ON THE EXPECTED VALUE OF THE LINEAR COMPLEXITY OF
PERIODIC SEQUENCES

CIGDEM OZAKIN

JULY 2004



ON THE EXPECTED VALUE OF THE LINEAR COMPLEXITY OF
PERIODIC SEQUENCES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

CIGDEM OZAKIN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN

THE DEPARTMENT OF CRYPTOGRAPHY

JULY 2004



Approval of the Graduate School of Applied Mathematics

Prof. Dr. Aydin AYTUNA

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

Prof. Dr. Ersan AKYILDIZ
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ferruh OZBUDAK Supervisor

Examining Committee Members

Prof. Dr. Ersan AKYILDIZ

Assoc. Prof. Dr. Ali DOGANAKSOY

Assoc. Prof. Dr. Yusuf IPEKOgLU

Assoc. Prof. Dr. Ferruh OZBUDAK

Dr. Muhiddin UGUZ




ABSTRACT

ON THE EXPECTED VALUE OF LINEAR
COMPLEXITY OF PERIODIC SEQUENCES

Ozakin, Cigdem
M.Sc., Department of Cryptography
Supervisor: Assoc. Prof. Dr. Ferruh OZBUDAK

July 2004, 53 pages

In cryptography, periodic sequences with terms in [y are used almost every-
where. These sequences should have large linear complexity to be cryptograph-
ically strong. In fact, the linear complexity of a sequence should be close to its
period. In this thesis, we study the expected value for N-periodic sequences

with terms in the finite field IF,.

This study is entirely devoted to W. Meidl and Harald Niederreiter’s paper
which is “On the Expected Value of the Linear Complexity and the k-Error
Linear Complexity of Periodic Sequences” We only expand this paper, there is
no improvement. In this paper there are important theorems and results about

the expected value of linear complexity of periodic sequences.

Keywords: Linear Complexity, Giinther Weight, Periodic Sequences, Cyclo-

tomic Cosets, Discrete Fourier Transform, Expected Value.
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Oz

PERIYODIK DIZILERIN BEKLENEN DOGRUSAL
KARMASIKLIK DEGERI

Ozakmn, Cigdem
Yiiksek Lisans, Kriptografi Boliimii
Tez Yoneticisi: Dog. Dr. Ferruh OZBUDAK

Temmuz 2004, 53 sayfa

Kriptografide terimleri Fy cisminden olan periyodik dizilerin kullanimi yaygindair.
Bu dizilerin, kriptolojik agidan giivenli olmasi i¢in, dogrusal karmagiklik degerlerinin
biiytik olmasi gerekir. Aslhinda bu deger dizinin periyoduna oldukc¢a yakin ol-
malidir.  Bu tezde, terimleri F, cisminden olan periyodik dizilerin beklenen

dogrusal karmasikligi incelenmistir.

Bu caligmada tamamiyle W. Meidl ve Harald Niederreiter'im “On the Ex-
pected Value of the Linear Complexity and the k-Error Linear Complexity
of Periodic Sequences” makalesinden yararlanilmistir. Bu makelede periyodik
dizilerin dogrusal karmagikliginin beklenen degerleri hakkinda 6nemli teoremler
ve sonuclar kaydedilmistir. Bu tezde, bu makalenin igerigi genisgletilmisg, her

hangi yeni bir geligme olmamaigtir.

Anahtar Kelimeler: Dogrusal karmasiklik, Giinther agirligi, Periyodik dizi, Fourier

Dontigiimii,
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CHAPTER 1

INTRODUCTION

Let S = (so, $1, S2, . . .) be a sequence with terms in the finite field F,. S is said
to be N-periodic if s; = s;.n for all i+ > 0. Then the sequence is determined
by the terms of one period, so it can be possible to use the notation S =
(50,81,...,8n-1)%. For any N-periodic sequence S, S¥(z) is defined to be the
polynomial

SN(z) = s + 510+ s92% + ...+ sy L

Definition 1.0.1. Let S = (sq, $1,...,5ny-1)> be an N-periodic sequence with
terms in F,. The linear complexity L(S) of the sequence is the smallest non-
negative integer c satisfying the equation s; +d;s;_1+...+d.s;_. = 0 for some

coefficients dy, do, ..., d. € F,.

Definition 1.0.2. Let S = (sg, s1,...,5ny-1)* be an N-periodic sequence with

terms in F,. The minimal polynomial of the sequence S is

m(zr) =2+ diz '+ ... +d.x + d. € F[z].

In the minimal polynomial, the degree of the minimal polynomial, ¢, is the
linear complexity of the sequence S. Obviously, L(S) = 0 if S is the zero

sequence.



1.1 Generalized Discrete Fourier Transform and

Discrete Fourier Transform

Definition 1.1.1. Let g(z) = >, a;z" be a polynomial in the polynomial ring
F[x] over a field F. For an integer ¢t > 0, t-th Hasse derivative of g(z) is defined

as the polynomial

Proposition 1.1.2. For any integer t > 0, we have ¢ (x) = t!gil(z) where

g (x) denotes the t-th formal derivative.

Proof: Let
g(x) = Z a;x’.

Note that;

g(@) = ai(i—1)(i—2)...(i—t+1)a"".

We know that

i(i—1).. (i —t+1)(i— )l

i(i—1)(—2).. . (i—t+1) = o

()

Therefore, we have

0@ = 3t (1) 7

i

= gl (z).

O

Definition 1.1.3. Let S = (sg,81,...,5ny.1) € F(]IV be an N-tuple, such that



N = p¥n, where ged(p,n) =1 and p = char (F,). If
SN(z) = s+ 510+ s92% + ...+ sy !

be the polynomial corresponding to the sequence S. Then the Generalized
Discrete Fourier Transform of SN, which is denoted by (GDFT)(SY), is a

p’ X n matrix determined as:

SN(l) SN<a) SN(a”_l)
GDFT(SN) = (SN ).m(l) (SN)‘[l](a) o SN)D].(am)
(SN)[pU—l}(l) (SN)[pv_l](a) o (SN)[pv_l](an—l)

where « is any primitive n-th root of unity in some extension field of F,.

Example 1.1.4. S = (100101)* is a sequence with terms in Fy, so p = 2. Its
period is N = 6 = 2 x 3. Here v = 1 and n = 3. Hence the GDFT(S®) is a

2 x 3 matrix, which is determined as:

S6(1)  S%a)  S9(a?)

GDFT(S%) = (SHU(1) (S)W(a) (SN (a?)

In this sequence so =1, s1 =0, s9 =0, s3=1, s, =0, s5 =1.

Thus, S%(z) =1+ 23 + 5. Let us first find the 1st Hasse Derivative of S®(z).

9w = 3 (Do

= 32”4 52’

= 22+ z*mod 2



We have n = 3, so we choose a primitive 3rd root of unity. Let a be a

primitive 3rd root of unity. Then,

od =1
= a>—1=0

= (a—1)(’+a+1)=0

Since « is a primitive 3rd root of unity
a—1%#0.
Hence we have

+a+1 = 0

=>a° = a+ 1.

Thus, the entries of the GDFT are as follows:

S6(1) = 14141
= 1mod 2
Sa) = 1+a*+a’

1+1+a%?® mod?2

a?> mod 2

a+1 mod?2



56(a2) = 1+a%+a'

1+ ()4 (0®)*a mod 2

1+14+«a mod?2

a mod 2
(SHU(1) = 141

0 mod 2
(SHU () = a4 ot

= a+1+a’a mod?2
= a+l+a mod?2
=1

(SHU(a?) = ot +ab
= o’a+ (¢®)?a® mod 2

= ata+1 mod?2

= 1 mod?2
So,
1 a+1
GDFT(S%) = arh e
0 1 1

Remark 1.1.5. The entries of the GDFT of an N-tuple depend on the choice

of the primitive n-th root of unity.

Remark 1.1.6. Let SY = (so,51,...,5y-1) € F)', such that ged(p, N) = 1,
where p = char (F,). Then GDFT of S¥ reduces to N-tuple, (SV(1), SV (a)..., SN (a71)),

which is called the Discrete Fourier Transform (DFT).



1.2 Gunther Weight

Definition 1.2.1. The Giinther Weight of a matrix is the number of its entries

that are nonzero or that lie below a nonzero entry.

Example 1.2.2. Remember Example 1.1.4,

6 I a+1 N : : -
GDFT(S®) = ,  Giinther weight of this matrix is 6.

0 1

Q

—_

A = 0 0 1 |, Giinther weight of A is 6.

B = 1 0 1 |, Ginther weight of B is 8.

Remark 1.2.3. If the matrix has only one row then the Ginther weight of the

matrix is just the Hamming weight.

1.3 Cyclotomic Cosets

Definition 1.3.1. Let ¢ = p™ for some m > 1, where p is prime. If n is an
integer such that ged(g,n) = 1 and d is the multiplicative order of ¢ in the
multiplicative group of Z;. Then for an integer j, where 0 < j < n — 1, the

cyclotomic coset, C;, of j modulo n (relative to ¢) is defined as the set
C;={k:k=jq¢ modn, 0<r < d}.

Theorem 1.3.2. (Giinther-Blahut Theorem)[2] Let S = (so, $1,...,88 — 1)%
be an N -periodic sequence with terms inF,, such that N = p'n, where ged(p,n) =

1 and p = char (F,). Then the linear complexity of this sequence is equal to the



Giinther weight of the GDFT(S™).

Remark 1.3.3. If ged(p, N) = 1, that is N = n, then GDFT(S") is an N-
tuple (SY(1),SY(a),...,SN(a™"1)). Therefore, the linear complexity of the
sequence S is the Hamming weight of the N-tuple.

Example 1.3.4. For ¢ = p = 3 and n = 7, the cyclotomic coset of 7 modulo n

are:

e j=0:forkeCyk=7jg"=0-3=0mod 7
00:{0}

e j=1l:forkeC,k=j¢=1-3"=3"mod 7
r=0=k=3"=1mod 7,
r=1=k=3"=3mod 7,
r=2=k=3*>=2mod7,
r=3=k=3>=6mod 7
r=4=k=3"=4mod 7
r=5=k=3=5mod 7
r=6=k=3"=1mod 7

C, = {1,2,3,4,5,6}

e j=2:forke(Cy,k=75¢g"=2-3"mod 7
r=0=k=2-3=2mod 7,
r=1=k=2-3'=6mod 7,
r=2=k=2-3>=4mod 7,
r=3=k=2-33=5mod 7
r=4=k=2-3*=1mod 7
r=5=k=2-3>=3mod 7
r=6=k=2-3=2mod 7

Cy=1{1,2,3,4,5,6}



e j=3:forke(Cs, k=7j¢g"=3-3" mod?7
r=0=k=3-3"=3mod?7,
r=1=k=3-3'=2mod 7,
r=2=k=3-3>=6mod 7,
r=3=k=3-33=4mod 7
r=4=k=3-3*=5mod 7
r=5=k=3-3=1mod 7
r=6=k=3-3°=3mod 7

C’3 = {17 27 37 47 57 6}

o j=4d:forkeCy,k=7j¢g"=4-3" mod 7
r=0=k=4-3"=4mod 7,
r=1=k=4-3"=5mod 7,
r=2=k=4-3>=1mod 7,
r=3=k=4-33=3mod 7
r=4=k=4-3*=2mod 7
r=5=k=4-3>=6mod 7
r=6=k=43"=4mod 7

Cy={1,2,3,4,5,6}

e j=5:forke(Cs5, k=j¢" =5-3" mod 7
r=0=k=5-3"=5mod 7,
r=1=k=5-3'=1mod 7,
r=2=k=5-3>=3mod 7,
r=3=k=5-33=2mod 7
r=4=k=5-3*=6mod 7

r=5=>k=5-3=4mod 7



r=6=k=5-3=5mod 7

Cs = {1,2,3,4,5,6}

e j=6:forkeCs, k=7¢"=6-3"mod 7
r=0=k=6-3=6mod 7,
r=1=k=6-3"=4mod 7,
r=2=k=6-32=5mod 7,
r=3=k=6-33=1mod 7
r=4=k=6-3*=3mod 7
r=5=k=6-3>=2mod 7
r=6=k=6-3=6mod 7

Cs = {1,2,3,4,5,6}

Note that C; = Cy = C3 = Cy = C5 = (g and the equality of these
cyclotomic cosets also follows directly from Definition 1.3.1. However for a

better understanding we prefer to illustrate the computations in this example.

This property leads us to a proposition.

Proposition 1.3.5. Let C; be a cyclotomic coset of j modulo n (relative to q).

]fk’ € Cj, then Cj = Ck

Proof: If k € C}, then
k=jq" modn (1.1)

for some 7 > 0. We have gcd(q,n) = 1. Let d be the multiplicative order of ¢
in Z*. Then the multiplicative inverse of ¢" modulo n is ¢~". Multiplying both
sides of (1.1) with ¢%=", we get;

kg™ =4 modn



This implies that j € Cj.
Let a € C}, then for some r; > 0,

T1

a = jq¢"' modn

kq© "¢ mod n

kg™ mod n

which implies that a € Cj. Therefore we have C; C Cj.

Let b € (Y, then for some ro > 0, we have
b = kq¢™ modn

= j¢'¢"* modn

- r+ro

= Jjq mod n
which implies that b € C;. Therefore,

Cy C Cj.

C; C Oy and O} C C; implies that Cj, = C}.

Note that, the cyclotomic cosets are distinct sets.

Definition 1.3.6. Let C; be a cyclotomic coset of j modulo n (relative to g).

Given ki, ko € C}, such that
k1 = jq™ mod n (1.2)

ky = jq¢™ mod n (1.3)

the operation ® is defined as:

ki ® ko := j¢™1" mod n.

10



Note that this operation is commutative and associative.

Lemma 1.3.7. (C;,®) is an abelian group under the operation .

Proof:  First we prove the well-definedness of the operation ®. Let ky, ks € C;
be given as in (1.2) and (1.3). Suppose that

- ry

k1 = jq™ = j¢" mod n,

ko = 54" = jq¢" mod n.

We need to check if jg" "2 = jqul”; mod n.

Note that,

ri+re r/1+r/2 — qr1+r2 _ qulJrTQ + qr/1+r2 _ qul+r'2 mod n

q —q

= qrz(qm _ qu) +qr1(qrz _ qr2) mod n. (14)
Hence,
j(qr1+r2 _ qr1+r2) = j(qu o qu)qrg +j(qr2 o qrz)qu mod 7.
Since jq" = jqul mod n, we have n | j(¢" — q’"ll).

Also since j¢"™ = j¢"™ mod n we have n | j(¢" — ¢"2). Therefore, we have

/ ’

n|j(g™ —q")g™ + (g™ —q2)q"
On the other hand, by (1.4)
i (=),

hence

sty mod 7.

jg™) = j (g ")
This completeness the well-definedness and it is routine to check the associativ-

ity and commutativity.

11



Let us prove the existence of the identity element. Let e € C; such that
e = j¢"™ mod n for some rg > 0. We know that e is the identity element if
and only if e®a = a® e = a for any a € C;. Since ® is commutative, it is
sufficient to check if there exist an element e satisfying e ® a = a. Let a = jq"

for some r > 0.

a®e = a
J¢ ®jq"° = jq" modn
jg"™ = jq¢" mod n
Jjq" (¢ —1) = O0modn

=n | jqd(¢°—1)

We have ged(g,n) = 1. This implies that

=n | j(¢°-1)

= j(¢°—1) = 0modn
= 79" = jmodn
=e = jmodn

We have proved the existence of the identity element. Now we have to prove

the uniqueness of the identity element. To do this suppose that there exists

12



e/ = jq™ satisfying ¢’ ® a = a. Therefore we have the following:

a® e

Jq" ®jq
jq’r’-‘rn
jqurrl _]qr
jq"(¢" = 1)
=n

=>n

= jl¢" = 1)
= jl¢" — 1)
NS

=€

=e

We have proved that the identity element is unique. Therefore (C;, ®) is an

abelian group under the operation ®.

Corollary 1.3.8. Let C; be a cyclotomic coset of j modulo n (relative to q)

and |C;| = 1;, then we have:

a®e

J4 ®J
j7q" mod n
0 mod n
0 mod n
ja"(q" — 1)
j(g™ —1)
0 mod n
0 mod n
J mod n

J mod n

e mod n

j¢% = j mod n

Proof:

If |C}] = I; then we know that, for any element k in C; satisfies

E@k®...®k=ec.

lj times

13



Therefore, for k = jq mod n we have:

JI®II®...®jq = e

lj times

i = ]

O

Lemma 1.3.9. Let S = (so,51,...,5v-1) be an N-periodic sequence, such
that N = p*n, where gcd(p,n) = 1 and p = char (F,). Suppose that C; is the
cyclotomic coset of j modulo n (relative to q) such that |C;| = 1;. If SN (x) is the
polynomial corresponding to S, then for 0 <t < p” — 1 we have the following:

i) (sM)" (@) (o7) € F,

it) For any k € C; where k = jq" mod n, we have
(SM) () (@) = (($™)(a?))” (1.6)
where o is any primitive n-th root of unity in some extension field of IF,,.

Proof: Recall that, for any a,b € I, we have

m m

(a+ b)pm =al +b

a?" = a for any r > 0 (1.8)

i) We have

($M)i(a) =3 (z) 5,00,

i

14



Note that the coefficients (;) s; are the elements of F,.

(8M))" = (

Therefore, (SV)H(a?) € Fy.

i) ($M)) = 3

Proposition 1.3.10. Let S be an N-periodic sequence with terms in F, such

that N = p'n where gcd(p,n) =1 and p = char (F,). Let
Cj = {j :klak27"'7klj}
be a cyclotomic coset of j modulo n (relative to q) with |C;| = 1;. Suppose that

AinL = (at,07 A1y .-y at,nfl)

15



is any row in the GDFT(SN ), then for all1 < r <; either a;y, =0 or ayy, # 0

Proof: For an element k,, € C; where k,, = jg" for some ry > 0.

The entry ay, = (SN (ko) and we have by (1.6)
(SM)(afo) = ((s™)1(a?))7".

If ayx,, = O that is ((SN)[t](aj))qu =0, then (SM)(a/) = 0, since (SM)H(ad) €
F; and F i; has no nonzero zero divisor. Therefore,

g = (SN (k) = ((SM)H(a?))"" =0 for all r; > 0.

If ayp,, # 0, that is, ag,, = ((SV)(?))7° # 0. Thus, (SV)M(ad) #£ 0.
Therefore, a;y, = (SM)(ak) = ((SM)H(a?))?" # 0 for any r; > 0

O

Corollary 1.3.11. Let S be an N-periodic sequence with terms in F,, such
that N = pn, where p = char (F,) and gcd(p,n) = 1. Suppose that C; =
{j = ki, ko, ... ,klj} is the cyclotomic coset of j modulo n (relative to q). If t;
is the least index such that in the t;-th row, AZ = (@4;,0,a4;,1,- -5 01;n-1), Of
the GDFT(S™) we have ay,y, # 0, provided that such a row exists, then the
contribution of C; to the Giinther Weight of the GDFT(SN) is L;(p* — t; + 1).

Proof: In the ¢;-th row A?j = (@, 0,4,1,- .., 1) We have a,, # 0 so by
Proposition 1.3.10 we have a;x, # 0 for any k; € C;. Since there are p’ —t;
entries below a non zero entry of A?j and we have [; nonzero entries from the
cyclotomic coset C;. Totally we have I; + 1;(p¥ —t;) entries contributing to the

Giinther Weight.

O

Corollary 1.3.12. Let S be an N-periodic sequence with terms in IF,, such that
N = p'n where ged(p,n) =1 and p = char (F,). Suppose that C;,,C,,,...,C;,

are the different cyclotomic cosets modulo n (relative to q) and l;,1;,, ..., 1;,

16



are their cardinalities respectively. Then the linear complexity of S is given by

h
L(S) = Z(pv - tji + 1)lji' (19)
i=1
where (p” — tj, + 1)l;, is the contribution of the cyclotomic coset Cj, to the
Gunther Weight.

Remark 1.3.13. Let A denote the number of the different cyclotomic cosets
modulo n. Then any GDFT uniquely corresponds to a p’ x h matrix M, where
the entries in the i-th column are in L and |C;,| = l;,. The set of these

matrices can be denoted as M

Proposition 1.3.14. The number of the different matrices in the GDFT form
is Q) given by

Q= (g (q%)" .. (¢") =g (1.10)
Proof:  Since the entries of the i-th column are in quji, we have ¢ choices
for just one entry. As we have p¥ entries in a column, there are (g% )?" choices
for a column. Since we have h columns then the number of different matrices
in the GDFT form is [, (¢%)".

Also we know that

since the cyclotomic cosets are different. Then

(@) = (") (d®)...(¢"))"

h
=1

()

U
i1+, )P

- (
q

:qN
U

Remark 1.3.15. The number of different matrices in the GDFT form is ¢

17



which is also equal to the number of all N-periodic sequences with terms in FF,.

18



CHAPTER 2

THE EXPECTED VALUE OF THE

LINEAR COMPLEXITY

In this chapter, we consider the expected value the linear complexity of an V-
periodic sequence S with terms in F,, where N = p"n such that ged(p,n) =
1 and p is the characteristic of F,. Since S is N-periodic such that, S =

(S0,81---,Sn-1) it can be considered as an N-tuple of Fflv.

In general the expected value of the linear complexity is given by the formula:

Ex(L(5) = Y p(S)L(S) (2.1)

SeFy

where p is the probability measure. Here, the probability of each S € IFéV to

occur is supposed to be qiN.

2.1 Expected Value Of The Linear Complexity

Theorem 2.1.1. Let S be an N-periodic sequence with terms in F, such that
N = p’n where ged(p,n) = 1 and p = char (F,). If l1,ls,...,ls are different
cardinalities of the cyclotomic cosets modulo n and ®;, 1 < i < s, is the number

of elements belonging to cyclotomic cosets with cardinality l;. Then the expected

19



value of the linear complexity of S is:

s ¢’L . (1 — quvlz)
Ex(L(S)) =N — 2.2
v(L(S)) ; prr— (2.2)
Proof: Let Dy, D, ..., D, be different cyclotomic cosets modulo n and

| Dy =m,

for r = 1,2,...,h. We know that the linear complexity of S is equal to the
Giinther Weight of the GDFT(SY). As we have said in Remark 1.3.13, every
matrix in the GDFT form corresponds to a p¥ X h matrix M, where the entries
in the r-th column are in Fym,. Let us say that k::, k‘;, e k:?l are the columns
of the matrix M. Suppose that t(k:) is the least positive integer such that the
t(k,)-th coordinate of the column #(k;,) is nonzero, then the Giinther Weight of
M is:

g M) = m (5~ (i) +1) 23

In (2.2),

MeEM r=1
kr#0
1 h
= —NZ m,ﬂ<p”—t(kzr>+1>
q r=1 MEeM
kr#0
pv h 1 h
oS MEED SIS
r=1 MeM r=1 MeM
kr#0 kr#0
= T{—T,

20



By above equations:

h
T, = p—Zmr 1 and

N
q r=1 MeM
kr#0
1 h
T, = q—NZmT (t(k,) —1)
r=1 MeM
Ey£0

Claim 1:

MeM
kr#0

Proof of the Claim 1:

k_; = 0 is the column corresponds to the cyclotomic coset D,. Since there are
p” components, p’m,. entries are 0 and do not lie below a nonzero entry in the
matrix GDFT form. The entries of the columns k_i, k_;, e k:f_l, k:;l, cee k?h can

be selected in (¢™)?, (¢™2)?,

tively. Thus, the number of M matrices with k=0 is :

(@) (g L (@) ways tespec-

U

(™) (g™ - (g™ ) (g (g

_ q(ml+m2+...+mr71+mr+1+...+mh)p“

— q(m1+m2+...+mr—1+mr+mr+1+-~.+mh)p”fmrp”
— qN_pvmr
and claim 1 is proved.

Recall that the number of M matrices as given in (1.10) is ¢". Therefore, the
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number of M matrices in M with k&, #0 is ¢~ — ¢¥ "™ . Finally;

q r=1
h 1
= pv m”" ]' - v )
> (1=
h h m
= 'y m—p' Yy o
r=1 r=1 q ’
N——
h m
= N-p") —
r=1 q ’
Claim 2:
- Y Y
S (k) — 1) =D (t=1) > 1= (t—1)(g" = 1)(g"™) gV
MeM t=1 MeM t=1
K0 (ke )=t
=

For allt with 1 <¢<p" and for all » with 1 <r <h;
# {M eM: t(k;) = t} = (g™ — 1)(qu)pv7th7pvmr

Proof of Claim 2:
Now, consider the M matrices in M with k. # 0 and the least index which is

—

nonzero is t, that is, t(k,) = t.

First of all, let us choose the entries of the columns other than the column
k,. As we have done in the proof of the claim 1, we can select them in ¢V =7"™.
Now we have to select the entries of k:_; Since t is the least index which is

nonzero, the components above this entry will be zero. We can choose the ¢-th
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entry in ¢™ — 1 way (we can not choose 0). There are p¥ — t entries below the

t-th, so we can select these entries in (¢™r)" " ways.

Combining all these things, we obtain that the number of M matrices sat-
isfying the above conditions is (¢™ — 1) (¢™)" " ¢N=#"™r And this ends the
proof of the claim 2. And, by this way,

v

pY D

Z (t — 1) Z 1 = Z (t — 1) (qmr _ 1) (qmr)p“ft qN—p“m,.

t=1 MeM t=1
t(kr)=t

v

p

= 3T (1) (g — 1) (g e N
t=1
p

= t—1) (g™ —1) (")

By all these arguments,

h h pY
1 - 1 i
T2__szr Z(t(kr)_U:_NZmT (t—=1)(¢" —1) (qN ! T)
q r=1 MeM q r=1 t=1
kr#0
h pY
=> m (¢ -1 (t—1)g"™
r=1 t=1
By subtracting 1 from the index t we get:
" — t+1
:ZmT (g™ —1) t( _mr) -
r=1 t=0
h p'—1 .
=Y m (g™ =1 g™ > (™)
r=1 t=0
h 1 pU—1 .
:Zmr <1— mr> Zt(quT)
r=1 q t=0
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Claim 3: For any real number z # 0, we have:

k—1

—k k k—1 k+1
PP — +k-1)2 (2.4)
t=0

(1)

Proof of Claim 3:

k—1 k—1
S-S
t=0 t=1
——
S
k
= tht—k‘zk
=1
k—1
= Z(t+1)zt+l—kzk
=0
k—1 k—1
= ztht—l—zZzt—kzk
=0 =0
——
S
k—1
S = zS—i—zZzt—kzk
=0
k _
= zS+zz — k2"
S_ .8 — zk“—z_kzk(z—l)
z—1 z—1
B+l _ o ktl ok
S(l—z) _ A z A + kz
z—1
g _ Skl o po kel | pok
(z—1)°
oz —kAF 4 (k1) 2
(z—1)° '

The proof of this claim is ended here. Substituting z = ¢™ and k = p” in
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(2.4) we get:

T2:

h 1 p'—1
o\t

o (1= o) Xt
r=1 q t=0
h —-m v —mypY v —m.(p?
3 ( 1 [q TP 4 (p — 1) g Y

m, | 1— — 5
— qmr (q—mr _ ]_)
h m m v —m v —my(p?
qur—l g " = ptgT Y 4 (pt = 1) g
r=1 qm (1fqu)

qmr

h My
D [ = (= g )
r=1

h
m v v
e (=P (g = 1) =)
2
h m h
Z pr 7"_ - (1 _ q—mrpv) - Zmrpvq—mﬂ?v
r=1 r=1

" m, (1—q_pvm’") v b m,
Z qmr — 1 —b Z qp”mr

r=1

Continuing from the equation Ex(L(S)) = T1 — Ts

T —Ts

) My > My (1 B q*pvmr) v > my
- N_pqu”mr_z qgnr —1 +p§; Um

4
r=1 q
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Corollary 2.1.2. If ged(p, N) = 1, that is v =0 and N = n, then the expected

value of the linear complexity of S

P,
Ex(L(S) =N =32 (2.5)
=1 7"
Proof: If v =0,
P (1 —q P
Ev((s) = v-y izt
=1 ql_l
P (1 — g
_ N (l. q ")
=1 ql—l
P (¢ -1
= N- l~(q z)
=1 (qZ—l)qz
S (bz
= N-— -
z:lql
O

Corollary 2.1.3. Ifn =1, that is N = p", then the expected value of the linear
complezity of S

1 1
En(L(S)) = N — - (1 - q—N) . (2.6)

Proof:  Since n = 1, the only cyclotomic coset modulo n (relative to ¢) is

Co = {0}. Thus, l; =1 and ®; = 1. Hence

— ;- (1—¢ ")
EN(L(S)) = N_Z qli—l
i=1
P, - (1 — g Pl
_ v (11 ")
¢t —1
1—q"
- N_- 9"
qg—1
_ —N
_ oy 174
qg—1
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OJ

Corollary 2.1.4. Let S be a random N-periodic sequence with terms in F,,
such that N = p'n where ged(p,n) = 1 and p = char(F,), then the expected

value of the linear complexity of S satisfies

If v=0, we have

Proof: = We have from (2.2)

s

P, - (1 —g77h)
g —1

Since I; > 1, we have ¢ > ¢ and (1 — ¢7?"%) < 1. Therefore,

s

"D (1 — gk d; - (1 — g7k
P DD

i=1 i=1 ¢—1
>
a1
Note that: .
> @ =n. (2.7)
i=1
Therefore,
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Thus, the expected value of the linear complexity:

NP - (1 —qPh)
i=1
n
N — .
> =

If v = 0, then we have N = n and by (2.5),

P,
L

En(L(S)) =N — Z 7

Since I; > 1, we have ¢ > ¢ and by (2.7), we obtain:

S @Z S @Z B 1 S |

_ N
q
Finally,
s (I)l
Ex(L(S) = N-3 =
=1 q
N 1
> v Yoy (1 - _)
q q

O

Corollary 2.1.5. Let S be a random N -periodic sequence with terms in Fs.
Hence p = char (Fg) = 2 and N = 2'n where gcd(2,n) = 1. Then the lower

bound for the expected value of the linear complexity of S will be:

En(L(S))> N - " ; 2

If v =0, we have
3N —1
En(L(S)) > 1

Proof:  We have ¢ = 2. Consider singleton cyclotomic coset C, = {a}. By
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(1.5) we have

20 = amodn
20 —a = 0O0modn
a = 0Omodn

Thus, the only cyclotomic coset (relative to 2) with cardinality 1 is Cy = {0}.

The expected value of linear complexity of S is

En(L(S) = N - Z =),

Without loss of generality suppose that {; = 1, then ®; = 1 and [; > 2 for any
i > 2 by the observation above. Since (1 — ¢ ?"%) < 1 and ¢ = 2, we get:

S S S

P - (1—q"") q)z' 3 P;
<

i=1

Therefore,
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If v =0, that is N = n, by (2.5)

By(L(s) = N-> %
=1
SRR Y%
. N_%_: %:N_%_NZL—IZBNLL—l'
Therefore,
En(L(S)) > 3N4‘ S

2.2 Cyclotomic Cosets Modulo Prime Powers

Up to here, the sequence S with terms in I, is N-periodic such that N = p”n
where p = char (F,) and ged(p,n) = 1. Now N = n* where n is an odd prime
different from p and £ > 1 is an integer. Before determining the expected
value of the linear complexity of a random sequence S, we have to consider
the cyclotomic cosets modulo n*, actually the number of the cyclotomic cosets

modulo n*.

We have n is an odd prime. Thus, Z; is a prime field. Since n is different
from p, then we can consider the multiplicative order of ¢ in Z}. Let d be the

multiplicative order of ¢ in the prime field Z?, then

n

¢* =1 mod n.
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Thus, we can say

¢*=1+cn” p>1 (2.8)
for some ¢, p € Z with ged(c,n) = 1.

Lemma 2.2.1. Let d be the multiplicative order of q in Z7 and ¢* = 1 + cn”
for some p > 1. Then d is also the multiplicative order of q in Z ; if and only

if j < p.

Proof: If d is the multiplicative order of ¢ in Z*; then
¢=1modn’ & ni|¢—1=cn < nl|en’.

Since ged(n, ¢) = 1, we have

n|n < Jj <p.

O

Lemma 2.2.2. Let n be a prime and a be a positive integer. Let o be the

nonnegative integer such that n® || a!. Then we have

| a
=3 |
=1
Proof:  Recall that a! = a(a — 1)...2.1. Among the integers in the set
S ={1,2,...,a}, there are exactly L%J integers s € S with n | s. Moreover for

each [ > 1, there are exactly \_ﬁj integers s € S with n! | s. Considering all of

them we complete the proof.

O

Lemma 2.2.3. Let n be a prime, i > 1 an integer and 2 < b < n'. Let j be the

nonnegative integer such that n’ || b. For each 1 <1 < j, we have

)= 155+ 3]
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and for each 7+ 1 <1 <1, we have
n’ nt —b b
pov il Rer Bl Bl Bl
n n n

Proof:  Assume first 1 < [ < j, we have b = nlu for a positive integer w.

Hence
nt n'
nl_ nl
_ il
nt—b nt—b
nt n!
—_ nzfl —u

=[] - 5+ ]

Hence it remains to consider the case j+1 < [ < i. We have uniquely determined
nonnegative integers uy and u; such that b = nlug + u;. Moreover 1 < u; <

n' — 1. Then

Hence,

Since L%J = ug, we have

ERCERCR

This completes the proof.
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Lemma 2.2.4. Letn be a prime, i > 1 and2 < b < n'. Letn be the nonnegative

integer such that n® || (’;‘;) Then we have

a>i1—b+2

Proof: Note that

Using Lemma 2.2.2, we obtain that

=l 15 )

Let j be the nonnegative integer such that n’/ || b. Using Lemma 2.2.3, we

obtain that & =i —j. Asn/ || b and n is an odd prime, we have b > max (37, 2)
and hence b — j > max(37,2) — j.

As j > 0, we also have max(3’,2) — j > 2. Hence b — j > 2 and therefore
G—i—j>i—b+2.

O

Proposition 2.2.5. Let d be the multiplicative order of q in Z;, c and p be the
integers defined in (2.8). For i > 1 we have

¢™ =1+ n'en” mod n™*t1, (2.9)

Proof:  Using (2.8), for i > 1, we have

It is enough to prove that for each 2 < b < n',

w7 ey
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Using Lemma 2.2.4, we have n*~"*2 | (’g) As p > 1, we have n®~n? | (cn?)P.
Therefore

piter = pisbi2pb-lps | (7;)’) (cn?:.

OJ
In addition by (2.9), we can easily say that for all i > 1, we have
¢™ =1 mod n**, (2.10)
but
qdni # 1 mod nPtitl
Lemma 2.2.6. Let §; be the multiplicative order of q in Z7 ... Then
8 | dn® but & fdn't. (2.11)

Proof:  Since ¢; is the multiplicative order of ¢ in Z?,,;. Then
¢% =1 mod n**.

By 2.10, §; | dn’. Suppose that &; | dn'™!, then dn‘~! = kd; for some k € Z.
Thus,
¢ = (¢")" =1 mod n?*’. (2.12)

On the other hand, by (2.9)
¢ = (1+n?)" =1+n"ten” mod nft
This implies that from (2.12)
n T nlen” = n'|n"le=nle

But this is a contradiction since ged(n,c) = 1. Therefore, ;  dn'~".
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Lemma 2.2.7. Let d and d; be the multiplicative orders of q in Z;, and Z; .
respectively, where ¢¢ =1+ cn? for some p > 1 and ged(c,n) = 1. Then

d| ;. (2.13)

Proof: If d is the multiplicative order of ¢ in Z;, then we have
¢* =1+ cn’.

This implies that

¢® =1 mod n”.

Moreover, if ¢; is the multiplicative order of Z7 .., then we have
¢% =1 mod n**.
This implies that
% -1 = ¢ -1 = ¢ =1modn’.

We know that d is the multiplicative order of ¢ in Z*,. Therefore, d | ¢;.

O

Proposition 2.2.8. Let d and ¢6; be the multiplicative orders of q in Z; and
L}, respectively, where ¢* =1+ en for some p > 1 and ged(c,n) = 1. Then

Proof: If d is the multiplicative order of ¢ in Z%, then by (2.13), d | §;. Thus,
for some a € 7Z,

di=ad = il

In addition, if ¢; is the multiplicative order of ¢ in Z* ,,, then by (2.13), §; | dn’
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and  §; 1 dn'~!. This implies that

“~lnt = aln

d
so a = n* for some k < i and

0i

5@' ’f dnifl = E T dnifl
= afn!
= nMinih

Thus, £k =7 and
b,
7=
= ni

0

If we summarize, the multiplicative order of ¢ in Z?; is d for j < p and dn’

in 7, for e > 1.

Now, we will determine the cardinalities of the cyclotomic cosets modulo n*

for:

e k<p

e k=p+ 1 wherei > 1,

Consider the case k < p. Then the multiplicative order of ¢q is d in Z>,. We

have
an:{b|bzanr mod n*, ged(a,n) =1, 0<r <k —1, a;«éO}U{O}.

Obviously, Cp = {0}.
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Lemma 2.2.9. Let d be the multiplicative order of q in Z, where ¢ =1+cn’
for some p > 1 and ged(c,n) = 1. Suppose that k < p. Then the elements in
the set

{b|bEanrmodnk, ged(a,n) =1, 0<r <k-—1, a#O}

that is, the nonzero elements of Z,x, are separated into cyclotomic cosets mod-

ulo n* (relative to q) with cardinality d.

Proof:  For any b € Z,x, in a cyclotomic coset of b modulo n* (relative to q),

the elements have the form
bg™ = an”¢™ mod n*

for some m such that 1 < m < d and an"¢? = an” mod n*.
Claim: an"q, an"¢?, an"¢>,...,an"q¢? are all distinct.

Proof of Claim: Suppose an"¢® = an’¢’ mod n* for some i,j < d. Then we

have

a¢’ = a¢’ mod n*".

Since ged(a, n)=1,

¢' = ¢ mod n* .

Since ged(g,n) =1,

¢ =1 mod nF".

since the multiplicative order of ¢ is d in Z},, and ¢ — j < d then i — j = 0 which
implies that ¢ = j. Thus, an"q, an"q?, an"¢>,...,an"q¢? are all distinct.
Therefore, each cyclotomic coset modulo n* (relative to ¢) had d elements where

k<p.

OJ

Corollary 2.2.10. Let d be the multiplicative order of q in Z}, where —
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1+ en? for some p > 1 and ged(e,n) = 1. Suppose that k < p, then there are

nkF—1

d

cyclotomic cosets modulo n* (relative to q) with cardinality d.

Proof:  Suppose k < p. Since there are n* — 1 nonzero elements in Z,x we

have
nkF—1

d

different cyclotomic cosets.
O

Now, consider the case k > p, that is, £ = p + 4 for some 7 > 1. We know

that the multiplicative order of ¢ is dn’ in Z*,. We have
Zpe =75 U{b|b=an" mod n*, ged(a,n) =1, 1 <r<k—1}U{0}.

Obviously, Cy = {0}.

Lemma 2.2.11. Let d and 6; be the multiplicative orders of q in Zy, and Z; .,
respectively, where ¢* = 1+ cen® for some p > 1 and ged(c,n) = 1 for k > p.

Then the elements in Z, split up into cyclotomic cosets with cardinality dnk=7.

Proof: If k > p, then £k = p + i for some ¢ > 1. We know that the elements

of the cyclotomic cosets of b mod n* (relative to ¢) have the form
bg™ mod n*

for some m > 1and b€ Z,.
Claim 1: If b € Z?,, then bq™ € Z,.
Proof of Claim 1: If b € Z?,, then ged(b,n) = 1 and since ged(q,n) = 1, we

have ged(bg™,n) = 1, which proves the claim.
Note that dn’ is the multiplicative order of ¢ in 7.
Claim 2: bg, bg?, ... ,qu"i are all distinct.
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Proof of Claim 2: Suppose they are not distinct. Then for some r, s < dn!

bq" = bg® mod n*.

Since ged(b, n)=1,

¢" = ¢° mod n*.

Since ged(q, n)=1,

¢"* =1 mod n*.

where r — s < dn'. As we know that the multiplicative order of ¢ is dn’ in 7

for k > p. Thus, bq, bg?, ..., bg"™" are all distinct.

Since

k= p+i

=1 = k—p.

Therefore, the cardinality of the cyclotomic cosets is dn’ = dn*=".

O

Lemma 2.2.12. Let ¢¢ = 1+cn? for some p > 1 and ged(c,n) = 1 and suppose

k > p. Then for any element in
K:{b|bEanr mod n*, ged(a,n) = 1, 1§r§k‘—1},
belongs to a cyclotomic coset (relative to q) of cardinality t where
t=difk—r<p, (2.14)
t=dn’if 1 <j<k—np. (2.15)

Proof: If k> pthen k = p+i for some ¢ > 1. Let b = an” € K. We know
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that ged(a,n) =1 and ged(g,n) = 1 implies that ged(ag™,n”) = 1. Therefore,

bg™ = an"q™
= aq"n" € K.
Since a cyclotomic coset has ¢ elements where the elements are bq, bg?, ..., bq',
t is the least positive integer satisfying,
bg' = b mod n*.
Since b = an” mod n*,
an” = an"¢' mod n*
= a¢’ = amod n* .

Since ged(a,n)=1,

¢ =1 mod n*.

That is ¢ is the multiplicative order of ¢ in Z,x—». Thus,
t=d if k—r<p

and t=dn’ if k—r > p,thatisk—r = p+jforsomej>1s0ok—r—p=j.

Also we have

1<r<k-1
= 1-k<—1r< -1
= 1—p<k—r—p<k—-1-p

= 1-p<j<k—-1-p.

since we have j > 1, from both inequality we obtain 1 < j < k—1—p. In
addition, by Lemma 2.2.11 the elements in Z, split up into cyclotomic cosets

with cardinality dn*~?. Therefore, we can say that t = dn/ for 1 < j < k — p.
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Corollary 2.2.13. Let k > p, then the elements of the set
K = {b|bEan’” mod n*, ged(a,n) =1, 1 Srgkj—l}

split up into P1
n —_—

cyclotomic coset with cardinality d.

Proof: By Lemma 2.2.11, the cardinality of the cyclotomic cosets is t = d,
ifk—r<p =k—p<r. Wehave also r < k — 1. Thus, there are totally
k—1

(nk—r _ nk:—r—l)

—p

Il
B

‘s

elements which are relatively prime to n*~" and splitting up into all cyclotomic
cosets with cardinality d. Since k —p <r<k—1thenl -k < —r<p—Fk. If

we change the variables

p—k p—1
(nk+r _ nk—i—r—l) _ Z (nk+r—k+1 _ nk—l—r—k—i—l—l)
r=1—k r=0
p—1
— (nr+1 - nr)
r=0
p—1
=(n-—1) Z n"
r=0
nf —1
=(n-1)——
=n"—-1

Since the cardinalities of the cyclotomic cosets are d then there are

nf—1

d
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cyclotomic cosets.

Corollary 2.2.14. Let k > p, then there are

nf~t(n—1)
d

cyclotomic coset with cardinality dn’ where 1 < j < k — p.

Proof: By (2.15) t = dn/ is the cardinality of the cyclotomic cosets mod n*
(relative to q) where 1 < j < k — p. The elements of the cyclotomic cosets
having cardinality dn’/ are elements which are relatively prime to n*7 and the

number of these elements is n?*/ — n?™J=1. Therefore, there are

nPti — Pl pplnd(n—1)  nPt(n—1)

dn’ dny N d

different cyclotomic cosets with cardinality dn’.

O

Theorem 2.2.15. Let S be a random N -periodic sequence with terms in F,,
where N = n* where n is an odd prime different from p = char(F,). If d is the
multiplicative order of q in F,, and ¢* = 1+ cn” for some positive integers p, c

with ged(n,c) = 1. Then we have

(e

En(L(S)) =N — L (n? — 1)l —(n—1)n"! kz_:
" g g —~q

J
- (2.16)

where o = min(k, p).

Proof: If N = n* then ged(p, N) = 1, by Corollary 2.1.2, we have
S @Z
En(L(S)) = N — Z P
i=1

Case 1: k < p. Cy = {0} is the only cyclotomic coset mod n* with cardinality
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1. Thus,

The other cyclotomic cosets mod n*, with non-zero elements, have cardinality

d by Lemma 2.2.8 and since there are n* — 1 non-zero elements we have

q)g = nk—l
Iy = d.

Case 2: k > p. Cy = {0} is the only cyclotomic coset mod n* with cardinality
1. Thus,

There are n” — 1 elements in the cyclotomic cosets mod n* with cardinality d

by Corollary 2.2.12. So we have,

(I)Q = np—l
lh = d.

Finally, there are n”*7=!(n — 1) elements in the cyclotomic cosets mod n* with

cardinality dn’/ where 1 < j < k — p, by Corollary 2.2.14. So we have,

O3 = n" 1)

l3 = dnj.
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Therefore, if k < p, we have:

®;
En(L(5)) = N - I
=1 q
B o, Py
T
1 F—1
- N---1_ (2.17)
q q
and for the second case if k > p, we have:
S @Z
Ey(L(S)) = N=) —
i=1 a
k—p
o, Dy D,
- N— - _2=2_ Z ')
I I l;
¢t g b
k—p _
1 r—1 pri=l(p —1
e T U P
¢ q P q
To combine (2.17) and (2.18) if we take o = min(p, k) then we get
1 1 =
En(L(S)) =N —=— (0" = 1)— — (n—1n" "> —0.
q q Pl
O

Corollary 2.2.16. Let p = 1, then the expected value of the linear complexity

18

k=1
En(L(S)) = N — é —(n—1) Z anj. (2.19)
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Proof: If p =1 then ¢ = min(p, k) = 1. Therefore,

1 i 1 o1 n’
q q —~q
k—1
1 —1 J
= No -t DY
¢ q ~q
1 I k=1
= N—‘—%—(”—l) o
¢ q —~q
1 k—1 nj
= N—--— dnJ
¢

OJ

Corollary 2.2.17. Let k = 1, then the expected value of the linear complexity

18
1

En(L(S)) = (N — 1) (1 - @> + % (2.20)

Proof: If k=1 then N =n* =n and o = min(p, k) = 1. Therefore,

k—o ;
1 1 n’
En(L(5)) = N———(n”—l)—d—(n—l)n"_lz o
q q =4
1-1 .
1 1 n
= N—-—(n—1)— —(n—1)n*" .
. ( )qd ( ) ;qdm
0
1 1
- N---1=
q q
1 N-1
= N->-—
q q
1 N 1
= N—-_-——4=—
g q¢ q°
1 1 1
= N|ll-=|+=+4+1-1-=
< qd) q? q
1 1 1
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2.3 Counting the Number of Periodic Sequences

With Given Linear Complexity

For an N-periodic sequence S with terms in F,, where p = char (F,) and N = nF
such that n is an odd prime different from p, the GDF'T of this sequence is an V-
tuple DFT. If d is the multiplicative order of ¢ in Z,, and ¢¢ = 1+ cn, such that
ged(e,m) = 1, then the linear complexity of S is the linear combination of the
cardinalities of different cyclotomic cosets modulo n* (relative to ¢). Therefore,

by (1.9), we have

k
L(S) =ap+ Z a;dn'"! . (2.21)
i=1

In this equation, ay € {0, 1} represents the contribution of the singleton coset
Co = {0} to the Giinther Weight which is the Hamming Weight of N-tuple
DFT. The coefficients, a;, are to denote the number of different cyclotomic

i—1

cosets with cardinality dn’~'. Here we have ¢ = 1 + cn, so the power of n,

which we denote it by p in the previous sections, is equal to 1. By Corollary

=1 where

2.2.14, since p = 1, we have ”T’l cyclotomic cosets with cardinality dn
1 =1,..., k. Therefore, the coefficients 1 < q; < %1.

So, we can choose a; different cosets with cardinality dn~! in (”z/ 9 ways. In
the N-tuple DF'T, the entry in the column that corresponds to the cyclotomic

i—1

cosets with cardinality dn'~" is an element of ]qunH. If this entry contributes

the Hamming weight, we have ¢ — 1 choices for a; places. So there are

I

choices. for ¢+ > 1. For ¢ = 0, the entry that corresponds to the singleton coset

Cp is an element of F,. So there are (¢ — 1)* possibilities. Then the number of
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sequences with the linear complexity L(S), Ny (L(S)) is given by:
k

a.
i=1 ¢

Remark 2.3.1. If N is an odd prime different from p, that is N = n, then
the linear complexity can be written as L(S) = ag + a;d where ag € {0,1} and

0<a; < % and the number of sequences with linear complexity L(S) is

Lemma 2.3.2. Let g =2, N =2"—1, wheren is a prime. If the multiplicative
order of g =2 in Zy is d, then n = d.

Proof:

N=2"-1 & 2" —-1=0mod N
& 2" =1 mod N.

Since d is the multiplicative order of 2 in Z} then d | n. On the other hand
24 =1 4 bN" for some r > 0 and b € Z where ged(b, N) = 1

27=14+bN" & 27— 1=0bN"
& N=2"—-1|bN"=2"-1
& 2"—1127-1

= n<d.

Since we have d | n and n < d, n = d.

OJ

In the case that ¢ = 2, N = 2" — 1, where n is a prime, the cardinality of any
cyclotomic coset modulo N has to divide n, since the multiplicative order of 2

is n Since n is prime, there are only cyclotomic cosets with cardinality 1 and n.
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The cyclotomic coset with cardinality 1 is Cp = {0}. N — 1 elements different

from 0 in Zy split up into % cyclotomic cosets with cardinality n.

Theorem 2.3.3. Suppose ¢ = 2 and N = 2" — 1, where n is a prime. If
L(S) = ag + ain, then

N—1/n

a1

Ny(ag + ain) = < )N‘” where ag € {0,1} and 0 < a3 < (N —1)/n

and

EML@»:(N—D(L—%)+%.

Proof: We have n = d by Lemma 2.3.2. And we have L(S) = ag + ain.

There is 1 cyclotomic coset with cardinality 1, which is Cy = 0. The entry
of the DFT that corresponds to this cyclotomic coset is an element of Fy. So
there are (2 — 1) = 1 way to choose this entry.

There are % different cyclotomic cosets with cardinality n = d and a; denotes
the number of cyclotomic cosets that contributes to the Giinther weight. We can
choose these cyclotomic cosets in ((N ;)/ ") ways and the entries that correspond
to these cyclotomic cosets can be chosen in (2" —1)% = N ways. So the number

of sequences having the linear complexity L(S) is

N(c) = (N - 1/d> Nai

ai

There are % cyclotomic cosets modulo N with cardinality n and one sin-

gleton coset. Hence we have by Corollary 2.1.2,

E(L(S) = N-Y o
RS
’ 2n1 N -1
= N—1+1—§1— z
= (V=154 5
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Remark 2.3.4. If N = p”n and n is a prime different from p, then Z; hasn—1

elements and "T’l different cyclotomic cosets modulo n with cardinality d.

Theorem 2.3.5. Let S be an N-periodic sequence with terms in F, where N =
p’n, p = char(F,), and let n be a prime different from p. If d is the multiplicative
order of q in the prime field F,,. Then

EMLwnzﬁv__i_<1_;L> 7”‘1<1_¢;> (2.22)

) -1

Proof:  We know that,

S D, - (1 _ q—p”li)
g —1

En(L(S)) =N —

i=1

Since Cy = {0} is the only singleton coset, without loss of generality [; = 1,
®, = 1, the other "7_1 cosets have cardinality d. Thus, I = d and ®5 =n — 1.

Therefore,

BA(L(S) = N — — (1—q{>-m_1ﬂ1—q“ﬂ

q—1 g =1

O

S is an N-periodic sequence with terms in F,, where N = p’n and n is a
prime different from p. Suppose that the Giinther weight of The GDFT(SY),
which is equal to the linear complexity of the sequence N is L(S) = rd + s.
Then we have for this matrix:

0 < s < p¥: sis counting the entries in the column which corresponds to
Co = {0} and contributes the Giinther Weight.
0<r< p””T_l . r is counting the entries in the columns which correspond to

the cyclotomic cosets with cardinality d and contributes to the Giinther Weight.

Proposition 2.3.6. Let N = p’n and n be a prime. If q is a primitive element
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of the finite field F,, and p* < n — 1 then

Ny (r(n—=1) = ("' =1)¢" P 1<r<pr
Ny(0) = 1
Ny(r(n—=1)+s) = (q¢— 1)q8_1NN(r(n —1) 0<r<p'l1<s<p"

Proof: If ¢ is a primitive element of IF,,, then the multiplicative order of ¢ is
n — 1. Therefore the only cyclotomic cosets are Cy = {0} and C; = F,, \ {0}.
Then

= rin—1)+s 0<r<p’and0<s<p"

Since p* < n —1thenr <n—1and s < n — 1, so the representation of the
linear complexity is unique. Recall that s is the number of entries of the col-
umn that corresponds to the cyclotomic coset Cyp = {0} and r is the number of
nonzero entries of the column that corresponds to the cyclotomic coset having
the cardinality n — 1.

If ¢ = r(n — 1) that is the entries of the column that corresponds to the cy-
clotomic coset Cy = {0} are zero. For the other column where the entries are
elements of F,n-1 to have the Guinther Weight as r(n — 1) we have ¢"' — 1
choices for the first nonzero entry. For any entry below the first nonzero entry
there are ¢" ! choices. Since there are r — 1 entry for the rest we have (¢"~!)"!

choices. so there are (¢"~' — 1)(¢"1)"~! matrices having the Giinther Weight

as r(n — 1). Therefore,
N (r(n=1)) = (¢" " = 1) " D00,
If ¢ = 0, since there is one zero matrix we have

Ny (0) = 1.
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If L(S) = r(n — 1) + s, we have Ny (r(n — 1)) choices for the entries of the
column that corresponds to the cyclotomic coset having the cardinality n — 1.
Of the column, where the entries are elements of [y, that corresponds to the
cyclotomic coset Cy = {0}, we have ¢ — 1 choices for the first nonzero entry.
Since below this entry there are s — 1 entries, we have ¢*~! choices. Thus, there
are (¢ — 1)¢* "Ny (r(n — 1)) different matrices having the Giinther Weight as
r(n — 1) 4+ s. Therefore,

Ny(r(n=1) +s) = (¢ = 1)¢" 'Ny(r(n — 1))
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PERIOD(N) EXPECTED VALUE

N = p’nF EN(L(S)) = X gery P(S)L(S)

(1—g—P"l
N =p'n En(L(S)) = N - 7, 2t
N =p’n En(L(S)) > N - 5

N=p B (L()) = N — gy (1~ )

N =nF

n: prime

d—1 P Exv(LISYV=N—-1_(nc—-1)L — 1)no—1 k—o nd
q +Cn N( ( )) q (n ) d (n )n Z]ZI qdnJ
n#p

o = min(k, p)

N=2"-1

n: prime En(L(S)) = (N —-1) (1 - 2%) + %

p=2

N =p’n

moprime | Ex(L(8) = N = gty (1= ) - ik (1 o)

n#p

Table 2.1: The Expected Value of Linear Complexity for Different Cases of the
Period
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