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ABSTRACT 
 

 

TWO VERSIONS OF THE STREAM CIPHER SNOW 

 
 

Yılmaz, Erdem 

 

 

M.Sc., Department of Electrical and Electronics Engineering 

 

Supervisor: Assoc. Prof. Dr. Melek D. Yücel 

 

 

December 2004, 60 pages 

 

 

 

Two versions of SNOW, which are word-oriented stream ciphers proposed by P. 

Ekdahl and T. Johansson in 2000 and 2002, are studied together with cryptanalytic 

attacks on the first version. The reported attacks on SNOW1.0 are the “guess-and-

determine attack”s by Hawkes and Rose and the “distinguishing attack” by 

Coppersmith, Halevi and Jutla in 2002. A review of the distinguishing attack on 

SNOW1.0 is given using the approach made by the designers of SNOW in 2002 on 

another cipher, SOBER-t32. However, since the calculation methods for the 

complexities of the attack are different, the values found with the method of the 

designers of SNOW are higher than the ones found by Coppersmith, Halevi and 

Jutla. 

 

The correlations in the finite state machine that make the distinguishing attack 

possible and how these correlations are affected by the operations in the finite state 

machine are investigated. Since the substitution boxes (S-boxes) play an important 
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role in destroying the correlation and linearity caused by Linear Feedback Shift 

Register, the s-boxes of the two versions of SNOW are examined for the criteria of 

Linear Approximation Table (LAT), Difference Distribution Table (DDT) and Auto-

correlation Table distributions. 

 

The randomness tests are performed using NIST statistical test suite for both of the 

ciphers. The results of the tests are presented. 

 

 

Keywords: Stream Cipher, SNOW, S-box, Distinguishing Attack, Randomness Tests 
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ÖZ 
 

 

SNOW AKAN ŞİFRESİNİN İKİ UYARLAMASI 

 
 

 

Yılmaz, Erdem 

 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

 

Tez yöneticisi: Doç. Dr. Melek D. Yücel 

 

 

Aralık 2004, 60 sayfa 

 

 

 

P. Ekdahl ve T. Johansson tarafından 2000 ve 2002 yıllarında önerilen ve kelime 

odaklı akan şifrelerden olan SNOW’un iki uyarlaması ve birinci uyarlamasına 

yapılmış kriptanaliz atakları üzerinde çalışılmıştır. SNOW1.0 için rapor edilen bu 

ataklar, 2002 yılında, Hawkes ve Rose’un “tahmin et ve belirle”, Coppersmith, Halevi 

and Jutla’nın “ayırt etme” ataklarıdır. SNOW’un tasarımcılarının 2002’de başka bir 

şifre, SOBER-t32, için yaptığı yaklaşım kullanılarak, bu tezde SNOW1.0’e yapılmış 

olan ayırt etme atağı yinelenmiştir. Fakat atak karmaşıklıklarını hesaplama 

yöntemleri farklı olduğundan, SNOW’un tasarımcılarının yöntemiyle bulunan 

değerler Coppersmith, Halevi ve Jutla’nın bulduklarından fazladır. 

 

Ayırt etme atağını mümkün kılan sonlu durum makinesindeki benzeşmeler ve bu 

benzeşmelerin Sonlu Durum Makinesi’ndeki işlemlerden nasıl etkilendiği 

araştırılmıştır. Yerleştirme kutuları Doğrusal Geri Beslemeli Kaydımalı Yazdırgaç’ın 



 

vii

sebep olduğu doğrusallık ve benzeşmelerin ortadan kaldırılmasında önemli bir rol 

oynadığı için, SNOW’un yerleştirme kutularının özellikleri, Doğrusal Yaklaşım 

Tablosu, Fark Dağılımı Tablosu ve Oto-korelasyon Tablosu dağılımı ölçütlerine göre 

incelenmiştir. 

 

Ayrıca NIST istatiksel test ortamı kullanılarak her iki algoritma için de rassallık 

testleri yapılmış ve test sonuçları sunulmuştur. 

 

 

Anahtar Kelimeler:  Akan Şifre, SNOW, Yerleştirme Kutusu, Ayırt Etme Atağı, 

Rassallık Testleri 
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CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

Traditionally, different systems have been used by governments and the 

military forces to prevent national or military secrets to be revealed by enemies. 

Today, also when we use our credit card or an ATM, watch pay-per-view channels, 

or buy something on the web, some security systems are used to offer protection. 

Achieving security requires some technical skills, which are provided through 

cryptography. There are two different types of cryptographic techniques, which are 

called symmetric key cryptography and public key cryptography. 

In public key cryptography, the keys are not symmetric. There are two types 

of keys, which are called the public key and the private key; which belong to the 

same person. The public key is used to encrypt a message, but the message can 

only be decrypted by the person who has the private key. These keys are generated 

so that, one can not obtain the private key from the public key. 

In symmetric key cryptography, encrypting and decrypting operations are 

done using the same key both on the sender and receiver sides. These types of 

algorithms are also called as secret key algorithms. The key in symmetric key 

cryptography is the single critical parameter that is to be kept secret. There are two 

types of symmetric key algorithms: stream ciphers and block ciphers.  

Block ciphers encrypt the plaintext in blocks. These types of algorithms take 

the plaintext in fixed-length blocks as input and give the ciphertext again in fixed-

length blocks as output. In most of the cases, the block lengths for the plaintext and 

the ciphertext are the same. Stream ciphers encrypt the plaintext character by 

character (or bit by bit). These types of algorithms produce a stream of bits, which is 

called the keystream of the algorithm. This keystream is used to encrypt or decrypt 

the plaintext or the ciphertext. 
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Stream ciphers have several properties that make them suitable for use in 

telecommunication applications. But apart from the security tried to obtain, the main 

property that makes stream ciphers distinguishable from block ciphers is that they 

are in general fast and have low hardware complexity. 

Before 1999, there was not much interest on stream ciphers and most of the 

stream ciphers were bit-oriented, however they do not perform well in software. After 

the call for the NESSIE1 project, the interest on stream ciphers has started to rise 

significantly. 

An open call in March 2000 led to the submission of forty cryptographic 

primitives to the NESSIE project. There were five stream ciphers submitted to 

NESSIE. 

• LEVIATHAN 

• SOBER-t16 and SOBER-t32 

• BMGL 

• LILI-128 

• SNOW 

Among these, four of them, SOBER-t16, SOBER-t32, LILI-128 and SNOW, 

are based  on linear feedback shift registers.  

The NESSIE evaluation process was an open process which means that 

apart from the evaluations made by NESSIE partners, NESSIE project welcomes 

comments and evaluations from all over world. The evaluation process was divided 

into two phases and after the second phase, none of the ciphers was recommended 

by NESSIE. Because, every stream cipher was exposed to an attack faster than 

exhaustive search. 

The stream cipher SNOW was submitted by Patrik Ekdahl and Thomas 

Johansson, to provide not only the security aspects but also a good performance in 

software. The first version of SNOW (SNOW1.0) passed the first phase of the 

NESSIE evaluation, but could not pass the second phase due to two attacks 

reported. One was a guess-and-determine attack [Hawkes, Rose; 2002] and the 

other was a distinguishing attack [Coppersmith, Halevi, Jutla; 2002]. These attacks 

                                                 
1 The NESSIE project is a three year project (2000-2002) that is funded by the European Union’s Fifth Framework 
Programme. The main objective of the NESSIE project is to put forward a portfolio of strong cryptographic primitives 
of various types. 
 



 

3

revealed some weaknesses in the design and a new improved version of the cipher, 

SNOW2.0, was developed. Although the reasons for some weaknesses in 

SNOW1.0 are known, the exact reasons for the strong correlations in the FSM are 

not known.  

In this study, the reasons behind the changes applied to SNOW1.0 to 

improve the security are studied and searched. Among the changes that have been 

made, one was the substitution box. So, both of the substitution boxes are 

examined. Their LAT (Linear Approximation Table), DDT (Difference Distribution 

Table) and Auto-correlation Tables are formed and comparisons are made. Some 

tests are performed to see how the correlations in the FSM are affected by the 

changes in the s-box and other operations in the FSM, and the reasons for large 

correlations are investigated. 

In [Ekdahl, Johansson; 2002b], Ekdahl and Johansson mount a 

distinguishing attack on Sober-t32 [Hawkes, Rose; 2000] whose structure is very 

similar to SNOW1.0. Their distinguishing attack is very similar to the one applied on 

SNOW1.0 [Coppersmith, Halevi, Jutla; 2002]. In this study, we give a detailed 

review of the distinguishing attack on SNOW1.0 using the description of the attack 

on SOBER-t32 [Ekdahl, Johansson; 2002b]. However, since the methods of 

calculation for the complexities of the attack are different, the values found with the 

method used in [Ekdahl, Johansson; 2002b] are higher than the ones in 

[Coppersmith, Halevi, Jutla; 2002]. 

 Randomness tests are performed using NIST statistical test suite for both of 

the ciphers. The results of the tests are presented and compared. 

 

Chapter 1 gives an overview of the cryptography and a summary of the thesis. 

 
In Chapter 2, an introduction to stream ciphers and Boolean functions are given. 

The properties of LFSRs and s-boxes, which play important roles in a stream cipher 

system, are described. 

 

In Chapter 3, the information about the structures of two versions of SNOW is given. 

 

In Chapter 4, the examination of s-boxes and finite state machine is presented.  A 

review of the distinguishing attack is given using the approach in [Ekdahl, 
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Johansson; 2002b] made for SOBER-t32; together with the search for the 

correlations in the FSM while changing the operations in the FSM. The results of the 

randomness tests are presented. 

 

In Chapter 5, concluding remarks are discussed along with future work for possible 

improvements. 
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CHAPTER 2 

 

 

STREAM CIPHERS 
 

 

 

A stream cipher is a cryptographic technique that encrypts binary digits 

individually, using a transformation that changes with time. This is contrasted to a 

block cipher, where a block of binary data is encrypted simultaneously, with the 

transformation usually being constant for each block.  

In specific applications, stream ciphers are more appropriate than block 

ciphers [NESSIE Sec. Rep.; 2003 and Robshaw, RSA Lab. Tech. Rep.; 1995] : 

• Stream ciphers are generally faster than block ciphers, especially in 

hardware. 

• Stream ciphers have less hardware complexity and less memory 

requirements for both hardware and software.  

• Stream ciphers process the plaintext character by character, so no buffering 

is required to accumulate a full plaintext block (unlike block ciphers). 

• Synchronous stream ciphers (Section 2.1) have no error propagation. 

 

Most stream ciphers are based on simple devices that are easy to implement 

and run efficiently. A common example of such a device is the linear feedback shift 

register (LFSR) [Rueppel;1986]. Such simple devices produce predictable output 

given some previous output. This is due to the linear property of the device. 

Therefore, in order to use LFSRs in cryptographical primitive, and particularly in a 

stream cipher, the linearity must be destroyed. Thus, Boolean functions and S-

boxes are introduced together with their basic properties.  
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2.1  Stream Ciphers 

Stream ciphers are divided into two sets called synchronous and self-

synchronous.  

Definition 2.1: In a synchronous stream cipher, the keystream is generated 

independently of the plaintext and the ciphertext. 

A synchronous stream cipher can be represented by a finite state machine, 

as illustrated in Figure 2.1. Now let’s take a look at the encryption process. It can be 

described at time 0≥t  by the equations 

where 0σ  is the initial state and may depend on the key k. f  is the next-state 

function, g is the function which produces the keystream  tz , 0≥t  and h is the 

output function which combines the keystream and plaintext to produce the 

ciphertext tc , 0≥t . 

One of the most common types of synchronous stream cipher is the binary 

additive stream cipher. A binary additive stream cipher is a synchronous stream 

cipher where the plaintext, ciphertext, and keystream all are binary sequences, and 

furthermore, the encryption function h (output function) is the simple XOR operation, 

i.e.,  

 iii zmc ⊕=  .                                                                                             (2.2) 

Figure 2.1 : General structure of a synchronous stream cipher 
 

  (2.1)
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 Since the keystream from a synchronous keystream generator neither 

depends on the plaintext, nor on the ciphertext, there is no error propagation. That 

is, if a certain symbol in the ciphertext has been corrupted by transmission error, the 

rest of the ciphertext will not be affected. 

To be able to decrypt correctly, the receiver has to be in perfect 

synchronization with the sender. If synchronization is lost, the decryption will not 

work correctly and the information is lost. Thus, there is a need for mechanisms for 

detecting lost synchronization and for re-initialization. Due to the synchronization 

property, synchronous stream ciphers are vulnerable to active attacks, where an 

adversary can insert or delete symbols to the ciphertext sequence. It will also make 

it possible for an adversary to change some of the ciphertext symbols and still 

create a valid ciphertext sequence. Thus, we need to use additional techniques to 

guarantee message authentication.  

A frame based communication protocol can be used to defeat this 

synchronization problem. In this protocol, message sequence is first divided into 

smaller frames which are numbered with a frame number. We then add a feature 

called an Initialization Value (IV), which is publicly known and used in the 

initialization of the stream cipher together with the secret key. Now, with a fixed key 

but with a changing IV, the stream cipher will produce different sequences of 

keystream material for each IV. For each frame the receiver tries to decrypt, he 

looks at the public frame number attached to the frame of encrypted information and 

pre-initializes the stream cipher with the new frame number as IV and the secret 

key, and then decrypts the information. If synchronization is lost for a single frame, it 

will only affect a small amount of information, until a new frame arrives and he can 

synchronise. 

 

Definition 2.2 : A self-synchronizing or asynchronous stream cipher is a stream 

cipher where the keystream is generated as a function of the key, k , and at most t  

previous ciphertext symbols. 

 

As for synchronous stream ciphers, we can define a state iσ  also for a self-  

synchronizing stream cipher. Here the state is taken as the t  previous ciphertext 

symbols, 

),......,,( 21 tiiii ccc −−−=σ .                                                                            (2.3) 
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Figure 2.2 : General structure of a self-synchronizing stream cipher  

 

 

The ith keystream symbol, iz , is generated as a function, denoted by g, of 

the initial state and the key, 

=iz g( iσ , k ).                                                                                             (2.4) 

 From the definition of the state, we observe that we need to have an initial 

state defined by a initial value for i < 0. This initial value may be public. The principle 

of self-synchronizing stream ciphers is illustrated in Figure 2.2.  

Since the state depends only on the last t  ciphertext symbols, the key- 

stream will automatically be re-synchronized after a limited time, if some ciphertext 

symbols are lost during transmission. If a single error occurs on the channel, the 

decryption of the next t  ciphertext symbols will be affected. Thus, the error 

propagation is worse for self-synchronizing stream ciphers compared with 

synchronous stream ciphers. The self-synchronization property will also make it 

harder to detect insertion or deletion of false ciphertext digits by an active adversary. 

Thus, there is a need for additional methods to guarantee message authentication.  

 

2.2  Linear Feedback Shift Registers 

 Linear Feedback Shift Registers (LFSRs) are the most commonly used 

devices as keystream generators. LFSRs produce sequences having large periods 

and good statistical properties, they are well-suited for hardware implementations 
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and there are mathematical techniques to analyse them. For this reason it will be a 

good start to use LFSRs while designing a stream cipher. 

 A linear feedback shift register produces a sequence, s = s0,s1,s2,...., 

satisfying the linear recurrence function, 

∑
=

−=
l

j
jnjn scs

1
,             ,....,1, += lln                                                          (2.5)  

 

where l is the length of the LFSR, .1, ≥∈ iFs qi  The general form of a linear 

feedback shift register is illustrated in Figure 2.3. An LFSR consists of l delay 

elements, where each delay element, also called stage, can store an element, or 

digit, in qF . The l stages, (sn-l,sn-l+1,.....,sn-1), are together called the state of the shift 

register. Each feedback coefficient cj, j=1,....,l  is an element in qF .  Using the 

feedback coeffients, we define the feedback polynomial, or connection ploynomial, 

to be l
l

l
l xcxcxcxcxg ++++−= −
−

1
1

2
21 .....1)( . As an alternative to the feedback 

polynomial one can use the characteristic polynomial, 

ll
lll cxcxcxcxxf −−−−−= −
−−

1
2

2
1

1 .....)( . The first L output symbols ,s0,s1,s2,....,sl-1 

are initially loaded into the l stages. These symbols loaded into the LFSR, together 

form the initial state. 

 

Figure 2.3 : Linear Feedback Shift Register of length l 

 

 Since there are only a finite number of possible states, lq ,the sequence 

produced by the LFSR must repeat itself after a finite period, i.e., for every starting 

state we can find a T such that Ttt ss += , 0≥t . The period depends on the 
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properties of the feedback polynomial, and for our use in stream ciphers, we confine 

ourselves to the following definition and theorem regarding the period. 

Definition 2.3 : The feedback polynomial )(xg  is called irreducible if it can not be 

written as the product of two polynomials with coefficients in qF and positive degree. 

If the root x of an irreducible polynomial )(xg  of degree l is a generator of the 

multiplicative group of all the non-zero elements of lq
F , )(xg  is called primitive 

polynomial. 

Theorem 2.1 : Consider an LFSR of length l and feedback polynomial )(xg , where 

)(xg  is a primitive polynomial of degree l over qF .Then each of the 1−lq  non-zero 

initial states of the LFSR produces the sequence with period 1−lq . 

Then, all possible states except the all zero state will appear during a period. 

An LFSR with a primitive feedback polynomial is also called maximum-length LFSR, 

and the sequence generated is called a maximum-length LFSR. 

Definition 2.4 : The linear complexity of a sequence s = s0,s1,s2,....,si ∈ qF , denoted 

)(sL , is the length of the shortest LFSR that generates the sequence. 

Given at least 2 )(sL  output symbols of an LFSR, the linear complexity can 

be determined with the Berlekamp-Massey algorithm [Massey; 1969]. Thus, LFSRs 

have good statistical properties and can be a useful block for stream ciphers, but 

some further work is required to prevent attacks that make use of the inherent 

linearity (Section 2.3). 

There are many different considerations that we must keep in mind when we 

consider the suitability of a keystream generated by some stream cipher. Some of 

these considerations are period, linear complexity and statistical measure of the 

keystream.  

• Period : If the period of the keystream is too short, then different parts of the 

plaintext will be encrypted with the repeating keystream and this causes a 

severe weakness. A good assesment is necessary regarding the period of 

the keystream while designing a stream cipher. Practically, the period should 
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be long enough so that the same portion of the keystream is not used more  

than once. 

• Linear Complexity : It is an indication for how difficult a sequence might be 

to replicate. While a high linear complexity is a necessary condition, the 

following example shows that it is not a sufficient condition. Consider the 

sequence consisting of a single 1 with the remaining bits set to 0. In this 

case the linear complexity is equal to the length of the sequence. However it 

is clear that as a keystream such a sequence is useless since all bits except 

the starting bit are zero. 

Rueppel [Rueppel; 1984] proposes the use of the linear complexity profile in 

the analysis of stream ciphers. After each bit is added to the keystream the 

linear complexity of the sequence seen so far is calculated; the value of the 

linear complexity can be plotted against the number of bits that have been 

examined, thereby giving a 'profile' of the sequence. Rueppel established 

that the linear complexity profile for a perfectly random source closely follows 

the line 2/xy = . 

• Statistical measures : A wide range of different statistical tests can be 

applied to a sequence to assess how well it was generated by a perfectly 

random source. (Appendix A).  

But note that properties like large period, large linear complexity and a good 

statistical behaviour are necessary but not sufficient conditions for a stream cipher 

to be considered cryptographically secure. 

 

2.3  Introducing nonlinearity 

 If an LFSR is used as a sequence generator in a stream cipher system, 

nonlinearity has to be introduced to the output stream. There are a number of 

standard tecniques that can be used to form a highly nonlinear output sequence.  

But before mentioning these techniques, Boolean functions and substitution boxes, 

which have a great role in destroying the linearity caused by LFSRs, will be 

presented. 
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2.3.1  Boolean Functions 

 A Boolean function, )(xf  takes a binary vector 1 2 2( , ,..., ), n ix x x x x= ∈F  

ni ≤≤1 , as input and outputs one bit, i.e., 

2 2: nf →F F  

The vectors in 2
nF  ,in ascending lexicographic order, are denoted by 0 1 2 1

, ,..., nα α α
−

. 

As vectors in 2
nF  and integers in 0,2 1n⎡ ⎤−⎣ ⎦  have a natural one-to-one 

correspondence, it allows us to switch from a vector in 2
nF  to its corresponding 

integer in 0,2 1n⎡ ⎤−⎣ ⎦ , and vice versa. 

 The sequence of f  is defined as 0 1 2 1
( )( ) ( )(( 1) , ( 1) ,..., ( 1) )nff f αα α −− − − , while the 

truth table of f is defined as 0 1 2 1
( ( ), ( ),..., ( ))nf f fα α α

−
. A Boolean function )(xf  

can also uniquely be expressed in algebraic normal form. 

nnnnn xxxaxxaxxaxaxaaxxxf ................),....,,( 21....123113211211021 +++++++= , 

where addition and multiplication are in 2F . For a Boolean function 

32211321 ),,( xxxxxxxxf ++=                                             

the truth table is shown in Table 2.1. 

Definition 2.5 : The algebraic degree of a Boolean function f  is defined to be the 

number of variables in the highest order product of f , when f  is written in 

algebraic normal form. The algebraic degree of f  is denoted by )deg( f . 

 We call 1 1( ) ... n nf x a x a x c= + + +  an affine function, where 1 2( , ,..., )nx x x x=  

and , (2)ja c GF∈ . In particular, f  will be called a linear function if 0c = . The 

sequence of an affine (linear) function will be called an affine (linear) sequence. 

An n  variable Boolean function f  is balanced  if the output column in the 

truth table contains an equal number of 0’s and 1’s. Alternatively, f is balanced if 

2/1)1)(()0)(( ==== xfPxfP , when x  is chosen uniformly in 2
nF . 
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Table 2.1 : The Truth Table of the Boolean function 32211321 ),,( xxxxxxxxf ++=  

1x 2x 3x ),,( 321 xxxf

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 
 

2
nF  is the set of all Boolean functions in n  variables, and let nA  be the set of 

all affine functions in n  variables. The Hamming distance between two functions 

2( ), ( ) nf x g x F∈  is defined as, 

{ }2( , ) | ( ) ( ), n
Hd f g x f x g x x= ≠ ∈F .                                                        (2.6) 

 

Definition 2.6 : Nonlinearity of a Boolean function )(xf , denoted by fN , is the 

Hamming distance to the nearest affine function, i.e., 

),(min gfdN HAgf
n∈

= .                                                                                  (2.7) 

 

 A high nonlinearity is desirable property since it will decrease the correlation 

between the output and the input variables or a linear combination of input variables. 

This property is very important while designing a nonlinear combining generator 

(Section 2.3.3). 

 

Definition 2.7 : An n  variable Boolean function is defined to be t-th order 

correlation immune , if for any t-tuple of independent identically distributed binary 

random variables 
tiii XXX ,....,,

21
, we have 
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0);,....,,(
21

=YXXXI
tiii ,    niii m ≤<<<≤ ...1 21 ,                                 (2.8) 

where ),...,,( 21 nXXXfY = , and );( YXI denotes the mutual information. 

 

Siegenthaler [Siegenthaler; 1984] showed that there is a tradeoff between the 

algebraic degree and the order of correlation immunity. 

Theorem 2.2 : Let )(xf  be a balanced Boolean function in n variables of algebraic 

degree d which is t-th order correlation immune. Then the following upper bound 

[Siegenthaler; 1984] must hold  

1  1 2
      1.     

d t n if t n
d t n if t n
+ ≤ − ≤ ≤ −
+ ≤ = −

                                                                     (2.9)     

 

A Boolean function that is both balanced and t-th order correlation immune is called 

a t-resilient function. 

 

 The properties above are often investigated through Walsh Transform. 

 

Definition 2.8 : For a Boolean function, 2 2: nf →F F , the Walsh Transform of )(xf  

is defined to be the real valued function )(wF  over the vector space 2
nF  given by 

∑ ⋅⊕−=
x

xwxfwF )()1()(                                                                              (2.10) 

where the dot product (sum of component-wise products) of vectors x  and w  is 

defined as 1 1, ..... n nx w x w x w x w⋅ = = + + .  

 

The component-wise product of two vectors x  and w  is a vector denoted by x w∗ .  

 

 The Hamming distance between a Boolean function )(xf  and an affine 

function ( )g x w x c= ⋅ ⊕ , where 2c∈F , can be calculated with the Walsh transform 

as 

2
)()1(2),( 1 wFgfd

c
n

H
−

−= − .                                                                 (2.11) 
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Thus the nonlinearity of )(xf  can be obtained from the Walsh transform as 

)(max
2
12 1 wFN

w

n
f −= − .                                                                        (2.12) 

 

Theorem 2.3 : A Boolean function is t-th order correlation immune if and only if 

,0)( =wF    2 |1 ( )n
Hw w w t∀ ∈ ≤ ≤F ,                                                       (2.13) 

where )(wwH  is the Hamming weight of w , i.e., the number of nonzero positions in 

w . 

 

A Boolean function )(xf  is balanced if and only if 0)0( =F . Hence we see 

that Walsh transform is an important tool when investigating properties of Boolean 

functions. 

Definition 2.9 : Let f  be a function on 2
nF . For a vector 2

nα ∈F , denote by ( )ξ α  

the sequence of ( )f x α⊕ . Thus (0)ξ  is the sequence of f  itself and (0) ( )ξ ξ α∗  

is the sequence of ( ) ( )f x f x α⊕ ⊕ . Define the auto-correlation of  f  with a shift  

α  by 

( ) (0), ( )α ξ ξ α∆ = ,                                                                                (2.14) 

which is also equal to ( ) ( )( 1) ( 1)
n

f x f x

x V

α⊕

∈

− −∑ . 

Definition 2.10 : The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of 

order 2n , denoted by nH , is generated by the recursive relation 

1 1

1 1

n n
n

n n

H H
H

H H
− −

− −

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 00,1, 2,....,  1n H= = .                                           (2.15) 

Each row (column) of nH  is a linear sequence of length 2n .  

 

 Let ξ  be the sequence of a function f  on 2
nF . Then, another definition of 

nonlinearity of f , fN  can be calculated by 

1 12 max{ , ,0 2 1}
2

n n
f iN l iξ−= − ≤ ≤ −                                                   (2.16) 
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where il  is the thi row of nH , 0,1,..., 2 1ni = − , and  

22 2
0 1 0 12 1 2 1

( ( ), ( ),..., ( )) ( , , , ,..., , )n nnH l l lα α α ξ ξ ξ
− −

∆ ∆ ∆ =                  (2.17) 

where iα  is the binary representation of an integer i and il  is the thi  row of nH , 

0,1,..., 2 1ni = − . And also that note , ilξ  is equal to Walsh transform of f , ( )F w . 

As a conclusion Boolean functions should have some properties when used 

as a combining function (Section 2.3.3) in a stream cipher sysytem: 

Algebraic degree  A high algebraic degree is desirable since it increases 

the linear complexity of the resulting keystream. 

Nonlinearity  A high nonlinearity gives a weaker correlation between the 

input variables and the output variable and increases the resistance to 

correlation attacks. 

Correlation immunity  A high correlation immunity forces the attacker to 

consider several input variables jointly and thus decreaes the vulnerability of 

divide-and-conquer attacks. 

2.3.2  S-Boxes 

 An s-box (Substitution box) can be considered as a vector output Boolean 

function.  

An n m×  s-box  is a mapping from 2
nF  to 2

mF , i.e.,  0 1( , ,..., )mF f f f= , where 

n  and m  are integers with 1n m≥ ≥  and each component function jf  is a function 

on 2
nF . 

Lemma 2.11 : A function 1 2( , ,..., )mF f f f= , where each if , 1 i m≤ ≤ , is a Boolean 

mapping 2 2
n →F F , is uniformly distributed (balanced) if and only if all nonzero linear 

combinations of 1 2, ,..., mf f f  are balanced. 

The concept of nonlinearity can be extended to the case of an s-box. 

Definition 2.12 : The standard definition of the nonlinearity of  0 1( , ,..., )mF f f f= is 

1
min{ | ,  (2), 0}

m

F g j j jg j
N N g c f c GF g

=
= = ⊕ ∈ ≠                                         (2.18) 
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LAT (Linear Approximation Table), DDT (Difference Distribution Table) and 

Auto-Correlation Tables are some of the criterions that are used to measure the 

security of s-boxes. The tables of an n m×  s-box is a 2 2n m×  matrix. 

First we introduce three more notations, ( ), ( ) and j j jk α α η∆ , associated 

with an s-box 1 2( , ,..., )mF f f f= . Then we will define the three tables mentioned 

above. 

Definition 2.13: Let 1 2( , ,..., )mF f f f=  be an n m×  s-box, 2
nα ∈F , 0,1,..., 2 1mj = −  

and 1( ,..., )j mb bβ =  be the vector in 2
mF  that corresponds to the binary 

representation of j . In addition set 
1

m

j u uu
g b f

=
= ⊕  be the j th linear combination of 

the component functions of F . Then we define  

1. ( )jk α  as the number of times ( ) ( )F x F x α⊕ ⊕  equals 2
m

jβ ∈F  while x  

runs through 2
nF  once, 

2. ( )j α∆  as the auto-correlation of jg  with a shift α , 

3. jη  as the sequence of jg .  

Then ,j ilη  is the Walsh transform of jg . 

In LAT, the rows, indexed by the vectors in 2
nF , represent the coefficients of 

a linear boolean function, while the columns, indexed by the vectors in 2
mF , 

represent the coefficients for a linear combination of component functions of F . An 

entry in the table indicates the number of matches between input vectors for which 

the values of a linear function  and a linear combination of component functions of 

F  minus 12n− . In addition it can be defined as  
1( , ) 2 ( , ( ))n

H j iLAT i j d g l x−= − ,    ( )i nl x A∈                                             (2.19) 

An entry in the j-th column of the table equals to half of the Walsh transform of jg . 

Below is the corresponding matrix for LAT table. 
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0 0 02 1

0 2 1 2 1 2 1

, 2 , 2

, 2 , 2

m

n m n

l l

LAT

l l

η η

η η

−

− − −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

                                                        (2.20) 

In DDT, the rows, indexed by the vectors in 2
nF , represent the changes in 

the inputs, while the columns, indexed by the vectors in 2
mF , represent the change 

in the output of the s-box. An entry in the table indexed by ( , )α β  indicates the 

number of input vectors which, when changed by α  (in the sense of bit-wise XOR), 

result in a change in the output by β  (also in the sense of bit-wise XOR). 

0 0 02 1

0 2 1 2 1 2 1

( ) ( )

( ) ( )

m

n m n

k k
DDT

k k

α α

α α

−

− − −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

                                                      (2.21) 

 

In Auto-correlation table, the rows indexed by the vectors in 2
nF , represent 

the changes in the inputs, while the columns, indexed by the vectors in 2
mF , 

represent the coefficients for a linear combination of component functions of F . An 

entry in the table indexed by ( , )α β  indicates the auto-correlation of jg  with a shift 

α . 

0 0 02 1

0 2 1 2 1 2 1

( ) ( )
 

( ) ( )

m

n m n

Auto correlation table
α α

α α

−

− − −

⎛ ⎞∆ ∆
⎜ ⎟

− = ⎜ ⎟
⎜ ⎟∆ ∆⎝ ⎠

K

M O M

L

                       (2.22) 

 

 

In [Zhang, Zheng, Imai; 1998], a relationship between these tables  are 

shown. Instead of correlation immunity distribution table used in [Zhang, Zheng, 

Imai; 1998] we use LAT. So, the relations are rewritten. An entry in LAT is equal to 

the half of the square root of the corresponding entry in correlation immunity 

distribution table. 

• mACT DDT H= ⋅                                                                                     (2.23) 

• 2 n
nACT H LAT−= ⋅                                                                                 (2.24) 
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2.3.3  Some Classic Stream Cipher Designs 

 In this section mainly the LFSR based stream cipher designs are presented. 

There are three obvious ways to generate an alternative output. These are 

Nonlinear combination generators, Nonlinear filter generators and Clock-controlled 

generators. They are not only used lonely but also combined to get more complex 

and hopefully more secure stream ciphers. 

 In a nonlinear combination generator several linear feedback shift registers 

are used in parallel. The generator consists of n  LFSRs to, whose outputs are 

combined in a Boolean function f . The principle of a combination generator is 

illustrated in Figure 2.4. 

 

Figure 2.4 : Nonlinear combination generator 

 

 To get a secure nonlinear combination generator we need to find a function 

that is correlation immune and have high nonlinearity. But there is a tradeoff 

between these properties (Theorem 2.2). To eliminate this tradeoff, the memoryless 

function f  can be replaced by a finite state machine with memory. And to increase 

both correlation immunity and nonlinearity we must employ a large number of 

LFSRs. 

 Instead of using several LFSRs one can use one single LFSR and generate 

the keystream as a nonlinear function f  of the stages of the LFSR. Such a 

keystream generator called a nonlinear filter generator. The function f  is then 

called filtering function. The principle of nonlinear filter generators is illustrated in 

Figure 2.5.  Also for a nonlinear filter generators we can replace the memoryless 
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filtering function with a finite state machine. One such cipher which has recently 

been proposed is SNOW (Chapter 3). 

 

Figure 2.5 : Nonlinear filter generator 

 

 The third method used in designing stream ciphers is by clock-controlled 

generators. In a clock-controlled generator, the output of one or several LFSRs 

controls the clocking of other shift registers. Two examples of clock-controlled 

generators are the shrinking generator and the alternating step generator. Another 

clock-controlled generator that is used in practice is the cipher A5 used in GSM 

phones. 
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CHAPTER 3 

 

 

DESCRIPTION OF SNOW1.0 AND SNOW2.0 
 

 

 

SNOW is designed by Patrick Ekdahl and Thomas Johansson [Ekdahl, 

Johansson; 2000] and submitted to NESSIE project. It has excellent performance, 

several times faster than AES. After the report of distinguishing and guess-and-

determine attacks on the first version, a new version of SNOW, which is called 

SNOW2.0 [Ekdahl, Johansson; 2002a], is proposed. The new version is said to be 

more secure and faster than SNOW1.0. In this chapter, first SNOW1.0 and then 

SNOW2.0 are described. A detailed analysis of SNOW1.0 related with the 

distinguishing attack is given in Section 4.2. 

3.1  Description of SNOW1.0  

SNOW1.0 is a keystream generator based on a LFSR defined over 322
F , 

where the nonliearity is provided by a Finite State Machine (FSM). It uses a 128-bit 

or 256-bit key and has an internal memory of 576 bits. The generator is shown in 

Figure 3.1, where we denote addition in 322
F  by the symbol ⊕ , addition modulo 322  

by the symbol    , multiplication by 322
∈α F  by α  and a cyclic shift of 7 steps to the 

left by <<< . SNOW uses an LFSR of length 16, feeding a finite state machine. The 

FSM consists of two 32 bit registers, called 1R  and 2R , as well as a some 

operations to calculate the output and the next value of 1R  and 2R . 

The operation of the cipher is as follows. First, the key initialization is done. 

This procedure provides initial values for the LFSR as well as for the 1R , 2R  

registers in the finite state machine. Next, the first 32 bits of the keystream are 

calculated by bitwise adding the output of the FSM and the last entry of the LFSR.  

 



 

22

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.1 : A schematic picture of SNOW1.0 

 

 

And after every clocking of the whole cipher, next 32 bits of the keystream 

are calculated. 

The LFSR has a primitive feedback polynomial over 322
F  which is  

16 13 7 1( ) ,−= ⊕ ⊕ ⊕p x x x x α                                                                        (3.1) 

where 322
F  is generated by the irreducible polynomial 

32 29 20 15 10( ) 1= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕x x x x x x xπ                                                   (3.2) 

over 2F , and ( ) 0π α = . Furthermore let 3215 14 0 2
, ,..., ∈s s s F  be the initial state of the 

LFSR, each +t is  being an element of 322
F . 

Now, let 1tR , 11tR +  and 2tR , 12tR +  denote the values of 1R  and 2R  at time 

, 1t t + , respectively. The LFSR can also be defined by a linear recurrence relation  

16 3 9( )+ + += ⋅ ⊕ ⊕t t t ts s s sα ,                                                                         (3.3) 

where ⋅  denotes multiplication in 322
F  and stored values 15( ,..., )t ts s+ corresponds to 

the state of the LFSR. The output of the FSM at time t  is computed as 

 15(t tf s +=    1 ) 2t tR R⊕ .                                                                             (3.4) 

 
15+ts    ts  



 

23

The 32-bit output of the cipher at time t  is computed as 

t t tz f s= ⊕ .                                                                                                (3.5) 

The next state of the FSM is computed as 

 11 1 (t t tR R ROT f+ = ⊕     2 ,7)tR                                                                 (3.6)                        

12 ( 1 )t tR S R+ = ,                                                                                          (3.7) 

where ( , )ROT A B  denotes the cyclic rotation of A  by B  bits towards the most 

significant bit, and ()S  is defined by four invertible 8-bit s-boxes and a bit 

permutation. 

 The s-box operation works as follows (Figure 3.2). The input x  is split into 4 

bytes. Each of the bytes enters a nonlinear mapping from 8 bits to 8 bits. 

 The nonlinear mapping is defined to be 
7 2 1,r w β β= ⊕ ⊕ ⊕                                                                                  (3.8) 

where the arithmetics are in 82
F . w  and r  are input and output vectors which are 

considered as representing elements in 82
F  using the polynomial base 7{ ,..., ,1}β β  

generated by the irreducible polynomial 8 5 3( ) 1x x x x xπ = ⊕ ⊕ ⊕ ⊕  and ( ) 0π β = . 

In Figure 3.2, γ  denotes 2 1⊕ ⊕β β , which also represents the vector element 

(00000111)  in 82
F . 

 After the nonlinear mapping, the bits in the resulting word are permuted. The 

permutation is described by 

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

3 10 20 24 0 14 17 29 7 13 18 25 5 12 13 27 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 8 21 26 4 9 19 31 2 11 16 28 6 15 22 30 

 

which should be interpreted as the 31st bit position is mapped to the 3rd , the 30th bit 

is mapped to the 10th, etc.  

 There are two modes of operation specified for SNOW1.0. These are the 

standard mode and IV (initial vector) mode. In the standard mode, only a secret key, 

called k , is used to form the seed.  But in IV mode the generator is initialized using 
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two variables, the secret key k  and a known initialisation value (IV). This means 

that for a given secret key k , the generator produces a set of pseudo-random 

number sequences, one for each IV value. The details of the modes of operation 

and key initialisation can be found in [Ekdahl, Johansson; 2000]. 

  

 

Figure 3.2 : The s-box in SNOW1.0 
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3.2  Description of SNOW2.0 

 SNOW2.0 [Ekdahl, Johansson; 2002a] is schematically a small modification 

of SNOW1.0, see Figure 3.3. The word size and LFSR length are the same, but the 

feedback polynomial is different. The Finite State Machine (FSM) has two input 

words, taken from the LFSR. 

  

 

Figure 3.3 : A schematic picture of SNOW2.0 

 

 There is a small difference in the operation of the cipher. In the first version, 

after the key initialization, the first symbol was read out before the cipher was 

clocked. But in the second version it is read out after the cipher is clocked once. 

 The feedback polynomial of SNOW2.0 is given by 

32
16 14 1 5

2
( ) 1 [ ],−= ⊕ ⊕ ⊕ ∈x x x x xπ α α F                                                     (3.9) 

where α  is a root of 8
4 23 3 245 2 48 239

2
[ ],⊕ ⊕ ⊕ ⊕ ∈x x x x xβ β β β F  
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and β  is a root of 8 7 5 3
21 [ ]⊕ ⊕ ⊕ ⊕ ∈x x x x xF . 

 The input to the FSM is 15 5( , )t ts s+ +  and the output of the FSM is calculated 

as  

 15(t tf s +=    1 ) 2t tR R⊕ ,   0t ≥                                                                 (3.10) 

 

and the keystream is given by 

t t tz f s= ⊕ ,   1t ≥ .                                                                                  (3.11) 

The next state of the FSM is computed as 

 1 51t tR s+ +=    2tR     and                                                                           (3.12) 

12 ( 1 )t tR S R+ =   0t ≥ .                                                                              (3.13) 

 

The s-box used in SNOW1.0 was changed with the one of Rijndael 

[Daemen, Rijmen; 2002] in SNOW2.0. K. Nyberg, in [Nyberg; 93], inspired J. 

Daemen and V. Rijmen to use a mapping 1x x−→  in the design of Rijndael. Nyberg 

presented the impressive properties of this mapping. Actually, the high nonlinearity 

property, which we also examine in Section 4.1, was first proven in the work of 

Carlitz and Uchiyama [Carlitz, Uchiyama; 1957]. 

It is a permutation on 322
Z . Let 3 2 1 0( , , , )w w w w w=  be the input to the s-box, 

where , 0...3iw i =  is the four bytes of .w  Assume 3w  to be the most significant byte. 

Let 

0

1

2

3

w
w

w
w
w

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                                                 (3.14) 

be a vector representation of the input to the s-box. First the Rijndael s-box, denoted 

RS , is applied to each byte. 

0

1

2

3

[ ]
[ ]
[ ]
[ ]

R

R

R

R

S w
S w
S w
S w

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                                                 (3.15) 
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Then the MixColumn Transformation of Rijndael’s round function is applied which 

can be computed as a matrix multiplication, 

0 0

1 1

2 2

3 3

[ ]1 1 1
[ ]1 1 1

1 1 1 [ ]
1 1 1 [ ]

R

R

R

R

r S wx x
r S wx x
r x x S w

x xr S w

+⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟=
⎜ ⎟ ⎜ ⎟⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠

                                            (3.16) 

where 3 2 1 0( , , , )r r r r  are the output bytes from the s-box. These bytes are 

concatenated to form the word output from the s-box ( ).r S w=  

SNOW2.0 has only IV mode of operation and length of the IV is 128 bit. The 

details of the key initialization can be found in [Ekdahl, Johansson; 2002a]. 

3.3  Implementation Performances of SNOW 

In addition to the improvements made in the cryptograhical sense, the 

implementation performance of SNOW1.0 was also improved in SNOW2.0. The 

implementation performances, that are tabulated in Table 3.1, are taken from 

[Ekdahl, Johansson; 2002a]. It is told that the tests were run on a PC with Intel 4 

processor running at 1.8GHz, 512 Mb of memory. 

 

 

Table 3.1 : Number of cycles needed for key setup and keystream generation on a 

Pentium 4 @1.8GHz 

 

 

 

 

 

 

 

 

 SNOW1.0 SNOW2.0  

Key sutup 925 937 

Keystream generation 47 38 
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CHAPTER 4 

 

 

EXAMINATION OF SNOW1.0 AND SNOW2.0 
 

 

 

The NESSIE evaluation process consists of two phases. The first version of 

SNOW (SNOW1.0) has passed the first phase of the NESSIE evaluation, but could 

not pass the second phase due to two attacks reported (Table 4.1). One is a guess-

and-determine attack [Hawkes, Rose; 2002] and the other is a distinguishing attack 

[Coppersmith, Halevi, Jutla; 2002]. Actually there are two methods reported for the 

guess-and-determine attack and they have different process and data complexities. 

In section 4.2.1, we give a review of the distinguishing attack on SNOW1.0 by using 

the description [Ekdahl, Johansson; 2002b] of the attack on SOBER-t32 [Hawkes, 

Rose; 2000]. Since the structure of SOBER-t32 is similar to SNOW1.0, i.e., both of 

the ciphers consist of an LFSR and a nonlinear function, the same approach can be 

made to SNOW1.0 as well. However, since the methods of calculation for the 

complexities of the attack are different, the values found with the method used in 

[Ekdahl, Johansson; 2002b] are higher than the ones in [Coppersmith, Halevi, Jutla; 

2002].  

 

Guess-and-determine attacks exploit the relationships between internal values (such 

as the recurrence relationship in a shift register), and the relationship used to 

construct the key-stream values from the internal values. It is a kind of key recovery 

attack. In this attack some internal values are guessed and then the relationships 

are used to determine other internal values. The cipher is said to be “broken" when 

a complete internal state has been determined from the guessed values. When this 

attack is applied to SNOW1.0, it is aided by the unfortunate choice of inputs to the 

recurrence relation, which is  
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Table 4.1 : Complexities of attacks on SNOW1.0 and SNOW2.0 

 

 

 

 

 

 

 

 

 

 

16 3 9( )t t t ts s s sα+ + += ⊕ ⊕ .                                                                           (4.1) 

There is a distance of 3 words between ts  and 3+ts , and a distance of 

6 2 3= ×  words between 3+ts  and 9+ts . Thus, by squaring (4.1) 

2
32 6 18( )+ + += ⊕ ⊕t t t ts s s sα                                                                          (4.2) 

we see that 6( )+ + +⊕t i t is s  can be considered as a single input to either equation. The 

attacker does not need to determine both +t is  and 6+ +t is  explicitly, but only the exor 

sum will be enough to use in (4.1) and (4.2). If the linear recurrence did not have this 

property, then it is likely that fewer state words could be derived from the guessed 

words, and the attacker would be unable to derive a full state from the guessed 

words. To overcome this weakness, the recurrence relation is changed in 

SNOW2.0. 

 

Distinguishing attacks against stream ciphers are basically established on the way 

of considering ciphers in two parts, linear and nonlinear. Linear approximation of the 

nonlinear part is found and then combined with the linear part. In SNOW1.0, 

obviously the linear part is the LFSR and the nonlinear part is the FSM. In 

[Coppersmith, Halevi, Jutla; 2002], it is shown that large correlations found in the 

FSM by the help of the linear approximation can be turned into a distinguishing 

attack. 

In SNOW1.0, the linearity caused by the linear feedback shift register is 

destroyed using  a filtering generator with memory, i.e., a Finite State Machine 

(FSM). In today’s cryptography, both in block ciphers and stream ciphers, 

SNOW1.0 SNOW2.0   
Data Complexity       Process Complexity Data Complexity       Process Complexity 

Guess-and-Determine 
Attack (Method 1) 

264 2256 - - 

Guess-and-Determine 
Attack (Method 2) 

295 2224 - - 

Distinguishing Attack 295 2100 2225 2225 
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nonlinearity is generally achieved by substitution boxes (s-box). Due to the 

weaknesses found in s-boxes, linear and differential cryptanalysis can be done. 

Although these cryptanalysis techniques are mostly applied to block ciphers, it can 

also be applied to a word-oriented stream cipher. 

In this chapter, first the s-boxes of SNOW1.0 and SNOW2.0 are examined. A 

review of the distinguishing attack is given using the approach in [Ekdahl, 

Johansson;2002b] made for SOBER-t32 and the effect of the s-boxes to the 

distinguishing attack and how the correlations are affected by the operations in the 

finite state machine are investigated.  Randomness tests are performed using NIST 

Statistical Test Suite and the results of these tests are presented. 

4.1  Examination of S-Boxes 

The s-box of SNOW1.0, which was mentioned in Section 3.1, has the 

nonlinear mapping 
7 2 1,= ⊕ ⊕ ⊕r w β β                                                                                  (4.3) 

where the arithmetics are in 82
F . 7 6 0( , ,..., )w w w w=  and 7 6 0( , ,..., )r r r r=  are input 

and output vectors which are considered as representing elements in 82
F  using the 

polynomial base 7{ ,..., ,1}β β  generated by the irreducible polynomial 

8 5 3( ) 1= ⊕ ⊕ ⊕ ⊕x x x x xπ  and ( ) 0π β = . Equation (4.3) can be rewritten as 

 7
1,= ⊕r w c                                                                                                (4.4) 

where 1c  denotes the coostant vector  element in 82
F , which is equal to 

(00000111) . 

In SNOW2.0, the s-box of Rijndael [Daemen, Rijmen; 2002] is used. It is 

implemented by two transformations: 

• First taking the multiplicative inverse in 8(2 )GF . In binary representation 

‘00000000’ is mapped onto itself. 

• Then applying an affine transformation over 2Z  defined by: 
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⎟⎟

 

where  7 6 0( , ,..., )x x x x=  is the multiplicative inverse of the byte at the input 

of the s-box. 

The non-linear mapping of the s-box of Rijndael can be considered in the 

form of Equation (4.4) as 
1

2
−= ⊕r aw c ,                                                                                             (4.5) 

where a  and 2c  denotes constant elements in 82
F . Let 82

α∈F , then 
82 1 1−α = . So, 

1−α  is equal to 
82 2−α , which is also equal to 254α . Hence, equation (4.5) becomes 

254
2= ⊕r aw c .                                                                                           (4.6) 

4.1.1  Linear Approximation Table 

The examination of the s-boxes starts with the formation of the Linear 

Approximation Tables. In this section, we present the distribution of LAT values that 

we calculate for the s-boxes of SNOW1.0 and SNOW2.0 (See Appendix A). 

A LAT table is a good indicator that shows the susceptibility of a cipher to 

linear cryptanalysis. Nonlinearity measurement is used to evaluate this 

susceptibility. Nonlinearity for an n m×  s-box is defined as 

1
min{ | ,  (2), 0}

m

S g j j jg j
N N g c f c GF g

=
= = ⊕ ∈ ≠                                           (4.7) 

where if , 1 i m≤ ≤ , of 1 2( , ,..., )mS f f f=  is a Boolean mapping 2 2
n →F F . This can 

be expressed for an  n n×  s-box in terms of maximum magnitude LAT element as 

2

1

,
2 max ( , )

n

n
SN LAT−

∈
= −

w c
w c

F
                                                            (4.8) 

where w and c  denote the rows and columns of LAT.  
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Figure 4.1 : Distribution of LAT values for SNOW1.0 and Rijndael 

 

 

 

Table 4.2 : Details for Figure 4.1 

 

   
-32 -16 -14 -12 -10 -8 -6 -4 -2 2 4 6 8 10 12 14 16 32 

SNOW1.0 
128 3824    15308       15292    3826 127 

Rijndael 
(Inverse)  0 2040 4080 2040 4590 6120 4080 8160 4080 5100 4080 4080 4080 5100 2040 1275  

Rijndael 
(Inverse+Affine)  640 2040 4592 3064 4334 5096 4592 6112 6128 4588 5104 4336 3056 4588 2040 635  
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The elements of LAT can be expressed as 

 1( , ) 2 ( ( ), )−= − ∗ ∗w c c x w xnLAT d F  .                                                       (4.9) 

In Figure 4.1, the distribution of LAT values for SNOW1.0 and Rijndael are 

shown together. The details of this figure are tabulated in Table 4.2. 

Examining Figure 4.1, the maximum magnitude in the LAT elements is 32. 

This leads to a nonlinearity of 96=128-32. This nonlinearity measurement can also 

be treated as the number of inputs for which the equality of a linear boolean function 

and a component function (of F ) holds. That is, for 255 (127+128) equation pairs, 

96 plaintexts satisfies the equality. Then the probability that these equations hold 

can be calculated as 96 256 0.375=  (bias from 1 2  is 0.125 ).  

For Rijndael two diagrams are tabulated, one for multiplicative inverse 

function, the other for multiplicatice inverse function and affine transformation. The 

aim was to see that there is no effect of affine transformation on the nonlinearity. 

The reason for affine transformation seems to be the elimination of the “zero to zero” 

map in multiplicative inverse function. 

The maximum magnitude LAT element for Rijndael is 16. So, the nonlinearity 

is 112=128-116 and there are 1275 equation pairs for which the probability that 

those equations hold is 112 256 0.4375= (bias from 1 2  is 0.0625 ). 

Whenever these calculated probabilities are not close to 1 2 , it means that 

the examined s-box is susceptible to linear cryptanalysis. Thus, regarding the above 

calculated probabilities for SNOW1.0 and Rijndael, one can say that s-box of 

SNOW1.0 is more susceptible to linear cryptanalysis. 

Walsh transform values can be used to evaluate the strength of an s-box. 

Every column of LAT is half of the Walsh transform values of a linear combination 

function ( )g x  given by 

8

1
( ) ( ),  (2)j j jj

g x c f x c GF
=

= ⊕ ∈ .                                                                (4.10) 

Hence, in order for a Boolean function to be highly nonlinear, the absolute value of 

its Walsh transform should not take large values. The s-boxes of both SNOW1.0 

and Rijndael consist of 8 Boolean functions and all Boolean functions perform well 

for each of the ciphers. All Boolean functions have the same histogram of Walsh 

transform values. Figure 4.2 (a) and (b) show the histograms of Walsh transform 

values for all linear combinations of 8 Boolean functions for the s-boxes of 



 

34

SNOW1.0 and Rijndael, respectively. Notice that compared to SNOW1.0, Rijndael 

has a more uniform distribution of Walsh transform values. 

The Walsh transforms of one of the Boolean functions of SNOW1.0 and 

Rijndael are given in Figure 4.3 and 4.4, respectively. 

 

 

                     a) SNOW1.0                                               b) Rijndael 

Figure 4.2 : Histogram of Walsh Transform values for each combination of 

component functions of F for  a) SNOW1.0  b) Rijndael 

 

 

 
Figure 4.3 : Walsh Transform of one of s-box functions of SNOW1.0 
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Figure 4.4 : Walsh Transform of one of s-box functions of Rijndael 

 

4.1.2  Difference Distribution and Auto-correlation Tables 

 The Difference Distribution Table is a matrix of size 256 x 256, whose entries 

are calculated by Equation 2.21. The maximum entry in DDT determines the 

security level against differential cryptanalysis.  

The s-boxes of SNOW1.0 and Rijndael are 6 and 4-differentially uniform, 

respectively. So, the s-box of SNOW1.0 is more susceptible to differential 

cryptanalysis. And as we see in Figure 4.6, DDT values of both ciphers are 

uniformly distributed. 

Figure 4.5 : Distribution of DDT values 
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a) SNOW1.0       b) Rijndael 

 

Figure 4.6 : Histogram of DDT values for each column 

 

 We now tabulate the auto-correlation values for linear combination functions 

( )g x  given in Equation (4.10). The entries of the tables are calculated by Equation 

2.22.  

 As we see in Figure 4.7, there are a lot of entries at higher values in the 

auto-correlation table of SNOW1.0. But for Rijndael, the entries are distributed 

uniformly at lower values. 

 

Figure 4.7 : Distribution of auto-correlation table values 

                  a) SNOW1.0              b) Rijndael 

Figure 4.8 : Histogram of auto-correlation table values for each column 
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4.2  Analysis of the Finite State Machine 

 One of the attacks against SNOW1.0 was a distinguishing attack by 

Coppersmith et al [Coppersmith, Halevi, Jutla; 2002]. The basic idea of this attack, 

developed earlier by Golic [Golic; 1996], is to distinguish the outputs of a keystream 

generator from a truly random bit sequence, by applying the technique of linear 

cryptanalysis on block ciphers. Quite interestingly, in the same year the designers of 

SNOW also applied a distinguishing attack to SOBER-t16 and t-32 [Ekdahl, 

Johansson; 2002b]. 

 In a distinguishing attack, the internal state of the target keystream generator 

is divided into the linear part and nonlinear part, and the best approximation of the 

non-linear part is found. The attack is based on combining the linear approximation 

of the nonlinear part with the linear recurrence, defined through the feedback 

polynomial.  

In SNOW1.0, the linear recurrence relation of LFSR in Figure 4.9 is given by 

16 3 9( )+ + += ⋅ ⊕ ⊕t t t ts s s sα                                                                         (4.11) 

and the corresponding characteristic polynomial is 
16 13 7 1( ) −= ⊕ ⊕ ⊕p x x x x α .                                                                     (4.12) 

To be able to apply a distinguishing attack against SNOW1.0, we need a polynomial 

with 0-1 coefficients, i.e., we have to eliminate the element α ∈ 322
F . Repeated 

squaring of this polynomial will still yield a valid linear recurrence equation for the 

considered linear recurrence of SNOW1.0. The exponentiation with 322  gives 
32 32 32 32 322 16 2 13 2 7 2 1 2( ) × × × − ×= ⊕ ⊕ ⊕p x x x x α .                                              (4.13) 

Sinceα ∈ 322
F , 

321 2 1α α− × −=  and addition of (4.11) and (4.12) gives 

 
32 32 32 322 16 2 13 2 7 2 16 13 7( ) ( )⊕ = ⊕ ⊕ ⊕ ⊕ ⊕x x xp x p x x x x x x x .                      (4.14) 

Since the coefficient α , which does not belong to 
2

F , is eliminated, one has a 

linear relation with 6 terms that holds for each single bit position. Dividing (4.14) by 
7x , the resulting linear recurrence equation is given by  

32 32 32 9 616 2 7 13 2 7 7 2 7
0+ ++ × − + × − + × −

⊕ ⊕ ⊕ ⊕ ⊕ =t t tt t t
s s s s s s .                               (4.15) 
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Figure 4.9 : Schematic view of SNOW1.0 

 

 

For the nonlinear part, the linear approximation of FSM, found by 

[Coppersmith, Halevi, Jutla; 2002], is  

 15 16 1 22 1 23 15 1 23( ) ( ) ( ) ( ) ( ) ( )+ + +⊕ ⊕ ⊕ = ⊕t t t t t tf f f f F F                               (4.16) 

where tf  is the input to FSM and tF  is the output to FSM in Figure 4.9. The bias of 

the approximation is found as at least 9.32− [Coppersmith, Halevi, Jutla; 2002]. We 

will try to explain how (4.16) is obtained in Section 4.2.2; after giving a review of the  

distinguishing attack [Coppersmith, Halevi, Jutla; 2002] by using the approach in 

[Ekdahl, Johansson; 2002b], made for a distinguishing attack on SOBER-t32. 

4.2.1 Review of the Distinguishing Attack on SNOW1.0 

To understand the core idea of the attack, let’s write the output of the FSM 

as 

= Ω ⊕t t tF w                                                                                             (4.17) 

where Ωt  is for the linear operations of the words from LFSR and tw  is for the 

noise (nonlinearity) introduced by the integer addition and substitution box.  

 Now, given the FSM output, 0 1 1, ,..., ,−NF F F  of length N , we can use the 

linear recurrence relation (4.15) to calculate 

Shift by 7

Int. Add. 2

Int. Add. 1

t+3t+9st+15

R1t
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R2t

R2t+1

S

<<7

zt
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 32 32 32 9 616 2 7 13 2 7 7 2 7 + ++ × − + × − + × −
⊕ ⊕ ⊕ ⊕ ⊕ =t t tt t t

F F F F F F  

  32 32 32 32 32 3216 2 7 16 2 7 13 2 7 13 2 7 7 2 7 7 2 7+ × − + × − + × − + × − + × − + × −
Ω ⊕ ⊕Ω ⊕ ⊕Ω ⊕ ⊕

t t t t t t
w w w  

  9 9 6 6+ + + +Ω ⊕ ⊕Ω ⊕ ⊕Ω ⊕t t t t t tw w w                                              (4.18)        

Since all the Ω j  terms only depend on the words from the LFSR, they will be equal 

to zero as a result of (4.15). Then, we have  

32 32 32 9 616 2 7 13 2 7 7 2 7 + ++ × − + × − + × −
⊕ ⊕ ⊕ ⊕ ⊕ =t t tt t t

F F F F F F  

 32 32 32 9 616 2 7 13 2 7 7 2 7 + ++ × − + × − + × −
⊕ ⊕ ⊕ ⊕ ⊕t t tt t t

w w w w w w .                                (4.19) 

Using Matsui’s Piling-Up Lemma, which was introduced in [Matsui; 1993], we can 

calculate the probability that the noise variables sum to zero. 

Piling-Up Lemma [Matsui; 1993]: 

 For n  independent, random binary variables 1 2, ,..., nX X X , 

 1
1 2

1

( ... 0) 1 2 2 −

=

⊕ ⊕ ⊕ = = + ∏
n

n
n i

i

P X X X ε                                              (4.20) 

 where iε  represents the probability that iX  is equal to zero. 

Denote the left hand side of (4.19) by ∗
tF  and the bias of (4.16) by 23ε . Then, using 

(4.20), we have 

 5 6
23 23

1(( ) 0) 2
2

∗ = = +tP Fε ε ,                                                                      (4.21) 

where 25 accounts for all possible cases for an exor operation with 6 terms to be 

equal to zero. Then, the total bias of the cipher is calculated as 5 9.3 6 50.82 2 2− × −⋅ = .  

But how many outputs do we need in order to distinguish this biased output 

of FSM from a truly random source? The probability of error while distinguishing the 

outputs of FSM is 
( , )2−= unC P P

eP ε   [Cover, Thomas; Elements of Inf. Theory. 1991]           (4.22) 

where is n  the number of outputs,  
1
2

= +Pε ε , 
1
2

=uP  (uniform distribution) and 

( , )uC P Pε  is the Chernoff Information 

1
20 1

( , ) min log ( ( )) ( ( )) −

≤ ≤
∈

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑u u
x N

C P P P x P xλ λ
ε ελ

                                        (4.23) 
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The exact value of λ  is difficult to obtain. So, to get an upper bound in (4.22), the 

summation in (4.23) should be minimized. To achieve this we can take λ  as 0.5.  

After making calculations the approximate value for ( , )uC P Pε  is found to be 2ε . 

Using 0.5=eP  we derive the number of outputs needed to distinguish the output of 

SNOW1.0 from a truly random bit sequence as 101.62 ( 21= ε ) and the process 

complexity is same. 

4.2.2 Approximating the FSM 

 In order to verify the approximation of the FSM and to construct a test 

mechanism we have clearly rederived the approximation.  

There are two non-linear operations in the FSM: one is the substitution box 

and the other is the addition modulo 322 . To simplify the calculations, the substitution 

box is ignored and the addition modulo 322  is approximated with the xor operation 

(and one extra bit is also taken into account to approximate the carry bit). After 

making these changes, Figure 4.10 is achieved for SNOW1.0.  

The input of FSM is related to its output with the equation 

1 1 1 1( ) ( 1 ) ( 2 ) ( )+ + + ++ ⊕ =t x t x t x t xf R R F                                                   (4.24) 

 

 

 
Figure 4.10 : Schematic view of SNOW1.0 with the approximation of the FSM 

 

st+15

R1t

R1t+1

R2t

R2t+1

<<7

zt

st

tf
tF



 

41

The substitutions, (4.25), (4.26) and (4.27), are inserted in (4.24) for two 

rounds calculations.   

1 12 ( 1 )    2 1+ += ⇒ ≈t t t tR S R R R                                                            (4.25) 

1 1 1 1 1 1( ) ( 1 ) ( ) ( 1 ) ( )+ + + + + −+ = ⊕ ⊕t x t x t x t x t xf R f R f                                  (4.26) 

1 7 7( 1 ) ( 1 ) ( 2 ) ( )+ − −= ⊕ +t x t x t x t xR R R F                                                   (4.27) 

Then, we have the equation 

         1 7 7 1 1 1( ) ( 1 ) ( 2 ) ( ) ( ) ( 1 ) ( )+ − − + − +⊕ ⊕ + ⊕ ⊕ =t x t x t x t x t x t x t xf R R F f R F .    (4.28) 

  

 By using (4.24) we can achieve (4.29). 

7 7 7 7( ) ( 1 ) ( 2 ) ( )t x t x t x t xf R R F− − − −+ ⊕ =                                                 (4.29) 

Substituting (4.29) instead of 7( )t xF − in (4.28) and approximating the integer 

addition, we relate the input of FSM to its output  for two rounds.  

1 1 7 1 8 1 8( ) ( ) ( ) ( ) ( ) ( )+ + + + + + +⊕ ⊕ ⊕ = ⊕t x t x t x t x t x t xf f f f F F                 (4.30) 

where 0 x 23≤ ≤ . 

The correlations are searched for all possible x  values. The cipher algorithm 

is run 500.000.000 times in order to find the bias of the equation. The biases, that 

are found, are listed in Table 4.3.a. The biggest correlation is achieved when x  is 

equal to 15 and the value of the bias is approximately 9.342− . This is almost the same 

as the one that Coppersmith has found. 

4.2.3 Changing the S-Box 

In part 4.1, the s-boxes of the two versions of SNOW were examined. There, 

we have concluded that the s-box of SNOW1.0 is weaker in all aspects that we have 

considered. In order to see the effect of s-boxes to the correlations between the 

input and output of FSM, the s-box of SNOW1.0 is changed with that of Rijndael. 

The biases that are found, are listed in Table 4.3.b . Examining the table, the largest 

correlation value is observed as 14.32−  when x  is equal to 12. Then, the total bias of 

the cipher is calculated as 5 14.23 6 80.382 2 2− × −⋅ =  and the number of outputs needed to 

perform a distinguishing attack is 160.82 , which is slower than the exhaustive search 

for the 128-bit key, but not for the 256-bit key.  
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Only the change of the substitution box makes a great deal of improvement 

in the strength of the cipher against the distinguishing attack of Coppersmith et al. 

[Coppersmith, Halevi, Jutla; 2002]. We can conclude that one of the reasons for the 

large correlations is the disadvantages of the first s-box with respect to the second 

one.  

 

Table 4.3 : Experimentally found correlation values in the FSM 

 

                         x           Bias                                   x         Bias   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                 a) SNOW1.0                                   b) The s-box of SNOW1.0 is changed 
                                                                             with that of Rijndael. 

0  0.000019  

1  0.000000   

2  0.000005   

3 -0.000005   

4  0.000010   

5 -0.000035   

6  0.000008   

7  0.000004   

8 -0.000001   

9  0.000020   

10  0.000032   

11 -0.000028   

12  0.000027   

13 -0.000019   

14  0.000007   

15  0.001545   

16  0.000041   

17  0.000015   

18 -0.000045   

19  0.000001   

20  0.000014   

21  0.000011   

22  0.000006   

23  0.000045   

0 0.000023   

1 0.000011   

2 0.000009   

3 0.000008   

4 -0.000013   

5 0.000004   

6 0.000014   

7 0.000044   

8 0.000004   

9 -0.000020   

10 0.000016   

11 0.000008   

12  0.000052   

13  0.000036   

14 0.000008   

15 -0.000013   

16 -0.000015   

17 -0.000007   

18 -0.000027   

19 -0.000008   

20 -0.000016   

21 0.000008   

22 0.000008   

23  0.000036   

9.342−=

14.232−=  
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4.2.4 Changing the “Integer Additions” with “Additions in 322
F ” 

To discover the effects of two integer additions (Figure 4.9) on the 

correlations in the FSM, we change them with “additions in 322
F ” one by one and 

search for the correlations. The modified verisons SNOW1.0 are shown in Figure 

4.11 (a) and (b).  

To obtain the approximations of the FSM, again we make the calculations in 

Section 4.2.2 by taking the modifications into account. Thus, we obtain the 

equations (4.31) and (4.32) for Figures 4.11 (a) and (b), respectively. 

 1 1 8 1 8( ) ( ) ( ) ( ) ( )+ + + + +⊕ ⊕ = ⊕t x t x t x t x t xf f f F F                                    (4.31) 

 1 1 7 1 8 1 8( ) ( ) ( ) ( ) ( )+ + + + + + +⊕ ⊕ ⊕ =t x t x t x t x t xf f f f F                               (4.32) 

The corresponding results for the correlation searches are tabulated in Table 

4.4 (a) and (b). The results show that changing Int. Add. 1 makes impressively much 

contribution to the strength of the cipher. This contribution is almost the same as 

what we have achieved when we change the s-box of SNOW1.0 with that of 

Rijndael. Though, it is quite likely that there is an interaction between the s-box and 

Int. Add. 1 in the original version of SNOW1.0. Whereas changing the Int. Add. 2 

slightly decreases the strength of the cipher. 

 

 

 

a) Int. Add. 1 is replaced by                       b) Int. Add. 2 is replaced by 
    addition in 322

F .                                   addition in 322
F . 

Figure 4.11 : Schematic view of the modified versions of SNOW1.0 
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Table 4.4 : Experimentally found correlation values 

 

                         x           Bias                                   x         Bias   
 

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  a) Int. Add. 1 is replaced by           b) Int. Add. 1 is replaced by  
                      addition in 322

F .                              addition in 322
F . 

 

4.2.5 Eliminating the “Shift by 7” Operation 

In [Ekdahl, Johansson; 2002a], it is told that the reason for the large 

correlations may be the interaction between the s-box and the shift operation. To 

discover this we eliminate the “Shift by 7” operation from the FSM and search for the 

correlations. The modified version of SNOW1.0 is shown in Figure 4.12. 

Approximating the FSM we have the equation 

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )+ + + + + +⊕ ⊕ ⊕ = ⊕t x t x t x t x t x t xf f f f F F                    (4.33) 

0 0.000009  

1 0.000004  

2 0.000036  

3 0.000012  

4 0.000010  

5 0.000035  

6 0.000018  

7 0.000020  

8 0.000017  

9 0.000032  

10 0.000030  

11 0.000011  

12 0.000047  

13 0.000012   

14 0.000027   

15 0.000003  

16 0.000004  

17 0.000016  

18 0.000002  

19 0.000010  

20 0.000036   

21 0.000033   

22 0.000026  

23 0.000015  

0 0.000011  

1 0.000001  

2 0.000038  

3 0.000019  

4 0.000011  

5 0.000007  

6 0.000002  

7 0.000001  

8 0.000038  

9 0.000045   

10 0.000020   

11 0.000010  

12 0.000023   

13 0.000018   

14 0.000008  

15 0.002001  

16 0.000029  

17 0.000001  

18 0.000008  

19 0.000022   

20 0.000023   

21 0.000029  

22 0.000025  

23 0.000001  

14.382−=

8.962−=  
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 The largest correlation, that we have found, is 7.452−  when x  is equal to 5  

(Table 4.5). Compared to the correlation found in the original version SNOW1.0, 

which is 9.342− , this result is quite bigger and in contradiction with the prediction 

made in [Ekdahl, Johansson; 2002a]. 

 

 
Figure 4.12 : Schematic view of SNOW1.0 without “Shift by 7” operation 

 

 

Table 4.5 : Results of the correlation search after eliminating the “Shift by 7” 

operation  

 

                         x           Bias                                   x         Bias   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0.000004  

1 0.000030  

2 0.000027  

3 0.000030  

4 0.000021  

5 0.005725  

6 0.000021  

7 0.000053  

8 0.000008  

9 0.000030  

10 0.001379  

11 0.000001   

12 0.000008  

13 0.000038  

14 0.000060  

15 0.000005 

16 0.000008   

17 0.011453  

18 0.000216  

19 0.000026   

20 0.000110  

21 0.000028  

22 0.002247  

23 0.000057  

24 0.000343  

25 0.000000  

26 0.000742  

27 0.000016   

28 0.002269  

29 0.000002  

7.452−=

Int. Add. 2

Int. Add. 1

t+3t+9st+15
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R1t+1

R2t

R2t+1

S
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4.2.6 Both Changing the S-Box and Other Operations 

As a final modification, in addition to the s-box we change the integer 

additions one by one. The modified versions are shown in Figure 4.13. Since the 

approximations that we obtain in Section 4.2.4 are valid again,  while searching for 

the correlations we use the equations (4.31) and (4.32). The results are tabulated in 

Table 4.6. Notice that the correlations obtained ( 14.292− and 14.312− ) are approximately 

the same as the one obtained by only changing the s-box ( 14.232− ). That is to say, 

there is no interaction between the s-box of Rijndael and the integer additions. 

When we also take the results obtained in Section 4.2.4 into account, we can say 

that using a stronger s-box dominates the system and don’t let any interactions 

happen. 

 

 

 

 

 

 

        a) Int. Add. 1 is replaced by                           b) Int. Add. 1 is replaced by  
            addition in 322

F .                                             addition in 322
F . 

Figure 4.13 : Both the s-box and the integer additions are changed in SNOW1.0 
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Table 4.6 : Results of the correlation searches after changing the s-box and  

replacing integer additions by “additions in 322
F ”. 

 

                        x           Bias                                      x         Bias   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                a) Int. Add. 1 is replaced by              b) Int. Add. 1 is replaced by  
                    addition in 322

F .                                 addition in 322
F . 

 
 

 

 

 

 

 

0 -0.000007  

1 -0.000039  

2  0.000017  

3 -0.000007  

4 -0.000003  

5 -0.000022  

6  0.000019  

7 -0.000007  

8  0.000022  

9  0.000018  

10  0.000050  

11 -0.000003   

12 -0.000024   

13 -0.000009  

14 -0.000007   

15  0.000041  

16 -0.000037   

17  0.000004  

18 -0.000023  

19 -0.000016   

20 -0.000026   

21 -0.000017  

22 -0.000005  

23  0.000014  

0 -0.000022  

1  0.000033  

2 -0.000017  

3  0.000004  

4  0.000004  

5 -0.000035  

6 -0.000005  

7 -0.000012  

8 -0.000004  

9  0.000009  

10  0.000045  

11 -0.000002  

12  0.000049  

13  0.000002  

14 -0.000033  

15 -0.000028  

16 -0.000008  

17 -0.000039   

18 -0.000030  

19  0.000016  

20 -0.000025  

21  0.000008  

22  0.000045  

23  0.000008  

14.292−=

14.312−=
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4.3  Results of Randomness Tests  

As a last but rough comparison, we use the NIST Statistical Test Suite to 

accomplish the randomness tests on SNOW1.0, SNOW2.0 and also on the FSM of 

SNOW1.0. In order to prepare the test data, SNOW1.0 and SNOW2.0 are 

implemented with Borland C++ development environment.  

The NIST Statistical Test Suite consists of 16 core statistical tests that, under 

different parameter inputs, can be viewed as 189 statistical tests. But the results of 

the 16 core tests will be demonstrated. Brief descriptions of the statistical tests are 

given in Appendix B. The detailed explanations for the tests and the test suite can 

be found in [Rukhin; 2001]. 

The test data prepared is 20300 2×  bits, that is 300 (sample size) binary 

sequences of length 220 . The significance level is chosen as 0.01. For each binary 

sequence and each statistical test, a P-value is reported.  

A P-value is the probability of obtaining a test statistic as large or larger than 

the one observed if the sequence is random. Hence, values below significance level 

(0.01) may be thought as nonrandom. 

Two evaluations are made for each statistical test and sample. First, the 

proportion of binary sequences in a sample that passed the statistical test is 

calculated (Figure 4.14 (a) and (b)). It is observed that both of the ciphers passed 

the tests with a good result. 
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Figure 4.14 (a) : Proportion of sequences passing a test for SNOW1.0 
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SNOW 2.0
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Figure 4.14 (b) : Proportion of sequences passing a test for SNOW2.0 

 

 

The statistical tests applied are: 

1. Frequency Test 

2. Frequency Test within a Block 

3. Cumulative Sums (Cusum) Test  

4. Runs Test  

5. Test for the Longest Run of Ones in a Block  

6. Binary Matrix Rank Test  

7. Discrete Fourier Transform (Spectral) Test  

8. Non-overlapping Template Matching Test  

9. Overlapping Template Matching Test 

10. Maurer’s “Universal Statistical” Test 

11. Approximate Entropy Test  

12. Random Excursions Test  

13. Random Excursions Variant Test  

14. Serial Test  

15. Lempel-Ziv Compression Test 

16. Linear Complexity Test 

 

The second evaluation is the calculation of the P-valueT of the p-values 

which is done to ensure uniformity. If P-valueT≥ 0.0001 , then the sequences can be 

considered to be uniformly distributed. When we look at Table 4.7, we can see that 
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all of the p-valueT s are greater than 0.0001. So, both of the ciphers have uniform 

distribution of p-values.  

 

Table 4.7 : P-valueT of the p-values for each statistical test on SNOW1.0 and 

SNOW2.0 

 
 P-value of the P-values 

 SNOW1.0 SNOW2.0 

1. Frequency Test 0.481416 0.862344 

2. Frequency Test within a Block 0.474986 0.671779 

3. Cumulative Sums (Cusum) Test 0.664861 0.049770 

4. Runs Test 0.062821 0.609377 

5. Test for the Longest Run of Ones in a Block 0.706149 0.195163 

6. Binary Matrix Rank Test 0.733228 0.299251 

7. Discrete Fourier Transform (Spectral) Test 0.015241 0.122325 

8. Non-overlapping Template Matching Test 0.822534 0.236810 

9. Overlapping Template Matching Test 0.150906 0.266680 

10. Maurer’s “Universal Statistical” Test 0.888137 0.401199 

11. Approximate Entropy Test 0.514124 0.142602 

12. Random Excursions Test 0.915031 0.130453 

13. Random Excursions Variant Test 0.689019 0.437274 

14. Serial Test 0.828458 0.834308 

15. Lempel-Ziv Compression Test * * 

   16. Linear Complexity Test 0.928071 0.372502 

 

 

 

We have also applied these tests to the output of the linear approximation of 

the FSM in SNOW1.0, which is  

            15 16 1 22 1 23 15 1 23( ) ( ) ( ) ( ) ( ) ( )+ + += ⊕ ⊕ ⊕ ⊕ ⊕t t t t t tf f f f F Fσ .                      (4.34) 

The results obtained from NIST Statistical Test Suite are shown in Figure 4.15 and 

Table 4.8. The results show that the randomness properties are bad.  Moreover, 

some statistical tests, especially the frequency test, result in failure. This is 

consistent with the fact that Equation (4.34) has a large bias. 
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Figure 4.15 : Proportion of sequences passing a test for the linear approximation of 

the FSM in SNOW1.0 

 

 

Table 4.8 : P-valueT of the p-values for each statistical test on the FSM of SNOW1.0 

 

 

P-value of the P-
values 

1. Frequency Test    0.000000  * 

2. Frequency Test within a Block 0.455937    

3. Cumulative Sums (Cusum) Test    0.000000  * 

4. Runs Test    0.000000  * 

5. Test for the Longest Run of Ones in a Block 0.856907    

6. Binary Matrix Rank Test 0.746572    

7. Discrete Fourier Transform (Spectral) Test 0.547637    

8. Non-overlapping Template Matching Test    0.000011  * 

9. Overlapping Template Matching Test 0.050845    

10. Maurer’s “Universal Statistical” Test 0.148094    

11. Approximate Entropy Test    0.000068  * 

12. Random Excursions Test 0.066882    

13. Random Excursions Variant Test 0.105618    

14. Serial Test 0.007694   

15. Lempel-Ziv Compression Test 0.089121    

   16. Linear Complexity Test 0.175049    
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CHAPTER 5 
 

 

CONCLUSIONS 
 

 

 

 The designers of the stream cipher SNOW1.0 proposed SNOW2.0 after two 

attacks have been reported. One of the important changes made was the change of 

the substitution box. Through our examination on the substitution box of SNOW1.0, 

nonlinearity and differential uniformity values are found as 96 and 6, respectively. 

Although these values can not be considered as the values of a weak cipher, when 

compared with the corresponding values of the s-box taken from Rijndael, which are 

112 (nonlinearity) and 4 (differential uniformity), they are inferior. The histogram of 

Walsh transform values for the s-box of SNOW1.0 (Figure 4.2) shows that for all 

linear combination functions, Walsh transform distributions are the same. This 

impressive property is also observed in the s-box of Rijndael. 

 Using the approach in [Ekdahl, Johansson; 2002b] for the distinguishing 

attack on SOBER-t32, a review of the distinguishing attack on SNOW1.0 is given. 

The methods of calculation of the complexities are different in [Ekdahl, Johansson; 

2002b] and [Coppersmith, Halevi, Jutla; 2002]. Using the method in [Ekdahl, 

Johansson; 2002b] we found that we can distinguish the output from a random 

source using 101.62  keystream outputs. This method is more inefficient than the one 

in [Coppersmith, Halevi, Jutla; 2002], where the data complexity of the attack is 952 . 

Corresponding process complexity is found as 101.62  using the method in [Ekdahl, 

Johansson; 2002b]; whereas it is 1002  in [Coppersmith, Halevi, Jutla; 2002]. 

Only the change of the s-box in SNOW1.0 with that of Rijndael makes a 

great deal of improvement in the strength of the cipher against the distinguishing 

attack, i.e., the number of outputs needed to perform a distinguishing attack is 160.82 , 

which is faster than the exhaustive search for the 256-bit key; whereas in SNOW1.0 

it is 101.62 , which is faster than exhaustive search for both 128-bit and 256-bit keys. 

Also, our correlation search results show that the reason for large correlations is the 

interaction between the s-box and the first one of the integer addition units rather 
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than the “Shift by 7” operation as expected in [Ekdahl, Johansson; 2002a]. Using a 

stronger s-box dominates the system and does not let any interactions to happen in 

the FSM. 
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APPENDIX A 
 

S-Boxes of SNOW1.0 and Rijndael 
 

 

 

 

SNOW1.0 S-Box: 
255

0{ ( ) | }S = =xx {7, 6, 135, 248, 226, 214, 193, 42, 53, 244, 246, 199, 120, 189, 155, 15, 

185, 46, 59, 41, 16, 250, 5, 203, 36, 161, 240, 126, 107, 162, 171, 200, 166, 32, 

205, 35, 104, 138, 48, 27, 137, 180, 234, 49, 44, 68, 255, 208, 74, 213, 121, 117, 

109, 222, 89, 216, 252, 10, 210, 57, 254, 21, 84, 3, 132, 134, 28, 14, 130, 4, 183, 

128, 87, 1, 152, 80, 111, 140, 142, 82, 51, 33, 220, 37, 153, 71, 239, 123, 230, 114, 

75, 186, 60, 85, 139, 38, 154, 201, 93, 8, 164, 34, 94, 127, 129, 253, 90, 174, 66, 

218, 39, 150, 151, 91, 125, 76, 160, 241, 67, 78, 188, 141, 95, 29, 56, 165, 81, 30, 

73, 131, 98, 50, 115, 211, 43, 176, 52, 177, 172, 61, 119, 169, 31, 116, 147, 22, 

122, 158, 192, 103, 110, 9, 170, 178, 229, 18, 206, 197, 69, 0, 196, 11, 156, 223, 

113, 133, 202, 19, 64, 187, 224, 25, 79, 190, 143, 221, 99, 108, 163, 219, 26, 102, 

13, 167, 149, 124, 184, 168, 24, 179, 97, 146, 235, 245, 212, 62, 20, 209, 86, 198, 

175, 106, 55, 136, 191, 144, 217, 45, 159, 72, 23, 207, 233, 173, 40, 194, 54, 232, 

12, 83, 225, 157, 17, 77, 145, 92, 105, 70, 242, 181, 231, 227, 249, 148, 237, 236, 

182, 96, 204, 215, 112, 251, 101, 247, 63, 118, 243, 2, 195, 58, 47, 65, 238, 228, 

88, 100} 
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RIJNDAEL S-Box: 
255

0{ ( ) | }S = =xx {99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 

118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 

183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 

195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 

160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 

190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 

60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 

210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 

79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 

36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 

108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 

116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 

193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 

223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22} 
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APPENDIX B 

 

Description of Statistical Tests 
 

 

 

 

Monobit Test: The purpose of this test is to determine whether the number of ones 

and zeros in a sequence are approximately the same as would be expected for a 

truly random sequence. 

Block Frequency Test: The purpose of the block frequency test is to determine 

whether the number of ones and zeros in each of M  non-overlapping blocks created 

from a sequence appear to have a random distribution. 

Cumulative Sums Forward (Reverse) Test: The purpose of the cumulative sums 

test is to determine whether the sum of the partial sequences occurring in the tested 

sequence is too large or too small. 

Runs Test: The purpose of the runs test is to determine whether the number of runs 

of ones and zeros of various lengths is as expected for a random sequence. In 

particular, this test determines whether the oscillation between such substrings is 

too fast or too slow. 

Long Runs of Ones Test: The purpose of this test is to determine whether the 

longest run of ones within the tested sequence is consistent with the longest run of 

ones that would be expected in a random sequence. 

Rank Test: The purpose of this test is to check for linear dependence among fixed 

length substrings of the original sequence. 

Discrete Fourier Transform (Spectral) Test: The purpose of this test is to detect 

periodic features (i.e., repetitive patterns that are near each other) in the tested 

sequence that would indicate a deviation from the assumption of randomness. 

Aperiodic Templates Test: The purpose of this test is to reject sequences that 

exhibit too many occurrences of a given non-periodic (aperiodic) pattern. 
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Periodic Template Test: The purpose of this test is to reject sequences that show 

deviations from the expected number of runs of ones of a given length. 

Universal Statistical Test: The purpose of the test is to detect whether or not the 

sequence can be significantly compressed without loss of information. A 

compressible sequence is considered to be nonrandom. 

Approximate Entropy Test: The purpose of the test is to compare the frequency of 

overlapping blocks of two consecutive/adjacent lengths (m and m+1) against the 

expected result for a normally distributed sequence.  

Random Excursion Test: The purpose of this test is to determine if the number of 

visits to a state within a random walk exceeds what one would expect for a random 

sequence. 

Random Excursion Variant Test: The purpose of this test is to detect deviations 

from the distribution of the number of visits of a random walk to a certain state. 

Serial Test: The purpose of this test is to determine whether the number of 

occurrences of m-bit overlapping patterns is approximately the same as would be 

expected for a random sequence. 

Lempel-Ziv Complexity Test: The purpose of the test is to determine how far the 

tested sequence can be compressed. The sequence is considered to be non-

random if it can be significantly compressed 

Linear Complexity Test: The purpose of this test is to determine whether or not the 

sequence is complex enough to be considered random. 

 
 


