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abstract

ON PRINCIPLES OF B-SMOOTH DISCONTINUOUS

FLOWS

Akalın, Ebru Çiğdem

M.Sc., Department of Mathematics

Supervisor: Prof. Dr. Marat Akhmet

November 2004, 70 pages

Discontinuous dynamical system defined by impulsive autonomous differential

equation is a field that has actually been considered rarely. Also, the properties

of such systems have not been discussed thoroughly in the course of mathematical

researches so far.

This thesis comprises two parts, elaborated with a number of examples. In the

first part, some results of the previous studies on the classical dynamical system

are exposed. In the second part, the definition of discontinuous dynamical sys-

tem defined by impulsive autonomous differential equation is formulated, and its

properties are investigated, in the view of the known results of the studies on the

classical dynamical system and impulsive differential equations.

Keywords:Dynamical systems, discontinuous flows, smoothness.
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öz

B-DÜZGÜN SÜREKSİZ AKIŞLARIN İLKELERİ

ÜZERİNE

Akalın, Ebru Çiğdem

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Marat AKHMET

Kasım 2004, 70 sayfa

” Impulsive ” otonom diferensiyel denklemler ile tanımlanan süreksiz dinamik

sistemler alanı nadiren ele alınmıştır. Ayrıca bu sistemin özellikleri, şu ana

kadarki matematiksel araştırmalarda tartışılmamıştır.

Bu tez, örneklerle detaylandırılmış, iki bölümden oluşmaktadır. Birinci bölümde,

klasik dinamik sistemler üzerine daha önceki çalışmaların bazı sonuçları belir-

tilmiştir. İkinci bölümde impulsive otonom diferensiyel denklemler ile tanımlanan

süreksiz dinamik sistemlerin tanımı, klasik dinamik sistemler ve impalsif difensiyel

denklemlerin bilinen sonuçları yardımi ile, açık bir şekilde belirtilmiş ve özellikleri

araştırılmıştır.

Anahtar Kelimeler: Dinamik sistemler, süreksiz dinamik akışlar, düzgünlük.
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LIST OF SYMBOLS

• N : the set of all natural numbers.

• Z : the set of all integer numbers.

• R : the set of all real numbers.

• R+ = (0,∞) .

• N+ : the set of all positive natural numbers.

• ‖.‖ : the Euclidean norm, ‖x‖ =
√∑n

i=1 x2
i , where x ∈ Rn, and n ∈ N.
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• ∂A: the boundary of a set A.

• B(x0, ξ) : {x ∈ Rn| ||x− x0|| < ξ}, a ball with center x0 ∈ Rn and radius

ξ ∈ R, ξ > 0.

• A\B : difference of sets and set B.

• Ḡ : the closure of the set G in Rn.

• Aε : an open set Aε is called ε-neighborhood. If A ⊂ Rn, then Aε =⋃
x∈A B(x, ε).

• ‖A‖ = sup {‖Ax‖ | ‖x‖ = 1} , a norm of matrix A.

• C1(X, Y ) : set of C1 maps from X to Y.
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ˆ(α, β] =
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• dist(A,B) : a distance between two sets A,B ⊂ Rn as dist(A,B) = inf{||a−
b|| | a ∈ A, b ∈ B}.
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chapter 1

Description of dynamical

systems (flows)

1.1 Introduction

A flow is a type of a dynamical system (DS) which can be used to describe

solutions of mathematical models, where state at time t is completely specified

by the values of n real variables x1, x2, . . . , xn.Accordingly, the system is such

that changing the rate of these variables merely depends upon the value of the

variables themselves, so that the law of motion can be expressed by means of n

differential equations of the first order

ẋ = f(x), (1.1.1)

where x = {x1, x2, . . . , xn} ∈ Rn and ẋ = dx
dt

.

For the classical DS, one can consider a system of differential equation of

the form (1.1.1), where f is assumed to be continuous function of its arguments

in a certain domain G, which might be a Euclidean space or an open subset of

Euclidean space Rn.

Let us begin describing mathematically a DS as a map Φ : R × G → G

defined by (t, x) → xt which is continuously differentiable or at least continuous

and continuously differentiable in t.

We formalize DS in the following definition [16], [32].

Definition 1.1.1. We say that a dynamical system is a C1-map φ : R×G → G,

which satisfies the following properties:

i) φ(0, x) = x, for all x ∈ G;
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ii) φ(t + s, x) = φ(t, (φ(s, x))), is valid for all t, s ∈ R and x ∈ G.

Remark 1.1.1. It follows from definition that the map φt : G → G, where φt(x) =

φ(t, x), is C1 for each t and has C1 inverse φ−t.

Remark 1.1.2. The map φt with t ∈ R is a one parameter group of transformation

of the solution space G into itself. It is known that any one parameter group of

transformations of the set G is called a phase flow with the phase space G [49].

Remark 1.1.3. A DS which satisfies properties i) and ii) of Definition 1.1.1 is

called the smooth dynamical system [7].

Every dynamical system gives rise to a differential equation. We give precise

example as follows [32]. It is easy to see that if A is an n × n matrix, then the

function

φ(t, x) = eAtx

defines DS on Rn, and also, for each x0 ∈ Rn, φ(t, x0) is the solution of the initial

value problem

ẋ = Ax

x(0) = x0.

Now, let us consider the general case. If φ(t, x) is DS on G, then the function

f(x) =
dφ(t, x)

dt
|t=0,

generally defines a C1(G)−vector field on G, and for each x0 ∈ G,

x(0) = x0. (1.1.2)

φ(t, x0) is the solution of the initial value problem (1.1.1), (1.1.2).

Moreover, for each x0 ∈ G, the maximal interval of existence of φ(t, x0) is I(x0) =

(−∞,∞) . Thus, each DS gives rise to function f ∈ C1, and DS describes the

solution set of the differential equation defined by this function. Conversely,

3



given a differential equation (1.1.1) with f ∈ C1(G) and G, open subset of Rn,

the solution φ(t, x0) of the initial value problem (1.1.1), (1.1.2) will be DS on G

if and only if for all x0 ∈ G, φ(t, x0) is defined for all t ∈ R; i.e., if and only if

for all x0 ∈ G, the maximal interval of existence I(x0) of φ(t, x0) is (−∞,∞) . In

this case, we say that φ(t, x0) is the dynamical system on G defined by (1.1.1).

In the following sections, we deal with fundamental existence and uniqueness

theorem, maximal interval of existence, continuation of solutions, flow of differen-

tial equation, continuous dependence on initial value and differential dependence

on initial value to consider the properties of classical DS. These are contained in

[16], [32],[35],[37].

1.1.1 Existence and uniqueness

Often, computing solution explicitly is not possible, and indeed, it is a priori

obvious that system (1.1.1) has not unique solutions for all initial conditions.

The following is the fundamental existence and uniqueness theorems which can

be found particulary in [7], [37].

Theorem 1.1.1. [37]: Consider a system of differential equation (1.1.1) where

the function f(x) is assumed to be continuous in a closed and bounded domain

Ḡ containing x0. Then there exists a solution of IV P (1.1.1), (1.1.2) which is

defined in the interval
−d

M
√

n
≤ t− t0 ≤ d

M
√

n
,

where d = dist(∂G, x0) is the distance of x0 from the boundary of the domain Ḡ,

and M = maxḠ‖f(x)‖ is an upper bound of ‖f(x)‖ in the domain Ḡ.

Theorem 1.1.2. [7]: Let G be an open subset of Rn containing x0 and assume

that f ∈ C1(G). Then there exist α, β ∈ R and α < 0 < β such that the IV P

(1.1.1), (1.1.2) has a unique solution x(t) on the interval (α, β) .

Lipschitz condition may be seen in many places in our study. A function f is
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Lipschitz on G if for all x, y ∈ G the following inequality is valid:

‖f(x)− f(y)‖ ≤ L ‖x− y‖ ,

for a nonnegative constant L.

Sometimes, instead of lipschitzian function, local lipschitzian function may be

more useful in the theory [16].

Definition 1.1.2. We call f locally Lipschitz if each point of G, an open subset

of Rn, has a neighborhood G0 in G such that the restriction f|G0 is Lipschitz.

The following assertion which can be seen in [16] will be needed in the main

part of our study.

Lemma 1.1.1. Let the function f : G → Rn be C1, then f is locally Lipschitz.

Definition 1.1.3. A point x is called a singular point of (1.1.1) if f(x) = 0.

The following definitions are important to have a geometrical approach for

the solution. Now, suppose that IV P (1.1.1), (1.1.2) has a unique solution x(t)

defined for t on an interval I containing x0. By the motion through (t0, x0), we

mean the set

{(t, x(t)) : t ∈ I} .

This is, of course, the graph of the function x.

By the trajectory, we mean the set

T (x0) = {x(t) : t ∈ I} .

The positive trajectory is defined as

T+(x0) = {x(t) : t ∈ I, t ≥ t0} .

Also, the negative trajectory is defined as

T−(x0) = {x(t) : t ∈ I, t ≤ t0} .

5



1.1.2 The maximal interval of existence

The interval of existence and uniqueness of the solution of system (1.1.1) is

quite important to continue with DSs. Let us recall the maximal interval of

existence of the solution .

Definition 1.1.4. Assume that x1 : J1 → G, x2 : J2 → G are solutions of

(1.1.1). We say that x2 is continuation of x1 if J1 ⊂ J2 and x2(t) = x1(t)on J1.

Definition 1.1.5. If y : J → G is a solution of (1.1.1) and there is no continu-

ation of y(t), then J is said to be a maximal interval of existence of y(t).

The following appears to be a good example of maximal interval of existence;

Example 1.1.1. [47] Let us consider that.

ẋ = xp

x(0) = 1.

This scalar field is autonomous, and the interval I is therefore not relevant. For

any integer p ≥ 0, we have G = R. If p is a negative integer, we have to execute

the origin,G = R\0. If p is non-integer, negative x values are not allowed, and

then, G = [0,∞) for p > 0, and G = (0,∞) for p < 0. The solutions are directly

found from separation of variables leading to the implicit equation

∫ x

1

y−pdy = t.

Hence:

x(t) =

{
[1 + (1− p)t]

1
1−p , p 6= 1

et, p= 1
. (1.1.3)

The maximum existence interval Imax depends on p in a remarkable way, as we

can see from the following cases:

For p > 1,Imax = (−∞, 1
p−1

).

For p = 1,Imax = R.
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For p < 1and p 6= n−1
n

for some integer n 6= 0, Imax = [ 1
p−1

,∞).

For p = n−1
n

for some positive integer n, Imax = R.

For p = n−1
n

for some negative integer n, Imax = R\{n}.

1.1.3 Continuation of Solutions

Continuation of solution on R is one of the significant properties of DS. There-

fore, let us consider how the solution can be continued uniquely over a much

larger interval and how it may exist globally. That is, for all t ∈ R. The idea of

continuation is rather straightforward [15], [16], [32], [37].

Let us study continuation for the case t > 0. The case t < 0 is completely sim-

ilar. Theorem 1.1.1 ensures that a unique solution x(t) exists on Iα0 = [−α0, α0] ,

where α0 > 0. Therefore, x(t1) with t1 = α0 exists and x(t1) ∈ G. After applying

existence theorem around this point we get a new interval Iα1 = [t1 − α1, t1 + α1]

on which unique solution of IV P (1.1.1), (1.1.2) exists. On Iα0 ∩ Iα1 , this so-

lution coincides with the solution in Iα0 , and on Iα1\Iα0 , it is its continuation.

Repeating this procedure while taking the Iαi
as large as possible, we get a series

of overlapping intervals Iαi
, i = 0, 1, . . . and the solution exists uniquely on their

union.

As a corollary of the existence theorem, one can obtain the following results

[37], which are important for the theory of the dynamical systems.

Theorem 1.1.3. [37]: If as time increases (or decreases), a given trajectory

(an integral curve) remains in a closed bounded region M imbedded in an open

domain G for which the conditions of our existence theorem are fulfilled, then

the motion (the solution) may be continued for the whole infinite interval [t0,∞)

(or (−∞, t0]).

Theorem 1.1.3 is not good for applications. Therefore, we may write another

theorem which involves sufficient conditions for such continuation.
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Theorem 1.1.4. [37]: If the function f(x) is continuous for x ∈ Rn, and, more-

over, if ‖f(x)‖ < A max(‖x‖, 1) for ‖x‖ > D > 0, where A is some positive

constant and D is sufficiently large number, then the solution of system (1.1.1)

is defined on R.

The following theorems are assertions about continuation of solutions on R.

[32], [47].

Theorem 1.1.5. Suppose that f ∈ C1(Rn) and that f(x) satisfies the global

Lipschitz condition

‖f(x)− f(y)‖ ≤ M ‖x− y‖

for all x, y ∈ Rn. Then, for x0 ∈ Rn, IV P (1.1.1), (1.1.2) has a unique solution

x(t) defined for all t ∈ R.

For manifolds, for which some brief information is provided in section 1.2,

there exists a theorem which is more simple in formulation.

The following theorem, which can be seen in [13], is a significant theorem for

compact manifolds.

Theorem 1.1.6. (Chillingworth). Let D be a compact manifold and let f ∈
C1(D). Then for x0 ∈ D, IV P (1.1.1), (1.1.2) has a unique solution x(t) defined

for all t ∈ R.

1.1.4 Continuous dependence on initial value

Definition 1.1.6. The solution x(t) = x(t, 0, x0) is defined for −T ≤ t ≤ T

is called continuously dependent on initial value, if for every ε > 0 there is a

δ > 0 such that for ‖x̄0 − x0‖ < δ the solution x̄ = x(t, 0, x̄0) is also defined for

−T ≤ t ≤ T and for all values of t in this interval
∥∥ ¯x(t)− x(t)

∥∥ < ε.

We can formulate this property as follows: If initial points are chosen suffi-

ciently close, then in the course of a given interval −T < t < T, the distance

between simultaneous positions of the moving points will remain less than an

assigned quantity ε. The following theorems, particularly discussed in [37], [32],

8



give this opportunity. Now, we will give sufficient conditions that must be satis-

fied by system (1.1.1) so that the solution there of can depend continuously on

initial value. By using this knowledge, we find an estimate for the change of the

solution of system (1.1.1), corresponding to a change of the initial value. Let us

continue with the following definition and the theorems. The following property,

continuous dependence on initial value, is one of the most important case for DS.

Theorem 1.1.7. Let G ∈ Rn be open and suppose f : G → Rn has a Lipschitz

constant K. Let y(t), z(t) be solutions of (1.1.1) on the closed interval [t0, t1] .

Then, for all t ∈ [t0, t1] :

|y(t)− z(t)| ≤ |y(t0)− z(t0)| eK(t−t0).

The theorem on differentiability with respect to the initial value provides a

quite efficient method of studying the influence exerted on the solution by a small

perturbation of the initial value. The following theorem [32] is a consequence of

Theorem 1.1.1 on rectification.

Theorem 1.1.8. Assume that f ∈ C1(G).

x(0) = y. (1.1.4)

Then there exists an a > 0 and a δ > 0 such that for all y ∈ B(x0, δ) the

IV P (1.1.1), (1.1.4) has a unique solution φ(t, y) with φ ∈ C1(G) where G =

[−a, a]×B(x0, δ) ⊂ Rn+1.

1.1.5 The Group property

We may continue discussing one of the most important properties of DS.

Assume that f ∈ C1 and all solutions are continuable on R. Then the following

lemmas are valid. These lemmas are taken from [15], [16], [32], [37].

Lemma 1.1.2. If x(t) : R→ G is a solution of system (1.1.1), then the function

x(t + θ) is a solution of the system (1.1.1).

9



Theorem 1.1.9. [32] If x(t) is a solution of system (1.1.1), then

x(t2, x(t1, x0)) = x(t1 + t2, x0),

for all {t1, t2} ∈ R is valid.

By taking t1 = t and t2 = −t in Theorem 1.1.9, we can write the following

corollary.

Corollary 1.1.1. For all t ∈ R, it is clearly seen that

x(−t, x(t, x0)) = x0

It is obvious that x(0, x0) = x0. Thus on the bases of Theorem 1.1.9, one can

conclude that x(t, x0) defines a one parameter group of transformations of G into

itself.

Now, to go into details of DS, we study the following example which has

physical sense [16].

Example 1.1.2. Suppose we have a mass on a frictionless surface attached to a

wall by spring. The state of this system is determined by two variables: υ for its

velocity to the right, and x for the distance of the block from its neutral position.

When x = 0, we assume that the spring is neither extended nor compressed and

exerts no force on the block. As the block is moved to the right (x > 0) of this

neutral position, the spring pulls it to the left. Conversely, if the block is to the

left of the neutral position (x < 0), the spring is compressed and pushes the block

to the right. We can mathematically express this system in the following way;

υ̇ = −x, (1.1.5)

ẋ = υ. (1.1.6)

If we combine equations (1.1.5) and (1.1.6) by denoting y = (x, υ)T , then we

get:

ẏ = Ay, (1.1.7)

10



where A =

[
0 1

-1 0

]
.

The solution of this equation is in the form:

y(t, 0, y0) = eAty0 =

[
cos t − sin t

sin t cos t

]
y0, (1.1.8)

where y0 = (x0, υ0)
T . So the solution can be contracted to:

y(t, t0, y0) = K(t)y0,

where

K(t) =

[
cos t − sin t

sin t cos t

]
.

Let us see the properties of classical dynamical system step by step.

I) It is easily seen that the maximal interval of existence of this solution is R,

as functions sin t and cos t have the domain R, so the solution of the equation

(1.1.7) is continuable on R.

II)By using Definition 1.1.6, ‖y(t, t0, y0)− y(t, t0, ỹ0)‖ = ‖K(t)y0 −K(t)ỹ0‖ =

‖K(t) (y0 − ỹ0)‖ ≤ ‖y0 − ỹ0‖ , for all y0, ỹ0 ∈ G, since max[0,2π] ‖K(t)‖ = 1 so

δ = ε. Therefore, all the solutions of system (1.1.7) are continuously dependent

on initial value.

III)One can see that ∂y(t,t0,y0)
∂y0

= K(t), that is, all solutions are differentially

dependent on initial value.

IV)For the group property, we should show that the following two equalities are

fulfilled ;

y(0, y0) = y0,

and

y(t1 + t2, y0) = y(t2, y(t1, y0)), for all t1, t2 ∈ R.
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First one is easy to see. For the second case,

y(t2, y(t1, y0)) =

[
cos t1 − sin t1

sin t1 cos t1

] [
cos t2 − sin t2

sin t2 cos t2

]
y0.

After applying elementary trigonometry formulas, one can check that the fol-

lowing evaluation is right

y(t2, y(t1, y0)) =

[
cos(t1 + t2) − sin(t1 + t2)

sin(t1 + t2) cos(t1 + t2)

]
y0.

We have checked all conditions (I)-(IV), so the given system (1.1.7) defines DS.

The following example can be found in [38].

Example 1.1.3. Consider an ideal pendulum, the bob has mass m and is attached

by a rigid pole of length L to a fixed pivot. The state of this DS can be described

by two numbers: θ, the angle the pendulum makes with the vertical, and ω, the

rate of rotation (measured in radians per second). By definition, ω = dθ
dt

. Then

we get following system;

θ̇(t) = ω(t), (1.1.9)

and

ω̇(t) = − g

L
sin θ(t). (1.1.10)

(The minus sign in the equation (1.1.10) reflects the fact that when θ > 0, the

force tends to send the pendulum back to the vertical.) Let ϕ =

[
θ

ω

]
be the state

vector; then the equations (1.1.10) and (1.1.9) can be expressed:

ϕ̇ = g(ϕ), (1.1.11)
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where g : R2 → R2 is defined by

g(ϕ) =

[
ω

−g
L

sin θ

]
. (1.1.12)

By using the Theorems 1.1.1 -1.1.9, one can see that this is a DS,

The following example,which can be seen in [16], is useful to understand Ex-

ample 2.1.1 about harmonic oscillator with impulses in the main part of our

study.

Example 1.1.4. We consider a particle of mass m moving in one dimension,

its position at time t given by a function t → x(t), x : R → R. Suppose the

force on the particle at a point x ∈ R is given by −mp2x, where p is some real

constant.This model is called the harmonic oscillator. Then according to the laws

of physics the motion of the particle satisfies

ẍ + p2x = 0. (1.1.13)

(1.1.13) is the equation of the harmonic oscillator. After this point, we can

show that also this equation satisfies the conditions of classical DS. The equation

(1.1.13) can be rewritten by the following system;

ẋ1 = x2,

ẋ2 = −p2x1. (1.1.14)

with initial conditions x1(0) = x(0) and x2(0) = ẋ(0). The solution of the system

(1.1.14) is

[
x1(t)

x2(t)

]
=

[
cos pt 1

p
sin pt

−p sin pt cos pt

] [
x1(0)

x2(0)

]
. (1.1.15)

Let us denote y(t) =

[
x1(t)

x2(t)

]
, we can rewrite the solution (1.1.15) in the

following contracted form:
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y(t, t0, y0) = K(t)y0,

where

K(t) =

[
cos pt 1

p
sin pt

−p sin pt cos pt

]
.

Again, we may examine the properties of the classical dynamical system step

by step.

By repeating the same discussion as we did in Example 1.1.2, one can see that all

the solutions of the system (1.1.14) are continuable on R, continuously and differ-

entially dependent on initial value, and satisfies the first case of group property.

Then we should show that the following equality is right;

y(t1 + t2, y0) = y(t2, y(t1, y0)), for all t1, t2 ∈ R.

x(t2, x(t1, x0)) =

[
cos pt2

1
p
sin pt2

−p sin pt2 cos pt2

] [
cos pt1

1
p
sin pt1

−p sin pt1 cos pt1

]
x0

=

[
cos pt1 cos pt2 − sin pt1 sin pt2

1
p
[sin pt1 cos pt2 + sin pt2 cos pt1]

−p[sin pt1 cos pt2 + sin pt2 cos pt1] cos pt1 cos pt2 − sin pt1 sin pt2

]
x0

=

[
cos p(t1 + t2)

1
p
sin p(t1 + t2)

−p sin p(t1 + t2) cos p(t1 + t2)

]
x0 = x(t1 + t2, x0).

All conditions of DS are fulfilled, so the given system (1.1.14) defines DS.

Conclusion 1.1.1. If system (1.1.1) satisfies conditions of theorems 1.1.1-1.1.9,

then solutions φ(t, x) of the system define a (smooth) DS.
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1.2 Manifolds

In our work, in order to create systems that are continuously dependent on

initial value, we will prefer to use manifolds without boundary as the sets of dis-

continuity Γ and Γ̃. Thus, we will give some basic definitions about a manifold

with boundary and without boundary. For further information, one can look in

[43], [44], [46], [48], [50], [51], [52].

Let U ∈ Rn and let V ∈ Rm be open sets. A mapping f from U to V is

written as f : U → V.

Definition 1.2.1. A mapping f : U → V is called smooth if all of the partial

derivatives ∂nf
∂xi1

, . . . , ∂nf
∂xin

exist and are continuous.

Definition 1.2.2. Let X, Y be two topological spaces, and suppose f : X → Y

is bijection (one to one and onto). If f is continuous, and at the same time its

inverse f−1 : Y → X is continuous, then f is called a homeomorphism.

Definition 1.2.3. A map f : X → Y is called a diffeomorphism if f carries X

homeomorphically onto Y and if both f and f−1 are smooth.

Definition 1.2.4. A topological space M is called an n−dimensional manifold if

it is locally homeomorphic to Rn. That is, there is an open cover {Ui}i∈A of M

such that for each i ∈ A there is a map φi : Ui → Rn which maps Ui homeomor-

phically onto an open subset of Rn.

Definition 1.2.5. A subset M ⊂ Rn is called a smooth manifold of dimension r

if each x ∈ M has a neighborhood W ∩M that is diffeomorphic to an open subset

U of the Euclidean space Rr.

Remark 1.2.1. Any particular diffeomorphism g : U → W ∩ M is called a

parametrization of the region W ∩M.(The inverse diffeomorphism W ∩M → U

is called a system of coordinates on W ∩M.)

Example 1.2.1. The unit sphere S2, consisting of all (x, y, z) ∈ R3 with x2 +

y2 + z2 = 1, is a smooth manifold of dimension 2. In fact the diffeomorphism

(x, y) → (x, y,
√

1− x2 − y2),
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for x2+y2 < 1 parameterizes the region z > 0 of S2. By interchanging the roles of

x, y, z and changing the signs of the variables, we obtain similar parametrization

of the regions x > 0, y > 0, x < 0, y < 0, z < 0. Since these cover S2, it follows

that S2 is a smooth manifold.

It forms a manifold of dimension n − 1, and itself has no boundary. We

could regard any manifold (as defined in 1.2.4) as a manifold-without boundary.

Now, we will mention about manifold with boundary to allow comparison with

the manifold without boundary, thereby preventing confusion. Consider first the

closed half space

Hn = {(x1, . . . , xn) ∈ Rn | xm ≥ 0} .

The boundary ∂Hn is defined to be the hyperplane

Rn−1 × 0 = {(x1, x2, . . . , xn)|xn = 0} ⊂ Rn.

Definition 1.2.6. A subset X ⊂ Rn is called a smooth n-manifold with boundary

if each x ∈ X has a neighborhood U ∩X diffeomorphic to an open subset V ∩Hn

of Hn. The boundary ∂X is the set of ∂Hn under such a diffeomorphism.

It is not hard to show that ∂X is well defined smooth manifold of dimension

n− 1. The interior X − ∂X is a smooth manifold of dimension n.

A hemispherical cap (including the equator) or a right circular cylinder (including

the circles at the ends) are typical examples of manifolds with boundary. Except

for the equator, or the end-circles, they are 2-manifolds and these boundary sets

are themselves manifolds of dimension one less. In fact, they are homeomorphic

to S1 or to S1 ∪ S1 in these two cases.

16



chapter 2

Discontinuous Dynamical

Systems

2.1 Introduction

A book [7] edited by D.V. Anosov and V.I. Arnold considers two fundamen-

tally different DSs : flows and cascades. Roughly speaking, flows are DSs with

continuous time and cascades are DSs with discrete time. One of the most

important theoretical problems is to consider Discontinuous Dynamical Systems

(DDSs). That is, the systems whose trajectories are piecewise continuous curves.

It is well-recognized (for example, see [26]) that the general notion of such sys-

tems was introduced by Th. Pavlidis [27]-[29], although particular examples (the

mathematical model of clock [6], [22] and so on) had been discussed before. Some

basic elements of the theory are given in [14]-[30]. Analysing the behavior of the

trajectories, we can conclude that DDSs combine features of vector fields and

maps. They can not be reduced to flows or cascades, but are close to flows

since time is continuous. That is why we propose to call them also Discontinu-

ous Flows (DFs). Applications of DDSs in mechanics, electronics, biology and

medicine were considered in [23], [27]-[29], [33]. Chaotic behavior of discontin-

uous processes was investigated in [13, 54]. One must emphasize that DFs are

not differential equations with discontinuous right side which often have been ac-

cepted as DDSs [11]. However, theoretical problems of nonsmooth dynamics

and discontinuous maps [31], [53] are also very close to the subject of our the-

ses. One should also agree that nonautonomous impulsive differential equations,

which were thoroughly described in [20] and [30], are not DFs.

Papers of T. Pavilidis and V. Rozhko [27]-[29], [25] contain interesting prac-
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tical and theoretical ideas concerning the DFs. These authors formulated some

important conditions on differential equations, but not all of them were used to

prove basic properties of DFs. Some aspects of DFs on manifolds were considered

in [24]. One must remark that the authors of the paper formulated conditions

for the group property, but as demonstrated by Example 2.9.3 those conditions

do not guarantee it. In that paper the smooth impulsive flow was claimed to be

considered, but differential dependence, as well as continuous dependence, were

not defined and investigated. Thus one can say that the complexity of DFs ne-

cessitates more careful investigation. And this theses can be considered as an

attempt to give a rigorous description of DFs.

The theses embodies results that provide sufficient conditions for the existence

of a differentiable DF. Since DFs have specific smoothness of solutions we call

these systems B-differentiable DFs. Apparently, it is the first time when notions of

B− continuous and B− differentiable dependence of solutions on initial values [1]-

[3] are applied to described DDSs and sufficient conditions for the continuation

of solutions and the group property are obtained. A central auxiliary result of

the theses is the construction of a new form of the general autonomous impulsive

equation (system (2.1.4)). Effective methods of investigation of systems with

variable time of impulsive actions were considered in [1]-[5], [20, 21, 30].

As expressed above, some examples of DDS have been given in many places

but with no concrete theory of DDS. Now, we will see one of these example [30]

and examine the conditions of classical DS on it.

Example 2.1.1. Let us study the motion of the following system

ẍ + ω2x = 0, x 6= x0

ẋ+ = k + ẋ, x = x0,

where k is a positive constant and x0 > 0.

Denote x1 = x and x2 = 1
ω
ẋ. By using this substitution, this system can be
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rewritten in the form:

ẋ1 = ωx2, x1 6= x0 (2.1.1)

ẋ2 = −ωx1,

x+
2 = k1 + x−2 , x1 = x0, (2.1.2)

where k1 = k
ω
. The solution of the system (2.1.1) is x1(t) = r sin ωt, x2(t) =

r cos ωt, where r is a fixed real number. The system (2.1.1), (2.1.2) was men-

tioned in [30] as a DDS. One can easily see on figure 2.1 that how the solution of

the system (2.1.1),(2.1.2) behaves, when t is positive and x0 = r. Let us denote

x0(t) = x(t, 0, (0, x0)), a solution of system (2.1.1) and (2.1.2). The solution

moves on circle c until it meets the line x1 = x0, then it jumps and continues its

motion on arc of the circle c1 and again it meets the line x1 = x0 and jumps. And

also, how the solution of the system (2.1.1), (2.1.2) behaves when t is negative

and x0 = r, is shown on figure 2.2.

One may examine the solution do not guarantee continuous dependence on ini-

tial value on figure 2.1. Let us take sufficiently close another solution xε(t) =

x(t, 0, (0, x0 − ε)) of this system, which starts its motion at the point (0, x0 − ε),

where ε is a fixed positive real number. According to Definition 1.1.6, the distance

between simultaneous positions of the moving points should remain less than an

assigned quantity ξ. The solution x0(t) jumps at the point (x0, 0) and continues

its motion on the arc of the circle as explained above, however, solution xε(t)

may continue its motion on circle cε without any jump. So, as seen in figure 2.1,

the distance between these two solutions cannot remain less than ξ, despite the

distance between initial points of these two solutions can be done arbitrary small.

This explanation demonstrates that the solution of the system (2.1.1), (2.1.2)

cannot continuously depend on initial value. Thus, this system is not DDS.
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We need to develop a simple examples of DDSs which motivates the reader to

B-smooth discontinuous flows with some of the basic ideas of classical DSs and

the theory of impulsive differential equations. Later, these ideas will be put into a

more systematic exposition. In particular examples themselves are important to

follow the development of theoretical approach to B-smooth discontinuous flows.

We consider the following examples:

Example 2.1.2. Consider the following impulsive autonomous system.

ẋ1 = −x2

ẋ2 = x1

, {x(t) 6∈ Γ ∧ t ≥ 0} ∨
{

x(t) 6∈ Γ̃ ∧ t ≤ 0
}

x+
1 = cos π

6
x−1 − sin π

6
x−2

x+
2 = sin π

6
x−1 + cos π

6
x−2

, {x(t) ∈ Γ ∧ t ≥ 0}

x−1 = cos π
6
x+

1 + sin π
6
x+

2

x−2 = − sin π
6
x+

1 + cos π
6
x+

2

,
{

x(t) ∈ Γ̃ ∧ t ≤ 0
}

(2.1.3)

where

Γ =
{

(x1, x2)| x1 =
√

3x2, x1, x2 ∈ R+
}

,

Γ̃ =
{

(x1, x2)|
√

3x1 = x2, x1, x2 ∈ R+
}

,

D = R2\
[{

(x1, x2)| 1√
3
x1 < x2 <

√
3x1, x1 > 0

}
∪ (0, 0)

]
. This system

can be written in the form:

ẋ = Ax, {x(t) 6∈ Γ ∧ t ≥ 0} ∨
{

x(t) 6∈ Γ̃ ∧ t ≤ 0
}

x+ = Bx−, {x(t) ∈ Γ ∧ t ≥ 0}
x− = B−1x+,

{
x(t) ∈ Γ̃ ∧ t ≤ 0

}

where A =

(
0 −1

1 0

)
and B =

(
cos π

6
− sin π

6

sin π
6

cos π
6

)
. One can easily check that

AB = BA and AB−1 = B−1A, then when t is positive and t0 = 0, the solution
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of this system is verified as in the following form by [30]:

x(t, x0) = eAtBi[0,t]x0 =

(
cos(t + π

6
i [0, t]) − sin(t + π

6
i [0, t])

sin(t + π
6
i [0, t]) cos(t + π

6
i [0, t])

)
x0,

One can also write that

x(t, x0) = K(t)x0,

where K(t) =

(
cos(t + π

6
i [0, t]) − sin(t + π

6
i [0, t])

sin(t + π
6
i [0, t]) cos(t + π

6
i [0, t])

)
.

When t is negative and t0 = 0, the solution becomes

x(t, x0) = eAt(B−1)ĩ[t,0]x0 =

(
cos(t− π

6
ĩ [t, 0]) sin(t− π

6
ĩ [t, 0])

− sin(t− π
6
ĩ [t, 0]) cos(t− π

6
ĩ [t, 0])

)
x0.

Or

x(t, x0) = K̃(t)x0,

where K̃(t) =

(
cos(t− π

6
ĩ [t, 0]) sin(t− π

6
ĩ [t, 0])

− sin(t− π
6
ĩ [t, 0]) cos(t− π

6
ĩ [t, 0])

)
.

For a geometrical approach to the solution of this system, one may study figure

2.3 and figure 2.4.

If t is positive, as seen on figure 2.3, the solution continues its motion on

circle C until it meets Γ. Immediately, it jumps on Γ̃ with the same radius and

again moves on circle C. If t is negative, the solution continues its motion on

circle C until it meets Γ̃. It jumps on Γ with the same radius and moves again

on circle C as seen on figure 2.4. As we did in Example 1.1.2, we may examine

the conditions of DS on impulsive autonomous system (2.1.3).

I)The solution of the system x(t, x0) is defined for all t ∈ R, so it is continuable

on R.

II)For all x0, x̃0 ∈ R2, and when t is positive:

‖x(t, x0)− x(t, x̃0)‖ = ‖K(t)x0 −K(t)x̃0‖ = ‖K(t) (x0 − x̃0)‖ ≤ ‖x0 − x̃0‖ ,
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since max[0,2π] ‖K(t)‖ = 1 so δ = ε. If t is negative, continuous dependence on

initial value can be shown similarly. Therefore, all solutions of system (2.1.3) are

continuously dependent on initial value.

III)For the group property, we should show that the following equalities are ful-

filled:

x(0, x0) = x0,

and

x(t1 + t2, x0) = x(t2, x(t1, x0)), for all t1, t2 ∈ R.

First one is easy to see, since K(0) = K̃(0) = I . For the second case, consider

only θi+1 > t1 > θi > 0, and θm+1 > t1 + t2 > θm > 0, the other cases are very

similar to this case.

x(t1, x(t2, x0)) =

(
cos(t1 + π

6
i [0, t1]) − sin(t1 + π

6
i [0, t1])

sin(t1 + π
6
i [0, t1]) cos(t1 + π

6
i [0, t1])

)
×

(
cos(t2 + π

6
i [0, t2]) − sin(t2 + π

6
i [0, t2])

sin(t2 + π
6
i [0, t2]) cos(t2 + π

6
i [0, t2])

)
x0

=

(
cos(t1 + t2 + π

6
i [0, t1 + t2]) − sin(t1 + t2 + π

6
i [0, t1 + t2])

sin(t1 + t2 + π
6
i [0, t1 + t2]) cos(t1 + t2 + π

6
i [0, t1 + t2])

)
x0 = x(t1+t2, x0).

We can see that given impulsive autonomous system (2.1.3) satisfies some proper-

ties of DS. For example; the differential dependence on initial value is not clear.
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Now, after these examples, we may start studyingn the theory of DDS.

Consider a set of strictly ordered real numbers {θi}, i ∈ A, where A is an interval

of indices from Z\{0}.

Definition 2.1.1. The set {θi} is said to be a sequence of β− type if the product

iθi ≥ 0 for all i and one of the following alternative cases holds:

(a) {θi} = ∅;

(b) {θi} is a finite and nonempty set;

(c) {θi} is an infinite set such that |θi| → ∞ as |i| → ∞.

From the definition, it follows immediately that a sequence of β − type does

not have a finite accumulation point in R.

Definition 2.1.2. A function ϕ : R −→ Rn is said to belong to PC(R) if

1. ϕ(t) is left continuous on R;

2. there exists a sequence {θi} of β− type such that ϕ is continuous if t 6= θi

and ϕ has discontinuities of the first kind at the points θi.

Particularly, C(R) ⊂ PC(R).

Example 2.1.3. Consider the following function

φ (t) = t− [t] ,

for all t ∈ R. Discontinuity set of function φ (t) is {n} , where n ∈ Z and, one

can see easily that this set is β-type and φ (t) is continuous when t 6= n, n ∈ Z
and φ (t) has first kind of discontinuity at t=n,

lim
t→n−

φ(t) = 1,

and

lim
t→n+

φ(t) = 0,
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for all t ∈ Z.

According to Definition 2.1.2, one can see that φ ∈ PC(R).

Definition 2.1.3. A function ϕ(t) is said to be from a space PC1(R) if ϕ and

ϕ′ ∈ PC(R).

Let T be an interval in R.

Definition 2.1.4. We denote by PC(T ) and PC1(T ), the sets of restrictions of

all functions from PC(R) and PC1(R) on T respectively.

Let G be an open connected subset of Rn, Gr be an r− neighbourhood of G

in Rn for a fixed r > 0 and Ĝ ⊂ Gr be an open subset of Rn. Let Φ : Ĝ −→ R
be a function from C1(Ĝ) and assume that a surface Γ = Φ−1 (0) is a connected

subset of Ḡ ∩ Ĝ. Moreover, define a function J : Γr → Ḡ , where Γr is an r−
neighbourhood of Γ. We shall need the following assumptions:

C1) ∇Φ(x) 6= 0 , ∀x ∈ Γ;

C2) J ∈ C1(Γr) and det[∂J(x)
∂x

] 6= 0, for all x ∈ Γr.

One can see that the restriction J |Γ is a one-to-one function. Let also Γ̃ =

J(Γ), Γ̃ ⊂ Ḡ. If Φ̃(x) = Φ(J−1(x)), x ∈ Γ̃, then Γ̃ =
{

x ∈ G| Φ̃ (x) = 0
}

. It is

easy to verify that the following assertion is valid.

Lemma 2.1.1. ∇Φ̃(x) 6= 0, ∀x ∈ Γ̃.

Proof: By using the definition of Φ (x) , we can write that ∆Φ̃(x) = ∆Φ (J−1 (x)) .

We can write from the calculus

∆Φ
(
J−1 (x)

)
=

∂Φ (y)

∂y
|y=J−1(x)

∂J−1 (x)

∂x

we can obtain

∆Φ
(
J−1 (x)

) 6= 0

since by combining C1) and C2): det(∂J−1(x)
∂x

) 6= 0, ∀x ∈ Γ̃r and ∂Φ(y)
∂y

6= 0

According to this discussion, lemma is proved.
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Condition C1) implies that for every x0 ∈ Γ there exists a number j = 1, n

and a function ϕx0 (x1, . . . , xj−1, xj+1, . . . , xn) such that in a neighborhood of x0

the manifold Γ is the graph of the function xj = ϕx0(x1, . . . , xj−1, xj+1, . . . , xn).

The same is true for every x0 ∈ Γ̃.

Remark 2.1.1. One can see from the description of Γ and Γ̃ that the surfaces are

smooth n− 1 dimensional manifolds without boundary [40].

In order to simplify this discussion, we may give geometrical approach with

the following examples.

Example 2.1.4. Consider the function Φ(x) = x2 − x1, where x ∈ R2. When

Φ (x) = 0 this function can be written as x2 = ϕ(x1). After calculating the gradient

of Φ (x) , ∇Φ(x) = (−1, 1) 6= 0.

Example 2.1.5. Consider the set Φ(x) = x3− x2
1− x2

2, x ∈ R3. A map Φ defines

a paraboloid when Φ (x) = 0. Let us look at the gradient of Φ (x) , ∇Φ(x) =

(−2x1, 2x2, 1) 6= 0. We may say x3 = x2
1 +x2

2. If we take ϕ(x1, x2) = x2
1 +x2

2, then

we get a function ϕ which gives a graph of x3 in terms of x1 and x2.

Example 2.1.6. Consider the function Φ(x) = x2
1 − x2

2 − 1, where x ∈ R2 when

Φ (x) = 0 this function defines a circle. More geometric way of understanding

the C1) on the partial derivative is in the terms of the tangent line. Let us take

the tangent line at x0 = (x0
1, x

0
2) , given by:

∇Φ|x0

(
x1 − x0

1, x2 − x0
2

)
= 0

If ∂Φ
∂x2

(x0) 6= 0, then one can represent this line as a graph of x2 in terms of x1,

i.e., we can solve for x2 in terms of x1;

(
x1 − x0

1

) ∂Φ

∂x1

(x0) +
(
x2 − x0

2

) ∂Φ

∂x2

(x0) = 0

(
x2 − x0

2

)
=
− (x1 − x0

1)
∂Φ
∂x1

(x0)
∂Φ
∂x2

(x0)
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If the tangent line at x0 can be represented as a graph of x2 in terms of x1, then

nearby the set Φ (x) = 0 can be represented as a graph x2 = ϕ (x1) . The same

ideas apply for x ∈ Rn, n ≥ 1.

Example 2.1.7. Let us take sphere in R3, consider the set

Φ(x) = x2
1 + x2

2 + x2
3 − 1

after calculating the gradient of Φ (x) , we get ∇Φ (x) = (2x1, 2x2, 2x3) 6= 0 since

the origin does not belong to the set Γ. Similar discussion, which is explained in

Example 2.1.6 can be repeated for sphere to find a graph of x2 in terms of x1 and

x3.

Consider the following impulsive differential equation in the domain

D =
[
G ∪ Γ ∪ Γ̃

]
\

[(
Γ̄\Γ) ∪

(
¯̃Γ\Γ̃

)]
.

x′(t) = f(x(t)), {x(t) /∈ Γ ∧ t ≥ 0} ∨ {x(t) /∈ Γ̃ ∧ t ≤ 0},
x(t+)|x(t−)∈Γ∧t≥0 = J(x(t−)), (2.1.4)

x(t−)|x(t+)∈Γ̃∧t≤0 = J−1(x(t+)),

We make the following assumptions which will be needed throughout the paper.

C3) f ∈ C1(Gr).

C4) Γ ∩ Γ̃ = ∅, Γ ∩
(

¯̃Γ\Γ̃
)

= ∅, (
Γ̄\Γ) ∩ Γ̃ = ∅.

C5) 〈∇Φ(x), f(x)〉 6= 0 if x ∈ Γ.

C6)
〈
∇Φ̃(x), f(x)

〉
6= 0 if x ∈ Γ̃.

Example 2.1.8. let us consider conditions C1)− C6) on the following system:
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



ẋ1 = −1
3
x1 − 3x2

ẋ2 = 3x1 − 1
3
x2

, {x(t) 6∈ Γ ∧ t ≥ 0} ∨
{

x(t) 6∈ Γ̃ ∧ t ≤ 0
}

x+
1 = 2 cos π

6
x−1 − 2 sin π

6
x−2

x+
2 = 2 sin π

6
x−1 + 2 cos π

6
x−2

, {x(t) ∈ Γ ∧ t ≥ 0}

x−1 = 1
2
cos π

6
x+

1 + 1
2
sin π

6
x+

2

x−2 = −1
2
sin π

6
x+

1 + 1
2
cos π

6
x+

2

,
{

x(t) ∈ Γ̃ ∧ t ≤ 0
}

(2.1.5)

where

Γ =
{
(x1, x2)| x1 = x2, x1, x2 ∈ R+

}
,

Γ̃ =
{

(x1, x2)|
√

3x1 = x2, x1, x2 ∈ R+
}

.

Let us assume that D = R2\ [{
(x1, x2)| x1 < x2 <

√
3x1, x1 > 0

} ∪ (0, 0)
]
.

One can see that Φ(x) = x1−x2, Φ̃(x) =
√

3x1−x2, f(x) = (−1
3
x1−3x2, 3x1−1

3
x2),

J(x) = (2 cos π
6
x−1 − 2 sin π

6
x−2 , 2 sin π

6
x−1 + 2 cos π

6
x−2 ).

Let us start checking conditions C1)− C6). ∇Φ(x) = (1,−1) 6= 0, so, condition

C1) is satisfied. As can be seen easily, J, f are continuously differentiable func-

tions and det[∂J(x)
∂x

] = det

(
2 cos π

6
2 sin π

6

2 sin π
6

2 cos π
6

)
= 4(cos2 π

6
+ sin2 π

6
) = 4 6= 0, for

all x. And also, it is obvious that Γ ∩ Γ̃ = ∅.

〈∇Φ(x), f(x)〉 =

〈
(1,−1), (−1

3
x1 − 3x2, 3x1 − 1

3
x2)

〉
=

(−10

3
x1 − 8

3
x2

)
6= 0,

for all x ∈ Γ. One should know that x1 = x2 where x=(x1, x2) and x can not be

singular point. The following inequality can be shown similarly.

〈
∇Φ̃(x), f(x)

〉
6= 0,
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for all x ∈ Γ̃. These two inequalities show that conditions C5) and C6) are valid.

Hence, all conditions of C1)− C6) are fulfilled for system (2.1.5).

Example 2.1.9. let us consider the conditions C1)−C6) on the following system.





ẋ1 = −x1 − 3x2

ẋ2 = 3x1 − x2

, {x(t) 6∈ Γ ∧ t ≥ 0} ∨
{

x(t) 6∈ Γ̃ ∧ t ≤ 0
}

x+
1 = 2x−1

x+
2 = 2x−2

, {x(t) ∈ Γ ∧ t ≥ 0}

x−1 = 1
2
x+

1

x−2 = 1
2
x+

2

,
{

x(t) ∈ Γ̃ ∧ t ≤ 0
}

(2.1.6)

where

Γ =
{
(x1, x2)| x2

1 + x2
2 = 1, x1, x2 ∈ R

}
,

Γ̃ =
{
(x1, x2)| x2

1 + x2
2 = 4, x1, x2 ∈ R

}
.

We assume that G = {(x1, x2)| 1 < x2
1 + x2

2 < 4, x1, x2 ∈ R}. How the

solution behaves for increasing and decreasing t can be seen on figure 2.5 and figure

2.6 respectively. One can see that Φ(x) = x2
1 + x2

2− 1, Φ̃(x) = x2
1 + x2

2− 4, f(x) =

(−x1 − 3x2, 3x1 − x2), J(x) = (2x1, 2x2). One can check conditions C1) − C6).

∇Φ(x) = (2x1, 2x2) 6= 0 (the origin does not belong to Γ ) so condition C1) is

satisfied. As can be seen easily, J, f are continuously differentiable functions and

det[∂J(x)
∂x

] = det

(
2 0

0 2

)
= 4 6= 0, for all x.

And, it is obvious that Γ
⋂

Γ̃ = ∅.

〈∇Φ(x), f(x)〉 = 〈(2x1, 2x2), (−x1 − 3x2, 3x1 − x2)〉 = 2
(−x2

1 − x2
2

)
= −2 6= 0,
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for all x ∈ Γ, and

〈
∇Φ̃(x), f(x)

〉
= 〈(2x1, 2x2), (−x1 − 3x2, 3x1 − x2)〉 = 2

(−x2
1 − x2

2

)
= −8 6= 0,

for all x ∈ Γ̃. Γ̄\Γ and ¯̃Γ\Γ̃ are empty sets. One can say that, by these two

inequalities, conditions C5) and C6 are valid. As we have seen in the above dis-

cussion, for the system (2.1.6) all conditions C1)− C6) are fulfilled.
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Figure 2.5:
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X

X
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Figure 2.6:
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2.2 Existence and Uniqueness

Definition 2.2.1. A function x(t) ∈ PC1(T ) with a set of discontinuity points

{θi} ⊂ T is said to be a solution of (2.1.4) on the interval T ⊂ R if it satisfies

the following conditions:

(i) equation (2.1.4) is satisfied at each point t ∈ T\{θi} and x′(θi−) = f(x(θi)),

i ∈ A, where x′(θi−) is the left-sided derivative;

(ii) x(θi+) = J(x(θi)) for all θi.

Theorem 2.2.1. Assume that conditions C1)−C6) hold. Then for every x0 ∈ D

there exists an interval (a, b) ⊂ R, a < 0 < b, such that the solution x(t) =

x(t, 0, x0) of (2.1.4) exists on the interval.

Proof. To prove the theorem we consider the following several cases.

(a) Assume that x0 /∈ Γ ∪ Γ̃. Then there exists a number ε > 0 such that

B(x0, ε)∩ (Γ∪ Γ̃) = ∅. Therefore, by the existence and uniqueness theorem

[15], the solution exists and is unique on an interval (a, b) as a solution of

the system

y′ = f(y). (2.2.7)

(b) If x0 ∈ Γ, then x(0+) ∈ Γ̃. There exists a number ε > 0 such that

B(x(0+), ε) ∩ Γ 6= 0 and x(t) can be continued to the right continuously.

Let us consider decreasing t now. By condition C4) there exists a number

ε > 0 such that B(x(0), ε) ∩ Γ̃ 6= 0 and x(t) can be continued to the left

continuously.

(c) We can discuss the case x0 ∈ Γ̃ similarly to the previous one.

The uniqueness of the solution for all cases (a)− (c) follows from the theorem on

uniqueness of solutions of ordinary differential equations [15] and invertibility of

the function J.
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2.3 Continuation of solutions

In this section, we will give continuation theorems for system (2.1.4) and ex-

amples, where the solutions are continuable on R according to the these theorems.

Definition 2.3.1. A solution x(t) of (2.1.4) is said to be continuable to ∞ if

x(t) : [a,∞) → Rn, a ∈ R.

Definition 2.3.2. A solution x(t) of (2.1.4) is said to be continuable to −∞ if

x(t) : (−∞, b] → Rn, b ∈ R.

Definition 2.3.3. A solution x(t) of (2.1.4) is said to be continuable on R if it

is continuable to ∞ and to −∞.

Definition 2.3.4. A solution x(t) = x(t, 0, x0) of (2.1.4) is said to be continuable

to a set S ⊂ Rn as time decreases (increases) if there exists a moment ξ ∈ R,

such that ξ ≤ 0 (ξ ≥ 0) and x(ξ) ∈ S.

The following Theorem provides sufficient conditions for the continuation of

solutions of (2.1.4).

Theorem 2.3.1. Assume that

(a) every solution y(t, 0, x0), x0 ∈ D, of (2.2.7) is either continuable to ∞ or

continuable to Γ as time increases;

(b) for every x ∈ Γ̃ there exists a number εx such that B̄(x, εx) ∩ Γ = ∅

(c) inf(x,εx)∈Γ̃×(0,∞)
εx

supB(x,εx)‖f(x)‖ = θ > 0

Then every solution x(t) = x(t, 0, x0), x0 ∈ D, of (2.1.4) is continuable to ∞.

Proof. Let x(θi+) ∈ Γ̃ for fixed i and denote Mx = supB(x,εx) ‖f(x)‖ . Assume

that there exists a number ξ > θi, such that ||x(ξ)− x(θi+)|| = εx(θi+) (otherwise

x(t) is continuable to ∞). Then

x(ξ) = x(θi+) +

∫ ξ

θi

f(x(s))ds,
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and εx(θi+) ≤ Mx(θi+) (ξ − θi) ≤ Mx(θi+) (θi+1 − θi) . The last inequality implies

that θi+1 − θi ≥ θ for all i. That is θi is a sequence of β− type if θi ≥ 0.

In a similar manner, one can prove that the following theorem is valid.

Theorem 2.3.2. Assume that:

(a) every solution y(t, 0, x0), x0 ∈ D, of (2.2.7) is continuable either to −∞ or

to Γ̃ as time decreases;

(b) for every x ∈ Γ, there exists a number εx > 0, such that B̄(x, εx) ∩ Γ̃ = ∅;

(c) inf(x,εx)∈Γ×(0,∞)
εx

supB(x,εx)‖f(x)‖ = θ > 0.

Then, every solution x(t) = x(t, 0, x0), x0 ∈ D, of (2.1.4) is continuable to −∞.

Theorems 2.3.1 and 2.3.2 imply that the following assertion is valid.

Theorem 2.3.3. Assume that

(a) every solution y(t, 0, x0), x0 ∈ D, of (2.2.7) satisfies the following condi-

tions:

(a1) it is continuable either to ∞ or to Γ as time increases,

(a2) it is continuable either to −∞ or to Γ̃ as time decreases;

(b) for every x ∈ Γ̃, there exists a number εx > 0, such that B̄(x, εx) ∩ Γ = ∅;

b′) for every x ∈ Γ, there exists a number ε̃x > 0, such that B̄(x, ε̃x) ∩ Γ̃ = ∅;

(c) inf(x,εx)∈Γ̃×R
εx

supB(x,εx)‖f(x)‖ > 0;

c′) inf(x,ε̃x)∈Γ×R ε̃x

supB(x,ε̃x)‖f(x)‖ > 0.

Then, every solution x(t) = x(t, 0, x0), x0 ∈ D, of (2.1.4) is continuable on R.

Other sufficient conditions for the continuation of solutions of (2.1.4) are pro-

vided by the following theorems.

Theorem 2.3.4. Assume that
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(a) every solution y(t, 0, x0), x0 ∈ D, of (2.2.7) satisfies the following condi-

tions:

(a1) it is continuable either to ∞ or to Γ as t increases;

(a2) it is continuable either to −∞ or to Γ̃ as t decreases;

(b) supD ‖f(x)‖ < +∞;

(c) dist(Γ, Γ̃) > 0.

Then a solution x(t, 0, x0), x0 ∈ D, of (2.1.4) is continuable on R.

Proof. Fix x0 ∈ D and let x(t) = x(t, 0, x0) be the solution of (2.1.4). Ac-

cording to Definition 2.1.1, we shall consider the following three cases:

A) If x(t) is a continuous solution of (2.1.4), then it is a solution of (2.2.7)

and, hence is continuable on R.

B) Denote by θmax and θmin the maximal and minimal elements of the set

{θi} respectively. Consider t ≥ θmax. By the condition on J the value x(θmax+) =

J(x(θmax−)) ∈ D and the solution x(t) = y (t, θmax, x(θmax+)) , where y is the

solution of (2.2.7) and is continuable to ∞. For t ≤ θmin one can apply the same

arguments to show that x(t) is continuable to −∞.

C) Three alternatives exist. Let us consider them in turn.

c1) If the sequence {θi} has a maximal element θmax ∈ R, then by using B),

it is easy to prove that x(t) is continuable to ∞. Let t be decreasing. We have

that

x(θi+) = x(θi+1) +

∫ θi

θi+1

f(x(s))ds. (2.3.8)

Denote supD ‖f(x)‖ = M and dist(Γ, Γ̃) = α. Then (2.3.8) implies that α
M
≤

(θi+1 − θi) . Hence, α
M

(i − i0) ≥ (θi − θi0) , where i0 is fixed. The last inequality

shows that θi → −∞ as i → −∞. Thus, x(t) is continuable to −∞.

c2) Assume that the sequence {θi} has a minimal element θmin ∈ R. Then

the arguments of B) indicate that x(t) is continuable to −∞. For increasing t we
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have that

x(θi+1) = x(θi+) +

∫ θi+1

θi

f(x(s))ds, (2.3.9)

α
M
≤ (θi+1 − θi) or α

M
(i − i0) ≤ (θi − θi0) , where i0 is fixed. Hence, θi → ∞ as

i →∞. That is, x(t) is continuable to ∞.

c3) Assume that {θi} has neither a minimal nor a maximal element. The

result for this case follows from c1) and c2). The proof is complete.

Theorem 2.3.5. Assume that

(a) every solution y(t, 0, x0), x0 ∈ D, of (2.2.7) is continuable either to ∞ or to

Γ as time increases;

(b) there exists a neighborhood S of Γ in D such that

(b1) dist(Γ, ∂S) > 0;

(b2) supS ‖f(x)‖ < ∞;

(b3) Γ̃ ∩ S = ∅.

Then every solution x(t) = x(t, 0, x0), x0 ∈ D, of (2.1.4) is continuable to ∞.

Proof. Denote d = dist(Γ, ∂S) and M = supS ‖f(x)‖ . For fixed i one can see

that

x(θi+1) = x(θi+) +

∫ θi+1

θi

f(x(s))ds.

Condition b3) implies that d < ‖x(θi+1)− x(θi+)‖ ≤ M(θi+1 − θi). Thus θi+1 −
θi ≥ d

M
> 0 for all i. Further discussion is fully analogous to the proof of the last

theorem.

Similarly, one can prove that the following assertion is valid.

Theorem 2.3.6. Assume that:

(a) every solution y(t, 0, x0), x0 ∈ D, of (2.2.7) is continuable either to −∞ or

to Γ̃ as time decreases,
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(b) there exists a neighborhood S̃ of Γ̃ in D, such that:

(b1) dist(Γ̃, ∂S̃) > 0

(b2) supS̃ ‖f(x)‖ < ∞
(b3) Γ ∩ S̃ = ∅.

Then, every solution x(t) = x(t, 0, x0), x0 ∈ D, of (2.1.4) is continuable to

−∞.

Using the conditions of both Theorems 2.3.5 and 2.3.6 one can formulate the

following assertion.

Theorem 2.3.7. Assume that:

(a) every solution y(t, 0, x0), x0 ∈ D, of (2.2.7) satisfies the following condi-

tions:

(a1) it is continuable either to ∞ or to Γ as time increases;

(a2) it is continuable either to −∞ or to Γ̃ as time decreases;

(b) there exists a neighborhoods S and S̃ of Γ and Γ̃ in D, respectively, such

that:

(b1) dist(Γ, ∂S) > 0, dist(Γ̃, ∂S̃) > 0;

(b2) supS∪S̃ ‖f(x)‖ < ∞;

(b3) Γ̃ ∩ S = ∅, Γ ∩ S̃ = ∅.

Then, every solution x(t) = x(t, 0, x0), x0 ∈ D, of (2.1.4) is continuable on R.

Example 2.3.1. Let us consider system (2.1.5) in Example 2.1.8 and study the

sufficient conditions to indicate continuation of the solution of this system.

The differential equation (2.1.5) is a linear system and so the solution of this

system is continuable to ∞ since maximal interval of existence is R. The first

condition is satisfied.
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Let us choose the initial value x0 = (x0
1, x

0
2) ∈ Γ̃ it means that

√
3x0

1 = x0
2, then,

one can easily evaluate the distance between Γ and x0

dist(x0, Γ) =
|x0

1 − x0
2|√

2
=

√
3− 1√

2

∣∣x0
1

∣∣ =

√
3− 1

2
√

2
‖x0‖

since |x0
1| = 1

2
‖x0‖ .

If we choose ;

εx0 =

√
3− 1

2
√

2
‖x0‖ (2.3.10)

and let us take any x which belongs to B (x0, εx0) , then we can see that

‖x− x0‖ < εx0 .

It is clear that,

‖x‖ < εx0 + ‖x0‖ . (2.3.11)

Substituting εx0 in (2.3.10) into (2.3.11), we have

‖x‖ <

[√
3− 1 + 2

√
2

2
√

2

]
‖x0‖ .

After computing the norm of the function f in this ball, we get

‖f(x)‖ =

√
(
1

3
)2 + 32 ‖x‖ ≤

√
82

3

[√
3− 1 + 2

√
2

2
√

2

]
‖x0‖

=

√
41

6

[√
3− 1 + 2

√
2
]
‖x0‖ = Mx.

Therefore

inf
εx

Mx

=

√
3−1

2
√

2
‖x0‖

√
41
6

[√
3− 1 + 2

√
2
] ‖x0‖

=
3
(√

3− 1
)

√
82

(√
3− 1 + 2

√
2
) > 0.

42



We can see from this calculation that inf εx

Mx
is positive for all x which belongs to

Γ̃. This demonstrates that all conditions of the theorem (2.3.1) are satisfied. So

every solution of system (2.1.5) is continuable to ∞, for given Γ and Γ̃. The con-

tinuation of every solution of (2.1.5), when t is negative, can be shown similarly

by using Theorem 2.3.2.

Example 2.3.2. let us consider system (2.1.6) and examine sufficient conditions

for continuation of the solution of this system. The differential equation (2.1.6)

is a linear system and maximal interval of existence is R. So the solution of the

differential equation (2.1.6) is continuable. Thus, the first condition of Theorem

2.3.4 is satisfied.

The domain of this system is D = {(x1, x2)| 1 ≤ x2
1 + x2

2 ≤ 4, x1, x2 ∈ R}.
It means that the boundaries of the domain are circles with the radius 1 and 2,

and hence one can easily evaluate the distance between Γ and Γ̃ by taking the

difference between these radius. So

dist(Γ̃, Γ) = 1.

Since

‖f(x)‖ =
√

(−x1 − 3x2)2 + (3x1 − x2)2 =
√

10
√

x2
1 + x2

2, (2.3.12)

one can easily see that

sup
D
‖f(x)‖ ≤ 2

√
10.

This shows that all conditions of Theorem 2.3.4 are satisfied, so every solution of

system (2.1.6) is continuable on R for given Γ and Γ̃.

Example 2.3.3. Consider
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



ẋ1 = −2x1 − 3x2

ẋ2 = 3x1 − 2x2

, {x(t) 6∈ Γ ∧ t ≥ 0} ∨
{

x(t) 6∈ Γ̃ ∧ t ≥ 0
}

x+
1 = 2 cos π

6
x−1 − 2 sin π

6
x−2

x+
2 = 2 sin π

6
x−1 + 2 cos π

6
x−2

, {x(t) ∈ Γ ∧ t ≥ 0}

x−1 = 1
2
cos π

6
x+

1 + 1
2
sin π

6
x+

2

x−2 = −1
2
sin π

6
x+

1 + 1
2
cos π

6
x+

2

,
{

x(t) ∈ Γ̃ ∧ t ≥ 0
}

(2.3.13)

where

Γ =

{
(x1, x2)| x1 =

√
3x2,

1

2
< x2 <

3

2

}
,

Γ̃ =
{

(x1, x2)|
√

3x1 = x2, 1 < x1 < 3
}

.

Assume that D = R2\
{(√

3
2

, 1
2

)
,
(

3
√

3
2

, 3
2

)
,
(
1,
√

3
)
,
(
3, 3

√
3
)}

.

Let us check the sufficient conditions of Theorem 2.3.5. The differential equation

(2.3.13) is a linear system and maximal interval of existence is R, so the solution

of the differential equation (2.3.13) is continuable to ∞ as time increases. Hence,

the first condition is satisfied.

While dealing with other conditions, we prefer to use polar and cartesian co-

ordinates together to have an easier calculation. Firstly, let us define S in polar

coordinates on figure 2.7. Clearly,

S =

{
(ρ, θ) | 9

10
< ρ <

21

10
,

π

12
< θ <

π

4

}
.

One can easily see that Γ ⊂ S and Γ̃∩S = ∅. To calculate the distance between Γ

and ∂S, it is enough to take minimum of the following two distances because of the
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symmetry; firstly, the distance between Γ and the circle ρ = 9
10

and secondly the

distance between Γ and the line θ = π
4
. Let us compute these distances dist(Γ, ρ =

9
10

) = 1
10

. Let us write the line θ = π
4

in cartesian coordinates

` =
{
(x1, x2) | x1 = x2, x1, x2 ∈ R+

}
.

To find dist(Γ, `), it is enough to find out the distance between the line ` and the

points A
(√

3
2

, 1
2

)
and B

(
3
√

3
2

, 3
2

)
. In fact,

dist (`, A) =

∣∣∣
√

3
2
− 1

2

∣∣∣
√

1 + 1
=

√
3− 1

2
√

2
and dist (`, B) =

∣∣∣3
√

3
2
− 3

2

∣∣∣
√

1 + 1
=

3
√

3− 3

2
√

2

We also see that

dist(Γ, ∂S) =
1

10
.

One can get the distance between Γ and the surface ∂S. Now, we take the norm

of the function f(x), where x belongs to S

‖f(x)‖ =
√

4 + 9
√

x2
1 + x2

2.

sup
S
‖f(x)‖ =

21
√

13

10
, since

9

10
<

√
x2

1 + x2
2 <

21

10
.

This demonstrates that all conditions of Theorem 2.3.5 are satisfied, so every

solution of system (2.3.13) is continuable to ∞.

Example 2.3.4. let us show the continuation of the solution of system (2.3.13)

for decreasing t by using Theorem 2.3.6. The solution of the differential equa-

tion (2.3.13) is continuable to −∞. The differential equation (2.3.13) is a linear

system. Hence, the first condition is satisfied. While dealing with other condi-

tions, we prefer to use polar and cartesian coordinates together to have an easier

calculation. Firstly, let us define S̃ in polar coordinates:

S̃ =

{
(ρ, θ) | 11

5
< ρ <

31

5
,

27π

30
< θ <

33π

30

}
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One can easily see on figure 2.8 that Γ̃ ⊂ S̃ and Γ̃ ∩ S̃ = ∅. To calculate the

distance between Γ̃ and ∂S̃, it is enough to take minimum of the following two

distances because of the symmetry; firstly, the distance between Γ̃ and the circle

ρ = 11
5

and the line θ = 27π
30

. dist(Γ̃, ρ = 11
5
) = 1

5
. Let us write the line θ = 27π

30
in

cartesian coordinates:

˜̀=

{
(x1, x2) | tan

27π

30
x1 = x2, , x1, x2 ∈ R+

}
.

To find dist(Γ̃, ˜̀),it is enough to find out the distance between the line ˜̀ and the

points Ã
(
1,
√

3
)

and B̃
(
3, 3

√
3
)
. We easily see that

dist
(

˜̀, Ã
)

=

∣∣tan 27π
30
−√3

∣∣
(
√

tan 27π
30

)2 + 1
= d1

and

dist
(

˜̀, B̃
)

=

∣∣3 tan 27π
30
− 3

√
3
∣∣

(
√

tan 27π
30

)2 + 1
= 3d1.

The minimum of these distances becomes

dist(Γ̃, ∂S̃) =
1

5
.

Furthermore,

sup
S̃

|f(x)| = 31
√

13

5
since

29

5
<

√
x2

1 + x2
2 <

31

5
.

So every solution of system (2.3.13) is continuable to −∞ when t < 0. By com-

bining Examples 2.3.3 and 2.3.4, one can say that the solution of system (2.3.13)

is continuable on R.

47



X

X2

1

S

Figure 2.8:

48



2.4 The Group Property

In the above sections, we have dealt with existence and uniqueness of solutions

of the system (2.1.4), smoothness of solutions of the system, and furthermore, we

have given the conditions that are sufficient for all solutions of (2.1.4) to be

continuable.

Now, we may discuss the group property, which is one of the most significant

properties of DS, in this section.

Consider a solution x(t) : R → Rn of (2.1.4). Let {θi} be the sequence of

discontinuity points of x(t). Fix θ ∈ R and introduce a function ψ(t) = x(t + θ).

Lemma 2.4.1. The set {θi − θ} is a set of all solutions of equation

Φ(ψ(t)) = 0. (2.4.14)

Proof. We have Φ(ψ((θi − θ)) = Φ(x((θi − θ) + θ)) = Φ(x(θi)) = 0. Assume

that t = ϕ is a solution of (2.4.14), then Φ(x(ϕ + θ)) = Φ(ψ(ϕ)) = 0. That is,

ϕ + θ is one of the numbers {θi} . Let ϕ + θ = θj, then ϕ = θj − θ. The lemma is

proved. The following condition is one of the main assumptions for DFs.

C7) a)for every x ∈ Γ there exists εx > 0 such that a function signΦ(x) is con-

stant in [B(x, εx) ∩G]\Γ;

b)for every x ∈ Γ̃ there exists εx > 0 such that a function signΦ(x) is

constant in [B(x, εx) ∩G]\Γ̃.

Lemma 2.4.2. Assume that C1)−C7) hold and x(t) : (−α, α) → Rn, α > 0, is a

solution of (1.1.1). Then x(0) /∈ Γ and x(0) /∈ Γ̃.

Proof. Assume, on the contrary, that x(0) = x0 ∈ Γ. We have that

Φ(x(t)) = Φ(x(t))− Φ(x0) = 〈∇Φ(x0), x(t)− x0〉+ o(||x(t)− x0||) =

〈∇Φ(x0), f(x0)t + o(|t|)〉+ o(||f(x0)||t + o(|t|)) = 〈∇Φ(x(0)), f(x(0))〉 t + o(|t|).
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By Condition C7) function signΦ(x(t)) has a constant value for sufficiently small

|t|. This contradiction proves our lemma for Γ. For Γ̃ the proof is similar.

Lemma 2.4.3. Assume that C1) − C7) hold. Then x(−t, 0, x(t, 0, x0)) = x0 for

all x0 ∈ D, t ∈ R.

Proof. Consider only t > 0, as t < 0 is very similar to the first case and

t = 0 is primitive. If the set {θi} is empty then proof follows immediately from

the assertion for DS [7]. One can see that it remains to check the equality

x(−θi, 0, x(θi+)) = x(θi) is valid for all i, and the condition x(−θ1, 0, x(θ1, 0, x0)) =

x0 is fulfilled. The first one is obvious because of invertibility of J. Let us consider

the second one. Denote x(t) = x(t, 0, x0), x̃(t) = x(t, 0, x(θ1)). Since x(θ1) ∈ Γ,

then by C4), the solution x̃ moves along the trajectory of (2.2.7) for decreasing

t. And it could not meet Γ̃ if t > −θ1. Indeed, assume on the contrary that there

exists θ, −θ1 < θ < 0, moment where x̃ intersects Γ̃. Then x̃(θ+) = x(θ + θ1).

We have obtained a contradiction to Lemma 2.4.2 since x(t) is the solution of

(1.1.1) in a neighbourhood of t = θ + θ1. The Lemma is proved. Beside the last

lemma, let us show that condition C7) and Lemma 2.4.3 are important for the

group property. Particularly for the relation x(−t, 0, x(t, 0, x0)) = x0.

Example 2.4.1. Let us consider Example 2.1.9 where G = {(x1, x2)| x2
1 + x2

2 >

1, x1, x2 ∈ R}. One can show that the phase portrait looks like in the figure

2.9. Consider a solution which starts at x0 and comes to point P as t increases.

Moving back, it could not return to x0, for decreasing t, since of Γ̃.

Lemma 2.4.4. If x(t) : R → Rn is a solution of (2.1.4), then x(t + θ), θ ∈ R, is

also a solution of (2.1.4).

Proof.

(a) From Lemma 2.4.1 it follows that ψ = x(t+ θ) is continuous on the interval

(θi − θ, θi+1 − θ], i ∈ Z. Fix i ∈ Z, and consider t ∈ (θi − θ, θi+1 − θ] . We

have that t + θ ∈ (θi, θi+1] and in the same manner as for DSs, one can

verify that ψ′(t) = f(ψ(t)). That is, the equation (2.1.4) is satisfied by

x(t + θ) for all t 6= θi − θ, i ∈ Z, if we mean the left sided derivatives.
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(b) For fixed i we have that ψ(θi−θ+) = x(θi−θ+)+θ) = x(θi+) = J(x(θi)) =

J(ψ(θi−θ)). Thus, one can see that the impulsive equation in (2.1.4) is also

satisfied by x(t + θ) and this completes the proof.

Lemmas 2.4.3-2.4.4 imply that the following theorem is valid.

Theorem 2.4.1. Assume that conditions C1)− C7) are fulfilled. Then

x(t2, x(t1, x0)) = x(t2 + t1, x0), (2.4.15)

for all t1, t2 ∈ R.

The proof of this theorem is similar to the continuous case [40].

Remark 2.4.1. Since x(0, x0) = x0, one can conclude on the basis of Theorem

2.4.1 that x(t, x0) defines a one-parameter group of transformations of D into

itself.

2.5 Continuity of solutions in initial value

Dependence of solutions on an initial value is very effective method to inves-

tigate various problems of dynamical systems.

In this section, we will deal with the following topics: Continuous dependence

of trajectories on initial value and B-equivalence. Also, we will give definitions

and theorems about these subjects.

Assume that x0(t) : [a, b] → Rn, a ≤ 0 ≤ b, is a continuous solution of (2.1.4),

x0(t) = x(t, 0, x0). Let T = {x ∈ G|x = x0(t) for some t ∈ [a, b]}. We shall show

that the following lemma is valid.

Lemma 2.5.1. There exists an ε > 0 such that Tε∩Γ = ∅, Tε∩ Γ̃ = ∅, if T ∩Γ = ∅,
T ∩ Γ̃ = ∅.

Proof. Assume, on the contrary, that there exists a sequence xn ∈ Γ, n ∈ N,

such that xn → T, as n → ∞. Since T is compact, there exists a subsequence,

which we assume to be the sequence xn itself, and a point x0 ∈ T, such that
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xn → x0, as n →∞. As function Φ is continuous, either x0 ∈ Γ or x0 ∈ Γ̄\Γ. But

x0 6∈ Γ by the assumption, and x0 6∈ Γ̄\Γ by the definition of D. This contradiction

proves our Lemma.

Now, we assume that solution x0(t) of (2.1.4) has an empty or nonempty set of

discontinuity points, and all these points are interior in [a, b] . Denote by x(t) =

x(t, 0, x̄) another solution of (2.1.4).

Definition 2.5.1. The solution x(t) : [a, b] → Rn is said to be in an ε− neigh-

borhood of x0(t) if

1. every point of discontinuity of x(t) lies in an ε-neighborhood of a point of

discontinuity of x0(t);

2. for each t ∈ [a, b] outside ε-neighborhood of points of discontinuity of x0(t),

the inequality ‖x0(t)− x(t)‖ < ε holds.

Definition 2.5.2. A Hausdorff’s topology, which is built on the basis of all ε−
neighborhoods, 0 < ε < ∞, of piecewise continuous solutions is called B[a,b]−
topology.

Theorem 2.5.1. Assume that conditions C1)−C6) are satisfied. Then the solu-

tion x0(t) continuously depends on initial value in B[a,b] topology (B-continuous

dependence).

Moreover, if all θi, i = −k, . . . ,−1, 1, . . . , m, are interior points of [a, b] , then for

sufficiently small ||x0 − x̄||, the solution x(t) = x(t, 0, x̄), x(t) : [a, b] → Rn, meets

the surface Γ exactly m + k times.

Proof. We consider only the section [0, b] . The closeness of x(t) and x0(t) on

[a, 0] can be considered similarly. There are two cases: a) x0 ∈ Γ and b) x0 /∈ Γ.

Assume that x0(b) /∈ Γ. In other words, t = b is not the discontinuity point of

x0(t). For a positive number α ∈ R we shall construct a set Gα in the following

way. Let

Fα = {(t, x)|t ∈ [0, b], ‖x− x0(t)‖ < α}, Gi(α),i = 0,m + 1, be α-neighborhoods

of points (0, x0), (θi, x(θi)),i = 1,m, (b, x0(b)) in R×Rn respectively, and Ḡi(α),
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i = 1,m, be α− neighborhoods of points (θi, x
0(θi+)) respectively. Denote

Gα = Fα ∪
(∪m+1

i=0 Gi(α)
) ∪ (∪m

i=1Ḡi(α)
)
.

Take α = h sufficiently small so that Gh ⊂ Gt×Gx, where Gt is an interval, such

that [0, b] ⊂ Gt.

Fix ε ∈ R, 0 < ε < h.

1. In view of the theorem on continuous dependence on parameters [15], there

exists δ̄m ∈ R, 0 < δ̄m < ε, such that Ḡm

(
δ̄m

) ∩ Γ = ∅ and every solution

xm(t) of (2.2.7), which starts in Ḡm(δ̄m), is continuable to t = b, does not

intersect Γ, and ∥∥xm(t)− x0(t)
∥∥ < ε,

for those t.

2. The continuity of J implies that there exists δm ∈ R, 0 < δm < ε, such that

(κ, x) ∈ Gm(αm) implies (κ, x + J(x)) ∈ Ḡm(ᾱm) ∩D.

3. Using corollary 2.6.1, continuous dependence of solutions on initial value,

one can find δ̄m−1, 0 < δ̄m−1 < ε, such that a solution xm−1(t) of (2.2.7),

which starts in Ḡm−1(ᾱm−1) ∩ D , Ḡm−1(ᾱm−1) ∩ Γ 6= ∅, intersects Γ in

Gm(αm) (we continue the solution xm−1(t) only to the moment of the in-

tersection) and ‖xm−1(t)− x0(t)‖ < ε for all t from the common domain of

xm−1(t) and x0(t).

Continuing the process for m−2,m−3, . . . , 1, one can obtain a sequence of families

of solutions of (2.2.7) xi(t), i = 1,m, and a number δ ∈ R, 0 < δ < ε, such that

a solution x(t) = x(t, 0, x̄), which starts in G0(δ) ∩ D, coincides over the first

interval of continuity, except possibly, the δ1-neighborhood of θ1, with one of the

solutions x1(t). Then on the interval [θ1, θ2] it coincides with one of the solutions

x2(t), except possibly, the δ1-neighborhood of θ1 and the δ2-neighborhood of θ2,

etc. Finally, one can see that the integral curve of x(t) belongs to Gε, it has exactly

k meeting points with Γ, θ1
i , i = 1,m, |θ1

i − θi| < ε for all i and is continuable to

t = b.
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If x0(b) ∈ Γ, then it is easy to see that x(t) has either a discontinuity point

θ1
m ≤ θm or only m− 1 discontinuity points θ1

i , i = 1,m− 1 in [0, b] .

Assume that x0 ∈ Γ. In this case, t = 0 is a jump moment for x0(t) and

x(0+) /∈ Γ, that is 0 = θ1. We assume that x0(t) has points of discontinuity

θi, i = 1,m. Similarly to the previous case, one can find the δ̄1-neighborhood

Ḡ(δ̄1) of the point (θ1, x(θ+
1 )) which serves the same role as δ̄1 in the first case.

That is, if (κ, x) ∈ Ḡ(δ̄1)∩D, then the solution x(t) belongs to the ε− neighbor-

hood of x0(t) in B[0,b]− topology. Now, using condition C5) and continuity of f

and J, it is easy to find δ, 0 < δ < ε, such that every solution x(t) of (2.1.4) which

starts in δ− neighborhood of (0, x0) in D intersects Γ in G1(δ1) ∩D.

For the case a ≤ t ≤ 0, we only should remark that similarly to 0 ≤ t ≤ b

for a given ε > 0, one can find δ′, such that (0, x̄) ∈ G0 (δ′) implies that

x(t, 0, x̄) is in the ε-neighborhood of x0(t) in B[a, 0]-topology. Finally, if δ(ε) =

min (δ, δ′) and (0, x̄) ∈ G0 (δ(ε)) , then x(t, 0, x̄) is in the ε−neighborhood of x0(t)

in B[a, b]−topology. The theorem is proved.

2.6 B−equivalence

Let us introduce the functions τ = τ(x), Ψ = Ψ(x), τ̃ = τ̃(x) and Ψ̃ = Ψ̃(x)

which will be needed throughout the rest of the paper. Fix κ ∈ R. Denote by

x(t) = x(t, κ, x) a solution of (2.2.7), τ = τ(x) the moment of the first meeting

of x(t) with the surface Γ as t increases or decreases and τ̃ = τ̃(x) the moment

of the first meeting of x(t) with the surface Γ̃ as t increases or decreases.

Lemma 2.6.1. τ(x), τ̃(x) ∈ C1.

Proof. Let us show τ ∈ C1. The proof of τ̃ ∈ C1 is similar. Differentiating

Φ (x (τ, κ, x)) = 0, and using C5) one can get that

∂Φ (x (τ, κ, x))

∂τ
=

∂Φ (x (τ, κ, x))

∂x

dx(t)

dt

∣∣∣
t=τ

=
∂Φ (x (τ, κ, x))

∂x
f (x (τ, κ, x)) 6= 0

The proof of the lemma follows immediately from the implicit function theorem

and conditions on (2.2.7).
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Corollary 2.6.1. τ(x), τ̃(x) are continuous functions.

Now let x1 = x(t, τ, x(τ)) + J(x(τ)), x̃1 = x(t, τ̃ , x(τ̃)) + J−1(x(τ̃)) be also

solutions of (2.2.7). Define functions Ψ(x) = x1(κ), Ψ̃(x) = x̃1(κ).

Similarly to Lemma 2.6.1, one can show that the following assertion is valid.

Lemma 2.6.2. Ψ(x), Ψ̃(x) ∈ C1

Consider the solution x0(t) : [a, b] → Rn, a ≤ 0 ≤ b, of (2.1.4) again. This

time we assume that all points of discontinuity {θi} are interior points of [a, b].

That is, a < θ−k and θm < b.

The following system of impulsive differential equations is very important in

sequel

ẏ(t) = f(y), t 6= θi,

y(θi+) = Wi(y(θi)), for i > 0,

y(θi) = W̃i(y(θi+)), for i < 0, (2.6.16)

where the function f is the same as in (2.1.4) and the maps Wi, W̃i will be defined

below.

Without loss of generality, assume that there exists r1 ∈ R, 0 < r1 < r, such

that the r1− neighborhoods Gi(r1) of (θi, x
0(θi)) do not intersect each other. In

view of C5), one can suppose that r1 is sufficiently small so that every solution

of (2.2.7) which starts in Gi(r1) intersects Γ in Gi(r1) exactly once as t increases

or decreases.

Fix i = 1, . . . , m and let ξ(t) = x(t, θi, x), (θi, x) ∈ Gi(r1), be a solution of (2.2.7)

and τi = τi(x), τi ≥ θi or τi < θi, be a meeting time of ξ(t) with Γ and ψ(t) =

x(t, τi, ξ(τi) + J(ξ(τi)) be another solution of (2.2.7). Denote Wi(x) = ψ(θi). One

can see that

Wi(x) =

∫ τi

θi

f(ξ(s))ds + J(x +

∫ τi

θi

f(ξ(s))ds) +

∫ θi

τi

f(ψ(s))ds (2.6.17)

is a map of an intersection of the plane t = θi with Gi(r1) into the plane t =

θi. Similarly for i = −k, . . . ,−1, if we denote by ξ(t) = x(t, θi, x) and ψ(t) =
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x(t, τ̃i, ξ(τ̃i) + J−1(ξ(τ̃i)) corresponding solutions of (2.2.7), then

W̃i(x) =

∫ τ̃i

θi

f(ξ(s))ds + J−1(x +

∫ τ̃i

θi

f(ξ(s))ds) +

∫ θi

τ̃i

f(ψ(s))ds (2.6.18)

The functions Wi, W̃i are the maps Ψ and Ψ̃ respectively defined in the begin-

ning of this section with κ = θi. Hence, Lemma 2.6.2 implies that all Wi, W̃i

are continuously differentiable maps. It is obvious that for sufficiently small

r1, Wi(x), W̃i(x) ∈ Gr. Furthermore, ˆ(α, β], {α, β} ⊂ R, stands for an oriented

interval. Let x(t) be a solution of (2.1.4), x(t) = x(t, a, x(a)), and x(t) be

close to x0(t) in B[a,b]− topology so that x(t) has exactly m − k points τi, i =

−k, . . . ,−1, 1, 2, . . . ,m, of discontinuity in [a, b] . Denote by G(h) an h−neighborhood

of the point x0(0).

Definition 2.6.1. The systems (2.1.4) and (2.6.16) are said to be B−equivalent

in Gr1 if there exists h ∈ R, 0 < h, such that:

1. for every solution x(t) of (2.1.4, such that x(0) ∈ G(h), the integral curve of

x(t) belongs to Gr1 and there exists a solution y(t) = y(t, 0, x(0)) of (2.6.16)

which satisfies

x(t) = y(t), t ∈ [a, b]\ ∪m
i=−k ( ˆτi, θi]. (2.6.19)

Particularly:

x(θi) =

{
y(θi), if θi ≤ τi,

y(θ+
i ), otherwise,

y(τi) =

{
x(τi), if θi ≥ τi,

x(τ+
i ), otherwise.

(2.6.20)

2. Conversely, if (2.6.16) has a solution y(t) = y(t, 0, x(0)), x(0) ∈ G(h), then

there exists a solution x(t) = x(t, 0, x(0)) of (2.1.4) which has an integral

curve in Gr1 , and (2.6.20) holds.

Lemma 2.6.3. x0(t) is a solution of (2.1.4) and (2.6.16) simultaneously.

Proof. The proof follows immediately from (2.6.17) and (2.6.18).
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Theorem 2.6.1. Assume that conditions C1) − C6) are fulfilled. Then systems

(2.1.4) and (2.6.16) are B-equivalent in Gr1 if r1 is sufficiently small.

Proof.Assume that r1 > 0 is sufficiently small so that Wi, i = 1, . . . , m, and

W̃i, i = −k, . . . ,−1 are defined. Let us check only the first part of Definition

2.6.1,because for the second part, the proof is analogous. Theorem 2.5.1 implies

that there exists a small h, 0 < h < r1, such that if ‖x̄− x0‖ < h and x̄ ∈ D,

then the solution x(t) = x(t, 0, x̄) belongs to Gr1 ∩Gt×D, where r1 > 0 has been

chosen for Wi above. Assume that h is sufficiently small so that x(t) has exactly

m + k − 1 moments of discontinuity t = τi, i = −k, . . . ,−1, 1, . . . , m. Without

loss of generality, we suppose that θi > τi for all i and x(0) is not the point of

discontinuity. It is obvious that we need only to prove the theorem for [0, b],

because for [a, 0], the proof is similar. Consider the solution y(t) = x(t, 0, x(0))

of (2.6.16). By the theorem on existence and uniqueness [15] the equality

x(t) = y(t) (2.6.21)

on [0, τ1] is valid. Since (τ1, x(τ1)) ∈ Gr1 we have

y(θ1+) =

∫ θ1

τ1

f(y(s))ds + Wi(y(θ1)). (2.6.22)

Moreover,

x(θ1) = x(τ1) + J(x(τ1)) +

∫ θ1

τ1

f(x(s))ds. (2.6.23)

Using (2.6.21)-(2.6.23) one can obtain that

y(θ1+) = x(τ1) +

∫ θ1

τ1

f(y(s))ds +

∫ τ1

θ1

f(y(s))ds

+J(y(τ1)) +

∫ θ1

τ1

f(x(s))ds = x(θ1).

Now, defining x(t) and y(t) as solutions of (2.2.7) with a common initial value

x(θ1), one can see that x(t) = y(t), t ∈ (θ1, τ2]. Continuing in the same manner
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for all t ∈ [0, b] one can show that y(t) is continuable to t = b and (2.6.19) holds.

Moreover, it is easily seen that for sufficiently small r1 the integral curve of y(t)

belongs to Gr. The theorem is proved.

2.7 Differentiability of solutions in initial value

Let us define derivatives of functions τi(x), Wi(x), i = 1 . . . ,m, and τ̃i(x),

W̃i(x), i = −k, . . . ,−1, which were described in Section 2.6, at the points (x0(θi))

and (x0(θi+)) respectively. We start with derivatives of τi(x) and τ̃i(x). One

should emphasize that τi, τ̃i are maps τ, τ̃ defined in Section 2.6 with κ = θi. The

equalities Φ(x(τi(x))) = 0 and Φ̃(x(τ̃i(x))) = 0 imply that

Φx(x
0(θi))f(x0(θi))dτi +

n∑
j=1

Φx(x
0(θi))

∂x0(θi)

∂xj

dxj = 0

Φ̃x(x
0(θi+))f(x0(θi+))dτi +

n∑
j=1

Φ̃x(x
0(θi+))

∂x0(θi+)

∂xj

dxj = 0.

Using the last expression, one can obtain that

∂τi(x
0(θi))

∂xj

= −
Φx(x

0(θi))
∂x0(θi)

∂xj

Φx(x0(θi))f(x0(θi))
,

and

∂τ̃i(x
0(θi+))

∂xj

= −
∂Φx(x

0(θi+))∂x0(θi+)
∂xj

Φ̃x(x0(θi+))f(x0(θi+))
. (2.7.24)

Similarly, the following expressions are valid:

∂Wi(x
0(θi))

∂xj

= f
∂τi

∂xj

+
∂J

∂x
(ej + f

∂τi

∂xj

)− f+ ∂τi

∂xj

,

∂W̃i(x
0(θi+))

∂xj

= f+ ∂τ̃i

∂xj

+
∂J−1

∂x
(ej + f+ ∂τ̃i

∂xj

)− f
∂τ̃i

∂xj

, (2.7.25)
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where ej = (0, . . . , 1, . . . , 0)T . Assume that x0(t) : [a, b] → Rn is the solution of

(2.1.4) and (2.6.16). Moreover, systems (2.1.4) and (2.6.16) are B−equivalent

in Gr and there exists δ ∈ R, δ > 0, such that every solution which starts in

G0(δ) is continuable to t = b. Without loss of generality, assume that all points

of discontinuity of x0(t) are interior. Denote by xj(t), j = 1, n, a solution of

(2.1.4) such that xj(t0) = x0 + ξej = (x0
1, x

0
2, . . . , x

0
j−1, x

0
j + ξ, x0

j+1, . . . , x
0
n), ξ ∈ R,

(t0, x0 + ξej, µ0) ∈ C0(δ) and let θj
i be the moments of discontinuity of xj(t). By

Theorem 2.5.1, for sufficiently small |ξ| the solution xj(t) is defined on [a, b].

Definition 2.7.1. The solution x0(t) is said to be differentiable in x0
j , j = 1, n,

if

A) there exist constants νij, i = −k, . . . ,−1, 1, . . . , m, such that

θj
i − θi = νijξ + o(|ξ|), (ξij → 0) (2.7.26)

B) for all t ∈ [a, b]\ ∪m
i=−k

ˆ(θi, θ
j
i ], the following equality is satisfied

xj(t)− x0(t) = uj(t)ξ + o(|ξ|), (ξij → 0) (2.7.27)

where uj(t) is a piecewise continuous function, with discontinuities of the first

kind at the points t = θi, i = −k, . . . ,−1, 1, . . . , m.

The pair {uj, {νij}i} is said to be a B− derivative of x0(t) in initial value xj
0

on [a, b].

Lemma 2.7.1. Assume that conditions C1) − C6) Then the solution x0(t) of

(2.6.16) has B− derivatives in the initial value on [a, b]. Moreover

1) uj, j = 1, n, are solutions of the linear system

du

dt
= fx(x

0(t))u, t 6= θi,

u(θi+) = Wix(x
0(θi))u(θi), ifi > 0,

u(θi) = W̃ix(x
0(θi+))u(θi+), ifi < 0, (2.7.28)

with the initial conditions u(t0) = ej, j = 1, n, respectively and constants νij =

0, for all i, j.
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Proof. Fix p = 1, n. We shall prove the Lemma only for the derivative in xp
0 and

for t ≥ 0. Let yp(t) = y(t, t0, x0+ξep, µ0). By the theorem on differentiability with

respect to parameters [15] we have that yp(t) − x0(t) = up(t)ξ + ρ(ξ), ρ(ξ) =

o(|ξ|), for all t ∈ [0, θ1]. Particularly, yp(θ1) − x0(θ1) = up(θ1)ξ + ρ(|ξ|). Then

yp(θ1+)−x0(θ1+) = W1(yp(θ1))−W1(x
0(θ1)) = W1x(x

0(θ1))[up(θ1)ξ+ρ(ξ)]+ρ̄1(ξ).

Since ρ̄1 = o(|ξ|), we have that yp(θ1+) − x0(θ1+) = up(θ1+)ξ + ρ̃1(ξ), where

ρ̃1 = o(|ξ|). Denote by U(t), U(θ1) = I, the fundamental matrix of solutions of

the system u′(t) = fx(x
0(t)). Using the theorem from [15] again one can obtain

that for all t ∈ (θ1, θ2] the following relation is true yp(t)−x0(t) = U(t)(yp(θ1+)−
x0(θ1+))+ ρ(yp(θ1+)−x0(θ1+)) = U(t)up(θm+)ξ + ρ2(ξ) = up(t)ξ + ρ2(ξ), where

ρ2 = o(|ξ|). Continuing the process we can prove that (2.7.27) is valid. Formula

(2.7.26) involving constants νj
i is trivial. The Lemma is proved.

Theorem 2.7.1. Assume that conditions C1) − C6) are satisfied. Then the so-

lution x0(t) of (2.1.4) has B− derivatives in the initial value on [a, b]. Moreover:

uj(t), j = 1, n, are respectively solutions of equation (2.7.28) with the initial

conditions u(t0) = ej, j = 1, n, and

νij = −Φxuj(θi)

Φxf
, j = 1, n, i = 1,m, νij = − Φ̃x(x

0(θi+))uj(θi+)

Φ̃x(x0(θi+))f(x0(θi+))
,

j = 1, n, i = −k,−1.

The proof of the theorem follows immediately from Theorem 2.6.1, Lemma

2.7.1 and formulas (2.7.24), (2.7.25).

Remark 2.7.1. Higher order smoothness of DDS is considered in [3].

2.8 Conclusion

Let D ⊂ Rn be as in Section 2.1.

Definition 2.8.1. We say that a B− smooth DF is a map φ : R × D → D,

which satisfies the following properties:
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I) The group property:

(i) φ(0, x) : D → D is the identity;

(ii) φ(t, φ(s, x)) = φ(t + s, x), is valid for all t, s ∈ R and x ∈ D.

II) If x ∈ D is fixed, then φ(t, x) ∈ PC1(R), and φ(θi, x) ∈ Γ, φ(θi+, x) ∈ Γ̃

for every discontinuity point θi of φ(t, x).

III) The function φ(t, x) is B− differentiable in x ∈ D on [a, b] ⊂ R for every

{a, b} ⊂ R, assuming that all discontinuity points of φ(t, x) are interior points of

[a, b].

Remark 2.8.1. One can see that system (2.1.4) defines B− smooth DF provided

conditions C1)−C7) and the conditions of one of the continuation theorems are

fulfilled.

Definition 2.8.2. We say that a DF is a map φ : R ×D → D, which satisfies

the property I) of Definition 2.8.1 and the following conditions:

IV ) If x ∈ D is fixed, then φ(t, x) ∈ PC(R), and φ(θi, x) ∈ Γ,φ(θi+, x) ∈ Γ̃

for every discontinuity point θi of φ(t, x).

V ) The function φ(t, x) is B− continuous in x ∈ D on [a, b] ⊂ R for every

{a, b} ⊂ R.

Remark 2.8.2. Comparing definitions of the B− differentiability and the B− con-

tinuity one can conclude that every B− smooth DF is a DF.

2.9 Examples

Example 2.9.1. Consider the impulsive differential equation
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



ẋ1 = αx1 − βx2

ẋ2 = βx1 + αx2

, (x(t) 6∈ Γ ∧ t ≥ 0) ∨ (x(t) 6∈ Γ̃ ∧ t ≤ 0),

x1(t+) =
√

3x1(t−)− x2(t−)

x2(t+) = x1(t−) +
√

3x2(t−)
, (x(t) ∈ Γ ∧ t ≥ 0)

x1(t−) =
√

3
4

x1(t+) + 1
4
x2(t+)

x2(t−) = −1
4
x1(t+) +

√
3

4
x2(t+)

, (x(t) ∈ Γ̃ ∧ t ≤ 0)

(2.9.29)

where Γ = {(x1, x2)| x2 = 1
2
x1, x1 > 0}, Γ̃ = {(x1, x2)| x2 =

√
3

2
x1, x1 > 0},

constants α, β are positive. One can see that Φ(x) = x2 − 1
2
x1, f(x) = (αx1 −

βx2, βx1 + αx2), J(x) = (
√

3x1 − x2, x1 +
√

3x2). We assume that

D = R2\
[{

(x1, x2)| 1

2
x1 < x2 <

√
3

2
x1, x1 > 0

}
∪ (0, 0)

]
.

One can verify that C1) − C7) are valid. Let us check if conditions of Theorem

2.3.3 hold or not. Fix x ∈ Γ̃. Then dist(x, Γ) = 1
2
||x|| and

||f(x)|| =
√

(αx1 − βx2)2 + (βx1 + αx2)2 =
√

α2 + β2||x||.

Thus

sup
B(x,εx)

||f || =
√

α2 + β2(||x||+ 1

2
||x||) =

3

2

√
α2 + β2||x||,

and

inf
Γ̃×(0,∞)

εx

supB(x,εx) ||f ||
=

2

3
√

α2 + β2
> 0.

Hence, all conditions of a DF for the system are fulfilled.

Example 2.9.2. Consider the following model for simple neural nets from [27].

We have modified it according to the proposed equation (2.1.4).
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



ẋ1 = x2

ẋ2 = −β2x1

p′ = −γp + x1 + B0

, (x(t) 6∈ Γ ∧ t ≥ 0) ∨ (x(t) 6∈ Γ̃ ∧ t ≤ 0),

x1(t+) = x1(t−)

x2(t+) = x2(t−)

p(t+) = 0

, (x(t) ∈ Γ ∧ t ≥ 0)

x1(t−) = x1(t+)

x2(t−) = x2(t+)

p(t−) = r

, (x(t) ∈ Γ̃ ∧ t ≤ 0)

(2.9.30)

where Γ = {(x1, x2, p)| p = r, x2
1 +

x2
2

β4 < 1}, Γ̃ = {(x1, x2, p)| p = 0, x2
1 +

x2
2

β4 <

1}, Φ(x) = p− r,f(x) = (x2,−β2x1,−γp+x1 +B0), J(x) = (x1, x2, r), β,γ,r > 0,

are constants and B0 > γr + 1. We assume that D = {(x1, x2, p)|0 ≤ p ≤
r, x2

1 +
x2
2

β4 < 1}. In the system the variable p(t) is a scalar input of a neural

trigger and x1, x2, are other variables. The value of r is the threshold. One can

verify that the functions and the sets satisfy C1) − C7) and the conditions of

Theorem 2.3.4. That is, the system defines a DF.

Example 2.9.3. Let us consider the discontinuous system





ẋ1 = = αx1 − βx2

ẋ2 = βx1 + αx2

, (x(t) 6∈ Γ ∧ t ≥ 0) ∨ (x(t) 6∈ Γ̃ ∧ t ≤ 0),

x1(t+) = kx1(t−)

x2(t+) = kx2(t−)
, (x(t) ∈ Γ ∧ t ≥ 0)

x1(t−) = 1
k
x1(t+)

x2(t−) = − 1
k
x2(t+)

, (x(t) ∈ Γ̃ ∧ t ≤ 0)

(2.9.31)
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where Γ = {(x1, x2)|x2
1 + x2

2 = r1}, Γ̃ = {(x1, x2)|x2
1 + x2

2 = kr1}, α, β, k are

constants such that α, β < 0, 1 < k. Assume that D = R2.

One can see that all conditions C1)−C6) are valid for the system, and so are

conditions of Theorem 2.3.4. But C7) is not fulfilled, and it is easy to see that

a solution x(t, 0, x0) of (2.9.31), which starts outside of Γ̃, does not satisfy the

condition x(−t, 0, x(t, 0, x0)) = x0 for all t. Thus (2.9.31) does not define a DF.
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