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ABSTRACT 

APPLICATION OF GENETIC ALGORITHMS TO CALIBRATION AND 

VERIFICATION OF QUAL2E MODEL 

 

Göktaş, Recep Kaya 

   M. Sc., Department of Environmental Engineering 

   Supervisor: Assist. Prof. Dr. Ayşegül Aksoy  

 

November 2004, 153 pages 

 

The objective of this study is to develop a calibration and verification tool for the 

QUAL2E Model by using Genetic Algorithms. In the developed optimization 

model, an objective function that is formulated on the basis of the sum-of-least 

squares approach aiming at minimizing the difference between the observed and 

simulated quantities was used. In order to perform simultaneous calibration and 

verification, verification of the calibrated results was treated as a constraint and 

inserted into the objective function as a penalty function. 

 

The performance of the optimization model was tested for different observation 

data qualities represented by the synthetic perfect and biased data sets. Although it 

was not possible to obtain the exact values of the kinetic coefficients for any of the 

tests performed, the coefficient estimates were successful in reflecting the water 

quality variable profiles in the river. 

 

The results of the tests showed that the performance of the optimization model is 

generally sensitive to the error in the observed data sets, to the number and location 

of sampling points, and to the objective function formulation. For the problems that 
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involve multiple water quality variables, a weighting approach used in the objective 

function formulation resulted in better performances. 

 

The optimization model was also applied for a case study. For the same input data, 

calibration obtained with the genetic algorithm optimization – simulation was better 

compared to the trial-and-error approach. 

 

Keywords: Calibration, Verification, QUAL2E, Genetic Algorithms, Optimization. 
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ÖZ 

GENETİK ALGORİTMALARIN QUAL2E MODELİNİN KALİBRASYON VE 

VERİFİKASYONUNA UYGULANMASI 

 

Göktaş, Recep Kaya 

   Yüksek Lisans, Çevre Mühendisliği Bölümü 

   Tez Yöneticisi: Yrd. Doç. Dr. Ayşegül Aksoy  

 

Kasım 2004, 153 sayfa 

 

Bu çalışmanın amacı QUAL2E modelinin kalibrasyon ve verifikasyonu için 

Genetik Algoritmaları kullanan bir optimizasyon aracı geliştirmektir. Geliştirilen 

optimizasyon modeli, en küçük kareler toplamı yaklaşımıyla formüle edilen ve 

gözlem verileri ile simülasyon sonuçları arasındaki farkı azaltmayı amaçlayan bir 

hedef fonksiyon içermektedir. Kalibrasyon ve verifikasyon işlemlerini eşzamanlı 

olarak yapabilmek için, verifikasyondan gelen hata bir sistem kısıtı olarak 

değerlendirilimiş ve hedef fonksiyon içerisine bir ceza fonksiyonu olarak 

yerleştirilmiştir. 

 

Optimizasyon modelinin performansı öncelikle yapay data kullanılarak test 

edilmiştir. Testlerde, hatasız ve hatalı olmak üzere iki ayrı veri seti kalitesi 

kulanılmıştır. Bütün testler için tüm nehir kesitlerinde gerçek kinetik parametre 

katsayı değerlerine tam olarak ulaşılamamasına rağmen, nehirdeki su kalitesini 

gerçeğine çok yakın bir biçimde simüle edebilecek katsayı değerleri 

bulunabilmiştir. 

 

Testlerin sonuçları, optimizasyon modelinin performansının, gözlem verilerindeki 

hataya, gözlem noktalarının sayısına ve yerine, ve hedef fonksiyon formülasyonuna 

bağlı olarak değişebildiğini göstermektedir. Birden fazla su kalitesi değişkeni içeren 
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problemler için hedef fonksiyonunda ağırlıklandırma yöntemi kullanılmış ve daha 

iyi performans elde edilebileceği görülmüştür. 

 

Optimizasyon modeli ayrıca gerçek bir probleme de uygulanmıştır. Aynı veri 

setlerinin kullanılması durumunda, genetik algoritma optimizasyon – simülasyon 

modelinin, deneme-yanılma yaklaşımı ile elde edilenlere göre daha iyi kalibrasyon 

sonuçları verdiği görülmüştür. 

 

Anahtar Kelimeler:  Kalibrasyon, Verifikasyon, QUAL2E, Genetik Algoritmalar,  

 Optimizasyon. 
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CHAPTER 1 

INTRODUCTION 

Water-quality simulation models are widely used in water-quality control and 

management studies. These studies include analyzing the effects of a waste 

discharge on a water body and determining the allowable amount of waste to be 

discharged by a polluter, such as the waste load allocations and environmental 

impact assessments. Beyond being a decision-making tool in water quality 

management, models also enhance our understanding of the complex nature of these 

environmental systems. 

 

Early water quality models aimed at predicting dissolved oxygen levels in rivers 

(Chapra, 1997). Scientific work in the field resulted in the incorporation of both 

conventional and toxic pollutants and also the ecological phenomena into the 

simulation capabilities of the models. Improvements in the computer technology 

had also contributed to the continuous development of these complex models.  

 

As models get more complex, the number of parameters they process increases and 

the input data become very hard to set. The quantitative description of the processes 

is possible when the data set that defines the unique characteristics of the system is 

complete. The data may contain many parameters most of which may be very hard 

to determine by observations and/or measurements. Quantification of these data can 

be achieved using the model itself assuring the model is adequate to describe the 

system being studied. 

 

Calibration and verification are the crucial steps in any water quality modeling 

study. Calibration can be defined as the search process to tune or quantify the 

kinetic parameters that will be used to simulate the system being modeled. An 
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optimal agreement is sought between the simulated and observed (measured) state 

variables of the system. Verification or validation step is where the calibrated 

parameter values are tested by running the model for new conditions. The kinetic 

parameter values are kept fixed, but the quantity of physical parameters (e.g. water 

flow rate, water depth, temperature, etc.) and forcing functions (e.g. headwater 

inputs, point sources, withdrawals, etc.) are varied. The model is verified when 

output results and the observed values are close enough to satisfy the verification 

criteria. 

 

The conventional methodology for calibration has been the trial-and-error method. 

The trial-and-error method makes the process considerably time-consuming and the 

subjectivity of the methodology leads to questionable results. The accepted 

parameter estimates is very dependent on the modeler and different modelers may 

come up with different parameter estimates with the same model formulation and 

the data set. However, the advances in computer technology and operations research 

field can be incorporated in model calibration and verification. By this way, 

objective and automated methods giving much more reliable results with less time 

consumption can be possible. The results would be more reliable since objectivity 

avoids errors from personal judgment of the modeler. 

 

The objective of this study is to develop an effective calibration and verification 

tool for ‘The Enhanced Stream Water Quality Model’ QUAL2E by using Genetic 

Algorithms (GAs). QUAL2E is a widely used stream water quality model. It is 

developed and distributed by United States Environmental Protection Agency (US 

EPA) in a public domain. It can simulate up to fifteen water quality constituents 

including dissolved oxygen, biochemical oxygen demand, temperature, nitrogen 

species, phosphorus species, coliforms and several user-specified conservative and 

nonconservative constituents. In addition to modeling the impacts of point loads on 

the stream water quality, QUAL2E can be used to define non-point sources 

affecting the stream as well. Moreover, QUAL2E can simulate algal growth, and 

the impacts of excess nutrients on water quality. 
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Genetic algorithms are probabilistic, global search methods that are inspired from 

natural evolution. Their robustness has been proven through many theoretical and 

empirical studies (Goldberg, 1989). Today, genetic algorithms are widely used in 

many different fields to perform optimization. In the field of environmental 

engineering, they have been applied successfully to optimal groundwater 

remediation design and management (McKinney and Lin, 1994; Cieniawski et al., 

1995; Aksoy and Culver, 2000; Chan Hilton and Culver, 2000). Their applicability 

for the calibration of surface water quality models is also shown (Mulligan and 

Brown, 1998). 

 

The first phase of the study was linking the QUAL2E model with a genetic 

algorithm program. This was accomplished by running the QUAL2E model as a 

sub-program of the genetic algorithm program. An optimization algorithm that 

carries out simultaneous calibration and verification of the QUAL2E model was 

developed. The optimization algorithm uses an objective function that was 

formulated according to the sum-of-least-squares criterion, in general, to minimize 

the error between the observed and simulated conditions. The error from 

verification conditions was inserted into the objective function as a penalty 

function. The aim was to develop a program package that is applicable to any river 

system modeled by QUAL2E, allowing automated calibration and verification of 

any combination of kinetic parameters desired by the user. 

 

The developed optimization model was applied on a hypothetical river network by 

using perfect and biased measurements of state variables. The effects of number of 

observation points and different objective function formulations on the performance 

of GAs were also tested. The complexity of the calibration problem was gradually 

increased by adding new kinetic parameters to be calibrated and new water quality 

responses to be utilized. The impact of using more than one verification data set 

was also investigated. Finally, the optimization model was applied for a case study.  

For this purpose, a previous modeling study conducted on the Lower Seyhan River 

by Onur (1996) using QUAL2E was utilized. In this work, a trial-and-error 
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approach had been employed for calibration and verification. The performance of 

GA optimization was assessed by comparing GA calibration results with the trial-

and-error calibration results. 
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CHAPTER 2 

BACKGROUND 

2.1 Calibration and Verification in Surface Water Quality Modeling 

It is essential to consider the possible reactions of the water body before taking any 

action on it. As surface waters are complex environmental systems, it is hard to 

understand and predict their behavior. The attempts to predict the response of water 

bodies to pollution loads originating from human activities resulted in the 

development of mathematical models. These models quantitatively describe the 

physical, chemical and biological behavior of the water bodies through a collection 

of mathematical relationships that contain many parameters (e.g., reaction rate 

coefficients, biological and chemical constants) that are specific to the system 

modeled. However, in order to apply them, they must be able to define the system 

in the most accurate way.  

 

A typical water quality modeling process consists of data collection, model 

formulation, calibration and verification (Little and Williams, 1992). The data 

collection and model formulation phases affect the results of the subsequent 

calibration phase. However, for a successful modeling practice, the calibration 

phase should give the optimum model parameters possible. During calibration or 

verification steps some problems in the data set or model formulation may be 

revealed. According to the information gathered about the system during these 

steps, additional sampling or model reformulation may be considered (Little and 

Williams, 1992). 



 6

2.2 Calibration Methodology 

When environmental systems are of concern, it is generally not expected to find a 

data bank containing the required parameters for the system being modeled. 

Environmental data collection is a considerably time and money consuming 

process. Beyond the economic constraints, it may be practically impossible to 

measure some system-specific parameters due to technical reasons (e.g. access 

limitations for some parts of the basin, need for excessive number of measurements, 

etc.). 

 

The commonly applied methodology is initially collecting the physical data (e.g., 

flow rate, depth, temperature) about the system and determining the other 

informative parameters like dissolved oxygen (DO), nitrogen and phosphorus 

concentrations. Then, the initial estimates for the biological, chemical, and kinetic 

coefficients are made. The initial estimates are determined using the literature 

values or, if present, field and laboratory measurements. Literature is a very 

valuable source in determining the model parameters and should be referred to 

especially in the initial phases of the modeling applications. In literature, the ranges 

of values for specific model parameters can be found most of the time. These values 

can be used as a starting point in the calibration phase. Following calibration, the 

parameter values most accurately defining the system are determined.  However, it 

should be noted that the value of a parameter can be dependent on the model 

formulation and assumptions used in the development of the model. In such cases, 

even the actual readily available parameter values determined by field or laboratory 

studies may need tuning to obtain the optimum agreement between the observed 

and simulated state variables. 

 

Calibration methods can be divided into two major categories: 

• subjective methods (trial-and-error methods) 

• objective methods (optimization methods) 
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 2.2.1 Trial-and-Error Method 

In the trial-and-error method, the model parameters are adjusted by the modeler 

him/herself by running the model for different parameter values many times until a 

match between the observations and the predictions is obtained. This is a time-

intensive work. The method is subjective since the goodness-of-fit is judged without 

statistically based criteria. Little and Williams (1992) state that this method makes 

the model calibration ambiguous. The modeler is left unsure whether the calibration 

result is the best that can be achieved given the available data and the specific 

structural form of the model. 

 

Although trial-and-error methods are constrained with the number of trials to find 

the best set of model parameter values, they are still employed for the water quality 

modeling studies (Lung and Larson, 1995; Drolc and Zagorc Koncan, 1996; 

Chaudhury et al., 1998; Onur et al., 1999). Today, State Hydraulic Works (DSİ, 

Devlet Su İşleri) of Turkey is using this approach for calibration of the water quality 

models as well. 

 

A large, structured, trial-and-error method was tested by Jaffe et al. (1988). The 

technique took into account the random fluctuations of field measurements and 

yielded a probability distribution of the model parameters. A large number of model 

simulations were conducted using a wide range of model input parameters each of 

which were selected from the specified probability distributions. Then, from the 

subset of outputs that were satisfactorily close to the field observations, the mean 

and variance of input parameters were computed. The procedure was a useful 

calibration tool; however, as the complexity of the model increased, that is when the 

number of unknown model parameters increased, the number of simulations 

required would also increase. 
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 2.2.2. Calibration Using Optimization Methods 

It is possible to increase the efficiency of the modeling process by using objective, 

statistically valid methods. Utilization of computer-aided optimization techniques in 

calibration increases the reliability of the calibration outcome. By this way, the bias 

introduced due to the personal judgment of the modeler is minimized. Moreover, 

the time allocated for the process can be decreased considerably.  

 

There are several studies on calibration methods using objective criteria as 

presented below. However, most of the methods used are only applicable to simple 

models and can have problems with complex water-quality models with large 

number of parameters. 

 

Bowles and Grenney (1978) applied sequential extended Kalman filters as a 

technique for steady state river water quality modeling. They used the method for a 

real river system. In their study, they also had demonstrated the calibration 

capability of the filter procedure. With this procedure, coefficients in the model 

were estimated at the same time as the state variables. Some limitations of 

calibration procedure were shown, and some suggestions for improvement were 

given. However, applying these suggestions would increase the complexity of the 

procedure. 

 

Most of the model calibration studies using optimization employ specification of an 

objective function, typically formulated employing a sum-of-least-squares approach 

(Yih and Davidson, 1975; Wood et al., 1990; Little and Williams, 1992; Mulligan 

and Brown, 1998; van Griensven and Bauwens, 2001). In these studies, the general 

optimization goal is common; aiming to minimize the error between the observed 

and simulated state variables. However, proposed methods in search of the best 

solution to the objective function vary.  

 

In the study of Yih and Davidson (1975), the longitudinal dispersion coefficient was 

identified from a salinity intrusion model for estuaries. The optimum parameter was 
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selected by minimizing the error between the simulated and observed values by 

means of the least-squares criterion. Three algorithms were used for the parameter 

identification study: conjugate gradient, Marquardt’s algorithm, and the steepest 

descent method. Among these methods, the Marquardt’s algorithm was shown to be 

the most efficient one. Also, studies of the effects of parameter sensitivity to noise 

levels and the number of data measurement locations were performed. Marquardt’s 

method was shown to be stable in the presence of a moderate amount of data. 

However, the accuracy of the algorithm was seriously affected by the number of 

locations of data measurements. Although the study of Yih and Davidson (1975) 

gave good results, the model used was quite simple relative to the complex water-

quality models of today. 

 

Wood et al. (1990) focused on the development of an expert system to aid in the 

calibration process and the subsequent use of a stream-quality simulation model. A 

biochemical oxygen demand (BOD) – dissolved oxygen model, graphics software, 

and a code to perform the model calibration were all linked externally to an expert 

system shell. In the calibration program, the expected error was evaluated by 

determining an average absolute-value deviation of the calculated values from the 

measured ones. The calibration was accomplished by using a pattern-search 

technique to determine the search direction that would yield a lower expected error. 

As the water-quality model considered four parameters, the search was conducted in 

a four-dimensional space. The river length was segmented into reaches and 

calibration was applied on these reaches separately and sequentially. This type of 

segmentation simplified the procedure. However, this method did not take the 

whole system into consideration. Therefore, the model’s ability to visualize “the big 

picture” diminished. 

 

The water quality variables are often highly correlated (van Griensven et al., 2002). 

Many model parameters affect more than a single state variable and when this is the 

case, it is more appropriate to estimate the parameter using the data from all 

affected variables simultaneously (Little and Williams, 1992). For example, BOD 



 10

decay rate affects both BOD and DO values within the system. If parameter 

estimation is conducted using both DO and BOD data, the estimates will be more 

accurate than the estimates based only on the DO data (Mulligan and Brown, 1998). 

Moreover, when all the output variables are used simultaneously during the 

calibration process, all the available information will be used.  In addition, the risk 

of error accumulation at the end step will be reduced (van Griensven et al., 2002). 

However, incorporating all the output variables simultaneously to the calibration 

process will increase the computational complexity substantially. For such intricate 

systems, exercising typical nonlinear techniques for the solution may be 

problematic. Moreover, in these multi-dimensional complex systems, the setback of 

converging to local optima is prominent. 

 

Today, the water quality models used are highly developed and complex. They can 

simulate a high variety of water quality constituents, and demand a high number of 

input parameters. For the calibration of these complex water quality models, using 

new, global optimization techniques may give better results compared to the 

traditional methods. These new techniques are more robust to messy problems such 

as discontinuities and difficult-to-evaluate or nonexistent derivatives (Little and 

Williams, 1992). Most of them use statistical, probabilistic algorithms and they are 

much less likely to be trapped at the local optima (Cooper et al., 1997; Goldberg, 

1989). 

 

Cooper et al. (1997) evaluated the use of global optimization methods for a 

conceptual rainfall runoff model. They stated that the calibration of this model is a 

difficult task because the response surface possesses the following: several major 

regions of attraction into which a search can converge, non-convexity in the vicinity 

of the optimal parameter set, discontinuous first and second order derivatives, 

presence of minor optima located near the optimal set. Because of these 

characteristics, analytically-based global optimization methods were inappropriate 

for the problem. Analytically-based global optimization methods may require 

restrictive conditions such as continuity and convexity. On the other hand, 
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probabilistically-based global optimization methods do not impose such restrictive 

conditions on the response surface. Cooper et al. (1997) compared three global 

optimization methods: shuffled complex evolution, genetic algorithms and 

simulated annealing. The results of the Cooper et al. (1997)’s study showed that the 

performances of these methods were dependent on the objective function 

formulation, the set of parameter values to be estimated and also on the starting 

position of the optimization search with respect to the global optimum. It was stated 

that for most situations, the shuffled complex evolution method provided better 

estimates of the optimum solution than genetic algorithms and simulated annealing 

methods. When the number of iterations for convergence was considered, the 

shuffled complex evaluation and genetic algorithms methods were generally more 

efficient than the simulated annealing method. 

 

The study of van Griensven et al. (2002) is another example of calibration of a 

complex model using a global optimization method. ESWAT (Extended Soil and 

Water Assessment Tool) was developed by incorporating a detailed river water 

quality module to SWAT (the Soil and Water Assessment Tool) which had been 

initially developed by USDA (United States Department of Agriculture) for 

integrated water quantity and quality modeling of catchments. However, this 

integration has resulted in an increased complexity and number of uncertain 

parameters. The autocalibration option of the model utilized shuffled complex 

evolution method. This method combined several strategies in order to search over 

the whole parameter space and thus minimized the risk of converging to a local 

optimum. Shuffled complex evolution method was proved to be useful in 

calibration of the model. Since the model was a highly complex integrated model 

composed of several different models, it was recommended to conduct the 

calibration in combination with a preceding sensitivity analysis to screen the large 

set of input parameters. 

 

Little and Williams (1992) used the Box’s Complex Method, a numerical global 

search technique, for the calibration of QUAL2E Model. Mulligan and Brown 
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(1998) used genetic algorithms to calibrate the steady-state Streeter-Phelps model. 

In that study, genetic algorithms were compared with a more traditional 

optimization technique, the Marquardt algorithm, and found to be superior. 

 

Although there exist quite a number of studies for implementing objective methods 

in water quality model calibration, application of such methods in practice has 

gained importance recently. Recent developments in the global search techniques 

and advancements in the computer technology will promote their employment. 

2.3 QUAL2E, The Enhanced Stream Water Quality Model 

QUAL2E is a comprehensive and versatile stream water quality model developed 

and distributed freely by United States Environmental Protection Agency (US 

EPA). It is intended for use as a water quality planning tool. QUAL2E is widely 

used and accepted as a standard model for waste load allocations, discharge permit 

determinations, and other conventional pollutant evaluations in the United States. 

There are also many modeling applications using QUAL2E throughout the world. 

In Turkey, it is accepted and used as a stream water quality modeling tool by DSİ. 

 

QUAL2E can be operated either as a steady-state or dynamic model (Brown and 

Barnwell, 1987). When it is operated as a steady-state model, it can simulate the 

impact of point and non-point waste loads on the in-stream water quality. When it is 

operated as a dynamic model, it can be used to study the effects of diurnal 

variations in meteorological data and water quality. Diurnal dissolved oxygen 

variations due to algal growth and respiration can also be predicted. However, the 

effects of dynamic forcing functions, such as headwater flows or point loads cannot 

be modeled. Waste load allocation studies are performed for constant low flow 

conditions and pollutant loads.  

 

The history of the development of QUAL2E goes back to late 1960s. Since the 

early 1980s, the model has been supported by EPA Center for Water Quality 

Modeling (CWQM), and has been enhanced to reflect a state-of-the-art water 
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quality model (Brown and Barnwell, 1987). Today, QUAL2E model has been 

incorporated as a module to the BASINS, which is a multipurpose environmental 

analysis system developed by EPA to be used as an integrated watershed 

management tool. BASINS integrates a geographic information system (GIS), 

watershed and meteorological data, and state-of-the-art environmental assessment 

and modeling tools into one package. 

 

QUAL2E can simulate up to 15 water quality constituents in any combination 

desired by the user: (Brown and Barnwell, 1987) 

• Dissolved Oxygen 

• Biochemical Oxygen Demand 

• Temperature 

• Algae as Chlorophyll-a 

• Nitrogen Species (Organic Nitrogen, Ammonia, Nitrite, Nitrate) 

• Phosphorus Species (Organic Phosphorus, Dissolved Phosphorus) 

• Coliforms 

• Arbitrary Nonconservative Constituent 

• Three Conservative Constituents 

 

QUAL2E is applicable to dendritic streams that are well mixed laterally and 

vertically. The model can simulate any branching, one dimensional stream system. 

The first step in using QUAL2E is to develop a conceptual representation of the 

river system to be modeled. The stream system is divided into reaches that have 

uniform hydraulic characteristics and then these reaches are further divided into 

computational elements of equal length which are treated as completely mixed 

reactors that are linked to each other via mechanisms of advection and dispersion. 

The computational elements within a reach have the same hydrogeometric 

properties (stream slope, channel cross section, roughness, etc.) and biological rate 

constants (BOD decay rate, benthic source rates, algae settling rates, etc.) (Brown 

and Barnwell, 1987; Chapra, 1997). 
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For each computational element, a hydrologic balance, and a materials balance for 

each constituent are written. The one-dimensional transport is governed by 

advection, dispersion, constituent changes, and external sources/sinks. The 

mathematical expression for steady-flow is: 
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where; 

 C = concentration (ML-3) 

 x = distance (L) 

 t = time (T) 

 Ax = cross-sectional area (L2) 

 DL = dispersion coefficient (L2T-1) 

 u = mean velocity (LT-1) 

 s = external source or sinks (MT-1) 

 

The advective-dispersive mass transport equation for each constituent is solved by 

finite difference method that employs the classical implicit backward difference 

scheme (Brown and Barnwell, 1987). 

 2.3.1 Constituents Simulated 

The QUAL2E model simulates the major mechanisms and constituents that are 

related with the dissolved oxygen concentrations. They include the nutrient cycles, 

algae production, benthic oxygen demand, carbonaceous oxygen uptake, and 

atmospheric aeration (Brown and Barnwell, 1987). Figure 2.2 shows these 

mechanisms and constituents together with the way their interactions are 

conceptualized by QUAL2E. 

 

The differential equation used in QUAL2E to describe the rate of change of 

dissolved oxygen includes atmospheric reaeration and the oxygen produced by algal 

photosynthesis as the major sources. The major sinks included in the equation are 
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biochemical oxygen demand, sediment oxygen demand, algal respiration, and the 

oxidation of ammonia and nitrate. Additionally, QUAL2E has the capability of 

modeling the reaeration that occurs when water is flowing over dams.  The change 

in the oxygen concentration in the river is expressed as; 

( ) ( ) 22611541432 / NNdKLKAOOK
dt
dO

s βαβαραµα −−−−−+−=         (2.2) 

where, 

O = the concentration of dissolved oxygen, mg/L 

Os = the saturation concentration of dissolved oxygen, mg/L 

α3 = the rate of oxygen production per unit of algal photosynthesis, 

  mg-O/mg-A 

α 4 = the rate of oxygen uptake per unit of algae respired, mg-O/mg-A 

α 5 = the rate of oxygen uptake per unit of ammonia nitrogen oxidation, 

mg-O/mg-N 

α 6 = the rate of oxygen uptake per unit of nitrite nitrogen oxidation, 

  mg-O/mg-N 

µ = algal growth rate, 1/day 

ρ = algal respiration rate, 1/day 

A = algal biomass concentration, mg-A/L 

L = concentration of ultimate carbonaceous BOD, mg/L 

d = mean stream depth, m 

K1 = carbonaceous BOD deoxygenation rate, 1/day 

K2 = the reaeration coefficient, 1/day 

K4 = sediment oxygen demand rate, g/m2-day 

β1 = ammonia oxidation rate coefficient, 1/day 

β2 = nitrite oxidation rate coefficient, 1/day 

N1 = ammonia nitrogen concentration, mg-N/L 

N2 = nitrite nitrogen concentration, mg-N/L 
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Figure 2.1: Major constituent interactions in QUAL2E. (From Brown and 
Barnwell, 1987) 

The BOD function in the QUAL2E model uses a first order reaction to describe 

deoxygenation of ultimate carbonaceous BOD and also takes into account 

additional BOD removal by settling: 

    LKLK
dt
dL

31 −−=            (2.3) 

where, K3 = the rate of loss of carbonaceous BOD due to settling, 1/day.
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The relationship that is used to model the algal biomass includes growth, respiration 

and settling of algae: 

    A
d

AA
dt
dA 1σρµ −−=            (2.4) 

where, σ1 = settling rate of algae, m/day 

 

QUAL2E models the stepwise transformation of organic nitrogen to ammonia, to 

nitrite, and finally to nitrate. The differential equations used in modeling of these 

four components of nitrogen cycle consider organic nitrogen hydrolysis and 

settling, nitrification (oxidation of ammonia to nitrite and then nitrite to nitrate), 

uptake by algae, benthos source and regeneration from algal respiration. The 

equations are shown below: 

    44431
4 NNA

dt
dN

σβρα −−=           (2.5) 

       AFdNN
dt

dN
µασββ 131143

1 / −+−=          (2.6) 

         2211
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dt
dN

ββ −=           (2.7) 

              ( ) AFN
dt

dN
µαβ 122
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where, 

 N4 = organic nitrogen concentration, mg-N/L 

 α1 = fraction of algal biomass that is nitrogen, mg-N/mg-A 

 β3 = organic nitrogen hydrolysis rate constant, 1/day 

 σ4 = rate coefficient for organic nitrogen settling, 1/day 

 σ3 = the benthos source rate for ammonia nitrogen, mg-N/mg-A 

 F = fraction of algal nitrogen uptake from ammonia pool 

 N3 = nitrate nitrogen concentration, mg-N/L 

 

The phosphorus cycle considers two forms of phosphorus: organic and dissolved. 

The equations used to model the interactions between the two components of the 

phosphorus cycle include organic phosphorus regeneration from algal respiration, 
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organic phosphorus settling, organic phosphorus conversion to dissolved state, 

benthal source for dissolved phosphorus, and uptake by algae: 

  15142
1 PPA

dt
dP

σβρα −−=            (2.9) 

AdP
dt

dP
µασβ 2214

2 / −+=                     (2.10) 

where, 

 P1 = organic phosphorus concentration, mg-P/L 

 α2 = phosphorus content of algae, mg-P/mg-A 

 β4 = organic phosphorus decay rate, 1/day  

 σ5 = organic phosphorus settling rate, 1/day 

 P2 = inorganic or dissolved phosphorus concentration, mg-P/L 

 σ2 = benthos source rate for dissolved phosphorus, mg-P/L 

 

Coliforms, the arbitrary nonconservative constituent and the conservative 

constituents do not interact with other constituents. For the case of coliform 

modeling, only a first order decay function is considered. For the case of the 

arbitrary nonconservative constituent modeling, in addition to a first order decay 

function, settling to and regeneration from the sediment are also included.  The 

governing equations are; 

      EK
dt
dE

5−=          (2.11) 

where, 

 E = coliforms concentration, colonies/100 ml 

 K5 = coliform die-off rate, 1/day 

     dRRK
dt
dR /766 σσ +−−=         (2.12) 

where, 

 R = the nonconservative constituent concentration, mg-ANC/L 

 K6 = decay rate for the constituent, 1/day 

 σ6 = rate coefficient for constituent settling, 1/day 

 σ7 = benthal source for constituent, mg-ANC/m2-day 
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 2.3.2 Calibration of QUAL2E 

In the literature, many stream water-quality modeling and management studies 

using QUAL2E model can be found (Lung and Larson, 1995; Drolc and Zagorc 

Koncan, 1996; Dussaillant and Munoz, 1997; Ghosh and McBean, 1998; 

Chaudhury et al., 1998; Onur et al., 1999; Ning et al., 2000). However, most of 

these studies do not focus on the calibration problem of the model. 

 

In the study of Onur (1996), QUAL2E was used as a tool for developing a water 

quality management plan for the Lower Seyhan River in Turkey. The effects of 

different pollution control strategies on the in-stream water-quality were analyzed. 

The study included a comprehensive modeling application. State variables used in 

the study were temperature, dissolved oxygen, 5-day biological oxygen demand, 

nitrogen species (ammonia, nitrite, nitrate, and organic nitrogen), dissolved 

phosphorus and algae. All the constants except the hydraulic coefficients needed by 

the model were determined by model calibration. A trial-and-error approach was 

adopted. Calibrations were performed by visual comparison of measured data and 

concentration profiles. No quantitative or statistical methods were applied. 

 

The QUAL2E model was modified and applied to the Sava River in Slovenia by 

Drolc and Zagorc Koncan (1996). The focus was on the determination of the impact 

of wastewater discharges on the dissolved oxygen levels in the stream. The model 

was calibrated by field and laboratory measurements (Drolc and Zagorc Koncan, 

1999). The sediment oxygen demand rate constant was determined experimentally 

in situ, the BOD degradation rate was determined in a river laboratory model. 

Hydrological characteristics were evaluated on the basis of empirical coefficients 

obtained from field measurements of river flow, velocity, and river depth. The 

reaeration rate constant was calculated with the help of an energy dissipation model. 

The validation results were successful although some of the determined values for 

the constants were quite different from the literature values. It was stated that 

reliance on literature values would cause substantial errors in model predictions for 

the Sava River case (Drolc and Zagorc Koncan, 1999). 
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Little and Williams’s study (1992) is an example application of an objective, 

computer-aided method for the calibration of QUAL2E model. In their study, the 

focus was on the dissolved oxygen concentrations. Six parameters affecting 

dissolved oxygen concentrations were calibrated. A least-squares objective function 

that minimized the sum of squares of differences in model predictions and 

observations was used and solved using the Box’s Complex Method. However, it 

was pointed out that the algorithm might not perform well if a large number of 

decision variables were to be estimated. Nevertheless, the study demonstrated the 

benefits of using an objective, statistically valid, computer-assisted method for 

calibration of QUAL2E model. 

2.4 Genetic Algorithms 

Genetic algorithms are probabilistic, global search methods that are inspired from 

natural evolution (Holland, 1975). Genetic algorithms perform simulated evolution 

on a population which is composed of potential solutions to the problem of concern. 

As in nature, the principle of natural selection is at work. The better members of the 

population, or better solutions to the problem, reproduce and pass their genetic 

material to the next generations while relatively worse solutions are removed from 

the population. In the reproduction phase, information exchange between the 

selected members takes place and better solutions are produced with every new 

generation. 

 

Several researchers have contributed to add new and improved features to the 

earlier simple algorithms and broadened the area of practical application. Through 

many theoretical and empirical studies, it is proven that genetic algorithms are 

robust search methods in complex spaces (Goldberg, 1989). Today, genetic 

algorithms are among the most popular probabilistic global optimization methods 

that are preferred to the traditional optimization methods, especially for problems 

that contain non-linear, non-convex and discontinuous functions. 



 21

 2.4.1 Overview of a Genetic Algorithm Implementation 

Genetic algorithms search from a population of points, rather than a single point as 

in the traditional search techniques. This characteristic decreases the probability of 

being trapped in local optima (Goldberg, 1989). In a genetic algorithm application, 

the transition rules employed to guide the search process are probabilistic, not 

deterministic. Another important difference is that genetic algorithms are blind to 

the problem they are working on (Goldberg, 1989). They do not need any auxiliary 

information (e.g. derivative information) about the problem. Only the objective 

function values associated with the parameter sets are required. Also, genetic 

algorithms do not use the actual parameter set, instead they work on a coding of the 

parameter set. 

 

There are two important mechanisms that relate the genetic algorithms to the 

problem they are working on; encoding and evaluation (Davis, 1991). Each 

potential solution to a problem is encoded into a chromosome-like structure called a 

‘string’. Although there are several types of encoding, such as the integer, real, and 

character encoding (Levine, 1996), the binary encoding is the most common 

method to represent the decision variables as strings. Genetic algorithm operators 

work on these strings to converge to the best solution. In this process, the measure 

of goodness may be called as the `fitness` of the string (Davis, 1991). This fitness 

information, returned by the evaluation function (objective function), is the only 

information required by a genetic algorithm to continue its search. 

 

The general steps followed by a genetic algorithm are as follows: 

1. Randomly generate an initial population of a number of strings, 

2. Using the objective function, evaluate each string, 

3. Create new strings applying the genetic algorithm operators; 

a. Selection 

b. Crossover 

c. Mutation 
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4. Form a new generation by replacing all or a portion of the old strings with 

the new ones, 

5. Evaluate each string in the new generation, 

6. If the stopping criterion is met, terminate and return the best string, if not, go 

back to step 3. 

 

The cycle of applying genetic algorithm operators, forming a new generation and 

evaluation (steps 3, 4, 5, 6) is repeated until the stopping criterion is satisfied. The 

stopping criterion may be in the form of completing a previously determined 

number of generations or lack of improvement in best fitness value for a number of 

consecutive generations. 

 

The genetic algorithm operators are responsible for the transformation of the strings 

and aiding in the improvement of best fitness value throughout successive 

generations. Three basic operators; selection, crossover and mutation, would be 

enough to obtain good results in many practical problems (Goldberg, 1989). 

Various implementation procedures for these three operators are present. Research 

is underway on adding new variants and totally new operators to the algorithm in 

order to increase the performance of genetic algorithm on specific problems. An 

overview on the three basic genetic algorithm operators and their implementation is 

given below. 

 

Selection operator selects a number of strings based on their fitness values. 

Selection can be implemented in many ways. The roulette wheel parent selection 

method uses a biased roulette wheel where each current string in the population has 

a slot size proportional to its fitness (Goldberg, 1989). In the tournament selection 

method, two randomly selected strings are compared and the one with the better 

fitness value is selected. 

 

The crossover operator is applied on selected strings generally with a high 

probability value (0.5-1.0) determined a priori. With this operator, the selected pair 
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of strings exchanges some bits. Crossover provides a search technique of high 

performance and gives a genetic algorithm its distinctive power. By exchanging 

information between the selected strings of high fitness, it is made possible to 

obtain even better solutions (Goldberg, 1989; Davis, 1991; Holland, 1975; Holland, 

1992).  

 

There are various types of crossover operators. In a single-point crossover, parts of 

two strings are exchanged at a randomly selected point. In a two-point crossover, 

two points are randomly selected and the string segments between these two points 

are exchanged. In a uniform crossover, it is randomly decided which segments of 

two strings will be exchanged. By this way even the smallest segments can be 

transferred between the selected strings (Davis, 1991). An example uniform 

crossover operation is represented in Figure 2.2. 
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Figure 2.2: Uniform crossover on binary coded strings. 

Crossover is followed by mutation. The mutation operator modifies some bits of the 

strings with a certain probability. Mutation probability is generally very low (0.001 

– 0.04). It is used to prevent premature convergence to a local optimum and is a 

means of recovery for the important lost material in the reproduction and crossover 

processes (Goldberg, 1989). 

 

In forming the new generation, an elitist strategy may be adopted by copying the 

best member of the population into the next generation. Elitism improves the 

genetic algorithm performance (Davis, 1991). 
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It is important to note that genetic algorithms are highly problem specific. The 

efficiency of a genetic algorithm is dependent on the proper selection of operator 

parameters (Ng and Perera, 2003). For most problems, using a traditional genetic 

algorithm with parameter values in a robust range can give satisfactory results. On 

the other hand, if increasing the performance of the genetic algorithm is essential, a 

preliminary study on the most suitable operator parameters and combinations, as 

well as the coding and evaluation techniques to be used, should be conducted for a 

specific problem (Davis, 1991).  

 2.4.2 Application of Genetic Algorithms to Model Calibration 

Genetic algorithms have not been widely used for the optimization of calibration 

process in the modeling studies. However, considering the complexity of current 

water quality models, genetic algorithms can be deemed as strong candidates for 

calibration with their robustness for such problems. A few studies in the literature 

also strengthen this idea. 

 

Cooper et al. (1997) applied genetic algorithms to the calibration of a conceptual 

rainfall-runoff model and obtained good results. They stated that calibration of 

conceptual rainfall-runoff models is a very complex problem and global 

optimization methods should be used to solve this problem. In their study, three 

global optimization methods were compared: shuffled complex evolution, genetic 

algorithms and simulated annealing. The performance of genetic algorithms were 

better than the simulated annealing method when the parameter estimates and the 

number of iterations for convergence are considered, but they did not perform as 

well as the shuffled complex evolution method. 

 

Mulligan and Brown (1998) studied the applicability of genetic algorithms to 

calibrating water quality models. They used the steady-state Streeter-Phelps 

dissolved oxygen model and included the processes of reaeration, carbonaceous 

biological oxygen demand, nitrogenous biochemical oxygen demand, and sediment 

oxygen demand. Genetic algorithms were compared with a more traditional, 
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calculus-based nonlinear optimization technique, the Marquardt algorithm; and 

found to be superior. Several different formulations for incorporating field 

observations as constraints to the optimization problem were investigated on the 

base of genetic algorithm performance. The study also showed that multiple-

response estimation that utilizes more than one water quality variable to estimate a 

model parameter is more effective. The calibration on reaeration coefficient and 

BOD decay rate by using both DO and BOD response gave better results compared 

to utilizing the DO response only. The enhancement was observed in the form of a 

reduction in the variability of the parameter estimates and an increase in the GA 

convergence rate. Another important result of the study was that the data obtained 

by a genetic algorithm search in calibration was shown to be informative about the 

response surface, parameter correlation and model sensitivity. 
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CHAPTER 3 

METHODOLOGY 

3.1 Linking QUAL2E with Genetic Algorithms 

 3.1.1 The QUAL2E Code Modification 

QUAL2E is written in ANSI FORTRAN 77 and is compatible with mainframe and 

personal computer systems that support this language (Brown and Barnwell, 1987). 

Source code of QUAL2E is distributed freely by US EPA as a part of the program 

package that contains the executable program files, informative text files, sample 

input and output files and other utilities. A self-extracting, interactive, installation 

executable program file installs the whole program package to the computer. The 

latest DOS version of the model is the version 3.22 released by US EPA on May 

1996. 

 

The QUAL2E program is originally developed to run under the MS-DOS operating 

system. It is not possible to run this version in MS Windows 2000 / XP operating 

systems. A recent version of the program provides a graphical user interface for 

input and output data handling in MS Windows 98. After editing the user specified 

data, an interface runs the original DOS version. A special version of QUAL2E that 

enables the program to function under Windows 2000 is also present. However, 

several modifications in the operating system specifications are needed for running 

the Windows 2000 interface. There is no available version, pre-processor, or post-

processor of the QUAL2E program for Windows XP. 

 

QUAL2E with the version number 3.22 is structured as one main program 

supported by 56 different subroutines. All the subroutines are coded in separate 

files. There are also several include files, called as the dependencies, used for 
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declaring data statements, block declarations or program constants. The total 

number of FORTRAN source code files (*.FOR) is 57 and the total number of 

dependencies (*.INC, *.VAR) is 11. 

 

Due to the modular structure of the code, the modeler is able to alter the model and 

adapt it to a specific stream system by modifying the related sub-programs. 

Moreover, new state variables can be added or modifications to existing 

relationships can be made through addition of appropriate subroutines. The program 

has to be recompiled when changes have been made in the FORTRAN source code. 

The original compiler used in the development of QUAL2E is Lahey FORTRAN, 

F77L-EM/32 version 5.01. The “make” file that aids in compilation is also 

distributed with the code, in order to allow modifications in the code by the user. 

 

In this study, Microsoft Fortran PowerStation 4.0 was used in order to compile the 

modified QUAL2E code to run as a console application under the Windows XP 

operating system. First, the file specifications in the code were changed. Each 

compiler has its own way of reorganizing the program code and storing the floating-

point variables used in the numerical processes when changing it to the form that 

can be understood and executed by the computer. Therefore, it would be essential to 

check whether the model output is correct. In order to make this analysis, the 

outputs of the original QUAL2E program and the modified QUAL2E program 

compiled with MS Fortran PowerStation 4.0 were compared. Initially, a few 

number of output values of some water quality variables were not the same. The 

reason for this variation was due to the rounding of floating-point numbers. 

Although, the differences were negligible, further improvement was established by 

recompiling the program using the ‘/Op’ option of the compiler. This option enables 

improved floating-point consistency. The result of each calculation is stored in the 

target variable rather than being kept in the floating-point processor for usage in a 

subsequent calculation. 
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 3.1.2 QUAL2E in a Genetic Algorithm 

Following the modification and compilation of the QUAL2E model to run under 

Windows XP, study on the linkage of the QUAL2E code with a genetic algorithm 

(GA) started. In this study Carroll`s (2001) genetic algorithm driver in FORTRAN 

(version 1.7a updated in February 2001), available in a public domain, was 

employed.   

 

Carroll’s genetic algorithm driver uses binary encoding to represent the decision 

variables. The selection scheme used in the program is tournament selection with a 

shuffling technique for choosing the random pairs for mating. The driver includes 

jump mutation, creep mutation and the option for single-point or uniform crossover. 

 

Two mutation operators, jump mutation and creep mutation, can be applied 

separately or at the same time. The mutation operator, referred to as the jump 

mutation, performs conventional mutation as described in the previous chapter. The 

creep mutation operates on the decoded individual (or on the real value of the 

individual). When subject to creep mutation, the decoded value of the individual is 

randomly increased or decreased by one increment. The increment value is related 

with the search range for that individual and the required accuracy, which is related 

with the string length. 

 

Together with single-point or uniform crossover options, the number of children per 

pair of parents can be specified. An option for performing elitism is also present. 

The genetic algorithm driver can perform niching (sharing) on the population. 

Niching is performed for maintaining diversity in the population, and preventing the 

premature convergence. The fitness values of individuals are modified so that a sub-

population does not become dominant over other sub-populations. By this way, 

many sub-populations from different regions of the search space go on searching for 

sub-optima in their vicinity. Niching (sharing) is especially recommended when 

working on multimodal search spaces containing sub-optimal but local optimum 
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points. ‘Sharing’ term comes from the fact that regions of search space are shared 

among the sub-populations which will collect on (sub-)optima. 

 

In the recent versions of the driver, an option for the use of micro-GA operator has 

been added. The micro-GA technique omits the mutation operator. With this 

method, the genetic algorithm works on a small population of strings, called as the 

micro-population, and checks for the convergence of the micro-population at every 

generation. When convergence is achieved, a new micro-population is restarted 

while the best string is kept intact. However, the micro-GA operator was not used in 

this study.   

 

The genetic algorithm driver contains a subroutine that evaluates the strings in a 

population, assigns fitness values to them, establishes the best string, and outputs 

the information produced. In order to assign the fitness values to each string, this 

subroutine calls the function evaluator (‘func’). This evaluator assigns the values of 

the related variables that are used to calculate the objective function value. 

Therefore, QUAL2E is embedded in the function evaluator subroutine. 

 

The optimization algorithm is schematically described in the Figure 3.1. The 

potential solutions of the calibration problem produced by the genetic algorithm are 

fed into the ‘evaluation of the fitness’ phase. In this context, the potential solutions 

are the values of a set of kinetic parameters to be calibrated that are generated by 

the GA driver. They can also be called as ‘the decision variables’. The decision 

variables are transferred to the QUAL2E program. QUAL2E performs simulations 

using the transferred values. The simulations are performed both for calibration and 

verification conditions keeping the kinetic parameters fixed. Following the water 

quality simulation, results for the related water quality variables are returned for 

evaluation. Using the water quality values, the objective function is calculated. 

Then, the objective function value is returned to the GA driver to judge its fitness 

and application of the GA operators. 
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Figure 3.1: The basic optimization algorithm applied in this study. 

In embedding QUAL2E in the GA driver, the following modifications were made: 

1. COMMON blocks were included in both codes for the variables that were 

used by several subroutines,   

2. Relevant commands and coding were applied for reading from and writing 

to the related files.  

3. Relevant subroutines of QUAL2E were modified to read the values of the 

decision variables transferred by the genetic algorithm driver.  

4. Subroutines of QUAL2E related with outputting were modified so as to 

return the required water quality variable values for quantification of the 

objective function.  

5. Objective function was coded. 
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Following the modifications, the optimization model composed of linked QUAL2E 

and a GA were compiled using Microsoft Fortran PowerStation. An example code 

is given in Appendix A. Information about the required input files and output files 

are given in Appendix B. 

 

The program needs a considerable paging file size. The used paging file size 

increases with every generation of the genetic algorithm run. So, the execution of 

the program was done through a batch-file that performs a series of genetic 

algorithm runs via the ‘restart continuation’ feature of the GA driver. The batch file 

also copies the necessary output files to the specified folders for further analysis. 

With this strategy, the memory is used more efficiently. It is possible to stop and 

then restart a genetic algorithm run whenever needed. Moreover, the genetic 

algorithm input parameters can be altered as the run is in progress.  

 

In order to determine the most suitable GA operator parameters and the 

combination of operators, a preliminary study was conducted. Taking several 

genetic algorithm studies in the literature and the recommendations of Carroll 

(2001) into consideration, a set of calibration runs were made with the developed 

optimization model. Following these tests, the GA input parameters given in Table 

3.1 were used throughout the study. The population size, however, was different for 

different runs, depending on the number of the decision variables. The adopted 

strategy in determining the population size was taking it larger than at least three 

times of the length (number of bits) of a string in the population. 

Table 3.1: The genetic algorithm input parameters used in the study. 

Parent selection scheme Tournament selection 
Crossover type Uniform crossover, one child per pair of parents
Crossover probability 0.5 
Jump mutation YES 
Jump mutation probability 0.01 
Creep mutation YES 
Creep mutation probability 0.02 
Elitism YES 
Niching YES 
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 3.1.3 The Objective Function 

The objective function used in the calculation of the fitness of a string aims to 

minimize the difference between the observed and simulated conditions. A sum-of-

least squares approach was adopted for the objective function formulation. In order 

to perform simultaneous calibration and verification, verification of the calibrated 

parameters were treated as a system constraint. This constraint was introduced as a 

multiplicative penalty factor. Although different forms of the objective function 

formulation are used throughout the study, the general mathematical expression for 

the objective function can be stated as: 
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where, 

 CCOij = Observed concentration of the water quality parameter j at 

observation point i for the field conditions of calibration (M/L3) 

 CCPij = Simulated (predicted) concentration of the water quality parameter j 

at observation point i for the field conditions of calibration (M/L3) 

 CVOij =  Observed concentration of the water quality parameter j at 

observation point i for the field conditions of verification (M/L3) 

 CVPij = Simulated (predicted) concentration of the water quality parameter j 

at observation point i for the field conditions of verification (M/L3) 

 N =  Total number of observation points (-) 

 K  =  Total number of water quality parameters (-) 

 wj  = Weight of the sum-of-squared errors for the water quality parameter 

j (-) 

 

Equation 3.1 uses the simulated and observed values of multiple water quality 

parameters to calculate the objective function value. The contribution of error for 

each water quality parameter considered is reflected in the overall error by a 

weighting factor (wj). Since there may be difference of magnitude in the quantities 

of different water quality parameters, the contribution of error occurring for a 

specific water quality parameter can appear to be significant even if the error is 
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insignificant in terms of percentage. Therefore, weight factors are used to prevent 

the domination of one or more water quality parameter in the overall objective 

function value. By this way all the parameters are treated as equally as possible 

depending on the proper selection of the weight factors. However, the definition of 

different weights for different water quality parameters is a difficult task (van 

Griensven et al., 2002). Initial trials have to be conducted in order to set these 

weights.  

 

For complex optimization problems with multi-modal search space, genetic 

algorithms can converge to local optima. Although this situation is a less likely 

problem for genetic algorithms compared to other optimization methods, 

precautions must be taken. In this study, each run was repeated three times with 

different randomly generated initial population of strings. In the case of obtaining 

different final results at the end of the optimization process, the best one was 

assumed as the optimum solution. All runs were lasted for 10,000 generations. 

3.2 Synthetic Data Production 

The assessment of the performance of the developed optimization model was 

initially tested based on synthetic data. Using synthetic data enables a better 

assessment of the method since the optimum solution is known a priori. Two 

different sets of data were used for the tests: 

1. Perfect data 

2. Biased data 

 

The first set of tests used observed water quality constituent values that contained 

no error. In this set of experiments, no error was expected between the observed and 

simulated data for the optimum set of parameter values. 

 

The second set of experiments was designed to test the performance of the 

optimization model for the observed data that contained a known amount of error. 

In this situation, at the end of the optimization run, the squared residuals between 
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the observed and the simulated data may not be zero depending on the amount of 

error in the observation data. Additionally, the quantities for the optimal parameter 

set is expected to be different from the ‘real’ parameter set since the optimization 

model tries to fit to the biased observation data.  

 

The synthetic data to be used as the observation values were generated for a 

hypothetical river system of 6 reaches and 45 computational elements.  This system 

and its relevant input files are based on ‘Sample Data Set 2’ (wrkshop2.dat) 

distributed with the QUAL2E Model System. ‘Sample Data Set 2’ provides all the 

necessary data for simulating several constituents; 5-day biological oxygen demand, 

dissolved oxygen, algae, phosphorus, nitrogen, fecal coliform, total dissolved solids 

and temperature (Figure 3.2).  

 

The observation data at imaginary observation points (Figure 3.2) were generated 

for the calibration and verification conditions. In the calibration data set, the dry 

bulb temperature and wet bulb temperature values were 20°C and 15°C, 

respectively. In the verification data set, temperature values were decreased and 

taken as 15°C and 10°C for dry and wet bulb temperature values, respectively. 

Therefore, the ambient temperature differences made the distinction between the 

calibration and verification conditions. All other assumptions were the same. 

Temperature difference can have significant impacts on the reaction rates and, 

therefore, on the water quality. The temperature correction for the reaction rate 

constants is handled internally in the QUAL2E model.  

 

The sampling points were distributed throughout the river system so as to have at 

least one sampling point on each reach. Placement was performed arbitrarily with 

care to assign them to critical locations such as the downstream of point sources, 

dams, junctions and upstream of withdrawals (Figure 3.2). After running the 

QUAL2E for the calibration and verification conditions, values of the simulated 

constituents at the pre-determined observation points were labeled as the observed 

value of the constituent at that point. For the perfect data set, the simulated water 
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quality constituent concentrations for the specified kinetic constants were directly 

used. However, to prepare the biased observation data set, the observed 

concentrations for the perfect data case were altered. This is achieved by randomly 

introducing an error within a range of ±20% for all of the water quality parameters 

in the observation data set. 
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Figure 3.2: Schematic representation of the river system and sampling points 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Results for the Calibration and Verification for Two Model Parameters 

The performance of the optimization model in calibration and verification of the 

QUAL2E based on different model parameters are analyzed based on the 

comparison of the optimized and real (goal) values for different reaches and 

comparison of water quality constituent profiles along the main stream (reaches 1 

and 6) and the main tributary (reaches 2, 4, and 5). The profiles will be given for the 

calibration conditions only, since similar trends are observed for the verification 

conditions. In comparing the water quality constituent profiles the `real profile` 

refers to the goal profile intended to be reached by the optimized model parameter 

values. The `simulated profile` refers to the profile obtained using the best model 

parameter values produced at the end of the optimization runs.  

 4.1.1. Perfect Data Case 

The optimization model was initially tested for the perfect observation data. The 

tests were designed for simultaneous calibration and verification of two kinetic 

constants; the reaeration coefficient (K2) and the sediment oxygen demand (K4). It 

was assumed that these constants can have variable values for the different reaches 

of the river system. Accordingly, for the hypothetical river system of 6 reaches, 12 

decision variables were used. The relevant information about the test is given in 

Table 4.1. The search ranges for the coefficients were determined by referring to the 

observed values stated in literature and the QUAL2E model documentation (Brown 

and Barnwell, 1987). The range of values encoded in the genetic algorithm (GA) 

and other information are given in Table 4.1. The range of values used for the 
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sediment oxygen demand in this study corresponds to sandy bottoms and mineral 

soils (Chapra, 1997). However, enriched sediments may have higher values. 

 

K2 and K4 values employed to prepare the observation data are given in Table 4.2. 

Using these coefficients, dissolved oxygen (DO) concentrations were simulated and 

recorded as the observation data at the sampling points given in Figure 3.2, both for 

the calibration and verification conditions. These concentrations are stated in Table 

4.3. Basically, the optimization model uses the observation values given in Table 

4.3 to reach to the K2 and K4 values in Table 4.2 at the end of the optimization 

process. 

 

In Figure 4.1, the performance of the GA optimization run through 10,000 

generations is shown for one of the tests. As depicted, as generation number 

increases, better solutions are obtained. In other words, when the best strings in the 

generations were compared, the overall error between the predicted and observed 

values decreases very rapidly with the evolution of the strings. However, as the 

error gets smaller and better strings are obtained with the transformation supplied 

by the GA operators, the rate of improvement decreases. The best coefficient 

estimates after 10,000th generation, together with the optimum coefficient values, 

are given in Table 4.4. 

Table 4.1: Information on decision variable encoding in GA strings.  

Calibrated Parameter 
Reaeration 
coefficient 

(K2) 

Sediment oxygen
demand 

(K4) 
Range 0.0 – 100 day-1 0.0 – 1.0 g/m2-day
Precision of search space 0.1day-1 0.1 g/m2-day 
Total number of decision variables 12 
Total string length 84 bits 
Population size 275 strings 
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Table 4.2: Reaeration coefficient (K2) and Sediment Oxygen Demand (K4) values 
used for generating the perfect observation data. 

Reach Number K2 (day-1) K4 (g/m2-day) 
1 3.1 0.5 
2 13.1 0.0 
3 26.1 0.0 
4 0.8 1.0 
5 11.0 0.0 
6 2.8 0.5 

Table 4.3: The perfect observed DO data that is used in the simultaneous 
calibration and verification of K2 and K4. 

Reach Number Element Number DO (mg/l)  
(calibration)

DO (mg/l) 
(verification) 

1 7 3.38 3.78 
2 3 6.71 6.86 
3 2 7.23 7.69 
4 1 7.52 8.11 
5 2 7.21 8.08 
6 1 3.47 4.33 
6 5 2.98 4.04 

Table 4.4: Optimization results for the simultaneous calibration and verification of 
K2 and K4. (Perfect data case). 

 Observed / Optimum 
Value 

Best Results 
after 10,000 generations 

Objective Function Value 0 0.0005 

Reach-1 3.1 2.8 
Reach-2 13.1 13.4 
Reach-3 26.1 26.1 
Reach-4 0.8 0.2 
Reach-5 11.0 15.2 

K2
 

(day-1) 

Reach-6 2.8 2.9 
Reach-1 0.5 0.2 
Reach-2 0.0 0.3 
Reach-3 0.0 0.0 
Reach-4 1.0 0.7 
Reach-5 0.0 0.0 

K4 
(g/m2-day) 

Reach-6 0.5 0.7 
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Figure 4.1: Genetic algorithm performance on simultaneous calibration and 

verification of K2 and K4. 

The resultant DO profile for the main stream (reaches 1 and 6), for the coefficient 

estimates after 10,000 generations, is depicted in Figure 4.2 for the calibration 

conditions, with the observed DO values and the ‘real’ DO profile. It can be seen 

that the simulated and the real DO profiles are similar. This was the case although it 

was not possible to exactly reach to the goal K2 and K4 values (Table 4.4). Although 

the optimized K2 values followed the trend in the real values along the main stream, 

this was not the case for K4. Nevertheless, still a good match was obtained for the 

DO profiles. The maximum error in the simulated DO profile was less than 0.2 

mg/L in Reach 1. The DO profile match was similar for the verification conditions. 

For the tributary (reaches 2, 4, and 5), variation was observed in the real and 

simulated DO profiles (Figure 4.3). In the 4th reach, up to 1 mg/l error was observed 

at the downstream locations. The ability to reproduce the real DO profile with the 

estimated coefficients is as important as the ability to reproduce the real coefficient 

values. This is especially important when the mentioned coefficients are hard to 

determine by field or laboratory measurements. It is very common to use the 

coefficient values determined after calibration and verification instead of 

conducting field or laboratory measurements for such model coefficients. 

Reaeration coefficient is an example for a hard-to-measure model coefficient. 



 40

DO Profile (Reaches 1,6) (calibration)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

46 44 42 40 38 36 34 32 30 28 26 24 22 20

River km

D
O

 (m
g/

l)

Real Data Observation Points Calibration Result

Reach 1 Reach 6

 

Figure 4.2: DO profile along the main river for the calibration conditions 
(estimated coefficients: K2 and K4 for perfect observation data) 
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Figure 4.3: DO profile along the tributary for the calibration conditions 
(estimated coefficients: K2 and K4 for perfect observation data) 
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The only information that is used by the genetic algorithm in search for the 

optimum solution is the water quality observation data at the sampling points. When 

the real DO profiles and the simulated DO profiles obtained for the genetic 

algorithm estimates are compared in Figures 4.2 and 4.3, it can be seen that the 

profiles match at the sampling point locations. However, the error in the simulated 

DO values with respect to the real DO values may increase as the distance to the 

sampling point location increases.  

 

The river reach number 4 is distinguished from the other reaches since a dam is 

located just downstream of it. Reach 4 actually represents a pond trapped by the 

dam. Consequently, the hydraulic properties of Reach 4 are different from the other 

reaches. The water depth is greater and the average velocity throughout the reach is 

slower compared to the other reaches. The decreased velocity and the increased 

depth cause a considerable downgrade in the reaeration rate. The optimization 

results reflect this lower reaeration rate. However, the estimated K2 value (0.2 day-1) 

is even lower than the real value (0.8 day-1). When K4 values are considered, again 

there is a difference with the real value (1 g/m2-day) and the estimated value (0.7 

g/m2-day). On the other hand, although there are such differences between the real 

and the estimated values of the coefficients, there is no error in the simulated DO 

value at the sampling point (Figure 4.3). The observed DO value measured at the 

most upstream location of the reach reflects the impact of the oxygen rich waters of 

reaches 2 and 3, and it is unable to indicate the potential drop in the DO level in the 

downstream segments of Reach 4 due to lower reaeration in the pond (Figure 4.3). 

As a result, the sampling point on Reach 4 does not provide sufficient information 

to perform a successful calibration and verification. 

 4.1.2 Biased Data Case 

In order to investigate the performance of optimization model for erroneous 

(biased) observation data, the observation DO concentrations used in the perfect 

data case were altered to accommodate an error of up to 20%. By this way, it is 

aimed to have an optimization problem that is closer to the conditions of a real 
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water quality modeling study. The results obtained for this set of runs were 

compared to the real DO profiles in the river system.  

 

The tests with biased observation data were also comprised of simultaneous 

calibration and verification of K2 and K4, at the same time. Except the biased 

observation data, all other assumptions were the same as the perfect data case. 

Therefore, information given in Tables 4.1 and 4.2 also applies to the design of this 

set of runs. The biased data set used is given in Table 4.5. 

Table 4.5: The biased DO observation data used in the optimization runs. 
(Simultaneous calibration and verification of K2 and K4). 

Reach Number Element Number DO (mg/l) 
(calibration)

DO (mg/l) 
(verification) 

1 7 3.27 4.30 
2 3 5.44 6.61 
3 2 6.51 8.87 
4 1 8.85 6.81 
5 2 7.34 6.58 
6 1 3.94 4.82 
6 5 3.19 3.85 

 

 

The best decision variable estimates obtained after the 10,000th generation are given 

in Table 4.6. Estimated K2 and K4 values by the optimization model are quite 

different from the real K2 and K4 values. This difference becomes very dramatic, 

again, for the 4th reach. Moreover, K4 value was estimated as 0.0 g/m2-day in the 

reservoir located upstream of the dam (Reach 4), whereas high values were 

assigned to the reaches that actually had negligible sediment oxygen demand. This 

is an expected result due to the grounds mentioned in the previous section and the 

erroneous observation data that guides the genetic algorithm search. 
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Table 4.6: Optimization results for the simultaneous calibration and verification of 
K2 and K4. (Biased data case) 

 Real / Optimum 
Value 

Best Results 
after 10,000 generations

Reach-1 3.1 2.6 
Reach-2 13.1 8.8 
Reach-3 26.1 19.4 
Reach-4 0.8 97.6 
Reach-5 11.0 35.7 

K2
 

(day-1) 

Reach-6 2.8 2.4 
Reach-1 0.5 0.2 
Reach-2 0.0 0.0 
Reach-3 0.0 0.7 
Reach-4 1.0 0.0 
Reach-5 0.0 1.0 

K4 
(g/m2-day) 

Reach-6 0.5 0.0 
 

 

The DO profiles in the main stream and in the tributary obtained for the best 

estimates of K2 and K4 values are depicted in Figures 4.4 and 4.5, respectively, for 

the calibration conditions. The figures show that the simulated DO profiles differ 

significantly from the real DO profiles, especially for the tributary. The resulting 

DO profile met the biased observed DO concentrations at the sampling points on 

the main river. However, this was not the case for the tributary. On the other hand, 

the DO values simulated according to the optimization results generally had a 

narrower error range at the sampling points when compared with the biased 

observation data. In other words, the DO values obtained by simulating the DO 

profile, with the best coefficient estimates returned by the optimization model, are 

slightly closer to the real DO values than the biased observation values. The above 

discussion is also valid for the DO profiles for the verification conditions. The DO 

profile through the main stream for the verification conditions is given in Appendix 

C (Figure C.1). 
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Figure 4.4: DO profile along the main river for calibration conditions. 
(Estimated coefficients: K2 and K4 for biased observation data) 
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Figure 4.5: DO profile along the tributary for the calibration conditions. 
(Estimated coefficients: K2 and K4 for biased observation data) 
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4.2 The Impact of the Number and Location of Sampling Points 

The results presented in section 4.1 suggested that the number and location of 

sampling points were not sufficient in defining the water quality characteristics of 

the reaches. In order to investigate the impact of the number and location of 

sampling points, two new sampling points were added. Since the maximum errors 

were observed at Reaches 1 and 4 for the main river and the tributary, respectively, 

an additional sampling point was added for each. The first additional sampling point 

was located just upstream of the junction point where reaches 1 and 5 met. This 

point is at the 31st km of Reach 1. The second sampling point was placed at the 6th 

km on Reach 4. This point is closer to the dam structure with respect to the existing 

sampling point that was located at the 10th km. The river system with 9 sampling 

points after the addition of 2 new sampling points is shown in Figure 4.6. The 

impact of the additional sampling points was investigated for both perfect and 

biased observation data cases.  

1
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Withdrawal

Dam

46.km
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Sampling Point
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Figure 4.6: The river system with 9 sampling points. 
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 4.2.1 Perfect Data Case 

Table 4.7 presents the best K2 and K4 values obtained at the end of the 10,000th 

generation for 9 sampling points. As expected, the results were improved after the 

addition of new sampling points. The DO profiles obtained by using the coefficient 

estimates for the 9 sampling point case are plotted in Figures 4.7 and 4.8 for the 

main river and the tributary, respectively. The figures show that the deviations 

between the simulated and the real DO profiles were decreased considerably by the 

addition of new sampling points. 

 

In order to compare the calibration and verification results of the runs with 9-

sampling points with that of the runs with 7-sampling points, the difference between 

the simulated and real DO concentrations through all the computational elements 

were analyzed and the maximum amount of error through the river reaches were 

determined. The maximum error was nearly 1 mg/L for the 7-sampling-point-case, 

whereas it was only 0.05 mg/L for the 9-sampling-point-case. These results indicate 

that using a high number of sampling points can provide a better representation of 

the river system and water quality, leading to a more successful calibration and 

verification. However, there is a trade-off between the costs of additional sampling 

points and the success of a calibration and verification of a water quality model. 

Table 4.7: Optimization results for the simultaneous calibration and verification of 
K2 and K4. (Perfect data case with 9 sampling points) 

 Real/ Optimum Value Best Results 
Objective Function Value 0 0.0022 

Reach-1 3.1 3.1 
Reach-2 13.1 13.2 
Reach-3 26.1 25.9 
Reach-4 0.8 0.7 
Reach-5 11.0 12.9 

K2
 

(day-1) 

Reach-6 2.8 2.9 
Reach-1 0.5 0.5 
Reach-2 0.0 0.2 
Reach-3 0.0 0.0 
Reach-4 1.0 0.8 
Reach-5 0.0 0.4 

K4 
(g/m2-day) 

Reach-6 0.5 0.7 
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Figure 4.7: DO profile along the main river for the 9-sampling points case for 
the calibration conditions. (Estimated coefficients: K2 and K4 for 

perfect observation data) 
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Figure 4.8: DO profile along the tributary for the 9-sampling points case for the 
calibration conditions. (Estimated coefficients: K2 and K4 for perfect 

observation data) 



 48

 4.2.2 Biased Data Case 

As discussed in section 4.1.2, results were unsuccessful for the 7-sampling points. 

In this section it is tested whether improvement can be achieved in predicting the 

parameter values and DO profiles for increased sampling points. The best K2 and K4 

values obtained by the optimization process are stated in Table 4.8. Since the 

observation data used in the optimization runs were erroneous, the estimated 

coefficient values were quite different from the real coefficient values. However, 

compared to the runs with 7-sampling points, significant improvement was 

achieved. This is also observable in the DO profiles of the main river and the 

tributary shown in Figures 4.9 and 4.10, respectively. The DO profile for the 

verification conditions through the main stream is given in Appendix C (Figure 

C.2). 

Table 4.8: Optimization results for the simultaneous calibration and verification of 
K2 and K4  (Biased data case with 9 sampling points) 

 
 Real/Optimum 

Value 
Best Results 

after 10,000 generations 
Reach-1 3.1 3.1 
Reach-2 13.1 9.5 
Reach-3 26.1 52.1 
Reach-4 0.8 0.0 
Reach-5 11.0 13.7 

K2
 

(day-1) 

Reach-6 2.8 2.6 
Reach-1 0.5 0.3 
Reach-2 0.0 0.0 
Reach-3 0.0 1.0 
Reach-4 1.0 0.0 
Reach-5 0.0 0.3 

K4 
(g/m2-day) 

Reach-6 0.5 0.0 
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Figure 4.9: DO profile along the main river for 9 sampling points case for the 
calibration conditions. (Estimated coefficients: K2 and K4 for biased 

observation data) 
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Figure 4.10:  DO profile along the tributary for the 9 sampling points case for the 
calibration conditions. (Estimated coefficients: K2 and K4 for biased 

observation data) 
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The simulated DO profile along the main river has a very small deviation from the 

real DO profile although the utilized observation data was biased. Results point out 

that additional sampling points have a positive impact on the simulated DO profiles, 

especially in the tributary. Although, the simulated and real DO concentrations in 

Reach 2 may differ by as much as 1 mg/l at some locations, the simulated DO 

profiles follow the same trend with the real DO profile in the tributary. The error 

amounts in the simulated DO profiles are very closely related with the magnitude of 

bias in the observed DO values. 

4.3 The Impact of Different Objective Function Formulations 

The test results presented in Sections 4.1 and 4.2 were obtained using the objective 

function formulation given in Chapter 3, Methodology. In this section, the impact of 

different objective function formulations on the optimization performance is 

discussed. The analysis of this impact was performed for the 7-sampling-point case 

for which the performance was not satisfactory. Two new objective functions were 

formulated to check whether the performance of the optimization model can be 

improved by the objection function formulation itself. The results obtained for the 

same problem with three different objective functions were compared. The 

formulations of these three objective functions are given below: 
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Objective Function – 3: 
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where, 

DmaxC : The maximum error at the sampling point locations for the 

  calibration conditions (mg/l), 

 DmaxV : The maximum error at the sampling point locations for the 

   verification conditions (mg/l), 

 w : The weight of the penalty function = 100 

 

As previously stated, the developed optimization algorithm performs simultaneous 

calibration and verification. Verification results were treated as a constraint and 

incorporated into the objective function formulation as a penalty function. The 

general objective function (Equation 3.1) used in the previous tests has a drawback 

that may cause poor performance. As the difference between the simulated and 

observed values gets smaller, the verification error may become less significant. 

Even if the error from the verification phase is large, the objective function may still 

get small values in the case of small errors in magnitude for the calibration 

conditions. In order to avoid such a situation, the Objective Function – 2 (Equation 

4.2) was developed. This function is equal to the sum of two sub-functions. The 

first sub-function is the Objective Function – 1. In the second sub-function, the 

sum-of-the-squared errors for the calibration conditions are treated as a penalty 

function. 

 

A different approach was adopted when formulating the Objective Function – 3 

(Equation 4.3). Instead of taking the sum-of-the-squared errors at all of the 

sampling points into consideration in calculating the penalty function value, the 

maximum amount of errors for the calibration and verification conditions are 

selected and used in the penalty function. In this case, the objective function value 

is only affected by the maximum error values, not by the error values at all of the 

sampling points. 
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 4.3.1 Perfect  Data Case 

The runs executed to obtain the results given in Section 4.1.1 were repeated using 

the Objective Functions – 2 and – 3. The estimated K2 and K4 values for three 

different objective functions are given in Table 4.9. It is seen that the set of 

coefficient estimates for Objective Function – 3 is relatively better compared to the 

set obtained with other objective function formulations. 

Table 4.9: Optimization results for the simultaneous calibration and verification of 
K2 and K4 by using different objective function formulations. (Perfect data case) 

 Observed / 
Optimum 

Value 

Objective 
Function 

- 1 

Objective 
Function 

- 2 

Objective 
Function 

- 3 
Reach-1 3.1 2.8 2.9 3.1 
Reach-2 13.1 13.4 13.2 13.3 
Reach-3 26.1 26.1 25.7 26.0 
Reach-4 0.8 0.2 0.3 0.8 
Reach-5 11.0 15.2 14.1 10.6 

K2
 

(day-1) 

Reach-6 2.8 2.9 2.9 2.6 
Reach-1 0.5 0.2 0.3 0.5 
Reach-2 0.0 0.3 0.1 0.2 
Reach-3 0.0 0.0 0.0 0.0 
Reach-4 1.0 0.7 0.7 1.0 
Reach-5 0.0 0.0 0.0 0.0 

K4 
(g/m2-day) 

Reach-6 0.5 0.7 0.7 0.2 

 
In Figures 4.11 and 4.12, DO profiles plotted using the results obtained for three 

different objective function formulations are given. When these DO profiles are 

compared, it is seen that the simulated DO values are very close to the real DO 

values at the sampling point locations for all of the three objective functions. 

However, for the same final GA generation number, the results obtained by using 

Objective Function – 3 (Equation 4 .3) are nearly equal to the real DO values 

following the similarity of the estimated K2 and K4 values with their real values 

throughout all the river system (at all of the computational elements). For the other 

objective functions’ results, there are some deviations from the real DO values. 

These deviations are smaller for the results obtained by the tests with Objective 

Function – 2 when compared with that of Objective Function – 1. 
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Figure 4.11: DO profiles along the main river for three different objective 
function formulations for the calibration conditions. (Estimated 

coefficients: K2 and K4 for perfect observation data) 
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Figure 4.12: DO profiles along the tributary for three different objective function 
formulations for the calibration conditions. (Estimated coefficients: 

K2 and K4 for perfect observation data) 
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Figures 4.11 and 4.12 enable a visual comparison of the DO profiles for three 

different objective function formulations for the main river and the tributary, 

respectively. As can be noticed, the profiles obtained using Objective Function-2 

are better compared to the ones for the Objective Function-1. However, the 

performance of optimization with Objective Function-3 was far better than the other 

two. First of all, it was possible to obtain coefficient estimates that were very close 

to the real ones (Table 4.9). As a result, very small error was observed in the 

simulated DO concentrations throughout the river system in general as given in 

Table 4.10. These results suggest that the objective function formulation can be 

significant in terms of convergence for the perfect data case. It was decided to use 

Objective Function – 3 as the base objective function in the more complex problems 

presented in the following section given that it was the best performing objective 

function among the tested ones. 

 

 

Table 4.10: The maximum error values in the DO values determined after 
optimization runs with three different objective functions (mg/l). (Perfect data case) 

All the computational elements Sampling Points 
Reaches 1, 6 Reaches 2, 4, 5 Reaches 1, 6 Reaches 2, 4, 5Objective 

Function Calib. Verif. Calib. Verif. Calib. Verif. Calib. Verif. 
1 0.16 0.20 0.93 0.89 0.02 0.01 0.00 0.01 
2 0.11 0.14 0.67 0.66 0.02 0.01 0.01 0.01 
3 0.02 0.05 0.02 0.02 0.01 0.03 0.01 0.01 

 

 

  



 55

 4.3.2 Biased Data Case 

The previous tests given in Section 4.1.2 were repeated using Objective Functions  

-2 and -3. The resultant K2 and K4 values are given in Table 4.11. As can be seen, 

the coefficients are in error for most of the reaches. However, the resulting DO 

profiles were acceptable for all of the objective functions as depicted in Figures 

4.13 and 4.14 for the main river and the tributary, respectively. The DO profile for 

the verification conditions through the main stream is given in Appendix C (Figure 

C.3). 

 

The performance difference for different objective functions, which was clearly 

seen in the optimization results for the perfect observation data case, was not 

observable for the biased observation data case. In these tests, the error in the 

observation data dominated the outcome and the impact of objective function 

formulation became insignificant. This was the case especially for the tributary. 

Table 4.11: Optimization results for the simultaneous calibration and verification of 
K2 and K4 by using different objective function formulations. (Biased data case) 

 Observed / 
Optimum Value 

Objective 
Function 

- 1 

Objective 
Function 

- 2 

Objective 
Function 

- 3 
Reach-1 3.1 2.6 3.1 3.1 
Reach-2 13.1 8.8 9.4 8.8 
Reach-3 26.1 19.4 19.4 15.8 
Reach-4 0.8 97.6 76.8 98.8 
Reach-5 11.0 35.7 23.3 27.5 

K2 

Reach-6 2.8 2.4 2.6 2.5 
Reach-1 0.5 0.2 0.5 0.6 
Reach-2 0.0 0.0 0.5 0.2 
Reach-3 0.0 0.7 0.6 0.3 
Reach-4 1.0 0.0 0.2 0.0 
Reach-5 0.0 1.0 0.6 1.0 

K4 

Reach-6 0.5 0.0 0.2 0.2 
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Figure 4.13: DO profiles along the main river for three different objective 
function formulations for the calibration conditions. (Estimated 

coefficients: K2 and K4 for biased observation data) 
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Figure 4.14: DO profiles along the tributary for three different objective function 
formulations for the calibration conditions. (Estimated coefficients: 

K2 and K4 for biased observation data) 
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4.4 Performance of the Optimization Model in Complex Problems 

In this section, the performance of the optimization problem was tested for complex 

calibration and verification problems. Here, the term ‘complex’ stands for the 

problem of performing calibration and verification for the estimation of a large 

number of kinetic coefficients, use of multiple water quality variables in the 

observation data set to guide the optimization, or verification of the model for 

multiple verification conditions. Since the previous tests had been performed on 

relatively simple calibration and verification problems, some modifications in the 

optimization model was required in order to acquire the results in this section. 

These modifications caused an evolution of the optimization model increasing its 

general applicability to real modeling studies. 

 

The river system that was based on the QUAL2E sample input file, ‘wrkshop2.dat’, 

was continued to be used. In the light of the results of the previous tests, it was 

decided to use Objective Function – 3 as a basis for the more complex problems 

since it was the best performing objective function among the tested ones. Also, the 

observation data set represented the measurements at the sampling points of the 9-

sampling point case.  

 

The level of complexity of the problem was gradually increased resulting in three 

different “Complex Problem” cases. In Complex Problem I, the observed data of 

both DO and BOD were used to determine four reach-variable kinetic coefficients 

related with DO and BOD. In Complex Problem II, the nitrogen (N) species were 

added to the observation data set and the estimated kinetic coefficients were a total 

of nine reach variable kinetic coefficients related to DO, BOD and N species. 

Finally, in Complex Problem III, Complex Problem II was repeated by verifying the 

calibrated coefficients by using two observation data sets instead of one. Every test 

was performed for both perfect and biased observation data. 
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 4.4.1 Adapting the Optimization Model to Complex Problems 

The increased number of coefficients to be estimated requires more computational 

effort, since higher number of decision variables results in a long string length for 

the genetic algorithm. In order to make use of multiple water quality variables, the 

objective function formulation used in the previous tests needs to be modified to 

enable the minimization of the differences between the simulated and observed 

values of all the related variables. The objective function that reflects this 

requirement is given in Equation 4.4. 
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where,  

Ej= error function value for the water quality variable j (mg/L) 

K = total number of water quality variables in the observation data set (-) 

 

The error function, Ej, is similar to the Objective Function-3. Therefore, Equation 

4.4 is analogous to finding the value of Objective Function-3 separately for each 

water quality variable and then summing up these values after multiplication with a 

proper weight (wj) to calculate the magnitude of the objective function. In this 

formulation, the assignment of the proper weights is performed according to the 

typical range of error magnitudes for a particular water quality variable. This range 

is dependent on the river system, the observed value of the variable, and the search 

range of the related kinetic coefficient to be estimated. The determined set of weight 

values should ensure an equal contribution from each water quality variable to the 

overall objective function value as much as possible, at least in terms of the orders 

of magnitude. 

 

In this study, a linear normalization approach was adopted to determine the weight 

values. The error function values that a particular water quality variable can have 
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throughout the optimization runs were mapped in a range of 0 to 1. The following 

formula was used for the normalization: 

      
minmax

min

−−

−
− −

−
=

jj

jj
normj XX

XX
X           (4.6) 

where, 

Xj-norm : Normalized value of the error function for water quality variable j 

Xj : Original value of the error function for water quality variable j 

Xj-min : Minimum value of the error function for water quality variable j 

Xj-max : Maximum value of the error function for water quality variable j 

 

It is known that the minimum value that the error function can take is 0 (no error). 

When this value is inserted into Equation 4.6, the normalization formula reduces to: 

        
max−

− =
j

j
normj X

X
X           (4.7) 

 

In order to determine Xj-max, the initial population of a genetic algorithm population 

is used. When generating the initial population, genetic algorithm randomly samples 

the search space. If we assume that the sample size which is equal to the population 

size is large enough, then the maximum error function value within the GA 

population can be accepted as equal to Xj-max. There is a possibility that the error 

function value of that particular variable can take greater values in the proceeding 

generations resulting in a normalized error function value of greater than 1. This 

situation is not expected to cause any problems in the computations. In fact, when 

this situation occured in runs, such values were only slightly greater than 1 in most 

cases. With this approach, the objective function is stated as follows:  
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The tests of Complex Problem I and II are performed by using both weighted and 

unweighted (all weights equal to 1) forms of the objective functions. Both results 

are presented for comparison. 

 

In the case of utilizing more than one data sets for the verification (Complex 

Problem III), the maximum error value at the sampling point locations is 

determined for all of the verification conditions and the largest one is taken as the 

Dmaxvj. With this definition for Dmaxvj, Equation 4.8 is applicable to any number 

of verification data sets. 

 4.4.2 Complex Problem I 

In this set of runs, observed DO and BOD data were used at the same time to 

estimate the related QUAL2E kinetic coefficients, namely, BOD decay rate 

coefficient (K1), BOD settling rate (K3), K4, and K2. All coefficients are assumed to 

be reach-variable resulting in a GA optimization problem with 24 decision 

variables. The information about the problem set is given in Table 4.12. The search 

ranges of the coefficients were determined by referring to the QUAL2E 

documentation (Brown and Barnwell, 1987), except that of the sediment oxygen 

demand. 

Table 4.12: Information on decision variable encoding in GA strings for Complex 
Problem I. 

Calibrated Parameter 

BOD 
decay rate 
coefficient 

(K1) 

BOD 
settling 

rate 
(K3) 

Sediment 
oxygen 
demand 

(K4) 

Reaeration 
coefficient 

 
(K2) 

Range 0.02 – 3.4 
day-1 

-0.36 – 0.36 
day-1 

0.0 – 1.0 
g/m2-day 

0.0 – 100 
day-1 

Required accuracy 0.01 day-1 0.01 day-1 0.1 g/m2-
day 0.1day-1 

Total number of 
decision variables 24 

Total string length 180 bits 
Population size 550 
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  4.4.2.1 Perfect Data Case 

The observation data set used for the perfect observation data assumption is given 

in Table 4.13. The weights assigned to the error functions of DO and BOD in the 

weighted runs are given in Appendix D (Table D.1). The original values of the 

coefficients to be estimated and the optimization outcomes for the weighted and 

unweighted objective functions are given in Table 4.14. As was the case for other 

runs, it was not possible to obtain the exact coefficient values. However, the 

consequential DO and BOD profiles were satisfactory. The DO profiles are depicted 

in Figures 4.15 and 4.16 for the main river and the tributary, respectively. 

Respective BOD profiles are shown in Figures 4.17 and 4.18.   

 

The DO and BOD profiles obtained for the optimized QUAL2E coefficients using 

the weighted and unweighted runs match with each other with very small deviations 

from the real ones. By visual comparison, it can be said that the results for the 

weighted runs are slightly better than that of the unweighted runs.  

Table 4.13: The perfect observation data used in the simultaneous calibration and 
verification of BOD decay rate coefficient (K1), BOD settling rate (K3), sediment 

oxygen demand (K4) and reaeration coefficient (K2). 

DO (mg/l) BOD (mg/l) Reach 
Number 

Element 
Number calibration verification calibration verification

1 7 3.38 3.78 20.37 20.55 
1 16 1.47 2.30 15.16 15.94 
2 3 6.71 6.86 1.90 1.91 
3 2 7.23 7.69 17.51 17.74 
4 1 7.52 8.11 5.26 5.43 
4 5 5.19 6.20 2.24 2.67 
5 2 7.21 8.08 1.67 2.12 
6 1 3.47 4.33 10.85 11.56 
6 5 2.98 4.04 10.12 11.03 
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Table 4.14: Optimization results for the simultaneous calibration and verification of 
BOD decay rate coefficient (K1), BOD settling rate (K3), sediment oxygen demand 

(K4) and reaeration coefficient (K2). (Perfect data case) 

 Observed / Optimum 
Value 

Unweighted 
Runs 

Weighted 
Runs 

Reach-1 0.6 0.78 0.72 
Reach-2 0.6 0.89 1.38 
Reach-3 0.6 0.65 0.73 
Reach-4 0.6 0.97 0.70 
Reach-5 0.6 1.02 0.74 

K1 
(day-1) 

Reach-6 0.6 0.56 0.87 
Reach-1 0.0 -0.21 -0.14 
Reach-2 0.0 -0.10 -0.36 
Reach-3 0.0 -0.02 -0.17 
Reach-4 0.1 -0.34 -0.03 
Reach-5 0.0 -0.28 0.17 

K3 
(day-1) 

Reach-6 0.0 0.10 -0.29 
Reach-1 0.5 0.1 0.1 
Reach-2 0.0 0.6 0.3 
Reach-3 0.0 0.3 0.7 
Reach-4 1.0 0.3 0.7 
Reach-5 0.0 0.6 0.3 

K4 
(g/m2-day) 

Reach-6 0.5 0.1 0.3 
Reach-1 3.1 3.8 3.5 
Reach-2 13.1 13.8 13.8 
Reach-3 26.1 34.0 32.5 
Reach-4 0.8 1.1 0.8 
Reach-5 11.0 12.7 11.5 

K2 
(day-1) 

Reach-6 2.8 2.3 3.6 
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DO Profile (Reaches 1,6) (calibration)
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Figure 4.15: DO profile along the main river for calibration conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for perfect observation 

data) 
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Figure 4.16: DO profile along the tributary for calibration conditions. (Estimated 
coefficients: K1, K3, K4 and K2 for perfect observation data) 
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BOD Profile (Reaches 1,6) (calibration)
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Figure 4.17: BOD profile along the main river for calibration conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for perfect observation 

data) 
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Figure 4.18: BOD profile along the tributary for calibration conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for perfect observation 

data) 
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The deviations of the DO and BOD values from the real ones are represented in 

Table 4.15 quantitatively. In general, the maximum errors throughout the river and 

the sampling points are smaller when weights are used in the objective function 

calculations. When the abiliy to reproduce the ‘real’ DO and BOD profiles is 

considered, both weighted and unweighed objective functions can be accepted to be 

successful. 

 

Table 4.15: The maximum error values in the DO and BOD values determined after 
optimization runs with weighted and unweighted objective functions (mg/l) 

(Complex Run I) (Perfect data case) 

All the computational elements Sampling Points 
Main river Tributary Main river Tributary 

Objective 
Function 

Calib. Verif. Calib. Verif. Calib. Verif. Calib. Verif. 
DO (mg/L) 

Weighted 0.21 0.19 0.10 0.08 0.08 0.10 0.05 0.08 
Unweighted 0.20 0.20 0.19 0.25 0.14 0.11 0.12 0.19 

BOD (mg/L) 
Weighted 0.15 0.10 0.15 0.13 0.08 0.10 0.11 0.09 

Unweighted 0.24 0.19 0.08 0.15 0.11 0.15 0.05 0.15 
 

 

  4.4.2.2 Biased Data Case 

The biased observation data used in this test is given in Table 4.16. The biased 

observed DO and BOD values are generated following the same approach that 

varies the quantities in the range of ±20%. The weights assigned to the error 

functions of DO and BOD in the weighted runs are given in Appendix D (Table 

D.1). The results obtained using the weighted and unweighted runs are given in 

Table 4.17. The DO and BOD profiles are shown in Figures 4.19 to 4.22 for the 

calibration conditions. The profiles for the verification conditions through the main 

stream are given in Appendix C (Figures C.4 and C.5). 
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Table 4.16: The biased observation data used in the simultaneous calibration and 
verification of BOD decay rate coefficient (K1), BOD settling rate (K3), sediment 

oxygen demand (K4) and reaeration coefficient (K2). 

DO (mg/l) BOD (mg/l) Reach 
Number 

Element 
Number calibration verification calibration verification

1 7 3.27 4.30 17.75 23.97 
1 16 1.30 2.65 18.00 15.54 
2 3 5.44 6.61 1.76 2.04 
3 2 6.51 8.87 19.49 14.27 
4 1 8.85 6.81 6.19 4.40 
4 5 4.28 7.37 2.44 2.18 
5 2 7.34 6.58 1.70 2.37 
6 1 3.94 4.82 8.88 11.54 
6 5 3.19 3.85 11.33 11.54 

Table 4.17: Optimization results for the simultaneous calibration and verification of 
BOD decay rate coefficient (K1), BOD settling rate (K3), sediment oxygen demand 

(K4) and reaeration coefficient (K2). (Biased data case) 

 Observed / Optimum 
Value 

Unweighted 
Runs 

Weighted 
Runs 

Reach-1 0.6 0.64 0.64 
Reach-2 0.6 0.06 0.10 
Reach-3 0.6 0.52 0.97 
Reach-4 0.6 0.78 0.70 
Reach-5 0.6 3.33 2.51 

K1 
(day-1) 

Reach-6 0.6 0.53 0.53 
Reach-1 0.0 -0.07 -0.07 
Reach-2 0.0 -0.13 0.13 
Reach-3 0.0 0.13 -0.34 
Reach-4 0.1 -0.27 -0.17 
Reach-5 0.0 -0.36 -0.03 

K3 
(day-1) 

Reach-6 0.0 -0.36 -0.22 
Reach-1 0.5 0.2 0.3 
Reach-2 0.0 0.0 0.2 
Reach-3 0.0 0.2 0.3 
Reach-4 1.0 0.0 0.0 
Reach-5 0.0 0.0 0.0 

K4 
(g/m2-day) 

Reach-6 0.5 0.0 0.4 
Reach-1 3.1 3.0 3.0 
Reach-2 13.1 9.3 10.0 
Reach-3 26.1 53.1 64.9 
Reach-4 0.8 0.5 0.4 
Reach-5 11.0 34.4 26.4 

K2 
(day-1) 

Reach-6 2.8 2.2 2.6 
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DO Profile (Reaches 1,6) (calibration)
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Figure 4.19: DO profile along the main river for the calibration conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for biased observation 

data) 
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Figure 4.20: DO profile along the tributary for the calibration conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for biased observation 

data) 
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BOD Profile (Reaches 1,6) (calibration)
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Figure 4.21: BOD profile along the main river for the calibration conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for biased observation 

data) 
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Figure 4.22: BOD profile along the tributary for the calibration conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for biased observation 

data) 
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The estimated coefficient values are different from the real values of the 

coefficients. This result is parallel to the results of the previous tests. When the DO 

and BOD profiles are analyzed, a distortion caused by the biased observation data is 

easily seen. However, the profiles plotted according to the optimization results lie 

between the biased observation data points and the real profiles. Therefore, for the 

cases studied, the errors at the sampling points in the resultant profiles are smaller 

than the error in the observation data. Although the inherent error in the observed 

BOD data is similar in relative magnitude to the error in observed DO data, the 

resultant BOD profiles deviate less from the real profiles when compared with the 

deviation of the resultant DO profiles from the real profiles. When the profiles 

obtained from the results of ‘weighted’ and ‘unweighted’ runs are compared, it is 

seen that the estimates of the ‘weighted’ runs give better profiles with respect to the 

deviation from the real profiles. 

 4.4.3 Complex Problem II 

In this test, the concentration of the nitrogen (N) species that are simulated by 

QUAL2E were added to the observed data set in addition to the DO and BOD 

values. Then, the complexity of the calibration problem was further increased by 

adding the QUAL2E kinetic coefficients related with the N-cycle. The resultant 

problem had 9 kinetic coefficients to estimate, namely; BOD decay rate coefficient 

(K1), BOD settling rate (K3), sediment oxygen demand (K4), reaeration coefficient 

(K2), organic-N hydrolysis rate (B3), organic-N settling rate (S4), ammonia 

oxidation rate (B1), benthos source rate for ammonia (S3) and nitrite oxidation rate 

(B2). All the coefficients were assumed to be reach-variable resulting in an 

optimization problem with 54 decision variables. Information about the string 

mapping is given in Table 4.18. The search ranges of the coefficients were 

determined by referring to the QUAL2E documentation (Brown and Barnwell, 

1987), except that of the sediment oxygen demand and the benthos source rate for 

ammonia-N. 
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Table 4.18: Information on decision variable encoding in GA strings for Complex 
Problem II. 

DO and BOD coefficients 

Calibrated 
Parameter 

BOD 
decay rate 
coefficient 

(K1) 

BOD 
Settling 

rate 
(K3) 

Sediment 
oxygen 
demand 

(K4) 

Reaeration 
coefficient 

 
(K2) 

Range 0.02 – 3.4 
day-1 

-0.36 – 0.36 
day-1 

0.0 – 1.0 
g/m2-day 

0.0 – 100 
day-1 

Required 
accuracy 0.01 day-1 0.01 day-1 0.1 g/m2-day 0.1day-1 

N coefficients 

Calibrated 
Parameter 

Org. N 
hydrolysis 

rate 
(B3) 

Org. N 
settling 

rate 
(S4) 

NH3 
oxidation 

rate 
(B1) 

NH3-N 
benthos 

source rate 
(S3) 

NO2 
oxidation 

rate 
(B2) 

Range 0.02 – 0.4 
day-1 

0.001 - 0.1 
day-1 

0.1 – 2.0 
day-1 

0.0 – 1.0 
mg/m2-day 

0.2 – 2.0 
day-1 

Required 
accuracy 0.01 day-1 0.001 day-1 0.01 day-1 0.1 mg/m2-day 0.01 day-1 

General 
Total number of state variables 54 

Total string length 378 bits 
Population size 1150 

 

 

 

The original values of the coeficients to be estimated are given in Table 4.19. These 

quantities were used to obtain the observation data that is composed of DO, BOD 

and N-cycle constitiuents. The tests were performed for both perfect and biased 

observation data assumptions using the weighted and unweighted objective 

functions. 
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Table 4.19: Original values of the decision variables for Complex Problem II. 
(Values that were used for preparing the observation data and that are the solutions 

to the optimization problem.) 

DO and BOD coefficients 
Reach 

Number 
K1 

(day-1) 
K3 

(day-1) 
K4 

(g/m2-day) 
K2 

(day-1) 
1 0.6 0.0 0.5 3.1 
2 0.6 0.0 0.0 13.1 
3 0.6 0.0 0.0 26.1 
4 0.6 0.1 1.0 0.8 
5 0.6 0.0 0.0 11.0 
6 0.6 0.0 0.5 2.8 

N coefficients 
Reach 

Number 
B3 

(day-1) 
S4 

(day-1) 
B1 

(day-1) 
S3 

(mg/m2-day) 
B2 

(day-1) 
1 0.4 0.00 0.15 0.00 1.0 
2 0.4 0.00 0.15 0.00 1.0 
3 0.4 0.00 0.15 0.00 1.0 
4 0.4 0.05 0.15 0.05 1.0 
5 0.4 0.00 0.15 0.00 1.0 
6 0.4 0.00 0.15 0.00 1.0 

 

 

  4.4.3.1 Perfect Data Case 

The perfect observation data used in this test is given in Tables 4.20 ad 4.21 for 

calibration and verification conditions, respectively. The values of the weights 

assigned to the error functions of the simulated constituents are given in Appendix 

D (Table D.2). The DO, BOD, organic N, ammonia-N (NH3-N), nitrite-N (NO2-N), 

and nitrate-N (NO3-N) profiles plotted using the optimized coefficients for both 

weighted and unweighted runs are given in Figures 4.23 to 4.34, for the main river 

and the triburatory. 
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Table 4.20: The perfect observation data used in Complex Problem II for the 
calibration conditions. (concentrations in mg/l). 

Reach 
Number 

Element 
Number DO BOD Org.N NH3-N NO2-N NO3N 

1 7 3.38 20.37 2.06 8.69 0.21 0.49
1 16 1.47 15.16 1.48 7.48 0.54 0.59
2 3 6.71 1.90 0.09 0.20 0.00 0.20
3 2 7.23 17.51 0.18 0.49 0.01 0.98
4 1 7.52 5.26 0.10 0.27 0.01 0.41
4 5 5.19 2.24 0.06 0.23 0.03 0.43
5 2 7.21 1.67 0.05 0.21 0.04 0.44
6 1 3.47 10.85 1.01 5.15 0.40 0.55
6 5 2.98 10.12 0.90 4.94 0.49 0.64

 

Table 4.21: The perfect observation data used in Complex Problem II for the 
verification conditions. (concentrations in mg/l). 

Reach 
Number 

Element 
Number DO BOD Org.N NH3-N NO2-N NO3N 

1 7 3.78 20.55 2.07 8.71 0.18 0.48
1 16 2.3 15.94 1.53 7.51 0.48 0.57
2 3 6.86 1.91 0.09 0.2 0 0.2
3 2 7.69 17.74 0.18 0.49 0.01 0.98
4 1 8.11 5.43 0.11 0.27 0.01 0.41
4 5 6.2 2.67 0.07 0.25 0.03 0.42
5 2 8.08 2.12 0.06 0.24 0.03 0.43
6 1 4.33 11.56 1.05 5.19 0.35 0.53
6 5 4.04 11.03 0.95 5.01 0.42 0.59
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Figure 4.23: DO profile along the main river for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.24: DO profile along the tributary for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.25: BOD profile along the main river for Complex Problem II for the 
calibration conditions. (Perfect observation data) 

BOD Profile (Reaches 2,4,5) (calibration)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

River km

B
O

D
 (m

g/
l)

Real Data Observation Points Weighted Unweighted

Reach 2 Reach 4 Reach 5

 

Figure 4.26: BOD profile along the tributary for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.27: Organic N profile along the main river for Complex Problem II for 
the calibration conditions. (Perfect observation data) 
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Figure 4.28: Organic N profile along the tributary for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.29: NH3-N profile along the main river for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.30: NH3-N profile along the tributary for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.31: NO2-N profile along the main river for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.32: NO2-N profile along the tributary for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.33: NO3-N profile along the main river for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Figure 4.34: NO3-N profile along the tributary for Complex Problem II for the 
calibration conditions. (Perfect observation data) 
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Although it was not possible to obtain the exact coefficient values, resulting water 

quality profiles were satisfactory except for the organic-N, and nitrite-N. However, 

in general, the plots show that GA optimization can give satisfactory results in 

complex calibration problems with a large number of decision variables. The 

difference between the results of the ‘weighted’ and ‘unweighted’ runs were more 

significant for this problem with respect to Complex Problem I. Weighted 

formulation gave better results especially for the members of the N-cycle, compared 

to the unweighted formulation. Since the possible instream concentration values of 

the N species was generally lower than that of BOD and DO, the resultant error 

values and the error function values was also relatively small. So, the weight values 

assigned to the error functions of the N species can be higher than that of DO and 

BOD. The error seen in the profiles of organic-N and nitrite-N, suggests that 

assigned weight values were not high enough. 

  4.4.3.2 Biased Data Case 

The biased observation data used in this test is given in Tables 4.22 and 4.23 for 

calibration and verification conditions, respectively. The values of the weights 

assigned to the error functions of the simulated constituents are given in Appendix 

D (Table D.2). The DO, BOD, organic N, ammonia-N, nitrite-N, and nitrate-N 

profiles plotted using the optimized coefficients for both weighted and unweighted 

runs are given in Figures 4.35 to 4.46, for the main river and the triburatory, for the 

calibration conditions. The profiles for the verification conditions through the main 

river are given in Appendix C (Figures C.6 to C.11). 

 

The water quality profiles plotted through the river reaches show that the resultant 

profiles were negatively affected from the errors in the observation data. The 

negative effects were more significant especially for the N-species. It should also be 

noted that the probable insufficient weight assignment might also have caused 

problems for N-species as was the case for the perfect observation data assumption. 

However, it should be noted that these errors are not large in absolute values but 
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may represent a drawback since the concentrations of these N-species are not high 

in natural waters.  

The performance differenciation between the unweighted and weighted 

formulations did not follow the same trend in all profiles, such that for NO2 and 

NO3, the profile for the unweighted formulation was closer to the real profile 

compared to that of the weighted formulation. Simulated values of NH3-N and NO2-

N were significantly different from the real values.  

Table 4.22: The biased observation data used in Complex Problem II for the 
calibration conditions. (Concentrations in mg/l). 

Reach 
Number 

Element 
Number DO BOD Org.N NH3-N NO2-N NO3N 

1 7 3.27 17.75 2.23 8.45 0.21 0.45 
1 16 1.30 18.00 1.56 7.76 0.53 0.70 
2 3 5.44 1.76 0.09 0.19 0.00 0.19 
3 2 6.51 19.49 0.21 0.50 0.01 0.88 
4 1 8.85 6.19 0.09 0.27 0.01 0.33 
4 5 4.28 2.44 0.07 0.23 0.04 0.41 
5 2 7.34 1.70 0.05 0.20 0.05 0.51 
6 1 3.94 8.88 0.83 5.09 0.42 0.45 
6 5 3.19 11.33 0.93 4.63 0.51 0.71 

Table 4.23: The biased observation data used in Complex Problem II for the 
verification conditions. (Concentrations in mg/l). 

Reach 
Number 

Element 
Number DO BOD Org.N NH3-N NO2-N NO3N 

1 7 4.30 23.97 2.44 9.00 0.15 0.48
1 16 2.65 15.54 1.38 8.15 0.46 0.67
2 3 6.61 2.04 0.09 0.21 0.00 0.17
3 2 8.87 14.27 0.18 0.43 0.01 0.81
4 1 6.81 4.40 0.11 0.22 0.01 0.36
4 5 7.37 2.18 0.06 0.21 0.03 0.43
5 2 6.58 2.37 0.05 0.27 0.03 0.50
6 1 4.82 11.54 1.21 4.62 0.31 0.53
6 5 3.85 11.54 0.82 5.94 0.42 0.53
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Figure 4.35: DO profile along the main river for Complex Problem II for the 
calibration conditions. (Biased observation data) 

DO Profile (Reaches 2,4,5) (calibration)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

River km

D
O

 (m
g/

l)

Real Data Observation Points Weighted Unweighted

Reach 2 Reach 4 Reach 5

 

Figure 4.36: DO profile along the tributary for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.37: BOD profile along the main river for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.38: BOD profile along the tributary for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.39: Organic N profile along the main river for Complex Problem II for 
the calibration conditions. (Biased observation data) 
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Figure 4.40: Organic N profile along the tributary for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.41: NH3-N profile along the main river for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.42: NH3-N profile along the tributary for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.43: NO2-N profile along the main river for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.44: NO2-N profile along the tributary for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.45: NO3-N profile along the main river for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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Figure 4.46: NO3-N profile along the main river for Complex Problem II for the 
calibration conditions. (Biased observation data) 
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 4.4.4 Complex Problem III 

In this set of tests, the optimization runs of Complex Problem II were repeated with 

the addition of a second set of verification data. Therefore, two different verification 

sets representing different physical conditions were used.  All the other assumptions 

were the same as for Complex Problem II. The second set of synthetic verification 

data was generated by increasing the headwater flow rates by 20%. The headwater 

flow rate values for the calibration and the second verification conditions are given 

in Table 4.24. 

Table-4.24: Headwater flow rate values for the calibration and verification 
conditions. 

Reach number 

Headwater flowrate for 
the calibration and the 
first verification 
conditions (m3/s) 

Headwater flowrate for 
the second verification 
condition (m3/s) 

1 0.50 0.60 
2 0.38 0.46 
3 0.14 0.17 

 

 

The tests for Complex Problem III were also repeated for perfect and biased 

observed data set conditions. The objective function values of the individual water 

quality variables were weighted with the previously described method. For these 

runs only the weighted optimization model formulation was used. 

  4.4.4.1 Perfect Data Case 

For the calibration and the first verification data sets, the observation data presented 

in Tables 4.20 and 4.21 were used, respectively. The observation data used for the 

second verification data set is given in Table 4.25. The values of the weights 

assigned to the error functions of the simulated constituents are given in Appendix 

D (Table D.3). The water quality profiles plotted using the optimization results for 
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the calibration conditions are given in Figures 4.47 to 4.58 for the main river and 

the tributary. 

 

The water quality profiles plotted through the river reaches according to the results 

of the optimization runs with two verification data sets are similar to ones in the 

previous tests (Complex Problem II, perfect observation data) that used a single 

verification data set. In general, no improvement was observed in any of the water 

quality profiles with the use of an additional verification data set. In fact, the 

deviation in the simulated NH3 and NO2 profiles were higher compared to the case 

where only a single verification data was used (Complex Problem II). However, it 

should be noted that these deviations are small in terms of absolute magnitude and 

may be hard to tune by the current algorithm used. This problem may be solved by 

readjusting the weights used for the N-species.   

 

Table 4.25: The perfect observation data used in Complex Problem III for the 
second verification conditions. (Concentrations in mg/l) 

Reach 
Number 

Element 
Number DO BOD Org.N NH3-N NO2-N NO3N 

1 7 3.80 18.83 1.89 7.96 0.19 0.49
1 16 1.86 14.27 1.38 6.89 0.51 0.60
2 3 6.57 1.91 0.10 0.20 0.00 0.20
3 2 7.27 17.71 0.18 0.49 0.01 0.98
4 1 7.59 5.44 0.11 0.27 0.01 0.41
4 5 5.37 2.66 0.07 0.25 0.03 0.43
5 2 7.25 2.07 0.06 0.23 0.04 0.43
6 1 3.85 10.09 0.92 4.61 0.37 0.55
6 5 3.39 9.47 0.82 4.43 0.45 0.63
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Figure 4.47: DO profile along the main river for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.48: DO profile along the tributary for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.49: BOD profile along the main river for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.50: BOD profile along the tributary for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.51: Organic N profile along the main river for Complex Problem III for 
the calibration conditions. (Perfect observation data) 
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Figure 4.52: Organic N profile along the tributary for Complex Problem III for 
the calibration conditions. (Perfect observation data) 
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Figure 4.53: NH3-N profile along the main river for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.54: NH3-N profile along the tributary for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.55: NO2-N profile along the main river for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.56: NO2-N profile along the tributary for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.57: NO3-N profile along the main river for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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Figure 4.58: NO3-N profile along the tributary for Complex Problem III for the 
calibration conditions. (Perfect observation data) 
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  4.4.4.2 Biased Data Case 

In addition to the observation data also used for the biased data of Complex 

Problem II, an additional verification data set presented in Table 4.26 was employed 

for the optimization runs. The values of the weights assigned to the error functions 

of the simulated constituents are given in Appendix D (Table D.3). The water 

quality profiles obtained from the results of the weighted optimization model 

formulation are depicted in Figures 4.59 to 4.70 for the main river and the tributary, 

for the calibration conditions. The profiles for the verification conditions through 

the main river are given in Appendix C (Figures C.12 to C.23). As was the case for 

the perfect data assumption cases, no significant improvement was observable with 

the addition of a second verification set. 

 

The water quality profiles plotted according to the optimization results show the 

negative impact of the error in the observation data. However, the high error in the 

simulated values of NH3 and NO2 through reaches 4 and 5 (and reach 6 for NO2) 

cannot be explained by the biased observed data since the quantity of resultant error 

is much higher than the error in the observed data. The main reason for the 

variations from the real profiles can be associated with the insufficient weight 

values used for the the N-species. 

Table 4.26: The biased observation data used in Complex Problem III for the 
second verification conditions. (Concentrations in mg/l) 

Reach 
Number 

Element 
Number DO BOD Org.N NH3-N NO2-N NO3N 

1 7 4.54 20.04 2.18 8.33 0.22 0.56 
1 16 1.96 16.22 1.63 6.55 0.50 0.53 
2 3 6.42 2.15 0.10 0.22 0.00 0.19 
3 2 7.89 20.58 0.18 0.45 0.01 1.09 
4 1 7.30 5.04 0.12 0.32 0.01 0.45 
4 5 5.15 2.72 0.08 0.25 0.03 0.42 
5 2 6.12 2.12 0.07 0.26 0.04 0.35 
6 1 3.74 10.61 0.75 3.88 0.40 0.63 
6 5 3.87 7.63 0.94 3.99 0.44 0.53 
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Figure 4.59: DO profile along the main river for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.60: DO profile along the tributary for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.61: BOD profile along the main river for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.62: BOD profile along the tributary for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.63: Organic N profile along the main river for Complex Problem III for 
the calibration conditions. (Biased observation data) 
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Figure 4.64: Organic N profile along the tributary for Complex Problem III for 
the calibration conditions. (Biased observation data) 
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Figure 4.65: NH3-N profile along the main river for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.66: NH3-N profile along the tributary for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.67: NO2-N profile along the main river for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.68: NO2-N profile along the tributary for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.69: NO3-N profile along the main river for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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Figure 4.70: NO3-N profile along the tributary for Complex Problem III for the 
calibration conditions. (Biased observation data) 
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CHAPTER 5 

CASE STUDY 

5.1 General Information 

The Lower Seyhan River basin is a part of the Seyhan River basin which is situated 

in the southern part of Turkey. The Lower Seyhan River starts from the downstream 

of the Seyhan Dam, runs through the Çukurova plain and ends at the Mediterranean 

Sea. The catchment area of the Lower Seyhan River is only about 10% of the entire 

Seyhan River basin which has an area of about 20,731 km2 (Onur et al., 1999). 

However, the lower section of the river is much more critical from the water quality 

management perspective. The Lower Seyhan River is subjected to domestic and 

industrial pollution loads from the city of Adana located downstream of the Seyhan 

Dam. Moreover, a significant amount of agricultural pollution load originating from 

the Çukurova plain is carried by the return waters which have been withdrawn from 

the river itself, as well. 

 

The M.S. Thesis by Onur (1996) includes a comprehensive modeling study of the 

Lower Seyhan River. Onur combined the required data (hydrological, 

meteorological, hydraulic, and water quality data) from related sources and 

developed a modeling approach to simulate the water quality of the river by using 

the QUAL2E model. In her study, the calibration of the kinetic coefficients of the 

developed model was performed on a trial-and-error basis by visual comparison of 

the observed data and the simulated water quality profiles. 

 

In this section of the study, the developed genetic algorithm (GA) optimization 

model is used as a tool for calibration of the QUAL2E model for the Lower Seyhan 

River. The QUAL2E input file was generated by extracting the information in 
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Onur’s work. For the lacking input data, QUAL2E documentation (Brown and 

Barnwell, 1987) was referred to and the default or the recommended typical values 

were used. When both sources were inadequate in providing an exact value, 

personal judgment was incorporated. The latter method was used for only a few 

number of input parameters.  

5.2 The Lower Seyhan River and the Modeling Approach 

The Lower Seyhan River runs for 84 km between the Seyhan Dam and the 

Mediterranean Sea. In the modeling study, the river was divided into 6 consecutive 

reaches based on the slopes, cross-sectional areas and the hydraulic properties along 

the river (Onur et al., 1997). The schematic representation of the Lower Seyhan 

River as divided into reaches is given in Figure 5.1.  

 

There are four major point discharges to the Lower Seyhan River. Sarıcam Creek, 

two industrial point sources (referred to as A and B in Figure 5.1), and a drainage 

canal (referred to as TDO in Figure 5.1). Sarıcam Creek confluences to the main 

river at 4 km downstream from the Seyhan I Regulator which is located just below 

the Seyhan Dam. The creek carries the loads of several small industries and 

residential areas and represented as a point source in the river system. Two point 

sources, A and B, carrying mainly industrial wastewaters, discharge to the river at 

the 6th and 7th km, respectively. TDO carries the agricultural return waters from 

irrigation and discharges into the river at the 79th km from the dam structure. The 

load arising from agricultural activities was simulated separately and the output was 

considered as a point load to the main river. The dissolved oxygen (DO) 

improvement due to the 4.5 m waterfall at the Seyhan II Regulator and 

Hydroelectric Power Plant located just upstream of inputs A and B was also 

incorporated into the model calculations (Onur, 1996; Onur et al., 1997; Onur et al., 

1999). 
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Figure 5.1: Schematic representation of the Lower Seyhan River. 
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Onur (1996) modeled the river system separately for four distinct hydrological 

periods. These were the wet (December – May), dry (July, August, September), 

November, and irrigation (June – November) periods. In this study, the calibration 

and verification were applied only for the wet and dry seasons that comprise the 

major portion of the hydrological period. Also, Onur (1996) had used the same 

kinetic coefficient values for the dry, November, and irrigation periods. Therefore, 

it was assumed that the river system behaves similarly in these three hydrological 

periods. 

 

The simulated water quality constituents in Onur’s study (1996) were dissolved 

oxygen, 5-day biochemical oxygen demand (BOD5), nitrogen cycle, phosphorus 

cycle, algae and temperature. The same set of constituents was selected to be 

simulated in this study, as well. In describing the hydraulic characteristics of the 

river system, Onur (1996) selected to use the ‘functional representation’ option and 

set the discharge coefficients representing the relationship among the velocity, 

depth, and flow as input. These coefficients were calculated by studying 40 

different cross-sections throughout the river. 

 

Onur (1996) used the water quality measurement values from the four sampling 

stations operated by the State Hydraulic Works (DSİ) for the calibration and the 

verification of the model. The data of the year 1991 was used for calibration and 

two data sets which were representing the years 1992 and 1993 were used for 

verification of the calibration results. The same approach was adopted in this study, 

as well. 

 

The QUAL2E input files used in this study were not exactly identical to the original 

input files that Onur have used since not all the details related with the specific 

input files were present in the original work. However, it is believed that sufficient 

effort was put forward in order to have similar input data by using the information 

in Onur’s work (1996), typical values used in QUAL2E, and personal judgement. 

As a result of unavoidable differences between the input data used in this study and 
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the Onur’s study, there were also differences in the QUAL2E output reports 

although the same values were used for the reaction coefficients. However, initial 

assessment has revealed that the water quality profiles plotted using the generated 

input data and Onur’s profiles were in agreement with each other with only 

negligible deviations in the wet period. However, for the dry period, the DO profiles 

were significantly different. This fact should be recognized in the following 

analysis. 

5.3 The Calibration Problem 

The set of estimated kinetic coefficients include BOD decay rate coefficient (K1), 

BOD settling rate (K3), sediment oxygen demand (K4), reaeration coefficient (K2), 

ammonia oxidation rate (B1), nitrite oxidation rate (B2) and algal settling rate (S1). 

All the coefficients were assumed to be reach variable. BOD settling rate was 

calibrated only for the reaches 1 and 2. It was assumed to be a negligible process for 

the other reaches. The resultant optimization problem had 38 decision variables. 

The information about the problem set is given in Table 5.1. The search ranges of 

the kinetic coefficients were determined based on the QUAL2E documentation 

(Brown and Barnwell, 1987). The exceptions were the BOD settling rate (K3) and 

the sediment oxygen demand (K4). The lower limit for the possible values of the 

BOD settling rate was selected as 0 day-1 omitting the negative values that reflected 

resuspension. In fact, Onur (1996) had considered only the positive BOD settling 

rate values throughout the river system as well and neglect it for some of the 

reaches. For the sediment oxygen demand (K4) values, there is no typical range in 

the QUAL2E documentation and the search range was determined so as to cover the 

calibrated values in Onur’s study (1996). 

 

The calibration problem for the Lower Seyhan River is very similar to Complex 

Problem III. The objective function (Equation 4.4) used in Complex Problem III 

allows the use of multiple water quality variables. Also, this formulation can also 

make use of two different observed data sets for the verification phase. As a result, 

the optimization model derived for Complex Problem III was used with minor 
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modifications that will be discussed in the next sections. The water quality variables 

in the observation data set were DO, BOD5, N species (organic-N, NH3-N, NO2-N, 

NO3-N), and dissolved phosphorus (P).  

 

In adapting the optimum calibration model to the case study, the most critical 

problem arisen was due to imperfect and incomplete observation data set (Tables 

5.2 and 5.3 for the dry and wet periods, respectively). Often, but not always, the 

observed data set contains three different concentration values for a single water 

quality variable. These different concentration values represent the measurement 

results at different points in time within the specified period. However, there were 

missing data. Moreover, the water quality data obtained at the four sampling 

stations (Figure 5.1) do not always include the concentration values of all state 

variables. 

Table 5.1: Information on decision variable encoding in GA strings for the case 
study. 

DO and BOD coefficients 

Calibrated 
Parameter 

BOD 
decay rate 
coefficient 

(K1) 

BOD 
settling 

rate 
(K3) 

Sediment 
oxygen 
demand 

(K4) 

Reaeration 
coefficient 

 
(K2) 

Range 0.02 – 3.4 
day-1 

0.00 – 0.36 
day-1 

0.0 – 1.0 
g/m2-day 

0.0 – 100 
day-1 

Required 
accuracy 0.01 day-1 0.005 day-1 0.1 g/m2-day 0.1day-1 

 N coefficients Algal coefficient 
Calibrated 
Parameter 

NH3 oxidation rate
(B1) 

NO2 oxidation rate
(B2) 

Algal settling rate 
(S1) 

Range 0.10 – 1.00 
day-1 

0.20 – 2.00 
day-1 

0.5 – 6.0 
m/day 

Required 
accuracy 0.01 day-1 0.01 day-1 0.1 m/day 

General 
Total number of decision variables 38 

Total string length 278 bits 
Population size 850 
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Table 5.2: Observation data for the ‘dry period’. 
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Table 5.3: Observation data for the ‘wet period’. 
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The original objective function (Equation 4.4) includes the sum of the squared 

errors from the calibration phase. However, since the number of sampling points or 

the number of measurements are not constant for all the water quality variables, the 

magnitude of the sum of the squared errors does not give a correct information 

about the quality of the solution. The previous runs showed that GA performs well 

in the calibration of QUAL2E when the objective function is aimed at minimizing 

the maximum difference between the observed and simulated values. Depending on 

this observation, it was decided to use the maximum of the squared errors instead of 

the sum of them. Then, the objective function formulation is slightly modified as 

follows: 

( )[ ] ( )[ ]{ }jVjCj

K

j
j DwDwEwZMin max1max1max

1
++= ∑

=

        (5.1) 

where Emaxj represents the maximum of the squared errors from the calibration 

phase for the water quality variable j. The squared error for a water quality variable 

is calculated for all of the available sampling points throughout the river and for all 

of the available measurements for that sampling point. Then the maximum value 

among these is assigned to Emaxj. Maximum deviations for the calibration and 

verification phases for a water quality variable (DmaxCj and DmaxVj) are also 

determined in the same way. 

5.4 Results 

The calibration of the Lower Seyhan River was performed for both the dry and wet 

periods. The GA runs were repeated for three different initial populations as in the 

previous tests. 

 5.4.1 Dry Period 

The dry period covers the months of July, August and September. This period is 

characterized by low headwater and incremental flows but high irrigation return 

flow from the canal TD0. The ambient temperature is high and the other 

meteorological conditions represent that of a summer season. The coefficient values 
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obtained through optimization are given in Table 5.4. The values of the assigned 

weights are given in Appendix D (Table D.4). The water quality profiles plotted 

using the optimization results are given in Figures 5.2 to 5.8, together with the 

observation data and the profiles from Onur’s (1996) work for the same period.  

Table 5.4: Optimization results for the dry period (Case Study). 

 Optimization Results 
Reach-1 2.43 
Reach-2 2.55 
Reach-3 2.16 
Reach-4 0.98 
Reach-5 0.15 

K1 
(day-1) 

Reach-6 0.79 
Reach-1 0.145 K3 

(day-1) Reach-2 0.080 
Reach-1 0.4 
Reach-2 0.2 
Reach-3 0.7 
Reach-4 0.2 
Reach-5 0.1 

K4 
(g/m2-day) 

Reach-6 0.0 
Reach-1 24.6 
Reach-2 27.6 
Reach-3 56.0 
Reach-4 33.8 
Reach-5 29.8 

K2 
(day-1) 

Reach-6 48.1 
Reach-1 0.41 
Reach-2 0.23 
Reach-3 0.11 
Reach-4 0.11 
Reach-5 0.12 

B1 
(day-1) 

Reach-6 0.17 
Reach-1 0.79 
Reach-2 0.81 
Reach-3 0.20 
Reach-4 0.22 
Reach-5 0.20 

B2 
(day-1) 

Reach-6 0.28 
Reach-1 1.8 
Reach-2 2.8 
Reach-3 1.6 
Reach-4 1.2 
Reach-5 1.0 

S1 
(m/day) 

Reach-6 1.6 
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Figure 5.2: DO profile along the Lower Seyhan River for the calibration 
conditions. (Dry period) 
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Figure 5.3: BOD5 profile along the Lower Seyhan River for the calibration 
conditions. (Dry period) 
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Figure 5.4: Organic N profile along the Lower Seyhan River for the calibration 
conditions. (Dry period) 
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Figure 5.5: NH3-N profile along the Lower Seyhan River for the calibration 
conditions. (Dry period) 
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Figure 5.6: NO2-N profile along the Lower Seyhan River for the calibration 
conditions. (Dry period) 
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Figure 5.7: NO3-N profile along the Lower Seyhan River for the calibration 
conditions. (Dry period) 
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Figure 5.8: Dissolved P profile along the Lower Seyhan River for the calibration 
conditions. (Dry period) 

When the water quality profiles are analyzed, the resultant profiles for DO (Figure 

5.2) and BOD5 (Figure 5.3) were satisfactory. The simulated DO and BOD5 

concentrations were close to the observation data at the sampling points. However, 

the water quality profiles for the other species resulted in a relatively poor fit.  

 

When the resultant profiles and the profiles from the Onur’s study are compared, it 

is seen that the GA calibration results produced a better DO profile when the 

deviations from the observation data are considered. Onur’s DO profile shows a 

supersaturation condition in reaches 3 and 4. On the other hand, for the N species 

(except for NO3) and dissolved P, Onur’s profiles were better. However, it should 

be emphasized that it was not possible to fully replicate the input algal related 

parameters of the model due to the lack of sufficient information. Algal growth 

affects the concentrations of the N and P species as well as the DO levels. 

Therefore, comparisons made between the results obtained in this study and Onur’s 

work are not necessarily on the same input data and similar conditions in terms of 

the algal related parameters. 
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 5.4.2 Wet Period 

The wet period represents the time of the year between the months of December to 

May. In this period, the headwater flow rates are much higher than that of the dry 

period. The incremental flow rate values are also higher. However, the irrigation 

return flow through canal TD0 is low. As a result, the concentration values of the 

water quality variables are lower in the wet period because of the dilution effect. 

 

The results of the optimization runs for this period are given in Table 5.5. The 

values of the assigned weights are given in Appendix D (Table D.4). The water 

quality profiles plotted using the optimization results are given in Figures 5.9 to 

5.15, together with the observation data and profiles from Onur’s (1996) study. 

When the water quality profiles are analyzed, it is seen that the resultant profiles of 

all the simulated variables fit to the observation data sufficiently well. The profiles 

of DO and NO3 can be labeled as the best fits as they lie between the lowest and the 

highest values of the observation data all through the river (Figures 5.9 and 5.14). 

 

As in the results of the dry period, the simulated profiles of the N and P species 

have high error. However, the amount of errors in these profiles are lower than the 

errors observed in the dry period. The BOD5 profile is out of the range limited by 

the multiple observation values, but the actual error amount is very low (less than 1 

mg/l) (Figure 5.10). When the profiles from the GA calibration results and the 

profiles from the Onur’s output are compared, it is seen that the GA calibration 

gave better fits to the observation data for all of the state variables except for BOD5. 
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Table 5.5: Optimization results for the wet period (Case Study). 

 Optimization Results 
Reach-1 0.03 
Reach-2 0.17 
Reach-3 0.04 
Reach-4 0.12 
Reach-5 0.34 

K1 
(day-1) 

Reach-6 1.00 
Reach-1 0.000 K3 

(day-1) Reach-2 0.010 
Reach-1 0.3 
Reach-2 0.6 
Reach-3 0.1 
Reach-4 0.1 
Reach-5 0.5 

K4 
(g/m2-day) 

Reach-6 0.1 
Reach-1 2.3 
Reach-2 0.6 
Reach-3 0.1 
Reach-4 1.4 
Reach-5 0.8 

K2 
(day-1) 

Reach-6 9.2 
Reach-1 0.10 
Reach-2 0.12 
Reach-3 0.10 
Reach-4 0.14 
Reach-5 0.11 

B1 
(day-1) 

Reach-6 0.35 
Reach-1 1.37 
Reach-2 1.89 
Reach-3 1.33 
Reach-4 1.17 
Reach-5 1.30 

B2 
(day-1) 

Reach-6 0.74 
Reach-1 1.0 
Reach-2 2.0 
Reach-3 3.1 
Reach-4 1.1 
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Reach-6 5.2 
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Figure 5.9: DO profile along the Lower Seyhan River for the calibration 
conditions. (Wet period) 
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Figure 5.10: BOD5 profile along the Lower Seyhan River for the calibration 
conditions. (Wet period) 
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Organic N Profile - WET 1991
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Figure 5.11: Organic N profile along the Lower Seyhan River for the calibration 
conditions. (Wet period) 
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Figure 5.12: NH3-N profile along the Lower Seyhan River for the calibration 
conditions. (Wet period) 
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NO2-N Profile - WET 1991
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Figure 5.13: NO2-N profile along the Lower Seyhan River for the calibration 
conditions. (Wet period) 
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Figure 5.14: NO3-N profile along the Lower Seyhan River for the calibration 
conditions. (Wet period) 
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Dissolved P Profile - WET 1991
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Figure 5.15: Dissolved P profile along the Lower Seyhan River for the calibration 
conditions. (Wet period) 

5.5 Discussion of the Results 

The results obtained for the dry period are similar to the results of the previously 

solved Complex Problems II and III which also gave poorer results for the N 

species. The N species in the previous problems and the N and P species in this 

problem both take very low concentration values when compared to the 

concentration values of DO and BOD5. A weighting procedure was applied on the 

objective function in order to overcome the possible optimization problems that 

would arouse if these variabilities were ignored. However, as it was stated before in 

the discussion of the results for Complex Problems II and III, the weighting 

methodology may need further improvement for better results. 

 

In order to adopt the objective function formulation to the available data set, the 

maximum values of the squared errors and the maximum differences between the 

simulated and observed values were used. By this way, all the available data was 

able to be used and the variables with lack of data were able to be treated equally 
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with the others. However, using the maximum error strategy with multiple data 

points at one location increases the complexity of the solution. The objective 

function value can considerably increase or decrease with even a slight change in 

the value of a decision variable when the reference sampling location for the 

maximum error has changed. As a result, outcome of the optimization can be 

sensitive to the extent of variation in sampling data at a location. 

 

Another important issue to be pointed out is that the number of sampling point 

locations in the case study may be too few for better results. The 84 km. long Lower 

Seyhan River has only 4 sampling locations. Reach-1 has 2 of these 4 sampling 

points. In fact, the resultant water quality variable profiles fit to the observation data 

quite satisfactorily on this reach. In addition, the reliability of the available 

observation data may also be questionable since there is a very high variance in the 

observed concentration values at some of the sampling locations.  

 

In Table 5.6, the maximum errors at the sampling points for the 1991 data of both 

dry and wet periods are given for each water quality variable. The maximum error 

amounts for Onur’s profiles are also represented in the table. For the dry period, GA 

gave better DO and BOD5 profiles when compared with the profiles of Onur’s 

output. However, the error amounts were higher in the GA calibration results for the 

N and P species. For the wet period, the GA calibration results were better for DO 

and BOD5. The profiles for the N and P species were very similar for both studies 

giving an equal amount of maximum error. 

 

When the maximum error values for the GA calibration results for different periods 

are compared, it is seen that, in general, the amount of the maximum error in the 

wet period is much less than the amount of maximum error in the dry period for all 

of the water quality variables. In general, dry periods represent the conditions where 

reaction coefficient values have a pronounced impact on the water quality. 

Therefore, any bias introduced into the model by inaccurate model parameters 

(fixed ones) would have a negative impact on the results. As mentioned earlier, 
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some of the parameters related to the algal dynamics may not be set correctly, 

which may impact the overall outcome of the optimization runs. 

Table 5.6: The maximum error amounts at the sampling points on the Lower 
Seyhan River for the data of the year 1991 according to the calibration results of 

Onur’s study and the GA methodology. 

Maximum error amount (mg/l) 
Dry period Wet period 

Water 
quality 
variable Onur’s Output GA results Onur’s Output GA results 

DO 4.55 0.61 0.99 0.71 
BOD5 3.20 3.01 1.27 1.26 

Organic N 1.25 1.35 0.42 0.42 
NH3 1.16 1.38 0.27 0.27 
NO2 0.17 0.56 0.02 0.02 
NO3 1.28 0.80 0.15 0.15 

Dissolved P 0.07 0.20 0.03 0.03 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1.Conclusions 

In this study, the Enhanced Stream Water Quality Model, QUAL2E, has been 

linked with a genetic algorithm (GA) library in order to apply optimization for the 

calibration and verification of the model. Optimization models were developed to 

perform simultaneous calibration and verification. In general, the optimization 

model uses an objective function that is formulated according to the sum-of-least 

squares approach, aiming at minimizing the difference between the observed and 

simulated conditions. In order to perform simultaneous calibration and verification, 

verification of the calibrated results was treated as a constraint and inserted into the 

objective function in the form of a penalty function. 

 

The performance of the optimization model was tested for two kinds of observed 

data set quality. The perfect data set consisted of observed water quality values that 

were exactly reflecting the state of the water quality as it is. However, in the biased 

data set, the observed water quality values had an error.  

 

The results of the tests showed that GA optimization can successfully be applied for 

the calibration and verification of the QUAL2E model. It is seen that the 

performance of the optimization model is generally sensitive to the error in the 

observed data sets and to the number and location of sampling points. Although, it 

was not possible to obtain the exact values of the kinetic coefficients for any of the 

tests performed in the study, the coefficient estimates were successful in reflecting 

the water quality variable profiles in the river. It should be noted that the amount of 

variation between the observed and the simulated water quality values were very 

small in the vicinity of the sampling points. 



 125

The runs with biased observation data indicated that since the optimization 

algorithm relies on the biased data, the results of the optimum calibration and 

verification can be negatively affected. This impact will be related to the extent of 

bias in the observation data. However, the amounts of error in the simulated water 

quality values were not higher than the amounts of error in the observed data, and 

often it was much less. Nevertheless, even with biased observation data, if there is 

sufficient number of representative sampling points, the optimization model can 

estimate the coefficient values that can simulate the water quality profiles with an 

acceptable amount of error. 

 

The impact of different objective function formulations on the optimization model 

performance was also tested. In these tests, Objective Function – 3, which used the 

maximum error values instead of the sum-of-the-squared errors, seemed to perform 

better. However, for the biased observation data case, all the objective functions 

tested performed similarly. In this case, the error in the observation data dominated 

the performance of the optimization model rather than the formulation of the 

objective function. 

 

The application of the optimization model to more complex problems that involve 

higher number of decision variables, water quality variables, and increased number 

of observation data sets required a weighting approach in the objective function. 

With this method, the error function values for each water quality variable were 

weighted and then summed up to define the value of the objective function. In order 

to check if this application is beneficial or not, runs were repeated for the 

unweighted objective function as well. The results pointed out that better 

performance can be established with the weighted objective function. This impact 

was more pronounced for the members of the nitrogen (N) cycle. In case where 

concentrations associated with the N cycle are lower than that of dissolved oxygen 

(DO) and biochemical oxygen demand (BOD), the contribution of the error from 

these constituents to the overall objective function value can be insignificant. 
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Weighting helps to minimize this situation. However, for successful outcomes, 

adequate weights should be assigned. 

 

The final part of the study was the application of the optimization model for a case 

study. For this purpose, a previous modeling study conducted on the Lower Seyhan 

River by Onur (1996) using QUAL2E was utilized. Using the same modeling 

approach with Onur, two different QUAL2E input files representing the two major 

hydrological periods, namely dry and wet, were prepared for the Lower Seyhan 

River. Before running the optimization model on these input files, a modification 

was necessary to adapt the objective function formulation to the existing 

observation data. The observation data set had many data deficiencies, and as a 

result, a non-uniform distribution of data points among the observed water quality 

variables. 

 

The calibration results for the case study were negatively affected from the 

inadequate number of sampling point locations throughout the river and from the 

unusual variability of observation values at some of the sampling locations. The 

calibration results for the dry period also suffered from the inadequacies of the input 

data in defining the river system. Nevertheless, the optimum calibration results for 

the wet period were superior to the calibration results of the original study which 

employed a trial-and-error approach. 

 

In conclusion, GA optimization can be used as an efficient tool for calibration and 

verification of the QUAL2E model. With this approach, coefficient estimates and 

resulting water quality profiles can be obtained with a much less effort compared to 

the trial-and-error method. 

6.2.Recommendations for Future Study 

The results of this study showed that the objective function formulation can have a 

significant impact on the GA performance when calibrating QUAL2E. In addition, 

different ways of constraint handling can also result in a better performance. 
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Problem-specific objective functions that perform well for a particular system or 

data set may be developed by further studies. Objective functions that can handle 

observation data sets with non-uniform distribution of data points or data 

deficiencies (e.g. the observation data set used in the Case Study) may be developed 

for performance enhancements. Moreover, further studies may investigate the use of 

some additional constraints to formulate a ‘supervised calibration’. This supervised 

calibration technique may especially be useful when the available data is 

insufficient to guide the GA in the search process. For example, for a river reach 

with no sampling points, a constraint that limits the value of a state variable or a 

decision variable according to other known values in the river system may be 

incorporated to the optimization model. 

 

When using multiple response data in the automated calibration runs, weighting of 

the contributions of different responses is necessary. In this study, an objective 

method was developed for weighting and it was shown that the optimization runs 

with the weighted objective functions gave better results than the runs with the 

unweighted ones. A research on this subject with new objective weighting 

methodologies may improve the results. Further studies may explore the use of 

percentage errors in the objective function calculations so that an adaptive, dynamic 

weighting methodology can be developed. 

 

It was shown that the number and locations of sampling points have a significant 

impact on the calibration results. Obtaining the required data to define the system in 

a most economical way by minimizing the required sampling is currently a popular 

research subject. Further study can be conducted on the Case Study to define the 

minimum number and location of representative sampling points.  

 

An important part of this study was linking the QUAL2E model with a GA library. 

The experience gained in this step and the resultant program may be used in 

subsequent water quality management studies. The developed program can be 
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easily adapted to solve optimization-simulation problems in water quality 

management (e.g. waste load allocations, discharge permit determinations). 
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APPENDIX A 

AN EXAMPLE CODE 

The following is the code of the subroutine ‘func’ which runs as a part of the 

evaluation phase of the genetic algorithm. The optimization algorithm for the 

calibration and verification of QUAL2E is coded in this subroutine. This subroutine 

transfers the parameter values associated with a string to QUAL2E and calls it for 

performing a water quality simulation. Following the QUAL2E simulation, the 

objective function value is evaluated using the quantities of the relavant water 

quality variables. Finally, the subroutine returns the objective function value. 

 

The following code employs Objective Function – 1. The objective function coding 

should be changed for the runs for different objective function formulations. Also, 

an additional code segment is required for Complex Problem III and Case Study to 

make use of two verification data sets. 

 
c############################################################
c 
      subroutine func(j,funcval) 
c 
      implicit real*8 (a-h,o-z) 
      save 
c 
      include 'params.f' 
c------------------------------------ 
c mainga.var was included by Recep Kaya GÖKTAS, 30.06.2003 
c needed to link GA with QUAL2E for calibration 
c This file is the same with main.var, but SAVE statement is 
c commented out. 
c 
 INCLUDE 'mainga.var' 
c--------------------------------------------------------- 
      dimension parent(nparmax,indmax) 
      dimension iparent(nchrmax,indmax) 
c----------------------------------------
c HERE ARE THE DIMENSIONS OF THE ARRAYS USED IN THE OBJECTIVE 
c FUNCTION 
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C RECEP KAYA GÖKTAS, 17.06.2003 
C 
 dimension rcoe(nparmax) 
 dimension sim(MC,nobsp) 
 dimension noloc(MC,3),obsc(MC,nobsp),obsv(MC,nobsp) 
 dimension w(nobsp) 
c error(1,i) = sum of squared errors in calibration for 
c              simulated parameter i 
c error(2,i) = max. deviation in calibration  for simulated 
c              parameter i 
c error(3,i) = sum of squared errors in verification for 
c              simulated parameter i 
c error(4,i) = max. deviation in verification for simulated 
c              parameter i 
 dimension error(4,nobsp) 
c-----------------------------------------  
c 
      common / ga2   / nparam,nchrome 
      common / ga3   / parent,iparent 
c 
c------------------------------------------------------------
c THIS COMMON BLOCK CONTAINS THE ARRAYS USED IN CALIBRATION 
C an attempt to develop a more generic program for  
C calibration optimization. 
C RECEP KAYA GÖKTAS, 26.06.2003 
c 
  common /calibr/ noloc,obsc,obsv,w 
  common nconv 
c------------------------------------------------------------
c These 70 character strings are used in changing the  
c contents of QUAL2E.SUP file 
c Names of the QUAL2E input files for calibration and  
c verification 
c Recep Kaya GÖKTAS, 07.07.2003 
c 
 character*70 calfil,verfil,calout,verout 
c 
c--------------------------------------------------- 
c contents of the error array is initialized to 0 
 do 5009 i=1,4 
  do 5009 k=1,nobsp 
   error(i,k)=0 
5009 continue 
c------------------------------------------------------------
c If the elements do not converge, QUAL2E should not stop the  
c program. 
c Instead it should return to GA 
c Then assign a very low fitness value. 
c Result of the convergence test is kept in the value of  
c "nconv". 
c Convergence test is made in SSCONV.FOR 
c SSCONV.FOR runs under Q2EZ.FOR 
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c nconv = 1979 -> elements not converged 
c nconv = else -> elements converged 
c Assign the deafult value of nconv as 2004: 
 nconv=2004 
c------------------------------------------------------------ 
c 
c ++++++++++++++++  
c Calibration 
c ++++++++++++++++ 
c 
 do 5010 i=1,nloc  
  do 5010 k=1,nobsp 
   sim(i,k)=0 
5010 continue 
 do 5015 i=1,nparmax 
  rcoe(i)=0 
5015 continue 
      do 5050 i=1,nparam 
  rcoe(i)=parent(i,j) 
5050 continue 
c 
 nrkg=nloc 
 if (nloc.lt.nparam) nrkg=nparam 
c 
 OPEN(UNIT=1979,FILE='rkg.txt', 
     1     FORM='FORMATTED',ACCESS='SEQUENTIAL') 
 REWIND(1979) 
      write (1979,5060) nrkg 
      do 5020 i=1,nrkg 
  write(1979,5001) rcoe(i),(sim(i,k),k=1,nobsp) 
5020 continue 
 close (1979) 
c 
c icalibr=1 -> Calibration phase, use calibration input  
c                  file 
c 
 icalibr=1 
c 
c Calculating the objective function values 
c 
 call Q2e3p1 
c------------------------------------------------------------ 
c If the elements do not converge, QUAL2E should not stop the  
c program. 
c Instead it should return to GA 
c Then assign a very low fitness value. 
c Result of the convergence test is kept in the value of  
c "nconv".(main.var,mainga.var) 
c Convergence test is made in SSCONV.FOR 
c SSCONV.FOR runs under Q2EZ.FOR 
c nconv = 1979 -> elements not converged 
c nconv = else -> elements converged 
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c 
 if (nconv.EQ.1979) go to 6000 
c------------------------------------------------------------
c 
 OPEN(UNIT=1979,FILE='rkg.txt',status='old', 
     1     FORM='FORMATTED',ACCESS='SEQUENTIAL') 
 read (1979,5060) nrkg 
 do 5030 i=1,nrkg 
  read(1979,5000) rcoe(i),(sim(i,k),k=1,nobsp) 
5030 continue 
 close(1979) 
c 
c Calculate the sum of the squared errors and maximum  
c deviations for each observed variable, 
c error(1,i) and error(2,i) 
 do 5039 i=1,nobsp 
  do 5039 k=1,nloc 
   x=(sim(k,i)-obsc(k,i))**2 
   error(1,i)=error(1,i)+x 
   if (abs(sim(k,i)-obsc(k,i)).GE.error(2,i)) 
     1           then 
    error(2,i)=abs(sim(k,i)-obsc(k,i)) 
   endif 
5039 continue 
c 
c++++++++++++++++++ 
c Verification 
c++++++++++++++++++ 
c 
 do 5090 i=1,nloc  
  do 5090 k=1,nobsp 
   sim(i,k)=0 
5090 continue 
c 
c icalibr=0 -> Verification phase, use verification input  
c                 file 
c 
 icalibr=0 
c 
c Calculating the penalty function 
c 
 call Q2e3p1 
c------------------------------------------------------------ 
c If the elements do not converge, QUAL2E should not stop the 
c program. 
c Instead it should return to GA 
c Then assign a very low fitness value. 
c Result of the convergence test is kept in the value of 
c "nconv".(main.var,mainga.var) 
c Convergence test is made in SSCONV.FOR 
c SSCONV.FOR runs under Q2EZ.FOR 
c nconv = 1979 -> elements not converged 
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c nconv = else -> elements converged 
c 
 if (nconv.EQ.1979) go to 6000 
c------------------------------------------------------------
c 
 OPEN(UNIT=1979,FILE='rkg.txt',status='old', 
     1     FORM='FORMATTED',ACCESS='SEQUENTIAL') 
 read (1979,5060) nrkg 
 do 5100 i=1,nrkg 
  read(1979,5000) rcoe(i),(sim(i,k),k=1,nobsp) 
5100 continue 
c 
 close(1979) 
c 
c Calculate the sum of the squared errors and maximum  
c deviations for each observed variable, 
c error(3,i) and error(4,i) 
 do 5109 i=1,nobsp 
  do 5109 k=1,nloc 
   x=(sim(k,i)-obsv(k,i))**2 
   error(3,i)=error(3,i)+x 
   if (abs(sim(k,i)-obsv(k,i)) .GE. error(4,i)) 
     1           then 
    error(4,i)=abs(sim(k,i)-obsv(k,i)) 
   endif 
5109 continue 
c 
c ++++++++++++++++++++++++++++++++++++++++++ 
c Calculation of the objective function with the   
c constraint 
c ++++++++++++++++++++++++++++++++++++++++++ 
c 
c Recep Kaya GOKTAS, 22.05.2004 
c 
c F1 funcval=-z*(1+p) 
c F2 funcval=-(z*(1+p)+p*(1+z)) 
c F3 funcval=-z*(1+100*dmaxc)*(1+100*dmaxv) 
c 
c F1 is used in this run: 
c------------------------------------------------------------ 
c If the elements do not converge, QUAL2E should not stop the 
c program. 
c Instead it should return to GA 
c Then assign a very low fitness value. 
c Result of the convergence test is kept in the value of  
c "nconv".(main.var,mainga.var) 
c Convergence test is made in SSCONV.FOR 
c SSCONV.FOR runs under Q2EZ.FOR 
c nconv = 1979 -> elements not converged 
c nconv = else -> elements converged 
c-------------------------------------------------- 
6000  continue 
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 if (nconv.EQ.1979) then 
   funcval=-((10.0)**11) 
  else 
   funcval=0 
   do 5110 i=1,nobsp 
  funcval=funcval-(w(i)*error(1,i)*(1+error(3,i))) 
5110   continue 
 endif 
c 
c Format statements 
c 
5000  format (F11.0,6F7.0) 
5001  format (F11.3,6F7.2) 
5060  format (1X,I4) 
c----------------------------------------- 
c 
      return 
      end 
c############################################################ 
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APPENDIX B 

INFORMATION ABOUT THE REQUIRED INPUT AND 

OUTPUT FILES 

Information about the required input files:  

 

• MSGFILE.DAT : contains the QUAL2E run-time messages. 

• QUAL2E.SUP : run-time supervisor file that is used to answer interactive 

prompts issued during execution  of the QUAL2E model. 

• INPUT1.DAT : QUAL2E input file describing the river system with the 

conditions to be used in the calibration phase. 

• INPUT2.DAT : QUAL2E input file describing the river system with the 

conditions to be used in the verification phase. 

• GA.INP : contains the required genetic algorithm input parameters. 

• CONS.TXT : contains the declaration of the kinetic parameters to be 

calibrated. 

• OBSC.TXT : contains the observed data information; observation point 

locations, and the observed values of the monitored parameters for the 

calibration conditions. The weights associated with each monitored 

parameter are also declared in this file. 

• OBSV.TXT : contains the observed data information; observation point 

locations, and the observed values of the monitored parameters for the 

verification conditions 

• INPUTFIL.TXT : contains the names and locations of the QUAL2E input 

and output files to be used both in the calibration and verification phases 

(user defined names and locations for INPUT1.DAT, INPUT2.DAT, 

OUTPUT1.DAT, OUTPUT2.DAT.) 
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After running the program, calculation results are written to a set of text files. 

Some of these files can be omitted by commenting out the related lines in the 

code. The names of the output text files with their descriptions are given below: 

 

• DATA.TXT: The scratch file used for information tranfer between 

QUAL2E and the genetic algorithm driver. 

• OUTPUT1.DAT: QUAL2E output file for the run with the input file 

INPUT1.DAT. 

• OUTPUT2.DAT: QUAL2E output file for the run with the input file 

INPUT2.DAT. 

• GA.OUT : Output report of the genetic algorithm run. 

• GA.RESTART : contains the population information to be used in a restart 

continuation of the genetic algorithm run. 

• SUMMARY.TXT: The summary part of the genetic algorithm output report 

is also written in a separate file. 

• BESTPARAMS.TXT: The best fitness value at the end of the last generation 

is recorded in this file. The file contains the generation number, best fitness 

value and the corresponding values of the parameters. 
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APPENDIX C 

EXAMPLE WATER QUALITY PROFILES FOR THE 

VERIFICATION CONDITIONS 

C.1 Results for the Calibration and Verification for Two Model Parameters 

DO Profile (Reaches 1,6) (verification)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

46 44 42 40 38 36 34 32 30 28 26 24 22 20

River km

D
O

 (m
g/

l)

Real Data Observation Points Verification Result

Reach 1 Reach 6

 

Figure C.1: DO profile along the main river for verification conditions. 
(Estimated coefficients: K2 and K4 for biased observation data) 

(Corresponds to Figure 4.4)
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C.2 The Impact of the Number and Location of Sampling Points 

DO Profile (Reaches 1,6) (verification)
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Figure C.2: DO profile along the main river for 9 sampling points case for the 

verification conditions. (Estimated coefficients: K2 and K4 for biased 
observation data) (Corresponds to Figure 4.9) 

C.3 The Impact of Different Objective Function Formulations 
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Figure C.3: DO profiles along the main river for three different objective 

function formulations for the verification conditions. (Estimated 
coefficients: K2 and K4 for biased observation data) (Corresponds 

to Figure 4.13) 
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C.4 Complex Problem I 

DO Profile (Reaches 1,6) (verification)
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Figure C.4: DO profile along the main river for the verification conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for biased observation 

data) (Corresponds to Figure 4.19) 
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Figure C.5: BOD profile along the main river for the verification conditions. 
(Estimated coefficients: K1, K3, K4 and K2 for biased observation 

data) (Corresponds to Figure 4.21) 
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C.5 Complex Problem II 

DO Profile (Reaches 1,6) (verification)
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Figure C.6: DO profile along the main river for Complex Problem II for the 
verification conditions. (Biased observation data) (Corresponds to 

Figure 4.35) 
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Figure C.7: BOD profile along the main river for Complex Problem II for the 
verification conditions. (Biased observation data) (Corresponds to 

Figure 4.37) 
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Org.N Profile (Reaches 1,6) (verification)
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Figure C.8: Organic N profile along the main river for Complex Problem II for 
the verification conditions. (Biased observation data) (Corresponds 

to Figure 4.39) 
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Figure C.9: NH3-N profile along the main river for Complex Problem II for the 
verification conditions. (Biased observation data) (Corresponds to 

Figure 4.41) 
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NO2-N Profile (Reaches 1,6) (verification)
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Figure C.10: NO2-N profile along the main river for Complex Problem II for the 
verification conditions. (Biased observation data) (Corresponds to 

Figure 4.43) 
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Figure C.11: NO3-N profile along the main river for Complex Problem II for the 
verification conditions. (Biased observation data) (Corresponds to 

Figure 4.45) 
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C.6 Complex Problem III 
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Figure C.12: DO profile along the main river for Complex Problem III for the first 
verification conditions. (Biased observation data) (Corresponds to 

Figure 4.59) 
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Figure C.13: DO profile along the main river for Complex Problem III for the 
second verification conditions. (Biased observation data) 

(Corresponds to Figure 4.59) 
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BOD Profile (Reaches 1,6) (verification-1)
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Figure C.14: BOD profile along the main river for Complex Problem III for the 
first verification conditions. (Biased observation data) (Corresponds 

to Figure 4.61) 
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Figure C.15: BOD profile along the main river for Complex Problem III for the 
second verification conditions. (Biased observation data) 

(Corresponds to Figure 4.61) 
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Org.N Profile (Reaches 1,6) (verification-1)
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Figure C.16: Organic N profile along the main river for Complex Problem III for 
the first verification conditions. (Biased observation data) 

(Corresponds to Figure 4.63) 
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Figure C.17: Organic N profile along the main river for Complex Problem III for 
the second verification conditions. (Biased observation data) 

(Corresponds to Figure 4.63) 
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NH3-N Profile (Reaches 1,6) (verification-1)
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Figure C.18: NH3-N profile along the main river for Complex Problem III for the 
first verification conditions. (Biased observation data) (Corresponds 

to Figure 4.65) 
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Figure C.19: NH3-N profile along the main river for Complex Problem III for the 
second verification conditions. (Biased observation data) 

(Corresponds to Figure 4.65) 
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NO2-N Profile (Reaches 1,6) (verification-1)
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Figure C.20: NO2-N profile along the main river for Complex Problem III for the 
first verification conditions. (Biased observation data) (Corresponds 

to Figure 4.67) 
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Figure C.21: NO2-N profile along the main river for Complex Problem III for the 
second verification conditions. (Biased observation data) 

(Corresponds to Figure 4.67) 
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NO3-N Profile (Reaches 1,6) (verification-1)
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Figure C.22: NO3-N profile along the main river for Complex Problem III for the 
first verification conditions. (Biased observation data) (Corresponds 

to Figure 4.69) 
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Figure C.23: NO3-N profile along the main river for Complex Problem III for the 
second verification conditions. (Biased observation data) 

(Corresponds to Figure 4.69) 
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APPENDIX D 

ASSIGNED WEIGHT VALUES IN THE COMPLEX PROBLEMS 

AND THE CASE STUDY 

 

D.1 Assigned Weights in the Complex Problems 

Table D.1: The values of the weights assigned to the error functions of the utilized 
water quality constituents in Complex Problem I. 

The Assigned Weight Water 
Quality 

Constituent
Perfect Data 

Case 
Biased Data 

Case 
DO 0.00000000986 0.00000000749 

BOD 0.00000000186 0.00000000132 

Table D.2: The values of the weights assigned to the error functions of the utilized 
water quality constituents in Complex Problem II. 

The Assigned Weight Water 
Quality 

Constituent
Perfect Data 

Case 
Biased Data 

Case 
DO 0.00000001154 0.00000001127 

BOD 0.00000000178 0.00000000126 
Org.N 0.00142826537 0.00079617834 
NH3-N 0.00000004478 0.00000003848 
NO2-N 0.00000007730 0.00000007706 
NO3-N 0.00000053611 0.00000058758 
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Table D.3: The values of the weights assigned to the error functions of the utilized 
water quality constituents in Complex Problem III. 

The Assigned Weight Water 
Quality 

Constituent
Perfect Data 

Case 
Biased Data 

Case 
DO 0.00000001154 0.00000001127 

BOD 0.00000000178 0.00000000111 
Org.N 0.00142826537 0.00079617834 
NH3-N 0.00000004444 0.00000003848 
NO2-N 0.00000007714 0.00000007706 
NO3-N 0.00000048964 0.00000050687 

 

D.2 Assigned Weights in the Case Study 

Table D.4: The values of the weights assigned to the error functions of the utilized 
water quality constituents in Case Study. 

The Assigned Weight Water 
Quality 

Constituent Dry Period Wet Period 

DO 0.00000003034 0.00000989805 
BOD 0.00000000694 0.00000954745 
Org.N 0.00005153045 0.00318035811 
NH3-N 0.00004771448 0.00607496507 
NO2-N 0.00021761838 1.07680876953 
NO3-N 0.00004026900 0.03268614761 
Dis.P 0.46436034363 59.6196267811 
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