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ABSTRACT

MOLECULAR DYNAMICS STUDY OF RANDOM AND ORDERED
METALS AND METAL ALLOYS

Kart, Hasan Hiiseyin
Ph.D., Department of Physics
Supervisor: Prof. Dr. Mehmet Tomak

August 2004, 106 pages.

The solid, liquid, and solidification properties of Pd, Ag pure metals and especially
Pd;Ag; ; alloys are studied by using the molecular dynamics simulation. The effects
of temperature and concentration on the physical properties of Pd;Ag; , are analyzed.
Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used
as interatomic interactions which enable one to investigate the thermodynamic, static,
and dynamical properties of transition metals. The simulation results such as cohesive
energy, density, elastic constants, bulk modulus, pair distribution functions, melting
points and phonon dispersion curves obtained for Pd, Ag and Pd,Ag;_, are in good
agreement with the available experimental data at various temperatures. The predicted
melting points of Pd, Ag and their binary alloys by using Q-SC potential parameters
are closer to experimental values than the ones predicted from SC potential parameters.

The liquid properties such as diffusion constants and viscosities computed from Q-
SC potentials are also in good agreement with the available experimental data and
theoretical calculations. Diffusion coefficients and viscosity results calculated from
simulation obey the Arrhenius equation well. The coefficients of the Arrhenius equation
are given in order to calculate the self-diffusion coefficient and shear viscosity of Pd-Ag

alloys at the desired temperature and concentration.
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Using different cooling rates, we investigate glass formation tendency and crys-
tallization of Pd-Ag metal alloys, by analyzing pair distribution function, enthalpy,
volume, and diffusion coefficient. Pd-Ag alloys show the glass structure at fast cooling
rates while it crystallizes at slow cooling rates. Glass and crystallization temperatures
are also obtained from the Wendt-Abraham parameter. The split of the second peak
in the pair distribution function is associated with the glass transition. Glass forming
ability increases with increasing concentration of Ag in Pd-Ag alloys.

Thermal and mechanical properties of Cu, Au metals and their ordered intermetal-
lic alloys CuzAu(L1y), CuAu(Lly), and CuAuz(L1s) are also studied to investigate the
effects of temperature and concentration on the physical properties of Cu-Au alloys.
The simulation results such as cohesive energy, lattice parameter, density, elastic con-
stants, bulk modulus, heat capacity, thermal expansion, melting points, and phonon
dispersion curves are in good agreement with the available experimental and theoretical
data at various temperatures.

The Q-SC potential parameters are more reliable in determining physical properties

of metals and their random and ordered alloys studied in this work.

Keywords: Molecular Dynamics, Metals and Metal Alloys, Pd-Ag, Cu-Au, In-
termetallic Alloys, Thermal and Mechanical Properties, Phonon Dispersion Re-
lations, Liquid Metals, Metallic Glasses, Diffusion Coefficient, Viscosity, Heat

Capacity, Thermal Expansion.



oY/

DUZENLI VE DUZENSIZ METAL VE METAL ALASIMLARININ
MOLEKULER-DINAMIK CALISMASI

Kart, Hasan Hiiseyin
Doktora, Fizik Bolimi
Tez Yoneticisi: Prof. Dr. Mehmet Tomak

Agustos 2004, 106 sayfa.

Pd, Ag metallerinin ve Pd-Ag alagimlarinin kati, sivi ve sogutma &zellikleri molekiiler
dinamik simiilasyonu ile ¢alisildi. Sicakligin ve konsantrasyonun Pd-Ag alagiminin
fiziksel Gzelliklerine olan etkisi aragtirildi. Gegig metalleri ve metal alagimlarinin
termodinamik, statik, ve dinamik 6zelliklerini arastirmak icin, atomlar aras: etk-
ilesmeleri tanimlayan Sutton-Chen (SC) ve quantum Sutton-Chen (Q-SC) ¢ok
cisimli potensiyelleri kullanildi. Pd, Ag ve Pd-Ag alasimlarinin baglanma ener-
jisi, yogunluk, elastik sabiti, bulk modiliis, ¢ift dagilim fonksiyonu, erime sicaklig:
ve fonon dispersiyon iligkilerinin degisik sicakliklardaki deneysel degerlerle uyum
icinde oldugu gozlendi. Q-SC potansiyel parametreleri ile hesaplanan erime nok-
talar1 SC potansiyeli ile hesaplanan degerlere gore deneysel degerlere daha yakindir.

Difiizyon, viskosite gibi Q-SC potansiyeli ile hesaplanan siv1 6zellikler deneysel
ve teorik degerlerle uyum igindedir. Simiilasyondan hesaplanan difiizyon katsayis
ve viskosite Arrhenius denklemine iyi bir gsekilde uymaktadir. Arrhenius denklem-
inin katsayilari, farkl sicaklik ve karigimlarda diffiizyon ve viskositeyi hesaplamak
i¢in elde edildi.

Farkli sogutma oranlar1 kullanilarak, Pd-Ag alagiminin kristallesme ve camsi

yapr gostermesi, ¢ift dagilim fonksiyonu, entalpi, hacim ve difiizyon katsayisi
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analiz edilerek incelenmigtir. Cams1 yap1 ve kristallesme sicakliklar1 Wendt-
Abraham parametresi kullanilarak da elde edilmistir. Cift dagilim fonksiyonun-
daki ikinci tepenin yarilmasi camsi yapinin bir ozelligi olarak disiiniiliir.

Bu ¢alismada ayrica bakir (Cu) ve altin (Au) metallerinin ve bu metallerin
olugturdugu CugAu(L1,), CuAu(L1ly), ve CuAuz(L1,) diizenli bakir ve altin alagimlarinin
sicakliga bagh fiziksel ozellikleri aragtirildi. Elde edilen baglanma enerjisi, orgii
sabiti, yogunluk, elastik sabiti, bulk modiiliis, 151 s1gas1, 1s15al genlesme, erime nok-
tasi, ve fonon dispersiyon iligkisi gibi o6zelliklerin deneysel ve diger caligmalarla
uyumlu oldugu gozlendi.

Q-SC potansiyel parametreleri bu calismada incelenen metal ve metal alagimlarinin

fiziksel Ozelliklerinin belirlenmesinde daha giivenilir oldugu tesbit edildi.

Anahtar Kelimeler: Molekiiler Dinamik, Metaller ve Metal Alagimlari, Pd-Ag,
intermetaller, Cu-Au, Termal ve Mekanik Ozellik]er, Phonon Dispersiyon ili@kisi,
Sivi Metaller, Metalik Camlar, Diffiizyon Katsayisi, Viskosite, Is1 Sigasi, Isisal

genigleme.
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CHAPTER 1

INTRODUCTION

Computational modeling of material behavior and material design are becoming
reliable tools for scientific investigations and they complement traditional theo-
retical and experimental approaches. The system-driven computational design
approaches save the cost of discovery, by using computers to design, characterize,
and optimize materials before beginning the expensive experimental processes
of characterization, synthesis, processing and testing [1, 2, 3, 4, 5, 6, 7]. The
different physical theories such as quantum mechanics, molecular dynamics, and
statistical mechanics are incorporated properly on various length and time scales

to design new alloys or pure materials.

Most of the phenomena in the low-energy physics, chemistry, materials science
and biology can be explained by quantum mechanical description of the electrons
and the ions. The properties and the behavior of materials are derived from the
quantum mechanical description of events at the atomistic scale in many cases.
The ability of quantum mechanics to predict total energy and atomic structure of
a system of electrons and nuclei enables one to obtain an enormous benefit from
a quantum mechanical calculation. Many methods such as pseudopotentials [8]

and density functional theory [7] have been developed for solving the Schrédinger



equation that can be used to calculate the total energies of assemblies of atoms
and forces between the atoms. Another very significant theoretical milestone was
the 1985 paper of Car and Parrinello [9], which showed the way to calculate the
total energies and forces on atoms. The number of atoms which can be simulated
by ab initio techniques has grown since the Car-Parrinello paper. These methods
are still based on pseudopotential and density functional theory. The system of
atoms simulated from ab initio method means simulation without introducing

any fitting parameters [7].

The application of ab initio methods to real materials is still limited. At the
moment even if the fastest supercomputers with the largest memory are employed,
a few hundred atoms can be treated with a simulation time of a few picoseconds.
Such methods serve two important purposes. Firstly, they provide direct infor-
mation on the response of materials to external environments. Secondly, they also
produce a database of properties that can be used to construct effective (empir-
ical) interatomic potentials. Thus, the next step of coarse graining the problem
is to remove the electronic degrees of freedom by imagining the atoms to be held
together by some sort of glue or interatomic potentials, allowing one large-scale

atomistic simulation for millions of atoms and a simulation time of nanoseconds.

Atomistic simulations by using interatomic potentials [3, 10, 11] are extremely
useful in investigating the properties of a physical system. Interatomic poten-

tials involve fitting the parameters to a predetermined experimental or ab initio



database, which includes physical quantities such as lattice constants, elastic con-

stants, vacancy formation energy and surface energy.

The atomic interaction must be approximated to determine the properties
of an ensemble of atoms larger than that handled by computational quantum
mechanics. The molecular dynamics (MD) method is developed to study the
properties of material in volumes containing millions to billions of atoms with
effective interatomic potentials. The interaction between two atoms is defined
by a potential function that depends on the atomic configurations (i.e. relative

displacement) and the local environment (i.e. electrons).

The computations using accurate many-body potentials (empirical or first-
principle derived) may be used to simulate metallic systems with many atoms. It
is relatively easier to investigate many systems with a classical approach that en-
ables one to determine trends in physical properties. An important development
in the classical description of interatomic forces is going beyond the two body
description, by introduction of many-body terms akin tight binding scheme, or
density dependence as in embedded atom model (EAM). The main advantage of
a many-body treatment over the conceptually and practically simpler and suc-
cessful pair-potential description is the ability to better reproduce some basic
features of the transition metals [12, 13, 14, 15]. Some of these approaches are
the empirical many-body potentials based on Norskov’s effective medium the-
ory [17], Daw and Baskes’s embedded atom method [12], Finnis and Sinclair’s
empirical many-body potentials [13] and more recently the many-body potentials

3



developed by Sutton and Chen [15] within the context of tight binding approach

for fcc transition metals.

One of the main problems in the application of inter-atomic potentials is the
transferability of parameters. Interatomic potentials are usually fitted to some
experimental or first-principle results at solid phase. However, it is not clear
whether simulations carried out at elevated temperatures, such as at liquid phase
and during the solidification process, still reproduce the experimental data. Com-
parison of the simulation results and experimental data at various temperatures

can thus serve as a measure of the reliability and the utility of a potential model.

Transition metals and their alloys are very important both scientifically and
technologically. For example, Pd is used as delicate mainsprings in analog wrist-
watches, in surgical instruments, as a catalyst, and also used as a substitute for
silver in dental items and jewelery. Ag is used in alloys, for jewelery and in other
compounds for photography and in conductors. Pd-Ag alloys are also used as
catalysts and their surfaces present many interesting technological characteris-
tics. Recently, interest in Pd-Ag alloys has greatly increased with applications in
domains such as dentistry, LCD screen, and hydrogen separation and storage [16].
Therefore, understanding of the properties for Pd-Ag system of various concen-
trations and at various temperatures are important. However, there is not much
comprehensive experimental and theoretical studies for the temperature and con-
centration dependence of various properties of especially metallic alloys at various

4



temperatures. Recently, Papanicolaou et al. [18] studied Cu-Au alloys by eval-
uating interatomic potentials of Cu, Au, and Cu-Au ordered alloys by fitting
potential parameters to the volume dependence of the total energy computed
from first-principles augmented-plane-wave (APW) calculations. Papanicolaou
and Papaconstantopolos [19] developed a many-body interatomic potential for
Pd by using the same procedure with LAPW. Feraoun et al. [20] used the modi-
fied embedded atom model to study mechanical and thermodynamical properties
of Cu-Ag systems at different concentrations with the pure elemental potential
parameters. The same authors [21] predicted physical properties of Cu-Ag alloys
with Sutton-Chen potential by fitting to the first-principle calculations. Lovvik
and Olsen [22] studied bulk properties of pure Pd, Ag, and their binary alloys
by using periodic bulk calculations based on density functional theory within the
generalized gradient approximation (GGA). Liu et al. [23] investigated the ther-
modynamical and melting points of NigAl and CusAu by using the tight binding
potentials. Clearly much more work needs to be done in this area. Some approxi-
mations have been made to obtain potential parameters for determining physical
properties of alloys. Thus it is of interest to develop potential parameters for bi-
nary intermetallic alloy system without changing the available parameter of pure

elemental case.

From the experimental and theoretical points of view, metallic liquid alloys

appear to be less studied than pure liquids since their description is more difficult.



Recently Wax et al. [24] studied structure of liquid alloys of alkali metals by us-
ing molecular dynamics. Qi et al. [25] predicted viscosity of Au-Cu liquid metal
alloys via quantum Sutton-Chen potential by a non-equilibrium molecular dy-
namics. Asta et al. [26] studied structural, thermodynamic, and atomic-transport
properties of liquid Ni-Al alloys by embedded-atom model via Monte Carlo and
molecular dynamics simulations. Ji and Gong [27] investigated the temperature-
dependent properties of Al-Si liquid alloys by using ab initio molecular dynamics

technique.

The knowledge of the diffusion coefficients in liquid metals is important for a
reasonable prediction of mass transfer rates in a number of existing and potential
applications including the pro-metallurgical re-processing of spent fuels from nu-
clear reactors, and in the production of metallic alloys in liquid phases. Several
processes such as corrosion, phase separation, crystal growth, etc. are governed
by the rates of mass transfer which are primarily dependent on the values of rel-
evant diffusion coefficients [28]. Moreover, many physical properties of material,
such as the bond energy and force constants, directly affect the rate at which
atoms diffuse. Viscosity is also very important for understanding the dynamics
of liquids. Experimental data for self-diffusivities and viscosities of liquid metals
and metallic alloys are scarce except for some metals at some specific tempera-
tures. So it is interesting to simulate liquid transition metals and their binary
alloys, and to calculate the transport properties using computer simulations. The

casting engineer relies also on either theoretical or phenomenological models for



their values.

Metallic glasses, i.e, the amorphous solid phases formed by ultra-rapid cool-
ing of liquid alloys, are also fascinating materials because of their unique physical
properties. A complete and satisfactory theory of the microscopic properties
of a metallic liquid at low temperatures is still an unsolved problem. Super-
cooled liquids at temperatures below their melting point, which have avoided
crystallization, can be cooled below the glass transition temperature to form
a glass or an amorphous solid. The understanding of the structure and ther-
mal stability of these metastable materials is of great importance from both the
fundamental and practical points of view [29, 30]. They challenge one to de-
scribe the structure and atomic dynamics of a system out of equilibrium [31, 32].
Their stability and formation have been correlated with electronic effects [33],
metal-alloy chemistry and eutectic composition [34]. They are extremely duc-
tile and resistant to corrosion and there are many applications in the indus-
try [35, 36, 37]. Much research has been devoted to the study of bulk metallic
glasses [34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47| since the discovery in 1960 by

Duwez and co-workers [48].

Alloys based on the ordered intermetallic compounds constitute a unique class
of metallic materials that form a crystal structure. These alloys are strong, stiff,
and ductile at high temperatures. They have structure and properties that differ
greatly from constituent metals, but alloys are solid solutions between differ-
ent metals. Many intermetallic compounds display an attractive combination of
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physical and mechanical properties including high melting point, low density and
good oxidation or corrosion resistance. They are also typically brittle, highly
crystalline compounds that form in given proportions. These kind of properties
have motivated the strong interest in understanding their fundamental proper-

ties [49, 50, 51, 52, 53, 54].

Cu-Au is especially a well-known model for binary intermetallic systems, it
is well-known due to the existence of a temperature-induced order-disorder tran-
sition and capability of the stable long period superlattice structure. CuzAu,
CuAu and CuAuj intermetallic alloys are of potential use in industry because
of the properties mentioned above. A lot of experimental and theoretical re-
search has been focused on these alloy systems both experimentally and theoret-
ically [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72| but
relatively little attention has been paid to the temperature dependence of the
thermodynamical and mechanical properties of the ordered Cu-Au intermetallic
compounds. The experimental studies of their properties are still a very difficult
problem because of their high melting points. Now, we have sparse experimental
values related to the these materials in literature. This affects the progress in

developing novel intermetallic compounds and alloys.

The molecular dynamics (MD) method [73] is currently one of the most pow-
erful tools for obtaining the macroscopic and microscopic features of the materials
and has been used to investigate solid, liquid, glass formation and crystallization

processes of materials by using different types of interatomic potentials. In an



MD simulation, the motion of individual atoms within an assembly of N atoms or
molecules is modeled on the basis of Newtonian dynamics, given the initial posi-
tions and velocities of the atoms. A finite model consisting of N atoms confined in
a simulation cell of volume V is initially constructed in any classical simulation.
The cell is replicated in all spatial dimensions generating its own periodic images
as well as those of the original N atoms. The imposition of periodic boundary
condition (PBC) is necessary so as to compensate for undesirable effects of the
artificial surfaces associated with the finite size of the simulated system. The
energetics and dynamics of the atoms are obtained from prescribed phenomeno-
logical inter-atomic potentials. MD can provide important insight by allowing
one to determine quantities which are difficult to access in real experiments and

hard to obtain with reasonable precision.

Sutton-Chen (SC) [15] and quantum Sutton-Chen (Q-SC) [74] many-body
potentials are used in this study. Their binary alloy parameters are derived from

pure elemental parameters as given in the following chapter.

The purpose of the present work is to perform a comprehensive study of the
solid state, melting behavior, liquid state, and solidification properties of Pd, Ag
pure metals and Pd,Ag;_, alloys. We intend to show the validity of SC and
Q-SC potential energy functions for these materials at elevated temperatures.
We are particularly interested in testing the transferability of the potential from
pure elemental form to the alloy case and from solid to liquid phase without

further empirical fitting to properties of Pd-Ag alloys and in investigating the



performance of SC and Q-SC potentials on different state properties. The trans-
ferability is checked by using dynamical properties as well as structural properties
of Pd-Ag liquid alloys. The results for solid and liquid states obtained by using
Q-SC potential are also compared with SC and other potential calculations. In
this study, we have tried to cover most of the static and dynamical properties of
the Pd-Ag system not available in the literature. This study also presents the
solid and melting behavior properties of both Cu, Au pure metals and ordered
intermetallic alloys of CuzAu, CuAu, CuAus.

The outline of this thesis is as follows: Chapter 2 describes the MD method
and gives the main simulation procedure for carrying out the calculations in
different ensembles to find various properties of a physical system. The perti-
nent interatomic potentials for the elemental and binary alloy systems, especially
Sutton-Chen potentials and some formalism are given in Chapter 3 to provide
some necessary theoretical expression required in this study. The results for solid,
liquid, and solidification properties of Pd-Ag system are given and discussed in
Chapter 4. Section 4.1 is concerned with the solid and melting properties of the
metals. A comprehensive liquid property of the system is reported in Section 4.2.
This is then followed by the calculation of the glass formation and crystallization
properties of the metallic Pd-Ag system in Section 4.3. Section 4.4 deals with the
studies of intermetallic alloys of CuzAu, CuAu, CuAuz and Cu, Au pure metals.

Finally, the conclusions are presented in Chapter 5.

10



CHAPTER 2

MOLECULAR DYNAMICS

2.1 Molecular Dynamics Simulation

Statistical mechanics provides a means for determining physical properties
of a macroscopic sample of a bulk solid, liquid, and so on. This is done by
finding the properties of many atoms or molecules in many possible energy states.
The difficult part of this process is to find the information about all possible
energy states. One way for obtaining the information about the system is to use
molecular dynamics (MD) simulation [73, 75, 76, 77].

Molecular dynamics method is a simulation of the time dependent behavior
of atoms or molecules that make up a system, and it is essentially deterministic
in nature. MD simulations allow us to calculate the static properties as well as
dynamical properties of the system.

In general, steps followed in this technique are given as [78];

1- Choose initial positions for the atoms.

2- Choose initial set of atomic velocities.

3- Compute the momentum of each atom from its velocity and mass.

4- Compute the forces on each atom from an energy expression which is de-
tailed in the Chapter 3.
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5- Compute new positions for the atoms a short time later. This is a numerical
integration of Newton’s equation of motion by using the previous information of
the atoms.

6- Compute new velocity and accelerations of the atoms.

7- Repeat steps 3-6.

8- Repeat this iteration long enough for the system to reach equilibrium.

9- After reaching the equilibrium state, begin saving the atomic coordinates,
velocities, and accelerations at every few steps.

10- Go on iterating and saving data until the necessary data have been col-
lected to calculate the macroscopic physical quantities with the desired accuracy.

11- Finally, analyze the trajectory to obtain the information about the system
by taking as time average over the dynamical history of the system.

These steps may be summarized in the three categories; initialization, equili-
bration and production. Initialization establishes the thermodynamic state and
assigns initial positions and velocities to the atoms. Equilibration develops the
dynamics over a sufficient time for the system to forget how it was prepared. Sim-
ulation generates the equilibrium phase-space trajectory from which properties

will be calculated after the equilibration of the system.

2.2 Innovations in Molecular Dynamics

Molecular dynamics method for study of condensed phases was first carried out
by Alder and Wainwright [79, 80]. Then, Rahman [81, 82, 83] used this method

12



to extend the case where the particles of the fluid interact through continuous
potentials which is called Lennard-Jones potential. A more systematic study of
the properties of the Lennard-Jones fluid was made by Verlet and co-workers [84,
85, 86, 87]. Since then, this popular method has been applied to a wide range of
increasingly complex systems, including liquid metals, molten salts, and molecular

liquids of many types.

There are several ensembles, called EVN, HPN, TPN, TVN, 4TV, and uTP,
where N, E, V, T, P, H and p denote, respectively, the number of particles, total
energy, the volume, the temperature, pressure, the enthalpy and the chemical
potential in statistical thermodynamics. For example, the EVN ensemble is the
so-called microcanonical ensemble, where the quantities E, V and N are held
constant. (In the microcanonical ensemble the basic equation of motion is the
Newtonian equation, but in other ensembles this is not necessarily the case). The
TVN ensemble is the canonical ensemble, where T, V and N are held constant [7].
The other ensembles are named similarly. The basic equations for the evaluation
of the particle positions are chosen according to the different ensembles one wishes

to simulate.

The MD method were limited to the study of the system with the specified
values of N, V, and E until 1980’s. It is desirable to perform simulation at con-
stant temperature and/or pressure, under conditions in which the energy and
volume of the system can fluctuate in some situations. Several schemes have
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been developed for this purpose, most of them are inspired by a paper of Ander-
sen [88]. They are based on a reformulation of the Lagrangian equation of motion
of the system. The works of Andersen and later that of Nosé [89, 90] are based
on the concept of an ”"extended” system consisting of the physical system and an
external reservoir. The coupling to the reservoir serves to maintain constancy of
pressure or temperature (or both) by a suitable modification of the equation of
motion of the particles in the system. The system proposed by Andersen [88],
consisting of N particles with coordinates r;, is assumed to be coupled to an exter-
nal piston. The reason for using piston in this system is to contract or expand the
system uniformly in response to any imbalance between the instantaneous pres-
sure within the system and the externally set pressure. This extended system
may be described by a fluctuating volume V and scaled coordinates ; = V~1/3p;
for r; in the box of volume V, each component of 7; is a dimensionless number
between zero and one. Andersen has shown that how MD calculation can be
modified to study under constant pressure by introducing the volume of the sys-
tem as an additional dynamical variable. Parrinello and Rahman extended the
method to allow for changes of the molecular dynamics cell and shape [91, 92].
The average volume is determined by the balance between the internal pressure
and the externally set pressure. The enthalpy of the system is approximately con-
served, so this method generates the constant enthalpy, constant pressure (HPN)
ensemble. As a consequence, the Parrinello-Rahman scheme is particularly use-

ful to study phase transitions in solids. In the Parrinello-Rahman formalism,
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the edges of the MD cell are specified by three vectors a, 5, ¢ and which are
time dependent. Periodically repeating MD cells fill up all space. The 3 x 3
matrix h is defined as the coordinates of @, 5,6'. Qo = dethy = @.b x € is then
the volume of the MD cell containing the particles. The position of the particle
i is given by 7; = &d + 77i5+ (;€ = hs;, where §; has components (&, 7, () each
going from 0 to 1. Then the square of the distance between 7 and j is given by
r? = (5; — 5)'G(5; — 5;), where G is the metric tensor, G = h h, the transpose

being denoted by a prime.

Nosé [89, 90] proposed a new MD method at constant temperature. The total
energy of the physical system is allowed to fluctuate by the introduction of an
additional degree of freedom, s. A special choice of the potential for the variable
s guarantees that the averages of static quantities in this method are equal to
those in the canonical ensemble (TVN). The total Hamiltonian is conserved and
all the equation of motions are solved without introducing any stochastic process
in the extended system of the particles and the coordinate s. This variable s can

be interpreted as a scaling factor for the time step in the simulations.

Nosé [89, 90] has also showed how to formulate the constant temperature and
constant pressure (TPN) ensemble in the form of the constant pressure simulation
method by Andersen [88]. Later Hoover [93] has simplified the equations of
motion derived by Nosé.
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In this study, we use MD computer program whose algorithms based on ex-
tended Hamiltonian formalism emerging from the works of Andersen [88], Par-
rinello and Rahman [91, 92], Nosé [89, 90], Hoover [93] and Cagin [94]. The

details of the computational procedure are described in the following section.

2.3 Computational Procedure

The simulation starts with 864 atoms in a cubic box randomly distributed on
an fcc lattice subject to the periodic boundary conditions described in Section 2.4.
The system is thermalised starting from 0.1 K to the target temperature using
a constant enthalpy, constant pressure (HPN) ensemble by slowly heating while
scaling velocities to increase the temperature by 1 K /step over the specific number
of steps depending on the target temperature. The variation of the total energy
with respect to MD steps as the temperature increases is given in the Fig. 2.1. As
explicitly shown in the figure, total energy rises as MD steps go on. Then, this
is followed by equilibration of the system at each target temperature. Fig. 2.2
shows the total energy calculated at 300 K in HPN ensemble as a function of MD
steps. The system is equilibrated at this temperature by scaling the velocities.
Total energy fluctuates around the equilibrium value. After that, the constant
temperature-constant pressure ensemble (TPN) dynamics are performed for the
production runs at this temperature for 20000 steps to calculate the volume,
density and enthalpy of system for each concentration. The Fig. 2.3 shows the
change of the total energy with respect to MD steps in TPN ensemble. The
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total energy also fluctuates around the mean values. The resulting zero strain
average matrix < hy > is used to calculate pressure dependent properties of the
system over 50000 steps of EVN dynamics. Fifth order Gear predictor-corrector
algorithm, described in Section 2.5, is used with time integration step At = 0.002
ps. Parrinello-Rahman piston mass parameter is chosen as W=400 and the Nosé-
Hoover parameter is set to Q=100. The interaction range of the potential is taken
to be two lattice parameters. The temperature effects are taken into consideration

by extending the range by an additional distance of half a lattice parameter.

The cooling process is mainly concerned with two main ensemble dynamics:
constant temperature and constant pressure (TPN), and constant temperature
and constant volume (TVN) MD simulations. The simulations are performed for
three different simulation times; 20, 40, and 200 ps, corresponding to the cooling
rates of 5.0 K/ps, 2.5 K/ps, and 0.5 K/ps, respectively. The system is cooled
with different cooling rates from 3000 K to 100 K in 100 K decrements in TPN
ensemble, after equilibrating the structure in liquid phase. Then some thermo-
dynamical, structural, and dynamical properties are analyzed. TVN simulations
are carried out by using the reference volume of the TPN simulation of each tar-
get temperature at three different simulation times in order to find the diffusion

coefficients.

The necessary data from each ensemble simulation is stored as a time series
of coordinates, kinetic, and potential energies to calculate the physical properties
of the system. Thermodynamic properties of the system are calculated by taking
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Figure 2.1: Evaluation of the total energy of Ag during a MD simulation for the
heating processes in the HPN ensemble. Here the system is heated from 0 K to
300 K.
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Figure 2.2: Equilibration of the total energy of Ag during a MD simulation time
steps at 300 K in the HPN ensemble.
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Figure 2.3: Time dependence of the total energy in the TPN ensemble.

the ensemble average. Time ensemble average can be computed for macroscopic

properties, for example < A >, as follows;
1 rtott
< A>=limi oy / A(r)dr . (2.1)
to

MD also provides the structural quantities such as pair distribution function,
which gives the distribution of the distances between pairs of atoms, and structure
factor which is a Fourier transform of the pair distribution function. The structure
factor is measured in neutron-scattering experiments. MD is also one way to
calculate response functions which are obtained from time correlation functions
between two different quantities. Diffusion, viscosity, and dynamical structure
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factor are the properties derived from the response functions.

2.4  Periodic Boundary Conditions

Most simulations probe the structural and thermodynamical properties of a
system of a few hundred to a few thousand atoms. However, this number is still

far away from the thermodynamical limit.

It is necessary to choose boundary conditions (pbc) that mimic the presence
of an infinite bulk surrounding our N atoms of the system in order to simulate

bulk phases.

In a simulation of N atoms confined to a volume V, we imagine that volume
is only a small portion of the bulk material. The volume, V, is called the primary
cell. It is representative of the bulk material the extent that the bulk is assumed
to be composed of the primary cell surrounded by exact replicas of itself. Thus,
the primary cell is imagined to be periodically replicated in all directions to form
a macroscopic sample of the substance of interest. The problem of the surface
effects can be overcome by implementing pbc. As an atom leaves the central box,
its image enter through the opposite face of cell. Thus, the number of atoms in
the primary cell is conserved [73, 75, 95, 96].
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2.5 Time Evaluation of Atomic Positions and Gear’s Predictor-Corrector Algo-

rithms

A MD program requires good algorithms to integrate Newton’s equation of
motion. The choice of algorithm is important for different point of views. For ex-
ample, speed of the program, accuracy, stability, and energy conservation depend
directly on the algorithms. An algorithm should predict accurately the trajec-
tory of all particles for both short and long times [95]. It should also be simple
in form and easy to program. Such an algorithm is the Gear predictor-corrector
algorithm. The drawbacks of this algorithm are the storage and the requirement
for large memory. Since the trajectory of the atomic motion is a continuous func-
tion of time; position, velocity, and acceleration at time ¢t + At can be expanded

as a Taylor series and predicted as follows [7, 73];

. (#42)
PP+ AL = 7a(t) + (DAL + ’"’2(? (At)? + 3!(t) (Af)?
() v
+ ’T(Q(At)4+§(m)5 , (2.2)
. o ) o L ) A
Pt + At) = 7(t) + 7i(t) At + 51 (0t)” + i (At)
() y
+ gt (2.3)
(iv) (v)
P+ At = () + i ()AL + 2!()(At)2+” 3!(t)(At)3 , (2.4)
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(v)
ngu)p(t-f- At) — T(m) (t) +T,Z(w) (t)At-f— T'LT'()(At)Q ’ (25)

i+ A = @)+ At (2.6)

P+ Ay = rO@) . (2.7)

The force acting on the atoms can be calculated at time ¢ + At by using the
new predicted position 7?(¢+ At), and the acceleration af (t + At) can be used as
a corrector. The discrepancy between the predicted and observed accelerations
can be used to improve estimation of the position and the remaining derivatives.
This is the ’corrector’ part of the predictor-corrector algorithm. The error in the

predicted acceleration, af (t + At), is given as follows;

Aa;(t + At) = af(t + At) — db (t + At) . (2.8)
Adding this difference to the predicted values, the corrected quantities can be

given as;

it + At) = rP(t+ At) + cpAa(t + At) (2.9)
P+ AL) = FP(t+ A + e Aai(t+ AL) (2.10)
ot + At) = Pt + At) + ceAa;(t + At) (2.11)
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n(iii)c(tJrAt) _ Tz(i”)p(ttht)+03Aai(t+At) , (2.12)

r AN = rP(E+ A +ada(t+ A (2.13)

r%(+ AL = P A+ sAai(t+ AL (2.14)

In this study, we use the fifth order Gear predictor-corrector algorithm. Gear has
determined the coefficients (c;, i=1,... 5) such that they yield optimal compromise
between the accuracy and stability of the algorithm [97]. The coefficients are given

in Table 2.1

Table 2.1: Values of ¢; parameters in fifth order Gear’s Predictor-corrector Algo-
rithm.

Co C1 Cy C3 C4 Cs
3/20 251/360 1 11/18 1/6 1/60

The above descriptions are used for the microcanonical (EVN) simulation,
where the total energy is a conserved quantity. We wish to keep the temperature
or pressure constant to perform simulations in the other ensembles such as TPN,
TVN and HPN. In such cases, since integrating Newton’s equation of motion is
not enough, one needs to add the effect of the thermostat interacting with the
system as done in the Nosé method [89, 90].
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2.5.1 How to Choose the Integration Time Step, At

There is no strict rules for selecting the most appropriate time step to use in
MD simulation. If it is too small, the trajectory covers only a limited portion of
the phase space, and if it is too large, instability may occur in the integration
algorithm due to high energy overlaps between atoms. Such instability and inac-
curacy lead to a violation of energy and linear momentum conservation and result
in a program failure due to numerical overflow. The aim is to find the correct
balance between simulating the correct trajectory and covering the phase space.

When simulating an atomic system the time step should be small compared
to the mean time between collisions. The time step may be taken approximately
one tenth of the time of the shortest period of motion. More details for choosing

an integration time step can be found in Ref. [96].

2.6 Limitations of Classical Molecular Dynamics

MD is limited largely by the speed and storage constraints of available com-
puters. The main limitations of the MD are mainly in the size of the system
containing thousands-millions of atoms and simulation time ranging from a few
picoseconds to hundreds of nanoseconds. Several tens of thousands of particles
can be handled with the rapidly growing computer memory [98]. Time limitation
also indicates a limit in the configurational sampling that can be achieved by
MD. Sufficient sampling of the configurational space accessible in an equilibrium
condition is essential for computing the thermodynamic properties. The systems
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at the atomistic level obey quantum laws rather than classical laws. Moreover
quantum effects become important in any system when temperature is sufficiently

low.
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CHAPTER 3

INTERATOMIC POTENTIALS
3.1 Introduction

Computer simulations are becoming an integral part of many investigative
procedures and provide help in understanding various problems at the atom-
istic level. The computer simulation techniques are mostly based on interatomic
model potential governing interactions among the atoms of the system. Com-
putationally most efficient method is the use of interatomic potential for model
systems composed of several hundred to several million atoms. This potential
function describes how the potential energy of a system of N atoms depends on
the coordinates of the atoms. The concept of model potential is based on the
Born-Oppenheimer approximation if it is assumed that in the absence of external
forces, the total energy of a system of N interacting particles may be written

as [10];

Utot(rl,rg, ...TN) = ZUI(TZ) =+ ZZUQ(TU) =+ ZZ Z U;»,(r,-,rj,rk) -+ ... (31)

i j>i i j>ik>j
where U] is the one-body term due to an external field, U is the two-body, or pair

potential, Us is the three-body term which arises when the interaction of a pair
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of atoms is modified by the presence of a third atom. Based on this expansion,
interatomic potentials are classified into two classes: pair potential (only U; and

U, is present) and many-body potentials (Us and higher terms are included).

3.2 Problem with Two-Body Potentials

Total potential energy is approximated only by the sum of two-body interac-
tion in the earlier calculations. This approach not only simplifies the statistical
formalism used in calculating various thermodynamical properties but also it en-
abled many earlier researchers to simulate with relatively smaller and less power-
ful computers. The predominant forces arise from the van der Walls interaction,
especially in the metallic case, which are responsible for long-range cohesion for
large inter-atomic distances. Metallic bonding is due to the sharing of the elec-
trons in the system and hence a proper description of this bonding requires the
consideration of the many-body effects. The pair-wise potentials are insufficient

to define metallic bonding for following reasons [2, 3, 12, 13, 14];

1-The ratio of the elastic constants C12/Cyy is far from 1, whereas a pair-wise
potential leads to the Cauchy relation Cio = Cyy.

2- Prediction of the un-relaxed vacancy formation energy gives values around
the cohesive energy. Experimental data suggest that the vacancy formation en-
ergy for metals is about one third of the cohesive energy.

3- Pair potentials fail to predict an inward relaxation of the metallic surfaces.

4- Pair-wise potentials overestimate the melting point by up to 20 % of the
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experimental value.

A significant progress was made to overcome these drawbacks during the 80’s
by the development of many-body potentials for metals based on the concept of
density, coordination, as the key variable to consider. There are several available
potentials in literature that mimic the many-body effects. These potentials are
the embedded-atom model (EAM) [12, 99], which has been employed in several
studies involving elemental metals and their alloys [100], Glue Model [101], the
Finnis Sinclair (FS) potentials for the bee elemental metals [13], which have also
been developed for the noble metals [61], the Sutton Chen (SC) potentials [15]
for the ten fcc elemental metals, and the Rafii-Tabar and Sutton potentials [102]
for the fcc random binary alloys which have also been used in several modeling
studies [25, 103, 104, 105, 106].

We have used SC type potentials in this study because of long range properties
and computational efficiency. These potentials are in the same form of the FS
type potentials. Hence, it is convenient to describe a background for SC type

potentials.

3.3 Finnis-Sinclair Potential

The FS potentials are constructed to model the energetics of the bce transition
metals. In the F'S model, the total energy of an N atom system is written as [13];
1N
Utot = izzv(nj) - CZ\/E ) (3:2)
i g i
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where

pi=Yblry) - (33)

JF#i

The function V(r;;) is a pair-wise repulsive interaction between atoms i and j
separated by a distance r;;, ¢(r;;) is a two-body cohesive part of potential and ¢
is a positive constant. The second term in Eq. 3.2 represents the cohesive many-
body contribution to the energy. The square root form of this term was motivated
by an analogy with the second moment approximation to the tight binding model
(SMA-TBM) [61]. In this approximation, cohesive energy of a solid scales with
the square root of its atomic coordination number [15]. The function ¢(r;;)
can be interpreted as the sum of squares of hopping (overlap) integrals. The
function p; may be interpreted as the local electronic charge density at site 2
which is constructed by a rigid superposition of atomic charge densities [99]. In
this interpretation, the energy of an atom at site ¢ is assumed to be the same
as if it were in a uniform electron gas of that density. Alternatively, p; can be
interpreted as a measure of the local density of atomic sites [13]. The Eq. 3.2 is
then interpreted as the sum of the volume-dependent energy Uy, represented by
the second term and the pair-wise summation U, represented by the first term.
This FS potential has been generalised to several alloy systems, such as the alloys
of the noble metals [102].
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3.4 Sutton-Chen Potential

SC many-body potentials are of the F'S type and similar in form to the Em-
bedded Atom Model (EAM) [12]. They consist of a pair-wise term and a term
proportional to the square root of the local density which represents the cohe-
sive energy resulting from electrons. These potentials have been generalized to
model the interaction of unlike atoms in fcc random binary metallic alloys by
Rafii-Tabar and Sutton [102]. The general form of the total potential energy of

the metals and alloys in this formalism is given as follows [15, 102, 104];

1 1
Uiot = Z U=> > fijév(rij) — ci€ii(pi)? ; (3.4)

i Li#g

where V(r;;) is a pair potential defined by
iy (3.5)

accounting for the repulsion between the 7 and j atomic cores and p; is a local
density accounting for the cohesion associated with atom 7 which is defined as

follows;

pi = Y olry) (3.6)

i#]

where

o) = ()7 (37

Tij
In Eqs.(3.4)-(3.7), ri; is the distance between atoms 7 and j, a;; is a length
parameter, c is a dimensionless parameter scaling the attractive term to repulsive
term, € sets the overall energy scale, and n, m are integer parameters with n > m.
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To extend the potential parameters to alloys, we use the following combination
rules to represent the interactions between Pd-Ag and Cu-Au pairs, even though
there are different cases we prefer to use the combination rules and demonstrate

their applicability in this study;

1

€; = (€€j)? , (3.8)
mi; = M , (3.9)
ni; = (n '2|' n;) , (3.10)
a; = L’;aﬂ') . (3.11)

Recently, Cagin and co-workers [74] have reparametrized the empirical many-
body force field of the SC type for the face-centered cubic (fcc) metals by fitting to
0 K experimental properties such as density, cohesive energy, moduli, and phonon
frequencies at the X point (at room temperature) while including the zero-point
energy (thus it is called quantum). They have employed this potential in a series
of important problems in metal physics [25, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114].

SC potential does not describe well the properties involving defects, surfaces
and interfaces since the potential parameters are based only on the experimental
lattice constant, cohesive energy and bulk modulus [15]. However, Q-SC poten-
tial includes the quantum correction to take into account the zero-point energy.
This potential allows one to do a more accurate calculation of the temperature
dependence of various physical properties.
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The SC interaction potential has been adopted by Rafii-Tabar and Sutton [102]
to describe the random fcc alloy model in which sites are occupied by two types of
atoms completely randomly, such that the alloy has the required average concen-
tration. No relaxation of the atomic positions is considered. They have recom-
puted potential parameters for a cut-off radius of two lattice parameters. The
modified SC potential [102] and Q-SC potential parameters [74] for Pd, Ag, Cu,

and Au metals are given in the Table 3.1.

Table 3.1: Q-SC and SC potential parameters for Pd, Ag, Cu, and Au.

metal n m e(eV) c a(A%)
Pd Q-SC 12 6 3.2864E-3 148205 3.8813
SC 12 7 4.1260E-3 108.526  3.8900
Ag Q-SC 11 6 3.9450E-3  96.524 4.0691
SC 12 6 2.5330E-3 145.658  4.0900
Cu Q-SC 10 5 5.7921E-3  84.8430  3.60300
SC 9 6 1.23860E-2 39.75500 3.61530
Au Q-SC 11 8 7.8052E-3 53.58100 4.06510
SC 10 8 1.27940E-2 34.4280  4.07830
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 SOLID PROPERTIES

4.1.1 Enthalpy of Mixing

Enthalpy of mixing AH is calculated to trace the behavior of Pd-Ag alloy
system at different temperatures. AH, per atom, at 0 K and finite temperatures,

may also be calculated from

AH = E' — c4E* — cgE? | (4.1)

where E4 and EP are the cohesive energies per atom of the elemental A and B
metals and the constants are such that ¢4 +cg = 1.

The result is shown in Fig. 4.1. The sign of experimental data at 1200 K [115]
agrees with the theoretical data at 1300 K. The experimental data for other tem-
peratures are not available in the literature to verify the results for enthalpy of
mixing at elevated temperatures. The enthalpy of mixing is particularly sensi-
tive to whether local relaxation is allowed, as pointed by Ackland and Vitek [61]
and Rafii-Tabar and Sutton [102]. In addition to ignoring local relaxation, the
enthalpies calculated are valid only at 0 K because the temperature dependence
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Figure 4.1: Enthalpy of mixing AH for Pd-Ag system at different temperatures
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along with experimental data at 1200 K [115].

of enthalpy of mixing is ignored. Another drawback of the calculation may come
from random-alloy model rather than our potentials. The results may be im-

proved by optimizing the initial configuration for the positions of Pd and Ag

atoms in the Pd-Ag system by using Monte Carlo simulations.

4.1.2 Mechanical and Thermodynamical Properties

The results for the calculation of the lattice constant, cohesive energy, density,
elastic constants and bulk modulus of Pd, Ag and Pd-Ag for both Q-SC and

SC potentials are presented in Tables 4.1 and 4.2 with the experimental data
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(whenever available) and other theoretical calculations. These solid properties
are calculated at different temperatures and concentrations. Here, we only give
solid properties obtained from Q-SC and SC potential parameters at the specific
temperatures of 0 K and 300 K in order to compare with the experimental data.
Our calculations are in good agreement with the experimental results [116] and

other theoretical calculations [15, 117] although there are small discrepancies.

4.1.2.1 Elastic Constant, Bulk Modulus and Compressibility

We have calculated the elastic constants for Pd-Ag system by using the following

statistical fluctuation expression [103, 104, 118].

Q
Ca,B'yn = k—ojj(< Pa,BP’)’I‘C > - < Paﬂ >< P’Yn >)
B
2NkgT
+TB ((50475,3” + 5%5/57) + < Xapys > ) (4.2)
0

where angular brackets denote the averaging over time and €2y = dethy is the ref-
erence volume for the model system. The first term represents the contribution
from the fluctuation of the microscopic stress tensor P,g, the second term desig-
nates the kinetic energy contribution, and the third term is the Born term. The
anisotropic stress tensor including the contribution from the many body potential

is calculated from,;

QP =Y %mi _ S > (Z v (Tij)rija:ijﬁ Y é(ri5) (Tz’jawﬂ/w)) (4.3)
i j

2 T Pi

1

The potential energy contribution to the elastic constants, the hypervirial tensor,
Xapyk, 18 glven as;
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_ S s V' TijalijslijTin
N S
% 7 %)

(6" — L) (rijaTijarijaTije/TZ)

-G — (4.4)
Ci [Zj ¢ (Tijarijﬂ/rij)] [Zk ¢ (Tik'yrikn/rik)]
T2 P

The symmetry averaged values for the nine components of the elastic constants
computed from both SC and Q-SC parameters are obtained at most with an error
of 0.03 %. Elastic constants and bulk moduli which are especially computed
from SC potential parameters for Pd and Ag are quite close to the experimental
values, as shown in the Table 4.1. The ratio of Ci5/Cy4 evaluated from Q-SC is
1.72 (2.44) for Pd, 1.77 for PdggAgo.2, 1.79 for PdgsAgo.4, 1.85 for Pdy4Agos,
1.87 for Pdy2Agps, and 1.89 (2.05) for Ag, where the numbers in parentheses are
experimental values from the Ref. [119]. On the other hand, the ratios of C15/Cyy
for Pd and Ag by using SC parameters are 1.99 and 1.75, respectively. The ratio
for Pd calculated from SC potential parameters is closer to the experimental
value than that from Q-SC. The same behavior for Ag, however, is not seen.
The results for the elastic constants of pure and alloy systems show that the
crystals are mechanically stable since the stability conditions Cyy > 0, C;; > 0

and C;; >Cy, are satisfied.

Figs 4.2-4.4 are given to show the effects of the concentration on the elastic
constants, bulk modulus, and compressibility at 300 K and 700 K. The variations
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Table 4.1: Elastic constants and bulk moduli of Pd, Ag and Pd-Ag alloys at 0
K and 300 K along with the available experimental and theoretical data. Elastic
constants and bulk moduli are in units of GPa. Bulk moduli are calculated from
the expression of B=(C;+2 Ci5)/3.

T(K) Cn Cig Cu B
Pd 0 Q-SC 217.30 149.68 91.60 172.22
300 Q-SC 202.66 140.69 81.99 160.96
0 SC 248.20 175.91 93.30 200.01
300 SC 229.48 164.45 82.72 186.22
0 Exp. [116] 234.10 176.10 71.20 195.43

300 Exp. [116] 227.10 176.10 71.70 180.80
Ref. [15] 248.30 176.20 92.90 200.20

Ref. [117] 232 178 74
PdysAgos 300  Q-SC 18151 127.30 71.85 145.09
PdysAgo4 300  Q-SC 162.07 114.66 63.74 130.45
Pdy.4Agos 300  Q-SC 145.08 103.69 56.01 117.16
Pdy.»Agos 300 Q-SC 130.06 9321 49.82 105.76
Pdoos2A80esrs 300  Q-SC 120.96 86.87 46.08 98.23
300 SC 131.12  92.07 51.80 105.80
300  Exp. [120] 127.70 95.80 48.10 106.43
Ag 0 Q-SC 12873 91.39 52.03 103.84
300 Q-SC 116.29 83.87 44.39  94.42
0 SC 139.78  96.71 59.13 111.04
300 SC 126.49  88.32 50.51 101.02
0 Exp. [119] 131.50 97.30 51.10 108.70

300  Exp. [119] 124.00 93.70 46.10 100.70
Ref. [15]  140.99 96.13 59.3 110.54
Ref. [117] 132 97 51 108
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between the elastic constants and concentration of Pd show nearly a linear de-
pendence. Increasing the concentration of Pd in Pd-Ag alloys leads to increase
in the elastic constant and bulk modulus, while decrease in the compressibility,

as expected.

4.1.2.2 Lattice Parameter, Cohesive Energy, and Density

The lattice parameters, cohesive energy and density calculated from SC and Q-SC
potential parameters are in good agreement with the experimental and theoreti-
cal calculations. Generally, the results obtained from Q-SC potential parameters
are closer to the experimental data. Q-SC potential parameters give rise to im-
provements over SC potential parameters, as shown in Table 4.2. We have cal-
culated lattice parameter, cohesive energy, density and elastic constants for the
Pdg.0622Ago.9378 alloy case so as to compare with the available experimental data.
Density and elastic constants computed from both potential parameter sets are
compatible with the available experimental data although there is a small dis-
crepancy, as shown in Tables 4.1 and 4.2. It may be concluded that Rafii-Tabar’s
random alloy model generate useful information about the alloy system without

further empirical fitting to properties of Pd,Ag;_,.

4.1.3 Phonon Dispersion Curves

In the classical picture within the harmonic approximation the atoms of a
crystal are visualized as joined by harmonic springs and crystal dynamics is an-
alyzed in terms of a linear combination of 3n normal modes of vibration. The
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Figure 4.2: The elastic constants of Pd-Ag alloys as a function of concentration
of Pd in Ag at two different temperatures.
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Figure 4.4: The compressibility as a function of concentration of Pd in Ag at 300
K and 700 K.
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Table 4.2: Lattice parameter a, cohesive energy E., and density p of Pd, Ag
and Pd-Ag alloys at 0 K and 300 K along with the available experimental and
theoretical data.

T(K) a(A% E.(kJ/mole) p(g/cm?)
Pd 0 Q-SC 3.874 377.90 12.16

300 Q-SC 3.896 370.24 11.95

0 SC 3.890 380.10 12.00

300 SC 3.911 372.51 11.81

0 Exp. [116] 376. 12.13

300  Exp. [116] 3.89 12.00

Ref. [15] 3.89  380.15
Ref. [117] 3.889 379.77

PdygAgpo 300 Q-SC 3.933 351.48 11.65
PdgsAgo. 300 Q-SC 3.971  332.93 11.34
Pdo2Ago.s 300 Q-SC 4.051 296.71 10.75
Pd0_0622Ag0_9378 300 Q—SC 4.080 284.20 10.541
300 SC 4.103 283.25 10.364
300  Exp. [120] 10.606
Ag 0 Q-SC 4.061 286.55 10.69
300 Q-SC 4.093 278.917 10.44
0 SC 4.086 285.56 10.50
300 SC 4.116 277.86 10.270
0 Exp. [119] 284. 10.635
300  Exp. [119] 4.06 10.50

Ref. [15]  4.09  285.60
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energies of normal modes of a crystal are quantized. Phonon is a quantum of

crystal vibrational energy.

The problem of lattice dynamics in the harmonic approximation is to find the
normal modes of a crystal, in other words, we seek to calculate the phonons as
a function of their wave vector q. The relationship between w and ¢, namely
w = w(q), is called the phonon dispersion. The dispersion curves shows the

translational symmetry in ¢ space [121, 122].

A crystal is composed of an infinite number of unit cells, each of which has
n atoms. The number of degrees of freedom will be 3n which is also the number
of branches in the dispersion relation w(q). Three of the branches are always
acoustic and the rest of the branches are the optical branches. Two third of the
branches are for transverse polarization and the rest is for longitudinal polariza-

tion.

Phonon dispersion curves w(q) can be measured by inelastic neutron scat-
tering techniques. The curves determined by experiments are mainly of interest
because they provide a chance for testing various models of interatomic forces.
Certain bulk properties of a crystal, such as the specific heat, are determined by
an average over the whole phonon spectrum. This means that while the specific
heat can be predicted when the w(q) relation is known, the converse does not

hold [123].

The dynamical matrix is given as [124];
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ﬁzw (i,4,0,1) exp (iq. [r(j,1) — r(3,0)]) , (4.5)

Da,ﬂ(iaja q) =
where [ = 0 is the reference unit cell, [ are the neighboring cell numbers. %, j are
index of atoms in the unit cells, o, 5 = 1,2, 3 representing z, ¥, z, respectively.
Dy (i, j,q) is the 3nx3n dynamical matrix and & is the force constant which
can be calculated by taking the first derivative of the many-body force. The

many-body force acting on atom i along a direction «(= z,y, z) is given as;

Fa = —c | SV ()02 - £ 3 Ol oy €5 0] a1y

i T 2z P Ty 207 PP T
where the prime denotes differentiation with respect to r;; and r;;, denotes the

calculated force on the 7 th atom in the « direction. The force constant is given

as follows;

.. 1 1 O
(Daﬂ (17]) = — ¢ l(v V ) ATZJOZATZ]/B + V;']' r2ﬁ]

'L] 2
ij
€C ’ ’
T (Z ¢ikATika> ¢;;Arijp
Pi ki

€C " ’ 5aﬁ
s o a4

% 1.7

+ 3/2 ¢zg Arija (Z d)jk:ATjk,B) (4.7)
4p k#j

€C " / 504
+ 2p1/2 l<¢1] - ¢ ) ArijaATijp + ¢ 2,6]

J "ij

+ - Z l 3/2 (¢zkATzka¢]kArjkﬂ)]

k#m plc
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In the harmonic approximation, the force constants have very simple physical
meaning. Suppose that all atoms are at their equilibrium positions except for the
atom j which is displaced an unit distance dg in the 3 direction. In this case, the

force applied on ith atom:;

Fo(i) = —Pup (4, 7) dg : (4.8)

It follows that the coefficient ®,4 (i,7) is the negative force exerted in the a-
direction on the atom ¢ when the atom j is displaced a unit distance in the
[B-direction, while all other atoms are kept at their equilibrium position. In the
expression (4.7) of the force constants, the order of differentiation can be inter-
changed without changing the value of the force constants. Therefore, the force

constants satisfy the following symmetry condition;

Pap (i, 7) = Pap (7,1) - (4.9)

In addition to this symmetry condition, the total force constant must vanish, that

is, we obtain the following expression;

Z@aﬁ (i,j) =0 . (4.10)

It follows that diagonal force constant ®,p (i,4) is not second derivative of the
potential energy function but its components can be evaluated from the following

relation;

Bos (1) = = S0 (i1) (4.11)
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Our cubic system is composed of 864 atoms, that is 216 unit cells. We choose
the reference unit cell in the center of the cubic system after labeling all the
atoms. We calculate the force constants by using the trajectories of Pd at 120 K
and Ag at 300 K in the EVN dynamics. Then, we construct the dynamical matrix
using the force constants and positions of atoms. The eigenvalues are computed
by diagonalizing the dynamical matrix by using EISPACK or LAPACK sub-
program. The order of force constants and that of phonon frequencies calculated
are in agreement with the theoretical and experimental values. The phonon
dispersion curves of Pd at 120 K and Ag at 300 K for Q-SC and SC potential
parameters are shown in Figs. 4.5 (a) and (b) together with experimental data,
respectively. The overall structure of dispersion curves are well reproduced. The
low-frequency transverse modes computed both from Q-SC and SC potential
parameters for Pd are found in agreement with experiment. The longitudinal
higher frequency modes at X(L) for Pd are slightly smaller than the experimental
data. On the other hand, the dispersion curves obtained from SC potential
parameters for Ag at 300 K are consistent with the experimental values. Phonon
dispersion curves calculated from Q-SC potential parameters for Ag are in good

agreement with the experimental and SC potential parameters results.

While the Q-SC and SC phonon dispersion curves for Pd are consistent with
each other, the improvement of Q-SC over SC potential for Ag is observed at the
transverse acoustic modes as expected. This is due to fitting of Q-SC parameters
to phonon frequencies at the X point. Here it may be noted that original SC
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Figure 4.5: Phonon dispersion curves of (a) Pd at 120 K and (b) Ag at 300 K for
Q-SC and SC potential parameters along symmetry directions. The circles are ex-
perimental data for Pd [125] and Ag [126]. The solid curves give the calculations
for Q-SC parameters. The dashed curves represent the SC calculations.
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Figure 4.6: Optic and acoustic phonon dispersion curves of Pd at 0.1 K for Q-SC
potential parameters.

potential has been fitted only to three experimental quantities and it still is in
good agreement with the experimental data.

The behavior of the optical and acoustic phonon dispersion relation for Pd
metal is shown in Fig. 4.6. The frequencies of optic modes are higher than those

of the acoustic modes, as expected.

4.1.4 Melting Region

The enthalpy and the density as a function of temperature for Pd and Ag
are given in Figs. 4.7 and 4.8, respectively, in order to calculate their melting
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Figure 4.7: (a) Enthalpy and (b) density of Pd calculated by Q-SC and SC
potential parameters as a function of temperature.
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Figure 4.8: (a) Enthalpy and (b) density of Ag calculated by Q-SC and SC
potential parameters as a function of temperature.
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temperatures. As shown in the graphs, there are sharp jumps in the enthalpy
and density. This jump is due to a phase transformation of the material, i.e.,
material melts at this point. The sharp jumps in the enthalpy and the density
graphs indicate the same temperature. We have also considered other physical
properties such as volume, pair distribution function, and diffusion coefficient
in the prediction of melting point of the material. If we examine the pair dis-
tribution function, the peaks after the second disappear. Especially, diffusion
coefficient, which is analyzed in detail in the next section, is one of the charac-
teristic properties of liquids. It distinguishes the liquid from the solid. Computer
simulations are carried out by 10 K increment to calculate the melting points
better, around the melting points of pure metals and alloys. In this manner, the
melting points of Pd, Ag and their binary metal alloys are evaluated at different
concentrations. We have shown that all physical properties considered here indi-
cate approximately the same melting point of Pd-Ag alloy. The melting points
of Pd and Ag obtained by using the Q-SC potential parameters are very close
to the experimental data. Therefore, the melting points for the alloy case are
evaluated only for Q-SC potential parameters. The melting points of the Pd-
Ag system are given in Table 4.3, with available experimental and theoretical
data. The evaluated melting points and the experimental ones agree very well.
Melting points of Pd and Ag metals are closer to the experimental data rather
than other theoretical calculations [117, 127, 128, 129]. The consistency between

the simulation results and experimental data for the melting points of Pd, Ag
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Table 4.3: The melting points of Pd, Ag and Pd-Ag alloys calculated from SC and
Q-SC potentials with the experimental data from Ref. [115] and other theoretical
calculations.

Simulation (K) Experiment (K) Other Calculations (K)
Pd 1690+£20(SC), 1820+10(Q-SC) 1825 1390%, 1215°
PdosAgos 1695+10(Q-SC) 1704
PdysAgos 1570+10(Q-SC) 1620
Pdy.aAgos 1480+10(Q-SC) 1507
PdyoAgos  1380£10(Q-SC) 1340
Ag 1370£20(SC), 1270£10(Q-SC) 1234.9 1170, 907, 1330°, 14657
@ Ref. [129]
b Ref. [128]
¢ Ref. [117]
4 Ref. [127]

and their alloys shows the excellent transferability of the Q-SC potential to high

temperature applications.

4.1.5 Pair distribution function

Pair distribution function is of central importance to the modern theory of
solids and liquids. The structures and properties of solids and liquids in equi-
librium are best described by this function. Pair distribution function may be
defined as follows: g(r) is proportional to the probability of finding another atom,
at the same instant, at a distance r from the reference atom located at the origin.
In this respect, the function 47r?ngg(r) is generally called the radial distribu-
tion function (r.d.f.), (where ng is the average number density given by N/V).
In a binary alloy of components 1 and 2, three pair distribution functions, i.e.
the partial distribution functions g11(7), g12(7), ge2(r), are required for a complete
description of its structure. This function can be extracted from x-ray and neu-
tron diffraction experiments [130]. The pair distribution function g(r) can be
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Figure 4.9: Pair distribution function g(r) of Pd at 1800 K calculated by Q-SC
and SC potential.

readily computed from trajectories of the atoms [73], since molecular dynamics
simulation technique provides positions of individual atoms as a function of time.
Pair distribution function has sharp peaks in the solid phase. The peaks of pair
distribution function of Pd-Ag alloy decrease at temperatures near to the melt-
ing points and shows an oscillation about 1. Figs. 4.9 and 4.10 display the pair
distribution function calculated from Q-SC and SC potential parameters to show
the structural behavior of Pd at 1800 K and Ag metals at 1300 K, respectively.

SC potential gives rise to liquid state while pair distribution function of Q-SC
for Pd is still in the solid phase as shown explicitly in Fig. 4.9. On the other
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Figure 4.10: Pair distribution function g(r) of Ag at 1300 K calculated by Q-SC
and SC potential.

hand, the result for Q-SC is in the liquid phase, but, that for SC is also still in
the solid case for Ag metal. The comparisons of g(r) obtained from Q-SC and
SC potentials for Pd at 1853 K and Ag at 1273 K with available experimental
data is given in Fig. 4.11. Distribution functions calculated from Q-SC potential
parameters are in good agreement with the experimental data as seen from both
of the figures. Q-SC shows a slight improvement over SC for Ag. Moreover, there

is also an improvement in the first peak of Pd.
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Figure 4.11: a) Pair distribution function g(r) of Pd at 1853 K for Q-SC and
SC potential with the experimental data from Ref. [131]. Both potentials show
similar behavior at this temperature. b) Pair distribution function g(r) of Ag at
1273 K for Q-SC and SC potential with the experimental data from Ref. [131].
Note that the structure is solidus form for SC potential at the same temperature,
thus, indicating the system has still not melted. However the system must be
heated up to 1373 K to be melted by SC potential.
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4.2 LIQUID PROPERTIES

4.2.1 Introduction

Many solid materials, e.g. glass and crystalline, originate from their liquid
states. Their microstructures are little known, and the essential and internal re-
lationship between liquids and solids is still obscure. Therefore, it is indispensable
basic physical properties as well as one of the most sensitive physical properties
indirectly affecting the information of the liquid structure in discussing the nature
and behavior of liquid metals and alloys. From the practical point of view, the
viscosity and diffusion coefficient are important parameters in the casting process.
However, these quantities for metals and metallic alloys are lacking, because of
the difficulties in their measurement. The use of molecular dynamics simulation
has been successful for investigating the transport properties of liquid metals.

We present the liquid properties of Pd-Ag system in this section. The trans-
ferability of potential parameters from solid to liquid and from elemental case to

alloy case are checked by analyzing liquid properties of Pd-Ag system.

4.2.2 Liquid Structure

We present the pair distribution function of Pd and Ag pure metals calculated
for both potential parameter sets at the specific temperature in Fig. 4.12 in order
to compare with the experimental data and show that Q-SC potential parameter
set results are in better agreement with the experimental data than SC potential
parameters. The melting points of Pd and Ag are found as 1820 K and 1270
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K, respectively, for Q-SC, 1690 K and 1390 K, respectively, for SC. The Q-SC
potential parameters for Pd and Ag yield melting points closer to the experimental
values which are 1825 K for Pd and 1235 K for Ag, as discussed in section 4.1.4.
The pair distribution functions of Pd at 1853 K and Ag at 1453 K are given in
Fig. 4.12 with the available experimental data. There is an improvement in the
height of the first peak of the pair distribution function of Ag computed from

Q-SC potential over SC calculations, as shown in the figure.

4.2.3 Dynamical Properties
4.2.3.1 Diffusion Coefficient

The Einstein relation at the long time limit is given as [75];

<|r@t) —r(0))* >=6Dt+C (4.12)

where < |7(t) —r(0)|? > is the mean square displacement, and D, C are constants.
The constant D defines the diffusion coefficient. Mean square displacements as a
function of time calculated from Q-SC and SC potential sets for Pd and Ag pure
metals are plotted in Figs. 4.13 and 4.14, respectively. Pd is in the liquid state for
both potential parameter sets at 1853 K and slope of the SC is slightly greater
than that of the Q-SC. The slopes of these lines give the diffusion coefficients
at the long time limit. SC gives a very small slope, while Q-SC yields a large
slope of the mean square displacement for Ag. The figures show a quadratic
dependence at short times. This behavior can be understood immediately by
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Figure 4.12: Pair distribution function of (a) Pd at 1853 K and (b) Ag at 1423
K for Q-SC and SC potentials with experimental data [131].
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Figure 4.13: The time dependence of the mean square displacement of Pd at 1853
K for the Q-SC and SC potentials in the logarithmic plot. The unit of the mean
square displacement is nm?

realizing that the particles move ballistically at short times. This is due to the
cage effect created by the nearest neighbor atoms. The microscopic reason for
the presence of plateau is that the tagged particle is trapped in the cage and it
takes the particle a long time to escape from this cage. The cages become more
and more rigid with decreasing temperature, and thus the time needed to break
them up increases. The particles start to collide with their neighbors and their
motion becomes diffusive for longer times.

Diffusion coefficient D may also be calculated from velocity auto-correlation
function via the Green-Kubo relation [75];
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Figure 4.14: The time dependence of the mean square displacement of Ag at 1273
K for the Q-SC and SC potentials in the logarithmic plot.

D:é%mﬁ<m@%wp> . (4.13)

where v;(t) is the center of mass velocity of a single molecule. Normalized velocity

auto-correlation function C(¢) is given as [73];

)= 00 >

(4.14)

This normalized function gives that values of velocity at two times separated by a
period of time ¢ are related and it highlights the statistical nature of the correla-
tion function. When C(t)= 1, as at t = 0, there is a complete correlation of values
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with a 100 percent certainty. When C(t)= 0, as it may often do when t is large,
there is no relationship between any two values over this particular time interval.
Normalized velocity auto-correlation function (VACF) for Ag at 1273 K com-
puted from both Q-SC and SC potentials to compare the results obtained from
both potential sets is given in Fig. 4.15. The same function for Ag in PdggAgg.4
alloy calculated for only Q-SC at different temperatures to comprehend diffusion
processes in the solid and liquid states, is given in Fig. 4.16, respectively. C(t)
remains positive for all times and decay monotonically to zero at high tempera-
tures, but this function becomes negative and passes through a minimum before
approaching zero at low temperatures, as seen in Fig. 4.16. The negative cor-
relation region interpreted as a rebound of the tagged particle against the cage
formed by its nearest neighbors take place up to high temperatures far away from
the melting points. Collisions tend to scatter without reversing their trajectories
at high temperature. Hence, C(t) remains positive. However, rebounding col-
lisions are more numerous than scattering collisions at low temperature in the

solid case, and many rebounds cause C(%) to change sign.

Diffusivities in solid state differ from those in liquid state by a factor of 100 to
1000 in the case of metals. The high atomic mobility of most metals just above
their melting temperature, with the diffusivities of the order of 10 >nm?ps~!, is
one of the most characteristic properties of liquids [130]. The diffusion coefficients
calculated from Eqs. 4.12 and 4.13 for the potential sets considered in this study

at the specific temperatures for Pd and Ag metals in the constant temperature
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Figure 4.15: Normalized velocity auto-correlation function of Ag at 1273 K for
the Q-SC and SC potentials.
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Figure 4.16: Normalized velocity auto-correlation function of Ag in PdggAgy4 at
different temperatures for the Q-SC potentials.
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and pressure (TPN) and microcanonical (EVN) ensembles are given in Table 4.4,
with the available experimental and theoretical data. The diffusion coefficients
computed from Q-SC parameter set produce more accurate values. The values
are compatible with both experimental data [132] and other theoretical calcula-

tions [133, 134].

Table 4.4: Values of the diffusion coefficients D in the units of nm?/ns. Pd and Ag
liquid metals are computed by using Green-Kubo (GK) and Einstein (E) relations
at the specific temperatures in the two different ensembles (TPN and EVN) for
two different potential parameter sets (Q-SC and SC). The diffusion coefficients
in the EVN ensemble are calculated from the fitting to the Arrhenius equation.

D in TPN  Fitted D in EVN

T (K) GK E GK E Exp.
Ag 1273 Q-SC 3.43 277 3.37 3.43
SC - 0.041
2.81¢
2.65° 2.70°
2.60¢ 2.65¢

Pd 1853 Q-SC 487 519 4.66 4.69 -
SC 9.33  5.59

4.03°  4.07°
3.80¢ 3.83¢
“Ref. [132]
"Ref. [134]
“Ref. [133]

The temperature dependence of the self-diffusivity D(T) is of special interest
since the diffusional activation energy is experimentally accessible. It can be
computed by fitting the diffusion coefficients calculated by both Einstein and
Green-Kubo relations to the Arrhenius form. The formula used in the analysis
for the diffusion of liquid metals is Arrhenius type given as [135];
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D(T) = Dyexp(—E,/ksT) . (4.15)

where F, is the diffusional activation energy, kg is Boltzman constant, and T is
the absolute temperature. Temperature dependence of self-diffusion coefficient
of Pd and Ag in the PdggAgg 4 alloy evaluated from Einstein relation is given in
Fig. 4.17, with the Arrhenius fit. The data in the figure fit well to the Arrhenius
form. We could not compare our results with the experimental and theoretical
data because of their nonexistence in the literature. However, the diffusion coef-
ficients from two methods are mutually consistent with each other. Self-diffusion
coefficients of Pd-Ag alloys are computed by using Q-SC potential parameters
to study the effect of the concentration on the diffusion coefficients. The results
obtained from Einstein relation are fitted to Arrhenius equation and are collected
in Table 4.5. Arrhenius fitting parameters are also included in the same table.
Diffusion of Ag is larger than that of Pd at the specific temperature as can be
seen in Table 4.5. The self-diffusion coefficients for Pd-Ag system increase, as to
be expected, while the concentration of Ag in Pd increases. Our results may be

tested by experimental and first-principle calculations.

4.2.3.2 Viscosity

Another important physical property of liquid metals is the shear viscosity. It
may be calculated from Green-Kubo relationship by integrating the shear stress
auto-correlation function. The shear viscosity is given as follows [75];
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Figure 4.17: Self-diffusion coefficients D of Pd and Ag in PdygAg 4 alloy calcu-
lated from Einstein relation (E) as a function of temperature with the Arrhenius
fit by using Q-SC potential.

V 00
1= /0 dt < Pos(t)Pag(0) > (4.16)

where P,z is an off-diagonal (o # ) element of the shear tensor. The shear
viscosities fitted to Arrhenius expression n = noexp(F,/kgT) for Pdy¢Nig4 are
given in Fig. 4.18. The values of viscosity for the alloy decreases exponentially
by obeying the Arrhenius form as the temperature increases. Furthermore, the
effects of the concentration on the viscosity computed from Green-Kubo formu-
lae over 50000 steps in the microcanonical ensembles (EVN) are also investigated
at the temperature of 2000 K. Table 4.6 lists the viscosities fitted to Arrhenius
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Table 4.5: Arrhenius fitting parameters (Dy and E,) and self-diffusion coefficients
(D) as evaluated by using the Einstein relation for Pd-Ag alloys at 2000 K. Here
the computed diffusion coefficients are obtained from Arrhenius equation. D, D,
and E, are in the units of nm?/ns and kJ/mole, respectively

Pd Ag Pd Ag
DO Ea D() Ea D D
Pd 103.00 47.60 5.88

PdosAgo, 107.05 4549 11152 45.99 6.94 7.02
PdosAgos 90.29 40.33 91.06 39.93 7.99 8.25
Pdo.Agos 99.89 39.71 99.73 39.26 9.17 9.41
PdgoAges 122.36 41.70 131.88 42,51 9.97 10.23
Ag ; - 102.31 36.11 - 11.63

equation for Pd-Ag alloys. The values of viscosity decrease while increasing the
concentration of Pd in Ag, as seen in the table. This trend is expected result
of this material. Arrhenius fitting parameters are also given in the same table
to calculate the viscosity at the desired temperature and the specific concentra-
tion. Table 4.6 includes also viscosity values for pure Pd and Ag at the specific
temperature of 1853 K and 1273 K to compare together with available experi-
mental data [136] and other calculations [133, 134, 137]. There is an available
experimental data for only Ag metal for Pd-Ag system . The results for viscos-
ity are smaller than those of available experimental value and other calculations.
This discrepancy for viscosity can be improved by trying the non-equilibrium

molecular dynamics (NEMD) technique.

65



3 T | T | T
Green-Kubo Cals. o
n(T):0.469 exp(22.64/(kb T)) —
25 F o -
> - Pdo.sAgo.a .
£
g
= |
1.5 F
1 1 | 1 | 1
1500 2000 2500 3000

Figure 4.18: Viscosity values of the Pdy¢Agg.4 alloy calculated from Green-Kubo
relation as a function of temperature alloy along with Arrhenius fit for Q-SC
potential parameters.

Table 4.6: Arrhenius fitting parameters (1, and E,;;) and shear viscosity (7)
values evaluated by using the Green-Kubo (GK) relation for Pd-Ag alloys at
2000 K. Here the shear viscosity is obtained from Arrhenius equation.

no (mPa.s) E,s (kJ/mole) T(K) n(mPa.s)
Sim. Exp. Other Cal.
Pd 0.479 27.82 2000 2.55
1853 2.91 - 4.00°, 3.68¢
PdosAgo.2 0.392 28.64 2000 2.19
Pdo.sAgo.4 0.469 22.64 2000 1.83
Pdo.1Agos 0.446 21.39 2000 1.61
Pdo.2Ago.s 0.291 26.67 2000 1.45
Ag 0.395 17.98 2000 1.17
1273 2.16  3.88¢  3.84% 3.68°
3.38¢
“Ref. [136]
"Ref. [133]
“Ref. [134]
4Ref. [137]
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4.3 GLASS FORMATION AND CRYSTALLIZATION

4.3.1 Introduction

Solid state amorphization is a well-known structural phase transformation
that, evolving from a crystalline state, produces a disordered phase characterized
by the lack of long-range order. The liquid metals can be transformed into glasses
without long-range order by cooling them rapidly below their freezing tempera-
tures. The structural changes that take place during the cooling processes are
small, therefore atomic motion is investigated for an explanation for this transi-
tion. There has been much progress in the understanding of the thermodynamic
transition of glass [2, 42, 106, 138, 139] in recent years. A glass may be very
similar to a frozen liquid. The configurations of the glasses at low temperatures
are not far from those of liquid. In fact, glasses can not simply be considered
as frozen liquid. Understanding the nature of glass formation is an important
practical issue. Unlike window panes, metallic glasses are not transparent or
brittle, yet their unusual atomic structure gives them distinct mechanical and
magnetic properties. They spring more readily back to their original shape after
being deformed. The properties of metallic glasses made from liquids depend on
the microstructure of materials. The knowledge of microscopic processes of glass
transition is essential for understanding and controlling material properties. How-
ever, the high cooling rate restricts the practical application of the amorphous
techniques. Experiments have not allowed us to directly measure how an atom
moves to a particular neighbor in a glass or to observe the motion of a particular
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atom in the system. The nature of the glass formation determined by experiment
is hardly possible. MD provides the opportunity to directly observe the insight

of the glass formation at atomic level.

4.3.2 Glass Formation Tendency and Crystallization

4.3.2.1 Volume and Enthalpy

Figs. 4.19 (a) and (b) represent the variation of volume and enthalpy of Pdy gAgg 2
as a function of temperature at three different cooling rates, respectively. There
is a sharp jump during the heating and cooling processes, as shown in the figures.
The sudden increase or decrease is due to the first order transition such as melting
and crystallization. The melting temperature of PdygAggo is 1695+10 K which
is in reasonable agreement with the experimental melting temperature of 1704 K.
Among the reasons for the melting temperature to be a little bit different than the
experimental value are that the system is homogeneous without any free surface
and we started the simulation with a perfect crystal. The system might not have
had time to rearrange an equilibrium distribution of defects. These might cause
the melting point to be different from the experimental value. This alloy changes
into crystalline form at 0.5 K/ps while it transforms into a glass at faster cooling
rates. That is, there is no sudden change in the volume and enthalpy at fast
cooling rates. This is a sign of glass formation.
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Figure 4.19: a) Volume and b) enthalpy of PdggAgg 2 as a function of temperature
during the heating and cooling processes at different cooling rates.
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4.3.2.2 Pair Distribution Function

Figs. 4.20 and 4.21 show the pair distribution functions during the heating and
cooling processes at three different cooling rates and at different temperatures to
investigate the cooling rates effects on the structure of PdygAggys. Pair distribu-
tion functions represent the sharp peaks during the heating and cooling processes
at the rate of 0.5 K/ps. The alloy system recrystallizes and shows the same struc-
ture with the heating processes after cooling the model system with the 0.5 K/ps
. However, other cooling rates give rise to glass formation of the system. In other
words, faster cooling rates lead to glass structure, i.e, there is a splitting in the
pair distribution function at 300 K and 700 K, this is a characteristic of metallic
glass. Material at 1600 K is still in crystalline form during heating process, but it
has supercooled liquid form at three different cooling rates, as shown in Fig. 4.21
(a). The material displays the same structure at all cooling rates at this temper-
ature. The sample is heated from 0 K to 3000 K and cooled by 100 K decrements
untill the target temperature of 1800 K is reached in Fig. 4.21 (b). This leads
to the same structure at heating and all cooling rates, indicating a stable liquid

state.

4.3.2.3 Wendt-Abraham Parameter

Glass and crystallization temperatures can also be predicted by means of the
Wendt-Abraham parameter [140], defined by the R4 (gmin/9maz) = Gmin/Gmaz-
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The Wendt-Abraham parameter describes the local properties of the pair distri-
bution function which allows one to estimate the glass and crystallization temper-
atures. The Wendt-Abraham glass and crystallization temperatures are displayed
in Fig. 4.22 at different cooling rates. The system shows a glass formation ten-
dency at the temperatures of 400 K and 450 K at the cooling rates of 5.0 K/ps
and 2.5 K/ps, respectively, while the slower cooling rate of 0.5 K/ps leads to
crystallization at 850 K. The material has not enough time to relax at fast cool-
ing rates. This leads to an amorphous structure, but the material crystallizes as
the simulation time increases. Thus, the cooling rates play an important role in

determining whether the material change into crystal structure or not.

4.3.2.4 Diffusivity in Metallic Glass Former

Diffusion coefficients of Pdy gAgg.» are calculated from the Einstein relation which
is given in the Eq. 4.12 and are plotted in Fig. 4.23. Diffusion increases linearly
during heating while it decreases exponentially during cooling as a function of
temperature, as shown in the figure. The diffusion coefficients for two cooling
rates show the same behavior. Diffusion coefficients diminish sharply at the
crystallization point. This is an expected result since the system becomes frozen
and stays that way within a time scale. The atoms lose their configurational
freedom and vibrate around their local positions in the crystalline phase. Our
results can not be compared with the experimental data because we lack data for
diffusion of Pd and Ag in PdygAgg.» alloy.
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Figure 4.22: Wendt-Abraham parameter R" 4 versus temperature. 0.5 K/ps leads
to crystallization of the material at 850 K. The calculated glass temperatures are
400 K and 450 K at two other cooling rates.

4.3.2.5 The Concentration Effects on the Glass Transition

The concentration effects on the glass transition and crystallization are studied
by plotting volume of Pd-Ag alloys as a function of temperature. This graph is
given in Fig. 4.24. The increase in concentration of Ag atoms in Pd-Ag alloys
leads to amorphous structure at the cooling rate of 0.5 K/ps, as seen in the figure,
that is, the material requires more time to rearrange and crystallize. This is due

to the Ag atoms being faster in the Pd-Ag alloy than the Pd atoms.
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4.4 INTERMETALLICS

Until now, we have considered only the random alloys. It is of great impor-
tance to also investigate ordered alloys. We have chosen to study the interesting
case of intermetallics.

In this section, computer simulations of Cu, Au pure metals and their ordered
intermetallics alloys, CugAu(L1s), CuAu(L1y), and CuAus(L1,), are performed in
three successive ensembles, that is, constant-enthalpy constant-pressure (HPN),
constant-temperature constant-pressure (TPN), and microcanonical (EVN) en-
sembles. The simulation box is made up of 1372 particles arranged on the fcc
structure for the Cu and Au pure metals, L1, structure for the CugAu and CuAus,
and L1, structure for the CuAu ordered intermetallic systems. In the case of
CusAu, the Au atoms occupy the corner cites, while Cu atoms occupy the face
centers of the basis cube; the opposite occurs for CuAus. In the ordered phase,
CuAu has a tetragonal structure and consists of alternate planes of Cu and Au
atoms. The structure can be thought of as a distorted face-centered cubic lattice,

in which the experimental value of c¢/a is 0.926.

4.4.1 Thermodynamical Properties

4.4.1.1 Lattice Parameter, Cohesive Energy, and Density

In Table 4.7, we present results of the cohesive energies, the equilibrium lat-
tice constants, and density for the Cu and Au pure metals calculated from TPN
ensemble average over 20000 time steps at various temperatures along with the
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available experimental data. The Q-SC calculations of the cohesive energy, lattice
parameter and density are in good agreement with the experimental data [116].
Especially, the results of the Q-SC are closer to the experimental data than those
of SC as temperature increases. For example, simulation results of the lattice
parameter and density for the Q-SC show approximately 0.2 % and 0.8 %, re-
spectively, at temperature of 0 K. For the SC these deviations are 0.3 % and 0.9
%, respectively, at 0 K. But, the deviations for the SC calculation are greater than
those of Q-SC. As an additional remark, it can be said that as the temperature

increases the deviation from experimental values increases.

The basic physical properties of the ordered CuzAu(L1y), CuAu(Lly) and
CuAus(L1y) are listed in Table 4.8 with the experimental data whenever avail-
able [57, 69]. In this table, we also see that Q-SC potential predicts cohesive
energy, lattice parameter, and density close to the experimental values than those
of SC. In order to analyze the effects of temperature and concentration on the
physical properties, these physical properties are presented in the same table up
to 900 K. The increasing concentration of Au in Cu-Au compounds gives rise
to decreasing cohesive energy of the Cu-Au intermetallics, while it causes an

increment in lattice parameter and density, as expected.

4.4.1.2 Heat Capacity and volume thermal expansion

Specific heat can be determined from the differential of the enthalpy as follows;
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Table 4.7: Comparisons of the lattice constant, cohesive energy, and density for
Cu and Au pure metals, predicted from TPN ensemble at various temperatures
using by Q-SC and SC potential parameters. First row corresponds to Q-SC
calculation and second row refers to SC calculation at each temperature. The
values in the parenthesis are the available experimental data [116].

Metals T E. a P
(K) _(kJ/mole) (nm) (g/cm?)
Cu(Fcc) 0 -339.566(-336.) 0.3593 9.097(9.018)
-337.503 0.3616 8.930
300 -331.765 0.3620(0.361)  8.899(8.9317)
-329.912 0.3644 8.723
400 -329.128 0.3629 8.829(8.8920)
-327.267 0.3654 8.649
500 -326.440 0.3639 8.757(8.8440)
-324.553 0.3665 8.573
600 -323.688 0.3649 8.683(8.800)
-321.760 0.3676 8.494
700 -320.845 0.3660 8.606(8.750)
-318.880 0.3688 8.411
800 -317.904 0.3672 8.526(8.7010)
-315.884 0.3701 8.323
900 -314.852 0.3684 8.441
-312.759 0.3716 8.228
Au(Fcc) 0 -369.178(-368.) 0.4060(0.407)  19.548(19.488)
-364.688 0.4078 19.285
300 -361.596(-363.919) 0.4085(0.4080) 19.185(19.300)
-357.042 0.4110 18.843
400 -358.980 0.4095 19.056(19.219)
-354.396 0.4122 18.684
500 -356.320 0.4104 18.922(19.134)
-351.694 0.4134 18.518
600 -353.615 0.4114 18.784(19.043)
-348.914 0.4147 18.344
700 -350.850 0.4125 18.639(18.956)
-346.045 0.4161 18.160
800 -348.020 0.4136 18.488(18.866)
-343.054 0.4176 17.960
900 -345.093 0.4148 18.328
-339.907 0.4193 17.742
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Table 4.8: Comparisons of the lattice constant, cohesive energy, and density
for ordered Cu-Au alloys, predicted from TPN ensemble at various temperatures.
First row corresponds to Q-SC calculation and second row refers to SC calculation
at each temperature. The values in the parenthesis are the experimental data
whenever available [57, 69].

Metals T E. a c p
(K) (kJ/mole) (nm) (nm) (g/cm?)
CuzAu(Lly) 0 -346.282(-350.441)  0.3727 (0.374) 12.427(12.331)
-344.624 0.3746 12.240
300 -338.624 0.3752 12.187(12.214)
-336.925 0.3775 11.966
373 -336.717 0.3758 12.125
-335.006 0.3782 11.896
473  -334.070 0.3767 12.038
-332.330 0.3793 11.798
573 -331.371 0.3777 11.948
-329.581 0.3804 11.694
673 -328.608 0.3787 11.854
-326.750 0.3816 11.586
723 -327.195 0.3792 11.806
-325.291 0.3822 11.529
800 -324.986 0.3800 11.730
-322.995 0.3832 11.438
900 -322.033 0.3811 11.626
-319.881 0.3846 11.311
CuAu(Lly) 0 -352.932(360.069)  0.3950(0.3966) 0.3659(0.3673) 15.148
300 -346.277 0.3970(0.3966) 0.3678(0.3673) 14.9202
400 -343.661 0.3980 0.3686 14.819
500 -341.003 0.3989 0.3695 14.714
600 -338.299 0.3999 0.3704 14.605
700 -335.549 0.4009 0.3714 14.494
800 -332.724 0.4020 0.3724 14.376
900 -329.834 0.4031 0.3734 14.256
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Table 4.9: Continued Table 4.8.

Metals T E. a c P

(K) (kJ/mole) (nm) (nm) (g/cm®)
CuAuz(L1l;) 0 -360.919(-364.8822)  0.3965 17.429
-357.405 0.3982 17.206

300 -353.312 0.3990(0.398) 17.105

-349.846 0.4012 16.822

400 -350.709 0.3999 16.991

-347.215 0.4023 16.685

500 -348.064 0.4008 16.874

-344.521 0.4035 16.541

600 -345.365 0.4018 16.753

-341.742 0.4047 16.390

700 -342.615 0.4028 16.629

-338.880 0.4061 16.230

800 -339.799 0.4039 16.498

-335.896 0.4075 16.058

900 -336.886 0.4050 16.358

-332.754 0.4091 15.870

O0H(T)
Cy(T) = ( a7 )p. (4.17)

Coefficient of thermal volume expansion is calculated from the following;

0y (T) = —— (c‘ﬂgg))p. (4.18)

The enthalpy of Cu-Au alloys is fitted to a quadratic polynomial using the
data below the melting temperature to analyze the heat capacity as a function of

temperature and concentration. The quadratic function form may be chosen as;

HT)=a+b T+c T* kJ/mole . (4.19)

Here T is the temperature. Enthalpy values obtained between 300 K and 1000
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Table 4.10: Coefficients of polynomial function used to find the heat capacity of
Cu, Au pure metals and their alloys. Heat capacity values of the metals along
with whenever available experimental data [141].

Metals a bx107* ¢x 107% C, (kJ mole™* K7!) C, (kJmole~! K1)
This Work Experiment
Cu -338.967 227.341 4.530 0.025452 0.024464

CuzAu -345.877 231.251 3.770 0.025387
CuAu  -353.657 237.437 3.054 0.025576
CuAuz -360.603 233.694 3.337 0.025371
Au -368.952  236.082 3.232 0.025548 0.025325

K are used in fitting. Heat capacity can be found by taking the derivative of the
polynomial function of 4.19 according to Eq. (4.17). The resulting C, should not
be extrapolated to T=0 K, as it is derived from H(T") which is fitted to simulation
results between 300 K and 1000 K. The coefficients of expression of Eq. 4.19 are

given in Table 4.4.1.2.

As shown in Table 4.4.1.2, agreement between the simulated results and ex-
perimental data given in Ref. [141] is very good. For example the heat capacities
of Cu and Au are 0.024464 kJ mole~! K~! and 0.025325 kJ mole~! K~!, respec-
tively. Deviations from the experimental values for Cu and Au are 4.03 % and

0.8 %, respectively.

We have also fitted the volume and temperature curve by the same type
quadratic polynomial function as done in the heat capacity to analyze further
the volume thermal expansion behavior. The function used in fitting procedure
is given as;

81



Table 4.11: Coefficients of polynomial function used to find the thermal volume
expansions of Cu, Au pure metals and their alloys. Thermal volume expansion
values of the metals along with whenever available experimental data [141, 142].

Metals a x 107 bx 107 ¢x 107% a, x 107> (K™') «a, x 107° (K71)
This Work Experiment

Cu 116.019  757.735  268.129  7.750 4.95

CuzAu 129.496  750.845  290.589  7.009

CuAu  142.443 748488  316.017  6.471

CuAuz 155.908 867.780 293.112 6.573 4.77
Au 167.337 926.713 342.756 6.644
V(T)=a+b T+c T?* nm?/mole . (4.20)

The coefficients for the expression of 4.20 and the values of the thermal volume
expansion calculated from Eq. 4.18 at 300 K are presented in Table 4.4.1.2.

The value of copper, 7.750x107% K™, is in good agreement with the value
from simulation calculation of Ref. [143]. But the calculated value is slightly

greater than the experimental value, 4.95x107% [143].

4.4.2 Mechanical Properties

4.4.2.1 Elastic Constants and Bulk Modulus

The elastic constants of solids provide valuable information on mechanical and
dynamical properties, in particular, they provide information on the stability and
stiffness of materials. In this study, elastic constants are calculated by using the
fluctuation expression 4.2 by taking the average ensemble of EVN over the 50000
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time steps. The elastic constants and bulk modulus results for Cu and Au met-
als are listed in Table 4.12. At each temperature, density obtained from TPN
ensemble by averaging over the 20000 time steps is used to specify the volume
of the EVN ensemble. The detailed calculation methodology related to the elas-
tic constants can be found in Refs. [111, 104]. The elastic constants and bulk
modulus of Cu and Au pure metals predicted from Q-SC and SC parameters are
compared with the available experimental values at four different temperatures in
Table 4.12. The theoretical values of Cu for the Q-SC are less than experimental
values at all given temperatures, whereas the situation is not the same the for SC
calculations for Cu. The discrepancy between the calculated values and exper-
imental values usually increases with the increasing temperatures above 300 K.
The percentage differences of C;;, Ci5 and Cyy of Cu for the Q-SC are 9.8 %, 2.9
% and 11.1 % at 0 K, respectively. In the case of SC calculation, these percentage
differences are 2.3 %, 18.4 %, 48.5 % at 0 K, respectively. For the results of Q-SC
of Au, they are 4.5 %, 3.9 % and 33.6 % at 0 K, whereas they are 24 %, 30 %,
and 8.8 % for SC. The differences between the Q-SC and experimental values
are generally less than SC results for both Cu and Au pure metals. This is not
surprising since the Q-SC potential parameters were chosen to reproduce more

experimental results.

The maximum deviations of bulk modulus of Cu and Au for Q-SC are 11 %
and 8.9 % at 500 K, respectively, as shown in Table 4.12. On the other hand, the
largest deviations of Cu and Au for SC are 11.70 % at 0 K and 24 % at 300 K,
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Table 4.12: Elastic constants and bulk modulus of Cu and Au pure metals at
various temperatures, calculated from EVN ensemble over the 50000 time steps.
Elastic constants and bulk modulus are in units of GPa. Bulk moduli are cal-
culated from the expression B=(C;;+2 Ci2)/3. First row corresponds to Q-SC
calculation and second row refers to SC calculation. The values in the parenthesis
are the available experimental data [120].

Metals T( K) Ci1 Cia Cys B
Cu (Fcc) 0 158.996(176.20) 121.296(124.94) 72.736(81.8) 133.554(142.026)
180.066 147.937 42.131 158.645
300 154.272(168.4) 110.432(121.42)  63.256(75.39) 124.746(137.080)
157.430 130.893 34.798 139.709
400 148.659(165.50) 107.660(120.50) 60.354(73.10) 121.232(135.5)
500 144.221(161.50) 105.139(118.50) 57.328(70.40) 118.174(132.830)
Au (Fec) 0 210.617(201.6) 163.011(169.7) 60.660(45.4) 178.879(180.333)
152.736 119.163 49.396 130.510
300 188.844(192.3) 147.829(163.1) 51.892(41.95) 161.413(172.833)
152.736 119.163 49.396 130.510
400 183.614(189.00) 144.481(160.5) 48.960(41.00) 157.537(170.000)
500 176.560(185.00) 140.213(158.00) 46.408(39.70) 152.065(167.000)
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respectively.

We have also calculated the elastic constants and bulk modulus of Cu-Au
ordered intermetallic alloys to see the temperature and concentration effects on
the results. The simulation results for the Q-SC and SC potential parameters and
available experimental data are listed in Table 4.13. In these elastic constants,
the maximum deviations in Cy of CusAu for SC calculations are 27 % at 0K,
the largest deviation in Cyy for CuAug is 36.7 %. Other deviations are acceptable
error range for both SC and Q-SC. Here, we also present the elastic constants of
CuAu ordered metal alloy in structure of L1, for the case ¢/a=1. The simulations
results are not compared with any experimental and theoretical data not present
in the literature. The bulk modulus are also given in the same table with the

experimental data whenever available.

In Table 4.14, the contributions of kinetic-energy, fluctuation, and Born terms
to elastic constants for the CusAu are tabulated separately to show the respec-
tive weights of these terms in the simulations results. As shown in Table 4.14,
the largest contributions come from the Born terms to elastic constants. The
fluctuation contributions are negative for all elastic constants except for Ci5 at 0
K. Fluctuation contributions increase as the temperature increases. This is due
to a broader distribution of the microscopic stress tensor. The kinetic energy
terms are small (1-2 %) for all elastic constants at various temperatures. But
they increase as the temperature increases except for all Ci5. The kinetic energy
terms of all Ci5 are zero because of the existence of Kronecker delta in Eq. 4.2.
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Table 4.13: Elastic constants and bulk modulus of CuzAu(L1,), CuAu(L1y) for
the ratio of ¢/a=1.0 and CuAus ordered intermetallic alloys at various temper-
atures, calculated from EVN ensemble. Elastic constants and bulk modulus are
in units of GPa. Bulk modulus are calculated from the expression of B=(Cy;+2
Ci2)/3 for the cubic systems. First row corresponds to Q-SC calculations and
second row refers to SC calculations. The values in the parenthesis are the ex-
perimental data [120].

Metals T( K) Cn 012 C44 B
CuzAu(Lly) 0 180.616(189.30) 134.299(131.90) 71.480(73.60) 149.653
175.347 135.863 53.723 149.032
300 169.901(187.10) 123.631(134.90) 62.112(67.80) 139.228
158.234 124.252 45.203 135.454
373 166.225 121.473 59.933 136.103
473 160.558 119.116 56.381 133.062
573 153.857 115.497 53.051 128.261
673 148.351 112.786 50.227 124.411
723 145.804 111.540 48.795 122.895
800 140.535 108.586 46.219 119.011
CuAu((L1ly) © 210.427 149.906 72.576 205.586
300 191.663 139.097 62.056 186.782
400 184.303 135.399 59.168 179.881
500 178.549 132.170 55.964 174.358
CuAus(L1ly) O 206.946(189) 154.415(155) 64.267(47) 171.928(166)
180.794 143.826 45.2840 156.148
300 187.494 141.997 54.8626 156.846
158.711 128.636 37.1720 138.514
400 180.441 137.550 51.845 151.742
152.600 124.456 34.795 133.867
500 174.859 134.525 48.965 147.639
145.303 120.067 32.137 128.788
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Table 4.14: The contributions to elastic constants of CuzAu intermetallic alloy
from Born, fluctuation, and kinetic energy terms for the Q-SC calculations. The
units are in GPa.

T Born  Fluctuation Kinetic energy

(K) term term term Total

0 Cy; 186.690 -6.074 0.000 180.616
Ci2 131.980 2.319 0.000 134.299
Cya 71483 -0.026 0.000 71.480

300 Cqp 179.489 -10.85 1.262 169.901
Ci2  126.600 -2.969 0.000 123.631
Css  68.190 -6.709 0.631 62.112

473 Cqu1 174.754 -16.141 1.946 160.558
Ci2  123.086 -3.970 0.000 119.116
Cua  65.962 -10.554 0.973 56.381

573 Cyp 171.827 -20.290 2.319 153.857
Ci2  120.925 -5.428 0.000 115.497
Cua 64.572 -5.480 1.160 50.227

4.4.3 Melting Temperature

Figure 4.25 presents the simulated lattice parameter a of ordered CuzAu alloy
as a function of temperature, along with available experimental data [56]. There
is obviously a discontinuity in the Fig. 4.25. This may be due to a phase trans-
formation of the material. If the pair distribution function is examined around
the melting region, the peaks after the second one disappear, and it is oscillatory
‘around the 1. Other physical properties such as enthalpy, density, and diffusion
are also considered in determining the melting point. Computer simulations are
carried out by 10 K increments around the discontinuity to calculate the melt-
ing points better. In this manner, the melting points of the pure elements and
intermetallic systems are calculated for both Q-SC and SC parameter sets. The
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Table 4.15: Melting points of Cu-Au ordered alloys and Cu and Au pure metals
along with experimental [115] and other computational results [68].

Cu-Au alloys T%-(K) T (K) TeP(K) Deviation (%) To%s(K)

Q-SC  SC Q-SC  SC
Cu(Fcc) 1370+10 1150+10 1356 1.03 1519 1320.5+15
CusAu(Lly) 1340410 1110410 1250 720 11.20 1240.5+1.5
CuAu(Lly) 1360410 1185 14.76 - 1173.5+0.5
CuAu(Fcc)  1370+10 15.61 -
CuAus(Lly) 1370£10 1020420 1220 12.30  16.39 1151.5+1.5
Au 1420410 1120410 1336 6.29 16.16 1182.5+1.5

results found for the melting points are listed in Table 4.15 along with the avail-
able experimental [115] and other theoretical data [68]. The deviations of melting
points from experiments for Q-SC are less than SC calculations. This indicates
that Q-SC potential produce more accurate results at higher temperatures. The
melting point also indicate the validity of potential parameters. The melting
point of CuAu is predicted for both structures of CuAu(L1ly) and CuAu(L1y)
having ¢/a=1. The melting point of CuAu(L1y) is closer to the experimental
value. The deviations of SC calculation are greater than those of Q-SC. This is
an indication of the transferability of the Q-SC parameters from low tempera-
tures to high temperatures, and from elemental to intermetallic alloys. Next, this
will be tested by calculating the liquid properties such as diffusion, viscosity, and

structural properties of considered metals.

4.4.4 Phonon Frequency

As explained in Section 4.1.3, the phonon dispersion relations calculated from
both Q-SC and SC parameters for the Cu, Au pure metals, ordered CuzAu and
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Figure 4.25: Lattice parameter of the CusAu as a function of temperature for
both Q-SC and SC, the circle points are experimental data from Ref. [56].

CuAu; intermetallic compounds are shown in Figs. 4.26, 4.27, 4.28, and 4.29,
respectively. As shown in Figs. 4.26 and 4.29, the improvement in the Q-SC
calculations over the SC results is clear. The same remark may be made on the
phonon dispersion of the CuzAu. The overall structure of the phonon dispersion
curves is well reproduced. The result for CuAus is not compared with the any
experimental or theoretical data; these are not available in the literature. It
should be noted that the phonon spectra is calculated over the entire Brillouin
zone while the fit in terms of phonon spectra was done only for the X point. We
may have to note the fact that although original SC potential has been fitted only
tree experimental quantities such as lattice parameter, cohesive energy, and bulk
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Reduced wave vector (q/¢maz)

Figure 4.26: Phonon dispersion curves of Cu at room temperature for Q-SC and
SC potential parameters, the circles show experimental data from Ref. [144] at

300 K.

modulus, it gives compatible results at all points of phonon dispersion curves.
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Figure 4.27: Phonon dispersion curves of CusAu and at room temperature for Q-
SC and SC potential parameters, the circles are experimental data from Ref. [145]

at 300 K.
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Figure 4.28: Phonon dispersion curves of CuAusz at room temperature for Q-SC

and SC potential parameters.
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Figure 4.29: Phonon dispersion curves of Cu at room temperature for Q-SC and
SC potential parameters, the circle points are experimental data from Ref. [144]

at 300 K.
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CHAPTER 5

CONCLUSION

We have investigated extensively mechanical, thermodynamical and melting prop-
erties of Pd, Ag metals and their binary alloys Pd,Ag;_, using the Sutton-Chen

and quantum Sutton-Chen potential parameters.

We have presented elastic and thermodynamical properties such as elastic con-
stants (Cyq, Cia, Cy4), bulk modulus (B), lattice parameter (a), cohesive energy
(E.), and density (p) for the Pd-Ag alloys at different concentrations for the first
time. The agreement between the estimated melting points and experimental
values are acceptable for the pure and alloy case. As for comparison in the case
of alloy, we have found experimental data for mechanical and thermodynamical
properties of (Pdg os20Ag0.9378) at room temperature only for one concentration.
Simulation results at this concentration are in good agreement with the available
experimental data. In addition to these calculations, transverse and longitudinal
phonon modes are calculated in the [100], [110], and [111] directions. Our calcula-
tions for Pd are closer to the experimental data than EAM calculation performed
by Daw and Hatcher [146]. It may be underlined that although the original
SC potential parameters have been fitted to only three experimental quantities
it still gives good agreement with the experimental data. Our calculated melting
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points are closer to the experimental values than those calculated by others, as
seen from Table 4.3. The Q-SC potential works better in predicting the melting

temperatures for Pd-Ag system than the SC potential.

The results obtained are very helpful for a deeper understanding of the chosen
materials and these results also provide a useful guide for the improvement of the
potentials for real systems. We have shown that Q-SC potential parameters
appear to be convenient for transferability from pure metals to binary alloys
without further empirical fitting to properties of Pd,Ag; , with the combination
rules. Q-SC potential parameters which are fitted to experimental properties
such as density, cohesive energy, moduli, and phonon frequencies while including
the zero-point energy effects generate useful information about the chosen pure
and alloy systems except for elastic constants. It is concluded that the potential
must be fitted to give solid properties of the alloy at the specific concentration

correctly. This could improve the results further.

When the temperature increases, the local structure of the solid is lost and a
diffusional dynamics becomes dominant, as seen from the pair distribution func-
tion and velocity auto-correlation functions. We have calculated diffusion coeffi-
cients which distinguish the liquid from the solid using both the Einstein relation
and Green-Kubo formula. The diffusion coefficients obtained are in agreement
with the experimental and theoretical values, as shown in Table 4.4. Especially,
diffusion coefficient value of 2.77 (nm? /ns) for Ag, which is obtained from Einstein
relation in the TPN ensemble, is closer to experimental value of 2.81 (nm?/ns)
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at 1273 K [132]. The diffusions coefficients which are calculated by fitting to the
Eq. 4.15 for Pd and Ag in the EVN are also mutually consistent with each other
and agree very well with Alemany’s diffusion coefficient values which are com-
puted by using the second-moment approximation to the tight-binding method
and the embedded atom model [133, 134]. The temperature dependence of the
self-diffusion coefficient seems to be described well by the Arrhenius law. The
concentration effects on the diffusion and viscosity for Pd-Ag alloys show that
the values of self-diffusion of Pd-Ag alloys increase while viscosity values of the
alloys decreases as expected by increasing the concentration of Agin Pd. The Ar-
rhenius fitting parameters are presented in this study to predict the self-diffusion
and shear viscosity values of Pd-Ag alloys. Transferability of SC and Q-SC poten-
tial parameter sets from solid to liquid metal phases are tested by examining the
structural and dynamical properties of the metals considered here. The results of
the present work show that this could be done better with the Q-SC parameter
set. We emphasize that if the SC potential is fitted to the pure and alloy liquid

experimental properties, the results may be improved further.

The glass formation and crystallization of binary Pd,Ag;_, alloys are also
studied by using the Q-SC potential. We have obtained a wide range of valuable
physical properties of Pd;Ag;_, in the liquid, crystal, and glass phases. Glass
transition is not a first-order transition, as shown in Fig.4.19. Indeed there is
not a unique glass state since its properties depend on how it is achieved. We
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have observed that as the simulation time of the system increases the correspond-
ing crystallization temperature increases. A long simulation time is necessary to
crystallize the model system with increasing concentration of Ag in the Pd-Ag al-
loy. The self-diffusion coefficients are calculated to compare their behavior during
both heating and cooling processes. It is seen that Pd-Ag forms a metallic glass
at fast cooling rates and it crystallizes at slow cooling rates. The glass transition
and crystallization temperatures depend on the chosen cooling rates. The results
are very helpful for a deeper understanding of the basis of the behavior of liquid,
crystal, and glass formation tendency. This study shows that the Q-SC poten-
tial is practical for studying the crystallization and glass formation properties of
transition metals and their alloys. It would be interesting to test the predictions
of the present work with the results of a first-principle simulation study, in the

absence of specific experimental data for Pd-Ag alloys.

We have also presented wide range of properties of Cu, Au pure metals and
their CuzAu, CuAu, and CuAus ordered intermetallics. Q-SC potential param-
eters provide fairly accurate temperature dependent properties of both pure el-
ements and ordered systems studied here at low and high temperatures. The
results demonstrate the transferability of the Q-SC parameters from low to high
temperatures and from elemental to intermetallic alloys. The reason for im-
provement, of Q-SC over SC may be due to the parametrization followed in the
procedure followed in Q-SC. If the potential energy function considered here is
fitted to the solid properties of the intermetallic compounds of CuzAu, CuAu,
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and CuAugs the results may be improved further.

The intermetallic results obtained here lead us to believe that Q-SC potential
may produce accurate results of the liquid and glass properties of CugAu, CuAu,
and CuAus. This should be checked separately.

To sum up, finding the minimum energy configuration of atoms in the sim-
ulation box by using the Monte Carlo simulation may improve the MD results
further. A better improvement in the results may be obtained by including the
electrons to the ionic system and by performing a first-principle MD, which gives
excellent results for systems that can be described by a relatively small number

of atoms.
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