

TWO VERSIONS OF THE STREAM CIPHER SNOW

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDEM YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences

Prof. Dr. Canan Özgen

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. İsmet Erkmen

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Melek D. Yücel

Supervisor

Examining Committee Members

Prof. Dr. Yalçın Tanık (METU,EE)________________________

Assoc. Prof. Dr. Melek D. Yücel (METU,EE)________________________

Prof. Dr. Murat Aşkar (METU,EE)________________________

Assoc. Prof. Dr. Ferruh Özbudak (METU,MATH)________________________

Asst. Prof. Dr. A. Özgür Yılmaz (METU,EE)________________________

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

 Name, Last Name: Erdem Yılmaz

Signature :

iv

ABSTRACT

TWO VERSIONS OF THE STREAM CIPHER SNOW

Yılmaz, Erdem

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Melek D. Yücel

December 2004, 60 pages

Two versions of SNOW, which are word-oriented stream ciphers proposed by P.

Ekdahl and T. Johansson in 2000 and 2002, are studied together with cryptanalytic

attacks on the first version. The reported attacks on SNOW1.0 are the “guess-and-

determine attack”s by Hawkes and Rose and the “distinguishing attack” by

Coppersmith, Halevi and Jutla in 2002. A review of the distinguishing attack on

SNOW1.0 is given using the approach made by the designers of SNOW in 2002 on

another cipher, SOBER-t32. However, since the calculation methods for the

complexities of the attack are different, the values found with the method of the

designers of SNOW are higher than the ones found by Coppersmith, Halevi and

Jutla.

The correlations in the finite state machine that make the distinguishing attack

possible and how these correlations are affected by the operations in the finite state

machine are investigated. Since the substitution boxes (S-boxes) play an important

v

role in destroying the correlation and linearity caused by Linear Feedback Shift

Register, the s-boxes of the two versions of SNOW are examined for the criteria of

Linear Approximation Table (LAT), Difference Distribution Table (DDT) and Auto-

correlation Table distributions.

The randomness tests are performed using NIST statistical test suite for both of the

ciphers. The results of the tests are presented.

Keywords: Stream Cipher, SNOW, S-box, Distinguishing Attack, Randomness Tests

vi

ÖZ

SNOW AKAN ŞİFRESİNİN İKİ UYARLAMASI

Yılmaz, Erdem

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez yöneticisi: Doç. Dr. Melek D. Yücel

Aralık 2004, 60 sayfa

P. Ekdahl ve T. Johansson tarafından 2000 ve 2002 yıllarında önerilen ve kelime

odaklı akan şifrelerden olan SNOW’un iki uyarlaması ve birinci uyarlamasına

yapılmış kriptanaliz atakları üzerinde çalışılmıştır. SNOW1.0 için rapor edilen bu

ataklar, 2002 yılında, Hawkes ve Rose’un “tahmin et ve belirle”, Coppersmith, Halevi

and Jutla’nın “ayırt etme” ataklarıdır. SNOW’un tasarımcılarının 2002’de başka bir

şifre, SOBER-t32, için yaptığı yaklaşım kullanılarak, bu tezde SNOW1.0’e yapılmış

olan ayırt etme atağı yinelenmiştir. Fakat atak karmaşıklıklarını hesaplama

yöntemleri farklı olduğundan, SNOW’un tasarımcılarının yöntemiyle bulunan

değerler Coppersmith, Halevi ve Jutla’nın bulduklarından fazladır.

Ayırt etme atağını mümkün kılan sonlu durum makinesindeki benzeşmeler ve bu

benzeşmelerin Sonlu Durum Makinesi’ndeki işlemlerden nasıl etkilendiği

araştırılmıştır. Yerleştirme kutuları Doğrusal Geri Beslemeli Kaydımalı Yazdırgaç’ın

vii

sebep olduğu doğrusallık ve benzeşmelerin ortadan kaldırılmasında önemli bir rol

oynadığı için, SNOW’un yerleştirme kutularının özellikleri, Doğrusal Yaklaşım

Tablosu, Fark Dağılımı Tablosu ve Oto-korelasyon Tablosu dağılımı ölçütlerine göre

incelenmiştir.

Ayrıca NIST istatiksel test ortamı kullanılarak her iki algoritma için de rassallık

testleri yapılmış ve test sonuçları sunulmuştur.

Anahtar Kelimeler: Akan Şifre, SNOW, Yerleştirme Kutusu, Ayırt Etme Atağı,

Rassallık Testleri

viii

To My Family

ix

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Assoc. Prof.

Dr. Melek D. Yücel for her guidance, encouragement and support in every stage of

this research.

I am also grateful to my home-mates and colleagues for their

encouragement and support.

Finally, I would like to express my deep gratitude to all who have encouraged

and helped me at the different stages of this work.

And my parents and sister, I thank them for everything.

x

TABLE OF CONTENTS

ABSTRACT ... iv
ÖZ ... vi
ACKNOWLEDGEMENTS.. ix
TABLE OF CONTENTS ... x
LIST OF TABLES ... xii
LIST OF FIGURES...xiii
CHAPTER

1 INTRODUCTION..1
2 STREAM CIPHERS ...5

2.1 Stream Ciphers...6
2.2 Linear Feedback Shift Registers...8
2.3 Introducing nonlinearity...11

2.3.1 Boolean Functions ...12
2.3.2 S-Boxes..16
2.3.3 Some Classic Stream Cipher Designs19

3 DESCRIPTION OF SNOW1.0 AND SNOW2.0 ..21
3.1 Description of SNOW1.0...21
3.2 Description of SNOW2.0...25
3.3 Implementation Performances of SNOW..27

4 EXAMINATION OF SNOW1.0 AND SNOW2.0..28
4.1 Examination of S-Boxes ...30

4.1.1 Linear Approximation Table ...31
4.1.2 Difference Distribution and Auto-correlation Tables.................35

4.2 Analysis of the Finite State Machine...37
4.2.1 Review of the Distinguishing Attack on SNOW1.0....................38
4.2.2 Approximating the FSM...40
4.2.3 Changing the S-Box ..41

4.2.4 Changing the “Integer Additions” with “Additions in 322
F ”43

xi

4.2.5 Eliminating the “Shift by 7” Operation44
4.2.6 Both Changing the S-Box and Other Operations46

4.3 Results of Randomness Tests..48
5 CONCLUSIONS ...52
REFERENCES...54
APPENDICES

 APPENDIX A : S-Boxes of SNOW1.0 and Rijndael ...57
 APPENDIX B : Description of Statistical Tests...59

xii

LIST OF TABLES

TABLES

Table 2.1 : The Truth Table of the Boolean function 32211321),,(xxxxxxxxf ++=

...13
Table 3.1 : Number of cycles needed for key setup and keystream generation on a

Pentium 4 @1.8GHz ..27
Table 4.1 : Complexities of attacks on SNOW1.0 and SNOW2.029
Table 4.2 : Details for Figure 4.1 ..32
Table 4.3 : Experimentally found correlation values in the FSM42
 a) SNOW1.0 b) The s-box of SNOW1.0 is changed42
Table 4.4 : Experimentally found correlation values...44
Table 4.5 : Results of the correlation search after eliminating the “Shift by 7”

operation ..45
Table 4.6 : Results of the correlation searches after changing the s-box and

replacing integer additions by “additions in 322
F ”. ..47

Table 4.7 : P-valueT of the p-values for each statistical test on SNOW1.0 and

SNOW2.0 ...50
Table 4.8 : P-valueT of the p-values for each statistical test on the FSM of SNOW1.0

...51

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 : General structure of a synchronous stream cipher6
Figure 2.2 : General structure of a self-synchronizing stream cipher8
Figure 2.3 : Linear Feedback Shift Register of length l ..9
Figure 2.4 : Nonlinear combination generator ..19
Figure 2.5 : Nonlinear filter generator...20
Figure 3.1 : A schematic picture of SNOW1.0..22
Figure 3.2 : The s-box in SNOW1.0 ...24
Figure 3.3 : A schematic picture of SNOW2.0..25
Figure 4.1 : Distribution of LAT values for SNOW1.0 and Rijndael32
Figure 4.2 : Histogram of Walsh Transform values for each combination of

component functions of F for a) SNOW1.0 b) Rijndael ...34
Figure 4.3 : Walsh Transform of one of s-box functions of SNOW1.0......................34
Figure 4.4 : Walsh Transform of one of s-box functions of Rijndael.........................35
Figure 4.5 : Distribution of DDT values...35
Figure 4.6 : Histogram of DDT values for each column..36
Figure 4.7 : Distribution of auto-correlation table values ..36
Figure 4.8 : Histogram of auto-correlation table values for each column36
Figure 4.9 : Schematic view of SNOW1.0 ..38
Figure 4.10 : Schematic view of SNOW1.0 with the approximation of the FSM.......40
Figure 4.11 : Schematic view of the modified versions of SNOW1.043
Figure 4.12 : Schematic view of SNOW1.0 without “Shift by 7” operation45
Figure 4.13 : Both the s-box and the integer additions are changed in SNOW1.0...46
Figure 4.14 (a) : Proportion of sequences passing a test for SNOW1.048
Figure 4.14 (b) : Proportion of sequences passing a test for SNOW2.049
Figure 4.15 : Proportion of sequences passing a test for the linear approximation of

the FSM in SNOW1.0...51

1

CHAPTER 1

INTRODUCTION

Traditionally, different systems have been used by governments and the

military forces to prevent national or military secrets to be revealed by enemies.

Today, also when we use our credit card or an ATM, watch pay-per-view channels,

or buy something on the web, some security systems are used to offer protection.

Achieving security requires some technical skills, which are provided through

cryptography. There are two different types of cryptographic techniques, which are

called symmetric key cryptography and public key cryptography.

In public key cryptography, the keys are not symmetric. There are two types

of keys, which are called the public key and the private key; which belong to the

same person. The public key is used to encrypt a message, but the message can

only be decrypted by the person who has the private key. These keys are generated

so that, one can not obtain the private key from the public key.

In symmetric key cryptography, encrypting and decrypting operations are

done using the same key both on the sender and receiver sides. These types of

algorithms are also called as secret key algorithms. The key in symmetric key

cryptography is the single critical parameter that is to be kept secret. There are two

types of symmetric key algorithms: stream ciphers and block ciphers.

Block ciphers encrypt the plaintext in blocks. These types of algorithms take

the plaintext in fixed-length blocks as input and give the ciphertext again in fixed-

length blocks as output. In most of the cases, the block lengths for the plaintext and

the ciphertext are the same. Stream ciphers encrypt the plaintext character by

character (or bit by bit). These types of algorithms produce a stream of bits, which is

called the keystream of the algorithm. This keystream is used to encrypt or decrypt

the plaintext or the ciphertext.

2

Stream ciphers have several properties that make them suitable for use in

telecommunication applications. But apart from the security tried to obtain, the main

property that makes stream ciphers distinguishable from block ciphers is that they

are in general fast and have low hardware complexity.

Before 1999, there was not much interest on stream ciphers and most of the

stream ciphers were bit-oriented, however they do not perform well in software. After

the call for the NESSIE1 project, the interest on stream ciphers has started to rise

significantly.

An open call in March 2000 led to the submission of forty cryptographic

primitives to the NESSIE project. There were five stream ciphers submitted to

NESSIE.

• LEVIATHAN

• SOBER-t16 and SOBER-t32

• BMGL

• LILI-128

• SNOW

Among these, four of them, SOBER-t16, SOBER-t32, LILI-128 and SNOW,

are based on linear feedback shift registers.

The NESSIE evaluation process was an open process which means that

apart from the evaluations made by NESSIE partners, NESSIE project welcomes

comments and evaluations from all over world. The evaluation process was divided

into two phases and after the second phase, none of the ciphers was recommended

by NESSIE. Because, every stream cipher was exposed to an attack faster than

exhaustive search.

The stream cipher SNOW was submitted by Patrik Ekdahl and Thomas

Johansson, to provide not only the security aspects but also a good performance in

software. The first version of SNOW (SNOW1.0) passed the first phase of the

NESSIE evaluation, but could not pass the second phase due to two attacks

reported. One was a guess-and-determine attack [Hawkes, Rose; 2002] and the

other was a distinguishing attack [Coppersmith, Halevi, Jutla; 2002]. These attacks

1 The NESSIE project is a three year project (2000-2002) that is funded by the European Union’s Fifth Framework
Programme. The main objective of the NESSIE project is to put forward a portfolio of strong cryptographic primitives
of various types.

3

revealed some weaknesses in the design and a new improved version of the cipher,

SNOW2.0, was developed. Although the reasons for some weaknesses in

SNOW1.0 are known, the exact reasons for the strong correlations in the FSM are

not known.

In this study, the reasons behind the changes applied to SNOW1.0 to

improve the security are studied and searched. Among the changes that have been

made, one was the substitution box. So, both of the substitution boxes are

examined. Their LAT (Linear Approximation Table), DDT (Difference Distribution

Table) and Auto-correlation Tables are formed and comparisons are made. Some

tests are performed to see how the correlations in the FSM are affected by the

changes in the s-box and other operations in the FSM, and the reasons for large

correlations are investigated.

In [Ekdahl, Johansson; 2002b], Ekdahl and Johansson mount a

distinguishing attack on Sober-t32 [Hawkes, Rose; 2000] whose structure is very

similar to SNOW1.0. Their distinguishing attack is very similar to the one applied on

SNOW1.0 [Coppersmith, Halevi, Jutla; 2002]. In this study, we give a detailed

review of the distinguishing attack on SNOW1.0 using the description of the attack

on SOBER-t32 [Ekdahl, Johansson; 2002b]. However, since the methods of

calculation for the complexities of the attack are different, the values found with the

method used in [Ekdahl, Johansson; 2002b] are higher than the ones in

[Coppersmith, Halevi, Jutla; 2002].

 Randomness tests are performed using NIST statistical test suite for both of

the ciphers. The results of the tests are presented and compared.

Chapter 1 gives an overview of the cryptography and a summary of the thesis.

In Chapter 2, an introduction to stream ciphers and Boolean functions are given.

The properties of LFSRs and s-boxes, which play important roles in a stream cipher

system, are described.

In Chapter 3, the information about the structures of two versions of SNOW is given.

In Chapter 4, the examination of s-boxes and finite state machine is presented. A

review of the distinguishing attack is given using the approach in [Ekdahl,

4

Johansson; 2002b] made for SOBER-t32; together with the search for the

correlations in the FSM while changing the operations in the FSM. The results of the

randomness tests are presented.

In Chapter 5, concluding remarks are discussed along with future work for possible

improvements.

5

CHAPTER 2

STREAM CIPHERS

A stream cipher is a cryptographic technique that encrypts binary digits

individually, using a transformation that changes with time. This is contrasted to a

block cipher, where a block of binary data is encrypted simultaneously, with the

transformation usually being constant for each block.

In specific applications, stream ciphers are more appropriate than block

ciphers [NESSIE Sec. Rep.; 2003 and Robshaw, RSA Lab. Tech. Rep.; 1995] :

• Stream ciphers are generally faster than block ciphers, especially in

hardware.

• Stream ciphers have less hardware complexity and less memory

requirements for both hardware and software.

• Stream ciphers process the plaintext character by character, so no buffering

is required to accumulate a full plaintext block (unlike block ciphers).

• Synchronous stream ciphers (Section 2.1) have no error propagation.

Most stream ciphers are based on simple devices that are easy to implement

and run efficiently. A common example of such a device is the linear feedback shift

register (LFSR) [Rueppel;1986]. Such simple devices produce predictable output

given some previous output. This is due to the linear property of the device.

Therefore, in order to use LFSRs in cryptographical primitive, and particularly in a

stream cipher, the linearity must be destroyed. Thus, Boolean functions and S-

boxes are introduced together with their basic properties.

6

2.1 Stream Ciphers

Stream ciphers are divided into two sets called synchronous and self-

synchronous.

Definition 2.1: In a synchronous stream cipher, the keystream is generated

independently of the plaintext and the ciphertext.

A synchronous stream cipher can be represented by a finite state machine,

as illustrated in Figure 2.1. Now let’s take a look at the encryption process. It can be

described at time 0≥t by the equations

where 0σ is the initial state and may depend on the key k. f is the next-state

function, g is the function which produces the keystream tz , 0≥t and h is the

output function which combines the keystream and plaintext to produce the

ciphertext tc , 0≥t .

One of the most common types of synchronous stream cipher is the binary

additive stream cipher. A binary additive stream cipher is a synchronous stream

cipher where the plaintext, ciphertext, and keystream all are binary sequences, and

furthermore, the encryption function h (output function) is the simple XOR operation,

i.e.,

 iii zmc ⊕= . (2.2)

Figure 2.1 : General structure of a synchronous stream cipher

 (2.1)

7

 Since the keystream from a synchronous keystream generator neither

depends on the plaintext, nor on the ciphertext, there is no error propagation. That

is, if a certain symbol in the ciphertext has been corrupted by transmission error, the

rest of the ciphertext will not be affected.

To be able to decrypt correctly, the receiver has to be in perfect

synchronization with the sender. If synchronization is lost, the decryption will not

work correctly and the information is lost. Thus, there is a need for mechanisms for

detecting lost synchronization and for re-initialization. Due to the synchronization

property, synchronous stream ciphers are vulnerable to active attacks, where an

adversary can insert or delete symbols to the ciphertext sequence. It will also make

it possible for an adversary to change some of the ciphertext symbols and still

create a valid ciphertext sequence. Thus, we need to use additional techniques to

guarantee message authentication.

A frame based communication protocol can be used to defeat this

synchronization problem. In this protocol, message sequence is first divided into

smaller frames which are numbered with a frame number. We then add a feature

called an Initialization Value (IV), which is publicly known and used in the

initialization of the stream cipher together with the secret key. Now, with a fixed key

but with a changing IV, the stream cipher will produce different sequences of

keystream material for each IV. For each frame the receiver tries to decrypt, he

looks at the public frame number attached to the frame of encrypted information and

pre-initializes the stream cipher with the new frame number as IV and the secret

key, and then decrypts the information. If synchronization is lost for a single frame, it

will only affect a small amount of information, until a new frame arrives and he can

synchronise.

Definition 2.2 : A self-synchronizing or asynchronous stream cipher is a stream

cipher where the keystream is generated as a function of the key, k , and at most t

previous ciphertext symbols.

As for synchronous stream ciphers, we can define a state iσ also for a self-

synchronizing stream cipher. Here the state is taken as the t previous ciphertext

symbols,

),......,,(21 tiiii ccc −−−=σ . (2.3)

8

Figure 2.2 : General structure of a self-synchronizing stream cipher

The ith keystream symbol, iz , is generated as a function, denoted by g, of

the initial state and the key,

=iz g(iσ , k). (2.4)

 From the definition of the state, we observe that we need to have an initial

state defined by a initial value for i < 0. This initial value may be public. The principle

of self-synchronizing stream ciphers is illustrated in Figure 2.2.

Since the state depends only on the last t ciphertext symbols, the key-

stream will automatically be re-synchronized after a limited time, if some ciphertext

symbols are lost during transmission. If a single error occurs on the channel, the

decryption of the next t ciphertext symbols will be affected. Thus, the error

propagation is worse for self-synchronizing stream ciphers compared with

synchronous stream ciphers. The self-synchronization property will also make it

harder to detect insertion or deletion of false ciphertext digits by an active adversary.

Thus, there is a need for additional methods to guarantee message authentication.

2.2 Linear Feedback Shift Registers

 Linear Feedback Shift Registers (LFSRs) are the most commonly used

devices as keystream generators. LFSRs produce sequences having large periods

and good statistical properties, they are well-suited for hardware implementations

9

and there are mathematical techniques to analyse them. For this reason it will be a

good start to use LFSRs while designing a stream cipher.

 A linear feedback shift register produces a sequence, s = s0,s1,s2,....,

satisfying the linear recurrence function,

∑
=

−=
l

j
jnjn scs

1
, ,....,1, += lln (2.5)

where l is the length of the LFSR, .1, ≥∈ iFs qi The general form of a linear

feedback shift register is illustrated in Figure 2.3. An LFSR consists of l delay

elements, where each delay element, also called stage, can store an element, or

digit, in qF . The l stages, (sn-l,sn-l+1,.....,sn-1), are together called the state of the shift

register. Each feedback coefficient cj, j=1,....,l is an element in qF . Using the

feedback coeffients, we define the feedback polynomial, or connection ploynomial,

to be l
l

l
l xcxcxcxcxg ++++−= −
−

1
1

2
211)(. As an alternative to the feedback

polynomial one can use the characteristic polynomial,

ll
lll cxcxcxcxxf −−−−−= −
−−

1
2

2
1

1)(. The first L output symbols ,s0,s1,s2,....,sl-1

are initially loaded into the l stages. These symbols loaded into the LFSR, together

form the initial state.

Figure 2.3 : Linear Feedback Shift Register of length l

 Since there are only a finite number of possible states, lq ,the sequence

produced by the LFSR must repeat itself after a finite period, i.e., for every starting

state we can find a T such that Ttt ss += , 0≥t . The period depends on the

10

properties of the feedback polynomial, and for our use in stream ciphers, we confine

ourselves to the following definition and theorem regarding the period.

Definition 2.3 : The feedback polynomial)(xg is called irreducible if it can not be

written as the product of two polynomials with coefficients in qF and positive degree.

If the root x of an irreducible polynomial)(xg of degree l is a generator of the

multiplicative group of all the non-zero elements of lq
F ,)(xg is called primitive

polynomial.

Theorem 2.1 : Consider an LFSR of length l and feedback polynomial)(xg , where

)(xg is a primitive polynomial of degree l over qF .Then each of the 1−lq non-zero

initial states of the LFSR produces the sequence with period 1−lq .

Then, all possible states except the all zero state will appear during a period.

An LFSR with a primitive feedback polynomial is also called maximum-length LFSR,

and the sequence generated is called a maximum-length LFSR.

Definition 2.4 : The linear complexity of a sequence s = s0,s1,s2,....,si ∈ qF , denoted

)(sL , is the length of the shortest LFSR that generates the sequence.

Given at least 2)(sL output symbols of an LFSR, the linear complexity can

be determined with the Berlekamp-Massey algorithm [Massey; 1969]. Thus, LFSRs

have good statistical properties and can be a useful block for stream ciphers, but

some further work is required to prevent attacks that make use of the inherent

linearity (Section 2.3).

There are many different considerations that we must keep in mind when we

consider the suitability of a keystream generated by some stream cipher. Some of

these considerations are period, linear complexity and statistical measure of the

keystream.

• Period : If the period of the keystream is too short, then different parts of the

plaintext will be encrypted with the repeating keystream and this causes a

severe weakness. A good assesment is necessary regarding the period of

the keystream while designing a stream cipher. Practically, the period should

11

be long enough so that the same portion of the keystream is not used more

than once.

• Linear Complexity : It is an indication for how difficult a sequence might be

to replicate. While a high linear complexity is a necessary condition, the

following example shows that it is not a sufficient condition. Consider the

sequence consisting of a single 1 with the remaining bits set to 0. In this

case the linear complexity is equal to the length of the sequence. However it

is clear that as a keystream such a sequence is useless since all bits except

the starting bit are zero.

Rueppel [Rueppel; 1984] proposes the use of the linear complexity profile in

the analysis of stream ciphers. After each bit is added to the keystream the

linear complexity of the sequence seen so far is calculated; the value of the

linear complexity can be plotted against the number of bits that have been

examined, thereby giving a 'profile' of the sequence. Rueppel established

that the linear complexity profile for a perfectly random source closely follows

the line 2/xy = .

• Statistical measures : A wide range of different statistical tests can be

applied to a sequence to assess how well it was generated by a perfectly

random source. (Appendix A).

But note that properties like large period, large linear complexity and a good

statistical behaviour are necessary but not sufficient conditions for a stream cipher

to be considered cryptographically secure.

2.3 Introducing nonlinearity

 If an LFSR is used as a sequence generator in a stream cipher system,

nonlinearity has to be introduced to the output stream. There are a number of

standard tecniques that can be used to form a highly nonlinear output sequence.

But before mentioning these techniques, Boolean functions and substitution boxes,

which have a great role in destroying the linearity caused by LFSRs, will be

presented.

12

2.3.1 Boolean Functions

 A Boolean function,)(xf takes a binary vector 1 2 2(, ,...,), n ix x x x x= ∈F

ni ≤≤1 , as input and outputs one bit, i.e.,

2 2: nf →F F

The vectors in 2
nF ,in ascending lexicographic order, are denoted by 0 1 2 1

, ,..., nα α α
−

.

As vectors in 2
nF and integers in 0,2 1n⎡ ⎤−⎣ ⎦ have a natural one-to-one

correspondence, it allows us to switch from a vector in 2
nF to its corresponding

integer in 0,2 1n⎡ ⎤−⎣ ⎦ , and vice versa.

 The sequence of f is defined as 0 1 2 1
()() ()((1) , (1) ,..., (1))nff f αα α −− − − , while the

truth table of f is defined as 0 1 2 1
((), (),..., ())nf f fα α α

−
. A Boolean function)(xf

can also uniquely be expressed in algebraic normal form.

nnnnn xxxaxxaxxaxaxaaxxxf),....,,(21....123113211211021 +++++++= ,

where addition and multiplication are in 2F . For a Boolean function

32211321),,(xxxxxxxxf ++=

the truth table is shown in Table 2.1.

Definition 2.5 : The algebraic degree of a Boolean function f is defined to be the

number of variables in the highest order product of f , when f is written in

algebraic normal form. The algebraic degree of f is denoted by)deg(f .

 We call 1 1() ... n nf x a x a x c= + + + an affine function, where 1 2(, ,...,)nx x x x=

and , (2)ja c GF∈ . In particular, f will be called a linear function if 0c = . The

sequence of an affine (linear) function will be called an affine (linear) sequence.

An n variable Boolean function f is balanced if the output column in the

truth table contains an equal number of 0’s and 1’s. Alternatively, f is balanced if

2/1)1)(()0)((==== xfPxfP , when x is chosen uniformly in 2
nF .

13

Table 2.1 : The Truth Table of the Boolean function 32211321),,(xxxxxxxxf ++=

1x 2x 3x),,(321 xxxf

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

2
nF is the set of all Boolean functions in n variables, and let nA be the set of

all affine functions in n variables. The Hamming distance between two functions

2(), () nf x g x F∈ is defined as,

{ }2(,) | () (), n
Hd f g x f x g x x= ≠ ∈F . (2.6)

Definition 2.6 : Nonlinearity of a Boolean function)(xf , denoted by fN , is the

Hamming distance to the nearest affine function, i.e.,

),(min gfdN HAgf
n∈

= . (2.7)

 A high nonlinearity is desirable property since it will decrease the correlation

between the output and the input variables or a linear combination of input variables.

This property is very important while designing a nonlinear combining generator

(Section 2.3.3).

Definition 2.7 : An n variable Boolean function is defined to be t-th order

correlation immune , if for any t-tuple of independent identically distributed binary

random variables
tiii XXX ,....,,

21
, we have

14

0);,....,,(
21

=YXXXI
tiii , niii m ≤<<<≤ ...1 21 , (2.8)

where),...,,(21 nXXXfY = , and);(YXI denotes the mutual information.

Siegenthaler [Siegenthaler; 1984] showed that there is a tradeoff between the

algebraic degree and the order of correlation immunity.

Theorem 2.2 : Let)(xf be a balanced Boolean function in n variables of algebraic

degree d which is t-th order correlation immune. Then the following upper bound

[Siegenthaler; 1984] must hold

1 1 2
 1.

d t n if t n
d t n if t n
+ ≤ − ≤ ≤ −
+ ≤ = −

 (2.9)

A Boolean function that is both balanced and t-th order correlation immune is called

a t-resilient function.

 The properties above are often investigated through Walsh Transform.

Definition 2.8 : For a Boolean function, 2 2: nf →F F , the Walsh Transform of)(xf

is defined to be the real valued function)(wF over the vector space 2
nF given by

∑ ⋅⊕−=
x

xwxfwF)()1()((2.10)

where the dot product (sum of component-wise products) of vectors x and w is

defined as 1 1, n nx w x w x w x w⋅ = = + + .

The component-wise product of two vectors x and w is a vector denoted by x w∗ .

 The Hamming distance between a Boolean function)(xf and an affine

function ()g x w x c= ⋅ ⊕ , where 2c∈F , can be calculated with the Walsh transform

as

2
)()1(2),(1 wFgfd

c
n

H
−

−= − . (2.11)

15

Thus the nonlinearity of)(xf can be obtained from the Walsh transform as

)(max
2
12 1 wFN

w

n
f −= − . (2.12)

Theorem 2.3 : A Boolean function is t-th order correlation immune if and only if

,0)(=wF 2 |1 ()n
Hw w w t∀ ∈ ≤ ≤F , (2.13)

where)(wwH is the Hamming weight of w , i.e., the number of nonzero positions in

w .

A Boolean function)(xf is balanced if and only if 0)0(=F . Hence we see

that Walsh transform is an important tool when investigating properties of Boolean

functions.

Definition 2.9 : Let f be a function on 2
nF . For a vector 2

nα ∈F , denote by ()ξ α

the sequence of ()f x α⊕ . Thus (0)ξ is the sequence of f itself and (0) ()ξ ξ α∗

is the sequence of () ()f x f x α⊕ ⊕ . Define the auto-correlation of f with a shift

α by

() (0), ()α ξ ξ α∆ = , (2.14)

which is also equal to () ()(1) (1)
n

f x f x

x V

α⊕

∈

− −∑ .

Definition 2.10 : The Sylvester-Hadamard matrix (or Walsh-Hadamard matrix) of

order 2n , denoted by nH , is generated by the recursive relation

1 1

1 1

n n
n

n n

H H
H

H H
− −

− −

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

, 00,1, 2,...., 1n H= = . (2.15)

Each row (column) of nH is a linear sequence of length 2n .

 Let ξ be the sequence of a function f on 2
nF . Then, another definition of

nonlinearity of f , fN can be calculated by

1 12 max{ , ,0 2 1}
2

n n
f iN l iξ−= − ≤ ≤ − (2.16)

16

where il is the thi row of nH , 0,1,..., 2 1ni = − , and

22 2
0 1 0 12 1 2 1

((), (),..., ()) (, , , ,..., ,)n nnH l l lα α α ξ ξ ξ
− −

∆ ∆ ∆ = (2.17)

where iα is the binary representation of an integer i and il is the thi row of nH ,

0,1,..., 2 1ni = − . And also that note , ilξ is equal to Walsh transform of f , ()F w .

As a conclusion Boolean functions should have some properties when used

as a combining function (Section 2.3.3) in a stream cipher sysytem:

Algebraic degree A high algebraic degree is desirable since it increases

the linear complexity of the resulting keystream.

Nonlinearity A high nonlinearity gives a weaker correlation between the

input variables and the output variable and increases the resistance to

correlation attacks.

Correlation immunity A high correlation immunity forces the attacker to

consider several input variables jointly and thus decreaes the vulnerability of

divide-and-conquer attacks.

2.3.2 S-Boxes

 An s-box (Substitution box) can be considered as a vector output Boolean

function.

An n m× s-box is a mapping from 2
nF to 2

mF , i.e., 0 1(, ,...,)mF f f f= , where

n and m are integers with 1n m≥ ≥ and each component function jf is a function

on 2
nF .

Lemma 2.11 : A function 1 2(, ,...,)mF f f f= , where each if , 1 i m≤ ≤ , is a Boolean

mapping 2 2
n →F F , is uniformly distributed (balanced) if and only if all nonzero linear

combinations of 1 2, ,..., mf f f are balanced.

The concept of nonlinearity can be extended to the case of an s-box.

Definition 2.12 : The standard definition of the nonlinearity of 0 1(, ,...,)mF f f f= is

1
min{ | , (2), 0}

m

F g j j jg j
N N g c f c GF g

=
= = ⊕ ∈ ≠ (2.18)

17

LAT (Linear Approximation Table), DDT (Difference Distribution Table) and

Auto-Correlation Tables are some of the criterions that are used to measure the

security of s-boxes. The tables of an n m× s-box is a 2 2n m× matrix.

First we introduce three more notations, (), () and j j jk α α η∆ , associated

with an s-box 1 2(, ,...,)mF f f f= . Then we will define the three tables mentioned

above.

Definition 2.13: Let 1 2(, ,...,)mF f f f= be an n m× s-box, 2
nα ∈F , 0,1,..., 2 1mj = −

and 1(,...,)j mb bβ = be the vector in 2
mF that corresponds to the binary

representation of j . In addition set
1

m

j u uu
g b f

=
= ⊕ be the j th linear combination of

the component functions of F . Then we define

1. ()jk α as the number of times () ()F x F x α⊕ ⊕ equals 2
m

jβ ∈F while x

runs through 2
nF once,

2. ()j α∆ as the auto-correlation of jg with a shift α ,

3. jη as the sequence of jg .

Then ,j ilη is the Walsh transform of jg .

In LAT, the rows, indexed by the vectors in 2
nF , represent the coefficients of

a linear boolean function, while the columns, indexed by the vectors in 2
mF ,

represent the coefficients for a linear combination of component functions of F . An

entry in the table indicates the number of matches between input vectors for which

the values of a linear function and a linear combination of component functions of

F minus 12n− . In addition it can be defined as
1(,) 2 (, ())n

H j iLAT i j d g l x−= − , ()i nl x A∈ (2.19)

An entry in the j-th column of the table equals to half of the Walsh transform of jg .

Below is the corresponding matrix for LAT table.

18

0 0 02 1

0 2 1 2 1 2 1

, 2 , 2

, 2 , 2

m

n m n

l l

LAT

l l

η η

η η

−

− − −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

 (2.20)

In DDT, the rows, indexed by the vectors in 2
nF , represent the changes in

the inputs, while the columns, indexed by the vectors in 2
mF , represent the change

in the output of the s-box. An entry in the table indexed by (,)α β indicates the

number of input vectors which, when changed by α (in the sense of bit-wise XOR),

result in a change in the output by β (also in the sense of bit-wise XOR).

0 0 02 1

0 2 1 2 1 2 1

() ()

() ()

m

n m n

k k
DDT

k k

α α

α α

−

− − −

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

 (2.21)

In Auto-correlation table, the rows indexed by the vectors in 2
nF , represent

the changes in the inputs, while the columns, indexed by the vectors in 2
mF ,

represent the coefficients for a linear combination of component functions of F . An

entry in the table indexed by (,)α β indicates the auto-correlation of jg with a shift

α .

0 0 02 1

0 2 1 2 1 2 1

() ()

() ()

m

n m n

Auto correlation table
α α

α α

−

− − −

⎛ ⎞∆ ∆
⎜ ⎟

− = ⎜ ⎟
⎜ ⎟∆ ∆⎝ ⎠

K

M O M

L

 (2.22)

In [Zhang, Zheng, Imai; 1998], a relationship between these tables are

shown. Instead of correlation immunity distribution table used in [Zhang, Zheng,

Imai; 1998] we use LAT. So, the relations are rewritten. An entry in LAT is equal to

the half of the square root of the corresponding entry in correlation immunity

distribution table.

• mACT DDT H= ⋅ (2.23)

• 2 n
nACT H LAT−= ⋅ (2.24)

19

2.3.3 Some Classic Stream Cipher Designs

 In this section mainly the LFSR based stream cipher designs are presented.

There are three obvious ways to generate an alternative output. These are

Nonlinear combination generators, Nonlinear filter generators and Clock-controlled

generators. They are not only used lonely but also combined to get more complex

and hopefully more secure stream ciphers.

 In a nonlinear combination generator several linear feedback shift registers

are used in parallel. The generator consists of n LFSRs to, whose outputs are

combined in a Boolean function f . The principle of a combination generator is

illustrated in Figure 2.4.

Figure 2.4 : Nonlinear combination generator

 To get a secure nonlinear combination generator we need to find a function

that is correlation immune and have high nonlinearity. But there is a tradeoff

between these properties (Theorem 2.2). To eliminate this tradeoff, the memoryless

function f can be replaced by a finite state machine with memory. And to increase

both correlation immunity and nonlinearity we must employ a large number of

LFSRs.

 Instead of using several LFSRs one can use one single LFSR and generate

the keystream as a nonlinear function f of the stages of the LFSR. Such a

keystream generator called a nonlinear filter generator. The function f is then

called filtering function. The principle of nonlinear filter generators is illustrated in

Figure 2.5. Also for a nonlinear filter generators we can replace the memoryless

20

filtering function with a finite state machine. One such cipher which has recently

been proposed is SNOW (Chapter 3).

Figure 2.5 : Nonlinear filter generator

 The third method used in designing stream ciphers is by clock-controlled

generators. In a clock-controlled generator, the output of one or several LFSRs

controls the clocking of other shift registers. Two examples of clock-controlled

generators are the shrinking generator and the alternating step generator. Another

clock-controlled generator that is used in practice is the cipher A5 used in GSM

phones.

21

CHAPTER 3

DESCRIPTION OF SNOW1.0 AND SNOW2.0

SNOW is designed by Patrick Ekdahl and Thomas Johansson [Ekdahl,

Johansson; 2000] and submitted to NESSIE project. It has excellent performance,

several times faster than AES. After the report of distinguishing and guess-and-

determine attacks on the first version, a new version of SNOW, which is called

SNOW2.0 [Ekdahl, Johansson; 2002a], is proposed. The new version is said to be

more secure and faster than SNOW1.0. In this chapter, first SNOW1.0 and then

SNOW2.0 are described. A detailed analysis of SNOW1.0 related with the

distinguishing attack is given in Section 4.2.

3.1 Description of SNOW1.0

SNOW1.0 is a keystream generator based on a LFSR defined over 322
F ,

where the nonliearity is provided by a Finite State Machine (FSM). It uses a 128-bit

or 256-bit key and has an internal memory of 576 bits. The generator is shown in

Figure 3.1, where we denote addition in 322
F by the symbol ⊕ , addition modulo 322

by the symbol , multiplication by 322
∈α F by α and a cyclic shift of 7 steps to the

left by <<< . SNOW uses an LFSR of length 16, feeding a finite state machine. The

FSM consists of two 32 bit registers, called 1R and 2R , as well as a some

operations to calculate the output and the next value of 1R and 2R .

The operation of the cipher is as follows. First, the key initialization is done.

This procedure provides initial values for the LFSR as well as for the 1R , 2R

registers in the finite state machine. Next, the first 32 bits of the keystream are

calculated by bitwise adding the output of the FSM and the last entry of the LFSR.

22

Figure 3.1 : A schematic picture of SNOW1.0

And after every clocking of the whole cipher, next 32 bits of the keystream

are calculated.

The LFSR has a primitive feedback polynomial over 322
F which is

16 13 7 1() ,−= ⊕ ⊕ ⊕p x x x x α (3.1)

where 322
F is generated by the irreducible polynomial

32 29 20 15 10() 1= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕x x x x x x xπ (3.2)

over 2F , and () 0π α = . Furthermore let 3215 14 0 2
, ,..., ∈s s s F be the initial state of the

LFSR, each +t is being an element of 322
F .

Now, let 1tR , 11tR + and 2tR , 12tR + denote the values of 1R and 2R at time

, 1t t + , respectively. The LFSR can also be defined by a linear recurrence relation

16 3 9()+ + += ⋅ ⊕ ⊕t t t ts s s sα , (3.3)

where ⋅ denotes multiplication in 322
F and stored values 15(,...,)t ts s+ corresponds to

the state of the LFSR. The output of the FSM at time t is computed as

 15(t tf s += 1) 2t tR R⊕ . (3.4)

15+ts ts

23

The 32-bit output of the cipher at time t is computed as

t t tz f s= ⊕ . (3.5)

The next state of the FSM is computed as

 11 1 (t t tR R ROT f+ = ⊕ 2 ,7)tR (3.6)

12 (1)t tR S R+ = , (3.7)

where (,)ROT A B denotes the cyclic rotation of A by B bits towards the most

significant bit, and ()S is defined by four invertible 8-bit s-boxes and a bit

permutation.

 The s-box operation works as follows (Figure 3.2). The input x is split into 4

bytes. Each of the bytes enters a nonlinear mapping from 8 bits to 8 bits.

 The nonlinear mapping is defined to be
7 2 1,r w β β= ⊕ ⊕ ⊕ (3.8)

where the arithmetics are in 82
F . w and r are input and output vectors which are

considered as representing elements in 82
F using the polynomial base 7{ ,..., ,1}β β

generated by the irreducible polynomial 8 5 3() 1x x x x xπ = ⊕ ⊕ ⊕ ⊕ and () 0π β = .

In Figure 3.2, γ denotes 2 1⊕ ⊕β β , which also represents the vector element

(00000111) in 82
F .

 After the nonlinear mapping, the bits in the resulting word are permuted. The

permutation is described by

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

3 10 20 24 0 14 17 29 7 13 18 25 5 12 13 27

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 8 21 26 4 9 19 31 2 11 16 28 6 15 22 30

which should be interpreted as the 31st bit position is mapped to the 3rd , the 30th bit

is mapped to the 10th, etc.

 There are two modes of operation specified for SNOW1.0. These are the

standard mode and IV (initial vector) mode. In the standard mode, only a secret key,

called k , is used to form the seed. But in IV mode the generator is initialized using

24

two variables, the secret key k and a known initialisation value (IV). This means

that for a given secret key k , the generator produces a set of pseudo-random

number sequences, one for each IV value. The details of the modes of operation

and key initialisation can be found in [Ekdahl, Johansson; 2000].

Figure 3.2 : The s-box in SNOW1.0

25

3.2 Description of SNOW2.0

 SNOW2.0 [Ekdahl, Johansson; 2002a] is schematically a small modification

of SNOW1.0, see Figure 3.3. The word size and LFSR length are the same, but the

feedback polynomial is different. The Finite State Machine (FSM) has two input

words, taken from the LFSR.

Figure 3.3 : A schematic picture of SNOW2.0

 There is a small difference in the operation of the cipher. In the first version,

after the key initialization, the first symbol was read out before the cipher was

clocked. But in the second version it is read out after the cipher is clocked once.

 The feedback polynomial of SNOW2.0 is given by

32
16 14 1 5

2
() 1 [],−= ⊕ ⊕ ⊕ ∈x x x x xπ α α F (3.9)

where α is a root of 8
4 23 3 245 2 48 239

2
[],⊕ ⊕ ⊕ ⊕ ∈x x x x xβ β β β F

26

and β is a root of 8 7 5 3
21 []⊕ ⊕ ⊕ ⊕ ∈x x x x xF .

 The input to the FSM is 15 5(,)t ts s+ + and the output of the FSM is calculated

as

 15(t tf s += 1) 2t tR R⊕ , 0t ≥ (3.10)

and the keystream is given by

t t tz f s= ⊕ , 1t ≥ . (3.11)

The next state of the FSM is computed as

 1 51t tR s+ += 2tR and (3.12)

12 (1)t tR S R+ = 0t ≥ . (3.13)

The s-box used in SNOW1.0 was changed with the one of Rijndael

[Daemen, Rijmen; 2002] in SNOW2.0. K. Nyberg, in [Nyberg; 93], inspired J.

Daemen and V. Rijmen to use a mapping 1x x−→ in the design of Rijndael. Nyberg

presented the impressive properties of this mapping. Actually, the high nonlinearity

property, which we also examine in Section 4.1, was first proven in the work of

Carlitz and Uchiyama [Carlitz, Uchiyama; 1957].

It is a permutation on 322
Z . Let 3 2 1 0(, , ,)w w w w w= be the input to the s-box,

where , 0...3iw i = is the four bytes of .w Assume 3w to be the most significant byte.

Let

0

1

2

3

w
w

w
w
w

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.14)

be a vector representation of the input to the s-box. First the Rijndael s-box, denoted

RS , is applied to each byte.

0

1

2

3

[]
[]
[]
[]

R

R

R

R

S w
S w
S w
S w

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.15)

27

Then the MixColumn Transformation of Rijndael’s round function is applied which

can be computed as a matrix multiplication,

0 0

1 1

2 2

3 3

[]1 1 1
[]1 1 1

1 1 1 []
1 1 1 []

R

R

R

R

r S wx x
r S wx x
r x x S w

x xr S w

+⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟=
⎜ ⎟ ⎜ ⎟⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.16)

where 3 2 1 0(, , ,)r r r r are the output bytes from the s-box. These bytes are

concatenated to form the word output from the s-box ().r S w=

SNOW2.0 has only IV mode of operation and length of the IV is 128 bit. The

details of the key initialization can be found in [Ekdahl, Johansson; 2002a].

3.3 Implementation Performances of SNOW

In addition to the improvements made in the cryptograhical sense, the

implementation performance of SNOW1.0 was also improved in SNOW2.0. The

implementation performances, that are tabulated in Table 3.1, are taken from

[Ekdahl, Johansson; 2002a]. It is told that the tests were run on a PC with Intel 4

processor running at 1.8GHz, 512 Mb of memory.

Table 3.1 : Number of cycles needed for key setup and keystream generation on a

Pentium 4 @1.8GHz

 SNOW1.0 SNOW2.0

Key sutup 925 937

Keystream generation 47 38

28

CHAPTER 4

EXAMINATION OF SNOW1.0 AND SNOW2.0

The NESSIE evaluation process consists of two phases. The first version of

SNOW (SNOW1.0) has passed the first phase of the NESSIE evaluation, but could

not pass the second phase due to two attacks reported (Table 4.1). One is a guess-

and-determine attack [Hawkes, Rose; 2002] and the other is a distinguishing attack

[Coppersmith, Halevi, Jutla; 2002]. Actually there are two methods reported for the

guess-and-determine attack and they have different process and data complexities.

In section 4.2.1, we give a review of the distinguishing attack on SNOW1.0 by using

the description [Ekdahl, Johansson; 2002b] of the attack on SOBER-t32 [Hawkes,

Rose; 2000]. Since the structure of SOBER-t32 is similar to SNOW1.0, i.e., both of

the ciphers consist of an LFSR and a nonlinear function, the same approach can be

made to SNOW1.0 as well. However, since the methods of calculation for the

complexities of the attack are different, the values found with the method used in

[Ekdahl, Johansson; 2002b] are higher than the ones in [Coppersmith, Halevi, Jutla;

2002].

Guess-and-determine attacks exploit the relationships between internal values (such

as the recurrence relationship in a shift register), and the relationship used to

construct the key-stream values from the internal values. It is a kind of key recovery

attack. In this attack some internal values are guessed and then the relationships

are used to determine other internal values. The cipher is said to be “broken" when

a complete internal state has been determined from the guessed values. When this

attack is applied to SNOW1.0, it is aided by the unfortunate choice of inputs to the

recurrence relation, which is

29

Table 4.1 : Complexities of attacks on SNOW1.0 and SNOW2.0

16 3 9()t t t ts s s sα+ + += ⊕ ⊕ . (4.1)

There is a distance of 3 words between ts and 3+ts , and a distance of

6 2 3= × words between 3+ts and 9+ts . Thus, by squaring (4.1)

2
32 6 18()+ + += ⊕ ⊕t t t ts s s sα (4.2)

we see that 6()+ + +⊕t i t is s can be considered as a single input to either equation. The

attacker does not need to determine both +t is and 6+ +t is explicitly, but only the exor

sum will be enough to use in (4.1) and (4.2). If the linear recurrence did not have this

property, then it is likely that fewer state words could be derived from the guessed

words, and the attacker would be unable to derive a full state from the guessed

words. To overcome this weakness, the recurrence relation is changed in

SNOW2.0.

Distinguishing attacks against stream ciphers are basically established on the way

of considering ciphers in two parts, linear and nonlinear. Linear approximation of the

nonlinear part is found and then combined with the linear part. In SNOW1.0,

obviously the linear part is the LFSR and the nonlinear part is the FSM. In

[Coppersmith, Halevi, Jutla; 2002], it is shown that large correlations found in the

FSM by the help of the linear approximation can be turned into a distinguishing

attack.

In SNOW1.0, the linearity caused by the linear feedback shift register is

destroyed using a filtering generator with memory, i.e., a Finite State Machine

(FSM). In today’s cryptography, both in block ciphers and stream ciphers,

SNOW1.0 SNOW2.0
Data Complexity Process Complexity Data Complexity Process Complexity

Guess-and-Determine
Attack (Method 1)

264 2256 - -

Guess-and-Determine
Attack (Method 2)

295 2224 - -

Distinguishing Attack 295 2100 2225 2225

30

nonlinearity is generally achieved by substitution boxes (s-box). Due to the

weaknesses found in s-boxes, linear and differential cryptanalysis can be done.

Although these cryptanalysis techniques are mostly applied to block ciphers, it can

also be applied to a word-oriented stream cipher.

In this chapter, first the s-boxes of SNOW1.0 and SNOW2.0 are examined. A

review of the distinguishing attack is given using the approach in [Ekdahl,

Johansson;2002b] made for SOBER-t32 and the effect of the s-boxes to the

distinguishing attack and how the correlations are affected by the operations in the

finite state machine are investigated. Randomness tests are performed using NIST

Statistical Test Suite and the results of these tests are presented.

4.1 Examination of S-Boxes

The s-box of SNOW1.0, which was mentioned in Section 3.1, has the

nonlinear mapping
7 2 1,= ⊕ ⊕ ⊕r w β β (4.3)

where the arithmetics are in 82
F . 7 6 0(, ,...,)w w w w= and 7 6 0(, ,...,)r r r r= are input

and output vectors which are considered as representing elements in 82
F using the

polynomial base 7{ ,..., ,1}β β generated by the irreducible polynomial

8 5 3() 1= ⊕ ⊕ ⊕ ⊕x x x x xπ and () 0π β = . Equation (4.3) can be rewritten as

 7
1,= ⊕r w c (4.4)

where 1c denotes the coostant vector element in 82
F , which is equal to

(00000111) .

In SNOW2.0, the s-box of Rijndael [Daemen, Rijmen; 2002] is used. It is

implemented by two transformations:

• First taking the multiplicative inverse in 8(2)GF . In binary representation

‘00000000’ is mapped onto itself.

• Then applying an affine transformation over 2Z defined by:

31

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

1 0 0 0 1 1 1 1 1
1 1 0 0 0 1 1 1 1
1 1 1 0 0 0 1 1 0
1 1 1 1 0 0 0 1 0

.
1 1 1 1 1 0 0 0 0
0 1 1 1 1 1 0 0 1
0 0 1 1 1 1 1 0 1
0 0 0 1 1 1 1 1 0

y x
y x
y x
y x
y x
y x
y x
y x

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

where 7 6 0(, ,...,)x x x x= is the multiplicative inverse of the byte at the input

of the s-box.

The non-linear mapping of the s-box of Rijndael can be considered in the

form of Equation (4.4) as
1

2
−= ⊕r aw c , (4.5)

where a and 2c denotes constant elements in 82
F . Let 82

α∈F , then
82 1 1−α = . So,

1−α is equal to
82 2−α , which is also equal to 254α . Hence, equation (4.5) becomes

254
2= ⊕r aw c . (4.6)

4.1.1 Linear Approximation Table

The examination of the s-boxes starts with the formation of the Linear

Approximation Tables. In this section, we present the distribution of LAT values that

we calculate for the s-boxes of SNOW1.0 and SNOW2.0 (See Appendix A).

A LAT table is a good indicator that shows the susceptibility of a cipher to

linear cryptanalysis. Nonlinearity measurement is used to evaluate this

susceptibility. Nonlinearity for an n m× s-box is defined as

1
min{ | , (2), 0}

m

S g j j jg j
N N g c f c GF g

=
= = ⊕ ∈ ≠ (4.7)

where if , 1 i m≤ ≤ , of 1 2(, ,...,)mS f f f= is a Boolean mapping 2 2
n →F F . This can

be expressed for an n n× s-box in terms of maximum magnitude LAT element as

2

1

,
2 max (,)

n

n
SN LAT−

∈
= −

w c
w c

F
 (4.8)

where w and c denote the rows and columns of LAT.

32

Distribution of LAT Values

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

-32 -16 -14 -12 -10 -8 -6 -4 -2 2 4 6 8 10 12 14 16 32

Values

of

 V
al

ue
s

SNOW1.0 Rijndael (Inverse) Rijndael (Inverse+Affine)

Figure 4.1 : Distribution of LAT values for SNOW1.0 and Rijndael

Table 4.2 : Details for Figure 4.1

-32 -16 -14 -12 -10 -8 -6 -4 -2 2 4 6 8 10 12 14 16 32

SNOW1.0
128 3824 15308 15292 3826 127

Rijndael
(Inverse) 0 2040 4080 2040 4590 6120 4080 8160 4080 5100 4080 4080 4080 5100 2040 1275

Rijndael
(Inverse+Affine) 640 2040 4592 3064 4334 5096 4592 6112 6128 4588 5104 4336 3056 4588 2040 635

33

The elements of LAT can be expressed as

 1(,) 2 ((),)−= − ∗ ∗w c c x w xnLAT d F . (4.9)

In Figure 4.1, the distribution of LAT values for SNOW1.0 and Rijndael are

shown together. The details of this figure are tabulated in Table 4.2.

Examining Figure 4.1, the maximum magnitude in the LAT elements is 32.

This leads to a nonlinearity of 96=128-32. This nonlinearity measurement can also

be treated as the number of inputs for which the equality of a linear boolean function

and a component function (of F) holds. That is, for 255 (127+128) equation pairs,

96 plaintexts satisfies the equality. Then the probability that these equations hold

can be calculated as 96 256 0.375= (bias from 1 2 is 0.125).

For Rijndael two diagrams are tabulated, one for multiplicative inverse

function, the other for multiplicatice inverse function and affine transformation. The

aim was to see that there is no effect of affine transformation on the nonlinearity.

The reason for affine transformation seems to be the elimination of the “zero to zero”

map in multiplicative inverse function.

The maximum magnitude LAT element for Rijndael is 16. So, the nonlinearity

is 112=128-116 and there are 1275 equation pairs for which the probability that

those equations hold is 112 256 0.4375= (bias from 1 2 is 0.0625).

Whenever these calculated probabilities are not close to 1 2 , it means that

the examined s-box is susceptible to linear cryptanalysis. Thus, regarding the above

calculated probabilities for SNOW1.0 and Rijndael, one can say that s-box of

SNOW1.0 is more susceptible to linear cryptanalysis.

Walsh transform values can be used to evaluate the strength of an s-box.

Every column of LAT is half of the Walsh transform values of a linear combination

function ()g x given by

8

1
() (), (2)j j jj

g x c f x c GF
=

= ⊕ ∈ . (4.10)

Hence, in order for a Boolean function to be highly nonlinear, the absolute value of

its Walsh transform should not take large values. The s-boxes of both SNOW1.0

and Rijndael consist of 8 Boolean functions and all Boolean functions perform well

for each of the ciphers. All Boolean functions have the same histogram of Walsh

transform values. Figure 4.2 (a) and (b) show the histograms of Walsh transform

values for all linear combinations of 8 Boolean functions for the s-boxes of

34

SNOW1.0 and Rijndael, respectively. Notice that compared to SNOW1.0, Rijndael

has a more uniform distribution of Walsh transform values.

The Walsh transforms of one of the Boolean functions of SNOW1.0 and

Rijndael are given in Figure 4.3 and 4.4, respectively.

 a) SNOW1.0 b) Rijndael

Figure 4.2 : Histogram of Walsh Transform values for each combination of

component functions of F for a) SNOW1.0 b) Rijndael

Figure 4.3 : Walsh Transform of one of s-box functions of SNOW1.0

Histogram of Walsh Transform Values for each
column (SNOW1.0)

30
1

120

0

50

100

150

16 32 64

Absolute Values

of

 V
al

ue
s

Histogram of Walsh Transform Values for each column
(Rijndael)

36 40
34

24

36

16
5

48

0
10
20
30
40
50
60

4 8 12 16 20 24 28 32

Absolute Values

of

 V
al

ue
s

Walsh Transform of one of S-Box Functions

-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

w

f(w
)

SNOW1.0

35

Figure 4.4 : Walsh Transform of one of s-box functions of Rijndael

4.1.2 Difference Distribution and Auto-correlation Tables

 The Difference Distribution Table is a matrix of size 256 x 256, whose entries

are calculated by Equation 2.21. The maximum entry in DDT determines the

security level against differential cryptanalysis.

The s-boxes of SNOW1.0 and Rijndael are 6 and 4-differentially uniform,

respectively. So, the s-box of SNOW1.0 is more susceptible to differential

cryptanalysis. And as we see in Figure 4.6, DDT values of both ciphers are

uniformly distributed.

Figure 4.5 : Distribution of DDT values

Walsh Transform of one of S-Box Functions

-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70

0 13 26 39 52 65 78 91 10
4

11
7

13
0

14
3

15
6

16
9

18
2

19
5

20
8

22
1

23
4

24
7

w

f(w
)

Rijndael

Distribution of DDT Values

255
3570

255

21421

32130

0
5000

10000
15000
20000
25000
30000
35000

2 4 6

Values

of

 V
al

ue
s

SNOW1.0

Rijndael

36

a) SNOW1.0 b) Rijndael

Figure 4.6 : Histogram of DDT values for each column

 We now tabulate the auto-correlation values for linear combination functions

()g x given in Equation (4.10). The entries of the tables are calculated by Equation

2.22.

 As we see in Figure 4.7, there are a lot of entries at higher values in the

auto-correlation table of SNOW1.0. But for Rijndael, the entries are distributed

uniformly at lower values.

Figure 4.7 : Distribution of auto-correlation table values

 a) SNOW1.0 b) Rijndael

Figure 4.8 : Histogram of auto-correlation table values for each column

Distribution of Auto-Correlation Table Values

255

18360
14790

1020
0

5000

10000

15000

20000

-64 -32 -24 -16 -8 8 16 24 32 64

Values

of

 V
al

ue
s

SNOW1.0

Rijndael

Histogram of Auto-Correlation Table Values for each column
(SNOW1.0)

5

130

0

50

100

150

32 64

Values

of

 V
al

ue
s

Histogram of Auto-correlation Table Values for each column
(Rijndael)

74

52

13

84

0
20
40
60
80

100

8 16 24 32

Values

of

 V
al

ue
s

Histogram of DDT Values for each
column (SNOW1.0)

1
14

84

0
20
40
60
80

100

2 4 6

Values

of

 V
al

ue
s

Histogram of DDT Values for each
column (Rijndael)

1

126

0

50

100

150

2 4

Values

of

 V
al

ue
s

37

4.2 Analysis of the Finite State Machine

 One of the attacks against SNOW1.0 was a distinguishing attack by

Coppersmith et al [Coppersmith, Halevi, Jutla; 2002]. The basic idea of this attack,

developed earlier by Golic [Golic; 1996], is to distinguish the outputs of a keystream

generator from a truly random bit sequence, by applying the technique of linear

cryptanalysis on block ciphers. Quite interestingly, in the same year the designers of

SNOW also applied a distinguishing attack to SOBER-t16 and t-32 [Ekdahl,

Johansson; 2002b].

 In a distinguishing attack, the internal state of the target keystream generator

is divided into the linear part and nonlinear part, and the best approximation of the

non-linear part is found. The attack is based on combining the linear approximation

of the nonlinear part with the linear recurrence, defined through the feedback

polynomial.

In SNOW1.0, the linear recurrence relation of LFSR in Figure 4.9 is given by

16 3 9()+ + += ⋅ ⊕ ⊕t t t ts s s sα (4.11)

and the corresponding characteristic polynomial is
16 13 7 1() −= ⊕ ⊕ ⊕p x x x x α . (4.12)

To be able to apply a distinguishing attack against SNOW1.0, we need a polynomial

with 0-1 coefficients, i.e., we have to eliminate the element α ∈ 322
F . Repeated

squaring of this polynomial will still yield a valid linear recurrence equation for the

considered linear recurrence of SNOW1.0. The exponentiation with 322 gives
32 32 32 32 322 16 2 13 2 7 2 1 2() × × × − ×= ⊕ ⊕ ⊕p x x x x α . (4.13)

Sinceα ∈ 322
F ,

321 2 1α α− × −= and addition of (4.11) and (4.12) gives

32 32 32 322 16 2 13 2 7 2 16 13 7() ()⊕ = ⊕ ⊕ ⊕ ⊕ ⊕x x xp x p x x x x x x x . (4.14)

Since the coefficient α , which does not belong to
2

F , is eliminated, one has a

linear relation with 6 terms that holds for each single bit position. Dividing (4.14) by
7x , the resulting linear recurrence equation is given by

32 32 32 9 616 2 7 13 2 7 7 2 7
0+ ++ × − + × − + × −

⊕ ⊕ ⊕ ⊕ ⊕ =t t tt t t
s s s s s s . (4.15)

38

Figure 4.9 : Schematic view of SNOW1.0

For the nonlinear part, the linear approximation of FSM, found by

[Coppersmith, Halevi, Jutla; 2002], is

 15 16 1 22 1 23 15 1 23() () () () () ()+ + +⊕ ⊕ ⊕ = ⊕t t t t t tf f f f F F (4.16)

where tf is the input to FSM and tF is the output to FSM in Figure 4.9. The bias of

the approximation is found as at least 9.32− [Coppersmith, Halevi, Jutla; 2002]. We

will try to explain how (4.16) is obtained in Section 4.2.2; after giving a review of the

distinguishing attack [Coppersmith, Halevi, Jutla; 2002] by using the approach in

[Ekdahl, Johansson; 2002b], made for a distinguishing attack on SOBER-t32.

4.2.1 Review of the Distinguishing Attack on SNOW1.0

To understand the core idea of the attack, let’s write the output of the FSM

as

= Ω ⊕t t tF w (4.17)

where Ωt is for the linear operations of the words from LFSR and tw is for the

noise (nonlinearity) introduced by the integer addition and substitution box.

 Now, given the FSM output, 0 1 1, ,..., ,−NF F F of length N , we can use the

linear recurrence relation (4.15) to calculate

Shift by 7

Int. Add. 2

Int. Add. 1

t+3t+9st+15

R1t

R1t+1

R2t

R2t+1

S

<<7

zt

st

tf
tF

α

39

 32 32 32 9 616 2 7 13 2 7 7 2 7 + ++ × − + × − + × −
⊕ ⊕ ⊕ ⊕ ⊕ =t t tt t t

F F F F F F

 32 32 32 32 32 3216 2 7 16 2 7 13 2 7 13 2 7 7 2 7 7 2 7+ × − + × − + × − + × − + × − + × −
Ω ⊕ ⊕Ω ⊕ ⊕Ω ⊕ ⊕

t t t t t t
w w w

 9 9 6 6+ + + +Ω ⊕ ⊕Ω ⊕ ⊕Ω ⊕t t t t t tw w w (4.18)

Since all the Ω j terms only depend on the words from the LFSR, they will be equal

to zero as a result of (4.15). Then, we have

32 32 32 9 616 2 7 13 2 7 7 2 7 + ++ × − + × − + × −
⊕ ⊕ ⊕ ⊕ ⊕ =t t tt t t

F F F F F F

 32 32 32 9 616 2 7 13 2 7 7 2 7 + ++ × − + × − + × −
⊕ ⊕ ⊕ ⊕ ⊕t t tt t t

w w w w w w . (4.19)

Using Matsui’s Piling-Up Lemma, which was introduced in [Matsui; 1993], we can

calculate the probability that the noise variables sum to zero.

Piling-Up Lemma [Matsui; 1993]:

 For n independent, random binary variables 1 2, ,..., nX X X ,

 1
1 2

1

(... 0) 1 2 2 −

=

⊕ ⊕ ⊕ = = + ∏
n

n
n i

i

P X X X ε (4.20)

 where iε represents the probability that iX is equal to zero.

Denote the left hand side of (4.19) by ∗
tF and the bias of (4.16) by 23ε . Then, using

(4.20), we have

 5 6
23 23

1(() 0) 2
2

∗ = = +tP Fε ε , (4.21)

where 25 accounts for all possible cases for an exor operation with 6 terms to be

equal to zero. Then, the total bias of the cipher is calculated as 5 9.3 6 50.82 2 2− × −⋅ = .

But how many outputs do we need in order to distinguish this biased output

of FSM from a truly random source? The probability of error while distinguishing the

outputs of FSM is
(,)2−= unC P P

eP ε [Cover, Thomas; Elements of Inf. Theory. 1991] (4.22)

where is n the number of outputs,
1
2

= +Pε ε ,
1
2

=uP (uniform distribution) and

(,)uC P Pε is the Chernoff Information

1
20 1

(,) min log (()) (()) −

≤ ≤
∈

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑u u
x N

C P P P x P xλ λ
ε ελ

 (4.23)

40

The exact value of λ is difficult to obtain. So, to get an upper bound in (4.22), the

summation in (4.23) should be minimized. To achieve this we can take λ as 0.5.

After making calculations the approximate value for (,)uC P Pε is found to be 2ε .

Using 0.5=eP we derive the number of outputs needed to distinguish the output of

SNOW1.0 from a truly random bit sequence as 101.62 (21= ε) and the process

complexity is same.

4.2.2 Approximating the FSM

 In order to verify the approximation of the FSM and to construct a test

mechanism we have clearly rederived the approximation.

There are two non-linear operations in the FSM: one is the substitution box

and the other is the addition modulo 322 . To simplify the calculations, the substitution

box is ignored and the addition modulo 322 is approximated with the xor operation

(and one extra bit is also taken into account to approximate the carry bit). After

making these changes, Figure 4.10 is achieved for SNOW1.0.

The input of FSM is related to its output with the equation

1 1 1 1() (1) (2) ()+ + + ++ ⊕ =t x t x t x t xf R R F (4.24)

Figure 4.10 : Schematic view of SNOW1.0 with the approximation of the FSM

st+15

R1t

R1t+1

R2t

R2t+1

<<7

zt

st

tf
tF

41

The substitutions, (4.25), (4.26) and (4.27), are inserted in (4.24) for two

rounds calculations.

1 12 (1) 2 1+ += ⇒ ≈t t t tR S R R R (4.25)

1 1 1 1 1 1() (1) () (1) ()+ + + + + −+ = ⊕ ⊕t x t x t x t x t xf R f R f (4.26)

1 7 7(1) (1) (2) ()+ − −= ⊕ +t x t x t x t xR R R F (4.27)

Then, we have the equation

 1 7 7 1 1 1() (1) (2) () () (1) ()+ − − + − +⊕ ⊕ + ⊕ ⊕ =t x t x t x t x t x t x t xf R R F f R F . (4.28)

 By using (4.24) we can achieve (4.29).

7 7 7 7() (1) (2) ()t x t x t x t xf R R F− − − −+ ⊕ = (4.29)

Substituting (4.29) instead of 7()t xF − in (4.28) and approximating the integer

addition, we relate the input of FSM to its output for two rounds.

1 1 7 1 8 1 8() () () () () ()+ + + + + + +⊕ ⊕ ⊕ = ⊕t x t x t x t x t x t xf f f f F F (4.30)

where 0 x 23≤ ≤ .

The correlations are searched for all possible x values. The cipher algorithm

is run 500.000.000 times in order to find the bias of the equation. The biases, that

are found, are listed in Table 4.3.a. The biggest correlation is achieved when x is

equal to 15 and the value of the bias is approximately 9.342− . This is almost the same

as the one that Coppersmith has found.

4.2.3 Changing the S-Box

In part 4.1, the s-boxes of the two versions of SNOW were examined. There,

we have concluded that the s-box of SNOW1.0 is weaker in all aspects that we have

considered. In order to see the effect of s-boxes to the correlations between the

input and output of FSM, the s-box of SNOW1.0 is changed with that of Rijndael.

The biases that are found, are listed in Table 4.3.b . Examining the table, the largest

correlation value is observed as 14.32− when x is equal to 12. Then, the total bias of

the cipher is calculated as 5 14.23 6 80.382 2 2− × −⋅ = and the number of outputs needed to

perform a distinguishing attack is 160.82 , which is slower than the exhaustive search

for the 128-bit key, but not for the 256-bit key.

42

Only the change of the substitution box makes a great deal of improvement

in the strength of the cipher against the distinguishing attack of Coppersmith et al.

[Coppersmith, Halevi, Jutla; 2002]. We can conclude that one of the reasons for the

large correlations is the disadvantages of the first s-box with respect to the second

one.

Table 4.3 : Experimentally found correlation values in the FSM

 x Bias x Bias

 a) SNOW1.0 b) The s-box of SNOW1.0 is changed
 with that of Rijndael.

0 0.000019

1 0.000000

2 0.000005

3 -0.000005

4 0.000010

5 -0.000035

6 0.000008

7 0.000004

8 -0.000001

9 0.000020

10 0.000032

11 -0.000028

12 0.000027

13 -0.000019

14 0.000007

15 0.001545

16 0.000041

17 0.000015

18 -0.000045

19 0.000001

20 0.000014

21 0.000011

22 0.000006

23 0.000045

0 0.000023

1 0.000011

2 0.000009

3 0.000008

4 -0.000013

5 0.000004

6 0.000014

7 0.000044

8 0.000004

9 -0.000020

10 0.000016

11 0.000008

12 0.000052

13 0.000036

14 0.000008

15 -0.000013

16 -0.000015

17 -0.000007

18 -0.000027

19 -0.000008

20 -0.000016

21 0.000008

22 0.000008

23 0.000036

9.342−=

14.232−=

43

4.2.4 Changing the “Integer Additions” with “Additions in 322
F ”

To discover the effects of two integer additions (Figure 4.9) on the

correlations in the FSM, we change them with “additions in 322
F ” one by one and

search for the correlations. The modified verisons SNOW1.0 are shown in Figure

4.11 (a) and (b).

To obtain the approximations of the FSM, again we make the calculations in

Section 4.2.2 by taking the modifications into account. Thus, we obtain the

equations (4.31) and (4.32) for Figures 4.11 (a) and (b), respectively.

 1 1 8 1 8() () () () ()+ + + + +⊕ ⊕ = ⊕t x t x t x t x t xf f f F F (4.31)

 1 1 7 1 8 1 8() () () () ()+ + + + + + +⊕ ⊕ ⊕ =t x t x t x t x t xf f f f F (4.32)

The corresponding results for the correlation searches are tabulated in Table

4.4 (a) and (b). The results show that changing Int. Add. 1 makes impressively much

contribution to the strength of the cipher. This contribution is almost the same as

what we have achieved when we change the s-box of SNOW1.0 with that of

Rijndael. Though, it is quite likely that there is an interaction between the s-box and

Int. Add. 1 in the original version of SNOW1.0. Whereas changing the Int. Add. 2

slightly decreases the strength of the cipher.

a) Int. Add. 1 is replaced by b) Int. Add. 2 is replaced by
 addition in 322

F . addition in 322
F .

Figure 4.11 : Schematic view of the modified versions of SNOW1.0

Shift by 7

Int. Add. 2

t+3t+9st+15

R1t

R1t+1

R2t

R2t+1

S

<<7

st

tf
tF

α

Shift by 7

Int. Add. 1

t+3t+9st+15

R1t

R1t+1

R2t

R2t+1

S

<<7

st

tf
tF

α

44

Table 4.4 : Experimentally found correlation values

 x Bias x Bias

 a) Int. Add. 1 is replaced by b) Int. Add. 1 is replaced by
 addition in 322

F . addition in 322
F .

4.2.5 Eliminating the “Shift by 7” Operation

In [Ekdahl, Johansson; 2002a], it is told that the reason for the large

correlations may be the interaction between the s-box and the shift operation. To

discover this we eliminate the “Shift by 7” operation from the FSM and search for the

correlations. The modified version of SNOW1.0 is shown in Figure 4.12.

Approximating the FSM we have the equation

1 1 1 1 1 1() () () () () ()+ + + + + +⊕ ⊕ ⊕ = ⊕t x t x t x t x t x t xf f f f F F (4.33)

0 0.000009

1 0.000004

2 0.000036

3 0.000012

4 0.000010

5 0.000035

6 0.000018

7 0.000020

8 0.000017

9 0.000032

10 0.000030

11 0.000011

12 0.000047

13 0.000012

14 0.000027

15 0.000003

16 0.000004

17 0.000016

18 0.000002

19 0.000010

20 0.000036

21 0.000033

22 0.000026

23 0.000015

0 0.000011

1 0.000001

2 0.000038

3 0.000019

4 0.000011

5 0.000007

6 0.000002

7 0.000001

8 0.000038

9 0.000045

10 0.000020

11 0.000010

12 0.000023

13 0.000018

14 0.000008

15 0.002001

16 0.000029

17 0.000001

18 0.000008

19 0.000022

20 0.000023

21 0.000029

22 0.000025

23 0.000001

14.382−=

8.962−=

45

 The largest correlation, that we have found, is 7.452− when x is equal to 5

(Table 4.5). Compared to the correlation found in the original version SNOW1.0,

which is 9.342− , this result is quite bigger and in contradiction with the prediction

made in [Ekdahl, Johansson; 2002a].

Figure 4.12 : Schematic view of SNOW1.0 without “Shift by 7” operation

Table 4.5 : Results of the correlation search after eliminating the “Shift by 7”

operation

 x Bias x Bias

0 0.000004

1 0.000030

2 0.000027

3 0.000030

4 0.000021

5 0.005725

6 0.000021

7 0.000053

8 0.000008

9 0.000030

10 0.001379

11 0.000001

12 0.000008

13 0.000038

14 0.000060

15 0.000005

16 0.000008

17 0.011453

18 0.000216

19 0.000026

20 0.000110

21 0.000028

22 0.002247

23 0.000057

24 0.000343

25 0.000000

26 0.000742

27 0.000016

28 0.002269

29 0.000002

7.452−=

Int. Add. 2

Int. Add. 1

t+3t+9st+15

R1t

R1t+1

R2t

R2t+1

S

zt

st

tf
tF

α

46

4.2.6 Both Changing the S-Box and Other Operations

As a final modification, in addition to the s-box we change the integer

additions one by one. The modified versions are shown in Figure 4.13. Since the

approximations that we obtain in Section 4.2.4 are valid again, while searching for

the correlations we use the equations (4.31) and (4.32). The results are tabulated in

Table 4.6. Notice that the correlations obtained (14.292− and 14.312−) are approximately

the same as the one obtained by only changing the s-box (14.232−). That is to say,

there is no interaction between the s-box of Rijndael and the integer additions.

When we also take the results obtained in Section 4.2.4 into account, we can say

that using a stronger s-box dominates the system and don’t let any interactions

happen.

 a) Int. Add. 1 is replaced by b) Int. Add. 1 is replaced by
 addition in 322

F . addition in 322
F .

Figure 4.13 : Both the s-box and the integer additions are changed in SNOW1.0

Shift by 7

Int. Add. 2

t+3t+9st+15

R1t

R1t+1

R2t

R2t+1

S

<<7

st

tf
tF

α

Rijndael

Shift by 7

Int. Add. 1

t+3t+9st+15

R1t

R1t+1

R2t

R2t+1

S

<<7

st

tf
tF

α

Rijndael

47

Table 4.6 : Results of the correlation searches after changing the s-box and

replacing integer additions by “additions in 322
F ”.

 x Bias x Bias

 a) Int. Add. 1 is replaced by b) Int. Add. 1 is replaced by
 addition in 322

F . addition in 322
F .

0 -0.000007

1 -0.000039

2 0.000017

3 -0.000007

4 -0.000003

5 -0.000022

6 0.000019

7 -0.000007

8 0.000022

9 0.000018

10 0.000050

11 -0.000003

12 -0.000024

13 -0.000009

14 -0.000007

15 0.000041

16 -0.000037

17 0.000004

18 -0.000023

19 -0.000016

20 -0.000026

21 -0.000017

22 -0.000005

23 0.000014

0 -0.000022

1 0.000033

2 -0.000017

3 0.000004

4 0.000004

5 -0.000035

6 -0.000005

7 -0.000012

8 -0.000004

9 0.000009

10 0.000045

11 -0.000002

12 0.000049

13 0.000002

14 -0.000033

15 -0.000028

16 -0.000008

17 -0.000039

18 -0.000030

19 0.000016

20 -0.000025

21 0.000008

22 0.000045

23 0.000008

14.292−=

14.312−=

48

4.3 Results of Randomness Tests

As a last but rough comparison, we use the NIST Statistical Test Suite to

accomplish the randomness tests on SNOW1.0, SNOW2.0 and also on the FSM of

SNOW1.0. In order to prepare the test data, SNOW1.0 and SNOW2.0 are

implemented with Borland C++ development environment.

The NIST Statistical Test Suite consists of 16 core statistical tests that, under

different parameter inputs, can be viewed as 189 statistical tests. But the results of

the 16 core tests will be demonstrated. Brief descriptions of the statistical tests are

given in Appendix B. The detailed explanations for the tests and the test suite can

be found in [Rukhin; 2001].

The test data prepared is 20300 2× bits, that is 300 (sample size) binary

sequences of length 220 . The significance level is chosen as 0.01. For each binary

sequence and each statistical test, a P-value is reported.

A P-value is the probability of obtaining a test statistic as large or larger than

the one observed if the sequence is random. Hence, values below significance level

(0.01) may be thought as nonrandom.

Two evaluations are made for each statistical test and sample. First, the

proportion of binary sequences in a sample that passed the statistical test is

calculated (Figure 4.14 (a) and (b)). It is observed that both of the ciphers passed

the tests with a good result.

SNOW 1.0

0,97

0,975

0,98

0,985

0,99

0,995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tests

Pr
op

or
tio

ns

Figure 4.14 (a) : Proportion of sequences passing a test for SNOW1.0

49

SNOW 2.0

0,975

0,98

0,985

0,99

0,995

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tests

Pr
op

or
tio

ns

Figure 4.14 (b) : Proportion of sequences passing a test for SNOW2.0

The statistical tests applied are:

1. Frequency Test

2. Frequency Test within a Block

3. Cumulative Sums (Cusum) Test

4. Runs Test

5. Test for the Longest Run of Ones in a Block

6. Binary Matrix Rank Test

7. Discrete Fourier Transform (Spectral) Test

8. Non-overlapping Template Matching Test

9. Overlapping Template Matching Test

10. Maurer’s “Universal Statistical” Test

11. Approximate Entropy Test

12. Random Excursions Test

13. Random Excursions Variant Test

14. Serial Test

15. Lempel-Ziv Compression Test

16. Linear Complexity Test

The second evaluation is the calculation of the P-valueT of the p-values

which is done to ensure uniformity. If P-valueT≥ 0.0001 , then the sequences can be

considered to be uniformly distributed. When we look at Table 4.7, we can see that

50

all of the p-valueT s are greater than 0.0001. So, both of the ciphers have uniform

distribution of p-values.

Table 4.7 : P-valueT of the p-values for each statistical test on SNOW1.0 and

SNOW2.0

 P-value of the P-values

 SNOW1.0 SNOW2.0

1. Frequency Test 0.481416 0.862344

2. Frequency Test within a Block 0.474986 0.671779

3. Cumulative Sums (Cusum) Test 0.664861 0.049770

4. Runs Test 0.062821 0.609377

5. Test for the Longest Run of Ones in a Block 0.706149 0.195163

6. Binary Matrix Rank Test 0.733228 0.299251

7. Discrete Fourier Transform (Spectral) Test 0.015241 0.122325

8. Non-overlapping Template Matching Test 0.822534 0.236810

9. Overlapping Template Matching Test 0.150906 0.266680

10. Maurer’s “Universal Statistical” Test 0.888137 0.401199

11. Approximate Entropy Test 0.514124 0.142602

12. Random Excursions Test 0.915031 0.130453

13. Random Excursions Variant Test 0.689019 0.437274

14. Serial Test 0.828458 0.834308

15. Lempel-Ziv Compression Test * *

 16. Linear Complexity Test 0.928071 0.372502

We have also applied these tests to the output of the linear approximation of

the FSM in SNOW1.0, which is

 15 16 1 22 1 23 15 1 23() () () () () ()+ + += ⊕ ⊕ ⊕ ⊕ ⊕t t t t t tf f f f F Fσ . (4.34)

The results obtained from NIST Statistical Test Suite are shown in Figure 4.15 and

Table 4.8. The results show that the randomness properties are bad. Moreover,

some statistical tests, especially the frequency test, result in failure. This is

consistent with the fact that Equation (4.34) has a large bias.

51

Figure 4.15 : Proportion of sequences passing a test for the linear approximation of

the FSM in SNOW1.0

Table 4.8 : P-valueT of the p-values for each statistical test on the FSM of SNOW1.0

P-value of the P-
values

1. Frequency Test 0.000000 *

2. Frequency Test within a Block 0.455937

3. Cumulative Sums (Cusum) Test 0.000000 *

4. Runs Test 0.000000 *

5. Test for the Longest Run of Ones in a Block 0.856907

6. Binary Matrix Rank Test 0.746572

7. Discrete Fourier Transform (Spectral) Test 0.547637

8. Non-overlapping Template Matching Test 0.000011 *

9. Overlapping Template Matching Test 0.050845

10. Maurer’s “Universal Statistical” Test 0.148094

11. Approximate Entropy Test 0.000068 *

12. Random Excursions Test 0.066882

13. Random Excursions Variant Test 0.105618

14. Serial Test 0.007694

15. Lempel-Ziv Compression Test 0.089121

 16. Linear Complexity Test 0.175049

Linear Approximation of the FSM in SNOW 1.0

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Tests

Pr
op

or
tio

ns

52

CHAPTER 5

CONCLUSIONS

 The designers of the stream cipher SNOW1.0 proposed SNOW2.0 after two

attacks have been reported. One of the important changes made was the change of

the substitution box. Through our examination on the substitution box of SNOW1.0,

nonlinearity and differential uniformity values are found as 96 and 6, respectively.

Although these values can not be considered as the values of a weak cipher, when

compared with the corresponding values of the s-box taken from Rijndael, which are

112 (nonlinearity) and 4 (differential uniformity), they are inferior. The histogram of

Walsh transform values for the s-box of SNOW1.0 (Figure 4.2) shows that for all

linear combination functions, Walsh transform distributions are the same. This

impressive property is also observed in the s-box of Rijndael.

 Using the approach in [Ekdahl, Johansson; 2002b] for the distinguishing

attack on SOBER-t32, a review of the distinguishing attack on SNOW1.0 is given.

The methods of calculation of the complexities are different in [Ekdahl, Johansson;

2002b] and [Coppersmith, Halevi, Jutla; 2002]. Using the method in [Ekdahl,

Johansson; 2002b] we found that we can distinguish the output from a random

source using 101.62 keystream outputs. This method is more inefficient than the one

in [Coppersmith, Halevi, Jutla; 2002], where the data complexity of the attack is 952 .

Corresponding process complexity is found as 101.62 using the method in [Ekdahl,

Johansson; 2002b]; whereas it is 1002 in [Coppersmith, Halevi, Jutla; 2002].

Only the change of the s-box in SNOW1.0 with that of Rijndael makes a

great deal of improvement in the strength of the cipher against the distinguishing

attack, i.e., the number of outputs needed to perform a distinguishing attack is 160.82 ,

which is faster than the exhaustive search for the 256-bit key; whereas in SNOW1.0

it is 101.62 , which is faster than exhaustive search for both 128-bit and 256-bit keys.

Also, our correlation search results show that the reason for large correlations is the

interaction between the s-box and the first one of the integer addition units rather

53

than the “Shift by 7” operation as expected in [Ekdahl, Johansson; 2002a]. Using a

stronger s-box dominates the system and does not let any interactions to happen in

the FSM.

54

REFERENCES

[Arnault, Berger, Necer; 2002] F. Arnault, T. P. Berger, and Abdelkader

Necer. A New Class of Stream Ciphers Combining LFSR and FCSR

Arhitectures. A. Menezes, P. Sarkar, editors, INDOCRYPT 2002, LNCS 2551,

pp.22-33, 2002. Springer-Verlag 2002.

[Carlitz, Uchiyama; 1957] L. Carlitz and S. Uchiyama, “Bounds for exponential

sums,” Duke Math. J. 24, 1957.

[Coppersmith, Halevi, Jutla; 2002] D. Coppersmith, S.Halevi, C.Jutla.

Cryptanalysis of Stream Ciphers with Linear Masking. In M. Yung, editor,

Advances in Cryptology- CRYPTO 2002, volume 2442 of Lecture Notes in

Computer Science, pages 515-532. Springer Verlag, 2002.

[Cover, Thomas; Elements of Inf. Theory. 1991] T. Cover and J. A. Thomas.

Elements of Information Theory. Wiley series in Telecommunication. Wiley,

1991.

[Daemen, Rijmen; 2002] J. Daemen, V. Rijmen. The Design of Rijndael.

Springer Verlag, 2002.

[Ekdahl, Johansson; 2000] P. Ekdahl, T. Johansson. SNOW- a new stream

cipher. In Proceedings of First Open NESSIE Workshop,2000.

[Ekdahl, Johansson; 2002a] P. Ekdahl, T. Johansson. A new version of the stream

cipher SNOW. In K. Nyberg and H. Heys, editors, Selected Areas in

Cryptography- SAC 2002, volume 2595 of Lecture Notes in Computer

Science, pages 47-61. Springer Verlag, 2002.

[Ekdahl, Johansson; 2002b] P. Ekdahl, T. Johansson, “Distinguishing attacks on

SOBER-t16 and t-32,” Fast Software Encryption, FSE 2002, Springer –Verlag,

LNCS 2365, pp.210-224, 2002.

55

[Golic; 1996] J. Golic, “Linear models for keystream generator,” IEEE Trans.

Computers, vol. C-45, pp. 41-49, 1996.

[Handbook of Applied Cryptography; 1997] A. Menezes, P. von Oorschot and S.

Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.

[Hawkes, Rose; 2000] Primitive specification and supporting documentation

for SOBER-t32 submission to NESSIE. In Proceedings of the First Open

NESSIE Workshop, 13-14 November 2000, Heverlee, Belgium.

[Hawkes, Rose; 2002] P. Hawkes and G. G. Rose. Guess-and-determine

attacks on SNOW. In K. Nyberg and H. Heys, editors, Selected Areas in

Cryptography- SAC 2002, volume 2595 of Lecture Notes in Computer

Science, pages 37-46. Springer Verlag, 2002.

[Massey; 1969] J. R. Massey. Shift-register synthesis and BCH decoding.

IEEE Transactions on Information Theory, 15:122-127, 1969.

[Matsui; 1993] M. Matsui. Linear Cryptanalysis Method for DES cipher. In T.

Helleseth, editor, Advances in Cryptology- EUROCRYPT’93 volume 765 of

Lecture notes in Computer Science, pages 386-397. Springer Verlag, 1994.

 [NESSIE Sec. Rep.; 2003] NESSIE Security Report, NES/ DOC/ ENS/ WP5/ D20/

2, February 19, 2003.

 [Nyberg; 1993] K. Nyberg. “Differentially uniform mappings for cryptography,”

Advances in Cryptology- EUROCRYPT’93.

[Robshaw, RSA Lab. Tech. Rep.; 1995] M. J. B Robshaw, Stream Ciphers, RSA

Laboratories Technical Report TR-701, Version 2.0-July 25, 1995.

[Rueppel; 1984] R. A. Rueppel. New Approaches to Stream Ciphers, PhD

Thesis, Swiss Federal Institute of Technology, Zurich,1984.

[Rueppel;1986] R. A. Rueppel. Analysis and Design of Stream Ciphers.

Springer-Verlag, 1986 [p.103].

56

[Rukhin; 2001] A. Rukhin, et. al., A Statistical Test Suite for the Validation of

Random Number Generators and Pseudorandom Number Generators for

Cryptographic Applications. NIST Special Publication 800-22, 2001. The test

suite is available at http://csrc.nist.gov/rng/rng2.html, accessed in April, 2004.

[Schneier, Applied Cryptography; 1996] B. Schneier. Applied Cryptography:

Protocols, Algorithms and Source Codes in C. John Wiley and Sons, Newyork,

2nd edition, 1996.

[Siegenthaler; 1984] Siegenthaler. Correlation Immunity of Nonlinear Combining

Functions for Cryptographic Applications, IEEE Transactions on Information

Theory, 30:776-780, 1984.

[Soto, Basham; NIST, 2000] Soto J. and Basham L.: Randomness Testing

of the Advanced Encryption Standard Finalist Candidates. NIST Publication,

March 2000.

[STORK; 2003] STORK. Strategic Roadmap for Crypto. Available at

http://www.stork.eu.org, accessed in May, 2004.

[Watanabe, Biryukov, Canniere; 2003] D. Watanabe, A. Biryukov, and C. D.

Canniere. A Distinguishing Attack of SNOW2.0 with Linear Masking Method.

In Selected Areas in Cryptography- SAC 2003. To be published in Lecture

Notes in Computer Science. Springer Verlag, 2003.

 [Zhang, Zheng, Imai; 1998] Xian-Mo Zhang, Yulian Zheng and Hideki Imai.

Relating Differential Distribution Tables to Other Properties of Substitution

Boxes. Designs , codes and Cryptography, vol.19, pp.45-63,1998.

57

APPENDIX A

S-Boxes of SNOW1.0 and Rijndael

SNOW1.0 S-Box:
255

0{ () | }S = =xx {7, 6, 135, 248, 226, 214, 193, 42, 53, 244, 246, 199, 120, 189, 155, 15,

185, 46, 59, 41, 16, 250, 5, 203, 36, 161, 240, 126, 107, 162, 171, 200, 166, 32,

205, 35, 104, 138, 48, 27, 137, 180, 234, 49, 44, 68, 255, 208, 74, 213, 121, 117,

109, 222, 89, 216, 252, 10, 210, 57, 254, 21, 84, 3, 132, 134, 28, 14, 130, 4, 183,

128, 87, 1, 152, 80, 111, 140, 142, 82, 51, 33, 220, 37, 153, 71, 239, 123, 230, 114,

75, 186, 60, 85, 139, 38, 154, 201, 93, 8, 164, 34, 94, 127, 129, 253, 90, 174, 66,

218, 39, 150, 151, 91, 125, 76, 160, 241, 67, 78, 188, 141, 95, 29, 56, 165, 81, 30,

73, 131, 98, 50, 115, 211, 43, 176, 52, 177, 172, 61, 119, 169, 31, 116, 147, 22,

122, 158, 192, 103, 110, 9, 170, 178, 229, 18, 206, 197, 69, 0, 196, 11, 156, 223,

113, 133, 202, 19, 64, 187, 224, 25, 79, 190, 143, 221, 99, 108, 163, 219, 26, 102,

13, 167, 149, 124, 184, 168, 24, 179, 97, 146, 235, 245, 212, 62, 20, 209, 86, 198,

175, 106, 55, 136, 191, 144, 217, 45, 159, 72, 23, 207, 233, 173, 40, 194, 54, 232,

12, 83, 225, 157, 17, 77, 145, 92, 105, 70, 242, 181, 231, 227, 249, 148, 237, 236,

182, 96, 204, 215, 112, 251, 101, 247, 63, 118, 243, 2, 195, 58, 47, 65, 238, 228,

88, 100}

58

RIJNDAEL S-Box:
255

0{ () | }S = =xx {99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171,

118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192,

183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35,

195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90,

160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203,

190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80,

60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243,

210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129,

79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6,

36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169,

108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221,

116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134,

193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40,

223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22}

59

APPENDIX B

Description of Statistical Tests

Monobit Test: The purpose of this test is to determine whether the number of ones

and zeros in a sequence are approximately the same as would be expected for a

truly random sequence.

Block Frequency Test: The purpose of the block frequency test is to determine

whether the number of ones and zeros in each of M non-overlapping blocks created

from a sequence appear to have a random distribution.

Cumulative Sums Forward (Reverse) Test: The purpose of the cumulative sums

test is to determine whether the sum of the partial sequences occurring in the tested

sequence is too large or too small.

Runs Test: The purpose of the runs test is to determine whether the number of runs

of ones and zeros of various lengths is as expected for a random sequence. In

particular, this test determines whether the oscillation between such substrings is

too fast or too slow.

Long Runs of Ones Test: The purpose of this test is to determine whether the

longest run of ones within the tested sequence is consistent with the longest run of

ones that would be expected in a random sequence.

Rank Test: The purpose of this test is to check for linear dependence among fixed

length substrings of the original sequence.

Discrete Fourier Transform (Spectral) Test: The purpose of this test is to detect

periodic features (i.e., repetitive patterns that are near each other) in the tested

sequence that would indicate a deviation from the assumption of randomness.

Aperiodic Templates Test: The purpose of this test is to reject sequences that

exhibit too many occurrences of a given non-periodic (aperiodic) pattern.

60

Periodic Template Test: The purpose of this test is to reject sequences that show

deviations from the expected number of runs of ones of a given length.

Universal Statistical Test: The purpose of the test is to detect whether or not the

sequence can be significantly compressed without loss of information. A

compressible sequence is considered to be nonrandom.

Approximate Entropy Test: The purpose of the test is to compare the frequency of

overlapping blocks of two consecutive/adjacent lengths (m and m+1) against the

expected result for a normally distributed sequence.

Random Excursion Test: The purpose of this test is to determine if the number of

visits to a state within a random walk exceeds what one would expect for a random

sequence.

Random Excursion Variant Test: The purpose of this test is to detect deviations

from the distribution of the number of visits of a random walk to a certain state.

Serial Test: The purpose of this test is to determine whether the number of

occurrences of m-bit overlapping patterns is approximately the same as would be

expected for a random sequence.

Lempel-Ziv Complexity Test: The purpose of the test is to determine how far the

tested sequence can be compressed. The sequence is considered to be non-

random if it can be significantly compressed

Linear Complexity Test: The purpose of this test is to determine whether or not the

sequence is complex enough to be considered random.

