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ABSTRACT 

 

ON-LINE CONTROLLER TUNING BY MATLAB® USING REAL 

SYSTEM RESPONSES 
 

PEKTA�, Seda 

M.Sc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Tuna Balkan 

Co-Supervisor: Prof. Dr. Bülent E. Platin 

November 2004, 120 pages 

 

This thesis attempts to tune any controller without the mathematical model 

knowledge of the system it is controlling. For that purpose, the optimization 

algorithm of MATLAB® 6.5 / Nonlinear Control Design Blockset (NCD) is adapted 

for real-time executions and combined with a hardware-in-the-loop simulation 

provided by MATLAB® 6.5 / Real-Time Windows Target (RTWT). A noise-

included model of a DC motor position control system is obtained in MATLAB® / 

SIMULINK first and simulated to test the modified algorithm in some aspects. Then 

the presented methodology is verified using the physical plant (DC motor position 

control system) where tuning algorithm is driven mainly by the real system data and 

the required performance parameters specified by a user defined constraint window 

are successfully satisfied. Resultant improvements on the step response behavior of 

DC motor position control system are shown for two case studies.  

 

Keywords: Controller tuning, Hardware-in-the-loop simulation, On-line tuning, 

Iterative feedback control 
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ÖZET 

 

GERÇEK S�STEM TEPK�LER�N� KULLANARAK MATLAB® 

YARDIMIYLA GERÇEK ZAMANLI DENETLEÇ 

AYARLANMASI 

 
PEKTA�, Seda 

Yüksek Lisans, Makina Mühendisli�i Bölümü 

Tez Yöneticisi: Prof. Dr. Tuna Balkan 

Ortak Tez Yöneticisi: Prof. Dr. Bülent E. Platin 

Kasım 2004, 120 sayfa 

 

Bu tez, esas olarak, matematik modeli bulunmayan bir sistemin denetim sisteminin 

ayarlanmasını amaçlamaktadır. Bu amaç için, MATLAB® 6.5 programının 

Nonlinear Control Design (NCD) biriminde var olan en iyileme algoritması gerçek 

zamanlı uygulamalara hazır hale getirilmi� ve di�er bir MATLAB® birimi olan Real 

Time Windows Target (RTWT) deste�iyle gerçek zamanlı yapılan benzetim 

tekni�iyle birlikte kullanılmı�tır. Öncelikle gürültü içeren bir DC motor konum 

denetim sistemi modeli MATLAB® / SIMULINK yardımıyla hazırlanmı� ve 

algoritmada yapılan modifikasyonlar belirli yönlerden test edilmi�tir. Daha sonra, 

ayar algoritmasının kullanaca�ı verileri do�rudan alaca�ı fiziksel sistem (DC motor 

konum denetim sistemi) kullanılarak bahsi geçen metodun do�rulanması yapılmı� ve 

kullanıcı tarafından tanımlanmı� kısıtlamalarla belirlenen tasarım ölçütleri 

sa�lanarak optimizasyon ba�arıyla sonuçlandırılmı�tır. DC motor konum denetim 

sisteminin tepkilerindeki iyile�meler iki ayrı durum çalı�masında gösterilmi�tir. 

 

 

Anahtar kelimeler: Denetim birimi ölçütlerinin ayarlanması, Gerçek zamanlı 

denetim, yinelemeli geribeslemeli denetim sistemleri. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

1.1   Background 
 

This study involves two different branches of control engineering; controller tuning 

and hardware-in-the-loop simulation. A detailed explanation of all tuning methods 

is virtually impossible, because there are many tuning methods and many possible 

performance criteria. Also, field of hardware-in-the-loop simulation is rather vast 

but the method is straightforward. Only the milestones and main results of the 

previous work are presented in the following sections. 

 
 
1.1.1 Controller Tuning 

 
Controller parameters must be customized to a process or system to yield the best, 

or at least a minimally acceptable performance, called as the tuning a controller. To 

tune a controller, several critical factors must be taken into consideration. The 

stability of the system must always be assured over the entire operational conditions 

encountered. The smoothness of the response of the system to inputs or 

disturbances of varying magnitude must be maintained, such that there are no 

abrupt, disruptive or destructive changes to the system. There must be 

computational simplicity, so that controller computations are done quickly enough 

to send control signals to a real world system at an acceptable and efficient rate. 

Last of all, the controller must have the proper sensitivity, to be able to react to 

small control signals but resist and filter out the noise and disturbances [1]. 

However, for a variety of reasons optimal setting of the controller gains is difficult 

without a systematic procedure and as a result many tuning techniques were 

developed in the literature. 
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1.1.1.1 Standard Experimental PID Tuning Techniques 

 
Despite huge advances in the field of control systems engineering, PID still remains 

the most common control algorithm in industrial use today. This is not only due to 

its simple structure, which is conceptually easy to understand making a manual 

tuning possible, but also to the fact that the algorithm provides an adequate 

performance in the vast majority of applications.  

Transfer function of a PID controller is given as follows [2]: 
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In many practical control applications, a mathematical description of the plant is not 

available, and the controller has to be designed on the basis of measurements. This 

problem has attracted the attention of control engineers since the forties with the 

pioneering work by Ziegler and Nichols (1942), which focuses on the design of 

industrial PID controllers. After Ziegler and Nichols, many more techniques started 

to appear, partly as modifications and extensions of the Ziegler and Nichols method, 

partly as developments in new directions. Best known are the methods of Astrom 

and Hagglund, 1995 [3]; Chien, Hrones and Reswick, 1952 [4]; Dahlin, 1968 [5]; 

Haalman, 1965 [6]; McMillan, 1983 [7].  Here, however, only Ziegler-Nichols 

tuning rule (second method) will be introduced as an example to give a general idea 

on the basis of experimental PID tuning techniques. 

 

Ziegler-Nichols tuning method [2] is straightforward. First, system is tested in closed 

loop with a proportional controller (integral and derivative modes are disconnected). 

The proportional controller gain is set to zero and increased until the system reaches 

its stability margin (oscillations). If there is no oscillation the set point is changed 

slightly in order to trigger any oscillation. The gain is adjusted so that the oscillation 
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is sustained, that is, continues at the same amplitude. If the magnitude of  oscillations 

is increasing, gain is decreased slightly and vice versa. When oscillations with a 

constant amplitude and period are established, it is possible to determine the 

oscillations period (critical period) Pcr and controller (critical) gain Kcr with which 

oscillations where established. Based on experimentally obtained Pcr and Kcr, Ziegler 

and Nichols have given the following Table 1.1 for controller parameters (assuming 

quarter decay ratio criterion). One can use the set which corresponds with the desired 

configuration: P only, PI, or PID. 

 

 

Table 1.1 Ziegler-Nichols optimal controller gains. 
 

Controller Type Kp Ti Td 

P 0.5 Kcr � 0 
PI 0.45 Kcr 0.833 Pcr 0 

PID  0.6 Kcr 0.5 Pcr 0.125 Pcr 
 

 

The Ziegler–Nichols settings result in a very good disturbance response for 

integrating processes, but are otherwise known to result in rather aggressive 

settings, where oscillations and overshoot are usually not desired and also give poor 

performance for processes with a dominant delay. 

 

The main characteristic of these techniques is that they were developed empirically 

through the simulation of a large number of process systems and provide simple 

tuning formulae to determine the PID controller parameters. However, since only a 

small amount of information on the dynamic behavior of the process is used, in 

many situations they do not provide good enough tuning or produce a satisfactory 

closed-loop response. The methods operate particularly well for simple systems and 

those which exhibit a clearly dominant pole-pair, but for more complex systems the 

PID gains may be strongly coupled in a less predictable way. For these systems, 

adequate performance is often only achieved through optimization based methods 

except manual and heuristic parameter variation. 

 



 4

 

1.1.1.2 Optimization Based Methods 

 

1.1.1.2.1 Virtual Reference Feedback Tuning 

 

M.C. Campi et. al [8] described a new controller tuning method called Virtual 

Reference Feedback Tuning (VRFT) for an unknown plant based on input/output 

measurements. This design method was direct (no model identification of the plant 

is needed) and can be applied using a single set of data generated by the plant. 

VRFT is a model reference control problem, where the user can specify his control 

objectives by a suitable selection of a reference model, M(s), i.e., desired transfer 

function of the closed-loop system. Such a reference is called “virtual” because it 

was not used to generate an output. 

 

The basic idea of the virtual reference approach is to perform a wise selection of 

reference signal r(t) such that multiplication of reference signal and desired transfer 

function of the closed-loop system M(s) should be equal to measured system 

outputs y(t). After selecting reference signal the corresponding tracking error can be 

computed as e(t) = r(t) − y(t). Even though plant is not known, we know that when 

plant is fed by u(t)  (actually measured input signal), it generates y(t) as an output. 

Therefore, a good controller is the one that generates u(t) when fed by e(t). Since 

both signals u(t) and e(t) are known, tuning task reduces to the identification 

problem of describing the dynamical relationship between e(t) and u(t). A controller 

parameter vector, θ , is selected such that it minimizes the following criterion: 
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where ),( θsC  represents the controller class.  
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However, in this procedure system is assumed to be noise-free. When the plant 

output y(t) is affected by an additive noise, it results in a significant deterioration of 

the performance. Also in general situations, testing the controller for stability is 

necessary before implementing the method. 

 
 
1.1.1.2.2 PID Tuning Based on Genetic Algorithm 

 
Genetic Algorithm (GA) is a stochastic global search method that mimics the 

process of natural evolution. The genetic algorithm starts with no knowledge of the 

correct solution and depends entirely on responses from its environment and 

evolution operators (i.e., reproduction, crossover and mutation) to arrive at the best 

solution. By starting at several independent points and searching in parallel, the 

algorithm avoids local minima and converging to sub-optimal solutions [9]. 

 

Three main stages of genetic algorithm are reproduction, crossover and  mutation. 

During the reproduction phase the fitness value of each variable set (chromosome) 

is assessed. Just like in natural evolution, a fit chromosome has a higher probability 

of being selected for reproduction. Then, crossover operations swaps certain parts 

of the two selected strings in a bid to capture the good parts of old chromosomes 

and create better new ones. Finally by the introduction of a mutation operator, it is 

obtained enough diversity in the initial strings to ensure the GA searches the entire 

problem space. In literature, this technique is widely used for controller tuning, by 

defining the sets of  controller gains as the chromosomes of Genetic Algorithm. 

 
Genetic algorithms do not require derivative information or other auxiliary 

knowledge; only the objective function and corresponding fitness levels influence 

the direction of the search. The main problem with the genetic algorithm, used to 

tune the controller online, is its computation time which is highly dependent on the 

speed of the hardware being used. 
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1.1.1.2.3     PID Tuning Based on Learning Action 

 
In 2000, M.C. Best [10] introduced a formal approach to setting controller 

parameters, where the terms are adapted online to optimize a measure of system 

performance. The adaptation is conducted by a learning algorithm, using 

Continuous Action Reinforcement Learning Automata (CARLA). The control 

parameters are initially setted, then three separate learning automata are employed, 

one for each controller gain, to adaptively search the parameter space to minimize 

the specified cost criterion. Within each automata, each action has an associated 

probability density function f(x) that is used as the basis for its selection. Action sets 

that produce an improvement in system performance invoke a high-performance 

“score”, β , and thus through the learning sub-system have their probability of re-

selection increased. This is achieved by modifying f(x) through the use of a 

Gaussian neighborhood function centered on the successful action. The 

neighborhood function increases the probability of the original action, and also the 

probability of actions “close” to that selected; the assumption is that the 

performance surface over a range in each action is continuous and slowly varying. 

As the system learns, the probability distribution generally converges to a single 

Gaussian distribution around the desired parameter value. 

 

M.C. Best made tests for engine idle-speed control, both in simulation and in 

practice. A Simulink hardware-in-the-loop system was designed, measuring engine 

speed and supplying a continuous control output to maintain idle at a constant rpm. 

PID parameters were set on-line via a MATLAB® program running the CARLA 

algorithm. 

 

Their technique does not require a priori knowledge of the system dynamics, and it 

provides optimized control of complex nonlinear systems. One notable 

disadvantage of learning is its specificity to the individual test environment; plant 

variations can have significant implications for robustness. 
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1.1.2 Hardware-in-the-loop Simulations  

 
The basic principle of hardware-in-the-loop simulation (HILS) is that some 

subsystems are physically embedded within a real-time simulation model. Real-time 

means the simulation of each component performed such that input and output 

signals show the same time dependent values as in real world dynamic operation. In 

HILS, the embedded system is fooled into thinking that it is operating with real-

world inputs and outputs, in real-time. A computer software with real-time 

simulation capabilities and a computer with necessary communication abilities 

(A/D, D/A converters for communications with analog signals and digital ports for 

communication with digital signals) is necessary to perform hardware-in-the-loop 

simulation [11]. 

 

While performing HILS for a real system, control system hardware and software are 

usually the real system. The controlled process consisting of physical processes and 

sensors can then be either fully or partially simulated. Frequently, some actuators 

are real, and the process and sensors are simulated. The reason is that actuators and 

control hardware often form one integrated subsystem. Also, actuators are difficult 

to model precisely and to simulate in real-time. The use of real sensors together 

with the simulated process may require considerable realization efforts, because no 

real sensor input exists and it must be generated artificially. 

 
 
1.2 Objective of  the Study 

 
The main goal of this thesis is to improve the controller tuning method of 

MATLAB® / Nonlinear Control Design (NCD) Blockset by doing a set of 

modifications on its optimization algorithm so that the algorithm will be applied to  

a hardware-in-the-loop simulation where the plant is real. Such a process will 

guarantee that the real system’s output response will satisfy the required design 

specifications when the optimized controller parameter values are used. 

 
NCD Blockset, MATLAB® is mainly used as user interface and its optimization 

algorithm is modified and adapted as being able to transfer input/output information 
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from/to a physical system which is provided by the usage of Real Time Windows 

Target, MATLAB®. Although it is not a perfect and final solution, it is a definite 

step toward reaching the most realistic results for the controller tuning process. 

 
 
1.3 Scope of the Study 

 
The method developed is intended to be used as a general real-time optimization 

tool whenever the model is unknown. Application area can be extended to any  kind 

of optimization problem beside the controller parameters tuning. The systems that 

can be used with this algorithm are not limited to nonlinear, SISO, continuous time 

systems, also. A self-adapted controller tuning method against drastic set point 

changes is not aimed since this process would be too complicated with the lack of a 

mathematical model. One original feature of the method is that it is capable to use 

the physical plant instead of the mathematical model, and thus all the results are 

realistic. This feature does not exist in any of the optimization methods, best to our 

knowledge. 

 

The thesis begins with an overview of NCD Blockset Version 1.1.6 of MATLAB® 

6.5 describing the main idea and the working of  the optimization algorithm behind, 

in Chapter 2. Related MATLAB® routines are explained in a logical order. Chapter 3 

discusses the necessary modifications on the present NCD algorithm and the 

experimentation method to be able to use the real plant’s inputs/outputs for the case 

studies. Additional details are provided related to the application of the algorithm 

before the example simulations are examined. As an example to the demonstration of 

the modified algorithm, a model-based simulation with a mathematical model of an 

inertia disc driven by a DC servo motor is made and the results are discussed in 

Chapter 4. This is followed, in Chapter 5, by hardware-in-the-loop simulation, which 

illustrates how well the algorithm works with the physical plant itself. Discussions, 

conclusions and future scope sections conclude the thesis report in Chapter 6. 

Additional details are provided in Appendix A, B and C about command window 

displays of case study II, flowchart of the algorithm and  related original 

optimization m-files, respectively. 
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CHAPTER 2 

 

MATLAB® NONLINEAR CONTROL DESIGN BLOCKSET 

 

Nonlinear Control Design (NCD) Blockset of MATLAB® 6.5 Release 13 with 

Service Pack 1 is a tool that helps to tune design parameters in a nonlinear Simulink 

model by optimizing time-based signals to meet user-defined constraints by 

graphically placing constraints within a time-domain window. 

To use the NCD Blockset, it only requires to include a special block, the NCD 

Outport block, in Simulink diagram and to connect that block to any signal in the 

model to signify that user wants to place some kind of constraint on the signal. NCD 

Outport block can be found under NCD within the Simulink Library Browser. Figure 

2.1 shows an example usage of NCD Outport block in a Simulink model of the 

sample plant including a PID controller [12]. 

 

 

 
 

Figure 2.1 A Simulink model with NCD Outport Block 
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The NCD Blockset automatically converts time domain constraints into a 

constrained optimization problem and then solves the problem using state-of-the-art 

optimization routines taken from the Optimization Toolbox. The constrained 

optimization problem formulated by the NCD Blockset iteratively calls for 

simulations of the Simulink system, compares the results of the simulations with the 

constraint objectives, and uses gradient methods to adjust tunable parameters to 

better meet the objectives. The NCD Blockset allows to introduce uncertainty into 

plant dynamics, conduct Monte Carlo simulations, specify lower and upper limits 

on tunable parameters, and alter termination criterion. The progress of an 

optimization while the optimization is running can be followed from command 

window, and the final results are available in the MATLAB® workspace when an 

optimization is complete. Intermediate results are plotted after each simulation. It 

allows the user to terminate the optimization before it has completed, to retrieve the 

intermediate result or change the design. 

 
 
2.1 Adjusting Constraints 

 
NCD uses time-domain constraint bounds to represent lower and upper bounds on 

response signals, which appear as red bars in Figure 2.2. The lower and upper 

constraint bounds define a channel within which the ouput response should lie. NCD 

constraint window is opened by double-clicking on the NCD Outport block. 

 

 

 
 

Figure 2.2 An example of NCD constraint window 
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These bounds must be changed to reflect the performance requirements proposed by 

the end user. To specify the desired output response range, it should be constrained 

by positioning (stretching, moving, splitting or opening) the constraint bound 

segments as shown in the Figure 2.3. 

 

 

 
 

Figure 2.3. Adjusting output constraints 

 

 

Alternatively, when optimizing the step response of the system, it is possible to 

specify the desired step response characteristics such as rise time, settling time, and 

overshoot by selecting Step Response from Options pane in the constraint window 

as shown in the Figure 2.4. 

 

 

 

Figure 2.4. Example step response window 
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Three options specify the details of the step input: 

• Initial output: Input level before the step occurs  

• Step time: Time at which the step takes place  

• Final output: Input level after the step occurs  

The remaining options specify the characteristics of the response signal. Each of the 

step response characteristics is described in the Figure 2.5 below [12]. 

 

 

Figure 2.5. Step response characteristics 

 

 

2.2 Specifying Tunable Variables and User Options 

 
NCD attempts to reach the desired output response of the system by varying the 

user-defined parameters called as “tunable variables ”∗. Tunable parameters can be 

specified by the help of Optimization Parameters dialog box, by selecting 

Parameters from Optimization menu in constraint window and simply typing the 

name of the parameters into the Tunable Variables editable text field as shown in 

                                                
∗ The name “Tunable Variables” is used by MATLAB®. Although the correct term should be 
“Tunable Parameters”,  we will use this name in the whole thesis to be compatible with 
MATLAB®. 
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Figure 2.6. If more than one tunable variable exists, variable names should be typed 

as separated by spaces. 

 

 

Figure 2.6. An optimization parameters window 

 

 
User-defined lower and upper bounds limit the maximum and minimum values of 

tunable variables during the optimization process. Variable and Constraint 

Tolerances are the two terms related to termination criteria, which imply 

optimization will not terminate until all tunable variables (or constraints) converge 

to within the these values. One might also want to change the Discretization 

Interval. This number relates to the number of constraints generated by the 

optimization; the larger the discretization interval, the fewer constraints generated 

but the less rigorous the optimization. Typical discretization intervals range 

between one and two percent of the total simulation time. Normally NCD works 

with a variable step size chosen from simulation parameters in Simulink window. In 

case a fixed step size is used for simulation, discretization interval should be equal 

to this fixed step size value. By default, the optimization routine does not stop as 

soon as all the constraints are met, it tries to over achieve. Stop optimization as 

soon as the constraints are achieved check box prevents optimization process to 

go any further once the constraints are met. This is achieved, simply terminating the 

algorithm when the cost function is lower than zero. Also, one can specify the 
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optimization routine to use a separate routine for computing the gradients by 

enabling the Compute gradients with better accuracy (slower) check box. If this 

option is enabled, the gradient matrix of the constraints with respect to the tunable 

variables is computed by simulating the Simulink model with the original and 

perturbed values of the tunable variables, simultaneously. This procedure is slower, 

but may help the optimization in achieving the constraints for difficult problems. 

 
 
2.3 Running the Optimization 

 
After adjusting the constraint bounds in the constraint window and specifying the 

tuned parameters using the tunable parameters dialog box, NCD is ready to begin 

the optimization which can be started by clicking the Start button on the NCD 

Blockset Control panel or by selecting Start from the Optimization menu. 

 

The NCD Constraint window, plots the responses at each iteration. Except the 

initial response plot, it overwrites the new plot over the previous one. So, the green 

line always shows the current, or final response while the white line shows the 

initial response. An example constraint figure window is shown in Figure 2.7 [12]. 

It can be seen that the final output response lies within the constraint bounds.  

 
 

 

Figure 2.7. Initial and final output response  plots 
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The result of each iteration appear in the command window shown in the following 

Figure 2.8 [12]. The new values of the tunable parameters appearing in the 

command window and is also changed in the MATLAB® workspace. 

 

 

 

 

Figure 2.8. Sample command window display 

 

 

During the optimization, the NCD Blockset first displays the information about 

plant uncertainty. Next, the blockset displays the information regarding the number 

of constraints per simulation and simulations conducted. To determine the total 

number of constraints to be met, one should multiply the constraints generated per 
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simulation by the number of simulation per cost function call. Then, information 

regarding the progress of the optimization follows.  

 

The first column of output shows the total number of cost function calls. For one 

simulation per cost function call, this number gives the total number of simulations 

conducted. The second column (max{g}) shows the maximum (weighted) constraint 

violation. This number should tend to decrease during the optimization. When 

max{g} becomes negative, all constraints have been met. In the case above, a 

negative max{g} shows that all constraints were met after the ninth function call and 

the optimization then proceeded to overachieve. The third column STEP, displays 

the step size used by the line search algorithm. The last column shows special 

messages related to the quadratic programming sub problem. If the termination 

criteria are met, the optimization ends with the message Optimization Converged 

Successfully. Note that this does not imply that all constraints have been met.  

 

Finally, the optimization displays an encoded list of the active constraints (i.e., 

which constraints prohibit further decrease in the cost function). The command 

window display can be disabled by unchecking the Display optimization 

information check box on the Optimization Parameters dialog box. 

 

When the NCD Blockset begins the optimization, it plots the initial response in 

color white. To view the (initial) response without beginning the optimization, 

Initial response should be selected from Options menu. Viewing the initial 

response may help the user define better constraint bounds. At each iteration the 

optimization plots an intermediate response. Optimization can be terminated at any 

time and intermediate results can be recovered by clicking the Stop push button or 

selecting Stop from the Optimization menu. 

 

The number of iterations necessary for the optimization to converge or terminate, 

will depend on the initial guess for the tuned parameters, the specific positioning of 

the constraints, and the optimization settings. In case the optimization does not 

converge, one might try a different initial guess or relax the constraints slightly. 
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2.4 Solving the Optimization Problem 

 
NCD uses optimization algorithms to find parameter values that allow a feasible 

solution to the given constraints. NCD automatically converts the constraint bound 

data and tunable variable information into a constrained optimization problem. 

 

Basically, the NCD Blockset attempts to minimize the maximum (weighted) 

constraint error. The NCD Blockset generates constraint errors at equally spaced 

time points (with spacing given by the Discretization interval defined in the 

Optimization Parameters dialog box) beginning at the simulation start time and 

ending at the simulation stop time. For upper bound constraints, it is defined the 

constraint error as the difference between the simulated output and the constraint 

boundary. For lower bound constraints, it is defined the constraint error as the 

difference between the constraint boundary and the simulated output. 

 

When the optimization is started by the user pressing the start button, the Nonlinear 

Control Design Blockset invokes the routine nlinopt. nlinopt calls simcnstr 

function and it invokes the routine nlconst from the directory 

~matlabR13root~\toolbox\simulink\simulink\private\nlconst.m. Main 

calculations are done in nlconst.m. Necessary system output responses are 

obtained in costfun.m  by  the simulation of the model and then the related 

information are transferred into nlconst. The routine nlconst solves constrained 

optimization problems using a sequential quadratic programming (SQP) algorithm 

and quasi-Newton gradient search techniques. 

 

The following pseudo code summarizes the optimization [12]: 

 

% Begin nlinopt 

% Process uncertain variable information (montevar) 

% Expand constraint matrices (convertm) 

% Initialize arguments for nlconst.m 

% Begin nlconst 
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    while ~(termination_criterion_met), 

              for 1:Ntp, % Number of tunable parameters 

              % Begin costfun 

              % Calculate cost function (CostFunction) 

              % Set tunable variables 

                    for 1:Npc, % Number of plants constrained 

                    % Assign plant uncertain variables 

                    % Call for simulation 

                    % Convert simulation time index 

                    % Draw necessary plots 

                    % Calculate constraints 

                    % Append constraints into vector, i.e., ConstraintError 

                    end % for Npc 

               % End costfun 

               % Tweak tunable variables in turn 

               end % for Ntp 

    % Calculate gradient information 

    % Define search direction 

    % Perform line search 

              % Begin costfun 

              % Calculate cost function (CostFunction) 

              % Set tunable variables 

                      for 1:Npc, % Number of plants constrained 

                      % Assign plant uncertain variables 

                      % Call for simulation 

                      % Convert simulation time index 

                     % Calculate constraints 

                      % Append constraints into vector, i.e., ConstraintError 

                      end % for Npc 

              % End costfun 

    % Determine termination_criterion_met 

    end 
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% End nlconst 

% End nlinopt 

 

In the following sections, three vital functions of optimization process nlinopt, 

costfun and nlconst are explained in terms of their operations and interactions. 

They are explained mostly following the sequence of routines, but some parts such 

as loops related to plotting response graphs are not our concern and not discussed at 

all. Whole functions can be found in Appendix C. These sections have special 

importance for the future developments to understand, step by step, how the 

algorithm works. Also, a flowchart summarizing the whole process is given in 

Appendix B.  

 
 
2.4.1  nlinopt.m 

 
When the optimization is started by pressing the start button or when the initial 

response menu item is selected, NCD Blockset invokes the function nlinopt. 

Syntax definition of nlinopt function is 

 

        function nlinopt(sys,InitFlag) 
 

 Generation of the optimization problem involves mainly three steps: 

 

1. Processing uncertainty data  

2. Expanding the constraint matrices ncdStruct.CnstrLB and 

ncdStruct.CnstrUB.  

3. Invoking the constrained optimization routine nlconst.  

 

The NCD Blockset routine montevar processes uncertainty data input to the 

Uncertain Variables dialog box. It generates Monte Carlo plant data and performs 

certain error checks. The routine produces the Monte Carlo plants assuming a 

uniformly distributed probability density between the lower and upper bounds 
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entered into the Uncertain Variables dialog box. It will not be discussed in detail 

here, since uncertainty subject is out of scope of the thesis. 

 

If InitFlag is 1, nlinopt  gives a message “Beginning simulations for 

initial response plots” and plots the initial response by calling initresp 

routine. Although its algorithm seems very similar to that of costfun, the logic is 

different, since initresp does not deal with tunable variables, upper and lower 

bound data. So, it calculates neither the cost function nor constraint error. In the 

command window, it appears “Done plotting the initial response” and 

algorithm stops. If Initflag is zero, nlinopt gives a message “Setting up call 

to optimization routine”, it also calls initresp routine, and starts the 

optimization process. As a first step, nlinopt vectorizes the tunable variables as 

tvarvec and also upper and lower bounds of tunable variables as tvubvec and 

tvlbvec in the same way. 

 

The constraint bounds displayed in the NCD Blockset constraint window are for 

visualization purposes only. Two matrices, ncdStruct.CnstrLB and 

ncdStruct.CnstrUB, contain all the constraint information. The NCD Blockset 

routine convertm.m expands the constraint matrices, ncdStruct.CnstrLB and 

ncdStruct.CnstrUB using the discretization interval Td and converts them to Ml 

and Mu. Generally speaking, constraints are generated at an interval of Td, per 

constraint segment per constrained signal. 

 

The matrix ncdStruct.CnstrLB (ncdStruct.CnstrUB) has the dimension 4 x 2L 

where L is the total number of line segments in all lower (upper) bounds. The first 

row of ncdStruct.CnstrLB and ncdStruct.CnstrUB contains the outport number 

for the constraint. All constraint bound segments for the same outport are grouped 

together. The second row contains the time axis values of the segment while the 

third row contains the response axis values. The time axis values for each output 

increase monotonically from optimization start time to optimization stop time. The 

time value end of one segment equals the time value beginning of the next segment. 

The fourth row of ncdStruct.CnstrLB (ncdStruct.CnstrUB) contains 
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information about the segment's weighting. As an example, consider the lower 

bound constraint matrix, 

 

�
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�

�

�
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�
�

�

�

−−
=

01010101
1.01.099.099.09.09.000

1000100303010100
22111111

.CnstrLBncdStruct                  (2.1) 

 

First row of the matrix shows that two outputs are constrained. The first output is 

constrained by three line segments and the second by one line segment. Constraints 

on the second output are defined by the line segment from the (time, response) point 

(0,-0.1) to the point (100,-0.1). Constraints on the first output are defined by the line 

segments from (0,0) to (10,0), from (10,0.9) to (30,0.9), and from (30,0.99) to 

(100,0.99). Here, it is expected a simulation start time of zero and stop time of 100. 

The fourth row shows that all line segments are weighted equally, with weight of 

one. 

 

Necessary command window displays are done in nlinopt before starting the 

optimization calculations, such as start time, stop time, number of constraints to be 

met in each simulation, number of tunable variables and number of simulations per 

cost function call. Also, some options related to optimization (variable tolerance, 

constraint tolerance, etc.) are assigned to values entered by the user from 

Optimization Parameters dialog box. 

 

Finally, nlinopt invokes the helper function simcnstr by the following 

command: 

 

x = simcnstr('ncdtoolbox','costfun',tvarvec,options,tvlbvec,    

tvubvec,'',tvarmtx,tvarext,sys,timepts,Mu,Ml,offset,sims, 

uvarmtx,uvarext,uvdata,SimOptions) 
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This helper function converts string 'costfun' into an inline function FUNfcn and 

calls constrained optimization routine nlconst. 

 

Routine nlinopt increases the number of tunable variables vector by 1, adding the 

cost function into the vector of tunable variables as well, while passing this vector 

to nlconst. Specifically, if Kp Ki Kd are entered as tunable variables into the 

Optimization Parameters dialog box, nlinopt passes the tunable variables vector 

tvarvec as x = [Kp; Ki; Kd; gamma] to nlconst, where gamma initially 

assigned to 1. By calling nlconst with a special option flag, it expects gamma to 

contain the value of the cost function. For the cost calculation nlconst invokes 

costfun. Here, first costfun will be explained and then nlconst will be discussed 

extendedly. 

 
 
2.4.2 costfun.m 

 
The NCD Blockset routine costfun inspects the output response of the system and 

returns the cost function and constraint errors as output. Syntax definition of 

costfun function is 

 

function [CostFunction,ConstraintError] = 

costfun(tvarvec,tvarmtx,tvarext,sysname,timepts,Mu,Ml,offset, 

sims,uvarmtx,uvarext,uvdata,simoptions) 

 

At the beginning of the routine, costfun recovers tunable variables from tvarvec 

(vector x coming from nlconst) and assign them to the appropriate tunable 

variables in the base workspace. Hereby, changed values of tunable variable in 

nlconst are transferred into base workspace before the simulation process. 

 

Routine costfun calculates the cost function as follows: 

 

CostFunction = tvarvec(end) 

 



 23

i.e., gamma which corresponds to the (weighted) maximum constraint violation. The 

routine then initializes the constraint vector to the empty matrix.  

 

Next, it initiates a for loop according to the number of plants constrained, Npc. 

Specifically, Npc will be directly equal to 1, if any uncertainty and Monte Carlo 

simulations are not defined by the user. Within for loop, costfun calls for a 

simulation of system’s Simulink model, by sim command as follows: 

 

[SimTime, SimState, InterpOut]=sim(''' sysname ''', timepts, 

simoptions) 

 

where InterpOut is the simulation output linearly interpolated to the time basis 

Tstart:Td:Tstop. Depending on OPT_STEP�value, costfun updates the plots in 

NCD Blockset constraint figures window and forces the updated plot to flush on the 

screen executing a drawnow command. Finally, at each pass through the for loop, 

it augments the constraint vector, ConstraintError, as 

 

ConstraintError = [ConstraintError; ... 

      InterpOut(Mu(:,1)) - Mu(:,2) - Mu(:,3)*CostFunction; ... 

      Ml(:,2) - InterpOut(Mu(:,1)) - Ml(:,3)*CostFunction]  

 

where upper and lower bound constraints, Mu and Ml, have three columns as 

follows: 

 

Ml = [InterpOut_Index     Constraint Bound     Weight]                                     (2.2) 

Mu = [InterpOut_Index     Constraint Bound     Weight]                                     (2.3)    

 
 
2.4.3 nlconst.m 

 
By the function nlconst, NCD Blockset transforms the constraint errors and 

simulated system output into an optimization problem of the form: 
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where variable x is a vectorization of the tunable variables while xl and xu are 

vectorizations of the lower and upper bounds on the tunable variables. The vector 

g(x) is a vectorization of the constraint bound error (absolute difference between 

output and constraint boundary) and w is a vectorization of weightings on the 

constraints. The scalar γ  imposes an element of slackness (i.e., cost function 

calculated in costfun routine) into the problem, which otherwise imposes that the 

goals be rigidly met . Here, the term γwxg −)(  implies the constraint error 

calculated in costfun routine.  

 

Syntax definition of nlconst function is 

 

function [x,OPTIONS,lambda,HESS] = 

nlconst(FUNfcn,x,OPTIONS,VLB,VUB,GRADfcn,varargin) 

 

Before starting the main loop, nlconst initializes necessary parameters and does 

some preparatory work. It defines nvars as the number of tunable variables and 

initializes Hessian and CHG for the first costfun call as follows: 

 

HESS = eye(nvars,nvars) 

CHG = 1e-7*abs(x)+1e-7*ones(nvars,1) 

 

Then algorithm checks the upper and lower bounds on tunable variables which are 

entered by the user in Optimization Parameters window. In case lower bound is 

entered a value greater than upper bound, an immediate error message appears in 

command window as “Bounds Infeasible”. If initial value of any tunable variable 

is lower than the lower bound, that variable is assigned to lower bound value. 

Reversely, if there exist any tunable variable exceeding the upper bound, then this 

variable is assigned to upper bound and direction of CHG is reversed with a sign 
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change. Upper and lower bounds are optional, so tunable variables remain same  if 

there exist no bounds defined by the user. 

 

After passing tunable variables with upper and lower bound filter, it requires to 

calculate cost function (f) and constraint error (g) by calling costfun routine as 

shown: 

 

[f,g] = feval(FUNfcn{1},x,varargin{:}) 

 

Before starting iterations nlconst initializes number of function evaluations 

OPTIONS(10), number of function gradient evaluation OPTIONS(11) and step length 

OPTIONS(18) to 1. Also, maximum number of function evaluations OPTIONS(14), 

is defined as 100 times of nvars. Zero or missing values of OPTIONS vector are 

replaced with default parameters used by the optimization routines by foptions 

command. Descriptions and default values of related options are shown in Table 

2.1. Note that if model-specific information is known (more sensible tolerances, 

minimum change in variable for finite difference gradients, etc.), then such 

information should always be used, since it may help to solve the model far more 

efficiently than by directly using defaults. 

 
 

Table 2.1 Descriptions of optimization options 

 
 OPTIONS(1) Display parameter. (Default:0). 1 displays some results. 

 OPTIONS(2) Termination tolerance for X. (Default: 1e-4). 

 OPTIONS(3) Termination tolerance on F. (Default: 1e-4). 

 OPTIONS(4) Termination criterion on constraint violation. (Default: 1e-6) 

 OPTIONS(5) Algorithm: Strategy: Not always used. 

 OPTIONS(6) Algorithm: Optimizer: Not always used. 

 OPTIONS(7) Algorithm: Line search algorithm. (Default 0) 

 OPTIONS(8) Function value. (Lambda in goal attainment) 

 OPTIONS(9) User-supplied gradients (1, for user-supplied gradients). 
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 OPTIONS(10) Number of function and constraint Evaluations. 

 OPTIONS(11) Number of function gradient evaluations. 

 OPTIONS(12) Number of constraint evaluations. 

 OPTIONS(13) Number of equality constraints. 

 OPTIONS(14) Maximum number of function evaluations. 

 OPTIONS(15) Used in goal attainment for special objectives. 

 OPTIONS(16) Minimum change in variables for finite difference gradients. 

 OPTIONS(17) Maximum change in variable for finite difference gradients. 

 OPTIONS(18) Step length. (Default 1 or less). 

 

 

For using in the main loop, an initial GNEW value is defined by knowing CHG as 

follows: 

 

GNEW = 1e8*CHG 

 

Main loop is a while loop containing all the optimization processes. The state of 

loop is defined by a Boolean, status, which is assigned to 1, when the termination 

criteria are satisfied or maximum number of iteration is exceeded. For a better 

explanation, whole loop is divided into subsections according to their operational 

sequence. 

 
 
2.4.3.1  Finite Difference Gradient Calculation 

 
The idea is to obtain the first order gradients of cost function and constraint error by 

varying the tunable variables with a small CHG vector, which can be defined as 

 

CHG = -1e-8/(GNEW+eps) 

 

where GNEW is initially defined and will be obtained during the calculation of search 

direction. If this CHG is smaller than a minimum value specified as OPTIONS(16), or 

greater than a maximum value as OPTIONS(17), then CHG value is assigned to either  
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OPTIONS(16) or OPTIONS(17), respectively. If CHG is in between limits it will 

remain same. 

 
CHG=sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17)) 

 

The nlconst routine perturbs each tunable variable including cost function, as the 

amount of CHG (remaining the other variables unchanged) and evaluates the 

resulting cost function value (f) and constraint errors vector (g) by calling the 

function costfun.m for each time: 

temp = x(i)              

x(i)= temp + CHG(i) 

[f,g] = feval (costfun, x, varargin{:})�

Gradients of cost function and constraint error for each variable are calculated by 

the following equations: 

gf(i,1) = (f-oldf)/CHG(i) 

 

gg(i,:) = (g - oldg)'/CHG(i) 

 

x(i) = temp��������������

 

Here, it is very important to assign f and g to their values before the change 

application (oldf and oldg). There is no need to do an OLDX assignment on tunable 

variable vector, x, since all the tunable variables return to their original values at the 

end of gradient calculation by the usage of temp.  These tentative changes on 

tunable variables should not be confused by the major steps in tunable variables, 

which will mainly occur in line search section. 
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2.4.3.2 Finding Search Direction 

 
To find the search direction it is necessary to use a second order gradient, i.e., the 

Hessian, belonging to that iteration. For the first call, Hessian is not calculated. By 

using gf found in finite gradient calculation section and OLDgf, which is the 

gradient belonging to the previous iteration, GNEW, GOLD are calculated as follows: 

 

GNEW=gf+AN'*NEWLAMBDA 
 

GOLD=OLDgf+OLDAN'*LAMBDA 

 

where AN is the transpose of gg and LAMBDA is one of the outputs of quadratic 

programming route, qpsub.m, which will not be discussed in detail here. Then YL is 

defined as 

 

YL=GNEW-GOLD 

 

With the same procedure sdiff can be found as the difference between x and OLDX 

as follows: 

 

sdiff=XOUT-OLDX  

 

Before finding the Hessian, algorithm should check its positive definiteness. A 

“how” variable is used to define the status of the Hessian, which is declared in the 

last column of the display output (the column labeled Procedures). Generally no 

display appears in the column meaning the Hessian is positive definite. For non-

positive definite Hessians, two successive modifications can be performed to make 

the Hessian positive definite. If the first modification succeeds, the message 

Hessian modified appears in the Procedures column. The second modification 

always results in a positive definite Hessian and displays Hessian modified 

twice in the Procedures column. Often such messages imply that the optimization 

is far from a solution or that the problem is particularly sensitive to variations in 

some of the tunable parameters. Hessian is calculated as follows: 
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HESS=HESS+(YL*YL')/(YL'*sdiff)-(HESS*sdiff*sdiff'*HESS')/ 

(sdiff'*HESS*sdiff) 

 

Before finding the search direction (SD), present f, g, gf and x values are stored as 

OLDF, OLDG, OLDgf and OLDX respectively, to use them in the next iteration. Then SD 

is found by using qpsub routine as follows: 

 

[SD,lambda,howqp] =qpsub(HESS,gf,AN,-GT,[],[],XN,OPTIONS(13), 

-1,'nlconst',size(AN,1),nvars,0,1) 

 

The implementation of the Sequential Quadratic Programming (SQP) subproblem 

attempts to satisfy the Kuhn-Tucker equations, which are necessary conditions for 

optimality of a constrained optimization problem.  

 

This section ends with command window displays. 

 

disp([sprintf('%5.0f %12.6g ',OPTIONS(10),gamma), 

sprintf('%12.3g  ',OPTIONS(18)),how, ' ',howqp]); 

 

where OPTIONS(10) shows the total number of cost function calls (generally equals 

to number of simulation) and gamma implies the maximum constraint violation. In 

fact gamma contains both cost function and constraint error information as shown: 

 

gamma = mg+f 

 
where  
 

mg=max(ga) 
 

ga is the ordered version of constraint error (g) including the absolute of equality 

constraint errors, whose number is shown by OPTIONS(13) in the following 

equation: 

 

ga=[abs(g((1:OPTIONS(13))'));g( (OPTIONS(13)+1:ncstr)')] 
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2.4.3.3 Line Search 

 
After determining a search direction, nlconst performs a line search along the 

search direction in an attempt to simultaneously minimize the cost while satisfying 

constraint equations. Tunable variables are stored as MATX before starting the line 

search application and then the line search is performed using two merit functions. 

The line search determines a step length, OPTIONS(18),  (0 <OPTIONS(18) 1), such 

that the new set of tunable variables 

 

x = MATX + OPTIONS(18)*SD 

 

gives a sufficient decrease in merit functions. 
 
For that purpose, a while loop is used to find new x, f , g and mg values by calling 

costfun routine and to check the merit functions, MERIT and MERIT2 based on these 

new values. Here, MERIT and MERIT2 are two criteria referring to cost function (f)  

and maximum constraint violation (gamma), respectively. Starting from “1”, 

OPTIONS(18) is halved  until MERIT and MERIT2 are equal to or smaller than MATL 

and MATL2, which are merit functions corresponding to tunable variables set before 

the line search. Clearly, if line search brings up an improvement on cost function 

and constraint error (finding smaller values of them), it will go out from while loop 

at the first iteration with a step length equal to 1. An opposite situation implies a 

worse case, that means either optimization is in the wrong way or it is in the right 

way but has a larger step length than the necessary. In such a case, algorithm needs 

to resize the step length value. So, line search plays a very important role shaping 

the “destiny” of optimization process and it will be revised for the real-time 

applications in Chapter 3. 

 
 
2.4.1.4 Finished Line Search 

 
In the finished line search section, optimization is checked according to termination 

criteria. Four important values are considered in termination criteria. First of them is 

the maximum element of absolute search direction vector (max(abs(SD)). When the 
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maximum of SD is smaller than a limit value defined as two times of OPTIONS(2), 

which is entered by the user in Variable Tolerance field of Optimization 

Parameters window, this means tunable variables are changing very slowly. The 

other criteria is the absolute of multiplication of gf and SD vectors (abs(gf'*SD)), 

i.e., change in cost function. This implies that cost function changes very slowly for 

a smaller value than two times of OPTIONS(3), which is again entered by the user. 

Until now, parameters belonging to new tunable variables are not considered since 

gf and SD are calculated before the setting of new tunable variables. It is also 

important to check some parameters directly related to new set of tunable variables, 

such as maximum constraint violation, mg. A limit value for mg is defined as 

OPTIONS(4), Constraint Tolerance in Optimization Parameters window.  

Basically, a smaller mg means constraint equations are satisfied. Final stopping 

criterion is related to existence of an “infeasible solution” case while 

maximum constraint violation is greater than zero.  

 

If the first three criteria are satisfied and the forth one is not satisfied during the 

algorithm, then command window displays the information related to the newly 

found tunable variables as the same procedure described before, with a message 

“Optimization Converged Successfully” and iterations stop. Alternatively if 

the first two criteria and, at the same time, the fourth one are satisfied, again 

algorithm stops, but this time a warning message “No feasible solution found” 

is displayed in the command window. Otherwise, algorithm checks the total number 

of iterations, if it exceeds the maximum permitted number of cost function call, 

OPTIONS(14), a message “Maximum number of function evaluations 

exceeded; increase OPTIONS(14)” appears. This times, x and f are returned to 

their values before line search, i.e., MATX and OLDF then the algorithm stops.  In case 

the termination criteria are not satisfied by any of the above conditions and 

maximum number of cost function call is not exceeded, algorithm turns to the 

beginning of the while loop and starts the next iteration. 
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CHAPTER 3 
 

MODIFICATIONS ON NCD BLOCKSET ALGORITHM  

 

For the real-time hardware-in-the-loop simulation, a model as shown in Figure 3.1 

should be prepared in Simulink external mode with Real-Time Windows Target 

(RTWT) Toolbox of MATLAB®. Although any type of controller can be used, in 

this model a PID controller is chosen as an example. The Real-Time Windows 

Target I/O blocks, Analog Input (A/D)  and Analog Output (D/A), allow us to select 

and connect specific analog channels to our Simulink model through an I/O data 

acquisition board.  In other words, they provide an interface to our physical I/O 

boards and our real-time application.  

 

 

Figure 3.1 Simulink model for real-time application 

 

 

Unfortunately, an attempt to use existing algorithm by attaching NCD Outport 

Block directly to plant output (Analog Input block) will be useless since it is not 

able to perform command line simulation of a model in external mode. (Still, NCD 
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Outport block will be attached into the above model later, just to create constraint 

figure window by double clicking on it). To achieve our goal, some short but vital 

interferences should be made on the algorithm.  

 

Output response data created during real-time execution is saved to the base 

workspace through a Simulink scope block. Easiest way for saving a variable called 

as OutputData in the base workspace is to select save data to workspace check 

box in Data History menu of ‘OutputData_Scope’ parameters and enter 

“OutputData” into Variable name text field  as shown in Figure 5.3. Array is the 

most usable format type for this application. Default Limit data points to last 

property should be disabled. 

 

 

 
 

Figure 3.2 Saving output into workspace by using scope 

 

 

Also, tunable variables changing in function local workspace during the 

optimization process need to be saved into base workspace before starting the real-

time execution. However, this does not require any extra effort or modification on 

the algorithm since originally costfun routine fulfils this requirement as explained 

before.  
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3.1 Modifications on  costfun.m  Function 

 
Some modifications are introduced necessary to feed the real plant’s output data 

into costfun algorithm. This logic should be adapted and applied into Initresp.m  

routine to obtain the initial response plot in the same way. 

 
 
3.1.1 Defining Output Response Data as Global Variable 

 
Real plant’s output response is obtained by the real-time execution and saved into 

the base workspace as described before. Ordinarily, each MATLAB® function, has 

its own local variables, which are separate from those of other functions, and from 

those of the base workspace. To introduce OutputData in costfun routine and to 

satisfy sharing a single copy of that variable, it should be declared as global both 

in costfun routine and in the base workspace. 

 

Related part of costfun routine showing the modification in the line between the 

lines containing stars, appears as follows: 

 

(….) 

global OPT_STOP; 

global OPT_STEP; 

global ncdStruct; 

%************************** 

global OutputData 

%************************** 

atindx = 1; 

for i=1:size(tvarmtx,1) 

    siz = [atindx:tvarext(i,1)]'; 

    assignin('base','NCD_tmp',tvarvec(siz,1)); 

(….) 

 
Also, a masked subsystem ncd1init is used to declare OutputData as global 

variable in the base workspace beside initializing the tunable variables. By double 

clicking on the subsystem box, it executes script file ncd1init and variables 
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created using scripts are considered to be in the base workspace. Initialization of 

tunable variables and global declaration of OutputData variable in base workspace 

should be done as a first step at the beginning of the optimization process. For an 

initial set of variables as Kp=1 Kd=1 Kd=1,  ncd1init script appears as follows: 

 

  global OutputData 
 Kp=1; 

 Ki=1; 

 Kd=1; 

 

There is a certain amount of risk associated with using global variables. One might 

unknowingly give a global variable in one function a name that is already used for a 

global variable in another function and may unintentionally overwrite the variables. 

Because of this and the difficulty to change the global variable name, it is 

recommended to use them sparingly. Alternatively, one can save the output 

response data as a mat-file and load this file into local workspace of costfun 

instead of using a global variable. To save output response, OutputData, as a mat-

file, enable archiving property is activated in External Data Archiving window 

from external mode control panel of RTWT simulation window, as shown in 

Figure 3.3. 

 

 

 
 

Figure 3.3. External Data Archiving window 
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To load this data from mat-file to function local workspace, following line should 

be added in costfun routine in place of command line simulation: 

 

load('OutputData.mat') 

 
 
3.1.2 Interrupting Algorithm to Run the Real-Time Simulation 

 
To feed the output response data into the costfun routine externally, first it is 

necessary to cancel out the simulation process done by sim command inside the 

routine. Then it is added a keyboard statement, which stops m-file execution at the 

point where it appears and allows us input from keyboard to start the physical plant 

testing. Another advantage is when the program is in keyboard mode, local 

workspaces of each function can be examined by using the Stack field in the 

workspace browser. This mode is indicated by a special prompt as follows: 

 

 K>> 

 

One can resume costfun execution by typing “return” in command window and 

pressing the Return key. 

 

To let the user to track the values of tunable variables and gamma from command 

window at each costfun call, an extra line is added before keyboard statement by 

the help of fprintf command. These modifications will be combined and shown 

in the next section. 

 
 
3.1.3 Converting Output Response Data into Suitable Name and Size 

 
In scope parameters window by choosing the array format, real system’s output 

response, OutputData, is saved into base workspace as ((Tstop-Tstart)/Td+1) x 2 

size matrix where first column has time data and second column has respective 

output data. However costfun routine requires a vector variable called as 
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InterpOut, containing output response data only. So, an OutputData to InterpOut 

conversion is compulsory to use output response information properly. 

 

Related part of costfun routine including the modifications explained in section 

3.1.2 and 3.1.3 (in the lines between the lines containing stars) is as follows: 

 

 (….) 

atindx = 1; 

   for i=1:size(uvarmtx,1) 

      siz = [atindx:uvarext(i,1)]'; 

      assignin('base','NCDtmp',uvdata(siz,simindx)); 

      evalin('base',[uvarmtx(i,:) '(:) = NCDtmp;']); 

      atindx = uvarext(i,1)+1; 

   end 

%************************************************************ 

%SimString=['sim('''sysname''',timepts,simoptions);']  CANCELLED 

%lasterr('');                                          CANCELLED 

%eval(['[SimTime,SimState,InterpOut]='SimString],' ')  CANCELLED 

fprintf('tvarmtx(1,:)=%4.12f  tvarmtx(2,:)=%14.12f   

tvarmtx(3,:)=%14.12f',tvarvec(1,1),tvarvec(2,1),tvarvec(3,1)); 

fprintf('\n'); 

keyboard; 

InterpOut=OutputData(:,2); 

%************************************************************* 

if ~isempty(lasterr), 

      fprintf('\n      SL Error Message: %s\n     ',lasterr'); 

      fprintf('\n      COSTFUN: Error simulating %s',sysname); 

(….) 

 
 
3.1.4 Updating the Intermediate Response Plots 

 
Originally, NCD algorithm updates the output response plots in the constraint 

window once for each major step, specifically after first tunable variable has been 

changed by a CHG value. This action can be seen with the following “if” statement 

of costfun: 
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(….) 

if (ncdStruct.GradFlag == 0) & (OPT_STEP == 1), 

      fighndls = allchild(0); 

      fignames = char(get(fighndls,'Name')); 

      prefix = ['System: ' sysname ', Outport: ']; 

      lnprefix = length(prefix)+1; 

      fighndls = fighndls(strmatch(prefix,fignames)); 

      fignames = char(get(fighndls,'Name')); 

      for figindx=1:length(fighndls) 

           portnum = str2num(fignames(figindx,lnprefix:end)); 

           axs = get(fighndls(figindx),'CurrentAxes'); 

           MCSlns = get(axs,'UserData'); 

               if (~isempty(MCSlns)) 

              ln = MCSlns(max(sims)+simindx); 

              set(ln,'YData',InterpOut(:,portnum)); 

              if (strcmp(get(ln,'Visible'),'off')) 

                 set(ln,'Visible','on'); 

              end 

          end 

      end 

 end 

(….) 

 

In the routines nlconst and costfun, OPT_STEP is defined as a global variable 

having a value either 0, 1 or 2 for different stages of optimization process. It is 

assigned to “1”, for the costfun call following the intermediate (minor) change in 

first tunable variable. For the rest of the intermediate steps it is assigned to “0” and 

during the line search it is assigned to “2”.  Originally, NCD algorithm has very 

small CHG values. Also, it proceeds continuously and very fast so it does not make 

much difference where the plots are updated; in any case user will observe the 

improvements on plots.  However, in our application it will be more useful to show 

the user the results of real-time simulation at each minor/major steps. For that goal, 

OPT_STEP == 1 statement is basically removed from the if statement given above. 
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3.2 Modifications on  nlconst.m  Function 

 
Mainly, necessity of modifications on nlconst routine arise from the knowledge of 

differences between the model simulation and real life execution. By these 

modifications, it is aimed to catch realistic step sizes for physical system and to 

avoid unnecessary iterations due to the combined effect of noise and non-

repeatability of the real output data. 

 

To be able to activate the modifications on nlconst.m, it is necessary to create a 

preparsed pseudocode file (p-file) of nlconst.m. This should be done by the 

command “pcode nlconst”, which parses the m-file nlconst.m into the p-file 

nlconst.p. 

 
 
3.2.1 Altering CHG value and Its Working Range 

 
Change in variables for finite difference gradients, denoted as CHG in the algorithm 

requires to be amplified since the real system would not sense very small changes 

and in such a case, system would not give an appreciable variation in the output 

response. Depending on a larger CHG, upper and lower limit of CHG, OPTIONS(16) 

and OPTIONS(17), should be enlarged. Logically, lower limit of CHG value should 

be chosen as the minimum change in tunable variables, which makes the real 

system produce a significant difference in output response. This requires a bit of 

specific system knowledge. 

 

Related part of nlconst routine including the modifications (in lines between the 

stars) can be found below. 

 

(….) 

if ~analytic_gradient | OPTIONS(9) 

        POINT = NPOINT;  

        oldf = f; 

        oldg = g; 

        ncstr = length(g); 
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        FLAG = 0;  

        gg = zeros(nvars, ncstr 

        CHG = -1e-8./(GNEW+eps); 

%************************************************************* 

        CHG=1e7*CHG    

        OPTIONS(16)=0.1;   

        OPTIONS(17)=1;   

%************************************************************* 

CHG=sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17)); 

        OPT_STEP = 1; 

        for gcnt=1:nvars  

            if gcnt == nvars,   

              FLAG = -1 

            end 

            temp = XOUT(gcnt); 

            XOUT(gcnt)= temp + CHG(gcnt); 

            x(:) =XOUT; 

            if strcmp(FUNfcn{4},'ncdtoolbox') 

              [f,g] = feval(FUNfcn{1},x,varargin{:}); 

            else 

              [f,g,msg] = opteval(x,FUNfcn,varargin{:}); 

              error(msg); 

              g = g(:); 

            end 

(….) 
 
 
3.2.2 Adding Merit Function Improvement Tolerance 

 
By using the real system’s output data in optimization process, it is necessary to 

avoid too stringent check for merit function improvement, since real systems have 

random noises and even for the same input, system may not give the same output 

response and the same merit function values. In such a case, strict values will be 

meaningless, instead, it is preferred to add an empirically found tolerance value into 

the line search algorithm. Notice that, giving this value very large will make the 

algorithm insensitive against the deterioration of optimization performance. 
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Related while loop of nlconst routine is given below and the modifications are 

shown by bold face characters. 

 
(….) 

while (MERIT2 > MATL2 + 0.1) & (MERIT > MATL + 0.1) & OPTIONS(10) < 

OPTIONS(14) & ~OPT_STOP 

(….) 
 
 
3.2.3 Relaxing the Termination Criteria 

 
Three termination criteria, related to change in tunable variables, change in cost 

function and maximum constraint violation should be relaxed for a real-time 

application by considering the same logic of section 3.2.1 and 3.2.2. As explained 

before, these criteria specified by OPTIONS(2), OPTIONS(3) and OPTIONS(4) are 

adjustable by the user from Variable and Constraint Tolerances field of 

Optimization Parameters window. So, there is no need to make any modification 

inside the algorithm. Generally, enabling Stop optimization as soon as the 

constraints are achieved property will be the case in real-time applications, in 

which iterations take long time and overachieving is not the main target.  
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CHAPTER 4 
 
 

 MODEL BASED SIMULATION OF DC MOTOR SET-UP 

 
 

4.1 DC Servomotor Experimental Set-up  

 
The Feedback Control and Instrumentation MS150 Modular Servo system [13] is 

used as an experimental set-up to control the angular position of an inertia disc 

coupled to a DC servo motor by means of a reduction unit. By use of a 

potentiometer, position information about the inertia disk coupled to the DC-

servomotor are available at feedback. The equipment used in the experimental set-

up is listed and explained as follows: 

 

Power Supply: This unit supplies a 24V direct current 2A unregulated supply to the 

motor through a multi way connector to the servo amplifier, as it is this unit that 

controls the motor. 

 

DC Servomotor: A DC permanent magnet motor, which has an extened shaft, and 

onto which can be fixed the magnetic brake or inertia disc. The motor may also be 

attached to the Reduction Tacho Unit using the hexagonal coupling provided. 

 

Pre-Amplifier: This unit provides the correct signals to drive the servo amplifier. 

The two inputs are effectively summed, allowing to signals to be applied e.g. a 

reference voltage and the tachogenerator voltage. A positive signal applied to either 

input causes the upper output terminal to go positive, the other output terminal 

staying near zero. A negative input causes the lower output to go positive, the upper 

one staying near zero. Thus bi-directional motor drive is obtained when these 

outputs are linked to the servo amplifier inputs.  
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Servo Amplifier: Transistors, which drive the motor in either direction, are 

contained in this unit. 

 

Reduction Gear Tacho Unit: This unit contains a speed reduction gearbox with a 

ratio of 30/1 from the high speed input shaft to the low speed output shaft. A DC 

tachogenerator driven by the high speed shaft with an output on the top panel which 

can be used to display the tacho speed directly in rev/min or to monitor a DC 

voltage on another unit.  

 

Input and Output Potentiometers: These are rotary potentiometers used for position 

control. Input potentiometer has ±150° of motion whilst the output potentiometer 

has no mechanical stops and so can not be damaged by continuous rotation. The 

input potentiometer is used to setup reference voltage and the output potentiometer 

is connected to the low-speed shaft by using the push-on coupling. Each unit has a 

buffer amplifier with a gain of one so that even if the output is shorted to a power 

supply or ground, the potentiometer will not be damaged by overloading. The buffer 

also ensures that the potentiometer wiper does not how to carry any current load 

during normal use. 

 

Inertia Load:  An aluminum disc can be mounted on the extended motor shaft and 

when rotated between the pulleys of the magnet of the loading unit, the eddy 

currents generated have the effect of the brake. The strength of the magnetic brake 

can be controlled by the position of the magnet. A heavy disc of the same diameter 

can also be mounted on the shaft instead of the aluminum disc to increase the inertia 

of the motor. 

 

Figure 4.1 shows a schematic diagram of DC motor position control system. In 

Figure 4.2, a photograph of the experimental set-up is given. 
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Figure 4.1 Schematic diagram of DC motor set-up 

 

 

 

 

 

 

 

 

   

 

Figure 4.2 Photograph of DC motor set-up 
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4.2 Robustness Analysis of System with Non-repeatable Perturbations 

 
A model of the control system implemented in MATLAB® /Simulink is used for the 

simulation and analysis of the dynamic system as shown in Figure 4.4. In 

Simulation Parameters dialog box of the model, simulation Start time is set to 0 

and Stop time is set to 5. Fixed-step solver, ode5 (Dormand-Prince), with a step 

size 0.01 is used. Mode is adjusted to Auto as shown in Figure 4.3. 

 

 

 
 

Figure 4.3 Simulation parameters window for robustness analysis 

 

 

 

Figure 4.4 Simulink model including transfer function of DC motor setup 

 

 

Transfer function of the plant is obtained experimentally [14] as shown in equation 

(4.1). Also, a saturation block with +10V upper limit and -10V lower limit should 
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be added into the model since in real-time applications data acquisition cards have a 

similar saturation process. 

 

ss
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=                                                                         (4.1)          

 

To compensate for the system model inaccuracies, a random source generator is 

added into the Simulink model. Random source type was chosen as “uniform” and 

the minimum-maximum range for the amplitude of noise was ±0.1. Considering the 

noise in the real life would be completely random, repeatability term defined as 

“non-repeatable” in the block parameters. Also, sample time is same as the 

simulation step time, which was set to 0.01 before. Figure 4.5 shows properties of 

random source block diagram. 

 

 

 

 

Figure 4.5 Random source block parameters 
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By having a random source generator, the model given in Figure 4.4 can be thought 

as a prior version of actual real-time applications. However, since this model is 

prepared in Simulink normal mode, it allows the command line simulation by sim 

command inside the costfun routine. So, there is no need to apply the modifications 

done in costfun routine, although the modifications in nlconst routine are still 

compulsory due to the random source effect. 

 

For the initial values of Kp=1 Ki=1 Kd=1, one can see how the output response 

satisfies the given constraints in Figure 4.6.  

 

Command window displays the following information during the process: 

 
Setting up constraint window ........ done 

Processing uncertainty information. 

No uncertainty modeled. 

Setting up call to optimization routine. 

Done plotting the initial response. 

Start time: 0  Stop time: 5. 

There are 1005 constraints to be met in each simulation. 

There are 3 tunable variables. 

There are 1 simulations per cost function call. 

 
 f-COUNT     MAX{g}     STEP        Procedures 
 
    5       0.360424     1    

   10       0.375529     1        Hessian modified  

   15       0.385697     1        Hessian modified twice  

   20       0.251793     1        Hessian modified twice  

   25       0.214934     1        Hessian modified  

   30       0.209884     1    

   35       0.179054     1        Hessian modified  

   40       0.181963     1    

   45       0.167418     1    

   50       0.146963     1        Hessian modified  

   55       0.0848281    1        infeasible 

   61       0.0976798    0.5    

   66       0.0492157    1    

   72       0.0668465    0.5      Hessian modified  
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   77       0.0273459    1        Hessian modified twice  

   83       0.053649     0.5      Hessian modified; infeasible 

   88       0.047488     1        Hessian modified; infeasible 

   94       0.0382968    0.5      Hessian modified  

   99       0.0566212    1        Hessian modified  

  105       0.0493392    0.5    

  111       0.0437437    0.5      infeasible 

  117       0.0177746    0.5    

  129       0.0793763    0.00781    

  134       0.0441082    1        infeasible 

  140       0.0400582    0.5      Hessian modified  

  147       0.0396834    0.25     

  152      -0.00120728   1        Hessian modified  

  167      -0.00601804   -6e-005  Hessian modified  

 

Optimization Converged Successfully 

Active Constraints: 

   504 

   506 

 
Finally, the optimized values of the controller gains are found as follows: 

 
Kp= 3.4619 

Ki= 0.37073 

Kd= 0.7438 

 
 

 

 

Figure 4.6 Noisy output response of DC motor Simulink model 
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CHAPTER 5 

 
HARDWARE-IN-THE-LOOP SIMULATION ON DC MOTOR 

SET-UP 
 

Once the algorithms have been developed and tested in software, the next step is to 

bridge the gap between software simulation and real world applications. Here, the 

method of hardware-in-the-loop simulation is applied by using DC servomotor 

experimental set-up introduced in previous chapter. A schematic diagram of this 

hardware-in-the-loop application can be shown in Figure 5.1. The angular position 

of the inertia disc is measured by the potentiometer and this information is passed to 

the computer environment, which consists of MATLAB® / (RTWT) and Simulink. 

In advance, MATLAB® optimization routine produces the required control signals 

for the pre-amplifier, then it provides the correct signals to servo amplifier which 

actually drives the servomotor. The information flow between the software and 

hardware environments, i.e., sensory signal from physical system to computer and 

command signal from software environment to the physical system, is acquired by 

means of National Instruments PCI 6025 Data Acquisition (DAQ) Cards. The 

whole process runs in real-time, which is controlled by MATLAB® / RTWT. 

 

 

 
 

Figure 5.1. Schematic diagram of hardware-in-the-loop application 
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Simulink model for the real-time application is also given in Figure 5.2. Simulation 

Parameters of this real-time model are same as introduced in Section 4.2. 

 

 

 

Figure 5.2. Simulink model for real-time application 
 
 
 
5.1. Statistical Error Analysis 

 
A statistical error analysis of the physical measuring methods or procedure 

employed in ascertaining the output response characteristics is prepared prior to 

implementation of the optimization algorithm with the real time execution.  

 

Here the “repeatability” term occurs which is the difference in output values for the 

same input values. For DC motor set-up, repeatability error would be the difference 

in angular position of the inertia disc at each time points when an identical step 

input is applied on the model with same controller gains values. In order to 

calculate an average system response and other statistical values, exactly same 

experiments have been repeated for 25 times with the same initial values of tunable 

variables, specifically for Kp=1 Ki=1 Kd=1 and output response data have been 

plotted as shown in Figure 5.3. Scale factor of the system is  12°/V. 

 

Differences on the collected data reflect that there is a certain amount of friction in 

mechanical parts and measurement device (potentiometer). Also A/D data 
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acquisition card is of finite resolution. It has 12 bit resolution and 19.012 mV 

absolute accuracy at full scale [15]. 

 

Figure 5.3. Repeated output response plots of DC motor set-up 

 

 

Figure 5.4. Max.-Min.-Mean plots for repeated output response 
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Maximum, minimum and mean values of output data at each time points is plotted 

in Figure 5.4. 

 

In Figure 5.5, bandwidth of max.-min. output values and the standard deviation at 

each time step is shown by using the data obtained in statistical error analysis. 

According to this, maximum bandwidth of the distribution curve is 98 mV, which 

implies that almost 20 % of total error arise from specified data acquisition card. 

 

 

Figure 5.5. Max-Min bandwidth and standard deviation 

 

 

5.2. Real-Time Application Method 
 

Case studies are done with the following steps: 

 

1) Open the following DC_motor.mdl. 
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Figure 5. 6. DC motor RTWT control model 
 

2) Double click ncd1init subsystem to initialize the tunable variables and to 

declare OutputData variable as global. 

 

3)  Double click NCD Outport to open the constraint figure. Default constraint 

bounds will be used in the experiments. Enter the name of tunable variables 

as “Kp Ki Kd” into optimization parameters window and 0.01 for 

Discretization Interval. Set variable and constraint tolerances to 0.01 again. 

Disable Compute gradients with better accuracy option and press done. 

 

4) Press the Start button to start the optimization. Note that after a while, the 

algorithm will pause in keyboard mode and wait for an input from user by 

the command K>>. 

 

For an initial set of tunable variables, Kp=1 Ki=1 Kd=1, command window 

must appear as follows: 

 

Setting up constraint window ........ done 

Processing uncertainty information. 

No uncertainty modeled. 
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Setting up call to optimization routine. 

Kp=1.000  Ki=1.000  Kd=1.000  

K>> 

 
5) In Simulink window, do not forget to update PID parameters from update 

diagram in edit pane (or press Ctrl+D) before starting the real-time 

execution. Then  press connect to target to get the system ready to run. 

 

6) Set the inertia disc position to zero in potentiometer.  

 

7) Press Start real-time code to execute the real system. Observe that the 

system stops after 5 seconds. 

 

Command window must appear as follows: 

 

 Model DC_motor_seda3 loaded 

 Model DC_motor_seda3 unloaded 

 

Note that a global variable named OutputData is saved into the base 

workspace.   

 

8) To turn back the optimization process, write “return” in command window 

and press enter. By this action, the system will exit from keyboard mode. 

 

Again for an initial set of tunable variables, Kp=1 Ki=1 Kd=1,  command 

window must appear as follows: 

 

K>> return 

Done plotting the initial response. 

Start time: 0  Stop time: 5. 

There are 1005 constraints to be met in each simulation. 

There are 3 tunable variables. 

There are 1 simulations per cost function call. 

Kp=1.000  Ki=1.000  Kd=1.000  f=1.000 

K>> 
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Constraint figure window will appear as shown in Figure 5.7. 

 
 

 

Figure 5.7. Example constraint figure window of initial response 

 

 

9)   Repeat the same procedure starting from step 5 for every new set of 

tunable variables Kp, Ki, Kd & f. 

 
 
5.3. Case Study I 

 
By following the described steps, first study is done with a set of initial values of 

tunable variables, Kp=1 Ki=1 Kd=1.  Important parameters are displayed in 

command window and an appearance of constraint figure window is placed to let 

the user observe the output response improvement after each SD calculation i.e., 

major steps. For the whole process, command window appears as follows:  

 
Setting up constraint window ........ done 

Processing uncertainty information. 

No uncertainty modeled. 

Setting up call to optimization routine. 

Kp=1.000  Ki=1.000  Kd=1.000  

K>> 

Model DC_motor_seda3 loaded 
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Model DC_motor_seda3 unloaded 

K>> return 

Done plotting the initial response. 

   Start time: 0  Stop time: 5. 

There are 1005 constraints to be met in each simulation. 

There are 3 tunable variables. 

There are 1 simulations per cost function call. 

 

Kp=1.000  Ki=1.000  Kd=1.000  f=1.000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

CHG = 

   -0.1000 

   -0.1000 

   -0.1000 

   -0.1000 

 

Kp=0.900  Ki=1.000  Kd=1.000  f=1.000 

K>> 

   Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.000  Ki=0.900  Kd=1.000  f=1.000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.000  Ki=1.000 Kd=0.900  f=1.000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.000  Ki=1.000  Kd=1.000  f=0.900 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 
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K>> return 

 

mg = -0.5346 

 

       f-COUNT     MAX{g}         STEP    Procedures 

       5       0.46543           1 

 

Step Length = 1 

 

OPTIONS(11)= 2 

 

SD = 

    0.2985 

    0.1568 

   -0.1441 

   -0.6830 

 

Kp=1.29848  Ki=1.15679  Kd=0.85586  f=0.31703 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure 5.8. 

 

 
 

Figure 5.8. Constraint figure window at OPTIONS(11)=2 
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�

CHG = 

   -0.1000 

   -0.1000 

   -0.1000 

   -0.1000 

 

Kp=1.19848  Ki=1.15679  Kd=0.85586  f=0.31703 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.29848  Ki=1.05679  Kd=0.85586  f=0.31703 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.29848  Ki=1.15679  Kd=0.75586  f=0.31703 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.29848  Ki=1.15679  Kd=0.85586  f=0.21703 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg = 0.0117 

 

       f-COUNT     MAX{g}          STEP    Procedures 

       10     0.328711            1 

�

Step Length = 1 

 

   OPTIONS(11)=  3 

 

SD = 

    0.1238 
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   -0.0129 

   -0.0806 

   -0.0369 

 
Kp=1.42223 Ki=1.14394  Kd=0.77528  f=0.28014 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure 5.9. 

 

 

 
 

Figure 5.9. Constraint figure window at OPTIONS(11)=3 
�

�

CHG = 

    0.3930 

    0.8394 

   -0.9542 

    0.3678 

 

Kp=1.81522  Ki=1.14394  Kd=0.77528  f=0.28014 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 
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Kp=1.42223  Ki=1.98335  Kd=0.77528  f=0.28014 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.42223  Ki=1.14394  Kd=-0.17896  f=0.28014 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.42223 Ki=1.14394  Kd=0.77528  f=0.64792 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg = -2.5832e-004 

 

       f-COUNT     MAX{g}          STEP    Procedures 

      15       0.279883          1      Hessian modified 

 

Step Length = 1 

 

   OPTIONS(11)= 4 

 

SD = 

    0.5761 

   -0.0190 

   -0.0046 

   -0.1475 

 

Kp=1.99832  Ki=1.12490 Kd=0.77069  f=0.13269 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure 5.10. 
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Figure 5.10. Constraint figure window at OPTIONS(11)=4 
 

 

CHG = 

    0.5241 

    1.0000 

   -0.1000 

   -1.0000 

 

Kp=2.52244  Ki=1.12490  Kd=0.77069  f=0.13269 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.99832  Ki=2.12490  Kd=0.77069  f=0.13269 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.99832  Ki=1.12490  Kd=0.67069  f=0.13269 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=1.99832  Ki=1.12490  Kd=0.77069  f= -0.86731 

K>> 
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Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg = 0.0390 

 

       f-COUNT     MAX{g}          STEP    Procedures 

 

       20      0.171641           1     Hessian modified 

 

Step Length = 1 

 

   OPTIONS(11)= 5 

 

SD = 

    1.8837 

   -0.0639 

   -0.0489 

   -0.0727 

 

Kp=3.88198  Ki=1.06104  Kd=0.72176  f=0.05999 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

�

�

�

Constraint figure window appears as shown in Figure 5.11. 
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Figure 5.11. Constraint figure window at OPTIONS(11)=5 
 

CHG = 

    0.6518 

    1.0000 

   -0.1643 

   -1.0000 

 

Kp=4.53382  Ki=1.06104  Kd=0.72176  f=0.05999 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.88198  Ki=2.06104  Kd=0.72176  f=0.05999 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.88198  Ki=1.06104  Kd=0.55749  f=0.05999 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.88198  Ki=1.06104  Kd=0.72176  f= -0.94000 

K>> 

Model DC_motor_seda3 loaded 
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Model DC_motor_seda3 unloaded 

K>> return 

 

mg = 0.0032 

 

    f-COUNT     MAX{g}          STEP    Procedures 

    25     0.0632422           1     Hessian modified twice 

 

Step Length = 1 

 

   OPTIONS(11)=  6 

 

SD = 

    0.0274 

   -0.0039 

   -0.0075 

    0.0031 

 

Kp=3.90938  Ki=1.05711  Kd=0.71421  f=0.06305 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure 5.12. 

 

 
 

Figure 5.12. Constraint figure window at OPTIONS(11)=6 
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CHG = 

     1 

     1 

    -1 

    -1 

 

Kp=4.90938  Ki=1.05711  Kd=0.71421  f=0.06305 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.90938  Ki=2.05711  Kd=0.71421  f=0.06305 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.90938  Ki=1.05711  Kd= -0.28579  f=0.06305 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.90938  Ki=1.05711  Kd=0.71421  f= -0.93694 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

mg = 1.8597e-004 

 

       f-COUNT     MAX{g}          STEP    Procedures 

 

       30      0.0632422          1     Hessian modified 

 

Step Length = 1 

 

   OPTIONS(11)=  7 

 

   SD = 

    0.0129 

    0.0013 
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    0.0033 

    0.0001 

 

Kp=3.92224  Ki=1.05838  Kd=0.71750  f=0.06320 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure 5.13. 

 
 

 
 

Figure 5.13. Constraint figure window at OPTIONS(11)=7 
 
 
 

 
       f-COUNT     MAX{g}          STEP    Procedures 

 
       31      0.0544531          1     Hessian modified  

 

Optimization Converged Successfully 

 

Active Constraints: 

   288 

   504 

 

 



 67

 

While the initial conditions are Kp=1 Ki=1 Kd=1, final results are found as follows: 

 

Kp = 3.9222 

Ki  = 1.0584 

Kd =  0.7175 

 

Trend of tunable variables, cost function and termination criteria parameters during 

the whole process can be observed by below Table 5.1. 

 

 

Table 5.1. Results of case study I 
 

Kp Ki Kd gamma max |SD|  |gf’*SD| mg 

1.0000 1.0000 1.0000 0.4654 - - -0.5346 

1.2984 1.1568 0.8558  0.3287          0.6830 0.6830 0.0117 

1.4222 1.1439  0.7753  0.2799         0.1238 0.0369 -0.0003 

1.9983 1.1249  0.7707  0.1716           0.5761 0.1475 0.0390 

3.8819  1.0610  0.7217 0.0632          1.8837 0.0727 0.0032 

3.9094  1.0571  0.7142  0.0632          0.0274 0.0031 0.0002 

3.9222  1.0584  0.7175  0.0544          0.0129 0.0001 -0.0087 
 

 

Plots of each tunable variables and cost function are given in Figure 5.14 and Figure 

5.15. Also, in Figure 5.16 one can observe the improvements on output response 

behavior during the optimization process.  
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Figure 5.14.Plots of tunable variables for case study I. 
 

 

 
 

Figure 5.15. Plots of cost function for case study I. 
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Figure 5.16. Output response improvement during case study I. 
 
 
 
5.4. Case Study II 

 
This study is done with a set of initial values of tunable variables, Kp=3 Ki=1 

Kd=0, which gives an oscillatory initial output response and makes system very 

close to marginally stable condition. To ensure the stability of the system, each of 

tunable variables are bounded by zero in Lower bound from Optimization 

Parameters window. Also considering that the initial output response is very far 

from the given constraints, Stop optimization as soon as the constraints are 

achieved property is enabled to decrease the number of iteration. Complete 

command window display and related constraint figure windows after each major 

step are given in Appendix A. Here, only the necessary plots and summary 

information will be shown.  

 

For a set of initial conditions, Kp=3 Ki=1 Kd=0, final results are found as follows: 

Kp = 3.4635 

Ki  = 0.1650 

 Kd = 0.2001 
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At the end of the process, constraint figure window displays the system’s output 

response plots belonging to initial and optimized values of controller gains as 

shown in Figure 5.17. Trend of each tunable variables, cost function and 

termination criteria parameters during the whole process can be observed by below 

Table 5.2. 

 

 

 
 

Figure 5.17. Constraint figure window at the end of case study II. 

 

 

Table 5.2. Results of  case study II. 
 

Kp Ki Kd gamma max |SD|  |gf’*SD| mg 
3.0000 1.0000 0.0000 0.6018        0.0000 0.0000 -0.3982 
3.1555 0.8238 0.0000 0.5773           0.3165 0.3165 -0.1062 
3.0192 0.7623 0.0022 0.5383          0.1514 0.1514 0.0061 
2.9834 0.7338 0.0058 0.5285          0.0358 0.0096 0.0060 
2.3617 0.7156 0.2220 0.0301         0.6217 0.3462   -0.1463 
2.3241 0.4993 0.1943 0.0203          0.8333 0.8333 0.0203 
3.5074 1.4421 0.1937 0.0252           1.1833 0.5535 0.0251 
3.4659 0.2416 0.1997 0.0007         1.2005 0.7511 0.0007 
3.4635 0.1650 0.2001 -0.0041         0.0766 0.0000 -0.0041 
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Plots of each tunable variables and cost function are given in Figure 5.18 and Figure 

5.19. Also, in Figure 5.20 one can observe the improvements on output response 

behavior during the optimization process following the graphs by row-wise from 

left to right.  

 

 
 

Figure 5.18. Plots of tunable variables for case study II. 
 
 
 

 
 

Figure 5.19. Plots of cost function for case study II 
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Figure 5.20. Output response improvement during case study II 
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CHAPTER 6 
 

DISCUSSION AND CONCLUSIONS 
 

 

6.1. Discussion and Conclusions  

 

The aim of this thesis is to develop an on-line strategy  which will lead to the 

determination of optimum control system parameters, based on presently available 

algorithm of MATLAB®  6.5 R13 (SP1) / Nonlinear Control Design Blockset 

Version 1.1.6. 

 

The basic idea behind NCD algorithm is introduced in a logical sequence. Processes 

of three vital optimization routines and interactions with each other are analyzed in 

detail. This requires a dedicated study on the algorithm and has a special importance 

not only by being the milestone of this thesis but also a guide for further 

improvements on the algorithm. A summarizing pseudo-code is given for a better 

understanding. 

 

Then an illustrative model in “external” mode prepared by the help of MATLAB® / 

Real Time Windows Target (RTWT) is introduced and present NCD algorithm is 

modified so that it could be used in such a real-time application. Modifications are 

necessary mainly for two reasons: To transfer input/output data between the physical 

system and the algorithm and also to amplify some parameters such as change in 

tunable parameters according to physical plant responsivity. The first necessity arise 

from the fact that it is not possible to perform command line simulation of a model 

in external mode. 

 

A demonstrative PID tuning process is realized by using the model-based simulation 

of a DC servomotor set-up (including the transfer function of the plant) under the 
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effect of non-repeatable perturbations (random source) on the response signal. This 

study can be thought as an intermediate step before starting the real-time case 

studies, which actually contain noises. The satisfactory result as shown in Figure 4.6 

is promising for the real-time application. 

Finally, the hardware-in-the-loop simulation on previously defined DC servomotor 

set-up is done by using the RTWT model which is also discussed in Chapter 3. A 

set of statistical error analysis results are given at that point to determine the non-

repeatability of real system output response data. For both case studies an 

experimentation method is fixed. During the case studies, example tuning processes 

are presented to show some of the potential uses of the model. 

 

When compared to the trial and error method, which is used widely in industry, this 

method offers a more scientific and logical approach to a difficult problem of tuning 

control systems. Also, when the control strategy is not well-known, unlike a PID 

controller, tuning by trial and error method will be a time-consuming process or 

almost  insoluble. The strategy is unique in the sense that it is the one and only 

control system tuning method applying an iterative optimization algorithm with 

directly physical plant’s input/output data usage, known to the author. 

 
 
6.2 Future Scope 

 
This study can help engineers to design controllers by a systematic and progressive 

approach with the proposed “tuning by hardware-in-the-loop simulation” strategies. 

Although no mathematic formula is used to describe this approach, it has sound 

philosophic background, and could be a very easy and powerful tool for some 

extended projects. 

 

The course of work took more than three years because of the fact that such an 

application has never been done before. To the author’s knowledge, this study 

proposes one of the few algorithms to ensure output response obtained by the tuned 

results will satisfy the constraints of the real system and is the only one that applies 

the hardware-in-the-loop simulation concept to the problem of finding optimized 
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controller gain values in a control system. Depending on the slackness of the 

constraints, more than one solution set can be obtained. This method aims to find an 

optimum solution set, although it might not be the “best” one. This is because NCD 

finds the local minimum and does not guarantee that it’s a global minimum. For 

being closer to a global minimum, algorithm might be forced to find more than one 

solution set for the specific tuning process and the program might choose the best 

one as the final solution set. 

 

This thesis deals with minimizing maximum error method but there are many more 

methods to solve multi objective nonlinear problems. More work could be directed 

toward that area where many routines are used on the same problem and the best 

optimization method can be chosen by the user. Also, a better method for choosing 

the initial parameter values should be developed. Minor step length, CHG, used 

during the finite difference gradient calculation is one of the key values for the real-

time application and should be determined by the user with some amount of pre-

knowledge of the system. A user-interface will be helpful for a better CHG value 

specification depending on the specific real plant characteristics.  

 

Due to the complex nature of real-time simulation within an iterative area, a simple 

model was taken for the study. In future methods more work could be done with 

more complicated systems, and also a possible automatic application of that process 

will have a great contribution to the study in terms of time and effort saving for the 

future works.  
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APPENDIX A 
 

COMMAND WINDOW DISPLAY OF CASE STUDY II 
 

 
Setting up constraint window ........ done 

Processing uncertainty information. 

No uncertainty modeled. 

Setting up call to optimization routine. 

Kp=3.0000000  Ki=1.0000000  Kd=0.0000000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Done plotting the initial response. 

 

Constraint figure window appears as shown in Figure A.1. 

 

 

 
 

Figure A.1. Constraint figure window at initial response 
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Start time: 0  Stop time: 5. 

There are 1005 constraints to be met in each simulation. 

There are 3 tunable variables. 

There are 1 simulations per cost function call. 

OPTIONS(11)=1 

Kp=3.0000000  Ki=1.0000000  Kd=0.0000000  f=1.0000000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

CHG = 

   -0.1000 

   -0.1000 

   -0.1000 

   -0.1000 

 

Kp=2.9000000  Ki=1.0000000  Kd=0.0000000  f=1.0000000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.0000000  Ki=0.9000000  Kd=0.0000000   f=1.0000000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.0000000  Ki=1.0000000  Kd= -0.1000000   f=1.0000000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.0000000  Ki=1.0000000  Kd=0.0000000     f=0.9000000 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg = -0.3982 
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     f-COUNT     MAX{g}          STEP    Procedures 

 

         5      0.601758           1    

 

OPTIONS(11)= 2 

 

Step Length =  1 

 

SD = 

    0.1555 

   -0.1762 

   -0.0000 

   -0.3165 

 

Kp=3.1554726  Ki=0.8237977  Kd=0.0000000  f=0.6835372 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure A.2. 

 

 

 
 

Figure A.2. Constraint figure window at OPTIONS(11)=2 
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CHG = 

   -0.1000 

   -0.1000 

   -0.1000 

   -0.1000 

 

Kp=3.0554726  Ki=0.8237977  Kd=0.0000000  f=0.6835372 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.1554726  Ki=0.7237977  Kd=0.0000000  f=0.6835372 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.1554726  Ki=0.8237977  Kd= -0.1000000  f=0.6835372 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.1554726  Ki=0.8237977  Kd= 0.0000000  f=0.5835372 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg =  -0.1062 

 

     f-COUNT     MAX{g}          STEP    Procedures 

 

        10     0.577344            1     Hessian modified 

 

OPTIONS(11)= 3 

 

Step Length = 1 

 

SD = 

   -0.1362 
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   -0.0615 

    0.0022 

   -0.1514 

 

Kp=3.0192227  Ki=0.7622811  Kd=0.0022436  f=0.532146 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 
 

Constraint figure window appears as shown in Figure A.3. 

 

 

 
 

Figure A.3. Constraint figure window at OPTIONS(11)=3 
 
 
CHG = 

    1.0000 

    1.0000 

   -0.1000 

   -0.1286 

 

Kp=4.0192227  Ki=0.7622811  Kd=0.0022436  f=0.5321466 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 
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K>> return 

Kp=3.0192227  Ki=1.7622811  Kd=0.0022436  f=0.5321466 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.0192227  Ki=0.7622811  Kd= -0.0977564  f=0.5321466 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.0192227  Ki=0.7622811  Kd=0.0022436   f=0.4035066 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg = 0.0061 

 

     f-COUNT     MAX{g}          STEP    Procedures 

 

        15      0.538281           1    

 

OPTIONS(11)= 4 

 

Step Length = 1 

 

SD = 

   -0.0358 

   -0.0285 

    0.0035 

   -0.0096 

 

Kp=2.9833888  Ki=0.7337870  Kd=0.0057774  f=0.5225005 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 



 84

Constraint figure window appears as shown in Figure A.4. 

 

 

 

 

Figure A.4. Constraint figure window at OPTIONS(11)=4 
 

 

CHG = 

   -1.0000 

   -1.0000 

    0.4476 

    1.0000 

 

Kp=1.9833888  Ki=0.7337870  Kd=0.0057774  f=0.5225005 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.9833888  Ki= -0.2662130  Kd=0.0057774  f=0.5225005 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.9833888  Ki=0.7337870    Kd=0.4534203   f=0.5225005 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 
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K>> return 

Kp=2.9833888  Ki=0.7337870  Kd=0.0057774  f=1.5225005 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg =  0.0060 

 

     f-COUNT     MAX{g}          STEP    Procedures 

 

        20     0.528516            1     Hessian modified 

 

OPTIONS(11)=  5 

 

Step Length = 1 

 

SD = 

   -0.6217 

   -0.0182 

    0.2163 

   -0.3462 

 

Kp=2.3617083  Ki=0.7155824  Kd=0.2220607  f=0.1763051 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

 

Constraint figure window appears as shown in Figure A.5. 
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Figure A.5. Constraint figure window at OPTIONS(11)=5 

 
 
CHG = 

   -1.0000 

   -1.0000 

    0.1000 

   -0.8920 

 

Kp=1.3617083  Ki=0.7155824  Kd=0.2220607  f=0.1763051 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.3617083  Ki= -0.2844176  Kd=0.2220607  f=0.1763051 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.3617083  Ki=0.7155824  Kd=0.3220607  f=0.1763051 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.3617083  Ki=0.7155824  Kd=0.2220607  f= -0.7156958 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 
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K>> return 

 

mg = -0.1463 

 
     f-COUNT     MAX{g}          STEP    Procedures 

 

        25     0.0300391           1 

 
OPTIONS(11)= 6 

 
Step Length = 1 

 
SD = 

   -0.0376 

   -0.2163 

   -0.0277 

   -0.8333 

 

Kp=2.3240594  Ki=0.4992767  Kd=0.1943178  f= -0.6569536 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure A.6. 

 

 

 
 

Figure A.6. Constraint figure window at OPTIONS(11)=6 
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CHG = 

    -1 

     1 

    -1 

    -1 

 

Kp=1.3240594  Ki=0.4992768   Kd=0.1943179  f= -0.6569536 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.3240594  Ki=1.4992767  Kd=0.1943178  f= -0.6569536 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.3240594  Ki=0.4992767  Kd= -0.8056822  f= -0.6569536 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=2.3240594  Ki=0.4992767  Kd=0.1943178  f= -1.6569536 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg = 0.0203 

 

 f-COUNT     MAX{g}         STEP    Procedures 

 

    30     0.0202734          1    Hessian modified;infeasible 

 

OPTIONS(11)= 7 

 

Step Length = 1 

 

SD = 

    1.1833 
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    0.9429 

   -0.0006 

   -0.5535 

 

Kp=3.5074001  Ki=1.4421329  Kd=0.1936892  f= -1.2104203 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure A.7. 

 

 
 

Figure A.7. Constraint figure window at OPTIONS(11)=7 
 

 

CHG = 

    1.0000 

   -1.0000 

   -0.1000 

    1.0000 

 

Kp=4.5074001   Ki=1.4421328  Kd=0.1936892  f= -1.2104203 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 
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Kp=3.5074001  Ki=0.4421328  Kd=0.1936892  f= -1.2104203 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.5074001  Ki=1.4421328  Kd=0.0936892  f= -1.2104203 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.5074001  Ki=1.4421328  Kd=0.1936892  f= -0.2104203 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

mg = 0.0252 

 

     f-COUNT     MAX{g}          STEP    Procedures 

 

        35    0.0251562            1     infeasible 

 

OPTIONS(11)= 8 

 

Step Length = 1 

 

SD = 

   -0.0415 

   -1.2005 

    0.0061 

   -0.7511 

 

Kp=3.4658971  Ki=0.2416506  Kd=0.1997486  f= -1.9614853 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure A.8. 
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Figure A.8. Constraint figure window at OPTIONS(11)=8 

 
 
CHG = 

    -1 

    -1 

    -1 

    -1 

 

Kp=2.4658971  Ki=0.2416506  Kd=0.1997486  f= -1.9614853 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.4658971  Ki= -0.7583494  Kd=0.1997486  f= -1.9614853 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.4658971  Ki=0.2416506  Kd= -0.8002514  f= -1.9614853 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

Kp=3.4658971  Ki=0.2416506  Kd=0.1997486  f= -2.9614853 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 
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K>> return 

 

mg = 7.4220e-004 

 

     f-COUNT     MAX{g}          STEP    Procedures 

 

        40    0.000742187          1     Hessian modified  

 

OPTIONS(11)= 9 

 

Step Length = 1 

 

SD = 

   -0.0024 

   -0.0766 

    0.0003 

   -0.0000 

 

Kp=3.4635016  Ki=0.1650299  Kd=0.2000949  f= -1.9614942 

K>> 

Model DC_motor_seda3 loaded 

Model DC_motor_seda3 unloaded 

K>> return 

 

Constraint figure window appears as shown in Figure A.9. 

 

 
 

Figure A.9. Constraint figure window at OPTIONS(11)=9 
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mg = -0.0041 

 

     f-COUNT     MAX{g}          STEP    Procedures 

 

        45    -0.00414063          1   Hessian modified twice 

 

Optimization Converged Successfully 

 

Active Constraints: 

   268 
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                                  APPENDIX B 
 
                                        FLOWCHART 

 

User input for 
initial values of 

tunable variables 
Are there upper 

& lower bounds? 

Calculate initial cost function 
& constraint error  (costfun.m) 

Change each tunable  variables 
as the amount of CHG 

Calculate the Hessian 

Calculate new cost function & 
constraint error 

Assign cost function & constraint error 
to the values before CHG application 

Are the cost function 
and constraint error 

improved? 

Have the termination 
criteria met? 

Is the max. number of 
iteration exceeded? 

Calculate cost function and 
constraint error  (costfun.m) 

Calculate gradient of cost 
function & constraint error 

Calculate the search direction (qpsub.m) 

Assign the step length to the user input value 

Calculate new tunable variables 

Limit tunable variables 
according to bounds 

Calculate new 
step length 

STOP 
Display new tunable 

variables, cost function 
& constraint error 

STOP 
Display previous  tunable 
variables, cost function 

& constraint error 

Find new CHG 

YES 

YES 

YES 

YES 

NO 

NO 

NO 

NO 
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APPENDIX C 

 
 

RELATED ORIGINAL OPTIMIZATION M-FILES 
 
 

 

nlinopt.m 
 
 
 
function nlinopt(sys,InitFlag) 
%NLINOPT Runs the optimization algorithm. 
% 
%       NLINOPT(SYS,InitFlag) is called when the Start button is  
%       pushed or when the Initial response menu item is selected.  
%       It calls another routine to initialize any Monte Carlo 
%       simulations.  It calls a routine to convert 
ncdStruct.CnstrLB and 
%       ncdStruct.CnstrUB into constraints used by the optimization 
routine. 
%       Finally, if InitFlag=1, it plots the initial response, 
%       otherwise it calls the optimization routine. 
% 
%       See also MONTEVAR, CONVERTM, CONSTR, COSTFUN, GRADFUN. 
 
%   Author(s): A. Potvin, 12-1-92 
%              M. Yeddanapudi, Sept. 24, '96 
%   Revised  : K. Subbarao 10-30-2001 
%   Copyright 1990-2002 The MathWorks, Inc.  
%   $Revision: 1.28 $ 
%   $Date: 2002/06/06 15:37:39 $ 
 
% OPT_STOP is global and must be empty to continue 
global OPT_STOP; 
if isempty(OPT_STOP), 
   % Setting OPT_STOP to zero allows optimization 
   % to continue and tells the dialog  boxes that 
   % the parameters can no longer be changed. 
   OPT_STOP = 0; 
else 
   fprintf('\nNLINOPT: First Click on the Stop push button to stop 
optimization\n'); 
   fprintf('         that might be already running. If that is not 
the case, try\n'); 
   fprintf('         setting OPT_STOP=[] to enable the Start push 
button.\n'); 
   return; 
end 
 
 
% load the model into memory 
loadCmd = [sys '([],[],[],0);']; 
lasterr(''); 
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evalin('base',loadCmd,''); 
if ~isempty(lasterr), 
   fprintf('\nNLINOPT: Error loading model: %s\n',sys); 
   fprintf('%s\n',lasterr); 
   OPT_STOP = []; 
   return; 
end    
 
%% Declare Global 
global ncdStruct; 
 
% Want to keep one argument option so 
% user can easily invoke optimization 
if (nargin==1), InitFlag = 0; end 
 
% MONTEVAR checks the uncertain parameters and 
% initializes the variables:  SIMS,  UVARMATX, 
% UVAREXT and UVDATA that are used in  COSTFUN 
 
fprintf('\nProcessing uncertainty information.\n'); 
[sims,uvarmtx,uvarext,uvdata] = montevar; 
 
if ((isempty(sims)) & (~InitFlag)) 
   error(['NLINOPT: No simulations constrained. ' ... 
         'Check Uncertain Variable dialog box.']); 
   OPT_STOP = []; 
   return; 
end 
 
tstart = get_param(sys,'Start time'); 
if (isstr(tstart)), tstart = eval(tstart); end 
tfinal = get_param(sys, 'Stop time'); 
if (isstr(tfinal)), tfinal = eval(tfinal); end 
 
if InitFlag, 
   if isempty(sims), 
      fprintf('No simulations constrained. Plotting nominal.\n') 
      sims = 1; 
   end 
   fprintf('Beginning simulations for initial response plots.\n') 
else 
 
 
 
   fprintf('Setting up call to optimization routine.\n') 
end 
 
if isempty(ncdStruct.Tdelta), 
    ncdStruct.Tdelta = 1/100; 
   %ncdStruct.Tdelta = (tfinal-tstart)/100; 
end 
timepts = [tstart:ncdStruct.Tdelta:tfinal]'; 
if timepts(end) < tfinal, 
   timepts = [timepts; tfinal]; 
end 
 
% NCD_OutPorts contains the port numbers of the NCD 
% Masked Outport blocks. Only the entries of ncdStruct.CnstrLB 
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% and ncdStruct.CnstrUB that correspond to these outports will 
% be used in the optimization. 
 
NCD_OutPorts=[]; 
tmpcell = find_system(sys,'SearchDepth',1,'MaskType','NCD Outport'); 
NumNCDoutports = length(tmpcell(:,1)); 
for i=1:NumNCDoutports 
   
NCD_OutPorts=[NCD_OutPorts;str2num(get_param(tmpcell{i},'Port'))]; 
end 
tmpcell = find_system(sys,'SearchDepth',1,'BlockType','Outport'); 
NumOutPorts = length(tmpcell(:,1)); 
 
% Initialize the time out flag. 
% tmpnum = Inf; 
% tmpcell = find_system(sys,'MaskType','Sim TimeOut Block'); 
% for i=1:length(tmpcell(:,1)) 
%    tmpstr = get_param(tmpcell{i},'maskvaluestring'); 
%    dumstr = tmpstr(1:find(tmpstr == '|')-1); 
%    dum = evalin('base',dumstr,'Inf'); 
%    if dum < tmpnum, 
%       tmpnum = dum; 
%       ncdStruct.TimeOutFlag = tmpstr(find(tmpstr == '|')+1:end); 
%    end 
% end 
% The evalin('try','catch') in the above for loop ignores 
% errors, so we need to clear lasterr, which may be nonempty. 
% lasterr(''); 
% if isempty(ncdStruct.TimeOutFlag) | ~isstr(ncdStruct.TimeOutFlag), 
%    ncdStruct.TimeOutFlag = ''; 
% end 
 
 
 
% Check for constraint figures on the screen 
% and initialize the handles for the initial 
% and intermediate plots, in all the figres. 
 
xdata = timepts(:,[ones(1,2*max(sims))]); 
zdata = ones(size(xdata)); 
 
FigHndls = allchild(0); 
FigNames = get(FigHndls,'Name'); 
 
prefix = ['System: ' sys ', Outport: ']; 
lnprefix = length(prefix)+1; 
 
FigHndls = FigHndls(strmatch(prefix,FigNames)); 
FigNames = char(get(FigHndls,'Name')); 
 
AllLines = []; 
for indx=1:length(FigHndls) 
 
   axs = get(FigHndls(indx),'CurrentAxes'); 
 
   % delete exisiting lines from the axs userdata 
   delete(findobj(get(axs,'Children'),'Type','line')); 
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   % MCSlns is a vector of Monte Carlo simulation plot 
   % handles. May create a couple of extra lines since 
   % nominal, upper bound, and  lower bound plants are 
   % not always constrained. 
   % Note: MCSlns is never empty. 
 
   MCSlns = line(xdata,xdata,zdata, ... 
             'Parent',axs,'Color','green', ... 
             'Visible','off','Clipping','on', ... 
             'EraseMode','xor'); 
   AllLines = [AllLines; MCSlns]; 
 
   % The initial response is in MCSlns(1:max(sims))  
 
   set(MCSlns(1:max(sims)), ... 
      'Color','white','EraseMode','background'); 
 
   % Put the line handles in axis UserData 
   set(axs,'UserData',MCSlns); 
 
end 
 
 
SimOptions = simset('SrcWorkSpace','base', ... 
                    'DstWorkSpace','current', ... 
                    'OutputPoints','specified'); 
 
% simulate the SL model and plot the initial response 
if initresp(sys,timepts,sims,uvarmtx,uvarext,uvdata,SimOptions) == 
1, 
   % error in initresp, clean up and bail out 
   OPT_STOP = []; 
   return; 
end 
fprintf('Done plotting the initial response.\n') 
 
if (InitFlag == 0) 
 
   % Lot of processing to do before we begin optimization 
 
   % first parse ncdStruct.TvarStr and setup the following variables 
   % tvarmtx: str2mat2(ncdStruct.TvarStr) 
   % tvarvec: vectorized tunable variables 
   % tvarext: vector containig the sizes of the tuneable variables 
 
   atindx = 0; 
   tvarext = []; 
   tvarmtx = ''; tvarvec = []; 
 
   [tvarmtx,error_str] = str2mat2(ncdStruct.TvarStr); 
   if (~isempty(error_str)) 
      fprintf(['\nNLINOPT: ' error_str]); 
      fprintf('\n          error parsing ncdStruct.TvarStr'); 
      fprintf('\n          cannot start optimization.\n'); 
      OPT_STOP = []; 
      return; 
   end 
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   lasterr(''); 
   for i=1:size(tvarmtx,1) 
      tmpvar = evalin('base',tvarmtx(i,:),['''' tvarmtx(i,:) '''']); 
      if ~isempty(lasterr), 
         fprintf(lasterr); 
         fprintf(['\nNLINOPT: error accessing: ' tmpvar ' in the 
base workspace']); 
         fprintf(['\n         cannot start optimization.\n']); 
         OPT_STOP = []; 
         return; 
      end 
 
 
 
      tmpint = prod(size(tmpvar)); 
      if (tmpint == 0) 
         fprintf('\nNLINOPT: %s is empty',tmpvar); 
         fprintf('\n         cannot start optimization.\n'); 
         OPT_STOP = []; 
         return; 
      end 
      tvarvec = [tvarvec;tmpvar(:)]; 
      tvarext(i,1) = atindx+tmpint; 
      atindx = tvarext(i,1); 
   end 
 
   % ncdStruct.TvarMtx is required in TVARSET 
   ncdStruct.TvarMtx = tvarmtx; 
 
   % Done with ncdStruct.TvarStr. 
 
   % Now process the lower bounds in ncdStruct.TvlbStr 
   % if successful tvlbvec will contain the 
   % vectorized values of the lower bounds. 
 
   tvlbmtx = ''; tvlbvec = []; 
 
   if ~isstr(ncdStruct.TvlbStr), 
      if ~isempty(ncdStruct.TvlbStr), 
         fprintf('\nNLINOPT: ncdStruct.TvlbStr is not a string!'); 
         fprintf('\n         setting ncdStruct.TvlbStr to empty'); 
         fprintf('\n         proceeding without lower bounds.\n') 
      end 
      ncdStruct.TvlbStr = ''; 
   elseif ~isempty(ncdStruct.TvlbStr), 
      [tvlbmtx,error_str] = minipars(ncdStruct.TvlbStr); 
      if ~isempty(error_str), 
         fprintf('\nNLINOPT: error parsing the lower bound string: 
%s',ncdStruct.TvlbStr); 
         fprintf('\n         proceeding without lower bounds.\n') 
         tvlbmatx = ''; 
      elseif size(tvarmtx,1) ~= size(tvlbmtx,1), 
         fprintf('\nNLINOPT: sizes of ncdStruct.TvarStr and 
ncdStruct.TvlbStr should be equal'); 
         fprintf('\n         proceeding without lower bounds.\n') 
         tvlbmatx = ''; 
      else 
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         atindx = 1; 
         lasterr(''); 
         for i=1:size(tvarmtx,1) 
            siz = tvarext(i)-atindx+1; 
            tvlbtmp = evalin('base',tvlbmtx(i,:),['''' tvlbmtx(i,:) 
'''']); 
            if ~isempty(lasterr), 
               fprintf(lasterr); lasterr(''); 
               fprintf('\nNLINOPT: error evaluating %s in the base 
workspace',tvlbtmp); 
               fprintf('\n         setting the lower bound of %s to 
-Inf\n',deblank(tvarmtx(i,:))); 
               tvlbtmp = repmat(-Inf,[siz 1]); 
            elseif isempty(tvlbtmp), 
               fprintf('\nNLINOPT: the lower bound of %s -> %s is 
empty', ... 
                                   
deblank(tvarmtx(i,:)),deblank(tvlbmtx(i,:))); 
               fprintf('\n         setting the lower bound of %s to 
+Inf\n',deblank(tvarmtx(i,:))); 
               tvlbtmp = repmat(-Inf,[siz 1]); 
            elseif prod(size(tvlbtmp)) ~= siz, 
               fprintf('\nNLINOPT: size of tunable variable %s and 
its lower bound %s are inconsistent', ... 
                                   
deblank(tvarmtx(i,:)),deblank(tvlbmtx(i,:))); 
               fprintf('\n         setting the lower bound of %s to 
-Inf\n',deblank(tvarmtx(i,:))); 
               tvlbtmp = repmat(-Inf,[siz 1]); 
            end 
            tvlbvec = [tvlbvec;tvlbtmp(:)]; 
            atindx = tvarext(i,1)+1; 
         end 
      end 
   end 
 
   % Done with ncdStruct.TvlbStr. 
 
   % Now process the upper bounds in ncdStruct.TvubStr 
   % if successful tvubvec will contain the 
   % vectorized values of the upper bounds. 
 
   tvubmtx = ''; tvubvec = []; 
 
   if ~isstr(ncdStruct.TvubStr), 
      if ~isempty(ncdStruct.TvubStr), 
         fprintf('\nNLINOPT: ncdStruct.TvubStr is not a string!'); 
         fprintf('\n         setting ncdStruct.TvubStr to empty 
and'); 
          
 
 
      fprintf('\n         proceeding without upper bounds.\n') 
      end 
 



 101

      ncdStruct.TvubStr = ''; 
   elseif ~isempty(ncdStruct.TvubStr), 
      [tvubmtx,error_str] = minipars(ncdStruct.TvubStr); 
      if ~isempty(error_str), 
         fprintf('\nNLINOPT: error parsing the upper bound string: 
%s',ncdStruct.TvubStr); 
         fprintf('\n         proceeding without upper bounds.\n') 
         tvubmatx = ''; 
      elseif size(tvarmtx,1) ~= size(tvubmtx,1), 
         fprintf('\nNLINOPT: sizes of ncdStruct.TvarStr and 
ncdStruct.TvubStr should be equal'); 
         fprintf('\n         proceeding without upper bounds.\n') 
         tvubmatx = ''; 
      else 
         atindx = 1; 
         lasterr(''); 
         for i=1:size(tvarmtx,1) 
            siz = tvarext(i)-atindx+1; 
            tvubtmp = evalin('base',tvubmtx(i,:),['''' tvubmtx(i,:) 
'''']); 
            if ~isempty(lasterr), 
               fprintf(lasterr); lasterr(''); 
               fprintf('\nNLINOPT: error evaluating %s in the base 
workspace',tvubtmp); 
               fprintf('\n         setting the upper bound of %s to 
+Inf\n',deblank(tvarmtx(i,:))); 
               tvubtmp = repmat(Inf,[siz 1]); 
            elseif isempty(tvubtmp), 
               fprintf('\nNLINOPT: the upper bound of %s -> %s is 
empty', ... 
                                   
deblank(tvarmtx(i,:)),deblank(tvubmtx(i,:))); 
               fprintf('\n         setting the upper bound of %s to 
+Inf\n',deblank(tvarmtx(i,:))); 
               tvubtmp = repmat(Inf,[siz 1]); 
            elseif prod(size(tvubtmp)) ~= siz, 
               fprintf('\nNLINOPT: size of tunable variable %s and 
its upper bound %s are inconsistent', ... 
                                   
deblank(tvarmtx(i,:)),deblank(tvubmtx(i,:))); 
               fprintf('\n         setting the upper bound of %s to 
+Inf\n',deblank(tvarmtx(i,:))); 
               tvubtmp = repmat(Inf,[siz 1]); 
            end 
            tvubvec = [tvubvec;tvubtmp(:)]; 
            atindx = tvarext(i,1)+1; 
 
 
         end 
      end 
   end 
 
   % Done processing ncdStruct.TvarStr, ncdStruct.TvlbStr and 
ncdStruct.TvubStr. 
 
   % Begin processing the constraint bounds defined 
   % in the global bound matrices ncdStruct.CnstrLB and 
ncdStruct.CnstrUB 
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   % Convert ncdStruct.CnstrLB  and ncdStruct.CnstrUB to Mu and Ml, 
where 
   %     Mu - upper bound constraints 
   %     Ml - lower bound constraints 
 
   lb = ncdStruct.CnstrLB; 
 
   irow = lb(ones(length(NCD_OutPorts),1),:); 
   icol = NCD_OutPorts(:,ones(size(lb,2),1)); 
   indx = find(sum(irow == icol) == 0); 
 
   if ~isempty(indx), 
      fprintf('\nIgnoring the following lower constraints\n'); 
      fprintf('     in ncdStruct.CnstrLB for Non-NCD Masked 
Outports\n'); 
      lb(:,indx) 
      lb(:,indx) = []; 
   end 
 
   ub = ncdStruct.CnstrUB; 
   irow = ub(ones(length(NCD_OutPorts),1),:); 
   icol = NCD_OutPorts(:,ones(size(ub,2),1)); 
   indx = find(sum(irow == icol) == 0); 
   if ~isempty(indx), 
      fprintf('\nIgnoring the following upper constraints\n'); 
      fprintf('     in ncdStruct.CnstrLB for Non-NCD Masked 
Outports\n'); 
      ub(:,indx) 
      ub(:,indx) = []; 
   end 
 
   Ml = convertm(lb,timepts); 
   Mu = convertm(ub,timepts); 
 
   % Determine how many constraints are to be met 
 
   if ((isempty(Mu))&(isempty(Ml))) 
      RunFlag = 0; 
      fprintf('\nNLINOPT from CONVERTM: no constraints generated'); 
 
 
      fprintf('\n                     start Optimization 
ignored\n'); 
      OPT_STOP = []; 
      return; 
   end 
 
   % Tell user start and stop times and how many constraints are to 
be met 
 
   fprintf(['Start time: ' num2str(tstart) '\t Stop time: ' 
num2str(tfinal) '.\n']); 
   fprintf(['There are ' int2str(size(Mu,1)+size(Ml,1)) ... 
                  ' constraints to be met in each simulation.\n']); 
   fprintf(['There are ' int2str(length(tvarvec)) ' tunable 
variables.\n']); 
   fprintf(['There are ' int2str(length(sims)) ' simulations per 
cost function call.\n']); 
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   if (ncdStruct.GradFlag == 1) 
      % create model for  simulating the actual 
      % and the perturbed models simultaneously 
 
      gradsys = strrep(tempname,tempdir,''); 
      fprintf(['Creating a temporary SL model ' gradsys ' for 
computing gradients...\n']);  
 
      lasterr(''); 
      eval(['new_system(''' gradsys ''')'],''); 
      if ~isempty(lasterr), 
         % may be gradsys is already open, try close_system. 
 
         error_str = lasterr; lasterr(''); 
         eval(['close_system(''' gradsys ''',0)'],''); 
         if ~isempty(lasterr), 
            % rats! even close_system caused an error, give up. 
 
            fprintf('\nNLINOPT: error creating %s\n',gradsys); 
            fprintf('%s\n',error_str); 
            OPT_STOP = []; 
            return; 
         else 
            % close_system worked, so try new_system once again. 
            % no need to set lasterr(''), because it is still empty 
 
            eval(['new_system(''' gradsys ''')'],''); 
            if ~isempty(lasterr), 
               % even after close_system, new_system still 
               % results in an error, this time error out. 
 
             
 
               fprintf('\nNLINOPT: error creating %s\n',gradsys); 
               fprintf('%s\n',lasterr); 
               OPT_STOP = []; 
               return; 
            end 
         end 
      end 
 
      % create original and perturbed copies of the 
      % tunable variables which will be used in gradfun 
 
      for j=1:size(tvarmtx,1) 
         varname = deblank(tvarmtx(j,:)); 
         evalin('base',[varname '_original  = ' varname ';']); 
         evalin('base',[varname '_perturbed = ' varname ';']); 
      end 
 
      eval(['copymdl(''' sys ''',''' gradsys ''')'],''); 
      if ~isempty(lasterr), 
         fprintf('\nNLINOPT: error while copying into 
%s\n',gradsys); 
         fprintf('%s\n',lasterr); 
         close_system(gradsys,0); 
         OPT_STOP = []; 
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         return; 
      end 
 
      % Make sure gradsys is properly loaded in memory. 
      loadCmd = [gradsys '([],[],[],0);']; 
      lasterr(''); 
      evalin('base',loadCmd,''); 
      if ~isempty(lasterr), 
         fprintf('\nNLINOPT: Error loading model: %s\n',gradsys); 
         fprintf('%s\n',lasterr); 
         close_system(gradsys,0); 
         OPT_STOP = []; 
         return; 
      end    
 
      fprintf(['Creating simulink model ' gradsys ' for 
gradients...Done\n']);  
 
   end 
 
   % initialize the cost: gamma 
 
 
 
 
   gamma = 1; 
   tvarvec = [tvarvec; gamma]; 
 
   % Call optimization routine. 
 
   if isempty(ncdStruct.OptmOptns), 
      % Default optimization options 
      ncdStruct.OptmOptns = [1 0.001 0.001]; 
   end 
 
   options(1) = ncdStruct.OptmOptns(1); % display on/off 
   options(2) = ncdStruct.OptmOptns(2); % variable tolerance 
   options(3) = ncdStruct.OptmOptns(2); % function tolerance 
   options(4) = ncdStruct.OptmOptns(3); % constraint tolerance 
   options(7) = 1; % Line search modified for slack variable 
 
   offset = NumOutPorts*length(timepts); 
 
   if (ncdStruct.GradFlag == 1) 
 
      % Debug mode to check the gradients and open gradsys 
      % To enable this mode, declare NCDdebuggingON =1 in base 
      % workspace. 
 
      % REMARK: lasterr after the eval('try this','otherwise') 
      % is needed so that we can ignore errors and reset lasterr 
      % to empty, in case 'try this' did not work. This usage 
      % is a bit different from the eval('try','catch') 
 
      dum = evalin('base','NCDdebuggingON','0'); lasterr(''); 
      if dum == 1, 
         disp('Will stop in graderr to check the gradients.'); 
         path2graderr=which('graderr','simcnstr'); 
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         evalin('base',['dbstop in ' path2graderr]); 
         options(9) = 1; % gradient check 
         open_system(gradsys);  
      end 
 
      % save the name of gradsys in ncdStruct for access in gradfun 
      ncdStruct.GradSysName = gradsys; 
 
      x = 
simcnstr('ncdtoolbox','costfun',tvarvec,options,tvlbvec,tvubvec,... 
                   
'gradfun',tvarmtx,tvarext,sys,timepts,Mu,Ml,offset,sims, ... 
                    uvarmtx,uvarext,uvdata,SimOptions); 
 
  
 
     close_system(gradsys,0); 
 
      % clean up the workspace 
 
      for j=1:size(tvarmtx,1) 
         varname = deblank(tvarmtx(j,:)); 
         evalin('base',['clear ' varname '_original;']); 
         evalin('base',['clear ' varname '_perturbed;']); 
      end 
 
   else 
      x = 
simcnstr('ncdtoolbox','costfun',tvarvec,options,tvlbvec,tvubvec,... 
 '',tvarmtx,tvarext,sys,timepts,Mu,Ml,offset,sims, ... 
   uvarmtx,uvarext,uvdata,SimOptions); 
   end 
end 
 
% Reset plant to nominal 
 
atindx = 1; 
for i=1:size(uvarmtx,1) 
   siz = [atindx:uvarext(i,1)]'; 
   assignin('base','NCD_tmp',uvdata(siz,1)); 
   evalin('base',[uvarmtx(i,:) '(:) = NCD_tmp;']); 
   evalin('base','NCD_tmp = [];'); 
   atindx = uvarext(i,1)+1; 
end 
evalin('base','clear NCD_tmp;'); 
 
% Set the EraseMode of all plotted lines to normal 
 
eval('set(AllLines,''EraseMode'',''normal'')','');lasterr(''); 
 
% Setting OPT_STOP to be empty enables dialogs 
fprintf('\n'); 
 
OPT_STOP = [];  
 
% end nlinopt 
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costfun.m 
 
 
 
function [CostFunction,ConstraintError] = 
costfun(tvarvec,tvarmtx,tvarext,sysname, ...                         
timepts,Mu,Ml,offset,sims,uvarmtx,uvarext,uvdata,simoptions) 
 
 
%COSTFUN Cost function for NCD Blockset optimization. 
% 
%       [CostFunction,ConstraintError] = COSTFUN(TVARVEC, ... 
%            VARMTX,TVAREXT,SYSNAME,TIMEPTS,MU,ML,OFFSET, ... 
%            SIMS,UVARMTX,UVAREXT,UVDATA,SIMOPTIONS) 
%       calculates the CostFunction and ConstraintError given: 
% 
%       Inputs: 
%          TVARVEC    -- vectorized tunable parameters at this 
iteration 
%          DTUNEVAR   -- suggested perturbations to the tunable 
parameters 
%          SYSNAME    -- SIMULINK system name 
%          TVARMTX    -- tunable parameter names formatted as a 
padded string matrix 
%          TVAREXT    -- vector of (vectorized) tunable parameter 
dimensions 
%          TIMEPTS    -- time vector: [tstart:tdelta:tfinal] 
%          MU         -- [<vectorized output index> <upper 
constraint> <weight>] 
%          ML         -- [<vectorized output index> <lower 
constraint> <weight>] 
%          OFFSET     -- NumOutPorts * length(TIMEPTS) 
%          SIMS       -- vector of simulations to be constrained 
%          UVARMTX    -- uncertain parameter names formatted as a 
padded string matrix 
%          UVAREXT    -- vector of (vectorized) tunable parameter 
dimensions 
%          UVDATA     -- matrix of uncertain parameter values in 
each simulation 
%          SIMOPTIONS -- simulation options 
% 
%       See also NLINOPT. 
 
%   Author(s): A. Potvin, 12-1-92 
%              M. Yeddanapudi, Sept 16, '96 
%   Copyright 1990-2002 The MathWorks, Inc.  
%   $Revision: 1.16 $ 
%   $Date: 2002/03/22 14:11:47 $ 
 
 
% Declare globals 
 
global OPT_STOP; 
global OPT_STEP; 
global ncdStruct; 
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% ncdStruct.TimeOutFlag holds the name of the 
% global variable that is set by the simstop block. 
% We use eval('try this','otherwise') in case 
% there is a simstop block sysname SL model 
% eval(['global ' ncdStruct.TimeOutFlag],''); lasterr(''); 
 
% Recover tunable variables  from tvarvec and 
% assign them to the appropriate tunable 
% variables in the  base workspace.  No error 
% checking needed here, because in NLINOPT we 
% made sure everything was ok. 
 
atindx = 1; 
for i=1:size(tvarmtx,1) 
   siz = [atindx:tvarext(i,1)]'; 
   assignin('base','NCD_tmp',tvarvec(siz,1)); 
   evalin('base',[tvarmtx(i,:) '(:) = NCD_tmp;']); 
   atindx = tvarext(i,1)+1; 
end 
 
 
% Initialize constraint vector and output CostFunction 
 
 
ConstraintError = []; 
if ~isempty(tvarvec), 
   CostFunction = tvarvec(end); 
   if ncdStruct.CostFlag == 1, 
      CostFunction = max(CostFunction,-1.0e-8); 
   end 
end 
 
 
% Set up backward for loop 
 
 
for simindx=sims 
 
   % Try to better process button and break 
   % out of  the loop in case OPT_STOP == 1 
 
   drawnow; 
 
   if OPT_STOP == 1, 
      fprintf('.'); 
      CostFunction = 1e10; 
      ConstraintError = 
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1); 
      return; 
 
 
   end 
 
 
   % At each Monte Carlo run  set the uncertain 
   % parameters to the  values specified in the 
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   % simindx^th column of uvdata which has been 
   % initialized in MONTEVAR 
 
 
   atindx = 1; 
   for i=1:size(uvarmtx,1) 
      siz = [atindx:uvarext(i,1)]'; 
      assignin('base','NCDtmp',uvdata(siz,simindx)); 
      evalin('base',[uvarmtx(i,:) '(:) = NCDtmp;']); 
      atindx = uvarext(i,1)+1; 
   end 
 
 
   % Simulate the  model and abort 
   % if any errors are encountered 
    
    
 
   SimString = ['sim(''' sysname ''',timepts,simoptions);']; 
   lasterr(''); 
   eval(['[SimTime,SimState,InterpOut]=' SimString],' '); 
    
 
 
   if ~isempty(lasterr), 
      fprintf('\n      SL Error Message: %s\n     ',lasterr'); 
      fprintf('\n      COSTFUN: Error simulating %s',sysname); 
      CostFunction = 1e10; 
      ConstraintError = 
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1); 
      if OPT_STEP == 2, 
         fprintf('\n            Error occured during line search 
...'); 
         fprintf('\n            Continuing Optimization ...\n'); 
      else 
         fprintf('\n            Error occured during a major update 
...'); 
         fprintf('\n            Stopping Optimization...\n'); 
         OPT_STOP = 1; 
      end 
      return; 
   end 
 
 
   % code to time out a simulation. 
   % use eval('try this','otherwise')  
   % TimeOutFlag = eval(ncdStruct.TimeOutFlag,'[]'); lasterr(''); 
   % if isequal(TimeOutFlag,1), 
   %    fprintf('\nCOSTFUN: Simulation Timed Out'); 
   %    CostFunction = 1e10; 
   %    ConstraintError = 
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1); 
   %    if OPT_STEP == 2, 
   %       fprintf(' during line search ...'); 
   %       fprintf('\n            Continuing Optimization ...\n'); 
   %    else 
   %       fprintf(' during a major update ...'); 
   %       fprintf('\n            Stopping Optimization ...\n'); 
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   %       OPT_STOP = 1; 
   %    end 
   % end 
 
   if (ncdStruct.GradFlag == 0) & (OPT_STEP == 1), 
 
      %%% Update The Plots in the NCD Figure Windows %%% 
 
      % get the handles and names of all the open constraint 
      % figure windows and update the intermediate response plots 
 
      fighndls = allchild(0); 
      fignames = char(get(fighndls,'Name')); 
      prefix = ['System: ' sysname ', Outport: ']; 
      lnprefix = length(prefix)+1; 
      fighndls = fighndls(strmatch(prefix,fignames)); 
      fignames = char(get(fighndls,'Name')); 
 
      for figindx=1:length(fighndls) 
 
         portnum = str2num(fignames(figindx,lnprefix:end)); 
         axs = get(fighndls(figindx),'CurrentAxes'); 
         MCSlns = get(axs,'UserData'); 
 
         if (~isempty(MCSlns)) 
            ln = MCSlns(max(sims)+simindx); 
            set(ln,'YData',InterpOut(:,portnum)); 
 
 
            if (strcmp(get(ln,'Visible'),'off')) 
               set(ln,'Visible','on'); 
            end 
         end 
      end 
   end 
 
 
   drawnow; 
 
 
   if (OPT_STOP) 
      fprintf('.'); 
      CostFunction = 1e10; 
      ConstraintError = 
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1); 
      return; 
   end 
 
 
   % Form ConstraintError 
 
 
   if (~isempty(Mu)) 
      ConstraintError = [ConstraintError; ... 
         InterpOut(Mu(:,1))-Mu(:,2)-Mu(:,3)*CostFunction]; 
   end 
 
   if (~isempty(Ml)) 
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      ConstraintError = [ConstraintError; ... 
         Ml(:,2)-InterpOut(Ml(:,1))-Ml(:,3)*CostFunction]; 
   end 
 
 
   % Remark: This may abstract away too much information. 
   %         For example, user  may desire more info  on 
   %         limiting constraints. 
 
end 
 
% end costfun 
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nlconst.m 
 
 
 
function 
[x,OPTIONS,lambda,HESS]=nlconst(FUNfcn,x,OPTIONS,VLB,VUB,GRADfcn,... 
                                         varargin) 
%NLCONST Helper function for SIMCNSTR. 
%   NLCONST is a helper function for SIMCNSTR to find the 
constrained minimum  
%   of a function of several variables. 
% 
%   
[X,OPTIONS,LAMBDA,HESS]=NLCONST('FUN',X0,OPTIONS,VLB,VUB,'GRADFUN',.
.. 
%   varargin{:}) starts at X0 and finds a constrained minimum to the 
function  
%   which is described in FUN. FUN is a four element cell array set 
up by  
%   PREFCNCHK.  It contains the call to the objective/constraint 
function, the  
%   gradients of the objective/constraint functions, the calling 
type (used by  
%   OPTEVAL), and the calling function name.  
 
%   Copyright 1990-2002 The MathWorks, Inc. 
%   $Revision: 1.10 $ 
%   Andy Grace 7-9-90, Mary Ann Branch 9-30-96. 
 
%   Calls OPTEVAL. 
 
 
% Expectations: GRADfcn must be [] if it does not exist. 
global OPT_STOP OPT_STEP; 
OPT_STEP = 1;  
OPT_STOP = 0;  
% Initialize so if OPT_STOP these have values 
lambda = []; HESS = []; 
 
% Set up parameters. 
XOUT=x(:); 
 
VLB=VLB(:); lenvlb=length(VLB); 
VUB=VUB(:); lenvub=length(VUB); 
bestf = Inf;  
 
nvars = length(XOUT); 
 
OPTIONS(10)=1; 
OPTIONS(11)=1; 
 
 
CHG = 1e-7*abs(XOUT)+1e-7*ones(nvars,1); 
 
if lenvlb*lenvlb>0 
      if any(VLB( (1:lenvub)' ) > VUB), error('Bounds Infeasible'), 
end 
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end 
for i=1:lenvlb 
       if lenvlb>0,if XOUT(i)<VLB(i),XOUT(i)=VLB(i)+1e-4; end,end 
end 
for i=1:lenvub 
       if lenvub>0,if XOUT(i)>VUB(i),XOUT(i)=VUB(i);CHG(i)=-
CHG(i);end,end 
end 
 
% Used for semi-infinite optimization: 
s = nan; POINT =[]; NEWLAMBDA =[]; LAMBDA = []; NPOINT =[]; FLAG = 
2; 
OLDLAMBDA = []; 
 
sizep = length(OPTIONS); 
OPTIONS = foptions(OPTIONS); 
if lenvlb*lenvlb>0 
      if any(VLB((1:lenvub)') > VUB), error('Bounds Infeasible'), 
end 
end 
for i=1:lenvlb 
       if lenvlb>0,if XOUT(i)<VLB(i),XOUT(i)=VLB(i)+eps; end,end 
end 
OPTIONS(18)=1; 
if OPTIONS(1)>0 
   if OPTIONS(7)==1 
        disp('') 
        disp('f-COUNT     MAX{g}         STEP  Procedures'); 
   else 
    disp('') 
        disp('f-COUNT   FUNCTION       MAX{g}         STEP  
Procedures'); 
   end 
end 
HESS=eye(nvars,nvars); 
if sizep<1 |OPTIONS(14)==0, OPTIONS(14)=nvars*100;end 
 
x(:) = XOUT;  % Set x to have user expected size 
% Compute the objective function and constraints 
if strcmp(FUNfcn{4},'ncdtoolbox') 
  [f,g] = feval(FUNfcn{1},x,varargin{:}); 
else 
  [f,g,msg] = opteval(x,FUNfcn,varargin{:}); 
 
 
  error(msg); 
  g = g(:); 
end 
if isempty(f) 
  error('FUN must return a non-empty objective function.') 
end 
ncstr = length(g); 
 
GNEW=1e8*CHG; 
% Evaluate gradients and check size 
if isempty(GRADfcn)   
  analytic_gradient = 0; 
else 
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  analytic_gradient = 1; 
  if strcmp(FUNfcn{4},'ncdtoolbox') 
     [gf_user,gg_user,OPTIONS] = 
feval(GRADfcn{1},x,GNEW,OPTIONS,varargin{:}); 
     gf_user = gf_user(:); 
  else 
     [gf_user,gg_user,msg] = opteval(x,GRADfcn,varargin{:}); 
     error(msg);             
     gf_user = gf_user(:); 
  end 
  % Both might evaluate to empty when expression syntax is used 
  if isempty(gf_user) & isempty(gg_user)  
    analytic_gradient = 0; 
  else  % Either gf or gg is defined 
     if length(gf_user) ~= nvars 
       error('The objective gradient is the wrong size.') 
     end 
     if isempty(gg_user) & isempty(g) 
       % Make gg compatible 
       gg = g'; 
     else % Check size of gg 
       [ggrow, ggcol] = size(gg_user); 
       if ggrow ~= nvars  
          error('The constraint gradient has the wrong number of 
rows.') 
       end 
       if ggcol ~= ncstr 
          error('The constraint gradient has the wrong number of 
columns.') 
       end 
     end % isempty(gg_user) 
  end % isempty(gf_user) & isempty(gg_user) 
end % isempty(GRADfcn)  
  
 
 
OLDX=XOUT; 
OLDG=g; 
OLDgf=zeros(nvars,1); 
gf=zeros(nvars,1); 
OLDAN=zeros(ncstr,nvars); 
LAMBDA=zeros(ncstr,1); 
 
 
%-------------------------------- Main Loop ------------------------
----- 
status = 0; 
first_iter=1; 
while status ~= 1 
 
%--------------- GRADIENTS --------------- 
 
    if ~analytic_gradient | OPTIONS(9) 
% Finite Difference gradients (even if just checking analytical) 
        POINT = NPOINT;  
        oldf = f; 
        oldg = g; 
        ncstr = length(g); 
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        FLAG = 0; % For semi-infinite 
        gg = zeros(nvars, ncstr);  % For semi-infinite 
% Try to make the finite differences equal to 1e-8. 
        CHG = -1e-8./(GNEW+eps); 
        CHG = 
sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17)); 
        OPT_STEP = 1; 
        for gcnt=1:nvars 
            if gcnt == nvars,  
              FLAG = -1;  
            end 
            temp = XOUT(gcnt); 
            XOUT(gcnt)= temp + CHG(gcnt); 
            x(:) =XOUT;  
             
            if strcmp(FUNfcn{4},'ncdtoolbox') 
              [f,g] = feval(FUNfcn{1},x,varargin{:}); 
            else 
              [f,g,msg] = opteval(x,FUNfcn,varargin{:}); 
              error(msg); 
              g = g(:); 
            end 
            OPT_STEP = 0; 
 
 
 
            if OPT_STOP 
               break; 
            end 
            % Next line used for problems with varying number of 
constraints 
            if ncstr~=length(g),  
               diff=length(g);  
               g=v2sort(oldg,g);  
            end 
 
            gf(gcnt,1) = (f-oldf)/CHG(gcnt); 
            if ~isempty(g) 
              gg(gcnt,:) = (g - oldg)'/CHG(gcnt);  
            end 
            XOUT(gcnt) = temp; 
            if OPT_STOP 
                break; 
            end 
        end % for  
        if OPT_STOP 
            break; 
        end 
           
% Gradient check 
        if OPTIONS(9) == 1 & analytic_gradient 
            gfFD = gf; 
            ggFD = gg;  
            gg = gg_user; 
            gf = gf_user; 
 
            disp('Function derivative') 
            if isa(GRADfcn{1},'inline') 
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              graderr(gfFD, gf, formula(GRADfcn{1})); 
            else 
              graderr(gfFD, gf, GRADfcn{1}); 
            end 
            if ~isempty(gg) 
              disp('Constraint derivative') 
              if isa(GRADfcn{3},'inline') 
                graderr(ggFD, gg, formula(GRADfcn{3})); 
              else 
                graderr(ggFD, gg, GRADfcn{3}); 
              end 
            end 
            OPTIONS(9) = 0; 
        end % OPTIONS(9) == 1 & analytic_gradient 
 
 
        FLAG = 1; % For semi-infinite 
        OPTIONS(10) = OPTIONS(10) + nvars; 
        f=oldf; 
        g=oldg; 
    else % analytic_gradient & options(9)=0 
    % User-supplied gradients 
        % gf and gg already computed first time through loop 
        if ~first_iter 
          gg = zeros(nvars, ncstr); 
          if strcmp(FUNfcn{4},'ncdtoolbox') 
             [gf,gg,OPTIONS] = 
feval(GRADfcn{1},x,GNEW,OPTIONS,varargin{:}); 
          else 
             [gf,gg,msg] = opteval(x,GRADfcn,varargin{:}); 
             error(msg); 
          end 
          gf = gf(:); 
          if isempty(gg) & isempty(g) 
            gg = g'; 
          end 
        else 
          % First time through loop 
          gg = gg_user; 
          gf = gf_user; 
          first_iter=0; 
        end 
 
        if OPT_STOP 
           break; 
         end 
        
    end  % if ~analytic_gradient | OPTIONS(9) 
    AN=gg'; 
    how=''; 
    OPT_STEP = 2; 
 
%------------ SEARCH DIRECTION -------------- 
 
    for i=1:OPTIONS(13)  
        schg=AN(i,:)*gf; 
        if schg>0 
            AN(i,:)=-AN(i,:); 
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            g(i)=-g(i); 
        end 
 
 
 
    end 
 
    if OPTIONS(11)>1  % Check for first call     
% For equality constraints make gradient face in  
% opposite direction to function gradient. 
        if OPTIONS(7)~=5,    
            NEWLAMBDA=LAMBDA;  
        end 
        [ma,na] = size(AN); 
        GNEW=gf+AN'*NEWLAMBDA; 
        GOLD=OLDgf+OLDAN'*LAMBDA; 
        YL=GNEW-GOLD; 
        sdiff=XOUT-OLDX; 
% Make sure Hessian is positive definite in update. 
        if YL'*sdiff<OPTIONS(18)^2*1e-3 
            while YL'*sdiff<-1e-5 
                [YMAX,YIND]=min(YL.*sdiff); 
                YL(YIND)=YL(YIND)/2; 
            end 
            if YL'*sdiff < (eps*norm(HESS,'fro')); 
                how=' Hessian modified twice'; 
                FACTOR=AN'*g - OLDAN'*OLDG; 
                FACTOR=FACTOR.*(sdiff.*FACTOR>0).*(YL.*sdiff<=eps); 
                WT=1e-2; 
                if max(abs(FACTOR))==0; FACTOR=1e-5*sign(sdiff); end 
                while YL'*sdiff < (eps*norm(HESS,'fro')) & WT < 
1/eps 
                    YL=YL+WT*FACTOR; 
                    WT=WT*2; 
                end 
             else 
                    how=' Hessian modified'; 
            end 
        end 
 
%--------- Perform BFGS Update If YL'S Is Positive --------- 
        if YL'*sdiff>eps 
            HESS=HESS+(YL*YL')/(YL'*sdiff)-
(HESS*sdiff*sdiff'*HESS')/(sdiff'*HESS*sdiff); 
% BFGS Update using Cholesky factorization  of Gill, Murray and 
Wright. 
% In practice this was less robust than above method and slower. 
%   R=chol(HESS);  
%   s2=R*S; y=R'\YL;  
%   W=eye(nvars,nvars)-(s2'*s2)\(s2*s2') + (y'*s2)\(y*y'); 
%   HESS=R'*W*R; 
      
 
 
   else 
            how=' Hessian not updated'; 
        end 
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    else % First call 
          OLDLAMBDA=(eps+gf'*gf)*ones(ncstr,1)./(sum(AN'.*AN')'+eps) 
; 
    end % if OPTIONS(11)>1 
    OPTIONS(11)=OPTIONS(11)+1; 
 
    LOLD=LAMBDA; 
    OLDAN=AN; 
    OLDgf=gf; 
    OLDG=g; 
    OLDF=f; 
    OLDX=XOUT; 
    XN=zeros(nvars,1); 
    if (OPTIONS(7)>0&OPTIONS(7)<5) 
    % Minimax and attgoal problems have special Hessian: 
        HESS(nvars,1:nvars)=zeros(1,nvars); 
        HESS(1:nvars,nvars)=zeros(nvars,1); 
        HESS(nvars,nvars)=1e-8*norm(HESS,'inf'); 
        XN(nvars)=max(g); % Make a feasible solution for qp 
    end 
    if lenvlb>0, 
       AN=[AN;-eye(lenvlb,nvars)]; 
       GT=[g;-XOUT((1:lenvlb)')+VLB]; 
    else 
       GT=g; 
    end 
    if lenvub>0 
       AN=[AN;eye(lenvub,nvars)]; 
       GT=[GT;XOUT((1:lenvub)')-VUB]; 
    end 
    [SD,lambda,howqp] = qpsub(HESS,gf,AN,-GT,[],[],XN,OPTIONS(13),-
1, ... 
                        'nlconst',size(AN,1),nvars,0,1); 
    lambda((1:OPTIONS(13))') = abs(lambda( (1:OPTIONS(13))' )); 
    ga=[abs(g( (1:OPTIONS(13))' )) ; g( (OPTIONS(13)+1:ncstr)' ) ]; 
    if ~isempty(g) 
      mg=max(ga); 
    else 
      mg = 0; 
    end 
     
    if OPTIONS(1)>0 
           if strncmp(howqp,'ok',2); howqp =''; end 
 
 
           if ~isempty(how) & ~isempty(howqp)  
             how = [how,'; ']; 
           end 
           if OPTIONS(7)==1, 
              gamma = mg+f; 
              disp([sprintf('%5.0f %12.6g ',OPTIONS(10),gamma), 
sprintf('%12.3g  ',OPTIONS(18)),how, ' ',howqp]); 
           else 
        disp([sprintf('%5.0f %12.6g %12.6g ',OPTIONS(10),f,mg), 
sprintf('%12.3g  ',OPTIONS(18)),how, ' ',howqp]); 
           end 
    end 
    LAMBDA=lambda((1:ncstr)'); 
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    OLDLAMBDA=max([LAMBDA';0.5*(LAMBDA+OLDLAMBDA)'])' ; 
 
%-------------- LINESEARCH -------------------- 
 
    MATX=XOUT; 
    MATL = f+sum(OLDLAMBDA.*(ga>0).*ga) + 1e-30; 
    infeas = strncmp(howqp,'i',1); 
    if OPTIONS(7)==0 | OPTIONS(7) == 5 
% This merit function looks for improvement in either the constraint 
% or the objective function unless the sub-problem is infeasible in 
which 
% case only a reduction in the maximum constraint is tolerated. 
% This less "stringent" merit function has produced faster 
convergence in 
% a large number of problems. 
        if mg > 0 
            MATL2 = mg; 
        elseif f >=0  
            MATL2 = -1/(f+1); 
        else  
            MATL2 = 0; 
        end 
        if ~infeas & f < 0 
            MATL2 = MATL2 + f - 1; 
        end 
    else 
% Merit function used for MINIMAX or ATTGOAL problems. 
        MATL2=mg+f; 
    end 
    if mg < eps & f < bestf 
        bestf = f; 
        bestx = XOUT; 
    end 
    MERIT = MATL + 1; 
    MERIT2 = MATL2 + 1;  
 
 
    OPTIONS(18)=2; 
    while (MERIT2 > MATL2) & (MERIT > MATL) & OPTIONS(10) < 
OPTIONS(14) & ~OPT_STOP 
        OPTIONS(18)=OPTIONS(18)/2; 
        if OPTIONS(18) < 1e-4,   
            OPTIONS(18) = -OPTIONS(18);  
 
        % Semi-infinite may have changing sampling interval 
        % so avoid too stringent check for improvement 
            if OPTIONS(7) == 5,  
                OPTIONS(18) = -OPTIONS(18);  
                MATL2 = MATL2 + 10;  
            end 
        end 
        XOUT = MATX + OPTIONS(18)*SD; 
        x(:)=XOUT;  
        if strcmp(FUNfcn{4},'ncdtoolbox') 
           [f,g] = feval(FUNfcn{1},x,varargin{:}); 
        else 
          [f,g,msg] = opteval(x,FUNfcn,varargin{:}); 
          error(msg); 
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        end 
        g = g(:); 
        if OPT_STOP 
           break; 
        end 
         
        OPTIONS(10) = OPTIONS(10) + 1; 
        ga=[abs(g( (1:OPTIONS(13))' )) ; g( 
(OPTIONS(13)+1:length(g))' )]; 
        if ~isempty(g) 
           mg=max(ga); 
        else 
           mg = 0; 
        end 
 
        MERIT = f+sum(OLDLAMBDA.*(ga>0).*ga); 
        if OPTIONS(7)==0 | OPTIONS(7) == 5 
            if mg > 0 
                MERIT2 = mg; 
            elseif f >=0  
                MERIT2 = -1/(f+1); 
            else  
                MERIT2 = 0; 
            end 
            if ~infeas & f < 0 
 
 
                MERIT2 = MERIT2 + f - 1; 
            end 
        else 
            MERIT2=mg+f; 
        end 
    end 
 
%----------- Finished Line Search ------------ 
 
    if OPTIONS(7)~=5 
        mf=abs(OPTIONS(18)); 
        LAMBDA=mf*LAMBDA+(1-mf)*LOLD; 
    end 
    if max(abs(SD))<2*OPTIONS(2) & abs(gf'*SD)<2*OPTIONS(3) & ... 
          (mg<OPTIONS(4) | (strncmp(howqp,'i',1) & mg > 0 ) ) 
        if OPTIONS(1)>0 
                   if OPTIONS(7)==1, 
                      gamma = mg+f; 
                      disp([sprintf('%5.0f %12.6g 
',OPTIONS(10),gamma),sprintf('%12.3g  ',OPTIONS(18)),how, ' 
',howqp]); 
                   else 
            disp([sprintf('%5.0f %12.6g %12.6g 
',OPTIONS(10),f,mg),sprintf('%12.3g  ',OPTIONS(18)),how, ' 
',howqp]); 
                   end 
            if ~strncmp(howqp, 'i', 1)  
                disp('Optimization Converged Successfully') 
                active_const = find(LAMBDA>0); 
                    if active_const  
                      disp('Active Constraints:'),  
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                      disp(active_const)  
                    else % active_const == 0 
                      disp(' No Active Constraints'); 
                    end  
            end 
        end 
        if (strncmp(howqp, 'i',1) & mg > 0) 
            disp('Warning: No feasible solution found.') 
        end 
        status=1; 
 
    else 
    %   NEED=[LAMBDA>0]|G>0 
        if OPTIONS(10) >= OPTIONS(14) | OPT_STOP 
            XOUT = MATX; 
            f = OLDF; 
            if ~OPT_STOP 
 
 
                disp('Maximum number of function evaluations 
exceeded;') 
                disp('increase OPTIONS(14)') 
            end 
            status=1; 
        end 
    end   
end 
 
% If a better unconstrained solution was found earlier, use it: 
if f > bestf  
    XOUT = bestx; 
    f = bestf; 
end 
OPTIONS(8)=f; 
x(:) = XOUT; 
if (OPT_STOP) 
    disp('Optimization terminated prematurely by user') 
end 
 
 
 

 


