

ON-LINE CONTROLLER TUNING BY MATLAB USING REAL SYSTEM
RESPONSES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEDA PEKTA�

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

NOVEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Kemal �der
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Bülent E. Platin Prof. Dr. Tuna Balkan
 Co-Supervisor Supervisor

Examining Committee Members

Prof. Dr. Y. Samim Ünlüsoy (METU, ME)

Prof. Dr. Tuna Balkan (METU, ME)

Prof. Dr. Bülent E. Platin (METU, ME)

Asst. Prof. Dr. �lhan Konukseven (METU, ME)

Y. Müh. Burak Gürcan (ASELSAN)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

 Seda Pekta�

 iv

ABSTRACT

ON-LINE CONTROLLER TUNING BY MATLAB® USING REAL

SYSTEM RESPONSES

PEKTA�, Seda

M.Sc., Department of Mechanical Engineering

Supervisor: Prof. Dr. Tuna Balkan

Co-Supervisor: Prof. Dr. Bülent E. Platin

November 2004, 120 pages

This thesis attempts to tune any controller without the mathematical model

knowledge of the system it is controlling. For that purpose, the optimization

algorithm of MATLAB® 6.5 / Nonlinear Control Design Blockset (NCD) is adapted

for real-time executions and combined with a hardware-in-the-loop simulation

provided by MATLAB® 6.5 / Real-Time Windows Target (RTWT). A noise-

included model of a DC motor position control system is obtained in MATLAB® /

SIMULINK first and simulated to test the modified algorithm in some aspects. Then

the presented methodology is verified using the physical plant (DC motor position

control system) where tuning algorithm is driven mainly by the real system data and

the required performance parameters specified by a user defined constraint window

are successfully satisfied. Resultant improvements on the step response behavior of

DC motor position control system are shown for two case studies.

Keywords: Controller tuning, Hardware-in-the-loop simulation, On-line tuning,

Iterative feedback control

 v

ÖZET

GERÇEK S�STEM TEPK�LER�N� KULLANARAK MATLAB®

YARDIMIYLA GERÇEK ZAMANLI DENETLEÇ

AYARLANMASI

PEKTA�, Seda

Yüksek Lisans, Makina Mühendisli�i Bölümü

Tez Yöneticisi: Prof. Dr. Tuna Balkan

Ortak Tez Yöneticisi: Prof. Dr. Bülent E. Platin

Kasım 2004, 120 sayfa

Bu tez, esas olarak, matematik modeli bulunmayan bir sistemin denetim sisteminin

ayarlanmasını amaçlamaktadır. Bu amaç için, MATLAB® 6.5 programının

Nonlinear Control Design (NCD) biriminde var olan en iyileme algoritması gerçek

zamanlı uygulamalara hazır hale getirilmi� ve di�er bir MATLAB® birimi olan Real

Time Windows Target (RTWT) deste�iyle gerçek zamanlı yapılan benzetim

tekni�iyle birlikte kullanılmı�tır. Öncelikle gürültü içeren bir DC motor konum

denetim sistemi modeli MATLAB® / SIMULINK yardımıyla hazırlanmı� ve

algoritmada yapılan modifikasyonlar belirli yönlerden test edilmi�tir. Daha sonra,

ayar algoritmasının kullanaca�ı verileri do�rudan alaca�ı fiziksel sistem (DC motor

konum denetim sistemi) kullanılarak bahsi geçen metodun do�rulanması yapılmı� ve

kullanıcı tarafından tanımlanmı� kısıtlamalarla belirlenen tasarım ölçütleri

sa�lanarak optimizasyon ba�arıyla sonuçlandırılmı�tır. DC motor konum denetim

sisteminin tepkilerindeki iyile�meler iki ayrı durum çalı�masında gösterilmi�tir.

Anahtar kelimeler: Denetim birimi ölçütlerinin ayarlanması, Gerçek zamanlı

denetim, yinelemeli geribeslemeli denetim sistemleri.

 vi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Tuna Balkan

and co-supervisor Prof. Dr. Bülent E. Platin for their guidance, advice, criticism,

encouragements and insight throughout the research.

A special thanks goes out to Prof. Dr. Samim Ünlüsoy, without whose crucial helps I

would not have started my experimental work in the laboratory.

The friendship of Mr. Kamil Afacan and the technical assistance of Mr. �brahim Sarı

and Mr. Kerem Altun are gratefully acknowledged.

Many thanks to my patient and loving family, who have been a great source of

strength all through this work. My mother deserves an award for her understanding

during graduate school. I could not have done it without her.

 vii

TABLE OF CONTENTS

PLAGIARISM ..…..iii

ABSTRACT ... iv

ÖZET ...v

ACKNOWLEDGMENTS ... vi

TABLE OF CONTENTS ..vii

LIST OF FIGURES ..x

LIST OF TABLES .. xiii

CHAPTER

1. INTRODUCTION ..1

1.1 Background ..1

1.1.1 Controller Tuning ..1

1.1.1.1 Standard Experimental PID Tuning Techniques2

1.1.1.2 Optimization Based Methods ..4

1.1.1.2.1 Virtual Reference Feedback Tuning ...4

1.1.1.2.2 PID Tuning Based on Genetic Algorithm ...5

1.1.1.2.3 PID Tuning Based on Learning Action ..6

1.1.2 Hardware-in-the-loop Simulation ..7

1.2 Objective of the Study ..7

1.3 Scope of the Study ...8

2. MATLAB® NONLINER CONTROL DESIGN BLOCKSET9

2.1 Adjusting Constraints ...10

 viii

2.2 Specifying Tunable Variables ...12

2.3 Running the Optimization ..14

2.4 Solving the Optimization Problem ..17

2.4.1 nlinopt.m ...19

2.4.2 costfun.m ..22

2.4.3 nlconst.m ...23

2.4.3.1 Finite Difference Gradient Calculation ...26

2.4.3.2 Finding Search Direction ..28

2.4.3.3 Line Search ..30

2.4.3.4 Finished Line Search ..30

3. MODIFICATIONS ON NCD BLOCKSET ALGHORITHM32

3.1 Modifications on costfun.m Function ...34

3.1.1 Defining Output Response Data as Global Variable34

3.1.2 Interrupting Algorithm to Run the Real Time Simulation36

3.1.3 Converting Output Response Data into Suitable Name and Size36

3.1.4 Updating the Intermediate Response Plots ...37

3.2 Modifications on nlconst.m Function ..39

3.2.1 Altering CHG value and Its Working Range ..39

3.2.2 Adding Merit Function Improvement Tolerance40

3.2.3 Relaxing the Termination Criteria ..41

4. MODEL BASED SIMULATION OF DC MOTOR SET-UP42

4.1 DC Servo-Motor Experimental Set-up ..42

4.2 Robustness Analysis of System with Non-repeatable Perturbations45

5. HARDWARE-IN-THE-LOOP SIMULATION ON DC MOTOR SET-UP49

 ix

5.1 Statistical Error Analysis ..50

5.2 Real-Time Application Method ..52

5.3 Case Study I ...55

5.4 Case Study II ..69

6. DISCUSSION AND CONCLUSIONS ..73

6.1 Discussion and Conclusions ...73

6.2 Future Scope ..74

REFERENCES ...76

APPENDIX

A. COMMAND WINDOW DISPLAY OF CASE STUDY II78

B. FLOWCHART ...94

C. RELATED ORIGINAL OPTIMIZATION M-FILES95

 x

LIST OF FIGURES

Figure 2.1 A Simulink model with NCD Outport block ...9

Figure 2.2 An example of NCD constraint window ...10

Figure 2.3 Adjusting output constraints ...11

Figure 2.4 Example step response window ..11

Figure 2.5 Step response characteristics ..12

Figure 2.6 An optimization parameters window ...13

Figure 2.7 Initial and final output response plots ...14

Figure 2.8 Sample command window display ...15

Figure 3.1 Simulink model for real-time application ...32

Figure 3.2 Saving output into workspace by using scope33

Figure 3.3 External Data Archiving window ...35

Figure 4.1 Schematic diagram of DC motor set-up ..44

Figure 4.2 Photograph of DC motor set-up ..44

Figure 4.3 Simulation parameters window for robustness analysis45

 xi

Figure 4.4 Simulink model including transfer function of DC motor set-up45

Figure 4.5 Random source block parameters ..46

Figure 4.6 Noisy output response of DC motor Simulink model...........................48

Figure 5.1 Schematic diagram of hardware-in-the-loop application49

Figure 5.2 Simulink model for real-time application ..50

Figure 5.3 Repeated output response plots of DC motor set-up51

Figure 5.4 Max.-Min.-Mean plots for repeated output response51

Figure 5.5 Max.-Min. bandwidth and standard deviation52

Figure 5.6 DC motor RTWT control model ...53

Figure 5.7 Example constraint figure window of initial response55

Figure 5.8 Constraint figure window at OPTIONS(11) = 2 ... 57

Figure 5.9 Constraint figure window at OPTIONS(11) = 359

Figure 5.10 Constraint figure window at OPTIONS(11) = 461

Figure 5.11 Constraint figure window at OPTIONS(11) = 563

Figure 5.12 Constraint figure window at OPTIONS(11) = 664

Figure 5.13 Constraint figure window at OPTIONS(11) = 7.................................66

 xii

Figure 5.14 Plots of tunable variables for case study I ...68

Figure 5.15 Plots of cost function for case study I ...68

Figure 5.16 Output response improvment during case study I69

Figure 5.17 Constraint figure window at the end of case study II70

Figure 5.18 Plots of tunable variables for case study II ..71

Figure 5.19 Plots of cost function for case study II ..71

Figure 5.20 Output response improvment during case study II72

Figure A.1. Constraint figure window at initial response78

Figure A.2. Constraint figure window at OPTIONS(11) = 280

Figure A.3. Constraint figure window at OPTIONS(11) = 382

Figure A.4. Constraint figure window at OPTIONS(11) = 484

Figure A.5. Constraint figure window at OPTIONS(11) = 586

Figure A.6. Constraint figure window at OPTIONS(11) = 687

Figure A.7. Constraint figure window at OPTIONS(11) = 789

Figure A.8. Constraint figure window at OPTIONS(11) = 891

Figure A.9. Constraint figure window at OPTIONS(11) = 992

 xiii

LIST OF TABLES

Table 1.1. Ziegler-Nichols optimal controller gains ...3

Table 2.1. Descriptions of optimization options ...25

Table 5.1. Results of case study I ..67

Table 5.2. Results of case study II ...70

 1

CHAPTER 1

INTRODUCTION

1.1 Background

This study involves two different branches of control engineering; controller tuning

and hardware-in-the-loop simulation. A detailed explanation of all tuning methods

is virtually impossible, because there are many tuning methods and many possible

performance criteria. Also, field of hardware-in-the-loop simulation is rather vast

but the method is straightforward. Only the milestones and main results of the

previous work are presented in the following sections.

1.1.1 Controller Tuning

Controller parameters must be customized to a process or system to yield the best,

or at least a minimally acceptable performance, called as the tuning a controller. To

tune a controller, several critical factors must be taken into consideration. The

stability of the system must always be assured over the entire operational conditions

encountered. The smoothness of the response of the system to inputs or

disturbances of varying magnitude must be maintained, such that there are no

abrupt, disruptive or destructive changes to the system. There must be

computational simplicity, so that controller computations are done quickly enough

to send control signals to a real world system at an acceptable and efficient rate.

Last of all, the controller must have the proper sensitivity, to be able to react to

small control signals but resist and filter out the noise and disturbances [1].

However, for a variety of reasons optimal setting of the controller gains is difficult

without a systematic procedure and as a result many tuning techniques were

developed in the literature.

 2

1.1.1.1 Standard Experimental PID Tuning Techniques

Despite huge advances in the field of control systems engineering, PID still remains

the most common control algorithm in industrial use today. This is not only due to

its simple structure, which is conceptually easy to understand making a manual

tuning possible, but also to the fact that the algorithm provides an adequate

performance in the vast majority of applications.

Transfer function of a PID controller is given as follows [2]:

sK
s

K
KsT

sT
KsG d

i
pd

i
p ++=++=)

1
1()((1.1)

In many practical control applications, a mathematical description of the plant is not

available, and the controller has to be designed on the basis of measurements. This

problem has attracted the attention of control engineers since the forties with the

pioneering work by Ziegler and Nichols (1942), which focuses on the design of

industrial PID controllers. After Ziegler and Nichols, many more techniques started

to appear, partly as modifications and extensions of the Ziegler and Nichols method,

partly as developments in new directions. Best known are the methods of Astrom

and Hagglund, 1995 [3]; Chien, Hrones and Reswick, 1952 [4]; Dahlin, 1968 [5];

Haalman, 1965 [6]; McMillan, 1983 [7]. Here, however, only Ziegler-Nichols

tuning rule (second method) will be introduced as an example to give a general idea

on the basis of experimental PID tuning techniques.

Ziegler-Nichols tuning method [2] is straightforward. First, system is tested in closed

loop with a proportional controller (integral and derivative modes are disconnected).

The proportional controller gain is set to zero and increased until the system reaches

its stability margin (oscillations). If there is no oscillation the set point is changed

slightly in order to trigger any oscillation. The gain is adjusted so that the oscillation

 3

is sustained, that is, continues at the same amplitude. If the magnitude of oscillations

is increasing, gain is decreased slightly and vice versa. When oscillations with a

constant amplitude and period are established, it is possible to determine the

oscillations period (critical period) Pcr and controller (critical) gain Kcr with which

oscillations where established. Based on experimentally obtained Pcr and Kcr, Ziegler

and Nichols have given the following Table 1.1 for controller parameters (assuming

quarter decay ratio criterion). One can use the set which corresponds with the desired

configuration: P only, PI, or PID.

Table 1.1 Ziegler-Nichols optimal controller gains.

Controller Type Kp Ti Td

P 0.5 Kcr � 0
PI 0.45 Kcr 0.833 Pcr 0

PID 0.6 Kcr 0.5 Pcr 0.125 Pcr

The Ziegler–Nichols settings result in a very good disturbance response for

integrating processes, but are otherwise known to result in rather aggressive

settings, where oscillations and overshoot are usually not desired and also give poor

performance for processes with a dominant delay.

The main characteristic of these techniques is that they were developed empirically

through the simulation of a large number of process systems and provide simple

tuning formulae to determine the PID controller parameters. However, since only a

small amount of information on the dynamic behavior of the process is used, in

many situations they do not provide good enough tuning or produce a satisfactory

closed-loop response. The methods operate particularly well for simple systems and

those which exhibit a clearly dominant pole-pair, but for more complex systems the

PID gains may be strongly coupled in a less predictable way. For these systems,

adequate performance is often only achieved through optimization based methods

except manual and heuristic parameter variation.

 4

1.1.1.2 Optimization Based Methods

1.1.1.2.1 Virtual Reference Feedback Tuning

M.C. Campi et. al [8] described a new controller tuning method called Virtual

Reference Feedback Tuning (VRFT) for an unknown plant based on input/output

measurements. This design method was direct (no model identification of the plant

is needed) and can be applied using a single set of data generated by the plant.

VRFT is a model reference control problem, where the user can specify his control

objectives by a suitable selection of a reference model, M(s), i.e., desired transfer

function of the closed-loop system. Such a reference is called “virtual” because it

was not used to generate an output.

The basic idea of the virtual reference approach is to perform a wise selection of

reference signal r(t) such that multiplication of reference signal and desired transfer

function of the closed-loop system M(s) should be equal to measured system

outputs y(t). After selecting reference signal the corresponding tracking error can be

computed as e(t) = r(t) − y(t). Even though plant is not known, we know that when

plant is fed by u(t) (actually measured input signal), it generates y(t) as an output.

Therefore, a good controller is the one that generates u(t) when fed by e(t). Since

both signals u(t) and e(t) are known, tuning task reduces to the identification

problem of describing the dynamical relationship between e(t) and u(t). A controller

parameter vector, θ , is selected such that it minimizes the following criterion:

�
=

−=
N

t
LL

N
VR tesCtu

N
J

1

2))(),()((
1

)(θθ (1.2)

where),(θsC represents the controller class.

 5

However, in this procedure system is assumed to be noise-free. When the plant

output y(t) is affected by an additive noise, it results in a significant deterioration of

the performance. Also in general situations, testing the controller for stability is

necessary before implementing the method.

1.1.1.2.2 PID Tuning Based on Genetic Algorithm

Genetic Algorithm (GA) is a stochastic global search method that mimics the

process of natural evolution. The genetic algorithm starts with no knowledge of the

correct solution and depends entirely on responses from its environment and

evolution operators (i.e., reproduction, crossover and mutation) to arrive at the best

solution. By starting at several independent points and searching in parallel, the

algorithm avoids local minima and converging to sub-optimal solutions [9].

Three main stages of genetic algorithm are reproduction, crossover and mutation.

During the reproduction phase the fitness value of each variable set (chromosome)

is assessed. Just like in natural evolution, a fit chromosome has a higher probability

of being selected for reproduction. Then, crossover operations swaps certain parts

of the two selected strings in a bid to capture the good parts of old chromosomes

and create better new ones. Finally by the introduction of a mutation operator, it is

obtained enough diversity in the initial strings to ensure the GA searches the entire

problem space. In literature, this technique is widely used for controller tuning, by

defining the sets of controller gains as the chromosomes of Genetic Algorithm.

Genetic algorithms do not require derivative information or other auxiliary

knowledge; only the objective function and corresponding fitness levels influence

the direction of the search. The main problem with the genetic algorithm, used to

tune the controller online, is its computation time which is highly dependent on the

speed of the hardware being used.

 6

1.1.1.2.3 PID Tuning Based on Learning Action

In 2000, M.C. Best [10] introduced a formal approach to setting controller

parameters, where the terms are adapted online to optimize a measure of system

performance. The adaptation is conducted by a learning algorithm, using

Continuous Action Reinforcement Learning Automata (CARLA). The control

parameters are initially setted, then three separate learning automata are employed,

one for each controller gain, to adaptively search the parameter space to minimize

the specified cost criterion. Within each automata, each action has an associated

probability density function f(x) that is used as the basis for its selection. Action sets

that produce an improvement in system performance invoke a high-performance

“score”, β , and thus through the learning sub-system have their probability of re-

selection increased. This is achieved by modifying f(x) through the use of a

Gaussian neighborhood function centered on the successful action. The

neighborhood function increases the probability of the original action, and also the

probability of actions “close” to that selected; the assumption is that the

performance surface over a range in each action is continuous and slowly varying.

As the system learns, the probability distribution generally converges to a single

Gaussian distribution around the desired parameter value.

M.C. Best made tests for engine idle-speed control, both in simulation and in

practice. A Simulink hardware-in-the-loop system was designed, measuring engine

speed and supplying a continuous control output to maintain idle at a constant rpm.

PID parameters were set on-line via a MATLAB® program running the CARLA

algorithm.

Their technique does not require a priori knowledge of the system dynamics, and it

provides optimized control of complex nonlinear systems. One notable

disadvantage of learning is its specificity to the individual test environment; plant

variations can have significant implications for robustness.

 7

1.1.2 Hardware-in-the-loop Simulations

The basic principle of hardware-in-the-loop simulation (HILS) is that some

subsystems are physically embedded within a real-time simulation model. Real-time

means the simulation of each component performed such that input and output

signals show the same time dependent values as in real world dynamic operation. In

HILS, the embedded system is fooled into thinking that it is operating with real-

world inputs and outputs, in real-time. A computer software with real-time

simulation capabilities and a computer with necessary communication abilities

(A/D, D/A converters for communications with analog signals and digital ports for

communication with digital signals) is necessary to perform hardware-in-the-loop

simulation [11].

While performing HILS for a real system, control system hardware and software are

usually the real system. The controlled process consisting of physical processes and

sensors can then be either fully or partially simulated. Frequently, some actuators

are real, and the process and sensors are simulated. The reason is that actuators and

control hardware often form one integrated subsystem. Also, actuators are difficult

to model precisely and to simulate in real-time. The use of real sensors together

with the simulated process may require considerable realization efforts, because no

real sensor input exists and it must be generated artificially.

1.2 Objective of the Study

The main goal of this thesis is to improve the controller tuning method of

MATLAB® / Nonlinear Control Design (NCD) Blockset by doing a set of

modifications on its optimization algorithm so that the algorithm will be applied to

a hardware-in-the-loop simulation where the plant is real. Such a process will

guarantee that the real system’s output response will satisfy the required design

specifications when the optimized controller parameter values are used.

NCD Blockset, MATLAB® is mainly used as user interface and its optimization

algorithm is modified and adapted as being able to transfer input/output information

 8

from/to a physical system which is provided by the usage of Real Time Windows

Target, MATLAB®. Although it is not a perfect and final solution, it is a definite

step toward reaching the most realistic results for the controller tuning process.

1.3 Scope of the Study

The method developed is intended to be used as a general real-time optimization

tool whenever the model is unknown. Application area can be extended to any kind

of optimization problem beside the controller parameters tuning. The systems that

can be used with this algorithm are not limited to nonlinear, SISO, continuous time

systems, also. A self-adapted controller tuning method against drastic set point

changes is not aimed since this process would be too complicated with the lack of a

mathematical model. One original feature of the method is that it is capable to use

the physical plant instead of the mathematical model, and thus all the results are

realistic. This feature does not exist in any of the optimization methods, best to our

knowledge.

The thesis begins with an overview of NCD Blockset Version 1.1.6 of MATLAB®

6.5 describing the main idea and the working of the optimization algorithm behind,

in Chapter 2. Related MATLAB® routines are explained in a logical order. Chapter 3

discusses the necessary modifications on the present NCD algorithm and the

experimentation method to be able to use the real plant’s inputs/outputs for the case

studies. Additional details are provided related to the application of the algorithm

before the example simulations are examined. As an example to the demonstration of

the modified algorithm, a model-based simulation with a mathematical model of an

inertia disc driven by a DC servo motor is made and the results are discussed in

Chapter 4. This is followed, in Chapter 5, by hardware-in-the-loop simulation, which

illustrates how well the algorithm works with the physical plant itself. Discussions,

conclusions and future scope sections conclude the thesis report in Chapter 6.

Additional details are provided in Appendix A, B and C about command window

displays of case study II, flowchart of the algorithm and related original

optimization m-files, respectively.

 9

CHAPTER 2

MATLAB® NONLINEAR CONTROL DESIGN BLOCKSET

Nonlinear Control Design (NCD) Blockset of MATLAB® 6.5 Release 13 with

Service Pack 1 is a tool that helps to tune design parameters in a nonlinear Simulink

model by optimizing time-based signals to meet user-defined constraints by

graphically placing constraints within a time-domain window.

To use the NCD Blockset, it only requires to include a special block, the NCD

Outport block, in Simulink diagram and to connect that block to any signal in the

model to signify that user wants to place some kind of constraint on the signal. NCD

Outport block can be found under NCD within the Simulink Library Browser. Figure

2.1 shows an example usage of NCD Outport block in a Simulink model of the

sample plant including a PID controller [12].

Figure 2.1 A Simulink model with NCD Outport Block

 10

The NCD Blockset automatically converts time domain constraints into a

constrained optimization problem and then solves the problem using state-of-the-art

optimization routines taken from the Optimization Toolbox. The constrained

optimization problem formulated by the NCD Blockset iteratively calls for

simulations of the Simulink system, compares the results of the simulations with the

constraint objectives, and uses gradient methods to adjust tunable parameters to

better meet the objectives. The NCD Blockset allows to introduce uncertainty into

plant dynamics, conduct Monte Carlo simulations, specify lower and upper limits

on tunable parameters, and alter termination criterion. The progress of an

optimization while the optimization is running can be followed from command

window, and the final results are available in the MATLAB® workspace when an

optimization is complete. Intermediate results are plotted after each simulation. It

allows the user to terminate the optimization before it has completed, to retrieve the

intermediate result or change the design.

2.1 Adjusting Constraints

NCD uses time-domain constraint bounds to represent lower and upper bounds on

response signals, which appear as red bars in Figure 2.2. The lower and upper

constraint bounds define a channel within which the ouput response should lie. NCD

constraint window is opened by double-clicking on the NCD Outport block.

Figure 2.2 An example of NCD constraint window

 11

These bounds must be changed to reflect the performance requirements proposed by

the end user. To specify the desired output response range, it should be constrained

by positioning (stretching, moving, splitting or opening) the constraint bound

segments as shown in the Figure 2.3.

Figure 2.3. Adjusting output constraints

Alternatively, when optimizing the step response of the system, it is possible to

specify the desired step response characteristics such as rise time, settling time, and

overshoot by selecting Step Response from Options pane in the constraint window

as shown in the Figure 2.4.

Figure 2.4. Example step response window

 12

Three options specify the details of the step input:

• Initial output: Input level before the step occurs

• Step time: Time at which the step takes place

• Final output: Input level after the step occurs

The remaining options specify the characteristics of the response signal. Each of the

step response characteristics is described in the Figure 2.5 below [12].

Figure 2.5. Step response characteristics

2.2 Specifying Tunable Variables and User Options

NCD attempts to reach the desired output response of the system by varying the

user-defined parameters called as “tunable variables ”∗. Tunable parameters can be

specified by the help of Optimization Parameters dialog box, by selecting

Parameters from Optimization menu in constraint window and simply typing the

name of the parameters into the Tunable Variables editable text field as shown in

∗ The name “Tunable Variables” is used by MATLAB®. Although the correct term should be
“Tunable Parameters”, we will use this name in the whole thesis to be compatible with
MATLAB®.

 13

Figure 2.6. If more than one tunable variable exists, variable names should be typed

as separated by spaces.

Figure 2.6. An optimization parameters window

User-defined lower and upper bounds limit the maximum and minimum values of

tunable variables during the optimization process. Variable and Constraint

Tolerances are the two terms related to termination criteria, which imply

optimization will not terminate until all tunable variables (or constraints) converge

to within the these values. One might also want to change the Discretization

Interval. This number relates to the number of constraints generated by the

optimization; the larger the discretization interval, the fewer constraints generated

but the less rigorous the optimization. Typical discretization intervals range

between one and two percent of the total simulation time. Normally NCD works

with a variable step size chosen from simulation parameters in Simulink window. In

case a fixed step size is used for simulation, discretization interval should be equal

to this fixed step size value. By default, the optimization routine does not stop as

soon as all the constraints are met, it tries to over achieve. Stop optimization as

soon as the constraints are achieved check box prevents optimization process to

go any further once the constraints are met. This is achieved, simply terminating the

algorithm when the cost function is lower than zero. Also, one can specify the

 14

optimization routine to use a separate routine for computing the gradients by

enabling the Compute gradients with better accuracy (slower) check box. If this

option is enabled, the gradient matrix of the constraints with respect to the tunable

variables is computed by simulating the Simulink model with the original and

perturbed values of the tunable variables, simultaneously. This procedure is slower,

but may help the optimization in achieving the constraints for difficult problems.

2.3 Running the Optimization

After adjusting the constraint bounds in the constraint window and specifying the

tuned parameters using the tunable parameters dialog box, NCD is ready to begin

the optimization which can be started by clicking the Start button on the NCD

Blockset Control panel or by selecting Start from the Optimization menu.

The NCD Constraint window, plots the responses at each iteration. Except the

initial response plot, it overwrites the new plot over the previous one. So, the green

line always shows the current, or final response while the white line shows the

initial response. An example constraint figure window is shown in Figure 2.7 [12].

It can be seen that the final output response lies within the constraint bounds.

Figure 2.7. Initial and final output response plots

 15

The result of each iteration appear in the command window shown in the following

Figure 2.8 [12]. The new values of the tunable parameters appearing in the

command window and is also changed in the MATLAB® workspace.

Figure 2.8. Sample command window display

During the optimization, the NCD Blockset first displays the information about

plant uncertainty. Next, the blockset displays the information regarding the number

of constraints per simulation and simulations conducted. To determine the total

number of constraints to be met, one should multiply the constraints generated per

 16

simulation by the number of simulation per cost function call. Then, information

regarding the progress of the optimization follows.

The first column of output shows the total number of cost function calls. For one

simulation per cost function call, this number gives the total number of simulations

conducted. The second column (max{g}) shows the maximum (weighted) constraint

violation. This number should tend to decrease during the optimization. When

max{g} becomes negative, all constraints have been met. In the case above, a

negative max{g} shows that all constraints were met after the ninth function call and

the optimization then proceeded to overachieve. The third column STEP, displays

the step size used by the line search algorithm. The last column shows special

messages related to the quadratic programming sub problem. If the termination

criteria are met, the optimization ends with the message Optimization Converged

Successfully. Note that this does not imply that all constraints have been met.

Finally, the optimization displays an encoded list of the active constraints (i.e.,

which constraints prohibit further decrease in the cost function). The command

window display can be disabled by unchecking the Display optimization

information check box on the Optimization Parameters dialog box.

When the NCD Blockset begins the optimization, it plots the initial response in

color white. To view the (initial) response without beginning the optimization,

Initial response should be selected from Options menu. Viewing the initial

response may help the user define better constraint bounds. At each iteration the

optimization plots an intermediate response. Optimization can be terminated at any

time and intermediate results can be recovered by clicking the Stop push button or

selecting Stop from the Optimization menu.

The number of iterations necessary for the optimization to converge or terminate,

will depend on the initial guess for the tuned parameters, the specific positioning of

the constraints, and the optimization settings. In case the optimization does not

converge, one might try a different initial guess or relax the constraints slightly.

 17

2.4 Solving the Optimization Problem

NCD uses optimization algorithms to find parameter values that allow a feasible

solution to the given constraints. NCD automatically converts the constraint bound

data and tunable variable information into a constrained optimization problem.

Basically, the NCD Blockset attempts to minimize the maximum (weighted)

constraint error. The NCD Blockset generates constraint errors at equally spaced

time points (with spacing given by the Discretization interval defined in the

Optimization Parameters dialog box) beginning at the simulation start time and

ending at the simulation stop time. For upper bound constraints, it is defined the

constraint error as the difference between the simulated output and the constraint

boundary. For lower bound constraints, it is defined the constraint error as the

difference between the constraint boundary and the simulated output.

When the optimization is started by the user pressing the start button, the Nonlinear

Control Design Blockset invokes the routine nlinopt. nlinopt calls simcnstr

function and it invokes the routine nlconst from the directory

~matlabR13root~\toolbox\simulink\simulink\private\nlconst.m. Main

calculations are done in nlconst.m. Necessary system output responses are

obtained in costfun.m by the simulation of the model and then the related

information are transferred into nlconst. The routine nlconst solves constrained

optimization problems using a sequential quadratic programming (SQP) algorithm

and quasi-Newton gradient search techniques.

The following pseudo code summarizes the optimization [12]:

% Begin nlinopt

% Process uncertain variable information (montevar)

% Expand constraint matrices (convertm)

% Initialize arguments for nlconst.m

% Begin nlconst

 18

 while ~(termination_criterion_met),

 for 1:Ntp, % Number of tunable parameters

 % Begin costfun

 % Calculate cost function (CostFunction)

 % Set tunable variables

 for 1:Npc, % Number of plants constrained

 % Assign plant uncertain variables

 % Call for simulation

 % Convert simulation time index

 % Draw necessary plots

 % Calculate constraints

 % Append constraints into vector, i.e., ConstraintError

 end % for Npc

 % End costfun

 % Tweak tunable variables in turn

 end % for Ntp

 % Calculate gradient information

 % Define search direction

 % Perform line search

 % Begin costfun

 % Calculate cost function (CostFunction)

 % Set tunable variables

 for 1:Npc, % Number of plants constrained

 % Assign plant uncertain variables

 % Call for simulation

 % Convert simulation time index

 % Calculate constraints

 % Append constraints into vector, i.e., ConstraintError

 end % for Npc

 % End costfun

 % Determine termination_criterion_met

 end

 19

% End nlconst

% End nlinopt

In the following sections, three vital functions of optimization process nlinopt,

costfun and nlconst are explained in terms of their operations and interactions.

They are explained mostly following the sequence of routines, but some parts such

as loops related to plotting response graphs are not our concern and not discussed at

all. Whole functions can be found in Appendix C. These sections have special

importance for the future developments to understand, step by step, how the

algorithm works. Also, a flowchart summarizing the whole process is given in

Appendix B.

2.4.1 nlinopt.m

When the optimization is started by pressing the start button or when the initial

response menu item is selected, NCD Blockset invokes the function nlinopt.

Syntax definition of nlinopt function is

 function nlinopt(sys,InitFlag)

 Generation of the optimization problem involves mainly three steps:

1. Processing uncertainty data

2. Expanding the constraint matrices ncdStruct.CnstrLB and

ncdStruct.CnstrUB.

3. Invoking the constrained optimization routine nlconst.

The NCD Blockset routine montevar processes uncertainty data input to the

Uncertain Variables dialog box. It generates Monte Carlo plant data and performs

certain error checks. The routine produces the Monte Carlo plants assuming a

uniformly distributed probability density between the lower and upper bounds

 20

entered into the Uncertain Variables dialog box. It will not be discussed in detail

here, since uncertainty subject is out of scope of the thesis.

If InitFlag is 1, nlinopt gives a message “Beginning simulations for

initial response plots” and plots the initial response by calling initresp

routine. Although its algorithm seems very similar to that of costfun, the logic is

different, since initresp does not deal with tunable variables, upper and lower

bound data. So, it calculates neither the cost function nor constraint error. In the

command window, it appears “Done plotting the initial response” and

algorithm stops. If Initflag is zero, nlinopt gives a message “Setting up call

to optimization routine”, it also calls initresp routine, and starts the

optimization process. As a first step, nlinopt vectorizes the tunable variables as

tvarvec and also upper and lower bounds of tunable variables as tvubvec and

tvlbvec in the same way.

The constraint bounds displayed in the NCD Blockset constraint window are for

visualization purposes only. Two matrices, ncdStruct.CnstrLB and

ncdStruct.CnstrUB, contain all the constraint information. The NCD Blockset

routine convertm.m expands the constraint matrices, ncdStruct.CnstrLB and

ncdStruct.CnstrUB using the discretization interval Td and converts them to Ml

and Mu. Generally speaking, constraints are generated at an interval of Td, per

constraint segment per constrained signal.

The matrix ncdStruct.CnstrLB (ncdStruct.CnstrUB) has the dimension 4 x 2L

where L is the total number of line segments in all lower (upper) bounds. The first

row of ncdStruct.CnstrLB and ncdStruct.CnstrUB contains the outport number

for the constraint. All constraint bound segments for the same outport are grouped

together. The second row contains the time axis values of the segment while the

third row contains the response axis values. The time axis values for each output

increase monotonically from optimization start time to optimization stop time. The

time value end of one segment equals the time value beginning of the next segment.

The fourth row of ncdStruct.CnstrLB (ncdStruct.CnstrUB) contains

 21

information about the segment's weighting. As an example, consider the lower

bound constraint matrix,

�
�
�
�

�

�

�
�
�
�

�

�

−−
=

01010101
1.01.099.099.09.09.000

1000100303010100
22111111

.CnstrLBncdStruct (2.1)

First row of the matrix shows that two outputs are constrained. The first output is

constrained by three line segments and the second by one line segment. Constraints

on the second output are defined by the line segment from the (time, response) point

(0,-0.1) to the point (100,-0.1). Constraints on the first output are defined by the line

segments from (0,0) to (10,0), from (10,0.9) to (30,0.9), and from (30,0.99) to

(100,0.99). Here, it is expected a simulation start time of zero and stop time of 100.

The fourth row shows that all line segments are weighted equally, with weight of

one.

Necessary command window displays are done in nlinopt before starting the

optimization calculations, such as start time, stop time, number of constraints to be

met in each simulation, number of tunable variables and number of simulations per

cost function call. Also, some options related to optimization (variable tolerance,

constraint tolerance, etc.) are assigned to values entered by the user from

Optimization Parameters dialog box.

Finally, nlinopt invokes the helper function simcnstr by the following

command:

x = simcnstr('ncdtoolbox','costfun',tvarvec,options,tvlbvec,

tvubvec,'',tvarmtx,tvarext,sys,timepts,Mu,Ml,offset,sims,

uvarmtx,uvarext,uvdata,SimOptions)

 22

This helper function converts string 'costfun' into an inline function FUNfcn and

calls constrained optimization routine nlconst.

Routine nlinopt increases the number of tunable variables vector by 1, adding the

cost function into the vector of tunable variables as well, while passing this vector

to nlconst. Specifically, if Kp Ki Kd are entered as tunable variables into the

Optimization Parameters dialog box, nlinopt passes the tunable variables vector

tvarvec as x = [Kp; Ki; Kd; gamma] to nlconst, where gamma initially

assigned to 1. By calling nlconst with a special option flag, it expects gamma to

contain the value of the cost function. For the cost calculation nlconst invokes

costfun. Here, first costfun will be explained and then nlconst will be discussed

extendedly.

2.4.2 costfun.m

The NCD Blockset routine costfun inspects the output response of the system and

returns the cost function and constraint errors as output. Syntax definition of

costfun function is

function [CostFunction,ConstraintError] =

costfun(tvarvec,tvarmtx,tvarext,sysname,timepts,Mu,Ml,offset,

sims,uvarmtx,uvarext,uvdata,simoptions)

At the beginning of the routine, costfun recovers tunable variables from tvarvec

(vector x coming from nlconst) and assign them to the appropriate tunable

variables in the base workspace. Hereby, changed values of tunable variable in

nlconst are transferred into base workspace before the simulation process.

Routine costfun calculates the cost function as follows:

CostFunction = tvarvec(end)

 23

i.e., gamma which corresponds to the (weighted) maximum constraint violation. The

routine then initializes the constraint vector to the empty matrix.

Next, it initiates a for loop according to the number of plants constrained, Npc.

Specifically, Npc will be directly equal to 1, if any uncertainty and Monte Carlo

simulations are not defined by the user. Within for loop, costfun calls for a

simulation of system’s Simulink model, by sim command as follows:

[SimTime, SimState, InterpOut]=sim(''' sysname ''', timepts,

simoptions)

where InterpOut is the simulation output linearly interpolated to the time basis

Tstart:Td:Tstop. Depending on OPT_STEP�value, costfun updates the plots in

NCD Blockset constraint figures window and forces the updated plot to flush on the

screen executing a drawnow command. Finally, at each pass through the for loop,

it augments the constraint vector, ConstraintError, as

ConstraintError = [ConstraintError; ...

 InterpOut(Mu(:,1)) - Mu(:,2) - Mu(:,3)*CostFunction; ...

 Ml(:,2) - InterpOut(Mu(:,1)) - Ml(:,3)*CostFunction]

where upper and lower bound constraints, Mu and Ml, have three columns as

follows:

Ml = [InterpOut_Index Constraint Bound Weight] (2.2)

Mu = [InterpOut_Index Constraint Bound Weight] (2.3)

2.4.3 nlconst.m

By the function nlconst, NCD Blockset transforms the constraint errors and

simulated system output into an optimization problem of the form:

 24

 ��
	

≤≤
≤−

ul
x xxx

wxg
ts

0)(
..min

,

γ
γ

γ
 (2.4)

where variable x is a vectorization of the tunable variables while xl and xu are

vectorizations of the lower and upper bounds on the tunable variables. The vector

g(x) is a vectorization of the constraint bound error (absolute difference between

output and constraint boundary) and w is a vectorization of weightings on the

constraints. The scalar γ imposes an element of slackness (i.e., cost function

calculated in costfun routine) into the problem, which otherwise imposes that the

goals be rigidly met . Here, the term γwxg −)(implies the constraint error

calculated in costfun routine.

Syntax definition of nlconst function is

function [x,OPTIONS,lambda,HESS] =

nlconst(FUNfcn,x,OPTIONS,VLB,VUB,GRADfcn,varargin)

Before starting the main loop, nlconst initializes necessary parameters and does

some preparatory work. It defines nvars as the number of tunable variables and

initializes Hessian and CHG for the first costfun call as follows:

HESS = eye(nvars,nvars)

CHG = 1e-7*abs(x)+1e-7*ones(nvars,1)

Then algorithm checks the upper and lower bounds on tunable variables which are

entered by the user in Optimization Parameters window. In case lower bound is

entered a value greater than upper bound, an immediate error message appears in

command window as “Bounds Infeasible”. If initial value of any tunable variable

is lower than the lower bound, that variable is assigned to lower bound value.

Reversely, if there exist any tunable variable exceeding the upper bound, then this

variable is assigned to upper bound and direction of CHG is reversed with a sign

 25

change. Upper and lower bounds are optional, so tunable variables remain same if

there exist no bounds defined by the user.

After passing tunable variables with upper and lower bound filter, it requires to

calculate cost function (f) and constraint error (g) by calling costfun routine as

shown:

[f,g] = feval(FUNfcn{1},x,varargin{:})

Before starting iterations nlconst initializes number of function evaluations

OPTIONS(10), number of function gradient evaluation OPTIONS(11) and step length

OPTIONS(18) to 1. Also, maximum number of function evaluations OPTIONS(14),

is defined as 100 times of nvars. Zero or missing values of OPTIONS vector are

replaced with default parameters used by the optimization routines by foptions

command. Descriptions and default values of related options are shown in Table

2.1. Note that if model-specific information is known (more sensible tolerances,

minimum change in variable for finite difference gradients, etc.), then such

information should always be used, since it may help to solve the model far more

efficiently than by directly using defaults.

Table 2.1 Descriptions of optimization options

 OPTIONS(1) Display parameter. (Default:0). 1 displays some results.

 OPTIONS(2) Termination tolerance for X. (Default: 1e-4).

 OPTIONS(3) Termination tolerance on F. (Default: 1e-4).

 OPTIONS(4) Termination criterion on constraint violation. (Default: 1e-6)

 OPTIONS(5) Algorithm: Strategy: Not always used.

 OPTIONS(6) Algorithm: Optimizer: Not always used.

 OPTIONS(7) Algorithm: Line search algorithm. (Default 0)

 OPTIONS(8) Function value. (Lambda in goal attainment)

 OPTIONS(9) User-supplied gradients (1, for user-supplied gradients).

 26

 OPTIONS(10) Number of function and constraint Evaluations.

 OPTIONS(11) Number of function gradient evaluations.

 OPTIONS(12) Number of constraint evaluations.

 OPTIONS(13) Number of equality constraints.

 OPTIONS(14) Maximum number of function evaluations.

 OPTIONS(15) Used in goal attainment for special objectives.

 OPTIONS(16) Minimum change in variables for finite difference gradients.

 OPTIONS(17) Maximum change in variable for finite difference gradients.

 OPTIONS(18) Step length. (Default 1 or less).

For using in the main loop, an initial GNEW value is defined by knowing CHG as

follows:

GNEW = 1e8*CHG

Main loop is a while loop containing all the optimization processes. The state of

loop is defined by a Boolean, status, which is assigned to 1, when the termination

criteria are satisfied or maximum number of iteration is exceeded. For a better

explanation, whole loop is divided into subsections according to their operational

sequence.

2.4.3.1 Finite Difference Gradient Calculation

The idea is to obtain the first order gradients of cost function and constraint error by

varying the tunable variables with a small CHG vector, which can be defined as

CHG = -1e-8/(GNEW+eps)

where GNEW is initially defined and will be obtained during the calculation of search

direction. If this CHG is smaller than a minimum value specified as OPTIONS(16), or

greater than a maximum value as OPTIONS(17), then CHG value is assigned to either

 27

OPTIONS(16) or OPTIONS(17), respectively. If CHG is in between limits it will

remain same.

CHG=sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17))

The nlconst routine perturbs each tunable variable including cost function, as the

amount of CHG (remaining the other variables unchanged) and evaluates the

resulting cost function value (f) and constraint errors vector (g) by calling the

function costfun.m for each time:

temp = x(i)

x(i)= temp + CHG(i)

[f,g] = feval (costfun, x, varargin{:})�

Gradients of cost function and constraint error for each variable are calculated by

the following equations:

gf(i,1) = (f-oldf)/CHG(i)

gg(i,:) = (g - oldg)'/CHG(i)

x(i) = temp��������������

Here, it is very important to assign f and g to their values before the change

application (oldf and oldg). There is no need to do an OLDX assignment on tunable

variable vector, x, since all the tunable variables return to their original values at the

end of gradient calculation by the usage of temp. These tentative changes on

tunable variables should not be confused by the major steps in tunable variables,

which will mainly occur in line search section.

 28

2.4.3.2 Finding Search Direction

To find the search direction it is necessary to use a second order gradient, i.e., the

Hessian, belonging to that iteration. For the first call, Hessian is not calculated. By

using gf found in finite gradient calculation section and OLDgf, which is the

gradient belonging to the previous iteration, GNEW, GOLD are calculated as follows:

GNEW=gf+AN'*NEWLAMBDA

GOLD=OLDgf+OLDAN'*LAMBDA

where AN is the transpose of gg and LAMBDA is one of the outputs of quadratic

programming route, qpsub.m, which will not be discussed in detail here. Then YL is

defined as

YL=GNEW-GOLD

With the same procedure sdiff can be found as the difference between x and OLDX

as follows:

sdiff=XOUT-OLDX

Before finding the Hessian, algorithm should check its positive definiteness. A

“how” variable is used to define the status of the Hessian, which is declared in the

last column of the display output (the column labeled Procedures). Generally no

display appears in the column meaning the Hessian is positive definite. For non-

positive definite Hessians, two successive modifications can be performed to make

the Hessian positive definite. If the first modification succeeds, the message

Hessian modified appears in the Procedures column. The second modification

always results in a positive definite Hessian and displays Hessian modified

twice in the Procedures column. Often such messages imply that the optimization

is far from a solution or that the problem is particularly sensitive to variations in

some of the tunable parameters. Hessian is calculated as follows:

 29

HESS=HESS+(YL*YL')/(YL'*sdiff)-(HESS*sdiff*sdiff'*HESS')/

(sdiff'*HESS*sdiff)

Before finding the search direction (SD), present f, g, gf and x values are stored as

OLDF, OLDG, OLDgf and OLDX respectively, to use them in the next iteration. Then SD

is found by using qpsub routine as follows:

[SD,lambda,howqp] =qpsub(HESS,gf,AN,-GT,[],[],XN,OPTIONS(13),

-1,'nlconst',size(AN,1),nvars,0,1)

The implementation of the Sequential Quadratic Programming (SQP) subproblem

attempts to satisfy the Kuhn-Tucker equations, which are necessary conditions for

optimality of a constrained optimization problem.

This section ends with command window displays.

disp([sprintf('%5.0f %12.6g ',OPTIONS(10),gamma),

sprintf('%12.3g ',OPTIONS(18)),how, ' ',howqp]);

where OPTIONS(10) shows the total number of cost function calls (generally equals

to number of simulation) and gamma implies the maximum constraint violation. In

fact gamma contains both cost function and constraint error information as shown:

gamma = mg+f

where

mg=max(ga)

ga is the ordered version of constraint error (g) including the absolute of equality

constraint errors, whose number is shown by OPTIONS(13) in the following

equation:

ga=[abs(g((1:OPTIONS(13))'));g((OPTIONS(13)+1:ncstr)')]

 30

2.4.3.3 Line Search

After determining a search direction, nlconst performs a line search along the

search direction in an attempt to simultaneously minimize the cost while satisfying

constraint equations. Tunable variables are stored as MATX before starting the line

search application and then the line search is performed using two merit functions.

The line search determines a step length, OPTIONS(18), (0 <OPTIONS(18) 1), such

that the new set of tunable variables

x = MATX + OPTIONS(18)*SD

gives a sufficient decrease in merit functions.

For that purpose, a while loop is used to find new x, f , g and mg values by calling

costfun routine and to check the merit functions, MERIT and MERIT2 based on these

new values. Here, MERIT and MERIT2 are two criteria referring to cost function (f)

and maximum constraint violation (gamma), respectively. Starting from “1”,

OPTIONS(18) is halved until MERIT and MERIT2 are equal to or smaller than MATL

and MATL2, which are merit functions corresponding to tunable variables set before

the line search. Clearly, if line search brings up an improvement on cost function

and constraint error (finding smaller values of them), it will go out from while loop

at the first iteration with a step length equal to 1. An opposite situation implies a

worse case, that means either optimization is in the wrong way or it is in the right

way but has a larger step length than the necessary. In such a case, algorithm needs

to resize the step length value. So, line search plays a very important role shaping

the “destiny” of optimization process and it will be revised for the real-time

applications in Chapter 3.

2.4.1.4 Finished Line Search

In the finished line search section, optimization is checked according to termination

criteria. Four important values are considered in termination criteria. First of them is

the maximum element of absolute search direction vector (max(abs(SD)). When the

 31

maximum of SD is smaller than a limit value defined as two times of OPTIONS(2),

which is entered by the user in Variable Tolerance field of Optimization

Parameters window, this means tunable variables are changing very slowly. The

other criteria is the absolute of multiplication of gf and SD vectors (abs(gf'*SD)),

i.e., change in cost function. This implies that cost function changes very slowly for

a smaller value than two times of OPTIONS(3), which is again entered by the user.

Until now, parameters belonging to new tunable variables are not considered since

gf and SD are calculated before the setting of new tunable variables. It is also

important to check some parameters directly related to new set of tunable variables,

such as maximum constraint violation, mg. A limit value for mg is defined as

OPTIONS(4), Constraint Tolerance in Optimization Parameters window.

Basically, a smaller mg means constraint equations are satisfied. Final stopping

criterion is related to existence of an “infeasible solution” case while

maximum constraint violation is greater than zero.

If the first three criteria are satisfied and the forth one is not satisfied during the

algorithm, then command window displays the information related to the newly

found tunable variables as the same procedure described before, with a message

“Optimization Converged Successfully” and iterations stop. Alternatively if

the first two criteria and, at the same time, the fourth one are satisfied, again

algorithm stops, but this time a warning message “No feasible solution found”

is displayed in the command window. Otherwise, algorithm checks the total number

of iterations, if it exceeds the maximum permitted number of cost function call,

OPTIONS(14), a message “Maximum number of function evaluations

exceeded; increase OPTIONS(14)” appears. This times, x and f are returned to

their values before line search, i.e., MATX and OLDF then the algorithm stops. In case

the termination criteria are not satisfied by any of the above conditions and

maximum number of cost function call is not exceeded, algorithm turns to the

beginning of the while loop and starts the next iteration.

 32

CHAPTER 3

MODIFICATIONS ON NCD BLOCKSET ALGORITHM

For the real-time hardware-in-the-loop simulation, a model as shown in Figure 3.1

should be prepared in Simulink external mode with Real-Time Windows Target

(RTWT) Toolbox of MATLAB®. Although any type of controller can be used, in

this model a PID controller is chosen as an example. The Real-Time Windows

Target I/O blocks, Analog Input (A/D) and Analog Output (D/A), allow us to select

and connect specific analog channels to our Simulink model through an I/O data

acquisition board. In other words, they provide an interface to our physical I/O

boards and our real-time application.

Figure 3.1 Simulink model for real-time application

Unfortunately, an attempt to use existing algorithm by attaching NCD Outport

Block directly to plant output (Analog Input block) will be useless since it is not

able to perform command line simulation of a model in external mode. (Still, NCD

 33

Outport block will be attached into the above model later, just to create constraint

figure window by double clicking on it). To achieve our goal, some short but vital

interferences should be made on the algorithm.

Output response data created during real-time execution is saved to the base

workspace through a Simulink scope block. Easiest way for saving a variable called

as OutputData in the base workspace is to select save data to workspace check

box in Data History menu of ‘OutputData_Scope’ parameters and enter

“OutputData” into Variable name text field as shown in Figure 5.3. Array is the

most usable format type for this application. Default Limit data points to last

property should be disabled.

Figure 3.2 Saving output into workspace by using scope

Also, tunable variables changing in function local workspace during the

optimization process need to be saved into base workspace before starting the real-

time execution. However, this does not require any extra effort or modification on

the algorithm since originally costfun routine fulfils this requirement as explained

before.

 34

3.1 Modifications on costfun.m Function

Some modifications are introduced necessary to feed the real plant’s output data

into costfun algorithm. This logic should be adapted and applied into Initresp.m

routine to obtain the initial response plot in the same way.

3.1.1 Defining Output Response Data as Global Variable

Real plant’s output response is obtained by the real-time execution and saved into

the base workspace as described before. Ordinarily, each MATLAB® function, has

its own local variables, which are separate from those of other functions, and from

those of the base workspace. To introduce OutputData in costfun routine and to

satisfy sharing a single copy of that variable, it should be declared as global both

in costfun routine and in the base workspace.

Related part of costfun routine showing the modification in the line between the

lines containing stars, appears as follows:

(….)

global OPT_STOP;

global OPT_STEP;

global ncdStruct;

%**************************

global OutputData

%**************************

atindx = 1;

for i=1:size(tvarmtx,1)

 siz = [atindx:tvarext(i,1)]';

 assignin('base','NCD_tmp',tvarvec(siz,1));

(….)

Also, a masked subsystem ncd1init is used to declare OutputData as global

variable in the base workspace beside initializing the tunable variables. By double

clicking on the subsystem box, it executes script file ncd1init and variables

 35

created using scripts are considered to be in the base workspace. Initialization of

tunable variables and global declaration of OutputData variable in base workspace

should be done as a first step at the beginning of the optimization process. For an

initial set of variables as Kp=1 Kd=1 Kd=1, ncd1init script appears as follows:

 global OutputData
 Kp=1;

 Ki=1;

 Kd=1;

There is a certain amount of risk associated with using global variables. One might

unknowingly give a global variable in one function a name that is already used for a

global variable in another function and may unintentionally overwrite the variables.

Because of this and the difficulty to change the global variable name, it is

recommended to use them sparingly. Alternatively, one can save the output

response data as a mat-file and load this file into local workspace of costfun

instead of using a global variable. To save output response, OutputData, as a mat-

file, enable archiving property is activated in External Data Archiving window

from external mode control panel of RTWT simulation window, as shown in

Figure 3.3.

Figure 3.3. External Data Archiving window

 36

To load this data from mat-file to function local workspace, following line should

be added in costfun routine in place of command line simulation:

load('OutputData.mat')

3.1.2 Interrupting Algorithm to Run the Real-Time Simulation

To feed the output response data into the costfun routine externally, first it is

necessary to cancel out the simulation process done by sim command inside the

routine. Then it is added a keyboard statement, which stops m-file execution at the

point where it appears and allows us input from keyboard to start the physical plant

testing. Another advantage is when the program is in keyboard mode, local

workspaces of each function can be examined by using the Stack field in the

workspace browser. This mode is indicated by a special prompt as follows:

 K>>

One can resume costfun execution by typing “return” in command window and

pressing the Return key.

To let the user to track the values of tunable variables and gamma from command

window at each costfun call, an extra line is added before keyboard statement by

the help of fprintf command. These modifications will be combined and shown

in the next section.

3.1.3 Converting Output Response Data into Suitable Name and Size

In scope parameters window by choosing the array format, real system’s output

response, OutputData, is saved into base workspace as ((Tstop-Tstart)/Td+1) x 2

size matrix where first column has time data and second column has respective

output data. However costfun routine requires a vector variable called as

 37

InterpOut, containing output response data only. So, an OutputData to InterpOut

conversion is compulsory to use output response information properly.

Related part of costfun routine including the modifications explained in section

3.1.2 and 3.1.3 (in the lines between the lines containing stars) is as follows:

 (….)

atindx = 1;

 for i=1:size(uvarmtx,1)

 siz = [atindx:uvarext(i,1)]';

 assignin('base','NCDtmp',uvdata(siz,simindx));

 evalin('base',[uvarmtx(i,:) '(:) = NCDtmp;']);

 atindx = uvarext(i,1)+1;

 end

%**

%SimString=['sim('''sysname''',timepts,simoptions);'] CANCELLED

%lasterr(''); CANCELLED

%eval(['[SimTime,SimState,InterpOut]='SimString],' ') CANCELLED

fprintf('tvarmtx(1,:)=%4.12f tvarmtx(2,:)=%14.12f

tvarmtx(3,:)=%14.12f',tvarvec(1,1),tvarvec(2,1),tvarvec(3,1));

fprintf('\n');

keyboard;

InterpOut=OutputData(:,2);

%***

if ~isempty(lasterr),

 fprintf('\n SL Error Message: %s\n ',lasterr');

 fprintf('\n COSTFUN: Error simulating %s',sysname);

(….)

3.1.4 Updating the Intermediate Response Plots

Originally, NCD algorithm updates the output response plots in the constraint

window once for each major step, specifically after first tunable variable has been

changed by a CHG value. This action can be seen with the following “if” statement

of costfun:

 38

(….)

if (ncdStruct.GradFlag == 0) & (OPT_STEP == 1),

 fighndls = allchild(0);

 fignames = char(get(fighndls,'Name'));

 prefix = ['System: ' sysname ', Outport: '];

 lnprefix = length(prefix)+1;

 fighndls = fighndls(strmatch(prefix,fignames));

 fignames = char(get(fighndls,'Name'));

 for figindx=1:length(fighndls)

 portnum = str2num(fignames(figindx,lnprefix:end));

 axs = get(fighndls(figindx),'CurrentAxes');

 MCSlns = get(axs,'UserData');

 if (~isempty(MCSlns))

 ln = MCSlns(max(sims)+simindx);

 set(ln,'YData',InterpOut(:,portnum));

 if (strcmp(get(ln,'Visible'),'off'))

 set(ln,'Visible','on');

 end

 end

 end

 end

(….)

In the routines nlconst and costfun, OPT_STEP is defined as a global variable

having a value either 0, 1 or 2 for different stages of optimization process. It is

assigned to “1”, for the costfun call following the intermediate (minor) change in

first tunable variable. For the rest of the intermediate steps it is assigned to “0” and

during the line search it is assigned to “2”. Originally, NCD algorithm has very

small CHG values. Also, it proceeds continuously and very fast so it does not make

much difference where the plots are updated; in any case user will observe the

improvements on plots. However, in our application it will be more useful to show

the user the results of real-time simulation at each minor/major steps. For that goal,

OPT_STEP == 1 statement is basically removed from the if statement given above.

 39

3.2 Modifications on nlconst.m Function

Mainly, necessity of modifications on nlconst routine arise from the knowledge of

differences between the model simulation and real life execution. By these

modifications, it is aimed to catch realistic step sizes for physical system and to

avoid unnecessary iterations due to the combined effect of noise and non-

repeatability of the real output data.

To be able to activate the modifications on nlconst.m, it is necessary to create a

preparsed pseudocode file (p-file) of nlconst.m. This should be done by the

command “pcode nlconst”, which parses the m-file nlconst.m into the p-file

nlconst.p.

3.2.1 Altering CHG value and Its Working Range

Change in variables for finite difference gradients, denoted as CHG in the algorithm

requires to be amplified since the real system would not sense very small changes

and in such a case, system would not give an appreciable variation in the output

response. Depending on a larger CHG, upper and lower limit of CHG, OPTIONS(16)

and OPTIONS(17), should be enlarged. Logically, lower limit of CHG value should

be chosen as the minimum change in tunable variables, which makes the real

system produce a significant difference in output response. This requires a bit of

specific system knowledge.

Related part of nlconst routine including the modifications (in lines between the

stars) can be found below.

(….)

if ~analytic_gradient | OPTIONS(9)

 POINT = NPOINT;

 oldf = f;

 oldg = g;

 ncstr = length(g);

 40

 FLAG = 0;

 gg = zeros(nvars, ncstr

 CHG = -1e-8./(GNEW+eps);

%***

 CHG=1e7*CHG

 OPTIONS(16)=0.1;

 OPTIONS(17)=1;

%***

CHG=sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17));

 OPT_STEP = 1;

 for gcnt=1:nvars

 if gcnt == nvars,

 FLAG = -1

 end

 temp = XOUT(gcnt);

 XOUT(gcnt)= temp + CHG(gcnt);

 x(:) =XOUT;

 if strcmp(FUNfcn{4},'ncdtoolbox')

 [f,g] = feval(FUNfcn{1},x,varargin{:});

 else

 [f,g,msg] = opteval(x,FUNfcn,varargin{:});

 error(msg);

 g = g(:);

 end

(….)

3.2.2 Adding Merit Function Improvement Tolerance

By using the real system’s output data in optimization process, it is necessary to

avoid too stringent check for merit function improvement, since real systems have

random noises and even for the same input, system may not give the same output

response and the same merit function values. In such a case, strict values will be

meaningless, instead, it is preferred to add an empirically found tolerance value into

the line search algorithm. Notice that, giving this value very large will make the

algorithm insensitive against the deterioration of optimization performance.

 41

Related while loop of nlconst routine is given below and the modifications are

shown by bold face characters.

(….)

while (MERIT2 > MATL2 + 0.1) & (MERIT > MATL + 0.1) & OPTIONS(10) <

OPTIONS(14) & ~OPT_STOP

(….)

3.2.3 Relaxing the Termination Criteria

Three termination criteria, related to change in tunable variables, change in cost

function and maximum constraint violation should be relaxed for a real-time

application by considering the same logic of section 3.2.1 and 3.2.2. As explained

before, these criteria specified by OPTIONS(2), OPTIONS(3) and OPTIONS(4) are

adjustable by the user from Variable and Constraint Tolerances field of

Optimization Parameters window. So, there is no need to make any modification

inside the algorithm. Generally, enabling Stop optimization as soon as the

constraints are achieved property will be the case in real-time applications, in

which iterations take long time and overachieving is not the main target.

 42

CHAPTER 4

 MODEL BASED SIMULATION OF DC MOTOR SET-UP

4.1 DC Servomotor Experimental Set-up

The Feedback Control and Instrumentation MS150 Modular Servo system [13] is

used as an experimental set-up to control the angular position of an inertia disc

coupled to a DC servo motor by means of a reduction unit. By use of a

potentiometer, position information about the inertia disk coupled to the DC-

servomotor are available at feedback. The equipment used in the experimental set-

up is listed and explained as follows:

Power Supply: This unit supplies a 24V direct current 2A unregulated supply to the

motor through a multi way connector to the servo amplifier, as it is this unit that

controls the motor.

DC Servomotor: A DC permanent magnet motor, which has an extened shaft, and

onto which can be fixed the magnetic brake or inertia disc. The motor may also be

attached to the Reduction Tacho Unit using the hexagonal coupling provided.

Pre-Amplifier: This unit provides the correct signals to drive the servo amplifier.

The two inputs are effectively summed, allowing to signals to be applied e.g. a

reference voltage and the tachogenerator voltage. A positive signal applied to either

input causes the upper output terminal to go positive, the other output terminal

staying near zero. A negative input causes the lower output to go positive, the upper

one staying near zero. Thus bi-directional motor drive is obtained when these

outputs are linked to the servo amplifier inputs.

 43

Servo Amplifier: Transistors, which drive the motor in either direction, are

contained in this unit.

Reduction Gear Tacho Unit: This unit contains a speed reduction gearbox with a

ratio of 30/1 from the high speed input shaft to the low speed output shaft. A DC

tachogenerator driven by the high speed shaft with an output on the top panel which

can be used to display the tacho speed directly in rev/min or to monitor a DC

voltage on another unit.

Input and Output Potentiometers: These are rotary potentiometers used for position

control. Input potentiometer has ±150° of motion whilst the output potentiometer

has no mechanical stops and so can not be damaged by continuous rotation. The

input potentiometer is used to setup reference voltage and the output potentiometer

is connected to the low-speed shaft by using the push-on coupling. Each unit has a

buffer amplifier with a gain of one so that even if the output is shorted to a power

supply or ground, the potentiometer will not be damaged by overloading. The buffer

also ensures that the potentiometer wiper does not how to carry any current load

during normal use.

Inertia Load: An aluminum disc can be mounted on the extended motor shaft and

when rotated between the pulleys of the magnet of the loading unit, the eddy

currents generated have the effect of the brake. The strength of the magnetic brake

can be controlled by the position of the magnet. A heavy disc of the same diameter

can also be mounted on the shaft instead of the aluminum disc to increase the inertia

of the motor.

Figure 4.1 shows a schematic diagram of DC motor position control system. In

Figure 4.2, a photograph of the experimental set-up is given.

 44

Figure 4.1 Schematic diagram of DC motor set-up

Figure 4.2 Photograph of DC motor set-up

+15 0 -15

Power Supply

Pre-Amplifier Servo Amplifier

DC Servomotor Gearbox

Potentiometer

Inertia Disc

 45

4.2 Robustness Analysis of System with Non-repeatable Perturbations

A model of the control system implemented in MATLAB® /Simulink is used for the

simulation and analysis of the dynamic system as shown in Figure 4.4. In

Simulation Parameters dialog box of the model, simulation Start time is set to 0

and Stop time is set to 5. Fixed-step solver, ode5 (Dormand-Prince), with a step

size 0.01 is used. Mode is adjusted to Auto as shown in Figure 4.3.

Figure 4.3 Simulation parameters window for robustness analysis

Figure 4.4 Simulink model including transfer function of DC motor setup

Transfer function of the plant is obtained experimentally [14] as shown in equation

(4.1). Also, a saturation block with +10V upper limit and -10V lower limit should

 46

be added into the model since in real-time applications data acquisition cards have a

similar saturation process.

ss
sG

946.1255.02
946.1

)(2

2

××+
= (4.1)

To compensate for the system model inaccuracies, a random source generator is

added into the Simulink model. Random source type was chosen as “uniform” and

the minimum-maximum range for the amplitude of noise was ±0.1. Considering the

noise in the real life would be completely random, repeatability term defined as

“non-repeatable” in the block parameters. Also, sample time is same as the

simulation step time, which was set to 0.01 before. Figure 4.5 shows properties of

random source block diagram.

Figure 4.5 Random source block parameters

 47

By having a random source generator, the model given in Figure 4.4 can be thought

as a prior version of actual real-time applications. However, since this model is

prepared in Simulink normal mode, it allows the command line simulation by sim

command inside the costfun routine. So, there is no need to apply the modifications

done in costfun routine, although the modifications in nlconst routine are still

compulsory due to the random source effect.

For the initial values of Kp=1 Ki=1 Kd=1, one can see how the output response

satisfies the given constraints in Figure 4.6.

Command window displays the following information during the process:

Setting up constraint window done

Processing uncertainty information.

No uncertainty modeled.

Setting up call to optimization routine.

Done plotting the initial response.

Start time: 0 Stop time: 5.

There are 1005 constraints to be met in each simulation.

There are 3 tunable variables.

There are 1 simulations per cost function call.

 f-COUNT MAX{g} STEP Procedures

 5 0.360424 1

 10 0.375529 1 Hessian modified

 15 0.385697 1 Hessian modified twice

 20 0.251793 1 Hessian modified twice

 25 0.214934 1 Hessian modified

 30 0.209884 1

 35 0.179054 1 Hessian modified

 40 0.181963 1

 45 0.167418 1

 50 0.146963 1 Hessian modified

 55 0.0848281 1 infeasible

 61 0.0976798 0.5

 66 0.0492157 1

 72 0.0668465 0.5 Hessian modified

 48

 77 0.0273459 1 Hessian modified twice

 83 0.053649 0.5 Hessian modified; infeasible

 88 0.047488 1 Hessian modified; infeasible

 94 0.0382968 0.5 Hessian modified

 99 0.0566212 1 Hessian modified

 105 0.0493392 0.5

 111 0.0437437 0.5 infeasible

 117 0.0177746 0.5

 129 0.0793763 0.00781

 134 0.0441082 1 infeasible

 140 0.0400582 0.5 Hessian modified

 147 0.0396834 0.25

 152 -0.00120728 1 Hessian modified

 167 -0.00601804 -6e-005 Hessian modified

Optimization Converged Successfully

Active Constraints:

 504

 506

Finally, the optimized values of the controller gains are found as follows:

Kp= 3.4619

Ki= 0.37073

Kd= 0.7438

Figure 4.6 Noisy output response of DC motor Simulink model

 49

CHAPTER 5

HARDWARE-IN-THE-LOOP SIMULATION ON DC MOTOR

SET-UP

Once the algorithms have been developed and tested in software, the next step is to

bridge the gap between software simulation and real world applications. Here, the

method of hardware-in-the-loop simulation is applied by using DC servomotor

experimental set-up introduced in previous chapter. A schematic diagram of this

hardware-in-the-loop application can be shown in Figure 5.1. The angular position

of the inertia disc is measured by the potentiometer and this information is passed to

the computer environment, which consists of MATLAB® / (RTWT) and Simulink.

In advance, MATLAB® optimization routine produces the required control signals

for the pre-amplifier, then it provides the correct signals to servo amplifier which

actually drives the servomotor. The information flow between the software and

hardware environments, i.e., sensory signal from physical system to computer and

command signal from software environment to the physical system, is acquired by

means of National Instruments PCI 6025 Data Acquisition (DAQ) Cards. The

whole process runs in real-time, which is controlled by MATLAB® / RTWT.

Figure 5.1. Schematic diagram of hardware-in-the-loop application

PID
Pre-Amp.

Servo
Amp.

DC
Motor Step

+
 -

Analog
Output

Analog
Input

Inertia
Disc

Potentiameter

Reduction
Unit

A/D

D/A

 50

Simulink model for the real-time application is also given in Figure 5.2. Simulation

Parameters of this real-time model are same as introduced in Section 4.2.

Figure 5.2. Simulink model for real-time application

5.1. Statistical Error Analysis

A statistical error analysis of the physical measuring methods or procedure

employed in ascertaining the output response characteristics is prepared prior to

implementation of the optimization algorithm with the real time execution.

Here the “repeatability” term occurs which is the difference in output values for the

same input values. For DC motor set-up, repeatability error would be the difference

in angular position of the inertia disc at each time points when an identical step

input is applied on the model with same controller gains values. In order to

calculate an average system response and other statistical values, exactly same

experiments have been repeated for 25 times with the same initial values of tunable

variables, specifically for Kp=1 Ki=1 Kd=1 and output response data have been

plotted as shown in Figure 5.3. Scale factor of the system is 12°/V.

Differences on the collected data reflect that there is a certain amount of friction in

mechanical parts and measurement device (potentiometer). Also A/D data

 51

acquisition card is of finite resolution. It has 12 bit resolution and 19.012 mV

absolute accuracy at full scale [15].

Figure 5.3. Repeated output response plots of DC motor set-up

Figure 5.4. Max.-Min.-Mean plots for repeated output response

 52

Maximum, minimum and mean values of output data at each time points is plotted

in Figure 5.4.

In Figure 5.5, bandwidth of max.-min. output values and the standard deviation at

each time step is shown by using the data obtained in statistical error analysis.

According to this, maximum bandwidth of the distribution curve is 98 mV, which

implies that almost 20 % of total error arise from specified data acquisition card.

Figure 5.5. Max-Min bandwidth and standard deviation

5.2. Real-Time Application Method

Case studies are done with the following steps:

1) Open the following DC_motor.mdl.

 53

Figure 5. 6. DC motor RTWT control model

2) Double click ncd1init subsystem to initialize the tunable variables and to

declare OutputData variable as global.

3) Double click NCD Outport to open the constraint figure. Default constraint

bounds will be used in the experiments. Enter the name of tunable variables

as “Kp Ki Kd” into optimization parameters window and 0.01 for

Discretization Interval. Set variable and constraint tolerances to 0.01 again.

Disable Compute gradients with better accuracy option and press done.

4) Press the Start button to start the optimization. Note that after a while, the

algorithm will pause in keyboard mode and wait for an input from user by

the command K>>.

For an initial set of tunable variables, Kp=1 Ki=1 Kd=1, command window

must appear as follows:

Setting up constraint window done

Processing uncertainty information.

No uncertainty modeled.

 54

Setting up call to optimization routine.

Kp=1.000 Ki=1.000 Kd=1.000

K>>

5) In Simulink window, do not forget to update PID parameters from update

diagram in edit pane (or press Ctrl+D) before starting the real-time

execution. Then press connect to target to get the system ready to run.

6) Set the inertia disc position to zero in potentiometer.

7) Press Start real-time code to execute the real system. Observe that the

system stops after 5 seconds.

Command window must appear as follows:

 Model DC_motor_seda3 loaded

 Model DC_motor_seda3 unloaded

Note that a global variable named OutputData is saved into the base

workspace.

8) To turn back the optimization process, write “return” in command window

and press enter. By this action, the system will exit from keyboard mode.

Again for an initial set of tunable variables, Kp=1 Ki=1 Kd=1, command

window must appear as follows:

K>> return

Done plotting the initial response.

Start time: 0 Stop time: 5.

There are 1005 constraints to be met in each simulation.

There are 3 tunable variables.

There are 1 simulations per cost function call.

Kp=1.000 Ki=1.000 Kd=1.000 f=1.000

K>>

 55

Constraint figure window will appear as shown in Figure 5.7.

Figure 5.7. Example constraint figure window of initial response

9) Repeat the same procedure starting from step 5 for every new set of

tunable variables Kp, Ki, Kd & f.

5.3. Case Study I

By following the described steps, first study is done with a set of initial values of

tunable variables, Kp=1 Ki=1 Kd=1. Important parameters are displayed in

command window and an appearance of constraint figure window is placed to let

the user observe the output response improvement after each SD calculation i.e.,

major steps. For the whole process, command window appears as follows:

Setting up constraint window done

Processing uncertainty information.

No uncertainty modeled.

Setting up call to optimization routine.

Kp=1.000 Ki=1.000 Kd=1.000

K>>

Model DC_motor_seda3 loaded

 56

Model DC_motor_seda3 unloaded

K>> return

Done plotting the initial response.

 Start time: 0 Stop time: 5.

There are 1005 constraints to be met in each simulation.

There are 3 tunable variables.

There are 1 simulations per cost function call.

Kp=1.000 Ki=1.000 Kd=1.000 f=1.000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

CHG =

 -0.1000

 -0.1000

 -0.1000

 -0.1000

Kp=0.900 Ki=1.000 Kd=1.000 f=1.000

K>>

 Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.000 Ki=0.900 Kd=1.000 f=1.000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.000 Ki=1.000 Kd=0.900 f=1.000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.000 Ki=1.000 Kd=1.000 f=0.900

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

 57

K>> return

mg = -0.5346

 f-COUNT MAX{g} STEP Procedures

 5 0.46543 1

Step Length = 1

OPTIONS(11)= 2

SD =

 0.2985

 0.1568

 -0.1441

 -0.6830

Kp=1.29848 Ki=1.15679 Kd=0.85586 f=0.31703

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure 5.8.

Figure 5.8. Constraint figure window at OPTIONS(11)=2

 58

�

CHG =

 -0.1000

 -0.1000

 -0.1000

 -0.1000

Kp=1.19848 Ki=1.15679 Kd=0.85586 f=0.31703

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.29848 Ki=1.05679 Kd=0.85586 f=0.31703

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.29848 Ki=1.15679 Kd=0.75586 f=0.31703

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.29848 Ki=1.15679 Kd=0.85586 f=0.21703

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = 0.0117

 f-COUNT MAX{g} STEP Procedures

 10 0.328711 1

�

Step Length = 1

 OPTIONS(11)= 3

SD =

 0.1238

 59

 -0.0129

 -0.0806

 -0.0369

Kp=1.42223 Ki=1.14394 Kd=0.77528 f=0.28014

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure 5.9.

Figure 5.9. Constraint figure window at OPTIONS(11)=3
�

�

CHG =

 0.3930

 0.8394

 -0.9542

 0.3678

Kp=1.81522 Ki=1.14394 Kd=0.77528 f=0.28014

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

 60

Kp=1.42223 Ki=1.98335 Kd=0.77528 f=0.28014

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.42223 Ki=1.14394 Kd=-0.17896 f=0.28014

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.42223 Ki=1.14394 Kd=0.77528 f=0.64792

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = -2.5832e-004

 f-COUNT MAX{g} STEP Procedures

 15 0.279883 1 Hessian modified

Step Length = 1

 OPTIONS(11)= 4

SD =

 0.5761

 -0.0190

 -0.0046

 -0.1475

Kp=1.99832 Ki=1.12490 Kd=0.77069 f=0.13269

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure 5.10.

 61

Figure 5.10. Constraint figure window at OPTIONS(11)=4

CHG =

 0.5241

 1.0000

 -0.1000

 -1.0000

Kp=2.52244 Ki=1.12490 Kd=0.77069 f=0.13269

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.99832 Ki=2.12490 Kd=0.77069 f=0.13269

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.99832 Ki=1.12490 Kd=0.67069 f=0.13269

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=1.99832 Ki=1.12490 Kd=0.77069 f= -0.86731

K>>

 62

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = 0.0390

 f-COUNT MAX{g} STEP Procedures

 20 0.171641 1 Hessian modified

Step Length = 1

 OPTIONS(11)= 5

SD =

 1.8837

 -0.0639

 -0.0489

 -0.0727

Kp=3.88198 Ki=1.06104 Kd=0.72176 f=0.05999

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

�

�

�

Constraint figure window appears as shown in Figure 5.11.

 63

Figure 5.11. Constraint figure window at OPTIONS(11)=5

CHG =

 0.6518

 1.0000

 -0.1643

 -1.0000

Kp=4.53382 Ki=1.06104 Kd=0.72176 f=0.05999

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.88198 Ki=2.06104 Kd=0.72176 f=0.05999

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.88198 Ki=1.06104 Kd=0.55749 f=0.05999

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.88198 Ki=1.06104 Kd=0.72176 f= -0.94000

K>>

Model DC_motor_seda3 loaded

 64

Model DC_motor_seda3 unloaded

K>> return

mg = 0.0032

 f-COUNT MAX{g} STEP Procedures

 25 0.0632422 1 Hessian modified twice

Step Length = 1

 OPTIONS(11)= 6

SD =

 0.0274

 -0.0039

 -0.0075

 0.0031

Kp=3.90938 Ki=1.05711 Kd=0.71421 f=0.06305

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure 5.12.

Figure 5.12. Constraint figure window at OPTIONS(11)=6

 65

CHG =

 1

 1

 -1

 -1

Kp=4.90938 Ki=1.05711 Kd=0.71421 f=0.06305

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.90938 Ki=2.05711 Kd=0.71421 f=0.06305

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.90938 Ki=1.05711 Kd= -0.28579 f=0.06305

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.90938 Ki=1.05711 Kd=0.71421 f= -0.93694

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = 1.8597e-004

 f-COUNT MAX{g} STEP Procedures

 30 0.0632422 1 Hessian modified

Step Length = 1

 OPTIONS(11)= 7

 SD =

 0.0129

 0.0013

 66

 0.0033

 0.0001

Kp=3.92224 Ki=1.05838 Kd=0.71750 f=0.06320

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure 5.13.

Figure 5.13. Constraint figure window at OPTIONS(11)=7

 f-COUNT MAX{g} STEP Procedures

 31 0.0544531 1 Hessian modified

Optimization Converged Successfully

Active Constraints:

 288

 504

 67

While the initial conditions are Kp=1 Ki=1 Kd=1, final results are found as follows:

Kp = 3.9222

Ki = 1.0584

Kd = 0.7175

Trend of tunable variables, cost function and termination criteria parameters during

the whole process can be observed by below Table 5.1.

Table 5.1. Results of case study I

Kp Ki Kd gamma max |SD| |gf’*SD| mg

1.0000 1.0000 1.0000 0.4654 - - -0.5346

1.2984 1.1568 0.8558 0.3287 0.6830 0.6830 0.0117

1.4222 1.1439 0.7753 0.2799 0.1238 0.0369 -0.0003

1.9983 1.1249 0.7707 0.1716 0.5761 0.1475 0.0390

3.8819 1.0610 0.7217 0.0632 1.8837 0.0727 0.0032

3.9094 1.0571 0.7142 0.0632 0.0274 0.0031 0.0002

3.9222 1.0584 0.7175 0.0544 0.0129 0.0001 -0.0087

Plots of each tunable variables and cost function are given in Figure 5.14 and Figure

5.15. Also, in Figure 5.16 one can observe the improvements on output response

behavior during the optimization process.

 68

Figure 5.14.Plots of tunable variables for case study I.

Figure 5.15. Plots of cost function for case study I.

 69

Figure 5.16. Output response improvement during case study I.

5.4. Case Study II

This study is done with a set of initial values of tunable variables, Kp=3 Ki=1

Kd=0, which gives an oscillatory initial output response and makes system very

close to marginally stable condition. To ensure the stability of the system, each of

tunable variables are bounded by zero in Lower bound from Optimization

Parameters window. Also considering that the initial output response is very far

from the given constraints, Stop optimization as soon as the constraints are

achieved property is enabled to decrease the number of iteration. Complete

command window display and related constraint figure windows after each major

step are given in Appendix A. Here, only the necessary plots and summary

information will be shown.

For a set of initial conditions, Kp=3 Ki=1 Kd=0, final results are found as follows:

Kp = 3.4635

Ki = 0.1650

 Kd = 0.2001

 70

At the end of the process, constraint figure window displays the system’s output

response plots belonging to initial and optimized values of controller gains as

shown in Figure 5.17. Trend of each tunable variables, cost function and

termination criteria parameters during the whole process can be observed by below

Table 5.2.

Figure 5.17. Constraint figure window at the end of case study II.

Table 5.2. Results of case study II.

Kp Ki Kd gamma max |SD| |gf’*SD| mg
3.0000 1.0000 0.0000 0.6018 0.0000 0.0000 -0.3982
3.1555 0.8238 0.0000 0.5773 0.3165 0.3165 -0.1062
3.0192 0.7623 0.0022 0.5383 0.1514 0.1514 0.0061
2.9834 0.7338 0.0058 0.5285 0.0358 0.0096 0.0060
2.3617 0.7156 0.2220 0.0301 0.6217 0.3462 -0.1463
2.3241 0.4993 0.1943 0.0203 0.8333 0.8333 0.0203
3.5074 1.4421 0.1937 0.0252 1.1833 0.5535 0.0251
3.4659 0.2416 0.1997 0.0007 1.2005 0.7511 0.0007
3.4635 0.1650 0.2001 -0.0041 0.0766 0.0000 -0.0041

 71

Plots of each tunable variables and cost function are given in Figure 5.18 and Figure

5.19. Also, in Figure 5.20 one can observe the improvements on output response

behavior during the optimization process following the graphs by row-wise from

left to right.

Figure 5.18. Plots of tunable variables for case study II.

Figure 5.19. Plots of cost function for case study II

 72

Figure 5.20. Output response improvement during case study II

 73

CHAPTER 6

DISCUSSION AND CONCLUSIONS

6.1. Discussion and Conclusions

The aim of this thesis is to develop an on-line strategy which will lead to the

determination of optimum control system parameters, based on presently available

algorithm of MATLAB® 6.5 R13 (SP1) / Nonlinear Control Design Blockset

Version 1.1.6.

The basic idea behind NCD algorithm is introduced in a logical sequence. Processes

of three vital optimization routines and interactions with each other are analyzed in

detail. This requires a dedicated study on the algorithm and has a special importance

not only by being the milestone of this thesis but also a guide for further

improvements on the algorithm. A summarizing pseudo-code is given for a better

understanding.

Then an illustrative model in “external” mode prepared by the help of MATLAB® /

Real Time Windows Target (RTWT) is introduced and present NCD algorithm is

modified so that it could be used in such a real-time application. Modifications are

necessary mainly for two reasons: To transfer input/output data between the physical

system and the algorithm and also to amplify some parameters such as change in

tunable parameters according to physical plant responsivity. The first necessity arise

from the fact that it is not possible to perform command line simulation of a model

in external mode.

A demonstrative PID tuning process is realized by using the model-based simulation

of a DC servomotor set-up (including the transfer function of the plant) under the

 74

effect of non-repeatable perturbations (random source) on the response signal. This

study can be thought as an intermediate step before starting the real-time case

studies, which actually contain noises. The satisfactory result as shown in Figure 4.6

is promising for the real-time application.

Finally, the hardware-in-the-loop simulation on previously defined DC servomotor

set-up is done by using the RTWT model which is also discussed in Chapter 3. A

set of statistical error analysis results are given at that point to determine the non-

repeatability of real system output response data. For both case studies an

experimentation method is fixed. During the case studies, example tuning processes

are presented to show some of the potential uses of the model.

When compared to the trial and error method, which is used widely in industry, this

method offers a more scientific and logical approach to a difficult problem of tuning

control systems. Also, when the control strategy is not well-known, unlike a PID

controller, tuning by trial and error method will be a time-consuming process or

almost insoluble. The strategy is unique in the sense that it is the one and only

control system tuning method applying an iterative optimization algorithm with

directly physical plant’s input/output data usage, known to the author.

6.2 Future Scope

This study can help engineers to design controllers by a systematic and progressive

approach with the proposed “tuning by hardware-in-the-loop simulation” strategies.

Although no mathematic formula is used to describe this approach, it has sound

philosophic background, and could be a very easy and powerful tool for some

extended projects.

The course of work took more than three years because of the fact that such an

application has never been done before. To the author’s knowledge, this study

proposes one of the few algorithms to ensure output response obtained by the tuned

results will satisfy the constraints of the real system and is the only one that applies

the hardware-in-the-loop simulation concept to the problem of finding optimized

 75

controller gain values in a control system. Depending on the slackness of the

constraints, more than one solution set can be obtained. This method aims to find an

optimum solution set, although it might not be the “best” one. This is because NCD

finds the local minimum and does not guarantee that it’s a global minimum. For

being closer to a global minimum, algorithm might be forced to find more than one

solution set for the specific tuning process and the program might choose the best

one as the final solution set.

This thesis deals with minimizing maximum error method but there are many more

methods to solve multi objective nonlinear problems. More work could be directed

toward that area where many routines are used on the same problem and the best

optimization method can be chosen by the user. Also, a better method for choosing

the initial parameter values should be developed. Minor step length, CHG, used

during the finite difference gradient calculation is one of the key values for the real-

time application and should be determined by the user with some amount of pre-

knowledge of the system. A user-interface will be helpful for a better CHG value

specification depending on the specific real plant characteristics.

Due to the complex nature of real-time simulation within an iterative area, a simple

model was taken for the study. In future methods more work could be done with

more complicated systems, and also a possible automatic application of that process

will have a great contribution to the study in terms of time and effort saving for the

future works.

 76

REFERENCES

[1] Nguyen, H.T., Sugeno, M., (1998), “Fuzzy Systems Modeling And Control”,

Kluwer Academic Publishers.

 [2] Ogata, K., (1997), “Modern Control Engineering”, Prentice-Hall, 3rd ed.

[3] Åström, K.J., Hägglund, T., (1995), “PID Controlllers: Theory, Design and

Tuning”, Instrument Society of America, Research Triangle Park, NC, 2nd ed.

[4] Chien, K.L., Hrones, J.A., Reswick, J.B., (1952), “On the Automatic Control

of Generalized Passive Systems”, Transactions of the ASME, 74, pp. 175-185.

[5] Dahlin, E.B., (1968), “Designing and Tuning Digital Controllers”, Instruments

and Control Systems, 42, pp. 77-83.

[6] Haalman, A., (1965), “Adjusting Controllers for a Dead-time Process”,

Control Engineering, July-65, pp. 71-73.

[7] McMillan, G.K., (1983), “Tuning and Control Loop Performance”,

Instruments Society of America, North Carolina, USA.

[8] Campi, M.C., Lecchini, A., Savaresi, S.M., (2002), “Virtual Reference

feedback tuning: A Direct Method for the Design of Feedback Controllers”,

Automatica, 38, pp. 1337 – 1346.

[9] O’ Mahony, T., Downing,C.J., Klaudiuz, F., “Genetic Algorithms for PID

Parameter Optimization: Minimising Error Criteria”, [online], URL:

http://www.pwr.wroc.pl/~i-8zas/kf_glas00.pdf

 77

[10] Best, M.C., Howell, M. N., (2000), “On-line PID Tuning for Engine Idle-s-

Speed Control Using Continuous Action Reinforcement Learning Automata”,

Control Engineering Practice 8, pp. 147-154.

[11] Kocijan, J., Karba, R., (1997), “The Chemical Process Application of

Multivariable Control Hardware and Algorithm Testing by Means of Simulation”.

Simulation Practice and Theory, 5, pp.153–165.

[12] MathWorks Inc., (2002), MATLAB® Nonlinear Control Design Blockset

User’s Guide, Version 1.1.6, July 2002 .

[13] Feedback Instruments Ltd., “Modular Servo System MS150 DC, Synchro

& AC Basic Assignments”, User Manual, pp. 16-23.

[14] Middle East Technical University, ME 304, (2003), “ Closed loop position

control of a DC motor”, Experiment Manual, Spring 2003.

[15] National Instruments, (2004), The Measurement and Automation Catalog.

 78

APPENDIX A

COMMAND WINDOW DISPLAY OF CASE STUDY II

Setting up constraint window done

Processing uncertainty information.

No uncertainty modeled.

Setting up call to optimization routine.

Kp=3.0000000 Ki=1.0000000 Kd=0.0000000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Done plotting the initial response.

Constraint figure window appears as shown in Figure A.1.

Figure A.1. Constraint figure window at initial response

 79

Start time: 0 Stop time: 5.

There are 1005 constraints to be met in each simulation.

There are 3 tunable variables.

There are 1 simulations per cost function call.

OPTIONS(11)=1

Kp=3.0000000 Ki=1.0000000 Kd=0.0000000 f=1.0000000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

CHG =

 -0.1000

 -0.1000

 -0.1000

 -0.1000

Kp=2.9000000 Ki=1.0000000 Kd=0.0000000 f=1.0000000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.0000000 Ki=0.9000000 Kd=0.0000000 f=1.0000000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.0000000 Ki=1.0000000 Kd= -0.1000000 f=1.0000000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.0000000 Ki=1.0000000 Kd=0.0000000 f=0.9000000

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = -0.3982

 80

 f-COUNT MAX{g} STEP Procedures

 5 0.601758 1

OPTIONS(11)= 2

Step Length = 1

SD =

 0.1555

 -0.1762

 -0.0000

 -0.3165

Kp=3.1554726 Ki=0.8237977 Kd=0.0000000 f=0.6835372

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure A.2.

Figure A.2. Constraint figure window at OPTIONS(11)=2

 81

CHG =

 -0.1000

 -0.1000

 -0.1000

 -0.1000

Kp=3.0554726 Ki=0.8237977 Kd=0.0000000 f=0.6835372

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.1554726 Ki=0.7237977 Kd=0.0000000 f=0.6835372

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.1554726 Ki=0.8237977 Kd= -0.1000000 f=0.6835372

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.1554726 Ki=0.8237977 Kd= 0.0000000 f=0.5835372

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = -0.1062

 f-COUNT MAX{g} STEP Procedures

 10 0.577344 1 Hessian modified

OPTIONS(11)= 3

Step Length = 1

SD =

 -0.1362

 82

 -0.0615

 0.0022

 -0.1514

Kp=3.0192227 Ki=0.7622811 Kd=0.0022436 f=0.532146

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure A.3.

Figure A.3. Constraint figure window at OPTIONS(11)=3

CHG =

 1.0000

 1.0000

 -0.1000

 -0.1286

Kp=4.0192227 Ki=0.7622811 Kd=0.0022436 f=0.5321466

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

 83

K>> return

Kp=3.0192227 Ki=1.7622811 Kd=0.0022436 f=0.5321466

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.0192227 Ki=0.7622811 Kd= -0.0977564 f=0.5321466

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.0192227 Ki=0.7622811 Kd=0.0022436 f=0.4035066

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = 0.0061

 f-COUNT MAX{g} STEP Procedures

 15 0.538281 1

OPTIONS(11)= 4

Step Length = 1

SD =

 -0.0358

 -0.0285

 0.0035

 -0.0096

Kp=2.9833888 Ki=0.7337870 Kd=0.0057774 f=0.5225005

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

 84

Constraint figure window appears as shown in Figure A.4.

Figure A.4. Constraint figure window at OPTIONS(11)=4

CHG =

 -1.0000

 -1.0000

 0.4476

 1.0000

Kp=1.9833888 Ki=0.7337870 Kd=0.0057774 f=0.5225005

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.9833888 Ki= -0.2662130 Kd=0.0057774 f=0.5225005

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.9833888 Ki=0.7337870 Kd=0.4534203 f=0.5225005

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

 85

K>> return

Kp=2.9833888 Ki=0.7337870 Kd=0.0057774 f=1.5225005

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = 0.0060

 f-COUNT MAX{g} STEP Procedures

 20 0.528516 1 Hessian modified

OPTIONS(11)= 5

Step Length = 1

SD =

 -0.6217

 -0.0182

 0.2163

 -0.3462

Kp=2.3617083 Ki=0.7155824 Kd=0.2220607 f=0.1763051

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure A.5.

 86

Figure A.5. Constraint figure window at OPTIONS(11)=5

CHG =

 -1.0000

 -1.0000

 0.1000

 -0.8920

Kp=1.3617083 Ki=0.7155824 Kd=0.2220607 f=0.1763051

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.3617083 Ki= -0.2844176 Kd=0.2220607 f=0.1763051

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.3617083 Ki=0.7155824 Kd=0.3220607 f=0.1763051

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.3617083 Ki=0.7155824 Kd=0.2220607 f= -0.7156958

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

 87

K>> return

mg = -0.1463

 f-COUNT MAX{g} STEP Procedures

 25 0.0300391 1

OPTIONS(11)= 6

Step Length = 1

SD =

 -0.0376

 -0.2163

 -0.0277

 -0.8333

Kp=2.3240594 Ki=0.4992767 Kd=0.1943178 f= -0.6569536

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure A.6.

Figure A.6. Constraint figure window at OPTIONS(11)=6

 88

CHG =

 -1

 1

 -1

 -1

Kp=1.3240594 Ki=0.4992768 Kd=0.1943179 f= -0.6569536

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.3240594 Ki=1.4992767 Kd=0.1943178 f= -0.6569536

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.3240594 Ki=0.4992767 Kd= -0.8056822 f= -0.6569536

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=2.3240594 Ki=0.4992767 Kd=0.1943178 f= -1.6569536

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = 0.0203

 f-COUNT MAX{g} STEP Procedures

 30 0.0202734 1 Hessian modified;infeasible

OPTIONS(11)= 7

Step Length = 1

SD =

 1.1833

 89

 0.9429

 -0.0006

 -0.5535

Kp=3.5074001 Ki=1.4421329 Kd=0.1936892 f= -1.2104203

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure A.7.

Figure A.7. Constraint figure window at OPTIONS(11)=7

CHG =

 1.0000

 -1.0000

 -0.1000

 1.0000

Kp=4.5074001 Ki=1.4421328 Kd=0.1936892 f= -1.2104203

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

 90

Kp=3.5074001 Ki=0.4421328 Kd=0.1936892 f= -1.2104203

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.5074001 Ki=1.4421328 Kd=0.0936892 f= -1.2104203

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.5074001 Ki=1.4421328 Kd=0.1936892 f= -0.2104203

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

mg = 0.0252

 f-COUNT MAX{g} STEP Procedures

 35 0.0251562 1 infeasible

OPTIONS(11)= 8

Step Length = 1

SD =

 -0.0415

 -1.2005

 0.0061

 -0.7511

Kp=3.4658971 Ki=0.2416506 Kd=0.1997486 f= -1.9614853

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure A.8.

 91

Figure A.8. Constraint figure window at OPTIONS(11)=8

CHG =

 -1

 -1

 -1

 -1

Kp=2.4658971 Ki=0.2416506 Kd=0.1997486 f= -1.9614853

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.4658971 Ki= -0.7583494 Kd=0.1997486 f= -1.9614853

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.4658971 Ki=0.2416506 Kd= -0.8002514 f= -1.9614853

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Kp=3.4658971 Ki=0.2416506 Kd=0.1997486 f= -2.9614853

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

 92

K>> return

mg = 7.4220e-004

 f-COUNT MAX{g} STEP Procedures

 40 0.000742187 1 Hessian modified

OPTIONS(11)= 9

Step Length = 1

SD =

 -0.0024

 -0.0766

 0.0003

 -0.0000

Kp=3.4635016 Ki=0.1650299 Kd=0.2000949 f= -1.9614942

K>>

Model DC_motor_seda3 loaded

Model DC_motor_seda3 unloaded

K>> return

Constraint figure window appears as shown in Figure A.9.

Figure A.9. Constraint figure window at OPTIONS(11)=9

 93

mg = -0.0041

 f-COUNT MAX{g} STEP Procedures

 45 -0.00414063 1 Hessian modified twice

Optimization Converged Successfully

Active Constraints:

 268

 94

 APPENDIX B

 FLOWCHART

User input for
initial values of

tunable variables
Are there upper

& lower bounds?

Calculate initial cost function
& constraint error (costfun.m)

Change each tunable variables
as the amount of CHG

Calculate the Hessian

Calculate new cost function &
constraint error

Assign cost function & constraint error
to the values before CHG application

Are the cost function
and constraint error

improved?

Have the termination
criteria met?

Is the max. number of
iteration exceeded?

Calculate cost function and
constraint error (costfun.m)

Calculate gradient of cost
function & constraint error

Calculate the search direction (qpsub.m)

Assign the step length to the user input value

Calculate new tunable variables

Limit tunable variables
according to bounds

Calculate new
step length

STOP
Display new tunable

variables, cost function
& constraint error

STOP
Display previous tunable
variables, cost function

& constraint error

Find new CHG

YES

YES

YES

YES

NO

NO

NO

NO

 95

APPENDIX C

RELATED ORIGINAL OPTIMIZATION M-FILES

nlinopt.m

function nlinopt(sys,InitFlag)
%NLINOPT Runs the optimization algorithm.
%
% NLINOPT(SYS,InitFlag) is called when the Start button is
% pushed or when the Initial response menu item is selected.
% It calls another routine to initialize any Monte Carlo
% simulations. It calls a routine to convert
ncdStruct.CnstrLB and
% ncdStruct.CnstrUB into constraints used by the optimization
routine.
% Finally, if InitFlag=1, it plots the initial response,
% otherwise it calls the optimization routine.
%
% See also MONTEVAR, CONVERTM, CONSTR, COSTFUN, GRADFUN.

% Author(s): A. Potvin, 12-1-92
% M. Yeddanapudi, Sept. 24, '96
% Revised : K. Subbarao 10-30-2001
% Copyright 1990-2002 The MathWorks, Inc.
% $Revision: 1.28 $
% $Date: 2002/06/06 15:37:39 $

% OPT_STOP is global and must be empty to continue
global OPT_STOP;
if isempty(OPT_STOP),
 % Setting OPT_STOP to zero allows optimization
 % to continue and tells the dialog boxes that
 % the parameters can no longer be changed.
 OPT_STOP = 0;
else
 fprintf('\nNLINOPT: First Click on the Stop push button to stop
optimization\n');
 fprintf(' that might be already running. If that is not
the case, try\n');
 fprintf(' setting OPT_STOP=[] to enable the Start push
button.\n');
 return;
end

% load the model into memory
loadCmd = [sys '([],[],[],0);'];
lasterr('');

 96

evalin('base',loadCmd,'');
if ~isempty(lasterr),
 fprintf('\nNLINOPT: Error loading model: %s\n',sys);
 fprintf('%s\n',lasterr);
 OPT_STOP = [];
 return;
end

%% Declare Global
global ncdStruct;

% Want to keep one argument option so
% user can easily invoke optimization
if (nargin==1), InitFlag = 0; end

% MONTEVAR checks the uncertain parameters and
% initializes the variables: SIMS, UVARMATX,
% UVAREXT and UVDATA that are used in COSTFUN

fprintf('\nProcessing uncertainty information.\n');
[sims,uvarmtx,uvarext,uvdata] = montevar;

if ((isempty(sims)) & (~InitFlag))
 error(['NLINOPT: No simulations constrained. ' ...
 'Check Uncertain Variable dialog box.']);
 OPT_STOP = [];
 return;
end

tstart = get_param(sys,'Start time');
if (isstr(tstart)), tstart = eval(tstart); end
tfinal = get_param(sys, 'Stop time');
if (isstr(tfinal)), tfinal = eval(tfinal); end

if InitFlag,
 if isempty(sims),
 fprintf('No simulations constrained. Plotting nominal.\n')
 sims = 1;
 end
 fprintf('Beginning simulations for initial response plots.\n')
else

 fprintf('Setting up call to optimization routine.\n')
end

if isempty(ncdStruct.Tdelta),
 ncdStruct.Tdelta = 1/100;
 %ncdStruct.Tdelta = (tfinal-tstart)/100;
end
timepts = [tstart:ncdStruct.Tdelta:tfinal]';
if timepts(end) < tfinal,
 timepts = [timepts; tfinal];
end

% NCD_OutPorts contains the port numbers of the NCD
% Masked Outport blocks. Only the entries of ncdStruct.CnstrLB

 97

% and ncdStruct.CnstrUB that correspond to these outports will
% be used in the optimization.

NCD_OutPorts=[];
tmpcell = find_system(sys,'SearchDepth',1,'MaskType','NCD Outport');
NumNCDoutports = length(tmpcell(:,1));
for i=1:NumNCDoutports

NCD_OutPorts=[NCD_OutPorts;str2num(get_param(tmpcell{i},'Port'))];
end
tmpcell = find_system(sys,'SearchDepth',1,'BlockType','Outport');
NumOutPorts = length(tmpcell(:,1));

% Initialize the time out flag.
% tmpnum = Inf;
% tmpcell = find_system(sys,'MaskType','Sim TimeOut Block');
% for i=1:length(tmpcell(:,1))
% tmpstr = get_param(tmpcell{i},'maskvaluestring');
% dumstr = tmpstr(1:find(tmpstr == '|')-1);
% dum = evalin('base',dumstr,'Inf');
% if dum < tmpnum,
% tmpnum = dum;
% ncdStruct.TimeOutFlag = tmpstr(find(tmpstr == '|')+1:end);
% end
% end
% The evalin('try','catch') in the above for loop ignores
% errors, so we need to clear lasterr, which may be nonempty.
% lasterr('');
% if isempty(ncdStruct.TimeOutFlag) | ~isstr(ncdStruct.TimeOutFlag),
% ncdStruct.TimeOutFlag = '';
% end

% Check for constraint figures on the screen
% and initialize the handles for the initial
% and intermediate plots, in all the figres.

xdata = timepts(:,[ones(1,2*max(sims))]);
zdata = ones(size(xdata));

FigHndls = allchild(0);
FigNames = get(FigHndls,'Name');

prefix = ['System: ' sys ', Outport: '];
lnprefix = length(prefix)+1;

FigHndls = FigHndls(strmatch(prefix,FigNames));
FigNames = char(get(FigHndls,'Name'));

AllLines = [];
for indx=1:length(FigHndls)

 axs = get(FigHndls(indx),'CurrentAxes');

 % delete exisiting lines from the axs userdata
 delete(findobj(get(axs,'Children'),'Type','line'));

 98

 % MCSlns is a vector of Monte Carlo simulation plot
 % handles. May create a couple of extra lines since
 % nominal, upper bound, and lower bound plants are
 % not always constrained.
 % Note: MCSlns is never empty.

 MCSlns = line(xdata,xdata,zdata, ...
 'Parent',axs,'Color','green', ...
 'Visible','off','Clipping','on', ...
 'EraseMode','xor');
 AllLines = [AllLines; MCSlns];

 % The initial response is in MCSlns(1:max(sims))

 set(MCSlns(1:max(sims)), ...
 'Color','white','EraseMode','background');

 % Put the line handles in axis UserData
 set(axs,'UserData',MCSlns);

end

SimOptions = simset('SrcWorkSpace','base', ...
 'DstWorkSpace','current', ...
 'OutputPoints','specified');

% simulate the SL model and plot the initial response
if initresp(sys,timepts,sims,uvarmtx,uvarext,uvdata,SimOptions) ==
1,
 % error in initresp, clean up and bail out
 OPT_STOP = [];
 return;
end
fprintf('Done plotting the initial response.\n')

if (InitFlag == 0)

 % Lot of processing to do before we begin optimization

 % first parse ncdStruct.TvarStr and setup the following variables
 % tvarmtx: str2mat2(ncdStruct.TvarStr)
 % tvarvec: vectorized tunable variables
 % tvarext: vector containig the sizes of the tuneable variables

 atindx = 0;
 tvarext = [];
 tvarmtx = ''; tvarvec = [];

 [tvarmtx,error_str] = str2mat2(ncdStruct.TvarStr);
 if (~isempty(error_str))
 fprintf(['\nNLINOPT: ' error_str]);
 fprintf('\n error parsing ncdStruct.TvarStr');
 fprintf('\n cannot start optimization.\n');
 OPT_STOP = [];
 return;
 end

 99

 lasterr('');
 for i=1:size(tvarmtx,1)
 tmpvar = evalin('base',tvarmtx(i,:),['''' tvarmtx(i,:) '''']);
 if ~isempty(lasterr),
 fprintf(lasterr);
 fprintf(['\nNLINOPT: error accessing: ' tmpvar ' in the
base workspace']);
 fprintf(['\n cannot start optimization.\n']);
 OPT_STOP = [];
 return;
 end

 tmpint = prod(size(tmpvar));
 if (tmpint == 0)
 fprintf('\nNLINOPT: %s is empty',tmpvar);
 fprintf('\n cannot start optimization.\n');
 OPT_STOP = [];
 return;
 end
 tvarvec = [tvarvec;tmpvar(:)];
 tvarext(i,1) = atindx+tmpint;
 atindx = tvarext(i,1);
 end

 % ncdStruct.TvarMtx is required in TVARSET
 ncdStruct.TvarMtx = tvarmtx;

 % Done with ncdStruct.TvarStr.

 % Now process the lower bounds in ncdStruct.TvlbStr
 % if successful tvlbvec will contain the
 % vectorized values of the lower bounds.

 tvlbmtx = ''; tvlbvec = [];

 if ~isstr(ncdStruct.TvlbStr),
 if ~isempty(ncdStruct.TvlbStr),
 fprintf('\nNLINOPT: ncdStruct.TvlbStr is not a string!');
 fprintf('\n setting ncdStruct.TvlbStr to empty');
 fprintf('\n proceeding without lower bounds.\n')
 end
 ncdStruct.TvlbStr = '';
 elseif ~isempty(ncdStruct.TvlbStr),
 [tvlbmtx,error_str] = minipars(ncdStruct.TvlbStr);
 if ~isempty(error_str),
 fprintf('\nNLINOPT: error parsing the lower bound string:
%s',ncdStruct.TvlbStr);
 fprintf('\n proceeding without lower bounds.\n')
 tvlbmatx = '';
 elseif size(tvarmtx,1) ~= size(tvlbmtx,1),
 fprintf('\nNLINOPT: sizes of ncdStruct.TvarStr and
ncdStruct.TvlbStr should be equal');
 fprintf('\n proceeding without lower bounds.\n')
 tvlbmatx = '';
 else

 100

 atindx = 1;
 lasterr('');
 for i=1:size(tvarmtx,1)
 siz = tvarext(i)-atindx+1;
 tvlbtmp = evalin('base',tvlbmtx(i,:),['''' tvlbmtx(i,:)
'''']);
 if ~isempty(lasterr),
 fprintf(lasterr); lasterr('');
 fprintf('\nNLINOPT: error evaluating %s in the base
workspace',tvlbtmp);
 fprintf('\n setting the lower bound of %s to
-Inf\n',deblank(tvarmtx(i,:)));
 tvlbtmp = repmat(-Inf,[siz 1]);
 elseif isempty(tvlbtmp),
 fprintf('\nNLINOPT: the lower bound of %s -> %s is
empty', ...

deblank(tvarmtx(i,:)),deblank(tvlbmtx(i,:)));
 fprintf('\n setting the lower bound of %s to
+Inf\n',deblank(tvarmtx(i,:)));
 tvlbtmp = repmat(-Inf,[siz 1]);
 elseif prod(size(tvlbtmp)) ~= siz,
 fprintf('\nNLINOPT: size of tunable variable %s and
its lower bound %s are inconsistent', ...

deblank(tvarmtx(i,:)),deblank(tvlbmtx(i,:)));
 fprintf('\n setting the lower bound of %s to
-Inf\n',deblank(tvarmtx(i,:)));
 tvlbtmp = repmat(-Inf,[siz 1]);
 end
 tvlbvec = [tvlbvec;tvlbtmp(:)];
 atindx = tvarext(i,1)+1;
 end
 end
 end

 % Done with ncdStruct.TvlbStr.

 % Now process the upper bounds in ncdStruct.TvubStr
 % if successful tvubvec will contain the
 % vectorized values of the upper bounds.

 tvubmtx = ''; tvubvec = [];

 if ~isstr(ncdStruct.TvubStr),
 if ~isempty(ncdStruct.TvubStr),
 fprintf('\nNLINOPT: ncdStruct.TvubStr is not a string!');
 fprintf('\n setting ncdStruct.TvubStr to empty
and');

 fprintf('\n proceeding without upper bounds.\n')
 end

 101

 ncdStruct.TvubStr = '';
 elseif ~isempty(ncdStruct.TvubStr),
 [tvubmtx,error_str] = minipars(ncdStruct.TvubStr);
 if ~isempty(error_str),
 fprintf('\nNLINOPT: error parsing the upper bound string:
%s',ncdStruct.TvubStr);
 fprintf('\n proceeding without upper bounds.\n')
 tvubmatx = '';
 elseif size(tvarmtx,1) ~= size(tvubmtx,1),
 fprintf('\nNLINOPT: sizes of ncdStruct.TvarStr and
ncdStruct.TvubStr should be equal');
 fprintf('\n proceeding without upper bounds.\n')
 tvubmatx = '';
 else
 atindx = 1;
 lasterr('');
 for i=1:size(tvarmtx,1)
 siz = tvarext(i)-atindx+1;
 tvubtmp = evalin('base',tvubmtx(i,:),['''' tvubmtx(i,:)
'''']);
 if ~isempty(lasterr),
 fprintf(lasterr); lasterr('');
 fprintf('\nNLINOPT: error evaluating %s in the base
workspace',tvubtmp);
 fprintf('\n setting the upper bound of %s to
+Inf\n',deblank(tvarmtx(i,:)));
 tvubtmp = repmat(Inf,[siz 1]);
 elseif isempty(tvubtmp),
 fprintf('\nNLINOPT: the upper bound of %s -> %s is
empty', ...

deblank(tvarmtx(i,:)),deblank(tvubmtx(i,:)));
 fprintf('\n setting the upper bound of %s to
+Inf\n',deblank(tvarmtx(i,:)));
 tvubtmp = repmat(Inf,[siz 1]);
 elseif prod(size(tvubtmp)) ~= siz,
 fprintf('\nNLINOPT: size of tunable variable %s and
its upper bound %s are inconsistent', ...

deblank(tvarmtx(i,:)),deblank(tvubmtx(i,:)));
 fprintf('\n setting the upper bound of %s to
+Inf\n',deblank(tvarmtx(i,:)));
 tvubtmp = repmat(Inf,[siz 1]);
 end
 tvubvec = [tvubvec;tvubtmp(:)];
 atindx = tvarext(i,1)+1;

 end
 end
 end

 % Done processing ncdStruct.TvarStr, ncdStruct.TvlbStr and
ncdStruct.TvubStr.

 % Begin processing the constraint bounds defined
 % in the global bound matrices ncdStruct.CnstrLB and
ncdStruct.CnstrUB

 102

 % Convert ncdStruct.CnstrLB and ncdStruct.CnstrUB to Mu and Ml,
where
 % Mu - upper bound constraints
 % Ml - lower bound constraints

 lb = ncdStruct.CnstrLB;

 irow = lb(ones(length(NCD_OutPorts),1),:);
 icol = NCD_OutPorts(:,ones(size(lb,2),1));
 indx = find(sum(irow == icol) == 0);

 if ~isempty(indx),
 fprintf('\nIgnoring the following lower constraints\n');
 fprintf(' in ncdStruct.CnstrLB for Non-NCD Masked
Outports\n');
 lb(:,indx)
 lb(:,indx) = [];
 end

 ub = ncdStruct.CnstrUB;
 irow = ub(ones(length(NCD_OutPorts),1),:);
 icol = NCD_OutPorts(:,ones(size(ub,2),1));
 indx = find(sum(irow == icol) == 0);
 if ~isempty(indx),
 fprintf('\nIgnoring the following upper constraints\n');
 fprintf(' in ncdStruct.CnstrLB for Non-NCD Masked
Outports\n');
 ub(:,indx)
 ub(:,indx) = [];
 end

 Ml = convertm(lb,timepts);
 Mu = convertm(ub,timepts);

 % Determine how many constraints are to be met

 if ((isempty(Mu))&(isempty(Ml)))
 RunFlag = 0;
 fprintf('\nNLINOPT from CONVERTM: no constraints generated');

 fprintf('\n start Optimization
ignored\n');
 OPT_STOP = [];
 return;
 end

 % Tell user start and stop times and how many constraints are to
be met

 fprintf(['Start time: ' num2str(tstart) '\t Stop time: '
num2str(tfinal) '.\n']);
 fprintf(['There are ' int2str(size(Mu,1)+size(Ml,1)) ...
 ' constraints to be met in each simulation.\n']);
 fprintf(['There are ' int2str(length(tvarvec)) ' tunable
variables.\n']);
 fprintf(['There are ' int2str(length(sims)) ' simulations per
cost function call.\n']);

 103

 if (ncdStruct.GradFlag == 1)
 % create model for simulating the actual
 % and the perturbed models simultaneously

 gradsys = strrep(tempname,tempdir,'');
 fprintf(['Creating a temporary SL model ' gradsys ' for
computing gradients...\n']);

 lasterr('');
 eval(['new_system(''' gradsys ''')'],'');
 if ~isempty(lasterr),
 % may be gradsys is already open, try close_system.

 error_str = lasterr; lasterr('');
 eval(['close_system(''' gradsys ''',0)'],'');
 if ~isempty(lasterr),
 % rats! even close_system caused an error, give up.

 fprintf('\nNLINOPT: error creating %s\n',gradsys);
 fprintf('%s\n',error_str);
 OPT_STOP = [];
 return;
 else
 % close_system worked, so try new_system once again.
 % no need to set lasterr(''), because it is still empty

 eval(['new_system(''' gradsys ''')'],'');
 if ~isempty(lasterr),
 % even after close_system, new_system still
 % results in an error, this time error out.

 fprintf('\nNLINOPT: error creating %s\n',gradsys);
 fprintf('%s\n',lasterr);
 OPT_STOP = [];
 return;
 end
 end
 end

 % create original and perturbed copies of the
 % tunable variables which will be used in gradfun

 for j=1:size(tvarmtx,1)
 varname = deblank(tvarmtx(j,:));
 evalin('base',[varname '_original = ' varname ';']);
 evalin('base',[varname '_perturbed = ' varname ';']);
 end

 eval(['copymdl(''' sys ''',''' gradsys ''')'],'');
 if ~isempty(lasterr),
 fprintf('\nNLINOPT: error while copying into
%s\n',gradsys);
 fprintf('%s\n',lasterr);
 close_system(gradsys,0);
 OPT_STOP = [];

 104

 return;
 end

 % Make sure gradsys is properly loaded in memory.
 loadCmd = [gradsys '([],[],[],0);'];
 lasterr('');
 evalin('base',loadCmd,'');
 if ~isempty(lasterr),
 fprintf('\nNLINOPT: Error loading model: %s\n',gradsys);
 fprintf('%s\n',lasterr);
 close_system(gradsys,0);
 OPT_STOP = [];
 return;
 end

 fprintf(['Creating simulink model ' gradsys ' for
gradients...Done\n']);

 end

 % initialize the cost: gamma

 gamma = 1;
 tvarvec = [tvarvec; gamma];

 % Call optimization routine.

 if isempty(ncdStruct.OptmOptns),
 % Default optimization options
 ncdStruct.OptmOptns = [1 0.001 0.001];
 end

 options(1) = ncdStruct.OptmOptns(1); % display on/off
 options(2) = ncdStruct.OptmOptns(2); % variable tolerance
 options(3) = ncdStruct.OptmOptns(2); % function tolerance
 options(4) = ncdStruct.OptmOptns(3); % constraint tolerance
 options(7) = 1; % Line search modified for slack variable

 offset = NumOutPorts*length(timepts);

 if (ncdStruct.GradFlag == 1)

 % Debug mode to check the gradients and open gradsys
 % To enable this mode, declare NCDdebuggingON =1 in base
 % workspace.

 % REMARK: lasterr after the eval('try this','otherwise')
 % is needed so that we can ignore errors and reset lasterr
 % to empty, in case 'try this' did not work. This usage
 % is a bit different from the eval('try','catch')

 dum = evalin('base','NCDdebuggingON','0'); lasterr('');
 if dum == 1,
 disp('Will stop in graderr to check the gradients.');
 path2graderr=which('graderr','simcnstr');

 105

 evalin('base',['dbstop in ' path2graderr]);
 options(9) = 1; % gradient check
 open_system(gradsys);
 end

 % save the name of gradsys in ncdStruct for access in gradfun
 ncdStruct.GradSysName = gradsys;

 x =
simcnstr('ncdtoolbox','costfun',tvarvec,options,tvlbvec,tvubvec,...

'gradfun',tvarmtx,tvarext,sys,timepts,Mu,Ml,offset,sims, ...
 uvarmtx,uvarext,uvdata,SimOptions);

 close_system(gradsys,0);

 % clean up the workspace

 for j=1:size(tvarmtx,1)
 varname = deblank(tvarmtx(j,:));
 evalin('base',['clear ' varname '_original;']);
 evalin('base',['clear ' varname '_perturbed;']);
 end

 else
 x =
simcnstr('ncdtoolbox','costfun',tvarvec,options,tvlbvec,tvubvec,...
 '',tvarmtx,tvarext,sys,timepts,Mu,Ml,offset,sims, ...
 uvarmtx,uvarext,uvdata,SimOptions);
 end
end

% Reset plant to nominal

atindx = 1;
for i=1:size(uvarmtx,1)
 siz = [atindx:uvarext(i,1)]';
 assignin('base','NCD_tmp',uvdata(siz,1));
 evalin('base',[uvarmtx(i,:) '(:) = NCD_tmp;']);
 evalin('base','NCD_tmp = [];');
 atindx = uvarext(i,1)+1;
end
evalin('base','clear NCD_tmp;');

% Set the EraseMode of all plotted lines to normal

eval('set(AllLines,''EraseMode'',''normal'')','');lasterr('');

% Setting OPT_STOP to be empty enables dialogs
fprintf('\n');

OPT_STOP = [];

% end nlinopt

 106

costfun.m

function [CostFunction,ConstraintError] =
costfun(tvarvec,tvarmtx,tvarext,sysname, ...
timepts,Mu,Ml,offset,sims,uvarmtx,uvarext,uvdata,simoptions)

%COSTFUN Cost function for NCD Blockset optimization.
%
% [CostFunction,ConstraintError] = COSTFUN(TVARVEC, ...
% VARMTX,TVAREXT,SYSNAME,TIMEPTS,MU,ML,OFFSET, ...
% SIMS,UVARMTX,UVAREXT,UVDATA,SIMOPTIONS)
% calculates the CostFunction and ConstraintError given:
%
% Inputs:
% TVARVEC -- vectorized tunable parameters at this
iteration
% DTUNEVAR -- suggested perturbations to the tunable
parameters
% SYSNAME -- SIMULINK system name
% TVARMTX -- tunable parameter names formatted as a
padded string matrix
% TVAREXT -- vector of (vectorized) tunable parameter
dimensions
% TIMEPTS -- time vector: [tstart:tdelta:tfinal]
% MU -- [<vectorized output index> <upper
constraint> <weight>]
% ML -- [<vectorized output index> <lower
constraint> <weight>]
% OFFSET -- NumOutPorts * length(TIMEPTS)
% SIMS -- vector of simulations to be constrained
% UVARMTX -- uncertain parameter names formatted as a
padded string matrix
% UVAREXT -- vector of (vectorized) tunable parameter
dimensions
% UVDATA -- matrix of uncertain parameter values in
each simulation
% SIMOPTIONS -- simulation options
%
% See also NLINOPT.

% Author(s): A. Potvin, 12-1-92
% M. Yeddanapudi, Sept 16, '96
% Copyright 1990-2002 The MathWorks, Inc.
% $Revision: 1.16 $
% $Date: 2002/03/22 14:11:47 $

% Declare globals

global OPT_STOP;
global OPT_STEP;
global ncdStruct;

 107

% ncdStruct.TimeOutFlag holds the name of the
% global variable that is set by the simstop block.
% We use eval('try this','otherwise') in case
% there is a simstop block sysname SL model
% eval(['global ' ncdStruct.TimeOutFlag],''); lasterr('');

% Recover tunable variables from tvarvec and
% assign them to the appropriate tunable
% variables in the base workspace. No error
% checking needed here, because in NLINOPT we
% made sure everything was ok.

atindx = 1;
for i=1:size(tvarmtx,1)
 siz = [atindx:tvarext(i,1)]';
 assignin('base','NCD_tmp',tvarvec(siz,1));
 evalin('base',[tvarmtx(i,:) '(:) = NCD_tmp;']);
 atindx = tvarext(i,1)+1;
end

% Initialize constraint vector and output CostFunction

ConstraintError = [];
if ~isempty(tvarvec),
 CostFunction = tvarvec(end);
 if ncdStruct.CostFlag == 1,
 CostFunction = max(CostFunction,-1.0e-8);
 end
end

% Set up backward for loop

for simindx=sims

 % Try to better process button and break
 % out of the loop in case OPT_STOP == 1

 drawnow;

 if OPT_STOP == 1,
 fprintf('.');
 CostFunction = 1e10;
 ConstraintError =
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1);
 return;

 end

 % At each Monte Carlo run set the uncertain
 % parameters to the values specified in the

 108

 % simindx^th column of uvdata which has been
 % initialized in MONTEVAR

 atindx = 1;
 for i=1:size(uvarmtx,1)
 siz = [atindx:uvarext(i,1)]';
 assignin('base','NCDtmp',uvdata(siz,simindx));
 evalin('base',[uvarmtx(i,:) '(:) = NCDtmp;']);
 atindx = uvarext(i,1)+1;
 end

 % Simulate the model and abort
 % if any errors are encountered

 SimString = ['sim(''' sysname ''',timepts,simoptions);'];
 lasterr('');
 eval(['[SimTime,SimState,InterpOut]=' SimString],' ');

 if ~isempty(lasterr),
 fprintf('\n SL Error Message: %s\n ',lasterr');
 fprintf('\n COSTFUN: Error simulating %s',sysname);
 CostFunction = 1e10;
 ConstraintError =
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1);
 if OPT_STEP == 2,
 fprintf('\n Error occured during line search
...');
 fprintf('\n Continuing Optimization ...\n');
 else
 fprintf('\n Error occured during a major update
...');
 fprintf('\n Stopping Optimization...\n');
 OPT_STOP = 1;
 end
 return;
 end

 % code to time out a simulation.
 % use eval('try this','otherwise')
 % TimeOutFlag = eval(ncdStruct.TimeOutFlag,'[]'); lasterr('');
 % if isequal(TimeOutFlag,1),
 % fprintf('\nCOSTFUN: Simulation Timed Out');
 % CostFunction = 1e10;
 % ConstraintError =
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1);
 % if OPT_STEP == 2,
 % fprintf(' during line search ...');
 % fprintf('\n Continuing Optimization ...\n');
 % else
 % fprintf(' during a major update ...');
 % fprintf('\n Stopping Optimization ...\n');

 109

 % OPT_STOP = 1;
 % end
 % end

 if (ncdStruct.GradFlag == 0) & (OPT_STEP == 1),

 %%% Update The Plots in the NCD Figure Windows %%%

 % get the handles and names of all the open constraint
 % figure windows and update the intermediate response plots

 fighndls = allchild(0);
 fignames = char(get(fighndls,'Name'));
 prefix = ['System: ' sysname ', Outport: '];
 lnprefix = length(prefix)+1;
 fighndls = fighndls(strmatch(prefix,fignames));
 fignames = char(get(fighndls,'Name'));

 for figindx=1:length(fighndls)

 portnum = str2num(fignames(figindx,lnprefix:end));
 axs = get(fighndls(figindx),'CurrentAxes');
 MCSlns = get(axs,'UserData');

 if (~isempty(MCSlns))
 ln = MCSlns(max(sims)+simindx);
 set(ln,'YData',InterpOut(:,portnum));

 if (strcmp(get(ln,'Visible'),'off'))
 set(ln,'Visible','on');
 end
 end
 end
 end

 drawnow;

 if (OPT_STOP)
 fprintf('.');
 CostFunction = 1e10;
 ConstraintError =
repmat(CostFunction,length(sims)*(size(Mu,1)+size(Ml,1)),1);
 return;
 end

 % Form ConstraintError

 if (~isempty(Mu))
 ConstraintError = [ConstraintError; ...
 InterpOut(Mu(:,1))-Mu(:,2)-Mu(:,3)*CostFunction];
 end

 if (~isempty(Ml))

 110

 ConstraintError = [ConstraintError; ...
 Ml(:,2)-InterpOut(Ml(:,1))-Ml(:,3)*CostFunction];
 end

 % Remark: This may abstract away too much information.
 % For example, user may desire more info on
 % limiting constraints.

end

% end costfun

 111

nlconst.m

function
[x,OPTIONS,lambda,HESS]=nlconst(FUNfcn,x,OPTIONS,VLB,VUB,GRADfcn,...
 varargin)
%NLCONST Helper function for SIMCNSTR.
% NLCONST is a helper function for SIMCNSTR to find the
constrained minimum
% of a function of several variables.
%
%
[X,OPTIONS,LAMBDA,HESS]=NLCONST('FUN',X0,OPTIONS,VLB,VUB,'GRADFUN',.
..
% varargin{:}) starts at X0 and finds a constrained minimum to the
function
% which is described in FUN. FUN is a four element cell array set
up by
% PREFCNCHK. It contains the call to the objective/constraint
function, the
% gradients of the objective/constraint functions, the calling
type (used by
% OPTEVAL), and the calling function name.

% Copyright 1990-2002 The MathWorks, Inc.
% $Revision: 1.10 $
% Andy Grace 7-9-90, Mary Ann Branch 9-30-96.

% Calls OPTEVAL.

% Expectations: GRADfcn must be [] if it does not exist.
global OPT_STOP OPT_STEP;
OPT_STEP = 1;
OPT_STOP = 0;
% Initialize so if OPT_STOP these have values
lambda = []; HESS = [];

% Set up parameters.
XOUT=x(:);

VLB=VLB(:); lenvlb=length(VLB);
VUB=VUB(:); lenvub=length(VUB);
bestf = Inf;

nvars = length(XOUT);

OPTIONS(10)=1;
OPTIONS(11)=1;

CHG = 1e-7*abs(XOUT)+1e-7*ones(nvars,1);

if lenvlb*lenvlb>0
 if any(VLB((1:lenvub)') > VUB), error('Bounds Infeasible'),
end

 112

end
for i=1:lenvlb
 if lenvlb>0,if XOUT(i)<VLB(i),XOUT(i)=VLB(i)+1e-4; end,end
end
for i=1:lenvub
 if lenvub>0,if XOUT(i)>VUB(i),XOUT(i)=VUB(i);CHG(i)=-
CHG(i);end,end
end

% Used for semi-infinite optimization:
s = nan; POINT =[]; NEWLAMBDA =[]; LAMBDA = []; NPOINT =[]; FLAG =
2;
OLDLAMBDA = [];

sizep = length(OPTIONS);
OPTIONS = foptions(OPTIONS);
if lenvlb*lenvlb>0
 if any(VLB((1:lenvub)') > VUB), error('Bounds Infeasible'),
end
end
for i=1:lenvlb
 if lenvlb>0,if XOUT(i)<VLB(i),XOUT(i)=VLB(i)+eps; end,end
end
OPTIONS(18)=1;
if OPTIONS(1)>0
 if OPTIONS(7)==1
 disp('')
 disp('f-COUNT MAX{g} STEP Procedures');
 else
 disp('')
 disp('f-COUNT FUNCTION MAX{g} STEP
Procedures');
 end
end
HESS=eye(nvars,nvars);
if sizep<1 |OPTIONS(14)==0, OPTIONS(14)=nvars*100;end

x(:) = XOUT; % Set x to have user expected size
% Compute the objective function and constraints
if strcmp(FUNfcn{4},'ncdtoolbox')
 [f,g] = feval(FUNfcn{1},x,varargin{:});
else
 [f,g,msg] = opteval(x,FUNfcn,varargin{:});

 error(msg);
 g = g(:);
end
if isempty(f)
 error('FUN must return a non-empty objective function.')
end
ncstr = length(g);

GNEW=1e8*CHG;
% Evaluate gradients and check size
if isempty(GRADfcn)
 analytic_gradient = 0;
else

 113

 analytic_gradient = 1;
 if strcmp(FUNfcn{4},'ncdtoolbox')
 [gf_user,gg_user,OPTIONS] =
feval(GRADfcn{1},x,GNEW,OPTIONS,varargin{:});
 gf_user = gf_user(:);
 else
 [gf_user,gg_user,msg] = opteval(x,GRADfcn,varargin{:});
 error(msg);
 gf_user = gf_user(:);
 end
 % Both might evaluate to empty when expression syntax is used
 if isempty(gf_user) & isempty(gg_user)
 analytic_gradient = 0;
 else % Either gf or gg is defined
 if length(gf_user) ~= nvars
 error('The objective gradient is the wrong size.')
 end
 if isempty(gg_user) & isempty(g)
 % Make gg compatible
 gg = g';
 else % Check size of gg
 [ggrow, ggcol] = size(gg_user);
 if ggrow ~= nvars
 error('The constraint gradient has the wrong number of
rows.')
 end
 if ggcol ~= ncstr
 error('The constraint gradient has the wrong number of
columns.')
 end
 end % isempty(gg_user)
 end % isempty(gf_user) & isempty(gg_user)
end % isempty(GRADfcn)

OLDX=XOUT;
OLDG=g;
OLDgf=zeros(nvars,1);
gf=zeros(nvars,1);
OLDAN=zeros(ncstr,nvars);
LAMBDA=zeros(ncstr,1);

%-------------------------------- Main Loop ------------------------

status = 0;
first_iter=1;
while status ~= 1

%--------------- GRADIENTS ---------------

 if ~analytic_gradient | OPTIONS(9)
% Finite Difference gradients (even if just checking analytical)
 POINT = NPOINT;
 oldf = f;
 oldg = g;
 ncstr = length(g);

 114

 FLAG = 0; % For semi-infinite
 gg = zeros(nvars, ncstr); % For semi-infinite
% Try to make the finite differences equal to 1e-8.
 CHG = -1e-8./(GNEW+eps);
 CHG =
sign(CHG+eps).*min(max(abs(CHG),OPTIONS(16)),OPTIONS(17));
 OPT_STEP = 1;
 for gcnt=1:nvars
 if gcnt == nvars,
 FLAG = -1;
 end
 temp = XOUT(gcnt);
 XOUT(gcnt)= temp + CHG(gcnt);
 x(:) =XOUT;

 if strcmp(FUNfcn{4},'ncdtoolbox')
 [f,g] = feval(FUNfcn{1},x,varargin{:});
 else
 [f,g,msg] = opteval(x,FUNfcn,varargin{:});
 error(msg);
 g = g(:);
 end
 OPT_STEP = 0;

 if OPT_STOP
 break;
 end
 % Next line used for problems with varying number of
constraints
 if ncstr~=length(g),
 diff=length(g);
 g=v2sort(oldg,g);
 end

 gf(gcnt,1) = (f-oldf)/CHG(gcnt);
 if ~isempty(g)
 gg(gcnt,:) = (g - oldg)'/CHG(gcnt);
 end
 XOUT(gcnt) = temp;
 if OPT_STOP
 break;
 end
 end % for
 if OPT_STOP
 break;
 end

% Gradient check
 if OPTIONS(9) == 1 & analytic_gradient
 gfFD = gf;
 ggFD = gg;
 gg = gg_user;
 gf = gf_user;

 disp('Function derivative')
 if isa(GRADfcn{1},'inline')

 115

 graderr(gfFD, gf, formula(GRADfcn{1}));
 else
 graderr(gfFD, gf, GRADfcn{1});
 end
 if ~isempty(gg)
 disp('Constraint derivative')
 if isa(GRADfcn{3},'inline')
 graderr(ggFD, gg, formula(GRADfcn{3}));
 else
 graderr(ggFD, gg, GRADfcn{3});
 end
 end
 OPTIONS(9) = 0;
 end % OPTIONS(9) == 1 & analytic_gradient

 FLAG = 1; % For semi-infinite
 OPTIONS(10) = OPTIONS(10) + nvars;
 f=oldf;
 g=oldg;
 else % analytic_gradient & options(9)=0
 % User-supplied gradients
 % gf and gg already computed first time through loop
 if ~first_iter
 gg = zeros(nvars, ncstr);
 if strcmp(FUNfcn{4},'ncdtoolbox')
 [gf,gg,OPTIONS] =
feval(GRADfcn{1},x,GNEW,OPTIONS,varargin{:});
 else
 [gf,gg,msg] = opteval(x,GRADfcn,varargin{:});
 error(msg);
 end
 gf = gf(:);
 if isempty(gg) & isempty(g)
 gg = g';
 end
 else
 % First time through loop
 gg = gg_user;
 gf = gf_user;
 first_iter=0;
 end

 if OPT_STOP
 break;
 end

 end % if ~analytic_gradient | OPTIONS(9)
 AN=gg';
 how='';
 OPT_STEP = 2;

%------------ SEARCH DIRECTION --------------

 for i=1:OPTIONS(13)
 schg=AN(i,:)*gf;
 if schg>0
 AN(i,:)=-AN(i,:);

 116

 g(i)=-g(i);
 end

 end

 if OPTIONS(11)>1 % Check for first call
% For equality constraints make gradient face in
% opposite direction to function gradient.
 if OPTIONS(7)~=5,
 NEWLAMBDA=LAMBDA;
 end
 [ma,na] = size(AN);
 GNEW=gf+AN'*NEWLAMBDA;
 GOLD=OLDgf+OLDAN'*LAMBDA;
 YL=GNEW-GOLD;
 sdiff=XOUT-OLDX;
% Make sure Hessian is positive definite in update.
 if YL'*sdiff<OPTIONS(18)^2*1e-3
 while YL'*sdiff<-1e-5
 [YMAX,YIND]=min(YL.*sdiff);
 YL(YIND)=YL(YIND)/2;
 end
 if YL'*sdiff < (eps*norm(HESS,'fro'));
 how=' Hessian modified twice';
 FACTOR=AN'*g - OLDAN'*OLDG;
 FACTOR=FACTOR.*(sdiff.*FACTOR>0).*(YL.*sdiff<=eps);
 WT=1e-2;
 if max(abs(FACTOR))==0; FACTOR=1e-5*sign(sdiff); end
 while YL'*sdiff < (eps*norm(HESS,'fro')) & WT <
1/eps
 YL=YL+WT*FACTOR;
 WT=WT*2;
 end
 else
 how=' Hessian modified';
 end
 end

%--------- Perform BFGS Update If YL'S Is Positive ---------
 if YL'*sdiff>eps
 HESS=HESS+(YL*YL')/(YL'*sdiff)-
(HESS*sdiff*sdiff'*HESS')/(sdiff'*HESS*sdiff);
% BFGS Update using Cholesky factorization of Gill, Murray and
Wright.
% In practice this was less robust than above method and slower.
% R=chol(HESS);
% s2=R*S; y=R'\YL;
% W=eye(nvars,nvars)-(s2'*s2)\(s2*s2') + (y'*s2)\(y*y');
% HESS=R'*W*R;

 else
 how=' Hessian not updated';
 end

 117

 else % First call
 OLDLAMBDA=(eps+gf'*gf)*ones(ncstr,1)./(sum(AN'.*AN')'+eps)
;
 end % if OPTIONS(11)>1
 OPTIONS(11)=OPTIONS(11)+1;

 LOLD=LAMBDA;
 OLDAN=AN;
 OLDgf=gf;
 OLDG=g;
 OLDF=f;
 OLDX=XOUT;
 XN=zeros(nvars,1);
 if (OPTIONS(7)>0&OPTIONS(7)<5)
 % Minimax and attgoal problems have special Hessian:
 HESS(nvars,1:nvars)=zeros(1,nvars);
 HESS(1:nvars,nvars)=zeros(nvars,1);
 HESS(nvars,nvars)=1e-8*norm(HESS,'inf');
 XN(nvars)=max(g); % Make a feasible solution for qp
 end
 if lenvlb>0,
 AN=[AN;-eye(lenvlb,nvars)];
 GT=[g;-XOUT((1:lenvlb)')+VLB];
 else
 GT=g;
 end
 if lenvub>0
 AN=[AN;eye(lenvub,nvars)];
 GT=[GT;XOUT((1:lenvub)')-VUB];
 end
 [SD,lambda,howqp] = qpsub(HESS,gf,AN,-GT,[],[],XN,OPTIONS(13),-
1, ...
 'nlconst',size(AN,1),nvars,0,1);
 lambda((1:OPTIONS(13))') = abs(lambda((1:OPTIONS(13))'));
 ga=[abs(g((1:OPTIONS(13))')) ; g((OPTIONS(13)+1:ncstr)')];
 if ~isempty(g)
 mg=max(ga);
 else
 mg = 0;
 end

 if OPTIONS(1)>0
 if strncmp(howqp,'ok',2); howqp =''; end

 if ~isempty(how) & ~isempty(howqp)
 how = [how,'; '];
 end
 if OPTIONS(7)==1,
 gamma = mg+f;
 disp([sprintf('%5.0f %12.6g ',OPTIONS(10),gamma),
sprintf('%12.3g ',OPTIONS(18)),how, ' ',howqp]);
 else
 disp([sprintf('%5.0f %12.6g %12.6g ',OPTIONS(10),f,mg),
sprintf('%12.3g ',OPTIONS(18)),how, ' ',howqp]);
 end
 end
 LAMBDA=lambda((1:ncstr)');

 118

 OLDLAMBDA=max([LAMBDA';0.5*(LAMBDA+OLDLAMBDA)'])' ;

%-------------- LINESEARCH --------------------

 MATX=XOUT;
 MATL = f+sum(OLDLAMBDA.*(ga>0).*ga) + 1e-30;
 infeas = strncmp(howqp,'i',1);
 if OPTIONS(7)==0 | OPTIONS(7) == 5
% This merit function looks for improvement in either the constraint
% or the objective function unless the sub-problem is infeasible in
which
% case only a reduction in the maximum constraint is tolerated.
% This less "stringent" merit function has produced faster
convergence in
% a large number of problems.
 if mg > 0
 MATL2 = mg;
 elseif f >=0
 MATL2 = -1/(f+1);
 else
 MATL2 = 0;
 end
 if ~infeas & f < 0
 MATL2 = MATL2 + f - 1;
 end
 else
% Merit function used for MINIMAX or ATTGOAL problems.
 MATL2=mg+f;
 end
 if mg < eps & f < bestf
 bestf = f;
 bestx = XOUT;
 end
 MERIT = MATL + 1;
 MERIT2 = MATL2 + 1;

 OPTIONS(18)=2;
 while (MERIT2 > MATL2) & (MERIT > MATL) & OPTIONS(10) <
OPTIONS(14) & ~OPT_STOP
 OPTIONS(18)=OPTIONS(18)/2;
 if OPTIONS(18) < 1e-4,
 OPTIONS(18) = -OPTIONS(18);

 % Semi-infinite may have changing sampling interval
 % so avoid too stringent check for improvement
 if OPTIONS(7) == 5,
 OPTIONS(18) = -OPTIONS(18);
 MATL2 = MATL2 + 10;
 end
 end
 XOUT = MATX + OPTIONS(18)*SD;
 x(:)=XOUT;
 if strcmp(FUNfcn{4},'ncdtoolbox')
 [f,g] = feval(FUNfcn{1},x,varargin{:});
 else
 [f,g,msg] = opteval(x,FUNfcn,varargin{:});
 error(msg);

 119

 end
 g = g(:);
 if OPT_STOP
 break;
 end

 OPTIONS(10) = OPTIONS(10) + 1;
 ga=[abs(g((1:OPTIONS(13))')) ; g(
(OPTIONS(13)+1:length(g))')];
 if ~isempty(g)
 mg=max(ga);
 else
 mg = 0;
 end

 MERIT = f+sum(OLDLAMBDA.*(ga>0).*ga);
 if OPTIONS(7)==0 | OPTIONS(7) == 5
 if mg > 0
 MERIT2 = mg;
 elseif f >=0
 MERIT2 = -1/(f+1);
 else
 MERIT2 = 0;
 end
 if ~infeas & f < 0

 MERIT2 = MERIT2 + f - 1;
 end
 else
 MERIT2=mg+f;
 end
 end

%----------- Finished Line Search ------------

 if OPTIONS(7)~=5
 mf=abs(OPTIONS(18));
 LAMBDA=mf*LAMBDA+(1-mf)*LOLD;
 end
 if max(abs(SD))<2*OPTIONS(2) & abs(gf'*SD)<2*OPTIONS(3) & ...
 (mg<OPTIONS(4) | (strncmp(howqp,'i',1) & mg > 0))
 if OPTIONS(1)>0
 if OPTIONS(7)==1,
 gamma = mg+f;
 disp([sprintf('%5.0f %12.6g
',OPTIONS(10),gamma),sprintf('%12.3g ',OPTIONS(18)),how, '
',howqp]);
 else
 disp([sprintf('%5.0f %12.6g %12.6g
',OPTIONS(10),f,mg),sprintf('%12.3g ',OPTIONS(18)),how, '
',howqp]);
 end
 if ~strncmp(howqp, 'i', 1)
 disp('Optimization Converged Successfully')
 active_const = find(LAMBDA>0);
 if active_const
 disp('Active Constraints:'),

 120

 disp(active_const)
 else % active_const == 0
 disp(' No Active Constraints');
 end
 end
 end
 if (strncmp(howqp, 'i',1) & mg > 0)
 disp('Warning: No feasible solution found.')
 end
 status=1;

 else
 % NEED=[LAMBDA>0]|G>0
 if OPTIONS(10) >= OPTIONS(14) | OPT_STOP
 XOUT = MATX;
 f = OLDF;
 if ~OPT_STOP

 disp('Maximum number of function evaluations
exceeded;')
 disp('increase OPTIONS(14)')
 end
 status=1;
 end
 end
end

% If a better unconstrained solution was found earlier, use it:
if f > bestf
 XOUT = bestx;
 f = bestf;
end
OPTIONS(8)=f;
x(:) = XOUT;
if (OPT_STOP)
 disp('Optimization terminated prematurely by user')
end

