formula) Let A ∈ < be an n× n

matrix valued function on T and suppose that f : T → Rn is rd continuous. Let

12



t0 ∈ T and y0 ∈ Rn. Then the initial value problem

y4 = A(t)y + f(t), y(t0) = y0 (1.6)

has a unique solution y : T→ Rn. Moreover, this solution is given by

y(t) = eA(t, t0)y0 +

∫ t

t0

eA(t, σ(r))f(r)4r. (1.7)

In Theorem 1.4.4, we assume that eA and B commute. Now, we ask under

what conditions the two matrices eA and B commute.

Theorem 1.4.7 ([3]). Suppose A ∈ < and C is differentiable. If C is a solution

of the dynamic equation,

C4 = A(t)C − CσA(t),

then

C(t)eA(t, s) = eA(t, s)C(s).

Let us consider adjoint equation of (1.5)

x4 = −A∗(t)xσ (1.8)

Theorem 1.4.8 ([3]). Let A ∈ < be an n× n matrix valued function on T and

suppose that f : T → Rn is rd continuous. Let t0 ∈ T and x0 ∈ Rn. Then the

IVP

x4 = −A∗(t)xσ + f(t), x(t0) = x0 (1.9)

has a unique solution x : T→ Rn. Moreover, this solution is given by

x(t) = eªA∗(t, t0)x0 +

∫ t

t0

eªA∗(t, r)f(r)4r. (1.10)

13



1.5 Constant Coefficients

In this part, we consider the vector dynamic equation

x4 = Ax (1.11)

where A ∈ < is a real constant n× n matrix.

Theorem 1.5.1 ([3]). If λ0, ξ is an eigenpair for A, then x(t) = eλ0(t, t0)ξ is a

solution of 1.11 on T.

Example 1.5.1. Let consider the vector dynamic equation

x4 =

(
−3 −2

3 4

)
x (1.12)

on time scale satisfies µ(t) 6= 1
2
. The eigenvalues of 1.12 are λ1 = −2 and λ2 = 3.

Since 1 − 2µ(t) 6= 0 and 1 + 3µ(t) 6= 0 for all t ∈ Tk the vector equation 1.12 is

regressive for any time scale. Eigenvectors corresponding to λ1 and λ2 are

ξ1 =

(
2

−1

)
and ξ2 =

(
1

−3

)

respectively. Hence, the general solution of 1.12 is

x(t) = c1e−2(t, t0)

(
2

−1

)
+ c2e3(t, t0)

(
1

−3

)
.

Theorem 1.5.2 ([3]). (Putzer Algorithm) Let A ∈ < be a constant n×n matrix.

Suppose t0 ∈ T. If λ1, λ2, ..., λn are the eigenvalues of A, then

eA(t, t0) =
n−1∑
i=0

ri+1(t)Pi, (1.13)

14



where r(t) = (r1(t), r2(t), ...rn(t))T is the solution of the IVP

r4 =




λ1 0 0 . . .

1 λ2 0 . . .

0 1 λ3 . . .
...

...
. . . . . .

. . . 0 1 λn




r, r(t0) =




1

0
...

0




(1.14)

and the P matrices P0, P1, ..., Pn are recursively defined by P0 = I and

Pk+1 = (A− λk+1I)Pk for 0 ≤ k ≤ n− 1.

1.6 Self-Adjoint Matrix Equations

Let P and Q be Hermitian n × n matrix valued functions on a time scale

T such that P (t) is invertible for all t ∈ T. We shall consider the self -adjoint

second order matrix differential equation

LX = 0, where LX = (PX4)4 + Q(t)Xσ (1.15)

on Tk2
.

By a solution of (1.15) we mean a matrix X defined on T such that X is

differentiable on Tk and (PX4)4 is rd continuous on Tk2
, and satisfies (1.15) on

T. If X satisfies above conditions then we write X ∈ D.

Definition 1.6.1 ([3]). The unique solution of the initial value problem

LX = 0, X(a) = 0, X4(a) = P−1(a)

is called the principal solution of (1.15)(at a), while the unique solution of the

initial value problem

LX = 0, X(a) = −I, X4(a) = 0
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is said to be the associated solution of (1.15)(at a).

Definition 1.6.2 ([3]). If X,Y ∈ D, then we define the Wronskian matrix of X

and Y by

W (X, Y )(t) = X∗(t)P (t)Y 4(t)− [P (t)X4(t)]∗Y (t)

for t ∈ Tk.

Theorem 1.6.1 ([3]). (Lagrange Identity) If X, Y ∈ D, then

X∗(σ(t))LY (t)− [LX(t)]∗Y (σ(t)) = [W (X,Y )]4(t)

for t ∈ Tk2
.

Proof Let X,Y ∈ D, then

W4(X,Y ) = {X∗PY 4 − (PX4)∗Y }4

= (X∗)σ(PY 4)4 + (X∗)4PY 4 − (PX4)∗Y 4 − {(PX4)4}∗Y σ

= (X∗)σ(PY 4)4 − {(PX4)4}∗Y σ

= (X∗)σ{(PY 4)4 + QY σ} − {(PX4)4 + QXσ}∗Y σ

= (X∗)σLY − (LX)∗Y σ

on t ∈ Tk2
.

Corollary 1.6.1 ([3]). (Abel’s Formula) If X and Y are solutions of (1.15) on

T, then

W (X,Y )(t) ≡ C

for t ∈ Tk, where C is a constant matrix.

Proof Assume X and Y are solutions of (1.15) on T. By the Lagrange identity

W4(X, Y )(t) = 0 for all t ∈ Tk2

Hence, W (X, Y ) is a constant matrix for all t ∈ Tk.

16



Definition 1.6.3 ([3]). If X is a solution of (1.15) satisfying

W (X,X)(t) ≡ 0 for t ∈ Tk,

then we say that X is a prepared solution (or conjoined solution or isotropic

solution) of (1.15), and if X and Y are two conjoined solutions with

W (X, Y )(t) ≡ I for t ∈ Tk,

then we say that X and Y are normalized conjoined bases of (1.15).

Theorem 1.6.2 ([3]). Assume that X is a solution of (1.15) on T. Then the

following statements are equivalent:

1. X is a prepared solution;

2. X∗(t)P (t)X4(t) is Hermitian for all t ∈ Tk;

3. X∗(t0)P (t0)X
4(t0) is Hermitian for some t0 ∈ Tk.

Proof Assume that X is a prepared solution of (1.15) on T. Then it satisfies

W (X,X)(t) = X∗(t)P (t)X4(t)− [P (t)X4(t)]∗X(t) = 0

for t ∈ Tk. This implies that X is a prepared solution iff X∗(t)P (t)X4(t) is

Hermitian for all t ∈ Tk, and iff X∗(t0)P (t0)X
4(t0) is Hermitian for some t0 ∈ Tk.

Lemma 1.6.1 ([3]). Let X be a solution of (1.15). If X is a prepared, then

X∗(σ(t))P (t)X(t) is Hermitian for all t ∈ Tk.

Conversely, if there is t0 ∈ Tk such that µ(t0) = σ(t0)−t0 > 0 and X∗(σ(t0))P (t0)X(t0)

is Hermitian, then X is a prepared solution of (1.15). Also, if X is a nonsingular

prepared solution, then

P (t)X(σ(t))X−1(t), P (t)X(t)X−1(σ(t)), and Z(t) = P (t)X4(t)X−1(t)
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are Hermitian for all t ∈ Tk.

Lemma 1.6.2 ([3]). Assume that X is a prepared solution of (1.15) on T. Then

the following statements are equivalent:

1. X∗(σ(t))P (t)X(t) > 0 on Tk;

2. X(t) is nonsingular and

P (t)X(σ(t))X−1(t) > 0

on Tk;

3. X(t) is nonsingular and

P (t)X(t)X−1(σ(t)) > 0

on Tk.

In this part, we shall consider the matrix Riccati dynamic equation

RZ = 0, where RZ = Z4 + Q(t) + Z∗{P (t) + µ(t)Z}−1Z. (1.16)

Theorem 1.6.3 ([3]). (Riccati Equation) If the self -adjoint matrix equation

(1.15) has a prepared solution X such that X(t) is invertible for all t ∈ T, then

Z defined by the Riccati substitution

Z(t) = P (t)X4(t)X−1(t), (1.17)

t ∈ Tk, is a Hermitian solution of the matrix Riccati equation (1.16) on Tk. Con-

versely, if (1.16) has a Hermitian solution Z on Tk, then there exists a prepared

solution X of (1.15) such that X(t) is invertible for all t ∈ T and relation (1.17)

holds.

Theorem 1.6.4 ([3]). The self -adjoint matrix equation (1.15) has a prepared

solution X on T with X∗(σ(t))P (t)X(t) > 0 on Tk iff the matrix Riccati equation

18



(1.16) has a Hermitian solution Z on Tk satisfying

P (t) + µ(t)Z(t) > 0

for all t ∈ Tk.

Theorem 1.6.5 ([3]). (Picone’s Identity) Let α ∈ Rn and suppose X and Y are

normalized conjoined bases of (1.15) such that X is invertible on Tk. We put

Z = PX4X−1 and D = X(Xσ)−1P−1 on Tk.

Let t ∈ Tk and assume that u : T→ Rn is differentiable at t. Then we have at t

(u∗Zu + 2α∗X−1u− α∗X−1Y α)4 = (u4)∗Pu4 − (uσ)∗Quσ

− {Pu4 − Zu− (X−1)∗α}∗D{Pu4 − Zu− (X−1)∗α}.

Let denote the set of all continuous functions whose derivatives are piecewise

rd-continuous by C1
prd.

Definition 1.6.4 ([3]). The quadratic functional

z(u) =

∫ b

a

{(u4)∗Pu4 − (uσ)∗Quσ}(t)4t

is called positive definite (we write z > 0) provided

z(u) > 0 for all u ∈ C1
prd([a, b],Rn)\{0} with u(a) = u(b) = 0.

Lemma 1.6.3 ([3]). If u ∈ C1
prd and

{(Pu4)4 + Quσ}(t) = 0 for all t ∈ [a, b]k
2

,

then

∫ ρ(b)

a

{(u4)∗Pu4 − (uσ)∗Quσ}(t)4t = {u∗Pu4}(ρ(b))− {u∗Pu4}(a).
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Definition 1.6.5 ([3]). A conjoined solution of (1.15) is said to have no focal

points in (a, b] provided it satisfies

X invertible on (a, b] and X(Xσ)−1P−1 ≥ 0 on [a, b]k.

Theorem 1.6.6 ([3]). (Sufficient Condition for Positive Definiteness) A suffi-

cient condition for z > 0 is that there exist normalized conjoined bases X and Y

of (1.15) such that X has no focal points in (a, b].

Definition 1.6.6 ([3]). We say that equation (1.15) is disconjugate on [a, b] if

the principal solution X̃ of (1.15) satisfies

X̃ invertible on (a, b] and X̃(X̃σ)−1P−1 > 0 on (a, b]k.

We can conclude from definition of 1.6.6, (1.15) is disconjugate iff the principal

solution of (1.15) has no focal points in (a, b].

Theorem 1.6.7 ([3]). (Jacobi’s Condition) z > 0 iff (1.15) is disconjugate.

Definition 1.6.7 ([3]). We call a solution X of (1.15) a basis whenever

rank

(
X(a)

P (a)X4(a)

)
= n

Theorem 1.6.8 ([3]). (Sturm’s Separation Theorem) Suppose there exists a con-

joined basis of (1.15) with no focal points in (a, b]. Then equation (1.15) is dis-

conjugate on [a, b].

Proof Let X be a conjoined basis of (1.15) with no focal points in (a, b]. Since

X is a basis

K = X∗(a)X(a) + (X4)∗(a)P 2(a)X(a) is invertible.

Let Y be the solution of (1.15) satisfying

Y (a) = −P (a)X4(a)K−1, Y (a) = P−1(a)X(a)K−1.
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Then Y satisfies from Wronskian identity,

{Y ∗ P Y 4 − (Y 4)∗PY } ≡ {Y ∗PY 4 − (Y 4)∗PY }(a)

= −(K−1)∗(X4)∗(a)P (a)X(a)K−1 + (K−1)∗X∗(a)P (a)X4(a)K−1

= (K−1)∗{X∗PX4 − (X4)∗PX}(a)K−1

= 0

and

{X∗ P Y 4 − (X4)∗PY } ≡ {X∗PY 4 − (X4)∗PY }(a)

= X∗(a)X(a)K−1 + (X4)∗(a)P 2(a)X4(a)K−1

= I.

and hence X and Y are normalized conjoined bases of (1.15).

Now we shall also consider the equation

[P̃ (t)X4]4 + Q̃(t)Xσ = 0, (1.18)

where P̃ and Q̃ satisfy the same assumptions as P and Q.

Theorem 1.6.9. ( Sturm’s Comparison Theorem) Suppose we have for all t ∈ T

P̃ (t) ≤ P (t) and Q̃(t) ≥ Q(t).

If (1.18) is disconjugate, then (1.15) is also disconjugate.

Proof Suppose (1.18) is disconjugate. Then by Jacobi’s Condition

z̃(u) =

∫ b

a

{(u4)∗P̃ u4 − (uσ)∗Q̃uσ}(t)4t > 0
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for all nontrivial u ∈ C1
prd with u(a) = u(b) = 0. For such u we also have

z(u) =

∫ b

a

{(u4)∗Pu4 − (uσ)∗Quσ}(t)4t

≥
∫ b

a

{(u4)∗P̃ u4 − (uσ)∗Q̃uσ}(t)4t

= z̃(u) > 0

Hence z > 0 and thus (1.15) is disconjugate by Jacobi’s Condition.
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chapter 2

OSCILLATION CRITERIA OF

DYNAMIC EQUATIONS

In this chapter we first state and prove some well-known results with regard

to oscillation of matrix dynamic equations on time scales, further results, see

[3, 11, 15, 4, 8, 18, 2, 6]. Next we provide some new oscillation criteria for

solutions of such equations. Roughly speaking a matrix solution X(t) of a matrix

dynamic equation is called nonoscillatory if det X(t) 6= 0 for all t ≥ t0 for some

sufficiently large t0 > 0. Otherwise, it is called oscillatory. As in the continuous

and discrete cases the definition require that the time scale under consideration

be unbounded from above. That is, we assume that

supT = ∞.

In the theorems that follow we employ some basic facts from Linear Algebra.

For instance, if A is an Hermitian n×n matrix, then all eigenvalues are real. We

shall also use the convention that if λi(A) denotes the i-th eigenvalue of A, then

λmax(A) = λ1(A) ≥ ... ≥ λn(A) = λmin(A).

By trA we denote the trace of an n × n matrix A , i.e., the sum of all diagonal

elements of A.

An important and useful tool in comparing the eigenvalueas of the sum of two

Hermitian matrices A and B is the Weyl’s inequality, which states that

λi(A) + λmax(B) ≥ λi(A + B) ≥ λi(A) + λmin(B). (2.1)

23



2.1 Some known oscillation theorems

We shall consider the self -adjoint second order matrix dynamic equations of

the form

(P (t)X4)4 + Q(t)Xσ = 0, t ≥ a, t ∈ Tk2

, (2.2)

where a ∈ T is fixed, P and Q are Hermitian n × n matrix valued functions

defined on T. It is also assumed that the matrix P (t) is invertible.

In the special case P (t) = I the above equation reduces to

X44 + Q(t)Xσ = 0 (2.3)

A matrix solution (2.2) is called nonoscillatory on [a,∞) provided there exist

a prepared solution X of (2.2) and t0 ∈ [a,∞) such that

X∗(σ(t)P (t)X(t) > 0, t ≥ t0

Otherwise we say that (2.2) is oscillatory on [a,∞).

Theorem 2.1.1 ([6]). Assume that for a given t0 ∈ [a,∞) there exist a0, b0 ∈
[t0,∞) such that µ(a0) > 0, µ(b0) > 0 , and

λmax

[∫ b0

a0

Q(t)4t

]
≥ 1

µ(a0)
+

1

µ(b0)
(2.4)

Then (2.3) is oscillatory on [a,∞).

Proof Assume that equation (2.3) is nonoscillatory on [a,∞). Then there is

a t0 ∈ [a,∞) and a prepared solution X(t) of (2.3) satisfying

X∗(σ(t))X(t) > 0

on [t0,∞). We make the Riccati substitution

Z(t) = X4(t)X−1(t)
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for t ∈ [t0,∞), then by Theorem 1.6.4 we get that

Z4 = −Q− Z[I + µ(t)Z(t)]−1Z, I + µ(t)Z(t) > 0

on [t0,∞). By the hypothesis of the theorem there exist t0 ≤ a0 < b0 such that

µ(a0) > 0, µ(b0) > 0 and inequality (2.4) holds. Integrating both sides of the

Riccati equation from a0 to t > a0 we obtain

Z(t) = Z(a0)−
∫ t

a0

Q(s)4s−
∫ t

a0

Z(s)[I + µ(s)Z(s)]−1Z(s)4s

= Z(a0)−
∫ t

a0

Q(s)4s−
∫ σ(a0)

a0

Z(s)[I + µ(s)Z(s)]−1Z(s)4s

−
∫ t

σ(a0)

Z(s)[I + µ(s)Z(s)]−1Z(s)4s

= Z(a0)− µ(a0)Z(a0)[I + µ(a0)Z(a0)]
−1Z(a0)−

∫ t

a0

Q(s)4s

−
∫ t

σ(a0)

Z(s)[I + µ(s)Z(s)]−1Z(s)4s

= Z(a0)[I + µ(a0)Z(a0)]
−1[I + µ(a0)Z(a0)− µ(a0)Z(a0)]

−
∫ t

a0

Q(s)4s−
∫ t

σ(a0)

Z(s)[I + µ(s)Z(s)]−1Z(s)4s

= Z(a0)[I + µ(a0)Z(a0)]
−1 −

∫ t

a0

Q(s)4s

−
∫ t

σ(a0)

Z(s)[I + µ(s)Z(s)]−1Z(s)4s.

This implies that

Z(t) +

∫ t

a0

Q(s)4s ≤ Z(a0)[I + µ(a0)Z(a0)]
−1. (2.5)

Now let U be a unitary matrix (so U∗U = I) such that

Z(a0) = U∗DU, D = diag(d1, ..., dn)
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where di = λi(Z(a0)) is the i− th eigenvalue of Z(a0), i = 1, 2, .... Consider

Z(a0)[I + µ(a0)Z(a0)]
−1 = U∗DU [I + µ(a0)U

∗DU ]−1

= U∗DU{U∗[I + µ(a0)D]U}−1

= U∗D[I + µ(a0)D]−1U.

Since I + µ(a0)Z(a0) > 0 implies that

I + µ(a0)di > 0

and h(x) = x/(1 + µ(a0)x) is increasing when 1 + µ(a0)x > 0 , we see that

λi(Z(a0)[I + µ(a0)Z(a0)]
−1) = λi(D[I + µ(a0)D]) =

di

1 + µ(a0)di

.

Using h(x) = x/(1 + µ(a0)x) < 1/µ(a0) when 1 + µ(a0)x > 0 we get

λi(Z(a0)[I + µ(a0)Z(a0)]
−1) =

di

1 + µ(a0)di

<
1

µ(a0)
. (2.6)

Hence from equation (2.5) we obtain

λi(Z(t) +

∫ t

a0

Q(s)4s) ≤ λi(Z(a0)[I + µ(a0)Z(a0)]
−1) <

1

µ(a0)
.

Applying Weyl’s inequality we have

1

µ(a0)
> λmax(Z(t) +

∫ t

a0

Q(s)4s) ≥ λmax(

∫ t

a0

Q(s)4s) + λmin(Z(t)).

If t = b0, then

λmax(

∫ b0

a0

Q(s)4s) <
1

µ(a0)
− λminZ(b0).

Since I + µ(b0)Z(b0) > 0 implies λmin(Z(b0)) > −1/µ(b0), it follows that

λmax(

∫ b0

a0

Q(s)4s) <
1

µ(a0)
+

1

µ(b0)
,
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which is a contradiction.

Corollary 2.1.1. Let a ∈ T. If there exists a sequence {tk}∞k=1 ⊂ [a,∞) such

that limk→∞ tk = ∞ with µ(tk) ≥ K > 0 for some K > 0 and such that

lim
tk→∞

sup λmax(

∫ tk

a

Q(s)4s) = +∞, (2.7)

then (2.3) is oscillatory.

Proof Let t0 ∈ [a,∞). Choose k0 sufficiently large so that a0 = tk0 ∈ [t0,∞).

Using (2.7), we can pick k1 > k0 sufficiently large so that with b0 = tk1 we have

λmax(

∫ b0

a0

Q(s)4s) ≥ 2

K
≥ 1

µ(a0)
+

1

µ(b0)
.

Theorem 2.1.2 ([6]). Let a ∈ T. Suppose that there is a strictly increasing

sequence {tk}k∈N ⊂ [a,∞) such that µ(tk) > 0 for k ∈ N, with limk→∞ tk = ∞.

Further assume that there is a sequence {τk}k∈N ⊂ [a,∞) such that σ(τk) > τk ≥
σ(tk) for k ∈ N with

λmin(
P (tk)

µ(tk)
+

P (τk)

µ(τk)
−

∫ τk

tk

Q(s)4s) ≤ 0

for k ∈ N . Then (2.2) is oscillatory on [a,∞).

Proof Assume (2.2) is nonoscillatory on [a,∞). Then there is a prepared

solution X(t) of (2.2) and a t0 ∈ [a,∞) such that

X∗(σ(t))P (t)X(t) > 0

on [t0,∞). We make the Riccati substitution

Z(t) = P (t)X4(t)X−1(t)
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for t ∈ [a,∞). Then by Theorem 1.6.4 we get that

P (t) + µ(t)Z(t) > 0

on [t0,∞) and Z(t) is a Hermitian solution of the Riccati equation RZ = 0 on

[t0,∞). Let {tk}, {τk} be the sequences given in the statement of this theorem.

Pick a fixed integer k so that tk ≥ t0. Integrating both sides of the Riccati

equation from tk to τk we obtain

Z(τk) = Z(tk)−
∫ τk

tk

Q(t)4t−
∫ τk

tk

F (t)4t where, F = Z∗(P + µZ)−1Z

= Z(tk)−
∫ τk

tk

Q(t)4t−
∫ σ(tk)

tk

F (t)4t−
∫ τk

σ(tk)

F (t)4t

= Z(tk)− F (tk)µ(tk)−
∫ τk

tk

Q(t)4t−
∫ τk

σ(tk)

F (t)4t

= Z(tk)− µ(tk)Z(tk)[P (tk) + µ(tk)Z(tk)]
−1Z(tk)

−
∫ τk

tk

Q(t)4t−
∫ τk

σ(tk)

F (t)4t

= Z(tk)[P (tk) + µ(tk)Z(tk)]
−1[P (tk) + µ(tk)Z(tk)− µ(tk)Z(tk)]

−
∫ τk

tk

Q(t)4t−
∫ τk

σ(tk)

F (t)4t

= Z(tk)[P (tk) + µ(tk)Z(tk)]
−1P (tk)−

∫ τk

tk

Q(t)4t

−
∫ τk

σ(tk)

F (t)4t

≤ Z(tk)[P (tk) + µ(tk)Z(tk)]
−1P (tk)−

∫ τk

tk

Q(t)4t.
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But now we get that

Z(tk)[P (tk) + µ(tk)Z(tk)]
−1P (tk) = Z(tk)[X(tk)X

−1(σ(tk))P
−1(tk)]P (tk)

= P (tk)X
4(tk)X

−1(σ(tk))

=
P (tk)

µ(tk)
[Xσ(tk))−X(tk)]X

−1(σ(tk))

=
P (tk)

µ(tk)
− 1

µ(tk)
P (tk)X(tk)X

−1(σ(tk))

<
P (tk)

µ(tk)

Hence, from above we have

Z(τk) <
P (tk)

µ(tk)
−

∫ τk

tk

Q(t)4t.

Using P (τk) + µ(τk)Z(τk) > 0, we have finally

P (τk)

µ(τk)
+

P (tk)

µ(tk)
−

∫ τk

tk

Q(t)4t > 0,

which is a contradiction.

Corollary 2.1.2. Let a ∈ T. A necessary condition for (2.2) to be nonoscillatory

on [a,∞) is that for any strictly increasing sequence {tk}k∈N ⊂ [a,∞) such that

µ(tk) > 0 for k ∈ N, with limk→∞ tk = ∞, there is N ∈ N such that

Dk :=
P (tk)

µ(tk)
+

P (tk+1)

µ(tk+1)
−

∫ tk+1

tk

Q(s)4s > 0 for k ≥ N.

Corollary 2.1.3. Let a ∈ T. Assume that there is a strictly increasing sequence

{tk}k∈N ⊂ [a,∞) such that µ(tk) > 0 for k ∈ N , with limk→∞ tk = ∞. Fur-

thermore assume that there are sequences {sk}k∈N ⊂ [a,∞) and {τk}k∈N ⊂ [a,∞)

such that σ(τk) > τk ≥ σ(sk) > sk ≥ σ(tk), k ∈ N, with

∫ sk

tk

Q(t)4t ≥ P (tk)

µ(tk)
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and

λmin(
P (τk)

µ(τk)
−

∫ τk

sk

Q(t)4t) ≤ 0

for k ∈ N. Then (2.2) is oscillatory on [a,∞).

Proof It follows from Weyl’s inequality that if A and B are Hermitian ma-

trices, then

λmin(A−B) ≤ λmin(A)− λmin(B).

We use this fact in the following chain of inequalities. Consider

λmin (
P (tk)

µ(tk)
+

P (τk)

µ(τk)
−

∫ τk

tk

Q(t)4t)

= λmin([
P (τk)

µ(τk)
−

∫ τk

sk

Q(t)4t]− [

∫ sk

tk

Q(t)4t− P (tk)

µ(tk)
])

≤ λmin(
P (τk)

µ(τk)
−

∫ τk

sk

Q(t)4t)− λmin(

∫ sk

tk

Q(t)4t− P (tk)

µ(tk)
)

≤ 0.

Hence the result follows from Theorem 2.1.2.

Corollary 2.1.4. Let a ∈ T. Suppose also that

lim
t→∞

λmin(

∫ t

t0

Q(s)4s) = ∞ (2.8)

and that for each T ∈ [a,∞) there is t ∈ [T,∞) such that µ(t) > 0 and

λmin(
P (t)

µ(t)
−

∫ t

T

Q(s)4s) ≤ 0. (2.9)

Then (2.2) is oscillatory on [a,∞).

Theorem 2.1.3 ([6]). Let a ∈ T. Suppose for each t0 ≥ a there is a strictly

increasing sequence {tk}∞k=1 ⊂ [t0,∞) with µ(tk) > 0 and limk→∞ tk = ∞ , and
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that there are constants K1 and K2 such that 0 < K1 ≤ µ(tk) ≤ K2 for k ∈ N
with

lim
k→∞

λmax(

∫ tk

t1

Q(t)4(t)) ≥ 1

µ(t1)
.

Further assume that there is a constant M such that

tr(

∫ tk

t1

Q(t)4t) ≥ M for k ∈ N.

Then (2.3) is oscillatory on [a,∞).

Proof Assume (2.3) is nonoscillatory on [a,∞). This implies that there is a

nontrivial prepared solution X(t) of (2.3) and t0 ∈ [a,∞) such that

X∗(σ(t))X(t) > 0

on [t0,∞). We make the Riccati substitution

Z(t) = X4(t)X−1(t)

for t ∈ [t0,∞), then by Theorem 1.6.4 we get that

I + µ(t)Z(t) > 0 for t ≥ t0,

and Z(t) is a Hermitian solution of the Riccati equation

Z4(t) + Q(t) + F (t) = 0

on [t0,∞) , where F = Z∗(P +µZ)−1Z. Corresponding to t0 let {tk}∞k=1 ⊂ [t0,∞)

be the sequence guaranteed in the statement of this theorem . Integrating both
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sides of the Riccati equation from t1 to tk , where k > 1 gives

Z(t1) = Z(tk) +

∫ tk

t1

Q(t)4(t) +

∫ tk

t1

F (t)4t

= Z(tk) +

∫ tk

t1

Q(t)4t +

∫ σ(t1)

t1

F (t)4t +

∫ tk

σ(t1)

F (t)4t

= Z(tk) +

∫ tk

t1

Q(t)4t + F (t1)µ(t1) +

∫ tk

σ(t1)

F (t)4t

Simplifying we get

Z(tk) +

∫ tk

t1

Q(t)4t +

∫ tk

σ(t1)

F (t)4t = Z(t1)(I + µ(t1)Z(t1))
−1Z(t1).

Hence,

λmax ( Z(tk) +

∫ tk

t1

Q(t)4t +

∫ tk

σ(t1)

F (t)4t)

= λmax(Z(t1)(I + µ(t1)Z(t1))
−1)Z(t1). (2.10)

By Weyl’s inequality

λmax ( Z(t1)(I + µ(t1)Z(t1))
−1Z(t1))

> λmin(Z(tk)) + λmax(

∫ tk

t1

Q(t)4t) + λmin(

∫ tk

σ(t1)

F (t)4t)

≥ λmin(Z(tk)) + λmax(

∫ tk

t1

Q(t)4t). (2.11)

Taking the limit of both sides as k →∞ and using

lim
k→∞

λmin(Z(tk)) = 0, (2.12)
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which we will prove later, we get

λmax ( Z(t1)(I + µ(t1)Z(t1))
−1)

≥ lim
k→∞

λmax(

∫ tk

t1

Q(t)4t)

≥ 1

µ(t1)
.

But in the proof of Theorem 2.1.1 we show that I + µ(t1)Z(t1) > 0 implies that

λmax(Z(t1)(I + µ(t1)Z(t1))
−1) <

1

µ(t1)
, (2.13)

and this is a contradiction. Hence to complete the proof of this theorem it remains

to prove that (2.12) holds. In fact , we shall prove that

lim
k→∞

λi(Z(tk)) = 0

for 1 ≤ i ≤ n , which includes (2.12) as a special case. To do this we first show

that

lim
k→∞

λi(F (tk)) = 0

for 1 ≤ i ≤ n. Since F (t) ≥ 0 implies tr(F (t)) ≥ 0 we have

k∑
j=1

µ(tj)λi(F (tj)) ≤
k∑

j=1

µ(tj)tr(F (tj))

=
k∑

j=1

∫ σ(tj)

tj

tr(F (t))4t

≤
∫ σ(tk)

t1

tr(F (t))4t

≤ tr(

∫ σ(tk)

t1

F (t)4t)

≤ nλmax(

∫ σ(tk)

t1

F (t)4t)
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for all k > 1. We now show that the sequence

λmax(

∫ tk

t1

F (t)4t),

k ≥ 1 is bounded. From (2.11) and (2.13) we get

1

µ(t1)
> λmin(Z(tk)) + λmax(

∫ tk

t1

Q(t)4t).

Using (2.10) and (2.13) and applying Weyl’s inequality twice yields

1

µ(t1)
> λmax(Z(tk) +

∫ tk

t1

Q(t)4t

+

∫ tk

σ(t1)

F (t)4t)

≥ λmin(Z(tk)) + λmin(

∫ tk

t1

Q(t)4t)

+ λmax(

∫ tk

σ(t1)

F (t)4t).

It follows that

1

µ(t1)
+

1

µ(tk)
> λmin(

∫ tk

t1

Q(t)4t) + λmax(

∫ tk

σ(t1)

F (t)4t). (2.14)

From Theorem 2.1.1, we can, without loss of generality, assume that

λmax(

∫ tk

t1

Q(t)4t) <
1

µ(t1)
+

1

µ(tk)
(2.15)
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holds for k > 1. Therefore,

M ≤ tr(

∫ tk

t1

Q(t)4t)

=
n∑

i=1

λi(

∫ tk

t1

Q(t)4t)

= λmin(

∫ tk

t1

Q(t)4t) +
n−1∑
i=1

λi(

∫ tk

t1

Q(t)4t)

< λmin(

∫ tk

t1

Q(t)4t) + (n− 1)(
1

µ(t1)
+

1

µ(tk)
).

Solving for the last term on the right-hand side of (2.14) and using the above

inequality we get

λmax(

∫ tk

σ(t1)

F (t)4t) < n(
1

µ(t1)
+

1

µ(tk)
)−M.

Therefore,
∞∑

j=1

µ(tj)tr(F (tj)) < ∞

and so since

λi(F (t)) ≤ tr(F (t))

and 0 < K1 ≤ µ(tk) ≤ K2 for k = 1, 2, ..., it follows that

lim
k→∞

λi(F (tk)) = 0.

That is

lim
k→∞

(λi[Z(tk)])
2

1 + µ(tk)λi[Z(tk)]
= 0

for i = 1, 2, ..., n. Similar to the argument to prove (2.6) in Theorem 2.1.1 we can

show

λi(F (tk)) =
d2

i

1 + µ(tk)di

. (2.16)
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If we consider only the case λi(Z(tk)) ≥ 0, then

0 ≤ (λi[Z(tk)])
2

1 + K2λi[Z(tk)]
≤ (λi[Z(tk)])

2

1 + µ(tk)λi[Z(tk)]
,

which implies

lim
k→∞

(λi[Z(tk)])
2

1 + K2λi[Z(tk)]
= 0

for i = 1, 2, ..., n, which in turn implies that

lim
k→∞

λi(Z(tk)) = 0

for i = 1, 2, ..., n. This completes the proof.

2.2 New oscillation criteria

We are concerned with the oscillation of nonlinear matrix dynamic equation

of the form

[P (t)X4]4 + F (t, X,X4)Xσ = 0 (2.17)

where X = (xij), F = (fij) and P are n × n matrices. By F = F (t, X,X4) is

meant fij = fij(t, x11, ..., xnn, x
4
11, ..., x

4
nn). The functions fij are assumed to be

continuous for t on [a,∞), a ≥ 0, and for all values of the remaining variables.

The matrix F (t,X, X4) is symmetric and positive definite for every t on [a,∞)

and every X with det X 6= 0, while the matrix P (t) is continuous, symmetric and

positive definite for every t on [a,∞).

Remark: If T = R then the results in this section were proved by TOMASTIK

[[17]].

Lemma 2.2.1. If X(t) is a prepared matrix solution of (2.17) such that det X(t) 6=
0 on some interval (b,∞), then detX4(t) 6= 0 on some interval [c,∞), c > b. Fur-
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thermore, if Z(t) = P (t)X4(t)X−1(t), then

Z(t) = Z(c)−
∫ t

c

F [x,X(x), X4(x)]4x

−
∫ t

c

Z(x)P−1(x)Z(x)[P + µZ]−1(x)P (x)4x (2.18)

and

Z−1(t) = Z−1(c) +

∫ t

c

Z−1F [x,X(x), X4(x)](Zσ(x))−14x

+

∫ t

c

{P−1Z[P + µZ]−1P (Zσ)−1}(x)4x (2.19)

for all t ≥ c.

Proof Since det X(t) 6= 0 on (b,∞), Z(t) is well defined on (b,∞). Since

X(t) is a prepared solution i.e.,

X∗PX4 = (X4)∗PX, (2.20)

it follows that Z(t) is also symmetric. If we take the derivative of Z(t) =

P (t)X4(t)X−1(t), we get

Z4 = (PX4)4(X−1)σ + PX4(X−1)4.

Using (2.17), we have

Z4 = −FXσ(X−1)σ − PX4X−1X4(Xσ)−1

= −F − ZX4(Xσ)−1

= −F − ZP−1ZX(Xσ)−1

= −F − ZP−1Z(XσX−1)−1

Since XσX−1 = I + (Xσ −X)X−1, we may write
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Z4 = −F − ZP−1Z[I + (Xσ −X)X−1]−1

= −F − ZP−1Z[I + µX4X−1]−1

= −F − ZP−1Z[I + µP−1PX4X−1]−1

= −F − ZP−1Z[I + µP−1Z]−1

= −F − ZP−1Z{P−1(P + µZ)}−1

= −F − ZP−1Z[P + µZ]−1P.

Therefore,

Z4(t) = −F [t, X(t), X4(t)]

− Z(t)P−1(t)Z(t)[P (t) + µ(t)Z(t)]−1P (t) (2.21)

The right hand-side of (2.21) is negative definite since F is positive definite and

ZP−1Z = Z∗P−1Z is positive semidefinite. Each characteristic root of Z(t), then

is strictly decreasing and det Z(t) can vanish at most n times. Then there exists

c > b such that Z(t) and thus X4(t) is not singular on [c,∞). If we take the

derivative of the both sides of Z−1Z = I, then we get

(Z−1)4Zσ = −Z−1Z4.

By using (2.21), we have

(Z−1)4 = −Z−1Z4(Zσ)−1

= Z−1F (Zσ)−1 + Z−1ZP−1Z[P + µZ]−1P (Zσ)−1 (2.22)

If we integrate both sides of (2.22), then

Z−1(t) = Z−1(c) +

∫ t

c

Z−1F (Zσ)−14x

+

∫ t

c

P−1Z[P + µZ]−1P (Zσ)−14x.
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Clearly, (2.18) and (2.19) follow from (2.21) and (2.22), respectively.

Theorem 2.2.1. Let P (t) = I, the identity matrix. If

λmax[

∫ ∞

a

F (t, A(t), A4(t))4t] = ∞,

for every differentiable matrix A(t) such that λmin[A∗(t)A(t)] ≥ ε > 0 for large t,

then (2.17) is oscillatory.

Proof Assume on the contrary that (2.17) is not oscillatory. Therefore, there

exists b ≥ a and a prepared matrix solution X(t) of (2.17) such that det X(t) 6= 0

on (b,∞). In view of Lemma 2.21, (2.18) and (2.19) are then satisfied. Using

Weyl inequality, we see that

λmax{Z−1(t)} = λmax{Z−1(c) +

∫ t

c

Z−1F )(Zσ)−14x

+

∫ t

c

P−1Z[P + µZ]−1P (Zσ)−14x}

≥ λmin{Z−1(c)}+ λmax{
∫ t

c

Z−1F (Zσ)−14x}

+ λmin{
∫ t

c

P−1Z[P + µZ]−1P (Zσ)−14x}

Hence;

λmax{Z−1(t)} ≥ λmin{Z−1(c)}
+ λmax{

∫ t

c

Z−1F (Zσ)−14x} (2.23)

Since the first integral in (2.19) is positive definite, all characteristic roots Z−1(t)

have limits equal to +∞. Thus Z(t) is positive definite for large t and

lim Z(t) = 0

Since det X(t) 6= 0 on [c,∞), we can consider X(t) to be a matrix solution of the
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linear equation

X4(t) = Z(t)X(t)

Then, we get

[X∗X]4 = (X4)∗Xσ + X∗X4

= (X4)∗Xσ + X∗ZX4

= X∗ZXσ + X∗ZX (2.24)

which is positive definite for large t since Z(t) is positive definite for large t and

detX(t) 6= 0. Thus each characteristic root of X∗(t)X(t) is strictly increasing

and λmin[X∗(t)X(t)] ≥ ε > 0 for some ε and for large t. By our hypothesis, we

conclude that

λmax[

∫ ∞

a

F4t] = ∞

If we use this in (2.18), we see that Z(t) must be negative definite , which is a

contradiction. Hence, (2.17) is oscillatory.

Corollary 2.2.1. Suppose F (t, U, U4) = U∗kQ(t)Uk where Q(t) is positive def-

inite on [a,∞) and k is some nonnegative integer. If the matrix
∫ t

a
Q(x)4x is

unbounded, then (2.17) is oscillatory.

Assume that A(t) is differentiable matrix such that λmin[A∗(t)A(t)] ≥ ε > 0

for large t. This implies immediately that λmax[A
∗k(t)Ak(t)] ≥ εk for large t.

Since Q(t) is positive definite, it follows readily from the Courant-Hilbert min-

max theorem that

λmax[A
∗k(t)Q(t)Ak(t)] ≥ εkλmax[Q(t)] (2.25)

for large t. Since Q(t) is positive definite and
∫ t

a
Q(x)4x is unbounded,

λmax[
∫∞

a
Q(x)4x] = ∞. Now using this fact and inequality in (2.25) and Theo-

rem 2.2.1, we conclude that λmax[
∫∞

a
A∗k(t)Q(t)Ak(t)]4t = ∞. Therefore (2.17)

is oscillatory.

Theorem 2.2.2. If F satisfies the same hypothesis as in Theorem 2.2.1 and if
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P (t) = p(t)I, where p(t) is a positive scalar function such that
∫∞

a
p−14x = ∞,

then (2.17) is oscillatory.

The proof is the same as for 2.2.1, except that (2.24) becomes

[X∗X]4 = (X4)∗Xσ + X∗X4

= [P−1ZX]∗Xσ + X∗[P−1ZX]

= X∗ZP−1Xσ + X∗P−1ZX

= X∗[ZP−1XσX−1 + P−1Z]X. (2.26)

Now, ZP−1XσX−1 + P−1Z positive definite and so the proof proceeds as before.

Theorem 2.2.3. Suppose that for every differentiable matrix A(t) with det A(t) 6=
0 for large t, we have

λi[

∫ ∞

a

F [t, A(t), A4(t)]4t] = ∞, i = 1, ..., p (2.27)

and

λi[

∫ ∞

a

P−1(t)4t] = ∞, i = 1, ..., r (2.28)

If r + p > n, then (2.17) is oscillatory.

Assume that (2.17) is not oscillatory. Then there exists b ≥ a and a prepared

matrix solution U(t) of (2.17) such that det U(t) 6= 0 on (b,∞). Lemma 2.2.1.

applies and so (2.21) and (2.22) are satisfied. Using the Weyl inequality, we see

from (2.18)

λi(Z(t)) ≤ λi(Z(c))− λmin{
∫ t

c

F4x}

− λmin{
∫ t

c

ZP−1Z[P + µZ]−1P4x}

Using (2.27) that Z(t) has p characteristic roots whose limits are −∞. From

(2.19) using (2.28), we see that Z−1(t) has r characteristic roots whose limits are

∞. This contradicts the fact that r + p > n. Hence, (2.17) is oscillatory.
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