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ABSTRACT 
INTERACTIVE VOLUME RENDERING FOR MEDICAL IMAGES 

 

Orhun, Koray 

 

MS., Department of Information Systems 

Supervisor: Assist. Prof. Dr. Erkan MUMCUOĞLU 

 

September 2004, 159 pages 

   

 Volume rendering is one of the branches of scientific visualization. Its 

popularity has grown in the recent years, and due to the increase in the computation 

speed of the graphics hardware of the desktop systems, became more and more 

accessible. Visualizing volumetric datasets using volume rendering technique 

requires a large amount of trilinear interpolation operations that are computationally 

expensive. This situation used to restrict volume rendering methods to be used only 

in high-end graphics workstations or with special-purpose hardware. In this thesis, an 

application tool has been developed using hardware accelerated volume rendering 

techniques on commercial graphics processing devices. This implementation has 

been developed with a 3D texture based approach using bump mapping for building 

an illumination model with OpenGL API. The aim of this work is to propose 

visualization methods and tools for rendering medical image datasets at interactive 

rates. The methods and tool are validated and compared with a commercially 

available software. 

 

Keywords: Direct volume rendering, PC graphics hardware, OpenGL, bump 

mapping, multi-texturing, medical imaging, Phong Illumination model, 3D texture 

mapping 
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ÖZ 
TIBBİ GÖRÜNTÜLER İÇİN ETKİLEŞİMLİ HACİM KAPLAMA 

 

Orhun, Koray 

 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Erkan MUMCUOĞLU 

 

Eylül 2004, 159 sayfa 

 

 Hacim kaplama, bilimsel görselleştirme yöntemleri içerisinde önemli bir 

yöntemdir. Kişisel bilgisayarların grafik işlemcilerinde yaşanan son zamanlardaki hız 

artışı, bu metodun kullanımını yaygınlaştırmaktadır. Hacimsel verilerin 

görselleştirilmesinde kullanılan hacim kaplama yöntemi, bilgisayar işlemci zamanını 

çok harcayan bir hesaplama yöntemi olan üçlü doğrusal aradeğerleme işlemini çokça 

yapmaktadır. Bu durum, hacim kaplama yöntemi kullanarak görselleştirme 

işlemlerinin, ancak son teknoloji iş istasyonları veya özel amaca yönelik üretilmiş 

donanımlarla gerçekleştirilebilmesine olanak sağlamaktaydı. Bu tezde, günümüz 

kişisel bilgisayarları için üretilmekte olan grafik işlemcilerini kullanarak, donanım ile 

hızlandırılmış hacim kaplama konusunda bir yazılım geliştirilmiştir. Geliştirilen 

yazılımda, üç boyutlu dokuların kullanılması yöntemini temel alarak, vurdurarak 

doku eşleme (bump mapping) yöntemi ile OpenGL uygulama programı arayüzü 

üzerinden bir ışıklandırma modeli kullanılmıştır. Bu çalışmanın amacı, etkileşimli 

hızlarda tıbbi verileri görüntüleyebilecek bir yöntem sunmaktır. Geliştirilen yazılım, 

yaygın olarak kullanılan bir ticari yazılımla karşılaştırılmıştır.   

 

Anahtar kelimeler: Hacim kaplama, kişisel bilgisayar grafik donanımı, OpenGL, 

vurdurarak doku eşleme, çoklu doku, tıbbi görüntüleme, Phong ışıklandırma modeli, 

üç boyutlu doku kaplama  
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CHAPTER 1  

INTRODUCTION 

The contribution of this study is primarily in volume rendering. Using 

hardware acceleration in computer graphics has become very important due to fast 

evolution of the graphics processing devices in the recent years. The vast amount of 

production and development of computer graphics devices in the industry enabled 

the consumers to own high performance graphics computation power without a high 

expenditure on workstations. The main focus of our study is on the capabilities of 

hardware accelerated volume rendering techniques.  

1.1 Motivation  

The main motivation for this study is to propose useful solutions and 

techniques for the visualization section of the project: “Three Dimensional Brain 

Image Processing” which is directed by Assist. Prof. Dr. Erkan Mumcuoğlu in the 

Informatics Institute department of Middle East Technical University. The primary 

focus of this project is to register medical imaging volumetric datasets of patient’s 

brain which were acquired with different modalities (Nuclear Medicine, Radiology, 

etc.) and visualize them in three dimensional spaces for the medical staff use.  

 

The main advantage of Nuclear Medical Imaging studies is to present not 

only the morphologic information about the organ systems of the patients, but also 

give information about their functions. The medical images acquired by Radiology 

Technology present a higher level of detail for the anatomical structures of the 

patient’s organ systems. However, they present less information about the functions. 

The main disadvantage of Nuclear Medical Imaging is that the resolution of the 

acquired datasets is very low with respect to the ones acquired with Radiology 
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Technology, and the small structures may not be localized correctly. In some 

situations, there is a requirement for building a correlation between the results 

acquired by both of the techniques for better diagnostics, and guide the surgeon 

before an operation by localizing the functional information with the anatomical 

structure. This process is called co-registration, which requires sophisticated 

hardware and software systems. Even though the results are registered, visualizing 

the datasets in a three dimensional environment using computer graphics has a great 

importance on enabling doctors to understand the structures more clearly.  

 

There are many researches about this phenomenon, and in many developed 

countries such techniques are being used. In Hacettepe University Hospital, very 

sophisticated devices are used for acquiring medical imaging datasets on different 

modalities, however this co-registration and visualization with computer graphics 

processes cannot be established. Analyze [37] is one of the most popular software 

system for establishing this technique; however it requires a huge amount of 

expenditure.  

 

The aim of the project “Three Dimensional Brain Image Processing” is to 

develop a system that is able to co-register and visualize multimodality medical 

image datasets according to the requirements, and distribute this system to the 

hospitals that are interested, with no fee. The motivation for our studies is to propose 

a solution for the visualization section of this project. 

1.2 Organization of the Thesis 

 This Thesis has 6 Chapters: 

 

 Chapter 1: Gives the motivation and some introductory information about 

visualization. It also mentions different methods of computer visualizations. 

 

Chapter 2: Gives detailed information about volume rendering and presents a 

pipeline for volume rendering. 
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Chapter 3: Summarizes different kinds of volume rendering techniques using 

PC graphics hardware, and gives an introductory information about computer 

graphics. 

 

Chapter 4: Presents detailed information about methods of the 

implementation developed for this thesis. 

 

Chapter 5: Gives the testing results of the implementation and presents some 

qualitative comparison with software Analyze.  

 

Chapter 6: Concludes the thesis by discussing the results of the tests, and 

gives a pathway for the future studies. 

1.3 Three Dimensional Visualization 

 “Forming an image is mapping some property of an object onto image space. 

This space is used to visualize the object, and its properties and may be used to 

characterize quantitatively its structure or function. Imaging science may be defined 

as the study of these mappings and the development of ways to better understand 

them, to improve them, and to use them productively” [1, pp. 685]. 

 

3D visualization refers to the process of transforming and displaying the three 

dimensional objects in a way that their nature is able to be seen. 2D display devices 

that visualize shaded graphics of the rendered objects or 3D display devices that 

enable stereoscopic or holographic type of displays are used for visualizing the 

outputs of 3D visualization methods. The term visualization not only concerns 

methods for displaying but also includes methods for manipulating and analyzing the 

displayed information, “this term implies inclusion of cognitive and interpretive 

elements” [1, pp. 686]. The term 3D imaging is generally defined as acquiring digital 

samples of objects in a three dimensional environment. This term also includes 

processing, analyzing and visualizing of the sampled datasets. 
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1.3.1 Methods of Three Dimensional Visualization 

 There are various kinds of techniques used for visualizing 3D datasets. The 

generally used methods especially in biomedical research and clinical applications 

shall be defined briefly in this section.  

 

2D Display: 

 2D image generation and display methods aim to generate optimal 2D images 

from 3D volumetric datasets by allowing the user to set the orientation of the 2D 

image plane for visualizing unrestricted view of important features in the sampled 

3D information.  

 

 Multiplanar Reformatting is the process of constructing 2D images from the 

volumetric dataset by reslicing the set of data in any arbitrary spatial direction which 

visualize the images that lie along the non-acquired orthogonal orientations of the 

volume. Figure 1.1 [38] shows an example for this method of display. 

 

 
Figure 1.1 Multiplanar slicing  

 
 Oblique Sectioning [39] is the method of visualizing a desired plane in the 3D 

volumetric dataset that is not parallel to any orthogonal orientation in which the 

volume has been acquired. An example display for oblique sectioning is given in 

Figure 1.2 [39].  
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Figure 1.2 Oblique Sectioning  

 

 Curved Sectioning is the method of displaying structures that have curvilinear 

morphology which oblique and multiplanar methods cannot display. An example for 

curved sectioning is given in Figure 1.3 [1]. 

 

 
Figure 1.3 Curved Sectioning  

 

3D Display: 

 “Visualization of 3D biomedical volume images has traditionally been 

divided into two different techniques: Surface Rendering and Volume Rendering” [1, 

pp. 688].  

 

Surface Rendering is the visualizing techniques in which the contours of the 

edges present in the volumetric dataset are extracted as geometric primitives, and 

visualized by a mosaic of connected polygons representing the surfaces. There are 
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some different approaches for extracting the surfaces from the volume. Surface 

reconstruction from contours [2] and Marching Cubes [3] algorithms are some of the 

popular methods used for extracting surfaces from volumes. The main advantage of 

this technique is that, the results of surface extraction methods are geometric 

primitives that are polygons. Polygon based surface representation enables the 

information to be transformed into analytical descriptions; so, the standard computer 

graphics techniques like transforming the volume or using illuminations models, are 

able to be applied for this method of visualizing, and other visualization packages of 

CAD/CAM software can be used for displaying. “The disadvantages of this 

technique are largely based on the need to discretely extract the contours defining the 

structure to be visualized. Other volume image information is lost in this process, 

which may be important for slice generation or value measurement. Finally, because 

of the discrete nature of the surface polygon placement, this technique is prone to 

sampling and aliasing artifacts on the rendering surface.”[1, pp. 689] 

 

 Volume Rendering is one of the most powerful visualization techniques being 

used for displaying volumetric datasets [1]. The focus for our study is mainly on 

volume rendering, so it shall be defined in detail in the following chapters.    

 

 In some of the resources, the term Surface Rendering described here is called 

as Indirect Volume Rendering, and Volume Rendering is called as Direct Volume 

Rendering [4]. In this document the term Volume Rendering refers to Direct Volume 

Rendering. 
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CHAPTER 2 

VOLUME RENDERING 

 “To visualize noninvasively human integral organs in their true form and 

shape has intrigued mankind for centuries. If the discovery of X-rays gave birth to 

radiology, the invention of computerized tomography and magnetic resonance 

imaging has revolutionized radiology. Three dimensional imaging is another recent 

development that has brought us closer to fulfilling the age-old quest of noninvasive 

visualization.” [5] 

 

 The importance of scientific computing has become more significant in the 

recent evolution period of the technology. Scientific computation applications 

require new techniques to process the vast amount of data and be interpreted by the 

scientist. This requirement has resulted in a new field in the computer graphics 

studies, which is called Scientific Visualization. The recent increases in the 

performance of the computing have made it possible to use the scientific 

visualization in many different disciplines with complex datasets that are rich in 

quality. Medical imaging, computational fluid dynamics simulations, meteorology, 

molecular modeling and geographical information systems are some of the 

disciplines that use the advantages of scientific visualization. 

 

 Volume rendering, which is one of the branches of scientific visualization, 

popularity has grown considerably in the recent years, and due to increase in the 

computation speed in the desktop systems, became more and more accessible. 
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 2.1 What is Volume Rendering? 

 Volume rendering is a method of visualizing a three dimensional (3D) 

volumetric data as two dimensional (2D) image. An example for volumetric data is 

the sampling of an object in three dimensions. In medical imaging, Positron 

Emission Tomography (PET), Magnetic Resonance Imaging (MRI) datasets are 

examples for volumetric datasets. Volume Rendering techniques enable these three 

dimensional datasets to be transformed into a meaningful image, and this process is 

called rendering. In traditional computer graphics, rendering is the action of painting 

a picture of a scene as if the user is looking from a specific point to a specific 

direction in the scene. It uses geometric calculations for how shall the primitives 

(points, lines, polygons) will be seen in the camera (two dimensional result of the 

rendering process) and textures added to the objects in the scene with the addition of 

lighting into the rendering calculations; the realism of the rendered two dimensional 

image is increased. Volume rendering techniques process the three dimensional 

datasets and transform into a rendered result image by using lighting functions from 

the study of computer graphics, classify the data with image processing techniques 

and apply compositing by emulating alpha blending from computer graphics studies.  

 2.2 Where is Volume Rendering Used? 

 Many different disciplines and sciences use volume rendering technique. In 

medical imaging, the human internals captured with Magnetic Resonance Imaging 

(MRI), Computed Tomography (CT), Ultrasound, PET and Single Photon Emission 

Computed Tomography (SPECT) scanners produce vast amount of datasets which 

are to be analyzed by doctors or physicians. The sampled datasets are needed to be 

viewed in different directions, rotated, zoomed and also separately colored in order 

to distinguish one type of tissue from another. Volume rendering techniques help the 

surgical planning processes; haptics[40] and telepresence surgery technology, in 

which the doctor can conduct a surgery on a patient in a remote location. Volume 

rendering methods help the paleontologists to distinguish between a fossil and the 

ground that covers it, by the help of a CT scanner. Computational Fluid Dynamics 
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science (which is used in many areas such as designing exhaust manifolds for 

engineers, designing wings of aero planes) is governed by a set of derived equations 

that consist of velocity and vorticity (a measure of the rotation of air in a horizontal 

plane) of a fluid’s flow. Scientists use volume rendering techniques, in order to 

monitor all of these values through a structure. Meteorologists and other scientists 

who use modeling techniques use volume rendering in viewing and analyzing their 

models built for inquiring the phenomena such as ocean turbulence, precipitation, 

solar magnetic storms, ozone layer, typhoons, acid rains and hurricanes. Volume 

rendering enables the viewer to examine inside of something, without removing 

physically the layers. Visible Human Project [41] is a helpful tool for nondestructive 

testing processes. CT scan techniques combined with volume rendering visualization 

technique, non-destructive testing can be obtained. Volume rendering is also an 

essential tool for microbiologists for microscopic analysis and geoscientists for oil 

explorations. 

 

The uncertainty principle, which was thought by the German Physicist 

Werner Heisenberg, tells that: “It is impossible to measure the trajectory of an 

electron moving through space. The very act of observing the electron shall alter its 

path and contaminate the experiment.”[42] This principle is a significant problem for 

failure analysis in different fields. For example, in order to find a failing reason of an 

engine or to find out if a building structure has been damaged of not, the analyst have 

to give harm or sometimes even destroy the inquired structure. But in medical 

imaging, the harm to the patient is kept at minimum by keeping the radiation levels 

low. 

 2.3 Terminology and Overview 

 In a digital image, the information is stored in a two dimensional array which 

represents color of light intensity or transparency. Data elements kept in the array are 

called pixels. Volumetric dataset can be defined as a three dimensional digital image. 

The information of volumetric dataset is stored in a three dimensional array in which 

data elements are called voxels. A pixel value stores the information of a point in a 

two dimensional spatial coordinates, and a voxel stores the information of a point in 
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a three dimensional spatial coordinates. In literature, voxel is defined in two different 

ways: in the first definition voxel is considered as a small cube; in the other 

definition, voxel is considered as a point which has no size but has a location in the 

three dimensional space. In this study, the second definition shall be used. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2.1 Different Types of Grids  

(a) Cartesian  Grid: Typically known as a voxel grid. Data elements are cubic 

and axis aligned; (b) Regular Grid: Similar to Cartesian grid, but cells are 

rectangular; (c) Rectilinear Grid: Similar to regular grid, but the cell dimensions 

vary; (d) Structured (Curvilinear) Grid: Hexahedra or rectangular cells warped 

to fill a volume, or warped around an object; (e) Unstructured Grid: No 

geometric constraints are imposed. The cells may be tetrahedral, hexahedra, 

prisms, pyramids, etc; (f) Hybrid Grid: A combination of structured and 

unstructured grids. 
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 Measuring a property of a physical environment at a specific location is 

called sampling. Sampled information may be color value, light intensity, 

transparency, hue, density, temperature, acceleration, etc. Voxels are the sampled 

information which imposes a grid on the volume. Different kinds of grids may be 

classified as shown in the Figure 2.1 [43], [4]. 

 

 In this thesis, Cartesian type of sampled volumetric data shall be used as input. 

The density or amount of spacing between sampled points differs by the spatial 

resolution of the dataset.   

 

(a) (b) (c) 

Figure 2.2 Example for different spatial resolutions  
(a) 350x350 pixels; (b) 64x64 pixels; (c) 32x32 pixels. 

 

 Quantizing is the process of storing the sampled information in the digital 

environment. Intensity resolution is the number of bits which is used for the storage 

of the sampled information. Using higher number of bits for each sampled point 

increases the intensity resolution. Examples for different spatial and intensity 

resolutions is given in Figure 2.2 and 2.3 [6, pp. 17] respectively. 

 

(a) (b) (c) 

Figure 2.3 Example for different intensity resolutions  
(a) 8 bits/pixel; (b) 2 bits/pixel; (c) 1 bit/pixel. 
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 2.4 Volume Rendering Pipeline 

 The aim of visualization is to enable the user understand what is happening or 

stored in the dataset. Volume rendering, which is a method in three dimensional 

computer graphics, gives user the ability of making any kind of sense of a group of 

voxels and view their relationships.  

 

 Volume rendering pipeline is a kind of dataflow diagram which shows the 

main operations required for the overall volume rendering process. Different volume 

rendering implementations may exclude or change the order of some operations 

shown in the volume rendering pipeline diagram [6, pp. 29]. 

 

 
 

Figure 2.4 Volume Rendering Pipeline  
 

 2.4.1 Segmentation 

 Each volumetric dataset has certain characteristics according to its data 

acquisition technique, and in most of the data acquisition techniques, the sampled 

voxel values carry information that cannot be visualized directly; such as “density, 

acoustic impedance, tissue magnetization and the like” [6, pp. 29]. 

Segmentation 

Gradient Computation 

Resampling 

Classification 

Shading 

Compositing 
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 In order to visualize this non-visual information, we need to assign color or 

light intensity / transparency to each voxel in the dataset.  

 

 Segmentation is the process of labeling the voxels inside a volumetric dataset. 

Segmentation operation is done before the rendering phase and it categorizes / 

separates the whole data into structure that are formed by certain relationships 

between voxels. For example: a volumetric dataset acquired by MRI which contains 

information of a patient’s head shall contain skull data in some of the voxels and 

brain data in some other voxels.  Segmentation enables us to label each voxel either 

brain or skull. 

 

 Segmentation is an important pre-rendering process to achieve high quality 

visualization. However, in some kinds of volumetric datasets, it is a complicated 

process that requires many different image processing algorithms. It is not always 

possible to extract every different feature in a dataset automatically. Usually, 

segmentation algorithms are semi-automatic which require some user interaction for 

maximum success. “There are many researchers working on the problem of 

extracting, or segmenting features in a dataset. It is sometimes not possible to come 

up with an automatic algorithm that does the segmentation for you” [6, pp. 97]. 

Segmentation is usually a difficult and time consuming task; however it is sometimes 

essential for visualization. For example; in the patient’s MRI head dataset example, it 

might not be possible to visualize the brain data as it is covered with a skull.  

  

 When a volumetric data is applied a segmentation process, interested features 

are labeled in the voxels so that, each voxel is part of a material or a feature. Thus 

segmentation process shall be done before rendering and other processes in the 

volume rendering pipeline. Classification processes and coloring transfer functions 

may use the output of segmentation process, and more meaningful and higher quality 

renderings can be obtained. 
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(a) (b) (c) 

Figure 2.5 Example for segmentation. 
(a) Without segmentation; (b) Segmented; (c) Only brain segment visualized. 

 2.4.2 Gradient Computation 

 Gradient computation is the process to calculate and find the boundary voxels 

between different materials. The gradient is a measure which tells how quickly 

values of the voxels change and the direction of that change. This information has an 

importance in volume rendering as it gives a lot of information about the structures 

inside the dataset. For example, two different tissues in an MRI dataset will have two 

different intensity values, and gradient value of the voxels which were located at the 

boundary between these two different tissues will be significantly high. The direction 

value calculated in gradient computation also gives the information about the three 

dimensional orientation of the boundary [6, pp. 67]. 

 

 
Figure 2.6 Boundary between two materials and the gradient vector.  

 

∇ Boundary between 
different materials 
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∇  = [∇ x, ∇ y, ∇ z] is a gradient, which is a three dimensional vector which 

points a direction in the three dimensional space. This direction gives us the 

information about the orientation of that voxel. The magnitude of this vector gives 

the information about how quickly values of the voxels change around that voxel 

which is given as [6, pp. 67]: 

 

222 )()()( zyx ∇+∇+∇=∇   

 

If the magnitude of a voxel’s gradient is zero, this means that there is no 

change in the values of the neighborhood voxels. On the contrary, if the magnitude 

has a significant value, it can be told that, this voxel is located at a boundary.  

 

It is recommended to read the Interpolation-Resampling section at this point, 

because some knowledge about interpolation is required for a better understanding of 

how gradient computation works.  

 

In order to understand the logic behind the gradient computation, here is a 

one dimensional example [6, pp. 68]: 

  
(a) (b) 

Figure 2.7 Continuous function  
(a) Underlying continuous function of the discrete data; 

(b) Derivative of the continuous function and the sampled points. 
 

In this example, another step in which the derivative of the continuous 

function is calculated is used so that the information of how quickly the continuous 

function change is obtained.  
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There are many different methods that calculate the gradient of a dataset. The 

central difference gradient estimator method is one of the mostly used gradient 

computation methods which is fast and easy to implement, but not very high in 

quality.  

The definition of the central difference gradient estimator is [6, pp. 69]: 

),,1(),,1( zyxfzyxfx +−−=∇  

),1,(),1,( zyxfzyxfy +−−=∇        

)1,,()1,,( +−−=∇ zyxfzyxfz  

 

In this formula f(x,y,z) is the function that gives the value of the voxel at the 

position (x, y, z) in the volumetric dataset.  

 

∇  = [∇ x, ∇ y, ∇ z] is the gradient vector of the point (x, y, z) which is consist 

of the components ∇ x, ∇ y, ∇ z. The central difference gradient estimator can also be 

calculated using a convolution kernel: [-1, 0, 1] (see the next section for the 

definition of convolution, if reader is not familiar with convolution). 

 

Using this one dimensional kernel on each three axis, the components of the 

gradient vector ∇ x, ∇ y, ∇ z shall be obtained.  

 

The central difference gradient estimator method uses six voxels to calculate 

the gradient vector. Other methods use different kinds of operators. Sobel operator 

uses 26 of the neighboring voxels, to estimate the gradient vector. 26 point 

neighborhood operators are usually better at estimating the gradient; however they 

are more expensive in computation. Sobel operator is a well known image processing 

operator which uses the kernel in Figure 2.8 [6, pp. 72] for three dimensional datasets 
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Figure 2.8 Three dimensional Sobel gradient operator  
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3x3x3 convolution kernel shown in the figure is applied to the 26 voxels 

around the voxel whose gradient vector is being computed. In order to calculate the 

three components of the gradient vector, three different passes should be applied on 

each axis (x, y, z). The kernel shown in the figure is used for the z direction to get the 

x component of the gradient vector. In order to compute y and z components of the 

gradient vector, this kernel need to be rotated, according to direction of the axis.  

 

Another operator is intermediate difference operator for which the 

convolution kernel for one dimension is: [-1 1]. 

 

Convolution kernel looks similar to the central difference gradient operator, 

however this operator uses the voxel that gradient vector is being computed so that it 

can be able to register the very fast changing of values in the dataset by subtracting 

two neighboring voxel intensities.  

 

Gradient is used in two phases of the volume rendering pipeline: shading 

stage and classification stage. In computer graphics, in order to increase the realism 

of the rendered scene view, many different kinds of methods are used. Shading 

techniques increase the render quality by using the information of the position of the 

light sources, material properties that has been assigned to the polygons, color of the 

polygon and the surface normal of the polygons. In volume rendering, the dataset 

does not consist of polygons but voxels. In other words, there is no surface normal as 

there is no surface in the data format. However, the gradient vector information for 

each voxel can be used as surface normal in the illumination model, and more 

realistic views can be rendered by computing the output according to the light 

position, color, material properties assigned to each voxel.  

 2.4.3 Interpolation - Resampling 

 Interpolation is computing the intermediate values between two discrete 

points. In the sampling process, the data stored are discrete value of a continuous 

function. Interpolation is meaningful if we have an idea about what the continuous 

function is. Figure 2.9 (a) shows a sampled one dimensional discrete points (through 
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x axis). Figure 2.9 (b) shows the interpolated points between discrete sampled points, 

according to the continuous function [6, pp. 68].  

 

  
(a) (b) 

Figure 2.9 Interpolation  
(a) Discrete data; (b) Interpolated according to the continuous function. 

 

There are different methods for the computation of the interpolated values. It 

is usually impossible to find the continuous function for the whole dataset, especially 

in the three dimensional volumetric datasets. In order to calculate the interpolated 

values of points, computing the interpolation according to the point’s neighboring 

discrete sampled points is meaningful.  This can be done by calculating a weighted 

sum of the surrounding sampled points. This method can be done by using 

convolution algorithm with different kind of interpolation kernels. Interpolated 

kernels are overlays, which we place them on the top the values need to be 

interpolated. Interpolation kernels are centered at the points that we are interested in 

to find out the interpolated values. Every position that the interpolation kernels 

intersect a known sampled value in the dataset, the sampled value and the kernel 

value are multiplied. The newly interpolated value is achieved by the summation of 

these multiplied discrete values. Examples for different interpolation kernels are 

shown in Figure 2.10 [6, pp. 105]. 

 

 
Figure 2.10 Different interpolation kernels  

 

x position 

In
te

ns
ity

 

x position 

In
te

ns
ity

 



33 

“The one dimensional interpolation kernels can be applied to interpolate in 

two and three dimensions if the kernel is separable. A two dimensional function is 

considered separable if it can be decomposed as follows” [6, pp. 105]: 

 

f(x,y) = g(x) · h(y)     

 

Interpolation calculation of a three dimensional dataset can be done in three 

stages, where each stage is done on a different axis (x, y, z). These stages are shown 

in the following figure [6, pp. 106]. 

 

 
Figure 2.11 Interpolation in three dimensions  

 

The simplest method of interpolation is nearest neighbor method. In this 

method nearest sampled point’s value is used as interpolation point.  

 

Linear interpolation method is one of the most popular interpolation method 

used in image and signal processing. It is called bilinear interpolation when it is used 

two dimensional signals, called trilinear interpolation when it is applied to three 

dimensional signals. 

 

Linear interpolation is a computationally expensive method that nearest 

neighbor interpolation, because it assumes that there is a linear relationship between 

the points to be interpolated. It is computed by the formula [6, pp. 110]: 
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where d is the interpolated point’s distance from the point 0x . An example for 

bilinear interpolation is shown in the following figure [6, pp. 111]: 

 

 
Figure 2.12 Bilinear interpolation  

 
 

2.4.4 Classification 

Classification stage in the volume rendering pipeline, enables the structures to 

be visualized without extracting surface or explicitly defining the shape in the 

volumetric dataset. This stage is the most powerful ability of volume rendering 

which makes it more useful with compared to surface rendering methods. In the 

surface rendering visualization techniques, surface of the structures in the volumetric 

dataset must be extracted as a pre processing operation before the rendering phase. In 

the pre-processing stage of the surface rendering [3], [2], [7], the surfaces need to be 

decided if present or not, and there might be some errors occurred in the surface 

extraction. These errors might lead to rendering some surfaces that are not existed in 

the dataset. Classification step of the volume rendering pipeline is not a binary 

decision process that decides if a surface is existed or not. The surfaces are made 

visible by assigning opacity to the voxels. Opacity is a measure between 0 and 1 

which defines how much transparency shall be applied to the voxels, in other words, 

how much light that passes through will be absorbed by that voxel. For example, 

while visualizing a patient’s MRI volumetric dataset, if the voxels which are at a 

position where the patient’s brain exists are assigned as opacity 1, and the rest of the 

voxels in the dataset are set to 0 opacity, the rendering result will be the visualization 

of only the brain voxels stored in the dataset. In the classification stage of the volume 

rendering pipeline, the main aim is to assign opacity values to the each voxel stored 
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in the dataset. However, this process might be very complex and might require 

sophisticated methods to be applied in order to extract meaningful structures from 

the raw data of voxels in the dataset. Segmentation is an example for extracting 

structures from a dataset.  

The assignment of opacity value to the voxels is done by the help of 

information extracted from the dataset, like the intensity / color value of the voxel or 

the gradient magnitude. This process is called opacity transfer function. Before 

understanding the transfer function methods, histogram1, which is a very useful tool 

for designing the transfer function, need to be known.  

 

In almost all of the datasets, there is an inherent noise which differs from one 

dataset to another according to different conditions or methods in the acquisition 

process of the volumetric data. Histograms help to produce meaningful filters to 

avoid noise. While building the opacity transfer function, many different properties 

can be used as input  [6, pp. 89]: 

 

,...),(1 iiIO ∇=α    

 

where O is an example for the opacity transfer function, which has input of the value 

of the voxel (Ii) and the local gradient magnitude ( i∇ ).  

 

 

 

 

 

 

 
                                                 

1 A histogram, in image processing, shows that how many times a pixel of a value appears in 

the image. This is same with the volumetric datasets. The vertical axis shows the number of 

occurrence of the voxel value (frequency) and the horizontal axis shows the values appear in the 

dataset. Histogram is a useful tool for determining the opacity transfer function, because having the 

information about the spread of the voxel intensities can help to construct the transfer function. 
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Figure 2.13 Histogram of a CT dataset. 

 

 

For example: the histogram of a CT shown in the Figure 2.13 gives the 

information that there is a peak between 120 – 150 intensities and the intensities 

below the 100 seems to be noise. In order to filter out the voxels in [120,150] 

intensity range, we built an opacity transfer function by assigning “0” opacity value 

in this range and assigning high opacity values to the other voxels. The output shall 

be different if the filtered intensity range is changed or the gradient magnitude is also 

used. As gradient magnitude shows how quickly the voxel intensity values change, 

filtering the voxels that have less gradient magnitude values by assigning small 

opacity value, the voxels that happen to be on a surface will be rendered and the 

structures in the volumetric dataset could be viewed.  

 

Here is another example for opacity transfer function, which helps to 

visualize the voxels having the intensity value of fv and neighboring voxels that has a 

significant gradient value[6, pp. 94]: 

 

 

 

 

0 100 200 300
0

20

40

60

80

Voxel Intensity 

Fr
eq

ue
nc

y 



37 

Opacity value for the voxel i Case 

iv
i

If
r

−
∇

−
11  If 0>∇ i  and iivii rIfrI ∇+≤≤∇−  

1 If 0=∇ i  and Ii=fv 

0 otherwise 

where,  

i∇  is the gradient magnitude at voxel i, 

Ii  is the intensity value of the voxel i, 

r is a constant, which is “the maximum a voxel’s intensity can deviate from fv”  

 

Classification process is mainly implemented with an interactive user 

interface, so that the user is able to change the parameters in real time according to 

the type and histogram of the volumetric dataset. Segmentation results or other kinds 

of labeled information and other kinds of filtering techniques might be used as input 

in the opacity transfer function. 

2.4.5. Shading 

 Shading phase of the volume rendering pipeline refers to illumination and 

shading techniques that are well known methods in the conventional computer 

graphics in order to enhance the quality of the rendering to make it more realistic. 

Shading methods try to model the geometric scene in a way that more photo realistic 

effects like shadow, scattering and absorption of the light according to the properties 

of the material, could be obtained. In volume rendering, the primary goal is not the 

photo realism, but to get better and more understandable rendered views of the 

structural information stored in the volumetric dataset. Because volume rendering the 

datasets may contain information about tissues of a human body, an engine block, a 

fluid dynamics test, acoustics, etc, in the real world, only the surface of objects could 

be seen. However, volume rendering aims to visualize the inside of the object, and 

use the shading phase in order to visualize that as realistically as possible. 

 

 In computer graphics, illumination is defined as a model, which describes all 

the light striking a particular point on a surface that has particular material properties. 
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“An Illumination Model describes the interaction of light incident with a surface in 

terms of the surface properties and the nature of the incident light.”[44] A shading 

model is a framework that an illumination model fits, in other words, shading is a 

model which determines when and which illumination model shall be applied to a 

point, and what parameters shall the illumination model use. The result of shading is 

the color of a point in the environment that is being rendered, according to the 

physics that how light shall shine on that point, and the position-angle of light and 

the rendering reference (user’s eye) orientations in the space. The computation of this 

physics is achieved by the illumination model used. In order to build a model and 

obtain realistic results, first, how light interacts with the surface of the objects should 

be understood [6, pp. 67]. 

 

“The complete physics of the interaction of light with surfaces is very 

complex and it is usual to use various empirical approximations to the true physics in 

Computer Graphics. The reason for this is the vast computational demands made by 

a good physical illumination model. However, acceptably realistic results can be 

produced fairly quickly using a quite simple illumination model” [44]. 

 

 In order to compute how the light shall behave when it hits a surface, there 

should be information about the shape of that surface. Surface normal of a point 

gives this information and enables the model to calculate how the reflections shall be. 

In the volumetric datasets, the gradient information of a voxel can be used as surface 

normal for that voxel.  

 2.4.5.1 Phong Illumination Model 

  Illumination models, in general, aim to simulate the behavior of light 

reflection on a surface according to the observer position, light source position, 

surface shape and material properties. For example, a black billiards ball under a 

single, white spot light shall be observed as a white light shinning on the surface of 

the ball. However, if the observer changes the position and look at the ball at a 

different angle, it would be seen that, the white shinning part of the ball is now black. 
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In other words, every point on the scene need to be calculated during the rendering 

process.  

 

 The Phong Illumination Model [8] deals with three types of light reflection, 

namely: (i) Ambient Reflection: The reflection of light that arrives at the surface of 

the object from all directions; (ii) Diffuse Reflection: The reflection of light from 

non-shiny surfaces in which the light is scattered equally in all directions; (iii) 

Specular Reflection: The reflection of light from shiny or mirror like surfaces.  

 

 The visualization of a point of an object is the intensity of light that is 

reflected from the surfaces of that object; and the intensity of the light in Phong 

shading is calculated by summing over the above three types of reflection. If the 

model is rendered in color, this process shall be done for each of the color 

components: red, green and blue. 

 

 Ambient Light: 

 The Phong model assumes that, the ambient light has the same intensity 

everywhere in the scene that is being rendered. The ambient light has no single point 

position, so there is no angle of ambient light with respect to the position-shape of 

the object being rendered.  

 

 Phong illumination model with ambient light illumination can be formulated 

as follows: 

 

 Co = Ca ka Od     

where, 

Co: Resulting color computed for rendering of a point 

Ca: Color of the ambient light. (The color consists of red, green and blue intensity 

components, so the computation is done for each single component of color, 

separately.) 

ka: Material property of the surface. It is called the ambient reflection coefficient. 

This coefficient is a number between 0 and 1 which is assigned as a property of a 
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material in the scene. ka for a black surface is smaller than ka for a white surface as 

the color black absorbs light more than white. 

Od: The visualized object’s diffuse color (assigned in the material properties of the 

surface) 

 

Diffuse Reflection: 

 Diffuse reflection is the scattering of light in all directions. If a surface is a 

perfectly diffusing surface, an incoming light ray shall be reflected to every angle. 

Thus, in the rendering result, intensity of a point on a surface will not depend on the 

position of the user, but will depend on the properties of the material, color and 

distance of the light source, and the angle of the light ray. The color of a surface is 

obtained by the light absorbing property of a surface. For example: A red billiard ball 

is observed as red if a white light source exists, because the material absorbs the 

green and blue colored light rays and scatters the red light rays. If the material of the 

ball has no specular light reflection, in other words, it has a perfectly diffuse 

reflecting surface; it will appear dull-matt. Figure 2.14 [45] shows how diffuse 

reflection occurs. 

 
Figure 2.14 Diffuse reflection  

 

 While computing the diffuse reflection, often the distance between the light 

source and the surface is not taken into account. So, the light source is thought to be 

infinitively far away and the light intensity does not change at any distance. This is 

called directional lighting. In directional lighting the only parameter that will be used 

in computing the rendering result for a point, is the angle between the surface and the 

rays of the light.  
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Figure 2.15 Diffuse reflection dependency of angle between light position and 

surface normal 
 

In Figure 2.15, N is the surface normal of the point that is going to be shaded; 

L is a vector that points the light source; Ө is the angle between L and N; kd is the 

diffuse reflection coefficient of the surface; Cp is the color of the light source. 

  

 When the diffuse reflection parameters are added to the previous equation, 

the Phong illumination model, the formula becomes: 

 

 Co = Ca ka Od +Cp kd Od cosӨ  

 

 This equation shows that, when the angle between the light source and 

surface normal is 0, the diffuse reflection of the surface becomes the maximum; 

when it is 90 degrees, no diffuse reflection is added to the Co (resulting color) 

 

 If the L and N vectors are normalized, the formula can be changed as follows: 

 

 Co = Ca ka Od +Cp kd Od (N · L)  

 

where, (N · L) is the dot product between L and N vectors, which is equal to cosӨ. 
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Figure 2.16 Effects of ka, kd changes  

 

 Figure 2.16 [46] shows the difference of diffuse and ambient reflection. When 

the diffuse reflection coefficient (kd) increases, shadows occurred because of the 

directional light reflection which makes the object look more photo realistic. 

 

Specular Reflection: 

 While rendering shiny surfaces like polished metal, a glossy plastic, specular 

reflection is necessary for a more photorealistic result. In shiny surfaces, a highlight 

or a bright spot is seen [47].  

 
Figure 2.17 Diffuse to Specular reflection  

 

 The bright spot seen on the surface is dependent on where the surface is seen. 

Figure 2.18 shows that the color of the rendering result for a point also depends on 

the angle between the reflection direction and the position of the viewer.  



43 

 
Figure 2.18 Specular Reflection 

 

When the specular reflection is added, the Phong illumination model becomes: 

  

 Co = Ca ka Od +Cp [kd Od (N · L) + ks Os (R · V)n] Equation (2.1) 

where, 

ks   is the specular reflection coefficient 

Os is the specular reflection color 

R is the normalized reflection vector, 

    which is the mirror of vector L about the normal N 

V is the vector from the point to be shaded to the viewer 

(R · V) is the dot product between R and V vectors,  

    which is equal to cos(angle between the vectors R and V) 

n is the specular reflection exponent   

  

The presence of the vector V shows that the result of rendering shall be dependent 

upon the position of the viewer.  
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Figure 2.19 Effects of specular reflection exponent changes  

 

The specular reflection exponent n is used in order to increase the sharpness of the 

edges of the highlighting dots because of specular reflection. Figure 2.19 [46] shows 

results for different specular reflection exponent values. 

 2.4.5.2 Shading Methods 

 “Gouraud and Phong shading models both use the illumination model of 

Phong that was given in Equation (2.1) or some close derivative. The difference lies 

when and where the illumination model is applied” [6, pp. 79]. 

 

 While rendering a geometric model that consists of polygons, the material 

properties and surface normals of the objects are assigned on the vertex points of the 

polygons (here texture mapping is not taken into account). One way of rendering is 

to use Flat Shading which assumes the same surface normal for every point that 

exists on the polygon. However, this would lead to discontinuities on the surface 

between the polygons, and a non smooth rendering result shall be obtained as shown 

in Figure 2.20 (a) [48] and Figure 2.22 (a) [48]. The smoothness could be achieved 

by increasing the number of polygons of the geometric model (Figure 2.20 (b)). 

However, this would increase the computation time of the rendering process a lot.  

 



45 

 

 
(a) (b) 

 
Figure 2.20 Flat Shading  

Model used in the image (b) consist of 16 times more polygons than the model 
used in the image (a) 

 

Gouraud shading model solves the discontinuity problem by interpolating the 

non vertex point colors across the edges. Usually linear interpolation method is used, 

but other kinds of interpolation techniques can also be applied. First the resulting 

color values for the vertex points are calculated; afterwards the remaining points 

(pixels of the rendering result) are calculated by interpolation for the each red, green 

and blue component of color. Figure 2.21 [48] is an example for this method.  

 

 
Figure 2.21 Gouraud Shading  

 

 Phong shading method’s difference from Gouraud shading is that; in Phong 

shading, color values of the non vertex points for the resulting rendered image are 

computed by interpolating the normals of the vertices. In other words, first the 

surface normal of the non vertex point is computed by interpolating the vertex 
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normals of the polygon; afterwards, the Phong illumination model is applied on that 

point to compute the resulting color value. 

 

   
(a) (b) (c) 

Figure 2.22 Different Shading Methods  
(a) Flat Shading; (b) Gouraud Shading; (c) Phong Shading. 

 

 As seen in the above figure, Phong shading model has an advantage over 

Gouraud shading model in computing a more accurate specular shading result. 

However, in order to apply the Phong shading, the normals should be interpolated. 

Although the normals at the vertex points have been normalized, the new 

interpolated vectors shall not be normalized in general. The normalization 

computation process requires a high computation time. 

2.4.6. Compositing 

 The term compositing is the method of combining two or more images [49].  

 
Figure 2.23 Intervisibility of two images  

 

 The result of rendering is a digital two dimensional image that consists of 

pixels. Each pixel can carry only one color value, but may represent hundreds of 

values that present along the ray of that pixel. Compositing is the accumulating of 

these values into one. A pixel value may contain the translucency information as well. 

“over”= 
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The alpha value is generally used for defining the opacity property of that pixel. 

While combining two different pixels into one, the values of red, green, blue and 

alpha (RGBA) can be combined with more than ten different ways [6, pp. 121]. 

However, not all of the combining techniques are meaningful for the volume 

rendering purposes. In computer graphics, the term compositing is also called as 

blending, and these different blending techniques shall be given in the blending topic 

of OpenGL. 

 

 Compositing is the last phase of rendering the volumetric dataset in the 

volume rendering pipeline. There are two basic methods of compositing; back-to-

front, front-to-back; and the main difference of these methods is the direction that is 

taken along the ray. 

 2.4.6.1 Front-To-Back Compositing 

 In order to compute the resulting color of each pixel for the result image of 

rendering, front-to-back compositing methods draw a ray that starts from the pixel 

(viewer) and goes through the volumetric dataset. The casted ray may pass through 

the space between the voxels as shown in Figure 2.24. First of all, an interpolation 

method is to be used to calculate the color and alpha values of the newly sampled 

points a and b. This computation is done according to the shading model that is 

chosen to be used. This can be a simple direction independent method or a more 

complicated method like Phong shading.  

 
 

Figure 2.24 Front-to-back compositing 
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 After the interpolation process, the value of pixel can be calculated with this 

often-used front-to-back compositing equation [6, pp. 125]: 
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where; 

I (a,b)  is the total intensity accumulated between the points a and b. Intensity here is 

not the same as color. The relationship between color and intensity is given as: “I = 

Color * Opacity (α )” . α   is the opacity of the point, which is (1-Transparency).

 This equation can be rewritten like this [6, pp. 127]: 
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This equation shows an “over” relation like this: “I0 over I1 over I2 …. In-1 

over In“ “This operator was first introduced by Porter and Duff for digital imaging in 

their 1984 SIGGRAPH paper. Thus compositing means applying the over operator 

on all sample points on one ray” [6, pp. 127]. 

 

 The pseudo code of this equation’s implementation can be: 

  

 I[0 .. n] is the array of intensity values of the points 

 T[0 .. n] is the array of transparency values of the points 
 float Transparency = 1.0; 

float Intensity = I[0];  // this is the variable which will store the result 

intensity value, initially assigned as the intensity of the first point. 

 
 for ( i = 1; i <= n; i++) 

 { 

  Transparency *=  T[i-1]; 

  Intensity += Transparency * I[i]; 

  if  ( Transparency is 0.0 )  

Brake; 

}  
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 The implementation shows that until the transparency value is zero or very 

close to zero, the loop can be stopped before computing all of the points which 

would require a high computation time. 

 2.4.6.2 Back-To-Front Compositing 

 Back-to-front compositing method, compute the intensity value, starting from 

the most far point to the nearest point with respect to the user.  

 

 
Figure 2.25 Back-to-front compositing 

 

It is formulated as [6, pp. 128]: 
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 The equation for back-to-front compositing is very similar to the equation 

given in the front-to-back compositing method. The difference shows itself in the 

implementation [6, pp. 129]: 

 

 I[0 .. n] is the array of intensity values of the points 

 T[0 .. n] is the array of transparency values of the points 

float Intensity = I[0];  // this is the variable which will store the result 

intensity value, initially assigned as the intensity of the first point. 
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 for ( i = 1; i <= n; i++) 

 { 

  Intensity = Intensity * T[i] + I[i]; 

}  

  

 This implementation has an advantage over front-to-back implementation 

example, because there is no variable kept for the accumulated transparency, and that 

shall decrease the computation time. However, in back-to-front implementation 

example, there is no control that can end the loop before processing all of the points.  

 2.4.6.3 Maximum Intensity Projection (MIP) 

 Maximum intensity projection compositing technique is a simple method that 

finds the maximum intensity value on the ray.  

 

 The pseudo code for MIP can be: 

  

 I[0 .. n] is the array of intensity values of the points 

 float maxIntensity = I[0];  //  this is the variable which will store the 

maximum intensity value, initially assigned as the intensity of the first point. 

 
 for ( i = 0; i <= n; i++) 

 { 

  if ( maxIntensity < I[i] ) 

  maxIntensity = I[i]; 

}  
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Figure 2.26 Maximum intensity projection of a human head  

 

 An example for maximum intensity projection is given in Figure 2.26 [50] 

 2.4.6.4 X-ray Projection 

 X-ray projection method is another method of compositing, in which the 

values across the ray are added.  

 

 The pseudo code for X-ray projection can be: 

 

 I[0 .. n] is the array of intensity values of the points 

 float Intensity = I[0];  //  this is the variable which will store the 

X-ray intensity value, initially assigned as the intensity of the first point. 

 
 for ( i = 0; i <= n; i++) 

 { 

  Intensity += I[i]; 

}  

 

 However, the intensity value calculated with this loop should be normalized, 

in case some values might exceed the maximum value that the rendered image pixels 

can have. 
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Figure 2.27 X-ray projection of a human feet  

 

 An example for X-ray projection is given in Figure 2.27 [51]. 

 2.5 Volume Rendering Techniques 

 Volume rendering pipeline described here, consist of some general operations 

that the volumetric data is processed for rendering. There are many different 

approaches for implementing volume rendering applications. The sequence of the 

data flow and applied processes described in the volume rendering pipeline may vary 

from one technique to another. Some of the different approaches for implementing 

volume rendering are: 

  

Image-order volume rendering 

 Object-order volume rendering 

 Shear-warp method 

 Texture mapping used for volume rendering 

 Constructing special purpose hardware for volume rendering  

 2.5.1 Image-Order Volume Rendering 

 In image-order approach to volume rendering, the color values of each pixel 

on the resulting rendered image plane are determined. Ray casting is an example for 

image-order method, which casts rays from the pixels of the image plane to the 

volume. The accumulation of the resampled points that are on the ray passes though 

the volume is done by front-to-back order approach [9], [10]. 
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Figure 2.28 Volume Raycasting  

 

 There are many approaches in image-order volume rendering, to increase the 

performance and capability of ray casting method. Some of them are: 

 

 Image-Space Coherency: The image plane, which is going to be rendered, 

would have some sort of coherency between the pixels. In other words, if pixels 

which have a common neighboring pixel, have the same color value; the probability 

of common neighbor pixel’s value is the same color, is very high. So the ray casting 

is done for not every pixel on the image plane, and the empty pixels are interpolated 

afterwards. This is called image-space coherency [9]. 

 

 Object-Space Coherency: The sampling rate of ray casting has a great effect 

on the computation time of the algorithm. Usually the volumetric datasets contain 

some regions that has uniform or similar color values. Object-space coherency 

technique tries to increase the performance of ray casting algorithm, by initially 

sampling the points through the ray, at a low frequency. Then the sampled values are 

examined, and if two consecutive sampled points have a large difference in color 

value, new samples are taken between them. This aims to approach increase the 

performance of ray casting, without decreasing the detail of the rendering [11]. 

 

 Template Based Ray Casting: If the projection method used for rendering is 

orthographic viewing, a coherency between the rays can be obtained, because, even 

though they are from different origin, they have the same slope. The method 

template-based ray casting pre-compute and store templates of the points to be 
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sampled. The computation time required for casting the ray into the volume is 

decreased by applying the ray templates pre-generated before rendering [12]. 

 

 C-Buffer: While rendering a volumetric scene interactively, the difference 

between the consequent frames are usually small. The C-Buffer use this feature to 

increase the frame rate of the rendering process. While the image plane is computed, 

the coordinate of first non-empty sampled point is stored in the pixel. This 

information is used for estimating the initial position of a ray in the subsequent frame. 

For example, if a rotation is to be computed, pixel values of the following frame are 

calculated by transforming the C-Buffer information according to the rotation, and 

the coordinates that might become masked are eliminated [13]. 

 

 Empty Cell Skipping Methods: The volumetric datasets usually contain large 

spaces of fully transparent voxels. There are many approaches to avoid sampling 

such regions and increase the computation performance in ray casting. Hierarchical 

spatial enumeration method [14] preprocess the volumetric dataset and create a 

hierarchically indexed, a binary pyramid for the volume. When a ray is sent to the 

volume, it passes through the first level of the pyramid. If a non empty cell is reached, 

more detailed cells stored in the lower level of the pyramid are used. Space leaping is 

another method for passing the empty cells (transparent voxels) of the volumetric 

data [15], [16], [17]. In this method, the volumetric dataset is pre processed and the 

voxels which are fully transparent are labeled with a value that shows the distance of 

the nearest non empty cell; so that sampling distance can be increased safely. 

 2.5.2 Object-Order Volume Rendering 

 Object-order volume rendering methods determine how the volumetric data 

sample affects the pixels of the image plane. An object-order algorithm computes 

through sampled points in the dataset, and project it onto the image plane [10].  
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Figure 2.29 Object-order volume rendering  

 

 Object order volume rendering methods can be classified as splatting and 

scan line cell drawing algorithms.  

 

 Splatting algorithm [18] developed to improve the performance of volume 

rendering at the price of less accurate rendering result. This technique is rather 

complicated and it will not be defined in detailed here. It approximates a projection 

called Gaussian splat, which depends on the color and opacity of the voxel. The 

projection is made by splatting every voxel onto the image plane by compositing on 

top of each other.  

 

 Scanline cell drawing [19] methods treat each of the voxels of the dataset as 

geometric surfaces (like hexahedron, tetrahedron, a square or a plane perpendicular 

to the image plane) and split the resulting scan line according to the distance of the 

voxels from the image plane.  

 2.5.3 Shear-Warp Method 

 Shear-warp method [20] is considered to be the fastest volume rendering 

algorithm (software based). The slices in the volumetric dataset are applied a shear 

transformation as shown in the Figure 2.30. The shear transformation changes all 

viewing rays parallel to the axis of the volume array which is the transformed 

volume (called sheared object space). This enables the image plane and the volume 

to be traversed simultaneously. An intermediate image is created as the result of 

compositing and a two dimensional transformation is applied to the intermediate 

image in order to obtain the final rendered image [20].  
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Figure 2.30 Shear-Warp algorithm mechanism (for Parallel Projection) 

 

 2.5.4 Volume Rendering Using Texture Mapping  

 Due to the latest vast amount of increases in the performance of GPU 

hardware, some techniques were developed for implementing volume rendering 

using the graphics hardware which enables more intractability by higher frame rates 

of rendering. This subject shall be explained in detail in Chapter 3.  

 2.5.5 Special Purpose Hardware for Volume Rendering 

 Due to the high computation time required for volume rendering, many 

researchers build special purpose hardware architectures for volume rendering.  

VOGUE [21], VIRIM [22], VIZARD II [23], EM Cube [24] are some of these 

architectures.  
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CHAPTER 3 

VOLUME RENDERING USING PC GRAPHICS 
HARDWARE 

 
The developments in the gaming and entertainment market lead to a fast 

evolution of consumer graphics hardware in the recent years. Some of the hardware 

developer companies like NVIDIA [52] and ATI [53] have produced state of art 

consumer graphics chips, and these chips offer a level of programmability with a 

high performance on a cheap personal computer that was only possible to be 

performed in high price traditional workstations. This success in the production of 

hardware not only increased the reachablity of performance but also employed the 

use of some rendering algorithms that previously could not be used for real time 

rendering. 

 

Volume rendering algorithms have high computational demands. The major 

problem faced while using PC graphics hardware is the amount of texture memory 

required for storing the volumetric dataset is usually large, and texture fetching 

operations cause all of the dataset to be transferred over the bus for each frame to be 

rendered. The newly developed graphics cards present larger texture memories, with 

increased programmability and flexibility of the Graphics Processing Unit (GPU) 

including transfer functions, shading, and filtering. These developments gave a new 

environment for the researches to develop new techniques for implementing 

interactive volume rendering with a high performance and quality. 
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 3.1 Texture Based Volume Rendering Methods 

 Texture based volume visualization technique is composed of these phases: 

First, the volumetric data is sampled as planes and these samples are sent to the 

texture memory of the graphics hardware, in order to be used for mapping the 

polygons as textures. Then planes which are placed parallel to the image plane (result 

image to be viewed), are mapped with the texture. These planes are rendered as 

polygons and they are clipped by the limits of the texture volume. The resulting 

slices of polygons are blended together by back to front order, and while each 

polygon is rendered, its pixel value is blended into the frame buffer with the 

appropriate transparency, and the volume is visualized. [54] 

 
Figure 3.1 Polygonal slices that are mapped with textures. 

 

 3.1.1 Volume Rendering Using 2D Textures 

 Volume rendering using 2D texture mapping is supported by most of the 

graphics hardware. Volumetric dataset is sampled into two dimensional array or 

digital images, according to the number of slices to be used while rendering. These 

images are sent to the texture memory for mapping the polygonal slices as shown in 

the Figure 3.2 [55].  

 

 
Figure 3.2 Texture Mapping  
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 Using the texture mapping, the performance of graphics hardware allows 

interactive rendering of the scene. This means that, without resampling the 

volumetric data and sending the images of slices to the texture memory, the scene 

can be rotated by applying a transformation to the polygons or changing the eye 

position as shown in Figure 3.3 [55].  

 

 
Figure 3.3 Rotated view  

 

 However, when the slice planes become parallel to the view of direction, the 

user cannot see anything in the rendering result, as shown in Figure 3.4 [55]. 

 

 
Figure 3.4 No rendering result  

 

 

 In order to solve this problem, during the first stage that the volumetric 

dataset is sampled as two dimensional slices of images, three different set of slices of 

images are sampled along each x, y and z axis as shown in Figure 3.5 [55]. 

 

 

slices

image plane 
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Figure 3.5 Slice sets parallel to the three coordinate planes  

 

 After sending the each three set of slices to the texture memory, the set of 

most suitable that is the most perpendicular slices of 2D texture set according to the 

viewpoint and view direction is chosen to be rendered. When the position of the 

viewpoint changes with respect to the volume, 2D texture set that is most closely 

aligned with the view direction is used. Each slice of polygon that was mapped with 

texture is rendered from back to front using an appropriate blending method [56]. 

 

 

 
Figure 3.6 2D texture mapped slices  

 

 Disadvantages of this method are: The sampled images for the slices from the 

volumetric dataset, occupy three times time more space in the texture memory as 

three sets of textures have to be produced. The sampling rate of the resulting render 

image changes according to the perpendicularity of view direction to the slices 

shown in Figure 3.7 [55]. 
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Figure 3.7 Sampling artifact  

 
 When the slice set use changes during the rotation of the model, there is a 

change occur in the intensity of the results as the sampling rate according to the view 

direction changes. This is called popping effect shown in Figure 3.8 [55]. 

 

 
Figure 3.8 Artifact during the change of the slice set.  

 

 

 3.1.2 Volume Rendering Using 3D Textures 

 Recent developments in the graphics hardware enable to process three 

dimensional textures. 3D texture supported hardware enables the interpolation of 

three dimensional texture coordinates to the vertices of the polygons, so that the 

texture samples are reconstructed by trilinear interpolation [25]. In other words, there 

is no need to keep the volumetric data as three times itself [26] as it was done in two 

dimensional texture mapped volume rendering, because trilinear interpolation 

enables the three dimensional texture to be mapped on surfaces of the polygons. This 

means that arbitrary slicing through the volumetric texture data can be achieved [55] 

as seen in Figure 3.9.  

 

d d’ d’’ 

d’’ > d’ > d
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Figure 3.9 3D texture, arbitrary slicing capability 

  

 In 3D texture based volume rendering, all of the volumetric data is loaded to 

the texture memory at once. Transformation operations required for rotating, scaling 

can be directly done on the mapped texture, as the mapped slice is computed by the 

graphics hardware with trilinear interpolation, so that changing the texture 

coordinates on the vertices of the polygons will change the mapped result on the 

polygon slice [56].  

 

 
Figure 3.10 Viewing direction aligned slicing  

 

This enables a view aligned slicing capability which overcomes the problem 

of changing sampling ratio according the viewing orientation faced in the 2D texture 

mapping volume rendering technique [56].  

 

 
Figure 3.11 Consistent sampling rate.  

d d 
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 The sampling ratio can be changed only by changing the number of slices that 

will be rendered without making any extra computations on the volumetric data. This 

gives a capability to shift between performance and quality of rendering result during 

interactively rendering the scene.  

 

 Volume rendering by 3D texture mapping also gives the capability to use the 

planar clipping mechanism of graphics APIs which enables the clipping operations to 

be done by the graphics hardware.  

 

 The implementation built for this work has been done by this method, and the 

details for the capabilities of this method shall be given in the following chapters. 

 3.1.3 Sampling Frequency 

 Both in 2D and 3D texture mapped volume rendering, sampling frequency is 

an important variable on the quality and performance of rendering process. Sampling 

frequency is the obtained by the number of slices that are mapped with the texture. 

There are some factors to be considered while choosing the number of slices to be 

used in rendering [57]: 

 

 Performance: Implementations using hardware accelerated volume rendering 

method may have two modes for rendering, interactive and detail modes. In the 

interactive mode, less number of slices can be used in order to increase the frame rate 

of the rendering process, but that shall lead to a low frequency of sampling which 

may lead to decrease in the quality of the rendering. Detail mode can render more 

number of slices and obtain higher quality render results with more detail but with 

lower frame rates of rendering. 

 

Volume size: While rendering a cubic volume with a view position at the 

front side, a good rendering quality can be achieved by using number of slices equal 

to number of voxel count on the view direction axis. However, the dimension of the 

volume may differ from an axis to another, so making an approximation in the 

number of slices to be rendered according to the major axis is a good method. 
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Transparency Issue: It is said that, increasing the number of slices which 

would increase the sampling rate to be rendered, increases the quality of the final 

render result. This is not true after a rate that exceeds the original sampling rate of 

the volumetric dataset. Increase in the sampling rate more than the sampling rate of 

the original dataset does not give more details. Moreover, over operator used while 

rendering back to front is not a linear operator. In other words, when more than one 

sample is taken for a voxel that is semi transparent, the opacity for that voxel would 

increase at the render result, as it is sampled for more than one and the transparency 

is decreased. If the sampling rate is to be changed, the alpha values should be 

rescaled because of this issue.  

 

Introductory information about Computer Graphics is given in Appendix B, 

“1. Fundamentals of 3D Computer Graphics” chapter. Brief information about 

OpenGL API, and some detailed information about syntax and commands of 

OpenGL is given in Appendix B, “2.OpenGL” chapter.  
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CHAPTER 4 

IMPLEMENTATION 

 

 The main purpose of the implementation is to present an environment that is 

able to read and visualize volumetric datasets. The motivation for building this 

implementation is to use the graphics hardware of an ordinary desktop computer that 

is being used today, and implement a volume rendering application for this hardware 

and give an interactive environment with some visualization techniques for the user.  

 

 Java [59] programming language was used for the implementation because 

Java platform gives an advantage to run the implementation on various operating 

systems. Development and testing phases for the implementation has been done on 

Microsoft Windows XP, and Windows 2000 operating systems. Java Development 

Kit version 1.4.2, which was the latest development kit provided by the Sun 

Microsystems at the start of the project, have been used.   

4.1 Software Libraries 

 Since the motivation for this implementation is to build an application that 

uses PC graphics hardware for rendering volumetric datasets, an application 

programming interface (API) that gives an interface to communicate with the 

graphics processing unit had to be used. The first intention was to use Java3D [58] 

API  which provides a set of object oriented interfaces that support a high level 

programming model that is able to give interface for the developers to develop an 

implementation that works on both of the major low level graphics APIs, Microsoft 

DirectX and OpenGL. The first prototypes built for understanding the computer 

graphics implementation techniques, has been done using this API. Java3D API gave 
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an easy and faster implementation capability as it provides an object oriented and 

descriptive interface. However, first prototyping experiences showed that using a 

procedural interface like OpenGL would give more capabilities while rendering a 

scene, because every step for rendering can be controlled and modified by the 

programmer, which cannot be a case for a high level interface like Java3D. Actually, 

at the start of the project, the programming requirements for building a volume 

rendering implementation was not very clear. Choosing a lower level API would 

require more time for understanding and developing the software, but would be more 

flexible for the changing programming requirements. Because of these, OpenGL API 

is chosen for the implementation. 

 

 “OpenGL is supported on every major operating system, it works with every 

major windowing system, and it is callable from most programming languages. It 

offers complete independence from network protocols and topologies. All OpenGL 

applications produce consistent visual display results on any OpenGL API-compliant 

hardware, regardless of operating system or windowing system.” [60] In order to use 

OpenGL API in Java platform, a project called Java for OpenGL (JOGL) has been 

initiated. “The JOGL Project hosts a reference implementation of the Java bindings 

for OpenGL API, and is designed to provide hardware-supported 3D graphics to 

applications written in Java. It is part of a suite of open-source technologies initiated 

by the Game Technology Group at Sun Microsystems. JOGL provides full access to 

the APIs in the OpenGL 1.5 specification as well as nearly all vendor extensions, and 

integrates with the AWT and Swing widget sets.” [61] 

  

JOGL User Guide [62] explains the properties for this API as follows:  

“JOGL is a Java programming language binding for the OpenGL 3D graphics 

API. It supports integration with the Java platform's AWT and Swing widget sets 

while providing a minimal API that handles many of the issues associated with 

building multithreaded OpenGL applications. JOGL provides access to the latest 

OpenGL routines (OpenGL 1.4 with vendor extensions) as well as platform-

independent access to hardware-accelerated off screen rendering. JOGL also 

provides some of the most popular features introduced by other Java bindings for 

OpenGL like GL4Java, LWJGL and Magician, including a composable pipeline 
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model which can provide faster debugging for Java-based OpenGL applications than 

the analogous C program. JOGL was designed for the most recent version of the Java 

platform and for this reason supports only J2SE 1.4 and later. It also only supports 

true color (15 bits per pixel and higher) rendering; it does not support color-indexed 

modes. Several complex and leading-edge OpenGL demonstrations have been 

successfully ported from C/C++ to JOGL without needing direct access to any of 

these APIs. However, all of these classes and concepts are accessible at the Java 

programming language level in implementation packages, and in fact the JOGL 

binding is itself written almost completely in the Java programming language.” 

 

 In order to read volumetric datasets produced for medical imaging systems, a 

library called NeatMed [63] has been used. NeatMed medical imaging API was 

created by Vision Systems Laboratory [27] with the purpose to facilitate the 

development of medical imaging applications. It provides an access to medical 

imaging volumetric datasets that were encoded according to two industry standards 

DICOM [64] or Analyze [37].  

 4.2 Properties of the Implementation 

 This section shall provide information about the capabilities of the 

implementation. Information about user interface and some methods of the 

implementation are given in Appendix A, File Menu, GL Window, and View chapters.  

4.2.1 Visualizing Volumetric Datasets 

 Volumetric datasets are read and the intensity values for the voxels are kept in 

an array. Header part of the files provides information about the number of voxels 

present at each axis and the size information about the voxels. In some datasets, the 

distance that a voxel’s height, width and depth represent may differ. This information 

is used for scaling each axis of the model while rendering, in order to obtain correct 

proportion of sizes.  

 

 First step to visualize the volume is to send the volumetric dataset array to the 

texture memory as a three dimensional texture. Then map this texture to the polygons 
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and render the scene. Figure 4.1 shows a set of polygons mapped with the volumetric 

data texture. 

 

 
Figure 4.1 Texture mapped polygons 

 

 A raw medical imaging dataset does not carry information about translucency 

of the voxels. As it is seen Figure 4.1, the black regions of the dataset, which 

represents no intensity value are also seen because no transparency option has been 

set yet. Compositing methods described in the previous sections can implemented in 

OpenGL by using blending commands. 

 

 The application gives the user the ability to control the number of slices to be 

rendered during the rendering process. Keyboard control for this property is: 

 

 D + PageUp:  increase the density of the slices 

 D + PageDown: decrease the density of the slices 

  

 The key “F9” sets the rendering mode into automatic density state in which 

the density of slices is increased a bit in every frame of rendering. In other words, 

when a key or mouse is pressed, the density of the slices becomes to the smallest 

number (this number is relative to the dataset) so that the rendering process occurs at 

the highest frame rate and the response time of the application to the user requests 

becomes lower. If no key and mouse is pressed, the detail of the rendering increases 

as the number of slices increase a bit in every rendered frame. Figure 4.2 shows a 

sequence of captured image for this command. 
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Figure 4.2 Different densities of slices 

 

 

 The application also enables the user to change the distance between slices 

during visualizing the model with the keyboard control: 

 

 P + PageUp: increase the distance between the slices 

 P + PageDown: decrease the distance between the slices 

 

  When the rendering projection model is set to perspective mode as described 

in the OpenGL section, the result of changing the distance between slices created a 

different perspective results as shown in the Figure 4.3.  
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Figure 4.3 Different distances between slices 

 
 The first result seen in Figure 4.3 is the result of rendering the volume, with 

slices that has no distance between them. This caused a result of orthographic 

projection. When distance between the slices increase, a perspective effect is seen, as 

shown in the following images. However, as the distance between slices increase, the 

parts of the model that are far from the camera are rendered as darker as seen in the 

third image of Figure 4.3. This happens because as the distance increases, the 

number of slices between the camera and the far points should also increase in order 

to obtain a smooth result for the nearer objects. As a future work, a solution for this 

case can be: decreasing the number of slices that appear far from the camera by using 

a ratio with respect to the distance between camera and the slice. In other words, 

decreasing the density of slices when the distance from the camera increases, shall 

create better perspective results.  

 

 A perfectly transparent surface shows the object behind of it, because it does 

not reflect any light from its surface. A translucent material shows the objects behind, 

but those objects appearing are affected by the translucent material in the front, 

because some of the light that hits a translucent material is reflected. In volume 

rendering, viewing the translucency of the voxels are achieved by compositing 

methods described. OpenGL does not support a direct interface for rendering the 

partially opaque surfaces. However, compositing techniques can be applied in 

OpenGL with blending. Appendix B-1 gives detailed information about blending 

function of OpenGL. 
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Figure 4.4 Rendering Parameters, Blending window 

 

 Figure 4.4 shows the different blending options for volume rendering in the 

implementation. No Blending option disables the blending; Figure 4.1 has been 

captured with this option. Default Blending option has been done, because some of 

the display modes which will be explained later, require their own blending options. 

Selecting this option disables the blending parameters set by the user.  

 

Blending options are set in OpenGL by the command: 

 

glBlendFunc(sourceFactor,  destinationFactor) 

 

This function is used by supplying destination and source factors. (The 

properties of these factors are explained in Appendix B-1) Use Global Parameters 

option uses the different methods of blending than specified by the user on the 

Blending Window shown on Figure 4.5. 

 

 
Figure 4.5 Blending Window 
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 This option has been implemented for testing different kinds of blending 

techniques. Parameter selected in the combobox p1, is used as source factor, and p2 

parameter is used as destination factor. Not all the combinations that user may select 

in this option are useful for using in volume rendering. Over, Attenuate and 

Maximum Intensity Projection options in the Rendering Parameters window present 

predefined methods of bending for volume rendering. 

 

 The Over operator [28] is the default blending option used while the 

volumetric dataset is first loaded into the application. The slices of volumes which 

are built by mapping 3D textures on to polygon are drawn from back to the front 

order. The over method of blending, approximates the flow of light passing through 

translucent materials. The transparency of each voxel is determined by the alpha 

values assigned. By default, the application uses the intensity values as alpha values 

of the voxel. The pixel of the textures mapped on the slices with higher alpha values 

hides the other pixels behind them. Over method is implemented in OpenGL like 

this: 
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) 

  

 This function works like this: 

Source: (As, As, As, As)  

which is GL_SRC_ALPHA   

Destination: (1, 1, 1, 1)-(As, As, As, As)   

which is GL_ONE_MINUS_SRC_ALPHA 

 

 Result is computed for each red, green and blue components as follows: 

(color of the source)(alpha of the source)+(color of the destination)(1 – 

alpha of the source ) 

 

Details of OpenGL blending computation method is explained in Appendix 

B-1. Figure 4.6 shows an example for blending with over operator result.  
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Figure 4.6 Over operator 

 

  
(a) (b) 

Figure 4.7 Lighting appearance effect in Blending with Over Operator 
(a) Rendered with less number of slices with respect to the rendering result (b) 

 

 The slices are drawn to the frame buffer with back to front order and blending 

with over operator the value of each pixel of the rendering result is determined by the 

translucencies of the voxels that are mapped on the slice polygons. In other words, a 

voxel color value is multiplied with its alpha (GL_SRC_ALPHA) value then it is 

multiplied with one minus alpha value of the voxel that is nearer to the user 

(GL_ONE_MINUS_SRC_ALPHA) and this goes on for each primitive along the ray 

on the each pixel of result image. However, as seen on the rendering result of the 

image placed in the right side of Figure 4.7, there is an effect like lighting even 

though the values and the transparencies are same for each voxel in the dataset. This 

effect is not a result of the OpenGL global lighting settings. This effect occurred 

because of the texture mapping settings defined by the command glTexParameter. 
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This parameter enables the pixels of the textures that are mapped to be rendered as 

nearest or linearly. If nearest setting had been chosen, the value of the texture 

element that is nearest to the center of the pixel being textured would have been seen 

in the result. However, this caused a non smooth look for the surfaces of the volume. 

Linear setting of the texture returns the weighted average of the four texture elements 

that are closest to the center of the pixel being textured. This setting is used in the 

implementation. Figure 4.7 (a) shows this effect. That image has been rendered with 

a very low density of slices and the edges of the squares seen as white on the image 

are place that the intensity value changes from 0 to 1.0. However, they are not 

mapped like that because of the linear mode of the texture. This effect has an 

disadvantage that the color of the surfaces look darker in the result, however it 

created a very smooth surfaces and also a lighting like effect for the volume. This 

effect is occurred because, when the angle of the surface with the image plane 

increases, number of voxels that are calculated as weighted sum (the grey edges of 

the white squares as seen on the left image) also increases, so the surface looks 

darker. Because there is also a smooth pass on the translucencies of the voxels on the 

surface. As seen on the right image, because of the perspective effect, while going 

ahead from the image plane, the angle of the surface gets larger, so it also gets darker. 

 

 The attenuate operator works with the same logic with X-ray. The intensity of 

a pixel on the render result shows the opacity density of the voxels along the ray of 

that pixel. The alpha values of the voxels in the volume appear to attenuate light 

shining through the viewer. In other words, the final brightness at each pixel of the 

result is the total density of the alpha values of the voxels along the ray. OpenGL 

command for attenuation is as follows [65]: 

 

 glBlendFunc(GL_CONSTANT_ALPHA_EXT, GL_ONE) 

 glBlendColorEXT(1.f, 1.f, 1.f, 1.f / number_of_slices) 
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Figure 4.8 Attenuate Operator 

  

 The result of rendering shall differ as number of slices used is changed. 

Application lets the user to change the number of slices used, interactively during the 

rendering process.  

 

 The Maximum Intensity Projection (MIP) is visualizing the brightest voxel 

value along the light ray for each pixel of the output image. “MIP is a contrast 

enhancing operator; structures with higher alpha values tend to stand out against the 

surrounding data. MIP can be implemented with OpenGL using the blend min-max 

extension” [66]. 

 glBlendEquationEXT(GL_MAX_EXT) 

 

  
Figure 4.9 Maximum Intensity Projection 
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Figure 4.10  
Transparency options,  
single threshold mode 

 

 
Results for this operator can be 

seen in the Figure 4.9. The image on the 

right side is a rendering result of a flight 

into the same dataset rendered on the left 

side, with the same rendering options, 

inside the volume with an exaggerated 

perspective.  

 

When a volumetric dataset is 

loaded to the application, as default the 

translucencies of the voxels are set to 

same values with the intensity values. 

The transparency part in the Rendering 

Options GUI enables the user to change 

the transparency parameters. Intensity 

values of the voxels are scaled between 0 

and 1. For example, if a voxel intensity 

value is 0.7, the application assigns its color components of red, green, blue and the 

transparency component alpha as 0.7. Transparency GUI seen in the Figure 4.10, 

enables the user to select minimum and maximum intensity values to be rendered. 

The specified values of minimum and maximum thresholds are used for filtering the 

dataset while visualizing. Figure 4.11 shows a result for threshold filtering. 

 

  
Figure 4.11 Threshold filtering of a dataset.  
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  The image left on Figure 4.11 is the result of rendering a CT dataset without 

any filtering. The image on the left is a result of rendering the same dataset with 

filtering the intensity values.  

 

The transparency GUI enables the user to assign color values for the voxels. 

If keep original intensity value checkbox is checked, each color component red, 

green and blue is multiplied with the assigned color components. If keep original 

intensity value checkbox is not checked, the assigned color is directly used as the 

color of the voxels. This creates a brighter view as all the voxels are rendered with 

same color, however the render results show that the surfaces look less smooth with 

an artificial look as seen in Figure 4.12.  

 

The checkbox keep original transparency, in the transparency GIU enables 

user to manipulate the translucency values of the voxels. If keep original 

transparency is checked, the transparency value that is specified by the user is 

multiplied with the alpha values of the voxels. If it is not checked, the alpha values 

are changed to the value that user specified. The results for this method of rendering 

showed that, the smoothness of the surfaces is gone since each voxel that passes the 

filter is rendered with full opaque (if the transparency value is assigned as the 

maximum 1.0).   

 

If both keep original transparency and keep original intensity value 

checkboxes are unchecked, a bright rendering result is established; because, all of the 

voxels are assigned with same color and their alpha values are kept also the same. 

The rendering results showed that the smoothness of the surfaces are gone and an 

artificial result is obtained since all of the voxels are seen with the same color and 

transparency. All combinations of the rendering results for this method can be seen 

in Figure 4.12.  

  

A GUI for selecting automatic threshold values or by the interaction of user 

from an histogram table is a future work to be done for this section.  
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(a) (b) 

  
(c) (d) 

Figure 4.12 Results for different combinations of intensity and transparency 
 

(a) Both keep original transparency and keep original transparency are 

selected (default option); 

(b) keep original transparency is not selected, and keep original 

transparency is selected;  

(c) keep original transparency is selected and keep original transparency is 

not selected;  

(d) Image on the down right side: both keep original transparency and 

keep original transparency are not selected.  

 



79 

Figure 4.13 Transparency 
options, multiple threshold mode

Figure 4.13 shows the GUI for 

assigning more than one threshold filters for 

rendering the volume. This part works with 

the same logic of the single threshold section, 

but here the user can specify one than more 

intervals of thresholds to be rendered in 

different transparencies and colors. Figure 

4.14 shows some results for this rendering 

option. 

 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.14 Rendering with multi transparency options.  
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Figure 4.14 shows a dataset with different transparency options. The  model 

is rotated about x axis in (d). 

4.2.1.1 Gradient 

 Gradient vector can be used for computing the reflection of the light rays 

meeting the surfaces of the geometric primitives. The rendering results shown so far 

do not use Phong shading, but they use the Gouraud shading. OpenGL does not 

directly support Phong shading [29]. The volumetric data has been stored as 3D 

texture and it is mapped on slices of polygons in order to be visualized. The global 

lighting options compute the lighting of the polygons according to the normal vectors 

assigned to the vertices of the polygons, in this case, the vertices of the slices. 

However, there is a requirement to compute the lighting according to each voxel in 

volume rendering. In this case, each normal vector of the pixels of the textures on the 

slice polygons are required to be calculated and used for the computation of lighting.  

 

 First obstacle is how to compute the gradient vectors. There are many 

methods that can be implemented for solving this issue. Methods used in the 

implementation can be seen in Figure 4.15. 

 

 
Figure 4.15 Gradient computation methods 
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 In the Default Gradient mode, which is calculated while first loading the 

dataset, central difference method is used. 

 

 In the other methods, convolution method is used for calculating the gradient 

vector. The kernels used for these computations are given as follows: 
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Figure 4.16 give rendering results of different operators on skull head data. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.16 Rendering with different gradient computation methods 
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(g) 

 
Figure 4.16 Rendering with different gradient computation methods 

(a) Central Difference; (b) Sobel 3x3; (c) Prewitt 3x3; (d) Sobel 3x3x3; (e) Sobel 

3x3x3 (2); (f) Sobel 5x5x5; (g) Sobel 5x5x5 (2). 

 

 When the size of kernel used in computing gradient increases, the surface of 

model looks smoother as seen in the Figure 4.16.  

 

 The gradient vector for each voxel is calculated with one of these methods; 

however, the problem has not been solved yet. OpenGL does not support a direct 

illumination model that is applied on each of the pixels of the textures mapped on the 

slices. In order to enable lighting in volume rendering, a common method which is 

used for giving more realism to the two dimensional surfaces without using 

additional polygons, called bump mapping [30] has been used. Details about bump 

mapping can be seen in the Appendix B-1, C-1. 

 

 In order to establish a per voxel lighting effect in OpenGL, Dot3 bump 

mapping [69] technique has been used by using the Dot3 and multi texturing 

extensions of OpenGL [68]. “The difference between "real" bump mapping and dot3 

bump mapping is instead of penetrating the surface normal and binormal at each 

rendered pixel of a surface in dot3 bump mapping a normal map is used.”[67] 

Normal map is a texture and in our case its a three dimensional texture consist of 



85 

voxels. The normal map of the volumetric dataset is computed by the gradient 

operations, and the values of each axis of the normal vectors are stored as red, green 

and blue color components as seen in Figure 4.17. 

 

 
Figure 4.17 Normal Map of the Volumetric Dataset 

 

 Now, we remind the equation in diffuse lighting chapter: 

 

Co = Ca ka Od +Cp kd Od (N · L)  

  

 The result color of a point is dependent on the dot product (cosine of the 

angles between them) of the light and surface normal vectors. The Dot3 extension of 

OpenGL enables the dot product of the matrixes done by the GPU. The voxel color 

values red, green and blue are taken as surface normal and multiplied with the vector 

of the components red, green and blue of the polygon color. The result is then 

multiplied with the original volume voxels color values using the OpenGL 

multitexture extension, and the result is a diffuse lighting per pixel, which can be said 

as Phong shading. In order to change the light direction, the light vector should be 

changed. This can be applied by changing the color of the polygons. The following 

equation is established by this method: 

 

Co = Cp kd Od (N · L)  
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 The user can change the color of each red, green and blue components; in 

other words, change the direction of the light by keyboard controls: 

 

 Ctrl + X + PageUp:  increase red intensity of the slices, or move light along 

x axis 

 Ctrl + Y + PageUp:  increase green intensity of the slices, or move light 

along y axis 

 Ctrl + Z + PageUp:  increase blue intensity of the slices, or move light along 

z axis 

 

 The source code of this operation is given in Appendix C-1. Some rendering 

results for per-voxel lighting with this method can be seen in Figure 4.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

 

 
Figure 4.18 Examples for rendering results with per-voxel lighting 
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4.2.1.2 Segments 

 As mentioned in the volume rendering pipeline, segmentation is an important 

stage especially for medical imaging visualization. There are various methods built 

for segmenting the volumetric datasets; this application built for the purpose of 

visualizing the volumetric datasets and does not segment datasets. Segments section 

of the implementation aims to simulate the result of visualizing a segmented dataset. 

Stored segmented dataset are loaded as new layers of data and each segment’s 

visualization options can be manipulated separately by the user as shown in Figure 

4.19. 

 

 
Figure 4.19 Segments GUI 

 

 Each loaded segments can be applied the same options that described in the 

Threshold section. Some rendering results for segmented data visualization are 

shown below. 
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(a) (b) 

  
(c) (d) 

Figure 4.20 Segmented data visualization 
 

(a) Bump mapped added mode; (b) Bump mapped; (c),(d) Bump mapped 

added mode with different transparency adjustments 

 

 Except the image on the right top side, these rendering results are obtained by 

the display mode which uses the given equation in the diffuse lighting section: 

 

Co = Ca ka Od +Cp kd Od (N · L)  

 

 OpenGL source code for this formula is given in the Appendix C-2. 
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4.2.1.3 Clip Plane and 3-Axis Plane 

 This section of the application uses some of the OpenGL methods to enhance 

the visualization capabilities. 

 

 
Figure 4.21 Clip Plane, 3-Axis Plane GIU 

 

 

 Trilinear interpolation capability of 3D Texture Mapping enables the GPU to 

calculate the all the texels to be mapped on a polygon. Using this ability 3-axis plane 

command has been implemented. The user is able to move the polygons that are not 

applied the blend function, and see the two dimensional slices on every location. 

Default Texture command lets the user to visualize the first loaded original volume; 

this might be useful when some parts of the data are set as transparent as shown on 

Figure 4.22.  
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(a) (b) 

  
(c) (d) 

Figure 4.22 3-Axis plane 
 

(a) Default texture; (b) Edited texture; (c), (d) Default texture with edited 

volume. 

 

 OpenGL command glClipPlane can be used as another interactive 

visualization method in volume rendering. Figure 4.23 shows some rendering results 

for this method. 
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(a) (b) 

Figure 4.23 Clip Plane 
(a) Clipped with 2 polygons; (b) Clipped with 1 polygon. 

 

4.2.1.4 Multi Modality 

 Multi modality visualization section of the software displays two different 

volumetric datasets in a single scene. The datasets from different modalities are 

required to be registered before the visualizing process. The implementation uses two 

different display modes for visualizing multi modality datasets as seen in Figure 4.24. 

 

 
Figure 4.24 Multi Modality display modes 

 

 Multi texture option uses the multi-texturing capability of OpenGL. This 

mode has been implemented with the add state of multi texturing which adds each of 

the color components of the each texels that overlay. This option shall be named as 

added multi texture mode. In the separately rendered option, each datasets are 

rendered separately. Figure 4.25 shows the rendering results for displaying MR and 

SPECT (processed) datasets of an epilepsy patient. 
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(a) 

  
(b) (c) 

  
(d) (e) 

 
Figure 4.25 Multi modality rendering results of an epilepsy patient. 
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(f) (g) 

  
(h) (i) 

  
(j) (k) 

 
Figure 4.25 Multi modality rendering results of an epilepsy patient. 
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(l) (m) 

 
Figure 4.25 Multi modality rendering results of an epilepsy patient. 

(a) An MR dataset 

(b) SPECT1: Subtracted (ictal1- interictal2) SPECT of patient 1 

(c) SPECT2: Subtracted (ictal- interictal) SPECT of patient 2  

(d) MR full opaque, SPECT1 full opaque 

(e) MR full opaque, SPECT2 full opaque 

(f) MR %30 opaque, SPECT1 full opaque, with separately rendered mode 

(g) MR %30 opaque, SPECT2 full opaque, with separately rendered mode 

(h) MR %30 opaque, SPECT1 full opaque, with added multi texture mode 

(i) MR %30 opaque, SPECT2 full opaque, with added multi texture mode 

(j) MR %10 opaque, SPECT1 full opaque, with separately rendered mode 

(k) MR %10 opaque, SPECT2 full opaque, with separately rendered mode 

(l) MR %10 opaque, SPECT1 full opaque, with added multi texture mode 

(m)MR %10 opaque, SPECT2 full opaque, with added multi texture mode 

(n)  
 

 In Figure 4.25 (d) and (e), both of the rendering modes separately rendered 

and added multi texture produce same rendering results, because both MR and 

SPECT datasets are set to full opaque.  

                                                 
1 Ictal: SPECT acquired during an epileptic seizure. 
2 Interictal: SPECT acquired in between seizures. 
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Rendering frame rates and the texture memory requirement for both 

separately rendered and added multi texture modes are same. Separately rendered 

mode renders every voxel that presents in each of the modalities (MR and SPECT) 

with their original color. In added multi texture mode, resulting value of a voxel seen 

in the rendered image is calculated by adding each color components of the voxels 

from each modalities (MR and SPECT). This method enables the user to detect the 

intersecting non-transparent parts of the datasets, since the resulting color changes on 

these voxels. 
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CHAPTER 5 

ANALYSIS OF THE IMPLEMENTATION 

  

 This part provides some qualitative comparisons of the outputs and 

performance test results for the implementation. 

 5.1 Qualitative Comparisons 

 The outputs for the implementation have been compared with those of the 

medical imaging software Analyze 5.0 [37] which were developed by Mayo Clinic 

[70] and has been accepted worldwide for medical image analysis. The aim of this 

section is to make qualitative comparisons. (Information about Analyze software is 

given in Appendix D). 

 

 The version 5.0 of the software Analyze has various kinds of properties-

abilities developed for medical imaging. Analyze, Volume Render module has been 

used for capturing the results. There are many methods that have been implemented 

for each process of the volume rendering pipeline in Analyze software. Difference of 

this application from our implementation is that, no hardware acceleration method is 

used. The Analyze software output images used for comparison are the results which 

are produced by the most similar methods of volume rendering to our 

implementation methods.  
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The methods that are compared are as follows: 

 

Depth Shading [31]:  

The value of each pixel of the output is a function of depth. The distance of 

the first renderable voxel along the ray casted from the image plane is rendered with 

its depth value. So the voxels that appear more far from the image plane are rendered 

as darker and the nearer are rendered as brighter. Analyze 5.0 has an option for this 

method that computes the results according to the gradient of the surface. This 

method has not been implemented in our implementation; however the results 

created with the blending over operator of OpenGL presented similar results to the 

Analyze depth shading with gradient estimator. So, even though the methods that are 

being used are not very similar, the results shall be compared. 

 

Gradient Shading [32]:  

Gradient vector of each voxel is computed and the dot product of the gradient 

vector with the light vector which is independently specified. This has the same logic 

with the method that is used in Bump Mapping with Dot3 extension of OpenGL in 

our implementation. Analyze 5.0 support specular reflection computations for this 

method of rendering. Our implementation only supports diffuse reflection, and 

specular reflection shall be a future work to be implemented. 

 

 Volume Compositing:  

This method uses the same technique with Gradient Shading, and enables the 

user to specify different alpha and color values for the volumetric data according to 

intensity values of each voxels. This ability is achieved by the Threshold section. 

Analyze interface enables the user to specify the values with a different technique we 

have used. So, the results of similar requests of user shall be compared. 

 

 Maximum Intensity Projection:  

This method is implemented and has been specified in the 2.4.6.3 Maximum 

Intensity Projection Chapter. It is achieved by maximum intensity projection 

blending technique with our implementation. 
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 Summed Voxel Projection:  

This section computes the average intensity values of the voxels which are 

present along the casted rays from the image plane to the volume. Attenuate method 

mentioned in the blending section achieves this option in our application.  

 5.1.1 Rendering Results  

 The main drawback we have faced while using hardware acceleration in 

volume rendering is the limited texture memory. NVIDIA GeForce Ti4200 128 MB 

Graphics Card has been used for the following results. In this medium, our 

implementation failed to compute Dot3 Bump Mapping with the datasets having 

more than 128x128x128 size of voxels. So, all the datasets had to be resampled to 

this size in order to achieve more meaningful comparisons. 

  

 Analyze 5.0 is a sophisticated software that presents many different options 

for each rendering methods. Following rendering results of Analyze 5.0 Volume 

Render module are captured with options that we think are the most similar to the 

methods of rendering used in our implementation. 

 

 Figure 5.1, 5.2, 5.3, 5.4, 5.5 gives rendering results of Analyze 5.0 Volume 

Render module and our implementation side by side for the same datasets with the 

methods of depth shading, gradient shading, volume compositing, maximum 

intensity projection and summed voxel projection respectively. The rendering results 

seen on the left side are rendered with Analyze 5.0 Volume Render module and the 

images seen on the right side are rendered with our implementation. 
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Analyze 5.0 Volume Render Our Implementation 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 5.1 Depth Shading Comparisons 
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Analyze 5.0 Volume Render Our Implementation 

  
(e) 

Figure 5.1 Depth Shading Comparisons 
 

 (a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d) 
Human body dataset; (e) Same human body dataset of (d) with a different 

threshold filter function. The images on the left side are rendered with Analyze 5.0 
Volume Render module, the images on the right side are rendered with our 

implementation. 
  

 

Analyze 5.0 Volume Render Our Implementation 

  
(a) 

  
(b) 

Figure 5.2 Gradient Shading Comparisons 
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Analyze 5.0 Volume Render Our Implementation 

  
(c) 

  
(d) 

  
(e) 

Figure 5.2 Gradient Shading Comparisons 
 

 (a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d) 
Human body dataset; (e) Same human body dataset of (d) with a different 

threshold filter function. The images on the left side are rendered with Analyze 5.0 
Volume Render module, the images on the right side are rendered with our 

implementation. 
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Analyze 5.0 Volume Render Our Implementation 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 5.3 Volume Compositing Comparisons 
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(e) 

Figure 5.3 Volume Compositing Comparisons 
 

(a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d) 
Human body dataset; (e) Same human body dataset of (d) with a different 

threshold filter function. The images on the left side are rendered with Analyze 5.0 
Volume Render module, the images on the right side are rendered with our 

implementation. 
  

 

Analyze 5.0 Volume Render Our Implementation 

  
(a) 

  
(b) 

Figure 5.4 Maximum Intensity Projection Comparisons 
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Analyze 5.0 Volume Render Our Implementation 

  
(c) 

  
(d) 

  
(e) 

Figure 5.4 Maximum Intensity Projection Comparisons 
 

(a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d) 
Human body dataset; (e) Same human body dataset of (d) with a different 

threshold filter function. The images on the left side are rendered with Analyze 5.0 
Volume Render module, the images on the right side are rendered with our 

implementation. 
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Analyze 5.0 Volume Render Our Implementation 

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 5.5 Summed Voxel Projection Comparisons 
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Analyze 5.0 Volume Render Our Implementation 

  
(e) 

Figure 5.5 Summed Voxel Projection Comparisons 
 

(a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d) 
Human body dataset; (e) Same human body dataset of (d) with a different 

threshold filter function. The images on the left side are rendered with Analyze 5.0 
Volume Render module, the images on the right side are rendered with our 

implementation. 
 

 In the comparisons of rendering without lighting (depth shading), it is seen 

that our software renders smoother on the surfaces, and Analyze software is more 

successful on showing the edges. In the lighting (gradient shading,  volume 

compositing) comparisons, soft tissues that have complicated surfaces, like brain 

seems to be rendered more smoothly with our implementation, however Analyze 

software outputs gives more details for the model with a specular lighting effect. In 

both of the software, there are different kinds of options which enable the user to 

change the rendering output, operate with different methods. The images that we 

have used in the comparisons are the ones that were rendered with most similar 

rendering options.  

 

Render image sets have been examined by a nuclear medicine expert who is 

part of the project “Three Dimensional Brain Image Processing”. She gave the 

following comments for the outputs:  

 

a) The patient seems to have a disorder on his right hand in our outputs. The 

volumetric datasets do not always contain whole of the acquired objects. For 

example, the dataset used in Figure 5.1-5.5 (d) and (e) contain information of a 
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human body, seems to have a disorder on his right hand in our implementation 

outputs. However as clearly seen in the Analyze 5.0 results, the information of the 

whole right hand of the body is not present in the dataset. Our implementation does 

not provide a warning indicator for the lacking parts that are cut because of the edges 

of the datasets. (As a future work, this problem shall be solved by changing contrast 

or color on the parts that are at the edge of the datasets.) 

 

b) Using a larger kernel while calculating the gradient provides smoother 

passes between voxels and the surfaces are seen soft. However, this leads to a 

difficulty in perceiving the information by the user. (This comment will be in our 

future studies for achieving smooth surfaces without decreasing the details of the 

information in the datasets.) 

5.2 Hardware Tests 

 This section provides information about the performance of the 

implementation. 

 

Table 5.1 Testing results 
 
Hardware and 
Operating System: 

OS: Microsoft 
Windows XP 
 
GPU: NVIDIA 
GeForce 4 Ti 
4200 
Texture 
Memory: 
128MB 
 
RAM: 448MB 
 
CPU: Intel 
Celeron, 
416Mhz 

OS: Microsoft 
Windows 2000 
 
GPU: NVIDIA 
GeForce 4 Ti 
4200 
Texture 
Memory: 
128MB 
 
RAM: 448MB 
 
CPU: Intel 
Celeron, 
416Mhz 

OS: Microsoft 
Windows XP 
 
GPU: NVIDIA 
GeForce 4 Ti 
4200 
Texture 
Memory: 
128MB 
 
RAM: 1.00GB 
 
CPU: Intel 
Pentium 4, 
2.01Ghz 

OS: Microsoft 
Windows XP 
 
GPU: NVIDIA 
GeForce 5600 
XT 
Texture 
Memory: 
256MB 
 
RAM 512MB: 
 
CPU: Intel 
Pentium 4, 
2.40Mhz 

 
Dataset name and size: MR dataset of a patient’s body, 128 x 128 x 128 voxels 
Dataset Loading Time: 24 seconds 24 seconds 7 seconds 6 seconds 
Rendered image size: 1024x712 pixels 
Frame Rates (Frames 
per second): 

No Bump 
Mapping: 10fps 
 
With Bump 
Mapping: 5fps 

No Bump 
Mapping: 10fps 
 
With Bump 
Mapping: 5fps 

No Bump 
Mapping: 10fps 
 
With Bump 
Mapping: 5fps 

No Bump 
Mapping: 10fps 
 
With Bump 
Mapping: 5fps 
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Table 5.1 Testing results 
 
Dataset name and size: MR dataset of a patient’s foot, 256 x 128 x 128 voxels 
Dataset Loading Time: 47 seconds 47 seconds 13 seconds 13 seconds 
Rendered image size: 1024x712 pixels 
Frame Rates (Frames 
per second): 

No Bump 
Mapping: 5fps 
 
With Bump 
Mapping: 2-3fps 
 

No Bump 
Mapping: 5fps 
 
With Bump 
Mapping: 2-3fps 
 

No Bump 
Mapping: 5fps 
 
With Bump 
Mapping: 2-3fps 
 

No Bump 
Mapping: 5fps 
 
With Bump 
Mapping: 2-3fps 
 

 
Dataset name and size: MR dataset of a patient’s body, 256 x 256 x 256 
Dataset Loading Time: 14 minutes 25 

seconds 
14 minutes 30 
seconds 

48 seconds 3 minutes 25 
seconds 

Rendered image size: 1024x712 pixels 
Frame Rates (Frames 
per second): 

No Bump 
Mapping: 4fps 
 
With Bump 
Mapping: 
FAILED 
 

No Bump 
Mapping: 4fps 
 
With Bump 
Mapping: 
FAILED 
 

No Bump 
Mapping: 4fps 
 
With Bump 
Mapping: 
FAILED 
 

No Bump 
Mapping: 4fps 
 
With Bump 
Mapping: 2fps 
 

  

As it is seen in the Table 5.1, large datasets (256 x 256 x 256 voxels or more) 

fail when rendered with lighting by graphics devices having texture memory size 

128MB. However the same dataset was successfully rendered with a larger texture 

memory sized (256MB) graphics device. This shows that our method is dependent on 

the texture memory size of the graphics device. The loading time of a dataset is 

mainly determined with the size of the system RAM rather than the performance of 

the CPU.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

6.1 Conclusion 

In this study, we developed an implementation for visualizing Cartesian grid 

volumetric datasets, using PC graphics hardware. The entertainment market caused 

the graphics hardware producers to develop more sophisticated devices in the recent 

years. This fast evolution enables new technologies to be used in the scientific 

visualization field. We tried to develop an application that can be a basis for our 

future works for implementing end user software for visualizing medical images. By 

this study we gained some experience on the abilities of graphics hardware and 

experience on implementing real-time applications to render volumetric datasets for 

different clinical expectations in medical image visualization. 

 

Testing results of the implementation shows that the performance of the 

rendering process is directly related with the capabilities of the graphics hardware. 

This gives an opportunity to achieve a high performance rendering with a low CPU 

power PC. The rapid and extensive consumption and production of the graphics 

hardware devices makes the prices become less everyday. This gives an opportunity 

to the users to obtain real-time rendering solutions without upgrading all of the 

system or spending money on high priced workstations.  

 

Comments given by the nuclear medicine expert showed us that our 

implementation requires some improvements, especially for indicating the edges of 

the volumetric datasets and avoiding the decrease in the detail of the visualized 

information while increasing the smoothness of the surfaces. 
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In order to improve the visualization results and develop better tuning 

techniques, medical stuff should further use and test this software. This will also help 

in emergence of new ideas for future implementations. The environment we have 

chosen for the implementation provides a lot of flexibility in the rendering process to 

achieve such improvements.  

 

Dot3 bump mapping technique has been used for creating a per-voxel lighting 

effect in OpenGL. Segments section of the implementation simulates the result of 

visualizing a segmented dataset. Trilinear interpolation capability of OpenGL 3D 

Texture Mapping enables the GPU to calculate the all the texels to be mapped on a 

polygon. Using this ability 3-axis plane command has been implemented. Multi 

modality visualization section of the software displays two different volumetric 

datasets in a single scene. Our implementation uses two different display modes for 

visualizing multi modality datasets. 

 

The outputs of the implementation have been compared with worldwide used 

medical image analysis software. The visualization methods that are compared are: 

depth shading, gradient shading, volume compositing, maximum intensity projection, 

summed voxel projection. 

 

The development time spent for the implementation is about 8 months. 18 

classes consist of about 14000 lines of code has been written for the implementation. 

(More than 5000 lines of this code have been automatically generated by some 

development tools for the user interface part of the software.)  

6.2 Future Works 

The aim of our implementation was to gain experience and knowledge on 

volume rendering using graphics hardware. The focus of our implementation was to 

achieve high performance rendering by using GPU. Therefore, the user interface, PC 

memory and CPU use efficiency was not the main issue in the development process. 

The testing results show that the loading time of a volumetric dataset is very much 

dependent on the size of the system memory size. We think that system memory size 
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shall always be an issue in loading large sized datasets. However, our 

implementation requires a modification for the management of the memory.  

 

Programming Language: Our implementation has been built using Java 

programming language. The reason for this selection was mainly because of past 

experience. This platform has many advantages for our application; for example, it 

does not require an installation and can be operated from a CD, it is not dependent on 

the operating system. However, we observed some low performance of creating 

objects in Microsoft Windows platform. For example, creation of an object of a user 

interface element requires more time than an application built with C++. Our 

implementation focus was to use the graphics hardware as efficient as possible, so 

the part of the code that processes the rendering was kept out of any kind of 

computation that requires the application to use the CPU time or create any objects. 

The testing results show that rendering time does not depend on CPU power. It might 

not be wrong to conclude that changing the programming platform shall not change 

the rendering performance. However, there is a need to test the same methods of 

rendering with different programming languages to prove this thought.  

 

Data Format: Implementation supports only the Analyze volumetric data 

format. Libraries used for loading data supports DICOM formatted datasets to be 

read. This format and other formats can be supported if other libraries were made 

available. 

 

As specified in the other sections, volume rendering can be used in many 

different fields of scientific visualization. Areas which are interested in visualizing 

data which are formed of grid type that is not a Cartesian grid may use this 

application by implementing a data import module which makes interpolation and 

converts the input into Cartesian grid format. 

 

Large Datasets: Testing results shows that the main obstacle in visualizing a 

large volumetric dataset using graphics hardware is the size of the texture memory of 

the graphic device. For example, bump mapping technique that we have used for 

diffuse lighting here, requires the volume and its gradient array to be loaded to the 
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texture memory. While visualizing a large dataset with a graphics hardware that has 

a 256MB of texture memory, this method works; however the same data fails with a 

graphics device having 128MB of texture memory. There are some ways for solving 

this issue: using Pixel Shader 2.0 API in computing the ray casting methods with 

hardware acceleration [33], “Trex, a scalable system that takes advantage of parallel 

graphics hardware, software based compositing, and high performance I/O” [34] are 

some of the researches about this problem.  

 

Volume Rendering combined with Surface Rendering: There are some 

methods for extracting surfaces from volumetric dataset [3], [2], [7]. OpenGL and 

DirectX presents an environment in which texture based volume rendering can be 

combined with surface based volume rendering technique results. It may be a future 

work to implement one of the surface rendering techniques and render both results 

together. 

 

Stereo Viewing: OpenGL supports simulation of stereoscopic vision with 

suitable devices [71]. Stereo rendering might be useful for visualizing the datasets 

with a three dimensional view in some cases.  

 

Material Assignment: Segmentation phase of volume rendering enables the 

different kind of materials in the volume to be distinguished. Implementing a method 

which enables the user to assign different material properties to specify how the 

materials in the volume reflects light might create more photorealistic rendering 

results.  

 

In order to render segmented volumetric datasets, there is a requirement for 

defining a data format which specifies how the labeling information shall be stored in 

the volumetric dataset. The implemented segmentation section was done for 

simulating purposes as there is no labeling information exists in the data format yet. 

 

Web based volume rendering: The capabilities of volume rendering might be 

useful for medical staff. However, the method that we have proposed is dependent on 

graphics processing unit power and texture memory. In an institution like a hospital 
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employing large numbers of medical staff, this method requires a huge expense for 

upgrading the graphics processing devices of the personal computers of the staff. A 

web based solution might decrease this expense and enables more medical stuff to 

have the advantage of the three dimensional visualization. A web based solution 

requires an implementation that renders the specified volumetric datasets in a server 

and broadcasts the rendering results as compressed two dimensional images, so that 

dummy terminals or personal computers having no graphics accelerator devices can 

be able to visualize the patient’s acquired three dimensional medical datasets from a 

browser. This method shall decrease the interactivity of rendering but might present a 

useful solution for a wide area of use with minimum expense. This method also 

requires the server side to be more powerful in rendering as the number of clients 

that use this process increase. Using parallel graphics hardware [34] might be a 

pathway to solve this issue.  
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APPENDICES 

APPENDIX A User Interface of the Implementation 

 1. File Menu 

 
Figure A.1 Main Frame, File Menu 

 

 Application first generates the main frame.  

 
Figure A.2 New Menu 

  

 New menu, is used for generating a GL window that is shown on Figure A.3. 

GL window is the frame that the rendering results will be shown.  

 

 
Figure A.3 GL Window (no dataset loaded) 

 

 GL window has two modes: Animator and No Animator. These states are 

chosen while creating a GL window on file menu as shown in the Figure A.2. 
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 “Animator” state is implemented with a class called Animator which invokes 

the display event, whenever the system is ready. In other words, the scene is rendered 

again immediately after a rendering computation is over. This makes the scene to be 

animated and enables interactivity. See Appendix A-1 for more details of Animator 

class. 

 

 “No Animator” mode does not use Animator class for invoking the display 

event. Instead, in this state, display event is invoked by a timer object with a rate of 

1/24 second that provides 24fps (frames per second) maximum refresh rate. This 

option has been added to the software because, in some systems, performance of the 

other running applications decreased while running this application. Maximum frame 

rate can be changed; details are given in Appendix A-2. 

 

 After creating a GL window, a dataset is chosen with the file open menu 

shown in the Figure A.4. 

 

 
Figure A.4 File Open Menu 

 

 File open menu loads volumetric datasets that are encoded by Analyze dataset 

format. Loading the volume with Polygon and 2d Texture modes have been 

developed for testing and learning purposes.  

  

 Loading a volumetric dataset as Polygon was an unsuccessful attempt to 

render a volumetric dataset with OpenGL. The method used in this mode is: 

 

• Read each voxel in the dataset 

• Assign a square shaped polygon in the scene for each voxel 

• Place the squares at the coordinates with respect to the volumetric model 



124 

• Assign color values for the polygons same with the voxel intensity value 

• Assign transparency values according to the intensity values of voxels 

 

 
Figure A.5 Polygon Mode Output 

  

 The result was vast amount of polygons created and the graphics hardware 

was unable to render a simple 64x64x64 volumetric dataset with a performance of 

about 5 - 10 seconds for a frame. In order to increase the performance, number of 

voxels that shall be rendered is decreased with following method: 

 

• Compute gradient vector for each voxel 

• Eliminate the voxels that have gradient magnitude value smaller than a 

specific value 

 

This attempt increased the performance about 2 frames per second for some 

datasets; however, the performance was still far away from interactive rates. Besides, 

filtering the gradient vector magnitude value more decreased the image quality and 

some part of the dataset was unable to be seen. If the graphics processing hardware 

was fast enough to render all the voxels in the dataset at interactive rates, the next 

attempts would have been: 

 

• To assign vertex normal values to the vertices of the polygons and assign 

material properties according the segmentation information for the voxels, 
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so that diffuse and specular lighting can be obtained on the rendering 

result. 

• Make the polygons faces turned to the viewer all the time, so that where 

ever the user flies through in the scene or rotate the model, there would be 

no lost in quality because of the effect described in the topic “Volume 

Rendering Using 2D Textures” and shown in the Figure 3.7. 

 

2D Texture mode was implemented only for the purpose of learning the 

environment and implementing the method described in “Volume Rendering Using 

2D Textures” topic. 

 

3D Texture mode loads a volumetric dataset to the GL Window and renders 

the volume by using 3D texture mapping capabilities of the hardware.  

 2. GL Window 

 GL window is the frame that the output of the rendering process is print on it. 

Each GL window is created as independent threads, so as to enable the user visualize 

more than one volumetric dataset, or visualize one dataset with more than one GL 

window at the same time, as shown on the Figure A.6.  

 

 
Figure A.6 Multiple GL windows.  

Same dataset visualized with two different angles. 
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GL window present the user a three dimensional interactive environment that 

the user is able to move around. The interactivity controls implemented for the GL 

window is as follows: 

 

 up arrow: fly ahead 

 

down arrow: fly back 

 

 

ctrl + up arrow:  slide upwards 

 

ctrl + down arrow:  slide downwards 

 

 

ctrl + left  arrow:  slide to left 

 

ctrl + right  arrow:  slide to right 

 

 

 left arrow: rotate to left (about y axis) 

 

right arrow: rotate to right (about y axis) 

 

 

shift + up arrow: rotate to upwards 

                            (about x axis) 

shift + down arrow: rotate to downwards 

            (about x axis) 

 

shift + left arrow: rotate to left along z axis 

shift + right arrow: rotate to right along z axis 
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 Mouse drag action while left mouse button is pressed, rotates the camera 

about the y and x axis, and rotates the camera about z axis when the right button of 

the mouse is pressed.  

 

 These transformations are not done to the model but the position of the 

camera is changed. When the key “R” is pressed, every action done by the mouse 

drag is applied as transformations to the loaded volumetric dataset. 3D Texturing 

gives an advantage here for the transformation of the model. The first attempt to 

rotate the volumetric dataset was to recalculate the new texture mapping coordinates 

values after rotation. This process had been done by matrix transformation operations. 

However, OpenGL gives an advantage to make transformations on the texture 

coordinates by changing the matrix multiplication mode into texturing by the 

following code: 

 

glMatrixMode(GL_TEXTURE); 

 

So, instead of calculating the new texture mapping coordinates with CPU, this 

process is done by GPU. 

 3. View 

 This section shall provide information about viewing properties implemented 

for different visualizing options. View menu is shown in Figure A.7. 

 

 
Figure A.7 View Menu 

 

 Projection, Blending, Lighting and Material  options have been implemented 

for understanding the OpenGL platform in detail. These parts are not directly related 
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with the volume rendering method. However, this experience showed that; in a 

volume rendering application which is implemented using hardware acceleration, 

there is a capability of rendering both surfaces and textures. This gives an ability to 

visualize both indirect volume rendering [3], [2], [7] and direct volume rendering 

methods together in this platform. Viewing options built, present an environment for 

implementing new methods of rendering for the future works. 

  

 Rendering Parameters appears in the view menu is related with the volume 

rendering part. 

3.1 Projection 

 This section provides OpenGL projection rendering options. Details about 

OpenGL projection capabilities and methods are given in Appendix B-3.  

 

 
Figure A.8 Projection GUI 

 
 Projection GUI seen in the Figure A.8 provides an interface for 

gluPerspective, glOrtho and glFrustum commands of OpenGL. Example rendering 

results for perspective and orthographic projections are seen on Figure A.9. 
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Figure A.9 Orthographic Projection (left), Perspective Projection (right) 

 

3.2 Lighting 

 This section has been implemented with the purpose of learning OpenGL 

lighting capabilities. Information about lighting methods in OpenGL is given in 

Appendix B-4. 

 

 
Figure A.10 Lighting GUI 

 
 Lighting GUI, seen on the Figure A.10 gives an interface to the user for 

creating 4 different positional lights with user defined parameters, and spotlight that 

always travels with the camera. 
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3.3 Material 

 This section has been implemented with the purpose of learning OpenGL 

material capabilities. Information about material properties for the geometric 

primitives in OpenGL is given in Appendix B-5.  

 

 
Figure A.11 Material GUI 

 

Material GUI enables the user to assign material properties to the geometric 

primitives, which were created for testing and learning purposes. User is able to set 

different parameters for glMaterial command. Enabling Smooth Shading switches 

the shading state from Flat Shading and Smooth Shading. Smooth shading provides a 

Gouraud shading mode defined in the Shading section.  

 

 
Figure A.12 Flat Shading 
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Figure A.13 Smooth Shading 

 

 Figures A.12 and A.13 have been rendered with a directional light and a 

spotlight placed on the camera.  

4. How No Animator mode works? 

 
declarations: 

private class AnimatorTimerTask extends TimerTask { 

public void run() { 

        if (ANIMATED) 

        { 

          //myCanvas.requestFocus(); 

          //myCanvas.getRenderingThread().run(); 

          myCanvas.display(); 

        } 

      } 

  } 

private static final int DEFAULT_ANIMATION_DELAY = 1000/24; 

this line provides a frame rate of 24fps, if animation delay 

value set to 1000/30 the frame rate shall be 30fps. 

private java.util.Timer animationTimer; 

private TimerTask animationTimerTask = new 

AnimatorTimerTask(); 

 

create: 
if (animation is requested) 
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{ 

 animationTimer = new java.util.Timer(); 

            

animationTimer.scheduleAtFixedRate(animationTimerTask, 0, 

delay); 

 } 

 else 

 { 

   if (animationTimer != null) 

   animationTimer.cancel(); 

 } 
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APPENDIX B 3D Computer Graphics and OpenGL 

1. Fundamentals of 3D Computer Graphics  

1.1 Overview 

Computers became more and more powerful tools for producing picture in a 

fast and economical way. There is almost no area of interest that computer graphics 

cannot be used as a benefit, which explains why use of computer graphics is so 

widespread and popular. The early use of computer graphics in science and 

engineering had to rely on some expensive equipment. Due to fast evolution of 

computer and computer graphics technologies, it is used in diverse areas like, 

engineering, science, education, training, advertising, medicine, business, industry, 

government, art, and entertainment. Especially, the wide market of gaming and 

entertainment technologies caused a vast amount of production of graphics hardware, 

and a fast evolution of the performance and implementation techniques for computer 

visualization. [35].  

1.2 APIs for Computer Graphics 

Application Programming Interfaces (API) for computer graphics offer 

interfaces for the software developers to render three dimensional scenes with vast 

amount of functions using the capabilities of computer graphics hardware. OpenGL 

[72] developed by Silicon Graphics, and DirectX developed by Microsoft are most 

popular APIs developed for hardware accelerated computer graphics software 

developers. There are many libraries or graphics engines which give higher level of 

interfaces to the software developers. Most of such libraries are based on OpenGL or 

DirectX APIs. Java3d [58] is an example which presents an object oriented interface 

that use OpenGL or DirectX as interface for the graphics hardware. 
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In the implementation of hardware accelerated volume rendering that was 

done for this work was built on OpenGL using JOGL API [61] which was built to 

give interface to the OpenGL commands directly in the java development 

environment.  

 

DirectX and OpenGL are the industry standard APIs, which define two 

dimensional and three dimensional graphics pipelines in which the graphics datasets 

or the geometric objects are processed and rendered. The viewing of an object is 

controlled using the model, the viewer position, and the projection matrices.  

1.3 Spatial Transformation and Linear Algebra 

The term, rendering, can be defined as, conversion of graphics primitives into 

an image. In other words, it is like drawing picture of a model onto a canvas. Some 

mathematical fundamentals are required to be understood for having an idea of how a 

graphics rendering process is done.  

 

In computer graphics, primitives for a three dimensional object that is 

modeled, is represented in a Cartesian coordinate space with points having an 

address of x, y and z locations, lines with multiple points, polygons with multiple 

lines, surface with multiple polygons, and so fort. In order to view an object in 

different angles, transforming these graphical primitives is a useful method. In order 

to transform an object in the Cartesian coordinate space, each coordinate can be 

transformed by a linear equation.  
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         Equation (B.1)  [6, pp. 36] 

 

In this equation, x’, y’ and z’ are the transformed location of a point that is at 

the point x, y and z, where the coefficients a - o describe the relationship between 

them. Linear algebra allows representing such system of equations in matrices, 
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makes it simpler to represent the relations and gives ability to define more complex 

spatial transformations. 

 

A relationship of transformation between geometric primitives given in the 

Equation (B.1) can be defined in a matrix representation like this: 
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     Equation (B.2) [6, pp. 37] 

 

If a point that is to be transformed is denoted by P matrix and the new 

location of this point’s matrix after the transformation is denoted P’: 

 

PTP ×='                  

 

where T is called the transformation matrix. Each elements of transformation matrix 

is for computing a specific transformation operation. Many different kinds of spatial 

transformations can be encoded into a transformation matrix.  

 

 Translation:  

 Translation is moving a point to another location. This operation can be 

achieved by adding the amount of translation on each axis to the original values of 

the point. Translation operation can be computed by a transformation matrix like 

this: 
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where tx, ty and tz represent the amount of translation at each axis. Here a 4x4 matrix 

has been used which is different from Equation (B.2). Actually it is not necessary to 
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use the bottom line of this matrix for the translation operation, however, this part is 

necessary for computing multiple transformation operations. It is seen that when 

there is no translation in any axis, in other words, when tx, ty and tz are all 0, an 

identity matrix is obtained where no change occurs when the matrix multiplication is 

done. 

 

 Scaling:  

 Scaling operation is used for changing the sizes of the objects. The 

transformation matrix for scaling is: 
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where sx, sy and sz denotes the amount of scaling along each axis. When value 1 is 

used for the scaling parameters, an identity matrix is obtained and no change occurs 

in the output. If the value for scaling factor is grater than 1 the output model will 

become greater in size and if scaling factor is between 0 and 1, the output model will 

be smaller in size than the original. If the scaling factor for each axis is assigned as -1 

a mirror affect is obtained. Different axis may have different values for scaling factor. 

This operation is useful in volume rendering. Especially in medical imaging, 

volumetric datasets may have different scaling factors for z axis. This operation is 

needed for balancing the volume dimensions. 

 

 Rotation: 

 Rotating an object in a three-dimensional space about an arbitrary axis can be 

achieved by multiplying the object coordinates by rotation transformation matrix. 

Transformation matrix for rotating about the x, y and z axes are given in the 

following figures. 
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Figure B.1 Transformation matrix for rotation about x axis 
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Figure B.2 Transformation matrix for rotation about y axis 
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Figure B.3 Transformation matrix for rotation about z axis 
 

The rotation transformation matrixes given in Figures B.1, B.2, B.3 rotate the 

objects along the axes x, y and z respectively, by counter clock wise direction as 

shown in the figures. In order to rotate the objects along an arbitrary axis other than 
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the major axes x, y and z; the model can be translated so that, the rotation axis lies 

along one of the axes x, y and z; and apply the rotation transformation matrix, then 

place back the rotated object to the original position by my making inverse 

operations for the transformations made at the beginning.  

 

Matrix operations give a power for computing because several different kinds 

of transformation operations can be combined into a single multiplication matrix 

which is called compound transformation matrix. So, instead of more than one 

transformation to the model as described in the preceding paragraph, a compound 

transformation matrix can be built first, and then applied to the whole dataset at once.  

For example, a matrix denoted by R, rotates the model along x axis; and another 

matrix denoted by T, translates the model with 10 units along the y axis. If the matrix 

multiplication is done between T and R matrixes, like: 

 

M1 = R x T 

 

M1 is a new transformation matrix, which first translates the model by 10 units along 

the y axis, and rotates it by the x axis. However, if the multiplication is done in 

another way: 

 

M2  = T x R 

 

The transformation matrix M2 shall first rotate the model about the x axis, then 

translate it along the y axis. So, M1 is not equal to M2 and the matrix multiplications 

are applied from right to left. [6, pp. 44] 

1.4 Rendering 

Having the knowledge of transformation, volumetric data can be scaled, 

rotated or translated by building a transformation matrix. In order to see what is 

happening on the model we are transforming, the model has to be painted on a two 

dimensional image consisting of pixels representing the projection of the voxels or 

the geometric primitives like point, line or surface.  
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Rendering is the process of projecting the transformed geometric primitives 

onto an image plane. Main function of the graphics APIs like OpenGL is rendering. 

OpenGL gives an interface for rendering geometric primitives with two methods. 

Intermediate mode [29, pp. 195] executes the OpenGL commands immediately and 

renders the scene. Display list mode enables the developer to store some commands 

for rendering for a later execution, which gives a better performance.  

 

Real time rendering is the process of sequential rendering and produces an 

animation with the rendered images. In order to establish a high sequence and obtain 

a smooth animation, the rendering time required for producing one image is very 

important. APIs like OpenGL uses hardware graphics units to increase the 

performance of rendering, and establish a real time animation. Frame per second is 

the metric used for measuring the performance of real time rendering. What is the 

minimum limit for real time rendering is a relative question that changes from one 

type of user to another [36]. While watching a movie with a rate of 24 frames per 

second, it may be ok but a person who plays flight simulator or an arcade game 

would require 60-100 frames per second render results for a satisfactory smoothness 

in the animation. “Modern people are trained in picking up fast cuts, around 10 

frames per second is probably the limit.” [36, pp. 1]   

 2. OpenGL 

 OpenGL is an environment for developing interactive two and three 

dimensional graphics applications. OpenGL, which was created by Silicon Graphics 

[73], in 1992, is now one of the most widely used and supported application 

programming interface (API) in the computer graphics industry [72]. GL stands for 

graphics library. OpenGL is a hardware independent API, which gives a software 

interface to the graphics hardware. 

 2.1 Overview 

 OpenGL consists of more than 150 distinct commands which are used for 

specifying geometric objects and required operation for producing interactive three 

dimensional applications. It is a hardware independent interface which can be 



140 

implemented on many different hardware platforms. In order to achieve this property, 

OpenGL does not include commands for performing windowing tasks or obtaining 

user input. It does not provide high level commands for describing three dimensional 

objects models. Instead, the models for complicated objects are created by using 

geometric primitives which are points, lines and polygons. Some sophisticated 

libraries, which provide high level commands to define complicated models, can be 

built on top of OpenGL. The OpenGL Utility Library (GLU) is an example for that, 

which provides many modeling features. [29] 

  

 OpenGL presents a procedural interface rather than a descriptive interface 

[74]. In a system having a descriptive interface (VRML is an example for such 

systems [75]) for example, the user can create a blue sphere at a certain place. 

However, in OpenGL, in order to render such an object, the developer has to follow a 

sequence of commands, set up the camera view, transform the model, draw the 

geometric primitives for the blue ball and so fort. Specifying all the required 

commands, operation in an appropriate order in an exact detail is a disadvantage for 

the procedural interfaces. However, this gives a great flexibility while rendering a 

scene, because every step for rendering is applied and the programmer has the ability 

to modify each step and control rendering speed, image quality. A descriptive 

interface can be built on top of a procedural interface but the opposite cannot be the 

case, and this explains the power of a procedural interface over a descriptive one. 

Some basic steps required for writing an OpenGL application is as follows: 

 

• OpenGL is not a model builder API but a renderer. This means that the 

model should be built by the user. There are some libraries like OpenGL 

Utility Library (GLU) which establish a descriptive interface for practical 

ways for building models. The quality of rendering is affected by the 

model detail quality. The primitives of a model for OpenGL are points, 

lines, polygons, images and bitmaps.  

 

• When the model to be rendered is ready, the objects are placed at a 

desired location by using transformation commands, and the desired 

position for viewing the composed scene is selected.  
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• Color calculations, are done for all objects. 

 

• Rasterization which is the process of projecting the geometric model to 

the pixels on the screen is done. 

 2.2 Syntax 

 Prefix “gl” is used for OpenGL commands, and the command name starts 

with capital letter like: “glClearColor()”. The predefined constants use the prefix 

“GL_” and all letters are used as capital like: “GL_POLYGON”.  

 

 Suffixes used in the commands define number and type of the variables that 

will be used. For example, “glColor3f()” command indicates that three arguments are 

given by the letter “3”, and the letter “f” indicates that the arguments are floating 

point variables.  

 

 Some of the OpenGL commands accept eight different data types as shown in 

the Table B.1.  

Suffix Data Type Typical Corresponding C-

Language Type 

OpenGL Type 

Definition 

b 8-bit integer signed char GLbyte 

s 16-bit integer short GLshort 

i 32-bit integer int or long GLint, GLsizei 

f 32-bit floating-

point 

float GLfloat, GLclampf 

d 64-bit floating-

point 

double GLdouble, GLclampd 

ub 8-bit unsigned 

integer 

unsigned char GLubyte, GLboolean 

us 16-bit unsigned unsigned short GLushort 
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Suffix Data Type Typical Corresponding C-

Language Type 

OpenGL Type 

Definition 

integer 

ui 32-bit unsigned 

integer 

unsigned int or unsigned long GLuint, GLenum, 

GLbitfield 

Table B 1 OpenGL Data Types [29, pp.17] 
 

 OpenGL commands work as a state machine, which means when a mode is 

set for a property, the remaining part implementation will apply always that mode for 

that property. For example, current color can be assigned as white by the command 

glColor3f(1.0, 1.0, 1.0). This means that, after the line of this command all the 

objects drawn shall be painted in color white until current color state is changed by 

another “glColor” command. Many of the states need to be enabled or disabled by 

using the commands “glEnable()” and “glDisable()”. Each state variable are assigned 

to default values and those values that are used currently, can be queried an any place 

of the system. 

 2.2.1 State Management 

 In display list styles of rendering, while drawing objects, a list of commands 

to be done is prepared and the graphics interface library expects a command to 

execute that list. OpenGL supports this style and enables the programmer to build 

many lists of commands and execute these groups of commands at any point in the 

system. However, OpenGL default style works in immediate mode, which executes 

immediately the command at every time and every place issued by the programmer.  

 

 For each frame to be rendered, the window should be cleared entirely with a 

background color that is specified by the user. The command set for clearing an 

entire window to color black is as follows. [29] 

 

 glClearColor(0.0, 0.0, 0.0, 0.0); 

 glClear(GL_CLEAR_BUFFER_BIT); 
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In “glClearColor” command, the color values of red, green, blue and alpha 

determines the color to be used for clearing the window, and 

GL_CLEAR_BUFFER_BIT is an enumerated mask name that represents “Color 

Buffer” to be cleared by the “glClear” command.  

 

The following pseudo code shows how coloring mode is managed with 

OpenGL: 

set current color(blue);  

draw object(X);  

set current color(red);  

set current color(green);  

draw object(Y);  

draw object(Z); 

 

Result for this implementation will result like this: X drawn in blue, Y and Z 

drawn in green [29]. 

 2.2.2 Geometric Primitives 

 In OpenGL all geometric primitives are described in terms of their vertices 

which are the points that store the coordinates of end points of a line segment or 

corner of a polygon.  

 

OpenGL definition for point line, and polygon have the similar meaning of 

the same names used in mathematics, but not quite the same. The difference comes 

from the limitations of computer computations. For example, floating point 

calculations have finite precision so the results have some round off errors. The 

coordinates used for the modeling in OpenGL suffer from this situation. Another 

difference is occurred because of the result of rendering is a raster graphic display. A 

pixel has a specific size and in some views as it does not have an infinitively small 

size, more than one object might happen to be rendered in a single pixel.  
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 A point is a single vertex consisting of three dimensional coordinates stored 

as floating point numbers. Every internal calculation done by OpenGL assumes the 

vertices are three dimensional. If a point has been assigned as two dimensional, the z 

coordinate is assumed as zero by OpenGL. 

 

 The term line is not understood like the mathematician’s version that it goes 

to infinity in both directions, but refers to a line segment.  

 

 Polygon is an area that is enclosed single closed loops of line segments which 

are specified by the vertices of their end points. OpenGL has some restriction rules 

for constructing a polygon.  

2.3. Blending In OpenGL 

This section is taken from the following references, and some part of it is modified 

for the summarization of the subject. 

 

References: 

1. http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/node1.html 

2. Woo M., Neider J., Davis T., Shreiner D., OpenGL Architecture Review Board, 

(1997). OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL, 

Version 1.1 (2nd Edition). Silicon Graphics, Inc  

3. http://tfpsly.planet-d.net/OpenGL/Faq/ 

 

OpenGL doesn't support a direct interface for rendering translucent primitives. 

However, a transparency effect with the blend feature can be created. An OpenGL 

application enables blending function as follows: 

  

glEnable (GL_BLEND); 

 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); 

 

After blending is enabled, the incoming primitive color is blended with the 

color already stored in the frame buffer. glBlendFunc controls how this blending 

occurs. The typical use given in the above example, modifies the incoming color by 
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its associated alpha value and modifies the destination color by one minus the 

incoming alpha value. The sum of these two colors is then written back into the 

frame buffer. 

 
While using the depth buffering in an application, the order of the primitives 

to be rendered is important. Fully opaque primitives need to be rendered first, 

followed by partially opaque primitives in back to front order.  

 

OpenGL provides a rich set of blending operations which can be used to 

implement transparency, compositing, painting, and other effects. The glBlendFunc() 

command selects the source and destination blend factors. The most frequently used 

factors are GL_ZERO, GL_ONE, GL_SRC_ALPHA and 

GL_ONE_MINUS_SRC_ALPHA.  

 

Alpha values are specified with glColor, when using glClearColor to specify 

a clearing color and when specifying certain lighting parameters such as a material 

property or light-source intensity. The pixels on a monitor screen emit red, green, 

and blue light, which is controlled by the red, green, and blue color values. So how 

does an alpha value affect what gets drawn in a window on the screen?  

 

When blending is enabled, the alpha value is used to combine the color value 

of the fragment being processed with that of the pixel already stored in the 

framebuffer. Blending occurs after your scene has been rasterized and converted to 

fragments, but just before the final pixels are drawn in the frame buffer. 

 

Without blending, each new fragment overwrites any existing color values in 

the framebuffer, as though the fragment were opaque. With blending, how and how 

much of the existing color value should be combined with the new fragment's value 

can be controlled. So alpha blending can be used for creating a translucent fragment 

that lets some of the previously stored color value.  

 

The most natural way to think of blending operations is to think of the RGB 

components of a fragment as representing its color and the alpha component as 
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representing opacity. Transparent or translucent surfaces have lower opacity than 

opaque ones and, therefore, lower alpha values. For example, if you're viewing an 

object through green glass, the color you see is partly green from the glass and partly 

the color of the object. The percentage varies depending on the transmission 

properties of the glass: If the glass transmits 80 percent of the light that strikes it (that 

is, has an opacity of 20 percent), the color you see is a combination of 20 percent 

glass color and 80 percent of the color of the object behind it. You can easily imagine 

situations with multiple translucent surfaces.  

 

During blending, color values of the incoming fragment, the source, are 

combined with the color values of the corresponding currently stored pixel, the 

destination, in a two-stage process. First you specify how to compute source and 

destination factors. These factors are RGBA quadruplets that are multiplied by each 

component of the R, G, B, and A values in the source and destination, respectively. 

Then the corresponding components in the two sets of RGBA quadruplets are added. 

Let the source and destination blending factors be (Sr, Sg, Sb, Sa) and (Dr, Dg, Db, 

Da), respectively, and the RGBA values of the source and destination be indicated 

with a subscript of s or d. Then the final, blended RGBA values are given by: 

 

(RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa) 

 

glBlendFunc() is used for supplying two constants: one that specifies how the 

source factor should be computed and one that indicates how the destination factor 

should be computed. 

 

glBlendFunc(sfactor,  dfactor) 

 

In the following table the RGBA values of the source and destination are 

indicated with the subscripts s and d, respectively. Subtraction of quadruplets means 

subtracting them component wise. The Relevant Factor column indicates whether the 

corresponding constant can be used to specify the source or destination blend factor. 
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Constant Relevant Factor Computed Blend Factor 

GL_ZERO source or destination (0, 0, 0, 0) 

GL_ONE source or destination (1, 1, 1, 1) 

GL_DST_COLOR source (Rd, Gd, Bd, Ad) 

GL_SRC_COLOR destination (Rs, Gs, Bs, As) 

GL_ONE_MINUS_DST_COLOR source (1, 1, 1, 1)-(Rd, Gd, Bd, Ad)

GL_ONE_MINUS_SRC_COLOR destination (1, 1, 1, 1)-(Rs, Gs, Bs, As) 

GL_SRC_ALPHA source or destination (As, As, As, As) 

GL_ONE_MINUS_SRC_ALPHA source or destination (1, 1, 1, 1)-(As, As, As, As) 

GL_DST_ALPHA source or destination (Ad, Ad, Ad, Ad) 

GL_ONE_MINUS_DST_ALPHA source or destination (1, 1, 1, 1)-(Ad, Ad, Ad, Ad)

GL_SRC_ALPHA_SATURATE source (f, f, f, 1); f=min(As, 1-Ad)

Source and Destination Blending Factors 

 

Not all combinations of source and destination factors make sense. Most 

applications use a small number of combinations. The following part describes 

typical uses for particular combinations of source and destination factors.  

 

• One way to draw a picture composed half of one image and half of 

another, equally blended, is to set the source factor to GL_ONE and 

the destination factor to GL_ZERO, and draw the first image. Then 

set the source factor to GL_SRC_ALPHA and destination factor to 

GL_ONE_MINUS_SRC_ALPHA, and draw the second image with 

alpha equal to 0.5. This pair of factors probably represents the most 

commonly used blending operation. If the picture is supposed to be 

blended with 0.75 of the first image and 0.25 of the second, the first 

image is drawn as before, and the second is drawn with an alpha of 

0.25.  
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• If  new images are to be added onto another image and what ever the 

last result, the newly added image will have %90 transparency, this 

can be done with blending as follows: image is drawn with alpha of 

10 percent and  GL_SRC_ALPHA (source) and 

GL_ONE_MINUS_SRC_ALPHA (destination) is used in the 

blending function..  

 

• The blending functions that use the source or destination colors 

GL_DST_COLOR or GL_ONE_MINUS_DST_COLOR for the 

source factor and GL_SRC_COLOR or 

GL_ONE_MINUS_SRC_COLOR for the destination factor, each 

color component can be effectively modulated individually. This 

operation is equivalent to applying a simple filter, for example, 

multiplying the red component by 80 percent, the green component 

by 40 percent, and the blue component by 72 percent would simulate 

viewing the scene through a photographic filter that blocks 20 

percent of red light, 60 percent of green, and 28 percent of blue.  

2.4 Lighting in OpenGL 

This section is taken from the following reference, and some part of it is modified for 

the summarization of the subject. 

 

Reference: 

 Woo M., Neider J., Davis T., Shreiner D., OpenGL Architecture Review Board, 

(1997). OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL, 

Version 1.1 (2nd Edition). Silicon Graphics, Inc  

Creating Light Sources: 

Light sources have a number of properties, such as color, position, and 

direction. The following sections explain how to control these properties in OpenGL 

and what the resulting light looks like. The command used to specify all properties of 
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lights is glLight; it takes three arguments: to identify the light whose property is 

being specified, the property, and the desired value for that property.  

"void glLight(GLenum light, GLenum pname, TYPE param)" Creates 

the light specified by light, which can be GL_LIGHT0, GL_LIGHT1, ... , or 

GL_LIGHT7. The characteristic of the light being set is defined by pname, which 

specifies a named parameter. param indicates the values to which the pname 

characteristic is set; it's a pointer to a group of values if the vector version is used, or 

the value itself if the nonvector version is used. The nonvector version can be used to 

set only single-valued light characteristics. 

Parameter Name Default Value Meaning 

GL_AMBIENT (0.0, 0.0, 0.0, 

1.0) 

ambient RGBA intensity of 

light 

GL_DIFFUSE (1.0, 1.0, 1.0, 

1.0) 

diffuse RGBA intensity of 

light 

GL_SPECULAR (1.0, 1.0, 1.0, 

1.0) 

specular RGBA intensity of 

light 

GL_POSITION (0.0, 0.0, 1.0, 

0.0) 

(x, y, z, w) position of light 

GL_SPOT_DIRECTION (0.0, 0.0, -1.0) (x, y, z) direction of spotlight

GL_SPOT_EXPONENT 0.0 spotlight exponent 

GL_SPOT_CUTOFF 180.0 spotlight cutoff angle 

GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor 

GL_LINEAR_ATTENUATION 0.0 linear attenuation factor 

GL_QUADRATIC_ATTENUATION 0.0 quadratic attenuation factor 

Default Values for pname Parameter of  glLight() 
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Position and Attenuation: 

A light source can be chosen as it is located infinitely far away from the scene 

or as it is nearer to the scene. The first type is referred to as a directional light source; 

the effect of an infinite location is that the rays of light can be considered parallel by 

the time they reach an object. An example of a real-world directional light source is 

the sun. The second type is called a positional light source, since its exact position 

within the scene determines the effect it has on a scene and, specifically, the 

direction from which the light rays come. A desk lamp is an example of a positional 

light source.  

 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 }; 

 glLightfv(GL_LIGHT0, GL_POSITION, light_position); 

As shown, a vector of four values (x, y, z, w) for the GL_POSITION 

parameter is supplied. If the last value, w, is zero, the corresponding light source is a 

directional one, and the (x, y, z) values describe its direction. This direction is 

transformed by the modelview matrix. By default, GL_POSITION is (0, 0, 1, 0), 

which defines a directional light that points along the negative z-axis.   

If the w value is nonzero, the light is positional, and the (x, y, z) values 

specify the location of the light in homogeneous object coordinates. This location is 

transformed by the modelview matrix and stored in eye coordinates. Also, by default, 

a positional light radiates in all directions, but it can be restricted to producing a cone 

of illumination by defining the light as a spotlight.   

For real-world lights, the intensity of light decreases as distance from the light 

increases. Since a directional light is infinitely far away, it doesn't make sense to 

attenuate its intensity over distance, so attenuation is disabled for a directional light. 

OpenGL attenuates a light source by multiplying the contribution of that source by 

an attenuation factor: 
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where  

d = distance between the light's position and the vertex 

kc = GL_CONSTANT_ATTENUATION 

kl = GL_LINEAR_ATTENUATION 

kq = GL_QUADRATIC_ATTENUATION 

By default, kc is 1.0 and both kl and kq are zero, but you can give these parameters 

different values: 

 glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0); 

 glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0); 

 glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5); 

Spotlights: 

A positional light source can act as a spotlight—that is, by restricting the 

shape of the light it emits to a cone. To create a spotlight, the spread of the cone of 

light needed to be determined. To specify the angle between the axis of the cone and 

a ray along the edge of the cone, GL_SPOT_CUTOFF parameter is used. The angle 

of the cone at the apex is then twice this value, as shown in the following figure. 

 
GL_SPOT_CUTOFF Parameter 

By default, the spotlight feature is disabled because the GL_SPOT_CUTOFF 

parameter is 180.0. This value means that light is emitted in all directions (the angle 
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at the cone's apex is 360 degrees, so it isn't a cone at all). The value for 

GL_SPOT_CUTOFF is restricted to being within the range [0.0,90.0] (unless it has 

the special value 180.0). The following line sets the cutoff parameter to 45 degrees: 

 glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0); 

In order to specify a spotlight's direction, which determines the axis of the 

cone of light foolowing code is used : 

 GLfloat spot_direction[] = { -1.0, -1.0, 0.0 }; 

 glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction); 

 

2.5 Material Properties in OpenGL 

This section is taken from the following reference, and some part of it is modified for 

the summarization of the subject. 

 

Reference: 

 Woo M., Neider J., Davis T., Shreiner D., OpenGL Architecture Review Board, 

(1997). OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL, 

Version 1.1 (2nd Edition). Silicon Graphics, Inc  

 

Defining Material Properties: 

This section describes how to define the material properties of the objects in 

the scene: the ambient, diffuse, and specular colors, the shininess, and the color of 

any emitted light in OpenGL. Most of the material properties are conceptually 

similar to ones used to create light sources. The mechanism for setting them is 

similar, except that the command used is called glMaterial(). 

 "void glMaterial(GLenum face, GLenum pname, TYPE param)" 

specifies a current material property for use in lighting calculations. face can be 

GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of 

the object the material should be applied to. The particular material property being 
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set is identified by pname and the desired values for that property are given by param, 

which is either a pointer to a group of values (if the vector version is used) or the 

actual value (if the nonvector version is used). The nonvector version works only for 

setting GL_SHININESS. The possible values for pname are shown in the following 

table.   
 

Parameter Name Default Value Meaning 

GL_AMBIENT (0.2, 0.2, 0.2, 

1.0) 

ambient color of material 

GL_DIFFUSE (0.8, 0.8, 0.8, 

1.0) 

diffuse color of material 

GL_AMBIENT_AND_DIFFUSE  ambient and diffuse color of 

material 

GL_SPECULAR (0.0, 0.0, 0.0, 

1.0) 

specular color of material 

GL_SHININESS 0.0 specular exponent 

GL_EMISSION (0.0, 0.0, 0.0, 

1.0) 

emissive color of material 

GL_COLOR_INDEXES (0,1,1) ambient, diffuse, and specular 

color indices 

Default Values for pname Parameter of glMaterial 

Diffuse and Ambient Reflection: 

The GL_DIFFUSE and GL_AMBIENT parameters set with glMaterial 

affect the color of the diffuse and ambient light reflected by an object. Diffuse 

reflectance plays the most important role in determining what you perceive the color 

of an object to be. It's affected by the color of the incident diffuse light and the angle 

of the incident light relative to the normal direction. The position of the viewpoint 

doesn't affect diffuse reflectance at all.  
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Ambient reflectance affects the overall color of the object. Because diffuse 

reflectance is brightest where an object is directly illuminated, ambient reflectance is 

most noticeable where an object receives no direct illumination. An object's total 

ambient reflectance is affected by the global ambient light and ambient light from 

individual light sources. Like diffuse reflectance, ambient reflectance isn't affected 

by the position of the viewpoint. 

For real-world objects, diffuse and ambient reflectance are normally the same 

color. For this reason, OpenGL provides you with a convenient way of assigning the 

same value to both simultaneously with glMaterial: 

 GLfloat mat_amb_diff[] = { 0.1, 0.5, 0.8, 1.0 }; 

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,          

mat_amb_diff); 

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0), a deep blue color, 

represents the current ambient and diffuse reflectance for both the front- and back-

facing polygons.  

Specular Reflection: 

Specular reflection from an object produces highlights. Unlike ambient and 

diffuse reflection, the amount of specular reflection seen by a viewer does depend on 

the location of the viewpoint, it's brightest along the direct angle of reflection. To see 

this, imagine looking at a metallic ball outdoors in the sunlight.  

OpenGL allows to set the effect that the material has on reflected light (with 

GL_SPECULAR) and control the size and brightness of the highlight (with 

GL_SHININESS). GL_SPECULAR and GL_SHININESS are assigned values as 

follows: 

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; 

GLfloat low_shininess[] = { 5.0 }; 

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); 

glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess); 
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APPENDIX C Bump Mapping Source Code 

1. Dot3 Bump Mapping with Multi Texturing Source Code 

gl.glActiveTexture(gl.GL_TEXTURE0_ARB); 

gl.glBindTexture (gl.GL_TEXTURE_3D, volTexture3d_ID_gradient); 

 

first the gradient texture is binded. 

 

gl.glEnable(gl.GL_TEXTURE_3D); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE, 

gl.GL_COMBINE_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT, 

gl.GL_DOT3_RGB_EXT); 

 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT, 

gl.GL_TEXTURE); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT, 

gl.GL_SRC_COLOR); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT, 

gl.GL_PRIMARY_COLOR_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT, 

gl.GL_SRC_COLOR); 

 

Until now, the dot product of each pixel with the polygon color has 

been computed. Below part binds it with the original volumetric 

texture multiplying with the computed pixel result.  

 

gl.glActiveTexture(gl.GL_TEXTURE1_ARB); 

gl.glBindTexture (gl.GL_TEXTURE_3D, 

volTexture3d_ID_originalTexture); 

gl.glEnable(gl.GL_TEXTURE_3D); 
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gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE, 

gl.GL_COMBINE_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT, 

gl.GL_MODULATE); 

 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT, 

gl.GL_PREVIOUS_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT, 

gl.GL_SRC_COLOR); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT, 

gl.GL_TEXTURE); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT, 

gl.GL_SRC_COLOR); 

 

2. Added Bump Mapping Mode, Source Code 

gl.glActiveTexture(gl.GL_TEXTURE0_ARB); 

gl.glBindTexture (gl.GL_TEXTURE_3D, volTexture3d_ID_gradient); 

gl.glEnable(gl.GL_TEXTURE_3D); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE, 

gl.GL_COMBINE_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT, 

gl.GL_DOT3_RGB_EXT); 

 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT, 

gl.GL_TEXTURE); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT, 

gl.GL_SRC_COLOR); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT, 

gl.GL_PRIMARY_COLOR_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT, 

gl.GL_SRC_COLOR); 

 

gl.glActiveTexture(gl.GL_TEXTURE1_ARB); 

gl.glBindTexture (gl.GL_TEXTURE_3D, volTexture3d_ID); 

gl.glEnable(gl.GL_TEXTURE_3D); 
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gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE, 

gl.GL_COMBINE_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT, gl.GL_ADD); 

 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT, 

gl.GL_PREVIOUS_EXT); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT, 

gl.GL_SRC_COLOR); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT, 

gl.GL_TEXTURE); 

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT, 

gl.GL_SRC_COLOR); 
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APPENDIX D Biomedical Imaging Resource (BIR) 

and the Analyze Software 

This section is taken directly from the following reference. 

 

Reference: 

http://www.mayo.edu/bir/Software/Analyze/Analyze1.html 

 

The Biomedical Imaging Resource (BIR) at Mayo Clinic is dedicated to the 

advancement of research in the biomedical imaging and visualization sciences. The 

BIR provides expertise and advanced technology related to these fields, including 

image acquisition, processing, display and analysis; volume visualization; computer 

graphics; virtual reality and virtual environments; image databases; computer 

workstations, networks and programming. 

 

The Biomedical Imaging Resource at the Mayo Foundation has been involved 

since the early 1970's in the design and implementation of computer-based 

techniques for the display and analysis of multidimensional biomedical images. 

 

The algorithms and programs developed through this research have formed 

the basis for integrated, comprehensive software systems developed by the 

Biomedical Imaging Resource, useful in a variety of multimodality, 

multidimensional biomedical imaging and scientific visualization applications. These 

integrated suites of complementary tools for fully interactive display, manipulation, 

and measurement of multidimensional biomedical images have been used in 

applications involving many different imaging modalities, including CT, MRI, 

SPECT, PET, ultrasound and digital microscopy. 
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With the advent of advanced biomedical imaging techniques which are most 

efficiently realized via an integration of algorithms, such as segmentation driven by 

direct visualization, the availability of standardized interface software through 

powerful windowing systems, and the need to expediently address an ever-expanding 

variety of specific biomedical imaging applications, the Analyze software system has 

continued to mature into the most comprehensive, robust and productive software 

package available for 3D biomedical image visualization and analysis. It has served 

as the embodiment of the integrated biomedical imaging algorithms and tools 

developed in the BIR for over 15 years. Its widespread use and impact on a 

multiplicity of applications have served to validate the 'toolbox' approach to 

biomedical imaging software integration, an architecture which provides an effective 

shell for rapid prototyping of customized imaging applications. The synergistic 

integration of comprehensive and generic tools for visualization, processing, and 

quantitative analysis of biomedical images in a highly operator-interactive, intuitive 

interface has allowed surgeons, physicians, and basic scientists to explore large 

multidimensional biomedical image volumes efficiently and productively. 

The Analyze software system is entirely built upon a toolkit of optimized 

functions that are organized into a software development library called AVW. The 

AVW imaging library is a collection of over 600 functions that are accessible to 

software developers to build advanced image-based application solutions. Analyze is 

an integration of the full functionality represented in the AVW toolkit with an 

intuitive windows-based interface which makes it easy to learn and to use. The most 

important feature of Analyze is the paradigm in which it operates - a powerful 

software architecture that allows multiple volume images to be simultaneously 

accessed and processed by multiple programs in a multi-window interface. The user 

interface for Analyze is based on Tcl/Tk, which offers full compliance with interface 

standards across multivendor workstations and PCs. 

The development of the Analyze and AVW imaging software systems by the 

BIR software development staff directly benefits from a combined total of over 100 

years of programming experience in the BIR, approximately 75 years of which have 

been with Analyze.  
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