

EVOLUTIONARY ALGORITHMS FOR DETERMINISTIC AND
STOCHASTIC UNCONSTRAINED FUNCTION OPTIMIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TALİP KEREM KOÇKESEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

THE DEPARTMENT OF INDUSTRIAL ENGINEERING

NOVEMBER 2004

 ii

Approval of the Graduate School of Natural and Applied Sciences

 Prof. Dr. Canan Özgen
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of
Science.

 Prof. Dr. Çağlar Güven

 Head of the Program

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Murat Köksalan Prof. Dr. Nur Evin Özdemirel

 Co – Supervisor Supervisor

Examining Committee Members

Assoc. Prof. Dr. Gülser Köksal (METU, IE)

Prof. Dr. Nur Evin Özdemirel (METU, IE)

Prof. Dr. Murat Köksalan (METU, IE)

Asst. Prof. Dr. Haldun Süral (METU, IE)

Assoc. Prof. Dr. Hakkı Toroslu (METU, CENG)

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name:

Signature:

 iv

ABSTRACT

EVOLUTIONARY ALGORITHMS FOR DETERMINISTIC AND
STOCHASTIC UNCONSTRAINED FUNCTION OPTIMIZATION

Koçkesen, Talip Kerem

M.S., Department of Industrial Engineering

Supervisor: Prof. Dr. Nur Evin Özdemirel

Co-Supervisor: Prof. Dr. Murat Köksalan

November 2004, 128 pages

Most classical unconstrained optimization methods require derivative

information. Different methods have been proposed for problems where derivative

information cannot be used. One class of these methods is heuristics including

Evolutionary Algorithms (EAs). In this study, we propose EAs for unconstrained

optimization under both deterministic and stochastic environments. We design a

crossover operator that tries to lead the algorithm towards the global optimum even

when the starting solutions are far from the optimal solution. We also adapt this

algorithm to a stochastic environment where there exist only estimates for the

function values. We design new parent selection schemes based on statistical

grouping methods and a replacement scheme considering existing statistical

information. We test the performance of our algorithms using functions from the

literature and newly introduced functions and obtain promising results.

Keywords: Evolutionary Algorithms, Unconstrained Function Optimization

 v

ÖZ

DETERMİNİSTİK VE STOKASTİK KISITSIZ FONKSİYON
ENİYİLEME İÇİN EVRİMSEL ALGORİTMALAR

Koçkesen, Talip Kerem

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Nur Evin Özdemirel

Ortak Tez Yöneticisi: Prof. Dr. Murat Köksalan

Kasım 2004, 128 sayfa

Çoğu klasik kısıtsız fonksiyon eniyileme yöntemleri türev bilgisine ihtiyaç

duymaktadır. Türev bilgisinin kullanılamadığı problemler için değişik metotlar

önerilmiştir. Bu metotların bir sınıfı Evrimsel Algoritmaları da içeren sezgisel

yöntemlerdir. Bu çalışmada, hem deterministic hem de stokastik koşullar altında

kısıtsız eniyileme için evrimsel algoritmalar önerilmiştir. Başlangıç noktaları en iyi

çözümden uzak olduğu durumlarda bile algoritmayı global en iyiye yöneltmeye

çalışan bir çaprazlama operatörü tasarlanmıştır. Ayrıca, bu algoritma fonksiyon

değerleri için sadece tahminlerin varolduğu stokastik bir ortama da uyarlanmıştır.

İstatistiksel gruplama metotlarına dayalı yeni ebeveyn seçim yöntemleri ve varolan

istatistiksel bilgiyi dikkate alan bir yerine geçme yöntemi tasarlanmıştır.

Algoritmaların performansları hem literatürden alınan, hem de yeni önerilmiş

fonksiyonlar kullanılarak test edilmiş ve tatmin edici sonuçlar elde edilmiştir.

Anahtar Kelimeler: Evrimsel Algoritmalar, Kısıtsız Fonksiyon Eniyileme

 vi

To My Family

 vii

ACKNOWLEDGEMENTS

I express my sincere appreciation to my supervisor Nur Evin Özdemirel and

to my co-supervisor Murat Köksalan for their patient guidance, suggestions and

comments throughout my research. It has been a great pleasure for me to work

under their supervision.

I also would like to thank my officemate Örsan Özener, Fevzi Başkan,

Alpay Ertürkmen, Melih Özlen, Barış Bekki, İsmail Bakal, Onur Sarıoğlu and

Meltem Sönmez for their great help, encouragement and support they gave during

this study.

 viii

TABLE OF CONTENTS

PLAGIARISM ..iii

ABSTRACT.. iv

ÖZ.. v

ACKNOWLEDGEMENTS ..vii

TABLE OF CONTENTS...viii

LIST OF TABLES.. x

LIST OF FIGURES..xii

CHAPTER

1. INTRODUCTION ..1

2. LITERATURE REVIEW..4

2.1 Classical Unconstrained Optimization Techniques4

2.1.1 Random methods...6

2.1.2 Newton’s method ..7

2.1.3 Steepest descent method ..8

2.1.4 Methods that use an approximation of Hessian matrix8

2.1.5 Methods that do not require derivative information..........................8

2.2 Overview of Evolutionary Algorithms...9

2.3 Deterministic Function Optimization by EAs .. 13

2.3.1 Overview... 13

2.3.2 Recombination operators ... 14

2.3.3 Previous studies in this area ... 18

2.4 Stochastic Function Optimization by EAs.. 21

2.4.1 Overview... 21

2.4.2 Selection schemes.. 23

2.4.3 Previous studies in this area ... 25

2.4.4 Grouping ... 30

2.5 Summary... 32

 ix

3. FUNCTION OPTIMIZATION BY AN EVOLUTIONARY ALGORITHM . 34

3.1 Common Components of the EA... 34

3.1.1 Function structures .. 35

3.1.2 Chromosome structure... 36

3.1.3 Population size .. 36

3.1.4 Initial population ... 37

3.1.5 Termination... 38

3.2 Deterministic Function Optimization by EA.. 38

3.2.1 Algorithm components .. 39

3.2.2 The steps of EA for deterministic function optimization 45

3.3 Stochastic Function Optimization by EA... 46

3.3.1 Definition of “error” .. 46

3.3.2 Algorithm components .. 48

3.3.3 The steps of EA for stochastic function optimization 55

3.4 Summary... 57

4. EXPERIMENT... 59

4.1 Deterministic Function Optimization Experiment 59

4.1.1 Performance measures ... 59

4.1.2 Preliminary tests.. 60

4.1.3 Experimental setting .. 62

4.1.4 Results... 64

4.1.5 Summary and conclusions ... 73

4.2 Stochastic Function Optimization Experiment 73

4.2.1 Experimental setting .. 73

4.2.2 Performance measures ... 75

4.2.3 Results... 79

4.2.4 Summary and conclusions ... 86

5. CONCLUSION... 87

REFERENCES... 90

APPENDIX A .. 94

APPENDIX B .. 106

APPENDIX C .. 118

 x

LIST OF TABLES

3.1 Selection probabilities for different h values .. 40

3.2 An example for determination of c0 with respect to initial population.............. 44

3.3 Behavior of different cooling schemes .. 45

3.4 An example for selection probability assignment by CCG............................... 52

4.1 Deterministic experimental setting summary... 64

4.2 Summary of results of Rastrigin’s function ... 65

4.3 Results for Rastrigin’s function with 15 million generations 67

4.4 Performance of convex cooling scheme .. 68

4.5 Summary of results of Rosenbrock’s function ... 69

4.6 Results for Rosenbrock’s function over 15 million generations 70

4.7 Summary of results of f3 ... 72

4.8 Stochastic experimental setting summary.. 75

4.9 PDave and PDbest for factor combinations ... 80

4.10 Effects of k and e on PDave and PDbest.. 80

4.11 Sizes of best groups .. 81

4.12 Xconv values... 82

4.13 IndCIave values .. 83

4.14 IndCItotal values ... 84

A-1. Results for Rastrigin’s function... 94

A-2. ANOVA for Rastrigin’s function .. 95

A-3. ANOVA for square root transformation of Rastrigin’s function 96

A-4. Results for Rosenbrock’s function .. 99

A-5. ANOVA for Rosenbrock’s function.. 100

A-6. ANOVA for square root transformation of Rosenbrock’s function.............. 101

A-7. ANOVA for Rastrigin’s and Rosenbrock’s function as a factor................... 103

A-8. Results for function f3 ... 105

 xi

B-1. Deterministic results of function fi .. 106

B-2. Sizes of best groups .. 110

B-3. Number of solutions converged to global for function-factor combinations . 112

C-1. IndCIave and IndCItotal values ... 118

C-2. Results for high error and far initial population ... 126

C-3. CPU times for function f3 .. 128

 xii

LIST OF FIGURES

2.1 A classification of optimization problems ...5

2.2 Pseudo-code of an Evolutionary Algorithm... 12

2.3 Classical crossover operators .. 15

3.1 Chromosome Structure ... 36

3.2 Location information of genes and its usage.. 41

3.3 Crossover operator representation ... 42

3.4 Cooling schemes... 43

3.5 The pseudo-code of EA for deterministic function optimization...................... 46

3.6 An example for CIBG... 51

3.7 The pseudo-code of replacement scheme .. 54

3.8 The pseudo-code of EA for stochastic function optimization for the first setting

... 56

3.9 The pseudo-code of EA for stochastic function optimization for the second and

the third setting ... 57

A-1. Residual analysis for Rastrigin’s function ... 96

A-2. Residual analysis for squareroot transformation of Rastrigin’s function 97

A-3. Main effects and interactions plot for square root transformation of Rastrigin’s

function .. 98

A-4. Residual analysis for Rosenbrock’s function... 100

A-5. Residual analysis for square root transformation of Rosenbrock’s function . 101

A-6. Main effects and interactions plot for square root transformation of

Rosenbrock’s function .. 102

A-7. Main effects and interactions plot for square root transformation of Rastrigin’s

and Rosenbrock’s function as a factor ... 102

B-1. CumGraph measure for factor combinations ... 117

C-1. Number of groups versus the generations for k and e combinations 125

 1

CHAPTER 1

1. INTRODUCTION

Function optimization involves a function that can be continuous or discrete,

linear or nonlinear, unimodal or multimodal. There are continuous or discrete

variables involved, which have either constraints or no constraints on them. The

objective is to find a solution that will minimize or maximize this function while

satisfying the constraints, if there are any.

In this study, we are interested in continuous, unconstrained and multimodal

functions where the variables are continuous as well.

Classical unconstrained optimization problems can be handled by methods

that may or may not require derivative information. However, most of the

developed methods require derivative information. This kind of information cannot

be obtained easily most of the time and this leads to poor performance of the current

methods. In order to solve this class of problems, methods that do not require

derivative information are to be developed. In this study, we propose heuristics

which are Evolutionary Algorithms (EAs) in order to solve such problems. EAs are

based on the mechanics of natural selection and the survival of the fittest concept of

natural genetics. There are various implementations of EAs for function

optimization problems and their performance is dependent mostly on the crossover

operators that are designed.

We can divide our study into two parts. The first part of our research is

dedicated to multimodal function optimization by an EA. The emphasis is on the

crossover operator as in past studies. The second part of our research is the

adaptation of our algorithm to an environment where randomness exists. The

function values are subject to some disturbances coming from the environment. We

 2

refer to the second part of our study as stochastic function optimization by an EA.

The emphasis of this section is on the probability assignment scheme used in the

parent selection step.

An algorithm should be capable of finding the global optimum where many

local optima exist in the search space. Therefore, the algorithm must explore the

search space and evolve the population towards promising solutions. For this

purpose, we design a crossover operator, which is based on the parents’ location

information as well as the convergence behavior of the population. The

convergence of the algorithm is directly related with the elitism strategy used. If the

algorithm is too elitist, then premature convergence to one of the favored solutions

may result in poor performance. If elitism is not used at all, the algorithm cannot

utilize the useful information coming from the good solutions. A proper balance

must be obtained between these two extremes. We test different elitism strategies in

order to see the effect of it. Besides this, population size plays an important role on

the performance of the algorithm and we test different levels for this parameter.

For stochastic function optimization, the existence of randomness creates

different issues to be considered. In order to handle the randomness, we use

statistical estimates of the function values. Using these estimates, we compare the

members of the population in every generation. We discriminate these members

where we can, or treat them as if they are not different from each other. Using this

information, we test different grouping methods for different environments that we

create. In order to see the effect of the magnitude of error, we test different levels of

it and use different number of realizations for chromosomes in obtaining estimates.

In our experiment, we obtain promising results for functions from the

literature that we test. Our proposed algorithms are capable of finding global

optimum by passing through many local optima in many cases. For stochastic

environments, the algorithm results in satisfactory solutions. The results show that

the methods that we use work well in terms of finding the global optimum where

randomness exists.

The rest of the thesis is organized as follows: Chapter 2 starts with an

overview of the classical unconstrained optimization methods and an overview of

EAs. Next, we describe how evolutionary algorithms are used for function

 3

optimization and complete our review with how we can use evolutionary algorithms

for stochastic function optimization.

In Chapter 3, we explain the details of our study. We discuss the crossover

operators, parent selection methods and the effects of different parameters on the

algorithms. We present our algorithms and their components.

In Chapter 4, we describe the experimental setting that we constructed for

both deterministic and stochastic environments. We present the results that we

obtained from these experiments and interpret the results, including comparisons

with some work from the literature.

In Chapter 5, we conclude the thesis with a summary of the results and

direction for further research in this area.

 4

CHAPTER 2

2. LITERATURE REVIEW

In this chapter, we not only mention previous studies on stochastic function

optimization, but also discuss important aspects and construct a background for the

succeeding chapters. Technically speaking, this chapter includes both a literature

review and a discussion of the relevant aspects of the problem.

We first give an overview of classical unconstrained optimization

techniques. Then, we describe how evolutionary algorithms work and why we use

them. Since these two sections only provide a background for the problem and the

solution approach, we do not discuss these deeply and give more emphasis to the

succeeding sections. After these introductory parts are completed, we describe how

evolutionary algorithms are used for function optimization. In this part, the focus is

on crossover operators that are used in order to explore the solution spaces

effectively. Finally, we complete our review with how we can use evolutionary

algorithms for stochastic function optimization. The focus in this section is on

parent selection techniques, which make use of the stochastic information coming

from the algorithm.

2.1 Classical Unconstrained Optimization Techniques

This section is organized as follows: We first describe the general

optimization problem and basic concepts in optimization. We reduce our scope to

unconstrained optimization problems and define the classical methods used for

these kinds of problems.

 5

An optimization problem can be defined as follows:

 min ()f x

 subject to x XÎ

In this formulation, 1 2(, ,...,)nx x x x= is an n-dimensional vector of unknown

variables. The function f is the objective function of the problem, and X is the

feasible domain of x specified by constraints.

An adaptation of Shang (1997) for the classification of optimization

problems is given in Figure 2.1.

FIGURE 2.1 A classification of optimization problems

In this classification, we are interested in continuous, unconstrained and

multi-modal problems. An unconstrained optimization problem can be defined as

follows:

 min ()f x

where there are no constraints placed on the variables x. In a continuous

unconstrained optimization problem, the feasible search space is defined as the real

domain.

There are two types of optimal points of an optimization problem: local

minima and global minima. A local minimum is defined as the smallest value in a

Optimization Problems

Continuous Discrete

Unconstrained Constrained Unconstrained Constrained

Uni-modal Multi-modal

Linear Nonlinear

P Class NP-Hard

 6

local feasible region surrounding itself. On the other hand, a global minimum has

the smallest value over the entire feasible domain. A problem is uni-modal if the

objective function is convex. There is only one local minimum in a uni-modal

problem where it is also the global minimum. A problem is said to be multi-modal

if its objective function has more than one local minimum.

Classical unconstrained optimization problems can be handled by both

methods that require derivative information and methods that do not require this

information. Most of the developed methods require derivative information. Most of

the methods that require derivative information are based on Newton’s method that

we will describe. The methods can be classified as follows:

• Random methods

• Methods that use Hessian matrix explicitly (Newton’s method and

modifications)

• Steepest-descent method

• Methods that use an approximation of Hessian matrix (Difference

approximations, Quasi-Newton methods)

• Methods that do not require derivative information (nonlinear simplex

method)

Nash and Sofer (1996) provide a detailed explanation of these methods.

2.1.1 Random methods

These methods are often used in small problems where the effort required to

program and apply the more efficient methods overcomes any time saving achieved.

One of the more sophisticated techniques is the random walk (Fox 1971). It is based

on improved approximation to the minimum derived from the preceding

approximation. The sequence is determined by

 1k kx x pa+ = +

where xk+1 is the new approximation and xk is the old approximation, α a scalar step

length and p a unit random vector in that space and 1() ()k kf x f x+ < .

 7

2.1.2 Newton’s method

Newton’s method forms a quadratic model of the objective function around

the current iterate xk. The model function is defined by

 21() () () ()
2

T T
k k kQ p f x f x p p f x p= +Ñ + Ñ

In the basic Newton method, the next iterate is obtained from the minimizer of

()Q p .When the Hessian matrix, 2 ()f xÑ , is positive definite, the quadratic model

has a unique minimizer that can be obtained by solving the symmetric n n´ linear

system:

 2 () ()k k kf x p f xÑ =-Ñ

The next iterate is then

 1k k kx x p+ = +

 In most circumstances, the basic Newton’s method has to be modified to

achieve convergence. Two methods for guaranteeing convergence are line-search

and trust-region approaches.

 The line-search variant modifies the search direction to obtain another

descent direction for f. Line-search methods generate the iterates by setting

 1k k k kx x pa+ = +

where pk is a search direction and αk > 0 is chosen so that 1() ()k kf x f x+ < . Most

line-search versions of the basic Newton’s method generate the direction pk by

modifying the Hessian matrix to ensure that the quadratic model Q(p) of the

function has a unique minimizer.

The trust-region variant uses the original quadratic model function, but it

constrains the new iterate to stay in a local neighborhood of the current iterate. To

find the step, we have to minimize the quadratic function subject to staying in this

neighborhood, which is generally ellipsoidal in shape.

 These two techniques (line-search and trust-region) are suitable if the

number of variables is not too large because of the cost per iteration. If there is a

large number of variables, then truncated Newton methods are used, which settle for

an approximate minimizer of the quadratic model.

 8

2.1.3 Steepest descent method

The steepest-descent method is the simplest Newton-type method for

nonlinear optimization but it is inefficient at solving most problems (Nash and Sofer

1996). It does not require the computation of second derivatives; it does not require

that a system of linear equations be solved to compute the search direction. On the

contrary, it has a slower rate of convergence than Newton’s method; it has a linear

rate of convergence that is usually close to 1. It computes the search direction from

 ()k kp f x=-Ñ

and then uses a line search to determine 1k k k kx x pa+ = + where xk+1 is the new

approximation and xk is the old approximation, ka a scalar step length.

2.1.4 Methods that use an approximation of Hessian matrix

So far, we have assumed that the Hessian matrix is available, but the

algorithms are unchanged if the Hessian matrix is replaced by a reasonable

approximation. The most common method for obtaining such an approximation is

to use the differences of gradient values. If forward differences are used, then the ith

column of the Hessian matrix is replaced by

 () ()k i i k

i

f x h e f x
h

Ñ + -Ñ

for some suitable choice of difference parameter hi. Here, ei is the vector with one in

the ith position and zeros elsewhere.

Quasi-Newton or variable metric methods gradually build up an

approximate Hessian matrix by using gradient information from some or all of the

previous iterates xk visited by the algorithm. Given the current iterate xk, and the

approximate Hessian matrix Bk at xk, the linear system

 ()k k kB p f x=-Ñ

is solved to generate a direction pk.

2.1.5 Methods that do not require derivative information

It is sometimes inconvenient, difficult or impossible to calculate the

derivatives of a function. One example of this group of methods is the nonlinear

 9

simplex method. The nonlinear simplex method requires neither a gradient nor

Hessian evaluations. Instead, it performs a pattern search based only on function

values. It typically requires a great many iterations to find a solution. For an N-

dimensional problem, this method maintains a simplex of (n+1) points (a triangle in

two dimesions, etc.). The simplex moves, expands, contracts and distorts its shape

while attempting to find a minimizer. This method is also called multi-directional

search method.

There are other methods for large-scale problems such as nonlinear

conjugate gradient methods, limited memory Quasi-Newton methods, etc. Nash and

Sofer (1996) provide a detailed explanation of these and the methods mentioned so

far.

2.2 Overview of Evolutionary Algorithms

This section is organized as follows: We first describe the basics and the

nature of the Evolutionary Algorithms (EAs). After this part, we discuss the main

decisions to be taken in order to construct an EA and finalize the section with

exploration and exploitation concepts, which are important aspects of a good

heuristic.

Grefenstette (1984) defines a Genetic Algorithm (GA) as follows:

"A Genetic Algorithm is an iterative procedure maintaining a population of

structures that are candidate solutions to specific domain challenges. During each

temporal increment (called a generation), the structures in the current population are

rated for their effectiveness as domain solutions, and on the basis of these

evaluations, a new population of candidate solutions is formed using specific

genetic operators such as reproduction, crossover, and mutation."

GAs are based on genetic processes of biological organisms, i.e. evolution

according to principles of natural selection and survival of the fittest. In nature,

individuals in a population compete with each other for resources and to attract a

mate. The fittest ones survive and produce offspring, spreading their genetic

properties to population. Combination of good properties may in time produce

“superfit” offspring. Genes from successful chromosomes spread throughout the

 10

population so that two successful parents will sometimes produce offspring that are

better than both parents (Beasley et al. 1993).

The mechanism of a GA is based on an iterative procedure where

individuals of a population compete with each other. Each individual carries

information that involves a fitness value and the solution of the problem at hand.

Parents are selected from the population where more fit individuals are favored.

Chosen parents reproduce by crossover which results in new children born to the

current population. This leads to exploration of new regions in the search space,

which are most promising. Newly formed population is subject to elimination of

less fit ones and this leads the population to evolve and become more fit. By this

way, good features spread throughout the population and are mixed with other good

ones. Consequently, this iterative procedure converges to good solutions to the

problem at hand.

The main decisions to be taken for constructing a GA are as follows:

• Chromosome representation of a solution

• Fitness function

• Population size, generation of initial population

• Reproduction

• Forming the population for next generation

• Stopping (convergence) condition

Chromosome representation of a solution

A potential solution to a problem may be coded or represented by a set of

variables. In GAs, each of these solution components is called a gene. A string of

genes, representing a complete solution, is called a chromosome. The set of

variables represented by a chromosome is called genotype, solution constructed

using these variables is called phenotype.

In traditional GAs, chromosomes are represented by strings of bits, which

are composed of binary numbers, i.e. 0 and 1. An evolutionary algorithm (EA) is

discriminated from a GA by the representation of the genes that are composing the

chromosomes. The genes do not have to be binary numbers. They can also be

letters, real numbers, integers and figures.

 11

Fitness function

Fitness function of a chromosome returns a value, which represents the

ability or utility of the individual. In other words, it helps to discriminate between

the members of the population in terms of their fitness. These values are used in

selection of parents for mating; usually the higher the fitness, the higher the

probability of selection the individual is assigned.

Fitness functions may be the objective functions where there is a single

criterion. They may also be measures involving multiple criteria and penalties for

infeasibilities.

Population size, generation of initial population

An EA is an iterative process where individuals compete with each other in

a population throughout the generations. For this reason, both the competition

structure and the performance of the algorithm are affected by the population size.

A small population can be inefficient in exploring the solution space, where

increasing the population size increases solution quality but requires more

computational time. Initial population can be generated randomly or by a heuristic

depending on the problem.

Reproduction

Reproduction involves both parent selection and recombination of these

parents by using crossover and mutation operators.

Parents are selected randomly from the population using a scheme that

favors the more fit individuals. There are different methods for parent selection like

roulette wheel selection, tournament selection and ranking. The details will be given

in Section 2.4.2.

Crossover mainly takes two individuals, and cuts their chromosome strings

at some randomly chosen positions, to produce head and tail segments. Then these

segments are swapped over to produce new full-length chromosomes. If there is

only one position selected for swapping, then this is called one-point crossover.

There are also other types of crossovers like two-point, uniform, etc. depending on

the environment and the representation. Details will be given in Section 2.3.2.

 12

Mutation is the process of applying some external factors to the

chromosomes resulting in a change in the structure of them. It can be applied to

every individual in the population. It randomly alters each gene with a small

probability in traditional GAs. Alternatively, the entire chromosome may be

mutated at once by a higher probability, particularly when a non-binary

representation and problem specific genetic operators are used.

Forming the population for next generation

After offspring are produced, they may replace their parents unconditionally,

with a probability or if they are more fit then the parents. Alternatively, all parents

and offspring may be sorted together according to their fitness and the best

population size may be decided. There are different ways to form the next

population like steady state replacement, full replacement and so on.

Stopping condition

Convergence is the progression towards increasing uniformity. According to

Beasley et al. (1993), a gene is said to be converged when 95% of the population

share the same value. The population is said to converge when all of the genes

converge. As the population converges, average fitness approaches the best. A

pseudo code for an EA is given in Figure 2.2.

FIGURE 2.2 Pseudo-code of an Evolutionary Algorithm

Begin
 Generate initial population;
 Compute fitness of each individual;

Do
 Select parents from the population;

Recombine parents to give offspring;
Mutate the children / parents;
Extend the population by adding the offspring to it;
Form the next generation by killing some members;
Check stopping condition;

 While stopping condition is not satisfied;
Output the solution(s);
End.

 13

It is necessary for a heuristic to balance exploration of the search space and

exploitation of visited solutions. These two concepts are seen to be contradictory.

Exploration means investigating new and unknown areas in the search space where

exploitation uses the gathered information from the previously visited solutions.

Too much exploration requires too much computational effort leading to decrease in

efficiency. On the other hand, exploitation helps the algorithm find better solutions

only in previously decided areas and this limits the algorithm. In order to have a

powerful EA, these two aspects have to be balanced throughout the generations and

this is accomplished mainly by crossover and mutation operators.

2.3 Deterministic Function Optimization by EAs

This section is organized as follows: An overview of the problem and the

environment is given. Then, recombination operators designed for function

optimization problems are discussed and previous studies on this area are

mentioned.

2.3.1 Overview

Function optimization where the functions are nonconvex and multimodal is

a hard issue. Most of the classical optimization methods use derivative information

and convexity is necessary for the utilization of derivative information.

Multimodality yields another hurdle for the methods, as they have to overcome

sticking into local optima. Hence, most of these methods are known as local

optimum finders. Interaction among the variables is another aspect that makes it

hard for the methods to perform efficiently and effectively. Besides the classical

optimization methods, heuristics are used for overcoming these kinds of technical

difficulties. They are easy to implement and efficient in finding good solutions if

designed appropriately. Our concern is EAs and their way of use in function

optimization.

Constructing the representation and the fitness value structures of an EA for

function optimization is simple. The genes stand for the variables in the function

where the chromosome length shows the dimension of the problem space. The

 14

fitness function takes the value of the objective function for a given combination of

variables.

Function optimization and the methods are directly related with the structure

of the functions. Functions that are to be optimized can be linear or nonlinear,

convex or nonconvex, unimodal or multimodal, and can have interacting variables

or noninteracting variables. There are many functions that are used in benchmarking

for GAs. These functions cover all of the above classifications. Digalakis and

Margaritis (2002) provide a set of benchmarking functions for GAs and review the

previous studies on these test functions.

Deb (2001) gives an overview of GAs for optimization where traditional GA

and its adaptation to optimization problems are discussed, constraint-handling

techniques are explained and a number of extensions, which can be used in solving

various types of search and optimization problems, are mentioned.

2.3.2 Recombination operators

The most important aspects of the EAs for function optimization are the

crossover and mutation operators. There are many types of crossover and mutation

operators designed for different types of problems. For example, if the problem is a

Traveling Salesman Problem (TSP), the sequence of the genes becomes important.

The crossover operator has to be designed in such a way that new offspring also

represent feasible solutions that are created by the new sequences of the genes.

Some examples are partially mapped crossover (PMX), order crossover (OX), and

cycle crossover (CX) (Michalewicz and Fogel 2000).

Classical crossover operators that are designed for binary coding are based

on the swapping of the corresponding genes of the parents. Some of these are 1-

point, n-point, and uniform crossovers. In 1-point crossover, a random point on the

chromosomes is selected and head and tail segments are created by cutting the two

parents from this point. Then these parts are swapped and new solutions are

produced. If 2-point crossover is used, then two random points are chosen and

swapping is performed based on these points. Uniform crossover uses a binary

mask that determines which gene will be taken from which parent while creating

the children. If the ith gene of the mask is 1, offspring 1 takes it corresponding gene

 15

from the first parent, where the other child takes it from the second parent and vice

versa. In Figure 2.3, differences of these operators can be seen.

For function optimization, different crossover operators are designed. The

most important aspect of the crossovers is that they have to let the algorithm to

explore the search space efficiently. For unconstrained optimization problems, this

space is defined as the real space R .

FIGURE 2.3 Classical crossover operators

Herrera et al. (1998) give a comprehensive summary about the crossover

operators designed for EAs. They define 1 1
1 1(,...,)nX x x= and 2 2

2 1(,...,)nX x x= as

the parents selected for mating and classified the crossover operators as follows:

Flat crossover: An offspring, 1(,..., ,...,)i nO o o o= is generated, where oi is a

randomly (uniformly) chosen valued of the interval 1 2,i ix xé ùê úë û .

Simple crossover: A position { }1, 2,..., 1i nÎ - is randomly chosen and the

two new chromosomes are built.

1 1 1 2 2

1 1 2 1

2 2 2 1 1
2 1 2 1

(, ,..., , ,...,)

(, ,..., , ,...,)
i i n

i i n

O x x x x x

O x x x x x
+

+

=

=

1-point crossover Parent 1: 1 0 1 0 | 0 0 1 1 1 0
 Parent 2: 0 0 1 1 | 0 1 0 0 1 0
 Offspring 1: 1 0 1 0 | 0 1 0 0 1 0
 Offspring 2: 0 0 1 1 | 0 0 1 1 1 0
2-point crossover Parent 1: 1 0 1 0 | 0 0 1 | 1 1 0
 Parent 2: 0 0 1 1 | 0 1 0 | 0 1 0
 Offspring 1: 1 0 1 0 | 0 1 0 | 1 1 0
 Offspring 2: 0 0 1 1 | 0 0 1 | 0 1 0
Uniform crossover Parent 1: 1 0 1 0 0 0 1 1 1 0

 Parent 2: 0 0 1 1 0 1 0 0 1 0
 Crossover mask: 1 0 0 1 0 1 1 1 0 0
 Offspring 1: 1 0 1 0 0 0 1 1 1 0
 Offspring 2: 0 0 1 1 0 1 0 0 1 0

 16

Arithmetical crossover: Two offspring, 1(,..., ,...,)k k k
k i nO o o o= k =1,2 , are

generated as:

1 1 2

2 2 1

(1)

(1)
i i i

i i i

o x x
o x x

l l
l l

= + -
= + -

where λ is a constant or varies with regard to the number of generations made.

BLX-α crossover: An offspring is generated 1(,..., ,...,)i nO o o o= , where oi is

a randomly (uniformly) chosen number of the interval []min max,x I x Ia a- + where

a is a constant, max minI x x= - , 1 2 1 2
min maxmin(,), max(,)i i i ix x x x x x= = .

Linear crossover: Three offspring, 1(,..., ,...,)k k k
k i nO o o o= , k =1,2,3, are built

as:

1 1 2

2 1 2

3 1 2

1 1
2 2
3 1
2 2

1 3
2 2

i i i

i i i

i i i

o x x

o x x

o x x

= +

= -

=- +

With this type of crossover, an offspring selection mechanism is applied,

which chooses the two most promising offspring of the three.

Discrete crossover: oi is randomly (uniformly) chosen value from the set

{ }1 2,i ix x .

Extended line crossover: 1 2 1()i i i io x x xa= + - and a is uniformly chosen

value in the interval [-0.25, 1.25].

Extended intermediate crossover: 1 2 1()i i i i io x x xa= + - and ia is uniformly

chosen value in the interval [-0.25, 1.25].

Wright’s heuristic crossover: Let us suppose that X1 is the parent with the

best fitness. Then 1 2 1()i i i io r x x x= - + and r is a random number belonging to [0,1].

Another classification is done by Deb et al. (2002), which is based on the

probability density distribution of the offspring genes selection. Deb classifies the

 17

crossover operators as mean-centric recombination and parent-centric

recombination.

Mean-centric recombination tries to preserve the population mean. It

produces new offspring near the centroid of the participating parents.

Recombination operators such as unimodal normal distribution crossover (UNDX),

simplex crossover (SPX) and blend crossover (BLX) are in this class of crossover

operators.

In UNDX, (µ-1) parents are randomly chosen and their mean gr is

estimated. From this mean, (µ-1) direction vectors (id
r

) are formed. From another

randomly chosen parent, xmr , the length D of the vector (x gm-r r) orthogonal to all

direction cosines is computed. Let ier be the orthonormal basis of the subspace

orthogonal to the subspace spanned by all direction cosines. Then, the offspring is

created as follows:

1

1 1

i i i
i i

i i

y g w d e v De
m m-

= =

= + +å å
rr r r r

where wi and vi are zero-mean normally distributed variables.

The SPX operator also creates offspring around the mean, but restricts them

within a predefined region. The difference between UNDX and SPX is that the SPX

operator assigns a uniform probability distribution for creating any solution

restricted in simplex.

Parent-centric recombination biases offspring to be created near the parents,

but assigns each parent an equal probability of creating offspring in the

neighborhood. Simulated binary crossover (SBX) (Deb and Beyer 2001) is a parent-

centric approach.

The SBX operator assigns more probability for an offspring to remain closer

to the parents than away from the parents. The mean vector gr for µ parents is

computed. For each offspring, one parent pxr is chosen with equal probability. The

direction vectors (p pd x g= -
r r r) are calculated and from remaining (µ-1) parents

perpendicular distances Di to the line pd
r

 are computed and their average D is

found. The offspring is created as follows:

 18

1,

p p i

i i p

y x w d w De
m

V h
= ¹

= + + å
rr r r

where ier are the (µ-1) orthonormal bases that span the subspace perpendicular to
pd

r
, wV and wh are zero-mean normally distributed variables.

Herrera et al. (1998) give a comprehensive summary about the mutation

operators designed for EAs as well. These operators are random mutation, non-

uniform mutation, real number creep, Mühlenbein’s mutation, discrete modal

mutation and continuous mutation.

2.3.3 Previous studies in this area

There are many studies, which use heuristics for multimodal function

optimization. Our concern here is the previous work on function optimization with

real coded GAs (EAs).

Deb et al. (2002) propose a generic parent-centric recombination operator

(PCX) and a steady-state, elite-preserving, scalable population alteration model.

They modified Minimal Generation Gap (MGG) model, which was originally

suggested by Satoh, Yamamura and Kobayashi (1996). MGG model selects µ

parents randomly and generates λ offspring from µ parents. Then the model chooses

two parents at random from the population and one is replaced with the best of the λ

offspring and the other is replaced with a solution chosen by roulette wheel

selection. In their model, Deb et al. select the best parent and µ-1 parents randomly

and generate λ offspring from µ parents using their recombination operator. They

choose two parents randomly from the population and, from a combined

subpopulation with two chosen parents and λ created offspring, they choose the best

two solutions and replace the chosen two parents with these solutions. They

investigate the performance of their model on three commonly used test problems

(ellipsoidal, Schwefel’s and Rosenbrock’s functions) and compare with a number of

evolutionary and classical optimization techniques including other EAs with UNDX

and SPX operators, the correlated self adaptation strategy, the differential evolution

technique and the quasi-Newton method. They also try to solve Rastrigin’s function

in order to investigate the performance of their model on multi-modal problems.

 19

The details of this function are given in Chapter 3 and Deb et al.’s performance is

given in Chapter 4.

Chelouah and Siarry (2000) propose an algorithm called Continuous Genetic

Algorithm (CGA) for optimization of multimodal functions. They use real coding

for representation. They reduce the population size progressively throughout the

generations. The algorithm first addresses the choice of initial population. In order

to avoid the risk of having too many individuals in the same region, they define a

neighborhood for each selected individual. If an individual does not belong to the

neighborhood of any other individual, it is accepted to be a member of the initial

population. Then the algorithm locates the most promising area of the solution

space and continues the search through an “intensification” inside this area. They

prefer roulette wheel selection for parent selection. For crossover, they draw a

random integer between 0 and the dimension of the search space. They leave one

side of this crossing point unchanged and alter the other side by adding and

subtracting some values that they calculate from the corresponding genes of both

parents. Mutation probability is also reduced throughout the generations. The

efficiency of their algorithm is tested through a set of benchmarking multimodal

functions and the performance is compared to Tabu Search and Simulated

Annealing. They find out that for functions having less than 10 variables, they

obtained similar or better results than the ones provided by other methods. On the

other hand, the CPU time becomes an important problem for their algorithm as the

number of variables in the search space increase.

 Takahashi et al. (2000) proposed a distance dependent alteration model

(DDA) with a multi-parental Unimodal Normal Distribution Crossover (UNDX-m).

The crossover operator is a modification of the UNDX operator, where m+2 parents

are selected from the population and the first m+1 parents are used to span the m-

dimensional subspace where the children are mainly created by a normal

distribution. The DDA is based on alterations of the elite child with the nearest

parent in the generation, to progress a search maintaining a diversity of the

population and is a modification of MGG model. They do not use any mutation

operator. They test the performance of their algorithm using two benchmarking

 20

functions (Rosenbrock’s and Fletcher-Powell’s) and compare the results with the

original MGG model.

Pan and Kang (1996) use a normalized representation scheme in order to use

inversion operator. They normalize the variable values to [0,1] range using the

boundary information on them. The parents are mated randomly and the number of

offspring created is equal to the population size. Preserving the best individual in

the population, they replace all the remaining ones with the offspring. Three

different crossover and mutation operators are used. The first two of the crossover

operators are extended line crossover and extended intermediate crossover. The

third one is similar to one-point crossover used in binary representation with a little

modification on the kth gene of the offspring, where k is the exchange point. With a

predefined probability, inversion is applied before crossover operators. Two points

are chosen in the parent vector and the vector is cut at those points. The order of the

cut section is inverted and the offspring is obtained. They test their algorithm on

benchmark functions including Rastrigin’s function with bounds on variables.

Ono et al. (1999) introduce a mechanism using two different crossover

operators interchangeably. UNDX and Uniform Crossover (UX) are used and their

selection probabilities are adapted according to the characteristics of a given

function. UX is the same as the discrete crossover mentioned in Section 2.3.2. The

probabilities are updated throughout the iterations. If a crossover produces a child

better than the parents, then selection probability of this crossover in the next step is

increased. A modification of Minimal Generation Gap (MGG) is used where

distance information between individuals is utilized. Rosenbrock’s, Rastrigin’s and

Schwefel’s functions are used for comparison purposes.

Beside these studies, hybrid algorithms are also used in function

optimization. These are based on the utilization of both heuristics and traditional

methods like hillclimbing.

Chelouah and Siarry (2003) work out a hybrid method, called continuous

hybrid algorithm (CHA), performing the exploration with GA, and the exploitation

with a Nelder-Mead Simplex Search (SS). They make use of CGA (Chelouah and

Siarry 2000) throughout the exploration step. If a given number of successive

generations is reached without detection of a change in promising region or a given

 21

accuracy relating the individuals’ coordinates is obtained, they finish the

exploration step. After this promising region is obtained, they apply Nelder-Mead

SS in order to intensify and improve the best solution found so far. If the simplex

phase is not prematurely performed, they reach better results than other CGAs.

Hedar and Fukushima (2003) propose a Simplex Coding Genetic Algorithm,

which is a combination of GA with Nelder-Mead method. In this study, a random

number of parents is selected for mating. New child’s gene i (i=1,…,n), where n is

the dimension of the search space) is calculated by adding the average value of the

corresponding gene of the parents to a value, dri, where d is the maximum distance

between pairs of parents and ri is a random number between 0 and 1. The crossover

operator uses the information on diversity among the genes of the parents.

As can be seen from the previous work in this area, the most important

aspect of EAs for multimodal function optimization is the design of crossover

operators. Most of the previous work focus on the crossover operator since it helps

the algorithms to explore the search space in such a way that promising regions are

efficiently found. Our work emphasizes the design and efficient use of the crossover

operator as well.

2.4 Stochastic Function Optimization by EAs

This section is organized as follows: An overview of the problem is given

including effects of randomness on the algorithms. Selection schemes in

deterministic environments are explained in order to provide a background for

adaptation of these to stochastic environments. Previous studies in this area based

on the adaptation of the algorithms to the stochastic environments are mentioned.

The section is concluded with statistical comparison methods and “grouping” issue.

2.4.1 Overview

A hard area that EAs can efficiently operate is function optimization under

disturbances on the output measures. These can be caused by both exterior factors

like measurement errors and interior factors such as simulation output structures,

which are estimates of the real values. In literature, these kinds of effects are

 22

considered as noise. In our work, we use the terms error, randomness and noise

interchangeably. When a chemist measures an amount of liquid in a test tube, he or

she must include some safety factors in her measures since inaccuracies in

measuring equipment might have skewed the results. This type of disturbances is

called measurement noise. In addition, the process itself may be noisy. If we are

trying to optimize a system by simulation, the output contains some randomness

coming from the environment itself. The interarrival time of customers arriving to

the system or processing time of the operators contain randomness resulting in lack

of precision on the performance measures. Only some estimates can be obtained in

such systems.

A class of such problems is simulation optimization problems. Simulation

optimization provides a structured approach to determine optimal input parameter

values, where optimal is measured by a function of output variables associated with

a simulation model. Consider a manufacturing or service system. The objective is to

improve performance in terms of a certain measure. The related optimization

problem involves discrete/continuous design variables, and expected values of

stochastic objective functions and constraints. Discrete design variables can be

number of machines to be purchased, number of workers to be hired, etc.

Continuous design variables can be batch size, capacity of a certain furnace, etc.

There can be constraints to be satisfied such as a limit on the work-in-process

inventory. These are to be decided based on performance measures to be maximized

or minimized such as minimization of cycle time or maximization of throughput.

After a simulation run is over, estimates for the performance measures are obtained.

These performance measures are in fact functions of input variables. These

functions can be implicit or explicit depending on the situation. If these functions

can be defined explicitly, then these problems turn to be stochastic function

optimization problems. In literature, heuristics including EAs are used for

simulation optimization problems. Some examples of such researches are Azadivar

and Tompkins (1999), Baesler and Sepúlveda (2001) and Dengiz and Alabaş

(2000).

According to Beyer (2000), there are two major effects of randomness in the

environment. He states that noise reduces the EA’s convergence rate to the solution

 23

and causes convergence to local optima. He also shows that, for a fixed level of

noise, higher-dimensional problems are harder to solve.

In order to reduce the effect of randomness in the environment and make the

algorithms more efficient, some methods are proposed. Mangalath (2002) provides

a review on the previous attempts to handle the error in the environment. These are

resampling, increasing population size, partially ordered fitness sets, inheritance of

rescaled mutations, robust evolutionary programming and thresholding. Two major

proposals that we are interested in are resampling and increasing population size.

Resampling means averaging over a number k of fitness measurements. The

variance estimate decreases as the number of realizations increases and this results

in better estimates. As k goes to infinity, error reduces to zero, which means the

fitness estimate turns to be the true fitness value. The other proposal is increasing

the population size p. This method can be incorporated with resampling. These two

proposals mainly try to reduce the effect of error in the environment with some

associated costs. These two require CPU time, which increases proportional to both

k and p. A balance between these two has to be maintained if CPU time is a limited

resource.

Since traditional optimization techniques cannot handle these kinds of

problems efficiently, developed heuristics can easily be adapted to the environments

containing randomness. EAs have been used in this area with different

modifications.

2.4.2 Selection schemes

The adaptation of EAs to stochastic environments is based on the parent

selection step, which is the only step that performs differently in deterministic

environments and stochastic environments. The operators such as crossover and

mutation are unaffected by the changes in the environment. The selection step is

directly affected by the selection probability determination scheme. Before

proceeding, we review the selection schemes used in deterministic environments.

The solutions with higher fitness values are assigned a higher probability of

selection as parents to be mated. The schemes can be classified into three as

proportional selection, ranking selection and tournament selection.

 24

Proportional selection: Selection probability of an individual is proportional

to its fitness. For example, if we have a maximization problem, the selection

probability of the ith individual will be:

1

i
i n

j
j

fp
f

=

=
å

where fi is the fitness value of the ith individual and n is the population size.

This is a simple and easy method, but may result in premature convergence

to poor results. Some individuals with very high fitness values may dominate the

population in the early steps of the algorithm and prevent the algorithm from

exploring the whole search space effectively. This is also called roulette wheel

selection.

Ranking Selection: In this scheme, the selection probability of an individual

depends upon the rank, not the magnitude of the solution’s fitness value. The rank is

determined by the position of the individual’s fitness value among the other

members of the population. One of these schemes is linear ranking, where ith best

solution has a selection probability:

 1 12(1)()
1i

ip
n n
h h
é ù-ê ú= - -
ê ú-ë û

 (1)

where n is the population size and η is a constant between 1 and 2.

 In this scheme, the difference between the selection probabilities of the

individuals is linearly decreasing. This prevents the algorithm to favor the better

individuals in early steps strongly as in proportional selection and gives more

chance to other individuals. The details and the meaning of linear ranking scheme

will be given in Section 3.2.1.2.

Tournament selection: In this selection type, q solutions are selected from

the population with equal probability to participate in a tournament. q can take

values between 2 and n, where n is the population size. The fittest solution in the

tournament survives. M such tournaments are held within each generation in order

to form the mating pool of size M.

These methods are designed for deterministic environments and they have to

be adapted to stochastic environments. These methods use the fitness information

 25

directly or as a basis for ranking purposes. However, in stochastic environments,

fitness values of different chromosomes are not deterministic and subject to some

disturbances. To reduce these disturbances, resampling is proposed which results in

estimates for fitness values. Briefly, in stochastic environments, we do not have

exact fitness values, but some estimates for their distributions.

2.4.3 Previous studies in this area

The first two studies mentioned below focus on constant and known errors.

They use the observed fitness values in parent selection step. They do not consider

resampling for reducing the errors and obtaining more precise fitness value

estimates. One observation for each solution is considered sufficient and they focus

on other aspects of GAs such as diversity, effect of noise level, etc.

Beyer (2000) summarizes the previous research on function optimization in

noisy environments with GAs and EAs. He also tests the performance of GAs on

the noisy sphere model, where the objective function to be maximized is:

2 2

1

2

() 1 (0,)

1 1, , 10, = constant
10 10

n

i e
i

i e

f x X N

X n

s

s

=
= - +

é ù
ê úÎ - =ê úë û

å

 Optimum value of this function is 1, where all Xi’s are 0 and noise effect is

switched off. Binary coding is used and uniform crossover is applied. Parent

selection is done by roulette wheel selection and tournament selection with

tournament sizes 2 and 5. No mutation operator is used. Different 2
es values are

tested (i.e. 0, 0.1, 0.3, and 1.0). He observes that residual difference from the

optimum reaches a steady-state value and this steady-state value is a monotonically

increasing function of noise strength. The convergence of the algorithm also

depends on the magnitude of the error. The higher the error on the fitness function

is, the slower the convergence rate is. He also observes that roulette wheel selection

is the most insensitive selection technique in terms of the influence of 2
es on the

residual difference to the optimum. As 2
es increases, it performs equally well or

even better than the other selection techniques. He also points out that elitism

 26

(preserving the best solution) is not very helpful because the fitness of the

seemingly best individual may be a result of a large noise fluctuation. The rest of

the paper is devoted to Evolutionary Strategies, which is beyond the scope of this

study.

Mathias et al. (1996) compare several types of GAs against a mutation

driven stochastic hill climbing algorithm on a standard set of benchmark functions,

which have Gaussian noise added to them. Binary coding is used. The GAs used are

simple elitist GA (ESGA), the CHC adaptive search algorithm, and the delta coding

GA (DCGA).

ESGA uses two-point crossover with probability pc, simple bit mutation with

probability pm, preserves the best solution in the population, selects parents using

Baker’s stochastic universal sampling algorithm.

The CHC adaptive search algorithm employs a cross-generational

selection/competition mechanism. Strings are uniformly chosen for recombination

from the parent population. Offspring are held in a temporary population and the

best N strings from the parent and offspring populations are selected for the next

generation, where N is the population size. If no offspring can be selected for the

next generation, then cataclysmic mutation is applied which keeps one copy of the

best individual and uses it as a template to reform the remainder of the population.

Crossover used is heterogeneous recombination (HUX), where potential parents are

compared and if the number of differing bits exceeds some threshold, uniform

crossover is randomly applied to half of the differing positions in order to scatter

offspring to random points.

DCGA ranks the population; two parents are selected with linear ranking;

one offspring replaces the worst member of the population and the next offspring is

then assigned a rank in the population. Population diversity is monitored by testing

the Hamming distance between the best and the worst individuals in the population

in order to maintain diversity. If the distance is greater than 1, search continues;

otherwise, it is suspended. When a run is suspended, the variables of the best

solution are saved and the remaining population is randomly regenerated. The

search proceeds as normal except that the variables are decoded such that they

represent a delta value away from the best solution variables. These delta values are

 27

added to or subtracted from the best solution variables in order to remap the search

space in such a way that the best solution is located at the origin of a hypercube.

When the population diversity has been sufficiently exploited, the search is

suspended and a new set of best solution variables are saved.

The functions selected for comparison are DeJong’s, Rastrigin’s, Schwefel’s

and Griewank’s. Gaussian noise with mean zero and a standard deviation of 1 is

added to these functions. The algorithms terminate and are considered as successful

when the stochastic function value is 2.5σ within the true optimal solution.

They compare the performances of these algorithms using the true fitness

values when the algorithms terminate. They observe that stochastic hill-climbing

method performs worse than any of the GAs used. They state that CHC and DCGA

perform better than the other algorithms.

The following studies consider the resampling issue. Some of them focus on

the allocation of resources, and some try to maintain some equivalence between the

stochastic and deterministic environment.

Rudolph (2001) proposes to improve resampling by having an estimate of

the error on the fitness function. Rather than simple resampling, if there is prior

information on the bounds of the error, the confidence interval can be incrementally

narrowed down to an acceptable level. In each sample, the bounds of the resulting

interval are updated using the new and the old interval bounds and by using this

strategy, a threshold is obtained where the true fitness lie within this threshold. The

previous information on the solutions is kept in memory in order to use this

information in the succeeding steps of the algorithm. An assumption in this study is

that the bounds of the error term are known.

Mangalath (2002) uses Rudolph’s algorithm (2001) and extends it by some

modifications, which lets the algorithm to handle the unbounded errors. The

proposed modifications are the introduction of minimum resampling and

incremental ranging (in order to smooth out the effects of irregular observations on

the confidence interval limits), removing memory (in order to prevent early

finishing, since there is no guarantee that calculated fitness is correct in unbounded

case), and using large noise estimates. He uses combinations of these modifications

in experimentation in order to see the effects of these.

 28

Rank-based selection, Gaussian mutation, and a simple Evolutionary

Strategy is used (µ offspring are generated from µ parents and µ individuals from

the combination of offspring and parents are transferred to new generation).

Dejong’s and Sshaffer’s functions with Gaussian noises added are tested. Three

different error levels are used as a factor for experimentation. Simple resampling

algorithm (SRA) is compared with the Rudolph’s algorithm (RA) and the modified

Rudolph’s algorithm (MRA) for bounded and unbounded error environments.

Higher error levels reduce the performance of SRA. Increasing population

size doesn’t improve the performance and leads to an interpretation that resampling

is preferable to high population sizes. RA performs well on bounded errors and poor

on unbounded errors. MRA’s performance on unbounded errors is better than RA’s.

Boesel (1999) tries to find a stochastic equivalence between deterministic

and stochastic environments in terms of selection schemes. He uses two different

schemes. In the first one, total sum of squared deviations (SST) is the concern. The

realized selection probability for the ith best solution is defined as wi and the desired

selection probability for this solution as pi. The desired selection probability is the

selection probability of the ith best solution in deterministic environment. Total sum

of squared deviations is defined as the sum of the squared differences between wi’s

and pi’s for all chromosomes. Boesel looks at the ratio of SST in deterministic

environment to SST in stochastic environment and tries to maintain an acceptable

level, which is around 1. To illustrate the effect of stochastic setting on SST, he

assumes that he can form g equally-sized groups with a statistical method. All

members of group j are superior to all members of group j+1 and there is no

information on how to rank the solutions within a group. He finds out that, for

tournament selection, tournament participants (q) and number of groups formed (g)

determine the ratio of SSTs. There is a direct relationship between selection

pressure and number of groups required for a fixed SST ratio.

The second scheme that he uses is based on minimizing expected sum of

squared deviations due to misranking in stochastic environments (SSD). It tries to

close the gap between pi and Si, where Si is the selection probability actually

assigned. In order to minimize SSD, all members of each group must be assigned

their group’s average selection probability. Increasing the number of groups (g)

 29

from 1 to 2 brings the biggest profit under both ranking and tournament selections.

He points out that allocating replications to best solutions rather than the worst

solutions will be better in order to form additional groups.

He also summarizes the necessary properties of a good procedure.

Procedures have to allow sequential data collection, allow unequal and unknown

solution variances, produce nonoverlapping sets, and estimate required number of

replications for different groupings.

Boesel et al. (2003) try to reach a stochastic equivalence within deterministic

and stochastic environments. Same selective pressure is used, i.e. expected number

of copies of the best solution in the current population that goes on to the mating

pool for the next generation are equalled for deterministic and stochastic

environments. Q-tournament selection is used to satisfy the same selective pressure.

Selection probabilities are rearranged so that, after grouping the individuals by a

grouping procedure (Calinski and Corsten 1985), each member of the best group is

given the same selection probability as the best solution received in a deterministic

environment. Each member of each group is assigned the average of the group’s

selection probability.

Aizawa and Wah (1994) develop methods for adjusting configuration

parameters of genetic algorithms operating in stochastic environments. Two

problems are examined which are duration-scheduling and sample-allocation

problems. Duration for a generation (T) is defined as (M*N), where M is the

population size and N is the number of evaluations for each candidate solution.

They assume that evaluation noise is common for all solutions and invariant in time

and all candidates are assumed to have the same statistical properties and normally

distributed. The population size M is assumed to be given.

In duration-scheduling problem, T is decided while N is common for all

candidates. An accepting range is defined and while the ratio of the variances is

within this range, more samples are generated for each candidate in equal size until

predetermined T is reached. In sample-allocation problem, N for each solution is

decided where T is common for each generation. A risk factor is defined and tried to

be minimized. It is composed of the multiplication of the probability of being the

best for candidate solutions and variances of them. The new samples are allocated

 30

to higher-variance, superior solutions that have received relatively few replications.

This is based on the idea that the better solutions have a higher chance of being

selected and affect the overall performance of the algorithm. They compare their

performances with the static algorithms and outperform most of these procedures.

Marrison and Stengel (1997) design a procedure that allocates replications

according to within-solution variance of each solution. They use tournament

selection of size two on the principle that if the error of the difference due to

randomness is smaller than the true difference between means, the tournament

selection is unaffected. Replications are allocated to higher-variance solutions to

their low-variance counter-parts. The number of replications for each solution is

based on the ratio between the observed cross-solution variance of the best 25% of

the solutions in the population and the average within-solution variance of those

solutions. They test their performance on a benchmark problem for designing robust

compensators.

2.4.4 Grouping

When resampling is used, a mean and a variance estimate of fitness values

are obtained. One method of utilizing this information correctly is to use statistical

comparison methods. One group of these methods is pairwise comparisons, which

can be classified according to variance structures and sample sizes. Most of these

methods assume equal variance. An overview of these comparison procedures can

be found in Hines and Montgomery (1990), Mendenhall and Sincich (1996). Most

of these methods take the mean estimates of the solutions pair-by-pair and

constructs hypotheses on the differences of these estimates. Some of them are LSD

(Least Significant Difference), Bonferroni, Waller-Duncan t-test, Dunnett test, etc.

By using these kinds of techniques, solutions in generations can be classified

and some statistical information can be used to discriminate between these

solutions. Grouping the chromosomes using this kind of information is a way to

achieve this. Grouping methods can be classified as methods that produce

overlapping groups and methods that produce nonoverlapping groups.

For methods that produce nonoverlapping groups, the members in group j

are accepted to be statistically better than the members of group j+1 for j=1,..,k,

 31

where k is the number of groups formed. In literature, most of these methods

assume equal variance for all variables that are considered. An example of such

methods is proposed by Calinski and Corsten (1985). They propose two methods.

The first method is a hierarchical, furthest-neighborhood method with the range of

the union of two groups as the distance measure and with the stopping rule based on

the extended Studentized range simultaneous test procedure. The second method is

nonhierarchical, with the sum of squares within groups as the criterion to be

minimized and the stopping rule based on an extended F ratio simultaneous test

procedure. The details of this method will be given in Chapter 3. They assume that

variance is common for all individuals and each individual has equal number of

observations.

The other group of methods produces overlapping groups. One example of

such methods is Tukey’s multiple comparison of means (Mendenhall and Sincich

1996). This method assumes equal variance and equal number of observations for

individuals like Calinski-Corsten procedure. It utilizes Studentized range and

defines a threshold in order to compare the mean estimates. If the difference

between the mean estimates of two individuals is smaller than the threshold, then

these two cannot be accepted as distinct solutions statistically and assumed to be in

the same group. This method results in overlapping groups, i.e. an individual can be

in more than one group. Therefore, we cannot statistically state that all individuals

in a group dominate all of the members of a worse group. We refer to this kind of

methods as methods that produce overlapping groups.

Boesel (1999) proposes screening and selection methods after the algorithm

terminates in order to decide the best solution obtained. He compares three

procedures, which are screen, continue and select (SCS), screen, restart and select

(SRS), and finally, sort and iterative screen (SIS) procedures. SCS procedure starts

with screening. In screening, he uses a subset-selection procedure, which returns a

subset that contains the best of the k groups with a probability greater than (1-α).

The method he proposes allows unequal and unknown variances. A threshold is

defined and used for ending up with a “best” group, which is based on Rinott’s

procedure. After screening is completed, among the ones that stay in the “best”

group, additional realizations are performed and by the reduction in the variances,

 32

the best one is decided. In SRS procedure, after screening is completed, first stage

sample data are discarded and data for non-inferior solutions are recollected in order

to discriminate between the best solution and the others. In SIS procedure, solutions

in the “best” group are iteratively screened by collecting additional information for

individuals that cannot be screened.

2.5 Summary

Stochastic function optimization with EAs is an emerging area in literature.

In order to have a background on this area and design an algorithm that can handle

the problems involved, we first overview the traditional unconstrained optimization

techniques and EA basics.

In literature, most of the studies are on deterministic function optimization

(i.e. no randomness is associated with the environment). The work is based on the

design of crossover operators that makes the algorithm explore the whole search

space efficiently. We summarize different crossover operators both for binary and

real-coded algorithms and refer to previous studies on function optimization with

EAs.

In order to adapt the techniques that are constructed in deterministic function

optimization to stochastic environment, parent selection and recombination schemes

are examined in the literature. The effects of the noise on the performance of the

traditional GAs and EAs are also studied. Selection probability assignment to the

potential mates is examined. Resampling and increasing the population size are

accepted as some methods to handle the randomness in the environment. We briefly

overview these topics and refer to previous studies in this area as well.

We can summarize the crucial points in designing an Evolutionary

Algorithm to solve stochastic function optimization problems as follows:

• A crossover operator has to be designed in such a way that the algorithm

can explore the search space efficiently and effectively, independent of

the initial population’s location and range.

• Resampling is needed in obtaining more precise fitness estimates when

randomness is associated with the problem.

 33

• Statistical comparison methods can be used to discriminate between the

individuals before the selection step. Grouping the individuals in such a

way that some individuals take higher selection probabilities than some

others can be useful.

o The grouping method has to handle both equal and unequal

variances if the environment produces these types of variance.

o Overlapping and nonoverlapping grouping methods have to be

designed in such a way that both of them can come up with

reasonable results.

 34

CHAPTER 3

3. FUNCTION OPTIMIZATION BY AN

EVOLUTIONARY ALGORITHM

In this chapter, we explain the details of our study. We can divide our study

into two parts at this point. The first part of our research is dedicated to multimodal

function optimization by an EA. The second part of our research is the adaptation of

our algorithm to a new environment where randomness exists. We refer the second

part of our study as stochastic function optimization by an EA.

In the first section, we explain the fundamental components of our

algorithms, which are the same for both parts of our study. These components

include the chromosome structure, the population structure, termination conditions.

After constructing the basics of our study, we define our algorithm, which is

designed for multimodal function optimization where the environment is

deterministic. The emphasis is on the crossover operator like in past studies. In the

succeeding section, we explain the stochastic version of our algorithm, which is the

adaptation of the previously constructed algorithm. In this section, the parent

selection and the replacement steps are modified and adapted to stochastic

environment. The emphasis of this section is on the probability assignment scheme

used in parent selection step. Finally, we conclude this chapter with some remarks

and expectations.

3.1 Common Components of the EA

In this section, we define the components of our study that are common in

both deterministic and stochastic environments. These components are the functions

 35

to be optimized, chromosome structure, population size, initial population

generation and termination conditions.

3.1.1 Function structures

We are interested in continuous, multimodal, nonlinear and nonconvex

functions with no constraints to be considered. Unimodal and linear functions can

be handled by analytical methods where multimodal and nonlinear functions are

hard to solve by these methods. In order to test the performance of our algorithms,

we use two test functions from literature and one function that is newly introduced

by us, where all these are multimodal and nonlinear.

First function is called “Rastrigin’s” function (Digalakis and Margaritis

2002) and it is highly multimodal. The structure of it is as follows:

 ()()2

1

10 10cos 2
n

rst i i
i

f n X Xp
=

= + -å

where n is the number of variables and Xi’s are the variables.

The original form of this function is defined within a range [-5.12, 5.12] for

all Xi’s. For every combination of integer Xi’s, there is a local optimum and the

global optimum of this function has a value of 0 where all Xi’s are equal to 0.

Unlike in many past studies involving this function, we initialize the population

randomly at Xi Î [-10,-5] and the purpose of this policy is explained in “Initial

Population” section.

Second function from literature is “Rosenbrock’s” function (Digalakis and

Margaritis 2002). The structure is as follows:

 () ()()1 2 22
1

1

100 1
n

ros i i i
i

f X X X
-

+
=

= - + -å

where n is the number of variables and Xi’s are the variables.

Global optimum value of this function is 0 where all Xi’s are equal to 1. It is

an interesting function in terms of the strict relationship between the consecutive Xi

values and its effect on the function value. There is a relation between the

difference of Xi
2 and Xi+1 and this relationship forces the consecutive Xi values

decrease quadratically.

 36

The last function family that is used is a high-order polynomial, which has a

structure as follows:

 4 3

1 1

() ()
n n

j i i i i i i ij i j
i j

f X a X b X c X q X X
= =

æ ö÷ç ÷= + + +ç ÷ç ÷çè ø
å å

where qij and ci are generated uniformly within the range [-0.5,0.5], ai is generated

uniformly within the range [-1,0], and bi is generated uniformly within the range

[0,-ai]. 10 different parameter sets are generated (i.e. j=1,…,10). The generated

functions are solved in GAMS by CONOPT solver with 1000 different starting

points and the best found among these is used for comparison purposes for each

function. The ranges for parameter generation are based on the idea that the solver

should yield finite optimum values for these functions not in infinities (i.e. ai and bi

bound the optimization problem).

3.1.2 Chromosome structure

Xi’s are the genes of a chromosome that will be used in the evolutionary

algorithm. The order of the genes does not represent anything in terms of the

problem structure at this point. These values can be considered as independent.

Even if they are dependent, the structure will not be affected. The structure of the

chromosomes that we use in our study is given in Figure 3.1.

 FIGURE 3.1 Chromosome Structure

3.1.3 Population size

The population size is an important component of an EA. The decision of

the population size is to be considered with the replacement strategy. If full

replacement is used, then in every generation, m new chromosomes are generated,

where m is the population size. If the computational time is a constraint, then

Xi
X

 37

population size becomes important. Higher population sizes lead to better

exploitation in every generation by giving chance to more individuals to mate, but

this requires more CPU time. If steady-state replacement is used, then in every

generation, only two individuals are generated and replaced with two in the current

generation. The population size affects the probability assignment step, but not the

total number of individuals generated and examined throughout the generations.

We decide to take population size as a factor to the experiment. Since our

replacement strategy is based on steady-state replacement, we allocate our CPU

time to higher number of generations by not increasing the population size a lot.

Details will be given in Section 4.1.

3.1.4 Initial population

Initial population generation is an important issue in the research field and

different alternatives are proposed. Some researchers generate the initial population

randomly or by a completely or partly heuristic procedure depending on the

problem. We simply generate the initial population randomly.

There are two decisions to be taken for initial population generation, which

are the location and the range of the initial population. Two different populations

can have the same range but at different locations. For example, if population1 is

generated randomly within [-100,-95] and population2 is generated randomly within

[-5,0], the ranges are said to be equal, whereas the locations are different. Different

combinations of location and range affect the performance of the algorithm.

One of the important aspects of initial population generation is the existence

of prior information on the location of the optimum solution. If there is prior

information or some heuristics can be developed in order to gather such

information, the initial population can be set using this information and it may make

the algorithm more efficient in finding this optimum. However, this kind of

information cannot be obtained easily, in general. Therefore, an algorithm should be

capable of starting from a location that is far from the optimum and efficiently

reaching the global optimum. Since we know the optimum solutions of our test

problems, we select the location purposely outside the optimal values of Xi’s in

order to see the power of the algorithm to reach to the correct location from an outer

 38

region. As Deb et al. (2002) stated, this initialization presents an important issue,

which is ignored in many past studies: Initial population is far away from the global

optimum, thereby making sure that the algorithm must overcome a number of local

minima to reach the global optimum.

In our algorithm, the range of the initial population is also important, since it

directly affects the crossover operator and its performance, which we explain in

Section 3.2.1 in detail.

3.1.5 Termination

There can be different termination criteria that can be used in EAs. One of

the easiest ways to set a termination criterion is to define a limit on the number of

generations achieved. It is simple and does not require too much CPU time to check

whether it is achieved or not. We set the maximum number of generations as a

termination criterion in our algorithm as well. We also define and check the effects

of another termination criterion. This criterion depends on the gene values of the

chromosomes in the population. For genei, if the maximum difference between the

corresponding genes of all individuals in the population is smaller than ε, a small

number, then this gene is said to be converged. If all genes converge, then

population is said to be converged and the algorithm is terminated. If this cannot be

achieved, then the limit on the maximum number of generations, gmax, determines

the termination. For experimental purposes, ε is chosen as 0, i.e. perfect

convergence is aimed.

3.2 Deterministic Function Optimization by EA

In this section, we define the components of our algorithm, which we design

for multimodal function optimization under deterministic environment. These

components include the fitness value, the parent selection mechanism, the crossover

operator and the replacement strategy. We conclude this section with the steps of

our algorithm in pseudo-code.

 39

3.2.1 Algorithm components

Fitness value

The fitness value represents the value of the function to be optimized that is

composed of different Xi values, i.e. fitness value is equal to f(X) where X =

(X1,…,Xn), n is the number of variables and f is the function to be optimized.

Parent selection scheme

Parent selection scheme is determined by the probability assignment

strategy. As defined in Section 2.4.2, there are different selection schemes based on

probability assignment.

We rank the chromosome according to their fitness values. If the problem is

minimization, then the chromosome having the smallest fitness value takes rank 1

and the chromosome with the highest fitness value takes the rank m, which is the

population size. Ranking is used to prevent highly fit chromosomes from

dominating the evolutionary algorithm in the earlier generations, which may occur

with fitness proportional selection. The selection probabilities are assigned to each

chromosome according to their ranks by using equation (1), which is repeated

below. Two parents are selected using these selection probabilities where these

parents cannot be the same individual.

 1 12(1)()
1i

ip
n n
h h
é ù-ê ú= - -
ê ú-ë û

η can be considered as the selection pressure. The selection chance of more fit

individuals increases as h gets closer to its upper limit. This can be defined as a

more elitist strategy. Suppose that there are five chromosomes in a population

where ith chromosome has a higher fitness value than the (i+1)th chromosome. In

Table 3.1, the effect of h on the elitism is shown.

The selection probabilities decrease linearly from the first individual to the

fifth individual. h determines the rate of decrease. When h is equal to one, the

selection probability of each individual is the same, which means random selection.

When h becomes two, the selection probability of the first individual is 0.40, and

the worst individual is assigned no chance of selection.

 40

TABLE 3.1 Selection probabilities for different h values

 h
chromosome i 1.0 1.2 1.5 1.7 2.0

1 0.20 0.24 0.30 0.34 0.40
2 0.20 0.22 0.25 0.27 0.30
3 0.20 0.20 0.20 0.20 0.20
4 0.20 0.18 0.15 0.13 0.10
5 0.20 0.16 0.10 0.06 0.00

We can define a h vector ([]1 2,h h h=) where 1h is for the first parent’s

selection and 2h is for the second parent’s selection. We tested different h vectors

in order to see the effect of elitism on the test problems. In order to slow down the

convergence and let the algorithm explore the solution space more, 2h is selected as

1.0, i.e. random selection, in this study. Briefly, first parent is selected based on its

rank and second parent is selected randomly among the remaining chromosomes.

Crossover operator

As we mentioned in Chapter 2, the most important part of an EA for

function optimization in real space is the design of recombination operators. These

operators make the algorithm free from the choice of the initial population and let

them explore the search space. Our test functions are defined in real space, i.e.

solution space is infinite. In this study, we give emphasis to the crossover operator

and do not use any mutation operator.

The crossover operator can use both the location information of genes one-

by-one and the location information of the entire chromosome in an n-dimensional

space. In this study, in order to design a faster operator, we use the location

information of genes one-by-one rather than the entire chromosome. The basic

information that can be incorporated to the crossover operator is the difference

between the genes of parents (di, where i is the gene number). However, using only

this information is not enough since after a certain number of generations, the genes

become closer to each other and the difference between them becomes very small.

In Figure 3.2, genei of parent 1 (Vi1) and parent 2 (Vi2) are shown.

 41

FIGURE 3.2 Location information of genes and its usage

The crossover operator has to let the children that will be generated from the

parents take values from both inside and outside the range between the parents’

corresponding genes. If the algorithm forces the children to be generated only from

the inner range for parents (I.R.) and if this range does not include the optimum

value of that gene, then there is no chance to reach the optimum. Hence, the

crossover operator has to generate the children from not only the inner (I.R.) but

also the outer region (O.R.) of the parents’ corresponding gene values.

The problem is the determination of the resulting range for children’s

generation. As the generations pass, these ranges have to be adapted to the

conditions of populations in those generations. Therefore, we not only decide to use

the difference between the parents’ genes (di) but also the maximum difference or

range in the population for the same gene (Di) using the following formulas:

{ }max

i ij ik

i ij ikj k

d V V

D V V
" ¹

= -

= -

The range of values for a gene gives information on how much this gene

converged up to that generation, whereas the difference between parents’

corresponding genes provides information on the similarity of these parents. The

ratio di / max{di} shows how diverse the parents are compared to the population in

terms of gene i. This ratio is between zero and one. We multiply this ratio with a

constant and use it for determination of the bounds for children generation process.

In Figure 3.3, we represent our crossover operator. Vi1 is the ith gene of the

first selected parent, Vi2 is the ith gene of the second selected parent assuming that

Vi2 is greater than or equal to Vi1.

I.R. Vi1 Vi2

O.R.

genei

 42

FIGURE 3.3 Crossover operator representation

To generate children from parents 1 & 2, let Wi1, Wi2 be values of gene i in

offspring 1 & 2, respectively. Assuming Vi1 < Vi2,

2 1
1

2 1
1

1 2

1 1

2 2

Generate , (0,1)
()
()

i i
i i

i

i i
i i

i

i i i i

i i i i

V VLB V c
D

V VUB V c
D

U U U
W LB U UB LB
W LB U UB LB

-= -

-= +

= + -
= + -

: (2)

where U(0,1) is a random number between 0 and 1, Di is the maximum difference

between gene pairs for ith gene in the current population and c is a constant which

we will explain in the following paragraph. Note that, if Vi2 is equal to Vi1, i.e.

parents have the same genei value, children’s genei values are equal to parents’

genei value. If Di is 0, i.e. population converges in terms of this gene, then the same

genei value is transferred to children.

In the formula (2), the most interesting part of the crossover operator is the

constant, c. It determines the width of the range for children. Since (Vi2-Vi1)/Di is

between 0 and 1, the width of the range is between zero and 2c+Vi2-Vi1. Different

policies for c can be considered. It can be constant throughout the generations; it

can be increased or decreased in every new generation or in some generations when

some conditions hold. First, in order to make the algorithm converge, the genes

have to be forced to converge. A constant c always maintains the same width

depending on the ratio (Vi2-Vi1)/Di and it will not be affected throughout the

Vi1 Vi2

LBi UBi di

Range for children

 43

generations. Therefore, we introduce a dynamic c in order to make crossover

operator adaptive to the generations. We decrease it throughout the generations in

order to make the population converge by generating children from a range that gets

narrower as generations pass and we call this “cooling”. Three different cooling

schemes can be used. In all of these cooling schemes, c starts from a certain point

and decreases in every generation and at last it becomes zero when the maximum

number of generations limit (gmax) is reached. We relate the starting point of c with

the range of the generated initial population. The maximum over all genes of the

maximum gene pair differences (maxi{Di}, where i=1,…,n and n is the number of

variables) is selected as the starting point of c and shown as c0 in Figure 3.4.

Expected value of c is the width of the range. Linear, convex and concave cooling

schemes are used.

FIGURE 3.4 Cooling schemes

In linear cooling scheme, c is linearly cooled from c0 to 0. In concave

cooling scheme, c is cooled from c0 to 0 as a point in the circle whose center is at

the origin with a radius c0. In convex cooling scheme, c is again cooled from c0 to 0

as a point in the circle but the center of this circle is at (c0, gmax) with a radius c0.

generations

c

c0

Concave cooling
Linear cooling
Convex cooling

gmax

 44

The x-axis is scaled in order to have a circle with a radius of c0, i.e. gmax is assumed

equal to c0 and generations are multiplied with this factor in order to fit c to a circle.

As an example, suppose that the initial population is generated within the

range [5, 10]. Suppose the population size is m=5 with n=4 genes in each

chromosome and the initial population is generated as in Table 3.2.

 TABLE 3.2 An example for determination of c0 with respect to initial population

 chromosome
gene i C1 C2 C3 C4 C5 Di

1 6 6 9 5 8 4
2 7 9 5 5 10 5
3 8 8 8 9 6 3
4 9 7 9 9 7 2

The maximum difference for gene1 (max{d1}) is 4, which is the difference

between the first genes of C3 and C4. The maximum of Di’s is 5 which is D2. c0 is

equal to 5 in this example, since maxi{Di} is 5.

The difference between the behaviors of these cooling schemes is shown in

Table 3.3, where the maximum number of generations (gmax) is assumed as 5000.

As can be seen in Table 3.3, these three cooling schemes have different

meanings. Compared with linear cooling scheme, circular cooling scheme decreases

c value slower and by this way more chance of exploration is given. On the other

hand, inverse circular cooling scheme decreases c more rapidly and makes the

population converge faster. Experimental results will give extra information about

these schemes in the following sections.

The main idea behind this crossover operator is to give chance of escaping

the local optima that the algorithm can get stuck throughout the generations. Since

we are interested in real function optimization with many local optima, giving

chance to children being far from the parents will give more emphasis to

exploration than exploitation in the earlier phases of the algorithm with different

cooling schemes. After a certain time, making c smaller will make the algorithm

 45

exploit the populations. These schemes determine the balance between exploration

and exploitation, which are two necessary properties of good heuristics.

TABLE 3.3 Behavior of different cooling schemes

 Cooling schemes
Generation Linear Concave Convex

0 5.000 5.000 5.000
500 4.500 4.975 2.821

1000 4.000 4.899 2.000
1500 3.500 4.770 1.429
2000 3.000 4.583 1.000
2500 2.500 4.330 0.670
3000 2.000 4.000 0.417
3500 1.500 3.571 0.230
4000 1.000 3.000 0.101
4500 0.500 2.179 0.025
4600 0.400 1.960 0.016
4700 0.300 1.706 0.009
4800 0.200 1.400 0.004
4900 0.100 0.995 0.001
5000 0.000 0.000 0.000

Replacement

After the children are generated from the parents, they replace the two

chromosomes having the worst fitness values in that generation. Technically

speaking, steady state replacement is used in this study. In each generation, two

children are generated. Therefore, if the algorithm does not converge before the

limit on maximum number of generations is reached, (2*gmax + m) points are

examined where gmax is the limit on the maximum number of generations and m is

the population size.

3.2.2 The steps of EA for deterministic function optimization

We show the steps of our algorithm in Figure 3.5 with a pseudo-code.

 46

Begin
Generate initial population;
Initialize c;
Compute fitness of each individual;
Do

Rank the chromosomes with respect to their fitness values;
Calculate the selection probabilities;
Select first parent using rank-based probabilities;
Select second parent randomly;
For each genei, apply crossover operator;
Replace the worst two with the children;
Find the fitness values for the children;

Update c;
While stopping condition(s) is not satisfied;
Output the best solution;

End.

FIGURE 3.5 The pseudo-code of EA for deterministic function optimization

3.3 Stochastic Function Optimization by EA

In this section, we adapt our EA to an environment where there is

randomness associated with the fitness values realized.

We discuss the modifications of our algorithm that we introduced in order to

adapt our previously constructed algorithm to the new environment. We introduce

the “error” concept. We define the modified algorithm components and conclude

the section with the steps of our new algorithm with a pseudo-code.

3.3.1 Definition of “error”

We assume that the realizations of fitness values for chromosomes are

disturbed with some error terms. For example, if we are interested in a simulation

problem and working with the output measures such as waiting time of customers in

a bank, then we are compelled to deal with some statistical estimates for these

measures. These disturbances come from the environment itself, where the input

parameters involve stochastic terms such as interarrival time, service time, etc.

 47

However, these kinds of estimates can provide statistically confident information

for designing such systems.

In our problem, we assume that the fitness values are disturbed with error

terms that are normally distributed with mean zero and a variance that is affected by

the environment itself (In deterministic function optimization part, we can say that

the error term is switched off). We generate realizations of fitness values by using

this equation:

 2
1 2 1 2(, ,...,) (, ,...,) , (0,)ij n i n ij ij if X X X f X X X Ne e s= + : (3)

where fij(X1,X2,…,Xn) is the jth realization of the ith solution, fi(X1,X2,…,Xn) is the

deterministic part of the solution and ije is the measurement error added to the

solution. Since fi(X1,X2,…,Xn) is a constant term, fij(X1,X2,…,Xn) is distributed

normally with a mean fi(X1,X2,…,Xn) and a variance 2
is . We use this information in

our algorithm to discriminate statistically between different solutions.

We use two different variance schemes in our algorithm such as (1) equal

variance for the whole generation and (2) different (unequal) variances for different

solutions, in order to see the effect of different methods that we will propose. The

error terms are generated using the real values of the fitness functions. We add error

term to the functions and disturb the outputs.

If we use the “unequal variance policy”, then we define the standard

deviation of the error as a fraction of the fitness value of that specific solution. We

test different levels for this policy in the experiment. The function will be generated

as follows:

1 2 1 2

2
1 2

(, ,...,) (, ,...,) , ,

(0, ((, ,...,))) , ,
ij n i n ij

ij i n

f X X X f X X X i j

N ef X X X i j

e

e

= + "

":

where e is a constant between 0 and 1.

As an example, suppose that we are trying to minimize a function with some

error term associated with it. The function is f(x) = x2 + 5 + ε. This function is

defined in single-dimensional space and the expected minimum of the function is 5,

where x is equal to 0. If solution i is (x = 2) and we use e=10%, then prior to

generating the realizations, we define the distribution of the error term as ε ~ N (0,

0.92).

 48

If we use the “equal variance policy”, then the distribution of the error term is

common to every solution in the population. The common error distribution is

defined as follows:

 21 2

1

(, ,...,)
(0, ())

m
i n

ij
i

f X X XN e
m

e
=
å:

where m is the population size.

The details of these calculations and the effect of these policies are described

and tested in the experiment part.

3.3.2 Algorithm components

Fitness value

In order to handle the stochastic environment, we use resampling for each

solution. For each solution, we generate k solutions by using formula (3) and then

calculate estimates for mean and variance by using this equation:

$ $

1 2
1 2

1

2
1 2 1 22

1

1 2

(, ,...,)
(, ,...,)

((, ,...,) (, ,...,))
(1)

(, ,...,) ,

k
ij n

i n
j

k
ij n i n

i
j

ii n ii

f X X X
f X X X

k

f X X X f X X X
s

k

f X X X sm s

=

=

=

-
=

-

= =

å

å

 Since we are trying to construct and use confidence intervals for mean

estimates of the solutions, we can express the fitness value of a chromosome (FVi)

as a distribution of its mean estimate as:

 $ $ 2

(,)i
i iFV N

k
sm: (4)

 As a result, we will express the fitness values of the solutions by not single

points but with normal distributions and estimates throughout this algorithm.

 The main factors that affect these estimates and their precision are the error

proportion (e) and the number of realizations (k). As number of realizations for a

solution increases, the variance estimates of the mean estimates decrease as it can

be seen from the equation (4). This will lead to more precise estimates and narrower

confidence intervals. On the other hand, increasing k requires more CPU time and

 49

this will be a limit on the number of generations if we have a larger k throughout the

algorithm (i.e. total number of realizations is linearly dependent on the

multiplication of k and gmax). The error proportion (e) is an exterior factor to the

problem and if variance increases (i.e. e becomes higher), the estimates become less

precise and the confidence intervals become wider. Different combinations of k and

e will be experimental factors in our problem and the relation of these two factors

will be explored in the experiment part.

Parent selection

Using the realizations for chromosome’s fitness functions, estimates for

fitness functions can be found. Since these are stochastic, deterministic parent

selection techniques based on the fitness values may not be appropriate for parent

selection. In order to incorporate randomness associated with the environment, the

deterministic parent selection methods have to be adapted to stochastic

environment. In other words, stochastic parent selection methods are to be

constructed. The randomness is due to the variance estimates for the mean estimates

of the fitness values. Parent selection methods should be directly related with this

variance information. In the literature, in order to handle this situation, some

grouping methods are proposed. In these methods, the chromosomes that cannot be

said to be statistically different are assumed to be in the same group. In this manner,

some groups are formed before the parents are selected and this information is used

in the selection of the parents.

Parent selection step involves three sub steps, which are grouping, ranking

and probability assignment.

Grouping:

One of the grouping techniques in the literature that we use in this study is

proposed by Calinski and Corsten (1985). In their method, they consider the

ANOVA of comparing k treatments represented by uncorrelated sample means,

each of r observations. They have an assumption of common variance (σ2/r). We

assume normal distribution for the mean estimates. An independent estimate s2 of σ2

is available. Under these circumstances, the method that they offer consists of

testing homogeneity within each of two or more nonoverlapping subgroups (i.e.

 50

each individual appears only in one group) by comparing the sum over all groups of

the sum of squares within these subgroups with cα, which is a threshold value

calculated as follows:

 2 1;(1) k fc k s Fa a
-= -

Here, Fα
k-1; f is the upper α-point of the F-distribution with (k-1) and f degrees of

freedom where k is the number of treatments and f equals (k-1)*(r-1) .

The clustering method used in this procedure consists of splitting the means

successively into p = 2, 3,… groups. At each p, the partition is determined, for

which the total sum of squares within p groups is smallest. The procedure will end

and the corresponding clustering will be final when the sum of squares is less than

cα. We call this method Calinski Corsten Grouping (CCG).

Another method that we use in this study is a procedure using the

information of individual confidence intervals for mean estimates of fitness values.

In this procedure, pairwise comparison of individuals is performed and if the

confidence intervals overlap with each other, then it is said that this pair is in the

same group. In order to add a new member to this group, this new individual has to

have a confidence interval that overlaps with both of these individuals’ confidence

intervals. If only one of these overlaps with the new individual’s confidence

interval, then these two form a new group different from the previous group. By this

way, new groups are formed until all of the individuals are checked. This procedure

produces overlapping groups, i.e. an individual can be in more than one group. We

call this method as Confidence Interval Based Grouping (CIBG).

The advantage of CCG is its power of producing nonoverlapping groups. On

the other hand, it has a strong assumption that all solutions have equal variance. For

example, in simulation environment, it can be hard to satisfy this assumption for

different environments. The advantage of CIBG is its power of handling unequal

variance cases. On the other hand, it results in overlapping groups, different from

the first procedure.

Ranking:

After the groups are formed, the next step is to give ranks to individuals. In

CCG, this step is straightforward. The groups are formed in such a way that each

 51

group and its members are assumed to be superior to worse groups and their

members. Therefore, we first rank the groups with respect to their performances

(average mean estimates of the members) and then assign each individual the

group’s rank to which it belongs.

For example, suppose that there are 10 solutions in a population and after

applying CCG, 4 groups are formed. ith group is superior to (i+1)th group. There are

3, 1, 4 and 2 members in groups 1, 2, 3 and 4 respectively. The ranks for these

members will be as follows: 1-1-1-2-3-3-3-3-4-4.

For CIBG, the situation is different, since this procedure produces

overlapping groups. If an individual appears in more than one group, its rank will be

the average of these groups’ ranks. If an individual appears in only one group, then

it will take this group’s rank. The best group in both of these procedures is assumed

to be the one having the highest average mean estimate.

For example, suppose that there are 5 solutions (namely A, B, C, D and E) in

a population and the confidence intervals are as in Figure 3.6.

FIGURE 3.6 An example for CIBG

After applying CIBG, these groups are formed: CA, AB, BD and E. The

groups are ranked according to the average of the mean estimates of the members of

these groups. The best group is E and the worst is CA if the problem is

maximization. The rank of group E is 1, BD is 2, AB is 3 and CA is 4. After

ranking the groups, we assign the ranks of individuals. Since E appears only in first

group, its rank is 1. D appears in only second group and its rank is 2. B appears in

both second and third groups and its rank is (2+3) / 2 = 2.5. A’s rank is 3.5 since it

appears in groups 3 and 4. The rank of C is 4.

C

A

B

D E

 52

Probability assignment:

 In deterministic case, we use the equation (1) in order to assign selection

probabilities with respect to the assigned ranks. We have to adapt this formula to

the stochastic environment since in this case, two individuals can take the same rank

or fractional ranks can be assigned to individuals in CIBG.

 For each of the ranking schemes, the same policy is used. The selection

probabilities are assigned as follows:

1

(1)1 (2(1))
max_ (max_ 1)

 ,

i
i

f i
i m

i
i

rp
rank rank

pp i
p

h h

=

-= - -
-

= "
å

where max_rank is the worst rank (i.e. highest rank) that is assigned to an

individual, ri is the rank of ith individual, η is the selection pressure between 1 and 2,

and pi
f is the final probability assigned to each individual. The first part of the

equation is the same with equation (1), but the sum of pi’s exceeds 1, since there

can be more than one chromosome having the same rank. Therefore, we normalize

these selection probabilities using the second part of the equation.

 As an example, consider the case where we group 10 chromosomes with

CCG and the resulting ranks are as follows: 1-1-1-2-3-3-3-3-4-4. max_rank is 4 in

this case. η is taken as 1.2. The selection probabilities for the individuals are shown

in Table 3.4.

TABLE 3.4 An example for selection probability assignment by CCG

i ri pi pi
f

1 1 0.300 0.120
2 1 0.300 0.120
3 1 0.300 0.120
4 2 0.267 0.107
5 3 0.233 0.093
6 3 0.233 0.093
7 3 0.233 0.093
8 3 0.233 0.093
9 4 0.200 0.080

10 4 0.200 0.080

 53

This formula preserves the linearity between the selection probabilities and

considers the ranking scheme as well. The selection probability assignment scheme

is the same for CIBG.

Replacement

Replacement step of our algorithm is also adapted to the stochastic

environment. Since the individuals are grouped and we cannot differentiate among

those that are in the same group, determining the worst members of the population

is not as easy as in the deterministic case. We design this step with some

modifications.In this case, there are groups rather than worst individuals. Since we

cannot discriminate among the members of the worst group, we replace two random

members of the worst group with the offspring, if there are more than two members

in the worst group. If there is only one member in the worst group, then one child

replaces this individual and the second replaces a randomly selected member of the

second worst group. If there is only one group formed in that generation, then the

solutions are sorted with respect to their mean estimates and the members with the

worst estimates are replaced with the children. If there are two groups formed with

only one member in the worst group and (m-1) members in the best group (where m

is the population size), then the second child replaces the individual having the

worst mean estimate in the best group. The pseudo-code for replacement scheme is

given in Figure 3.7. This scheme is the adaptation of steady-state replacement to

stochastic environment.

Regrouping

When the termination criteria are satisfied, the output is composed of some

individuals belonging to some groups. We expect that, towards the end of the run,

number of groups decreases and the population converges to one group. In order to

refine the results, we generate additional realizations for the members of the “best”

group and try to shrink down the best group’s size. By this way, we can come up

with smaller number of candidate solutions at the end and only deal with them.

After generating extra realizations for these individuals, we regroup them by the

methods that we previously used. We will give the details of this issue in Chapter 4.

 54

Begin
 WRs=Æ ; SWRs=Æ ; Find the worst rank (wr);
 If (wr = 1)
 {
 Sort individuals with respect to fitness estimates;
 Replace the worst two with the children;
 }
 Else
 {
 count = 0;
 For i=1 to m do
 If (rank(i) = wr)
 {
 count++;
 Add this individual to set WRs;
 }
 If (count >1)
 Replace the children randomly from WRs;
 Else
 {
 Replace the first children with the individual in WRs;
 Find the second worst rank (swr);
 If (swr = 1)
 {

Sort individuals with respect to fitness;
 Replace the worst two with the children;
 }
 Else
 {
 countsecond = 0;
 For i=1 to m do

If (rank(i) = swr)
 {
 countsecond++;

Add this individual
to set SWRs;

 }
Replace the second child randomly from
set SWRs;

 }
 }
 }
End.

 FIGURE 3.7 The pseudo-code of replacement scheme

 55

3.3.3 The steps of EA for stochastic function optimization

We have two grouping schemes in two different environments in which we

test our algorithm, where the error is common to all individuals and the error is

different for each individual. In order to see the effect of different parent selection

techniques, we construct three different settings:

1. Equally generated variances and CCG procedure

2. Unequally generated variances and CCG procedure

3. Unequally generated variances and CIBG procedure

In the first setting, in each generation, deterministic fitness values are

calculated for each chromosome in that population. A fraction of their deterministic

fitness values are assumed to be their standard deviations in that generation. These

theoretical standard deviations are then pooled to obtain a common standard

deviation for that generation. After this figure is obtained, all of the chromosomes

are sampled using this specific standard deviation figure. Expectedly, all of these

chromosomes come from the same population. After this point, CCG is used to

group these chromosomes using the pooled sample variance estimate. In the

subsequent generation, the common standard deviation is recalculated since the

fitness values change from one generation to the next. We represent our algorithm

for the first setting in Figure 3.8 with a pseudo-code.

In the second setting, in each generation for each solution, a deterministic

fitness value is calculated. A fraction of the individual’s deterministic fitness value

is assumed to be its standard deviation in that generation. Each chromosome is

sampled using its own standard deviation figure, i.e. variance estimates are expected

to be different for different chromosomes. After this point, CCG is used to group

these chromosomes using a pooled sample variance estimate. Although the

chromosomes are sampled from different variances, these are assumed to be in the

same sample and a statistical error is made on purpose. The pseudo-code of our

algorithm for this setting is given in Figure 3.9.

 56

Begin
Generate initial population;
Initialize c;
Form the distribution of the error term using the deterministic
fitness values;
Generate realizations for each individual;
Compute fitness estimates of each individual;
Do

Group the individuals;
Rank the groups and the individuals;
Calculate the selection probabilities;
Select first parent using rank-based probabilities;
Select second parent randomly;
For each genei, apply crossover operator;
Select the individuals to be replaced;
Replace the selected individuals with the children;
Form the distribution of the error term using deterministic
fitness values;
Generate realizations for each individual;
Find the fitness estimates for the individuals;

 Update c;
While stopping condition(s) is not satisfied;
Make extra realizations for the members of the “best” group;
Regroup the members of the best group;
Output the best solution(s);

End.

FIGURE 3.8 The pseudo-code of EA for stochastic function optimization for the
first setting

In the last setting, in each generation, a deterministic fitness value is

calculated for each chromosome in the population. A fraction of this deterministic

fitness value is assumed to be its standard deviation. All of the chromosomes are

sampled using their specific standard deviation figures, i.e. their variance estimates

are expected to be different. After this point, CIBG is used to group these

chromosomes. This procedure allows unequal variances. The pseudo-code is the

same as the one given in Figure 3.9.

 57

FIGURE 3.9 The pseudo-code of EA for stochastic function optimization for the
second and the third setting

3.4 Summary
In this chapter, we describe the basics of our algorithms that we designed for

both deterministic and stochastic environments. We define the common components

for these two environments and then start with the deterministic algorithm. The

main emphasis is on the crossover operator. The necessity for efficient exploration

is provided by the crossover operator. The properties of this algorithm are then

modified and adapted to the stochastic environment in terms of parent selection and

replacement. We define the “error” term and the effects of it on the problem. We

mention the settings that we use in measuring the performance of our grouping

methods in order to serve as a basis for the experiment part. In the next chapter, the

Begin
Generate initial population;
Initialize c;
Form the distributions of the error terms using deterministic
fitness value of each individual;
Generate realizations for each individual;
Compute fitness estimates of each individual;
Do

Group the individuals;
Rank the groups and the individuals;
Calculate the selection probabilities;
Select first parent using rank-based probabilities;
Select second parent randomly;
For each genei, apply crossover operator;
Select the individuals to be replaced;
Replace the selected individuals with the children;
Generate realizations for children;
Find the fitness estimates for the children;

 Update c;
While stopping condition(s) is not satisfied;
Generate extra realizations for the members of the “best” group;
Regroup the members of the best group;
Output the best solution(s);

End.

 58

results and the interpretations on these results will show the performances of these

algorithms.

 59

CHAPTER 4

4. EXPERIMENT

In this chapter, we present the experimental results representing the

performance of our proposed algorithms. The experimental setting that we construct

is based on two parts. In the first part, we test different levels of our algorithm

parameters in deterministic setting and determine the combination that we will use

in the stochastic part. In the second part of the experiment, we test different

grouping methods under different environments using the levels that are decided

previously in the deterministic part. The organization of the chapter is based on

these parts of the experiment.

4.1 Deterministic Function Optimization Experiment

In this section, we first define the performance measures and then mention

the preliminary experiments that we perform in order to have an idea on the

experimental setting that we will use. We then define the experimental setting. We

present the results and conclude this section with some remarks.

4.1.1 Performance measures

The functions that we use in this study are Rastrigin’s function,

Rosenbrock’s function (Digalakis and Margaritis 2002) and a function (f3) from the

newly introduced function family that we describe in Section 3.1.1. Optimum value

of Rastrigin’s function is 0, where all variables are equal to 0. Optimum value of

Rosenbrock’s function is 0, where all variables are equal to 1. For these two

functions, we use the function value of the best individual in the last population of

 60

the runs as the performance measure itself. The closer to 0 the function value is, the

better the performance of our algorithm is.

The situation is different for the third function that we use. In this type of

function, unlike the others, the optimum value can be different from 0. From the

results of GAMS runs, we determine 2 local and 1 global optima for the function

(f3) that we use for deterministic function optimization for 10-variable case. These

values are 4.383, 5.281 and 14.293 respectively. We are maximizing this function,

so the global value is 14.293. The algorithm is supposed to converge to global or

one of the local optima throughout the populations. If we simply use the function

values that we obtain by the runs directly, then this can mislead us. For example, if

we obtain a function value of 5.281 at the end of a run, then this cannot be accepted

as a 62.5% deviation from the optimum. It is rather a convergence to a local

optimum. If we want to compare two different functions from this family, then this

kind of comparison is misleading. For example, f1 has 4 local and 1 global optima,

which are 8.556, 9.140, 9.195, 9.446 and 9.512 respectively. If the algorithm

converges to 8.556, then percent deviation from the optimum is 10.0%. If we

compare these two results in our analysis by this measure, then we can come up

with a wrong result that we are more successful in the second case than in the first

case where the algorithm deviates 62.5% from the optimum.

Rather than comparing the results as explained above, we have to define a

different measure, which is based on nonparametric statistical tests. We use the

number of runs that the algorithm converges to global optimum as the performance

measure in this case. For f3, we count the runs that the algorithm converges to

14.293, 5.281 and 4.383 and compare the performance of different parameter

settings using these counts. The details will be given in Section 4.1.4.4.

 The run times also represent valuable information for comparison purposes

and we use this information as a performance measure for each of these 3 functions.

4.1.2 Preliminary tests

In order to determine whether the algorithm components perform well or

not, we test some of the properties of the algorithm by some preliminary

experiments. The aspects that we investigate are the function structures, the cooling

 61

scheme used in crossover, probability assignment in parent selection step, the effect

of initial population and the power of the algorithm in escaping a local optimum.

We design the algorithm in such a way that multimodal problems can be

handled, therefore we expect to solve the unimodal problems as well. We test the

algorithm on a simple unimodal function called sphere model (Beyer, 2000) which

is:

 2

1

() 1
n

i
i

f x X
=

= -å

The optimum value of this function is 1 where all variables are equal to 0.

For 5,000,000 generations, we test 20 variables case and find the optimum as

0.9999964833 in 323 seconds. All of the variables converge around 0 and the

biggest deviation from the optimum is 0.001042. By the end of the first 500,000

generations, the deviation from the optimum becomes less than 1%, which takes

approximately 30 seconds. We store 16 decimal digits for all variables throughout

the run.

We propose three different cooling schemes, which are linear, concave and

convex cooling schemes. For convex scheme, the crossover factor c decreases

rapidly at the beginning of the run and then the rate is decreased. This is

contradictory to the motivation of this study. Since the functions that we are

interested in are multimodal and we want to let the algorithm explore the search

space thoroughly, decreasing the chance of exploration at the beginning of the runs

can result in poor performance. We test the effect of this cooling scheme as well,

but do not include this factor in the full factorial experiment that we design. The

results of this scheme for Rastrigin’s function are given in Section 4.1.4.1.

For parent selection, we assign probabilities according to the ranks. We test

another probability assignment scheme, which favors more fit individuals more than

the scheme that we eventually use in our algorithm. The selection probabilities are

assigned as follows:

1

1
()

1
m

k

ip i

k
=

=
å

 62

where m is the population size. If there are 5 chromosomes, the selection

probabilities are 0.438, 0.219, 0.146, 0.109 and 0.088 for these chromosomes,

respectively. For the selection scheme that we use in this study, these probabilities

are 0.240, 0.220, 0.200, 0.180 and 0.160 for the same chromosomes with η = 1.2.

The selection pressure is higher in the first scheme. When we use this scheme and

test the performance on f3, the results are poor in terms of function values obtained

at the end of the replications. In most of the replications, premature convergence

occurs. Some of these results are -22,030, -6,002.12 and – 20,364.7. This means

that providing the algorithm more chance of exploration will be beneficiary.

The effect of initial population involves two components, which are the

location and the range. We test our algorithm with initial populations generated

from ranges [-100, -95], [-100, -50] and [10, 20]. The results show that the

algorithm is robust to the choice of initial population. Therefore, we decide not to

take the initial population as an experimental factor and fix it throughout the

experiment.

The last aspect of the algorithm that we test is the power of the algorithm of

getting out of a local optimum. Therefore, for f3, we include the solution of the local

optima 4.383 in the initial population and randomly generate the rest of the

population. In 6 of the 10 replications, the algorithm manages to get out of this local

optimum and converge to the global, which is 14.293. This can be accepted as an

indicator that the algorithm can get out of the local optimum throughout the

generations as well.

4.1.3 Experimental setting

Since we are trying to find the best combination of the input parameters that

we define in our algorithm, we use a full factorial experiment. For each parameter

or factor combination, we make 10 replications and use this information. Before

defining the factors, we first decide on the parameters of the algorithm that we fix

and those that we experiment with. The parameters that we fix are:

• Maximum number of generations (gmax)

• Initial population location and range

• ε

 63

Maximum number of generations is decided as 5 million generations. Initial

population location and range are decided based on the study done by Deb et al.

(2002). They choose their initial population as [-10, -5] for both Rosenbrock’s and

Rastrigin’s functions in order not to bias the algorithm. This initial population does

not include any of the optimum values of the variables. We use this idea in our

study and create our initial population as in the study of Deb et al. (2002). ε is the

parameter that we use for checking the termination of the algorithm. If the

maximum difference between the genes at the same position in all chromosomes is

smaller than ε, then this gene is said to be converged, and if all genes converged, the

algorithm terminates. We choose ε as 0, which we name as perfect convergence.

For Rastrigin’s and Rosenbrock’s functions, we use 20 variables case. For f3,

we use 10 variables case. Rastrigin’s function’s optimum variable values are 0,

Rosenbrock’s function’s optimum variable values are 1, and both function’s

optimum function values are 0. For variable representation, we use double precision

in our C code, i.e. the variables have 16 significant decimal digits.

The parameters that we experiment with or the factors of the experiment are

as follows:

• Population size (pop)

• η vector

• cooling scheme (cs)

The first factor is population size, which is directly related with the

computation times. In each generation, the individuals are ranked and assigned

selection probabilities. The bigger the population is, the longer the time assignment

step takes. We test two levels for this factor, which are 30 and 60. Increasing

population size leads to better exploration but longer CPU times. On the other hand,

higher population sizes may result in slower convergence and poor usage of

information of fit individuals in a linear ranking scheme, since higher number of

individuals means smaller selection chances.

The second factor that we test is the η vector (η = [η1, η2]) that directly

represents the selection pressure of the algorithm. For η2, we use 1.0 in order to

slow down convergence and let the algorithm have more chance of exploration. For

 64

η1, we test 2 levels which are 1.2 and 2.0 respectively. 1.2 and 2.0 are selected for

low and high selection pressures, respectively.

For cooling schemes (cs), linear and concave schemes are selected as

factors. In linear cooling scheme, cooling is more rapid than the concave one. This

factor also measures the effect of crossover on the convergence by letting high or

low chance of exploration.

Rastrigin’s and Rosenbrock’s functions have the same optimum value and

they are similar in terms of the performance measure that we use. In one of our

experimental settings, we also include problem type as a factor to the experiment

and investigate whether the performance of the algorithm changes between different

problems or not.

We have 8 (2x2x2) factor combinations for each of the three functions that

we test. These are summarized below:

TABLE 4.1 Deterministic experimental setting summary

pop η1 cs
30 1.2 linear
30 1.2 concave
30 2.0 linear
30 2.0 concave
60 1.2 linear
60 1.2 concave
60 2.0 linear
60 2.0 concave

pop: population size
η1: selection pressure
cs: cooling scheme

4.1.4 Results

In this section, we present the results of the experiment that we describe in

the preceding section. We analyze the results by analysis of variance (ANOVA) for

Rastrigin’s and Rosenbrock’s functions. We use Mann-Whitney U-test for analysis

of f3.

 65

Rastrigin’s function

The factors that are subject to experiment are selection pressure (η1),

population size (pop) and cooling scheme (cs). The performance measure is the best

function value that is obtained at the end of each replication. The results and the

CPU times are given in Table A-1 in Appendix A. A summary of the function

values are given in Table 4.2. In this table, for each combination, we present the

worst, the best, the average and the standard deviation of 10 replications that we

show in Table A-1 in Appendix A.

TABLE 4.2 Summary of results of Rastrigin’s function

 Function values of 10 replications
η1 pop cs Worst Best Average Std. dev.

1.2 30 linear 12.924 6.959 10.162 2.096
1.2 30 concave 13.027 3.107 8.455 3.012
2.0 30 linear 20.877 10.936 14.316 3.151
2.0 30 concave 19.003 8.027 13.229 3.033
1.2 60 linear 26.842 14.912 20.877 4.446
1.2 60 concave 32.929 15.996 23.302 5.566
2.0 60 linear 36.822 18.889 27.542 5.898
2.0 60 concave 37.900 16.012 23.777 5.792

η1 : selection pressure, pop: population size, cs: cooling scheme

We analyse these results by ANOVA. We include two-way interactions of

the factors in the ANOVA model as well. The result of this analysis and the residual

plots are given in Table A-2 and Figure A-1 in Appendix A. The residual analysis

shows that the model violates the normality assumption. By looking at the residuals

versus the fitted values plot, we can see that the residuals become larger as the fitted

values increase. We apply square root transformation to the function values in order

to see whether this transformation can satisfy the assumptions of the ANOVA

model. The ANOVA table and the residual analysis are given in Table A-3 and

Figure A-2 in Appendix A. The residual graphs are better in terms of satisfying the

 66

assumptions of ANOVA. Therefore, we can safely analyze the results of the

ANOVA table with this transformation.

In order to reject the hypothesis that there is no difference between different

levels of factors, we check p-values. If p-value is smaller than a threshold level,

then we can reject this hypothesis. We accept this threshold as 0.10 in this

experiment, i.e. we accept a risk level of 10%. By looking at the ANOVA table, we

can say that the effects of population size and the selection pressure (η1) are

significant. In order to see these effects, we use main effect and interaction plots. In

Figure A-3 in Appendix A, these plots can be seen. The responses are square root

transformations in these plots. These plots and the ANOVA table help us to reach to

the following conclusions:

• Selecting the selection pressure as 1.20 rather than 2.00 is better in terms

of performance. Since Rastrigin’s function has local optima at every

combination of integers, decreasing the selection pressure and letting the

algorithm have more chance of exploration works well as we expect for

this function.

• A population size of 30 works better than a size of 60. Increasing the

population size does not work well in this problem. This high population

size does not serve as a tool for better exploration and hinders the

algorithm to reach to better solutions. It makes the algorithm slower. The

CPU times also show this issue. As it can be seen from Table A-1 in

Appendix A, the CPU times become 1.5 times longer in combinations

having a population size of 60 instead of 30.

• There is no significant difference between the two different cooling

schemes. The results show no sign of difference between linear and

concave cooling schemes. We choose concave cooling by looking at the

average and best results with η1=1.2 and pop=30.

• The interactions of these factors are not significant statistically.

• In terms of CPU times elapsed, there is no important difference between

the CPU times of different levels of selection pressure and cooling

scheme. The main difference comes from the population size. Since the

 67

performance of the algorithm also favors smaller population size, the

results are in accordance with each other.

For the selected factor combination, we can approach to global optimum

with a deviation of 8.455 on the average and 3.107 at best. We can compare these

results with a previous study performed on this function. Deb et al. (2002) also

work on this problem and generate the initial population from [-10, -5] in order not

to bias the algorithm. They state that for their two crossover operators, no solution

in the global basin is found in a maximum of one million generations over multiple

runs. The best solutions these two operators can find are 15.936 and 19.899. They

also state that at least one of the variables converge to 0. In our results, we find

3.107 at best and can reach an average of 8.455, which is a substantial progress for

this function where the initial population is far away from the optimum. For the run

that performs best, 17 out of 20 variables converge to 0 in our algorithm.

In order to see whether or not the algorithm can reach global optimum in

longer generations, we test our algorithm for 15 million generations. We use a

factor combination of 1.20, 30 and concave scheme for selection pressure,

population size and cooling scheme, respectively. The results are shown in Table

4.3.

TABLE 4.3 Results for Rastrigin’s function with 15 million generations

Replication
Population

average
Population

best
Computation
time (in secs)

1 -1.00163131 -0.99825078 1178.414
2 -0.00000599 -0.00000003 1172.165
3 -0.00000780 -0.00000001 1171.764
4 -9.04672915 -9.04672432 1175.020
5 -0.00252547 -0.00157630 1175.540
6 -0.00052322 -0.00022467 1174.289
7 -0.00150922 -0.00107978 1174.268
8 -0.07261798 -0.04744802 1176.562
9 -2.04748026 -2.00902152 1176.532

10 -0.00022820 -0.00014582 1175.150

 68

The results show that if we increase the maximum number of generations,

we can converge to global optimum as well. If CPU time is not a constraint, then

global optimum can be achieved in around 20 minutes in 6 replications out of 10,

with a precision of 0.001.

As we stated before, we test the performance of convex cooling scheme on a

pilot run for Rastrigin’s function. The results for combination of 1.2 and 30 for

selection pressure, population size factors are shown in Table 4.4 together with the

corresponding results for concave and linear schemes.

TABLE 4.4 Performance of convex cooling scheme

 Cooling scheme
Replication Linear Concave Convex

1 11.930 13.027 14.912
2 11.151 10.979 16.901
3 8.947 5.306 17.895
4 10.936 6.081 31.813
5 8.947 9.054 8.947
6 12.924 7.772 11.935
7 8.947 10.093 17.895
8 6.959 8.110 16.901
9 12.924 11.018 10.936

10 7.953 3.107 22.474
worst 12.924 13.027 31.813

best 6.959 3.107 8.947
average 10.162 8.455 17.061

std. dev. 2.096 3.012 6.520

The results support our claim that the convex cooling scheme does not

perform well compared with the other two cooling schemes, namely linear and

concave cooling schemes.

Rosenbrock’s function

The factors that are subject to experiment are the selection pressure (η1),

population size (pop) and cooling scheme (cs). The performance measure is the best

function value that is obtained at the end of each replication. The results and the

 69

CPU times are given in Table A-4 in Appendix A. A summary of the function

values are given in Table 4.5. In this table, for each combination, we present the

worst, the best, the average and the standard deviation of 10 replications that we

show in Table A-4 in Appendix A.

TABLE 4.5 Summary of results of Rosenbrock’s function

 Function values of 10 replications
η1 pop cs Worst Best Average Std. dev.

1.2 30 linear 12.484 9.354 11.601 0.976
1.2 30 concave 17.747 4.769 13.423 4.016
2.0 30 linear 19.216 10.199 12.318 2.525
2.0 30 concave 17.636 9.024 15.951 2.665
1.2 60 linear 19.490 13.312 14.379 1.941
1.2 60 concave 19.464 12.898 16.871 2.039
2.0 60 linear 18.434 11.929 13.763 2.307
2.0 60 concave 19.364 14.627 17.411 1.523

η1 : selection pressure, pop: population size, cs: cooling scheme

We analyse these results by ANOVA as in the previous function. The result

of this analysis and the residual plots are given in Table A-5 and Figure A-4 in

Appendix A. We again apply square root transformation to the function values in

order to satisfy the assumptions of the ANOVA model. The ANOVA table and the

residual analysis are given in Table A-6 and Figure A-5 in Appendix A. By looking

at the residual graphs, we can say that the normality assumption is not improved,

but there is no problem related with the constant variance. Since ANOVA is robust

to slight deviations from normality, we interpret the results with respect to the

original ANOVA.

By looking at the ANOVA table, we can say that the effects of population

size and the cooling scheme are again significant. In Figure A-6 in Appendix A,

main effect and interaction plots can be seen. Our conclusions are as follows:

• A population size of 30 works better than a size of 60 as in Rastrigin’s

function. As it can be seen from Table A-4 in Appendix A, the CPU

 70

times become 1.6 times longer in combinations having a population size

of 60 instead of 30.

• Linear cooling scheme is better than concave cooling scheme. It yields

smaller function values which we desire. It also requires less CPU time

and these two aspects are in accordance.

• There is no significant difference between two different selection

pressures. The results show no sign of statistical difference between 1.20

and 2.00. By looking at the averages, selection pressure of 1.20 performs

better but this is not statistically significant.

• The interactions of these factors are not significant statistically.

• In terms of CPU times elapsed, the situation is the same as Rastrigin’s

function.

As for Rastrigin’s function, we compare our results with the results of Deb

et al. (2002). For this function, they obtain better results. Whenever their algorithm

did not find the global minimum, the algorithm converges to 3.98, which they state

as a local minimum. Out of 50 runs, they reach to global optimum around 40 times

with their two different crossover operators. We can find 4.769 at best in this

function. In order to see whether the problem is on the maximum number of

generations, we run our algorithm for 15 million generations for a factor

combination of 1.20, 30 and linear scheme for selection pressure, population size

and cooling scheme, respectively. The results are given in Table 4.6.

 TABLE 4.6 Results for Rosenbrock’s function over 15 million generations

Replication
Population

average
Population

best
Computation
time (in secs)

1 13.390 13.367 999.627
2 13.950 13.919 998.576
3 14.032 14.007 999.076
4 14.126 14.100 999.848
5 14.402 14.392 999.607
6 14.399 14.381 999.518
7 14.361 14.332 999.146
8 14.193 14.181 999.788
9 14.063 14.046 1001.310

10 5.996 5.987 998.325

 71

Although we increase the maximum number of generations to 15 million,

the algorithm cannot reach to global optimum and performs similar to 5 million

generations case.

Rosenbrock’s and Rastrigin’s functions as a factor

In this part, we also treat problem type as a factor of the experiment. In order

to satisfy ANOVA assumptions, we apply square root transformation to function

values. The resulting ANOVA table and main effects and interactions plots are

given in Table A-7 and Figure A-7 in Appendix A, respectively. As can be seen

from the ANOVA table, cooling scheme, selection pressure, population size,

problem type, all two-way interactions including problem, and (η1*pop) are

significant. The effect of problem factor on the experiment dominates the analysis.

The results show that a selection pressure of 1.20, a population size of 30 and a

linear cooling scheme are appropriate choices for factor levels by this experiment

regardless of the problem type by looking at interaction and main effect plots.

Function f3

This function has 2 local and 1 global optima as we explain in Section 4.1.1.

The experimental design is the same as the previous designs that we apply to other

functions. For 5 million generations, the results of the experiment are given in Table

A-8 in Appendix A. The algorithm converges to one of these optima in all

instances. We summarize these results in Table 4.7. In this table, we present how

many times the algorithm converges to each optimum for each factor combination.

In order to analyze and interpret these results, we use Mann-Whitney U-test

(Siegel et al. 1988), which is a nonparametric test. It is a procedure that compares

two different samples based on ranks assigned to the values obtained from these

samples. After ranking these solutions, expected value for the sum of ranks are

computed for each of the samples. These sums are accepted as normally distributed

and a test statistic is obtained by using the observed value and the distribution

parameter estimates. Pairwise comparisons are made for 8 factor combinations, and

significantly different pairs are determined. We use a significance level of 0.10. The

 72

results show that the combination of 1.2, 60 and concave cooling dominates

combinations of 2.0, 30, linear cooling, and 2.0, 30 and concave cooling schemes.

The tests show that for the other pairwise combinations, we cannot reject the

hypothesis that these combinations perform equally.

TABLE 4.7 Summary of results of f3

Number of convergences out

of 10 replications
η1 pop cs 14.293 5.281 4.383

1.2 30 linear 8 0 2
1.2 30 concave 7 3 0
2.0 30 linear 5 5 0
2.0 30 concave 5 5 0
1.2 60 linear 9 1 0
1.2 60 concave 10 0 0
2.0 60 linear 7 3 0
2.0 60 concave 7 2 1

η1 : selection pressure, pop: population size, cs: cooling
scheme

It can be seen from Table 4.7 that a population size of 60 performs better

than the combinations with a population size of 30. In 33 out of 40 replications, the

algorithm converges to global optimum for population size of 60. On the other

hand, only 25 times, the algorithm finds the global optimum for population size of

30. For selection pressure, 1.2 performs better than 2.0. In combinations containing

1.2, the global is reached 34 times where this figure decreases to 24 for

combinations containing 2.0. Both of the cooling schemes reach the global 29

times. There is no quantitative difference between these two schemes.

As a summary, the algorithm reaches the global 58 times out of 80 times,

which represents a 72.5% success. No clear interpretation can be made in terms of

selecting the best combination of these factors, because there is no statistical

difference between these combinations.

 73

4.1.5 Summary and conclusions

Combining the results that we obtain from different experiments in this

section, we select 1.20 as selection pressure, 30 as population size and linear

scheme as cooling scheme.

For Rastrigin’s function, we have promising results. Starting from a region

that does not contain the global optimum, we can reach good points within

reasonable CPU times. If we increase the number of generations, we can also reach

the global optimum. On the other hand, for Rosenbrock’s function, our algorithm

cannot overcome the high interaction between the successive variables of the

function. Since there is a high dependency between a variable and the succeeding

variable’s square, most of the replications converge to points that are showing this

kind of behavior. For the newly introduced function, f3, we also have promising

results. The algorithm converges to one of the optima in every replication with a

rate of 72.5% to the global.

4.2 Stochastic Function Optimization Experiment

This section begins with the experimental setting that we use. Then we define

the performance measures that we will use in analyzing the results. After presenting

the results, we will interpret them and explain the effects of different factors on the

problem at hand.

4.2.1 Experimental setting

In this part of our experiment, we only use the newly introduced function

family. We have 10 different functions that are generated based on the principles

that we mention in Section 3.1.1. We name these functions as fi where i can take

values between 1 and 10. For each factor combination that we define in the

following paragraphs, we make 10 replications for each function.

We utilize the results that we obtain from the deterministic part of the

experiment. We set the selection pressure as 1.20, population size as 30 and cooling

scheme as linear cooling scheme, as we decide in the previous part of the

 74

experiment. Beside these, there are other parameters to be fixed before defining the

experimental factors. These are as follows:

• Maximum number of generations (gmax)

• Initial population location and range

• Significance level (α)

After some preliminary runs, we set gmax as 10,000 generations. In

deterministic part, the functions have more local optima and in order to let the

algorithm have more chance of exploration, we set gmax as 5 million. However, for

this new function family, obtaining promising results does not take such long times.

In the previous study, the convergence behavior of f3 also shows this aspect. By the

end of some thousand generations, the algorithm converges to one of the optima.

Therefore, we decrease the limit on gmax in order to save from CPU time.

As we set the initial population range as [-10, -5] in the deterministic part,

we again use this location and range for the full factorial experiment. However,

after completing the full factorial experiment, in order to see the effect of different

environments, we test different locations and ranges, which we will present in the

succeeding sections.

In this study, all of the statistical data are based on the selection of

significance level (α). Constructing confidence intervals, defining threshold levels

for CCG method are based on the selection of this significance level. We set this

level as 0.10, i.e. we take a risk of 10% in our decisions.

The experimental setting involves a controllable factor, an exterior factor

and an environment factor that we define in order to see the effect of different

grouping methods in these environments. These factors are as follows:

• k (controllable factor)

• e (exterior factor)

• env (environment factor)

k is the number of realizations for each chromosome throughout the

generations. We define 2 different levels for k, which are 10 and 25 in order to see

the effect of extra realizations on the problem. Increasing k will result in narrower

confidence intervals, which will lead to estimates that are more precise.

 75

e is the error fraction that we use in order to make the environment

stochastic. This factor is an exterior factor since it is not controllable and it defines

the structure of the environment. For this factor, we define two levels in order to see

the power of the algorithm in handling different levels of error. These levels are

10% and 25%.

As we define in Section 3.3.3, we construct 3 different environments that

incorporates the error information and the grouping strategy. We name these

environments as EqEq, UneqEq and UneqUneq, which correspond to equally

generated variances and CCG procedure, unequally generated variances and CCG

procedure, unequally generated variances and CIBG procedure, respectively.

We can summarise these factor combinations as follows:

TABLE 4.8 Stochastic experimental setting summary

env k e
EqEq 10 0.10
EqEq 10 0.25
EqEq 25 0.10
EqEq 25 0.25

UneqEq 10 0.10
UneqEq 10 0.25
UneqEq 25 0.10
UneqEq 25 0.25

UneqUneq 10 0.10
UneqUneq 10 0.25
UneqUneq 25 0.10
UneqUneq 25 0.25

env: environments
k: number of realizations
e: error proportion

4.2.2 Performance measures

Different from the deterministic environment, the algorithm yields estimates

of function values in stochastic environment. If no other information is on hand, we

can only use these estimates and make our decisions based on these estimates.

However, since we know the closed forms of our functions, we can also compute

 76

deterministic function values for chromosomes and use this information in

comparing the results. As a result, we can define the performance measures in two

groups, which are deterministic and stochastic performance measures. In

deterministic performance measures, we use the true or deterministic values of the

functions and the variables themselves. On the other hand, in stochastic

performance measures, we will compare the results with each other using the

estimates obtained at the end of replications.

For all of these performance measures, we summarize the results over

functions and replications for each of the factor combinations. Since we have 10

different functions and 10 replications for each function, we have 100 observations

for each of the 12 combinations of factors (2 levels for k, 2 levels for e and 3

different environments).

Deterministic performance measures:

For evaluating the deterministic performance, we define 4 different

measures which are PDave, PDbest, Xconv and CumGraph.

PDave represents the average performance of the algorithm over all functions

and replications. For each function, 10 replications are made for each factor

combination. For each of these 10 replications, the best true function value is

selected from the best group of chromosomes. These values are averaged over 10

replications. Then the percent deviation of this average from the best GAMS

solution of the corresponding function is found. Finally, these deviations are

averaged over all 10 functions. We can formulate this procedure as follows:

10
; ;

1; ;

; ;
; ;

10
; ;

; ; 1

 , , ,
10

*100 , , ,

 , ,
10

k e env
ij

jk e env
i

k e env
i ik e env

i
i

k e env
i

k e env i
ave

f
avef i k e env

GAMS avef
PD i k e env

GAMS

PD
PD k e env

=

=

= "

-
= "

= "

å

å

 77

where ; ;k e env
ijf is the jth replication’s best true value of fi for factor combination of k,

e, and env; ; ;k e env
iavef is the average of these replications for fi, GAMSi is the best

solution that GAMS finds for fi, ; ;k e env
iPD is the percent deviation of average of

replications for fi from GAMSi, and ; ;k e env
avePD is the average of these percent

deviations over all fi.

PDbest represents the best performance of the algorithm over 10 replications

of a function. By PDave, we measure the average performance, but by PDbest, we see

what our algorithm can do at best. The procedure is similar with one difference.

Rather than finding the percent deviation by using the average of 10 replications for

each function, we find the percent deviation of the best of 10 replications. The

procedure is as follows:

; ; ; ;

; ;
; ;

10
; ;

; ; 1

max { } , , ,

*100 , , ,

 , ,
10

k e env k e env
i j ij

k e env
i ik e env

i
i

k e env
i

k e env i
best

bestf f i k e env

GAMS bestf
PD i k e env

GAMS

PD
PD k e env=

= "

-
= "

= "
å

where ; ;k e env
ibestf is the best replication value that is obtained within 10 replications

of function i.

Xconv measures the performance of the algorithm in terms of the variables

themselves. At the end of each replication, we check whether or not the genes of the

chromosome with the best true function value converge to the best solution that

GAMS found. For some functions, function values are very close for different

optima. For these functions, percent deviation of the function values may be

misleading. For example, if the optimum values are 9.48 and 9.51 for a function and

if we found a value of 9.47, we cannot be sure that the algorithm converged to

global or not. Therefore, we check each of the variable values to see the point to

which the algorithm converged. In this function family, the optimum points for

functions are far from each other by at least 100% in at least one variable. So, by

checking the percent deviation of each variable from GAMS best solution gives an

idea about the convergence behaviour of the algorithm. If maximum deviation of all

 78

genes exceeds 100%, then we can say that the algorithm did not converge to the

global optimum. On the other hand, if the maximum deviation is lower than 10%

then, by looking at the function values, we can claim that there is a convergence to

the global. Xconv is the number of convergences to global out of 10 replications and

10 functions.

Last performance measure is CumGraph, which is a graph representing the

cumulative distribution of percent deviations of each replication’s best true value

from the corresponding GAMS solution. There will be 12 graphs for factor

combinations each with 100 observations, which come from 10 functions having 10

replications.

PDave, PDbest and CumGraph give information about the function values and

the performance based on these values. On the other hand, Xconv provides

information based on the variable values. By this way, the deterministic

performance of the algorithm can be analysed in two ways.

Stochastic performance measures:

The situation is different for stochastic performance measures than the

deterministic measures. At the end of each replication, if no other information

exists, we cannot discriminate among the members of the “best” group. In order to

evaluate the performance of these individuals, we construct confidence intervals for

their mean estimates. We use two measures for evaluating the stochastic

performance, which are IndCIave and IndCItotal.

IndCIave measures the proportion of the cases where the true optimum value

is included in the confidence intervals of the members of the best groups for all

functions and replications. The procedure is as follows:

10 10

; ;

1 1

*100, , ,ijk e env
ave

i j ij

suc
IndCI k e env

total= =

= "åå

where sucij is the number of individuals’ confidence intervals that include the

GAMS solution of fi in jth replication; totalij is the number of individuals in the best

group in jth replication of fi; ; ;k e env
aveIndCI is the sum of these proportions over all

functions for factor combination of k, e and env.

 79

IndCItotal uses the same information as IndCIave. In a replication of a

function, if at least one individual’s confidence interval includes the best function

value, then it is counted as a success. The procedure is as follows:

10 10

; ;

1 1

1, >0
, ,

0, else

, , ,

ij
ij

k e env
total ij

i j

if suc
count i j

IndCI count k e env
= =

ìïï= "íïïî

= "åå

where countij is the count for success or failure of jth replication of fi in terms of

including the best function value or not, and ; ;k e env
totalIndCI is the total number of

successes over all replications of all functions.

These two groups of performance measures provide the information on

analysing the results in two different ways. The deterministic measures show the

performance of the algorithm compared to true optimum. On the other hand, by the

help of stochastic measures, we can construct a background for analysis of different

problems for which the true optimum is unknown.

4.2.3 Results

We analyse the results in two parts, which are deterministic performance and

stochastic performance.

Deterministic performance

In Table B-1 in Appendix B, we present the results for all functions and

factor combinations over 10 replications. The best and the average of 10

replications for each function and factor combination together with the GAMS

result, and the percent deviations of these values are given in Table B-1 in

Appendix B. In Table 4.9, we summarize these results, which include the

performance measures, PDave and PDbest.

PDave is around 8.7% and PDbest is around 1.6% when averaged over all

factor combinations. This means that on the average, the algorithm converges to

global optimum with an 8.7% deviation. The average deviation of the best solution

out of 10 replications is around 1.6%, and these results are promising. The

algorithm manages to overcome local optima and the error term when multiple

 80

replications are made. It efficiently uses the grouping methods under both equal and

unequal variance cases.

The effects of factors k and e can be in Table 4.10. Increasing number of

realizations slightly improves the performance of the algorithm on the average.

PDave decreases around 0.6%. PDbest increases around 0.1%. The algorithm is

sensitive to error. As error proportion is increased, the average performance of the

algorithm becomes worse. PDave becomes higher, i.e. the convergence is affected

with the error term.

TABLE 4.9 PDave and PDbest for factor combinations

env e k PDave PDbest
10 7.97 0.25

0.10
25 9.12 2.68
10 8.05 0.50

EqEq
0.25

25 8.00 0.41
10 7.58 0.53

0.10
25 7.98 2.91
10 10.29 1.08

UneqEq
0.25

25 6.66 0.56
10 9.32 2.98

0.10
25 8.98 0.36
10 11.33 3.93

UneqUneq
0.25

25 9.83 3.15
env: environment, e:error proportion, k:realizations
PDave: percent deviation of the average
PDbest: percent deviation of the best

TABLE 4.10 Effects of k and e on PDave and PDbest

factor level PDave PDbest
10 9.09 1.55

k
25 8.43 1.68

0.10 8.49 1.62
e

0.25 9.03 1.60

 81

The performance of the algorithm in different environments is different.

EqEq and UneqEq cases have PDave values of 8.29% and 8.13%, respectively. On

the other hand, PDave of UneqUneq is 9.87%, which is higher than the previous two

measures. The situation is similar for PDbest as well. The underlying reason for this

result is the difference between grouping methods used. In CIBG method, the

chromosomes having the smallest rank are accepted as the best group. A

chromosome can be in more than one group and it takes as its rank the average of

these groups’ ranks. This reduces the chance of having many chromosomes in the

best group. The definition of “group” is based on the chromosomes having the same

rank. When there are fewer chromosomes in the best group to be investigated, this

prevents the algorithm from checking larger number of chromosomes in finding the

best solution. Because of this reason, the performance of the algorithm in

UneqUneq environment expectedly decreases. This effect can also be seen in

stochastic performance measures. In Table B-2 in Appendix B, sizes of “best”

groups for functions and factor combinations over 10 replications are given. In

Table 4.11, we summarize these results.

TABLE 4.11 Sizes of best groups

env e k numbest
10 27.310.10
25 28.81
10 27.76

EqEq
0.25

25 29.55
10 29.610.10
25 30.00
10 30.00

UneqEq
0.25

25 30.00
10 6.160.10
25 15.81
10 5.93

UneqUneq
0.25

25 11.04
numbest : average number of chromosomes in the
best group
env: environment, e:error proportion
 k:number of realizations

 82

The results support our claim that the best group’s size is smaller in

UneqUneq environment because of the definition of “group”. Average best group

size is around 28 in EqEq case, around 30 in UneqEq case and around 9 in

UneqUneq case, where the population size is 30. There is an interesting observation

at this point: as the number of realizations (k) increases, the sizes of best groups

become bigger. This issue is dominant in UneqUneq case.

The third performance measure is Xconv, which checks whether the variables

converged to the global solution, rather than checking the function values. In Table

B-3 in Appendix B, we present Xconv values for each function and factor

combination and we summarize these results in Table 4.12.

TABLE 4.12 Xconv values

env e k Xconv
10 32 0.1 25 34
10 38 EqEq

0.25 25 36
10 33 0.1 25 29
10 35 UneqEq

0.25 25 35
10 34 0.1 25 33
10 28 UneqUneq

0.25 25 32
Xconv : number of chromosomes converged to
global optimum out of 100 observations
env: environment, e:error proportion
 k:number of realizations

These data show that around 30-35% of the replications of functions, the

algorithm converges to global optimal solutions in terms of the variables. The

performances of different factor combinations are similar in terms of this measure.

 The last measure that we use is a graphical measure that we name as

CumGraph. We present the graphs for 12 combinations of factors in Figure B-1 in

Appendix B. For different factor combinations, around 60% of the function values

 83

that are reached lie within 5% of the global optimum. 72% of them deviate only

10% from the optimum. For example, for k=10, e=0.25 and EqEq environment,

46% of them deviate only 1% from the optimum, 62% deviate 5%, 75% deviate

10%, 84% deviate 25% and 98% deviate 50%.

Using these measures, the algorithm can be said to be capable of handling

stochastic environment. The deviation from the global optimum is around 10% on

the average. There are results where the deviation is only 1-2% from the global.

Xconv measure also shows that the algorithm converges to global not only in terms

of function values, but also in terms of variables themselves. CumGraphs also

support PDave measure and provide extra information on the performance of the

algorithm.

Stochastic Performance
The first performance measure that we use for comparison is IndCIave. In

Table C-1 in Appendix C, we present the results for all functions and factor

combinations. The summary of these results is in Table 4.13.

TABLE 4.13 IndCIave values

env e k IndCIave
10 52.300.1 25 52.47
10 63.35EqEq

0.25 25 61.65
10 52.890.1 25 49.10
10 61.83UneqEq

0.25 25 69.53
10 48.390.1 25 45.60
10 64.73UneqUneq

0.25 25 63.67
IndCIave : proportion of the cases the optimum is
included in the CIs of the best group members
env: environment, e:error proportion, k:number of
realizations

 84

The results show that, at the end of replications, more than half of the

members of the best groups cover the optimum values. As error increases, the width

of confidence intervals increases and this results in higher IndCIave values. The

effect of k is not dominant in terms of this performance measure, i.e. the average

performance for two levels of k is equal.

The second performance measure is IndCItotal and we present the full results

in Table C-1 in Appendix C. We summarize the results in Table 4.14.

TABLE 4.14 IndCItotal values

env e k IndCItotal
10 640.1 25 61
10 81EqEq

0.25 25 76
10 690.1 25 63
10 76UneqEq

0.25 25 86
10 510.1 25 43
10 65UneqUneq

0.25 25 52
IndCItotal :number of the cases the optimum is
included in the CIs of any of the best group
members
env: environment, e:error proportion
 k:number of realizations

Different from IndCIave, IndCItotal represents a different measure, which is

the performance of the best group rather than the performance of the members of

the best group. If any of these members covers the optimum value, then this group

is accepted to be successful as a whole. The overall success rate increases to 66%

for this measure. The effect of error is the same as in IndCIave. The performance of

UneqUneq is worse than the others, but the underlying reason is the same as in the

deterministic measures, which we explain in Section 4.2.3.

 85

Additional experimental results

In order to see the effects of k and e on the algorithm structure, we plot the

number of groups against the generation number for k and e combinations. These

are given in Figure C-1 in Appendix C. As k increases, the number of groups

increases in the earlier generations, i.e. the individuals can be discriminated from

each other easily. The effect of e is on the opposite side. As e increases, the number

of groups decreases, i.e. the estimates become less precise, which leads to less

discrimination of individuals. On the other hand, throughout the generations, the

number of groups decreases to 1 for each of k and e combinations, which means that

the population converges and the individuals become more similar to each other.

In UneqEq case, we make a statistical error on purpose, which is the

assumption of equal variance, where as we generate the error terms unequally.

However, the performance of the algorithm for this environment is not worse than

the method where we propose CIBG for unequal variance cases. In order to measure

the robustness of these algorithms, we change some of the parameters of the

algorithm, which are the location and the range of the initial population and the

error fraction. We test our algorithm for these cases:

• Initial population: [-100, -95], e=50%

• Initial population: [-100,-50], e=50%

Maximum number of generations is 10000; k is set to 10 and 10 replications

for each of these 3 environments are made. The problem used for this experiment is

f3. The results are given in Table C-2 in Appendix C. For an initial population of [-

100, -95] and unequal variances, CCG method does not work and does not converge

to any of the local or global optimum values. The performance of CIBG method is

better and this method can find better points for an initial population of [-100, -95].

On the other hand, for an initial population with a wider range, i.e. [-100, -50], the

results for each of these 3 methods are better. These results show that CCG method

is less robust to choice of initial population than CIBG method. If there is no

information of the location on optima, then an initial population with a wider range

is to be selected.

 86

The last experimental results that we present is the CPU time for these

methods. For this purpose, we present the CPU times for each of these factor

combinations for function f3 is given in Table C-3 in Appendix C. The higher the

error is, the smaller the CPU times for EqEq and UneqEq cases are. The reason for

this observation is the structure of the grouping method. If the error is high, the

threshold value for ending the grouping step increases and this lead to smaller effort

in grouping in terms of CPU time. This is not the case for CIBG method, since the

method is based on the constructed confidence intervals. The effect of k on CPU

times is as we expect. In order to have more realizations, more CPU time is needed.

The reason for longer CPU times for EqEq environment is the structure of the

algorithm. At the beginning of each generation, a variance term is calculated using

each of the fitness values of individuals and then for each of these individuals, new

realizations are made with this new variance term. This makes CPU times of EqEq

environment longer than the other two environments. The CPU times are around 2.5

seconds for the other two environments, which really shows the CPU time of the

algorithm. For CCG method, the average CPU time is 2.777 seconds and for CIBG

method, it is 2.395 seconds.

4.2.4 Summary and conclusions

For stochastic function optimization, the algorithm manages to overcome the

disturbances of error to the environment. At the end of the replications, the

members of the best group are accepted as the basis for the performance measures.

The results show that the algorithm converges to one of the local or global optimum

values. The algorithm usually converges to the neighbourhood of the global

optimum with some deviation that comes from the disturbances in the environment.

The algorithms are robust to error values which are not very high. But as the error

values increase, the performances of the algorithms decrease. The choice of the

initial population is also an important issue. If the initial population is far from the

global optimum and the error is high, the performance of CCG decreases. In order

to reduce the effect of high error, increasing k is an alternative way. Briefly, the

algorithms perform well under these circumstances and we reach promising results.

 87

 CHAPTER 5

5. CONCLUSION

In this study, we proposed Evolutionary Algorithms (EAs) for both

deterministic and stochastic function optimization problems. Before developing the

algorithms, we reviewed the literature for both deterministic and stochastic function

optimization problems. We reached to a conclusion that the most important aspect

of an EA for deterministic function optimization is the design of the crossover

operator. The parent selection scheme also has significance particularly for

stochastic function optimization.

For deterministic function optimization problems, we designed a crossover

operator that incorporates both selected parents’ and population members’

information. The crossover operator makes use of a cooling constant, which

determines the rate of convergence. This constant is chosen based on the

information on the difference of parent’s respective genes and the information on

the convergence of the population members. By this way, the algorithm is directed

to convergence while using the useful information of the parents and the location of

the population.

For stochastic function optimization, we used statistical grouping methods

from the literature and introduced a new one in order to discriminate among the

members of the population. The parent selection probabilities are assigned in such a

manner that if the chromosomes are not different statistically, they have equal

chance of selection.

We tested our deterministic algorithm on functions from the literature and

on a new function family. We tried different cooling schemes, elitism strategies and

population sizes. We reached to a conclusion that letting the algorithm have more

 88

chance of exploration is beneficial in terms of the solution qualities. Different

cooling schemes affect the algorithms and our conclusion on this issue is the same

as the one for elitism strategy. The population size affects different functions in

different ways.

We compared our results with Deb et al. (2002). For Rastrigin’s function,

we found better results under different combinations of factors. We also reached the

global optimum in reasonable computation times. On the other hand, for

Rosenbrock’s function, the performance of our algorithm was worse compared to

Deb et al. (2002). Our algorithm found either local or global optima for a new

function family that we defined, where most of the time the global was reached.

Based on our experimental results for the deterministic algorithm, we fixed

the cooling scheme, the elitism strategy and the population size. For evaluating the

performance in the stochastic environment, we tested different randomness or error

levels. We tested two different grouping schemes, one of which assumes equal

variance for all members (CCG) and the other one can handle unequal variances

(CIBG). We reached to a conclusion that, for low levels of randomness, these two

methods perform the same. When the magnitude of the error is increased, the

performance of the first grouping method (CCG) becomes poorer under

environments with unequal variance and cannot converge to promising solutions.

The results of the experiments showed that the algorithms are capable of handling

randomness and the algorithms converge to points near the global optimum in

reasonable computation times.

Some potential future research topics regarding our approach are stated

below.

We designed our algorithm for problems with a single objective function to

be optimized. A natural extension would be designing algorithms for multi-

objective function optimization.

The variables are continuous in this study. The crossover operator can be

modified to handle discrete variables as well. Technically, the adaptation would be

simple, but it needs to be experimented with.

The optimization problem in our study is unconstrained. Functions with

simple objective functions with some constraints can be examined. In order to

 89

handle constrained function optimization problems, the crossover operator and the

replacement schemes can be revised and the algorithm can be made problem

specific. Constraint handling methods can be incorporated in the algorithm.

In simulation optimization problems, if some functions, which are composed

of decision variables, can be fitted to outputs of simulation, then the proposed

method can be used for this class of problems. However, the biggest difficulty for

this adaptation would be the computation time required for replications for each

member of population in each generation. Fitting functions to outputs is another

design issue.

In our study, the number of realizations generated for estimating function

values is kept constant for each member of the population throughout the

generations. By designing a dynamic number of realizations scheme, the method

can be altered in such a way that the number of groups formed for each generation

is kept at predefined levels. This may lead to improvements in the performance of

the algorithm.

Another extension can be allocating a total number of realizations to

different individuals iteratively in each generation. Allocating more realizations to

similar individuals may help in discriminating them and may shorten computation

times.

The crossover operator works for one gene at a time in generating children.

The idea used for the operator can be adapted to find new child locations in space.

For example, Euclidean distance between pairs of parents can be used instead of

distances between pairs of respective genes.

In parent selection scheme, other grouping methods can be tried.

The evolutionary algorithm that is proposed in this study can be compared

with other metaheuristics, such as tabu search, simulated annealing, which are

designed for function optimization problems.

 90

REFERENCES

1. Aizawa, A. and Wah, B., 1994. Scheduling of genetic algorithms in a noisy
environment. Evolutionary Computation, 2, 97-122.

2. Azadivar, F. and Tompkins, G., 1999. Simulation-optimization with
qualitative variables and structural model changes: A genetic algorithm
approach. European Journal of Operational Research, 113, 169-182.

3. Baesler, F.F. and Sepúlveda, J.A., 2001. Multi-objective simulation
optimization for a cancer treatment center. In Proceedings of the 2001 Winter
Simulation Conference, ed., B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W.
Rohrer, 1405-1411.

4. Beasley, D., Bull, D.R. and Martin R.R., 1993. An overview of genetic
algorithms: Part 1, Fundamentals. University Computing 15(2), 58-69.

5. Beasley, D., Bull, D.R. and Martin R.R., 1993. An overview of genetic
algorithms: Part 2, Research Topics. University Computing 15(4), 170-181.

6. Beyer, H., 2000. Evolutionary algorithms in noisy environments: theoretical
issues and guidelines for practice. Computer Methods in Applied Mechanics
and Engineering, 186, 239-267.

7. Boesel, J., 1999. Search and selection for large-scale optimization. Ph.D.
Dissertation, Northwestern University, Illinois.

8. Boesel, J., Nelson, B.L. and Ishii, N., 2003. A framework for simulation-
optimization software. IIE Transactions, 35(3), 221-230.

9. Calinski, T. and Corsten, L.C.A., 1985. Clustering means in ANOVA by
simultaneous testing. Biometrics, 41, 39-48.

 91

10. Chelouah, R. and Siarry, P., 2000. A continuous genetic algorithm designed
for the global optimization of multimodal functions. Journal of Heuristics, 6,
191-213.

11. Chelouah, R. and Siarry, P., 2003. Genetic and Nelder-Mead algorithms
hybridized for a more accurate global optimization of continuous multiminima
functions. European Journal of Operational Research, 148, 335-348.

12. Deb, K., 2001. Genetic algorithms for optimization. KanGAL Report Number
2001002, 1-25.

13. Deb, K., Anand, A. and Joshi, D., 2002. A computationally efficient
evolutionary algorithm for real-parameter optimization. Evolutionary
Computation, 10(4), 345-369.

14. Deb, K. and Beyer, H., 2001. Self-adaptive genetic algorithms with simulated
binary crossover. Evolutionary Computation, 9(2), 197-221.

15. Dengiz, B. and Alabaş, Ç., 2000. Simulation-optimization using tabu search.
In Proceedings of the 2000 Winter Simulation Conference, ed., J.A. Joines,
R.R. Barton, K. Kang, and P.A. Fishwick, 805-810.

16. Digalakis, J.G. and Margaritis, K.G., 2002. An experimental study of
benchmarking functions for genetic algorithms. Intern. J. Computer Math.,
79(4), 403-416.

17. Fox, R.L., 1971. Optimization Methods For Engineering Design, Addison–
Wesley, New York.

18. Grefenstette, J.J., 1984. GENESIS: A system for using genetic search
procedures. In Proceedings of the 1984 Conference on Intelligent Systems and
Machines, 161-165.

19. Hedar, A. and Fukushima, M., 2003. Simplex coding genetic algorithm for the
global optimization of nonlinear functions. In Multi-Objective Programming
and Goal Programming, ed., T.Tanino, T.Tanaka, and M.Inuiguchi, Springer-
Verlag, Berlin-Heidelberg, 135-140.

 92

20. Herrera, F., Lozano, M. and Verdegay, J.L., 1998. Tackling real-coded genetic
algorithms: Operators and tools for behavioral analysis. Artificial Intelligence
Review, 12(4), 265-319.

21. Hines, W.W. and Montgomery, D.C., 1990. Probability and statistics in
engineering and management science, John Wiley and Sons, New York.

22. Mangalath, N.N., 2002. Modeling evolutionary algorithms with noisy fitness
functions. Ph.D. Dissertation. The University of Western Australia, Australia.

23. Marrison, C. and Stengel, R., 1997. Robust control system design using
random search and genetic algorithms. IEEE Transactions on Automatic
Control, 42(6), 835-839.

24. Mathias, K., Whitley, D., Kusuma, A. and Stork, C., 1996. An empirical
evaluation of genetic algorithms on noisy objective functions. Genetic
algorithms for pattern recognition, ed., S.K.Pal, 65-86.

25. Mendenhall, W. and Sincich, T.L., 1996. A second course in statistics:
Regression Analysis. Prentice Hall, New York.

26. Michalewicz, Z. and Fogel, D.B., 2000. How to Solve It: Modern Heuristics,
Springer-Verlag, Berlin.

27. Nash, S.G. and Sofer, A., 1996. Linear and Nonlinear Programming,
Mcgrawhill, Singapore.

28. Ono, I., Kita, H. and Kobayashi, S., 1999. A robust real-coded genetic
algorithm using unimodal normal distribution crossover augmented by
uniform crossover: Effects of self-adaptation of crossover probabilities. In
Proceedings of GECCO 1999, 496-503.

29. Pan, Z. and Kang, L., 1996. An adaptive evolutionary algorithm for numerical
optimization. In Proceedings of SEAL 1996, 53-60.

30. Rudolph, G., 2001. A partial order approach to noisy fitness functions. In
Proceedings of the 2001 IEEE Congress on Evolutionary Computation (CEC
2001),ed., J.-H. Kim, B.-T. Zhang, G. Fogel, and I. Kuscu, IEEE Press, 318-
325.

 93

31. Satoh, H., Yamamura, M. and Kobayashi, S., 1996. Minimal generation gap
model for GAs considering both exploration and exploitation. In Proceedings
of the IIZUKA: Methodologies for the Conception, Design, and Application of
Intelligent Systems, 494-497.

32. Siegel, S. and Castellan, N.J., 1988. Nonparametric Statistics for the
Behavioral Sciences, McGraw Hill, London.

33. Shang, Y., 1997. Global search methods for solving nonlinear optimization
problems. Ph.D. Dissertation, University of Illinois, Illinois.

34. Takahashi, O., Kita, H. and Kobayashi, S., 2000. A real-coded genetic
algorithm using distance dependent alternation model for complex function
optimization. In Proceedings of GECCO 2000, 219-226.

 94

APPENDIX A

TABLE A-1. Results for Rastrigin’s function

FUNCTION VALUES Replications
η1 pop cs 1 2 3 4 5 6 7 8 9 10
1.2 30 lineer 11.930 11.151 8.947 10.936 8.947 12.924 8.947 6.959 12.924 7.953
1.2 30 concave 13.027 10.979 5.306 6.081 9.054 7.772 10.093 8.110 11.018 3.107
2.0 30 lineer 13.918 10.936 12.924 18.889 14.912 20.877 11.930 12.924 12.924 12.924
2.0 30 concave 13.955 16.022 14.050 14.004 13.059 10.071 8.027 19.003 12.013 12.089
1.2 60 lineer 20.877 24.854 15.907 21.872 26.842 15.907 24.854 14.912 17.895 24.854
1.2 60 concave 29.917 20.999 32.929 17.046 28.158 22.065 15.996 24.976 20.995 19.943
2.0 60 lineer 23.860 26.842 18.889 20.877 27.837 27.837 36.784 25.848 36.822 29.825
2.0 60 concave 20.002 23.009 25.964 37.900 16.012 20.005 23.008 22.011 23.944 25.911

CPU TIMES (in seconds) Replications
η1 pop cs 1 2 3 4 5 6 7 8 9 10
1.2 30 lineer 392.334 392.053 391.443 391.804 391.763 392.124 391.102 391.223 391.342 392.315
1.2 30 concave 392.394 392.284 392.594 391.704 391.893 391.894 392.574 393.095 392.435 392.053
2.0 30 lineer 391.402 391.884 390.832 391.383 392.304 392.534 391.062 392.275 392.894 392.355
2.0 30 concave 393.776 393.055 393.756 393.075 393.015 392.625 392.545 393.185 392.925 393.075
1.2 60 lineer 595.906 596.248 595.616 595.627 594.945 594.755 594.996 594.004 595.306 594.004
1.2 60 concave 596.307 596.498 595.406 594.936 596.177 595.156 594.985 596.408 594.615 595.907

 95

TABLE A-1 (cont.)
2.0 60 lineer 594.574 595.135 596.628 593.944 595.637 595.616 594.595 594.085 595.326 615.795
2.0 60 concave 605.250 601.755 602.467 602.917 602.135 602.266 602.847 601.265 601.765 603.358

TABLE A-2. ANOVA for Rastrigin’s function

Source DF SS MS F P
η1 1 322.720 322.720 16.560 0.000
pop 1 3042.610 3042.610 156.090 0.000
cs 1 21.370 21.370 1.100 0.299
η1*pop 1 4.000 4.000 0.210 0.652
η1*cs 1 38.770 38.770 1.990 0.163
pop*cs 1 2.640 2.640 0.140 0.714
Error 73 1422.990 19.490
Total 79 4855.110

DF: Degrees of freedom, SS: sum of squares, MS: mean squares, F:F-value, p:p value

 96

-10 -5 0 5 10 15

0

5

10

15

Residual

Fr
eq

ue
nc

y
Histogram of the Residuals

(response is f_ras)

-10 0 10

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is f_ras)

10 15 20 25

-10

0

10

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is f_ras)

FIGURE A-1. Residual analysis for Rastrigin’s function

TABLE A-3. ANOVA for square root transformation of Rastrigin’s function

Source DF SS MS F P
η1 1 5.378 5.378 21.380 0.000
pop 1 44.969 44.969 178.760 0.000
cs 1 0.428 0.428 1.700 0.196
η1*pop 1 0.484 0.484 1.920 0.170
η1*cs 1 0.268 0.268 1.070 0.305
pop*cs 1 0.144 0.144 0.570 0.452
Error 73 18.364 0.252
Total 79 70.035

DF: Degrees of freedom, SS: sum of squares, MS: mean squares, F:F-value, p:p value

 97

-1 0 1

0

5

10

15

Residual

Fr
eq

ue
nc

y

Histogram of the Residuals
(response is sqrt(f))

-1 0 1

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is sqrt(f))

3 4 5

-1

0

1

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is sqrt(f))

FIGURE A-2. Residual analysis for squareroot transformation of Rastrigin’s function

 98

eta1 pop cs

1.2 2. 0 30 60 1 2
3.3

3.7

4.1

4.5

4.9

sq
rt

(f
)

Main Effects Plot - Data Means for sqrt(f)

1.2 2.0 30 60 1 2

3

4

5

3

4

5

3

4

5eta1

pop

cs

1.2

2.0

30

60

1

2

Interaction Plot - Data Means for sqrt(f)

 cs = 1 à linear cooling, cs = 2 à concave cooling

FIGURE A-3. Main effects and interactions plot for square root transformation of Rastrigin’s function

 99

TABLE A-4. Results for Rosenbrock’s function

FUNCTION VALUES Replications
η1 pop Cs 1 2 3 4 5 6 7 8 9 10
1.2 30 lineer 12.080 12.286 11.349 9.354 12.484 11.306 12.202 10.643 12.078 12.228
1.2 30 concave 11.673 13.584 9.115 16.374 16.561 14.885 13.087 16.438 17.747 4.769
2.0 30 lineer 11.919 11.460 11.763 12.529 10.595 11.986 11.346 12.172 19.216 10.199
2.0 30 concave 16.768 17.535 16.797 17.375 13.817 17.043 17.010 9.024 17.636 16.505
1.2 60 lineer 13.731 13.577 13.899 13.504 19.490 13.368 13.443 13.634 13.312 15.833
1.2 60 concave 19.277 16.870 15.208 17.688 12.898 14.934 16.676 17.870 17.825 19.464
2.0 60 lineer 12.038 17.657 12.993 11.929 12.902 12.689 12.819 13.464 18.434 12.704
2.0 60 concave 14.627 17.510 17.973 19.110 15.711 19.364 18.155 15.953 18.124 17.585

CPU TIMES (in seconds) Replications
η1 pop cs 1 2 3 4 5 6 7 8 9 10
1.2 30 lineer 334.490 334.330 333.240 332.798 333.680 333.199 333.980 332.829 333.900 333.910
1.2 30 concave 333.569 333.680 333.219 333.880 334.101 333.770 333.579 333.710 334.401 334.811
2.0 30 lineer 333.870 334.661 333.750 334.761 334.271 334.421 333.860 334.070 334.551 333.249
2.0 30 concave 334.440 333.700 334.712 333.900 333.750 333.940 333.940 333.530 334.090 334.100
1.2 60 lineer 537.102 536.862 536.772 536.852 536.982 536.732 536.351 536.281 536.952 536.261
1.2 60 concave 538.013 537.213 536.781 536.832 536.532 536.071 537.132 537.092 537.483 536.632
2.0 60 lineer 537.172 536.020 535.891 535.710 536.151 536.131 536.271 538.464 535.760 536.111
2.0 60 concave 536.110 536.231 536.302 535.490 535.930 535.961 535.951 535.309 535.961 535.881

 100

TABLE A-5. ANOVA for Rosenbrock’s function

Source DF SS MS F P
η1 1 12.553 12.553 2.200 0.142
pop 1 104.209 104.209 18.300 0.000
cs 1 168.059 168.059 29.520 0.000
η1*pop 1 13.790 13.790 2.420 0.124
η1*cs 1 11.001 11.001 1.930 0.169
pop*cs 1 0.587 0.587 0.100 0.749
Error 73 415.632 5.694
Total 79 725.830

DF: Degrees of freedom, SS: sum of squares, MS: mean squares, F:F-value, p:p value

-10 0 10

0

10

20

Residual

Fr
eq

ue
nc

y

Histogram of the Residuals
(response is f_rsn)

-10 -5 0 5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is f_rsn)

11 12 13 14 15 16 17 18

-10

-5

0

5

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is f_rsn)

FIGURE A-4. Residual analysis for Rosenbrock’s function

 101

TABLE A-6. ANOVA for square root transformation of Rosenbrock’s function

Source DF SS MS F P
η1 1 0.239 0.239 2.170 0.145
pop 1 1.984 1.984 17.960 0.000
cs 1 2.742 2.742 24.820 0.000
η1*pop 1 0.279 0.279 2.520 0.117
η1*cs 1 0.225 0.225 2.030 0.158
pop*cs 1 0.010 0.010 0.090 0.765
Error 73 8.065 0.111
Total 79 13.543

DF: Degrees of freedom, SS: sum of squares, MS: mean squares, F:F-value, p:p value

-1.5 -1.0 -0.5 0.0 0.5 1.0

0

10

20

Residual

Fr
eq

ue
nc

y

Histogram of the Residuals
(response is sqrt(f_r)

-1.5 -1.0 -0.5 0.0 0.5 1.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

 S
co

re

Residual

Normal Probability Plot of the Residuals
(response is sqrt(f_r)

3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

-1.5

-1.0

-0.5

0.0

0.5

1.0

Fitted Value

R
es

id
ua

l

Residuals Versus the Fitted Values
(response is sqrt(f_r)

FIGURE A-5. Residual analysis for square root transformation of Rosenbrock’s function

 102

eta1 pop cs

1.2 2. 0 30 60 1 2
3.58

3.68

3.78

3.88

3.98

sq
rt

(f
_r

sn
)

Main Effects Plot - Data Means for sqrt(f_rsn)
1.2 2.0 30 60 1 2

3.50

3.75

4.00

3.50

3.75

4.00

3.50

3.75

4.00
eta1

pop

cs

1.2

2.0

30

60

1

2

Interaction Plot - Data Means for sqrt(f_rsn)

 cs = 1 à linear cooling, cs = 2 à concave cooling

 FIGURE A-6. Main effects and interactions plot for square root transformation of Rosenbrock’s function

 103

TABLE A-7. ANOVA for Rastrigin’s and Rosenbrock’s function as a factor

Source DF SS MS F P
η1 1 3.943 3.943 21.780 0.000
pop 1 32.921 32.921 181.860 0.000
cs 1 0.502 0.502 2.770 0.098
problem 1 4.141 4.141 22.880 0.000
η1*pop 1 0.749 0.749 4.140 0.044
η1*cs 1 0.001 0.001 0.010 0.942
η1*problem 1 1.674 1.674 9.250 0.003
pop*cs 1 0.115 0.115 0.630 0.427
pop*problem 1 14.032 14.032 77.510 0.000
cs*problem 1 2.668 2.668 14.740 0.000
Error 149 26.973 0.181
Total 159 87.719

DF: Degrees of freedom, SS: sum of squares, MS: mean squares, F:F-value, p:p value

 104

eta popn c problem

1.2 2.0 30 60 1 2 1 2

3.5

3.7

3.9

4.1

4.3

sq
rt

Main Effects Plot - Data Means for sqrt(f)
212160302 .01. 2

4.5

4.0

3.5

4.5

4.0

3.5

4.5

4.0

3.5

4.5

4.0

3.5

eta1

pop

cs

problem
2

1

2

1

60

30

2.0

1.2

Interaction Plot - Data Means for sqrt(f)

 cs = 1 à linear cooling, cs = 2 à concave cooling
 problem = 1 à Rastrigin, problem = 2 à Rosenbrock

FIGURE A-7. Main effects and interactions plot for square root transformation of Rastrigin’s and Rosenbrock’s function as a factor

 105

TABLE A-8. Results for function f3

FUNCTION VALUES Replications
η1 pop Cs 1 2 3 4 5 6 7 8 9 10
1.2 30 lineer 4.383 14.293 14.293 14.293 4.383 14.293 14.293 14.293 14.293 14.293
1.2 30 concave 14.293 14.293 14.293 5.281 14.293 14.293 14.293 5.281 5.281 14.293
2.0 30 lineer 5.281 5.281 5.281 14.293 14.293 14.293 14.293 5.281 5.281 14.293
2.0 30 concave 14.293 14.293 5.281 5.281 5.281 14.293 14.293 5.281 5.281 14.293
1.2 60 lineer 14.293 14.293 5.281 14.293 14.293 14.293 14.293 14.293 14.293 14.293
1.2 60 concave 14.293 14.293 14.293 14.293 14.293 14.293 14.293 14.293 14.293 14.293
2.0 60 lineer 14.293 14.293 14.293 5.281 14.293 5.281 14.293 5.281 14.293 14.293
2.0 60 concave 14.293 5.281 14.293 4.383 14.293 5.281 14.293 14.293 14.293 14.293

CPU TIMES (in seconds) Replications
η1 pop cs 1 2 3 4 5 6 7 8 9 10
1.2 30 lineer 211.944 211.484 211.605 211.704 211.795 211.824 211.765 211.634 211.684 211.665
1.2 30 concave 213.366 213.377 213.637 213.247 213.327 213.036 213.347 213.427 213.547 213.447
2.0 30 lineer 212.074 211.925 211.705 211.844 211.615 211.874 212.085 211.624 211.815 211.885
2.0 30 concave 213.386 213.107 213.116 212.876 213.077 213.036 213.367 212.986 213.307 213.277
1.2 60 lineer 319.529 319.309 319.279 319.550 319.619 319.520 319.709 319.720 319.830 319.530
1.2 60 concave 321.982 321.963 321.833 321.793 321.773 321.562 321.753 321.612 321.703 321.642
2.0 60 lineer 320.530 320.301 320.451 320.441 320.320 320.251 320.350 320.101 320.260 320.211
2.0 60 concave 321.100 320.742 320.901 320.811 320.922 320.821 320.871 320.762 320.901 320.962

 106

APPENDIX B

TABLE B-1. Deterministic results of function fi

function k e env best average GAMS
avg

%dev
best

%dev
f1 10 0.10 EqEq 9.485 9.313 9.512 2.094 0.289
f1 10 0.25 EqEq 9.440 9.296 9.512 2.267 0.760
f1 25 0.10 EqEq 9.477 9.341 9.512 1.795 0.369
f1 25 0.25 EqEq 9.442 9.380 9.512 1.387 0.741
f2 10 0.10 EqEq 43.567 33.603 43.768 23.225 0.460
f2 10 0.25 EqEq 43.495 34.596 43.768 20.956 0.624
f2 25 0.10 EqEq 32.608 32.543 43.768 25.646 25.497
f2 25 0.25 EqEq 43.441 33.502 43.768 23.455 0.747
f3 10 0.10 EqEq 14.277 12.354 14.293 13.569 0.114
f3 10 0.25 EqEq 14.263 11.414 14.293 20.145 0.210
f3 25 0.10 EqEq 14.279 11.472 14.293 19.738 0.096
f3 25 0.25 EqEq 14.260 13.317 14.293 6.831 0.230
f4 10 0.10 EqEq 6.716 6.182 6.726 8.094 0.144
f4 10 0.25 EqEq 6.705 6.012 6.726 10.621 0.308
f4 25 0.10 EqEq 6.719 6.055 6.726 9.972 0.098
f4 25 0.25 EqEq 6.702 5.702 6.726 15.220 0.358
f5 10 0.10 EqEq 8.776 8.697 8.802 1.188 0.295
f5 10 0.25 EqEq 8.760 8.729 8.802 0.829 0.474
f5 25 0.10 EqEq 8.795 8.521 8.802 3.195 0.081
f5 25 0.25 EqEq 8.779 8.742 8.802 0.678 0.258
f6 10 0.10 EqEq 5.037 4.678 5.049 7.338 0.230
f6 10 0.25 EqEq 5.013 4.696 5.049 6.998 0.707
f6 25 0.10 EqEq 5.030 4.297 5.049 14.889 0.376
f6 25 0.25 EqEq 5.036 4.849 5.049 3.970 0.255
f7 10 0.10 EqEq 42.591 41.717 42.691 2.282 0.234
f7 10 0.25 EqEq 42.618 42.330 42.691 0.846 0.171
f7 25 0.10 EqEq 42.644 41.752 42.691 2.199 0.109
f7 25 0.25 EqEq 42.619 40.804 42.691 4.419 0.168
f8 10 0.10 EqEq 18.838 15.998 18.861 15.179 0.122
f8 10 0.25 EqEq 18.805 17.017 18.861 9.779 0.295
f8 25 0.10 EqEq 18.834 17.108 18.861 9.296 0.142

 107

TABLE B-1 (cont.)

function k e env best average GAMS
avg

%dev
best

%dev
f8 25 0.25 EqEq 18.818 15.513 18.861 17.751 0.227
f9 10 0.10 EqEq 6.982 6.759 7.019 3.711 0.524
f9 10 0.25 EqEq 6.944 6.681 7.019 4.818 1.064
f9 25 0.10 EqEq 7.015 6.812 7.019 2.947 0.051
f9 25 0.25 EqEq 6.977 6.810 7.019 2.980 0.593

f10 10 0.10 EqEq 4.165 4.044 4.170 3.023 0.132
f10 10 0.25 EqEq 4.155 4.036 4.170 3.214 0.360
f10 25 0.10 EqEq 4.169 4.105 4.170 1.566 0.024
f10 25 0.25 EqEq 4.149 4.031 4.170 3.341 0.516
f1 10 0.10 UneqEq 9.427 9.183 9.512 3.454 0.899
f1 10 0.25 UneqEq 9.452 9.145 9.512 3.855 0.627
f1 25 0.10 UneqEq 9.419 9.231 9.512 2.949 0.974
f1 25 0.25 UneqEq 9.406 9.165 9.512 3.644 1.114
f2 10 0.10 UneqEq 43.396 33.486 43.768 23.491 0.851
f2 10 0.25 UneqEq 42.855 33.174 43.768 24.204 2.087
f2 25 0.10 UneqEq 32.563 32.452 43.768 25.855 25.602
f2 25 0.25 UneqEq 43.596 33.407 43.768 23.672 0.393
f3 10 0.10 UneqEq 14.236 13.303 14.293 6.926 0.397
f3 10 0.25 UneqEq 14.175 10.380 14.293 27.375 0.829
f3 25 0.10 UneqEq 14.261 14.238 14.293 0.385 0.223
f3 25 0.25 UneqEq 14.230 13.282 14.293 7.076 0.441
f4 10 0.10 UneqEq 6.687 6.027 6.726 10.391 0.583
f4 10 0.25 UneqEq 6.685 5.847 6.726 13.073 0.613
f4 25 0.10 UneqEq 6.701 5.753 6.726 14.473 0.373
f4 25 0.25 UneqEq 6.676 6.255 6.726 6.999 0.745
f5 10 0.10 UneqEq 8.785 8.644 8.802 1.799 0.195
f5 10 0.25 UneqEq 8.745 8.630 8.802 1.957 0.643
f5 25 0.10 UneqEq 8.771 8.610 8.802 2.184 0.349
f5 25 0.25 UneqEq 8.736 8.533 8.802 3.061 0.746
f6 10 0.10 UneqEq 5.027 4.623 5.049 8.441 0.430
f6 10 0.25 UneqEq 4.976 4.651 5.049 7.884 1.444
f6 25 0.10 UneqEq 5.030 4.708 5.049 6.754 0.380
f6 25 0.25 UneqEq 5.018 4.768 5.049 5.560 0.612
f7 10 0.10 UneqEq 42.579 42.414 42.691 0.648 0.261
f7 10 0.25 UneqEq 42.337 42.181 42.691 1.195 0.829
f7 25 0.10 UneqEq 42.568 42.074 42.691 1.445 0.289
f7 25 0.25 UneqEq 42.527 41.499 42.691 2.792 0.384

 108

TABLE B-1 (cont.)

function k e env best average GAMS
avg

%dev
best

%dev
f8 10 0.10 UneqEq 18.766 16.872 18.861 10.544 0.504
f8 10 0.25 UneqEq 18.610 16.270 18.861 13.738 1.332
f8 25 0.10 UneqEq 18.831 15.526 18.861 17.684 0.161
f8 25 0.25 UneqEq 18.799 17.693 18.861 6.192 0.331
f9 10 0.10 UneqEq 6.989 6.647 7.019 5.298 0.432
f9 10 0.25 UneqEq 6.883 6.603 7.019 5.927 1.936
f9 25 0.10 UneqEq 6.987 6.750 7.019 3.836 0.456
f9 25 0.25 UneqEq 6.995 6.774 7.019 3.496 0.341

f10 10 0.10 UneqEq 4.138 3.971 4.170 4.775 0.767
f10 10 0.25 UneqEq 4.150 4.016 4.170 3.697 0.475
f10 25 0.10 UneqEq 4.157 3.994 4.170 4.232 0.317
f10 25 0.25 UneqEq 4.151 3.999 4.170 4.102 0.463
f1 10 0.10 UneqUneq 9.476 9.044 9.512 4.924 0.378
f1 10 0.25 UneqUneq 9.362 8.796 9.512 7.523 1.576
f1 25 0.10 UneqUneq 9.473 9.303 9.512 2.192 0.412
f1 25 0.25 UneqUneq 9.432 9.314 9.512 2.080 0.840
f2 10 0.10 UneqUneq 32.526 32.379 43.768 26.022 25.685
f2 10 0.25 UneqUneq 32.392 32.140 43.768 26.567 25.993
f2 25 0.10 UneqUneq 43.471 33.496 43.768 23.470 0.679
f2 25 0.25 UneqUneq 32.501 32.133 43.768 26.583 25.742
f3 10 0.10 UneqUneq 14.252 10.521 14.293 26.391 0.288
f3 10 0.25 UneqUneq 14.092 10.215 14.293 28.534 1.409
f3 25 0.10 UneqUneq 14.263 12.345 14.293 13.626 0.208
f3 25 0.25 UneqUneq 14.261 11.346 14.293 20.621 0.225
f4 10 0.10 UneqUneq 6.697 6.394 6.726 4.932 0.425
f4 10 0.25 UneqUneq 6.664 6.038 6.726 10.227 0.923
f4 25 0.10 UneqUneq 6.714 6.018 6.726 10.530 0.183
f4 25 0.25 UneqUneq 6.688 6.076 6.726 9.666 0.559
f5 10 0.10 UneqUneq 8.740 8.545 8.802 2.920 0.708
f5 10 0.25 UneqUneq 8.684 8.513 8.802 3.284 1.336
f5 25 0.10 UneqUneq 8.772 8.668 8.802 1.522 0.343
f5 25 0.25 UneqUneq 8.790 8.544 8.802 2.931 0.140
f6 10 0.10 UneqUneq 5.022 4.495 5.049 10.969 0.543
f6 10 0.25 UneqUneq 4.963 4.635 5.049 8.209 1.701
f6 25 0.10 UneqUneq 5.022 4.590 5.049 9.091 0.529
f6 25 0.25 UneqUneq 4.997 4.460 5.049 11.656 1.026
f7 10 0.10 UneqUneq 42.529 42.246 42.691 1.042 0.379

 109

TABLE B-1 (cont.)

function k e env best average GAMS
avg

%dev
best

%dev
f7 10 0.25 UneqUneq 42.396 41.172 42.691 3.559 0.692
f7 25 0.10 UneqUneq 42.613 40.735 42.691 4.581 0.182
f7 25 0.25 UneqUneq 42.446 41.336 42.691 3.173 0.573
f8 10 0.10 UneqUneq 18.801 17.751 18.861 5.883 0.319
f8 10 0.25 UneqUneq 18.741 16.624 18.861 11.860 0.636
f8 25 0.10 UneqUneq 18.833 15.491 18.861 17.865 0.150
f8 25 0.25 UneqUneq 18.800 16.817 18.861 10.835 0.326
f9 10 0.10 UneqUneq 6.990 6.655 7.019 5.191 0.413
f9 10 0.25 UneqUneq 6.791 6.449 7.019 8.126 3.243
f9 25 0.10 UneqUneq 6.980 6.742 7.019 3.946 0.554
f9 25 0.25 UneqUneq 6.914 6.734 7.019 4.063 1.503

f10 10 0.10 UneqUneq 4.143 3.964 4.170 4.941 0.640
f10 10 0.25 UneqUneq 4.096 3.943 4.170 5.436 1.770
f10 25 0.10 UneqUneq 4.155 4.048 4.170 2.935 0.357
f10 25 0.25 UneqUneq 4.148 3.890 4.170 6.726 0.537

 110

TABLE B-2. Sizes of best groups

function env k error numbest function env k error numbest function env k error numbest
f1 EqEq 10 0.10 269 f1 UneqEq 10 0.10 300 f1 UneqUneq 10 0.10 49
f1 EqEq 10 0.25 282 f1 UneqEq 10 0.25 300 f1 UneqUneq 10 0.25 25
f1 EqEq 25 0.10 262 f1 UneqEq 25 0.10 300 f1 UneqUneq 25 0.10 173
f1 EqEq 25 0.25 300 f1 UneqEq 25 0.25 300 f1 UneqUneq 25 0.25 173
f2 EqEq 10 0.10 268 f2 UneqEq 10 0.10 300 f2 UneqUneq 10 0.10 26
f2 EqEq 10 0.25 268 f2 UneqEq 10 0.25 300 f2 UneqUneq 10 0.25 88
f2 EqEq 25 0.10 300 f2 UneqEq 25 0.10 300 f2 UneqUneq 25 0.10 88
f2 EqEq 25 0.25 300 f2 UneqEq 25 0.25 300 f2 UneqUneq 25 0.25 100
f3 EqEq 10 0.10 268 f3 UneqEq 10 0.10 300 f3 UneqUneq 10 0.10 87
f3 EqEq 10 0.25 282 f3 UneqEq 10 0.25 300 f3 UneqUneq 10 0.25 37
f3 EqEq 25 0.10 269 f3 UneqEq 25 0.10 300 f3 UneqUneq 25 0.10 173
f3 EqEq 25 0.25 300 f3 UneqEq 25 0.25 300 f3 UneqUneq 25 0.25 71
f4 EqEq 10 0.10 269 f4 UneqEq 10 0.10 291 f4 UneqUneq 10 0.10 98
f4 EqEq 10 0.25 282 f4 UneqEq 10 0.25 300 f4 UneqUneq 10 0.25 69
f4 EqEq 25 0.10 300 f4 UneqEq 25 0.10 300 f4 UneqUneq 25 0.10 145
f4 EqEq 25 0.25 300 f4 UneqEq 25 0.25 300 f4 UneqUneq 25 0.25 118
f5 EqEq 10 0.10 282 f5 UneqEq 10 0.10 292 f5 UneqUneq 10 0.10 56
f5 EqEq 10 0.25 267 f5 UneqEq 10 0.25 300 f5 UneqUneq 10 0.25 78
f5 EqEq 25 0.10 281 f5 UneqEq 25 0.10 300 f5 UneqUneq 25 0.10 186
f5 EqEq 25 0.25 300 f5 UneqEq 25 0.25 300 f5 UneqUneq 25 0.25 105

 111

TABLE B-2 (cont.)
function env k error numbest function env k error numbest function env k error Numbest

f6 EqEq 10 0.10 268 f6 UneqEq 10 0.10 300 f6 UneqUneq 10 0.10 89
f6 EqEq 10 0.25 281 f6 UneqEq 10 0.25 300 f6 UneqUneq 10 0.25 27
f6 EqEq 25 0.10 286 f6 UneqEq 25 0.10 300 f6 UneqUneq 25 0.10 223
f6 EqEq 25 0.25 286 f6 UneqEq 25 0.25 300 f6 UneqUneq 25 0.25 64
f7 EqEq 10 0.10 282 f7 UneqEq 10 0.10 300 f7 UneqUneq 10 0.10 24
f7 EqEq 10 0.25 282 f7 UneqEq 10 0.25 300 f7 UneqUneq 10 0.25 82
f7 EqEq 25 0.10 300 f7 UneqEq 25 0.10 300 f7 UneqUneq 25 0.10 172
f7 EqEq 25 0.25 300 f7 UneqEq 25 0.25 300 f7 UneqUneq 25 0.25 99
f8 EqEq 10 0.10 274 f8 UneqEq 10 0.10 300 f8 UneqUneq 10 0.10 51
f8 EqEq 10 0.25 268 f8 UneqEq 10 0.25 300 f8 UneqUneq 10 0.25 84
f8 EqEq 25 0.10 300 f8 UneqEq 25 0.10 300 f8 UneqUneq 25 0.10 185
f8 EqEq 25 0.25 300 f8 UneqEq 25 0.25 300 f8 UneqUneq 25 0.25 117
f9 EqEq 10 0.10 282 f9 UneqEq 10 0.10 285 f9 UneqUneq 10 0.10 58
f9 EqEq 10 0.25 282 f9 UneqEq 10 0.25 300 f9 UneqUneq 10 0.25 51
f9 EqEq 25 0.10 283 f9 UneqEq 25 0.10 300 f9 UneqUneq 25 0.10 92
f9 EqEq 25 0.25 269 f9 UneqEq 25 0.25 300 f9 UneqUneq 25 0.25 95

f10 EqEq 10 0.10 269 f10 UneqEq 10 0.10 293 f10 UneqUneq 10 0.10 78
f10 EqEq 10 0.25 282 f10 UneqEq 10 0.25 300 f10 UneqUneq 10 0.25 52
f10 EqEq 25 0.10 300 f10 UneqEq 25 0.10 300 f10 UneqUneq 25 0.10 144
f10 EqEq 25 0.25 300 f10 UneqEq 25 0.25 300 f10 UneqUneq 25 0.25 162

 * numbest : number of chromosomes in best group

 112

TABLE B-3. Number of solutions converged to global for function-factor combinations

function k e env Xconv function k e env Xconv function k e env Xconv
f1 10 0.10 EqEq 3 f1 10 0.10 UneqEq 1 f1 10 0.10 UneqUneq 3
f1 10 0.25 EqEq 3 f1 10 0.25 UneqEq 5 f1 10 0.25 UneqUneq 1
f1 25 0.10 EqEq 2 f1 25 0.10 UneqEq 1 f1 25 0.10 UneqUneq 5
f1 25 0.25 EqEq 5 f1 25 0.25 UneqEq 3 f1 25 0.25 UneqUneq 2
f2 10 0.10 EqEq 1 f2 10 0.10 UneqEq 1 f2 10 0.10 UneqUneq 0
f2 10 0.25 EqEq 2 f2 10 0.25 UneqEq 1 f2 10 0.25 UneqUneq 0
f2 25 0.10 EqEq 0 f2 25 0.10 UneqEq 0 f2 25 0.10 UneqUneq 1
f2 25 0.25 EqEq 1 f2 25 0.25 UneqEq 1 f2 25 0.25 UneqUneq 0
f3 10 0.10 EqEq 8 f3 10 0.10 UneqEq 9 f3 10 0.10 UneqUneq 6
f3 10 0.25 EqEq 7 f3 10 0.25 UneqEq 6 f3 10 0.25 UneqUneq 5
f3 25 0.10 EqEq 7 f3 25 0.10 UneqEq 10 f3 25 0.10 UneqUneq 8
f3 25 0.25 EqEq 9 f3 25 0.25 UneqEq 9 f3 25 0.25 UneqUneq 7
f4 10 0.10 EqEq 4 f4 10 0.10 UneqEq 4 f4 10 0.10 UneqUneq 6
f4 10 0.25 EqEq 4 f4 10 0.25 UneqEq 3 f4 10 0.25 UneqUneq 4
f4 25 0.10 EqEq 4 f4 25 0.10 UneqEq 2 f4 25 0.10 UneqUneq 3
f4 25 0.25 EqEq 1 f4 25 0.25 UneqEq 3 f4 25 0.25 UneqUneq 4
f5 10 0.10 EqEq 5 f5 10 0.10 UneqEq 5 f5 10 0.10 UneqUneq 3
f5 10 0.25 EqEq 5 f5 10 0.25 UneqEq 5 f5 10 0.25 UneqUneq 5
f5 25 0.10 EqEq 5 f5 25 0.10 UneqEq 6 f5 25 0.10 UneqUneq 5
f5 25 0.25 EqEq 6 f5 25 0.25 UneqEq 2 f5 25 0.25 UneqUneq 4
f6 10 0.10 EqEq 2 f6 10 0.10 UneqEq 5 f6 10 0.10 UneqUneq 3

 113

TABLE B-3 (cont.)
function k e env Xconv function k e env Xconv function k e env Xconv

f6 10 0.25 EqEq 3 f6 10 0.25 UneqEq 3 f6 10 0.25 UneqUneq 4
f6 25 0.10 EqEq 1 f6 25 0.10 UneqEq 3 f6 25 0.10 UneqUneq 2
f6 25 0.25 EqEq 6 f6 25 0.25 UneqEq 5 f6 25 0.25 UneqUneq 3
f7 10 0.10 EqEq 0 f7 10 0.10 UneqEq 0 f7 10 0.10 UneqUneq 0
f7 10 0.25 EqEq 0 f7 10 0.25 UneqEq 0 f7 10 0.25 UneqUneq 0
f7 25 0.10 EqEq 0 f7 25 0.10 UneqEq 0 f7 25 0.10 UneqUneq 0
f7 25 0.25 EqEq 0 f7 25 0.25 UneqEq 0 f7 25 0.25 UneqUneq 0
f8 10 0.10 EqEq 4 f8 10 0.10 UneqEq 6 f8 10 0.10 UneqUneq 8
f8 10 0.25 EqEq 7 f8 10 0.25 UneqEq 5 f8 10 0.25 UneqUneq 5
f8 25 0.10 EqEq 7 f8 25 0.10 UneqEq 3 f8 25 0.10 UneqUneq 3
f8 25 0.25 EqEq 3 f8 25 0.25 UneqEq 7 f8 25 0.25 UneqUneq 6
f9 10 0.10 EqEq 1 f9 10 0.10 UneqEq 1 f9 10 0.10 UneqUneq 3
f9 10 0.25 EqEq 2 f9 10 0.25 UneqEq 2 f9 10 0.25 UneqUneq 0
f9 25 0.10 EqEq 1 f9 25 0.10 UneqEq 2 f9 25 0.10 UneqUneq 1
f9 25 0.25 EqEq 1 f9 25 0.25 UneqEq 2 f9 25 0.25 UneqUneq 2

f10 10 0.10 EqEq 4 f10 10 0.10 UneqEq 1 f10 10 0.10 UneqUneq 2
f10 10 0.25 EqEq 5 f10 10 0.25 UneqEq 5 f10 10 0.25 UneqUneq 4
f10 25 0.10 EqEq 7 f10 25 0.10 UneqEq 2 f10 25 0.10 UneqUneq 5
f10 25 0.25 EqEq 4 f10 25 0.25 UneqEq 3 f10 25 0.25 UneqUneq 4

 114

k=10, e=0.10, env=EqEq

0

10

20

30
40

50

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fre
qu

en
cy frequency

cumulative
frequency

k=10, e=0.25, env=EqEq

0

10

20

30

40

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

k=25, e=0.10, env=EqEq

0
10
20
30
40
50
60

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

 115

k=25, e=0.25, env=EqEq

0

10

20

30

40

50

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

k=10, e=0.10, env=UneqEq

0

10

20

30

40

50

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

k=10, e=0.25, env=UneqEq

0
10
20
30
40
50
60

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

 116

k=25, e=0.10, env=UneqEq

0

10

20

30

40

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

k=25, e=0.25, env=UneqEq

0

10

20

30

40

50

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

k=10, e=0.10, env=UneqUnEq

0
5

10
15
20
25
30
35

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

 117

k=10, e=0.25, env=UneqUnEq

0

10

20

30

40

50

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

k=25, e=0.10, env=UneqUnEq

0

10

20

30

40

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

k=25, e=0.25, env=UneqUnEq

0

10

20

30

40

50

1 5 10 25 50 75 100

percentage

fr
eq

ue
nc

y

.00%
20.00%
40.00%
60.00%
80.00%
100.00%
120.00%

cu
m

ul
at

iv
e

fr
eq

ue
nc

y frequency

cumulative
frequency

FIGURE B-1. CumGraph measure for factor combinations

 118

APPENDIX C

TABLE C-1. IndCIave and IndCItotal values

function k e env IndCIave IndCItotal
f1 10 0.10 EqEq 74.35 9
f1 10 0.25 EqEq 85.11 10
f1 25 0.10 EqEq 85.11 9
f1 25 0.25 EqEq 90.00 10
f2 10 0.10 EqEq 11.19 1
f2 10 0.25 EqEq 20.52 2
f2 25 0.10 EqEq 0.00 0
f2 25 0.25 EqEq 9.67 1
f3 10 0.10 EqEq 71.64 8
f3 10 0.25 EqEq 62.06 7
f3 25 0.10 EqEq 65.43 7
f3 25 0.25 EqEq 82.67 9
f4 10 0.10 EqEq 56.13 6
f4 10 0.25 EqEq 41.13 5
f4 25 0.10 EqEq 46.00 5
f4 25 0.25 EqEq 26.00 3
f5 10 0.10 EqEq 79.79 9
f5 10 0.25 EqEq 92.51 10
f5 25 0.10 EqEq 50.53 6
f5 25 0.25 EqEq 91.67 10
f6 10 0.10 EqEq 21.27 2
f6 10 0.25 EqEq 38.08 10
f6 25 0.10 EqEq 9.79 1
f6 25 0.25 EqEq 65.38 10
f7 10 0.10 EqEq 71.28 8
f7 10 0.25 EqEq 91.49 10
f7 25 0.10 EqEq 73.33 8
f7 25 0.25 EqEq 64.33 10
f8 10 0.10 EqEq 36.13 4
f8 10 0.25 EqEq 66.79 7

 119

TABLE C-1 (cont.)
function k e env IndCIave IndCItotal

f8 25 0.10 EqEq 65.00 7
f8 25 0.25 EqEq 27.00 3
f9 10 0.10 EqEq 51.77 8
f9 10 0.25 EqEq 59.57 10
f9 25 0.10 EqEq 61.13 8
f9 25 0.25 EqEq 78.44 10

f10 10 0.10 EqEq 49.44 9
f10 10 0.25 EqEq 76.24 10
f10 25 0.10 EqEq 68.33 10
f10 25 0.25 EqEq 81.33 10
f1 10 0.10 UneqEq 47.00 10
f1 10 0.25 UneqEq 78.33 10
f1 25 0.10 UneqEq 83.67 9
f1 25 0.25 UneqEq 85.67 10
f2 10 0.10 UneqEq 9.67 1
f2 10 0.25 UneqEq 9.33 1
f2 25 0.10 UneqEq 0.00 0
f2 25 0.25 UneqEq 7.67 1
f3 10 0.10 UneqEq 84.00 9
f3 10 0.25 UneqEq 56.00 6
f3 25 0.10 UneqEq 81.00 10
f3 25 0.25 UneqEq 65.00 9
f4 10 0.10 UneqEq 47.77 5
f4 10 0.25 UneqEq 35.67 4
f4 25 0.10 UneqEq 24.67 3
f4 25 0.25 UneqEq 64.67 8
f5 10 0.10 UneqEq 76.37 9
f5 10 0.25 UneqEq 90.33 10
f5 25 0.10 UneqEq 72.33 9
f5 25 0.25 UneqEq 81.33 10
f6 10 0.10 UneqEq 44.67 5
f6 10 0.25 UneqEq 54.67 10
f6 25 0.10 UneqEq 27.67 3
f6 25 0.25 UneqEq 83.00 10
f7 10 0.10 UneqEq 91.67 10
f7 10 0.25 UneqEq 87.33 10

 120

TABLE C-1 (cont.)
function k e env IndCIave IndCItotal

f7 25 0.10 UneqEq 68.67 9
f7 25 0.25 UneqEq 69.00 10
f8 10 0.10 UneqEq 56.67 6
f8 10 0.25 UneqEq 46.67 5
f8 25 0.10 UneqEq 21.67 3
f8 25 0.25 UneqEq 57.67 8
f9 10 0.10 UneqEq 42.81 5
f9 10 0.25 UneqEq 70.33 10
f9 25 0.10 UneqEq 59.33 8
f9 25 0.25 UneqEq 90.33 10

f10 10 0.10 UneqEq 28.33 9
f10 10 0.25 UneqEq 89.67 10
f10 25 0.10 UneqEq 52.00 9
f10 25 0.25 UneqEq 91.00 10
f1 10 0.10 UneqUneq 44.90 6
f1 10 0.25 UneqUneq 68.00 7
f1 25 0.10 UneqUneq 71.10 7
f1 25 0.25 UneqUneq 87.28 7
f2 10 0.10 UneqUneq 0.00 0
f2 10 0.25 UneqUneq 0.00 0
f2 25 0.10 UneqUneq 0.00 0
f2 25 0.25 UneqUneq 0.00 0
f3 10 0.10 UneqUneq 51.72 5
f3 10 0.25 UneqUneq 13.51 4
f3 25 0.10 UneqUneq 69.94 6
f3 25 0.25 UneqUneq 70.42 3
f4 10 0.10 UneqUneq 66.33 7
f4 10 0.25 UneqUneq 78.26 6
f4 25 0.10 UneqUneq 35.86 2
f4 25 0.25 UneqUneq 48.31 3
f5 10 0.10 UneqUneq 33.93 7
f5 10 0.25 UneqUneq 91.03 8
f5 25 0.10 UneqUneq 76.34 6
f5 25 0.25 UneqUneq 78.10 6
f6 10 0.10 UneqUneq 42.70 3
f6 10 0.25 UneqUneq 85.19 9

 121

TABLE C-1 (cont.)
function k e env IndCIave IndCItotal

f6 25 0.10 UneqUneq 15.25 2
f6 25 0.25 UneqUneq 81.25 7
f7 10 0.10 UneqUneq 83.33 8
f7 10 0.25 UneqUneq 91.46 6
f7 25 0.10 UneqUneq 35.47 4
f7 25 0.25 UneqUneq 68.69 6
f8 10 0.10 UneqUneq 78.43 5
f8 10 0.25 UneqUneq 78.57 5
f8 25 0.10 UneqUneq 15.14 1
f8 25 0.25 UneqUneq 49.57 3
f9 10 0.10 UneqUneq 62.07 4
f9 10 0.25 UneqUneq 49.02 10
f9 25 0.10 UneqUneq 52.17 6
f9 25 0.25 UneqUneq 82.11 9

f10 10 0.10 UneqUneq 20.51 6
f10 10 0.25 UneqUneq 92.31 10
f10 25 0.10 UneqUneq 84.72 9
f10 25 0.25 UneqUneq 70.99 8

 122

Number of groups (k=10, e=0.10)

0

2

4

6

8

10

12

14

16

18

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

generation

nu
m

be
r o

f g
ro

up
s

 123

Number of groups (k=10, e=0.25)

0

1

2

3

4

5

6

7

8

9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

generation

nu
m

be
r o

f g
ro

up
s

 124

Number of groups (k=25, e=0.10)

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

generation

nu
m

be
r

of
 g

ro
up

s

 125

Number of groups (k=25, e=0.25)

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

generation

nu
m

be
r o

f g
ro

up
s

FIGURE C-1. Number of groups versus the generations for k and e combinations

 126

TABLE C-2. Results for high error and far initial population

initial population env best deterministic f best mean estimate
[-100, -50] EqEq 13.79 16.44
[-100, -50] EqEq 13.82 16.28
[-100, -50] EqEq 14.00 17.86
[-100, -50] EqEq 13.87 21.05
[-100, -50] EqEq 14.07 19.92
[-100, -50] EqEq 14.12 20.59
[-100, -50] EqEq 14.00 18.30
[-100, -50] EqEq 13.93 18.45
[-100, -50] EqEq 5.22 7.03
[-100, -50] EqEq 14.15 19.50
[-100, -95] EqEq 13.97 16.72
[-100, -95] EqEq 14.00 16.53
[-100, -95] EqEq 14.09 18.00
[-100, -95] EqEq 14.00 21.26
[-100, -95] EqEq 13.78 19.56
[-100, -95] EqEq 5.20 7.62
[-100, -95] EqEq 13.84 18.20
[-100, -95] EqEq 13.94 18.46
[-100, -95] EqEq 13.96 18.83
[-100, -95] EqEq 14.05 19.47
[-100, -50] UneqEq 13.79 20.42
[-100, -50] UneqEq 14.11 21.25
[-100, -50] UneqEq 14.16 21.48
[-100, -50] UneqEq 13.97 21.21
[-100, -50] UneqEq 14.03 21.09
[-100, -50] UneqEq 14.12 23.63
[-100, -50] UneqEq 14.10 20.93
[-100, -50] UneqEq 14.01 20.83
[-100, -50] UneqEq 14.13 20.97
[-100, -50] UneqEq 14.14 21.91
[-100, -95] UneqEq -247,488,656.00 -87,941,048.00
[-100, -95] UneqEq -286,051,456.00 -89,432,600.00
[-100, -95] UneqEq -226,055,536.00 -63,059,052.00
[-100, -95] UneqEq -298,470,656.00 -81,842,016.00
[-100, -95] UneqEq -287,383,616.00 -79,109,848.00
[-100, -95] UneqEq -274,324,960.00 -69,595,824.00

 127

TABLE C-2 (cont.)
initial population env best deterministic f best mean estimate

[-100, -95] UneqEq -284,703,200.00 -95,151,896.00
[-100, -95] UneqEq -277,438,176.00 -101,422,640.00
[-100, -95] UneqEq -281,619,200.00 -97,540,152.00
[-100, -95] UneqEq -287,000,448.00 -89,991,888.00
[-100, -50] UneqUnEq 13.14 19.23
[-100, -50] UneqUnEq 13.84 21.12
[-100, -50] UneqUnEq 14.00 21.44
[-100, -50] UneqUnEq 13.69 20.65
[-100, -50] UneqUnEq 13.99 21.16
[-100, -50] UneqUnEq 3.68 6.60
[-100, -50] UneqUnEq 13.84 21.53
[-100, -50] UneqUnEq 13.87 21.08
[-100, -50] UneqUnEq 14.13 20.72
[-100, -50] UneqUnEq 14.02 20.75
[-100, -95] UneqUnEq 13.51 21.67
[-100, -95] UneqUnEq 5.16 8.65
[-100, -95] UneqUnEq 13.92 21.93
[-100, -95] UneqUnEq 13.46 22.79
[-100, -95] UneqUnEq 14.19 22.01
[-100, -95] UneqUnEq 14.01 25.12
[-100, -95] UneqUnEq 4.30 6.60
[-100, -95] UneqUnEq 13.85 21.43
[-100, -95] UneqUnEq 13.94 20.89
[-100, -95] UneqUnEq 14.06 22.67

 128

TABLE C-3. CPU times for function f3

 k=10 k=25
env e=0.10 e=0.25 e=0.10 e=0.25

EqEq 7.561 6.579 14.591 13.930
EqEq 7.381 6.559 14.350 13.769
EqEq 7.240 6.470 14.701 14.131
EqEq 7.200 6.499 14.641 13.619
EqEq 7.361 6.499 14.742 14.000
EqEq 7.651 6.460 14.410 13.650
EqEq 7.080 6.479 15.122 13.570
EqEq 7.170 6.730 14.501 13.599
EqEq 7.131 6.739 14.310 13.520
EqEq 7.460 6.730 14.341 13.579

UneqEq 2.574 2.193 3.565 2.844
UneqEq 2.483 2.143 3.585 2.984
UneqEq 2.414 2.123 3.695 2.764
UneqEq 2.634 2.013 3.435 2.814
UneqEq 2.553 2.103 3.725 2.874
UneqEq 2.564 2.133 3.946 2.924
UneqEq 2.604 2.213 3.635 2.774
UneqEq 2.543 2.113 3.525 2.714
UneqEq 2.444 2.133 3.536 2.644
UneqEq 2.694 2.203 3.485 2.724

UneqUneq 2.143 2.183 2.583 2.653
UneqUneq 2.173 2.153 2.694 2.674
UneqUneq 2.183 2.213 2.574 2.584
UneqUneq 2.143 2.173 2.543 2.604
UneqUneq 2.194 2.203 2.604 2.603
UneqUneq 2.153 2.193 2.574 2.604
UneqUneq 2.153 2.174 2.604 2.584
UneqUneq 2.153 2.193 2.694 2.604
UneqUneq 2.153 2.173 2.663 2.603
UneqUneq 2.193 2.173 2.664 2.644

