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ABSTRACT 

AVALANCHE PROPERTIES AND 

RANDOMNESS OF THE TWOFISH CIPHER 
 

EL, Ömer 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc.Prof. Dr. Melek D. YÜCEL 

December 2004, 82 pages 

 

In this thesis, one finalist cipher of the Advanced Encryption Standard (AES) block 

cipher contest, Twofish proposed by Schneier et al, is studied in order to observe the 

validity of the statement made by Arıkan about the randomness of the cipher, which 

contradicts National Institute of Standards and Technology (NIST)’s results. The 

strength of the cipher to cryptanalytic attacks is investigated by measuring its 

randomness according to the avalanche criterion. The avalanche criterion results are 

compared with those of the Statistical Test Suite of the NIST and discrepancies in the 

second and third rounds are explained theoretically. 

 

Keywords: Block cipher, Twofish, avalanche criterion, Walsh-Hadamard transform, 

propagation, nonlinearity. 
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ÖZ 

TWOFISH ŞİFRESİNİN ÇIĞ ÖZELLİĞİ VE 

RASTGELELİĞİ 

EL, Ömer 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Melek D. YÜCEL 

Aralık 2004, 82 Sayfa 

 

Bu tezde, AES blok şifre yarışmasının finalistlerinden biri olan, Schneier ve 

arkadaşlarının sunduğu Twofish şifresi, rastgeleliği hakkında Arıkan tarafından 

yapılan ve NIST’in sonuçları ile çelişen açıklamanın geçerliliğini incelemek için 

çalışıldı. Şifrenin kriptanalitik ataklara karşı dayanıklılığı, rastgeleliğini çığ kriterine 

göre ölçerek araştırıldı. Çığ kriteri sonuçları, NISTin test süit sonuçları ile 

karşılaştırıldı ve ikinci ve üçüncü turlardaki farklılıklar teorik olarak açıklandı. 

 

Anahtar Sözcükler: Blok şifreler, Twofish, çığ kriteri, Walsh-Hadamard dönüşümü, 

yayılma, doğrusal olmama. 
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CHAPTER 1 

1.1 

                                    

INTRODUCTION 

Background 

Cryptography is the process of combining some input data, called the plaintext, with 

a user-specified key to generate an encrypted output, called the ciphertext. 

Cryptographic security requires that given the ciphertext, no one can recover the 

original plaintext without the key. The algorithms that combine the keys and 

plaintexts are called ciphers. Cryptanalysis is the science of breaking ciphers, i.e., 

retrieving the plaintext from the ciphertext without knowing the proper key. The 

branch of mathematics encompassing both cryptography and cryptanalysis is called 

cryptology. 

 

There are two kinds of cryptographic algorithms: symmetric and asymmetric. 

Symmetric algorithms use the same key (the secret key) to encrypt and decrypt a 

message, and asymmetric algorithms use one key (the public key) to encrypt a 

message and a different key (the private key) to decrypt it. Asymmetric algorithms 

are also called public key algorithms. Symmetric algorithms, also called secret-key 

algorithms, require the sender and receiver to agree on a key before they pass 

messages back and forth. This key must be kept secret. The security of a symmetric 

algorithm rests entirely in the key. 

 

Symmetric key algorithms can be divided into two categories, stream ciphers and 

block ciphers. Stream ciphers encrypt a single bit of plaintext at a time; whereas 

block ciphers operate on the plaintext in group of bits, called blocks. Most of the 
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block ciphers are composed of usually 8 to 32 iteration rounds, where each iteration 

contains nonlinear substitution boxes (S-Boxes) followed by linear permutations. 

Such ciphers are named as Substitution Permutation Networks (SPN) [Feistel, 1973] 

 

Block ciphers can be used to design stream ciphers with a variety of synchronization 

and error extension properties, one-way hash functions, message authentication 

codes, and pseudo-random number generators. Because of this flexibility, they are 

the workhorse of modern cryptography.  

 

Feistel ciphers [Feistel, 1973], which are also called DES-like ciphers, are a special 

class of iterated SPN ciphers where the ciphertext is calculated from the plaintext by 

repeated application of the same transformation or round function. Furthermore, in a 

Feistel cipher, the ciphertext being encrypted is split into two halves. The round 

function f is applied to one half using a subkey and the output of f is XORed with the 

other half. The two halves are then swapped. Each round follows the same pattern 

except for the last round, for which there is no swap. A nice feature of a Feistel 

cipher is that encryption and decryption are structurally identical, though the subkeys 

used during encryption in each round are taken in reverse order during encryption.       

 

National Institute of Standards and Technology (NIST) announced the Advanced 

Encryption Standard (AES) program in 1997 to replace Data Encryption Standard 

(DES). 15 algorithms were submitted and five algorithms were selected as AES 

candidates. Finally, Rijndael algorithm was selected as the new encryption standard 

October 2, 2000. Twofish cipher was one of the finalist algorithms.  

 

1.2 Scope and Objective of Thesis 

In this thesis, in order to observe the validity of the statement made by Arıkan 

[Arıkan, 2003] about the randomness of the cipher, which contradicts NIST’s results 

[Soto, 2000], the avalanche characteristics of the Twofish algorithm are investigated.  
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In Chapter 2, some mathematical definitions related to Boolean functions are 

reviewed to form a background [Yücel, 2001] and then some properties of Boolean 

functions are given [Preneel, 1994]. We prove that a dyadic shift in the Walsh-

Hadamard domain, i.e., addition of linear terms to a function in the original domain, 

does not change the propagation characteristics of a function [Preneel, 1991]. Then 

we give an example to observe the effects of addition of linear and non-liner terms to 

a function on the propagation characteristics. 

 

In Chapter 3, the building blocks and encryption algorithm of the Twofish cipher are 

given.  

 

In Chapter 4, the description and methodology of some test criteria that are used to 

measure the strength of the ciphers against cryptanalytic attacks are given. The 

studied test criteria are avalanche criterion and nonlinearity measure. Then we give 

the results of avalanche criterion test and compare them with the results found by 

Arıkan [Arıkan, 2003]. For better understanding of the avalanche test results, we 

derive the outputs for round 2 and 3 of the Twofish algorithm in terms of the input 

plaintext words. Avalanche test results are compared with three of 16 core tests of 

NIST statistical Test Suite, which are monobit, frequency test within a block and 

runs test. Also in chapter 4, the nonlinearity of the S-boxes of the Twofish cipher and 

the effects of keywords on the nonlinearity measure are investigated.  

 

Finally Chapter 5 summarizes the work of the thesis. 
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CHAPTER 2 

2.1 

                                

PROPAGATION CHARACTERISTICS OF 

BOOLEAN FUNCTIONS 

 

Introduction 
 
In this chapter some mathematical definitions related to Boolean 

functions , which map n bits to a single bit, are given [Yücel, 2001]. 

Autocorrelation function and Walsh-Hadamard transform, which is also called the 

spectrum of Boolean functions, are defined [Preneel, 1994] and some of their 

characteristics are given. The Strict Avalanche Criterion and perfect non-linearity are 

defined [Preneel, 1991]. The behaviour of a Boolean function for more than one 

input bit complementation which is defined as the propagation criterion of a Boolean 

function is studied [Preneel, 1991]. We prove that a dyadic shift in the Walsh-

Hadamard domain implies adding linear terms to a function in the original domain. 

Finally we give an example of a Boolean function of degree 4 which shows that 

addition of linear terms to a function does not change the propagation characteristics 

of a Boolean function. 

22: ZZf n →
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2.2 Definitions 
A Boolean function  is a function whose domain is the vector space ( )f x 2

nZ  of 

binary n-tuples 1( ........ )nx x=x 2Z  n∈ that takes values 0 or 1. In some cases it will be 

more convenient to work with functions that take the values { }. The function 1,1−

^
( )xf  is defined as: 

^
( )( ) 1 2 ( ) ( 1) xx  = x  = ff f− −  

 

Definition 2.1 (Affine & Linear Functions) A Boolean function )(  xf  is called an 

affine function of if it is in the form   )........( 1 nxx=x   Z2
n∈

 

ccxaxaxaf nn ⊕⊕⊕⊕⊕ == ⊗⊗⊗ xw x . ......)(     2211 ,                       (2.1) 

where  , c  belong to , ......,, 21 naaa  2Z w ).........( 1 naa=   Z2
n∈ , and ⊕, ⊗ &  

respectively denote addition, multiplication and inner product operations in  Z2.   

 f(x) is called linear if  c=0.    

 

Definition 2.2 (Truth Table)  The truth table tf  of a Boolean function  is found 

by evaluating  for all possible values of 

( )f x

( )f x i=x a ; where  is the n-bit vector 

corresponding to binary representation of the integer 

ia

0,1,...., 2 1ni = − . So: 

                                                                           (2.2) 0 2 1
{ ( ),......, ( )}ntf f f

−
= a a

Definition 2.2 (Sequences) The sequence fs of a Boolean function f(x) is defined for 

all possible values = xx i  as: 

 

fs  }{ )()()( 120 )1,......()1(,)1( 1 −−−−= nfff xxx

      =                                                                          ( ){( 1) }|
i

f
=− x

x x

Where xi is the n-bit vector corresponding to the binary representation of the integer      

i= 0… 2n–1.   
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Definition 2.4 (Correlation and Autocorrelation) Correlation coefficient C( f, g) between 

two functions and  is   22: ZZf n → 22: ZZg n →

 

 C( f, g) = 2
-n

 ∑x (–1) f (x) ⊕ g (x) = 2
-n

 ∑x (–1) f (x) (–1) g (x) = 2
-n

 fs ♦ gs                   (2.3) 

where the summation Σ and inner product ♦ operations are defined in the field of real 

numbers R.   

 

The autocorrelation function rf(d) of  f  is 

 

              rf(d) = 2
-n

 ∑x (–1) f (x) ⊕ f (x ⊕ d)= 2
-n

 ∑x (–1) f (x) (–1) f (x ⊕ d) = 2p(d) – 1.                              

 

p(d) is the probability that {f(x) = f (x ⊕ d)}, which is computed as  # {x⎟ f (x) = f (x⊕ d) }/ 

2n, where #{.} denotes the number of occurrences of an event.   

 

Definition 2.3 (Distance Between Functions) Hamming distance  between 

two functions and  is defined as the Hamming distance            

d

g)fdH ,(

22: ZZf n → 22: ZZg n →

H (fs, gs) between their 2n-bit sequences fs and gs (which is equal to the number of 

places, where these two vectors differ).  

 

Definition 2.4 (Hadamard Matrix)  A hadamard matrix H is an nxn matrix with 

entries  or , such that all rows and columns are orthogonal, i.e., 1+ 1− T
nHH nI=  

where  is the transpose of the Hadamard matrix and TH nI  is the identity matrix of 

order . A special kind of Hadamard matrix, called Sylvester-Hadamard matrix of 

order  denoted by  is generated by the following recursive relation: 

n

2n
nH

 

0 1H = ,                    1 1

1 1

n n
n

n n

H H
H

H H
− −

− −

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

                                                 (2.4) 
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So;                                   1

1 1
1 1

H
+ +⎡

= ⎢+ −⎣ ⎦

⎤
⎥ 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

H

+ + + +⎡ ⎤
⎢ ⎥+ − + −⎢ ⎥=
⎢ ⎥+ + − −
⎢ ⎥+ − − +⎣ ⎦

 

 

and 32 23x   Sylvester-Hadamard matrix  can be obtained as follows: 3H

 

3

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

H

+ + + + + + + +⎡ ⎤
⎢ ⎥+ − + − + − + −⎢ ⎥
⎢ ⎥+ + − − + + − −
⎢ ⎥+ − − + + − − +⎢ ⎥= ⎢ ⎥+ + + + − − − −
⎢ ⎥
+ − + − − + − +⎢ ⎥
⎢ ⎥+ + − − − − + +
⎢ ⎥
+ − − + − + + −⎢ ⎥⎣ ⎦

 

 

It can be shown that each row (or column) of  is a linear sequence of length ,  nH 2n

i.e., it corresponds to the sequence of a linear function. There is a one to one 

mapping between each row (or column) iI  of a 2 2n nx  Sylvester-Hadamard matrix 

, and the sequence of a linear function 2 2: n
nH I Z ned by ( )iI x = e 

the subscript i takes 2n  different values corresponding to 2n  possible weighting 

vectors w.  

Z→  defi  wherw xi ,

 

Definition 2.5 (Walsh-Hadamard Transforms) In the space of Boolean functions, 

sequences of all linear functions form an orthogonal basis with respect to the inner 

product operation ♦. The representation of a Boolean function f(x) with respect to 

this basis is called the Walsh-Hadamard  transform , or the spectrum of  f(x): 

 
^

{ ( )}xW f  = =  f
2

^
( )( ) ( 1) ( 1)x

x
w.xw n

f
Z

F
∈

= − −∑ s ♦ ( w.x )s.                       (2.5)     
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Since the summation Σ and inner product ♦ operations in (2.5) are defined in the 

field of real numbers R , the Walsh-Hadamard transform  takes even integer 

values in the interval [-2

^
( )wF

n, 2n]. For 2n different values of , /2w
^
( )F w n is the 

normalized component of  fs along the linear sequence ( w.x )s, which is also equal to 

the correlation coefficient (2.3) between f(x) and w.x.     

 

As the Walsh-Hadamard transform is linear, an alternative definition [Preneel, 1991] 

based on a matrix product is possible. The function values of  are 

written in the column matrices 

^ ^
( ) and ( )x   wf F

^ ^
and    f F⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 respectively 

 

    
^ ^

nF H f⎡ ⎤ ⎡= ⋅ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 

where  is the Walsh-Hadamard matrix of order n that can be recursively defined 

as 

nH

 

    ,    111
11

−⊗⎥
⎦

⎤
⎢
⎣

⎡
−

= nn HH 10 =H . 

 

Here  denotes the Kronecker product between matrices. It is easily seen that 

 

⊗

n
n

n IH ⋅= 22
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Fact 2.5 (The Relation Between the Walsh-Hadamard Transforms of 

) The relation between the Walsh-Hadamard transforms of 

 is given by 

^
f(x) and f(x)

^
f(x) and f(x)

^ ^

( )

( ) ( )( 1)

( 1) ( 1)

(1 2 ( ))( 1)

( 1) 2 ( )( 1)

f

F f

f

f

= −

= − −

= − −

= − − −

∑

∑

∑

∑ ∑

w x

x w x

w x

w x w x

w x

        

        x

        x

i

i

i

i i

x

x

x

x x

       

2 ( ) 2 ( )nF δ= − +        w   w                                                                                    (2.6)                        

where ( )wδ  denotes the Kronecker delta ( ( ) 1,0δ = ( ) 0kδ =  for  ) function. k 0∀ ≠

Definition 2.6 (Hamming Weight) The hamming weight Hw of an element of 2
nZ  is 

the number of components equal to 1. Similarly, the hamming weight Hw of a 

Boolean function  f  is the number of components of its sequence equal to 1. 

 

Definition 2.7 (Nonlinearity Measure) Nonlinearity of a Boolean function  is 

defined as the minimum number of cases, over all input vectors, that it differs from 

an affine function. One can find this distance by comparing the truth table of the 

Boolean function to all rows of the Hadamard matrix.  

)(xf

})(|{ # 2 , cfZ N
n

f cmin ⊕≠∈= xwxx .w             

                                             .                                (2.7)                          d    ( ),    ( ), Hmin f cc ⊕= x w xw .( )

There are also other definitions, which can be shown to be equivalent to (2.7):       

  

( )1 1 ^
( )

10,1,...,2

1 1
2 2

2
n n

f max w x Fssnw
N f− −

−=
= − −= w    

 

i i
2

max( )
                     (2.8)                          

Here   is the Walsh-Hadamard transform of a  
^
( )F w

^
( )f x
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2.3 Properties of Boolean Functions 

1. Balancedness 

A Boolean function is said to be balanced if its truth table contains as many 0 as 1 

entries. 

It is easy to show that this is equivalent to 
^
( ) 00F =  

^
( )( ) ( 1) ( 1)x w

x
w fF = − −∑ ix

x

1

 

^
( )( ) ( 1) ( 1)fF = − −∑ x 0

x
0 i  

^
( )( ) ( 1) fF = −∑ x

x
0  

^
( ) 0F =0 , so 0( ) ( )( 1) 2nF f −= − =∑ x

x
0 x i   by (2.6). 

 

2. Correlation Immunity 

A Boolean function  is m’th order correlation immune if  is statistically 

independent of any subset of m input variables [Preneel, 1994]. This can be shown to 

be equivalent to be,  

( )xf ( )xf

^
( ) 0 1 ( )HF w= ≤ ≤w     w m ,                                                                                     (2.9) 

 

and a necessary condition is ( )ord f n m≤ −  [Preneel, 1994]. 

If  is also balanced, then ( )xf ( ) 1 unless  1      ord f n m m n≤ − − = − . 

 

3. Strict Avalanche Criterion 

A Boolean function  satisfies the Strict Avalanche Criterion (SAC) if and only 

if  changes with a probability of one half whenever a single input bit of   is 

complemented [Preneel, 1991]. 

( )xf

( )xf x

 

 10



That is, if  satisfies SAC then , the probability that {f(x) = f(x⊕d)}, should 

be equal to ½ for . Then, the corresponding values of the autocorrelation 

function will be 

( )xf dp( )

( ) 1dHw =

2 1fr ( )  p( )   = = −d d 0  for all 2 ( ) 1n
HZ w∈ =d d .    

 

4. Higher Order SAC 

A Boolean function  satisfies the Strict Avalanche Criterion of order m (SAC of 

order m) if any function obtained from  by keeping m of its input bits constant 

satisfies the SAC  [Preneel, 1991].  

( )f x

( )f x

 

5. Perfect Non-linearity 

A Boolean function  is perfect non-linear (with respect to linear structures) if 

 changes with a probability of one half whenever 

)(xf

)(xf (1 ) i i n≤ ≤  bits of x are 

complemented [Preneel, 1991].  That is, 

 

2 1fr ( )  p( )   = = −d d 0    for all 2 1n
HZ w ( ) n∈ ≤ ≤d d . 

 

These two definitions can be generalized in a natural way as follows, 

 

6. Propagation Criterion 

A Boolean function  satisfies the propagation criterion of degree k (PC of 

degree k) if  changes with a probability of one half whenever  bits 

of  are complemented [Preneel, 1994]. That is, 

)(xf

)(xf (1 ) i i k≤ ≤

x

 

0dfr ( )    for=                                                                     (2.10) 21 d d n
Hw ( ) k,  Z≤ ≤ ∈

 

Note that SAC is PC of degree 1 and perfect non-linear is PC of degree n.  

The propagation criterion is defined as the non-linearity of  f  with respect to linear 

structure. 
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7. Higher Order Propagation Criterion 

A Boolean function  of  variables satisfies the propagation criterion of degree 

k and order   (  and order ) if any function obtained from  by keeping 

 of its input bits constant satisfies the  [Preneel, 1991]. 

)(xf n

m ( )PC k m )(xf

m ( )PC k

 

Here , if m  bits are kept constant at most k m n+ ≤ n m−  bits can be changed. 

A dyadic shift in the original domain generates a Boolean function with the same 

autocorrelation function [Preneel, 1991].  

 

Theorem 2.1  If , then  is called dyadically shifted form of 

 and the autocorrelation function of  is equal to that of . 

( ) ( )g f= ⊕x x s

)

( )g x

( )f x ( )g x ( )f x

 

Proof 

'

( ) ( ) ( )

( ) (

( ') ( ' )

( )

g

f

r g g

f f

f f

r

= ⊕

= ⊕ ⊕ ⊕

= ⊕

=

∑

∑

∑

x

x

x

d x x d

        x s x d s

        x x d

        d

i

i

i
                                                       

 

When dealing with propagation properties it is important to be able to construct 

different functions that satisfy the same property starting from one function. One 

method is the dyadic shift in the Walsh-Hadamard domain. 

 

Theorem 2.2  Let  be a Boolean function. Then the function , with the 

Walsh-Hadamard transform 

)(xf ( )xg

^ ^
( ) ( )G F= ⊕w w s , is dyadically shifted form of  

and  is also Boolean for all s . Moreover, the autocorrelation function of  

has the same absolute values (and thus the same zeroes) as the autocorrelation 

function of  and for 

^
( )F w

( )xg ( )xg

)(xf ≠s 0 ,     [Preneel, 1991]. 

In short, 

the distance ( , )d f g equals 12n−
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^ ^
( ) ( ) ( ) ( )( 1)g fG F r r= ⊕ ⇒ = − s dw w s   d d i ,   and 1( , ) 2nd f g −= .        

 

Proof 
( ) ( )

^
2

2

^
2 ( )

^
2

^
2

( ) ( 1) ( 1)

2 ( )( 1)

2 ( )( 1)

2 ( ')( 1)

2 ( ')( 1) ( 1)

( 1) 2 ( ')(

g g
g

x

n

n

n

n

n

r

G

F

F

F

F

⊕

−

−

− ⊕

−

−

= − −

= −

= ⊕ −

= −

= −

= −

−

∑

∑

∑

∑

∑

x x d

w d

w
^

w d

w

w' s d

w'

w' d s d

w'

s d

        d  

          w

          w s

          w

          w

           w

i

i

i

i i

i 1)

( 1) ( )fr

−

= −

∑ w' d

w'
s d          d

i

i

 

 

To evaluate the distance of   and , and for ( )xg )(xf ( ) ( )G F= ⊕w w s

−

x

 

 
^

( )

^

^
( ' )

^

^
'

( 1) 2 ( )( 1)

2 ( )( 1)

2 ( ')( 1)

2 ( ')( 1) ( 1)

( 1) 2 ( ')( 1)

g n

n

n

n

n

G

F

F

F

F

−

−

− ⊕

−

−

− = −

= ⊕ −

= −

= −

= − −

=

∑

∑

∑

∑

∑

x w

w

w x

w

w s x

w'

w' x s x

w'

s x w x

w'

   w

              w s

              w

              w

               w

            

i

i

i

i i

i i

( )

( ) ( )

( 1) ( 1)
( 1)

( ) ( ) ( )

f

f

g f

⊕

− −

= −
= ⊕

s x x

x s x

 
            

x      x   s x

i

i

i

 

 

Since  is a linear function, for s xi ≠s 0 ,  takes the values 1 for  times and 0 

for  times. So, between f and g,  is equal to .  

s xi 12n−

12n− the distance ( , )d f g 12n−
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^ ^
( ) ( )G F= ⊕w w s x

s x

                                                            (2.11)  ( ) ( ) ( )g f⇒ = ⊕ ⋅x x s

              

Corollary 2.2.1 A dyadic shift and a complementation in the Walsh-Hadamard 

domain mean adding linear terms to a function in the original domain [Preneel, 

1991].  

 

( ) ( )G F= ⊕w w     .  ( ) ( ) ( )x x sg f⇒ = ⊕ ⋅

 

Corollary 2.2.2 Adding right linear terms to a function, i.e., if  is chosen properly, 

with at least one zero in the Walsh spectrum will result in a balanced function with 

the same propagation properties [Preneel, 1991].  

s

 

 

In the following example, we define a simple function, , and evaluate the 

Walsh-Hadamard transform  and autocorrelation function  of . Then 

we define 4 more functions, 

( )f x

^
( )F w ( )fr d ( )f x

1( )f x , 2 ( )f x , 3 ( )f x  and 4 ( )f x  where 1f , 2f  and 3f  are 

obtained with the addition of linear terms to  and f 4f  is obtained with the addition 

of a nonlinear term. We show that  and 3 functions, ( )f x 1( )f x , 2 ( )f x , 3 ( )f x , 

obtained with the addition of linear terms to , have the same PC  where as ( )f x

4 ( )f x  has different PC. 

 

Example: 

1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5 1 4 1 5 2 3 2 5 3 4( )f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x= + + + + + + + + +x
 

Sequence of  is calculated as, ( )xf

 

fs = (1,1,1,1,1,1,-1,-1,1,-1,1,-1,-1,1,1,1,1,-1,-1,1,1,-1,1,1,1,1,-1,1,-1,1,1,1) 
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In Fig 2.1 the Walsh-Hadamard transform of  is sketched. We see that  is 

correlation immune of order 1 because 

f f

( ) 0wF =  for all w with hamming weight of 

w equal to 1. Also note that  is not balanced because f ( ) 0wF ≠  for  . 0w =

 

 

( )wF  

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

 
Figure 2.1  The Walsh-Hadamard transform of  ( )f x

 

 

Fig 2.2 shows the autocorrelation function  of  . From the figure we see that 

 satisfies  because from (2.10) we know that  is PC(k)  if  for 

. 

( )fr d f

f )2(PC ( )f x ( ) 0dfr =

1 ( )Hw k≤ ≤d

 

( )fr d  

-15
-10

-5
0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector
 

Figure 2.2   The autocorrelation function of  ( )f x
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Now let’s see what happens when we add 1 2 3 4 5x x x x x+ + + +  to . The function f

1( )f x  is defined as 1 2 3 4 5( )f x x x x x x+ + + + + . 

 

Fig 2.3 shows the Walsh-Hadamard transform of 1( )f x . From the figure it is clear 

that 1( )xf  is balanced because 1( ) 0wF =  for  0w = . We know from (2.11) that 

adding linear terms to a function results in a dyadic shift in the Walsh-Hadamard 

domain. From Fig. 2.3 it can be concluded that  1( ) ( (11111))F F= ⊕w w  

 

1( )wF  (Dyadic shift 11111 of F) 

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector
 

Figure 2.3   The Walsh-Hadamard transform of 1( )f x  
 

 

1
( )dfr  

-10

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector
 

Figure 2.4   The autocorrelation function of 1( )f x   
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One expects that the propagation characteristics of   remain unaffected because 

from Theorem 2.2, we know that adding linear terms to a function does not affect the 

propagation characteristics. Fig. 2.4 demonstrates the autocorrelation function of 

( )xf

1( )f x . We see that 1( )xf  is  because )2(PC
1
( ) 0fr =d  for 1 ( ) 2Hw≤ ≤d . That is, the 

propagation characteristics of  and ( )xf 1( )xf  are the same. 

 

Let’s define three more functions one of which is formed with the addition of a non-

linear term and the other two are formed with the addition of linear term to .  ( )xf

 

2 1 2 3( ) ( )x x 4f f x x x= + + + + x

3 5

    (Linear terms are added) 

3 2( ) ( )x xf f x x= + + + x

1 2

           (Linear terms are added) 

4 ( ) ( )x xf f x= + x                       (Non-linear term is added) 

 

In Fig 2.5, Fig 2.6, Fig 2.7 and Fig 2.8 the Walsh-Hadamard transforms and the 

autocorrelation functions of  and  are sketched respectively. From Fig. 

2.6 and Fig 2.8 we see that 

2 ( )xf 3 ( )f x

2 ( )f x  and 3( )f x  satisfy the propagation criterion of 

degree 2, ( ). )2(PC

 

 

2 ( )wF  (Dyadic shift 11110 of F) 

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

 
Figure 2.5   The Walsh-Hadamard transform of 2 ( )f x   
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2
( )dfr  

-15
-10

-5
0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector
 

Figure 2.6   The autocorrelation function of 2 ( )f x   

 

3 ( )wF  (Dyadic shift 01101 of F) 

-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

 
Figure 2.7   The Walsh-Hadamard transform of 3 ( )f x   

 

3
( )dfr  

-15
-10

-5
0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector
 

Figure 2.8   The autocorrelation function of 3 ( )f x   
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The function  is obtained with the addition of a non-linear term to . Fig. 

2.9 and Fig. 2.10 show the Walsh-Hadamard transform and the autocorrelation 

function of . We see from Fig. 2.10 that  does not satisfy .  

4 ( )xf ( )xf

4 ( )xf 4 ( )xf )2(PC

 

4 ( )wF  

-15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector
 

Figure 2.9   The Walsh-Hadamard transform of 4 ( )f x   

 

4
( )dfr  

-10

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Binary value of input vector

 
Figure 2.10   The autocorrelation function of 4 ( )f x . 

 

In the figures, we observe that the resultant function will be balanced if dyadic shift 

of the spectrum is chosen accordingly. The propagation characteristics of a function 

may change with the addition of non-linear terms. Also note that  has 5 zeroes 

which means that 10 balanced functions can be obtained through addition of affine 

terms. 

( )wF
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CHAPTER 3 

3.1 

                                           

THE TWOFISH ALGORITHM 

Introduction 

In response to a growing desire to replace DES (early encryption algorithm), 

National Institute of Standards and Technology (NIST) announced the Advanced 

Encryption Standard (AES) program in 1997. NIST solicited comments from the 

public on the proposed standard, and eventually issued a call for algorithms to satisfy 

the standard. The intention of NIST was to make all submissions public and 

eventually, through a process of public review and comment, choose a new 

encryption Standard to replace DES.    

 

NIST specified several design criteria: a longer key length, larger block size, faster 

speed, and greater flexibility. Twofish is one of the submissions to the AES selection 

process. It meets all the required NIST criteria, 128-bit block; 128-, 192-, 256-bit 

key; efficient on various platforms; etc [Schneier, 1998]. 

 

In this chapter, we give the description of the building blocks of the Twofish 

algorithm. 
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3.2 

n

TheTwofish Algorithm 

Twofish is one of the submissions to the AES selection process. It meets all the 

required NIST criteria; 128-bit block, 128, 192, 256-bit key lengths; efficient on 

various platforms, etc. Twofish can be seen as two parallel Feistel Networks, where 

the outputs of each round function are combined [Schneier, 1998]. In each round, 

half the block is input to the confusion stage, and the S-boxes are 8-bit S-boxes. 

Twofish was designed to meet NIST’s design criteria for AES. 

 

The Twofish algorithm has been implemented by using six blocks. Below these 

blocks and brief explanation are given: 

 

Feistel Networks: A Feistel network is a general method of transforming any 

function (usually called the F function) into a permutation. The fundamental building 

block of a Feistel Network is the F function: a key-depended mapping of an input 

string onto an output string. An F function is always non-linear and possibly non-

surjective (in which not all outputs in the output space can occur): 
/ 2 / 2:{0,1} {0,1} {0,1}n NF × →  

 

where n is the block size of the Feistel Network, and F is a function taking n/2 bits of 

the block and N bits of a key as input, and producing an output of length n/2 bits. In 

each round, the “source block” is the input to , and the output of  is XORed with 

the “target block”, after which these two blocks swap places for the next round. The 

idea here is to take a  function, which may be a weak encryption algorithm when 

taken by itself, and repeatedly iterate it to create a strong encryption algorithm. Two 

rounds of a Feistel Network is called a “cycle”. In one cycle, every bit of the text 

block has been modified once. Twofish is a 16-round Feistel network with bijective 

 function. 

F F

F

F

 

S-boxes: An S-box is a table-driven non-linear substitution operation used in most 

block ciphers. S-boxes vary in both input size and output size, and can be created 

either randomly or algorithmically. Twofish uses four different, bijective, key-
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dependent, 8-by-8-bit S-boxes. These S-boxes are built using two fixed 8-by-8-bit 

permutations and key material. 

 

MDS Matrices: A maximum distance separable (MDS) code over a field is a linear 

mapping from a field elements to b field elements, producing a composite vector of 

 elements, with the property that the minimum number of non-zero elements in 

any non-zero vector is at least

a b+

1b+ . MDS mappings can be represented by an MDS 

matrix consisting of a  elements. Reed-Solomon (RS) error-correcting codes are 

known to be MDS. A necessary and sufficient condition for a  matrix to be 

MDS is that all possible square submatrices, obtained by discarding rows or 

columns, are non-singular. Twofish uses a single 4-by-4 MDS matrix over . 

b×

a b×

8(2 )GF

 

Pseudo-Hadamard Transforms: A Pseudo-Hadamard transform (PHT) is a simple 

mixing operation that runs quickly in software. Given two inputs, a and b, the 32-bit 

PHT is defined as: 
32' ( ) mod 2a a b= +                                                                                                    

32' ( 2 ) mod 2b a b= +                                                                                                

Twofish uses a 32-bit PHT to mix the outputs from its two parallel 32-bit g function. 

 

Whitening: Whitening, the technique of XOR’ing key material before the first round 

and after the last round, substantially increases the difficulty of keysearch attacks 

against the remainder of the cipher. Twofish XORs 128 bits of subkey before the first 

Feistel round. These subkeys are calculated in the same manner as the round 

subkeys, but are not used any-where else in the cipher. 

 

Key Schedule: The key Schedule is the means by which the key bits are turned into 

round keys that the cipher can use. Twofish needs a lot of key material, and has a 

complicated key schedule. To facilitate analysis, the key Schedule uses the same 

primitives as the round function. 
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Figure 3.1 shows an overview of the Twofish block cipher. Twofish uses a 16-round 

Feistel-like structure with additional whitening of the input and output. The only 

non-Feistel elements are the 1-bit rotates. The plaintext is split into four 32-bit 

words. In the input whitening step, these are XORed with four key words. This is 

followed by sixteen rounds. In each round, the two words on the left are used as 

input to the g functions (one of them is rotated by 8 bits first.). The g function 

consists of four byte-wide key-dependent S-boxes, followed by a linear mixing step 

based on an MDS matrix. The results of the two g functions are combined using a 

Pseudo-Hadamard Transform (PHT), and two keywords are added. These two results 

are then XORed into the words on the right (one of which is rotated left by 1 bit first, 

the other is rotated right afterwards). The left and right halves are then swapped for 

the next round. After all the rounds, the swap of the last round is reversed, and the 

four words are XORed with four more key words to produce the ciphertext. So, the 

key schedule prepares a total of forty 32-bit subkeys.  
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Figure 3.1 The Twofish encryption algorithm block. 
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More formally, the 16 bytes of plaintext 0 15,.........,p p 0 ( p  is the most significant 

byte of the plaintext, and 15p  is the least significant byte of the plaintext) are first 

split into 4 words   of 32 bits each using the little-endian convention. 0 ,.........,P 3P

3
8

(4 )
0

.2 j
i i j

j
P p +

=

=∑          0,......,3i =                                                              (3.1) 

 

In the input whitening step, these words are XORed with 4 words of the expanded 

key. 

0,i i iR P K= ⊕                 0,......,3i =                                                              (3.2) 

 

In each of the 16 rounds, the first two words are used as input to the function F, 

which also takes the round number as input. The third word is XORed with the first 

output of F and then rotated right by one bit. The fourth word is rotated left by one 

bit and then XORed with the second output word of F. Finally, the two halves are 

exchanged. Thus, outputs  and  of the F function and 4 inputs words ,0rF ,1rF 1rR +  of 

the successive round are found as: 

,0 ,1 ,0 ,1

1,0 ,2 ,0

1,1 ,3 ,1

1,2 ,0

1,3 ,1

( , ) ( , ,
( ,
( ,1)

r r r r

r r

r r

r r

r r

F F F R R r
R ROR R F

)
1)r

rR ROL R F
R R
R R

+

+

+

+

=

= ⊕

=

=

=

⊕

i

                                                                          (3.3) 

 

for  and ROR and ROL are functions that rotate their first argument (a 32-

bit word) left or right by the number of bits indicated by their second argument. 

0,...,15r =

 

The output whitening step undoes the ‘swap’ of the last round, and XORs the data 

words with 4 words of the expanded key. The output block is then 

           16,( 2)mod 4 4i iC R K+ += ⊕ 0,......,3i =                                                      
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The four words of ciphertext are then written as 16 bytes  using the same 

little-endian conversion used for the plaintext. 

0 ,.........,c 15c

 

 / 4 8
8( mod 4) mod 2

2
i

i i

C
c ⎢ ⎥⎣ ⎦

⎢ ⎥
= ⎢ ⎥
⎢ ⎥⎣ ⎦

           0,......,15i =                                                    

 

3.2.1 Main Functions of the Twofish Algorithm 

 

a. The Function g 

 

The function g forms the heart of the Twofish algorithm: it is the main component of 

the F function. It uses an 32-bit vector X and a 64-bit vector L to produce the 32-bit 

output ( , )Z g X L= . The input word X (X is either ,0rR  or ) is split into 

four bytes. Each byte 

,1( ,8rROL R )

ix  is run through its own key-dependent S-box, . Each S-box 

is bijective, takes 8 bits of input, and produces 8 bits of output. The four S-box 

outputs  are interpreted as a vector of length 4 over , and multiplied by the 

 MDS matrix (using the field  for the computations). The resulting 

vector is Z is a 32-bit word. 

is

iy 8(2 )GF

4 4× 8(2 )GF

 
8/ 2 mod 2i

ix X⎢ ⎥= ⎣ ⎦
8               0,......,3i =                                                     

[ ]i i iy s x=                                 0,......,3i =                                                  (3.4) 

 

0 0

1

2 2

3 3

01 5 5
5 01

.
5 01
01 5

z yEF B B
z yB EF EF
z EF B EF
z yEF EF B

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜=
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

1

y
⎟
⎟

                                                          (3.5) 

3
8

0
.2 i

i
i

Z z
=

= ∑                                                                                                
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In 3.4  are the key-dependent S-boxes (S-box0 to S-box3) and the elements of the 

second 64-bit input 

is

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3( , , , , , , , )L I I I I I I I I=  are used as the S-box 

constants, which are indicated in (3.8). The vector L is obtained from the keys. For 

MDS matrix multiplication (3.5) to be well-defined, the correspondence between 

byte values and the field elements of  are needed to be specified.  is 

represented as  where 

8(2 )GF 8(2 )GF

(2)[ ] / ( )GF x v x 8 6 5 3( ) 1v x x x x x= + + + +  is a primitive 

polynomial of degree 8 over . The field element (2)GF
7

0

i
i

i
a a

=

= x∑  with  

is identified with the byte value

(2)ia GF∈

7

0

2i
i

i

a
=
∑ . This is in some sense the “natural” mapping; 

addition in  corresponds to a XOR of the bytes. 8(2 )GF

 

b. The Function F 

 

The function F mentioned in (3.3) is a key-dependent permutation on 64-bit values. 

It takes three arguments, two input words 0R  and 1R  and the round number r used to 

select the appropriate subkeys. 0R  is passed through the g function, which yields 

. ,0rT 1R  is rotated left by 8 bits and then passed through the g function to yield . 

The 64-bit vector L which adjusts the S-box constants is prepared from the original 

key as in (3.13), so, . The results  and  are then combined in a 

pseudo hadamard transformer and two words of the expanded key are also added 

modulo  which is different from the XOR operation. The following set of 

equations describes the details of F function. 

,1rT

1 0(L S S S= = )

od 2

where ( ) is the result of F. Fig 3.2 shows the F function in detail, where (3.6) 

can be observed in the lower part of the figure that uses g functions. The upper part 

,0rT ,1rT

322

 

,0 ,0

,1 ,1

32
,0 ,0 ,1 2 8

32
,1 ,0 ,1 2 9

( , )
( ( ,8), )

( ) m

( 2 ) mod 2

r r

r r

r r r r

r r r r

T g R S
T g ROL R S

F T T K

F T T K
+

+

=

=

= + +

= + +

                                                               (3.6) 

,0 ,1,r rF F
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of the figure, which uses h functions, is related to the key schedule to be described by 

(3.14). The round keys 2 8rK +  and 2 9rK +  used in (3.6) are produced in the upper part 

of Fig 3.2, as explained in (3.14). The h function also has key dependent S-boxes, 

where the S-box constan e prep from the original key M, by dividing it into 

32-bit pieces, 0 1 2 3, , , ,

ts ar ared 

M M M M  and choosing either the even or odd indexed 

segments, so respectively, 0 2( , )eM M M=  and 1 3( , )oM M M=  as shown in (3.12). 
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Figure 3.2   A view of a single round F function (128-bit key) 

 

. The Function h 

 

 

 

 

c
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The function ( , )h X L  is used to obtain expanded keywords of the Twofish algorithm. 

 function is very ilar to the function g, therefore equations (3.4) and (3.5) 

pletel

Note th  their inputs are 

ifferent. X is obtained from

h  sim

describe it com y. Its 32-bit input word X is split into four bytes. Each byte is 

run through its own key-dependent S-box. The four results are interpreted as a vector 

of length 4 over 8(2 )GF , and multiplied by the 4x4 MDS matrix (using the field 
8(2 )GF  for the computations). The resulting vector is 32-bit word.  

 

at the h and g functions are exactly sane as each other but

d  ,0rR  or ,1rR  for the function g, whereas for the function 

h, it is chosen as the 32-bit vector ( )p i i i i=  where i is the 8-bit vector 

corresponding to 0,....,39i = . Also the S-box constant vector L is different for h and 

g functions. In h function, L is either eM  or oM , whereas in g function L S= . The 

method of obtaining the vectors S, eM  and oM  from the original key is described in 

section 3.2.2 

 

 

d. Key-dependent S-boxes 

 

 single 32x32 S-box which can be considered as four 

8x8 S-boxes with different combinations of permutation boxes,  and , which are 

The Twofish algorithm uses a

0q 1q

explained in section (3.2.2). As can be seen from Fig 3.2 the S-boxes are used both in 

h and g functions. The combination of permutation boxes is the same for the S-boxes 

of h and g functions, but their input parameters are different. For ( , )h X L  function 

the input parameters are p X=  and eL M=  or oL M= . For ( , )g X L  function the 

input parameters are ,0rX R=  or ( ,8)X ROL R ,1r=  and S L= . 

 

32x32 S-box takes tw ts a 0 1( ,..., )kL L L −o inpu 32-bit word X and a list =  of 32-bit 

ords of length k, where k is the number of 64-bit segments in the original key. In 

r 128-bit key

w

this thesis the Twofish algorithm is implemented fo words so 

/ 64 2k N= =  The vectors X  and L  are split into bytes. 
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8 8
, / 2 mod 2j

i j il L⎢ ⎥= ⎣ ⎦                                                                                 

8 j 8
jx X⎢ ⎥= ⎣ ⎦                                                                                  

 

for  and  j = Rs is 

applied

0 0 0

1 1 1 0 0 1 1 1,1 0,0

2 2 2 1 1 0 2 1,2 0,0

3 3 3 0 1 1 3 1,3 0,

[ [ [ ]
[ ] [ [ [ ] ] ],  (S-box1 formulation)
[ ] [ [ [ ] ] ],  (S-box2 formulation)
[ ] [ [ [ ] ]

y s x q x
s x q q q x l l

y s x q q q x l l
y s x q q q x l l

= = ⊕

= = ⊕ ⊕

= = ⊕ ⊕

= = ⊕ ⊕ 0 ],  (S-box3 formulation)

                    (3.8) 

   

 

The output of the S-boxes is the 32-bit word  in the form of . Figure 3.3 

hows the S-box formulation of 128 bit the Twofish cipher. 

/ 2 mod 2

0,...., 1i k= − 0,....,3 . Then the sequence of substitutions and XO

. 

0 0 0 1 1,0 0,0] [ ] ],  (S-box0 formulation)q q l l
y

⊕

Y 3 2 1 0y y y y

s
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Figure 3.3  S-box formulation of the Twofish algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 Sub-functions of the Twofish Algorithm 

a. Permutations  and 

utations  and  are fixed permutations on 8-bit values. These 

ermutation functions are the main components of the S-boxes. They are constructed 

om four different 4-bit permutations each. For the 8-bit input value x, the 

orresponding output value y is found by the following steps: 

 

0q 1q  

 

0q 1qThe perm

p

fr

c

0

0

1 0 0

1 0 0 0

2 0 1

2 1 1

3 2 2

3 2 2 2

4 2 3

4 3 3

/16
mod16

( ,1) (8 mod16)
( )
( )

( ,1) (8 mod16)
( )
( )

a x
b x
a a b
b a ROR b a
a t a
b t b
a a b
b a ROR b a
a t a
b t b

= ⎢ ⎥⎣ ⎦
=
= ⊕

= ⊕ ⊕

=

=
= ⊕

= ⊕ ⊕

=

=
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4 416y b a= +                                                                                                 (3.9) 

 

in les. These are combined in a bijective mixing 

tep. Each nibble is then passed through its own 4-bit table look-up. This is followed 

te b

]
1]

A

             (3.10) 

 

where each look-up table is represented by a list of the entries using hexadecimal 

notation. (The entries for the inputs 0,1,……,15  are listed in order). Similarly, for  

 the look-up tables are given by 

 
8]

t B D F E A C
E B C D A F

A E D B F
t B

=
=
=
=

             (3.11) 

 

dule has to provide 40 words of expanded key 9 , and the 

g and h functions. 

Twofish is defined for keys of length 

First, the byte is split to two nibb

s

by another mixing s p and ta le look-up. Finally, the two nibbles are recombined 

into a byte.  

For the permutation 0q , look-up tables are given by 

 

0

1

2

3

[8 1 7 6 3 2 0 5 9 4]
[ 8 1 2 3 5 4 6 7 0 9
[ 5 6 9 0 8 3 2 4 7
[ 7 4 1 2 6 9 3 0 8 5 ]

t D F B E C
t E C B F A D
t B A E D C F
t D F E B C A

=
=
=
=

1q

0

1

2

3

[2 8 7 6 3 1 9 4 0 5]
[1 2 4 3 7 6 5 9 0
[4 7 5 1 6 9 0 8 2 3 ]
[ 9 5

t
t C

1 3 6 4 7 2 0 8 ]C D E F A

 

b. Key Schedule  

 

The key sche  0 3,........K K

constant vectors for the key-dependent S-boxes used in the 

128N = , 192N = , and . Keys of any 

length shorter than 256 bits can be used by padding them with zeroes until the next 

larger defined key length. 

256N =

 33



The parameter k  is defined as / 64k N= . The original key M consists of 8k bytes 

0 8 1,......, km m − . To obtain the constant vectors for key dependent S-boxes, the bytes 

e first converted into 2k words ofar  32 bits each 

 

                   
3

8
(4 )

0
.2 j

i i j
j

M m +
=

=∑ 0,....., 2 1i k= −                            

and then into two word vectors of length k. 

                                                                          

                                                                          (3.12) 

              

 

 0 2

 

2 2( , ,...., )e kM M M M −=

1 3 2 1( , ,...., )o kM M M M −=

                                                                  

eM  and oM  are the constant vectors of the key-dependent S-boxes employed in the 

h function, to obtain the expanded ke or the key length is 

used in this study, 2k = , hence 0 2( )e

ys 39  F 128-bit  0 ,....,K K .

M M M=  and 1 3( )oM M M= . 

A third vector S of length k 32-bit words is also derived from the key, as the constant 

bytes in grou

 Each res  of 4 bytes is then 

interpre ed as a 32-bit word.  

 

,2

,3 8 5

8 6

01 4 55 87 5 58 9
4 56 82

02 1 1 47 3 19
4 55 87

i

i

i i

i

i

i i

i

m
m

s mA A DB E
s A
s mA FC C AE D
s A

m

+

+

+

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎜ ⎟
⎜ ⎟

.13) 

vector for the key dependent S-boxes of the function g. This done by taking the key 

ps of 8, interpreting them as a vector over 8(2 )GF , and multiplying 

them by a 4x8 matrix derived from RS code. ult iS

t

 8 33 1 6 68 5
. imF E C E +⎜ ⎟                  (3

8

8 1

,0 8 2

,1

8 4

5 58 9 03
i

mA DB E
+⎜ ⎟

⎜ ⎟

8 7im +
⎜ ⎟
⎝ ⎠
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Using  
3

8
,

0
.2 j

i i j
j

S s
=

=∑  for  0,..., 1,i k= −  one obtains the third vector 1 2( , ,k kS S S− −=  

0..., )S . Note that S lists the words in “reverse” order. For th atrix multiply, 

8(2 )GF  is represented by (2)[ ] / ( )GF x w x , where 8 6 3 2( ) 1w x x x x x

e RS m

= + + + +  is 

another primitive polynomial of degree 8 over 

                                                             

For 128-bit keys, three vectors 

(2)GF .                                                                

. 

, ,e oM M S  are all 64-bit vectors, which form the S-

box constants. eM  and oM  are used in the h function which produces the expanded 

key; where as S is used in g function which encrypts the plaintext. 

 

 

 

 

 

The w  X 

of the  derived from t tor 2 2 2p

 

 

 

c. Expanded Key Words 

ords of the expanded key are defined using the h function. The input vector

( , )X L  function is he initial vec 02h 24 16 8= + + . To 

 values

+

evaluate the 40 keywords, one computes for all  of 0,...,19i = .  

 

32
2

32

(2 , )
((2 , ),8)

(( 2 ) mod 2 ,9)

i e

i o

i i i

A h ip M
B RO h i p M

K ROL A B

=
= +

= +

                                                            (3.14)  

2 1

( 1)

( ) mod 2

i i i

L

K A B

+

= +
                     

, the first argument of h function has all bytes values 

qual to 2i, and the second argument of h is 

 

iANotice that for producing 

eM . iBe   is computed similarly using 

 as the byte value and2 1i +  oM  as the second argument, with an extra rotate over 8 

its. The values  and iA iB  are combined in a PHT. One of the results is further b

 35



rota  by 9 bits. The two rested ults  and  2iK 2 1iK +  form the 32-bit words of the 

xpanded key. 

 

 

 

 

e
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CHAPTER 4 

4.1 

                                 

AVALANCHE CHARACTERISTICS OF 

TWOFISH 

Avalanche Criteria 

In this chapter, after stating the results of our avalanche tests, we compare them to 

the results of NIST. The analysis given in Section 4.3 explains the differences 

between these results. 

 

The idea of avalanche was introduced by Feistel [Feistel, 1973]. For a given 

transformation to exhibit the avalanche effect, an average of one half of the output 

bits should change whenever a single input bit is complemented. In order to 

determine whether a given nxn function  satisfies this requirement, a large amount 

of plaintext pairs,  and , such that  and  differ only in bit i  are used to 

calculate the difference vectors, 

f

P iP P iP

( ) ( )iC f P f P∆ = ⊕ . These XOR sums are referred 

to as the avalanche vectors, each of which contains n bits, called avalanche variables.  

 

If a function f has good avalanche characteristics, then whenever the i’th input bit 

complemented, each avalanche variable ja , 1 j n≤ ≤ , should be equal to 1 or 0 with 

almost equal probabilities. Moreover, this property should be satisfied for all input 

bits i, 1  [WebTav, 1985]. The avalanche curve of a function is obtained using i n≤ ≤

sufficiently large sets of input pairs ( ), for a fixed i. Then the percentage of , iP P
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changes (i.e., 1ja = )  of each avalanche variable, is sketched versus the output index 

j. This figure is called the avalanche curve of f corresponding to the change of the 

i’th input bit. 

 

The followin are used in the evaluation of the avalanche curves: 

ose andom key. 

,0,.....,0) xn . 

k

g steps 

1. Set 1i = . 

2. Cho a r

3. Set 0k =  and (0kC∆ = 1

4. k 1= +

Choose a random plaintext  & 

. 

5. P ' iP P e= ⊕ , where  and 

6. En

7. i
k

(0...010...0)ie =

1 corresponds to i’th bit. 

cipher P and P’ to obtain  

( ) ( ')i
kC f P f P∆ = ⊕   

1
i i
k kC C C −∆ = ∆ ⊕∆  is the sum of avalanche vectors. 

If  go to8.  4. 10000k < ,

9. 100C∆ ×  is t
10000

i
i k
k

C∆
= he change percentage of the avalanche vector. 

 Sketch the avalanc10. he curve, which is composed of the elements i
ja  of the 

11. 

1xn vector 1( ,....., )i i i
k nC a a∆ =  sketched versus the index 1,....,j n= . 

1i i= + . 

12. 8If i ≤ , go to 2. 

p. 

It is expected due to the avalanche criterion that an average of one half of the output 

In this section, the avalanche characteristics of the Twofish cipher are investigated 

and its avalanche curves are sketched according to the algorithm given in Sec. 4.1. 

12

13. Sto

 

bits should change whenever a single input bit is changed, so if we use 10000 sample 

plaintexts all n entries in the avalanche sum array should be around 5000. 

4.2 Avalanche Test Results of Twofish 
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The a  number of changes at 

each position of the round output vector, when a specific plaintext bit at position i is 

random c aracteristic for the first round. 

for the second, i=64 

r the third and i=127 for the last input intervals. Very similar curves are obtained 

ut intervals is 

comple ented, approximately half of the output bits never change. Fig. 4.1 part (ii) 

valanche curves of Twofish are obtained by counting the

complemented. The avalanche behaviour of the cipher can be categorized into four 

cases, depending on the the position of the complemented input bit. These input 

intervals are found as [0,31],i∈  [32,63],  [64,95],  [96,127]. 

 

While sketching these curves at the output of the first round, it is observed that the 

number of average changes of each avalanche variable is very small, so there is no 

need to sketch this non h

 

In Fig. 4.1, the avalanche curves of Twofish for round 2 corresponding to four input 

intervals are sketched. For each input interval, the changed input bit i is chosen as the 

representative of the whole interval, i.e., i=0 for the first, i=63 

fo

when other input bits in the related intervals are changed. Fig. 4.2 and Fig. 4.3 are 

sketched in the same way, for rounds 3 and 4 of Twofish respectively. 

 

Fig. 4.1 part (i) shows that the round 2 output of Twofish is random if any bit i in the 

first input interval is complemented. Fig. 4.1, part (iii) and part (iv) show that for 

round 2 of Twofish, when a single bit i in the third and fourth inp

m

and Fig 4.2 part (iv) demonstrate that the avalanche curves for round 2 of Twofish 

corresponding to second input interval is similar to the avalanche curves for round 3 

corresponding to fourth input interval. From Fig. 4.3, it can be understood that for 

round 4 of Twofish, all of the output bits change with a probability close to ½  

whenever a single input bit i in any one of four input intervals is complemented. The 

only difference between Fig. 4.2 and Fig. 4.3 is that, for round 3, 39’th bit of the 

output from Twofish never changes for a single input bit complementation in the 

fourth input interval. 
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(i)      (ii) 
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(iii)      (iv) 

Figure 4.1 Avalanche curves of Twofish for round 2 and chosen error bit position in 

the (i) first (ii) second (iii) third (iv) fourth input intervals. 
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  (i)      (ii) 

  

Percentage of  1's of  avalanche variable

0

Percentage of  1's of  avalanche variable

42
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57
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Avalanche variable (r=3,i=64)
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60
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Avalanche variable (r=3,i=127)
 

  (iii)      (iv) 

Figure 4.2 Avalanche curves of Twofish for round 3 and chosen error bit position in 

the (i) first (ii) second (iii) third (iv) fourth input intervals. 
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Percentage of  1's of  avalanche variable
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50
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Avalanche variable (r=4,i=127)
 

  (iii)      (iv) 

Figure 4.3 Avalanche curves of Twofish for round 4 and chosen error bit position in 

the (i) first (ii) second (iii) third  (iv) fourth input intervals. 

om for rounds 2 and 3. 

owever, the curves we obtain (Fig. 4.1 and Fig. 4.2) for the second and third round 

complemented whereas the results calculated by 

rıkan shows that the round 2 output of Twofish is not random if any bit i in the first 

s for round 2 and 3 of the Twofish 

 

The avalanche test results we obtain confirm those calculated by Arıkan [Arıkan, 

2003], which show that the output of Twofish is not rand

H

outputs of Twofish are completely different from those calculated by Arıkan 

[Arıkan03]. The main difference is that the avalanche curves calculated by Arıkan 

for round 2 outputs of Twofish are the same as those calculated for round 3, whereas 

we see from Fig. 4.1 and Fig. 4.2 that the randomness of the second round output is 

much worse than that of round 3.  

 

Moreover, Fig. 4.1 part (i) shows that the round 2 output of Twofish is random if any 

bit i in the first input interval is 

A

input interval is complemented [Arıkan, 2003].  

 

For better understanding of the differences between our results and those calculated 

by Arıkan [Arıkan, 2003], we derive the output
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algorithm in terms of the input plaintext words in Sec 4.3. The detailed explanations 

In this section we try to explain why the  and  round outputs of Twofish fail in 

rando hat 

the avalanche variable is not random at a single point. We show that this point 

 r

position 39  not random when a bit at position i is complemented, where 

.  

needs to derive the outputs for round 2 and 3 of the Twofish algorithm in terms of the 

put plaintext words. Fig. 4.4 is sketched to demonstrate the details of the first 3 

Therefore, we first apply randomness tests to the function g, (see 

ection 4.3.1) and observe that its output is completely random. 

of the Figures 4.1, 4.2 and 4.3 and comparison of avalanche tests with the results of 

NIST Statistical Test Suite are given in Sec 4.3 and Sec 4.4 respectively. 

4.3 Analysis of the Test Results for Rounds 2 and 3 

2nd 3rd

mness tests. For example, round 2 results of Fig. 4.1 part (ii) demonstrate t

corresponds to the 39’th avalanche variable. The andomness of the second round 

output is much worse, in parts (iii) and (iv) of Fig. 4.1, where almost half of the 

output bits are not changed at all, with a complemented input bit at position i, where 

64 127i≤ ≤ .  

 

Moreover, round 3 results of Fig 4.2 part (iv) show that the avalanche variable at 

 is

96 127i≤ ≤

 

For better understanding of the nonrandomness of some avalanche variables, one 

in

rounds of Twofish. 

 

We notice that the function  32 32
2 2:g F F→  is crucial in determining the randomness 

of the round output. 

s
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1w  2w  3w0w  

( )g x  

8<<  

8K

( )g x  

1>>  9K  

( )g x  

( )g x  8<<  

1>>  

10K

11K  

2,0z  2,1z  2,2z  2,3z

1,0z  1,2z  1,1z  1,3z
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Figure 4.4  The Twofish algorithm for rounds 1,2 and 3. 

 

 

 

 

 

 

 

 

 

( )g x  

( )g x  8<<  

1>>  

12K

13K  

3,0z  3,1z  3,2z  3,3z

2,0z  2,2z  2,3z2,1z  
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Let  (  is the most significant 

byte of the plaintext, and  is the least significant byte of the plaintext) be 128-bit 

input plaintext of the Twofish algorithm. The plaintext P is splitted into 32-bit words 

by using little-endian conversion (3.1) and XORed with constant keys (which are 

obtained by 3.14), which is called input whitening step (3.2). 

1514131211109876543210 mmmmmmmmmmmmmmmmP = 0m

15m

 

0 3 2 1 0w m m m m K= ⊕ 0

1

2

3⊕

w

 

1 7 6 5 4w m m m m K= ⊕  

2 11 10 9 8w m m m m K= ⊕  

3 15 14 13 12w m m m m K=                                                                                            (4.1) 

 

After input whitening step the round operation (3.6) is applied on the input words. 

Then round 1 output words of Twofish will be:  

1.0 0z w=                                                                                                                     

1.1 1z =                                                                                                                      

[ ]( )1.2 0 1 8 2( ( ) ( ( ,8)) ) ,1z ROR g w g ROL w K w= + + ⊕                                                                    

[ ]1.3 0 1 9 3( ) 2 ( ( ,8)) ( ,1)z g w g ROL w K ROL w= + + ⊕                                                                      (4.2)                  

 

where ROR and ROL are the functions that rotate their first argument right or left by 

the number of bits indicated by their second argument. 

 

The swap operation is applied to round 1 output words and then the swapped words 

are used as the input words of the second round, i.e.,  2.0 1,2w z= , , 2.1 1,3w z= 2.2 1,0w z=  

and . 2.3 1,1w z=

 

The output words of round 2 are obtained as,  

[ ]( )2.0 0 1 8 2( ( ) ( ( ,8)) ) ,1z ROR g w g ROL w K w= + + ⊕                                                                    

[ ]2.1 0 1 9 3( ) 2 ( ( ,8)) ( ,1)z g w g ROL w K ROL w= + + ⊕                                                                       
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[ ]( )( )
[ ]

0 1 8 2

0 1 9
2.2 10

3

0

( ( ) ( ( ,8)) ) ,1

( ) 2 ( ( ,8)) ,1
( ,1),8

g ROR g w g ROL w K w

g w g ROL w Kz ROR g ROL K
ROL w

w

⎛ ⎞⎡ ⎤⎛ ⎞+ + ⊕⎜ ⎟⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞⎛ ⎞+ +⎜ ⎟= ⎢ ⎥⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟⎢ ⎥
⎜ ⎟⊕⎢ ⎥⎣ ⎦⎝ ⎠

    

  
  

   

    

                

                               

[ ]( )( )
[ ]

0 1 8 2

0 1 9
2.3 11

3

1

( ( ) ( ( ,8)) ) ,1

( ) 2 ( ( ,8))
2

( ,1),8

( ,1)

g ROR g w g ROL w K w

g w g ROL w Kz g ROL K
ROL w

ROL w

⎛ ⎞⎡ ⎤+ + ⊕
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎛ ⎞⎛ ⎞+ += ⎜ ⎟⎢ ⎥+ +⎜ ⎟⎜⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎣ ⎦⎜ ⎟⎜ ⎟⊕⎝ ⎠

     

  
 

  

   

⎟                                    (4.3)        

 

 

Round 2 output words are swapped and then used as the input words of the 3  

round, i.e, , , 

rd

3.0 2,2w z= 3.1 2,3w z= 3.2 2,0w z=  and 3.3 2,1w z= . 

 

After another round operation, the output words of the third round of Twofish will 

be: 

 

[ ]( )( )
[ ]

0 1 8 2

0 1 9
3.0 10

3

0

( ( ) ( ( ,8)) ) ,1

( ) 2 ( ( ,8)) ,1
( ,1),8

g ROR g w g ROL w K w

g w g ROL w Kz ROR g ROL K
ROL w

w

⎛ ⎞⎡ ⎤⎛ ⎞+ + ⊕⎜ ⎟⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟⎛ ⎞⎛ ⎞+ +⎜ ⎟= ⎢ ⎥⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟⎢ ⎥
⎜ ⎟⊕⎢ ⎥⎣ ⎦⎝ ⎠

    

   
  

   

   

                                

 

 

[ ]( )( )
[ ]

0 1 8 2

0 1 9
3.1 11

3

1

( ( ) ( ( ,8)) ) ,1

( ) 2 ( ( ,8))
2

( ,1),8

( ,1)

g ROR g w g ROL w K w

g w g ROL w Kz g ROL K
ROL w

ROL w

⎛ ⎞⎡ ⎤+ + ⊕
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎛ ⎞⎛ ⎞+ += ⎜ ⎟⎢ ⎥+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎝ ⎠⎝ ⎠⎣ ⎦⎜ ⎟⎜ ⎟⊕⎝ ⎠
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0 1

8

2

0 1

9

3

10

3.2

( ) ( ( ,8))
,1

( ) 2 ( ( ,8))

( ,1),8

g w g ROL w
g ROR K

w

g w g ROL w
g ROL K

g ROR
ROL w

K

z ROR

⎛ ⎞⎛ ⎞⎛ ⎞⎡ ⎤+⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥
⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⊕⎣ ⎦⎝ ⎠⎜ ⎟⎝ ⎠
⎜ ⎟⎛ ⎞⎛ ⎞+⎡ ⎤⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟+ +⎜ ⎟⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟
+⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

 

   

  
     

   

       0

0 1

8

2

,1

( ) ( ( ,8))
( ,1)

2

w

g w g ROL w
g ROR K

w

ROL
g

g ROL

⎛ ⎞⎛ ⎞⎡ ⎤
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
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⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⊕⎣ ⎦⎝ ⎠⎝ ⎠

⎛ ⎞⎡ ⎤+⎛ ⎞
⎜ ⎟⎢ ⎥⎜ ⎟+⎜ ⎟⎝ ⎠⎢ ⎥
⎜ ⎟⎢ ⎥⊕⎣ ⎦⎝ ⎠

+
+

        

 
 

   

 
  

0 1

9

3

11

1

( ) 2 ( ( ,8))
(

( ,1),8)

( ,1),8

g w g ROL w
K

ROL w
K

ROL w

⎛ ⎞⎛ ⎞⎡ ⎤
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
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⎜ ⎟⎜ ⎟⎢ ⎥+⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥
⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

  
 

 
  

      

                

[ ]( )
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0 1 8 2

K

( ( ) ( ( ,8)) ) ,1ROR g w g ROL w K w

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
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0 1 8

2

0 1

9

3

10

0

3.3

( ( ) ( ( ,8)) )
,1

( ) 2 ( ( ,8))

( ,1),8

g w g ROL w K
g ROR

w

g w g ROL w
g ROL K

g ROR
ROL w

K

w

z

⎡ ⎛ ⎞⎛ ⎞⎛ ⎞+ +⎡ ⎤
⎢ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⊕⎢ ⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠
⎢ ⎜ ⎟
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⎜ ⎟⎜ ⎟⎢ ⎜ ⎟⎢ ⎥+ +⎜ ⎟⎣ ⎦⎜ ⎟⎢ ⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎝ ⎠
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g ROR
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1)

4.3.1 

 

                                                                                                                                                                                                 (4.4) 

 

 

Randomness of the g Function 

The theoretical explanations given in Sec. 4.3.2 are valid only if the g function has 

completely random characteristics. In this section, we investigate the random 

characteristics of the g function according to the avalanche criterion. We obtain the 

avalanche curves of the g function by counting the number of changes at each 

position of the output vector, when a specific bit at position i if complemented for a 

set of  N=100000 different plaintexts. The test procedure is repeated for each of the 

32 input bits of the g function. To satisfy the avalanche criterion, a single bit change 

in the input should yield the output of each bit change with a probability of one half. 
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In Fig. 4.5, avalanche curve of the g function of Twofish, with the complemented 

input bit position chosen as 0, is sketched. Very similar curves are obtained when the 

remaining 31 input bits are changed separately.  

  

From Fig. 4.5, it can be understood that the output from g function changes with a 

probability close to ½ whenever a single input bit i in any one of 32 input bits is 

complemented. It is clear that g function has completely random characteristics, with 

respect to the avalanche criterion.  

 

Percentage of 1's of the avalanche variable

44
46
48
50
52
54
56

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Avalanche variable for i=0
 

 

Figure 4.5  Avalanche curve of the g function for the complemented input bit at 

position 0. 

 

4.3.2 Analysis of the Avalanche Test Results of 

Twofish for Round 2 

Fig. 4.1 part (ii) shows that for round 2, when a plaintext bit in the second input 

interval is complemented, the avalanche variable at position 39 of ciphertext never 

changes. Similarly, Fig. 4.1 part (iii) shows that when a plaintext bit in the third input 

interval is complemented, the avalanche variable at position 2 changes with a 

probability of 1. So, for round 2, Twofish does not satisfy the avalanche criterion of 

randomness. 
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To explain this behaviour, let  and  be the round 2 outputs of Twofish when P 

and P '  are the corresponding inputs, respectively. The ciphertext  for round 2 will 

be obtained from output words of round 2 by using the same little-endian conversion 

used for the plaintext.  

2C 2 'C

2C

 

0 2,0 4 3 2 1' ' ' 'c z K m m m m= ⊕ = 0

4

8

2

5

 

1 2,1 5 7 6 5' ' ' 'c z K m m m m= ⊕ =  

2 2,2 6 11 10 9' ' ' 'c z K m m m m= ⊕ =                                                                              (4.5) 

3 2,3 7 15 14 13 1' ' ' 'c z K m m m m= ⊕ =  

2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'C m m m m m m m m m m m m m m m m=  

where  is the most significant byte, and  is the least significant byte of the 

ciphertext. 

0'm 15'm

 

The analysis of the avalanche test results for round 2 of Twofish is given below for 

four different intervals of the chosen error bit position, which are  [3  

 [ . 

[0,31],i∈ 2,63],

[64,95], 96,127]

 

Interval i  ( 310 ≤≤ i ) 

For this case, error bit position corresponds to the first input word 

 given by (4.1). Then the round 2 output of the Twofish 

algorithm will be random as observed in Fig. 4.1 (i) because all output words 

 and  given by (4.3) depend on . So the percentage of 1’s will 

be approximately ½ for all 128 avalanche variables. 

0 3 2 1 0w m m m m K= 0⊕

2.0 2.1 2.2, ,z z z 2.3z 0( )g w

 

We see that if even one bit in  is complemented, all 128 bits of the ciphertexts  

and  will change randomly, with probability ½.  

0w 2C

2 'C
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Interval ii  ( ) 6332 ≤≤ i

For this case, the error bit position is chosen in the second input word 

 and Fig. 4.1 (ii) is obtained as the result of the avalanche tests. 

Then from (4.3), 

1 7 6 5 4w m m m m K= 1⊕

))

))

 

1. All 32 bits of   differ randomly for  and  because  depends on 

 and one bit of  is different for P and P ' . 

2.0z 2C 2 'C 2.0z

1( ( ,8g ROL w 1w

 

2.  changes randomly in all 32 bits for  and , except for the bit 0, because; 2.1z 2C 2 'C

•  is the same for  and  because  is the same for P and P ' . 0( )g w 2C 2 'C 0w

•  is the same for  and  because  is the same for P and P ' . 3( ,1)ROL w 2C 2 'C 3w

•  changes randomly for  and  in all 32 bits because  

differs in 1 bit for P and P ' . But because of multiplication by 2, bit 0 of 

 is the same for   and , because the least significant bit of 

even numbers is always 0.  

1( ( ,8g ROL w 2C 2 'C 1w

12 ( ( ,8))g ROL w 2C 2 'C

So   = 45671 '''' mmmmc = 2,1 5z K⊕  is the same in bit 0 of  for  and  

and all other 31 bits change randomly. From (4.5), one can see that bit 0 of  

corresponds to bit 39 of  and . 

4'm 2C 2 'C

4'm

2C 2 'C

 

3. All 32 bits of  changes randomly for  and  because  is directly 

related to 

2.2z 2C 2 'C 2.2z

[ ]( )( )0 1 8( ( ) ( ( ,8)) ) ,1g ROR g w g ROL w K w+ + ⊕    2

))

 which depends 

on . 1( ( ,8g ROL w

 

4. All 32 bits of  will be random for  and  because  is directly related 

to 

2.3z 2C 2 'C 2.3z

[ ]( )( )0 1 8( ( ) ( ( ,8)) ) ,1g ROR g w g ROL w K w+ + ⊕    2

))

 which depends on 

. 1( ( ,8g ROL w
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So the percentage of 1’s will be approximately ½ for all avalanche variables except 

the 39  avalanche variable, which is equal to bit 0 of . th
4'm

 

Interval iii  ( ) 9564 ≤≤ i

Error bit position is chosen in the third input word 2 11 10 9 8w m m m m K2= ⊕ . In this 

case, Figure 4.1 (iii) can be explained as follows; 

 

1. Only one bit of   will be different for  and  and all other 31 bits of  

will be the same, because from (4.3) we see that  does not depend on  

From , one can calculate the position of this bit, which will be different for 

 and ,  as  where, 

2.0z 2C 2 'C 2.0z

2.0z 2( )g w .

2.0z

2C 2 'C (8 1) mod32n m k= + +

k = remainder of ( ) divided by 8. 64i −

m = fractional part of ( 64i − ) divided by 8. 

n = position of the output difference bit. 

 

2.  given by (4.3) is the same for  and  in all 32 bits because it does not 

depend on . 

2.1z 2C 2 'C

2w

 

3. All 32 bits of  will be random for  and  because  given by (4.3) is 

directly related to   

2.2z 2C 2 'C 2.2z

[ ]( )( )0 1 8( ( ) ( ( ,8)) ) ,1g ROR g w g ROL w K w+ + ⊕    2  which 

depends on  and 1 bit of  is different for P and P ' .             2w 2w

            

4. All 32 bits of  will change randomly for  and  because  is directly 

related to 

2.3z 2C 2 'C 2.3z

[ ]( )( )0 1 8( ( ) ( ( ,8)) ) ,1g ROR g w g ROL w K w+ + ⊕    2  which depends on 

. Notice that all 32 bits of the term 2w

[ ]( )( )0 1 9 32 ( ) 2 ( ( ,8)) ( ,1),8g ROL g w g ROL w K ROL w+ + ⊕      in (4.3) are the 

same for both  and . But because of the first term of  which contains 2C 2 'C 2,3z
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the term , all 32 bits of 2( )g w 121314153 '''' mmmmc =  will change randomly for 

 and . 2C 2 'C

 

Because of parts 3 and 4, the percentage of 1’s will be approximately ½ for 64 (64-

127) avalanche variables. Only one avalanche variable considered in part 1 is always 

1, whose position depends on the complemented plaintext bit, and other 63 avalanche 

variables are always equal to 0. 

 

Interval iv  ( ) 12796 ≤≤ i

Error bit position is chosen in the fourth input word 3 15 14 13 12w m m m m K3= ⊕ , and Fig. 

4.1 (iv) is obtained. Because, a close inspection of (4.3) shows that: 

 

1.   is the same for  and ’ in  all 32 bits because it does not depend on . 2.0z 2C 2C 3w

 

2. Only one bit of  is different for  and ’. From , one can calculate the 

position of this bit as 

2.1z 2C 2C 2.1z

(8 1) mod32 32n m k= + − +  where, 

k = remainder of ( ) divided by 8. 96i −

m = fractional part of ( 96i − ) divided by 8. 

n = position of the output difference bit. 

 

3.  will change randomly for  and  in all 32 bits because  is directly 

related to 

2.2z 2C 2 'C 2.2z

[ ]( )( )0 1 9 3( ) 2 ( ( ,8)) ( ,1),8g ROL g w g ROL w K ROL w+ + ⊕     which 

depends on  and one bit of  is different for P and P ' .                                   3w 3w

 

4.  will change randomly in all 32 bits for  and  except bit 0, because of 

the  term it contains. That is, in (4.3), 

2.3z 2C 2 'C

32 ( )g w

• [ ]( )( )0 1 8( ( ) ( ( ,8)) ) ,1g ROR g w g ROL w K w+ + ⊕    2  will be the same for  

and  because  are the same for   P and P ' .                     

2C

2 'C 0 1 2, ,w w w

•  is the same for  and  because  is the same for P and P ' . 1( ,1)ROL w 2C 2 'C 1w
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• [ ]( )( )0 1 9 3( ) 2 ( ( ,8)) ( ,1),8g ROL g w g ROL w K ROL w+ + ⊕     will change 

randomly for  and  in all 32 bits because  differs in 1 bit for P and P ' . 

But 2

2C 2 'C 3w

[ ]( )( )0 1 9 3( ) 2 ( ( ,8)) ( ,1),8g ROL g w g ROL w K ROL w+ + ⊕      is the same 

only in bit 0 because of multiplication by 2. 

 

As a result, we see that for round 2, Twofish does not satisfy the avalanche criterion. 

Because, if the i’th ( ) bit of the plaintext is complemented, the second round 

output is not random as seen in parts (ii), (iii) and (iv) of Fig. 4.1 and explained 

above. 

64 i≤

4.3.3 

0

4

8'

2

5

Analysis of the Avalanche Test Results of 

Twofish for Round 3  

Fig. 4.2 part (vi) shows that for round 3, when a plaintext bit in the second input 

interval is complemented, the avalanche variable at position 39 of ciphertext never 

changes.  

 

To explain this behaviour, let  and  be the round 2 outputs of Twofish when P 

and P '  are the corresponding inputs. The ciphertext  for round 3 will be obtained 

from output words using the same little-endian conversion used for the plaintext. 

3C 3 'C

3C

 

0 3,0 4 3 2 1' ' ' 'c z K m m m m= ⊕ =  

1 3,1 5 7 6 5' ' ' 'c z K m m m m= ⊕ =  

2 3,2 6 11 10 9' ' 'c z K m m m m= ⊕ =                                                                              (4.6) 

3 3,3 7 15 14 13 1' ' ' 'c z K m m m m= ⊕ =  

3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'C m m m m m m m m m m m m m m m m=  

where  is the most significant byte  is the least significant byte of the 

ciphertext. 

0'm 15'm
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Intervals i, ii, iii   ( ) 950 ≤≤ i

For this case, error bit position corresponds to first, second or third input words 

,  or 0 3 2 1 0 0w m m m m K= ⊕ 1 7 6 5 4 1w m m m m K= ⊕ 22 11 10 9 8w m m m m K= ⊕  given by (4.1) 

respectively.  

 

Then the round 3 output words of Twofish will be random as observed in Fig 4.2 (i), 

(ii) and (iii) because all output words  and  given by (4.4) depend on 

,  and . So the percentage of 1’s will be approximately ½ for all 

128 avalanche variables.  

3,0 3,1 3,2, ,z z z 3,3z

0( )g w 1( )g w 2( )g w

 

Interval iv  ( ) 12796 ≤≤ i

Error bit position is chosen in fourth input word 3 15 14 13w m m m m12= . In this case, Fig 

4.2 (iv) can be explained as follows: 

 

1.  will be random for  and  in all 32 bits because it depends on 3.0z 3C 3 'C

[ ]0 1

3

( ) 2 ( ( ,8))
( ,1),8

g w g ROL w K
g ROL

ROL w

⎛ ⎞⎛ ⎞+ +
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠   

9  which depends on .  3w

2.   will be random for  and  in all 32 bits except for the bit 0, because: 3.1z 3C 3 'C

• [ ]( )( )0 1 8( ( ) ( ( ,8)) ) ,1g ROR g w g ROL w K w+ + ⊕    2  is the same for  and 

 because  are the same for P and P ' .         

3C

3 'C 210 ,, www

• 
[ ]0 1

3

( ) 2 ( ( ,8))
( ,1),8

 
  

g w g ROL w K
g ROL

ROL w

⎛ ⎞⎛ ⎞+ +
⎜ ⎟⎜⎜⎜ ⎟⊕⎝ ⎠⎝ ⎠

9
⎟⎟  changes randomly for  and 

 in all 32 bits because  differs in 1 bit for P and P ' . But because of the 

multiplication by 2, bit 0 of 

3C

3 'C 3w

[ ]0 1(w 9

3

( ) 2 ( ,8))
2

( ,1),8
  

  
g w g ROL K

g ROL
ROL w

⎛ ⎞⎛ ⎞+ +
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

 is the 

same for  and .  3C 3 'C

•  is same for  and . 1( ,1)ROL w 3C 3 'C
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So  (  ) will be random for  and  in all 32 bits 

except bit 0 of . From (4.6), one can see that bit 0 of   corresponds to bit 

39 of  and . 

1,2z 45671 '''' mmmmc = 3C 3 'C

4'm 4'm

3C 3 'C

 

3.  will be random for  and  in all 32 bits because it depends on  

   which depends on .                                

3.2z 3C 3 'C

0 1

9

3

( ) 2 ( ( ,8))

( ,1),8

g w g ROL w
g ROL K

ROL w

⎛ ⎞⎛ ⎞+⎡ ⎤
⎜ ⎟⎜ ⎟⎢+⎜ ⎣⎜
⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

 

   

⎥
⎟⎦ ⎟

⎥
⎟⎦ ⎟

3w

 

4.  changes randomly for  and  in all 32 bits because it depends on 

 which depends on .                                

3.3z 3C 3 'C

0 1

9

3

( ) 2 ( ( ,8))

( ,1),8

g w g ROL w
g ROL K

ROL w

⎛ ⎞⎛ ⎞+⎡ ⎤
⎜ ⎟⎜ ⎟⎢+⎜ ⎣⎜
⎜ ⎟⎜ ⎟⊕⎝ ⎠⎝ ⎠

 

   
3w

 

Because of part 2, only bit 39 of  and  is the same for the change of any 

plaintext bit in the interval (96

3C 3 'C

i≤ ) and the remaining 127 bits will be random. As a 

result, we see that for round 3, Twofish does not satisfy the avalanche criterion.  

 

In Avalanche test, we have computed 128 avalanche curves each of which 

corresponds to changes of i’th bit of Plaintext. That is for each of 10000 random 

plaintexts we first complemented 1st bit of plaintext and computed the avalanche 

curve. Then we have complemented 2nd bit of plaintext and computed another 

avalanche curve and so on until bit 128.  

 

To remove the effect of the position of the complemented bit, we collect data in a 

different way. We chose 78 random plaintext, and complemented i’th bit for 

 and for each plaintext pair (78x128 = 9984) we calculate 9984 ciphertext 

pairs. Then from the original ciphertext and the 9984 ciphertext pairs we compute a 

single avalanche curve. Fig. 4.6 shows avalanche curves for rounds 2 to 5. We expect 

these results, because each of them is the average of the 128 avalanche curves 

1 128i≤ ≤
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obtained by the first method. From the figures, it is obvious that the output from the 

Twofish algorithm is not random for round 2 and round 3, but for round 4 it is.  
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   i)      ii) 
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Figure 4.6 Avalanche curves for rounds 2 to 5 of the Twofish algorithm. 

 

 

 

 

4.4  Comparison of Our Results with Those of NIST 

Statistical Test Suite 

Randomness testing of AES candidates was based on NIST Statistical Test Suite 

which consists of 16 core statistical tests [Soto, 2000]. NIST test results showed that, 

by the end of second round, the output from the algorithm appears to be random for 
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all 189 statistical tests [Rukhin, 2000]. However, the results we found and those 

given by Arıkan [Arıkan, 2003] are different from the results of NIST tests. Fig. 4.1 

and Fig. 4.2 show that by the end of the third round, the output from the Twofish 

algorithm does not satisfy the avalanche criterion. It meets the conditions at the end 

of the fourth round as seen from Fig. 4.3. 

 

Within these 16 core tests, Frequency (Monobit) Test, Frequency Test Within a 

Block and Runs Test, whose explanations are given in Sec. 4.4.1,  are mostly related 

with the avalanche criterion studied in this thesis. So comparing the results of these 

tests ours will be meaningful. This is why we have also applied  these 3 tests to the 

Twofish algorithm. 

 

4.4.1 Description of the Tests 

a. Frequency (Monobit) Test   

The focus of the test is the proportion of zeroes and ones for the entire sequence. The 

purpose of this test is to determine whether the number of ones and zeroes in a 

sequence are approximately the same as would be expected for a truly random 

sequence [Rukhin, 2000].  

Test Description: 

 

1. Convert the zeroes and ones of the input sequence to ( 1)−  and  and add 

together to produce 

( 1)+

1 2 ....n nS X X X= + + + .                          

2. Compute the test statistic n
obs

S
s

n
= .                                                              

3. Compute the -
2

obssP value erfc ⎛= ⎜
⎝ ⎠

⎞
⎟                                                                   

       where  is the complementary error function. erfc

4. If the computed  is < 0.01, then conclude that the sequence is non-

random. Otherwise, conclude that the sequence is random. 

-P value
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b. Frequency Test within a Block  

The focus of the test is the proportion of zeroes and ones within M-bit blocks. The 

purpose of this test is to determine whether the frequency of ones in an M-bit block is 

approximately M/2, as would be expected under an assumption of randomness 

[Rukhin, 2000].  

Test Description: 

1. Partition the input sequence into nN
M
⎢ ⎥= ⎢ ⎥⎣ ⎦

 non-overlapping blocks. Discard any 

unused bits. 

2. Determine the proportion iπ  of ones in each M-bit block using the equation 

( 1)
1

M

i M j
j

i M

ε
π

− +
==
∑

, for 1 .                                                                              i N≤ ≤

 

3. Compute the 2χ  statistic: .                                2 2

1
( ) 4 ( 1/ 2)

N

i
i

obs Mχ π
=

= −∑

4. Compute ( )2- / 2, (P value igamc N obsχ= ) / 2                                               

       where  is the incomplete gamma function. igamc

5. If the computed  is < 0.01, then conclude that the sequence is non-

random. Otherwise, conclude that the sequence is random. 

-P value

c. Runs Test  

The focus of this test is the total number of runs in the sequence, where a run is an 

uninterrupted sequence of identical bits. A run of length k consists of exactly k 

identical bits and is bounded before and after with a bit of the opposite value. The 

purpose of the runs test is to determine whether the number of ones and zeroes of 

various lengths is as expected for a random sequence [Rukhin, 2000]. 
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Test Description: 

1. Compute the pre-test proportion π  of ones in the input sequence: 
j

j

n

ε
π =

∑
. 

2. Determine if the prerequisite Frequency test is passed. 

3. Compute the test statistic 
1

1
( ) ( )

n

n
k

v obs r k
−

=

1= +∑                                               

       where  if ( ) 0r k = 1k kε ε += , and ( ) 1r k =  otherwise. 

4. Compute 
( ) 2 (1 )

-
2 2 (1 )

nv obs n
P value erfc

π π
π π

⎛ ⎞− −
= ⎜

−⎝ ⎠
⎟

4.4.2 

.                                         

5. If the computed  is < 0.01, then conclude that the sequence is non-

random. Otherwise, conclude that the sequence is random. 

-P value

 

Description of the Data Type 

To examine the sensitivity of the Twofish algorithm to changes in the plaintext, 300 

binary sequences were analyzed by NIST. We also constructed 300 sequences in one 

of the following ways, the first one being the same as the data type used in the NIST 

tests [Soto, 2000]. The second data type indicates the performance versus each 

complemented input bit separately, whereas the first data type used by NIST is an 

average over all complemented output bits. Description below is for 128-bit input 

blocks, so each of the 300 binary sequences is of length 1,048,576 bits.  

 

Plaintext Avalanche-1: Given a fixed key of all zeroes and 19200 random 128-bit 

plaintext blocks (or 19200 input vectors), the avalanche vector is found for each 

plaintext. The avalanche vector, which is also a 128-bit vector, is equal to the 

XOR of  “the ciphertext formed using the plaintext” and  “the ciphertext formed 

using the perturbed plaintext complementing its  bit”. For each random plaintext, 

complementing the input bit i, 

thi
thi

thi

1 128i≤ ≤ , 128 avalanche vectors are formed. 

Concatenating all derived 128-bit avalanche vectors of 19200 random plaintexts, a 

total of 2,457,600 (=19200x128) avalanche vectors result, which is a sequence of 
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2,457,600x128=314,572,800 bits. Then, 300 subsequences of 1,048,576 

(=314,572,800/300) bits are parsed from the concatenated derived blocks [Soto, 

2000].  

 

Plaintext Avalanche-2: The data type explained above is prepared for a fixed value 

of the complemented input bit i. Since the number of avalanche vectors is now one 

128th of the previous case, the length of 300 subsequences is kept the same by using 

128 times as much plaintext blocks.  

 

We have implemented the three tests given above and applied them to the Twofish 

algorithm. If 11 of the 300 sequences have the P-value < 0, 01 then the test is 

considered to fail in accordance with NIST criteria of at least 96.6%. The sequences 

used in the tests, whose results are given in Fig. 4.7 to Fig. 4.18, are constructed by 

using the data type “plaintext avalanche-1”, and Fig. 4.19 to Fig. 4.27 are the results 

obtained by “plaintext avalanche-2”. 

 

4.4.3 

4.4.3.1 

Test Results 

 

Monobit Test 

 

Figures 4.7 to 4.10 show the results of the monobit test for rounds 2 to 5 of Twofish. 

In Fig. 4.7 we see that none of the 300 sequences have the P-value greater than 0.01, 

which means that Twofish failed the monobit test for round 2. Similarly, round 3 

output of Twofish failed the monobit test because Fig 4.8 show that 257 of 300 

sequences have the P-value greater than 0.01. But from Fig. 4.9 and 4.10, we see that 

295 of 300 sequences have the P-value greater that 0.01, which means that Twofish 

passes the monobit test for rounds 4 and 5. We conclude from the results that, 

according to the monobit test, the output from Twofish is random at the end of round 

4. 
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Figure 4.7  P-values of the monobit test for round 2  with the first data type (0 of 

300 passes = %0). 
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Figure 4.8  P-values of the monobit test for round 3 with the first data type (257 of 

300 passes = %85, 6). 
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Figure 4.9  P-values of the monobit test for round 4 with the first data type (295 of 

300 passes = %98, 3). 
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Figure 4.10  P-values of the monobit test for round 5 with the first data type (295 of 

300 passes = %98, 3)

 

4.4.3.2 Frequency Test within a Block 

 

Figure 4.11 to 4.14 are the results of Frequency test within a Block for rounds 2 to 5. 

The test results are similar to monobit test results. It can be seen that the output from 

the Twofish algorithm is not random until round 4. Because for round 2, none of the 
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300 sequences has the P-value greater then 0.01, so by the end of round 2, Twofish 

failed the Frequency test within a block. At the end of round 3, 275 of 300 sequences 

has the P-value greater than 0.01, so Twofish failed the Frequency test within a block 

for round 3. But by the end of round 4, 297 of 300 sequences has a P-value greater 

than 0.01. We conclude from the results that, according to Frequency test within a 

block, the output from Twofish appears to be random at the end of round 4.  
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Figure 4.11  P-values of the frequency test within a block for round 2 with the first 

data type (0 of 300 passes = %0). 
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Figure 4.12  P-values of the frequency test within a block for round 3 with the first 

data type (275 of 300 passes = %91, 6). 

 

 64



P-value

0

0,2

0,4

0,6

0,8

1

1,2

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289

Sequence number
 

Figure 4.13 P-values of the frequency test within a block for round 4 with the first 

data type (297 of 300 passes = %99). 
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Figure 4.14 P-values of the frequency test within a block for round 5 with the first 

data type (297 of 300 passes = %99). 

 

4.4.3.3 Runs Test 

Figure 4.15 to 4.18 are the results of Runs test for rounds 2 to 5. The test results are 

similar to monobit test and frequency test within a block results. It can be seen that 

the output from the Twofish algorithm is not random until round 4. Because for 

round 2, none of the 300 sequences has the P-value greater then 0.01, so by the end 
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of round 2, Twofish failed the Runs test. At the end of round 3, 263 of 300 sequences 

has the P-value greater than 0.01, so Twofish failed the Runs test for round 3. But by 

the end of round 4, 296 of 300 sequences has a P-value greater than 0.01. We 

conclude from the results that, according to Runs test, the output from Twofish 

appears to be random at the end of round 4.  
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Figure 4.15 P-values of the runs test for round 2 with the first data type (0 of 300 

passes = %0). 
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Figure 4.16 P-values of the runs test for round 3 with the first data type (263 of 300 

passes = %87, 6). 
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Figure 4.17 P-values of the runs test for round 4 with the first data type (296 of 300 

passes = %98, 6). 
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Figure 4.18 P-values of the runs test for round 5 with the first data type (296 of 300 

passes = %98, 6). 
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To examine the sensitivity of the Twofish algorithm to separate changes of each of 

128 bits in the plaintext, these three tests have been repeated using, “plaintext 

avalanche-2” as the data type.  

 

In Fig. 4.19, monobit test results of Twofish for round 2 are sketched. Figure 4.19 

shows the number of sequences that has the P-value > 0.01 for each input bit 

complementation. Fig. 4.20 and Fig. 4.21 are sketched in the same way, for rounds 3 

and 4 of Twofish respectively. 

 

Fig. 4.19 shows that the second round output of Twofish is not random because when 

a single input bit i in the second interval is complemented, none of 300 sequences 

has the P-value > 0.01. Also for some error bit positions chosen in the first input 

interval, less than 289 of 300 sequences has the P-value > 0.01.  

 

Fig. 4.20 demonstrates that the third round output of Twofish is not random because 

for some error bit positions chosen in the second input interval, less than 289 of 300 

sequences meets the condition. 

 

The output from the Twofish algorithm appears to be random at the end of fourth 

round because from Fig. 4.21 we see that for each input bit complementation, the 

number of sequences that has the P-value > 0.01 is greater than 289.  

 

Fig. 4.22 to 4.24 and 4.25 to 4.27 are the Frequency test within a block and runs test 

results of Twofish respectively. Similar results are obtained for all three tests. 
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Figure 4.19  Number of sequences that have P-value > 0.01 at the end of round 2 for 

128 monobit tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤
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Figure 4.20  Number of sequences that have P-value > 0.01 at the end of round 3 for 

128 monobit tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤
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Figure 4.21 Number of sequences that have P-value > 0.01 at the end of round 4 for 

128 monobit tests, each of which are made with different input error bit position i,  
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Figure 4.22  Number of sequences that have P-value > 0.01 at the end of round 2 for 

128 frequency tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤
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Figure 4.23  Number of sequences that have P-value > 0.01 at the end of round 3 for 

128 frequency tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤
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Figure 4.24  Number of sequences that have P-value > 0.01 at the end of round 4 for 

128 frequency tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤
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Figure 4.25  Number of sequences that have P-value > 0.01 at the end of round 2 for 

128 runs tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤
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Figure 4.26  Number of sequences that have P-value > 0.01 at the end of round 3 for 

128 runs tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤
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Figure 4.27  Number of sequences that have P-value > 0.01 at the end of round 4 for 

128 runs tests, each of which are made with different input error bit position i,  

 0 127i≤ ≤

 

 

4.5 Cryptanalysis of Twofish 

Bruce Schneier et al cryptanalyzed Twofish and a summary of these attacks on their 

own cipher is as follows [Schneier, 1999]:  

• On Twofish with fixed S-boxes, no 1-bit rotations, and no whitening, They 

[Schneier, 1999] have a meet-in-the-middle attack on eleven rounds requiring  

 memory, 256 known plaintexts, and  work, and a differential attack 

breaking nine rounds, requiring  memory,  chosen plaintexts, and 

work. I.e., they break nine rounds of Twofish with differential attack and 

eleven rounds of it with meet-in-the-middle attack. 

2252 2322
412 412 2542  

• On standard Twofish, they [Schneier, 1999] have a 4-round meet-in-the-

middle attack requiring 256 known plaintexts, but  memory and 

work. They also have a differential attack which breaks five rounds of full 

Twofish with  work and  chosen-plaintext queries. 

2252 2322  

2322 412

• They [Schneier, 1999] have a chosen-key attack. This attack involves 

choosing 160 bits of a pair of keys, K, K*, with the remaining bits to be 
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found. This attack requires  work,  chosen-plaintext queries, and 

adaptive chosen-plaintext queries, in order to break 10 rounds without the 

whitening. 

342 322 122  

• They [Schneier, 1999] have a related key attack against 10-round Twofish 

without whitening. This attack requires  related-key queries,  work, 

and for each of the  keys it requires  chosen plaintexts and 

adaptive chosen plaintexts. 

1552 1872
1552 322 122  

 

From the attacks we see that NIST’s results also conflict with the results given by 

Bruce Schneier et al [Schneier, 1999]. Because, they broke the 4-round of full 

Twofish with meet-in-the-middle attack and 5-round of full Twofish with differential 

attack. However, NIST claims that the output from Twofish is random at the end of 

the second round.  

 

4.6 Nonlinearity Measure of Twofish 

If a ciphertext bit  is described by the Boolean function ic if  then it is generally 

required that each if  should possess a combination of the properties such as 

balancedness, nonlinearity, completeness, correlation immunity, the strict avalanche 

criterion. 

The nonlinearity of many block ciphers depend directly on the selection of the S-

boxes since, typically, the S-boxes are the only non-affine components of the cipher.  

4.6.1 Nonlinearity of the S-boxes 

Nonlinearity of the S-box can be defined in terms of the nonlinearities of the 

individual components if  which are the output bit functions of the S-boxes. The 

worst case nonlinearity over all output bit positions and their linear combinations; 

where the nonlinearity factor for each function 2: n
i 2f Z Z→  is defined by 
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, ,1,...,2

1 12 max 2 max (
2 2nj

n n
f j s i si

N f I− −
=

= − = − wi )jF    

 

Perfect nonlinearity condition implies |Fopt(w)|=2n/2 for all w [Yücel, 2001], 

 

So;   1 112 ( ) 2 2
2j

n n
fN F ( / 2) 1n− −≤ − = −w −

4.6.2 

                                                 (4.7) 

 

This maximum is not achievable if n is odd; because for odd values of n, 2n/2 is not 

even (and not rational), hence it is not a proper spectral coefficient. This is why there 

is no perfectly nonlinear Boolean function for odd values of n. However, if  ⎡2n/2 
⎤ 

denotes the smallest even integer which is larger than 2n/2,  it should be possible to 

find spectra with  |F(w)|max= ⎡2n/2 ⎤; so that  for all values of n,  Nf  has a maximum 

value of   

                          | Nf |max= 2n–1–  ⎡2n/2
⎤ 2–1.     

 

 

Nonlinearity Criterion 

To calculate the nonlinearity of  s-boxes, we first find the truth tables of the S-

boxes. Each output bit has a truth table of  bits. After obtaining n truth tables for n 

output bits, we find all ( 2

nxn

2n

1n − ) truth tables corresponding to all ( 2 ) linear 

combinations of the output bits. Each row of the truth table matrix is then compared 

to all rows of the 

1n −

2 2n nx  Sylvester-Hadamard matrix, to find the minimum distance. 

Nonlinearity values are obtained for each of the  Boolean functions. The smallest 

of all is the nonlinearity parameter of the corresponding   S-boxes. 

2n

nxn
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We find the (2  truth table matrix with the following algorithm. 1) (2 )n x− n

1. Define a Boolean vector of 1 2{ , ,...., }F nf f f=  where xf  are the result bits of 

the S-boxes while 1 2{ , ,...., }x nx x x=  is the input vector, having the integer 

value, . 0 2nx≤ ≤ −1

2. Define the Boolean function to be 1 1 2 2. . ....... .a F n na f a f a f= ⊕ ⊕ ⊕ ,  where 

 with the integer value 1 2{ , ,..., }a na a a= 0 2na 1≤ ≤ − . 

3. Find the truth table of each Boolean function by using all available 

coefficient vectors, a.  

 

Table 4.1 shows the form of a 3(2 1) 23x−  truth table matrix. 

 

 

 

Table 4.1:  A simple form of  a 3(2 1) 23x−  truth table matrix  

 

 

001
1 2 3x x x  

1 2 3a a a  000 001 010 011 100 101 110 111 

001 3f  … … … … … … … … 
010 2f  … … … … … … … … 
011 2 3f f+  … … … … … … … … 
100 1f  … … … … … … … … 
101 1 3f f+  … … … … … … … … 
110 1 2f f+  … … … … … … … … 
111 1 2 3f f f+ +  … … … … … … … … 

 

In table 4.1, 1f , 2f  and 3f  are the result bits of the 3x3 S-box while 1 2 3{ , , }x x x x=  is 

the input vector. 
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4.6.3 Nonlinearities of the S-boxes of Twofish 

In this section, the graphical results of nonlinearity criterion are given for the 8x8 S-

boxes of the Twofish Cipher. Also the nonlinearity values of permutation boxes of 

Twofish are calculated because these permutation boxes form the “heart” of the S-

boxes (refer to Fig. 3.5). The two boxes  and  are simple 8x8 permutations. 

Their algorithms are the same but only their look-up tables given by (3.10) and 

(3.11) are different from each other. The nonlinearities of  and  are found as 96. 

The S-boxes of the Twofish algorithm, which employ  and , have key-

dependent coefficients as indicated by the elements 

0q 1q

0q 1q

0q 1q

,i jI  in (3.8). So nonlinearity 

values of S-boxes are calculated for 100 random keywords to examine the effect of 

the keywords. After evaluating the nonlinearity values of the 8x8 S-boxes of 

Twofish, the distribution of the nonlinearity values for 100 keywords corresponding 

to 100 random choices of the coefficients ,i jI  in (3.8) is sketched. 

 

In Fig. 4.28 (i), Fig. 4.28 (ii), Fig. 4.28 (iii), and Fig. 4.28 (iv), the nonlinearity 

distributions of S-boxes of Twofish are given. Although the number of occurrences 

of nonlinearity values different from each other, the curves are similar to each other 

and the average of nonlinearity values is almost same for different keywords.   
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Figure 4.28   Nonlinearity of S-boxes of Twofish   i) S-box 0    ii) S-box 1   iii) S-

box 2   iv) S-box 3 

 

 

As the above figure states, most often the nonlinearity is around 94 for different 

keywords. From (4.4) it can be calculated that for 8n =  if S-boxes of Twofish were 

perfectly nonlinear, the nonlinearity would be 120. For Twofish, highest value is 96. 

 

The nonlinearity values of Twofish we obtain are very similar to those calculated by 

Arıkan [Arıkan, 2003]. 
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CHAPTER 5                                  

CONCLUSION 

In this thesis, Twofish, one of the finalists of the Advanced Encryption Standard 

(AES) contest, is studied. The strength of the cipher against cryptanalytic attacks is 

measured according to the avalanche criterion. 

 

Our results show that, Twofish becomes random at the output of the fourth round. 

The results obtained by Arıkan [Arıkan, 2003] and those we calculate claim the same 

thing: the output of Twofish is not random for rounds 2 and 3. However, there are 

some differences between the curves that we obtain for the second and third round 

outputs of Twofish and those calculated by Arıkan. To understand the discrepancies, 

we analyse our results in detail. 

 

We derive in Chapter 4 the second and third round outputs of Twofish in terms of 

plaintext bytes and we show that the output of the Twofish algorithm will not be 

completely random at the end of second and third rounds. 

 

The nonlinearities of the S-boxes of the Twofish cipher are calculated. The 

nonlinearity of the permutation boxes  and  are found as 96. The nonlinearity 

distributions of four 8x8 S-boxes are computed over many different sets of keys. 

Since these S-boxes have key dependent coefficients, their nonlinearities change in 

the range [86, 96] for different keys, the average value being around 94. One can 

argue that dynamic behaviour of key dependent S-boxes may increase the security of 

Twofish.  

0q 1q
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The most important result is that, although NIST results assume randomness of 

Twofish at end of the second round, the avalanche criterion that we use as well as 

their monobit, frequency and runs tests, indicate that the second round outputs are 

completely nonrandom especially when a bit change is made in the third and fourth 

intervals of the plaintext (for 64,...,127i = ). Complete randomness according to our 

tests can be achieved at the end of the fourth round, where the avalanche vectors of 

Twofish become similar to random vectors. To remove the effect of the preparation 

methods of the test data, we use “plaintext avalanche-1”, among the data types of 

NIST, as the test data. From figure 4.5 it is seen that when we use “plaintext 

avalanche-1” as the test data, the output from Twofish becomes random at the end of 

round 4 and at the end of the second round, Twofish seems to be non-random.  

 

We have also implemented the three core tests of NIST which are monobit test, 

frequency test within a block and runs test using both “plaintext avalanche-1”  and 

“plaintext avalanche-2” as the test data. The test results are similar for all three tests. 

From the figures (4.6 to 4.26) it is seen that the output from the Twofish algorithm is 

not random until the end of round 4. 
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