
AVALANCHE PROPERTIES AND RANDOMNESS OF THE TWOFISH

CIPHER

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖMER EL

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICS ELECTRONICS ENGINEERING

DECEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences.

Prof.Dr. CANAN ÖZGEN

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 ii

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof.Dr. İSMET ERKMEN

Head of Department

Examining Committee Members

Prof.Dr. Mete SEVERCAN (METU, EE

Assoc.Prof.Dr. Melek D.YÜCEL (METU, EE

Prof.Dr. Yalçın TANIK (METU, EE

Prof.Dr. Ersan AKYILDIZ (METU, EE

Savaş ARIKAN (M.Sc) (ASELSAN

Assoc.Prof.Dr. Melek D.YÜCEL

Supervisor
)

)

)

)

)

PLAGIARISM

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare that,

as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

 Name, Last name: Ömer EL

 Signature :

 iii

ABSTRACT

AVALANCHE PROPERTIES AND

RANDOMNESS OF THE TWOFISH CIPHER

EL, Ömer

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc.Prof. Dr. Melek D. YÜCEL

December 2004, 82 pages

In this thesis, one finalist cipher of the Advanced Encryption Standard (AES) block

cipher contest, Twofish proposed by Schneier et al, is studied in order to observe the

validity of the statement made by Arıkan about the randomness of the cipher, which

contradicts National Institute of Standards and Technology (NIST)’s results. The

strength of the cipher to cryptanalytic attacks is investigated by measuring its

randomness according to the avalanche criterion. The avalanche criterion results are

compared with those of the Statistical Test Suite of the NIST and discrepancies in the

second and third rounds are explained theoretically.

Keywords: Block cipher, Twofish, avalanche criterion, Walsh-Hadamard transform,

propagation, nonlinearity.

 iv

ÖZ

TWOFISH ŞİFRESİNİN ÇIĞ ÖZELLİĞİ VE

RASTGELELİĞİ

EL, Ömer

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Melek D. YÜCEL

Aralık 2004, 82 Sayfa

Bu tezde, AES blok şifre yarışmasının finalistlerinden biri olan, Schneier ve

arkadaşlarının sunduğu Twofish şifresi, rastgeleliği hakkında Arıkan tarafından

yapılan ve NIST’in sonuçları ile çelişen açıklamanın geçerliliğini incelemek için

çalışıldı. Şifrenin kriptanalitik ataklara karşı dayanıklılığı, rastgeleliğini çığ kriterine

göre ölçerek araştırıldı. Çığ kriteri sonuçları, NISTin test süit sonuçları ile

karşılaştırıldı ve ikinci ve üçüncü turlardaki farklılıklar teorik olarak açıklandı.

Anahtar Sözcükler: Blok şifreler, Twofish, çığ kriteri, Walsh-Hadamard dönüşümü,

yayılma, doğrusal olmama.

 v

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Melek D.

Yücel for her valuable guidance and helpful suggestions. This thesis would not have

been completed without her guidance. I also thank for her tolerance and

understanding as a supervisor.

I wish to thank ASELSAN Inc. for the facilities provided and to my colleagues at

this company for their patience and encouragement in this effort.

I am grateful to all my friends, who were with me at every moment, for their patience

and understanding during my thesis and their friendship throughout my life.

Last, but most, I would like to thank my mother Rabia, my father Ali, and my brother

Serdar for their moral support, encouragement, patience and endless love that bring

me up today.

 vi

TABLE OF CONTENTS

PLAGIARISM.. III

ABSTRACT...IV

ÖZ.. V

ACKNOWLEDGEMENTS..VI

TABLE OF CONTENTS.. VII

LIST OF FIGURES ..IX

CHAPTER

1 INTRODUCTION.. 1

1.1 Background .. 1

1.2 Scope and Objective of Thesis... 2

2 PROPAGATION CHARACTERISTICS OF BOOLEAN FUNCTIONS................ 4

2.1 Introduction.. 4

2.2 Definitions.. 5

2.3 Properties of Boolean Functions .. 10

3 THE TWOFISH ALGORITHM .. 20

3.1 Introduction.. 20

3.2 TheTwofish Algorithm .. 21

 vii

3.2.1 Main Functions of the Twofish Algorithm ... 26

3.2.2 Sub-functions of the Twofish Algorithm .. 32

4 AVALANCHE CHARACTERISTICS OF TWOFISH ... 37

4.1 Avalanche Criteria ... 37

4.2 Avalanche Test Results of Twofish ... 38

4.3 Analysis of the Test Results for Rounds 2 and 3 ... 42

4.3.1 Randomness of the g Function .. 48

4.3.2 Analysis of the Avalanche Test Results of Twofish for Round 2......... 49

4.3.3 Analysis of the Avalanche Test Results of Twofish for Round 3......... 54

4.4 Comparison of Our Results with Those of NIST Statistical Test Suite............... 57

4.4.1 Description of the Tests... 58

4.4.2 Description of the Data Type .. 60

4.4.3 Test Results ... 61

4.5 Cryptanalysis of Twofish ... 73

4.6 Nonlinearity Measure of Twofish .. 74

4.6.1 Nonlinearity of the S-boxes... 74

4.6.2 Nonlinearity Criterion ... 75

4.6.3 Nonlinearities of the S-boxes of Twofish ... 77

5 CONCLUSION... 79

REFERENCES.. 81

 viii

 LIST OF FIGURES

FIGURES:

2.1 The Walsh-Hadamard transform of ()f x ... 15

2.2 The autocorrelation function of ()f x .. 15

2.3 The Walsh-Hadamard transform of 1()f x .. 16

2.4 The autocorrelation function of 1()f x .. 16

2.5 The Walsh-Hadamard transform of 2 ()f x ... 17

2.6 The autocorrelation function of 2 ()f x .. 18

2.7 The Walsh-Hadamard transform of 3 ()f x ... 18

2.8 The autocorrelation function of 3 ()f x .. 18

2.9 The Walsh-Hadamard transform of 4 ()f x ... 19

2.10 The autocorrelation function of 4 ()f x .. 19

3.1 The Twofish encryption algorithm block. .. 24

3.2 A view of a single round F function (128-bit key) 29

 ix

3.3 S-box formulation of the Twofish algorithm....................................... 32

4.1 Avalanche curves of Twofish for round 2 and chosen error bit position

in the (i) first (ii) second (iii) third (iv) fourth input intervals. 40

4.2 Avalanche curves of Twofish for round 3 and chosen error bit position

in the (i) first (ii) second (iii) third (iv) fourth input intervals. 40

4.3 Avalanche curves of Twofish for round 4 and chosen error bit position

in the (i) first (ii) second (iii) third (iv) fourth input intervals. 41

4.4 The Twofish algorithm for rounds 1,2 and 3. 44

4.5 Avalanche curve of the g function for the complemented input bit at

position 0... 49

4.6 Avalanche curves for rounds 2 to 5 of the Twofish algorithm. 57

4.7 P-values of the monobit test for round 2 with the first data type (0 of

300 passes = %0). ... 62

4.8 P-values of the monobit test for round 3 with the first data type (257 of

300 passes = %85, 6). ... 62

4.9 P-values of the monobit test for round 4 with the first data type (295 of

300 passes = %98, 3). ... 63

4.10 P-values of the monobit test for round 5 with the first data type (295 of

300 passes = %98, 3) .. 63

 x

4.11 P-values of the frequency test within a block for round 2 with the first

data type (0 of 300 passes = %0). ... 64

4.12 P-values of the frequency test within a block for round 3 with the first

data type (275 of 300 passes = %91, 6). ... 64

4.13 P-values of the frequency test within a block for round 4 with the first

data type (297 of 300 passes = %99). ... 65

4.14 P-values of the frequency test within a block for round 5 with the first

data type (297 of 300 passes = %99). ... 65

4.15 P-values of the runs test for round 2 with the first data type (0 of 300

passes = %0). .. 66

4.16 P-values of the runs test for round 3 with the first data type (263 of 300

passes = %87, 6). .. 66

4.17 P-values of the runs test for round 4 with the first data type (296 of 300

passes = %98, 6). .. 67

4.18 P-values of the runs test for round 5 with the first data type (296 of 300

passes = %98, 6). .. 67

4.19 Number of sequences that have P-value > 0.01 at the end of round 2

for 128 monobit tests, each of which are made with different input error bit

position i, 0 ... 69 12i≤ ≤ 7

 xi

4.20 Number of sequences that have P-value > 0.01 at the end of round 3

for 128 monobit tests, each of which are made with different input error bit

position i, 0 ... 69 12i≤ ≤ 7

7

7

7

7

7

7

4.21 Number of sequences that have P-value > 0.01 at the end of round 4 for

128 monobit tests, each of which are made with different input error bit

position i, 0 ... 70 12i≤ ≤

4.22 Number of sequences that have P-value > 0.01 at the end of round 2

for 128 frequency tests, each of which are made with different input error bit

position i, 0 ... 70 12i≤ ≤

4.23 Number of sequences that have P-value > 0.01 at the end of round 3

for 128 frequency tests, each of which are made with different input error bit

position i, 0 ... 71 12i≤ ≤

4.24 Number of sequences that have P-value > 0.01 at the end of round 4

for 128 frequency tests, each of which are made with different input error bit

position i, 0 ... 71 12i≤ ≤

4.25 Number of sequences that have P-value > 0.01 at the end of round 2

for 128 runs tests, each of which are made with different input error bit

position i, 0 ... 72 12i≤ ≤

4.26 Number of sequences that have P-value > 0.01 at the end of round 3

for 128 runs tests, each of which are made with different input error bit

position i, 0 ... 72 12i≤ ≤

 xii

4.27 Number of sequences that have P-value > 0.01 at the end of round 4

for 128 runs tests, each of which are made with different input error bit

position i, 0 ... 73 12i≤ ≤ 7

 xiii

CHAPTER 1

1.1

INTRODUCTION

Background

Cryptography is the process of combining some input data, called the plaintext, with

a user-specified key to generate an encrypted output, called the ciphertext.

Cryptographic security requires that given the ciphertext, no one can recover the

original plaintext without the key. The algorithms that combine the keys and

plaintexts are called ciphers. Cryptanalysis is the science of breaking ciphers, i.e.,

retrieving the plaintext from the ciphertext without knowing the proper key. The

branch of mathematics encompassing both cryptography and cryptanalysis is called

cryptology.

There are two kinds of cryptographic algorithms: symmetric and asymmetric.

Symmetric algorithms use the same key (the secret key) to encrypt and decrypt a

message, and asymmetric algorithms use one key (the public key) to encrypt a

message and a different key (the private key) to decrypt it. Asymmetric algorithms

are also called public key algorithms. Symmetric algorithms, also called secret-key

algorithms, require the sender and receiver to agree on a key before they pass

messages back and forth. This key must be kept secret. The security of a symmetric

algorithm rests entirely in the key.

Symmetric key algorithms can be divided into two categories, stream ciphers and

block ciphers. Stream ciphers encrypt a single bit of plaintext at a time; whereas

block ciphers operate on the plaintext in group of bits, called blocks. Most of the

 1

block ciphers are composed of usually 8 to 32 iteration rounds, where each iteration

contains nonlinear substitution boxes (S-Boxes) followed by linear permutations.

Such ciphers are named as Substitution Permutation Networks (SPN) [Feistel, 1973]

Block ciphers can be used to design stream ciphers with a variety of synchronization

and error extension properties, one-way hash functions, message authentication

codes, and pseudo-random number generators. Because of this flexibility, they are

the workhorse of modern cryptography.

Feistel ciphers [Feistel, 1973], which are also called DES-like ciphers, are a special

class of iterated SPN ciphers where the ciphertext is calculated from the plaintext by

repeated application of the same transformation or round function. Furthermore, in a

Feistel cipher, the ciphertext being encrypted is split into two halves. The round

function f is applied to one half using a subkey and the output of f is XORed with the

other half. The two halves are then swapped. Each round follows the same pattern

except for the last round, for which there is no swap. A nice feature of a Feistel

cipher is that encryption and decryption are structurally identical, though the subkeys

used during encryption in each round are taken in reverse order during encryption.

National Institute of Standards and Technology (NIST) announced the Advanced

Encryption Standard (AES) program in 1997 to replace Data Encryption Standard

(DES). 15 algorithms were submitted and five algorithms were selected as AES

candidates. Finally, Rijndael algorithm was selected as the new encryption standard

October 2, 2000. Twofish cipher was one of the finalist algorithms.

1.2 Scope and Objective of Thesis

In this thesis, in order to observe the validity of the statement made by Arıkan

[Arıkan, 2003] about the randomness of the cipher, which contradicts NIST’s results

[Soto, 2000], the avalanche characteristics of the Twofish algorithm are investigated.

 2

In Chapter 2, some mathematical definitions related to Boolean functions are

reviewed to form a background [Yücel, 2001] and then some properties of Boolean

functions are given [Preneel, 1994]. We prove that a dyadic shift in the Walsh-

Hadamard domain, i.e., addition of linear terms to a function in the original domain,

does not change the propagation characteristics of a function [Preneel, 1991]. Then

we give an example to observe the effects of addition of linear and non-liner terms to

a function on the propagation characteristics.

In Chapter 3, the building blocks and encryption algorithm of the Twofish cipher are

given.

In Chapter 4, the description and methodology of some test criteria that are used to

measure the strength of the ciphers against cryptanalytic attacks are given. The

studied test criteria are avalanche criterion and nonlinearity measure. Then we give

the results of avalanche criterion test and compare them with the results found by

Arıkan [Arıkan, 2003]. For better understanding of the avalanche test results, we

derive the outputs for round 2 and 3 of the Twofish algorithm in terms of the input

plaintext words. Avalanche test results are compared with three of 16 core tests of

NIST statistical Test Suite, which are monobit, frequency test within a block and

runs test. Also in chapter 4, the nonlinearity of the S-boxes of the Twofish cipher and

the effects of keywords on the nonlinearity measure are investigated.

Finally Chapter 5 summarizes the work of the thesis.

 3

CHAPTER 2

2.1

PROPAGATION CHARACTERISTICS OF

BOOLEAN FUNCTIONS

Introduction

In this chapter some mathematical definitions related to Boolean

functions , which map n bits to a single bit, are given [Yücel, 2001].

Autocorrelation function and Walsh-Hadamard transform, which is also called the

spectrum of Boolean functions, are defined [Preneel, 1994] and some of their

characteristics are given. The Strict Avalanche Criterion and perfect non-linearity are

defined [Preneel, 1991]. The behaviour of a Boolean function for more than one

input bit complementation which is defined as the propagation criterion of a Boolean

function is studied [Preneel, 1991]. We prove that a dyadic shift in the Walsh-

Hadamard domain implies adding linear terms to a function in the original domain.

Finally we give an example of a Boolean function of degree 4 which shows that

addition of linear terms to a function does not change the propagation characteristics

of a Boolean function.

22: ZZf n →

 4

2.2 Definitions
A Boolean function is a function whose domain is the vector space ()f x 2

nZ of

binary n-tuples 1(........)nx x=x 2Z n∈ that takes values 0 or 1. In some cases it will be

more convenient to work with functions that take the values { }. The function 1,1−

^
()xf is defined as:

^
()() 1 2 () (1) xx = x = ff f− −

Definition 2.1 (Affine & Linear Functions) A Boolean function)(xf is called an

affine function of if it is in the form)........(1 nxx=x Z2
n∈

ccxaxaxaf nn ⊕⊕⊕⊕⊕ == ⊗⊗⊗ xw x)(2211 , (2.1)

where , c belong to ,,, 21 naaa 2Z w).........(1 naa= Z2
n∈ , and ⊕, ⊗ &

respectively denote addition, multiplication and inner product operations in Z2.

 f(x) is called linear if c=0.

Definition 2.2 (Truth Table) The truth table tf of a Boolean function is found

by evaluating for all possible values of

()f x

()f x i=x a ; where is the n-bit vector

corresponding to binary representation of the integer

ia

0,1,...., 2 1ni = − . So:

 (2.2) 0 2 1
{ (),......, ()}ntf f f

−
= a a

Definition 2.2 (Sequences) The sequence fs of a Boolean function f(x) is defined for

all possible values = xx i as:

fs }{)()()(120)1,......()1(,)1(1 −−−−= nfff xxx

 = (){(1) }|
i

f
=− x

x x

Where xi is the n-bit vector corresponding to the binary representation of the integer

i= 0… 2n–1.

 5

Definition 2.4 (Correlation and Autocorrelation) Correlation coefficient C(f, g) between

two functions and is 22: ZZf n → 22: ZZg n →

 C(f, g) = 2
-n

 ∑x (–1) f (x) ⊕ g (x) = 2
-n

 ∑x (–1) f (x) (–1) g (x) = 2
-n

 fs ♦ gs (2.3)

where the summation Σ and inner product ♦ operations are defined in the field of real

numbers R.

The autocorrelation function rf(d) of f is

 rf(d) = 2
-n

 ∑x (–1) f (x) ⊕ f (x ⊕ d)= 2
-n

 ∑x (–1) f (x) (–1) f (x ⊕ d) = 2p(d) – 1.

p(d) is the probability that {f(x) = f (x ⊕ d)}, which is computed as # {x⎟ f (x) = f (x⊕ d) }/

2n, where #{.} denotes the number of occurrences of an event.

Definition 2.3 (Distance Between Functions) Hamming distance between

two functions and is defined as the Hamming distance

d

g)fdH ,(

22: ZZf n → 22: ZZg n →

H (fs, gs) between their 2n-bit sequences fs and gs (which is equal to the number of

places, where these two vectors differ).

Definition 2.4 (Hadamard Matrix) A hadamard matrix H is an nxn matrix with

entries or , such that all rows and columns are orthogonal, i.e., 1+ 1− T
nHH nI=

where is the transpose of the Hadamard matrix and TH nI is the identity matrix of

order . A special kind of Hadamard matrix, called Sylvester-Hadamard matrix of

order denoted by is generated by the following recursive relation:

n

2n
nH

0 1H = , 1 1

1 1

n n
n

n n

H H
H

H H
− −

− −

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (2.4)

 6

So; 1

1 1
1 1

H
+ +⎡

= ⎢+ −⎣ ⎦

⎤
⎥ 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

H

+ + + +⎡ ⎤
⎢ ⎥+ − + −⎢ ⎥=
⎢ ⎥+ + − −
⎢ ⎥+ − − +⎣ ⎦

and 32 23x Sylvester-Hadamard matrix can be obtained as follows: 3H

3

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

H

+ + + + + + + +⎡ ⎤
⎢ ⎥+ − + − + − + −⎢ ⎥
⎢ ⎥+ + − − + + − −
⎢ ⎥+ − − + + − − +⎢ ⎥= ⎢ ⎥+ + + + − − − −
⎢ ⎥
+ − + − − + − +⎢ ⎥
⎢ ⎥+ + − − − − + +
⎢ ⎥
+ − − + − + + −⎢ ⎥⎣ ⎦

It can be shown that each row (or column) of is a linear sequence of length , nH 2n

i.e., it corresponds to the sequence of a linear function. There is a one to one

mapping between each row (or column) iI of a 2 2n nx Sylvester-Hadamard matrix

, and the sequence of a linear function 2 2: n
nH I Z ned by ()iI x = e

the subscript i takes 2n different values corresponding to 2n possible weighting

vectors w.

Z→ defi wherw xi ,

Definition 2.5 (Walsh-Hadamard Transforms) In the space of Boolean functions,

sequences of all linear functions form an orthogonal basis with respect to the inner

product operation ♦. The representation of a Boolean function f(x) with respect to

this basis is called the Walsh-Hadamard transform , or the spectrum of f(x):

^

{ ()}xW f = = f
2

^
()() (1) (1)x

x
w.xw n

f
Z

F
∈

= − −∑ s ♦ (w.x)s. (2.5)

 7

Since the summation Σ and inner product ♦ operations in (2.5) are defined in the

field of real numbers R , the Walsh-Hadamard transform takes even integer

values in the interval [-2

^
()wF

n, 2n]. For 2n different values of , /2w
^
()F w n is the

normalized component of fs along the linear sequence (w.x)s, which is also equal to

the correlation coefficient (2.3) between f(x) and w.x.

As the Walsh-Hadamard transform is linear, an alternative definition [Preneel, 1991]

based on a matrix product is possible. The function values of are

written in the column matrices

^ ^
() and ()x wf F

^ ^
and f F⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 respectively

^ ^

nF H f⎡ ⎤ ⎡= ⋅ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

,

where is the Walsh-Hadamard matrix of order n that can be recursively defined

as

nH

 , 111
11

−⊗⎥
⎦

⎤
⎢
⎣

⎡
−

= nn HH 10 =H .

Here denotes the Kronecker product between matrices. It is easily seen that

⊗

n
n

n IH ⋅= 22

 8

Fact 2.5 (The Relation Between the Walsh-Hadamard Transforms of

) The relation between the Walsh-Hadamard transforms of

 is given by

^
f(x) and f(x)

^
f(x) and f(x)

^ ^

()

() ()(1)

(1) (1)

(1 2 ())(1)

(1) 2 ()(1)

f

F f

f

f

= −

= − −

= − −

= − − −

∑

∑

∑

∑ ∑

w x

x w x

w x

w x w x

w x

 x

 x

i

i

i

i i

x

x

x

x x

2 () 2 ()nF δ= − + w w (2.6)

where ()wδ denotes the Kronecker delta (() 1,0δ = () 0kδ = for) function. k 0∀ ≠

Definition 2.6 (Hamming Weight) The hamming weight Hw of an element of 2
nZ is

the number of components equal to 1. Similarly, the hamming weight Hw of a

Boolean function f is the number of components of its sequence equal to 1.

Definition 2.7 (Nonlinearity Measure) Nonlinearity of a Boolean function is

defined as the minimum number of cases, over all input vectors, that it differs from

an affine function. One can find this distance by comparing the truth table of the

Boolean function to all rows of the Hadamard matrix.

)(xf

})(|{ # 2 , cfZ N
n

f cmin ⊕≠∈= xwxx .w

 . (2.7) d (), (), Hmin f cc ⊕= x w xw .()

There are also other definitions, which can be shown to be equivalent to (2.7):

()1 1 ^
()

10,1,...,2

1 1
2 2

2
n n

f max w x Fssnw
N f− −

−=
= − −= w

i i
2

max()
 (2.8)

Here is the Walsh-Hadamard transform of a
^
()F w

^
()f x

 9

2.3 Properties of Boolean Functions

1. Balancedness

A Boolean function is said to be balanced if its truth table contains as many 0 as 1

entries.

It is easy to show that this is equivalent to
^
() 00F =

^
()() (1) (1)x w

x
w fF = − −∑ ix

x

1

^
()() (1) (1)fF = − −∑ x 0

x
0 i

^
()() (1) fF = −∑ x

x
0

^
() 0F =0 , so 0() ()(1) 2nF f −= − =∑ x

x
0 x i by (2.6).

2. Correlation Immunity

A Boolean function is m’th order correlation immune if is statistically

independent of any subset of m input variables [Preneel, 1994]. This can be shown to

be equivalent to be,

()xf ()xf

^
() 0 1 ()HF w= ≤ ≤w w m , (2.9)

and a necessary condition is ()ord f n m≤ − [Preneel, 1994].

If is also balanced, then ()xf () 1 unless 1 ord f n m m n≤ − − = − .

3. Strict Avalanche Criterion

A Boolean function satisfies the Strict Avalanche Criterion (SAC) if and only

if changes with a probability of one half whenever a single input bit of is

complemented [Preneel, 1991].

()xf

()xf x

 10

That is, if satisfies SAC then , the probability that {f(x) = f(x⊕d)}, should

be equal to ½ for . Then, the corresponding values of the autocorrelation

function will be

()xf dp()

() 1dHw =

2 1fr () p() = = −d d 0 for all 2 () 1n
HZ w∈ =d d .

4. Higher Order SAC

A Boolean function satisfies the Strict Avalanche Criterion of order m (SAC of

order m) if any function obtained from by keeping m of its input bits constant

satisfies the SAC [Preneel, 1991].

()f x

()f x

5. Perfect Non-linearity

A Boolean function is perfect non-linear (with respect to linear structures) if

 changes with a probability of one half whenever

)(xf

)(xf (1) i i n≤ ≤ bits of x are

complemented [Preneel, 1991]. That is,

2 1fr () p() = = −d d 0 for all 2 1n
HZ w () n∈ ≤ ≤d d .

These two definitions can be generalized in a natural way as follows,

6. Propagation Criterion

A Boolean function satisfies the propagation criterion of degree k (PC of

degree k) if changes with a probability of one half whenever bits

of are complemented [Preneel, 1994]. That is,

)(xf

)(xf (1) i i k≤ ≤

x

0dfr () for= (2.10) 21 d d n
Hw () k, Z≤ ≤ ∈

Note that SAC is PC of degree 1 and perfect non-linear is PC of degree n.

The propagation criterion is defined as the non-linearity of f with respect to linear

structure.

 11

7. Higher Order Propagation Criterion

A Boolean function of variables satisfies the propagation criterion of degree

k and order (and order) if any function obtained from by keeping

 of its input bits constant satisfies the [Preneel, 1991].

)(xf n

m ()PC k m)(xf

m ()PC k

Here , if m bits are kept constant at most k m n+ ≤ n m− bits can be changed.

A dyadic shift in the original domain generates a Boolean function with the same

autocorrelation function [Preneel, 1991].

Theorem 2.1 If , then is called dyadically shifted form of

 and the autocorrelation function of is equal to that of .

() ()g f= ⊕x x s

)

()g x

()f x ()g x ()f x

Proof

'

() () ()

() (

(') (')

()

g

f

r g g

f f

f f

r

= ⊕

= ⊕ ⊕ ⊕

= ⊕

=

∑

∑

∑

x

x

x

d x x d

 x s x d s

 x x d

 d

i

i

i

When dealing with propagation properties it is important to be able to construct

different functions that satisfy the same property starting from one function. One

method is the dyadic shift in the Walsh-Hadamard domain.

Theorem 2.2 Let be a Boolean function. Then the function , with the

Walsh-Hadamard transform

)(xf ()xg

^ ^
() ()G F= ⊕w w s , is dyadically shifted form of

and is also Boolean for all s . Moreover, the autocorrelation function of

has the same absolute values (and thus the same zeroes) as the autocorrelation

function of and for

^
()F w

()xg ()xg

)(xf ≠s 0 , [Preneel, 1991].

In short,

the distance (,)d f g equals 12n−

 12

^ ^
() () () ()(1)g fG F r r= ⊕ ⇒ = − s dw w s d d i , and 1(,) 2nd f g −= .

Proof
() ()

^
2

2

^
2 ()

^
2

^
2

() (1) (1)

2 ()(1)

2 ()(1)

2 (')(1)

2 (')(1) (1)

(1) 2 (')(

g g
g

x

n

n

n

n

n

r

G

F

F

F

F

⊕

−

−

− ⊕

−

−

= − −

= −

= ⊕ −

= −

= −

= −

−

∑

∑

∑

∑

∑

x x d

w d

w
^

w d

w

w' s d

w'

w' d s d

w'

s d

 d

 w

 w s

 w

 w

 w

i

i

i

i i

i 1)

(1) ()fr

−

= −

∑ w' d

w'
s d d

i

i

To evaluate the distance of and , and for ()xg)(xf () ()G F= ⊕w w s

−

x

^

()

^

^
(')

^

^
'

(1) 2 ()(1)

2 ()(1)

2 (')(1)

2 (')(1) (1)

(1) 2 (')(1)

g n

n

n

n

n

G

F

F

F

F

−

−

− ⊕

−

−

− = −

= ⊕ −

= −

= −

= − −

=

∑

∑

∑

∑

∑

x w

w

w x

w

w s x

w'

w' x s x

w'

s x w x

w'

 w

 w s

 w

 w

 w

i

i

i

i i

i i

()

() ()

(1) (1)
(1)

() () ()

f

f

g f

⊕

− −

= −
= ⊕

s x x

x s x

x x s x

i

i

i

Since is a linear function, for s xi ≠s 0 , takes the values 1 for times and 0

for times. So, between f and g, is equal to .

s xi 12n−

12n− the distance (,)d f g 12n−

 13

^ ^
() ()G F= ⊕w w s x

s x

 (2.11) () () ()g f⇒ = ⊕ ⋅x x s

Corollary 2.2.1 A dyadic shift and a complementation in the Walsh-Hadamard

domain mean adding linear terms to a function in the original domain [Preneel,

1991].

() ()G F= ⊕w w . () () ()x x sg f⇒ = ⊕ ⋅

Corollary 2.2.2 Adding right linear terms to a function, i.e., if is chosen properly,

with at least one zero in the Walsh spectrum will result in a balanced function with

the same propagation properties [Preneel, 1991].

s

In the following example, we define a simple function, , and evaluate the

Walsh-Hadamard transform and autocorrelation function of . Then

we define 4 more functions,

()f x

^
()F w ()fr d ()f x

1()f x , 2 ()f x , 3 ()f x and 4 ()f x where 1f , 2f and 3f are

obtained with the addition of linear terms to and f 4f is obtained with the addition

of a nonlinear term. We show that and 3 functions, ()f x 1()f x , 2 ()f x , 3 ()f x ,

obtained with the addition of linear terms to , have the same PC where as ()f x

4 ()f x has different PC.

Example:

1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5 1 4 1 5 2 3 2 5 3 4()f x= + + + + + + + + +x

Sequence of is calculated as, ()xf

fs = (1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1)

 14

In Fig 2.1 the Walsh-Hadamard transform of is sketched. We see that is

correlation immune of order 1 because

f f

() 0wF = for all w with hamming weight of

w equal to 1. Also note that is not balanced because f () 0wF ≠ for . 0w =

()wF

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.1 The Walsh-Hadamard transform of ()f x

Fig 2.2 shows the autocorrelation function of . From the figure we see that

 satisfies because from (2.10) we know that is PC(k) if for

.

()fr d f

f)2(PC ()f x () 0dfr =

1 ()Hw k≤ ≤d

()fr d

-15
-10

-5
0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.2 The autocorrelation function of ()f x

 15

Now let’s see what happens when we add 1 2 3 4 5x x x x x+ + + + to . The function f

1()f x is defined as 1 2 3 4 5()f x x x x x x+ + + + + .

Fig 2.3 shows the Walsh-Hadamard transform of 1()f x . From the figure it is clear

that 1()xf is balanced because 1() 0wF = for 0w = . We know from (2.11) that

adding linear terms to a function results in a dyadic shift in the Walsh-Hadamard

domain. From Fig. 2.3 it can be concluded that 1() ((11111))F F= ⊕w w

1()wF (Dyadic shift 11111 of F)

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.3 The Walsh-Hadamard transform of 1()f x

1
()dfr

-10

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.4 The autocorrelation function of 1()f x

 16

One expects that the propagation characteristics of remain unaffected because

from Theorem 2.2, we know that adding linear terms to a function does not affect the

propagation characteristics. Fig. 2.4 demonstrates the autocorrelation function of

()xf

1()f x . We see that 1()xf is because)2(PC
1
() 0fr =d for 1 () 2Hw≤ ≤d . That is, the

propagation characteristics of and ()xf 1()xf are the same.

Let’s define three more functions one of which is formed with the addition of a non-

linear term and the other two are formed with the addition of linear term to . ()xf

2 1 2 3() ()x x 4f f x x x= + + + + x

3 5

 (Linear terms are added)

3 2() ()x xf f x x= + + + x

1 2

 (Linear terms are added)

4 () ()x xf f x= + x (Non-linear term is added)

In Fig 2.5, Fig 2.6, Fig 2.7 and Fig 2.8 the Walsh-Hadamard transforms and the

autocorrelation functions of and are sketched respectively. From Fig.

2.6 and Fig 2.8 we see that

2 ()xf 3 ()f x

2 ()f x and 3()f x satisfy the propagation criterion of

degree 2, ().)2(PC

2 ()wF (Dyadic shift 11110 of F)

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.5 The Walsh-Hadamard transform of 2 ()f x

 17

2
()dfr

-15
-10

-5
0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.6 The autocorrelation function of 2 ()f x

3 ()wF (Dyadic shift 01101 of F)

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.7 The Walsh-Hadamard transform of 3 ()f x

3
()dfr

-15
-10

-5
0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.8 The autocorrelation function of 3 ()f x

 18

The function is obtained with the addition of a non-linear term to . Fig.

2.9 and Fig. 2.10 show the Walsh-Hadamard transform and the autocorrelation

function of . We see from Fig. 2.10 that does not satisfy .

4 ()xf ()xf

4 ()xf 4 ()xf)2(PC

4 ()wF

-15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.9 The Walsh-Hadamard transform of 4 ()f x

4
()dfr

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

Figure 2.10 The autocorrelation function of 4 ()f x .

In the figures, we observe that the resultant function will be balanced if dyadic shift

of the spectrum is chosen accordingly. The propagation characteristics of a function

may change with the addition of non-linear terms. Also note that has 5 zeroes

which means that 10 balanced functions can be obtained through addition of affine

terms.

()wF

 19

CHAPTER 3

3.1

THE TWOFISH ALGORITHM

Introduction

In response to a growing desire to replace DES (early encryption algorithm),

National Institute of Standards and Technology (NIST) announced the Advanced

Encryption Standard (AES) program in 1997. NIST solicited comments from the

public on the proposed standard, and eventually issued a call for algorithms to satisfy

the standard. The intention of NIST was to make all submissions public and

eventually, through a process of public review and comment, choose a new

encryption Standard to replace DES.

NIST specified several design criteria: a longer key length, larger block size, faster

speed, and greater flexibility. Twofish is one of the submissions to the AES selection

process. It meets all the required NIST criteria, 128-bit block; 128-, 192-, 256-bit

key; efficient on various platforms; etc [Schneier, 1998].

In this chapter, we give the description of the building blocks of the Twofish

algorithm.

 20

3.2

n

TheTwofish Algorithm

Twofish is one of the submissions to the AES selection process. It meets all the

required NIST criteria; 128-bit block, 128, 192, 256-bit key lengths; efficient on

various platforms, etc. Twofish can be seen as two parallel Feistel Networks, where

the outputs of each round function are combined [Schneier, 1998]. In each round,

half the block is input to the confusion stage, and the S-boxes are 8-bit S-boxes.

Twofish was designed to meet NIST’s design criteria for AES.

The Twofish algorithm has been implemented by using six blocks. Below these

blocks and brief explanation are given:

Feistel Networks: A Feistel network is a general method of transforming any

function (usually called the F function) into a permutation. The fundamental building

block of a Feistel Network is the F function: a key-depended mapping of an input

string onto an output string. An F function is always non-linear and possibly non-

surjective (in which not all outputs in the output space can occur):
/ 2 / 2:{0,1} {0,1} {0,1}n NF × →

where n is the block size of the Feistel Network, and F is a function taking n/2 bits of

the block and N bits of a key as input, and producing an output of length n/2 bits. In

each round, the “source block” is the input to , and the output of is XORed with

the “target block”, after which these two blocks swap places for the next round. The

idea here is to take a function, which may be a weak encryption algorithm when

taken by itself, and repeatedly iterate it to create a strong encryption algorithm. Two

rounds of a Feistel Network is called a “cycle”. In one cycle, every bit of the text

block has been modified once. Twofish is a 16-round Feistel network with bijective

 function.

F F

F

F

S-boxes: An S-box is a table-driven non-linear substitution operation used in most

block ciphers. S-boxes vary in both input size and output size, and can be created

either randomly or algorithmically. Twofish uses four different, bijective, key-

 21

dependent, 8-by-8-bit S-boxes. These S-boxes are built using two fixed 8-by-8-bit

permutations and key material.

MDS Matrices: A maximum distance separable (MDS) code over a field is a linear

mapping from a field elements to b field elements, producing a composite vector of

 elements, with the property that the minimum number of non-zero elements in

any non-zero vector is at least

a b+

1b+ . MDS mappings can be represented by an MDS

matrix consisting of a elements. Reed-Solomon (RS) error-correcting codes are

known to be MDS. A necessary and sufficient condition for a matrix to be

MDS is that all possible square submatrices, obtained by discarding rows or

columns, are non-singular. Twofish uses a single 4-by-4 MDS matrix over .

b×

a b×

8(2)GF

Pseudo-Hadamard Transforms: A Pseudo-Hadamard transform (PHT) is a simple

mixing operation that runs quickly in software. Given two inputs, a and b, the 32-bit

PHT is defined as:
32' () mod 2a a b= +

32' (2) mod 2b a b= +

Twofish uses a 32-bit PHT to mix the outputs from its two parallel 32-bit g function.

Whitening: Whitening, the technique of XOR’ing key material before the first round

and after the last round, substantially increases the difficulty of keysearch attacks

against the remainder of the cipher. Twofish XORs 128 bits of subkey before the first

Feistel round. These subkeys are calculated in the same manner as the round

subkeys, but are not used any-where else in the cipher.

Key Schedule: The key Schedule is the means by which the key bits are turned into

round keys that the cipher can use. Twofish needs a lot of key material, and has a

complicated key schedule. To facilitate analysis, the key Schedule uses the same

primitives as the round function.

 22

Figure 3.1 shows an overview of the Twofish block cipher. Twofish uses a 16-round

Feistel-like structure with additional whitening of the input and output. The only

non-Feistel elements are the 1-bit rotates. The plaintext is split into four 32-bit

words. In the input whitening step, these are XORed with four key words. This is

followed by sixteen rounds. In each round, the two words on the left are used as

input to the g functions (one of them is rotated by 8 bits first.). The g function

consists of four byte-wide key-dependent S-boxes, followed by a linear mixing step

based on an MDS matrix. The results of the two g functions are combined using a

Pseudo-Hadamard Transform (PHT), and two keywords are added. These two results

are then XORed into the words on the right (one of which is rotated left by 1 bit first,

the other is rotated right afterwards). The left and right halves are then swapped for

the next round. After all the rounds, the swap of the last round is reversed, and the

four words are XORed with four more key words to produce the ciphertext. So, the

key schedule prepares a total of forty 32-bit subkeys.

 23

Figure 3.1 The Twofish encryption algorithm block.

 24

More formally, the 16 bytes of plaintext 0 15,.........,p p 0 (p is the most significant

byte of the plaintext, and 15p is the least significant byte of the plaintext) are first

split into 4 words of 32 bits each using the little-endian convention. 0 ,.........,P 3P

3
8

(4)
0

.2 j
i i j

j
P p +

=

=∑ 0,......,3i = (3.1)

In the input whitening step, these words are XORed with 4 words of the expanded

key.

0,i i iR P K= ⊕ 0,......,3i = (3.2)

In each of the 16 rounds, the first two words are used as input to the function F,

which also takes the round number as input. The third word is XORed with the first

output of F and then rotated right by one bit. The fourth word is rotated left by one

bit and then XORed with the second output word of F. Finally, the two halves are

exchanged. Thus, outputs and of the F function and 4 inputs words ,0rF ,1rF 1rR + of

the successive round are found as:

,0 ,1 ,0 ,1

1,0 ,2 ,0

1,1 ,3 ,1

1,2 ,0

1,3 ,1

(,) (, ,
(,
(,1)

r r r r

r r

r r

r r

r r

F F F R R r
R ROR R F

)
1)r

rR ROL R F
R R
R R

+

+

+

+

=

= ⊕

=

=

=

⊕

i

 (3.3)

for and ROR and ROL are functions that rotate their first argument (a 32-

bit word) left or right by the number of bits indicated by their second argument.

0,...,15r =

The output whitening step undoes the ‘swap’ of the last round, and XORs the data

words with 4 words of the expanded key. The output block is then

 16,(2)mod 4 4i iC R K+ += ⊕ 0,......,3i =

 25

The four words of ciphertext are then written as 16 bytes using the same

little-endian conversion used for the plaintext.

0 ,.........,c 15c

 / 4 8
8(mod 4) mod 2

2
i

i i

C
c ⎢ ⎥⎣ ⎦

⎢ ⎥
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 0,......,15i =

3.2.1 Main Functions of the Twofish Algorithm

a. The Function g

The function g forms the heart of the Twofish algorithm: it is the main component of

the F function. It uses an 32-bit vector X and a 64-bit vector L to produce the 32-bit

output (,)Z g X L= . The input word X (X is either ,0rR or) is split into

four bytes. Each byte

,1(,8rROL R)

ix is run through its own key-dependent S-box, . Each S-box

is bijective, takes 8 bits of input, and produces 8 bits of output. The four S-box

outputs are interpreted as a vector of length 4 over , and multiplied by the

 MDS matrix (using the field for the computations). The resulting

vector is Z is a 32-bit word.

is

iy 8(2)GF

4 4× 8(2)GF

8/ 2 mod 2i

ix X⎢ ⎥= ⎣ ⎦
8 0,......,3i =

[]i i iy s x= 0,......,3i = (3.4)

0 0

1

2 2

3 3

01 5 5
5 01

.
5 01
01 5

z yEF B B
z yB EF EF
z EF B EF
z yEF EF B

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜=
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

1

y
⎟
⎟

 (3.5)

3
8

0
.2 i

i
i

Z z
=

= ∑

 26

In 3.4 are the key-dependent S-boxes (S-box0 to S-box3) and the elements of the

second 64-bit input

is

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3(, , , , , , ,)L I I I I I I I I= are used as the S-box

constants, which are indicated in (3.8). The vector L is obtained from the keys. For

MDS matrix multiplication (3.5) to be well-defined, the correspondence between

byte values and the field elements of are needed to be specified. is

represented as where

8(2)GF 8(2)GF

(2)[] / ()GF x v x 8 6 5 3() 1v x x x x x= + + + + is a primitive

polynomial of degree 8 over . The field element (2)GF
7

0

i
i

i
a a

=

= x∑ with

is identified with the byte value

(2)ia GF∈

7

0

2i
i

i

a
=
∑ . This is in some sense the “natural” mapping;

addition in corresponds to a XOR of the bytes. 8(2)GF

b. The Function F

The function F mentioned in (3.3) is a key-dependent permutation on 64-bit values.

It takes three arguments, two input words 0R and 1R and the round number r used to

select the appropriate subkeys. 0R is passed through the g function, which yields

. ,0rT 1R is rotated left by 8 bits and then passed through the g function to yield .

The 64-bit vector L which adjusts the S-box constants is prepared from the original

key as in (3.13), so, . The results and are then combined in a

pseudo hadamard transformer and two words of the expanded key are also added

modulo which is different from the XOR operation. The following set of

equations describes the details of F function.

,1rT

1 0(L S S S= =)

od 2

where () is the result of F. Fig 3.2 shows the F function in detail, where (3.6)

can be observed in the lower part of the figure that uses g functions. The upper part

,0rT ,1rT

322

,0 ,0

,1 ,1

32
,0 ,0 ,1 2 8

32
,1 ,0 ,1 2 9

(,)
((,8),)

() m

(2) mod 2

r r

r r

r r r r

r r r r

T g R S
T g ROL R S

F T T K

F T T K
+

+

=

=

= + +

= + +

 (3.6)

,0 ,1,r rF F

 27

of the figure, which uses h functions, is related to the key schedule to be described by

(3.14). The round keys 2 8rK + and 2 9rK + used in (3.6) are produced in the upper part

of Fig 3.2, as explained in (3.14). The h function also has key dependent S-boxes,

where the S-box constan e prep from the original key M, by dividing it into

32-bit pieces, 0 1 2 3, , , ,

ts ar ared

M M M M and choosing either the even or odd indexed

segments, so respectively, 0 2(,)eM M M= and 1 3(,)oM M M= as shown in (3.12).

 28

Figure 3.2 A view of a single round F function (128-bit key)

. The Function h

c

 29

The function (,)h X L is used to obtain expanded keywords of the Twofish algorithm.

 function is very ilar to the function g, therefore equations (3.4) and (3.5)

pletel

Note th their inputs are

ifferent. X is obtained from

h sim

describe it com y. Its 32-bit input word X is split into four bytes. Each byte is

run through its own key-dependent S-box. The four results are interpreted as a vector

of length 4 over 8(2)GF , and multiplied by the 4x4 MDS matrix (using the field
8(2)GF for the computations). The resulting vector is 32-bit word.

at the h and g functions are exactly sane as each other but

d ,0rR or ,1rR for the function g, whereas for the function

h, it is chosen as the 32-bit vector ()p i i i i= where i is the 8-bit vector

corresponding to 0,....,39i = . Also the S-box constant vector L is different for h and

g functions. In h function, L is either eM or oM , whereas in g function L S= . The

method of obtaining the vectors S, eM and oM from the original key is described in

section 3.2.2

d. Key-dependent S-boxes

 single 32x32 S-box which can be considered as four

8x8 S-boxes with different combinations of permutation boxes, and , which are

The Twofish algorithm uses a

0q 1q

explained in section (3.2.2). As can be seen from Fig 3.2 the S-boxes are used both in

h and g functions. The combination of permutation boxes is the same for the S-boxes

of h and g functions, but their input parameters are different. For (,)h X L function

the input parameters are p X= and eL M= or oL M= . For (,)g X L function the

input parameters are ,0rX R= or (,8)X ROL R ,1r= and S L= .

32x32 S-box takes tw ts a 0 1(,...,)kL L L −o inpu 32-bit word X and a list = of 32-bit

ords of length k, where k is the number of 64-bit segments in the original key. In

r 128-bit key

w

this thesis the Twofish algorithm is implemented fo words so

/ 64 2k N= = The vectors X and L are split into bytes.

 30

8 8
, / 2 mod 2j

i j il L⎢ ⎥= ⎣ ⎦

8 j 8
jx X⎢ ⎥= ⎣ ⎦

for and j = Rs is

applied

0 0 0

1 1 1 0 0 1 1 1,1 0,0

2 2 2 1 1 0 2 1,2 0,0

3 3 3 0 1 1 3 1,3 0,

[[[]
[] [[[]]], (S-box1 formulation)
[] [[[]]], (S-box2 formulation)
[] [[[]]

y s x q x
s x q q q x l l

y s x q q q x l l
y s x q q q x l l

= = ⊕

= = ⊕ ⊕

= = ⊕ ⊕

= = ⊕ ⊕ 0], (S-box3 formulation)

 (3.8)

The output of the S-boxes is the 32-bit word in the form of . Figure 3.3

hows the S-box formulation of 128 bit the Twofish cipher.

/ 2 mod 2

0,...., 1i k= − 0,....,3 . Then the sequence of substitutions and XO

.

0 0 0 1 1,0 0,0] []], (S-box0 formulation)q q l l
y

⊕

Y 3 2 1 0y y y y

s

 31

Figure 3.3 S-box formulation of the Twofish algorithm

3.2.2 Sub-functions of the Twofish Algorithm

a. Permutations and

utations and are fixed permutations on 8-bit values. These

ermutation functions are the main components of the S-boxes. They are constructed

om four different 4-bit permutations each. For the 8-bit input value x, the

orresponding output value y is found by the following steps:

0q 1q

0q 1qThe perm

p

fr

c

0

0

1 0 0

1 0 0 0

2 0 1

2 1 1

3 2 2

3 2 2 2

4 2 3

4 3 3

/16
mod16

(,1) (8 mod16)
()
()

(,1) (8 mod16)
()
()

a x
b x
a a b
b a ROR b a
a t a
b t b
a a b
b a ROR b a
a t a
b t b

= ⎢ ⎥⎣ ⎦
=
= ⊕

= ⊕ ⊕

=

=
= ⊕

= ⊕ ⊕

=

=

 32

4 416y b a= + (3.9)

in les. These are combined in a bijective mixing

tep. Each nibble is then passed through its own 4-bit table look-up. This is followed

te b

]
1]

A

 (3.10)

where each look-up table is represented by a list of the entries using hexadecimal

notation. (The entries for the inputs 0,1,……,15 are listed in order). Similarly, for

 the look-up tables are given by

8]

t B D F E A C
E B C D A F

A E D B F
t B

=
=
=
=

 (3.11)

dule has to provide 40 words of expanded key 9 , and the

g and h functions.

Twofish is defined for keys of length

First, the byte is split to two nibb

s

by another mixing s p and ta le look-up. Finally, the two nibbles are recombined

into a byte.

For the permutation 0q , look-up tables are given by

0

1

2

3

[8 1 7 6 3 2 0 5 9 4]
[8 1 2 3 5 4 6 7 0 9
[5 6 9 0 8 3 2 4 7
[7 4 1 2 6 9 3 0 8 5]

t D F B E C
t E C B F A D
t B A E D C F
t D F E B C A

=
=
=
=

1q

0

1

2

3

[2 8 7 6 3 1 9 4 0 5]
[1 2 4 3 7 6 5 9 0
[4 7 5 1 6 9 0 8 2 3]
[9 5

t
t C

1 3 6 4 7 2 0 8]C D E F A

b. Key Schedule

The key sche 0 3,........K K

constant vectors for the key-dependent S-boxes used in the

128N = , 192N = , and . Keys of any

length shorter than 256 bits can be used by padding them with zeroes until the next

larger defined key length.

256N =

 33

The parameter k is defined as / 64k N= . The original key M consists of 8k bytes

0 8 1,......, km m − . To obtain the constant vectors for key dependent S-boxes, the bytes

e first converted into 2k words ofar 32 bits each

3

8
(4)

0
.2 j

i i j
j

M m +
=

=∑ 0,....., 2 1i k= −

and then into two word vectors of length k.

 (3.12)

 0 2

2 2(, ,....,)e kM M M M −=

1 3 2 1(, ,....,)o kM M M M −=

eM and oM are the constant vectors of the key-dependent S-boxes employed in the

h function, to obtain the expanded ke or the key length is

used in this study, 2k = , hence 0 2()e

ys 39 F 128-bit 0 ,....,K K .

M M M= and 1 3()oM M M= .

A third vector S of length k 32-bit words is also derived from the key, as the constant

bytes in grou

 Each res of 4 bytes is then

interpre ed as a 32-bit word.

,2

,3 8 5

8 6

01 4 55 87 5 58 9
4 56 82

02 1 1 47 3 19
4 55 87

i

i

i i

i

i

i i

i

m
m

s mA A DB E
s A
s mA FC C AE D
s A

m

+

+

+

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎜ ⎟
⎜ ⎟

.13)

vector for the key dependent S-boxes of the function g. This done by taking the key

ps of 8, interpreting them as a vector over 8(2)GF , and multiplying

them by a 4x8 matrix derived from RS code. ult iS

t

 8 33 1 6 68 5
. imF E C E +⎜ ⎟ (3

8

8 1

,0 8 2

,1

8 4

5 58 9 03
i

mA DB E
+⎜ ⎟

⎜ ⎟

8 7im +
⎜ ⎟
⎝ ⎠

 34

Using
3

8
,

0
.2 j

i i j
j

S s
=

=∑ for 0,..., 1,i k= − one obtains the third vector 1 2(, ,k kS S S− −=

0...,)S . Note that S lists the words in “reverse” order. For th atrix multiply,

8(2)GF is represented by (2)[] / ()GF x w x , where 8 6 3 2() 1w x x x x x

e RS m

= + + + + is

another primitive polynomial of degree 8 over

For 128-bit keys, three vectors

(2)GF .

.

, ,e oM M S are all 64-bit vectors, which form the S-

box constants. eM and oM are used in the h function which produces the expanded

key; where as S is used in g function which encrypts the plaintext.

The w X

of the derived from t tor 2 2 2p

c. Expanded Key Words

ords of the expanded key are defined using the h function. The input vector

(,)X L function is he initial vec 02h 24 16 8= + + . To

 values

+

evaluate the 40 keywords, one computes for all of 0,...,19i = .

32
2

32

(2 ,)
((2 ,),8)

((2) mod 2 ,9)

i e

i o

i i i

A h ip M
B RO h i p M

K ROL A B

=
= +

= +

 (3.14)

2 1

(1)

() mod 2

i i i

L

K A B

+

= +

, the first argument of h function has all bytes values

qual to 2i, and the second argument of h is

iANotice that for producing

eM . iBe is computed similarly using

 as the byte value and2 1i + oM as the second argument, with an extra rotate over 8

its. The values and iA iB are combined in a PHT. One of the results is further b

 35

rota by 9 bits. The two rested ults and 2iK 2 1iK + form the 32-bit words of the

xpanded key.

e

 36

CHAPTER 4

4.1

AVALANCHE CHARACTERISTICS OF

TWOFISH

Avalanche Criteria

In this chapter, after stating the results of our avalanche tests, we compare them to

the results of NIST. The analysis given in Section 4.3 explains the differences

between these results.

The idea of avalanche was introduced by Feistel [Feistel, 1973]. For a given

transformation to exhibit the avalanche effect, an average of one half of the output

bits should change whenever a single input bit is complemented. In order to

determine whether a given nxn function satisfies this requirement, a large amount

of plaintext pairs, and , such that and differ only in bit i are used to

calculate the difference vectors,

f

P iP P iP

() ()iC f P f P∆ = ⊕ . These XOR sums are referred

to as the avalanche vectors, each of which contains n bits, called avalanche variables.

If a function f has good avalanche characteristics, then whenever the i’th input bit

complemented, each avalanche variable ja , 1 j n≤ ≤ , should be equal to 1 or 0 with

almost equal probabilities. Moreover, this property should be satisfied for all input

bits i, 1 [WebTav, 1985]. The avalanche curve of a function is obtained using i n≤ ≤

sufficiently large sets of input pairs (), for a fixed i. Then the percentage of , iP P

 37

changes (i.e., 1ja =) of each avalanche variable, is sketched versus the output index

j. This figure is called the avalanche curve of f corresponding to the change of the

i’th input bit.

The followin are used in the evaluation of the avalanche curves:

ose andom key.

,0,.....,0) xn .

k

g steps

1. Set 1i = .

2. Cho a r

3. Set 0k = and (0kC∆ = 1

4. k 1= +

Choose a random plaintext &

.

5. P ' iP P e= ⊕ , where and

6. En

7. i
k

(0...010...0)ie =

1 corresponds to i’th bit.

cipher P and P’ to obtain

() (')i
kC f P f P∆ = ⊕

1
i i
k kC C C −∆ = ∆ ⊕∆ is the sum of avalanche vectors.

If go to8. 4. 10000k < ,

9. 100C∆ × is t
10000

i
i k
k

C∆
= he change percentage of the avalanche vector.

 Sketch the avalanc10. he curve, which is composed of the elements i
ja of the

11.

1xn vector 1(,.....,)i i i
k nC a a∆ = sketched versus the index 1,....,j n= .

1i i= + .

12. 8If i ≤ , go to 2.

p.

It is expected due to the avalanche criterion that an average of one half of the output

In this section, the avalanche characteristics of the Twofish cipher are investigated

and its avalanche curves are sketched according to the algorithm given in Sec. 4.1.

12

13. Sto

bits should change whenever a single input bit is changed, so if we use 10000 sample

plaintexts all n entries in the avalanche sum array should be around 5000.

4.2 Avalanche Test Results of Twofish

 38

The a number of changes at

each position of the round output vector, when a specific plaintext bit at position i is

random c aracteristic for the first round.

for the second, i=64

r the third and i=127 for the last input intervals. Very similar curves are obtained

ut intervals is

comple ented, approximately half of the output bits never change. Fig. 4.1 part (ii)

valanche curves of Twofish are obtained by counting the

complemented. The avalanche behaviour of the cipher can be categorized into four

cases, depending on the the position of the complemented input bit. These input

intervals are found as [0,31],i∈ [32,63], [64,95], [96,127].

While sketching these curves at the output of the first round, it is observed that the

number of average changes of each avalanche variable is very small, so there is no

need to sketch this non h

In Fig. 4.1, the avalanche curves of Twofish for round 2 corresponding to four input

intervals are sketched. For each input interval, the changed input bit i is chosen as the

representative of the whole interval, i.e., i=0 for the first, i=63

fo

when other input bits in the related intervals are changed. Fig. 4.2 and Fig. 4.3 are

sketched in the same way, for rounds 3 and 4 of Twofish respectively.

Fig. 4.1 part (i) shows that the round 2 output of Twofish is random if any bit i in the

first input interval is complemented. Fig. 4.1, part (iii) and part (iv) show that for

round 2 of Twofish, when a single bit i in the third and fourth inp

m

and Fig 4.2 part (iv) demonstrate that the avalanche curves for round 2 of Twofish

corresponding to second input interval is similar to the avalanche curves for round 3

corresponding to fourth input interval. From Fig. 4.3, it can be understood that for

round 4 of Twofish, all of the output bits change with a probability close to ½

whenever a single input bit i in any one of four input intervals is complemented. The

only difference between Fig. 4.2 and Fig. 4.3 is that, for round 3, 39’th bit of the

output from Twofish never changes for a single input bit complementation in the

fourth input interval.

 39

Percentage of 1's of avalanche variable

60

40
45
50
55

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=2,i=0)

Percentage of 1's of avalanche variable

0

20

40

60

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=2,i=63)

(i) (ii)

Percentage of 1's of avalanche variable

0
25
50
75

100

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=2,i=64)

Percentage of 1's of avalanche variable

0
25
50
75

100

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=2,i=127)

(iii) (iv)

Figure 4.1 Avalanche curves of Twofish for round 2 and chosen error bit position in

the (i) first (ii) second (iii) third (iv) fourth input intervals.

Percentage of 1's of avalanche variable

51
52

48
49
50

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=3,i=0)

Percentage of 1's of avalanche variable

52

48
49
50
51

1 14 27 40 53 66 79 92 105 118
Avalanche variable (r=3,i=63)

 (i) (ii)

Percentage of 1's of avalanche variable

0

Percentage of 1's of avalanche variable

42

47

52

57

1 14 27 40 53 66 79 92 105 118
Avalanche variable (r=3,i=64)

20

40

60

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=3,i=127)

 (iii) (iv)

Figure 4.2 Avalanche curves of Twofish for round 3 and chosen error bit position in

the (i) first (ii) second (iii) third (iv) fourth input intervals.

 40

Percentage of 1's of avalanche variable

48
49

1 15 29 43 57 71 85 99 113 127

Avalanche variable (r=4,i=0)

50
51
52

Percentage of 1's of avalanche variable

48
49

1 15 29 43 57 71 85 99 113 127

Avalanche variable (r=4,i=63)

50
51
52

 (i) (ii)

Percentage of 1's of avalanche variable

48
49

Percentage of 1's of avalanche variable

48
49
50
51
52

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=4,i=64)

50
51
52

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=4,i=127)

 (iii) (iv)

Figure 4.3 Avalanche curves of Twofish for round 4 and chosen error bit position in

the (i) first (ii) second (iii) third (iv) fourth input intervals.

om for rounds 2 and 3.

owever, the curves we obtain (Fig. 4.1 and Fig. 4.2) for the second and third round

complemented whereas the results calculated by

rıkan shows that the round 2 output of Twofish is not random if any bit i in the first

s for round 2 and 3 of the Twofish

The avalanche test results we obtain confirm those calculated by Arıkan [Arıkan,

2003], which show that the output of Twofish is not rand

H

outputs of Twofish are completely different from those calculated by Arıkan

[Arıkan03]. The main difference is that the avalanche curves calculated by Arıkan

for round 2 outputs of Twofish are the same as those calculated for round 3, whereas

we see from Fig. 4.1 and Fig. 4.2 that the randomness of the second round output is

much worse than that of round 3.

Moreover, Fig. 4.1 part (i) shows that the round 2 output of Twofish is random if any

bit i in the first input interval is

A

input interval is complemented [Arıkan, 2003].

For better understanding of the differences between our results and those calculated

by Arıkan [Arıkan, 2003], we derive the output

 41

algorithm in terms of the input plaintext words in Sec 4.3. The detailed explanations

In this section we try to explain why the and round outputs of Twofish fail in

rando hat

the avalanche variable is not random at a single point. We show that this point

 r

position 39 not random when a bit at position i is complemented, where

.

needs to derive the outputs for round 2 and 3 of the Twofish algorithm in terms of the

put plaintext words. Fig. 4.4 is sketched to demonstrate the details of the first 3

Therefore, we first apply randomness tests to the function g, (see

ection 4.3.1) and observe that its output is completely random.

of the Figures 4.1, 4.2 and 4.3 and comparison of avalanche tests with the results of

NIST Statistical Test Suite are given in Sec 4.3 and Sec 4.4 respectively.

4.3 Analysis of the Test Results for Rounds 2 and 3

2nd 3rd

mness tests. For example, round 2 results of Fig. 4.1 part (ii) demonstrate t

corresponds to the 39’th avalanche variable. The andomness of the second round

output is much worse, in parts (iii) and (iv) of Fig. 4.1, where almost half of the

output bits are not changed at all, with a complemented input bit at position i, where

64 127i≤ ≤ .

Moreover, round 3 results of Fig 4.2 part (iv) show that the avalanche variable at

 is

96 127i≤ ≤

For better understanding of the nonrandomness of some avalanche variables, one

in

rounds of Twofish.

We notice that the function 32 32
2 2:g F F→ is crucial in determining the randomness

of the round output.

s

 42

1w 2w 3w0w

()g x

8<<

8K

()g x

1>> 9K

()g x

()g x 8<<

1>>

10K

11K

2,0z 2,1z 2,2z 2,3z

1,0z 1,2z 1,1z 1,3z

 43

Figure 4.4 The Twofish algorithm for rounds 1,2 and 3.

()g x

()g x 8<<

1>>

12K

13K

3,0z 3,1z 3,2z 3,3z

2,0z 2,2z 2,3z2,1z

 44

Let (is the most significant

byte of the plaintext, and is the least significant byte of the plaintext) be 128-bit

input plaintext of the Twofish algorithm. The plaintext P is splitted into 32-bit words

by using little-endian conversion (3.1) and XORed with constant keys (which are

obtained by 3.14), which is called input whitening step (3.2).

1514131211109876543210 mmmmmmmmmmmmmmmmP = 0m

15m

0 3 2 1 0w m m m m K= ⊕ 0

1

2

3⊕

w

1 7 6 5 4w m m m m K= ⊕

2 11 10 9 8w m m m m K= ⊕

3 15 14 13 12w m m m m K= (4.1)

After input whitening step the round operation (3.6) is applied on the input words.

Then round 1 output words of Twofish will be:

1.0 0z w=

1.1 1z =

[]()1.2 0 1 8 2(() ((,8))) ,1z ROR g w g ROL w K w= + + ⊕

[]1.3 0 1 9 3() 2 ((,8)) (,1)z g w g ROL w K ROL w= + + ⊕ (4.2)

where ROR and ROL are the functions that rotate their first argument right or left by

the number of bits indicated by their second argument.

The swap operation is applied to round 1 output words and then the swapped words

are used as the input words of the second round, i.e., 2.0 1,2w z= , , 2.1 1,3w z= 2.2 1,0w z=

and . 2.3 1,1w z=

The output words of round 2 are obtained as,

[]()2.0 0 1 8 2(() ((,8))) ,1z ROR g w g ROL w K w= + + ⊕

[]2.1 0 1 9 3() 2 ((,8)) (,1)z g w g ROL w K ROL w= + + ⊕

 45

[]()()
[]

0 1 8 2

0 1 9
2.2 10

3

0

(() ((,8))) ,1

() 2 ((,8)) ,1
(,1),8

g ROR g w g ROL w K w

g w g ROL w Kz ROR g ROL K
ROL w

w

⎛ ⎞⎡ ⎤⎛ ⎞+ + ⊕⎜ ⎟⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞⎛ ⎞+ +⎜ ⎟= ⎢ ⎥⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟⎢ ⎥
⎜ ⎟⊕⎢ ⎥⎣ ⎦⎝ ⎠

[]()()
[]

0 1 8 2

0 1 9
2.3 11

3

1

(() ((,8))) ,1

() 2 ((,8))
2

(,1),8

(,1)

g ROR g w g ROL w K w

g w g ROL w Kz g ROL K
ROL w

ROL w

⎛ ⎞⎡ ⎤+ + ⊕
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎛ ⎞⎛ ⎞+ += ⎜ ⎟⎢ ⎥+ +⎜ ⎟⎜⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎣ ⎦⎜ ⎟⎜ ⎟⊕⎝ ⎠

⎟ (4.3)

Round 2 output words are swapped and then used as the input words of the 3

round, i.e, , ,

rd

3.0 2,2w z= 3.1 2,3w z= 3.2 2,0w z= and 3.3 2,1w z= .

After another round operation, the output words of the third round of Twofish will

be:

[]()()
[]

0 1 8 2

0 1 9
3.0 10

3

0

(() ((,8))) ,1

() 2 ((,8)) ,1
(,1),8

g ROR g w g ROL w K w

g w g ROL w Kz ROR g ROL K
ROL w

w

⎛ ⎞⎡ ⎤⎛ ⎞+ + ⊕⎜ ⎟⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞⎛ ⎞+ +⎜ ⎟= ⎢ ⎥⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟⎢ ⎥
⎜ ⎟⊕⎢ ⎥⎣ ⎦⎝ ⎠

[]()()
[]

0 1 8 2

0 1 9
3.1 11

3

1

(() ((,8))) ,1

() 2 ((,8))
2

(,1),8

(,1)

g ROR g w g ROL w K w

g w g ROL w Kz g ROL K
ROL w

ROL w

⎛ ⎞⎡ ⎤+ + ⊕
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎛ ⎞⎛ ⎞+ += ⎜ ⎟⎢ ⎥+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎣ ⎦⎜ ⎟⎜ ⎟⊕⎝ ⎠

 46

0 1

8

2

0 1

9

3

10

3.2

() ((,8))
,1

() 2 ((,8))

(,1),8

g w g ROL w
g ROR K

w

g w g ROL w
g ROL K

g ROR
ROL w

K

z ROR

⎛ ⎞⎛ ⎞⎛ ⎞⎡ ⎤+⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥
⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎣ ⎦⎝ ⎠⎜ ⎟⎝ ⎠
⎜ ⎟⎛ ⎞⎛ ⎞+⎡ ⎤⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟+ +⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟
+⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

 0

0 1

8

2

,1

() ((,8))
(,1)

2

w

g w g ROL w
g ROR K

w

ROL
g

g ROL

⎛ ⎞⎛ ⎞⎡ ⎤
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⊕⎣ ⎦⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤+⎛ ⎞
⎜ ⎟⎢ ⎥⎜ ⎟+⎜ ⎟⎝ ⎠⎢ ⎥
⎜ ⎟⎢ ⎥⊕⎣ ⎦⎝ ⎠

+
+

0 1

9

3

11

1

() 2 ((,8))
(

(,1),8)

(,1),8

g w g ROL w
K

ROL w
K

ROL w

⎛ ⎞⎛ ⎞⎡ ⎤
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎛ ⎞+⎡ ⎤⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥+⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⊕⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥+⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

[]()
12

0 1 8 2

K

(() ((,8))) ,1ROR g w g ROL w K w

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢⎜ ⎟
⎢⎜ ⎟
⎢⎜ ⎟
⎢⎜ ⎟
⎢⎜ ⎟
⎢⎜ ⎟⎜ ⎟⎢ +⎝ ⎠
⎢
⊕ + + ⊕⎢⎣ ⎦

,1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥
⎜ ⎟⎥⎝ ⎠

 47

0 1 8

2

0 1

9

3

10

0

3.3

(() ((,8)))
,1

() 2 ((,8))

(,1),8

g w g ROL w K
g ROR

w

g w g ROL w
g ROL K

g ROR
ROL w

K

w

z

⎡ ⎛ ⎞⎛ ⎞⎛ ⎞+ +⎡ ⎤
⎢ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⊕⎢ ⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠
⎢ ⎜ ⎟

⎛ ⎞⎛ ⎞+⎢ ⎜ ⎟⎡ ⎤
⎜ ⎟⎜ ⎟⎢ ⎜ ⎟⎢ ⎥+ +⎜ ⎟⎣ ⎦⎜ ⎟⎢ ⎜ ⎟
⎜ ⎟⎜ ⎟⎢ ⎜ ⎟⊕⎝ ⎠⎝ ⎠⎜ ⎟

+⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⊕⎣

=

[]

0 1 8

2

0 1 9

3

,1

(() ((,8)))
(,

(() 2 ((,8))
2

2 (,1),8)

g w g ROL w K
g ROR

w

ROL g w g ROL w K
g

g ROL ROL w
K

⎛ ⎞⎛ ⎞⎤
⎜ ⎟⎜ ⎟⎥
⎜ ⎟⎜ ⎟⎥
⎜ ⎟⎜ ⎟⎥
⎜ ⎟⎜ ⎟⎥
⎜ ⎟⎜ ⎟⎥
⎜ ⎟⎜ ⎟⎥
⎜ ⎟⎜ ⎟⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎦⎝ ⎠⎝ ⎠

⎛ ⎞+ +⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⊕⎣ ⎦⎝ ⎠

⎛ ⎞+ +
+ ⎜ ⎟⎜ ⎟+ ⊕⎝ ⎠
+

[]

11

1

13

0 1 9 3

(,1),8

K

() 2 ((,8)) (,

ROL w

g w g ROL w K ROL w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞⎛ ⎞⎡ ⎤⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠⎢ ⎥

⎢ ⎥+⎣ ⎦
+ + ⊕

 1)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1)

4.3.1

 (4.4)

Randomness of the g Function

The theoretical explanations given in Sec. 4.3.2 are valid only if the g function has

completely random characteristics. In this section, we investigate the random

characteristics of the g function according to the avalanche criterion. We obtain the

avalanche curves of the g function by counting the number of changes at each

position of the output vector, when a specific bit at position i if complemented for a

set of N=100000 different plaintexts. The test procedure is repeated for each of the

32 input bits of the g function. To satisfy the avalanche criterion, a single bit change

in the input should yield the output of each bit change with a probability of one half.

 48

In Fig. 4.5, avalanche curve of the g function of Twofish, with the complemented

input bit position chosen as 0, is sketched. Very similar curves are obtained when the

remaining 31 input bits are changed separately.

From Fig. 4.5, it can be understood that the output from g function changes with a

probability close to ½ whenever a single input bit i in any one of 32 input bits is

complemented. It is clear that g function has completely random characteristics, with

respect to the avalanche criterion.

Percentage of 1's of the avalanche variable

44
46
48
50
52
54
56

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Avalanche variable for i=0

Figure 4.5 Avalanche curve of the g function for the complemented input bit at

position 0.

4.3.2 Analysis of the Avalanche Test Results of

Twofish for Round 2

Fig. 4.1 part (ii) shows that for round 2, when a plaintext bit in the second input

interval is complemented, the avalanche variable at position 39 of ciphertext never

changes. Similarly, Fig. 4.1 part (iii) shows that when a plaintext bit in the third input

interval is complemented, the avalanche variable at position 2 changes with a

probability of 1. So, for round 2, Twofish does not satisfy the avalanche criterion of

randomness.

 49

To explain this behaviour, let and be the round 2 outputs of Twofish when P

and P ' are the corresponding inputs, respectively. The ciphertext for round 2 will

be obtained from output words of round 2 by using the same little-endian conversion

used for the plaintext.

2C 2 'C

2C

0 2,0 4 3 2 1' ' ' 'c z K m m m m= ⊕ = 0

4

8

2

5

1 2,1 5 7 6 5' ' ' 'c z K m m m m= ⊕ =

2 2,2 6 11 10 9' ' ' 'c z K m m m m= ⊕ = (4.5)

3 2,3 7 15 14 13 1' ' ' 'c z K m m m m= ⊕ =

2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'C m m m m m m m m m m m m m m m m=

where is the most significant byte, and is the least significant byte of the

ciphertext.

0'm 15'm

The analysis of the avalanche test results for round 2 of Twofish is given below for

four different intervals of the chosen error bit position, which are [3

 [.

[0,31],i∈ 2,63],

[64,95], 96,127]

Interval i (310 ≤≤ i)

For this case, error bit position corresponds to the first input word

 given by (4.1). Then the round 2 output of the Twofish

algorithm will be random as observed in Fig. 4.1 (i) because all output words

 and given by (4.3) depend on . So the percentage of 1’s will

be approximately ½ for all 128 avalanche variables.

0 3 2 1 0w m m m m K= 0⊕

2.0 2.1 2.2, ,z z z 2.3z 0()g w

We see that if even one bit in is complemented, all 128 bits of the ciphertexts

and will change randomly, with probability ½.

0w 2C

2 'C

 50

Interval ii () 6332 ≤≤ i

For this case, the error bit position is chosen in the second input word

 and Fig. 4.1 (ii) is obtained as the result of the avalanche tests.

Then from (4.3),

1 7 6 5 4w m m m m K= 1⊕

))

))

1. All 32 bits of differ randomly for and because depends on

 and one bit of is different for P and P ' .

2.0z 2C 2 'C 2.0z

1((,8g ROL w 1w

2. changes randomly in all 32 bits for and , except for the bit 0, because; 2.1z 2C 2 'C

• is the same for and because is the same for P and P ' . 0()g w 2C 2 'C 0w

• is the same for and because is the same for P and P ' . 3(,1)ROL w 2C 2 'C 3w

• changes randomly for and in all 32 bits because

differs in 1 bit for P and P ' . But because of multiplication by 2, bit 0 of

 is the same for and , because the least significant bit of

even numbers is always 0.

1((,8g ROL w 2C 2 'C 1w

12 ((,8))g ROL w 2C 2 'C

So = 45671 '''' mmmmc = 2,1 5z K⊕ is the same in bit 0 of for and

and all other 31 bits change randomly. From (4.5), one can see that bit 0 of

corresponds to bit 39 of and .

4'm 2C 2 'C

4'm

2C 2 'C

3. All 32 bits of changes randomly for and because is directly

related to

2.2z 2C 2 'C 2.2z

[]()()0 1 8(() ((,8))) ,1g ROR g w g ROL w K w+ + ⊕ 2

))

 which depends

on . 1((,8g ROL w

4. All 32 bits of will be random for and because is directly related

to

2.3z 2C 2 'C 2.3z

[]()()0 1 8(() ((,8))) ,1g ROR g w g ROL w K w+ + ⊕ 2

))

 which depends on

. 1((,8g ROL w

 51

So the percentage of 1’s will be approximately ½ for all avalanche variables except

the 39 avalanche variable, which is equal to bit 0 of . th
4'm

Interval iii () 9564 ≤≤ i

Error bit position is chosen in the third input word 2 11 10 9 8w m m m m K2= ⊕ . In this

case, Figure 4.1 (iii) can be explained as follows;

1. Only one bit of will be different for and and all other 31 bits of

will be the same, because from (4.3) we see that does not depend on

From , one can calculate the position of this bit, which will be different for

 and , as where,

2.0z 2C 2 'C 2.0z

2.0z 2()g w .

2.0z

2C 2 'C (8 1) mod32n m k= + +

k = remainder of () divided by 8. 64i −

m = fractional part of (64i −) divided by 8.

n = position of the output difference bit.

2. given by (4.3) is the same for and in all 32 bits because it does not

depend on .

2.1z 2C 2 'C

2w

3. All 32 bits of will be random for and because given by (4.3) is

directly related to

2.2z 2C 2 'C 2.2z

[]()()0 1 8(() ((,8))) ,1g ROR g w g ROL w K w+ + ⊕ 2 which

depends on and 1 bit of is different for P and P ' . 2w 2w

4. All 32 bits of will change randomly for and because is directly

related to

2.3z 2C 2 'C 2.3z

[]()()0 1 8(() ((,8))) ,1g ROR g w g ROL w K w+ + ⊕ 2 which depends on

. Notice that all 32 bits of the term 2w

[]()()0 1 9 32 () 2 ((,8)) (,1),8g ROL g w g ROL w K ROL w+ + ⊕ in (4.3) are the

same for both and . But because of the first term of which contains 2C 2 'C 2,3z

 52

the term , all 32 bits of 2()g w 121314153 '''' mmmmc = will change randomly for

 and . 2C 2 'C

Because of parts 3 and 4, the percentage of 1’s will be approximately ½ for 64 (64-

127) avalanche variables. Only one avalanche variable considered in part 1 is always

1, whose position depends on the complemented plaintext bit, and other 63 avalanche

variables are always equal to 0.

Interval iv () 12796 ≤≤ i

Error bit position is chosen in the fourth input word 3 15 14 13 12w m m m m K3= ⊕ , and Fig.

4.1 (iv) is obtained. Because, a close inspection of (4.3) shows that:

1. is the same for and ’ in all 32 bits because it does not depend on . 2.0z 2C 2C 3w

2. Only one bit of is different for and ’. From , one can calculate the

position of this bit as

2.1z 2C 2C 2.1z

(8 1) mod32 32n m k= + − + where,

k = remainder of () divided by 8. 96i −

m = fractional part of (96i −) divided by 8.

n = position of the output difference bit.

3. will change randomly for and in all 32 bits because is directly

related to

2.2z 2C 2 'C 2.2z

[]()()0 1 9 3() 2 ((,8)) (,1),8g ROL g w g ROL w K ROL w+ + ⊕ which

depends on and one bit of is different for P and P ' . 3w 3w

4. will change randomly in all 32 bits for and except bit 0, because of

the term it contains. That is, in (4.3),

2.3z 2C 2 'C

32 ()g w

• []()()0 1 8(() ((,8))) ,1g ROR g w g ROL w K w+ + ⊕ 2 will be the same for

and because are the same for P and P ' .

2C

2 'C 0 1 2, ,w w w

• is the same for and because is the same for P and P ' . 1(,1)ROL w 2C 2 'C 1w

 53

• []()()0 1 9 3() 2 ((,8)) (,1),8g ROL g w g ROL w K ROL w+ + ⊕ will change

randomly for and in all 32 bits because differs in 1 bit for P and P ' .

But 2

2C 2 'C 3w

[]()()0 1 9 3() 2 ((,8)) (,1),8g ROL g w g ROL w K ROL w+ + ⊕ is the same

only in bit 0 because of multiplication by 2.

As a result, we see that for round 2, Twofish does not satisfy the avalanche criterion.

Because, if the i’th () bit of the plaintext is complemented, the second round

output is not random as seen in parts (ii), (iii) and (iv) of Fig. 4.1 and explained

above.

64 i≤

4.3.3

0

4

8'

2

5

Analysis of the Avalanche Test Results of

Twofish for Round 3

Fig. 4.2 part (vi) shows that for round 3, when a plaintext bit in the second input

interval is complemented, the avalanche variable at position 39 of ciphertext never

changes.

To explain this behaviour, let and be the round 2 outputs of Twofish when P

and P ' are the corresponding inputs. The ciphertext for round 3 will be obtained

from output words using the same little-endian conversion used for the plaintext.

3C 3 'C

3C

0 3,0 4 3 2 1' ' ' 'c z K m m m m= ⊕ =

1 3,1 5 7 6 5' ' ' 'c z K m m m m= ⊕ =

2 3,2 6 11 10 9' ' 'c z K m m m m= ⊕ = (4.6)

3 3,3 7 15 14 13 1' ' ' 'c z K m m m m= ⊕ =

3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'C m m m m m m m m m m m m m m m m=

where is the most significant byte is the least significant byte of the

ciphertext.

0'm 15'm

 54

Intervals i, ii, iii () 950 ≤≤ i

For this case, error bit position corresponds to first, second or third input words

, or 0 3 2 1 0 0w m m m m K= ⊕ 1 7 6 5 4 1w m m m m K= ⊕ 22 11 10 9 8w m m m m K= ⊕ given by (4.1)

respectively.

Then the round 3 output words of Twofish will be random as observed in Fig 4.2 (i),

(ii) and (iii) because all output words and given by (4.4) depend on

, and . So the percentage of 1’s will be approximately ½ for all

128 avalanche variables.

3,0 3,1 3,2, ,z z z 3,3z

0()g w 1()g w 2()g w

Interval iv () 12796 ≤≤ i

Error bit position is chosen in fourth input word 3 15 14 13w m m m m12= . In this case, Fig

4.2 (iv) can be explained as follows:

1. will be random for and in all 32 bits because it depends on 3.0z 3C 3 'C

[]0 1

3

() 2 ((,8))
(,1),8

g w g ROL w K
g ROL

ROL w

⎛ ⎞⎛ ⎞+ +
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

9 which depends on . 3w

2. will be random for and in all 32 bits except for the bit 0, because: 3.1z 3C 3 'C

• []()()0 1 8(() ((,8))) ,1g ROR g w g ROL w K w+ + ⊕ 2 is the same for and

 because are the same for P and P ' .

3C

3 'C 210 ,, www

•
[]0 1

3

() 2 ((,8))
(,1),8

g w g ROL w K
g ROL

ROL w

⎛ ⎞⎛ ⎞+ +
⎜ ⎟⎜⎜⎜ ⎟⊕⎝ ⎠⎝ ⎠

9
⎟⎟ changes randomly for and

 in all 32 bits because differs in 1 bit for P and P ' . But because of the

multiplication by 2, bit 0 of

3C

3 'C 3w

[]0 1(w 9

3

() 2 (,8))
2

(,1),8

g w g ROL K

g ROL
ROL w

⎛ ⎞⎛ ⎞+ +
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

 is the

same for and . 3C 3 'C

• is same for and . 1(,1)ROL w 3C 3 'C

 55

So () will be random for and in all 32 bits

except bit 0 of . From (4.6), one can see that bit 0 of corresponds to bit

39 of and .

1,2z 45671 '''' mmmmc = 3C 3 'C

4'm 4'm

3C 3 'C

3. will be random for and in all 32 bits because it depends on

 which depends on .

3.2z 3C 3 'C

0 1

9

3

() 2 ((,8))

(,1),8

g w g ROL w
g ROL K

ROL w

⎛ ⎞⎛ ⎞+⎡ ⎤
⎜ ⎟⎜ ⎟⎢+⎜ ⎣⎜
⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

⎥
⎟⎦ ⎟

⎥
⎟⎦ ⎟

3w

4. changes randomly for and in all 32 bits because it depends on

 which depends on .

3.3z 3C 3 'C

0 1

9

3

() 2 ((,8))

(,1),8

g w g ROL w
g ROL K

ROL w

⎛ ⎞⎛ ⎞+⎡ ⎤
⎜ ⎟⎜ ⎟⎢+⎜ ⎣⎜
⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

3w

Because of part 2, only bit 39 of and is the same for the change of any

plaintext bit in the interval (96

3C 3 'C

i≤) and the remaining 127 bits will be random. As a

result, we see that for round 3, Twofish does not satisfy the avalanche criterion.

In Avalanche test, we have computed 128 avalanche curves each of which

corresponds to changes of i’th bit of Plaintext. That is for each of 10000 random

plaintexts we first complemented 1st bit of plaintext and computed the avalanche

curve. Then we have complemented 2nd bit of plaintext and computed another

avalanche curve and so on until bit 128.

To remove the effect of the position of the complemented bit, we collect data in a

different way. We chose 78 random plaintext, and complemented i’th bit for

 and for each plaintext pair (78x128 = 9984) we calculate 9984 ciphertext

pairs. Then from the original ciphertext and the 9984 ciphertext pairs we compute a

single avalanche curve. Fig. 4.6 shows avalanche curves for rounds 2 to 5. We expect

these results, because each of them is the average of the 128 avalanche curves

1 128i≤ ≤

 56

obtained by the first method. From the figures, it is obvious that the output from the

Twofish algorithm is not random for round 2 and round 3, but for round 4 it is.

Percentage of 1's of avalanche variable

10

25

40

55

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=2)

Percentage of 1's of avalanche variable

35

40

45

50

55

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=3)

 i) ii)

Percentage of 1's of avalanche variable

48

49

50

51

52

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=4)

Percentage of 1's of avalanche variable

48

49

50

51

52

1 14 27 40 53 66 79 92 105 118

Avalanche variable (r=5)

 iii) vi)

Figure 4.6 Avalanche curves for rounds 2 to 5 of the Twofish algorithm.

4.4 Comparison of Our Results with Those of NIST

Statistical Test Suite

Randomness testing of AES candidates was based on NIST Statistical Test Suite

which consists of 16 core statistical tests [Soto, 2000]. NIST test results showed that,

by the end of second round, the output from the algorithm appears to be random for

 57

all 189 statistical tests [Rukhin, 2000]. However, the results we found and those

given by Arıkan [Arıkan, 2003] are different from the results of NIST tests. Fig. 4.1

and Fig. 4.2 show that by the end of the third round, the output from the Twofish

algorithm does not satisfy the avalanche criterion. It meets the conditions at the end

of the fourth round as seen from Fig. 4.3.

Within these 16 core tests, Frequency (Monobit) Test, Frequency Test Within a

Block and Runs Test, whose explanations are given in Sec. 4.4.1, are mostly related

with the avalanche criterion studied in this thesis. So comparing the results of these

tests ours will be meaningful. This is why we have also applied these 3 tests to the

Twofish algorithm.

4.4.1 Description of the Tests

a. Frequency (Monobit) Test

The focus of the test is the proportion of zeroes and ones for the entire sequence. The

purpose of this test is to determine whether the number of ones and zeroes in a

sequence are approximately the same as would be expected for a truly random

sequence [Rukhin, 2000].

Test Description:

1. Convert the zeroes and ones of the input sequence to (1)− and and add

together to produce

(1)+

1 2n nS X X X= + + + .

2. Compute the test statistic n
obs

S
s

n
= .

3. Compute the -
2

obssP value erfc ⎛= ⎜
⎝ ⎠

⎞
⎟

 where is the complementary error function. erfc

4. If the computed is < 0.01, then conclude that the sequence is non-

random. Otherwise, conclude that the sequence is random.

-P value

 58

b. Frequency Test within a Block

The focus of the test is the proportion of zeroes and ones within M-bit blocks. The

purpose of this test is to determine whether the frequency of ones in an M-bit block is

approximately M/2, as would be expected under an assumption of randomness

[Rukhin, 2000].

Test Description:

1. Partition the input sequence into nN
M
⎢ ⎥= ⎢ ⎥⎣ ⎦

 non-overlapping blocks. Discard any

unused bits.

2. Determine the proportion iπ of ones in each M-bit block using the equation

(1)
1

M

i M j
j

i M

ε
π

− +
==
∑

, for 1 . i N≤ ≤

3. Compute the 2χ statistic: . 2 2

1
() 4 (1/ 2)

N

i
i

obs Mχ π
=

= −∑

4. Compute ()2- / 2, (P value igamc N obsχ=) / 2

 where is the incomplete gamma function. igamc

5. If the computed is < 0.01, then conclude that the sequence is non-

random. Otherwise, conclude that the sequence is random.

-P value

c. Runs Test

The focus of this test is the total number of runs in the sequence, where a run is an

uninterrupted sequence of identical bits. A run of length k consists of exactly k

identical bits and is bounded before and after with a bit of the opposite value. The

purpose of the runs test is to determine whether the number of ones and zeroes of

various lengths is as expected for a random sequence [Rukhin, 2000].

 59

Test Description:

1. Compute the pre-test proportion π of ones in the input sequence:
j

j

n

ε
π =

∑
.

2. Determine if the prerequisite Frequency test is passed.

3. Compute the test statistic
1

1
() ()

n

n
k

v obs r k
−

=

1= +∑

 where if () 0r k = 1k kε ε += , and () 1r k = otherwise.

4. Compute
() 2 (1)

-
2 2 (1)

nv obs n
P value erfc

π π
π π

⎛ ⎞− −
= ⎜

−⎝ ⎠
⎟

4.4.2

.

5. If the computed is < 0.01, then conclude that the sequence is non-

random. Otherwise, conclude that the sequence is random.

-P value

Description of the Data Type

To examine the sensitivity of the Twofish algorithm to changes in the plaintext, 300

binary sequences were analyzed by NIST. We also constructed 300 sequences in one

of the following ways, the first one being the same as the data type used in the NIST

tests [Soto, 2000]. The second data type indicates the performance versus each

complemented input bit separately, whereas the first data type used by NIST is an

average over all complemented output bits. Description below is for 128-bit input

blocks, so each of the 300 binary sequences is of length 1,048,576 bits.

Plaintext Avalanche-1: Given a fixed key of all zeroes and 19200 random 128-bit

plaintext blocks (or 19200 input vectors), the avalanche vector is found for each

plaintext. The avalanche vector, which is also a 128-bit vector, is equal to the

XOR of “the ciphertext formed using the plaintext” and “the ciphertext formed

using the perturbed plaintext complementing its bit”. For each random plaintext,

complementing the input bit i,

thi
thi

thi

1 128i≤ ≤ , 128 avalanche vectors are formed.

Concatenating all derived 128-bit avalanche vectors of 19200 random plaintexts, a

total of 2,457,600 (=19200x128) avalanche vectors result, which is a sequence of

 60

2,457,600x128=314,572,800 bits. Then, 300 subsequences of 1,048,576

(=314,572,800/300) bits are parsed from the concatenated derived blocks [Soto,

2000].

Plaintext Avalanche-2: The data type explained above is prepared for a fixed value

of the complemented input bit i. Since the number of avalanche vectors is now one

128th of the previous case, the length of 300 subsequences is kept the same by using

128 times as much plaintext blocks.

We have implemented the three tests given above and applied them to the Twofish

algorithm. If 11 of the 300 sequences have the P-value < 0, 01 then the test is

considered to fail in accordance with NIST criteria of at least 96.6%. The sequences

used in the tests, whose results are given in Fig. 4.7 to Fig. 4.18, are constructed by

using the data type “plaintext avalanche-1”, and Fig. 4.19 to Fig. 4.27 are the results

obtained by “plaintext avalanche-2”.

4.4.3

4.4.3.1

Test Results

Monobit Test

Figures 4.7 to 4.10 show the results of the monobit test for rounds 2 to 5 of Twofish.

In Fig. 4.7 we see that none of the 300 sequences have the P-value greater than 0.01,

which means that Twofish failed the monobit test for round 2. Similarly, round 3

output of Twofish failed the monobit test because Fig 4.8 show that 257 of 300

sequences have the P-value greater than 0.01. But from Fig. 4.9 and 4.10, we see that

295 of 300 sequences have the P-value greater that 0.01, which means that Twofish

passes the monobit test for rounds 4 and 5. We conclude from the results that,

according to the monobit test, the output from Twofish is random at the end of round

4.

 61

P-value

0

0,2

0,4

0,6

0,8

1

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.7 P-values of the monobit test for round 2 with the first data type (0 of

300 passes = %0).

P-value

0
0,2
0,4
0,6
0,8

1
1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.8 P-values of the monobit test for round 3 with the first data type (257 of

300 passes = %85, 6).

 62

P-value

0
0,2
0,4
0,6
0,8

1
1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.9 P-values of the monobit test for round 4 with the first data type (295 of

300 passes = %98, 3).

P-value

0

0,2
0,4

0,6

0,8
1

1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.10 P-values of the monobit test for round 5 with the first data type (295 of

300 passes = %98, 3)

4.4.3.2 Frequency Test within a Block

Figure 4.11 to 4.14 are the results of Frequency test within a Block for rounds 2 to 5.

The test results are similar to monobit test results. It can be seen that the output from

the Twofish algorithm is not random until round 4. Because for round 2, none of the

 63

300 sequences has the P-value greater then 0.01, so by the end of round 2, Twofish

failed the Frequency test within a block. At the end of round 3, 275 of 300 sequences

has the P-value greater than 0.01, so Twofish failed the Frequency test within a block

for round 3. But by the end of round 4, 297 of 300 sequences has a P-value greater

than 0.01. We conclude from the results that, according to Frequency test within a

block, the output from Twofish appears to be random at the end of round 4.

P-value

0

0,2

0,4

0,6

0,8

1

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.11 P-values of the frequency test within a block for round 2 with the first

data type (0 of 300 passes = %0).

P-value

0

0,2
0,4

0,6

0,8
1

1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.12 P-values of the frequency test within a block for round 3 with the first

data type (275 of 300 passes = %91, 6).

 64

P-value

0

0,2

0,4

0,6

0,8

1

1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.13 P-values of the frequency test within a block for round 4 with the first

data type (297 of 300 passes = %99).

P-value

0
0,2
0,4
0,6

0,8
1

1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.14 P-values of the frequency test within a block for round 5 with the first

data type (297 of 300 passes = %99).

4.4.3.3 Runs Test

Figure 4.15 to 4.18 are the results of Runs test for rounds 2 to 5. The test results are

similar to monobit test and frequency test within a block results. It can be seen that

the output from the Twofish algorithm is not random until round 4. Because for

round 2, none of the 300 sequences has the P-value greater then 0.01, so by the end

 65

of round 2, Twofish failed the Runs test. At the end of round 3, 263 of 300 sequences

has the P-value greater than 0.01, so Twofish failed the Runs test for round 3. But by

the end of round 4, 296 of 300 sequences has a P-value greater than 0.01. We

conclude from the results that, according to Runs test, the output from Twofish

appears to be random at the end of round 4.

P-value

0

0,2

0,4

0,6

0,8

1

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.15 P-values of the runs test for round 2 with the first data type (0 of 300

passes = %0).

P-value

0

0,2

0,4

0,6

0,8

1

1,2

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286

Sequence number

Figure 4.16 P-values of the runs test for round 3 with the first data type (263 of 300

passes = %87, 6).

 66

P-value

0
0,2
0,4
0,6
0,8

1
1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.17 P-values of the runs test for round 4 with the first data type (296 of 300

passes = %98, 6).

P-value

0

0,2
0,4

0,6
0,8

1
1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number

Figure 4.18 P-values of the runs test for round 5 with the first data type (296 of 300

passes = %98, 6).

 67

To examine the sensitivity of the Twofish algorithm to separate changes of each of

128 bits in the plaintext, these three tests have been repeated using, “plaintext

avalanche-2” as the data type.

In Fig. 4.19, monobit test results of Twofish for round 2 are sketched. Figure 4.19

shows the number of sequences that has the P-value > 0.01 for each input bit

complementation. Fig. 4.20 and Fig. 4.21 are sketched in the same way, for rounds 3

and 4 of Twofish respectively.

Fig. 4.19 shows that the second round output of Twofish is not random because when

a single input bit i in the second interval is complemented, none of 300 sequences

has the P-value > 0.01. Also for some error bit positions chosen in the first input

interval, less than 289 of 300 sequences has the P-value > 0.01.

Fig. 4.20 demonstrates that the third round output of Twofish is not random because

for some error bit positions chosen in the second input interval, less than 289 of 300

sequences meets the condition.

The output from the Twofish algorithm appears to be random at the end of fourth

round because from Fig. 4.21 we see that for each input bit complementation, the

number of sequences that has the P-value > 0.01 is greater than 289.

Fig. 4.22 to 4.24 and 4.25 to 4.27 are the Frequency test within a block and runs test

results of Twofish respectively. Similar results are obtained for all three tests.

 68

Number of sequences that has P value > 0.01

0
100

200
300

400

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Error bit position

Figure 4.19 Number of sequences that have P-value > 0.01 at the end of round 2 for

128 monobit tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

Number of sequences that has P value > 0.01

220
240
260
280
300
320

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Error bit positions

Figure 4.20 Number of sequences that have P-value > 0.01 at the end of round 3 for

128 monobit tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

 69

Number of sequences that has P value > 0.01

285

290

295

300

305

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127
Error bit position

Figure 4.21 Number of sequences that have P-value > 0.01 at the end of round 4 for

128 monobit tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

Number of sequences that has P value > 0.01

0

100

200

300

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Error bit positions

Figure 4.22 Number of sequences that have P-value > 0.01 at the end of round 2 for

128 frequency tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

 70

Number of sequences that has P value > 0.01

0

100

200

300

400

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Error bit positions

Figure 4.23 Number of sequences that have P-value > 0.01 at the end of round 3 for

128 frequency tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

Number of sequences that has P value > 0.01

285

290

295

300

305

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Error bit positions

Figure 4.24 Number of sequences that have P-value > 0.01 at the end of round 4 for

128 frequency tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

 71

Number of sequences that has P value > 0.01

0

100

200

300

400

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127
Error bit position

Figure 4.25 Number of sequences that have P-value > 0.01 at the end of round 2 for

128 runs tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

Number of sequences that has P value > 0.01

250
260
270
280
290
300
310

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Error bit position

Figure 4.26 Number of sequences that have P-value > 0.01 at the end of round 3 for

128 runs tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

 72

Number of sequences that has P value > 0.01

285

290

295

300

305

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Error bit position

 iii)

Figure 4.27 Number of sequences that have P-value > 0.01 at the end of round 4 for

128 runs tests, each of which are made with different input error bit position i,

 0 127i≤ ≤

4.5 Cryptanalysis of Twofish

Bruce Schneier et al cryptanalyzed Twofish and a summary of these attacks on their

own cipher is as follows [Schneier, 1999]:

• On Twofish with fixed S-boxes, no 1-bit rotations, and no whitening, They

[Schneier, 1999] have a meet-in-the-middle attack on eleven rounds requiring

 memory, 256 known plaintexts, and work, and a differential attack

breaking nine rounds, requiring memory, chosen plaintexts, and

work. I.e., they break nine rounds of Twofish with differential attack and

eleven rounds of it with meet-in-the-middle attack.

2252 2322
412 412 2542

• On standard Twofish, they [Schneier, 1999] have a 4-round meet-in-the-

middle attack requiring 256 known plaintexts, but memory and

work. They also have a differential attack which breaks five rounds of full

Twofish with work and chosen-plaintext queries.

2252 2322

2322 412

• They [Schneier, 1999] have a chosen-key attack. This attack involves

choosing 160 bits of a pair of keys, K, K*, with the remaining bits to be

 73

found. This attack requires work, chosen-plaintext queries, and

adaptive chosen-plaintext queries, in order to break 10 rounds without the

whitening.

342 322 122

• They [Schneier, 1999] have a related key attack against 10-round Twofish

without whitening. This attack requires related-key queries, work,

and for each of the keys it requires chosen plaintexts and

adaptive chosen plaintexts.

1552 1872
1552 322 122

From the attacks we see that NIST’s results also conflict with the results given by

Bruce Schneier et al [Schneier, 1999]. Because, they broke the 4-round of full

Twofish with meet-in-the-middle attack and 5-round of full Twofish with differential

attack. However, NIST claims that the output from Twofish is random at the end of

the second round.

4.6 Nonlinearity Measure of Twofish

If a ciphertext bit is described by the Boolean function ic if then it is generally

required that each if should possess a combination of the properties such as

balancedness, nonlinearity, completeness, correlation immunity, the strict avalanche

criterion.

The nonlinearity of many block ciphers depend directly on the selection of the S-

boxes since, typically, the S-boxes are the only non-affine components of the cipher.

4.6.1 Nonlinearity of the S-boxes

Nonlinearity of the S-box can be defined in terms of the nonlinearities of the

individual components if which are the output bit functions of the S-boxes. The

worst case nonlinearity over all output bit positions and their linear combinations;

where the nonlinearity factor for each function 2: n
i 2f Z Z→ is defined by

 74

 1 1
, ,1,...,2

1 12 max 2 max (
2 2nj

n n
f j s i si

N f I− −
=

= − = − wi)jF

Perfect nonlinearity condition implies |Fopt(w)|=2n/2 for all w [Yücel, 2001],

So; 1 112 () 2 2
2j

n n
fN F (/ 2) 1n− −≤ − = −w −

4.6.2

 (4.7)

This maximum is not achievable if n is odd; because for odd values of n, 2n/2 is not

even (and not rational), hence it is not a proper spectral coefficient. This is why there

is no perfectly nonlinear Boolean function for odd values of n. However, if ⎡2n/2
⎤

denotes the smallest even integer which is larger than 2n/2, it should be possible to

find spectra with |F(w)|max= ⎡2n/2 ⎤; so that for all values of n, Nf has a maximum

value of

 | Nf |max= 2n–1– ⎡2n/2
⎤ 2–1.

Nonlinearity Criterion

To calculate the nonlinearity of s-boxes, we first find the truth tables of the S-

boxes. Each output bit has a truth table of bits. After obtaining n truth tables for n

output bits, we find all (2

nxn

2n

1n −) truth tables corresponding to all (2) linear

combinations of the output bits. Each row of the truth table matrix is then compared

to all rows of the

1n −

2 2n nx Sylvester-Hadamard matrix, to find the minimum distance.

Nonlinearity values are obtained for each of the Boolean functions. The smallest

of all is the nonlinearity parameter of the corresponding S-boxes.

2n

nxn

 75

We find the (2 truth table matrix with the following algorithm. 1) (2)n x− n

1. Define a Boolean vector of 1 2{ , ,...., }F nf f f= where xf are the result bits of

the S-boxes while 1 2{ , ,...., }x nx x x= is the input vector, having the integer

value, . 0 2nx≤ ≤ −1

2. Define the Boolean function to be 1 1 2 2.a F n na f a f a f= ⊕ ⊕ ⊕ , where

 with the integer value 1 2{ , ,..., }a na a a= 0 2na 1≤ ≤ − .

3. Find the truth table of each Boolean function by using all available

coefficient vectors, a.

Table 4.1 shows the form of a 3(2 1) 23x− truth table matrix.

Table 4.1: A simple form of a 3(2 1) 23x− truth table matrix

001
1 2 3x x x

1 2 3a a a 000 001 010 011 100 101 110 111

001 3f … … … … … … … …
010 2f … … … … … … … …
011 2 3f f+ … … … … … … … …
100 1f … … … … … … … …
101 1 3f f+ … … … … … … … …
110 1 2f f+ … … … … … … … …
111 1 2 3f f f+ + … … … … … … … …

In table 4.1, 1f , 2f and 3f are the result bits of the 3x3 S-box while 1 2 3{ , , }x x x x= is

the input vector.

 76

4.6.3 Nonlinearities of the S-boxes of Twofish

In this section, the graphical results of nonlinearity criterion are given for the 8x8 S-

boxes of the Twofish Cipher. Also the nonlinearity values of permutation boxes of

Twofish are calculated because these permutation boxes form the “heart” of the S-

boxes (refer to Fig. 3.5). The two boxes and are simple 8x8 permutations.

Their algorithms are the same but only their look-up tables given by (3.10) and

(3.11) are different from each other. The nonlinearities of and are found as 96.

The S-boxes of the Twofish algorithm, which employ and , have key-

dependent coefficients as indicated by the elements

0q 1q

0q 1q

0q 1q

,i jI in (3.8). So nonlinearity

values of S-boxes are calculated for 100 random keywords to examine the effect of

the keywords. After evaluating the nonlinearity values of the 8x8 S-boxes of

Twofish, the distribution of the nonlinearity values for 100 keywords corresponding

to 100 random choices of the coefficients ,i jI in (3.8) is sketched.

In Fig. 4.28 (i), Fig. 4.28 (ii), Fig. 4.28 (iii), and Fig. 4.28 (iv), the nonlinearity

distributions of S-boxes of Twofish are given. Although the number of occurrences

of nonlinearity values different from each other, the curves are similar to each other

and the average of nonlinearity values is almost same for different keywords.

Number of occurences

1
5

13

31

40

10

0

10

20

30

40

50

86 88 90 92 94 96

Nonlinearity values of S-box 0

Number of occurences

3 4
8

33

44

8

0

10

20

30

40

50

86 88 90 92 94 96

Nonlinearity values of S-box 1

 (i) (ii)

 77

Number of occurences

6

15

33
41

5

0

10

20

30

40

50

88 90 92 94 96

Nonlinearity values of S-box 2

Number of occurences

7
12

32
38

11

0

10

20

30

40

88 90 92 94 96

Nonlinearity values of S-box 3

(iii) (iv)

Figure 4.28 Nonlinearity of S-boxes of Twofish i) S-box 0 ii) S-box 1 iii) S-

box 2 iv) S-box 3

As the above figure states, most often the nonlinearity is around 94 for different

keywords. From (4.4) it can be calculated that for 8n = if S-boxes of Twofish were

perfectly nonlinear, the nonlinearity would be 120. For Twofish, highest value is 96.

The nonlinearity values of Twofish we obtain are very similar to those calculated by

Arıkan [Arıkan, 2003].

 78

CHAPTER 5

CONCLUSION

In this thesis, Twofish, one of the finalists of the Advanced Encryption Standard

(AES) contest, is studied. The strength of the cipher against cryptanalytic attacks is

measured according to the avalanche criterion.

Our results show that, Twofish becomes random at the output of the fourth round.

The results obtained by Arıkan [Arıkan, 2003] and those we calculate claim the same

thing: the output of Twofish is not random for rounds 2 and 3. However, there are

some differences between the curves that we obtain for the second and third round

outputs of Twofish and those calculated by Arıkan. To understand the discrepancies,

we analyse our results in detail.

We derive in Chapter 4 the second and third round outputs of Twofish in terms of

plaintext bytes and we show that the output of the Twofish algorithm will not be

completely random at the end of second and third rounds.

The nonlinearities of the S-boxes of the Twofish cipher are calculated. The

nonlinearity of the permutation boxes and are found as 96. The nonlinearity

distributions of four 8x8 S-boxes are computed over many different sets of keys.

Since these S-boxes have key dependent coefficients, their nonlinearities change in

the range [86, 96] for different keys, the average value being around 94. One can

argue that dynamic behaviour of key dependent S-boxes may increase the security of

Twofish.

0q 1q

 79

The most important result is that, although NIST results assume randomness of

Twofish at end of the second round, the avalanche criterion that we use as well as

their monobit, frequency and runs tests, indicate that the second round outputs are

completely nonrandom especially when a bit change is made in the third and fourth

intervals of the plaintext (for 64,...,127i =). Complete randomness according to our

tests can be achieved at the end of the fourth round, where the avalanche vectors of

Twofish become similar to random vectors. To remove the effect of the preparation

methods of the test data, we use “plaintext avalanche-1”, among the data types of

NIST, as the test data. From figure 4.5 it is seen that when we use “plaintext

avalanche-1” as the test data, the output from Twofish becomes random at the end of

round 4 and at the end of the second round, Twofish seems to be non-random.

We have also implemented the three core tests of NIST which are monobit test,

frequency test within a block and runs test using both “plaintext avalanche-1” and

“plaintext avalanche-2” as the test data. The test results are similar for all three tests.

From the figures (4.6 to 4.26) it is seen that the output from the Twofish algorithm is

not random until the end of round 4.

 80

REFERENCES

1. [Arıkan, 2003] Savaş Arıkan, “Propagation Characteristics of RC5, RC6 and

Twofish Ciphers”, December 2003.

2. [Feistel, 1973] H.Feistel, “Cryptography and computer privacy”, Scientific

American, v.228, n5, pp.15-23, May 1973.

3. [Hirose, 1994] S. Hirose, K. Ikeda, “Nonlinearity Criteria for Boolean

Functions”, July 14, 1994.

4. [Rukhin, 2000] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Simid,

Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan

Heckert, James Dray, San Vo. “A Statistical Test Suite for Random and

Pseudorandom Number Generators for Cryptographic Applications”, September

2000.

5. [Preneel, 1991] B.Preneel, W. Van Leekwijck, L. Van Linden, R. Govaerts and

J. Vandewalle, “Propagation Characteristics of Boolean Functions”, Advances in

Cryptology, Proc. Eurocrypt 90, Lecture Notes in Computer Science 473,

Springer Verlag, 1991. pp. 161-173.

6. [Preneel, 1994] B.Preneel, Rene Guvaerts and Joos Vandewalle, “Boolean

Functions Satisfying Higher Order Propagation Criteria”.

7. [Schneier, 1998] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner,

Chris Hall, Niels Ferguson, “Twofish: A 128-Bit Block Cipher”, June 1998.

 81

8. [Schneier, 1999] Bruce Schneier, John Kelsey, Dough Whiting, David Wagner,

Chris Hall, Niels Ferguson, “The Twofish Encryption Algorithm”, 1999.

9. [Soto, 2000] Juan Soto, Lawrence Bassham, “Randomness Testing of the

Advanced Encryption Standard Finalist Candidates”, March 2000.

10. [Vergili, 2001] I. Vergili, M.D. Yücel, “Avalanche and Bit Independence

Properties for the Ensembles of Randomly Chosen nxn S-boxes”, Turk J Elec

Engin, Vol.9, No.2, TÜBİTAK, 2001, pp. 137 - 145.

11. [WebTav, 1985] A.F.Webster and S.E.Tavares, “On the Design of S-boxes”,

CRYPTO’85, Springer-Verlag, pp.523-534, 1985.

12. [Yücel, 2001] M.D.Yücel, “Nonlinearity Indices for Boolean Functions”, METU

Electrics-Electronics Engineering Dep. Memorandum, No: 2001-1, Jan. 2001.

 82

	PLAGIARISM
	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	INTRODUCTION
	Background
	Scope and Objective of Thesis

	PROPAGATION CHARACTERISTICS OF BOOLEAN FUNCTIONS
	Introduction
	Definitions
	Properties of Boolean Functions

	THE TWOFISH ALGORITHM
	Introduction
	TheTwofish Algorithm
	Main Functions of the Twofish Algorithm
	Sub-functions of the Twofish Algorithm

	AVALANCHE CHARACTERISTICS OF TWOFISH
	Avalanche Criteria
	Avalanche Test Results of Twofish
	Analysis of the Test Results for Rounds 2 and 3
	Randomness of the g Function
	Analysis of the Avalanche Test Results of Twofish for Round
	Analysis of the Avalanche Test Results of Twofish for Round

	Comparison of Our Results with Those of NIST Statistical Tes
	Description of the Tests
	Description of the Data Type
	Test Results

	Cryptanalysis of Twofish
	Nonlinearity Measure of Twofish
	Nonlinearity of the S-boxes
	Nonlinearity Criterion
	Nonlinearities of the S-boxes of Twofish

	CONCLUSION
	REFERENCES

