
CONSTRUCTION OF SUBSTITUTION BOXES

DEPENDING ON LINEAR BLOCK CODES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SENAY YILDIZ

INPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF CRYPTOGRAPHY

SEPTEMBER 2004

Approval of the Graduate School of Applied Mathematics

Prof. Dr. Aydın AYTUNA

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

Prof. Dr. Ersan AKYILDIZ

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Melek D. YÜCEL

Supervisor

Examining Committee Members

Prof. Dr. Ersan AKYILDIZ

Prof. Dr. Kemal LEBLEBİCİOĞLU

Assoc. Prof. Dr. Ali DOĞANAKSOY

Assoc. Prof. Dr. Ferruh ÖZBUDAK

Assoc. Prof. Dr. Melek D. YÜCEL

Abstract

CONSTRUCTION OF SUBSTITUTION BOXES

DEPENDING ON LINEAR BLOCK CODES

Yıldız, Senay

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Melek D. YÜCEL

September 2004, 72 pages

The construction of a substitution box (S-box) with high nonlinearity and

high resiliency is an important research area in cryptography.

In this thesis, t-resilient n × m S-box construction methods depending on

linear block codes presented in “A Construction of Resilient Functions with

High Nonlinearity” by T. Johansson and E. Pasalic in 2000, and two years

later in “Linear Codes in Generalized Construction of Resilient Functions with

Very High Nonlinearity” by E. Pasalic and S. Maitra are compared and the

former one is observed to be more promising in terms of nonlinearity. The

first construction method uses a set of nonintersecting [n − d, m, t + 1] linear

block codes in deriving t-resilient S-boxes of nonlinearity 2n−1 − 2n−d−1, where

d is a parameter to be maximized for high nonlinearity. For some cases, we

have found better results than the results of Johansson and Pasalic, using their

construction.

As a distinguished reference for n×n S-box construction methods, we study

iii

the paper “Differentially Uniform Mappings for Cryptography” presented by K.

Nyberg in Eurocrypt 1993. One of the two constructions of this paper, i.e., the

inversion mapping described by Nyberg but first noticed in 1957 by L. Carlitz

and S. Uchiyama, is used in the S-box of Rijndael, which is chosen as the

Advanced Encryption Standard. We complete the details of some theorem and

proposition proofs given by Nyberg.

Keywords: S-box, nonlinearity, resiliency, nonintersecting linear block codes,

inversion mapping, differential uniformity.

iv

Öz

DOĞRUSAL BLOK KODLAR KULLANARAK

YERLEŞİM KUTULARININ OLUŞTURULMASI

Yıldız, Senay

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Melek D. YÜCEL

Eylül 2004, 72 sayfa

Kriptografide, eğriselliği ve esnekliği yüksek olan yerleşim kutularının oluş-

turulması önemli bir araştırma konusudur.

Bu tezde, T. Johansson ve E. Pasalic’in 2000’de yayınladığı, “A Construction

of Resilient Functions with High Nonlinearity” ile E. Pasalic ve S. Maitra’nın iki

yıl sonraki, “Linear Codes in Generalized Construction of Resilient Functions

with Very High Nonlinearity ” adlı makalelerinde tanıtılan, n×m boyutlu ve es-

nekliği t olan yerleşim kutusu tasarımları karşılaştırılarak, ilk yöntemin eğrisellik

açısından daha iyi değerler verdiği gözlemlenmiştir. İlk tasarım, esnekliği t ve

eğriselliği 2n−1−2n−d−1 olan yerleşim kutularını oluşturmak için, [n−d, m, t+1]

parametreleri ve kesişmeyen doğrusal blok kodlar kullanmaktadır. Burada d,

yerleşim kutusunun eğriselliğinin yüksek olması için mümkün olan en büyük

değerde seçilmesi gereken bir parametredir. Çalışmalarımızda, bazı durumlar

için Johansson ve Pasalic’in sonuçlarından daha iyileri, yine onların tasarımını

kullanarak elde edilmiştir.

K. Nyberg’in, n × n yerleşim kutusu tasarımında çok tanınan, 1993 Euro-

v

crypt konferansında sunduğu“Differentially Uniform Mappings for Cryptogra-

phy” adlı makalesini inceledik. Bu makaledeki iki yerleşim kutusu tasarımından

biri olan, daha önce 1957 yılında L. Carlitz and S. Uchiyama’nın fark ettiği, bir

cisim elemanının tersini alan fonksiyon, Gelişmiş Şifreleme Standardı olarak

seçilen Rijndael algoritmasının yerleşim kutusunda da kullanılmıştır. Nyberg

tarafından verilen bazı teorem ispatlarının ayrıntılarını tamamladık.

Anahtar Kelimeler: Yerleşim kutusu, eğrisellik, esneklik, kesişmeyen doğrusal

blok kodlar, ters fonksiyon, türevsel düzenlilik.

vi

to my parents,

vii

Acknowledgments

I express sincere appreciation to my supervisor Assoc. Prof. Dr. Melek D.

Yücel for her guidance, insight and cooperation throughout this study.

I am grateful to Assoc. Prof. Dr. Ali Doğanaksoy for guiding, encouraging

and motivating me throughout my education at METU.

I want to thank my parents for their support and all the beautiful things

that they have done for me.

I am also thankful to Çiğdem Özakın for her friendship that make me always

confident. I am also thankful to her for her help in typing this study.

I am grateful to Dilek Ünal for her being always with me.

I want to thank my homemates for their support and help at home.

I am thankful to Selçuk Kavut for helping me in the programming part of

this study.

I would like to thank to my managers and all my colleagues at RTB Eğitim

Çözümleri for their support and patience.

viii

Table of Contents

Abstract . iii

Öz . v

Acknowledgments . viii

Table of Contents . ix

List of Tables . xii

List of Figures . xiii

CHAPTER

1 Introduction . 1

2 Theoretical Background . 3

2.1 Boolean Functions . 3

2.2 Substitution Boxes . 7

2.3 Linear Block Codes . 9

2.4 Properties of Finite Fields . 9

ix

3 Differentially Uniform Mappings 14

3.1 Power Polynomials S(x) = x2k+1 in GF (2n) and Their Inverses . 15

3.2 The Mapping S(x) = x−1 in a Finite Field 22

4 A Construction Of Resilient Functions With High

Nonlinearity . 25

4.1 Construction of the Function . 25

4.2 How to Construct the Matrix A 29

4.3 Lower Bounds on the Cardinality of a Set of Linear Noninter-

secting Codes . 31

4.4 Our Example . 34

5 Linear Codes In Generalized Construction Of Re-

silient Functions With Very High Nonlinearity 37

5.1 Preliminaries . 38

5.2 Construction . 43

5.3 Further Improvements . 49

5.3.1 Improvement of Item 2 49

5.3.2 Improvement of Item 3 50

5.4 An 13 × 4 S-box Construction 53

6 Computational Results . 59

6.1 About Our Program . 60

6.2 Our Results and Comparison . 61

6.3 Number of Linear Block Codes in the Searched Space 64

x

7 Conclusion . 68

References . 70

xi

List of Tables

4.1 Highest Possible Nonlinearity and d Values, (nl(S)/dmax) of the Johansson

& Pasalic Construction for n × m S-boxes 36

6.1 Highest Achieved Nonlinearity and d Values (nl(S)/dused/dmax) for 1-resilient

n × m S-boxes . 63

6.2 Highest Achieved Nonlinearity and d Values (nl(S)/dused/dmax) for 2-resilient

n × m S-boxes . 63

6.3 Highest Achieved Nonlinearity and d Values (nl(S)/dused/dmax) for 3-resilient

n × m S-boxes . 64

6.4 Number of Codes and d Values (dused/dmax) for 1-resilient n × m S-boxes . 66

6.5 Number of Codes and d Values (dused/dmax) for 2-resilient n × m S-boxes . 66

6.6 Number of Codes and d Values (dused/dmax) for 3-resilient n × m S-boxes . 67

xii

List of Figures

6.1 Flowchart of the Program Finding the Maximum Possible Value of d . . . 61

6.2 Flowchart of the Main Program . 62

xiii

Chapter 1

Introduction

Substitution boxes (or S-boxes) are vector Boolean functions, which are used

frequently in cryptographic applications. Nonlinearity of an S-box must be high

for the resistance of block ciphers against linear cryptanalysis [Meier & Staffel-

bach, 1989], [Heys, 2001], [Knudsen & Robshaw, 1994]. Resiliency is another

important criterion in the design of S-boxes [Friedman, 1982], [Stinson, 1993],

[Zhang & Zheng, 1997]. However, constructing S-boxes with high nonlinearity

and resiliency is difficult [Stinson & Massey, 1995], [Cheon, 2001], [Kurosawa

& Satoh & Yamamoto, 1997], since nonlinearity and resiliency are conflicting

properties.

There are many S-box construction methods in the literature [Nyberg, 1993],

[Nyberg, 1990], [Nyberg, 1992], [Webster & Tavares, 1985], [Kurosawa & Satoh

& Yamamoto, 1997], [Johansson & Pasalic, 2000], [Pasalic & Maitra, 2002]. In

this thesis, we study four of them. Two of these construction methods [Nyberg,

1993] are power polynomials defined in finite fields. The others [Johansson &

Pasalic, 2000] and [Pasalic & Maitra, 2002] use the concept of linear block codes.

To provide the theoretical background for the thesis, some basic definitions

related to the Boolean functions, S-boxes and coding theory are reviewed in

Chapter 2. We then consider some properties of finite fields with particular

emphasis on the trace function.

In Chapter 3, we summarize the two n × n S-box constructions given by

1

Nyberg in [Nyberg, 1993]. One of them is the inverse of the power polynomial

S(x) = x2k+1 and the other is the inversion mapping S(x) = x−1, both defined in

GF (2n). We review the theorems and propositions used in these constructions

following Nyberg, and whenever needed, we provide the details of the proofs

to make them clearer. Both mappings have high nonlinearity, low differential

uniformity, high algebraic degree and computational efficiency. These methods

provide higher nonlinearity than the other methods we study in this thesis.

In Chapter 4, we review the construction method in [Johansson & Pasalic,

2000]. The method depends on finding a set of nonintersecting linear codes.

The main problem in this construction method is finding the desired number

of nonintersecting linear codes by a complete search. Moreover, there are some

restrictions on the choice of n, m and t for t-resilient n × m S-boxes. We have

implemented this method and for some values of n and m, we have found better

results for nonlinearity than the results in [Johansson & Pasalic, 2000].

In Chapter 5, we summarize the construction method in [Pasalic & Maitra,

2002]. This construction is similar to the method in [Johansson & Pasalic, 2000]

but it has the advantage of using only one linear code instead of using a set

of nonintersecting linear codes for the construction of an n × m S-box. Each

Boolean function is composed of a resilient function and a bent function. The

important point is finding 2m different bent functions. There are also some

restrictions on the choice of n, m and t for a t-resilient n × m S-box.

In Chapter 6, we present our programming results for the construction in

[Johansson & Pasalic, 2000] and make a comparison with the results in [Johans-

son & Pasalic, 2000] and [Pasalic & Maitra, 2002].

Conclusions are discussed in Chapter 7.

2

Chapter 2

Theoretical Background

In this chapter, first we review some basic definitions related to the Boolean

functions [Johansson & Pasalic, 2000], [Pasalic & Maitra, 2002] and [Siegen-

thaler, 1984]; S-boxes [Johansson & Pasalic, 2000], [Pasalic & Maitra, 2002]

and [Nyberg, 1993] and coding theory [Blahut, 1983]. Then, we consider some

properties of finite fields [Blahut, 1983] and [Lidl & Niederreiter, 1986] with

particular emphasis on the trace function, which is an important concept to be

used in the derivation of S-box properties.

2.1 Boolean Functions

Basic definitions and properties related with Boolean functions are stated below,

following the definition of a field.

Definition 2.1.1. A field F is a set that has two operations defined on it;

addition and multiplication, such that the following axioms are satisfied:

1. F is an abelian group under addition.

2. F is closed under multiplication and the set of nonzero elements is an

abelian group under multiplication.

3. The distributive law (a + b)c = ac + bc holds for all a, b, c ∈ F .

3

The field of real numbers (R), the field of complex numbers (C) and the field

of rational numbers (Q) are fields with infinite number of elements. A field with

q elements, if it exists, is called a finite field, or a Galois Field, and is denoted

by GF (q) or Fq.

The smallest field is the field with elements 0 and 1. It is denoted by

GF (2). The addition and multiplication operations in GF (2) are addition and

multiplication in mod 2.

Definition 2.1.2. A Boolean function f(x) : GF (2)n → GF (2) is the function

which has the input all of the possible n tuples x = (x1, ..., xn) of GF (2) and

produces an output of one bit. The set of all n-variable Boolean functions are

denoted by Vn.

Definition 2.1.3. The truth table Tf of a Boolean function f is a 1× 2n vector

defined as Tf = [f(α0), f(α1), . . . , f(α2n−1)], where αi denotes the n-bit vector

which corresponds to the binary representation of the integer i = 0, 1, ..., 2n−1.

Definition 2.1.4. The sequence vector Sf of a Boolean function f is a 1 × 2n

vector defined as Sf = [(−1)f(α0), (−1)f(α1), ..., (−1)f(α2n
−1)], where αi denotes

the n-bit vector which corresponds to the binary representation of the integer

i = 0, 1, ..., 2n − 1.

Definition 2.1.5. A Boolean function f is called an affine function if it is in

the form: f(x) = b1x1 ⊕ b2x2 ⊕ . . .⊕ bnxn ⊕ c = w · x ⊕ c, where b1, b2, . . . , bn, c

are elements of GF (2), w and x are elements of GF (2)n and ⊕ and · denote

addition and inner product operations in GF (2). f is called linear if c = 0.

The set of all n-variable affine Boolean functions are denoted by An and the set

of all n-variable linear Boolean functions are denoted by Ln.

Definition 2.1.6. The Hamming weight of a vector w ∈ GF (2)n is the number

of its nonzero components denoted by wt(w).

Definition 2.1.7. The Hamming weight of a Boolean function f is the Ham-

ming weight of its truth table Tf . Then, wt(f) = wt(Tf) can be written.

4

Definition 2.1.8. The Hamming distance between two Boolean functions f

and g is defined as d(f, g) = wt(Tf ⊕ Tg).

Since Boolean functions are the basic components of many cryptosystems,

they have an important role in the design of cryptosystems. They should have

some cryptographic properties such as high resiliency for stream ciphers and

high nonlinearity for block ciphers. Let’s look at some of these properties.

Definition 2.1.9. A Boolean function f is called balanced if wt(f) = 2n−1, i.e.,

there must be equal number of 1’s and 0’s in the truth table of f .

Definition 2.1.10. The nonlinearity of a Boolean function f : GF (2)n →

GF (2) is the minimum Hamming distance of f from the set of all n-variable

affine functions; to be denoted by nl(f).

Definition 2.1.11. Let f(x1, ..., xn) be an n-variable Boolean function. f can

be represented as

f(x) = a0 ⊕
n

⊕

i=1

aixi ⊕
⊕

1≤i6=j≤n

aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn

where the coefficients a0, ai, aij, . . . , a12...n ∈ {0, 1}. This representation is called

the algebraic normal form(ANF) of f . The number of variables in the highest

order product term with nonzero coefficient is called the algebraic degree or

simply degree of f .

Definition 2.1.12. The Walsh transform of f is a real-valued function over

GF (2)n defined as

Wf (w) =
∑

x∈GF (2)n

(−1)f(x)(−1)x·w (2.1)

where w, x ∈ GF (2)n.

The nonlinearity criterion of Boolean functions can be quantified through

the Walsh transform as follows:

5

Definition 2.1.13. Let f(x1, ..., xn) be an n-variable Boolean function. Then

nl(f) = 2n−1 −
1

2
max

w∈GF (2)n
|Wf(w)|.

Definition 2.1.14. Let f(x1, ..., xn) be an n-variable Boolean function. If n

is even and f has the maximum nonlinearity, then f is called a bent function.

The nonlinearity of bent functions is nl(f) = 2n−1 − 2
n
2
−1.

The following lemma was first proved by [Siegenthaler, 1984] and character-

izes the correlation immunity in the Walsh transform domain.

Lemma 2.1.15. A Boolean function f is mth order correlation immune iff

Wf (w) = 0, w|1 ≤ wt(w) ≤ m, ∀w ∈ GF (2)n.

Definition 2.1.16. An mth order correlation immune Boolean function which

is balanced is called an mth order resilient (m-resilient) function, i.e., iff

Wf(w) = 0, w|wt(w) ≤ m, ∀w ∈ GF (2)n (2.2)

[Siegenthaler, 1984] proved a fundamental relation between the number of

variables n, degree d and order of correlation immunity m of a Boolean function:

m + d ≤ n. Moreover, if the function is balanced then m + d ≤ n − 1.

Definition 2.1.17. Let f1 and f2 be (n − 1)-variable Boolean functions. The

concatenation of f1 and f2 is an n-variable function

f(x1, . . . , xn) = (1 ⊕ xn)f1(x1, . . . , xn−1) ⊕ xnf2(x1, . . . , xn−1)

and denoted by f = f1||f2. The truth tables of f1 and f2 are concatenated to

provide the truth table of the n-variable function defined above.

In cryptographic applications with stream ciphers, nonlinear Boolean func-

tions are needed to combine linear feedback shift registers, while constructing

keystream generators. These Boolean functions must satisfy certain properties,

6

i.e., balancedness, high nonlinearity, high algebraic degree and high resiliency, in

order to increase the time/space complexity of the attacks such as Berlekamp-

Massey linearity synthesis attack [Menezes, Oorschot, Vanstone, 1997] and dif-

ferent linear approximation attacks. Boolean functions are also used in block

ciphers as component functions of the S-boxes. Now, let’s look at the definition

and some properties, which an S-box must satisfy.

2.2 Substitution Boxes

Basic definitions and properties related with S-boxes are stated below.

Definition 2.2.1. A function of the form S : GF (2)n → GF (2)m is called an

n×m S-box, which takes n bits as the input and outputs m bits. If each output

bit is called the n-variable Boolean function fi, then S(x) = (f1(x), . . . , fm(x))

where x ∈ GF (2)n.

Usually, S-boxes are the only nonlinear parts of block ciphers. Below, we

summarize some definitions related with the S-boxes.

Definition 2.2.2. The nonlinearity of an S-box, S(x) = (f1(x), . . . , fm(x)), is

the minimum of the nonlinearities of the Boolean functions formed by any linear

combination of component functions, i.e.,

nl(S) = min
f

(nl(f)) = min
f

{nl(f)|f =
m

⊕

i=1

jifi(x)}

Definition 2.2.3. The algebraic degree of an S-box is the minimum of degrees

of all nonzero linear combinations of the component functions of S, namely

deg(S) = min
f

deg{f |f =
m

⊕

i=1

jifi(x)}

Definition 2.2.4. An n×m S-box is t-resilient if and only if all nonzero linear

combinations
m
⊕

i=1

jifi(x) of f1(x), f2(x), . . . , fm (x) are t-resilient.

7

Definition 2.2.5. Let S = (f1, f2, ..., fm) be a function from GF (2)n to GF (2)m

where 1 ≤ m ≤ n and let x = (x1, x2, ..., xn) ∈ GF (2)n.

1. S is said to be unbiased with respect to a fixed subset T = {j1, j2, . . . , jt}

of {1, 2, . . . , n} if for every (a1, a2, . . . , at) ∈ GF (2)t,

(f1(x), . . . , fm(x))|(xj1 = a1, . . . , xjt
= at)

runs through all the vectors in GF (2)m, each 2n−t−m times when (xi1 , . . . ,

xin−t
) runs through GF (2)n−t, where t ≥ 0, {i1, . . . , in−t} = {1, ..., n} −

{j1, ..., jt} and i1 < i2 . . . < in−t. In other words, if we fix any t bits of

n-bit input, output runs through all the vectors in GF (2)m each 2n−t−m

times when the unfixed input runs through GF (2)n−t.

2. S is a t-resilient function if S is unbiased with respect to every T ⊆

{1, ..., n} with |T | = t. In other words, if all possible t bits in the input

are fixed, the output will be uniform.

Lemma 2.2.6. A function S = (f1, f2, ..., fm), where each fi, 1 ≤ i ≤ m,

is a function from GF (2)n to GF (2) is uniformly distributed (unbiased) iff all

nonzero linear combinations of f1, f2, . . . , fm are balanced.

Definition 2.2.7. Let GF (2)n and GF (2)m be finite vector spaces. A mapping

S : GF (2)n → GF (2)m is called differentially δ-uniform if for all α ∈ GF (2)n,

α 6= 0 and β ∈ GF (2)m, |{z ∈ GF (2)n|S(z + α) + S(z) = β}| ≤ δ.

Proposition 2.2.8. Let A : GF (2)n → GF (2)n and B : GF (2)m → GF (2)m

be group isomorphisms and S : GF (2)n → GF (2)m be differentially δ-uniform.

Then B ◦ S ◦ A is differentially δ-uniform.

Proposition 2.2.9. Let S : GF (2)n → GF (2)n be a differentially δ-uniform

bijection. Then the inverse mapping of S is also differentially δ-uniform.

8

2.3 Linear Block Codes

In this section, there are some basic definitions and a useful theorem from coding

theory [Blahut, 1983].

Definition 2.3.1. A block code of size M over an alphabet with q symbols is

a set of M , q-ary sequences of length n called codewords. If q = 2, the symbols

are called bits. Usually, M = qk for some integer k. Then the code is called

(n, k) code.

Definition 2.3.2. A linear block code is a subspace of GF (q)n. That is, a linear

code is a nonempty set of n tuples over GF (q) (codewords) such that the sum

of two codewords is a codeword, and the product of any codeword by a field

element is a codeword. Any set of basis vectors for the subspace can be used as

rows to form a k × n matrix G, called the generator matrix of the code. Any

codeword is a linear combination of the rows of G.

In any linear code, the all zero word, as the vector space origin, is always a

codeword.

Definition 2.3.3. Let C = {ci, i = 0, ..., M −1} be a code. Then the minimum

distance of C is the Hamming distance of the pair of codewords with smallest

Hamming distance.

An (n, k) block code with minimum distance d∗ is also described as an

(n, k, d∗) block code.

Theorem 2.3.4. (Singleton Bound) The minimum distance of any linear

(n, k, d∗) code satisfies d∗ ≤ n − k + 1.

2.4 Properties of Finite Fields

The following definitions, properties and proofs are taken from [Blahut, 1983]

and [Lidl & Niederreiter, 1986].

9

Definition 2.4.1. If successively adding the multiplicative identity 1 to itself in

GF (q) never gives 0, then we say that GF (q) has characteristic zero. Otherwise,

there is a prime number p such that 1 + 1 + . . . + 1 (p times) equals 0, and p is

called the characteristic of the field GF (q). Then q is a power of p.

Definition 2.4.2. Let GF (q)∗ denote the set of nonzero elements of the finite

field GF (q). The order of a ∈ GF (q)∗ is the least positive integer k such that

ak = 1.

Definition 2.4.3. Let GF (q) be a field. A subset of GF (q) is called a subfield

if it is a field under the inherited addition and multiplication. The original field

is then called an extension field of the subfield.

Let’s now look at some basic properties of Galois fields [Blahut, 1983] and

[Lidl & Niederreiter, 1986]:

1. The order of any a ∈ GF (q)∗ divides q − 1.

2. If GF (q) is a finite field with q elements, then every a ∈ GF (q) satisfies

aq = a.

3. In any finite field, the number of elements is a power of a prime.

4. If p is prime and m is positive integer, the smallest subfield of GF (pm) is

GF (p).

5. In a finite field of characteristic 2, −β = β for every β in the field.

6. If p is a prime and m is an integer, then there is a finite field with pm

elements.

7. If n divides m, GF (pn) is a subfield of GF (pm).

8. (a + b)p = ap + bp in any field of characteristic p, for every a, b ∈ GF (q).

Definition 2.4.4. For α ∈ F = GF (qm) and K = GF (q), the trace TrF/K(α)

of α over K is defined by TrF/K(α) = α + αq + . . . + αqm−1
.

10

In particular, TrF/K(α) is always an element of c ∈ K = GF (q).

Theorem 2.4.5. Let K = GF (q) and F = GF (qm). Then the trace function

TrF/K satisfies the following properties:

1. TrF/K(α + β) = TrF/K(α) + TrF/K(β) for all α, β ∈ GF (qm).

2. TrF/K(cα) = cTrF/K(α) for all c ∈ GF (q), α ∈ GF (qm).

3. TrF/K is a linear transformation from GF (qm) onto GF (q), where both

GF (qm) and GF (q) are viewed as vector spaces over GF (q).

4. TrF/K(a) = ma for all a ∈ GF (q).

5. TrF/K(αq) = TrF/K(α) for all α ∈ GF (qm).

Proof:

1. For α, β ∈ GF (qm), use property 8 to get

TrF/K(α + β) = α + β + (α + β)q + . . . + (α + β)qm−1

= α + β + αq + βq + . . . + αqm−1

+ βqm−1

= α + αq + . . . + αqm−1

+ β + βq + . . . + βqm−1

= TrF/K(α) + TrF/K(β)

2. For c ∈ GF (q), we have cqj

= c for all j ≥ 1 by property 2. Therefore, for

α ∈ GF (qm),

TrF/K(cα) = cα + cqαq + . . . + cqm−1

αqm−1

= cα + cαq + . . . + cαqm−1

= c(α + αq + . . . + αqm−1

)

= cTrF/K(α)

11

3. By parts 1 and 2, TrF/K(α) is always an element of K. Moreover, the prop-

erties 1 and 2 show that TrF/K is a linear transformation from GF (qm)

into K. To show that this mapping is onto, it is enough to show that

∃α ∈ GF (qm) with TrF/K(a) 6= 0. Now, TrF/K(a) = 0 iff a is a root of

the polynomial xqm−1
+ . . . + xq + x ∈ K[x] in GF (qm). This polynomial

can have at most qm−1 roots in GF (qm) and GF (qm) has qm elements.

So, a cannot be a root of this polynomial.

4. By definition of the trace function and property 2,

TrF/K(a) = a + aq + . . . + aqm−1

= a + a + . . . + a (m times)

= ma

5. For α ∈ GF (qm), αqm

= α by property 2, and so

TrF/K(αq) = αq + . . . + αqm

= TrF/K(α)

�

Theorem 2.4.6. Let F = GF (qm) be a finite extension of the finite field

K = GF (q), both considered as vector spaces over GF (q). Then the linear trans-

formations from GF (qm) into GF (q) are exactly the mappings Lβ, β ∈ GF (qm),

where Lβ(α) = TrF/K(βα) for all α ∈ GF (qm). Furthermore, Lβ 6= Lγ when-

ever β and γ are distinct elements of GF (qm).

Proof: Each mapping Lβ is a linear transformation from GF (qm) into GF (q)

12

by Theorem 2.4.5 item 3. For β, γ ∈ F with β 6= γ, we have

Lβ(α) − Lγ(α) = TrF/K(βα) − TrF/K(γα)

= TrF/K((β − γ)α)

6= 0

for suitable α ∈ GF (qm) since TrF/K maps GF (qm) onto GF (q), and so the

mappings Lβ and Lγ are different. The mappings Lβ yield qm different linear

transformations from GF (qm) into GF (q). On the other hand, every linear

transformation from GF (qm) into GF (q) can be obtained by assigning arbitrary

elements of GF (q) to the m elements of a given basis of GF (qm) over GF (q).

Since this can be done in qm different ways, the mappings Lβ already exhaust

all possible linear transformations from GF (qm) into GF (q). �

13

Chapter 3

Differentially Uniform

Mappings

S-box construction is one of the most important topics in cryptography. Be-

ing the only nonlinear part of a block cipher, the S-box should be constructed

such that, its nonlinearity is as high as possible. There are many construc-

tion methods in the literature: [Nyberg, 1993], [Nyberg, 1990], [Nyberg, 1992],

[Webster & Tavares, 1985], [Kurosawa & Satoh & Yamamoto, 1997], [Johansson

& Pasalic, 2000], [Pasalic & Maitra, 2002].

[Nyberg, 1993] gives two examples of transformations of GF (2n) with high

nonlinearity, high nonlinear order and efficient construction and computability,

which we review in this chapter. The first one is the power polynomial S(x) =

x2k+1 and its inverse. The second transformation is the inversion mapping

S(x) = x−1 which is used in the Advanced Encryption Standard (Rijndael).

We complete the details of the Nyberg’s proofs in Propositions 3.1.1 and

3.2.1.

14

3.1 Power Polynomials S(x) = x2k+1 in GF (2n)

and Their Inverses

In this section, we review the properties of the power polynomial S(x) = x2k+1

and its inverse [Nyberg, 1993].

Proposition 3.1.1. Let S(x) = x2k+1 be a power polynomial in GF (2n) and

let s = gcd(k, n). Then S is differentially 2s uniform. If n
s

is odd, that is, S

is a permutation, then the Hamming distance of the Boolean function fw(x) =

tr(wS(x)) from the set of linear Boolean functions is equal to 2n−1−2
n+s

2
−1, for

all w ∈ GF (2n), w 6= 0.

Proof: If the number of x vectors satisfying the inequality, S(x+α)+S(x) <

β is 2s or less for given α, β ∈ GF (2n), then S(x) = x2k+1 is differentially 2s

uniform. One needs to show that

(x + α)2k+1 + x2k+1 = β (3.1)

has 2s solutions or less, where s=gcd(k, n). Equation (3.1) has either zero or at

least two solutions since:

(x + α)2k+1 + x2k+1 = β

(x + α)2k

(x + α) + x2k+1 = β

(x2k

+ α2k

)(x + α) + x2k+1 = β

x2k+1 + x2k

α + α2k

x + α2k+1 + x2k+1 = β

x2k

α + α2k

x + (α2k+1 + β) = 0

If k = 1, this is a 2nd degree equation and it has 2 solutions. Now, assume x1

and x2 are two different solutions. Then

(x1 + α)2k+1 + x2k+1
1 = β (3.2)

15

(x2 + α)2k+1 + x2k+1
2 = β (3.3)

Adding equations (3.2) and (3.3),

(x1+α)2k+1+x2k+1
1 +(x2+α)2k+1+x2k+1

2 = 0

(x2k

1 +α2k

)(x1+α)+x2k+1
1 +(x2k

2 +α2k

)(x2+α)+x2k+1
2 = 0

x2k+1
1 +αx2k

1 +α2k

x1+α2k+1+x2k+1
1 +x2k+1

2 +αx2k

2 +α2k

x2+α2k+1+x2k+1
2 = 0

αx2k

1 +αx2k

2 +α2k

x1+α2k

x2 = 0

(x2k

1 +x2k

2)α+(x1+x2)α
2k

= 0

(x1+x2)
2k

α+(x1+x2)α
2k

= 0 (divide by α(x1+x2)) (3.4)

(x1+x2)
2k−1+α2k−1 = 0

(x1+x2)
2k−1 = α2k−1

Since gcd(n, k) = s, ∃c ∈ Z+ s.t. n = cs ⇒ 2s − 1 divides 2n − 1. Also,

∃c′ ∈ Z+ s.t. k = c′s ⇒ 2s − 1 divides 2k − 1. Then one can write 2k − 1 =

(2s−1)c′′. If n = cs, then there exists a subfield G with 2s elements s.t. ∀g ∈ G,

g2s−1 = 1. Now, x1 + x2 = α is a solution. Then x1 + x2 = αg is also a solution

since g2k−1 = (g2s−1)c
′′

= 1. Then one can write (x1 + x2)
2k−1 = (gα)2k−1 =

g2k−1α2k−1 = α2k−1 ⇒ x1 + x2 ∈ α(G\{0}).

Secondly, to compute the nonlinearity, as nl(fw(x)) = 2n−1 − 2
n+s
2

−1, it is

enough to show max
t∈GF (2n)

|Wfw
(t)| = 2

n+s
2 using the Walsh transform defined by

equation (2.1). Let t ∈ GF (2n). Then

(Wfw
(t))2 =

∑

x∈GF (2n)

(−1)fw(x)+t·x
∑

y∈GF (2n)

(−1)fw(x+y)+t·(x+y)

=
∑

y∈GF (2n)

(−1)t·y
∑

x∈GF (2n)

(−1)fw(x+y)+fw(x) (3.5)

16

Let y 6= 0. Consider the linear mapping

φ : x → S(x + y) + S(x) + S(y) (3.6)

S(x + y) + S(x) + S(y) = (x + y)2k+1 + x2k+1 + y2k+1

= (x + y)2k

(x + y) + x2k+1 + y2k+1

= (x2k

+ y2k

)(x + y) + x2k+1 + y2k+1

= x2k+1 + x2k

y + xy2k

+ y2k+1 + x2k+1 + y2k+1

= x2k

y + xy2k

Let Ey denote the range of the mapping (3.6), and find its kernel.

x ∈ Ker(φ) ⇒ x2k

y + y2k

x = 0 (3.7)

Since equation (3.7) is similar to equation (3.4), the kernel of this linear mapping

is yG. The dimension of yG is s, the dimension of GF (2n)is n, so the dimension

of the linear space Ey is n − s. Note that the trace function

tr(wβ) : Ey → GF (2) (3.8)

maps each β ∈ Ey to an element of GF (2). If the trace function is onto, then

dim (Ey) = dim (ker(tr(wβ))) + dim(Im(tr(wβ)))

Then n− s = dim (ker(tr(wβ)))+1, and so dim (ker(tr(wβ))) = n− s− 1. This

means that the function tr(wβ) takes the value 0 for 2n−s−1 times and the value

1 for 2n−s−1 times. Then
∑

β∈Ey

(−1)tr(wβ) = 0. Consider the case when the trace

function is not onto. The trace function takes the value 0 at least once. But,

since this function is not onto, the trace function must always take the value

0. Then tr(wβ)) = 0. Then it can be concluded that, for each y 6= 0, either

tr(wβ) = 0 for all β ∈ Ey or
∑

β∈Ey

(−1)tr(wβ) = 0. The vectors y which gives

17

tr(wβ)) = 0 for all β ∈ Ey form a linear subspace Y , i.e.,

Y = y|tr(wβ) = 0, ∀β ∈ Ey (3.9)

fw(x + y) + fw(x) + fw(y) = tr(w(x2k

y + y2k

x)) = 0. Now, if we use these ideas

in equation (3.5), we get the equation

(Wfw
(t))2 =

∑

y∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)fw(x+y)+fw(x)

+
∑

y/∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)tr(w(x2k
y+y2k

x))+fw(y)

When y ∈ Y , fw(x + y) + fw(x) = fw(y). When y /∈ Y , fw(x + y) + fw(x) =

tr(w(x2k

y + y2k

x)) + fw(y). Then,

(Wfw
(t))2 =

∑

y∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)fw(x+y)+fw(x)

+
∑

y/∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)tr(w(x2k
y+y2k

x))+fw(y)

=
∑

y∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)fw(y)

+
∑

y/∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)tr(w(x2k
y+y2k

x))+fw(y)

=
∑

y∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)fw(y)

+
∑

y/∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)tr(w(x2k
y+y2k

x))(−1)fw(y)

=
∑

y∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)fw(y)

+
∑

y/∈Y

(−1)t·y(−1)fw(y)
∑

x∈GF (2n)

(−1)tr(w(x2k
y+y2k

x))

Note that,
∑

x∈GF (2n)

(−1)tr(w(x2k
y+y2k

x)) = 0 by considering the map

υ : GF (2n) → GF (2)

18

x → tr(w(x2k

y + y2k

x)) (3.10)

The map (3.10) is linear and onto so half of the values of the function must be

1 and half of them is 0. Then
∑

x∈GF (2n)

(−1)tr(w(x2k
y+y2k

x)) = 0. Combining this,

(Wfw
(t))2 =

∑

y∈Y

(−1)t·y
∑

x∈GF (2n)

(−1)fw(y)

=
∑

y=0

(−1)t·y
∑

x∈GF (2n)

(−1)fw(y) +
∑

y∈Y \{0}

(−1)t·y
∑

x∈GF (2n)

(−1)fw(y)

= 2n + 2n
∑

y∈Y \{0}

(−1)t·y+fw(y)

By definition of Y by equation (3.10), the function fw is linear on Y . Hence it

remains to show that Y has 2s elements. Since fw is linear on Y , then

Wfw
(t) =

∑

x∈GF (2n)

(−1)fw(x)+t·x = 2nδ(t + t0)

Wfw
(t) takes the value 2n for t = t0. Otherwise the value of the function is 0.

Then one can write

Wfw
(t0) =

∑

x∈GF (2n)

(−1)fw(x)+t0 ·x = 2n

Then (−1)fw(x)+t0 ·x = 1, so fw(x) + t0 · x = 0. Since Y ⊂ GF (2n), we can write

Wfw
(t) =

∑

y∈Y \{0}

(−1)fw(t)+t·y = 2s−1δ(t + t0)

fw(x) + t0 · x = 0 ⇒ Wfw
(t) = 2s−1. Then we get the conclusion. Let y ∈

Y . Then tr(wyx2k

) = tr(wy2k

x) = tr(w2k

y22k

x2k

) for all x ∈ GF (2n). (This

equation is due to the linearity of fw and the properties of the trace function.)

19

Then,

tr(wyx2k

) = tr(w2k

y22k

x2k

)

wy = w2k

y22k

wy

wy
=

w2k

y22k

wy
(y 6= 0)

1 = w2k−1y22k−1

Note that y22k−1 = (y2k
)2

y
= y2k−1y2k

. Then;

1 = w2k−1y2k−1

1 = (wS(y))2k−1(S(y) = y2k+1) (3.11)

From equation (3.11), 2s−1 nonzero solutions y can be found, since S is assumed

to be a permutation. This completes the proof.

�

Remark 3.1.2. One can observe the following arguments due to Proposition

3.1.1:

1. ∀x ∈ GF (2n), the resulting Boolean function fw(x) = tr(wS(x)) is one

of the linear combination of component functions of S(x) : GF (2n) →

GF (2n).

2. If n is odd, 1 < k < n and gcd(n, k) = 1, then the power polynomial

S(x) = x2k+1 in GF (2n) is a differentially 2-uniform permutation.

3. If n = 2m for some m ∈ Z+, then S(x) = x2k+1 in GF (2n) is never a

permutation. If n
s

is odd, S is permutation.

Let w2(k) denote the 2-weight of a non-negative integer k. The following

proposition is well-known and stated with proof in [Carlet, 1990].

Proposition 3.1.3. Let w ∈ GF (2n), w 6= 0 and let x → xe be a permutation

of GF (2n). Then deg(tr(wxe)) = w2(e).

20

The permutations x → x2k+1 in GF (2n), n odd, are highly nonlinear, resis-

tant against the differential cryptanalysis and have efficient construction and

computability but their output functions are only quadratic as stated in [Ny-

berg, 1993]. Their inverses, however, have degrees linearly growing with n

[Nyberg, 1993].

Proposition 3.1.4. Let n be odd, gcd(n, k) = 1 and S(x) = x2k+1. Then

S−1(x) = xl,

where

l =
2k(n+1)

22k − 1
=

n−1
2

∑

i=0

22ik mod(2n − 1)

with w2(l) = n+1
2

.

Proof:

l(2k + 1) =

n−1
2

∑

i=0

2(2i+1)k +

n−1
2

∑

i=0

22ik mod(2n − 1)

=

n
∑

i=0

2ik mod(2n − 1)

=

n
∑

i=0

2i mod(2n − 1) (3.12)

= 2n+1 − 1 mod(2n − 1)

= 1 mod(2n − 1)

where the equality (3.12) follows from the fact that the mapping i → ki per-

mutes the integers modulo n if gcd(n, k) = 1.

�

As a conclusion of this section, the following properties of the inverse of

21

S(x) = x2k+1 in GF (2n) with n odd and gcd(n, k) = 1 can be listed:

1. nl(S−1) = min
w 6=0

min
L∈Ln

min
x∈GF (2n)

d(tr(wS−1(x)), L(x)) = 2n−1 − 2
n−1

2 .

2. deg(tr(wS−1(x))) = w2((2
k + 1)−1 mod(2n − 1)) = n+1

2
.

3. S−1 is differentially 2-uniform.

4. Using the fast exponentiation algorithm, the computation of S−1(x) is

of poynomial time requiring n−1
2

squarings and n−1
2

multiplications in

GF (2n).

3.2 The Mapping S(x) = x−1 in a Finite Field

The inverse mapping S : GF (2n) → GF (2n) is first noticed in 1957 by Carlitz

and Uchiyama [Carlitz & Uchiyama, 1957] and defined [Nyberg, 1993] by S(x) =

x−1 if x 6= 0 and S(x) = 0 if x = 0. The differential uniformity and nonlinearity

properties of inversion mapping are as follows:

Proposition 3.2.1. The inversion mapping is differentially 4- uniform if n is

even and differentially 2-uniform if n is odd. Moreover,

nl(S) = min
w 6=0

min
L∈Ln

min
x∈GF (2n)

d(tr(wx−1), L(x)) ≥ 2n−1 − 2
n
2 .

Proof: Let α, β ∈ GF (2n) and α 6= 0 and look at the solutions of the

following equation:

(x + α)−1 − x−1 = β (3.13)

It is enough to show that, the equation (3.13) has a solution set consists of at

most 2 elements if n is odd and consists of 4 elements if n is even. Assume that

22

x 6= 0 and x 6= −α. Then multiplying equation (3.13) by x(x + α);

x(x + α)[(x + α)−1 − x−1] = βx(x + α)

x − (x + α) = βx(x + α)

−α = βx2 + αβx

βx2 + αβx + α = 0 (3.14)

Equation (3.14) has at most two solutions in GF (2n). If either x = 0 or x = −α

is solution to (3.13), then both of them are solutions and β = α−1. Then (3.14)

is equivalent to

ββ−1x2 + αββ−1x + αβ−1 = 0 (multiply equation (3.14) by β−1)

x2 + αx + α2 = 0 (β = α−1 ⇒ β−1 = α) (3.15)

Equation (3.15) gives 2 more solutions to (x+α)−1−x−1 = β. Let’s solve equa-

tion (3.14) in the special case in GF (2n). By squaring (3.14) and substituting

x2 = αx + α2,

(x2 + αx + α2)2 = x4 + α2x2 + α4

= x4 + α2(αx + α2) + α4

= x4 + α3x + α4 + α4

= x(x3 + α3)

If gcd(3, 2n − 1) = 1 or equivalently n is odd, x(x3 + α3) has no other solutions

than x = 0 or x = α. If n is even, 3 divides 2n − 1. Let d = 1
3
(2n − 1). Then

there are two more solutions which are x = α1+d and x = α1+2d. Then S is

differentially 2-uniform if n is odd and differentially 4-uniform if n is even.

Now, to show nl(S) ≥ 2n−1 − 2
n
2 , it is enough to show max|WS(t)| ≤ 2

n
2
+1, i.e.,

23

max|W 2
S(t)| ≤ 2n+2 as in the equation

W 2
S(t) = 2n + 2n

∑

y∈Y \{0}

(−1)ty+fw(y)

where Y is the subspace which is defined similarly as in the first section.

If n is odd, G = {0, 1}, i.e., has only two elements. Then

W 2
S(t) = 2n + 2n

∑

y∈Y \{0}

(−1)ty+fw(y)

= 2n + 2n × 1

= 2n+1

Then W 2
S(t) ≤ 2n+2.

If n is even, G = {0, 1, αd, α2d}, i.e., G has four elements. Then

W 2
S(t) = 2n + 2n

∑

y∈Y \{0}

(−1)ty+fw(y)

= 2n + 2n × 3

= 2n+2

Then W 2
S(t) ≤ 2n+2. �

Remark 3.2.2. As a conclusion of this section, the following properties of the

inverse mapping can be listed:

1. nl(S) = min
w 6=0

min
L∈Ln

min
x∈GF (2n)

d(tr(wS(x)), L(x)) ≥ 2n−1 − 2
n
2 .

2. deg(tr(wx−1)) = w2(2
n − 2) = n − 1.

3. S is differentially 2-uniform if n is odd and it is differentially 4-uniform if

n is even.

4. The Euclidean algorithm computes x−1 in polynomial time with respect

to n.

24

Chapter 4

A Construction Of Resilient

Functions With High

Nonlinearity

In this chapter, the n×m S-box (where m < n) construction method introduced

in [Johansson & Pasalic, 2000] is described in Sections 4.1 and 4.2. Section 4.3

gives the lower bounds on the cardinality of a set of linear nonintersecting codes,

which is an essential part of the mentioned construction. We generate a simple

example and present it in Section 4.4.

To show the restrictions on design parameters, we provide Table 4.1, which

shows the highest possible nonlinearity values achievable by this method for

n × m S-boxes with n = 6, 7 and 8. Later in Chapter 6, we present our

construction results for larger values of n, using the Johansson & Pasalic method

described in the following sections.

4.1 Construction of the Function

The construction in [Johansson & Pasalic, 2000] depends on finding a set of

nonintersecting linear codes. For the construction of n × m and t-resilient S-

box with nonlinearity 2n−1−2n−d−1, the number of needed nonintersecting codes

25

is
⌈

2d

2m−1

⌉

, where d is a parameter which needs to be maximized in order to get

high nonlinearity. The construction method is based on the following theorem

[Johansson & Pasalic, 2000].

Theorem 4.1.1. Let n, m, t and d be four positive integers with n ≥ 4, 1 ≤

t ≤ n − 3, 1 ≤ d ≤ n − t, m ≤ n − d. For each pair (y, i), where y ∈ GF (2)d,

i = 1, . . . , m, let Ai
y ∈ GF (2)n−d s.t. wt(Ai

y) ≥ t + 1.

For a ∈ GF (2)n−d, c = (c1, . . . , cm) ∈ GF (2)m, let

s∗a,c = |{y ∈ GF (2)d|

m
∑

i=1

ciA
i
y = a}| and s∗ = max

c∈GF (2)m
max

a∈GF (2)n−d
s∗a,c.

The S-box S : GF (2)n → GF (2)m is constructed by S(y, x) = (A1
yx, . . . , Am

y x)

where each Ai
yx ∈ GF (2),

y = (y1, y2, ..., yd) ∈ GF (2)d and x = (x1, x2, ..., xn−d) ∈ GF (2)n−d.

Then the followings hold:

1. S is uniformly distributed if
m
∑

i=1

ciA
i
y 6= 0 for any c ∈ GF (2)m, c 6= 0.

2. S is t-resilient if for any a ∈ GF (2)n−d s.t. 0 ≤ wt(a) ≤ t and c ∈

GF (2)m, c 6= 0, it holds that
m
∑

i=1

ciA
i
y 6= a.

3. nl(S) = 2n−1 − s∗2n−d−1.

Proof: Let gc : GF (2)n → GF (2) be the Boolean function defined by

gc(y, x) =
m

∑

i=1

ciA
i
yx

for c ∈ GF (2)m, c 6= 0.

1. Since S is of the form S(y, x) = (A1
yx, . . . , Am

y x), gc is any linear combi-

nation of component functions of S.

26

Then,

Wgc
(0) =

∑

y,x

(−1)gc(y,x) =
∑

y

∑

x

(−1)(c1A1
y+...+cmAm

y)x = 0.

By assumption
m
∑

i=1

ciA
i
y 6= 0 for any c ∈ GF (2)m, c 6= 0.

Wgc
(0) = 0 ⇒ gc is balanced.

Since gc denotes the any linear combination of component functions of S,

S is uniformly distributed by Lemma 2.2.6.

2. It is enough to show all nonzero linear combinations of f1, f2, ..., fm are t-

resilient. In order to see that, gc(y, x) is t-resilient, one needs to show that

the Walsh transform Wgc
(b, a) defined by equation (2.1) is zero according

to equation (2.2) for all (b, a) ∈ GF (2)n with wt(b, a) ≤ t and a, x ∈

GF (2)n−d and b, y ∈ GF (2)d

Wgc
(b, a) =

∑

(y,x)∈GF (2)n

(−1)gc(y,x)(−1)(b,a)·(y,x)

=
∑

(y,x)∈GF (2)n

(−1)gc(y,x)(−1)b·y⊕a·x

=
∑

y

(−1)b·y
∑

x

(−1)(c1A1
y+...+cmAm

y +a)·x

Since 0 ≤ wt(a) ≤ t,
m
∑

i=1

ciA
i
y 6= a. Then

∑

x

(−1)(c1A1
y+...+cmAm

y +a)·x = 0.

So,

Wgc
(b, a) =

∑

y

(−1)b·y × 0

= 0

Then, gc(y, x) is t-resilient.

27

3. As in the previous part, to obtain the nonlinearity of S, one finds the non-

linearity of gc(y, x), since the nonlinearity of S : GF (2)n → GF (2)m is the

minimum nonlinearity of all linear combinations of component functions.

By the previous part,

Wgc
(b, a) =

∑

y

(−1)b·y
∑

x

(−1)(c1A1
y+...+cmAm

y +a)·x

= 2n−d
∑

{y|
m
∑

i=1
ciAi

y=a}=s∗a,c

(−1)b·y

Hence,

max |Wgc
(b, a)| ≤ 2n−d max

c∈GF (2)m
max

a
s∗a,c = s∗2n−d

If b = 0 in 2n−d
∑

{y|
m
∑

i=1
ciAi

y=a}=s∗a,c

(−1)b·y, then

|Wgc
(0, a)| = 2n−d|{y|

m
∑

i=1

ciA
i
y = a}| = 2n−ds∗a,c.

It follows that

max |Wgc
(b, a)| ≥ max |Wgc

(0, a)|

= 2n−d max
c∈GF (2)m

max
a

s∗a,c

= s∗2n−d

Therefore,

max
b,a

|Wgc
(b, a)| = s∗2n−d.

Then,

nl(S) = 2n−1 − s∗2n−d−1.

�

In this construction, the component functions are actually a concatenation

of 2d linear t-resilient functions in n − d variables as stated in [Johansson &

Pasalic, 2000]. Thus, y ∈ GF (2)d can be viewed as a specific address to some

28

linear function. It can be obtained a large number of distinct functions by

permuting the values of (A1
y, . . . , A

m
y) with same parameters.

Let the matrix A be formed by entries Ai
y’s.

A =



























A1
0...0 A2

0...0 . . . Am
0...0

A1
0...1 A2

0...1 . . . Am
0...1

.

.

.

A1
1...1 A2

1...1 . . . Am
1...1



























2d×m

(4.1)

Since the nonlinearity of S is nl(S) = 2n−1 − s∗2n−d−1, it depends on s∗ and

d where s∗ is the maximum number of identical vectors appearing in any linear

combination of A’s columns. In this construction s∗ = 1. So the value of d

should be maximized in order to get high nonlinearity. If S is t-resilient, the

vectors contained in each row of the matrix A spans an [n − d, m, t + 1] linear

code. If one wants to achieve s∗ = 1, then

m
∑

i=1

ciA
i
y 6=

m
∑

i=1

ciA
i
y′ , ∀c = (c1, . . . , cm) 6= 0, if y 6= y

′

.

4.2 How to Construct the Matrix A

The nonlinearity of S depends on the value of d. For high nonlinearity, d must

be maximized. For any component function Ai
yx of S, the vectors in GF (2n−d)

should be chosen with weight greater than the order of resiliency. Then one

gets the inequality

(

n − d

t + 1

)

+

(

n − d

t + 2

)

+ . . . +

(

n − d

n − d

)

≥ 2d (4.2)

where the left hand side is the number of n − d bit Ai
y’s with Hamming weight

at least t + 1 and the right hand side is the number of y’s.

29

When constructing the matrix A, Lemma 4.2.1 in [Johansson & Pasalic,

2000] is used.

Lemma 4.2.1. Let c0, . . . , cm−1 be a basis of a binary [n − d, m, t + 1] linear

code C. Let β be a primitive element in GF (2m) and (1, β, β2, . . . , βm−1) be a

polynomial basis of GF (2m). Define a bijection φ : GF (2m) → C by

φ(a0 + a1β + . . . + am−1β
m−1) = a0c0 + a1c1 + . . . + am−1cm−1

Consider the matrix

A∗ =



























φ(1) φ(β) . . . φ(βm−1)

φ(β) φ(β2) . . . φ(βm)

.

.

.

φ(β2m−2) φ(1) . . . φ(βm−2)



























2m−1×m

(4.3)

In any linear combination of columns (not all zero) of the matrix A∗, each

nonzero codeword of C will appear exactly once.

Proof: Since φ is a bijection, it is enough to show that the matrix

D =



























1 β . . . βm−1

β β2 . . . βm

.

.

.

β2m−2 1 . . . βm−2



























2m−1×m

has the property that each element in GF (2m)∗ will appear once in any combi-

nation of columns of the above matrix.

30

Any nonzero linear combination of columns can be written as

(c0 + c1β + . . . + cm−1β
m−1)















1

β
...

β2m−2















for some c0, c1, . . . , cm−1 ∈ GF (2) and the statement is obvious. �

The following conclusion is in [Johansson & Pasalic, 2000]. In fact, it is

obvious after Lemma 4.2.1.

Conclusion 4.2.2. To construct the 2d×m matrix A given by (4.1), the (2m−

1)×m matrix A∗in (4.3) can fill the 2m−1 row of A. Each nonzero codeword will

then appear exactly once in each column and row. Then one selects another

[n − d, m, t + 1] linear code, constructs another A∗and fills the 2m − 1 rows.

Totally d 2d

2m−1
e nonintersecting linear codes are needed.

This result is stated as a theorem in [Johansson & Pasalic, 2000].

Theorem 4.2.3. If there exists a set of linear [n − d, m, t + 1] nonintersecting

linear codes with cardinality d 2d

2m−1
e, then there exists a t-resilient function S :

GF (2n) → GF (2m) with nonlinearity nl(S) = 2n−1 − 2n−d−1.

4.3 Lower Bounds on the Cardinality of a Set

of Linear Nonintersecting Codes

In this section, two lower (existence) bounds on the cardinality of a set of

nonintersecting linear codes are given [Johansson & Pasalic, 2000].

Lemma 4.3.1. Let GF (2)n be an n-dimensional vector space over GF (2) and

0 ≤ k ≤ m ≤ n. Let N(n, m) denote the number of m-dimensional vector

subspaces of GF (2)n. Furthermore, let N
′

(n, m, k) denote the number of m-

dimensional vector subspaces containing a given k-dimensional vector subspace

31

of GF (2)n. Then the following is valid:

N(n, m) =

n
∏

i=n−m+1

(2i − 1)

m
∏

i=1

(2i − 1)

and N ′(n, m, k) = N(n − k, m − k) (4.4)

Proof: The reader is referred to [Wan, 1993]. �

Let M(n, m, dmin) denote the maximal cardinality of a set of nonintersecting

linear codes for any given code parameters n, m, dmin. Using Lemma 4.3.1,

the following existence bound on M(n, m, dmin) can be obtained [Johansson &

Pasalic, 2000].

Theorem 4.3.2. Let the codes in the set have parameters [n, m, dmin] and let

D = {x ∈ GF (2n)|1 ≤ wt(x) ≤ dmin−1}. Then M(n, m, dmin) is lower bounded

by

M(n, m, dmin) ≥

[

N(n, m) − |D|N(n − 1, m − 1)

(2m − 1)(N(n − 1, m − 1) − 1)

]

Proof: Since the minimum distance of all the codes is dmin, none of them is

allowed to intersect the sphere D. Let C denote the set of all linear codes of

length n and dimension m. According to the previous lemma, the total number

of codes is N(n, m). Any element(vector) in D is a 1-dimensional vector space.

The number of codes containing an arbitrary word x ∈ D is N(n − 1, m − 1).

Removing all codes in C intersecting an element in D, i.e., all codes having too

low minimum distance leaves us with at least N(n, m) − N(n − 1, m − 1)|D|

codes in C.

In general, some codes will contain more than one codeword from D and

hence N(n, m)−N(n− 1, m− 1)|D| is an upper bound on the number of codes

intersecting the sphere D.

Now, one can choose any code, say C ′, of the remaining codes in C. An

upper bound on the number of codes intersecting C ′ in more than the zero

32

word is now derived.

|{C ∈ C|C ∩ C ′ 6= {0}}| ≤ (2m − 1)(N(n − 1, m − 1) − 1)

This inequality is a consequence of the simple fact that any of 2m − 1 nonzero

codewords of C ′ can be in at most N(n − 1, m − 1) codes.

One continues to select a new code C
′′

and removes all codes that intersect C
′′

,

etc. It then follows that an M th code can be added to the set of nonintersecting

codes if the following inequality holds,

N(n, m) − |D|N(n − 1, m − 1) − (M − 1)(2m − 1)(N(n − 1, m − 1) − 1) ≥ 0.

From this one gets the bound. �

A second lower bound on the cardinality of a set of nonintersecting linear

codes is obtained by considering the set of all possible permutations on the

codewords (i.e. column permutations) for a given linear code C. Thus, the

condition for this lower bound is the existence of a linear [n, m, dmin] code C to-

gether with its weight distribution. Once a such code is known, one can compute

a lower bound on M(n, m, dmin) which will depend on the weight distribution

[Johansson & Pasalic, 2000].

Theorem 4.3.3. (Permutation Bound) Let C be a given [n, m, dmin] linear code

specified by its weight distribution T (D) =
n
∑

i=dmin

wiD
i. Then

M(n, m, dmin) ≥









n!
n
∑

i=dmin

w2
i i!(n − i)!









Proof: Let A = {1, 2, . . . , n} and let Sn = {π : A → A} be a set of all

permutations on n letters acting on C with cardinality n!. Furthermore, let

Cwi = {c ∈ C : wH(c) = i} be a set of cardinality |Cwi| = wi. If
∏wi is the set

of all permutations that map any codeword in Cwi to some codeword contained

33

in Cwi, i.e.,
∏wi = {π ∈ Sn : π(c) ∈ Cwi, for some c ∈ Cwi}. Then

|

wi
∏

| = w2
i i!(n − i)!.

The idea is to remove all permutations π which map any nonzero codeword

of C into C. Thus, the number of permutations to be discarded in order to

obtain a code π(C) which does not intersect C in more than the zero word is

given by
n
∑

i=dmin

w2
i i!(n − i)! and the condition for a second code will be n! >

n
∑

i=dmin

w2
i i!(n − i)!. Clearly one can proceed in the same manner, discarding all

permutations which maps any nonzero codeword of C into π(C), as long as

having remaining permutations.

Thus, the M th code can be added provided

n! − (M − 1)
n

∑

i=dmin

w2
i i!(n − i)! ≥ 0.

Rearranging the last inequality, the bound is obtained. �

4.4 Our Example

In the following, we show the details of the construction method in [Johansson

& Pasalic, 2000] for the design of a 4× 2 S-box of nonlinearity 4 and resiliency

1.

Example 4.4.1. Let’s construct an S-box S(y, x) : GF (2)4 → GF (2)2.

n = 4, m = 2, y ∈ GF (2) and x ∈ GF (2)3.

1. Let’s choose t = 1(1 ≤ t ≤ n − 3).

2. Choose d = 2 and check whether the inequality

(

2

2

)

≥ 22 holds or not.

Since 1 � 4 then d 6= 2. Then decrease d by one.

34

3. Choose d = 1 and check whether the inequality

(

3

2

)

+

(

3

3

)

≥ 2 holds or

not. Since 4 ≥ 2 we can take d = 1.

4. We need

⌈

2d

2m − 1

⌉

=

⌈

2

3

⌉

= 1 linear [n− d, m, t + 1] = [3, 2, 2] code. Let

this code be C = {110, 011, 101, 000}. Notice that each nonzero codeword

in C can be chosen as an entry of the matrix A =





A1
o A2

o

A1
1 A2

1



 by using

equation (4.1). Remembering that every nonzero codeword appears only

once in each row and column of A, we can take A =





110 011

011 101



.

5. The S-box is S(y, x) = (A1
y · x, A2

y · x).

Note that wt(Ai
y) ≥ 2 makes the component functions 1-resilient. The

4×2 S-box constructed above finds the 2-bit output corresponding to the

4-bit input (y, x) = (y, x1, x2, x3) as follows:

y = 0 ⇒ we take A1
0 and A2

0.

S(y, x) = S(y, x1, x2, x3) = S(0, x1, x2, x3) = (A1
0 · x, A2

0 · x)

= ((110) · (x1, x2, x3), (011) · (x1, x2, x3))

= (x1 + x2, x2 + x3)

y = 1 ⇒ we take A1
1 and A2

1.

S(y, x) = S(y, x1, x2, x3) = S(1, x1, x2, x3) = (A1
1 · x, A2

1 · x)

= ((011) · (x1, x2, x3), (101) · (x1, x2, x3))

= (x2 + x3, x1 + x3)

Then S(y, x) =







(x1 + x2, x2 + x3) if y = 0

(x2 + x3, x1 + x3) if y = 1







nl(S) = 2n−1 − 2n−d−1 = 4

35

For a more complicated construction example of an 10×4 S-box, the reader

is referred to [Johansson & Pasalic, 2000]. Finally, to give an idea about the

restrictions on the parameters of this construction, we generate Table 4.1.

It should be remembered that the parameters of the construction [Johansson

& Pasalic, 2000] are restricted as: n ≥ 4, 1 ≤ t ≤ n − 3, 1 ≤ d ≤ n − t and

m ≤ n− d. Moreover, t ≤ n− d−m must be satisfied. So, Table 4.1 shows the

highest nonlinearity values achievable by this construction for n × m S-boxes

for n = 6, 7 and 8, choosing the maximum possible value of d for the associated

values of n, m and t.

Table 4.1: Highest Possible Nonlinearity and d Values, (nl(S)/dmax) of the Johansson &
Pasalic Construction for n × m S-boxes

1-resilient 2-resilient 3-resilient
m n = 6 n = 7 n = 8 n = 6 n = 7 n = 8 n = 6 n = 7 n = 8
2 24/2 56/3 112/3 24/2 48/2 112/3 16/1 48/2 96/2
3 24/2 56/3 112/3 16/1 48/2 112/3 − 32/1 96/2
4 16/1 48/2 112/3 − 32/1 96/2 − − 64/1
5 − 32/1 96/2 − − 64/1 − − −
6 − − 64/1 − − − − − −

36

Chapter 5

Linear Codes In Generalized

Construction Of Resilient

Functions With Very High

Nonlinearity

The construction presented by E. Pasalic and S. Maitra provides a method to

construct highly nonlinear t-resilient functions S : GF (2)n → GF (2)m [Pasalic

& Maitra, 2002]. The construction is based on the use of linear codes together

with highly nonlinear multiple output functions and summarized in this chapter.

The construction takes a linear [u, m, t+ 1] code and constructs highly non-

linear, t-resilient n × m S-box for n > u.

Section 5.1 provides the preliminary information, Section 5.2 reviews the

construction method, and Section 5.3 presents the improvements of the con-

struction, all are summarized from [Pasalic & Maitra, 2002]. In Section 5.4, we

present our example of a 1-resilient 13× 3 S-box constructed by the mentioned

method.

37

5.1 Preliminaries

Basic definitions and properties related with the construction are stated below.

Let C denote the binary linear [u, m, t + 1] code with a set of basis vectors

c0, c1, . . . , cm−1. The construction [Pasalic & Maitra, 2002] uses Lemma 4.2.1.

Let A∗ denote the matrix which is constructed by means of Lemma 4.2.1. There

are 2m − 1 rows in the matrix A∗. Let ai,j denote the element in the ith row

and jth column of A∗, for i = 0, . . . , m − 1. The corresponding linear function

ai,j(x) = x · ai,j is t-resilient. According to Lemma 4.2.1, any column of the

matrix A∗ can be seen as a column vector of 2m − 1 distinct t-resilient linear

functions on u-variables.

The construction of Pasalic and Maitra [Pasalic & Maitra, 2002] is similar

to the construction of Johansson and Pasalic [Johansson & Pasalic, 2000]. But

in the construction of Pasalic and Maitra [Pasalic & Maitra, 2002], there is no

need to search for nonintersecting linear codes. It is only taken a single linear

code with given parameters and use a repetition of the codewords in a specific

manner.

Taking 2q rows of A∗ for 0 ≤ q ≤ m − 1 and denoting this matrix by D,

the entries of the matrix D are of the form di,j = ai,j, i = 0, . . . , 2q − 1 and

j = 0, . . . , m − 1, i.e., di,j = φ(βi+j) ∈ GF (2)u.

By Lemma 4.2.1, in any linear combination of columns of the matrix D,

each nonzero codeword of C will either appear exactly once or not appear at

all. Let the set {g1, . . . , gm} of Boolean functions on (u+q)-variables be defined

as:

gj+1(y, x) =
⊕

η∈GF (2)q

(y1 + η1) . . . (yq + ηq)(d[η],j · x) where [η] denotes the

integer representation of vector η and j = 0, . . . , m − 1. To the j th column of

D, one associates the function gj+1. From definition of gj+1(y, x), for g to be

nonzero, y and η must be complement to each other.

The following proposition states the resiliency of linear combinations of the

38

functions gj [Pasalic & Maitra, 2002].

Proposition 5.1.1. Any nonzero linear combination of the functions g1, . . . , gm

is a t-resilient function.

Proof: Let g(y, x) =
m
⊕

i=1

ηjgj for some η ∈ GF ∗(2)m. It is needed to show

that Wg(w) = 0 for any w with wt(w) ≤ t.

Then, by using equation (2.1), for any (b, a) ∈ GF (2)q×GF (2)u with wt(b, a) ≤

t,

Wg(b, a) =
∑

y,x

(−1)g(y,x)⊕(b,a)·(y,x)

=
∑

y,x

(−1)g(y,x)(−1)(b,a)·(y,x)

=
∑

y

(−1)b·y
∑

x

(−1)g(y,x)⊕x·a

For any fixed y, by Lemma 4.2.1, the function

g(y, x) = x ·
m−1
⊕

j=0

cjd[η],j

is a linear function. Here, cj = ηj+1 for j = 0, . . . , m − 1. Now, wt(b, a) ≤ t

implies that wt(a) ≤ t and consequently, the right hand sum is zero which

completes the proof.

�

The following proposition states the nonlinearity of linear combinations of

the functions gj [Pasalic & Maitra, 2002].

Proposition 5.1.2. Any nonzero linear combination of the functions g1, . . . , gm

has nonlinearity 2u+q−1 − 2u−1.

Proof: nl(gj) = 2u+q−1 − 2u−1 for j = 1, . . . , m [Sarkar & Maitra, 2000].

Moreover, from Lemma 4.2.1, it is clear that any nonzero linear combination of

these functions g1, . . . , gm will have the same property. �

39

The Corollary 5.1.3 and 5.1.4 and the proof of Corollary 5.1.4 are in [Pasalic

& Maitra, 2002].

Corollary 5.1.3. Given a [u, m, t + 1] linear code, it is possible to construct

(u + q, m, t, 2u+q−1 − 2u−1) functions for 0 ≤ q ≤ m − 1.

Corollary 5.1.4. It is possible to construct an (n′ = 2m, m, 1, 2n
′

−1 − 2
n
′

2)

function S(x).

Proof: There exists an [m+1, m, 2] linear code. Put u = m+1 and q = m−1,

then

u + q = m + 1 + m − 1

= 2m

= n′

u + q − 1 = n′ − 1

t + 1 = 2

⇒ t = 1

u − 1 = m

=
n′

2

Then (n′, m, 1, 2n′−1 − 2
n′

2) functions exist.

�

The following proposition is well-known [Sarkar & Maitra, 2000].

Proposition 5.1.5. Let h(y) ∈ Vk and g(x) ∈ Vn1. The nonlinearity of

f(y, x) = h(y) ⊕ g(x) is given by

nl(f) = 2knl(g) + 2n1nl(h) − 2nl(g)nl(h)

The Corollaries 5.1.6, 5.1.7 and 5.1.8 [Pasalic & Maitra, 2002] are simple

consequences of Proposition 5.1.5.

40

Corollary 5.1.6. Let h(y) be a bent function on Vk, k = 2m. Let g(x) ∈ Vn1

with nl(g) = 2n1−1 − 2u−1, for u ≤ n1. Then, the nonlinearity of f(y, x) =

h(y) ⊕ g(x) is given by

nl(f) = 2n1+k−1 − 2
k
2 2u−1.

Proof: Since h(y) is a bent function on Vk, k = 2m, then

nl(h) = 2k−1 − 2
k
2
−1 and nl(g) = 2n1−1 − 2u−1

is given. Then using Proposition 5.1.5;

nl(f) = 2k(2n1−1 − 2u−1) + 2n1 (2k−1 − 2
k

2
−1) − 2(2n1−1 − 2u−1)(2k−1 − 2

k

2
−1)

= 2k+n1−1 − 2k+u−1 + 2n1+k−1 − 2n1+ k

2
−1 − (2n1 − 2u)(2k−1 − 2

k

2
−1)

= 2k+n1−1 − 2k+u−1 + 2n1+k−1 − 2n1+ k

2
−1 − 2n1+k−1 + 2n1+ k

2
−1 + 2u+k−1 − 2u+ k

2
−1

= 2k+n1−1 − 2u+ k

2
−1

Then

nl(f) = 2n1+k−1 − 2
k
2 2u−1.

�

Corollary 5.1.7. Let h′(y′) be a bent function on Vk, k = 2r and let h(y)

be a function on Vk+1 given by h(y) = xk+1 ⊕ h′(y′). Let g(x) ∈ Vn1 with

nl(g) = 2n1−1 − 2u−1 for u ≤ n1. Then the nonlinearity of f(y, x) = h(y)⊕ g(x)

is given by nl(f) = 2n1+k−1 − 2
k+1
2 2u−1.

Proof: h(y) = xk+1 ⊕ h′(y′) where xk+1 ∈ V1 and h′(y′) ∈ Vk.

nl(h) = 2nl(h′) + 2knl(xk+1) − 2nl(h′)nl(xk+1)

Since nl(xk+1) = 0, nl(h) = 2nl(h′). Then

nl(h) = 2(2k−1 − 2
k
2
−1)

= 2k − 2
k
2 .

41

Now, nl(h) = 2k − 2
k
2 is known and nl(g)=2n1−1 − 2u−1 is given. Then,

nl(f) = 2k+1(2n1−1 − 2u−1) + 2n1(2k − 2
k
2) − (2n1−1 − 2u−1)(2k − 2

k
2)2

= 2n1+k − 2u+k + 2n1+k − 2n1+ k
2 − (2n1 − 2u)(2k − 2

k
2)

= 2n1+k − 2u+k + 2n1+k − 2n1+ k
2 − 2n1+k + 2n1+

k
2 + 2u+k − 2u+ k

2

= 2n1+k − 2u+ k
2

�

Corollary 5.1.8. Let h(y) be a constant function on Vk, k > 0. Let g(x) ∈ Vn1

with nl(g) = 2n1−1 − 2u−1, for u ≤ n1. Then the nonlinearity of f(y, x) =

h(y) ⊕ g(x) is given by nl(f) = 2n1+k−1 − 2k2u−1.

Proof: Since h(y) is a constant function, then nl(h) = 0. Using Proposition

5.1.5,

nl(f) = 2k(2n1−1 − 2u−1)

= 2n1+k−1 − 2k2u−1

�

Now, by using Corollary 5.1.6, Corollary 5.1.7 and the function gj which is

constructed before, one can construct highly nonlinear, resilient Boolean func-

tions on higher number of variables using the composition of bent functions

h(y) with resilient functions gj.

In order to use the same technique for the construction of an S-box, one

needs to find a binary vector space of bent functions of dimension m.

Let A be of size 2m ×m matrix given by A = (0
A∗

) where A∗ is a matrix con-

structed by means of Lemma 4.2.1 using c0, c1, . . . , cm−1 that spans an [m, m, 1]

code C with the unitary matrix I as the generator matrix.

Now, A = (0
A∗

). Since A has 2m columns and each entry is a codeword of

length m, if one multiplies each entry with the vector (x1, x2, . . . , xm), linear

42

functions on m variables are obtained. Then each column of the matrix A can

be seen as a concatenation of 2m distinct linear functions on m variables.

Also using Lemma 4.2.1, it is clear that any nonzero linear combination of

these bent functions will provide a bent function. The algebraic degree of this

class of bent functions is equal to m. So, the following proposition is proved

[Pasalic & Maitra, 2002].

Proposition 5.1.9. It is possible to obtain a binary vector space of bent func-

tions on 2m variables of dimension m. Also,

deg(

m
⊕

i=1

ηibi) = m

where b1, . . . , bm is the basis and η ∈ GF ∗(2)m.

Proposition 5.1.10. It is possible to obtain m distinct bent functions on 2p-

variables (p ≥ m), say b1, . . . , bm such that any nonzero linear combination of

these bent functions will provide a bent function. Also,

deg(
m

⊕

i=1

ηibi) = p

for η ∈ GF ∗(2)m.

5.2 Construction

In this section, we summarize the construction method of Pasalic and Maitra

[Pasalic & Maitra, 2002].

Previously, the matrix A∗ which has entries from a linear [u, m, t+1] code C

is constructed. Then the first 2q rows of A∗ for 0 ≤ q ≤ m− 1 are used to form

the matrix D. For each column of D, one constructs the functions g1, . . . , gm

which are (u + q)-variable functions with order of resiliency t and nonlinearity

2u+q−1−2u−1. Any nonzero linear combination of these functions will provide a

43

(u + q)-variable function g with order of resiliency t and nonlinearity 2u+q−1 −

2u−1.

In fact, it is desired to construct n-variable functions. It is clear that the

(u+q)-variable function needs to be repeated 2n−u−q times to make an n-variable

function. An (n − u − q)-variable function is xored with the (u + q)-variable

function to get an n-variable function. For the maximum possible nonlinearity

by this method, the (n−u− q)-variable function must be of maximum possible

nonlinearity. One uses m different functions h1, . . . , hm and use the compositions

f1 = h1 ⊕ g1, . . . , fm = hm ⊕ gm to get m different n-variable functions. Then,

any nonzero linear combination of f1, . . . , fm can be seen as the xor of linear

combinations of h1, . . . , hm and linear combinations of g1, . . . , gm. In fact this

is the method of P. Sarkar and S. Maitra [Sarkar & Maitra, 2000]. In order

to get high nonlinearity of the vector output function, high nonlinearity of the

functions h1, . . . , hm and also high nonlinearity for their linear combinations are

needed.

If n − u − q is even, one can use bent functions h1, . . . , hm. It is important

that, m different bent functions as in Proposition 5.1.9 are needed such that

the nonzero linear combinations will also produce bent functions. For this, the

condition n − u − q ≥ 2m must be satisfied as in Proposition 5.1.10.

If n−u− q is odd, one can use bent functions bj of (n−u− q − 1)-variables

and take hj = xn ⊕ bj. This requires the condition n − u − q − 1 ≥ 2m to get

m distinct bent functions as in Proposition 5.1.10.

The value of n− u− q may be less than 2m and it is not possible to get 2m

bent functions.

The resiliency is satisfied by the functions gi’s and nonlinearity is satisfied

by the functions hi’s. Since when calculating the nonlinearity of an S-box one

takes all linear combinations, the linear combinations of gi’s should be high

resilient and hi’s should be highly nonlinear.

Theorem 5.2.1 states the nonlinearity of an S-box constructed by this method

44

[Pasalic & Maitra, 2002].

Theorem 5.2.1. Given a linear [u, m, t + 1] code, it is possible to construct an

(n, m, t, nl(S)) function where S = (f1, . . . , fm), π = n − u − m + 1 and

nl(S) =







































2n−1 − 2u−1, u ≤ n < u + m (1)

2n−1 − 2n−m, u + m ≤ n < u + 2m (2)

2n−1 − 2u+m−1, u + 2m ≤ n < u + 3m (3)

2n−1 − 2
n+u−m−1

2 , n ≥ u + 3m − 1, π even (4)

2n−1 − 2
n+u−m

2 , n ≥ u + 3m, π odd (5)







































Proof: In the proof, the functions g1, . . . , gm on (u + q)-variables which are

basically concatenations of q distinct linear functions on u-variables will be used.

From Proposition 5.1.2. for any τ ∈ GF (2)m,

nl(

m
⊕

j=1

τjgj) = 2u+q−1 − 2u−1

Next, m different functions h1, . . . , hm on n− u− q variables will be used. It is

needed to choose these functions in such a manner that for any τ ∈ GF (2)m,

nl(
m
⊕

j=1

τjhj) is high. Mostly, bent functions as in Propositions 5.1.9 and 5.1.10

will be used. Now, look at the construction S = (f1, . . . , fm) where fi = hi ⊕gi.

For any τ ∈ GF (2)m,
m
⊕

j=1

τjfj(x) can be written as

m
⊕

j=1

τjhj ⊕
m

⊕

j=1

τjgj.

This can be done since the set of variables are distinct. The input variables of

gj are x1, . . . , xu+q and the input variables of hj are xu+q+1, . . . , xn. Consider

the 5 cases seperately.

1. Here, u ≤ n ≤ u + m. By the Corollary 5.1.3, it is possible to construct

(n = u+q, m, t, 2n−1−2u−1) function S. (Since u ≤ n ≤ u+m, u > m > q)

45

2. Let u+m ≤ n < u+2m. Here, take the first 2m−1 rows of A∗, i.e., q = m−1.

The functions gj are on (u + q = u + m − 1)-variables. Each function

needs to be repeated 2n

2u+m−1 times. Use functions hj on (n − u − m + 1)-

variables which are constant functions. nl(gj) = 2u+m−2 − 2u−1. Hence,

by Proposition 5.1.5,

nl(fj) = 2n−u−m+1(2u+m−2 − 2u−1)

= 2n−1 − 2n−m.

3. Let u + 2m ≤ n < u + 3m. Choose q such that n − u − q = 2m. The gj’s

are on (u + q)-variables. Take m bent functions hj each of 2m variables.

It is clear that nl(gj) = 2u+q−1 − 2u−1 and nl(hj) = 22m−1 − 2m−1. Then,

by using Corollary 5.1.6,

nl(S) = 2n−1 − 2u+m−1.

4. For n ≥ u+3m−1 and π = n−u−m+1 is even, take q = m−1 and a set

of bent functions on (n−u−m+1)-variables. Since n−u−m+1 ≥ 2m,

one gets a set of m bent functions as in Proposition 5.1.10.

nl(gj) = 2u+m−2 − 2u−1 and nl(hj) = 2(n−u−m+1)−1 − 2
n−u−m+1

2
−1.

Thus,

nl(S) = 2n−u−m+1(2u+m−2 − 2u−1) + 2u+m−1(2n−u−m − 2
n−u−m+1

2
−1)

−(2u+m−1 − 2u−1)(2n−u−m − 2
n−u−m−1

2)

= 2n−1 − 2n−m + 2−1 − 2
n+m+u−2

2 − 2−1 + 2
n+m+u−3

2

−2n−m−1 + 2
u+n−m−3

2

= 2n−1 − 2n−m − 2
n+m+u−2

2 + 2
n+m+u−3

2 − 2n−m−1 + 2
u+n−m−3

2

= 2n−1 − 3
2
2n−m − 2

n+m+u−2
2 + 2

n+m+u−2
2

−
1
2

= 2n−1 − 2
n+u−m−1

2

46

5. For n ≥ u+ 3m and π = n− u−m + 1 is odd, use q = m− 1 and a set of

bent functions on (n − u − m)-variables, say b1, . . . , bm as in Proposition

5.1.10. Note that n−u−m ≥ 2m. The construction of hj is as hj = xn⊕bj.

Thus,

nl(gj) = 2u+m−1 − 2u−1.

and

nl(hj) = 2(n−u−m+1)−1 − 2
(n−u−m+1)−1

2 .

Then

nl(S) = 2n−1 − 2
n+u−m

2 .

�

In Theorem 5.2.1, the nonlinearity property of the constructed function S

is observed. Now, consider the algebraic degree of S in Theorem 5.2.2 [Pasalic

& Maitra, 2002].

Theorem 5.2.2. In reference to Theorem 5.2.1, the algebraic degree of the

function S is given by,







































2 ≤ deg S ≤ n − u + 1, u ≤ n < u + m (1)

2 ≤ deg S ≤ m, u + m ≤ n < u + 2m (2)

deg S = m, u + 2m ≤ n < u + 3m (3)

deg S = n−u−m+1
2

, n ≥ u + 3m − 1, π even (4)

deg S = n−u−m
2

, n ≥ u + 3m, π odd (5)







































Proof: Consider any nonzero linear combination of (f1, . . . , fm) and denote

any nonzero linear combination of hj’s as h and that of gj’s as g. It is clear that

degS = degf = max(deg(h), deg(g)) since h and g are functions on distinct set

of input variables.

1. Here, f can be seen as the concatenation of 2q linear functions (0 ≤ q < m)

of u-variables each. The exact calculation of the algebraic degree will

depend in a complicated way on the choice of the codewords from C.

47

However, it is clear that the function is always nonlinear and hence the

algebraic degree must be greater than 2. Also, the function f will have

degree at most q + 1. Here, q = n − u which gives the result.

2. Here, take q = m − 1(in Theorem 5.2.1). Now, f can be seen as the

2n−u−q times repetition of function g, where g is the concatenation of

2q linear functions (0 ≤ q < m) of u variables each(The functions gj’s

are constructed by using the columns of the matrix A∗ where the entries

are codewords of length u bit.). The exact calculation of the algebraic

degree will depend in a complicated way on the choice of the codewords

from C. However, it is clear that the function is always nonlinear and

hence deg(f) ≥ 2. Furthermore, the function g will have degree at most

q + 1 = m − 1 + 1 = m.

3. In this case, deg(f) = max(deg(h), deg(g)). Now, deg(h) = m since it is

considered 2m-variable bent funcions with property as described in one

of the previous propositions. Moreover, deg(g) is at most q + 1. Now,

u + 2m ≤ n < u + 3m, which gives q < m. So deg(f) = m.

4. In this case, since h is a (n− u−m + 1)-variable bent function, deg(h) =

n−u−m+1
2

by Proposition 5.1.10 and deg(g) ≤ q + 1 = m.

Here n ≥ u+3m− 1, i.e., n−u−m+1 ≥ 2m which gives n−u−m+1
2

≥ m.

Then deg(f) = n−u−m+1
2

.

5. In this case, since h is a (n−u−m)-variable bent function, deg(h) = n−u−m
2

by Proposition 5.1.10 and deg(g) ≤ q + 1 = m.

Here, n ≥ u + 3m, i.e., n − u − m ≥ 2m which gives n−u−m
2

≥ m. Thus,

deg(f) = n−u−m
2

.

�

48

5.3 Further Improvements

This section summarizes further improvement [Pasalic & Maitra, 2002] of non-

linearity of items 2 and 3 in Theorem 5.2.1 [Pasalic & Maitra, 2002].

5.3.1 Improvement of Item 2

In the case of item 2, hj’s are taken as (n−u−m+1)-variable constant functions,

thus without getting any nonlinearity for the hj’s and the linear combinations

of them. The following example shows chosing nonlinear functions instead of

constant functions provides S-box with higher nonlinearity [Pasalic & Maitra,

2002].

Example 5.3.1. Consider the construction of a (9, 3, 1) function and start with

a [4, 3, 2] linear code.

n = 9, m = 3, t = 1, u = 4 and q = m − 1 = 2.

u + m = 4 + 3 ≤ n = 9 < u + 2m = 4 + 6 = 10.

Then, this is the case item 2 of Theorem 5.2.1. Hence the nonlinearity is

29−1 − 29−3 = 192. Thus, one can construct a (9, 3, 1, 192) function.

This is because the functions h1,h2 and h3 are taken as constant functions on

(n − m − u + 1)-variables. The functions g1, g2 and g3 are on u + m − 1 =

4 + 3 − 1 = 6 variables and the nonlinearity of any linear combination of them

is

2u+m−2 − 2u−1 = 25 − 23 = 24.

But, if the following functions are used instead of constant functions,

h1(y1, y2, y3) = y1y2 ⊕ y3

h2(y1, y2, y3) = y2y3 ⊕ y1

h3(y1, y2, y3) = y3y1 ⊕ y2

49

(Any nonzero linear combination of these functions will provide nonlinearity 2.)

then any linear combination of f1, f2, f3 has the nonlinearity

nl(f) = 23 × 24 + 26 × 2 − 2 × 24 × 2 = 224.

This provides (9, 3, 1, 224) function.

5.3.2 Improvement of Item 3

In the case of item 3 of Theorem 5.2.1, u + 2m ≤ n < u + 3m. The value of q

is selected such that n− u− q = 2m without chosing q = m− 1. The following

example shows chosing q = m − 1 provides S-box with higher nonlinearity

[Pasalic & Maitra, 2002].

Example 5.3.2. Consider the construction of (36, 8, 5) function using a [17, 8, 6]

linear code.

n = 36, m = 8, t = 5, u = 17, q = n − u − 2m = 3

Since u + 2m = 17 + 2 × 8 ≤ n = 36 < u + 3m. So item 3 is considered. Then

nl(S) = 2n−1 − 2u+m−1 = 235 − 224.

Instead of choosing q = n − u − 2m, take q = m − 1. Then, gj’s are u + q =

u+m−1 = 24-variable functions and hj’s are n−u−q = 12-variable functions.

nl(gj) = 2u+q−1 − 2n−1 = 219 − 216.

To construct hj’s, use the construction method of K. Nyberg [Nyberg, 1993].

Consider the mapping H(V) = V −1 where V ∈ GF (2)p and p is even. It

is known that the nonlinearity of H is 2p−1 − 2
p
2 . Thus, it is clear that one

can construct a function H : GF (2)p → GF (2)r for even p and r ≤ p with

nonlinearity 2p−1 − 2
p

2 .

50

Here, in this construction, since m = 8, one needs 8 different 12-variable

highly nonlinear functions hj. And by the method of K. Nyberg [Nyberg, 1993],

it is possible to construct m functions h1, . . . , hm on (n − u − m + 1)-variables

such that any nonzero linear combination of the functions hj has the nonlinearity

2n−u−m − 2
n−u−m+1

2 . Then nl(h) = 211 − 26 and nonlinearity of fj is

nl(fj) = 212(219 − 216) + 224(211 − 26) − 2(219 − 216)(211 − 26) = 235 − 223.

So one gets a (36, 8, 5) function with nonlinearity 235 − 223.

Now, if p is odd, consider a function h : GF (2)p−1 → GF (2)r with r ≤ p−1.

Since p − 1 is even, nl(h) = 2p−2 − 2
p−1
2 [Nyberg, 1993]. The r outputs of the

function h can be denoted as h1, . . . , hr. Now, take the function H : GF (2)p →

GF (2)r with r output columns as xp ⊕ h1, xp ⊕ h2, . . . , xp ⊕ hr. Then nl(S) =

2p−1 − 2
p+1
2 .

Now, the items 2 and 3 of Theorem 5.2.1 are updated and stated as Theorem

5.3.3 [Pasalic & Maitra, 2002].

Theorem 5.3.3. Given a linear [u, m, t + 1] linear code, it is possible to con-

struct an (n, m, t, nl(S)) function S = (f1, . . . , fm) where

nl(S) =



























2n−1 − 2n−m, u + m ≤ n < u + 2m− 1 (i)

2n−1 − 2
n+u−m+1

2 , π = n − u − m + 1 even, u + 2m − 1 ≤ n < u + 3m − 3 (ii)

2n−1 − 2
n+u−m+2

2 , π = n − u − m + 1 odd, u + 2m ≤ n < u + 3m − 3 (iii)

2n−1 − 2u+m−1, u + 3m − 3 ≤ n ≤ u + 3m (iv)



























Proof: This theorem is only the update version of the items 2 and 3 of

Theorem 5.2.1. For the cases i and iv, keep the same result as in Theorem

5.2.1.

For the case ii,

u + 2m − 1 ≤ n

u + 2m − 1 + (−m) ≤ n + (−m)

m + u − 1 ≤ n − m ⇒ m ≤ n − m − u + 1

51

In this case, use q = m − 1. Then gj’s are on (u + m − 1)-variables and hj’s

are on (n − u − m + 1)-variables. Then using Proposition 5.3.1, the result is

obtained.

For the case iii, the similar result is obtained. Note that the same strategy

as in items ii and iii in item iv could be used. However, for the range of n in

item iv, the nonlinearity 2n−1 − 2u+m−1 supersedes the nonlinearity achievable

using the approach of items ii and iii.

�

Now, one can update item i of Theorem 5.3.2 as follows:

In item i, u + m ≤ n < u + 2m − 1, i.e., 1 ≤ n − u − m + 1 < m. If

one likes to use the strategy as in items ii and iii of Theorem 5.3.2, some

function S : GF (2)p → GF (2)r for r > p with same nonlinearity is need to be

constructed. There is no general strategy to construct such a function. Also, it

is clear that for the cases n− u−m + 1 = 1, 2 there is no possibility to get any

nonlinearity. So item i of Theorem 5.3.2 can be updated as follows:

Proposition 5.3.4. Given a linear [u, m, t + 1] code, it is possible to construct

an (n, m, t, nl(S)) function S = (f1, . . . , fm) where

nl(S) =







2n−1 − 2n−m, u + m ≤ n < u + m + 2 (I)

2n−1 − 2n−m + 2uν(n − u − m + 1, m), u + m + 2 ≤ n < u + 2m − 1 (II)







where ν(p, r) is the maximum possible nonlinearity of a p-input, r-output func-

tion with 3 ≤ p < r.

Now, the results of Theorem 5.2.1, Theorem 5.3.2 and Proposition 5.3.3 are

summarized in Theorem 5.3.4 [Pasalic & Maitra].

Theorem 5.3.5. Given a linear [u, m, t + 1] code, it is possible to construct an

52

(n, m, t, nl(S)) function S = (f1, . . . , fm) where

nl(S) =











































































2n−1 − 2u−1, u ≤ n < u + m

2n−1 − 2n−m, u + m ≤ n < u + m + 2

2n−1 − 2n−m + 2uν(n − u − m + 1, m), u + m + 2 ≤ n < u + 2m − 1

2n−1 − 2
n+u−m+1

2 , u + 2m − 1 ≤ n < u + 3m − 3, π even

2n−1 − 2
n+u−m+2

2 , u + 2m ≤ n < u + 3m − 3, π odd

2n−1 − 2u+m−1, u + 3m − 3 ≤ n < u + 3m

2n−1 − 2
n+u−m−1

2 , n ≥ u + 3m − 1, π even

2n−1 − 2
n+u−m

2 , n ≥ u + 3m, π even











































































5.4 An 13 × 4 S-box Construction

Let’s construct a function S(x) : GF (2)13 → GF (2)3. Take u = 5, m = 3, t = 1.

We need a [5, 3, 2] linear code. We can take the linear code C with basis c0, c1

and c2 where c0 = 11000, c1 = 10100 and c2 = 00101. Then,

C = 00000, 01100, 11101, 10001, 11000, 10100, 00101, 01001.

Let β be a primitive element in GF (23). Look at the mapping

φ(a0 + a1β + a2β
2) = a0c0 + a1c1 + a2c2

Then,

φ(1) = c0

φ(β) = c1

φ(β2) = c2

φ(β3) = φ(β + 1) = c0 + c1

φ(β4) = φ(β2 + β) = c1 + c2

φ(β5) = φ(β2 + β + 1) = c0 + c1 + c2

φ(β6) = φ(β2 + 1) = c0 + c2

φ(β7) = φ(1) = c0

53

Then the matrix A∗ is:

A∗ =

































c0 c1 c2

c1 c2 c0 + c1

c2 c0 + c1 c1 + c2

c0 + c1 c1 + c2 c0 + c1 + c2

c1 + c2 c0 + c1 + c2 c0 + c2

c0 + c1 + c2 c0 + c2 c0

c0 + c2 c0 c1

































A∗ is a 7×3 matrix where each codeword exists only once in any nonzero linear

combination of columns. Let’s take the first 2q row of the matrix A∗ where

0 ≤ q ≤ m − 1, i.e., 0 ≤ q ≤ 2.

Take q = 2 and form the matrix D.

D =















c0 c1 c2

c1 c2 c0 + c1

c2 c0 + c1 c1 + c2

c0 + c1 c1 + c2 c0 + c1 + c2















For each column of D, we construct the functions gj+1 for j = 0, 1, 2 by the

method

gj+1(y, x) =
⊕

τ∈GF (2)2

(y1 ⊕ τ1)(y2 ⊕ τ2)(d[τ],j · x).

gj+1 is a (u + q)-variable function, i.e., g1, g2 and g3 are 7-variable funtions and

y ∈ GF (2)2 and x ∈ GF (2)5. Let y = y1y2 and x = x1x2x3x4x5. Now, let’s

construct g1, g2 and g3.

54

g1(y, x) =
⊕

τ∈GF (2)2

(y1 ⊕ τ1)(y2 ⊕ τ2)(d[τ],0 · x)

= y1y2(x1 ⊕ x2) ⊕ y1(y2 ⊕ 1)(x1 ⊕ x3)

⊕(y1 ⊕ 1)y2(x3 ⊕ x5) ⊕ (y1 ⊕ 1)(y2 ⊕ 1)(x2 ⊕ x3)

= y1y2x1 ⊕ y1y2x2 ⊕ y1y2x1

⊕y1y2x3 ⊕ y1x1 ⊕ y1x3 ⊕ y1y2x3 ⊕ y1y2x5 ⊕ y2x3 ⊕ y2x5

⊕y1y2x2 ⊕ y1y2x3 ⊕ y1x2 ⊕ y1x3 ⊕ y2x2 ⊕ y2x3 ⊕ x2 ⊕ x3

= y1y2x3 ⊕ y1y2x5 ⊕ y1x1 ⊕ y2x5 ⊕ y1x2 ⊕ y2x2 ⊕ x2 ⊕ x3

nl(g1) = 26 − 24 = 48 and g1 is 1-resilient.

g2(y, x) =
⊕

τ∈GF (2)2

(y1 ⊕ τ1)(y2 ⊕ τ2)(d[τ],1 · x)

= y1y2(x1 ⊕ x3) ⊕ y1(y2 ⊕ 1)(x3

⊕x5) ⊕ (y1 ⊕ 1)y2(x2 ⊕ x3) ⊕ (y1 ⊕ 1)(y2 ⊕ 1)(x1 ⊕ x5)

= y1y2x1 ⊕ y1y2x3 ⊕ y1y2x3 ⊕ y1y2x5

⊕y1x3 ⊕ y1x5 ⊕ y1y2x2 ⊕ y1y2x3

⊕y2x2 ⊕ y2x3 ⊕ y1y2x1 ⊕ y1y2x5

⊕y1x1 ⊕ y1x5 ⊕ y2x1 ⊕ y2x5 ⊕ x1 ⊕ x5

= y1y2x3 ⊕ y1y2x2 ⊕ y1x3 ⊕ y2x2

⊕y2x3 ⊕ y1x1 ⊕ y2x1 ⊕ y2x5 ⊕ x1 ⊕ x5

55

nl(g2) = 26 − 24 = 48 and g2 is 1-resilient.

g3(y, x) =
⊕

τ∈GF (2)2

(y1 ⊕ τ1)(y2 ⊕ τ2)(d[τ],2 · x)

= y1y2(x3 ⊕ x5) ⊕ y1(y2 ⊕ 1)(x2 ⊕ x3)

⊕(y1 ⊕ 1)y2(x1 ⊕ x5) ⊕ (y1 ⊕ 1)(y2 ⊕ 1)(x2 ⊕ x5)

= y1y2x3 ⊕ y1y2x5 ⊕ y1y2x2 ⊕ y1y2x3 ⊕ y1x2

⊕y1x3 ⊕ y1y2x1 ⊕ y1y2x5 ⊕ y2x1 ⊕ y2x5

⊕y1y2x2y1y2x5 ⊕ y1x2 ⊕ y1x5 ⊕ y2x2 ⊕ y2x5 ⊕ x2 ⊕ x5

= y1y2x1 ⊕ y1y2x5 ⊕ y1x3 ⊕ y2x1 ⊕ y1x5 ⊕ y2x2 ⊕ x2 ⊕ x5

nl(g3) = 26−24 = 48 and g3 is 1-resilient. So we get three 7-variable, 1-resilient

Boolean functions with nonlinearity 48.

We want to construct S = (f1, f2, f3) where fi = gi ⊕ hi where each fi is an

n-variable Boolean function, gi is an (u + q)-variable Boolean function and hi

is an (n − u − q)-variable Boolean function, i = 1, 2, 3.

We have constructed the functions gi’s. Now, to construct fi’s, we need to

construct m = 3 different hi’s. To get 3 different hi, n − u − q ≥ 2m must be

satisfied. Since n = 13, u = 5, q = 2 and m = 3, 6 ≥ 6 and so we can construct

3 different 6 variable hi’s which are bent.

Construction of f 1

h1(x8, x9, x10, x11, x12, x13) = x8x11 ⊕ x9x12 ⊕ x10x13 ⊕ b1

where b1 is any function on the variables x11, x12, x13.

Let’s take b1(x11, x12, x13) = x11x13 ⊕ x12. Then,

h1(x8, x9, x10, x11, x12, x13) = x8x11 ⊕ x9x12 ⊕ x10x13 ⊕ x11x13 ⊕ x12

g1(x1, x2, x3, x4, x5, x6, x7) = x1x2x5⊕x1x2x7⊕x1x3⊕x2x7⊕x1x4⊕x2x4⊕x4⊕x5

56

Then f1 = g1 ⊕ h1 where f1 : GF (2)13 → GF (2)

f1(x1, x2, . . . , x13) = x1x2x5 ⊕ x1x2x7 ⊕ x1x3 ⊕ x2x7 ⊕ x1x4 ⊕ x2x4 ⊕ x8x11

⊕x9x12 ⊕ x10x13 ⊕ x11x13 ⊕ x4 ⊕ x5 ⊕ x12

Construction of f 2

h2(x8, x9, x10, x11, x12, x13) = x8x11 ⊕ x9x12 ⊕ x10x13 ⊕ b2

where b2 is any function on the variables x11, x12, x13.

Let’s take b2(x11, x12, x13) = x11 ⊕ x12. Then,

h2(x8, x9, x10, x11, x12, x13) = x8x11 ⊕ x9x12 ⊕ x10x13 ⊕ x11 ⊕ x12

g2(x1, x2, x3, x4, x5, x6, x7) = x1x2x5 ⊕ x1x2x4 ⊕ x1x5 ⊕ x2x4 ⊕ x2x5

⊕x1x3 ⊕ x2x3 ⊕ x2x7 ⊕ x3 ⊕ x7

Then f2 = g2 ⊕ h2 where f2 : GF (2)13 → GF (2)

f2(x1, x2, . . . , x13) = x1x2x5 ⊕ x1x2x4 ⊕ x1x5 ⊕ x2x4 ⊕ x2x5 ⊕ x1x3 ⊕ x2x3

⊕x2x7 ⊕ x8x11 ⊕ x9x12 ⊕ x10x13 ⊕ x11 ⊕ x13 ⊕ x3 ⊕ x7

Construction of f 3

h3(x8, x9, x10, x11, x12, x13) = x8x11 ⊕ x9x12 ⊕ x10x13 ⊕ b3

where b3 is any function on the variables x11, x12, x13.

Let’s take b3(x11, x12, x13) = x11x12 ⊕ x12. Then,

h3(x8, x9, x10, x11, x12, x13) = x8x11 ⊕ x9x12 ⊕ x10x13 ⊕ x11x12 ⊕ x12

g3(x1, x2, x3, x4, x5, x6, x7) = x1x2x3⊕x1x2x7⊕x1x5⊕x2x3⊕x1x7⊕x2x4⊕x4⊕x7

57

Then f3 = g3 ⊕ h3 where f3 : GF (2)13 → GF (2)

f3(x1, x2, . . . , x13) = x1x2x3 ⊕ x1x2x7 ⊕ x1x5 ⊕ x2x3 ⊕ x1x7 ⊕ x2x4 ⊕ x8x11

⊕x9x12 ⊕ x10x13 ⊕ x11x12 ⊕ x4 ⊕ x7 ⊕ x12

Then, S(x1, . . . , x13) = (f1, f2, f3) is constructed. nl(S) = 212 − 27 since u +

2m ≤ n < u + 3m.

Note that, the bent function construction is the construction of S. Maitra and

P. Sarkar [Maitra & Sarkar, 1999].

58

Chapter 6

Computational Results

In this chapter, we introduce our results for the construction method of Johans-

son and Pasalic [Johansson & Pasalic, 2000]. In Section 6.1, we first recall the

restrictions on the choice of parameters. Then, we introduce the flowcharts of

the programs that we use to construct t-resilient n×m S-boxes with nonlinearity

nl(S) = 2n−1 − 2n−d−1.

In Section 6.2 , we present our results for the nonlinearity of 1-resilient, 2-

resilient and 3-resilient n × m S-boxes, which are constructed by our program

for n = 9, n = 10 and n = 11. Then, we compare them with the results of

[Johansson & Pasalic, 2000] and [Pasalic & Maitra, 2002].

To give an idea about the computational load of an exhaustive search al-

gorithm, In Section 6.3, we present the tables which show the number N of

(n − dmax, m) linear block codes and the number of all possible constructions.

For some cases, we have found S-boxes with higher nonlinearity than the

highest nonlinearity achieved for the S-boxes in [Johansson & Pasalic, 2000].

For 2-resilient 9 × 2 S-box, the nonlinearity is found as 240 in [Johansson &

Pasalic, 2000]. But we have shown that this is not possible and the highest

nonlinearity that this construction can achieve is 224.

59

6.1 About Our Program

The construction in [Johansson & Pasalic, 2000] mainly depends on finding

sufficient number of nonintersecting linear codes. For the construction of an n×

m S-box with resiliency t, another parameter d should be chosen and the related

number of required linear block codes is equal to

⌈

2d

2m − 1

⌉

. As mentioned in

Chapter 4, there are some restrictions in the choice of parameters. To recall:

1. Choice of “n” and “t” The parameters n and t are restricted as: n ≥ 4,

1 ≤ t ≤ n − 3.

2. Choice of “d” The parameter “d” must be chosen such that both 1 ≤ d ≤

n−t and d ≤ n−m are satisfied, i.e., 1 ≤ d ≤ min{n−m, n−t}. Since the

nonlinearity of the S-box achieved by this construction method is nl(S) =

2n−1 − 2n−d−1, to get high nonlinearity, d must be maximized. By this

construction method, n × n S-boxes can not be constructed. Because, if

m = n, then d = 0 and nl(S) = 0. According to the construction method,

“d ” must satisfy the inequality

(

n − d

t + 1

)

+

(

n − d

t + 2

)

+. . .+

(

n − d

n − d

)

≥ 2d.

3. Number of Nonintersecting Linear Codes For this construction method

the cardinality of the set of [n − d, m, t + 1] nonintersecting linear codes

must be

⌈

2d

2m − 1

⌉

. If the desired number of nonintersecting linear codes

can not be found, then d is decreased by 1 and then searched again. But

this time, nonlinearity falls.

4. Singleton Bound According to the Singleton Bound for a [n−d, m, t+1]

linear code, t + 1 ≤ n − d − m + 1, i.e., t ≤ n − d − m must be satisfied.

To get the results of this construction method, first we write a main

program using Matlab programming tool which outputs the maximum

possible value of d for the given values of n, m and t. Figure 6.1 shows

the flowchart of this program. After finding the maximum value of d,

the main program first tries to construct an n × m S-box with resilieny

t accordingly. If the associated S-box does not exist, we decrease d by

60

1 and try again. The main program also gives the nonlinearities of all

possible linear combinations of the constructed S-box with parameters n,

m, t and d. Figure 6.2 shows the flowchart of the main program.

Figure 6.1: Flowchart of the Program Finding the Maximum Possible Value of d

61

Figure 6.2: Flowchart of the Main Program

62

6.2 Our Results and Comparison

The value of the parameter d is important since it must be maximized in order

to get high nonlinearity. Moreover, the number of the needed nonintersecting

linear codes depends on the values of d and m. We give the maximum possible

value dmax, in addition the used values of d for the associated values of n, m

and t.

Table 6.1 compares our highest achieved nonlinearity (nl(S)) results with

the results in [Johansson & Pasalic, 2000] and in [Pasalic & Maitra, 2002] for 1-

resilient n×m S-boxes using maximum possible value of dmax. Note that dused <

dmax is the actual value of the parameter d, which is used in the construction

whenever dmax does not yield a proper S-box. We emphasize the values of the

nonlinearities which are higher than the other constructions. We refer to the

previous construction in [Johansson & Pasalic, 2000] by “1st Con.” and the

later construction in [Pasalic & Maitra, 2002] by “2nd Con.”. We have found

the nonlinearity of the 1-resilient 10 × 5 S -box as 480, whereas the result in

[Johansson & Pasalic, 2000] is 448.

Table 6.1: Highest Achieved Nonlinearity and d Values (nl(S)/dused/dmax) for 1-resilient
n × m S-boxes

n = 9 n = 10 n = 11
m Ours 1st Con 2nd Con Ours 1st Con 2nd Con Ours 1st Con 2nd Con

2 224/3/4 240 224 448/3/4 480 480 896/3/5 992 960

3 224/3/4 224 224 448/3/4 480 480 896/3/5 992 960

4 224/3/4 224 224 448/3/4 448 480 960/4/5 960 960

5 224/3/3 224 224 480/4/4 448 480 960/4/5 960 960

6 192/2/2 192 192 448/3/3 448 448 960/4/5 960 960

(res.1,3)

Table 6.2 compares our highest achieved nonlinearity (nl(S)) results with

the results in [Johansson & Pasalic, 2000] and in [Pasalic & Maitra, 2002] for

2-resilient n × m S-boxes. We have found some results better than the others,

such as the nonlinearity of the 2-resilient 9×3 S-box as 224, whereas the results

in [Johansson & Pasalic, 2000] and in [Pasalic & Maitra, 2002] is 192. We have

63

found the nonlinearity of the 2-resilient 9 × 4 S-box as 192, that of 2-resilient

10× 2 S-box as 480, that of the 2-resilient 10× 4 S-box as 448, and that of the

2-resilient 11 × 3 S-box as 960, which are all better than the results given in

either [Johansson & Pasalic, 2000] or [Pasalic & Maitra, 2002] or both, as can

be observed from Table 6.2.

Table 6.2: Highest Achieved Nonlinearity and d Values (nl(S)/dused/dmax) for 2-resilient
n × m S-boxes

n = 9 n = 10 n = 11
m Ours 1st Con 2nd Con Ours 1st Con 2nd Con Ours 1st Con 2nd Con

2 224/3/4 240 192 480/3/4 480 448 960/4/5 992 896

3 224/3/4 192 192 448/2/4 448 448 960/4/5 960 896

4 192/2/4 128 192 448/2/4 384 448 896/3/5 896 896

5 − − − 256/1/3 256 256 768/2/4 768 768

6 − − − − − − 512/1/3 512 512

In the construction of 9 × 2 S-box, the nonlinearity found in [Johansson &

Pasalic, 2000] is 240. But, we think that, this value can not be achieved by

this method. According to the nonlinearity formula, nonlinearity is equal to

240 if and only if d = 4. But if d = 4, then there must exist 6 nonintersecting

linear codes with parameters [n−d, m, t+1] = [5, 2, 3]. By computer search, we

have found 5 nonintersecting linear codes. Moreover, we can see the reason by

counting the codewords of 6 nonintersecting linear [5, 2, 3] codes. In a [5, 2, 3]

linear code, there are 3 nonzero codewords. Therefore, for the construction

which uses 6 nonintersecting [5, 2, 3] linear codes, we need 3 × 6 = 18 nonzero

codewords. Also, there are 25 = 32 different words of length 5. Among them 1

is all zero word , 5 are of weight 1 and
((

5
2

))

= 10 are of weight 2. Then the

number of words with weight at least 3 is 32− (1+5+10) = 16. So, there does

not exist 6 nonintersecting [5, 2, 3] linear codes. Then d can not be taken as 4.

By decreasing d by 1, its maximum value is 3, hence the nonlinearity is 224.

Table 6.3 compares our highest achieved nonlinearity (nl(S)) results with

the results in [Johansson & Pasalic, 2000] and in [Pasalic & Maitra, 2002] for

3-resilient n×m S-boxes. We have found the nonlinearity of the 3-resilient 9×2

S-box as 224, whereas the results in [Johansson & Pasalic, 2000] and in [Pasalic

64

& Maitra, 2002] is 192. We have also found the nonlinearity of the 3-resilient

10 × 2 S-box as 448, that of the 3-resilient 10 × 3 S-box as 448, that of the

3-resilient 10× 4 S-box as 384, that of the 3-resilient 11× 2 S-box as 960, that

of the 3-resilient 11 × 4 S-box as 896 and that of the 3-resilient 11 × 6 S-box

as 512, which are all better than [Johansson & Pasalic, 2000] and [Pasalic &

Maitra, 2002].

Table 6.3: Highest Achieved Nonlinearity and d Values (nl(S)/dused/dmax) for 3-resilient
n × m S-boxes

n = 9 n = 10 n = 11
m Ours 1st Con 2nd Con Ours 1st Con 2nd Con Ours 1st Con 2nd Con

2 224/3/3 192 192 448/3/4 448 384 960/4/4 960 896

3 192/2/3 192 192 384/2/4 384 384 896/3/4 896 896

4 128/1/2 128 128 384/2/4 256 384 896/3/4 768 896

5 − − − − − − 512/1/3 512 512

6 − − − − − − 512/1/2 512 −

6.3 Number of Linear Block Codes in the Searched

Space

The construction requires e = d 2d

2m−1
e nonintersecting linear block codes of

dimension m, in the vector space GF (2)n−dmax. An exhaustive search would try

all possible choices (
(

N
e

)

), where N is the number of subspaces of GF (2)n−dmax

of dimension m, which is shown by N = N(n−dmax, m) in equation (4.4) as the

total number of (n−dmax, m) linear block codes. The parameter (
(

N
e

)

) is critical

in determining the computational load of such an exhaustive search, and it is

tabulated in Tables 6.4, 6.5 and 6.6, together with the dused values of ours and

Johansson and Pasalic’s.

In fact, Tables 6.4, 6.5 and 6.6 show that; in the cases where the results

of Johansson and Pasalic [Johansson & Pasalic, 2000] are better than ours,

the search set is very large. There are also some cases that we get the same

results with them in very large search sets. On the other hand, in almost all

65

the cases that our results are superior to theirs, the cardinality of the set in

which nonintersecting block codes are searched, is very small. It seems very

unlikely for a computer search algorithm to be unsuccessful in such sets of low

cardinality. Hence, we conclude that the search method in their paper, should

be a theoretical assignment in the set of some well-known linear block codes.

This theoretical choice seems to work quite well for the case of 1-resilient

S-boxes shown in Table 6.4, where only one of our results(shown by bold let-

ters) is superior to theirs, whereas 5 of their results(bold) are better than ours.

However, in Table 6.6 there are 4 cases(bold) that our S-boxes have higher

nonlinearity, and they all correspond to small search spaces.

Table 6.4: Number of Codes and d Values (dused/dmax) for 1-resilient n × m S-boxes

n m dmax e =

⌈

2d

2m − 1

⌉

N(m, n − dmax)
(

N

e

)

dused (ours) dused

(Joh.& Pas.)

9 2 4 6 155 1.7463e + 010 3 4

9 3 4 3 155 608685 3 3
9 4 4 2 31 465 3 3
9 5 3 1 63 63 3 3
9 6 2 1 127 127 2 2
10 2 4 6 651 1.0330e + 014 3 4

10 3 4 3 1395 451478265 3 4

10 4 4 2 651 211575 3 3
10 5 4 1 63 63 4 3
10 6 3 1 127 127 3 3
11 2 5 11 651 2.0481e + 023 3 5

11 3 5 5 1395 4.3709e + 013 3 5

11 4 5 3 651 45770725 4 4
11 5 5 2 63 1953 4 4
11 6 4 1 127 127 4 4

66

Table 6.5: Number of Codes and d Values (dused/dmax) for 2-resilient n × m S-boxes

n m dmax e =

⌈

2d

2m − 1

⌉

N(m, n − dmax)
(

N

e

)

dused (ours) dused

(Joh.& Pas.)

9 2 4 6 155 1.7463e + 010 3 4

9 3 4 3 155 608685 3 2
9 4 3 1 651 651 2 1
10 2 4 6 651 1.0330e + 014 3 3
10 3 4 3 1395 451478265 2 2
10 4 4 2 651 211575 2 1
10 5 3 1 2667 2667 1 1
11 2 5 11 651 2.0481e + 023 4 5

11 3 5 5 1395 4.3709e + 013 4 4
11 4 5 3 651 45770725 3 3
11 5 4 1 2667 2667 2 2
11 6 3 1 10795 10795 1 1

Table 6.6: Number of Codes and d Values (dused/dmax) for 3-resilient n × m S-boxes

n m dmax e =

⌈

2d

2m − 1

⌉

N(m, n − dmax)
(

N

e

)

dused (ours) dused

(Joh.& Pas.)

9 2 3 3 651 45770725 3 2
9 3 3 2 1395 972315 2 2
9 4 2 1 11811 11811 1 1
10 2 4 6 651 1.0330e + 014 3 3
10 3 4 3 1395 451478265 3 2
10 4 3 1 11811 11811 2 1
11 2 4 6 2667 4.9701e + 017 4 4
11 3 4 3 11811 2.7454e + 011 3 3
11 4 4 2 11811 69743955 3 2
11 5 3 1 97155 97155 1 1
11 6 2 1 788035 788035 1 1

67

Chapter 7

Conclusion

In this thesis, we have studied four S-box construction methods. Two of them

are n× n S-box constructions presented by K. Nyberg [Nyberg, 1993]. For odd

values of n, the inverse of the power polynomial S(x) = x2k+1, where k does

not divide n, has the differential uniformity of 2, the nonlinearity 2n−1 − 2
n−1

2

and the degree of n+1
2

. The second construction of Nyberg [Nyberg, 1993] is the

inversion mapping S(x) = x−1, which was first noticed in 1957 by L. Carlitz

and S. Uchiyama [Carlitz & Uchiyama, 1957]. The inversion mapping is also

used in the Advanced Enryption Standard(AES) algorithm Rijndael for n = 8,

and it has the differential uniformity of 4 for even and 2 for odd values of n,

the nonlinearity greater than 2n−1 −2
n
2 and the degree of n−1. We review the

theorems and propositions used in these two n×n S-box constructions following

Nyberg, and in Proposition 3.1.1 and Proposition 3.2.1, we provide the details

of the proofs to make them clearer.

The other two constructions are for n × m S-boxes, where m < n. Both

of these methods utilize linear block codes. The construction method of T.

Johansson and E. Pasalic [Johansson & Pasalic, 2000] depends on finding a set

of nonintersecting linear codes and a full search in the set of linear block codes

is the main problem of the method. The other construction [Pasalic & Maitra,

2002] is similar to the method in [Johansson & Pasalic, 2000], but it uses a

single linear block code and many bent functions.

68

We have implemented the construction method of Johansson and Pasalic [Jo-

hansson & Pasalic, 2000] and we have found better results than those of both

[Johansson & Pasalic, 2000] and [Pasalic & Maitra, 2002]. We have also shown

that the highest possible nonlinearity achievable by Johansson and Pasalic con-

struction for 2-resilient 9 × 2 S-box is 224; therefore, the nonlinearity value

of 240 that is claimed to be found in [Johansson & Pasalic, 2000] is not pos-

sible. As can be observed from Table 6.1, the first construction [Johansson &

Pasalic, 2000] seems to be more premising than the second construction [Pasalic

& Maitra, 2002] in terms of the nonlinearity.

Comparing our construction results with those of [Johansson & Pasalic,

2000] as shown in Tables 6.4, 6.5 and 6.6, we notice that they have obtained

better nonlinearities than ours for some cases, where the cardinality of the set

of (n − d, m, t + 1) linear block codes is excessively large. There are also some

cases that we get the same results with them in very large search sets, say of

cardinality 1017. On the other hand, it is quite interesting to observe that, in

almost all the cases that our results are superior to theirs, the cardinality of the

set in which nonintersecting block codes are searched, is very small. It seems

very unlikely for a computer search algorithm to be unsuccessful in such sets

of low cardinality. Hence, we conclude that the search method in their paper,

should be a theoretical assignment in the set of some well-known linear block

codes. Apparently, such an assignment may miss the possibilities, which can be

caught by a full computer search algorithm.

69

References

[Blahut, 1983] Richard E. Blahut, “Theory and Practise of Error Control

Codes”

[Carlet, 1990] C. Carlet, “Codes de Reed-Muller, Codes de Kerdock et de

Preparata”, Publication of LITP, Institut Blaise Pascal, Universiteé Paris.

[Carlitz & Uchiyama, 1957] L. Carlitz and S. Uchiyama, “Bounds for Expo-

nential Sums”, Duke Math. J. 24, pp. 37 − 41, 1957.

[Cheon, 2001] J. H. Cheon, “Nonlinear Vector Resilient Functions”, in Ad-

vances in Cryptology, Crypto 2001, Springer Verlag, 2001.

[Friedman, 1982] J. Friedman, “On the Bit Extraction Problem”, Proc. 33rd

IEEE Symp. Foundations of Computer Science, 1982, pp. 314-319.

[Heys, 2001] H. M. Heys, “A Tutorial on Linear and Differential Cryptanaly-

sis”, Technical Report CORR 2001-17, Centre for Applied Cryptographic

Research, Department of Combinatorics and Optimization, University of

Waterloo, March 2001.

[Johansson & Pasalic, 2000] T. Johansson and E. Pasalic, “A Construction

of Resilient Functions with High Nonlinearity”, Proc. IEEE Int. Symp.

Information Theory, Sorrento, Italy, 2000.

[Knudsen & Robshaw, 1994] L. Knudsen and M.J.B. Robshaw, “Nonlinear

Approximations in Linear Cryptanalysis”, Advances in Cryptology, Euro-

crypt 96, Springer Verlag, 1994, pp 1-11.

70

[Kurosawa & Satoh & Yamamoto, 1997] K. Kurosawa, T. Satoh and K. Ya-

mamoto, “Highly Nonlinear t−resilient Functions”, J. Univ. Comput. Sci.,

vol. 3, no. 6, pp. 721-729, 1997.

[Lidl & Niederreiter, 1986] R. Lidl, and H. Niederreiter, “Introduction to Fi-

nite Fields and Their Applications”, 1986

[Maitra & Sarkar, 1999] S. Maitra, and P. Sarkar, “Highly Nonlinear Re-

silient Functions Optimizing Siegenthaler’s Inequality”, Advances in Cryp-

tology, Proc. CRYPTO 99, Springer Verlag, 1999, pp. 198 − 215.

[Meier & Staffelbach, 1989] W. Meier and O. Staffelbach, “Nonlinearity Cri-

teria for Cryptographic Functions”, Advances in Cryptology, Proc. Euro-

crypt 89, Springer Verlag, 1989, pp. 549 − 562.

[Menezes, Oorschot & Vanstone, 1997] A.Menezes, P.van Oorschot and S.

Vanstone, “Handbook of Applied Cryptography”, CRC Press,1997.

[Nyberg, 1990] K. Nyberg, “Constructions of Bent Functions and Difference

Sets”, Advances in Cryptology, Eurocrypt 90, Springer Verlag, 1991, vol.

473, pp. 151-160.

[Nyberg, 1992] K. Nyberg, “On the Construction of Highly Nonlinear Permu-

tations”, Advances in Cryptology, Eurocrypt 92, Springer Verlag, 1992,

vol. 658, pp. 92-98.

[Nyberg, 1993] K. Nyberg, “Differentially Uniform Mappings for Cryptogra-

phy”, Advances in Cryptology, Eurocrypt 93, Springer Verlag, 1994, vol.

765, pp. 55-64.

[Pasalic & Maitra, 2002] E. Pasalic and S. Maitra, “Linear Codes in Gener-

alized Construction of Resilient Functions With Very High Nonlinearity”,

IEEE Transactions on Information Theory, vol. 48, no. 8, 2002.

[Sarkar & Maitra, 2000] Palash Sarkar and Subhamoy Maitra, “Construc-

tion of Nonlinear Boolean Functions with Important Cryptographic Prop-

71

erties”, Advances in Cryptology, Eurocrypt 2000, Springer Verlag 2000,

vol. 1807, pp. 485-506.

[Siegenthaler, 1984] T. Siegenthaler, “Correlation-immunity of Nonlinear

Combining Functions for Cryptographic Applications”, IEEE Transactions

on Inform. Th., vol. IT-30(5), 1984, pp. 776 − 780.

[Stinson, 1993] D. R. Stinson, “Resilient Functions and Large Sets of Orthog-

onal Arrays”, Congressus Numerantium, vol. 92, pp. 105-110, 1993.

[Stinson & Massey, 1995] D. R. Stinson and J. L. Massey, “An Infinite Class

of Counterexamples to a Conjecture Concerning Nonlinear Resilient Func-

tions”, J. Cryptology, vol. 8, no.3, pp. 168-173, 1995.

[Wan, 1993] Z. Wan, “Geometry of Classical Groups Over Finite Fields”, Stu-

dentlitteratur, Lund, 1993.

[Webster & Tavares, 1985] A. F. Webster and S. E. Tavares, “On the Design

of S−boxes”, Advances in Cryptology, Crypto 85,Springer Verlag, 1986,

pp. 523-534.

[Zhang & Zheng, 1997] X. M. Zhang and Y. Zheng, “Cryptographically Re-

silient Functions”, IEEE Trans. Inform. Theory, vol. 43, pp. 1740-1747,

1997.

72

