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Abstract

ON THE EXPECTED VALUE OF LINEAR

COMPLEXITY OF PERIODIC SEQUENCES

Özakın, Çiğdem

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Ferruh ÖZBUDAK

July 2004, 53 pages

In cryptography, periodic sequences with terms in F2 are used almost every-

where. These sequences should have large linear complexity to be cryptograph-

ically strong. In fact, the linear complexity of a sequence should be close to its

period. In this thesis, we study the expected value for N -periodic sequences

with terms in the finite field Fq.

This study is entirely devoted to W. Meidl and Harald Niederreiter’s paper

which is “On the Expected Value of the Linear Complexity and the k-Error

Linear Complexity of Periodic Sequences” We only expand this paper, there is

no improvement. In this paper there are important theorems and results about

the expected value of linear complexity of periodic sequences.

Keywords: Linear Complexity, Günther Weight, Periodic Sequences, Cyclo-

tomic Cosets, Discrete Fourier Transform, Expected Value.
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Öz

PERİYODİK DİZİLERİN BEKLENEN DOĞRUSAL

KARMAŞIKLIK DEĞERİ

Özakın, Çiğdem

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Ferruh ÖZBUDAK

Temmuz 2004, 53 sayfa

Kriptografide terimleri F2 cisminden olan periyodik dizilerin kullanımı yaygındır.

Bu dizilerin, kriptolojik açıdan güvenli olması için, doğrusal karmaşıklık değerlerinin

büyük olması gerekir. Aslında bu değer dizinin periyoduna oldukça yakın ol-

malıdır. Bu tezde, terimleri Fq cisminden olan periyodik dizilerin beklenen

doğrusal karmaşıklığı incelenmiştir.

Bu çalışmada tamamıyle W. Meidl ve Harald Niederreiter’ın “On the Ex-

pected Value of the Linear Complexity and the k-Error Linear Complexity

of Periodic Sequences” makalesinden yararlanılmıştır. Bu makelede periyodik

dizilerin doğrusal karmaşıklığının beklenen değerleri hakkında önemli teoremler

ve sonuçlar kaydedilmiştir. Bu tezde, bu makalenin içeriği genişletilmiş, her

hangi yeni bir gelişme olmamıştır.

Anahtar Kelimeler: Doğrusal karmaşıklık, Günther ağırlığı, Periyodik dizi, Fourier

Dönüşümü,
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Chapter 1

Introduction

Let S = (s0, s1, s2, . . .) be a sequence with terms in the finite field Fq. S is said

to be N-periodic if si = si+N for all i ≥ 0. Then the sequence is determined

by the terms of one period, so it can be possible to use the notation S =

(s0, s1, . . . , sN−1)
∞. For any N-periodic sequence S, SN(x) is defined to be the

polynomial

SN(x) = s0 + s1x + s2x
2 + . . . + sN−1x

N−1.

Definition 1.0.1. Let S = (s0, s1, . . . , sN−1)
∞ be an N -periodic sequence with

terms in Fq. The linear complexity L(S) of the sequence is the smallest non-

negative integer c satisfying the equation sj +d1sj−1 + . . .+dcsj−c = 0 for some

coefficients d1, d2, . . . , dc ∈ Fq.

Definition 1.0.2. Let S = (s0, s1, . . . , sN−1)
∞ be an N -periodic sequence with

terms in Fq. The minimal polynomial of the sequence S is

m(x) = xc + d1x
c−1 + . . . + dc−1x + dc ∈ Fq[x].

In the minimal polynomial, the degree of the minimal polynomial, c, is the

linear complexity of the sequence S. Obviously, L(S) = 0 if S is the zero

sequence.
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1.1 Generalized Discrete Fourier Transform and

Discrete Fourier Transform

Definition 1.1.1. Let g(x) =
∑

i aix
i be a polynomial in the polynomial ring

F[x] over a field F. For an integer t ≥ 0, t-th Hasse derivative of g(x) is defined

as the polynomial

g[t](x) =
∑

i

(
i

t

)
aix

i−t.

Proposition 1.1.2. For any integer t ≥ 0, we have g(t)(x) = t!g[t](x) where

g(t)(x) denotes the t-th formal derivative.

Proof: Let

g(x) =
∑

i

aix
i.

Note that;

g(t)(x) =
∑

i

aii(i− 1)(i− 2) . . . (i− t + 1)xi−t.

We know that

i(i− 1)(i− 2) . . . (i− t + 1) =
i(i− 1) . . . (i− t + 1)(i− t)!t!

(i− t)!t!

= t!

(
i

t

)
.

Therefore, we have

g(t)(x) =
∑

i

ait!

(
i

t

)
xi−t

= t!g[t](x).

�

Definition 1.1.3. Let SN = (s0, s1, . . . , sN−1) ∈ FN
q be an N -tuple, such that

2



N = pvn, where gcd(p, n) = 1 and p = char (Fq). If

SN(x) = s0 + s1x + s2x
2 + . . . + sN−1x

N−1

be the polynomial corresponding to the sequence S. Then the Generalized

Discrete Fourier Transform of SN , which is denoted by (GDFT )(SN), is a

pv × n matrix determined as:

GDFT (SN) =


SN(1) SN(α) . . . SN(αn−1)

(SN)[1](1) (SN)[1](α) . . . (SN)[1](αn−1)
...

...
...

(SN)[pv−1](1) (SN)[pv−1](α) . . . (SN)[pv−1](αn−1)



where α is any primitive n-th root of unity in some extension field of Fq.

Example 1.1.4. S = (100101)∞ is a sequence with terms in F2, so p = 2. Its

period is N = 6 = 2 × 3. Here v = 1 and n = 3. Hence the GDFT (S6) is a

2× 3 matrix, which is determined as:

GDFT (S6) =

 S6(1) S6(α) S6(α2)

(S6)[1](1) (S6)[1](α) (SN)[1](α2)

 .

In this sequence s0 = 1, s1 = 0, s2 = 0, s3 = 1, s4 = 0, s5 = 1.

Thus, S6(x) = 1 + x3 + x5. Let us first find the 1st Hasse Derivative of S6(x).

(S6)[1](x) =
5∑

i=0

(
i

1

)
six

i−1

=

(
3

1

)
x2 +

(
5

1

)
x4

= 3x2 + 5x4

≡ x2 + x4mod 2

3



We have n = 3, so we choose a primitive 3rd root of unity. Let α be a

primitive 3rd root of unity. Then,

α3 = 1

⇒ α3 − 1 = 0

⇒ (α− 1)
(
α2 + α + 1

)
= 0

Since α is a primitive 3rd root of unity

α− 1 6= 0.

Hence we have

α2 + α + 1 = 0

⇒ α2 = α + 1.

Thus, the entries of the GDFT are as follows:

S6(1) = 1 + 1 + 1

≡ 1 mod 2

S6(α) = 1 + α3 + α5

≡ 1 + 1 + α3α2 mod 2

≡ α2 mod 2

≡ α + 1 mod 2

4



S6(α2) = 1 + α6 + α10

≡ 1 + (α3)2 + (α3)3α mod 2

≡ 1 + 1 + α mod 2

≡ α mod 2

(S6)[1](1) = 1 + 1

≡ 0 mod 2

(S6)[1](α) = α2 + α4

≡ α + 1 + α3α mod 2

≡ α + 1 + α mod 2

≡ 1

(S6)[1](α2) = α4 + α8

≡ α3α + (α3)2α2 mod 2

≡ α + α + 1 mod 2

≡ 1 mod 2

So,

GDFT (S6) =

 1 α + 1 α

0 1 1



Remark 1.1.5. The entries of the GDFT of an N -tuple depend on the choice

of the primitive n-th root of unity.

Remark 1.1.6. Let SN = (s0, s1, . . . , sN−1) ∈ FN
q , such that gcd(p, N) = 1,

where p = char (Fq). Then GDFT of SN reduces to N -tuple,
(
SN(1), SN(α) . . . , SN(αN−1)

)
,

which is called the Discrete Fourier Transform (DFT ).

5



1.2 Günther Weight

Definition 1.2.1. The Günther Weight of a matrix is the number of its entries

that are nonzero or that lie below a nonzero entry.

Example 1.2.2. Remember Example 1.1.4,

GDFT (S6) =

 1 α + 1 α

0 1 1

 , Günther weight of this matrix is 6.

A =


1 0 1

0 0 1

1 0 1

 , Günther weight of A is 6.

B =


1 1 0

1 0 1

0 0 0

 , Günther weight of B is 8.

Remark 1.2.3. If the matrix has only one row then the Günther weight of the

matrix is just the Hamming weight.

1.3 Cyclotomic Cosets

Definition 1.3.1. Let q = pm for some m ≥ 1, where p is prime. If n is an

integer such that gcd(q, n) = 1 and d is the multiplicative order of q in the

multiplicative group of Z∗n. Then for an integer j, where 0 ≤ j ≤ n − 1, the

cyclotomic coset, Cj, of j modulo n (relative to q) is defined as the set

Cj = {k : k ≡ jqr mod n, 0 ≤ r < d} .

Theorem 1.3.2. (Günther-Blahut Theorem)[2] Let S = (s0, s1, . . . , sN − 1)∞

be an N-periodic sequence with terms in Fq, such that N = pvn, where gcd(p, n) =

1 and p = char (Fq). Then the linear complexity of this sequence is equal to the

6



Günther weight of the GDFT(SN).

Remark 1.3.3. If gcd(p, N) = 1, that is N = n, then GDFT(SN) is an N-

tuple (SN(1), SN(α), . . . , SN(αN−1)). Therefore, the linear complexity of the

sequence S is the Hamming weight of the N-tuple.

Example 1.3.4. For q = p = 3 and n = 7, the cyclotomic coset of j modulo n

are:

• j = 0 : for k ∈ C0, k ≡ jqr ≡ 0 · 3r ≡ 0 mod 7

C0 = {0}

• j = 1 : for k ∈ C1, k ≡ jqr ≡ 1 · 3r ≡ 3r mod 7

r = 0 ⇒ k ≡ 30 ≡ 1 mod 7,

r = 1 ⇒ k ≡ 31 ≡ 3 mod 7,

r = 2 ⇒ k ≡ 32 ≡ 2 mod 7,

r = 3 ⇒ k ≡ 33 ≡ 6 mod 7

r = 4 ⇒ k ≡ 34 ≡ 4 mod 7

r = 5 ⇒ k ≡ 35 ≡ 5 mod 7

r = 6 ⇒ k ≡ 36 ≡ 1 mod 7

C1 = {1, 2, 3, 4, 5, 6}

• j = 2 : for k ∈ C2, k ≡ jqr ≡ 2 · 3r mod 7

r = 0 ⇒ k ≡ 2 · 30 ≡ 2 mod 7,

r = 1 ⇒ k ≡ 2 · 31 ≡ 6 mod 7,

r = 2 ⇒ k ≡ 2 · 32 ≡ 4 mod 7,

r = 3 ⇒ k ≡ 2 · 33 ≡ 5 mod 7

r = 4 ⇒ k ≡ 2 · 34 ≡ 1 mod 7

r = 5 ⇒ k ≡ 2 · 35 ≡ 3 mod 7

r = 6 ⇒ k ≡ 2 · 36 ≡ 2 mod 7

C2 = {1, 2, 3, 4, 5, 6}

7



• j = 3 : for k ∈ C3, k ≡ jqr ≡ 3 · 3r mod 7

r = 0 ⇒ k ≡ 3 · 30 ≡ 3 mod 7,

r = 1 ⇒ k ≡ 3 · 31 ≡ 2 mod 7,

r = 2 ⇒ k ≡ 3 · 32 ≡ 6 mod 7,

r = 3 ⇒ k ≡ 3 · 33 ≡ 4 mod 7

r = 4 ⇒ k ≡ 3 · 34 ≡ 5 mod 7

r = 5 ⇒ k ≡ 3 · 35 ≡ 1 mod 7

r = 6 ⇒ k ≡ 3 · 36 ≡ 3 mod 7

C3 = {1, 2, 3, 4, 5, 6}

• j = 4 : for k ∈ C4, k ≡ jqr ≡ 4 · 3r mod 7

r = 0 ⇒ k ≡ 4 · 30 ≡ 4 mod 7,

r = 1 ⇒ k ≡ 4 · 31 ≡ 5 mod 7,

r = 2 ⇒ k ≡ 4 · 32 ≡ 1 mod 7,

r = 3 ⇒ k ≡ 4 · 33 ≡ 3 mod 7

r = 4 ⇒ k ≡ 4 · 34 ≡ 2 mod 7

r = 5 ⇒ k ≡ 4 · 35 ≡ 6 mod 7

r = 6 ⇒ k ≡ 4.36 ≡ 4 mod 7

C4 = {1, 2, 3, 4, 5, 6}

• j = 5 : for k ∈ C5, k ≡ jqr ≡ 5 · 3r mod 7

r = 0 ⇒ k ≡ 5 · 30 ≡ 5 mod 7,

r = 1 ⇒ k ≡ 5 · 31 ≡ 1 mod 7,

r = 2 ⇒ k ≡ 5 · 32 ≡ 3 mod 7,

r = 3 ⇒ k ≡ 5 · 33 ≡ 2 mod 7

r = 4 ⇒ k ≡ 5 · 34 ≡ 6 mod 7

r = 5 ⇒ k ≡ 5 · 35 ≡ 4 mod 7

8



r = 6 ⇒ k ≡ 5 · 36 ≡ 5 mod 7

C5 = {1, 2, 3, 4, 5, 6}

• j = 6 : for k ∈ C6, k ≡ jqr ≡ 6 · 3r mod 7

r = 0 ⇒ k ≡ 6 · 30 ≡ 6 mod 7,

r = 1 ⇒ k ≡ 6 · 31 ≡ 4 mod 7,

r = 2 ⇒ k ≡ 6 · 32 ≡ 5 mod 7,

r = 3 ⇒ k ≡ 6 · 33 ≡ 1 mod 7

r = 4 ⇒ k ≡ 6 · 34 ≡ 3 mod 7

r = 5 ⇒ k ≡ 6 · 35 ≡ 2 mod 7

r = 6 ⇒ k ≡ 6 · 36 ≡ 6 mod 7

C6 = {1, 2, 3, 4, 5, 6}

Note that C1 = C2 = C3 = C4 = C5 = C6 and the equality of these

cyclotomic cosets also follows directly from Definition 1.3.1. However for a

better understanding we prefer to illustrate the computations in this example.

This property leads us to a proposition.

Proposition 1.3.5. Let Cj be a cyclotomic coset of j modulo n (relative to q).

If k ∈ Cj, then Cj = Ck.

Proof: If k ∈ Cj, then

k ≡ jqr mod n (1.1)

for some r ≥ 0. We have gcd(q, n) = 1. Let d be the multiplicative order of q

in Z∗n. Then the multiplicative inverse of qr modulo n is qd−r. Multiplying both

sides of (1.1) with qd−r, we get;

kqd−r ≡ j mod n

9



This implies that j ∈ Ck.

Let a ∈ Cj, then for some r1 ≥ 0,

a ≡ jqr1 mod n

≡ kqd−rqr1 mod n

≡ kqd−r+r1 mod n

which implies that a ∈ Ck. Therefore we have Cj ⊂ Ck.

Let b ∈ Ck, then for some r2 ≥ 0, we have

b ≡ kqr2 mod n

≡ jqrqr2 mod n

≡ jqr+r2 mod n

which implies that b ∈ Cj. Therefore,

Ck ⊂ Cj.

Cj ⊂ Ck and Ck ⊂ Cj implies that Ck = Cj.

�

Note that, the cyclotomic cosets are distinct sets.

Definition 1.3.6. Let Cj be a cyclotomic coset of j modulo n (relative to q).

Given k1, k2 ∈ Cj, such that

k1 ≡ jqr1 mod n (1.2)

k2 ≡ jqr2 mod n (1.3)

the operation ⊗ is defined as:

k1 ⊗ k2 := jqr1+r2 mod n.

10



Note that this operation is commutative and associative.

Lemma 1.3.7. 〈Cj,⊗〉 is an abelian group under the operation ⊗.

Proof: First we prove the well-definedness of the operation⊗. Let k1, k2 ∈ Cj

be given as in (1.2) and (1.3). Suppose that

k1 ≡ jqr1 ≡ jqr
′
1 mod n,

k2 ≡ jqr2 ≡ jqr
′
2 mod n.

We need to check if jqr1+r2 ≡ jqr
′
1+r

′
2 mod n.

Note that,

qr1+r2 − qr
′
1+r

′
2 ≡ qr1+r2 − qr

′
1+r2 + qr

′
1+r2 − qr

′
1+r

′
2 mod n

≡ qr2(qr1 − qr
′
1) + qr

′
1(qr2 − qr

′
2) mod n. (1.4)

Hence,

j(qr1+r2 − qr
′
1+r

′
2) ≡ j(qr1 − qr

′
1)qr2 + j(qr2 − qr

′
2)qr

′
1 mod n.

Since jqr1 ≡ jqr
′
1 mod n, we have n | j(qr1 − qr

′
1).

Also since jqr2 ≡ jqr
′
2 mod n we have n | j(qr2 − qr

′
2). Therefore, we have

n | j(qr1 − qr
′
1)qr2 + j(qr2 − qr

′
2)qr

′
1

On the other hand, by (1.4)

n | j
(
qr1+r2 − qr

′
1+r

′
2

)
,

hence

j(qr1+r2) ≡ j(qr
′
1+r

′
2) mod n.

This completeness the well-definedness and it is routine to check the associativ-

ity and commutativity.

11



Let us prove the existence of the identity element. Let e ∈ Cj such that

e = jqr0 mod n for some r0 ≥ 0. We know that e is the identity element if

and only if e ⊗ a = a ⊗ e = a for any a ∈ Cj. Since ⊗ is commutative, it is

sufficient to check if there exist an element e satisfying e⊗ a = a. Let a = jqr

for some r ≥ 0.

a⊗ e = a

jqr ⊗ jqr0 ≡ jqr mod n

jqr+r0 ≡ jqr mod n

jqr(qr0 − 1) ≡ 0 mod n

⇒ n | jqr(qr0 − 1)

We have gcd(q, n) = 1. This implies that

⇒ n | j(qr0 − 1)

⇒ j(qr0 − 1) ≡ 0 mod n

⇒ jqr0 ≡ j mod n

⇒ e ≡ j mod n

We have proved the existence of the identity element. Now we have to prove

the uniqueness of the identity element. To do this suppose that there exists

12



e′ = jqr1 satisfying e′ ⊗ a = a. Therefore we have the following:

a⊗ e′ = a⊗ e

jqr ⊗ jqr1 = jqr ⊗ j

jqr+r1 ≡ jqr mod n

jqr+r1 − jqr ≡ 0 mod n

jqr(qr1 − 1) ≡ 0 mod n

⇒ n | jqr(qr1 − 1)

⇒ n | j(qr1 − 1)

⇒ j(qr1 − 1) ≡ 0 mod n

⇒ j(qr1 − 1) ≡ 0 mod n

⇒ jqr1 ≡ j mod n

⇒ e′ ≡ j mod n

⇒ e′ ≡ e mod n

We have proved that the identity element is unique. Therefore 〈Cj,⊗〉 is an

abelian group under the operation ⊗.

�

Corollary 1.3.8. Let Cj be a cyclotomic coset of j modulo n (relative to q)

and |Cj| = lj, then we have:

jqlj ≡ j mod n (1.5)

Proof: If |Cj| = lj then we know that, for any element k in Cj satisfies

k ⊗ k ⊗ . . .⊗ k︸ ︷︷ ︸
lj times

= e.

13



Therefore, for k ≡ jq mod n we have:

jq ⊗ jq ⊗ . . .⊗ jq︸ ︷︷ ︸
lj times

= e

jqlj = j

�

Lemma 1.3.9. Let S = (s0, s1, . . . , sN−1)
∞ be an N-periodic sequence, such

that N = pvn, where gcd(p, n) = 1 and p = char (Fq). Suppose that Cj is the

cyclotomic coset of j modulo n (relative to q) such that |Cj| = lj. If SN(x) is the

polynomial corresponding to S, then for 0 ≤ t ≤ pv − 1 we have the following:

i)
(
SN
)[t]

(x) (αj) ∈ Fqlj

ii) For any k ∈ Cj where k ≡ jqr mod n, we have

(SN)[t](x)(αk) = ((SN)[t](αj))qr

(1.6)

where α is any primitive n-th root of unity in some extension field of Fq.

Proof: Recall that, for any a, b ∈ Fq, we have

(a + b)pm

= apm

+ bpm

(1.7)

aqr

= a for any r ≥ 0 (1.8)

i) We have

(SN)[t](αj) =
∑

i

(
i

t

)
siα

j(i−t).

14



Note that the coefficients
(

i
t

)
si are the elements of Fq.

(
(SN)[t](αj)

)qlj

=

(∑
i

(
i

t

)
siα

j(i−t)

)qlj

=
∑

i

((
i

t

)
siα

j(i−t)

)qlj

, by (1.7).

=
∑

i

(
i

t

)
siα

jqlj (i−t), by (1.8).

=
∑

i

(
i

t

)
siα

j(i−t), by (1.5).

= (SN)[t](αj)

Therefore, (SN)[t](αj) ∈ Flj
q .

ii) (SN)[t](αk) =
∑

i

(
i

t

)
siα

k(i−t)

=
∑

i

(
i

t

)
siα

jqr(i−t)

=
∑

i

((
i

t

)
siα

j(i−t)

)qr

, by (1.8).

=

(∑
i

(
i

t

)
siα

j(i−t)

)qr

, by (1.7)

=
[
(SN)[t](αj)

]qr

�

Proposition 1.3.10. Let S be an N-periodic sequence with terms in Fq such

that N = pvn where gcd(p, n) = 1 and p = char (Fq). Let

Cj =
{
j = k1, k2, . . . , klj

}
be a cyclotomic coset of j modulo n (relative to q) with |Cj| = lj. Suppose that

An
t = (at,0, at,1, . . . , at,n−1)
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is any row in the GDFT(SN), then for all 1 ≤ r ≤ lj either at,kr = 0 or at,kr 6= 0

Proof: For an element kr0 ∈ Cj where kr0 = jqr0 for some r0 ≥ 0.

The entry at,kr0
= (SN)[t](αkr0 ) and we have by (1.6)

(SN)[t](αkr0 ) = ((SN)[t](αj))qr0 .

If at,kr0
= 0 that is

(
(SN)[t](αj)

)qr0

= 0, then (SN)[t](αj) = 0, since (SN)[t](αj) ∈
Fqlj and Fqlj has no nonzero zero divisor. Therefore,

at,ki
= (SN)[t](αki) =

(
(SN)[t](αj)

)qri

= 0 for all ri ≥ 0.

If at,kr0
6= 0, that is, at,kr0

= ((SN)[t](αj))qr0 6= 0. Thus, (SN)[t](αj) 6= 0.

Therefore, at,ki
= (SN)[t](αki) = ((SN)[t](αj))qri 6= 0 for any ri ≥ 0

�

Corollary 1.3.11. Let S be an N-periodic sequence with terms in Fq, such

that N = pvn, where p = char (Fq) and gcd(p, n) = 1. Suppose that Cj ={
j = k1, k2, . . . , klj

}
is the cyclotomic coset of j modulo n (relative to q). If tj

is the least index such that in the tj-th row, An
tj

= (atj ,0, atj ,1, . . . , atj ,n−1), of

the GDFT(SN) we have atj ,kr 6= 0, provided that such a row exists, then the

contribution of Cj to the Günther Weight of the GDFT(SN) is lj(p
v − tj + 1).

Proof: In the tj-th row An
tj

= (atj ,0, atj ,1, . . . , atj ,n−1) we have at,kr 6= 0 so by

Proposition 1.3.10 we have atj ,ki
6= 0 for any ki ∈ Cj. Since there are pv − tj

entries below a non zero entry of An
tj

and we have lj nonzero entries from the

cyclotomic coset Cj. Totally we have lj + lj(p
v − tj) entries contributing to the

Günther Weight.

�

Corollary 1.3.12. Let S be an N-periodic sequence with terms in Fq, such that

N = pvn where gcd(p, n) = 1 and p = char (Fq). Suppose that Cj1 , Cj2 , . . . , Cjh

are the different cyclotomic cosets modulo n (relative to q) and lj1 , lj2 , . . . , ljh

16



are their cardinalities respectively. Then the linear complexity of S is given by

L(S) =
h∑

i=1

(pv − tji
+ 1)lji

. (1.9)

where (pv − tji
+ 1)lji

is the contribution of the cyclotomic coset Cji
to the

Günther Weight.

Remark 1.3.13. Let h denote the number of the different cyclotomic cosets

modulo n. Then any GDFT uniquely corresponds to a pv×h matrix M, where

the entries in the i-th column are in F
q

lji
and |Cji

| = lji
. The set of these

matrices can be denoted as M

Proposition 1.3.14. The number of the different matrices in the GDFT form

is Ω given by

Ω = (qlj1 )pv

(qlj2 )pv

. . . (qljh )pv

= qnpv

. (1.10)

Proof: Since the entries of the i-th column are in F
q

lji
, we have qlji choices

for just one entry. As we have pv entries in a column, there are (qlji )pv
choices

for a column. Since we have h columns then the number of different matrices

in the GDFT form is
∏h

i=1(q
lji )pv

.

Also we know that
h∑

i=1

lji
= n

since the cyclotomic cosets are different. Then

h∏
i=1

(
qlji

)pv

=
(
(qlj1 )(qlj2 ) . . . (qljh )

)pv

=
(
qlj1+lj2+...+ljh

)pv

= qnpv

= qN

�

Remark 1.3.15. The number of different matrices in the GDFT form is qN

17



which is also equal to the number of all N -periodic sequences with terms in Fq.

18



Chapter 2

The Expected Value Of The

Linear Complexity

In this chapter, we consider the expected value the linear complexity of an N -

periodic sequence S with terms in Fq, where N = pvn such that gcd(p, n) =

1 and p is the characteristic of Fq. Since S is N -periodic such that, S =

(s0, s1 . . . , sN−1)
∞ it can be considered as an N -tuple of FN

q .

In general the expected value of the linear complexity is given by the formula:

EN(L(S)) =
∑

S∈FN
q

p(S)L(S) (2.1)

where p is the probability measure. Here, the probability of each S ∈ FN
q to

occur is supposed to be 1
qN .

2.1 Expected Value Of The Linear Complexity

Theorem 2.1.1. Let S be an N-periodic sequence with terms in Fq such that

N = pvn where gcd(p, n) = 1 and p = char (Fq). If l1, l2, . . . , ls are different

cardinalities of the cyclotomic cosets modulo n and Φi, 1 ≤ i ≤ s, is the number

of elements belonging to cyclotomic cosets with cardinality li. Then the expected
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value of the linear complexity of S is:

EN(L(S)) = N −
s∑

i=1

Φi · (1− q−pvli)

qli − 1
(2.2)

Proof: Let D1, D2, . . . , Dh be different cyclotomic cosets modulo n and

|Dr| = mr

for r = 1, 2, . . . , h. We know that the linear complexity of S is equal to the

Günther Weight of the GDFT (SN). As we have said in Remark 1.3.13, every

matrix in the GDFT form corresponds to a pv×h matrix M, where the entries

in the r-th column are in Fqmr . Let us say that ~k1, ~k2, . . . , ~kh are the columns

of the matrix M. Suppose that t(~kr) is the least positive integer such that the

t(~kr)-th coordinate of the column t(~kr) is nonzero, then the Günther Weight of

M is:

g (M) =
h∑

r=1
~kr 6=0

mr

(
pv − t

(
~kr

)
+ 1
)

(2.3)

In (2.2),

EN(L(S)) =
∑

S∈FN
q

p(S)L(S)

putting the probability and linear complexity values we get:

EN(L(S)) =
1

qN

∑
M∈M

h∑
r=1
~kr 6=0

mr

(
pv − t

(
~kr

)
+ 1
)

=
1

qN

h∑
r=1

∑
M∈M
~kr 6=0

mr

(
pv − t

(
~kr

)
+ 1
)

=
pv

qN

h∑
r=1

mr

∑
M∈M
~kr 6=0

1− 1

qN

h∑
r=1

∑
M∈M
~kr 6=0

(t(~kr)− 1)

:= T1 −T2
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By above equations:

T1 =
pv

qN

h∑
r=1

mr

∑
M∈M
~kr 6=~0

1 and

T2 =
1

qN

h∑
r=1

mr

∑
M∈M
~kr 6=~0

(t(~kr)− 1)

Claim 1:

∑
M∈M
~kr 6=0

1 = qN − qN−pvmr ⇔ #
{
M∈ M : k̃r = 0̃

}
= qN−pvmr

Proof of the Claim 1:

~kr = ~0 is the column corresponds to the cyclotomic coset Dr. Since there are

pv components, pvmr entries are 0 and do not lie below a nonzero entry in the

matrix GDFT form. The entries of the columns ~k1, ~k2, . . . , ~kr−1, ~kr+1, . . . , ~kh can

be selected in (qm1)pv
, (qm2)pv

, . . . , (qmr−1)pv
, (qmr+1)pv

, . . . , (qmh)pv
ways respec-

tively. Thus, the number of M matrices with ~kr = ~0 is :

(qm1)pv

(qm2)pv

. . . (qmr−1)pv

(qmr+1)pv

. . . (qmh)pv

= q(m1+m2+...+mr−1+mr+1+...+mh)pv

= q(m1+m2+...+mr−1+mr+mr+1+...+mh)pv−mrpv

= qN−pvmr

and claim 1 is proved.

Recall that the number of M matrices as given in (1.10) is qN . Therefore, the

21



number of M matrices in M with ~kr 6= ~0 is qN − qN−pvmr . Finally;

T1 =
pv

qN

h∑
r=1

mr

∑
M∈M
~kr 6=~0

1

=
pv

qN

h∑
r=1

mr

(
qN − qN−pvmr

)
= pv

h∑
r=1

mr

(
1− 1

qpvmr

)

= pv

h∑
r=1

mr︸ ︷︷ ︸
n

−pv

h∑
r=1

mr

qpvmr

= N − pv

h∑
r=1

mr

qpvmr

Claim 2:

∑
M∈M
~kr 6=0

(t(~kr)− 1) =

pv∑
t=1

(t− 1)
∑
M∈M

t( ~kr)=t

1 =

pv∑
t=1

(t− 1)(qmr − 1)(qmr)pv−tqN−pvmr

⇔

For all t with 1 ≤ t ≤ pv and for all r with 1 ≤ r ≤ h;

#
{
M∈ M : t(k̃r) = t

}
= (qmr − 1)(qmr)pv−tqN−pvmr

Proof of Claim 2:

Now, consider the M matrices in M with ~kr 6= ~0 and the least index which is

nonzero is t, that is, t(~kr) = t.

First of all, let us choose the entries of the columns other than the column

~kr. As we have done in the proof of the claim 1, we can select them in qN−pvmr .

Now we have to select the entries of ~kr. Since t is the least index which is

nonzero, the components above this entry will be zero. We can choose the t-th
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entry in qmr − 1 way (we can not choose 0). There are pv − t entries below the

t-th, so we can select these entries in (qmr)pv−t ways.

Combining all these things, we obtain that the number of M matrices sat-

isfying the above conditions is (qmr − 1) (qmr)pv−t qN−pvmr . And this ends the

proof of the claim 2. And, by this way,

pv∑
t=1

(t− 1)
∑
M∈M

t( ~kr)=t

1 =

pv∑
t=1

(t− 1) (qmr − 1) (qmr)pv−t qN−pvmr

=

pv∑
t=1

(t− 1) (qmr − 1)
(
qpvmr−tmr+N−pvmr

)
=

pv∑
t=1

(t− 1) (qmr − 1)
(
qN−tmr

)

By all these arguments,

T2 =
1

qN

h∑
r=1

mr

∑
M∈M
~kr 6=~0

(t(~kr)− 1) =
1

qN

h∑
r=1

mr

pv∑
t=1

(t− 1) (qmr − 1)
(
qN−tmr

)

=
h∑

r=1

mr (qmr − 1)

pv∑
t=1

(t− 1) q−tmr

By subtracting 1 from the index t we get:

=
h∑

r=1

mr (qmr − 1)

pv−1∑
t=0

t
(
q−mr

)t+1

=
h∑

r=1

mr (qmr − 1) q−mr

pv−1∑
t=0

t
(
q−mr

)t
=

h∑
r=1

mr

(
1− 1

qmr

) pv−1∑
t=0

t
(
q−mr

)t
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Claim 3: For any real number z 6= 0, we have:

k−1∑
t=0

tzt =
z − kzk + (k − 1) zk+1

(z − 1)2 (2.4)

Proof of Claim 3:

k−1∑
t=0

tzt

︸ ︷︷ ︸
S

=
k−1∑
t=1

tzt

=
k∑

t=1

tzt − kzk

=
k−1∑
t=0

(t + 1) zt+1 − kzk

= z
k−1∑
t=0

tzt

︸ ︷︷ ︸
S

+z
k−1∑
t=0

zt − kzk

S = zS + z
k−1∑
t=0

zt − kzk

= zS + z
zk − 1

z − 1
− kzk

S− zS =
zk+1 − z

z − 1
− kzk (z − 1)

z − 1

S (1− z) =
zk+1 − z − kzk+1 + kzk

z − 1

S = −zk+1 − z − kzk+1 + kzk

(z − 1)2

=
z − kzk + (k − 1) zk+1

(z − 1)2 .

The proof of this claim is ended here. Substituting z = q−mr and k = pv in
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(2.4) we get:

T2 =
h∑

r=1

mr

(
1− 1

qmr

) pv−1∑
t=0

t
(
q−mr

)t
=

h∑
r=1

mr

(
1− 1

qmr

)[
q−mr − pvq−mrpv

+ (pv − 1) q−mr(pv+1)

(q−mr − 1)2

]

=
h∑

r=1

mr
qmr − 1

qmr

q−mr − pvq−mrpv
+ (pv − 1) q−mr(pv+1)(

1−qmr

qmr

)2


=

h∑
r=1

mr
qmr

qmr − 1

(
q−mr − pvq−mrpv

+ (pv − 1) q−mr(pv+1)
)

=
h∑

r=1

mr

qmr − 1

(
1− pvqmr(1−pv) + (pv − 1) q−pvmr

)
=

h∑
r=1

mr

qmr − 1

(
1− pvqmrq−mrpv

+ pvq−mrpv − q−mrpv)
=

h∑
r=1

mr

qmr − 1

(
1− pvq−mrpv

(qmr − 1)− q−mrpv)

=
h∑

r=1

mr

qmr − 1

(
1− q−mrpv)− h∑

r=1

mrp
vq−mrpv

=
h∑

r=1

mr

(
1− q−pvmr

)
qmr − 1

− pv

h∑
r=1

mr

qpvmr

Continuing from the equation EN(L(S)) = T1 −T2

T1 −T2 = N − pv

h∑
r=1

mr

qpvmr
−

h∑
r=1

mr

(
1− q−pvmr

)
qmr − 1

+ pv

h∑
r=1

mr

qpvmr

= N −
h∑

r=1

mr

(
1− q−pvmr

)
qmr − 1

�
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Corollary 2.1.2. If gcd(p, N) = 1, that is v = 0 and N = n, then the expected

value of the linear complexity of S

EN(L(S)) = N −
s∑

i=1

Φi

qli
(2.5)

Proof: If v = 0,

EN(L(S)) = N −
s∑

i=1

Φi · (1− q−pvli)

qli − 1

= N −
s∑

i=1

Φi · (1− q−li)

qli − 1

= N −
s∑

i=1

Φi ·
(
qli − 1

)
(qli − 1) qli

= N −
s∑

i=1

Φi

qli
.

�

Corollary 2.1.3. If n = 1, that is N = pv, then the expected value of the linear

complexity of S

EN(L(S)) = N − 1

q − 1

(
1− 1

qN

)
. (2.6)

Proof: Since n = 1, the only cyclotomic coset modulo n (relative to q) is

C0 = {0}. Thus, l1 = 1 and Φ1 = 1. Hence

EN(L(S)) = N −
s∑

i=1

Φi · (1− q−pvli)

qli − 1

= N − Φ1 · (1− q−pvl1)

ql1 − 1

= N − 1− q−pv

q − 1

= N − 1− q−N

q − 1
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Corollary 2.1.4. Let S be a random N-periodic sequence with terms in Fq,

such that N = pvn where gcd(p, n) = 1 and p = char(Fq), then the expected

value of the linear complexity of S satisfies

EN(L(S)) > N − n

q − 1
.

If v = 0, we have

EN(L(S)) ≥
(

1− 1

q

)
N.

Proof: We have from (2.2)

EN(L(S)) = N −
s∑

i=1

Φi · (1− q−pvli)

qli − 1

Since li ≥ 1, we have qli ≥ q and (1− q−pvli) < 1. Therefore,

s∑
i=1

Φi · (1− q−pvli)

qli − 1
<

s∑
i=1

Φi · (1− q−pvli)

q − 1

<
s∑

i=1

Φi

q − 1
.

Note that:
s∑

i=1

Φi = n. (2.7)

Therefore,

s∑
i=1

Φi

q − 1
=

1

q − 1

s∑
i=1

Φi

=
n

q − 1
.
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Thus, the expected value of the linear complexity:

EN(L(S)) = N −
s∑

i=1

Φi · (1− q−pvli)

qli − 1

> N − n

q − 1
.

If v = 0, then we have N = n and by (2.5),

EN(L(S)) = N −
s∑

i=1

Φi

qli
.

Since li ≥ 1, we have qli ≥ q and by (2.7), we obtain:

s∑
i=1

Φi

qli
≤

s∑
i=1

Φi

q
=

1

q

s∑
i=1

Φi

=
N

q
.

Finally,

EN(L(S)) = N −
s∑

i=1

Φi

qli

≥ N − N

q
= N

(
1− 1

q

)
.

�

Corollary 2.1.5. Let S be a random N-periodic sequence with terms in F2.

Hence p = char (F2) = 2 and N = 2vn where gcd(2, n) = 1. Then the lower

bound for the expected value of the linear complexity of S will be:

EN(L(S)) > N − n + 2

3
.

If v = 0, we have

EN(L(S)) ≥ 3N − 1

4
.

Proof: We have q = 2. Consider singleton cyclotomic coset Ca = {a}. By
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(1.5) we have

2a = a mod n

2a− a = 0 mod n

a = 0 mod n

Thus, the only cyclotomic coset (relative to 2) with cardinality 1 is C0 = {0}.
The expected value of linear complexity of S is

EN(L(S)) = N −
s∑

i=1

Φi · (1− q−pvli)

qli − 1
.

Without loss of generality suppose that l1 = 1, then Φ1 = 1 and li ≥ 2 for any

i ≥ 2 by the observation above. Since (1− q−pvli) < 1 and q = 2, we get:

s∑
i=1

Φi · (1− q−pvli)

qli − 1
<

s∑
i=1

Φi

2li − 1
=

Φ1

2l1 − 1
+

s∑
i=2

Φi

2li − 1

≤ 1

2− 1
+

s∑
i=2

Φi

22 − 1

= 1 +
s∑

i=2

Φi

3
= 1 +

n− 1

3
=

n + 2

3
.

Therefore,

EN(L(S)) > N − n + 2

3
.
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If v = 0, that is N = n, by (2.5)

EN(L(S)) = N −
s∑

i=1

Φi

qli

= N − Φ1

2l1
−

s∑
i=2

Φi

2li

= N − 1

2
−

s∑
i=2

Φi

2li

≥ N − 1

2
−

s∑
i=2

Φi

4
= N − 1

2
− N − 1

4
=

3N − 1

4
.

Therefore,

EN(L(S)) ≥ 3N − 1

4
.

�

2.2 Cyclotomic Cosets Modulo Prime Powers

Up to here, the sequence S with terms in Fq is N -periodic such that N = pvn

where p = char (Fq) and gcd(p, n) = 1. Now N = nk where n is an odd prime

different from p and k ≥ 1 is an integer. Before determining the expected

value of the linear complexity of a random sequence S, we have to consider

the cyclotomic cosets modulo nk, actually the number of the cyclotomic cosets

modulo nk.

We have n is an odd prime. Thus, Z∗n is a prime field. Since n is different

from p, then we can consider the multiplicative order of q in Z∗n. Let d be the

multiplicative order of q in the prime field Z∗n, then

qd ≡ 1 mod n.
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Thus, we can say

qd = 1 + cnρ ρ ≥ 1 (2.8)

for some c, ρ ∈ Z with gcd(c, n) = 1.

Lemma 2.2.1. Let d be the multiplicative order of q in Z∗n and qd = 1 + cnρ

for some ρ ≥ 1. Then d is also the multiplicative order of q in Z∗nj if and only

if j ≤ ρ.

Proof: If d is the multiplicative order of q in Z∗nj then

qd ≡ 1 mod nj ⇔ nj | qd − 1 = cnρ ⇔ nj | cnρ.

Since gcd(n, c) = 1, we have

nj | nρ ⇔ j ≤ ρ.

�

Lemma 2.2.2. Let n be a prime and a be a positive integer. Let α be the

nonnegative integer such that nα ‖ a!. Then we have

α =
∞∑
l=1

⌊ a

nl

⌋

Proof: Recall that a! = a(a − 1) . . . 2.1. Among the integers in the set

S = {1, 2, . . . , a}, there are exactly
⌊

a
n

⌋
integers s ∈ S with n | s. Moreover for

each l ≥ 1, there are exactly
⌊

a
nl

⌋
integers s ∈ S with nl | s. Considering all of

them we complete the proof.

�

Lemma 2.2.3. Let n be a prime, i ≥ 1 an integer and 2 ≤ b ≤ ni. Let j be the

nonnegative integer such that nj ‖ b. For each 1 ≤ l ≤ j, we have⌊
ni

nl

⌋
=

⌊
ni − b

nl

⌋
+

⌊
b

nl

⌋
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and for each j + 1 ≤ l ≤ i, we have⌊
ni

nl

⌋
=

⌊
ni − b

nl

⌋
+

⌊
b

nl

⌋
+ 1

Proof: Assume first 1 ≤ l ≤ j, we have b = nlu for a positive integer u.

Hence ⌊
ni

nl

⌋
=

ni

nl

= ni−l⌊
ni − b

nl

⌋
=

ni − b

nl

= ni−l − u

=

⌊
ni

nl

⌋
−
⌊

b

nl

⌋
⇒
⌊

ni

nl

⌋
=

⌊
ni − b

nl

⌋
+

⌊
b

nl

⌋
Hence it remains to consider the case j+1 ≤ l ≤ i. We have uniquely determined

nonnegative integers u0 and u1 such that b = nlu0 + u1. Moreover 1 ≤ u1 ≤
nl − 1. Then

ni − b = nl(ni−l − u0)− u1

= nl(ni−l − u0 − 1) + (nl − u1)

Hence, ⌊
ni − b

nl

⌋
= ni−l − u0 − 1

Since
⌊

b
nl

⌋
= u0, we have

⌊
ni

nl

⌋
=

⌊
ni − b

nl

⌋
+

⌊
b

nl

⌋
+ 1.

This completes the proof.

�
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Lemma 2.2.4. Let n be a prime, i ≥ 1 and 2 ≤ b ≤ ni. Let n be the nonnegative

integer such that nα ‖
(

ni

b

)
. Then we have

α ≥ i− b + 2

Proof: Note that (
ni

b

)
=

ni!

(ni − b)!b!
.

Using Lemma 2.2.2, we obtain that

α =
i∑

l=1

{⌊
ni

nl

⌋
−
⌊

ni − b

nl

⌋
+

⌊
b

nl

⌋}

Let j be the nonnegative integer such that nj ‖ b. Using Lemma 2.2.3, we

obtain that α = i− j. As nj ‖ b and n is an odd prime, we have b ≥ max(3j, 2)

and hence b− j ≥ max(3j, 2)− j.

As j ≥ 0, we also have max(3j, 2) − j ≥ 2. Hence b − j ≥ 2 and therefore

α = i− j ≥ i− b + 2.

�

Proposition 2.2.5. Let d be the multiplicative order of q in Z∗n, c and ρ be the

integers defined in (2.8). For i ≥ 1 we have

qdni ≡ 1 + nicnρ mod ni+ρ+1. (2.9)

Proof: Using (2.8), for i ≥ 1, we have

qdni

= (1 + cnρ)ni

=
ni∑

b=0

(
ni

b

)
(cnρ)b .

It is enough to prove that for each 2 ≤ b ≤ ni,

ni+ρ+1 |
(

ni

b

)
(cnρ)b
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Using Lemma 2.2.4, we have ni−b+2 |
(

ni

b

)
. As ρ ≥ 1, we have nb−1nρ | (cnρ)b.

Therefore

ni+ρ+1 = ni−b+2nb−1nρ |
(

ni

b

)
(cnρ)b.

�

In addition by (2.9), we can easily say that for all i ≥ 1, we have

qdni ≡ 1 mod nρ+i, (2.10)

but

qdni 6= 1 mod nρ+i+1.

Lemma 2.2.6. Let δi be the multiplicative order of q in Z∗nρ+i. Then

δi | dni but δi - dni−1. (2.11)

Proof: Since δi is the multiplicative order of q in Z∗nρ+i . Then

qδi ≡ 1 mod nρ+i.

By 2.10, δi | dni. Suppose that δi | dni−1, then dni−1 = kδi for some k ∈ Z.

Thus,

qdni−1 ≡
(
qδi
)k ≡ 1 mod nρ+i. (2.12)

On the other hand, by (2.9)

qdni−1

= (1 + cnρ)ni−1

≡ 1 + ni−1cnρ mod nρ+i.

This implies that from (2.12)

nρ+1 | ni−1cnρ ⇒ ni | ni−1c ⇒ n | c.

But this is a contradiction since gcd(n, c) = 1. Therefore, δi - dni−1.

�
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Lemma 2.2.7. Let d and δi be the multiplicative orders of q in Z∗n and Z∗nρ+i

respectively, where qd = 1 + cnρ for some ρ ≥ 1 and gcd(c, n) = 1. Then

d | δi. (2.13)

Proof: If d is the multiplicative order of q in Z∗n, then we have

qd = 1 + cnρ.

This implies that

qd ≡ 1 mod nρ.

Moreover, if δi is the multiplicative order of Z∗nρ+i , then we have

qδi ≡ 1 mod nρ+i.

This implies that

nρ+i | qδi − 1 ⇒ nρ | qδi − 1 ⇒ qδi ≡ 1 mod nρ.

We know that d is the multiplicative order of q in Z∗nρ . Therefore, d | δi.

�

Proposition 2.2.8. Let d and δi be the multiplicative orders of q in Z∗n and

Z∗nρ+i respectively, where qd = 1 + cnρ for some ρ ≥ 1 and gcd(c, n) = 1. Then

δi = dni.

Proof: If d is the multiplicative order of q in Z∗n, then by (2.13), d | δi. Thus,

for some a ∈ Z,

δi = ad ⇒ δi

d
= a.

In addition, if δi is the multiplicative order of q in Z∗nρ+i , then by (2.13), δi | dni
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and δi - dni−1. This implies that

δi

d
| ni ⇒ a | ni

so a = nk for some k ≤ i and

δi - dni−1 ⇒ δi

d
- dni−1

⇒ a - ni−1

⇒ nk - ni−1.

Thus, k = i and

δi

d
= a

= ni

⇒ δi = dni.

�

If we summarize, the multiplicative order of q in Z∗nj is d for j ≤ ρ and dni

in Z∗nρ+i for i ≥ 1.

Now, we will determine the cardinalities of the cyclotomic cosets modulo nk

for:

• k ≤ ρ

• k = ρ + i where i ≥ 1,

Consider the case k ≤ ρ. Then the multiplicative order of q is d in Z∗
nk . We

have

Znk =
{
b | b ≡ anr mod nk, gcd(a, n) = 1, 0 ≤ r ≤ k − 1, a 6= 0

}
∪ {0} .

Obviously, C0 = {0}.
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Lemma 2.2.9. Let d be the multiplicative order of q in Z∗
nk where qd = 1 + cnρ

for some ρ ≥ 1 and gcd(c, n) = 1. Suppose that k ≤ ρ. Then the elements in

the set

{
b | b ≡ anr mod nk, gcd(a, n) = 1, 0 ≤ r ≤ k − 1, a 6= 0

}
that is, the nonzero elements of Znk , are separated into cyclotomic cosets mod-

ulo nk (relative to q) with cardinality d.

Proof: For any b ∈ Znk , in a cyclotomic coset of b modulo nk (relative to q),

the elements have the form

bqm ≡ anrqm mod nk

for some m such that 1 ≤ m ≤ d and anrqd ≡ anr mod nk.

Claim: anrq, anrq2, anrq3, . . . , anrqd are all distinct.

Proof of Claim: Suppose anrqi ≡ anrqj mod nk for some i, j ≤ d. Then we

have

aqi ≡ aqj mod nk−r.

Since gcd(a, n)=1,

qi ≡ qj mod nk−r.

Since gcd(q, n) = 1,

qi−j ≡ 1 mod nk−r.

since the multiplicative order of q is d in Z∗
nk and i− j < d then i− j = 0 which

implies that i = j. Thus, anrq, anrq2, anrq3, . . . , anrqd are all distinct.

Therefore, each cyclotomic coset modulo nk (relative to q) had d elements where

k ≤ ρ.

�

Corollary 2.2.10. Let d be the multiplicative order of q in Z∗
nk where qd =
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1 + cnρ for some ρ ≥ 1 and gcd(c, n) = 1. Suppose that k ≤ ρ, then there are

nk − 1

d

cyclotomic cosets modulo nk (relative to q) with cardinality d.

Proof: Suppose k ≤ ρ. Since there are nk − 1 nonzero elements in Znk we

have
nk − 1

d

different cyclotomic cosets.

�

Now, consider the case k > ρ, that is, k = ρ + i for some i ≥ 1. We know

that the multiplicative order of q is dni in Z∗
nk . We have

Znk = Z∗nk ∪
{
b | b ≡ anr mod nk, gcd(a, n) = 1, 1 ≤ r ≤ k − 1

}
∪ {0} .

Obviously, C0 = {0}.

Lemma 2.2.11. Let d and δi be the multiplicative orders of q in Z∗n and Z∗nρ+i

respectively, where qd = 1 + cnρ for some ρ ≥ 1 and gcd(c, n) = 1 for k > ρ.

Then the elements in Z∗
nk split up into cyclotomic cosets with cardinality dnk−ρ.

Proof: If k > ρ, then k = ρ + i for some i ≥ 1. We know that the elements

of the cyclotomic cosets of b mod nk (relative to q) have the form

bqm mod nk

for some m ≥ 1 and b ∈ Z∗
nk .

Claim 1: If b ∈ Z∗
nk , then bqm ∈ Z∗

nk .

Proof of Claim 1: If b ∈ Z∗
nk , then gcd(b, n) = 1 and since gcd(q, n) = 1, we

have gcd(bqm, n) = 1, which proves the claim.

Note that dni is the multiplicative order of q in Z∗
nk .

Claim 2: bq, bq2, . . . , bqdni
are all distinct.
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Proof of Claim 2: Suppose they are not distinct. Then for some r, s ≤ dni

bqr ≡ bqs mod nk.

Since gcd(b, n)=1,

qr ≡ qs mod nk.

Since gcd(q, n)=1,

qr−s ≡ 1 mod nk.

where r − s < dni. As we know that the multiplicative order of q is dni in Z∗
nk

for k > ρ. Thus, bq, bq2, . . . , bqdni
are all distinct.

Since

k = ρ + i

⇒ i = k − ρ.

Therefore, the cardinality of the cyclotomic cosets is dni = dnk−ρ.

�

Lemma 2.2.12. Let qd = 1+cnρ for some ρ ≥ 1 and gcd(c, n) = 1 and suppose

k > ρ. Then for any element in

K =
{
b | b ≡ anr mod nk, gcd(a, n) = 1, 1 ≤ r ≤ k − 1

}
,

belongs to a cyclotomic coset (relative to q) of cardinality t where

t = d if k − r ≤ ρ, (2.14)

t = dnj if 1 ≤ j ≤ k − ρ. (2.15)

Proof: If k > ρ then k = ρ + i for some i ≥ 1. Let b ≡ anr ∈ K. We know
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that gcd(a, n) = 1 and gcd(q, n) = 1 implies that gcd(aqm, nr) = 1. Therefore,

bqm = anrqm

= aqmnr ∈ K.

Since a cyclotomic coset has t elements where the elements are bq, bq2, . . . , bqt,

t is the least positive integer satisfying,

bqt ≡ b mod nk.

Since b ≡ anr mod nk,

anr ≡ anrqt mod nk

⇒ aqt ≡ a mod nk−r.

Since gcd(a, n)=1,

qt ≡ 1 mod nk−r.

That is t is the multiplicative order of q in Znk−r . Thus,

t = d if k − r ≤ ρ

and t = dnj if k−r > ρ, that is k−r = ρ+j for some j ≥ 1, so k−r−ρ = j.

Also we have

1 ≤ r ≤ k − 1

⇒ 1− k ≤ −r ≤ −1

⇒ 1− ρ ≤ k − r − ρ ≤ k − 1− ρ

⇒ 1− ρ ≤ j ≤ k − 1− ρ.

since we have j ≥ 1, from both inequality we obtain 1 ≤ j ≤ k − 1 − ρ. In

addition, by Lemma 2.2.11 the elements in Z∗
nk split up into cyclotomic cosets

with cardinality dnk−ρ. Therefore, we can say that t = dnj for 1 ≤ j ≤ k − ρ.
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Corollary 2.2.13. Let k > ρ, then the elements of the set

K =
{
b | b ≡ anr mod nk, gcd(a, n) = 1, 1 ≤ r ≤ k − 1

}
split up into

nρ − 1

d

cyclotomic coset with cardinality d.

Proof: By Lemma 2.2.11, the cardinality of the cyclotomic cosets is t = d,

if k − r ≤ ρ ⇒ k − ρ ≤ r. We have also r ≤ k − 1. Thus, there are totally

k−1∑
r=k−ρ

(
nk−r − nk−r−1

)
elements which are relatively prime to nk−r and splitting up into all cyclotomic

cosets with cardinality d. Since k − ρ ≤ r ≤ k − 1 then 1− k ≤ −r ≤ ρ− k. If

we change the variables

ρ−k∑
r=1−k

(
nk+r − nk+r−1

)
=

ρ−1∑
r=0

(
nk+r−k+1 − nk+r−k+1−1

)

=

ρ−1∑
r=0

(
nr+1 − nr

)

= (n− 1)

ρ−1∑
r=0

nr

= (n− 1)
nρ − 1

n− 1

= nρ − 1 .

Since the cardinalities of the cyclotomic cosets are d then there are

nρ − 1

d
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cyclotomic cosets.

�

Corollary 2.2.14. Let k > ρ, then there are

nρ−1 (n− 1)

d

cyclotomic coset with cardinality dnj where 1 ≤ j ≤ k − ρ.

Proof: By (2.15) t = dnj is the cardinality of the cyclotomic cosets mod nk

(relative to q) where 1 ≤ j ≤ k − ρ. The elements of the cyclotomic cosets

having cardinality dnj are elements which are relatively prime to nρ+j and the

number of these elements is nρ+j − nρ+j−1. Therefore, there are

nρ+j − nρ+j−1

dnj
=

nρ−1nj (n− 1)

dnj
=

nρ−1 (n− 1)

d

different cyclotomic cosets with cardinality dnj.

�

Theorem 2.2.15. Let S be a random N-periodic sequence with terms in Fq,

where N = nk where n is an odd prime different from p = char(Fq). If d is the

multiplicative order of q in Fn and qd = 1 + cnρ for some positive integers ρ, c

with gcd(n, c) = 1. Then we have

EN(L(S)) = N − 1

q
− (nσ − 1)

1

qd
− (n− 1)nσ−1

k−σ∑
j=1

nj

qdnj (2.16)

where σ = min(k, ρ).

Proof: If N = nk then gcd(p, N) = 1, by Corollary 2.1.2, we have

EN(L(S)) = N −
s∑

i=1

Φi

qli
.

Case 1: k ≤ ρ. C0 = {0} is the only cyclotomic coset mod nk with cardinality
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1. Thus,

Φ1 = 1

l1 = 1.

The other cyclotomic cosets mod nk, with non-zero elements, have cardinality

d by Lemma 2.2.8 and since there are nk − 1 non-zero elements we have

Φ2 = nk − 1

l2 = d.

Case 2: k > ρ. C0 = {0} is the only cyclotomic coset mod nk with cardinality

1. Thus,

Φ1 = 1

l1 = 1.

There are nρ − 1 elements in the cyclotomic cosets mod nk with cardinality d

by Corollary 2.2.12. So we have,

Φ2 = nρ − 1

l2 = d.

Finally, there are nρ+j−1(n− 1) elements in the cyclotomic cosets mod nk with

cardinality dnj where 1 ≤ j ≤ k − ρ, by Corollary 2.2.14. So we have,

Φ3 = nρ+j−1(n− 1)

l3 = dnj.
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Therefore, if k ≤ ρ, we have:

EN(L(S)) = N −
s∑

i=1

Φi

qli

= N − Φ1

ql1
− Φ2

ql2

= N − 1

q
− nk − 1

qd
, (2.17)

and for the second case if k > ρ, we have:

EN(L(S)) = N −
s∑

i=1

Φi

qli

= N − Φ1

ql1
− Φ2

ql2
−

k−ρ∑
j=1

Φj

qlj

= N − 1

q
− nρ − 1

qd
−

k−ρ∑
j=1

nρ+j−1(n− 1)

qdnj . (2.18)

To combine (2.17) and (2.18) if we take σ = min(ρ, k) then we get

EN(L(S)) = N − 1

q
− (nσ − 1)

1

qd
− (n− 1)nσ−1

k−σ∑
j=1

nj

qdnj .

�

Corollary 2.2.16. Let ρ = 1, then the expected value of the linear complexity

is

EN(L(S)) = N − 1

q
− (n− 1)

k−1∑
j=0

nj

qdnj . (2.19)
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Proof: If ρ = 1 then σ = min(ρ, k) = 1. Therefore,

EN(L(S)) = N − 1

q
− (nσ − 1)

1

qd
− (n− 1)nσ−1

k−σ∑
j=1

nj

qdnj

= N − 1

q
− n− 1

qd
− (n− 1)

k−1∑
j=1

nj

qdnj

= N − 1

q
− (n− 1)n0

qdn0 − (n− 1)
k−1∑
j=1

nj

qdnj

= N − 1

q
−

k−1∑
j=0

nj

qdnj

�

Corollary 2.2.17. Let k = 1, then the expected value of the linear complexity

is

EN(L(S)) = (N − 1)

(
1− 1

qd

)
+

q − 1

q
(2.20)

Proof: If k = 1 then N = nk = n and σ = min(ρ, k) = 1. Therefore,

EN(L(S)) = N − 1

q
− (nσ − 1)

1

qd
− (n− 1)nσ−1

k−σ∑
j=1

nj

qdnj

= N − 1

q
− (n− 1)

1

qd
− (n− 1)n1−1

1−1∑
j=1

nj

qdnj︸ ︷︷ ︸
0

= N − 1

q
− n− 1

qd

= N − 1

q
− N − 1

qd

= N − 1

q
− N

qd
+

1

qd

= N

(
1− 1

qd

)
+

1

qd
+ 1− 1− 1

q

= N

(
1− 1

qd

)
−
(

1− 1

qd

)
+ 1− 1

q

= (N − 1)

(
1− 1

qd

)
+

q − 1

q
.
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2.3 Counting the Number of Periodic Sequences

With Given Linear Complexity

For an N -periodic sequence S with terms in Fq, where p = char (Fq) and N = nk

such that n is an odd prime different from p, the GDFT of this sequence is an N -

tuple DFT. If d is the multiplicative order of q in Zn and qd = 1+ cn, such that

gcd(c, n) = 1, then the linear complexity of S is the linear combination of the

cardinalities of different cyclotomic cosets modulo nk (relative to q). Therefore,

by (1.9), we have

L(S) = a0 +
k∑

i=1

aidni−1 . (2.21)

In this equation, a0 ∈ {0, 1} represents the contribution of the singleton coset

C0 = {0} to the Günther Weight which is the Hamming Weight of N -tuple

DFT. The coefficients, ai, are to denote the number of different cyclotomic

cosets with cardinality dni−1. Here we have qd = 1 + cn, so the power of n,

which we denote it by ρ in the previous sections, is equal to 1. By Corollary

2.2.14, since ρ = 1, we have n−1
d

cyclotomic cosets with cardinality dni−1 where

i = 1, . . . , k. Therefore, the coefficients 1 ≤ ai ≤ n−1
d

.

So, we can choose ai different cosets with cardinality dni−1 in
(

n−1/d
ai

)
ways. In

the N -tuple DFT, the entry in the column that corresponds to the cyclotomic

cosets with cardinality dni−1 is an element of Fqdni−1 . If this entry contributes

the Hamming weight, we have qdni−1 − 1 choices for ai places. So there are(
n− 1/d

ai

)(
qdni−1 − 1

)ai

choices. for i ≥ 1. For i = 0, the entry that corresponds to the singleton coset

C0 is an element of Fq. So there are (q − 1)a0 possibilities. Then the number of
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sequences with the linear complexity L(S), NN(L(S)) is given by:

NN(L(S)) = (q − 1)a0

k∏
i=1

(
n− 1/d

ai

)(
qdni−1 − 1

)ai

Remark 2.3.1. If N is an odd prime different from p, that is N = n, then

the linear complexity can be written as L(S) = a0 + a1d where a0 ∈ {0, 1} and

0 ≤ a1 ≤ N−1
d

and the number of sequences with linear complexity L(S) is

NN(L(S)) = (q − 1)a0

(
n− 1/d

a1

)(
qd − 1

)a1

Lemma 2.3.2. Let q = 2, N = 2n−1, where n is a prime. If the multiplicative

order of q = 2 in Z∗N is d, then n = d.

Proof:

N = 2n − 1 ⇔ 2n − 1 ≡ 0 mod N

⇔ 2n ≡ 1 mod N.

Since d is the multiplicative order of 2 in Z∗N then d | n. On the other hand

2d = 1 + bN r for some r > 0 and b ∈ Z where gcd(b, N) = 1

2d = 1 + bN r ⇔ 2d − 1 = bN r

⇔ N = 2n − 1 | bN r = 2d − 1

⇔ 2n − 1 | 2d − 1

⇒ n ≤ d.

Since we have d | n and n ≤ d, n = d.

�

In the case that q = 2, N = 2n − 1, where n is a prime, the cardinality of any

cyclotomic coset modulo N has to divide n, since the multiplicative order of 2

is n Since n is prime, there are only cyclotomic cosets with cardinality 1 and n.
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The cyclotomic coset with cardinality 1 is C0 = {0}. N − 1 elements different

from 0 in ZN split up into N−1
n

cyclotomic cosets with cardinality n.

Theorem 2.3.3. Suppose q = 2 and N = 2n − 1, where n is a prime. If

L(S) = a0 + a1n, then

NN(a0 + a1n) =

(
N − 1/n

a1

)
Na1 where a0 ∈ {0, 1} and 0 ≤ a1 ≤ (N − 1)/n

and

EN(L(S)) = (N − 1)

(
1− 1

2n

)
+

1

2
.

Proof: We have n = d by Lemma 2.3.2. And we have L(S) = a0 + a1n.

There is 1 cyclotomic coset with cardinality 1, which is C0 = 0. The entry

of the DFT that corresponds to this cyclotomic coset is an element of F2. So

there are (2− 1)a0 = 1 way to choose this entry.

There are N−1
n

different cyclotomic cosets with cardinality n = d and a1 denotes

the number of cyclotomic cosets that contributes to the Günther weight. We can

choose these cyclotomic cosets in
(
(N−1)/n

a1

)
ways and the entries that correspond

to these cyclotomic cosets can be chosen in (2n−1)ai = Nai ways. So the number

of sequences having the linear complexity L(S) is

NN(c) =

(
N − 1/d

a1

)
Na1

There are N−1
n

cyclotomic cosets modulo N with cardinality n and one sin-

gleton coset. Hence we have by Corollary 2.1.2,

EN(L(S)) = N −
s∑

i=1

Φi

qli

= N − 1

2
− N − 1

2n

= N − 1 + 1− 1

2
− N − 1

2n

= (N − 1)(1− 1

2n
) +

1

2
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Remark 2.3.4. If N = pvn and n is a prime different from p, then Z∗n has n−1

elements and n−1
d

different cyclotomic cosets modulo n with cardinality d.

Theorem 2.3.5. Let S be an N-periodic sequence with terms in Fq where N =

pvn, p = char(Fq), and let n be a prime different from p. If d is the multiplicative

order of q in the prime field Fn. Then

EN(L(S)) = N − 1

q − 1

(
1− 1

qpn

)
− n− 1

qd − 1

(
1− 1

qdpv

)
(2.22)

Proof: We know that,

EN(L(S)) = N −
s∑

i=1

Φi ·
(
1− q−pvli

)
qli − 1

Since C0 = {0} is the only singleton coset, without loss of generality l1 = 1,

Φ1 = 1, the other n−1
d

cosets have cardinality d. Thus, l2 = d and Φ2 = n− 1.

Therefore,

EN(L(S)) = N − 1

q − 1

(
1− 1

q−pv

)
−

(n− 1)
(
1− q−pvd

)
qd − 1

�

S is an N -periodic sequence with terms in Fq, where N = pvn and n is a

prime different from p. Suppose that the Günther weight of The GDFT(SN),

which is equal to the linear complexity of the sequence N is L(S) = rd + s.

Then we have for this matrix:

0 ≤ s ≤ pv : s is counting the entries in the column which corresponds to

C0 = {0} and contributes the Günther Weight.

0 ≤ r ≤ pv n−1
d

: r is counting the entries in the columns which correspond to

the cyclotomic cosets with cardinality d and contributes to the Günther Weight.

Proposition 2.3.6. Let N = pvn and n be a prime. If q is a primitive element
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of the finite field Fn and pv < n− 1 then

NN (r(n− 1)) =
(
qn−1 − 1

)
q(n−1)(r−1) 1 ≤ r ≤ pv

NN(0) = 1

NN(r(n− 1) + s) = (q − 1)qs−1NN(r(n− 1)) 0 ≤ r ≤ pv1 ≤ s ≤ pv.

Proof: If q is a primitive element of Fn, then the multiplicative order of q is

n − 1. Therefore the only cyclotomic cosets are C0 = {0} and C1 = Fn \ {0}.
Then

L(S) =
h∑

i=1

wilji
0 ≤ wi ≤ pv

= r(n− 1) + s 0 ≤ r ≤ pv and 0 ≤ s ≤ pv.

Since pv < n − 1 then r < n − 1 and s < n − 1, so the representation of the

linear complexity is unique. Recall that s is the number of entries of the col-

umn that corresponds to the cyclotomic coset C0 = {0} and r is the number of

nonzero entries of the column that corresponds to the cyclotomic coset having

the cardinality n− 1.

If c = r(n − 1) that is the entries of the column that corresponds to the cy-

clotomic coset C0 = {0} are zero. For the other column where the entries are

elements of Fqn−1 to have the Günther Weight as r(n − 1) we have qn−1 − 1

choices for the first nonzero entry. For any entry below the first nonzero entry

there are qn−1 choices. Since there are r−1 entry for the rest we have (qn−1)r−1

choices. so there are (qn−1 − 1)(qn−1)r−1 matrices having the Günther Weight

as r(n− 1). Therefore,

NN (r(n− 1)) =
(
qn−1 − 1

)
q(n−1)(r−1).

If c = 0, since there is one zero matrix we have

NN(0) = 1.
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If L(S) = r(n − 1) + s, we have NN (r(n− 1)) choices for the entries of the

column that corresponds to the cyclotomic coset having the cardinality n − 1.

Of the column, where the entries are elements of Fq, that corresponds to the

cyclotomic coset C0 = {0}, we have q − 1 choices for the first nonzero entry.

Since below this entry there are s− 1 entries, we have qs−1 choices. Thus, there

are (q − 1)qs−1NN (r(n− 1)) different matrices having the Günther Weight as

r(n− 1) + s. Therefore,

NN(r(n− 1) + s) = (q − 1)qs−1NN(r(n− 1))

�
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PERIOD(N) EXPECTED VALUE

N = pvnk EN (L(S)) =
∑

S∈FN
q

p(S)L(S)

N = pvn EN (L(S)) = N −
∑s

i=1
Φi·(1−q−pvli )

qli−1

N = pvn EN (L(S)) > N − n
q−1

N = 2vn, p = 2 EN (L(S)) > N − n+2
3

N = n EN (L(S)) = N −
∑s

i=1
Φi

qli

N = n EN (L(S)) ≥
(
1− 1

q

)
N

N = n, p = 2 EN (L(S)) ≥ 3N−1
4

N = pv EN (L(S)) = N − 1
q−1

(
1− 1

qN

)
N = nk

n: prime
qd = 1 + cnρ EN (L(S)) = N − 1

q − (nσ − 1) 1
qd − (n− 1)nσ−1

∑k−σ
j=1

nj

qdnj

n 6= p
σ = min(k, ρ)
N = 2n − 1
n: prime EN (L(S)) = (N − 1)

(
1− 1

2d

)
+ 1

2

p = 2
N = pvn

n: prime EN (L(S)) = N − 1
q−1

(
1− 1

qpv

)
− n−1

qd−1

(
1− 1

qdpv

)
n 6= p

Table 2.1: The Expected Value of Linear Complexity for Different Cases of the
Period
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