
INTERACTIVE VOLUME RENDERING FOR MEDICAL IMAGES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

KORAY ORHUN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2004

Approval of the Graduate School of Informatics

 Prof. Dr. Neşe YALABIK
 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Assoc. Prof. Dr. Onur DEMİRÖRS
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Erkan MUMCUOĞLU
 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Onur DEMİRÖRS _____________________

Assist. Prof. Dr. Uğur GÜDÜKBAY _____________________

Assoc. Prof Dr. Veysi İŞLER _____________________

Assist. Prof. Dr. Erkan MUMCUOĞLU _____________________

Assoc. Prof. Dr. Yasemin YARDIMCI _____________________

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this wok.

Koray Orhun

iv

ABSTRACT
INTERACTIVE VOLUME RENDERING FOR MEDICAL IMAGES

Orhun, Koray

MS., Department of Information Systems

Supervisor: Assist. Prof. Dr. Erkan MUMCUOĞLU

September 2004, 159 pages

 Volume rendering is one of the branches of scientific visualization. Its

popularity has grown in the recent years, and due to the increase in the computation

speed of the graphics hardware of the desktop systems, became more and more

accessible. Visualizing volumetric datasets using volume rendering technique

requires a large amount of trilinear interpolation operations that are computationally

expensive. This situation used to restrict volume rendering methods to be used only

in high-end graphics workstations or with special-purpose hardware. In this thesis, an

application tool has been developed using hardware accelerated volume rendering

techniques on commercial graphics processing devices. This implementation has

been developed with a 3D texture based approach using bump mapping for building

an illumination model with OpenGL API. The aim of this work is to propose

visualization methods and tools for rendering medical image datasets at interactive

rates. The methods and tool are validated and compared with a commercially

available software.

Keywords: Direct volume rendering, PC graphics hardware, OpenGL, bump

mapping, multi-texturing, medical imaging, Phong Illumination model, 3D texture

mapping

v

ÖZ
TIBBİ GÖRÜNTÜLER İÇİN ETKİLEŞİMLİ HACİM KAPLAMA

Orhun, Koray

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Erkan MUMCUOĞLU

Eylül 2004, 159 sayfa

 Hacim kaplama, bilimsel görselleştirme yöntemleri içerisinde önemli bir

yöntemdir. Kişisel bilgisayarların grafik işlemcilerinde yaşanan son zamanlardaki hız

artışı, bu metodun kullanımını yaygınlaştırmaktadır. Hacimsel verilerin

görselleştirilmesinde kullanılan hacim kaplama yöntemi, bilgisayar işlemci zamanını

çok harcayan bir hesaplama yöntemi olan üçlü doğrusal aradeğerleme işlemini çokça

yapmaktadır. Bu durum, hacim kaplama yöntemi kullanarak görselleştirme

işlemlerinin, ancak son teknoloji iş istasyonları veya özel amaca yönelik üretilmiş

donanımlarla gerçekleştirilebilmesine olanak sağlamaktaydı. Bu tezde, günümüz

kişisel bilgisayarları için üretilmekte olan grafik işlemcilerini kullanarak, donanım ile

hızlandırılmış hacim kaplama konusunda bir yazılım geliştirilmiştir. Geliştirilen

yazılımda, üç boyutlu dokuların kullanılması yöntemini temel alarak, vurdurarak

doku eşleme (bump mapping) yöntemi ile OpenGL uygulama programı arayüzü

üzerinden bir ışıklandırma modeli kullanılmıştır. Bu çalışmanın amacı, etkileşimli

hızlarda tıbbi verileri görüntüleyebilecek bir yöntem sunmaktır. Geliştirilen yazılım,

yaygın olarak kullanılan bir ticari yazılımla karşılaştırılmıştır.

Anahtar kelimeler: Hacim kaplama, kişisel bilgisayar grafik donanımı, OpenGL,

vurdurarak doku eşleme, çoklu doku, tıbbi görüntüleme, Phong ışıklandırma modeli,

üç boyutlu doku kaplama

vi

To my grand-mother Câhide and grand-father Fâzıl Engin

vii

ACKNOWLEDGEMENTS

 I wish to express my deepest gratitude and special thanks to my advisor,

Assist. Prof. Dr. Erkan Mumcuoğlu, for his invaluable support and encouragement. I

wish to thank him very much for his endless patience and perfect guidance, not only

in supervising of this work but also in his question-ask-able lectures which enhanced

my vision.

 I wish to extend my sincere thanks to my friend Mehmet Şaşmaz, for his

endless ambition to help and his invaluable comments, suggestions and remarks for

my works.

 I wish to thank to Dr. Bilge Volkan Salancı, for her invaluable supports for

the analysis section of this study.

 I would like to thank to my friends, Barış Tosun, Fatih Nar, Ümit Yaşar

Karadeniz, Ayşegül Özkul, Levent Çapçı, Utku Göker, Balkan Uraz, Diren Çakıcı

and my ex-manager Serdar Ak for their invaluable supports.

 My appreciations go to the company AnalyzeDirect, which send me the

evaluation version of the software Analyze 5.0 for the analysis section of this work.

 Finally, I would like to express my endless thanks to my family for their

endless support and patience.

viii

TABLE OF CONTENTS

ABSTRACT.. iv
ÖZ .. v
ACKNOWLEDGEMENTS ...vii
TABLE OF CONTENTS..viii
LIST OF TABLES ... x
LIST OF FIGURES .. xi
LIST OF ACRONYMS AND ABBREVIATIONS.. xiv
CHAPTER
 1. INTRODUCTION ...1

1.1 Motivation.. 15
1.2 Organization of the Thesis ... 16
1.3 Three Dimensional Visualization... 17

1.3.1 Methods of Three Dimensional Visualization 18
2. VOLUME RENDERING... 21

2.1 What is Volume Rendering? .. 22
2.2 Where is Volume Rendering Used?... 22
2.3 Terminology and Overview ... 23
2.4 Volume Rendering Pipeline ... 26

2.4.1 Segmentation... 26
2.4.2 Gradient Computation... 28
2.4.3 Interpolation - Resampling.. 31
2.4.4 Classification... 34
2.4.5. Shading... 37

2.4.5.1 Phong Illumination Model ... 38
2.4.5.2 Shading Methods.. 44

2.4.6. Compositing ... 46
2.4.6.1 Front-To-Back Compositing .. 47
2.4.6.2 Back-To-Front Compositing .. 49
2.4.6.3 Maximum Intensity Projection (MIP).. 50
2.4.6.4 X-ray Projection... 51

2.5 Volume Rendering Techniques.. 52
2.5.1 Image-Order Volume Rendering... 52
2.5.2 Object-Order Volume Rendering.. 54
2.5.3 Shear-Warp Method.. 55
2.5.4 Volume Rendering Using Texture Mapping... 56
2.5.5 Special Purpose Hardware for Volume Rendering 56

3. VOLUME RENDERING USING PC GRAPHICS HARDWARE 57
3.1 Texture Based Volume Rendering Methods .. 58

3.1.1 Volume Rendering Using 2D Textures... 58

ix

3.1.2 Volume Rendering Using 3D Textures... 61
3.1.3 Sampling Frequency ... 63

4. IMPLEMENTATION.. 65
4.1 Software Libraries.. 65
4.2 Properties of the Implementation ... 67

4.2.1 Visualizing Volumetric Datasets... 67
4.2.1.1 Gradient.. 80
4.2.1.2 Segments .. 88
4.2.1.3 Clip Plane and 3-Axis Plane .. 90
4.2.1.4 Multi Modality ... 92

5. ANALYSIS OF THE IMPLEMENTATION .. 97
5.1 Qualitative Comparisons.. 97

5.1.1 Rendering Results ... 99
5.2 Hardware Tests .. 108

6. CONCLUSION AND FUTURE WORKS .. 110
6.1 Conclusion ... 110
6.2 Future Works.. 111

REFERENCES... 115
APPENDICES

A. User Interface of the Implementation.. 122
B. 3D Computer Graphics and OpenGL.. 133
C. Bump Mapping Source Code .. 155
D. Biomedical Imaging Resource (BIR) and the Analyze Software 158

x

LIST OF TABLES

Table 5.1 Testing results .. 108

Table B 1 OpenGL Data Types.. 142

xi

LIST OF FIGURES

Figure 1.1 Multiplanar slicing ... 18
Figure 1.2 Oblique Sectioning .. 19
Figure 1.3 Curved Sectioning ... 19
Figure 2.1 Different Types of Grids .. 24
Figure 2.2 Example for different spatial resolutions ... 25
Figure 2.3 Example for different intensity resolutions ... 25
Figure 2.4 Volume Rendering Pipeline ... 26
Figure 2.5 Example for segmentation. ... 28
Figure 2.6 Boundary between two materials and the gradient vector........................ 28
Figure 2.7 Continuous function .. 29
Figure 2.8 Three dimensional Sobel gradient operator ... 30
Figure 2.9 Interpolation ... 32
Figure 2.10 Different interpolation kernels.. 32
Figure 2.11 Interpolation in three dimensions ... 33
Figure 2.12 Bilinear interpolation ... 34
Figure 2.13 Histogram of a CT dataset. ... 36
Figure 2.14 Diffuse reflection ... 40
Figure 2.15 Diffuse reflection dependency of angle between light position and

surface normal.. 41
Figure 2.16 Effects of ka, kd changes ... 42
Figure 2.17 Diffuse to Specular reflection .. 42
Figure 2.18 Specular Reflection... 43
Figure 2.19 Effects of specular reflection exponent changes 44
Figure 2.20 Flat Shading ... 45
Figure 2.21 Gouraud Shading ... 45
Figure 2.22 Different Shading Methods .. 46
Figure 2.23 Intervisibility of two images .. 46
Figure 2.24 Front-to-back compositing ... 47
Figure 2.25 Back-to-front compositing.. 49
Figure 2.26 Maximum intensity projection of a human head 51
Figure 2.27 X-ray projection of a human feet ... 52
Figure 2.28 Volume Raycasting .. 53
Figure 2.29 Object-order volume rendering .. 55
Figure 2.30 Shear-Warp algorithm mechanism (for Parallel Projection) 56
Figure 3.1 Polygonal slices that are mapped with textures.. 58

xii

Figure 3.2 Texture Mapping ... 58
Figure 3.3 Rotated view .. 59
Figure 3.4 No rendering result .. 59
Figure 3.5 Slice sets parallel to the three coordinate planes 60
Figure 3.6 2D texture mapped slices ... 60
Figure 3.7 Sampling artifact .. 61
Figure 3.8 Artifact during the change of the slice set. .. 61
Figure 3.9 3D texture, arbitrary slicing capability .. 62
Figure 3.10 Viewing direction aligned slicing .. 62
Figure 3.11 Consistent sampling rate. ... 62
Figure 4.1 Texture mapped polygons... 68
Figure 4.2 Different densities of slices .. 69
Figure 4.3 Different distances between slices.. 70
Figure 4.4 Rendering Parameters, Blending window .. 71
Figure 4.5 Blending Window... 71
Figure 4.6 Over operator .. 73
Figure 4.7 Lighting appearance effect in Blending with Over Operator 73
Figure 4.8 Attenuate Operator ... 75
Figure 4.9 Maximum Intensity Projection ... 75
Figure 4.11 Threshold filtering of a dataset. .. 76
Figure 4.12 Results for different combinations of intensity and transparency 78
Figure 4.14 Rendering with multi transparency options.. 79
Figure 4.15 Gradient computation methods... 80
Figure 4.16 Rendering with different gradient computation methods 84
Figure 4.17 Normal Map of the Volumetric Dataset ... 85
Figure 4.18 Examples for rendering results with per-voxel lighting 87
Figure 4.19 Segments GUI... 88
Figure 4.20 Segmented data visualization ... 89
Figure 4.21 Clip Plane, 3-Axis Plane GIU... 90
Figure 4.22 3-Axis plane.. 91
Figure 4.23 Clip Plane ... 92
Figure 4.24 Multi Modality display modes.. 92
Figure 4.25 Multi modality rendering results of an epilepsy patient. 95
Figure 5.1 Depth Shading Comparisons .. 101
Figure 5.2 Gradient Shading Comparisons .. 102
Figure 5.3 Volume Compositing Comparisons.. 104
Figure 5.4 Maximum Intensity Projection Comparisons ... 105
Figure 5.5 Summed Voxel Projection Comparisons.. 107
Figure A.1 Main Frame, File Menu ... 122
Figure A.2 New Menu ... 122
Figure A.3 GL Window (no dataset loaded).. 122
Figure A.4 File Open Menu ... 123
Figure A.5 Polygon Mode Output.. 124
Figure A.6 Multiple GL windows.. 125

xiii

Figure A.7 View Menu .. 127
Figure A.8 Projection GUI... 128
Figure A.9 Orthographic Projection (left), Perspective Projection (right) 129
Figure A.10 Lighting GUI ... 129
Figure A.11 Material GUI.. 130
Figure A.12 Flat Shading ... 130
Figure A.13 Smooth Shading... 131
Figure B.1 Transformation matrix for rotation about x axis.................................... 137
Figure B.2 Transformation matrix for rotation about y axis.................................... 137
Figure B.3 Transformation matrix for rotation about z axis 137

xiv

LIST OF ACRONYMS AND ABBREVIATIONS

2D Two Dimensional
3D Three Dimensional
API Application Programming Interface
DICOM Digital Imaging and Communications in Medicine
CAD/CAM Computer-aided design/computer-aided manufacturing
CPU Central Processing Unit
CT Computed Tomography
JOGL Java bindings for OpenGL API
GHz Giga Hertz
GL Graphics Library
GPU Graphics Processing Unit
GUI Graphical User Interface
MB Mega Byte
MHz Mega Hertz
MIP Maximum Intensity Projection
MRI Magnetic Resonance Imaging
PC Personal Computer
PET Positron Emission Tomography
RGB Red, Green, Blue
RGBA Red, Green, Blue, Alpha
SGI Silicon Graphics Inc.
SPECT Single Photon Emission Computed Tomography

15

CHAPTER 1

INTRODUCTION

The contribution of this study is primarily in volume rendering. Using

hardware acceleration in computer graphics has become very important due to fast

evolution of the graphics processing devices in the recent years. The vast amount of

production and development of computer graphics devices in the industry enabled

the consumers to own high performance graphics computation power without a high

expenditure on workstations. The main focus of our study is on the capabilities of

hardware accelerated volume rendering techniques.

1.1 Motivation

The main motivation for this study is to propose useful solutions and

techniques for the visualization section of the project: “Three Dimensional Brain

Image Processing” which is directed by Assist. Prof. Dr. Erkan Mumcuoğlu in the

Informatics Institute department of Middle East Technical University. The primary

focus of this project is to register medical imaging volumetric datasets of patient’s

brain which were acquired with different modalities (Nuclear Medicine, Radiology,

etc.) and visualize them in three dimensional spaces for the medical staff use.

The main advantage of Nuclear Medical Imaging studies is to present not

only the morphologic information about the organ systems of the patients, but also

give information about their functions. The medical images acquired by Radiology

Technology present a higher level of detail for the anatomical structures of the

patient’s organ systems. However, they present less information about the functions.

The main disadvantage of Nuclear Medical Imaging is that the resolution of the

acquired datasets is very low with respect to the ones acquired with Radiology

16

Technology, and the small structures may not be localized correctly. In some

situations, there is a requirement for building a correlation between the results

acquired by both of the techniques for better diagnostics, and guide the surgeon

before an operation by localizing the functional information with the anatomical

structure. This process is called co-registration, which requires sophisticated

hardware and software systems. Even though the results are registered, visualizing

the datasets in a three dimensional environment using computer graphics has a great

importance on enabling doctors to understand the structures more clearly.

There are many researches about this phenomenon, and in many developed

countries such techniques are being used. In Hacettepe University Hospital, very

sophisticated devices are used for acquiring medical imaging datasets on different

modalities, however this co-registration and visualization with computer graphics

processes cannot be established. Analyze [37] is one of the most popular software

system for establishing this technique; however it requires a huge amount of

expenditure.

The aim of the project “Three Dimensional Brain Image Processing” is to

develop a system that is able to co-register and visualize multimodality medical

image datasets according to the requirements, and distribute this system to the

hospitals that are interested, with no fee. The motivation for our studies is to propose

a solution for the visualization section of this project.

1.2 Organization of the Thesis

 This Thesis has 6 Chapters:

 Chapter 1: Gives the motivation and some introductory information about

visualization. It also mentions different methods of computer visualizations.

Chapter 2: Gives detailed information about volume rendering and presents a

pipeline for volume rendering.

17

Chapter 3: Summarizes different kinds of volume rendering techniques using

PC graphics hardware, and gives an introductory information about computer

graphics.

Chapter 4: Presents detailed information about methods of the

implementation developed for this thesis.

Chapter 5: Gives the testing results of the implementation and presents some

qualitative comparison with software Analyze.

Chapter 6: Concludes the thesis by discussing the results of the tests, and

gives a pathway for the future studies.

1.3 Three Dimensional Visualization

 “Forming an image is mapping some property of an object onto image space.

This space is used to visualize the object, and its properties and may be used to

characterize quantitatively its structure or function. Imaging science may be defined

as the study of these mappings and the development of ways to better understand

them, to improve them, and to use them productively” [1, pp. 685].

3D visualization refers to the process of transforming and displaying the three

dimensional objects in a way that their nature is able to be seen. 2D display devices

that visualize shaded graphics of the rendered objects or 3D display devices that

enable stereoscopic or holographic type of displays are used for visualizing the

outputs of 3D visualization methods. The term visualization not only concerns

methods for displaying but also includes methods for manipulating and analyzing the

displayed information, “this term implies inclusion of cognitive and interpretive

elements” [1, pp. 686]. The term 3D imaging is generally defined as acquiring digital

samples of objects in a three dimensional environment. This term also includes

processing, analyzing and visualizing of the sampled datasets.

18

1.3.1 Methods of Three Dimensional Visualization

 There are various kinds of techniques used for visualizing 3D datasets. The

generally used methods especially in biomedical research and clinical applications

shall be defined briefly in this section.

2D Display:

 2D image generation and display methods aim to generate optimal 2D images

from 3D volumetric datasets by allowing the user to set the orientation of the 2D

image plane for visualizing unrestricted view of important features in the sampled

3D information.

 Multiplanar Reformatting is the process of constructing 2D images from the

volumetric dataset by reslicing the set of data in any arbitrary spatial direction which

visualize the images that lie along the non-acquired orthogonal orientations of the

volume. Figure 1.1 [38] shows an example for this method of display.

Figure 1.1 Multiplanar slicing

 Oblique Sectioning [39] is the method of visualizing a desired plane in the 3D

volumetric dataset that is not parallel to any orthogonal orientation in which the

volume has been acquired. An example display for oblique sectioning is given in

Figure 1.2 [39].

19

Figure 1.2 Oblique Sectioning

 Curved Sectioning is the method of displaying structures that have curvilinear

morphology which oblique and multiplanar methods cannot display. An example for

curved sectioning is given in Figure 1.3 [1].

Figure 1.3 Curved Sectioning

3D Display:

 “Visualization of 3D biomedical volume images has traditionally been

divided into two different techniques: Surface Rendering and Volume Rendering” [1,

pp. 688].

Surface Rendering is the visualizing techniques in which the contours of the

edges present in the volumetric dataset are extracted as geometric primitives, and

visualized by a mosaic of connected polygons representing the surfaces. There are

20

some different approaches for extracting the surfaces from the volume. Surface

reconstruction from contours [2] and Marching Cubes [3] algorithms are some of the

popular methods used for extracting surfaces from volumes. The main advantage of

this technique is that, the results of surface extraction methods are geometric

primitives that are polygons. Polygon based surface representation enables the

information to be transformed into analytical descriptions; so, the standard computer

graphics techniques like transforming the volume or using illuminations models, are

able to be applied for this method of visualizing, and other visualization packages of

CAD/CAM software can be used for displaying. “The disadvantages of this

technique are largely based on the need to discretely extract the contours defining the

structure to be visualized. Other volume image information is lost in this process,

which may be important for slice generation or value measurement. Finally, because

of the discrete nature of the surface polygon placement, this technique is prone to

sampling and aliasing artifacts on the rendering surface.”[1, pp. 689]

 Volume Rendering is one of the most powerful visualization techniques being

used for displaying volumetric datasets [1]. The focus for our study is mainly on

volume rendering, so it shall be defined in detail in the following chapters.

 In some of the resources, the term Surface Rendering described here is called

as Indirect Volume Rendering, and Volume Rendering is called as Direct Volume

Rendering [4]. In this document the term Volume Rendering refers to Direct Volume

Rendering.

21

CHAPTER 2

VOLUME RENDERING

 “To visualize noninvasively human integral organs in their true form and

shape has intrigued mankind for centuries. If the discovery of X-rays gave birth to

radiology, the invention of computerized tomography and magnetic resonance

imaging has revolutionized radiology. Three dimensional imaging is another recent

development that has brought us closer to fulfilling the age-old quest of noninvasive

visualization.” [5]

 The importance of scientific computing has become more significant in the

recent evolution period of the technology. Scientific computation applications

require new techniques to process the vast amount of data and be interpreted by the

scientist. This requirement has resulted in a new field in the computer graphics

studies, which is called Scientific Visualization. The recent increases in the

performance of the computing have made it possible to use the scientific

visualization in many different disciplines with complex datasets that are rich in

quality. Medical imaging, computational fluid dynamics simulations, meteorology,

molecular modeling and geographical information systems are some of the

disciplines that use the advantages of scientific visualization.

 Volume rendering, which is one of the branches of scientific visualization,

popularity has grown considerably in the recent years, and due to increase in the

computation speed in the desktop systems, became more and more accessible.

22

 2.1 What is Volume Rendering?

 Volume rendering is a method of visualizing a three dimensional (3D)

volumetric data as two dimensional (2D) image. An example for volumetric data is

the sampling of an object in three dimensions. In medical imaging, Positron

Emission Tomography (PET), Magnetic Resonance Imaging (MRI) datasets are

examples for volumetric datasets. Volume Rendering techniques enable these three

dimensional datasets to be transformed into a meaningful image, and this process is

called rendering. In traditional computer graphics, rendering is the action of painting

a picture of a scene as if the user is looking from a specific point to a specific

direction in the scene. It uses geometric calculations for how shall the primitives

(points, lines, polygons) will be seen in the camera (two dimensional result of the

rendering process) and textures added to the objects in the scene with the addition of

lighting into the rendering calculations; the realism of the rendered two dimensional

image is increased. Volume rendering techniques process the three dimensional

datasets and transform into a rendered result image by using lighting functions from

the study of computer graphics, classify the data with image processing techniques

and apply compositing by emulating alpha blending from computer graphics studies.

 2.2 Where is Volume Rendering Used?

 Many different disciplines and sciences use volume rendering technique. In

medical imaging, the human internals captured with Magnetic Resonance Imaging

(MRI), Computed Tomography (CT), Ultrasound, PET and Single Photon Emission

Computed Tomography (SPECT) scanners produce vast amount of datasets which

are to be analyzed by doctors or physicians. The sampled datasets are needed to be

viewed in different directions, rotated, zoomed and also separately colored in order

to distinguish one type of tissue from another. Volume rendering techniques help the

surgical planning processes; haptics[40] and telepresence surgery technology, in

which the doctor can conduct a surgery on a patient in a remote location. Volume

rendering methods help the paleontologists to distinguish between a fossil and the

ground that covers it, by the help of a CT scanner. Computational Fluid Dynamics

23

science (which is used in many areas such as designing exhaust manifolds for

engineers, designing wings of aero planes) is governed by a set of derived equations

that consist of velocity and vorticity (a measure of the rotation of air in a horizontal

plane) of a fluid’s flow. Scientists use volume rendering techniques, in order to

monitor all of these values through a structure. Meteorologists and other scientists

who use modeling techniques use volume rendering in viewing and analyzing their

models built for inquiring the phenomena such as ocean turbulence, precipitation,

solar magnetic storms, ozone layer, typhoons, acid rains and hurricanes. Volume

rendering enables the viewer to examine inside of something, without removing

physically the layers. Visible Human Project [41] is a helpful tool for nondestructive

testing processes. CT scan techniques combined with volume rendering visualization

technique, non-destructive testing can be obtained. Volume rendering is also an

essential tool for microbiologists for microscopic analysis and geoscientists for oil

explorations.

The uncertainty principle, which was thought by the German Physicist

Werner Heisenberg, tells that: “It is impossible to measure the trajectory of an

electron moving through space. The very act of observing the electron shall alter its

path and contaminate the experiment.”[42] This principle is a significant problem for

failure analysis in different fields. For example, in order to find a failing reason of an

engine or to find out if a building structure has been damaged of not, the analyst have

to give harm or sometimes even destroy the inquired structure. But in medical

imaging, the harm to the patient is kept at minimum by keeping the radiation levels

low.

 2.3 Terminology and Overview

 In a digital image, the information is stored in a two dimensional array which

represents color of light intensity or transparency. Data elements kept in the array are

called pixels. Volumetric dataset can be defined as a three dimensional digital image.

The information of volumetric dataset is stored in a three dimensional array in which

data elements are called voxels. A pixel value stores the information of a point in a

two dimensional spatial coordinates, and a voxel stores the information of a point in

24

a three dimensional spatial coordinates. In literature, voxel is defined in two different

ways: in the first definition voxel is considered as a small cube; in the other

definition, voxel is considered as a point which has no size but has a location in the

three dimensional space. In this study, the second definition shall be used.

(a) (b)

(c) (d)

(e) (f)

Figure 2.1 Different Types of Grids

(a) Cartesian Grid: Typically known as a voxel grid. Data elements are cubic

and axis aligned; (b) Regular Grid: Similar to Cartesian grid, but cells are

rectangular; (c) Rectilinear Grid: Similar to regular grid, but the cell dimensions

vary; (d) Structured (Curvilinear) Grid: Hexahedra or rectangular cells warped

to fill a volume, or warped around an object; (e) Unstructured Grid: No

geometric constraints are imposed. The cells may be tetrahedral, hexahedra,

prisms, pyramids, etc; (f) Hybrid Grid: A combination of structured and

unstructured grids.

25

 Measuring a property of a physical environment at a specific location is

called sampling. Sampled information may be color value, light intensity,

transparency, hue, density, temperature, acceleration, etc. Voxels are the sampled

information which imposes a grid on the volume. Different kinds of grids may be

classified as shown in the Figure 2.1 [43], [4].

 In this thesis, Cartesian type of sampled volumetric data shall be used as input.

The density or amount of spacing between sampled points differs by the spatial

resolution of the dataset.

(a) (b) (c)

Figure 2.2 Example for different spatial resolutions
(a) 350x350 pixels; (b) 64x64 pixels; (c) 32x32 pixels.

 Quantizing is the process of storing the sampled information in the digital

environment. Intensity resolution is the number of bits which is used for the storage

of the sampled information. Using higher number of bits for each sampled point

increases the intensity resolution. Examples for different spatial and intensity

resolutions is given in Figure 2.2 and 2.3 [6, pp. 17] respectively.

(a) (b) (c)

Figure 2.3 Example for different intensity resolutions
(a) 8 bits/pixel; (b) 2 bits/pixel; (c) 1 bit/pixel.

26

 2.4 Volume Rendering Pipeline

 The aim of visualization is to enable the user understand what is happening or

stored in the dataset. Volume rendering, which is a method in three dimensional

computer graphics, gives user the ability of making any kind of sense of a group of

voxels and view their relationships.

 Volume rendering pipeline is a kind of dataflow diagram which shows the

main operations required for the overall volume rendering process. Different volume

rendering implementations may exclude or change the order of some operations

shown in the volume rendering pipeline diagram [6, pp. 29].

Figure 2.4 Volume Rendering Pipeline

 2.4.1 Segmentation

 Each volumetric dataset has certain characteristics according to its data

acquisition technique, and in most of the data acquisition techniques, the sampled

voxel values carry information that cannot be visualized directly; such as “density,

acoustic impedance, tissue magnetization and the like” [6, pp. 29].

Segmentation

Gradient Computation

Resampling

Classification

Shading

Compositing

27

 In order to visualize this non-visual information, we need to assign color or

light intensity / transparency to each voxel in the dataset.

 Segmentation is the process of labeling the voxels inside a volumetric dataset.

Segmentation operation is done before the rendering phase and it categorizes /

separates the whole data into structure that are formed by certain relationships

between voxels. For example: a volumetric dataset acquired by MRI which contains

information of a patient’s head shall contain skull data in some of the voxels and

brain data in some other voxels. Segmentation enables us to label each voxel either

brain or skull.

 Segmentation is an important pre-rendering process to achieve high quality

visualization. However, in some kinds of volumetric datasets, it is a complicated

process that requires many different image processing algorithms. It is not always

possible to extract every different feature in a dataset automatically. Usually,

segmentation algorithms are semi-automatic which require some user interaction for

maximum success. “There are many researchers working on the problem of

extracting, or segmenting features in a dataset. It is sometimes not possible to come

up with an automatic algorithm that does the segmentation for you” [6, pp. 97].

Segmentation is usually a difficult and time consuming task; however it is sometimes

essential for visualization. For example; in the patient’s MRI head dataset example, it

might not be possible to visualize the brain data as it is covered with a skull.

 When a volumetric data is applied a segmentation process, interested features

are labeled in the voxels so that, each voxel is part of a material or a feature. Thus

segmentation process shall be done before rendering and other processes in the

volume rendering pipeline. Classification processes and coloring transfer functions

may use the output of segmentation process, and more meaningful and higher quality

renderings can be obtained.

28

(a) (b) (c)

Figure 2.5 Example for segmentation.
(a) Without segmentation; (b) Segmented; (c) Only brain segment visualized.

 2.4.2 Gradient Computation

 Gradient computation is the process to calculate and find the boundary voxels

between different materials. The gradient is a measure which tells how quickly

values of the voxels change and the direction of that change. This information has an

importance in volume rendering as it gives a lot of information about the structures

inside the dataset. For example, two different tissues in an MRI dataset will have two

different intensity values, and gradient value of the voxels which were located at the

boundary between these two different tissues will be significantly high. The direction

value calculated in gradient computation also gives the information about the three

dimensional orientation of the boundary [6, pp. 67].

Figure 2.6 Boundary between two materials and the gradient vector.

∇ Boundary between
different materials

29

∇ = [∇ x, ∇ y, ∇ z] is a gradient, which is a three dimensional vector which

points a direction in the three dimensional space. This direction gives us the

information about the orientation of that voxel. The magnitude of this vector gives

the information about how quickly values of the voxels change around that voxel

which is given as [6, pp. 67]:

222)()()(zyx ∇+∇+∇=∇

If the magnitude of a voxel’s gradient is zero, this means that there is no

change in the values of the neighborhood voxels. On the contrary, if the magnitude

has a significant value, it can be told that, this voxel is located at a boundary.

It is recommended to read the Interpolation-Resampling section at this point,

because some knowledge about interpolation is required for a better understanding of

how gradient computation works.

In order to understand the logic behind the gradient computation, here is a

one dimensional example [6, pp. 68]:

(a) (b)

Figure 2.7 Continuous function
(a) Underlying continuous function of the discrete data;

(b) Derivative of the continuous function and the sampled points.

In this example, another step in which the derivative of the continuous

function is calculated is used so that the information of how quickly the continuous

function change is obtained.

x position

In
te

ns
ity

x position

In
te

ns
ity

30

There are many different methods that calculate the gradient of a dataset. The

central difference gradient estimator method is one of the mostly used gradient

computation methods which is fast and easy to implement, but not very high in

quality.

The definition of the central difference gradient estimator is [6, pp. 69]:

),,1(),,1(zyxfzyxfx +−−=∇

),1,(),1,(zyxfzyxfy +−−=∇

)1,,()1,,(+−−=∇ zyxfzyxfz

In this formula f(x,y,z) is the function that gives the value of the voxel at the

position (x, y, z) in the volumetric dataset.

∇ = [∇ x, ∇ y, ∇ z] is the gradient vector of the point (x, y, z) which is consist

of the components ∇ x, ∇ y, ∇ z. The central difference gradient estimator can also be

calculated using a convolution kernel: [-1, 0, 1] (see the next section for the

definition of convolution, if reader is not familiar with convolution).

Using this one dimensional kernel on each three axis, the components of the

gradient vector ∇ x, ∇ y, ∇ z shall be obtained.

The central difference gradient estimator method uses six voxels to calculate

the gradient vector. Other methods use different kinds of operators. Sobel operator

uses 26 of the neighboring voxels, to estimate the gradient vector. 26 point

neighborhood operators are usually better at estimating the gradient; however they

are more expensive in computation. Sobel operator is a well known image processing

operator which uses the kernel in Figure 2.8 [6, pp. 72] for three dimensional datasets

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

−=

202
303
202

1

303
606
303

0

202
303
202

1 xxx

Figure 2.8 Three dimensional Sobel gradient operator

31

3x3x3 convolution kernel shown in the figure is applied to the 26 voxels

around the voxel whose gradient vector is being computed. In order to calculate the

three components of the gradient vector, three different passes should be applied on

each axis (x, y, z). The kernel shown in the figure is used for the z direction to get the

x component of the gradient vector. In order to compute y and z components of the

gradient vector, this kernel need to be rotated, according to direction of the axis.

Another operator is intermediate difference operator for which the

convolution kernel for one dimension is: [-1 1].

Convolution kernel looks similar to the central difference gradient operator,

however this operator uses the voxel that gradient vector is being computed so that it

can be able to register the very fast changing of values in the dataset by subtracting

two neighboring voxel intensities.

Gradient is used in two phases of the volume rendering pipeline: shading

stage and classification stage. In computer graphics, in order to increase the realism

of the rendered scene view, many different kinds of methods are used. Shading

techniques increase the render quality by using the information of the position of the

light sources, material properties that has been assigned to the polygons, color of the

polygon and the surface normal of the polygons. In volume rendering, the dataset

does not consist of polygons but voxels. In other words, there is no surface normal as

there is no surface in the data format. However, the gradient vector information for

each voxel can be used as surface normal in the illumination model, and more

realistic views can be rendered by computing the output according to the light

position, color, material properties assigned to each voxel.

 2.4.3 Interpolation - Resampling

 Interpolation is computing the intermediate values between two discrete

points. In the sampling process, the data stored are discrete value of a continuous

function. Interpolation is meaningful if we have an idea about what the continuous

function is. Figure 2.9 (a) shows a sampled one dimensional discrete points (through

32

x axis). Figure 2.9 (b) shows the interpolated points between discrete sampled points,

according to the continuous function [6, pp. 68].

(a) (b)

Figure 2.9 Interpolation
(a) Discrete data; (b) Interpolated according to the continuous function.

There are different methods for the computation of the interpolated values. It

is usually impossible to find the continuous function for the whole dataset, especially

in the three dimensional volumetric datasets. In order to calculate the interpolated

values of points, computing the interpolation according to the point’s neighboring

discrete sampled points is meaningful. This can be done by calculating a weighted

sum of the surrounding sampled points. This method can be done by using

convolution algorithm with different kind of interpolation kernels. Interpolated

kernels are overlays, which we place them on the top the values need to be

interpolated. Interpolation kernels are centered at the points that we are interested in

to find out the interpolated values. Every position that the interpolation kernels

intersect a known sampled value in the dataset, the sampled value and the kernel

value are multiplied. The newly interpolated value is achieved by the summation of

these multiplied discrete values. Examples for different interpolation kernels are

shown in Figure 2.10 [6, pp. 105].

Figure 2.10 Different interpolation kernels

x position

In
te

ns
ity

x position

In
te

ns
ity

33

“The one dimensional interpolation kernels can be applied to interpolate in

two and three dimensions if the kernel is separable. A two dimensional function is

considered separable if it can be decomposed as follows” [6, pp. 105]:

f(x,y) = g(x) · h(y)

Interpolation calculation of a three dimensional dataset can be done in three

stages, where each stage is done on a different axis (x, y, z). These stages are shown

in the following figure [6, pp. 106].

Figure 2.11 Interpolation in three dimensions

The simplest method of interpolation is nearest neighbor method. In this

method nearest sampled point’s value is used as interpolation point.

Linear interpolation method is one of the most popular interpolation method

used in image and signal processing. It is called bilinear interpolation when it is used

two dimensional signals, called trilinear interpolation when it is applied to three

dimensional signals.

Linear interpolation is a computationally expensive method that nearest

neighbor interpolation, because it assumes that there is a linear relationship between

the points to be interpolated. It is computed by the formula [6, pp. 110]:

)(
)()(

)(0
01

01 xfd
xx

xfxf
df +⋅

−
−

=

8 voxels y interpolationsx interpolations z interpolations

34

where d is the interpolated point’s distance from the point 0x . An example for

bilinear interpolation is shown in the following figure [6, pp. 111]:

Figure 2.12 Bilinear interpolation

2.4.4 Classification

Classification stage in the volume rendering pipeline, enables the structures to

be visualized without extracting surface or explicitly defining the shape in the

volumetric dataset. This stage is the most powerful ability of volume rendering

which makes it more useful with compared to surface rendering methods. In the

surface rendering visualization techniques, surface of the structures in the volumetric

dataset must be extracted as a pre processing operation before the rendering phase. In

the pre-processing stage of the surface rendering [3], [2], [7], the surfaces need to be

decided if present or not, and there might be some errors occurred in the surface

extraction. These errors might lead to rendering some surfaces that are not existed in

the dataset. Classification step of the volume rendering pipeline is not a binary

decision process that decides if a surface is existed or not. The surfaces are made

visible by assigning opacity to the voxels. Opacity is a measure between 0 and 1

which defines how much transparency shall be applied to the voxels, in other words,

how much light that passes through will be absorbed by that voxel. For example,

while visualizing a patient’s MRI volumetric dataset, if the voxels which are at a

position where the patient’s brain exists are assigned as opacity 1, and the rest of the

voxels in the dataset are set to 0 opacity, the rendering result will be the visualization

of only the brain voxels stored in the dataset. In the classification stage of the volume

rendering pipeline, the main aim is to assign opacity values to the each voxel stored

35

in the dataset. However, this process might be very complex and might require

sophisticated methods to be applied in order to extract meaningful structures from

the raw data of voxels in the dataset. Segmentation is an example for extracting

structures from a dataset.

The assignment of opacity value to the voxels is done by the help of

information extracted from the dataset, like the intensity / color value of the voxel or

the gradient magnitude. This process is called opacity transfer function. Before

understanding the transfer function methods, histogram1, which is a very useful tool

for designing the transfer function, need to be known.

In almost all of the datasets, there is an inherent noise which differs from one

dataset to another according to different conditions or methods in the acquisition

process of the volumetric data. Histograms help to produce meaningful filters to

avoid noise. While building the opacity transfer function, many different properties

can be used as input [6, pp. 89]:

,...),(1 iiIO ∇=α

where O is an example for the opacity transfer function, which has input of the value

of the voxel (Ii) and the local gradient magnitude (i∇).

1 A histogram, in image processing, shows that how many times a pixel of a value appears in

the image. This is same with the volumetric datasets. The vertical axis shows the number of

occurrence of the voxel value (frequency) and the horizontal axis shows the values appear in the

dataset. Histogram is a useful tool for determining the opacity transfer function, because having the

information about the spread of the voxel intensities can help to construct the transfer function.

36

Figure 2.13 Histogram of a CT dataset.

For example: the histogram of a CT shown in the Figure 2.13 gives the

information that there is a peak between 120 – 150 intensities and the intensities

below the 100 seems to be noise. In order to filter out the voxels in [120,150]

intensity range, we built an opacity transfer function by assigning “0” opacity value

in this range and assigning high opacity values to the other voxels. The output shall

be different if the filtered intensity range is changed or the gradient magnitude is also

used. As gradient magnitude shows how quickly the voxel intensity values change,

filtering the voxels that have less gradient magnitude values by assigning small

opacity value, the voxels that happen to be on a surface will be rendered and the

structures in the volumetric dataset could be viewed.

Here is another example for opacity transfer function, which helps to

visualize the voxels having the intensity value of fv and neighboring voxels that has a

significant gradient value[6, pp. 94]:

0 100 200 300
0

20

40

60

80

Voxel Intensity

Fr
eq

ue
nc

y

37

Opacity value for the voxel i Case

iv
i

If
r

−
∇

−
11 If 0>∇ i and iivii rIfrI ∇+≤≤∇−

1 If 0=∇ i and Ii=fv

0 otherwise

where,

i∇ is the gradient magnitude at voxel i,

Ii is the intensity value of the voxel i,

r is a constant, which is “the maximum a voxel’s intensity can deviate from fv”

Classification process is mainly implemented with an interactive user

interface, so that the user is able to change the parameters in real time according to

the type and histogram of the volumetric dataset. Segmentation results or other kinds

of labeled information and other kinds of filtering techniques might be used as input

in the opacity transfer function.

2.4.5. Shading

 Shading phase of the volume rendering pipeline refers to illumination and

shading techniques that are well known methods in the conventional computer

graphics in order to enhance the quality of the rendering to make it more realistic.

Shading methods try to model the geometric scene in a way that more photo realistic

effects like shadow, scattering and absorption of the light according to the properties

of the material, could be obtained. In volume rendering, the primary goal is not the

photo realism, but to get better and more understandable rendered views of the

structural information stored in the volumetric dataset. Because volume rendering the

datasets may contain information about tissues of a human body, an engine block, a

fluid dynamics test, acoustics, etc, in the real world, only the surface of objects could

be seen. However, volume rendering aims to visualize the inside of the object, and

use the shading phase in order to visualize that as realistically as possible.

 In computer graphics, illumination is defined as a model, which describes all

the light striking a particular point on a surface that has particular material properties.

38

“An Illumination Model describes the interaction of light incident with a surface in

terms of the surface properties and the nature of the incident light.”[44] A shading

model is a framework that an illumination model fits, in other words, shading is a

model which determines when and which illumination model shall be applied to a

point, and what parameters shall the illumination model use. The result of shading is

the color of a point in the environment that is being rendered, according to the

physics that how light shall shine on that point, and the position-angle of light and

the rendering reference (user’s eye) orientations in the space. The computation of this

physics is achieved by the illumination model used. In order to build a model and

obtain realistic results, first, how light interacts with the surface of the objects should

be understood [6, pp. 67].

“The complete physics of the interaction of light with surfaces is very

complex and it is usual to use various empirical approximations to the true physics in

Computer Graphics. The reason for this is the vast computational demands made by

a good physical illumination model. However, acceptably realistic results can be

produced fairly quickly using a quite simple illumination model” [44].

 In order to compute how the light shall behave when it hits a surface, there

should be information about the shape of that surface. Surface normal of a point

gives this information and enables the model to calculate how the reflections shall be.

In the volumetric datasets, the gradient information of a voxel can be used as surface

normal for that voxel.

 2.4.5.1 Phong Illumination Model

 Illumination models, in general, aim to simulate the behavior of light

reflection on a surface according to the observer position, light source position,

surface shape and material properties. For example, a black billiards ball under a

single, white spot light shall be observed as a white light shinning on the surface of

the ball. However, if the observer changes the position and look at the ball at a

different angle, it would be seen that, the white shinning part of the ball is now black.

39

In other words, every point on the scene need to be calculated during the rendering

process.

 The Phong Illumination Model [8] deals with three types of light reflection,

namely: (i) Ambient Reflection: The reflection of light that arrives at the surface of

the object from all directions; (ii) Diffuse Reflection: The reflection of light from

non-shiny surfaces in which the light is scattered equally in all directions; (iii)

Specular Reflection: The reflection of light from shiny or mirror like surfaces.

 The visualization of a point of an object is the intensity of light that is

reflected from the surfaces of that object; and the intensity of the light in Phong

shading is calculated by summing over the above three types of reflection. If the

model is rendered in color, this process shall be done for each of the color

components: red, green and blue.

 Ambient Light:

 The Phong model assumes that, the ambient light has the same intensity

everywhere in the scene that is being rendered. The ambient light has no single point

position, so there is no angle of ambient light with respect to the position-shape of

the object being rendered.

 Phong illumination model with ambient light illumination can be formulated

as follows:

 Co = Ca ka Od

where,

Co: Resulting color computed for rendering of a point

Ca: Color of the ambient light. (The color consists of red, green and blue intensity

components, so the computation is done for each single component of color,

separately.)

ka: Material property of the surface. It is called the ambient reflection coefficient.

This coefficient is a number between 0 and 1 which is assigned as a property of a

40

material in the scene. ka for a black surface is smaller than ka for a white surface as

the color black absorbs light more than white.

Od: The visualized object’s diffuse color (assigned in the material properties of the

surface)

Diffuse Reflection:

 Diffuse reflection is the scattering of light in all directions. If a surface is a

perfectly diffusing surface, an incoming light ray shall be reflected to every angle.

Thus, in the rendering result, intensity of a point on a surface will not depend on the

position of the user, but will depend on the properties of the material, color and

distance of the light source, and the angle of the light ray. The color of a surface is

obtained by the light absorbing property of a surface. For example: A red billiard ball

is observed as red if a white light source exists, because the material absorbs the

green and blue colored light rays and scatters the red light rays. If the material of the

ball has no specular light reflection, in other words, it has a perfectly diffuse

reflecting surface; it will appear dull-matt. Figure 2.14 [45] shows how diffuse

reflection occurs.

Figure 2.14 Diffuse reflection

 While computing the diffuse reflection, often the distance between the light

source and the surface is not taken into account. So, the light source is thought to be

infinitively far away and the light intensity does not change at any distance. This is

called directional lighting. In directional lighting the only parameter that will be used

in computing the rendering result for a point, is the angle between the surface and the

rays of the light.

41

Figure 2.15 Diffuse reflection dependency of angle between light position and

surface normal

In Figure 2.15, N is the surface normal of the point that is going to be shaded;

L is a vector that points the light source; Ө is the angle between L and N; kd is the

diffuse reflection coefficient of the surface; Cp is the color of the light source.

 When the diffuse reflection parameters are added to the previous equation,

the Phong illumination model, the formula becomes:

 Co = Ca ka Od +Cp kd Od cosӨ

 This equation shows that, when the angle between the light source and

surface normal is 0, the diffuse reflection of the surface becomes the maximum;

when it is 90 degrees, no diffuse reflection is added to the Co (resulting color)

 If the L and N vectors are normalized, the formula can be changed as follows:

 Co = Ca ka Od +Cp kd Od (N · L)

where, (N · L) is the dot product between L and N vectors, which is equal to cosӨ.

42

Figure 2.16 Effects of ka, kd changes

 Figure 2.16 [46] shows the difference of diffuse and ambient reflection. When

the diffuse reflection coefficient (kd) increases, shadows occurred because of the

directional light reflection which makes the object look more photo realistic.

Specular Reflection:

 While rendering shiny surfaces like polished metal, a glossy plastic, specular

reflection is necessary for a more photorealistic result. In shiny surfaces, a highlight

or a bright spot is seen [47].

Figure 2.17 Diffuse to Specular reflection

 The bright spot seen on the surface is dependent on where the surface is seen.

Figure 2.18 shows that the color of the rendering result for a point also depends on

the angle between the reflection direction and the position of the viewer.

43

Figure 2.18 Specular Reflection

When the specular reflection is added, the Phong illumination model becomes:

 Co = Ca ka Od +Cp [kd Od (N · L) + ks Os (R · V)n] Equation (2.1)

where,

ks is the specular reflection coefficient

Os is the specular reflection color

R is the normalized reflection vector,

 which is the mirror of vector L about the normal N

V is the vector from the point to be shaded to the viewer

(R · V) is the dot product between R and V vectors,

 which is equal to cos(angle between the vectors R and V)

n is the specular reflection exponent

The presence of the vector V shows that the result of rendering shall be dependent

upon the position of the viewer.

44

Figure 2.19 Effects of specular reflection exponent changes

The specular reflection exponent n is used in order to increase the sharpness of the

edges of the highlighting dots because of specular reflection. Figure 2.19 [46] shows

results for different specular reflection exponent values.

 2.4.5.2 Shading Methods

 “Gouraud and Phong shading models both use the illumination model of

Phong that was given in Equation (2.1) or some close derivative. The difference lies

when and where the illumination model is applied” [6, pp. 79].

 While rendering a geometric model that consists of polygons, the material

properties and surface normals of the objects are assigned on the vertex points of the

polygons (here texture mapping is not taken into account). One way of rendering is

to use Flat Shading which assumes the same surface normal for every point that

exists on the polygon. However, this would lead to discontinuities on the surface

between the polygons, and a non smooth rendering result shall be obtained as shown

in Figure 2.20 (a) [48] and Figure 2.22 (a) [48]. The smoothness could be achieved

by increasing the number of polygons of the geometric model (Figure 2.20 (b)).

However, this would increase the computation time of the rendering process a lot.

45

(a) (b)

Figure 2.20 Flat Shading

Model used in the image (b) consist of 16 times more polygons than the model
used in the image (a)

Gouraud shading model solves the discontinuity problem by interpolating the

non vertex point colors across the edges. Usually linear interpolation method is used,

but other kinds of interpolation techniques can also be applied. First the resulting

color values for the vertex points are calculated; afterwards the remaining points

(pixels of the rendering result) are calculated by interpolation for the each red, green

and blue component of color. Figure 2.21 [48] is an example for this method.

Figure 2.21 Gouraud Shading

 Phong shading method’s difference from Gouraud shading is that; in Phong

shading, color values of the non vertex points for the resulting rendered image are

computed by interpolating the normals of the vertices. In other words, first the

surface normal of the non vertex point is computed by interpolating the vertex

46

normals of the polygon; afterwards, the Phong illumination model is applied on that

point to compute the resulting color value.

(a) (b) (c)

Figure 2.22 Different Shading Methods
(a) Flat Shading; (b) Gouraud Shading; (c) Phong Shading.

 As seen in the above figure, Phong shading model has an advantage over

Gouraud shading model in computing a more accurate specular shading result.

However, in order to apply the Phong shading, the normals should be interpolated.

Although the normals at the vertex points have been normalized, the new

interpolated vectors shall not be normalized in general. The normalization

computation process requires a high computation time.

2.4.6. Compositing

 The term compositing is the method of combining two or more images [49].

Figure 2.23 Intervisibility of two images

 The result of rendering is a digital two dimensional image that consists of

pixels. Each pixel can carry only one color value, but may represent hundreds of

values that present along the ray of that pixel. Compositing is the accumulating of

these values into one. A pixel value may contain the translucency information as well.

“over”=

47

The alpha value is generally used for defining the opacity property of that pixel.

While combining two different pixels into one, the values of red, green, blue and

alpha (RGBA) can be combined with more than ten different ways [6, pp. 121].

However, not all of the combining techniques are meaningful for the volume

rendering purposes. In computer graphics, the term compositing is also called as

blending, and these different blending techniques shall be given in the blending topic

of OpenGL.

 Compositing is the last phase of rendering the volumetric dataset in the

volume rendering pipeline. There are two basic methods of compositing; back-to-

front, front-to-back; and the main difference of these methods is the direction that is

taken along the ray.

 2.4.6.1 Front-To-Back Compositing

 In order to compute the resulting color of each pixel for the result image of

rendering, front-to-back compositing methods draw a ray that starts from the pixel

(viewer) and goes through the volumetric dataset. The casted ray may pass through

the space between the voxels as shown in Figure 2.24. First of all, an interpolation

method is to be used to calculate the color and alpha values of the newly sampled

points a and b. This computation is done according to the shading model that is

chosen to be used. This can be a simple direction independent method or a more

complicated method like Phong shading.

Figure 2.24 Front-to-back compositing

I0

b

Ii

In

a

Pixel

48

 After the interpolation process, the value of pixel can be calculated with this

often-used front-to-back compositing equation [6, pp. 125]:

 ∏∑
−

==

−=
1

00
)1(),(

i

j
j

n

i
iIbaI α

where;

I (a,b) is the total intensity accumulated between the points a and b. Intensity here is

not the same as color. The relationship between color and intensity is given as: “I =

Color * Opacity (α)” . α is the opacity of the point, which is (1-Transparency).

 This equation can be rewritten like this [6, pp. 127]:

)1)...(1(...)1)(1()1()1(10102010

1

00
−

−

==

−−++−−+−+=−∏∑ nn

i

j
j

n

i
i IIIII αααααα

This equation shows an “over” relation like this: “I0 over I1 over I2 …. In-1

over In“ “This operator was first introduced by Porter and Duff for digital imaging in

their 1984 SIGGRAPH paper. Thus compositing means applying the over operator

on all sample points on one ray” [6, pp. 127].

 The pseudo code of this equation’s implementation can be:

 I[0 .. n] is the array of intensity values of the points

 T[0 .. n] is the array of transparency values of the points
 float Transparency = 1.0;

float Intensity = I[0]; // this is the variable which will store the result

intensity value, initially assigned as the intensity of the first point.

 for (i = 1; i <= n; i++)

 {

 Transparency *= T[i-1];

 Intensity += Transparency * I[i];

 if (Transparency is 0.0)

Brake;

}

49

 The implementation shows that until the transparency value is zero or very

close to zero, the loop can be stopped before computing all of the points which

would require a high computation time.

 2.4.6.2 Back-To-Front Compositing

 Back-to-front compositing method, compute the intensity value, starting from

the most far point to the nearest point with respect to the user.

Figure 2.25 Back-to-front compositing

It is formulated as [6, pp. 128]:

 ∏∑
+==

−=
n

ij
j

n

i
iIbaI

10
)1(),(α

 The equation for back-to-front compositing is very similar to the equation

given in the front-to-back compositing method. The difference shows itself in the

implementation [6, pp. 129]:

 I[0 .. n] is the array of intensity values of the points

 T[0 .. n] is the array of transparency values of the points

float Intensity = I[0]; // this is the variable which will store the result

intensity value, initially assigned as the intensity of the first point.

I0

Ii

In

Pixel

50

 for (i = 1; i <= n; i++)

 {

 Intensity = Intensity * T[i] + I[i];

}

 This implementation has an advantage over front-to-back implementation

example, because there is no variable kept for the accumulated transparency, and that

shall decrease the computation time. However, in back-to-front implementation

example, there is no control that can end the loop before processing all of the points.

 2.4.6.3 Maximum Intensity Projection (MIP)

 Maximum intensity projection compositing technique is a simple method that

finds the maximum intensity value on the ray.

 The pseudo code for MIP can be:

 I[0 .. n] is the array of intensity values of the points

 float maxIntensity = I[0]; // this is the variable which will store the

maximum intensity value, initially assigned as the intensity of the first point.

 for (i = 0; i <= n; i++)

 {

 if (maxIntensity < I[i])

 maxIntensity = I[i];

}

51

Figure 2.26 Maximum intensity projection of a human head

 An example for maximum intensity projection is given in Figure 2.26 [50]

 2.4.6.4 X-ray Projection

 X-ray projection method is another method of compositing, in which the

values across the ray are added.

 The pseudo code for X-ray projection can be:

 I[0 .. n] is the array of intensity values of the points

 float Intensity = I[0]; // this is the variable which will store the

X-ray intensity value, initially assigned as the intensity of the first point.

 for (i = 0; i <= n; i++)

 {

 Intensity += I[i];

}

 However, the intensity value calculated with this loop should be normalized,

in case some values might exceed the maximum value that the rendered image pixels

can have.

52

Figure 2.27 X-ray projection of a human feet

 An example for X-ray projection is given in Figure 2.27 [51].

 2.5 Volume Rendering Techniques

 Volume rendering pipeline described here, consist of some general operations

that the volumetric data is processed for rendering. There are many different

approaches for implementing volume rendering applications. The sequence of the

data flow and applied processes described in the volume rendering pipeline may vary

from one technique to another. Some of the different approaches for implementing

volume rendering are:

Image-order volume rendering

 Object-order volume rendering

 Shear-warp method

 Texture mapping used for volume rendering

 Constructing special purpose hardware for volume rendering

 2.5.1 Image-Order Volume Rendering

 In image-order approach to volume rendering, the color values of each pixel

on the resulting rendered image plane are determined. Ray casting is an example for

image-order method, which casts rays from the pixels of the image plane to the

volume. The accumulation of the resampled points that are on the ray passes though

the volume is done by front-to-back order approach [9], [10].

53

Figure 2.28 Volume Raycasting

 There are many approaches in image-order volume rendering, to increase the

performance and capability of ray casting method. Some of them are:

 Image-Space Coherency: The image plane, which is going to be rendered,

would have some sort of coherency between the pixels. In other words, if pixels

which have a common neighboring pixel, have the same color value; the probability

of common neighbor pixel’s value is the same color, is very high. So the ray casting

is done for not every pixel on the image plane, and the empty pixels are interpolated

afterwards. This is called image-space coherency [9].

 Object-Space Coherency: The sampling rate of ray casting has a great effect

on the computation time of the algorithm. Usually the volumetric datasets contain

some regions that has uniform or similar color values. Object-space coherency

technique tries to increase the performance of ray casting algorithm, by initially

sampling the points through the ray, at a low frequency. Then the sampled values are

examined, and if two consecutive sampled points have a large difference in color

value, new samples are taken between them. This aims to approach increase the

performance of ray casting, without decreasing the detail of the rendering [11].

 Template Based Ray Casting: If the projection method used for rendering is

orthographic viewing, a coherency between the rays can be obtained, because, even

though they are from different origin, they have the same slope. The method

template-based ray casting pre-compute and store templates of the points to be

54

sampled. The computation time required for casting the ray into the volume is

decreased by applying the ray templates pre-generated before rendering [12].

 C-Buffer: While rendering a volumetric scene interactively, the difference

between the consequent frames are usually small. The C-Buffer use this feature to

increase the frame rate of the rendering process. While the image plane is computed,

the coordinate of first non-empty sampled point is stored in the pixel. This

information is used for estimating the initial position of a ray in the subsequent frame.

For example, if a rotation is to be computed, pixel values of the following frame are

calculated by transforming the C-Buffer information according to the rotation, and

the coordinates that might become masked are eliminated [13].

 Empty Cell Skipping Methods: The volumetric datasets usually contain large

spaces of fully transparent voxels. There are many approaches to avoid sampling

such regions and increase the computation performance in ray casting. Hierarchical

spatial enumeration method [14] preprocess the volumetric dataset and create a

hierarchically indexed, a binary pyramid for the volume. When a ray is sent to the

volume, it passes through the first level of the pyramid. If a non empty cell is reached,

more detailed cells stored in the lower level of the pyramid are used. Space leaping is

another method for passing the empty cells (transparent voxels) of the volumetric

data [15], [16], [17]. In this method, the volumetric dataset is pre processed and the

voxels which are fully transparent are labeled with a value that shows the distance of

the nearest non empty cell; so that sampling distance can be increased safely.

 2.5.2 Object-Order Volume Rendering

 Object-order volume rendering methods determine how the volumetric data

sample affects the pixels of the image plane. An object-order algorithm computes

through sampled points in the dataset, and project it onto the image plane [10].

55

Figure 2.29 Object-order volume rendering

 Object order volume rendering methods can be classified as splatting and

scan line cell drawing algorithms.

 Splatting algorithm [18] developed to improve the performance of volume

rendering at the price of less accurate rendering result. This technique is rather

complicated and it will not be defined in detailed here. It approximates a projection

called Gaussian splat, which depends on the color and opacity of the voxel. The

projection is made by splatting every voxel onto the image plane by compositing on

top of each other.

 Scanline cell drawing [19] methods treat each of the voxels of the dataset as

geometric surfaces (like hexahedron, tetrahedron, a square or a plane perpendicular

to the image plane) and split the resulting scan line according to the distance of the

voxels from the image plane.

 2.5.3 Shear-Warp Method

 Shear-warp method [20] is considered to be the fastest volume rendering

algorithm (software based). The slices in the volumetric dataset are applied a shear

transformation as shown in the Figure 2.30. The shear transformation changes all

viewing rays parallel to the axis of the volume array which is the transformed

volume (called sheared object space). This enables the image plane and the volume

to be traversed simultaneously. An intermediate image is created as the result of

compositing and a two dimensional transformation is applied to the intermediate

image in order to obtain the final rendered image [20].

56

Figure 2.30 Shear-Warp algorithm mechanism (for Parallel Projection)

 2.5.4 Volume Rendering Using Texture Mapping

 Due to the latest vast amount of increases in the performance of GPU

hardware, some techniques were developed for implementing volume rendering

using the graphics hardware which enables more intractability by higher frame rates

of rendering. This subject shall be explained in detail in Chapter 3.

 2.5.5 Special Purpose Hardware for Volume Rendering

 Due to the high computation time required for volume rendering, many

researchers build special purpose hardware architectures for volume rendering.

VOGUE [21], VIRIM [22], VIZARD II [23], EM Cube [24] are some of these

architectures.

57

CHAPTER 3

VOLUME RENDERING USING PC GRAPHICS
HARDWARE

The developments in the gaming and entertainment market lead to a fast

evolution of consumer graphics hardware in the recent years. Some of the hardware

developer companies like NVIDIA [52] and ATI [53] have produced state of art

consumer graphics chips, and these chips offer a level of programmability with a

high performance on a cheap personal computer that was only possible to be

performed in high price traditional workstations. This success in the production of

hardware not only increased the reachablity of performance but also employed the

use of some rendering algorithms that previously could not be used for real time

rendering.

Volume rendering algorithms have high computational demands. The major

problem faced while using PC graphics hardware is the amount of texture memory

required for storing the volumetric dataset is usually large, and texture fetching

operations cause all of the dataset to be transferred over the bus for each frame to be

rendered. The newly developed graphics cards present larger texture memories, with

increased programmability and flexibility of the Graphics Processing Unit (GPU)

including transfer functions, shading, and filtering. These developments gave a new

environment for the researches to develop new techniques for implementing

interactive volume rendering with a high performance and quality.

58

 3.1 Texture Based Volume Rendering Methods

 Texture based volume visualization technique is composed of these phases:

First, the volumetric data is sampled as planes and these samples are sent to the

texture memory of the graphics hardware, in order to be used for mapping the

polygons as textures. Then planes which are placed parallel to the image plane (result

image to be viewed), are mapped with the texture. These planes are rendered as

polygons and they are clipped by the limits of the texture volume. The resulting

slices of polygons are blended together by back to front order, and while each

polygon is rendered, its pixel value is blended into the frame buffer with the

appropriate transparency, and the volume is visualized. [54]

Figure 3.1 Polygonal slices that are mapped with textures.

 3.1.1 Volume Rendering Using 2D Textures

 Volume rendering using 2D texture mapping is supported by most of the

graphics hardware. Volumetric dataset is sampled into two dimensional array or

digital images, according to the number of slices to be used while rendering. These

images are sent to the texture memory for mapping the polygonal slices as shown in

the Figure 3.2 [55].

Figure 3.2 Texture Mapping

image
plane

2D image 2D polygon

+

Textured-mapped polygon

Ploygon Slices

59

 Using the texture mapping, the performance of graphics hardware allows

interactive rendering of the scene. This means that, without resampling the

volumetric data and sending the images of slices to the texture memory, the scene

can be rotated by applying a transformation to the polygons or changing the eye

position as shown in Figure 3.3 [55].

Figure 3.3 Rotated view

 However, when the slice planes become parallel to the view of direction, the

user cannot see anything in the rendering result, as shown in Figure 3.4 [55].

Figure 3.4 No rendering result

 In order to solve this problem, during the first stage that the volumetric

dataset is sampled as two dimensional slices of images, three different set of slices of

images are sampled along each x, y and z axis as shown in Figure 3.5 [55].

slices

image plane

60

Figure 3.5 Slice sets parallel to the three coordinate planes

 After sending the each three set of slices to the texture memory, the set of

most suitable that is the most perpendicular slices of 2D texture set according to the

viewpoint and view direction is chosen to be rendered. When the position of the

viewpoint changes with respect to the volume, 2D texture set that is most closely

aligned with the view direction is used. Each slice of polygon that was mapped with

texture is rendered from back to front using an appropriate blending method [56].

Figure 3.6 2D texture mapped slices

 Disadvantages of this method are: The sampled images for the slices from the

volumetric dataset, occupy three times time more space in the texture memory as

three sets of textures have to be produced. The sampling rate of the resulting render

image changes according to the perpendicularity of view direction to the slices

shown in Figure 3.7 [55].

61

Figure 3.7 Sampling artifact

 When the slice set use changes during the rotation of the model, there is a

change occur in the intensity of the results as the sampling rate according to the view

direction changes. This is called popping effect shown in Figure 3.8 [55].

Figure 3.8 Artifact during the change of the slice set.

 3.1.2 Volume Rendering Using 3D Textures

 Recent developments in the graphics hardware enable to process three

dimensional textures. 3D texture supported hardware enables the interpolation of

three dimensional texture coordinates to the vertices of the polygons, so that the

texture samples are reconstructed by trilinear interpolation [25]. In other words, there

is no need to keep the volumetric data as three times itself [26] as it was done in two

dimensional texture mapped volume rendering, because trilinear interpolation

enables the three dimensional texture to be mapped on surfaces of the polygons. This

means that arbitrary slicing through the volumetric texture data can be achieved [55]

as seen in Figure 3.9.

d d’ d’’

d’’ > d’ > d

62

Figure 3.9 3D texture, arbitrary slicing capability

 In 3D texture based volume rendering, all of the volumetric data is loaded to

the texture memory at once. Transformation operations required for rotating, scaling

can be directly done on the mapped texture, as the mapped slice is computed by the

graphics hardware with trilinear interpolation, so that changing the texture

coordinates on the vertices of the polygons will change the mapped result on the

polygon slice [56].

Figure 3.10 Viewing direction aligned slicing

This enables a view aligned slicing capability which overcomes the problem

of changing sampling ratio according the viewing orientation faced in the 2D texture

mapping volume rendering technique [56].

Figure 3.11 Consistent sampling rate.

d d

63

 The sampling ratio can be changed only by changing the number of slices that

will be rendered without making any extra computations on the volumetric data. This

gives a capability to shift between performance and quality of rendering result during

interactively rendering the scene.

 Volume rendering by 3D texture mapping also gives the capability to use the

planar clipping mechanism of graphics APIs which enables the clipping operations to

be done by the graphics hardware.

 The implementation built for this work has been done by this method, and the

details for the capabilities of this method shall be given in the following chapters.

 3.1.3 Sampling Frequency

 Both in 2D and 3D texture mapped volume rendering, sampling frequency is

an important variable on the quality and performance of rendering process. Sampling

frequency is the obtained by the number of slices that are mapped with the texture.

There are some factors to be considered while choosing the number of slices to be

used in rendering [57]:

 Performance: Implementations using hardware accelerated volume rendering

method may have two modes for rendering, interactive and detail modes. In the

interactive mode, less number of slices can be used in order to increase the frame rate

of the rendering process, but that shall lead to a low frequency of sampling which

may lead to decrease in the quality of the rendering. Detail mode can render more

number of slices and obtain higher quality render results with more detail but with

lower frame rates of rendering.

Volume size: While rendering a cubic volume with a view position at the

front side, a good rendering quality can be achieved by using number of slices equal

to number of voxel count on the view direction axis. However, the dimension of the

volume may differ from an axis to another, so making an approximation in the

number of slices to be rendered according to the major axis is a good method.

64

Transparency Issue: It is said that, increasing the number of slices which

would increase the sampling rate to be rendered, increases the quality of the final

render result. This is not true after a rate that exceeds the original sampling rate of

the volumetric dataset. Increase in the sampling rate more than the sampling rate of

the original dataset does not give more details. Moreover, over operator used while

rendering back to front is not a linear operator. In other words, when more than one

sample is taken for a voxel that is semi transparent, the opacity for that voxel would

increase at the render result, as it is sampled for more than one and the transparency

is decreased. If the sampling rate is to be changed, the alpha values should be

rescaled because of this issue.

Introductory information about Computer Graphics is given in Appendix B,

“1. Fundamentals of 3D Computer Graphics” chapter. Brief information about

OpenGL API, and some detailed information about syntax and commands of

OpenGL is given in Appendix B, “2.OpenGL” chapter.

65

CHAPTER 4

IMPLEMENTATION

 The main purpose of the implementation is to present an environment that is

able to read and visualize volumetric datasets. The motivation for building this

implementation is to use the graphics hardware of an ordinary desktop computer that

is being used today, and implement a volume rendering application for this hardware

and give an interactive environment with some visualization techniques for the user.

 Java [59] programming language was used for the implementation because

Java platform gives an advantage to run the implementation on various operating

systems. Development and testing phases for the implementation has been done on

Microsoft Windows XP, and Windows 2000 operating systems. Java Development

Kit version 1.4.2, which was the latest development kit provided by the Sun

Microsystems at the start of the project, have been used.

4.1 Software Libraries

 Since the motivation for this implementation is to build an application that

uses PC graphics hardware for rendering volumetric datasets, an application

programming interface (API) that gives an interface to communicate with the

graphics processing unit had to be used. The first intention was to use Java3D [58]

API which provides a set of object oriented interfaces that support a high level

programming model that is able to give interface for the developers to develop an

implementation that works on both of the major low level graphics APIs, Microsoft

DirectX and OpenGL. The first prototypes built for understanding the computer

graphics implementation techniques, has been done using this API. Java3D API gave

66

an easy and faster implementation capability as it provides an object oriented and

descriptive interface. However, first prototyping experiences showed that using a

procedural interface like OpenGL would give more capabilities while rendering a

scene, because every step for rendering can be controlled and modified by the

programmer, which cannot be a case for a high level interface like Java3D. Actually,

at the start of the project, the programming requirements for building a volume

rendering implementation was not very clear. Choosing a lower level API would

require more time for understanding and developing the software, but would be more

flexible for the changing programming requirements. Because of these, OpenGL API

is chosen for the implementation.

 “OpenGL is supported on every major operating system, it works with every

major windowing system, and it is callable from most programming languages. It

offers complete independence from network protocols and topologies. All OpenGL

applications produce consistent visual display results on any OpenGL API-compliant

hardware, regardless of operating system or windowing system.” [60] In order to use

OpenGL API in Java platform, a project called Java for OpenGL (JOGL) has been

initiated. “The JOGL Project hosts a reference implementation of the Java bindings

for OpenGL API, and is designed to provide hardware-supported 3D graphics to

applications written in Java. It is part of a suite of open-source technologies initiated

by the Game Technology Group at Sun Microsystems. JOGL provides full access to

the APIs in the OpenGL 1.5 specification as well as nearly all vendor extensions, and

integrates with the AWT and Swing widget sets.” [61]

JOGL User Guide [62] explains the properties for this API as follows:

“JOGL is a Java programming language binding for the OpenGL 3D graphics

API. It supports integration with the Java platform's AWT and Swing widget sets

while providing a minimal API that handles many of the issues associated with

building multithreaded OpenGL applications. JOGL provides access to the latest

OpenGL routines (OpenGL 1.4 with vendor extensions) as well as platform-

independent access to hardware-accelerated off screen rendering. JOGL also

provides some of the most popular features introduced by other Java bindings for

OpenGL like GL4Java, LWJGL and Magician, including a composable pipeline

67

model which can provide faster debugging for Java-based OpenGL applications than

the analogous C program. JOGL was designed for the most recent version of the Java

platform and for this reason supports only J2SE 1.4 and later. It also only supports

true color (15 bits per pixel and higher) rendering; it does not support color-indexed

modes. Several complex and leading-edge OpenGL demonstrations have been

successfully ported from C/C++ to JOGL without needing direct access to any of

these APIs. However, all of these classes and concepts are accessible at the Java

programming language level in implementation packages, and in fact the JOGL

binding is itself written almost completely in the Java programming language.”

 In order to read volumetric datasets produced for medical imaging systems, a

library called NeatMed [63] has been used. NeatMed medical imaging API was

created by Vision Systems Laboratory [27] with the purpose to facilitate the

development of medical imaging applications. It provides an access to medical

imaging volumetric datasets that were encoded according to two industry standards

DICOM [64] or Analyze [37].

 4.2 Properties of the Implementation

 This section shall provide information about the capabilities of the

implementation. Information about user interface and some methods of the

implementation are given in Appendix A, File Menu, GL Window, and View chapters.

4.2.1 Visualizing Volumetric Datasets

 Volumetric datasets are read and the intensity values for the voxels are kept in

an array. Header part of the files provides information about the number of voxels

present at each axis and the size information about the voxels. In some datasets, the

distance that a voxel’s height, width and depth represent may differ. This information

is used for scaling each axis of the model while rendering, in order to obtain correct

proportion of sizes.

 First step to visualize the volume is to send the volumetric dataset array to the

texture memory as a three dimensional texture. Then map this texture to the polygons

68

and render the scene. Figure 4.1 shows a set of polygons mapped with the volumetric

data texture.

Figure 4.1 Texture mapped polygons

 A raw medical imaging dataset does not carry information about translucency

of the voxels. As it is seen Figure 4.1, the black regions of the dataset, which

represents no intensity value are also seen because no transparency option has been

set yet. Compositing methods described in the previous sections can implemented in

OpenGL by using blending commands.

 The application gives the user the ability to control the number of slices to be

rendered during the rendering process. Keyboard control for this property is:

 D + PageUp: increase the density of the slices

 D + PageDown: decrease the density of the slices

 The key “F9” sets the rendering mode into automatic density state in which

the density of slices is increased a bit in every frame of rendering. In other words,

when a key or mouse is pressed, the density of the slices becomes to the smallest

number (this number is relative to the dataset) so that the rendering process occurs at

the highest frame rate and the response time of the application to the user requests

becomes lower. If no key and mouse is pressed, the detail of the rendering increases

as the number of slices increase a bit in every rendered frame. Figure 4.2 shows a

sequence of captured image for this command.

69

Figure 4.2 Different densities of slices

 The application also enables the user to change the distance between slices

during visualizing the model with the keyboard control:

 P + PageUp: increase the distance between the slices

 P + PageDown: decrease the distance between the slices

 When the rendering projection model is set to perspective mode as described

in the OpenGL section, the result of changing the distance between slices created a

different perspective results as shown in the Figure 4.3.

70

Figure 4.3 Different distances between slices

 The first result seen in Figure 4.3 is the result of rendering the volume, with

slices that has no distance between them. This caused a result of orthographic

projection. When distance between the slices increase, a perspective effect is seen, as

shown in the following images. However, as the distance between slices increase, the

parts of the model that are far from the camera are rendered as darker as seen in the

third image of Figure 4.3. This happens because as the distance increases, the

number of slices between the camera and the far points should also increase in order

to obtain a smooth result for the nearer objects. As a future work, a solution for this

case can be: decreasing the number of slices that appear far from the camera by using

a ratio with respect to the distance between camera and the slice. In other words,

decreasing the density of slices when the distance from the camera increases, shall

create better perspective results.

 A perfectly transparent surface shows the object behind of it, because it does

not reflect any light from its surface. A translucent material shows the objects behind,

but those objects appearing are affected by the translucent material in the front,

because some of the light that hits a translucent material is reflected. In volume

rendering, viewing the translucency of the voxels are achieved by compositing

methods described. OpenGL does not support a direct interface for rendering the

partially opaque surfaces. However, compositing techniques can be applied in

OpenGL with blending. Appendix B-1 gives detailed information about blending

function of OpenGL.

71

Figure 4.4 Rendering Parameters, Blending window

 Figure 4.4 shows the different blending options for volume rendering in the

implementation. No Blending option disables the blending; Figure 4.1 has been

captured with this option. Default Blending option has been done, because some of

the display modes which will be explained later, require their own blending options.

Selecting this option disables the blending parameters set by the user.

Blending options are set in OpenGL by the command:

glBlendFunc(sourceFactor, destinationFactor)

This function is used by supplying destination and source factors. (The

properties of these factors are explained in Appendix B-1) Use Global Parameters

option uses the different methods of blending than specified by the user on the

Blending Window shown on Figure 4.5.

Figure 4.5 Blending Window

72

 This option has been implemented for testing different kinds of blending

techniques. Parameter selected in the combobox p1, is used as source factor, and p2

parameter is used as destination factor. Not all the combinations that user may select

in this option are useful for using in volume rendering. Over, Attenuate and

Maximum Intensity Projection options in the Rendering Parameters window present

predefined methods of bending for volume rendering.

 The Over operator [28] is the default blending option used while the

volumetric dataset is first loaded into the application. The slices of volumes which

are built by mapping 3D textures on to polygon are drawn from back to the front

order. The over method of blending, approximates the flow of light passing through

translucent materials. The transparency of each voxel is determined by the alpha

values assigned. By default, the application uses the intensity values as alpha values

of the voxel. The pixel of the textures mapped on the slices with higher alpha values

hides the other pixels behind them. Over method is implemented in OpenGL like

this:
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

 This function works like this:

Source: (As, As, As, As)

which is GL_SRC_ALPHA

Destination: (1, 1, 1, 1)-(As, As, As, As)

which is GL_ONE_MINUS_SRC_ALPHA

 Result is computed for each red, green and blue components as follows:

(color of the source)(alpha of the source)+(color of the destination)(1 –

alpha of the source)

Details of OpenGL blending computation method is explained in Appendix

B-1. Figure 4.6 shows an example for blending with over operator result.

73

Figure 4.6 Over operator

(a) (b)

Figure 4.7 Lighting appearance effect in Blending with Over Operator
(a) Rendered with less number of slices with respect to the rendering result (b)

 The slices are drawn to the frame buffer with back to front order and blending

with over operator the value of each pixel of the rendering result is determined by the

translucencies of the voxels that are mapped on the slice polygons. In other words, a

voxel color value is multiplied with its alpha (GL_SRC_ALPHA) value then it is

multiplied with one minus alpha value of the voxel that is nearer to the user

(GL_ONE_MINUS_SRC_ALPHA) and this goes on for each primitive along the ray

on the each pixel of result image. However, as seen on the rendering result of the

image placed in the right side of Figure 4.7, there is an effect like lighting even

though the values and the transparencies are same for each voxel in the dataset. This

effect is not a result of the OpenGL global lighting settings. This effect occurred

because of the texture mapping settings defined by the command glTexParameter.

74

This parameter enables the pixels of the textures that are mapped to be rendered as

nearest or linearly. If nearest setting had been chosen, the value of the texture

element that is nearest to the center of the pixel being textured would have been seen

in the result. However, this caused a non smooth look for the surfaces of the volume.

Linear setting of the texture returns the weighted average of the four texture elements

that are closest to the center of the pixel being textured. This setting is used in the

implementation. Figure 4.7 (a) shows this effect. That image has been rendered with

a very low density of slices and the edges of the squares seen as white on the image

are place that the intensity value changes from 0 to 1.0. However, they are not

mapped like that because of the linear mode of the texture. This effect has an

disadvantage that the color of the surfaces look darker in the result, however it

created a very smooth surfaces and also a lighting like effect for the volume. This

effect is occurred because, when the angle of the surface with the image plane

increases, number of voxels that are calculated as weighted sum (the grey edges of

the white squares as seen on the left image) also increases, so the surface looks

darker. Because there is also a smooth pass on the translucencies of the voxels on the

surface. As seen on the right image, because of the perspective effect, while going

ahead from the image plane, the angle of the surface gets larger, so it also gets darker.

 The attenuate operator works with the same logic with X-ray. The intensity of

a pixel on the render result shows the opacity density of the voxels along the ray of

that pixel. The alpha values of the voxels in the volume appear to attenuate light

shining through the viewer. In other words, the final brightness at each pixel of the

result is the total density of the alpha values of the voxels along the ray. OpenGL

command for attenuation is as follows [65]:

 glBlendFunc(GL_CONSTANT_ALPHA_EXT, GL_ONE)

 glBlendColorEXT(1.f, 1.f, 1.f, 1.f / number_of_slices)

75

Figure 4.8 Attenuate Operator

 The result of rendering shall differ as number of slices used is changed.

Application lets the user to change the number of slices used, interactively during the

rendering process.

 The Maximum Intensity Projection (MIP) is visualizing the brightest voxel

value along the light ray for each pixel of the output image. “MIP is a contrast

enhancing operator; structures with higher alpha values tend to stand out against the

surrounding data. MIP can be implemented with OpenGL using the blend min-max

extension” [66].

 glBlendEquationEXT(GL_MAX_EXT)

Figure 4.9 Maximum Intensity Projection

76

Figure 4.10
Transparency options,
single threshold mode

Results for this operator can be

seen in the Figure 4.9. The image on the

right side is a rendering result of a flight

into the same dataset rendered on the left

side, with the same rendering options,

inside the volume with an exaggerated

perspective.

When a volumetric dataset is

loaded to the application, as default the

translucencies of the voxels are set to

same values with the intensity values.

The transparency part in the Rendering

Options GUI enables the user to change

the transparency parameters. Intensity

values of the voxels are scaled between 0

and 1. For example, if a voxel intensity

value is 0.7, the application assigns its color components of red, green, blue and the

transparency component alpha as 0.7. Transparency GUI seen in the Figure 4.10,

enables the user to select minimum and maximum intensity values to be rendered.

The specified values of minimum and maximum thresholds are used for filtering the

dataset while visualizing. Figure 4.11 shows a result for threshold filtering.

Figure 4.11 Threshold filtering of a dataset.

77

 The image left on Figure 4.11 is the result of rendering a CT dataset without

any filtering. The image on the left is a result of rendering the same dataset with

filtering the intensity values.

The transparency GUI enables the user to assign color values for the voxels.

If keep original intensity value checkbox is checked, each color component red,

green and blue is multiplied with the assigned color components. If keep original

intensity value checkbox is not checked, the assigned color is directly used as the

color of the voxels. This creates a brighter view as all the voxels are rendered with

same color, however the render results show that the surfaces look less smooth with

an artificial look as seen in Figure 4.12.

The checkbox keep original transparency, in the transparency GIU enables

user to manipulate the translucency values of the voxels. If keep original

transparency is checked, the transparency value that is specified by the user is

multiplied with the alpha values of the voxels. If it is not checked, the alpha values

are changed to the value that user specified. The results for this method of rendering

showed that, the smoothness of the surfaces is gone since each voxel that passes the

filter is rendered with full opaque (if the transparency value is assigned as the

maximum 1.0).

If both keep original transparency and keep original intensity value

checkboxes are unchecked, a bright rendering result is established; because, all of the

voxels are assigned with same color and their alpha values are kept also the same.

The rendering results showed that the smoothness of the surfaces are gone and an

artificial result is obtained since all of the voxels are seen with the same color and

transparency. All combinations of the rendering results for this method can be seen

in Figure 4.12.

A GUI for selecting automatic threshold values or by the interaction of user

from an histogram table is a future work to be done for this section.

78

(a) (b)

(c) (d)

Figure 4.12 Results for different combinations of intensity and transparency

(a) Both keep original transparency and keep original transparency are

selected (default option);

(b) keep original transparency is not selected, and keep original

transparency is selected;

(c) keep original transparency is selected and keep original transparency is

not selected;

(d) Image on the down right side: both keep original transparency and

keep original transparency are not selected.

79

Figure 4.13 Transparency
options, multiple threshold mode

Figure 4.13 shows the GUI for

assigning more than one threshold filters for

rendering the volume. This part works with

the same logic of the single threshold section,

but here the user can specify one than more

intervals of thresholds to be rendered in

different transparencies and colors. Figure

4.14 shows some results for this rendering

option.

(a) (b)

(c) (d)

Figure 4.14 Rendering with multi transparency options.

80

Figure 4.14 shows a dataset with different transparency options. The model

is rotated about x axis in (d).

4.2.1.1 Gradient

 Gradient vector can be used for computing the reflection of the light rays

meeting the surfaces of the geometric primitives. The rendering results shown so far

do not use Phong shading, but they use the Gouraud shading. OpenGL does not

directly support Phong shading [29]. The volumetric data has been stored as 3D

texture and it is mapped on slices of polygons in order to be visualized. The global

lighting options compute the lighting of the polygons according to the normal vectors

assigned to the vertices of the polygons, in this case, the vertices of the slices.

However, there is a requirement to compute the lighting according to each voxel in

volume rendering. In this case, each normal vector of the pixels of the textures on the

slice polygons are required to be calculated and used for the computation of lighting.

 First obstacle is how to compute the gradient vectors. There are many

methods that can be implemented for solving this issue. Methods used in the

implementation can be seen in Figure 4.15.

Figure 4.15 Gradient computation methods

81

 In the Default Gradient mode, which is calculated while first loading the

dataset, central difference method is used.

 In the other methods, convolution method is used for calculating the gradient

vector. The kernels used for these computations are given as follows:

Sobel 3x3:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
202
101

Prewitt 3x3:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
101
101

Sobel 3x3x3:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

202
303
202

303
606
303

202
303
202

Sobel 3x3x3 (2):

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

101
303
101

303
606
303

101
303
101

82

Figure 4.16 give rendering results of different operators on skull head data.

Sobel 5x5x5:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

43034
54045
65056
54045
43034

32023
43034
54045
43034
32023

21012
32023
43034
32023
21012

32023
43034
54045
43034
32023

43034
54045
65056
54045
43034

Sobel 5x5x5 (2):

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−
−−
−−

12021
23032
34043
23032
12021

23032
34043
45054
34043
23032

34043
45054
56065
45054
34043

23032
34043
45054
34043
23032

12021
23032
34043
23032
12021

83

(a) (b)

(c) (d)

(e) (f)

Figure 4.16 Rendering with different gradient computation methods

84

(g)

Figure 4.16 Rendering with different gradient computation methods

(a) Central Difference; (b) Sobel 3x3; (c) Prewitt 3x3; (d) Sobel 3x3x3; (e) Sobel

3x3x3 (2); (f) Sobel 5x5x5; (g) Sobel 5x5x5 (2).

 When the size of kernel used in computing gradient increases, the surface of

model looks smoother as seen in the Figure 4.16.

 The gradient vector for each voxel is calculated with one of these methods;

however, the problem has not been solved yet. OpenGL does not support a direct

illumination model that is applied on each of the pixels of the textures mapped on the

slices. In order to enable lighting in volume rendering, a common method which is

used for giving more realism to the two dimensional surfaces without using

additional polygons, called bump mapping [30] has been used. Details about bump

mapping can be seen in the Appendix B-1, C-1.

 In order to establish a per voxel lighting effect in OpenGL, Dot3 bump

mapping [69] technique has been used by using the Dot3 and multi texturing

extensions of OpenGL [68]. “The difference between "real" bump mapping and dot3

bump mapping is instead of penetrating the surface normal and binormal at each

rendered pixel of a surface in dot3 bump mapping a normal map is used.”[67]

Normal map is a texture and in our case its a three dimensional texture consist of

85

voxels. The normal map of the volumetric dataset is computed by the gradient

operations, and the values of each axis of the normal vectors are stored as red, green

and blue color components as seen in Figure 4.17.

Figure 4.17 Normal Map of the Volumetric Dataset

 Now, we remind the equation in diffuse lighting chapter:

Co = Ca ka Od +Cp kd Od (N · L)

 The result color of a point is dependent on the dot product (cosine of the

angles between them) of the light and surface normal vectors. The Dot3 extension of

OpenGL enables the dot product of the matrixes done by the GPU. The voxel color

values red, green and blue are taken as surface normal and multiplied with the vector

of the components red, green and blue of the polygon color. The result is then

multiplied with the original volume voxels color values using the OpenGL

multitexture extension, and the result is a diffuse lighting per pixel, which can be said

as Phong shading. In order to change the light direction, the light vector should be

changed. This can be applied by changing the color of the polygons. The following

equation is established by this method:

Co = Cp kd Od (N · L)

86

 The user can change the color of each red, green and blue components; in

other words, change the direction of the light by keyboard controls:

 Ctrl + X + PageUp: increase red intensity of the slices, or move light along

x axis

 Ctrl + Y + PageUp: increase green intensity of the slices, or move light

along y axis

 Ctrl + Z + PageUp: increase blue intensity of the slices, or move light along

z axis

 The source code of this operation is given in Appendix C-1. Some rendering

results for per-voxel lighting with this method can be seen in Figure 4.18.

87

Figure 4.18 Examples for rendering results with per-voxel lighting

88

4.2.1.2 Segments

 As mentioned in the volume rendering pipeline, segmentation is an important

stage especially for medical imaging visualization. There are various methods built

for segmenting the volumetric datasets; this application built for the purpose of

visualizing the volumetric datasets and does not segment datasets. Segments section

of the implementation aims to simulate the result of visualizing a segmented dataset.

Stored segmented dataset are loaded as new layers of data and each segment’s

visualization options can be manipulated separately by the user as shown in Figure

4.19.

Figure 4.19 Segments GUI

 Each loaded segments can be applied the same options that described in the

Threshold section. Some rendering results for segmented data visualization are

shown below.

89

(a) (b)

(c) (d)

Figure 4.20 Segmented data visualization

(a) Bump mapped added mode; (b) Bump mapped; (c),(d) Bump mapped

added mode with different transparency adjustments

 Except the image on the right top side, these rendering results are obtained by

the display mode which uses the given equation in the diffuse lighting section:

Co = Ca ka Od +Cp kd Od (N · L)

 OpenGL source code for this formula is given in the Appendix C-2.

90

4.2.1.3 Clip Plane and 3-Axis Plane

 This section of the application uses some of the OpenGL methods to enhance

the visualization capabilities.

Figure 4.21 Clip Plane, 3-Axis Plane GIU

 Trilinear interpolation capability of 3D Texture Mapping enables the GPU to

calculate the all the texels to be mapped on a polygon. Using this ability 3-axis plane

command has been implemented. The user is able to move the polygons that are not

applied the blend function, and see the two dimensional slices on every location.

Default Texture command lets the user to visualize the first loaded original volume;

this might be useful when some parts of the data are set as transparent as shown on

Figure 4.22.

91

(a) (b)

(c) (d)

Figure 4.22 3-Axis plane

(a) Default texture; (b) Edited texture; (c), (d) Default texture with edited

volume.

 OpenGL command glClipPlane can be used as another interactive

visualization method in volume rendering. Figure 4.23 shows some rendering results

for this method.

92

(a) (b)

Figure 4.23 Clip Plane
(a) Clipped with 2 polygons; (b) Clipped with 1 polygon.

4.2.1.4 Multi Modality

 Multi modality visualization section of the software displays two different

volumetric datasets in a single scene. The datasets from different modalities are

required to be registered before the visualizing process. The implementation uses two

different display modes for visualizing multi modality datasets as seen in Figure 4.24.

Figure 4.24 Multi Modality display modes

 Multi texture option uses the multi-texturing capability of OpenGL. This

mode has been implemented with the add state of multi texturing which adds each of

the color components of the each texels that overlay. This option shall be named as

added multi texture mode. In the separately rendered option, each datasets are

rendered separately. Figure 4.25 shows the rendering results for displaying MR and

SPECT (processed) datasets of an epilepsy patient.

93

(a)

(b) (c)

(d) (e)

Figure 4.25 Multi modality rendering results of an epilepsy patient.

94

(f) (g)

(h) (i)

(j) (k)

Figure 4.25 Multi modality rendering results of an epilepsy patient.

95

(l) (m)

Figure 4.25 Multi modality rendering results of an epilepsy patient.

(a) An MR dataset

(b) SPECT1: Subtracted (ictal1- interictal2) SPECT of patient 1

(c) SPECT2: Subtracted (ictal- interictal) SPECT of patient 2

(d) MR full opaque, SPECT1 full opaque

(e) MR full opaque, SPECT2 full opaque

(f) MR %30 opaque, SPECT1 full opaque, with separately rendered mode

(g) MR %30 opaque, SPECT2 full opaque, with separately rendered mode

(h) MR %30 opaque, SPECT1 full opaque, with added multi texture mode

(i) MR %30 opaque, SPECT2 full opaque, with added multi texture mode

(j) MR %10 opaque, SPECT1 full opaque, with separately rendered mode

(k) MR %10 opaque, SPECT2 full opaque, with separately rendered mode

(l) MR %10 opaque, SPECT1 full opaque, with added multi texture mode

(m)MR %10 opaque, SPECT2 full opaque, with added multi texture mode

(n)

 In Figure 4.25 (d) and (e), both of the rendering modes separately rendered

and added multi texture produce same rendering results, because both MR and

SPECT datasets are set to full opaque.

1 Ictal: SPECT acquired during an epileptic seizure.
2 Interictal: SPECT acquired in between seizures.

96

Rendering frame rates and the texture memory requirement for both

separately rendered and added multi texture modes are same. Separately rendered

mode renders every voxel that presents in each of the modalities (MR and SPECT)

with their original color. In added multi texture mode, resulting value of a voxel seen

in the rendered image is calculated by adding each color components of the voxels

from each modalities (MR and SPECT). This method enables the user to detect the

intersecting non-transparent parts of the datasets, since the resulting color changes on

these voxels.

97

CHAPTER 5

ANALYSIS OF THE IMPLEMENTATION

 This part provides some qualitative comparisons of the outputs and

performance test results for the implementation.

 5.1 Qualitative Comparisons

 The outputs for the implementation have been compared with those of the

medical imaging software Analyze 5.0 [37] which were developed by Mayo Clinic

[70] and has been accepted worldwide for medical image analysis. The aim of this

section is to make qualitative comparisons. (Information about Analyze software is

given in Appendix D).

 The version 5.0 of the software Analyze has various kinds of properties-

abilities developed for medical imaging. Analyze, Volume Render module has been

used for capturing the results. There are many methods that have been implemented

for each process of the volume rendering pipeline in Analyze software. Difference of

this application from our implementation is that, no hardware acceleration method is

used. The Analyze software output images used for comparison are the results which

are produced by the most similar methods of volume rendering to our

implementation methods.

98

The methods that are compared are as follows:

Depth Shading [31]:

The value of each pixel of the output is a function of depth. The distance of

the first renderable voxel along the ray casted from the image plane is rendered with

its depth value. So the voxels that appear more far from the image plane are rendered

as darker and the nearer are rendered as brighter. Analyze 5.0 has an option for this

method that computes the results according to the gradient of the surface. This

method has not been implemented in our implementation; however the results

created with the blending over operator of OpenGL presented similar results to the

Analyze depth shading with gradient estimator. So, even though the methods that are

being used are not very similar, the results shall be compared.

Gradient Shading [32]:

Gradient vector of each voxel is computed and the dot product of the gradient

vector with the light vector which is independently specified. This has the same logic

with the method that is used in Bump Mapping with Dot3 extension of OpenGL in

our implementation. Analyze 5.0 support specular reflection computations for this

method of rendering. Our implementation only supports diffuse reflection, and

specular reflection shall be a future work to be implemented.

 Volume Compositing:

This method uses the same technique with Gradient Shading, and enables the

user to specify different alpha and color values for the volumetric data according to

intensity values of each voxels. This ability is achieved by the Threshold section.

Analyze interface enables the user to specify the values with a different technique we

have used. So, the results of similar requests of user shall be compared.

 Maximum Intensity Projection:

This method is implemented and has been specified in the 2.4.6.3 Maximum

Intensity Projection Chapter. It is achieved by maximum intensity projection

blending technique with our implementation.

99

 Summed Voxel Projection:

This section computes the average intensity values of the voxels which are

present along the casted rays from the image plane to the volume. Attenuate method

mentioned in the blending section achieves this option in our application.

 5.1.1 Rendering Results

 The main drawback we have faced while using hardware acceleration in

volume rendering is the limited texture memory. NVIDIA GeForce Ti4200 128 MB

Graphics Card has been used for the following results. In this medium, our

implementation failed to compute Dot3 Bump Mapping with the datasets having

more than 128x128x128 size of voxels. So, all the datasets had to be resampled to

this size in order to achieve more meaningful comparisons.

 Analyze 5.0 is a sophisticated software that presents many different options

for each rendering methods. Following rendering results of Analyze 5.0 Volume

Render module are captured with options that we think are the most similar to the

methods of rendering used in our implementation.

 Figure 5.1, 5.2, 5.3, 5.4, 5.5 gives rendering results of Analyze 5.0 Volume

Render module and our implementation side by side for the same datasets with the

methods of depth shading, gradient shading, volume compositing, maximum

intensity projection and summed voxel projection respectively. The rendering results

seen on the left side are rendered with Analyze 5.0 Volume Render module and the

images seen on the right side are rendered with our implementation.

100

Analyze 5.0 Volume Render Our Implementation

(a)

(b)

(c)

(d)

Figure 5.1 Depth Shading Comparisons

101

Analyze 5.0 Volume Render Our Implementation

(e)

Figure 5.1 Depth Shading Comparisons

 (a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d)
Human body dataset; (e) Same human body dataset of (d) with a different

threshold filter function. The images on the left side are rendered with Analyze 5.0
Volume Render module, the images on the right side are rendered with our

implementation.

Analyze 5.0 Volume Render Our Implementation

(a)

(b)

Figure 5.2 Gradient Shading Comparisons

102

Analyze 5.0 Volume Render Our Implementation

(c)

(d)

(e)

Figure 5.2 Gradient Shading Comparisons

 (a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d)
Human body dataset; (e) Same human body dataset of (d) with a different

threshold filter function. The images on the left side are rendered with Analyze 5.0
Volume Render module, the images on the right side are rendered with our

implementation.

103

Analyze 5.0 Volume Render Our Implementation

(a)

(b)

(c)

(d)

Figure 5.3 Volume Compositing Comparisons

104

(e)

Figure 5.3 Volume Compositing Comparisons

(a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d)
Human body dataset; (e) Same human body dataset of (d) with a different

threshold filter function. The images on the left side are rendered with Analyze 5.0
Volume Render module, the images on the right side are rendered with our

implementation.

Analyze 5.0 Volume Render Our Implementation

(a)

(b)

Figure 5.4 Maximum Intensity Projection Comparisons

105

Analyze 5.0 Volume Render Our Implementation

(c)

(d)

(e)

Figure 5.4 Maximum Intensity Projection Comparisons

(a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d)
Human body dataset; (e) Same human body dataset of (d) with a different

threshold filter function. The images on the left side are rendered with Analyze 5.0
Volume Render module, the images on the right side are rendered with our

implementation.

106

Analyze 5.0 Volume Render Our Implementation

(a)

(b)

(c)

(d)

Figure 5.5 Summed Voxel Projection Comparisons

107

Analyze 5.0 Volume Render Our Implementation

(e)

Figure 5.5 Summed Voxel Projection Comparisons

(a) Brain dataset; (b) Artificially built test geometries; (c) Head dataset; (d)
Human body dataset; (e) Same human body dataset of (d) with a different

threshold filter function. The images on the left side are rendered with Analyze 5.0
Volume Render module, the images on the right side are rendered with our

implementation.

 In the comparisons of rendering without lighting (depth shading), it is seen

that our software renders smoother on the surfaces, and Analyze software is more

successful on showing the edges. In the lighting (gradient shading, volume

compositing) comparisons, soft tissues that have complicated surfaces, like brain

seems to be rendered more smoothly with our implementation, however Analyze

software outputs gives more details for the model with a specular lighting effect. In

both of the software, there are different kinds of options which enable the user to

change the rendering output, operate with different methods. The images that we

have used in the comparisons are the ones that were rendered with most similar

rendering options.

Render image sets have been examined by a nuclear medicine expert who is

part of the project “Three Dimensional Brain Image Processing”. She gave the

following comments for the outputs:

a) The patient seems to have a disorder on his right hand in our outputs. The

volumetric datasets do not always contain whole of the acquired objects. For

example, the dataset used in Figure 5.1-5.5 (d) and (e) contain information of a

108

human body, seems to have a disorder on his right hand in our implementation

outputs. However as clearly seen in the Analyze 5.0 results, the information of the

whole right hand of the body is not present in the dataset. Our implementation does

not provide a warning indicator for the lacking parts that are cut because of the edges

of the datasets. (As a future work, this problem shall be solved by changing contrast

or color on the parts that are at the edge of the datasets.)

b) Using a larger kernel while calculating the gradient provides smoother

passes between voxels and the surfaces are seen soft. However, this leads to a

difficulty in perceiving the information by the user. (This comment will be in our

future studies for achieving smooth surfaces without decreasing the details of the

information in the datasets.)

5.2 Hardware Tests

 This section provides information about the performance of the

implementation.

Table 5.1 Testing results

Hardware and
Operating System:

OS: Microsoft
Windows XP

GPU: NVIDIA
GeForce 4 Ti
4200
Texture
Memory:
128MB

RAM: 448MB

CPU: Intel
Celeron,
416Mhz

OS: Microsoft
Windows 2000

GPU: NVIDIA
GeForce 4 Ti
4200
Texture
Memory:
128MB

RAM: 448MB

CPU: Intel
Celeron,
416Mhz

OS: Microsoft
Windows XP

GPU: NVIDIA
GeForce 4 Ti
4200
Texture
Memory:
128MB

RAM: 1.00GB

CPU: Intel
Pentium 4,
2.01Ghz

OS: Microsoft
Windows XP

GPU: NVIDIA
GeForce 5600
XT
Texture
Memory:
256MB

RAM 512MB:

CPU: Intel
Pentium 4,
2.40Mhz

Dataset name and size: MR dataset of a patient’s body, 128 x 128 x 128 voxels
Dataset Loading Time: 24 seconds 24 seconds 7 seconds 6 seconds
Rendered image size: 1024x712 pixels
Frame Rates (Frames
per second):

No Bump
Mapping: 10fps

With Bump
Mapping: 5fps

No Bump
Mapping: 10fps

With Bump
Mapping: 5fps

No Bump
Mapping: 10fps

With Bump
Mapping: 5fps

No Bump
Mapping: 10fps

With Bump
Mapping: 5fps

109

Table 5.1 Testing results

Dataset name and size: MR dataset of a patient’s foot, 256 x 128 x 128 voxels
Dataset Loading Time: 47 seconds 47 seconds 13 seconds 13 seconds
Rendered image size: 1024x712 pixels
Frame Rates (Frames
per second):

No Bump
Mapping: 5fps

With Bump
Mapping: 2-3fps

No Bump
Mapping: 5fps

With Bump
Mapping: 2-3fps

No Bump
Mapping: 5fps

With Bump
Mapping: 2-3fps

No Bump
Mapping: 5fps

With Bump
Mapping: 2-3fps

Dataset name and size: MR dataset of a patient’s body, 256 x 256 x 256
Dataset Loading Time: 14 minutes 25

seconds
14 minutes 30
seconds

48 seconds 3 minutes 25
seconds

Rendered image size: 1024x712 pixels
Frame Rates (Frames
per second):

No Bump
Mapping: 4fps

With Bump
Mapping:
FAILED

No Bump
Mapping: 4fps

With Bump
Mapping:
FAILED

No Bump
Mapping: 4fps

With Bump
Mapping:
FAILED

No Bump
Mapping: 4fps

With Bump
Mapping: 2fps

As it is seen in the Table 5.1, large datasets (256 x 256 x 256 voxels or more)

fail when rendered with lighting by graphics devices having texture memory size

128MB. However the same dataset was successfully rendered with a larger texture

memory sized (256MB) graphics device. This shows that our method is dependent on

the texture memory size of the graphics device. The loading time of a dataset is

mainly determined with the size of the system RAM rather than the performance of

the CPU.

110

CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In this study, we developed an implementation for visualizing Cartesian grid

volumetric datasets, using PC graphics hardware. The entertainment market caused

the graphics hardware producers to develop more sophisticated devices in the recent

years. This fast evolution enables new technologies to be used in the scientific

visualization field. We tried to develop an application that can be a basis for our

future works for implementing end user software for visualizing medical images. By

this study we gained some experience on the abilities of graphics hardware and

experience on implementing real-time applications to render volumetric datasets for

different clinical expectations in medical image visualization.

Testing results of the implementation shows that the performance of the

rendering process is directly related with the capabilities of the graphics hardware.

This gives an opportunity to achieve a high performance rendering with a low CPU

power PC. The rapid and extensive consumption and production of the graphics

hardware devices makes the prices become less everyday. This gives an opportunity

to the users to obtain real-time rendering solutions without upgrading all of the

system or spending money on high priced workstations.

Comments given by the nuclear medicine expert showed us that our

implementation requires some improvements, especially for indicating the edges of

the volumetric datasets and avoiding the decrease in the detail of the visualized

information while increasing the smoothness of the surfaces.

111

In order to improve the visualization results and develop better tuning

techniques, medical stuff should further use and test this software. This will also help

in emergence of new ideas for future implementations. The environment we have

chosen for the implementation provides a lot of flexibility in the rendering process to

achieve such improvements.

Dot3 bump mapping technique has been used for creating a per-voxel lighting

effect in OpenGL. Segments section of the implementation simulates the result of

visualizing a segmented dataset. Trilinear interpolation capability of OpenGL 3D

Texture Mapping enables the GPU to calculate the all the texels to be mapped on a

polygon. Using this ability 3-axis plane command has been implemented. Multi

modality visualization section of the software displays two different volumetric

datasets in a single scene. Our implementation uses two different display modes for

visualizing multi modality datasets.

The outputs of the implementation have been compared with worldwide used

medical image analysis software. The visualization methods that are compared are:

depth shading, gradient shading, volume compositing, maximum intensity projection,

summed voxel projection.

The development time spent for the implementation is about 8 months. 18

classes consist of about 14000 lines of code has been written for the implementation.

(More than 5000 lines of this code have been automatically generated by some

development tools for the user interface part of the software.)

6.2 Future Works

The aim of our implementation was to gain experience and knowledge on

volume rendering using graphics hardware. The focus of our implementation was to

achieve high performance rendering by using GPU. Therefore, the user interface, PC

memory and CPU use efficiency was not the main issue in the development process.

The testing results show that the loading time of a volumetric dataset is very much

dependent on the size of the system memory size. We think that system memory size

112

shall always be an issue in loading large sized datasets. However, our

implementation requires a modification for the management of the memory.

Programming Language: Our implementation has been built using Java

programming language. The reason for this selection was mainly because of past

experience. This platform has many advantages for our application; for example, it

does not require an installation and can be operated from a CD, it is not dependent on

the operating system. However, we observed some low performance of creating

objects in Microsoft Windows platform. For example, creation of an object of a user

interface element requires more time than an application built with C++. Our

implementation focus was to use the graphics hardware as efficient as possible, so

the part of the code that processes the rendering was kept out of any kind of

computation that requires the application to use the CPU time or create any objects.

The testing results show that rendering time does not depend on CPU power. It might

not be wrong to conclude that changing the programming platform shall not change

the rendering performance. However, there is a need to test the same methods of

rendering with different programming languages to prove this thought.

Data Format: Implementation supports only the Analyze volumetric data

format. Libraries used for loading data supports DICOM formatted datasets to be

read. This format and other formats can be supported if other libraries were made

available.

As specified in the other sections, volume rendering can be used in many

different fields of scientific visualization. Areas which are interested in visualizing

data which are formed of grid type that is not a Cartesian grid may use this

application by implementing a data import module which makes interpolation and

converts the input into Cartesian grid format.

Large Datasets: Testing results shows that the main obstacle in visualizing a

large volumetric dataset using graphics hardware is the size of the texture memory of

the graphic device. For example, bump mapping technique that we have used for

diffuse lighting here, requires the volume and its gradient array to be loaded to the

113

texture memory. While visualizing a large dataset with a graphics hardware that has

a 256MB of texture memory, this method works; however the same data fails with a

graphics device having 128MB of texture memory. There are some ways for solving

this issue: using Pixel Shader 2.0 API in computing the ray casting methods with

hardware acceleration [33], “Trex, a scalable system that takes advantage of parallel

graphics hardware, software based compositing, and high performance I/O” [34] are

some of the researches about this problem.

Volume Rendering combined with Surface Rendering: There are some

methods for extracting surfaces from volumetric dataset [3], [2], [7]. OpenGL and

DirectX presents an environment in which texture based volume rendering can be

combined with surface based volume rendering technique results. It may be a future

work to implement one of the surface rendering techniques and render both results

together.

Stereo Viewing: OpenGL supports simulation of stereoscopic vision with

suitable devices [71]. Stereo rendering might be useful for visualizing the datasets

with a three dimensional view in some cases.

Material Assignment: Segmentation phase of volume rendering enables the

different kind of materials in the volume to be distinguished. Implementing a method

which enables the user to assign different material properties to specify how the

materials in the volume reflects light might create more photorealistic rendering

results.

In order to render segmented volumetric datasets, there is a requirement for

defining a data format which specifies how the labeling information shall be stored in

the volumetric dataset. The implemented segmentation section was done for

simulating purposes as there is no labeling information exists in the data format yet.

Web based volume rendering: The capabilities of volume rendering might be

useful for medical staff. However, the method that we have proposed is dependent on

graphics processing unit power and texture memory. In an institution like a hospital

114

employing large numbers of medical staff, this method requires a huge expense for

upgrading the graphics processing devices of the personal computers of the staff. A

web based solution might decrease this expense and enables more medical stuff to

have the advantage of the three dimensional visualization. A web based solution

requires an implementation that renders the specified volumetric datasets in a server

and broadcasts the rendering results as compressed two dimensional images, so that

dummy terminals or personal computers having no graphics accelerator devices can

be able to visualize the patient’s acquired three dimensional medical datasets from a

browser. This method shall decrease the interactivity of rendering but might present a

useful solution for a wide area of use with minimum expense. This method also

requires the server side to be more powerful in rendering as the number of clients

that use this process increase. Using parallel graphics hardware [34] might be a

pathway to solve this issue.

115

REFERENCES

[1] Robb, R. A., (2000). Three-Dimensional Visualization in Medicine and

Biology. Handbook of Medical Imaging (pp. 685-712). San Diego, Academic
Press.

[2] Schilling, A., Klein, R., (1998, April). Fast generation of multiresolution

surfaces from contours. Proc. Eurographics Workshop, Blaubeuren. 35-46.

[3] Lorensen, W.E., Cline, H. E., (1987, July). Marching cubes: A high resolution

3D surface construction algorithm. ACM Computer Graphics, (Proc.
SIGGRAPH) 21(4). 163-169.

[4] Berk, H., Aykanat, C., Güdükbay U., (2003) Direct volume rendering of

unstructured grids. Computers and Graphics, Volume 27, Issue 3 (June 2003)
(pp. 387-406). Elsevier Science

[5] Udupa, J.K., (1991). Computer aspects of 3D imaging in machine: a tutorial.

3D Imaging in Medicine. (pp. 1-69). Baton, Florida, CRC Press, Inc.

[6] Lichtenbelt B., Crane R., Naqvi S., (1998) Introduction To Volume

Rendering, Prentice Hall.

[7] Chuang, J. H., Lee, W. C., (1995) Efficient Generation of Isosurfaces in

Volume Rendering. Computer & Graphics, Volume 19(6). 805-813.

[8] Phong, B.,T., (1975). Illumination for computer generated images. Comm.

ACM 18, 6 (June). 311-317.

[9] Levoy, M., (1988). Display of surfaces from volume data. IEEE Computer

Graphics and Applications, 8(3). 29-37.

[10] Swan, J. E., (1998). Object-Order Rendering of Discrete Objects, PH.D.

Thesis, The Ohio State University, Department of Computer and Information
Science

[11] Walsum, T., Hin, A. J. S., Versloot, J., Post F. H., (1992). Efficient hybrid

rendering of volume data and polygons. Advances in Scientific Visualization.
(pp. 83-96). Springer-Verlag Berlin-Heidelberg.

116

[12] Yagel, R., Kaufman, A., (1992). Template-based volume viewing. Computer
Graphics Forum, 11(3). (pp. 153-167)

[13] Yagel, R., Shi, Z., (1993). Accelerating volume animation by space-leaping.

In Proceedings of IEEE Visualization 1993. (pp. 62-69)

[14] Levoy M., (1990), Efficient ray tracing of volume data. ACM Transactions on

Graphics, 9(3). (pp. 245-261)

[15] Cohen D., Sheffer Z., (1994). Proximity clouds: An acceleration technique for

3D grid traversal. The Visual Computer, 11(1). (pp. 27-38)

[16] Freund, J. L., Sloan K., (1997) Accelerated volume rendering using

homogenous region encoding. In Proceedings of Visualization 1997. (pp.
191-196)

[17] Stander, B. T., Hart, J. C., (1994). A Lipschitz method for accelerated volume

rendering. In Proceedings of the Symposium on Volume Visualization 1994.
(pp. 107-114).

[18] Westover, L., (1990). Footprint evaluation for volume rendering. Computer

Graphics, 24(4). (pp. 367-376)

[19] Upson, C., and Keeler, M., V-BUFFER, (1988) Visible Volume Rendering.

Computer Graphics (proceedings of SIGGRAPH), 22(4), (pp. 154–159).

[20] Lacroute, P., Levoy, M., (1994). Fast volume rendering using a shear-warp

factorization of the viewing transformation. Computer Graphics, 28(Annual
Conference Series). (pp. 451-458)

[21] Knittel, G., (1995). A scalable architecture for volume rendering. Computers

& Graphics, 19(5). (pp. 653-665).

[22] Günther, T., Poliwoda, C., Reinhart, C., Hesser, J., Männer, R., Meinzer, H.

P., Baur. H. J., (1995) VIRIM: A massively parallel processor for real-time
volume visualization in medicine. Computers & Graphics, 19(5). (pp. 705-
710)

[23] Meißner, M., Kanus, U., Wetekam, G., Hirche, J., Ehlert, A., Straßer,

W., Doggett, M., Proksa. R., (2002). VIZARD II: A reconfigurable
interactive volume rendering system. In Proceedings of the Workshop on
Graphics Hardware 2002. (pp. 137-146)

[24] Osborne, R., Pfister, H., Lauer, H., McKenzie, N., Gibson, S., Hiatt,

W., Ohkami, T., (1997). EM-Cube: An architecture for low-cost real-time
volume rendering. In Proceedings of the Workshop on Graphics Hardware
1997. (pp. 131-138).

117

[25] Westermann, R., Ertl, T., (1998). Efficiently using graphics hardware in
volume rendering applications. In Proc. of SIGGRAPH 1998. (pp. 169-177)

[26] Weiskopf, D., Weiler, M., Ertl, T., (2004) Maintaining Constant Frame Rates

in 3D Texture-Based Volume Rendering, Computer Graphics International,
2004. Proceedings. University of Stuttgart

 (pp. 604- 607)

[27] Sadleir, R. J., Whelan, P. F., Bruzzi, J. F., Moss, A. C., MacMathuna, P.,

Fenlon H.M., (2002). A portable toolkit for providing straightforward access
to medical image data. Radiology 225(Suppl):762

[28] Porter, T., Duff, T., (1984). Compositing digital images. ACM Computer

Graphics (SIGGRAPH '84 Proceedings), volume 18. (pp. 253-259)

[29] Woo M., Neider J., Davis T., Shreiner D., OpenGL Architecture Review

Board, (1997). OpenGL(R) Programming Guide: The Official Guide to
Learning OpenGL, Version 1.1 (2nd Edition). Silicon Graphics, Inc.

[30] Blinn J. F., (1978). Simulation of wrinkled surfaces. ACM Computer

Graphics (SIGGRAPH '78 Proceedings), volume 12. (pp. 286-292)

[31] Vannier, M. W., Marsh, J. L., Warren, J. O., (1983). Three Dimensional

Computer Graphics for Craniofacial Surgical Planning and Evaluation. ACM
Computer Graphics, (Proc. SIGGRAPH’83) 17(3). (pp. 263-273)

[32] Höhne, K. H., Riemer, M., Tiede, U., Bomans. M., (1988) Volume rendering

of 3D-tomographic imagery. In C. N. de Graaf, M. A. Viergever (eds.):
Information Processing in Medical Imaging, Proc. IPMI-10. (pp. 403-412)
Plenum Press, New York.

[33] Krüger, J., Westermann, R. (2003). Acceleration Techniques for GPU-based

Volume Rendering. Proceedings of IEEE Visualization, 2003. 287-292.

[34] Kniss, J., McCormick. P., McPherson, A., Ahrens J., Painter J., Keahey A.

(2001). Interactive Texture-Based Volume Rendering for Large Data Sets.
Computer Graphics and Applications, IEEE. 52-61.

[35] Hearn D, Baker M. P., (1997). Computer Graphics, C Version, Prentice Hall,

Inc.

[36] Steenberg, E., (2004, February). Real-time global illumination. Game

Developers Conference, San Jose USA

118

Web References:

[37] Mayo Clinic, Software: Analyze Program, URL:

http://www.mayo.edu/bir/Software/Analyze/Analyze.html, Last visited date:
30-08-2004

[38] Imaging Technology Group. URL:

http://www.itg.uiuc.edu/publications/forums/1998-03-17/multiplanar.htm,
Last visited date: 30-08-2004

[39] Barré, S., Volume Visualization Web Page, URL:
 http://www.barre.nom.fr/medical/these/pictures-3.html, Last visited date: 30-
08-2004

[40] What is haptics?, URL: http://iroi.seu.edu.cn/books/ee_dic/whatis/haptics.htm,
Last visited date: 30-08-2004

[41] The Visible Human Project, URL:

http://www.nlm.nih.gov/research/visible/visible_human.html, Last visited
date: 30-08-2004

[42] Stanford Encyclopedia of Philosophy,
http://plato.stanford.edu/entries/qt-uncertainty/, Last visited date: 30-08-2004

[43] Wong K., Volume Rendering Techniques, CSIS7501 Advance Computer
Graphics & Virtual Reality Lecture Notes, URL:
http://www.csis.hku.hk/~c7501/, Last visited date: 30-08-2004

[44] 12.4AU1 Computer Graphics: A Course in three-dimensional Computer

Graphics, URL:
http://www.ece.eps.hw.ac.uk/~dml/cgonline/hyper00/polypipe/render/illum.ht
ml, Last visited date: 30-08-2004

[45] Power K., Illumination and Shading Models, URL:

http://glasnost.itcarlow.ie/~powerk/Graphics/Notes/node10.html, Last visited
date: 30-08-2004

[46] Sullivan J. A., Illumination and Shading, URL:

http://www.nps.navy.mil/cs/sullivan/MV4470/resources/notes/IlluminationAn
dShading.ppt, Last visited date: 30-08-2004

[47] Illumination Models, URL:

http://graphics.cs.msu.su/courses/cg99/notes/lect11/illum_local.htm, Last
visited date: 30-08-2004

[48] Szymczak A., Shading Models, URL:

http://www.cc.gatech.edu/classes/AY2004/cs4451a_fall/smodels/linint.html,
Last visited date: 30-08-2004

119

[49] Shen, H. W., Digital Image Compositing, URL:

http://www.cse.ohio-state.edu/~hwshen/788/sp01/composite.ppt, Last visited
date: 30-08-2004

[50] Heiler, M., Volume Rendering Project – Results, URL:
http://www.cvgpr.uni-mannheim.de/heiler/volume.html, Last visited date: 30-
08-2004

[51] Brown, J., Volume Rendering Project, URL:
http://wwwcsif.cs.ucdavis.edu/~brownjb/arch/graphics_classes/177/3/, Last
visited date: 30-08-2004

[52] ATI Technologies Inc., URL: http://www.ati.com/, Last visited date: 30-08-
2004

[53] NVIDIA Corporation, URL: http://www.nvidia.com/page/home, Last visited

date: 30-08-2004

[54] Blythe, D., Advanced Graphics Programming Techniques Using OpenGL,

Silicon Graphics, URL:
http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/node298.h
tml, Last visited date: 30-08-2004

[55] Volume Rendering, Visualization Process, URL:

http://www.cse.ohio-state.edu/~hwshen/788/VR.ppt, Last visited date: 30-08-
2004

[56] Kniss, J., Hadwiger, M., Rezk-Salama, C., Westermann R., Kindlmann, G.,
High-Quality Volume Graphics on Consumer PC Hardware, VIS2002,
 URL: http://www.sci.utah.edu/~jmk/vis02/Part2_TextureBased.ppt, Last
visited date: 30-08-2004

[57] Blythe, D., Advanced Graphics Programming Techniques Using OpenGL,
Silicon Graphics, URL:
http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/node306.h
tml, Last visited date: 30-08-2004

[58] Java3D, URL: http://www.j3d.org/, Last visited date: 30-08-2004

[59] Java Technology, URL: http://java.sun.com/, Last visited date: 30-08-2004

[60] Java & Programming Language Bindings to OpenGL, URL:

http://www.opengl.org/resources/java/, Last visited date: 30-08-2004

[61] Java bindings for OpenGL, URL: https://jogl.dev.java.net/, Last visited date:

30-08-2004

[62] JOGL User Guide, URL:

120

https://jogl.dev.java.net/nonav/source/browse/*checkout*/jogl/doc/userguide/
index.html?rev=HEAD&content-type=text/html, Last visited date: 30-08-
2004

[63] NeatMed, Medical Imaging Application Developer Interface, URL:
 http://www.eeng.dcu.ie/%7Evsl/DICOM/, Last visited date: 30-08-2004

[64] DICOM (Digital Imaging and Communications in Medicine), URL:
 http://medical.nema.org/, Last visited date: 30-08-2004

[65] Blythe, D., Advanced Graphics Programming Techniques Using OpenGL,

Silicon Graphics, URL:
http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/node303.h
tml, Last visited date: 30-08-2004

[66] Blythe, D., Advanced Graphics Programming Techniques Using OpenGL,
Silicon Graphics, URL:
http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/node304.h
tml, Last visited date: 30-08-2004

[67] Dot3 bump mapping in Java3D, Java3D Org. URL:
http://www.j3d.org/tutorials/quick_fix/dot3_bumps.html, Last visited date:
30-08-2004

[68] Multitexturing with OpenGL, URL:
http://tfpsly.planet-d.net/english/3d/multitexturing.html, Last visited date: 30-
08-2004

[69] Bump Mapping, URL:
http://www.paulsprojects.net/tutorials/simplebump/simplebump.html,
Last visited date: 30-08-2004

[70] Mayo Clinic, College of Medicine, URL: http://www.mayo.edu/, Last visited
date: 30-08-2004

[71] OpenGL on Silicon Graphics Systems, URL:

http://www.parallab.uib.no/SGI_bookshelves/SGI_Developer/books/OpenGL
onSGI/sgi_html/ch04.html#id76349, Last visited date: 30-08-2004

[72] OpenGL, URL: http://www.opengl.org, Last visited date: 30-08-2004

[73] Silicon Graphics, URL: http://www.sgi.com, Last visited date: 30-08-2004

[74] Blythe, D., Advanced Graphics Programming Techniques Using OpenGL,

Silicon Graphics, URL:
http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/notes.html,
Last visited date: 30-08-2004

121

[75] The VRML Consortium. The virtual reality modeling language specification.
web site, URL: http://vag.vrml.org, Last visited date: 30-08-2004

122

APPENDICES

APPENDIX A User Interface of the Implementation

 1. File Menu

Figure A.1 Main Frame, File Menu

 Application first generates the main frame.

Figure A.2 New Menu

 New menu, is used for generating a GL window that is shown on Figure A.3.

GL window is the frame that the rendering results will be shown.

Figure A.3 GL Window (no dataset loaded)

 GL window has two modes: Animator and No Animator. These states are

chosen while creating a GL window on file menu as shown in the Figure A.2.

123

 “Animator” state is implemented with a class called Animator which invokes

the display event, whenever the system is ready. In other words, the scene is rendered

again immediately after a rendering computation is over. This makes the scene to be

animated and enables interactivity. See Appendix A-1 for more details of Animator

class.

 “No Animator” mode does not use Animator class for invoking the display

event. Instead, in this state, display event is invoked by a timer object with a rate of

1/24 second that provides 24fps (frames per second) maximum refresh rate. This

option has been added to the software because, in some systems, performance of the

other running applications decreased while running this application. Maximum frame

rate can be changed; details are given in Appendix A-2.

 After creating a GL window, a dataset is chosen with the file open menu

shown in the Figure A.4.

Figure A.4 File Open Menu

 File open menu loads volumetric datasets that are encoded by Analyze dataset

format. Loading the volume with Polygon and 2d Texture modes have been

developed for testing and learning purposes.

 Loading a volumetric dataset as Polygon was an unsuccessful attempt to

render a volumetric dataset with OpenGL. The method used in this mode is:

• Read each voxel in the dataset

• Assign a square shaped polygon in the scene for each voxel

• Place the squares at the coordinates with respect to the volumetric model

124

• Assign color values for the polygons same with the voxel intensity value

• Assign transparency values according to the intensity values of voxels

Figure A.5 Polygon Mode Output

 The result was vast amount of polygons created and the graphics hardware

was unable to render a simple 64x64x64 volumetric dataset with a performance of

about 5 - 10 seconds for a frame. In order to increase the performance, number of

voxels that shall be rendered is decreased with following method:

• Compute gradient vector for each voxel

• Eliminate the voxels that have gradient magnitude value smaller than a

specific value

This attempt increased the performance about 2 frames per second for some

datasets; however, the performance was still far away from interactive rates. Besides,

filtering the gradient vector magnitude value more decreased the image quality and

some part of the dataset was unable to be seen. If the graphics processing hardware

was fast enough to render all the voxels in the dataset at interactive rates, the next

attempts would have been:

• To assign vertex normal values to the vertices of the polygons and assign

material properties according the segmentation information for the voxels,

125

so that diffuse and specular lighting can be obtained on the rendering

result.

• Make the polygons faces turned to the viewer all the time, so that where

ever the user flies through in the scene or rotate the model, there would be

no lost in quality because of the effect described in the topic “Volume

Rendering Using 2D Textures” and shown in the Figure 3.7.

2D Texture mode was implemented only for the purpose of learning the

environment and implementing the method described in “Volume Rendering Using

2D Textures” topic.

3D Texture mode loads a volumetric dataset to the GL Window and renders

the volume by using 3D texture mapping capabilities of the hardware.

 2. GL Window

 GL window is the frame that the output of the rendering process is print on it.

Each GL window is created as independent threads, so as to enable the user visualize

more than one volumetric dataset, or visualize one dataset with more than one GL

window at the same time, as shown on the Figure A.6.

Figure A.6 Multiple GL windows.

Same dataset visualized with two different angles.

126

x

y

z

x

y

z

x

y

z

x

y

z

GL window present the user a three dimensional interactive environment that

the user is able to move around. The interactivity controls implemented for the GL

window is as follows:

 up arrow: fly ahead

down arrow: fly back

ctrl + up arrow: slide upwards

ctrl + down arrow: slide downwards

ctrl + left arrow: slide to left

ctrl + right arrow: slide to right

 left arrow: rotate to left (about y axis)

right arrow: rotate to right (about y axis)

shift + up arrow: rotate to upwards

 (about x axis)

shift + down arrow: rotate to downwards

 (about x axis)

shift + left arrow: rotate to left along z axis

shift + right arrow: rotate to right along z axis

127

 Mouse drag action while left mouse button is pressed, rotates the camera

about the y and x axis, and rotates the camera about z axis when the right button of

the mouse is pressed.

 These transformations are not done to the model but the position of the

camera is changed. When the key “R” is pressed, every action done by the mouse

drag is applied as transformations to the loaded volumetric dataset. 3D Texturing

gives an advantage here for the transformation of the model. The first attempt to

rotate the volumetric dataset was to recalculate the new texture mapping coordinates

values after rotation. This process had been done by matrix transformation operations.

However, OpenGL gives an advantage to make transformations on the texture

coordinates by changing the matrix multiplication mode into texturing by the

following code:

glMatrixMode(GL_TEXTURE);

So, instead of calculating the new texture mapping coordinates with CPU, this

process is done by GPU.

 3. View

 This section shall provide information about viewing properties implemented

for different visualizing options. View menu is shown in Figure A.7.

Figure A.7 View Menu

 Projection, Blending, Lighting and Material options have been implemented

for understanding the OpenGL platform in detail. These parts are not directly related

128

with the volume rendering method. However, this experience showed that; in a

volume rendering application which is implemented using hardware acceleration,

there is a capability of rendering both surfaces and textures. This gives an ability to

visualize both indirect volume rendering [3], [2], [7] and direct volume rendering

methods together in this platform. Viewing options built, present an environment for

implementing new methods of rendering for the future works.

 Rendering Parameters appears in the view menu is related with the volume

rendering part.

3.1 Projection

 This section provides OpenGL projection rendering options. Details about

OpenGL projection capabilities and methods are given in Appendix B-3.

Figure A.8 Projection GUI

 Projection GUI seen in the Figure A.8 provides an interface for

gluPerspective, glOrtho and glFrustum commands of OpenGL. Example rendering

results for perspective and orthographic projections are seen on Figure A.9.

129

Figure A.9 Orthographic Projection (left), Perspective Projection (right)

3.2 Lighting

 This section has been implemented with the purpose of learning OpenGL

lighting capabilities. Information about lighting methods in OpenGL is given in

Appendix B-4.

Figure A.10 Lighting GUI

 Lighting GUI, seen on the Figure A.10 gives an interface to the user for

creating 4 different positional lights with user defined parameters, and spotlight that

always travels with the camera.

130

3.3 Material

 This section has been implemented with the purpose of learning OpenGL

material capabilities. Information about material properties for the geometric

primitives in OpenGL is given in Appendix B-5.

Figure A.11 Material GUI

Material GUI enables the user to assign material properties to the geometric

primitives, which were created for testing and learning purposes. User is able to set

different parameters for glMaterial command. Enabling Smooth Shading switches

the shading state from Flat Shading and Smooth Shading. Smooth shading provides a

Gouraud shading mode defined in the Shading section.

Figure A.12 Flat Shading

131

Figure A.13 Smooth Shading

 Figures A.12 and A.13 have been rendered with a directional light and a

spotlight placed on the camera.

4. How No Animator mode works?

declarations:

private class AnimatorTimerTask extends TimerTask {

public void run() {

 if (ANIMATED)

 {

 //myCanvas.requestFocus();

 //myCanvas.getRenderingThread().run();

 myCanvas.display();

 }

 }

 }

private static final int DEFAULT_ANIMATION_DELAY = 1000/24;

this line provides a frame rate of 24fps, if animation delay

value set to 1000/30 the frame rate shall be 30fps.

private java.util.Timer animationTimer;

private TimerTask animationTimerTask = new

AnimatorTimerTask();

create:
if (animation is requested)

132

{

 animationTimer = new java.util.Timer();

animationTimer.scheduleAtFixedRate(animationTimerTask, 0,

delay);

 }

 else

 {

 if (animationTimer != null)

 animationTimer.cancel();

 }

133

APPENDIX B 3D Computer Graphics and OpenGL

1. Fundamentals of 3D Computer Graphics

1.1 Overview

Computers became more and more powerful tools for producing picture in a

fast and economical way. There is almost no area of interest that computer graphics

cannot be used as a benefit, which explains why use of computer graphics is so

widespread and popular. The early use of computer graphics in science and

engineering had to rely on some expensive equipment. Due to fast evolution of

computer and computer graphics technologies, it is used in diverse areas like,

engineering, science, education, training, advertising, medicine, business, industry,

government, art, and entertainment. Especially, the wide market of gaming and

entertainment technologies caused a vast amount of production of graphics hardware,

and a fast evolution of the performance and implementation techniques for computer

visualization. [35].

1.2 APIs for Computer Graphics

Application Programming Interfaces (API) for computer graphics offer

interfaces for the software developers to render three dimensional scenes with vast

amount of functions using the capabilities of computer graphics hardware. OpenGL

[72] developed by Silicon Graphics, and DirectX developed by Microsoft are most

popular APIs developed for hardware accelerated computer graphics software

developers. There are many libraries or graphics engines which give higher level of

interfaces to the software developers. Most of such libraries are based on OpenGL or

DirectX APIs. Java3d [58] is an example which presents an object oriented interface

that use OpenGL or DirectX as interface for the graphics hardware.

134

In the implementation of hardware accelerated volume rendering that was

done for this work was built on OpenGL using JOGL API [61] which was built to

give interface to the OpenGL commands directly in the java development

environment.

DirectX and OpenGL are the industry standard APIs, which define two

dimensional and three dimensional graphics pipelines in which the graphics datasets

or the geometric objects are processed and rendered. The viewing of an object is

controlled using the model, the viewer position, and the projection matrices.

1.3 Spatial Transformation and Linear Algebra

The term, rendering, can be defined as, conversion of graphics primitives into

an image. In other words, it is like drawing picture of a model onto a canvas. Some

mathematical fundamentals are required to be understood for having an idea of how a

graphics rendering process is done.

In computer graphics, primitives for a three dimensional object that is

modeled, is represented in a Cartesian coordinate space with points having an

address of x, y and z locations, lines with multiple points, polygons with multiple

lines, surface with multiple polygons, and so fort. In order to view an object in

different angles, transforming these graphical primitives is a useful method. In order

to transform an object in the Cartesian coordinate space, each coordinate can be

transformed by a linear equation.

okzgycxz
njzfybxy

mizeyaxx

+++=
+++=
+++=

'
'
'

 Equation (B.1) [6, pp. 36]

In this equation, x’, y’ and z’ are the transformed location of a point that is at

the point x, y and z, where the coefficients a - o describe the relationship between

them. Linear algebra allows representing such system of equations in matrices,

135

makes it simpler to represent the relations and gives ability to define more complex

spatial transformations.

A relationship of transformation between geometric primitives given in the

Equation (B.1) can be defined in a matrix representation like this:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

okgc
njfb
miea

z
y
x

 Equation (B.2) [6, pp. 37]

If a point that is to be transformed is denoted by P matrix and the new

location of this point’s matrix after the transformation is denoted P’:

PTP ×='

where T is called the transformation matrix. Each elements of transformation matrix

is for computing a specific transformation operation. Many different kinds of spatial

transformations can be encoded into a transformation matrix.

 Translation:

 Translation is moving a point to another location. This operation can be

achieved by adding the amount of translation on each axis to the original values of

the point. Translation operation can be computed by a transformation matrix like

this:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

11000
100
010
001

1
'
'
'

z
y
x

tz
ty
tx

z
y
x

where tx, ty and tz represent the amount of translation at each axis. Here a 4x4 matrix

has been used which is different from Equation (B.2). Actually it is not necessary to

136

use the bottom line of this matrix for the translation operation, however, this part is

necessary for computing multiple transformation operations. It is seen that when

there is no translation in any axis, in other words, when tx, ty and tz are all 0, an

identity matrix is obtained where no change occurs when the matrix multiplication is

done.

 Scaling:

 Scaling operation is used for changing the sizes of the objects. The

transformation matrix for scaling is:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

sz
sy

sx

where sx, sy and sz denotes the amount of scaling along each axis. When value 1 is

used for the scaling parameters, an identity matrix is obtained and no change occurs

in the output. If the value for scaling factor is grater than 1 the output model will

become greater in size and if scaling factor is between 0 and 1, the output model will

be smaller in size than the original. If the scaling factor for each axis is assigned as -1

a mirror affect is obtained. Different axis may have different values for scaling factor.

This operation is useful in volume rendering. Especially in medical imaging,

volumetric datasets may have different scaling factors for z axis. This operation is

needed for balancing the volume dimensions.

 Rotation:

 Rotating an object in a three-dimensional space about an arbitrary axis can be

achieved by multiplying the object coordinates by rotation transformation matrix.

Transformation matrix for rotating about the x, y and z axes are given in the

following figures.

137

x
y

z

x
y

z

x
y

z

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

θθ
θθ

Figure B.1 Transformation matrix for rotation about x axis

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

Figure B.2 Transformation matrix for rotation about y axis

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

θθ
θθ

Figure B.3 Transformation matrix for rotation about z axis

The rotation transformation matrixes given in Figures B.1, B.2, B.3 rotate the

objects along the axes x, y and z respectively, by counter clock wise direction as

shown in the figures. In order to rotate the objects along an arbitrary axis other than

138

the major axes x, y and z; the model can be translated so that, the rotation axis lies

along one of the axes x, y and z; and apply the rotation transformation matrix, then

place back the rotated object to the original position by my making inverse

operations for the transformations made at the beginning.

Matrix operations give a power for computing because several different kinds

of transformation operations can be combined into a single multiplication matrix

which is called compound transformation matrix. So, instead of more than one

transformation to the model as described in the preceding paragraph, a compound

transformation matrix can be built first, and then applied to the whole dataset at once.

For example, a matrix denoted by R, rotates the model along x axis; and another

matrix denoted by T, translates the model with 10 units along the y axis. If the matrix

multiplication is done between T and R matrixes, like:

M1 = R x T

M1 is a new transformation matrix, which first translates the model by 10 units along

the y axis, and rotates it by the x axis. However, if the multiplication is done in

another way:

M2 = T x R

The transformation matrix M2 shall first rotate the model about the x axis, then

translate it along the y axis. So, M1 is not equal to M2 and the matrix multiplications

are applied from right to left. [6, pp. 44]

1.4 Rendering

Having the knowledge of transformation, volumetric data can be scaled,

rotated or translated by building a transformation matrix. In order to see what is

happening on the model we are transforming, the model has to be painted on a two

dimensional image consisting of pixels representing the projection of the voxels or

the geometric primitives like point, line or surface.

139

Rendering is the process of projecting the transformed geometric primitives

onto an image plane. Main function of the graphics APIs like OpenGL is rendering.

OpenGL gives an interface for rendering geometric primitives with two methods.

Intermediate mode [29, pp. 195] executes the OpenGL commands immediately and

renders the scene. Display list mode enables the developer to store some commands

for rendering for a later execution, which gives a better performance.

Real time rendering is the process of sequential rendering and produces an

animation with the rendered images. In order to establish a high sequence and obtain

a smooth animation, the rendering time required for producing one image is very

important. APIs like OpenGL uses hardware graphics units to increase the

performance of rendering, and establish a real time animation. Frame per second is

the metric used for measuring the performance of real time rendering. What is the

minimum limit for real time rendering is a relative question that changes from one

type of user to another [36]. While watching a movie with a rate of 24 frames per

second, it may be ok but a person who plays flight simulator or an arcade game

would require 60-100 frames per second render results for a satisfactory smoothness

in the animation. “Modern people are trained in picking up fast cuts, around 10

frames per second is probably the limit.” [36, pp. 1]

 2. OpenGL

 OpenGL is an environment for developing interactive two and three

dimensional graphics applications. OpenGL, which was created by Silicon Graphics

[73], in 1992, is now one of the most widely used and supported application

programming interface (API) in the computer graphics industry [72]. GL stands for

graphics library. OpenGL is a hardware independent API, which gives a software

interface to the graphics hardware.

 2.1 Overview

 OpenGL consists of more than 150 distinct commands which are used for

specifying geometric objects and required operation for producing interactive three

dimensional applications. It is a hardware independent interface which can be

140

implemented on many different hardware platforms. In order to achieve this property,

OpenGL does not include commands for performing windowing tasks or obtaining

user input. It does not provide high level commands for describing three dimensional

objects models. Instead, the models for complicated objects are created by using

geometric primitives which are points, lines and polygons. Some sophisticated

libraries, which provide high level commands to define complicated models, can be

built on top of OpenGL. The OpenGL Utility Library (GLU) is an example for that,

which provides many modeling features. [29]

 OpenGL presents a procedural interface rather than a descriptive interface

[74]. In a system having a descriptive interface (VRML is an example for such

systems [75]) for example, the user can create a blue sphere at a certain place.

However, in OpenGL, in order to render such an object, the developer has to follow a

sequence of commands, set up the camera view, transform the model, draw the

geometric primitives for the blue ball and so fort. Specifying all the required

commands, operation in an appropriate order in an exact detail is a disadvantage for

the procedural interfaces. However, this gives a great flexibility while rendering a

scene, because every step for rendering is applied and the programmer has the ability

to modify each step and control rendering speed, image quality. A descriptive

interface can be built on top of a procedural interface but the opposite cannot be the

case, and this explains the power of a procedural interface over a descriptive one.

Some basic steps required for writing an OpenGL application is as follows:

• OpenGL is not a model builder API but a renderer. This means that the

model should be built by the user. There are some libraries like OpenGL

Utility Library (GLU) which establish a descriptive interface for practical

ways for building models. The quality of rendering is affected by the

model detail quality. The primitives of a model for OpenGL are points,

lines, polygons, images and bitmaps.

• When the model to be rendered is ready, the objects are placed at a

desired location by using transformation commands, and the desired

position for viewing the composed scene is selected.

141

• Color calculations, are done for all objects.

• Rasterization which is the process of projecting the geometric model to

the pixels on the screen is done.

 2.2 Syntax

 Prefix “gl” is used for OpenGL commands, and the command name starts

with capital letter like: “glClearColor()”. The predefined constants use the prefix

“GL_” and all letters are used as capital like: “GL_POLYGON”.

 Suffixes used in the commands define number and type of the variables that

will be used. For example, “glColor3f()” command indicates that three arguments are

given by the letter “3”, and the letter “f” indicates that the arguments are floating

point variables.

 Some of the OpenGL commands accept eight different data types as shown in

the Table B.1.

Suffix Data Type Typical Corresponding C-

Language Type

OpenGL Type

Definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit floating-

point

float GLfloat, GLclampf

d 64-bit floating-

point

double GLdouble, GLclampd

ub 8-bit unsigned

integer

unsigned char GLubyte, GLboolean

us 16-bit unsigned unsigned short GLushort

142

Suffix Data Type Typical Corresponding C-

Language Type

OpenGL Type

Definition

integer

ui 32-bit unsigned

integer

unsigned int or unsigned long GLuint, GLenum,

GLbitfield

Table B 1 OpenGL Data Types [29, pp.17]

 OpenGL commands work as a state machine, which means when a mode is

set for a property, the remaining part implementation will apply always that mode for

that property. For example, current color can be assigned as white by the command

glColor3f(1.0, 1.0, 1.0). This means that, after the line of this command all the

objects drawn shall be painted in color white until current color state is changed by

another “glColor” command. Many of the states need to be enabled or disabled by

using the commands “glEnable()” and “glDisable()”. Each state variable are assigned

to default values and those values that are used currently, can be queried an any place

of the system.

 2.2.1 State Management

 In display list styles of rendering, while drawing objects, a list of commands

to be done is prepared and the graphics interface library expects a command to

execute that list. OpenGL supports this style and enables the programmer to build

many lists of commands and execute these groups of commands at any point in the

system. However, OpenGL default style works in immediate mode, which executes

immediately the command at every time and every place issued by the programmer.

 For each frame to be rendered, the window should be cleared entirely with a

background color that is specified by the user. The command set for clearing an

entire window to color black is as follows. [29]

 glClearColor(0.0, 0.0, 0.0, 0.0);

 glClear(GL_CLEAR_BUFFER_BIT);

143

In “glClearColor” command, the color values of red, green, blue and alpha

determines the color to be used for clearing the window, and

GL_CLEAR_BUFFER_BIT is an enumerated mask name that represents “Color

Buffer” to be cleared by the “glClear” command.

The following pseudo code shows how coloring mode is managed with

OpenGL:

set current color(blue);

draw object(X);

set current color(red);

set current color(green);

draw object(Y);

draw object(Z);

Result for this implementation will result like this: X drawn in blue, Y and Z

drawn in green [29].

 2.2.2 Geometric Primitives

 In OpenGL all geometric primitives are described in terms of their vertices

which are the points that store the coordinates of end points of a line segment or

corner of a polygon.

OpenGL definition for point line, and polygon have the similar meaning of

the same names used in mathematics, but not quite the same. The difference comes

from the limitations of computer computations. For example, floating point

calculations have finite precision so the results have some round off errors. The

coordinates used for the modeling in OpenGL suffer from this situation. Another

difference is occurred because of the result of rendering is a raster graphic display. A

pixel has a specific size and in some views as it does not have an infinitively small

size, more than one object might happen to be rendered in a single pixel.

144

 A point is a single vertex consisting of three dimensional coordinates stored

as floating point numbers. Every internal calculation done by OpenGL assumes the

vertices are three dimensional. If a point has been assigned as two dimensional, the z

coordinate is assumed as zero by OpenGL.

 The term line is not understood like the mathematician’s version that it goes

to infinity in both directions, but refers to a line segment.

 Polygon is an area that is enclosed single closed loops of line segments which

are specified by the vertices of their end points. OpenGL has some restriction rules

for constructing a polygon.

2.3. Blending In OpenGL

This section is taken from the following references, and some part of it is modified

for the summarization of the subject.

References:

1. http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/node1.html

2. Woo M., Neider J., Davis T., Shreiner D., OpenGL Architecture Review Board,

(1997). OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL,

Version 1.1 (2nd Edition). Silicon Graphics, Inc

3. http://tfpsly.planet-d.net/OpenGL/Faq/

OpenGL doesn't support a direct interface for rendering translucent primitives.

However, a transparency effect with the blend feature can be created. An OpenGL

application enables blending function as follows:

glEnable (GL_BLEND);

 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

After blending is enabled, the incoming primitive color is blended with the

color already stored in the frame buffer. glBlendFunc controls how this blending

occurs. The typical use given in the above example, modifies the incoming color by

145

its associated alpha value and modifies the destination color by one minus the

incoming alpha value. The sum of these two colors is then written back into the

frame buffer.

While using the depth buffering in an application, the order of the primitives

to be rendered is important. Fully opaque primitives need to be rendered first,

followed by partially opaque primitives in back to front order.

OpenGL provides a rich set of blending operations which can be used to

implement transparency, compositing, painting, and other effects. The glBlendFunc()

command selects the source and destination blend factors. The most frequently used

factors are GL_ZERO, GL_ONE, GL_SRC_ALPHA and

GL_ONE_MINUS_SRC_ALPHA.

Alpha values are specified with glColor, when using glClearColor to specify

a clearing color and when specifying certain lighting parameters such as a material

property or light-source intensity. The pixels on a monitor screen emit red, green,

and blue light, which is controlled by the red, green, and blue color values. So how

does an alpha value affect what gets drawn in a window on the screen?

When blending is enabled, the alpha value is used to combine the color value

of the fragment being processed with that of the pixel already stored in the

framebuffer. Blending occurs after your scene has been rasterized and converted to

fragments, but just before the final pixels are drawn in the frame buffer.

Without blending, each new fragment overwrites any existing color values in

the framebuffer, as though the fragment were opaque. With blending, how and how

much of the existing color value should be combined with the new fragment's value

can be controlled. So alpha blending can be used for creating a translucent fragment

that lets some of the previously stored color value.

The most natural way to think of blending operations is to think of the RGB

components of a fragment as representing its color and the alpha component as

146

representing opacity. Transparent or translucent surfaces have lower opacity than

opaque ones and, therefore, lower alpha values. For example, if you're viewing an

object through green glass, the color you see is partly green from the glass and partly

the color of the object. The percentage varies depending on the transmission

properties of the glass: If the glass transmits 80 percent of the light that strikes it (that

is, has an opacity of 20 percent), the color you see is a combination of 20 percent

glass color and 80 percent of the color of the object behind it. You can easily imagine

situations with multiple translucent surfaces.

During blending, color values of the incoming fragment, the source, are

combined with the color values of the corresponding currently stored pixel, the

destination, in a two-stage process. First you specify how to compute source and

destination factors. These factors are RGBA quadruplets that are multiplied by each

component of the R, G, B, and A values in the source and destination, respectively.

Then the corresponding components in the two sets of RGBA quadruplets are added.

Let the source and destination blending factors be (Sr, Sg, Sb, Sa) and (Dr, Dg, Db,

Da), respectively, and the RGBA values of the source and destination be indicated

with a subscript of s or d. Then the final, blended RGBA values are given by:

(RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa)

glBlendFunc() is used for supplying two constants: one that specifies how the

source factor should be computed and one that indicates how the destination factor

should be computed.

glBlendFunc(sfactor, dfactor)

In the following table the RGBA values of the source and destination are

indicated with the subscripts s and d, respectively. Subtraction of quadruplets means

subtracting them component wise. The Relevant Factor column indicates whether the

corresponding constant can be used to specify the source or destination blend factor.

147

Constant Relevant Factor Computed Blend Factor

GL_ZERO source or destination (0, 0, 0, 0)

GL_ONE source or destination (1, 1, 1, 1)

GL_DST_COLOR source (Rd, Gd, Bd, Ad)

GL_SRC_COLOR destination (Rs, Gs, Bs, As)

GL_ONE_MINUS_DST_COLOR source (1, 1, 1, 1)-(Rd, Gd, Bd, Ad)

GL_ONE_MINUS_SRC_COLOR destination (1, 1, 1, 1)-(Rs, Gs, Bs, As)

GL_SRC_ALPHA source or destination (As, As, As, As)

GL_ONE_MINUS_SRC_ALPHA source or destination (1, 1, 1, 1)-(As, As, As, As)

GL_DST_ALPHA source or destination (Ad, Ad, Ad, Ad)

GL_ONE_MINUS_DST_ALPHA source or destination (1, 1, 1, 1)-(Ad, Ad, Ad, Ad)

GL_SRC_ALPHA_SATURATE source (f, f, f, 1); f=min(As, 1-Ad)

Source and Destination Blending Factors

Not all combinations of source and destination factors make sense. Most

applications use a small number of combinations. The following part describes

typical uses for particular combinations of source and destination factors.

• One way to draw a picture composed half of one image and half of

another, equally blended, is to set the source factor to GL_ONE and

the destination factor to GL_ZERO, and draw the first image. Then

set the source factor to GL_SRC_ALPHA and destination factor to

GL_ONE_MINUS_SRC_ALPHA, and draw the second image with

alpha equal to 0.5. This pair of factors probably represents the most

commonly used blending operation. If the picture is supposed to be

blended with 0.75 of the first image and 0.25 of the second, the first

image is drawn as before, and the second is drawn with an alpha of

0.25.

148

• If new images are to be added onto another image and what ever the

last result, the newly added image will have %90 transparency, this

can be done with blending as follows: image is drawn with alpha of

10 percent and GL_SRC_ALPHA (source) and

GL_ONE_MINUS_SRC_ALPHA (destination) is used in the

blending function..

• The blending functions that use the source or destination colors

GL_DST_COLOR or GL_ONE_MINUS_DST_COLOR for the

source factor and GL_SRC_COLOR or

GL_ONE_MINUS_SRC_COLOR for the destination factor, each

color component can be effectively modulated individually. This

operation is equivalent to applying a simple filter, for example,

multiplying the red component by 80 percent, the green component

by 40 percent, and the blue component by 72 percent would simulate

viewing the scene through a photographic filter that blocks 20

percent of red light, 60 percent of green, and 28 percent of blue.

2.4 Lighting in OpenGL

This section is taken from the following reference, and some part of it is modified for

the summarization of the subject.

Reference:

 Woo M., Neider J., Davis T., Shreiner D., OpenGL Architecture Review Board,

(1997). OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL,

Version 1.1 (2nd Edition). Silicon Graphics, Inc

Creating Light Sources:

Light sources have a number of properties, such as color, position, and

direction. The following sections explain how to control these properties in OpenGL

and what the resulting light looks like. The command used to specify all properties of

149

lights is glLight; it takes three arguments: to identify the light whose property is

being specified, the property, and the desired value for that property.

"void glLight(GLenum light, GLenum pname, TYPE param)" Creates

the light specified by light, which can be GL_LIGHT0, GL_LIGHT1, ... , or

GL_LIGHT7. The characteristic of the light being set is defined by pname, which

specifies a named parameter. param indicates the values to which the pname

characteristic is set; it's a pointer to a group of values if the vector version is used, or

the value itself if the nonvector version is used. The nonvector version can be used to

set only single-valued light characteristics.

Parameter Name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0,

1.0)

ambient RGBA intensity of

light

GL_DIFFUSE (1.0, 1.0, 1.0,

1.0)

diffuse RGBA intensity of

light

GL_SPECULAR (1.0, 1.0, 1.0,

1.0)

specular RGBA intensity of

light

GL_POSITION (0.0, 0.0, 1.0,

0.0)

(x, y, z, w) position of light

GL_SPOT_DIRECTION (0.0, 0.0, -1.0) (x, y, z) direction of spotlight

GL_SPOT_EXPONENT 0.0 spotlight exponent

GL_SPOT_CUTOFF 180.0 spotlight cutoff angle

GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor

GL_LINEAR_ATTENUATION 0.0 linear attenuation factor

GL_QUADRATIC_ATTENUATION 0.0 quadratic attenuation factor

Default Values for pname Parameter of glLight()

150

Position and Attenuation:

A light source can be chosen as it is located infinitely far away from the scene

or as it is nearer to the scene. The first type is referred to as a directional light source;

the effect of an infinite location is that the rays of light can be considered parallel by

the time they reach an object. An example of a real-world directional light source is

the sun. The second type is called a positional light source, since its exact position

within the scene determines the effect it has on a scene and, specifically, the

direction from which the light rays come. A desk lamp is an example of a positional

light source.

 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

As shown, a vector of four values (x, y, z, w) for the GL_POSITION

parameter is supplied. If the last value, w, is zero, the corresponding light source is a

directional one, and the (x, y, z) values describe its direction. This direction is

transformed by the modelview matrix. By default, GL_POSITION is (0, 0, 1, 0),

which defines a directional light that points along the negative z-axis.

If the w value is nonzero, the light is positional, and the (x, y, z) values

specify the location of the light in homogeneous object coordinates. This location is

transformed by the modelview matrix and stored in eye coordinates. Also, by default,

a positional light radiates in all directions, but it can be restricted to producing a cone

of illumination by defining the light as a spotlight.

For real-world lights, the intensity of light decreases as distance from the light

increases. Since a directional light is infinitely far away, it doesn't make sense to

attenuate its intensity over distance, so attenuation is disabled for a directional light.

OpenGL attenuates a light source by multiplying the contribution of that source by

an attenuation factor:

151

where

d = distance between the light's position and the vertex

kc = GL_CONSTANT_ATTENUATION

kl = GL_LINEAR_ATTENUATION

kq = GL_QUADRATIC_ATTENUATION

By default, kc is 1.0 and both kl and kq are zero, but you can give these parameters

different values:

 glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0);

 glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0);

 glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5);

Spotlights:

A positional light source can act as a spotlight—that is, by restricting the

shape of the light it emits to a cone. To create a spotlight, the spread of the cone of

light needed to be determined. To specify the angle between the axis of the cone and

a ray along the edge of the cone, GL_SPOT_CUTOFF parameter is used. The angle

of the cone at the apex is then twice this value, as shown in the following figure.

GL_SPOT_CUTOFF Parameter

By default, the spotlight feature is disabled because the GL_SPOT_CUTOFF

parameter is 180.0. This value means that light is emitted in all directions (the angle

152

at the cone's apex is 360 degrees, so it isn't a cone at all). The value for

GL_SPOT_CUTOFF is restricted to being within the range [0.0,90.0] (unless it has

the special value 180.0). The following line sets the cutoff parameter to 45 degrees:

 glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

In order to specify a spotlight's direction, which determines the axis of the

cone of light foolowing code is used :

 GLfloat spot_direction[] = { -1.0, -1.0, 0.0 };

 glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction);

2.5 Material Properties in OpenGL

This section is taken from the following reference, and some part of it is modified for

the summarization of the subject.

Reference:

 Woo M., Neider J., Davis T., Shreiner D., OpenGL Architecture Review Board,

(1997). OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL,

Version 1.1 (2nd Edition). Silicon Graphics, Inc

Defining Material Properties:

This section describes how to define the material properties of the objects in

the scene: the ambient, diffuse, and specular colors, the shininess, and the color of

any emitted light in OpenGL. Most of the material properties are conceptually

similar to ones used to create light sources. The mechanism for setting them is

similar, except that the command used is called glMaterial().

 "void glMaterial(GLenum face, GLenum pname, TYPE param)"

specifies a current material property for use in lighting calculations. face can be

GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of

the object the material should be applied to. The particular material property being

153

set is identified by pname and the desired values for that property are given by param,

which is either a pointer to a group of values (if the vector version is used) or the

actual value (if the nonvector version is used). The nonvector version works only for

setting GL_SHININESS. The possible values for pname are shown in the following

table.

Parameter Name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2,

1.0)

ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8,

1.0)

diffuse color of material

GL_AMBIENT_AND_DIFFUSE ambient and diffuse color of

material

GL_SPECULAR (0.0, 0.0, 0.0,

1.0)

specular color of material

GL_SHININESS 0.0 specular exponent

GL_EMISSION (0.0, 0.0, 0.0,

1.0)

emissive color of material

GL_COLOR_INDEXES (0,1,1) ambient, diffuse, and specular

color indices

Default Values for pname Parameter of glMaterial

Diffuse and Ambient Reflection:

The GL_DIFFUSE and GL_AMBIENT parameters set with glMaterial

affect the color of the diffuse and ambient light reflected by an object. Diffuse

reflectance plays the most important role in determining what you perceive the color

of an object to be. It's affected by the color of the incident diffuse light and the angle

of the incident light relative to the normal direction. The position of the viewpoint

doesn't affect diffuse reflectance at all.

154

Ambient reflectance affects the overall color of the object. Because diffuse

reflectance is brightest where an object is directly illuminated, ambient reflectance is

most noticeable where an object receives no direct illumination. An object's total

ambient reflectance is affected by the global ambient light and ambient light from

individual light sources. Like diffuse reflectance, ambient reflectance isn't affected

by the position of the viewpoint.

For real-world objects, diffuse and ambient reflectance are normally the same

color. For this reason, OpenGL provides you with a convenient way of assigning the

same value to both simultaneously with glMaterial:

 GLfloat mat_amb_diff[] = { 0.1, 0.5, 0.8, 1.0 };

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,

mat_amb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0), a deep blue color,

represents the current ambient and diffuse reflectance for both the front- and back-

facing polygons.

Specular Reflection:

Specular reflection from an object produces highlights. Unlike ambient and

diffuse reflection, the amount of specular reflection seen by a viewer does depend on

the location of the viewpoint, it's brightest along the direct angle of reflection. To see

this, imagine looking at a metallic ball outdoors in the sunlight.

OpenGL allows to set the effect that the material has on reflected light (with

GL_SPECULAR) and control the size and brightness of the highlight (with

GL_SHININESS). GL_SPECULAR and GL_SHININESS are assigned values as

follows:

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };

GLfloat low_shininess[] = { 5.0 };

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);

155

APPENDIX C Bump Mapping Source Code

1. Dot3 Bump Mapping with Multi Texturing Source Code

gl.glActiveTexture(gl.GL_TEXTURE0_ARB);

gl.glBindTexture (gl.GL_TEXTURE_3D, volTexture3d_ID_gradient);

first the gradient texture is binded.

gl.glEnable(gl.GL_TEXTURE_3D);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE,

gl.GL_COMBINE_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT,

gl.GL_DOT3_RGB_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT,

gl.GL_TEXTURE);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT,

gl.GL_SRC_COLOR);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT,

gl.GL_PRIMARY_COLOR_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT,

gl.GL_SRC_COLOR);

Until now, the dot product of each pixel with the polygon color has

been computed. Below part binds it with the original volumetric

texture multiplying with the computed pixel result.

gl.glActiveTexture(gl.GL_TEXTURE1_ARB);

gl.glBindTexture (gl.GL_TEXTURE_3D,

volTexture3d_ID_originalTexture);

gl.glEnable(gl.GL_TEXTURE_3D);

156

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE,

gl.GL_COMBINE_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT,

gl.GL_MODULATE);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT,

gl.GL_PREVIOUS_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT,

gl.GL_SRC_COLOR);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT,

gl.GL_TEXTURE);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT,

gl.GL_SRC_COLOR);

2. Added Bump Mapping Mode, Source Code

gl.glActiveTexture(gl.GL_TEXTURE0_ARB);

gl.glBindTexture (gl.GL_TEXTURE_3D, volTexture3d_ID_gradient);

gl.glEnable(gl.GL_TEXTURE_3D);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE,

gl.GL_COMBINE_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT,

gl.GL_DOT3_RGB_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT,

gl.GL_TEXTURE);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT,

gl.GL_SRC_COLOR);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT,

gl.GL_PRIMARY_COLOR_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT,

gl.GL_SRC_COLOR);

gl.glActiveTexture(gl.GL_TEXTURE1_ARB);

gl.glBindTexture (gl.GL_TEXTURE_3D, volTexture3d_ID);

gl.glEnable(gl.GL_TEXTURE_3D);

157

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE,

gl.GL_COMBINE_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_COMBINE_RGB_EXT, gl.GL_ADD);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE0_RGB_EXT,

gl.GL_PREVIOUS_EXT);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND0_RGB_EXT,

gl.GL_SRC_COLOR);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_SOURCE1_RGB_EXT,

gl.GL_TEXTURE);

gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_OPERAND1_RGB_EXT,

gl.GL_SRC_COLOR);

158

APPENDIX D Biomedical Imaging Resource (BIR)

and the Analyze Software

This section is taken directly from the following reference.

Reference:

http://www.mayo.edu/bir/Software/Analyze/Analyze1.html

The Biomedical Imaging Resource (BIR) at Mayo Clinic is dedicated to the

advancement of research in the biomedical imaging and visualization sciences. The

BIR provides expertise and advanced technology related to these fields, including

image acquisition, processing, display and analysis; volume visualization; computer

graphics; virtual reality and virtual environments; image databases; computer

workstations, networks and programming.

The Biomedical Imaging Resource at the Mayo Foundation has been involved

since the early 1970's in the design and implementation of computer-based

techniques for the display and analysis of multidimensional biomedical images.

The algorithms and programs developed through this research have formed

the basis for integrated, comprehensive software systems developed by the

Biomedical Imaging Resource, useful in a variety of multimodality,

multidimensional biomedical imaging and scientific visualization applications. These

integrated suites of complementary tools for fully interactive display, manipulation,

and measurement of multidimensional biomedical images have been used in

applications involving many different imaging modalities, including CT, MRI,

SPECT, PET, ultrasound and digital microscopy.

159

With the advent of advanced biomedical imaging techniques which are most

efficiently realized via an integration of algorithms, such as segmentation driven by

direct visualization, the availability of standardized interface software through

powerful windowing systems, and the need to expediently address an ever-expanding

variety of specific biomedical imaging applications, the Analyze software system has

continued to mature into the most comprehensive, robust and productive software

package available for 3D biomedical image visualization and analysis. It has served

as the embodiment of the integrated biomedical imaging algorithms and tools

developed in the BIR for over 15 years. Its widespread use and impact on a

multiplicity of applications have served to validate the 'toolbox' approach to

biomedical imaging software integration, an architecture which provides an effective

shell for rapid prototyping of customized imaging applications. The synergistic

integration of comprehensive and generic tools for visualization, processing, and

quantitative analysis of biomedical images in a highly operator-interactive, intuitive

interface has allowed surgeons, physicians, and basic scientists to explore large

multidimensional biomedical image volumes efficiently and productively.

The Analyze software system is entirely built upon a toolkit of optimized

functions that are organized into a software development library called AVW. The

AVW imaging library is a collection of over 600 functions that are accessible to

software developers to build advanced image-based application solutions. Analyze is

an integration of the full functionality represented in the AVW toolkit with an

intuitive windows-based interface which makes it easy to learn and to use. The most

important feature of Analyze is the paradigm in which it operates - a powerful

software architecture that allows multiple volume images to be simultaneously

accessed and processed by multiple programs in a multi-window interface. The user

interface for Analyze is based on Tcl/Tk, which offers full compliance with interface

standards across multivendor workstations and PCs.

The development of the Analyze and AVW imaging software systems by the

BIR software development staff directly benefits from a combined total of over 100

years of programming experience in the BIR, approximately 75 years of which have

been with Analyze.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

