
AN AUTOMATED TOOL

FOR REQUIREMENTS VERIFICATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

YAŞAR TEKİN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2004

Approval of the Graduate School of Informatics

 Prof. Dr. Neşe YALABIK

 Director

I certify that this thesis satisfies all the requirements as a thesis for the

degree of Master of Science.

 Assoc. Prof. Dr. Onur DEMİRÖRS

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is

fully adequate, in scope and quality, as a thesis for the degree of Master of

Science.

 Assoc. Prof. Dr. Onur DEMİRÖRS

 Supervisor

Examining Committee Members

Prof. Dr. Semih BİLGEN _____________________

Assoc. Prof. Dr. Onur DEMİRÖRS _____________________

Assoc. Prof. Dr. Col. Kadir VAROĞLU _____________________

Assist. Prof. Dr. Erkan MUMCUOĞLU _____________________

Dr. Altan KOÇYİĞİT _____________________

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this wok.

Yaşar TEKİN

iv

ABSTRACT

AN AUTOMATED TOOL

FOR REQUIREMENTS VERIFICATION
Tekin, Yaşar

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur DEMİRÖRS

September 2004, 102 pages

In today’s world, only those software organizations that consistently

produce high quality products can succeed. This situation enforces the

effective usage of defect prevention and detection techniques.

One of the most effective defect detection techniques used in software

development life cycle is verification of software requirements applied at the

end of the requirements engineering phase. If the existing verification

techniques can be automated to meet today’s work environment needs, the

effectiveness of these techniques can be increased.

This study focuses on the development and implementation of an

automated tool that automates verification of software requirements modeled

in Aris eEPC and Organizational Chart for automatically detectable defects.

The application of reading techniques on a project and comparison of results

of manual and automated verification techniques applied to a project are also

discussed.

Keywords: software testing, verification & validation, reading techniques,

automated verification

v

ÖZ

GEREKSİNİM DOĞRULAMASI İÇİN

OTOMATİK BİR ARAÇ

Tekin, Yaşar

Yüksek Lisans, Bilişim Sistemleri

Tez Yoneticisi: Doç. Dr. Onur Demirörs

Eylül 2004, 102 sayfa

Günümüz dünyasında hiç şüphe yok ki sadece sürekli olarak yüksek

kalitede ürünler üreten yazılım organizasyonları başarılı olabilir. Bu durum,

hata önleme ve tespit etme tekniklerinin etkin kullanımını gerekli kılar.

Yazılım geliştirme süreci boyunca kullanılan en etkin hata tespit etme

tekniklerinden biride gereksinim mühendisliği safhasının sonunda uygulanan

yazılım gereksinim doğrulamasıdır. Eğer varolan doğrulama teknikleri

bugünün iş ortamı ihtiyaçlarını karşılayacak şekilde otomatik hale

getirilebilirse, bu tekniklerin etkinliği artırılabilir.

Bu çalışma Aris eEPC ve Organizational Chart ile modellenmiş yazılım

gereksinimlerinin otomatik doğrulanabilir hatalarını tespit eden bir aracın

geliştirme ve gerçekleştirilmesi hakkındadır. Okuma tekniklerinin bir projeye

uygulanması ve el ile ve otomatik yapılan doğrulama tekniklerinin bir projeye

uygulanma sonuçlarının karşılaştırılması ile ilgili olarakta çalışılmıştır.

Anahtar Kelimeler: Yazılım Sınaması, Doğrulama & Geçerlilik Denetimi,

Okuma Teknikleri, Otomatik Doğrulama.

vi

ACKNOWLEDGMENTS

I express sincere appreciation to my advisor Assoc. Prof. Dr. Onur

Demirörs for his guidance throughout the research.

I also would like to express my appreciation to my family who always

give me their love and support.

vii

TABLE OF CONTENTS

ABSTRACT.. iv
ÖZ...v
ACKNOWLEDGMENTS ..vi
TABLE OF CONTENTS.. vii
LIST OF TABLES... ix
LIST OF FIGURES ...x
LIST OF ABBREVATIONS AND ACRONYMS .. xi
1. INTRODUCTION .. 1

1.1 Context .. 1
1.2 Problem Statement .. 2
1.3 Approach ... 3
1.4 Thesis Structure .. 3

2 RELATED RESEARCH .. 5
2.1 Software Testing.. 5

2.1.1 Verification.. 6
2.1.2 Validation.. 7

2.2 Inspection .. 7
2.2.1 Fagan Inspection .. 8
2.2.2 Gilb Inspection.. 9
2.2.3 Other Inspection Techniques...13

2.2.3.1 N-Fold Inspection ...13
2.2.3.2 Two-Person Inspection...13
2.2.3.3 Phased Inspection..13

2.3 Reading Techniques...14
2.3.1 Ad-Hoc Reading ..14
2.3.2 Checklist-Based Reading ..14
2.3.3 Scenario-Based Reading...15

2.3.3.1 Defect-Based Reading ...15
2.3.3.2 Perspective-Based Reading...15

2.4 Automated Tools ..16
2.4.1 Automated Requirements Measurement (ARM)......................17
2.4.2 Feature Interaction Extractor (FIX) ..20
2.4.3 TCAS II ..21
2.4.4 SAMMDF...23

2.5 eEPC and Organizational Chart ...28
2.5.1 Extended Event-Driven Process Chain (eEPC).......................28
2.5.2 Organizational Chart..32

3 THE TOOL...34
3.1 Defect Detection Steps ...34
3.2 Xerces XML Parser...34
3.3 SWI Prolog ...35

viii

3.4 Prolog Structures..35
3.5 Prolog Scripts ...36
3.6 Example..40

4 EXPERIMENTAL STUDY..45
4.1 Manual Verification ...45

4.1.1 Application of Ad-Hoc Reading..46
4.1.2 Application of Checklist-Based Reading..................................47
4.1.3 Application of Defect-Based Reading47
4.1.4 Application of Perspective-Based Reading..............................48

4.2 Automated Verification..50
4.2.1 Defects ..50

4.3 Comparison of Results ...52
5 CONCLUSION AND FUTURE DIRECTIONS..54

5.1 Fulfillment of Objectives and Aim ...54
5.2 Future Work..56

REFERENCES ...57
WEB REFERENCES ..60
APPENDICES...61
 APPENDIX A No_Manager_For_Organizational_Units Script62
 APPENDIX B No_Manager_For_Functions Script.....................................64
 APPENDIX C Assigned_Model Script..66
 APPENDIX D Assigned_Model_Name Script ..68
 APPENDIX E Rule_Must_Be_Used Script ..69
 APPENDIX F Have_Same_Name Script ...71
 APPENDIX G One_In_One_Out_Rule Script ..73
 APPENDIX H Example eEPC Prolog File ..74
 APPENDIX I Checklist-Based Reading Inspection Checklist80
 APPENDIX J Defect-Based Reading Defect Classes Scenario82
 APPENDIX K Perspective-Based Reading Test Based Scenario84
 APPENDIX L Perspective-Based Reading Design Based Scenario85
 APPENDIX M Perspective-Based Reading User Based Scenario.............87
 APPENDIX N Aris Dtd File...89
 APPENDIX O Dtd Content Model Rules ..100

ix

LIST OF TABLES

Table 1 Comparison of Inspection and Walkthroughs.................................... 6
Table 2 Characteristics of Reading Techniques..16
Table 3 Automated Tools..27
Table 4 Application Results of Ad-Hoc Reading ...46
Table 5 Application Results of Checklist-Based Reading47
Table 6 Application Results of Defect-Based Reading..................................48
Table 7 Application Results of Perspective-Based Reading49
Table 8 Reading Techniques ..50
Table 9 Application Results of Automated Verification..................................52
Table 10 Application Results of Manual Verification52
Table 11 Comparison of Results...52

x

LIST OF FIGURES

Figure 1 Fagan Inspection ... 8
Figure 2 Gilb Inspection ..10
Figure 3 Superstates...21
Figure 4 And composition ...22
Figure 5 Tree structure ...23
Figure 6 Activity Diagram..24
Figure 7 Condition Chart...25
Figure 8 Data flow graph...26
Figure 9 Function and Event ...28
Figure 10 And Link Example...29
Figure 11 Xor Link Example..29
Figure 12 Event AND Links...30
Figure 13 Event OR Links...30
Figure 14 Event XOR Links...30
Figure 15 Function AND Links ..31
Figure 16 Function OR Link ..31
Figure 17 Function XOR Link..31
Figure 18 Example eEPC from the project..32
Figure 19 Organizational Unit and Position...32
Figure 20 Example Organizational Chart from the project33
Figure 21 Application Process ..34
Figure 22 Example EEPC Main Model..41
Figure 23 Example EEPC Sub-Models (Function 3 and Function Error)42

xi

LIST OF ABBREVATIONS AND ACRONYMS

ARM : Automated Requirements Measurement
DTD : Document Type Definition
eEPC : Extended Event-Driven Process Chain
FIX : Feature Interaction Extractor
GSFC : Goddard Space Flight Center
IBM : International Business Machines
IEEE : Institute Of Electrical And Electronics Engineers
NASA : National Aeronautics And Space Administration
RFP : Request For Proposal
RSM : Requirements State Machine
RSML : Requirements State Machine Language
SAMM : Systematic Activity Modeling Method
SATC : Software Assurance Technology Center
SRS : Software Requirements Specifications
TCAS : Traffic Alert & Collision Avoidance System
UML : Unified Modeling Language
XML : Extensible Markup Language

1

 CHAPTER 1

1. INTRODUCTION

1.1 Context

The development of software products is increasing at an unpredictable

rate. By the effect of increased complexity and time to market pressures, the

need for software quality is also increasing.

The quality of software systems is increased by defect detection and

defect prevention activities. Effective defect prevention can be realized by

increasing the quality of software development process that produces the

software systems. Effective defect detection can be realized by increasing

the quality of software testing process that detects the problems in the

software systems.

Software testing has a life cycle that parallels the software development

life cycle. It begins with the determination of software requirements and

continues until the submission of end product. The main purpose of testing is

to detect the defects as soon as possible and prevent migration of defects to

later stages.

The initial stage of the software testing process involves careful review

of the software requirements specification. Requirements specification is the

description of the needed functionality and performance characteristics of the

software product. A complete specification is essential to the success of any

project. Omissions, inconsistencies, ambiguities, or contradictions not

discovered during the initial investigation will propagate through the software

2

life cycle and can result in either an improperly functioning system or an

expensive and time-consuming redesign.

Early detection and correction of defects in the software requirements

specification is essential to keep development costs down and to build

correct and reliable software that satisfies the customer’s needs.

1.2 Problem Statement

It is known that the majority of errors in the software systems are

injected during the requirements engineering phase of the software

development process and correcting them can be costly if they are detected

late in software lifecycle. So, it is essential to improve the quality of

requirements specifications and detect the requirements errors in that phase.

There are numerous techniques for the specification of requirements

such as object oriented modeling, view point oriented modeling and formal

methods. Despite the fact that the modeling techniques provide some

positive improvements in the quality of requirements specifications,

verification of requirements remains as an important issue to increase the

quality.

Requirements verification is the final stage of requirements engineering

phase. The purpose of requirements verification is to assure that the

requirements specification document states the correct description of the

system.

Inspections and walkthroughs are the techniques used for verification of

requirements specification documents. Because these techniques require

qualified personnel and time, automation of verification process reduces the

verification expenses and eliminates human failures.

3

In this thesis, an RFP project is considered which models The Turkish

Army’s organizational structure and command-control system. Organizational

structure of The Turkish Army and activity of each organizational unit in the

command-control system is modeled by using Aris eEPC and organizational

chart modeling techniques.

For the verification of the project, it was seen that some of the defects in

the models could be detected by an automated tool. Then, because there

was no such tool that can be used for the verification of eEPC and

organizational chart modeling techniques, we decided to develop a tool for

the verification of these techniques.

1.3 Approach

The aim of this study is to reduce the need for classified personnel and

time required during requirements verification by developing an automated

tool which detects automatically detectable defects in requirements

specifications which use Aris eEPC and organizational chart as modeling

techniques. To fulfill the aim of this thesis, first, reading techniques used in

verification process are researched and checklists and scenarios related to

requirements verification are obtained. Then, a coherent part of the project is

manually verified by applying different reading techniques to different parts of

the project. Based on the results, defect types are categorized and the

defects which can be automatically detected are identified. Next, a software

tool is developed and applied to the project for automated detection of defect

types. Lastly, effectiveness of manual verification and automated verification

tool are compared.

1.4 Thesis Structure

Chapter 2 provides a description of software testing, software

verification techniques, reading techniques used in the software inspection,

automated tools developed for requirement specifications verification and

4

eEPC and Organizational Chart modeling techniques used to model the

organizational structure and command-control system of The Turkish Army.

In chapter 3, information about the tool is given. Aris xml export utility,

Xerces java parser, SWI Prolog, Prolog structures used in the application and

the scripts written are explained in detail. Lastly, an example is given to

illustrate the functioning of the tool.

In chapter 4, first, information about manual verification is given. The

reading techniques used for the inspection process, result of each application

and comparison of the results are given in detail. Defects detected during

manual verification and categorization of them is explained. Second,

information about automated verification is given. Lastly, comparison of

manual and automated verification techniques is discussed.

Chapter 5 provides a conclusion to the study and includes directions for

future work for automated verification.

5

 CHAPTER 2

2 RELATED RESEARCH

This chapter presents an overview of software testing, software

inspection, reading techniques used in software inspection and automated

requirements verification tools. Additionally, eEPC and Organizational Chart

modeling techniques are explained which are used to model business

processes in the project under consideration.

2.1 Software Testing

To prevent the software to have errors, software developers need to

understand and effectively apply software testing techniques. They have to

try to detect the errors as soon as possible and test the software throughout

the software development life cycle.

The IEEE/ANSI definition for testing is:

“The process of operating a system or component under specified

conditions, observing or recording the results, and making an evaluation of

some aspects of the system or component.” [1]

Edward Kit [2] states that this definition is validation oriented and need

to include verification part of the testing. He gives the definition of testing as

follows;

Testing = Verification + Validation.

6

2.1.1 Verification

The IEEE/ANSI definition for Verification is:

“The process of evaluating a system or component to determine

whether the products of a given development phase satisfy the conditions

imposed at the start of that phase. (contrast with validation)” [1]

There are two widely used methods for software verification which are

inspection and walkthrough.

The main principle of inspection is to detect the defects during individual

inspection. Each inspector is given a role and individual inspection is required

before the inspection meeting. Most of the defects are detected during

individual inspection. During the meeting, some additional defects are tried to

be detected.

Walkthrough is less formal than inspection. It has no individual

inspection phase. A meeting is organized and the participants gather without

any preparation. The presenter reads the document and the participants try

to detect the defects during the meeting.

Fagan stated the comparison of key properties of inspection and

walkthroughs as given in table 1[3]:

Table 1 Comparison of Inspection and Walkthroughs

Properties Inspection Walkthrough

Formal moderator training Yes No

Definite participant roles Yes No

Who “drives” the inspection or walkthrough Moderator Owner of material

Use “how to find errors” checklists Yes No

Use distribution of error types to look for Yes No

Follow up to reduce bad fixes Yes No

7

Table 1 (cont.)

Properties Inspection Walkthrough

Less future errors because of detailed error

feedback to individual programmer
Yes Incidental

Improve inspection efficiency from analysis of

results
Yes No

2.1.2 Validation

The IEEE/ANSI definition for Validation is:

“The process of evaluating a system or component during or at the end

of the development process to determine whether it satisfies specified

requirements. (contrast with verification)” [1].

There are two basic validation strategies which are black-box and white-

box testing. In black-box testing, tests are applied according to functional

specification of the system. Internal structure of the program is not tested. In

white-box testing, tests are applied according to internal design specification.

Internal structure of the program is tested.

2.2 Inspection

Inspection is one of the verification techniques used in software testing.

This technique was developed and reported by Michael E. Fagan at IBM in

1976 [3]. Some subsequent improvements are made and today it’s a widely

used technique in software development industry.

The basic objectives of inspections are [4]:

• To find errors at the earliest possible point in the development cycle

• To assure that the appropriate parties technically agree on the work

• To verify that the work meets predefined criteria

8

• To formally complete a technical task

• To provide data on the product and the inspection process

There are different inspection types in use today. Short descriptions of

these inspection types are given below:

2.2.1 Fagan Inspection

Fagan inspection [3,5] is a detailed review of work in progress.

Inspectors study work product independently and then gather to examine the

work in detail. There are formally defined stages in the inspection process as

shown in figure 1.

Figure 1 Fagan Inspection

• Planning:

Documents are checked if they meet the inspection entry criteria.

Availability of the right participants and suitable meeting place is checked and

meeting time is arranged.

• Overview:

The producer first describes the overall area being addressed and then

the specific area he has produced in detail. Documentation is distributed to

all inspection participants.

9

• Preparation:

Participants, using the documentation, work on the product to

understand its intent and logic.

• Inspection:

A “reader” is chosen by the moderator who reads the work product.

Every piece of work product is covered at least once by the reader. The

finding of errors is done during the reader’s discourse. They are noted by the

moderator, its type is classified, severity is identified and the inspection is

continued.

• Rework:

All errors or problems noted in the inspection report are resolved by the

producer.

• Follow-Up:

It is responsibility of the moderator to see that all issues, problems and

concerns discovered in the inspection operation have been resolved.

2.2.2 Gilb Inspection

Gilb inspection is the improved version of Fagan inspection as shown in

figure 2. Each stage in Gilb inspection is formally defined [6].

10

Figure 2 Gilb Inspection

• Request: initiating the inspection Process

The inspection process begins with a request by the author or owner of

the work product. This is given to the responsible quality authority who finds

a suitable inspection leader or directly to the inspection leader if one is

already determined.

• Entry: Making sure loser inspections don't start

The Leader checks the product and its source documents against

relevant entry criteria. The purpose of the entry criteria is to reduce the

probability that the team will waste time and resources for a work product

which it is impossible for the work product to satisfy “exit” criteria. Some entry

criteria used in inspection process are:

o The applicable set of generic and specific rules for the task

which produced the product is available in writing

o Ordinary text documentation shall have been cleaned up by a

spelling checker before submission

o The author or editor agrees to participate as a checker

11

• Planning: Determining the present inspection's objectives and tactics

The inspection leader plans where to gather, who should participate,

and other details. This is the planning phase and results in a master plan for

all the people in the inspection team.

• Kickoff Meeting: Training and motivating the team

A kickoff meeting is usually held to ensure that the inspectors know
what to do in the inspection process. The kickoff meeting may include the

distribution of documents, role assignments, training in inspection

procedures, etc. The kickoff meeting may be held for the following specific

purposes:

o familiarize checkers with their tasks

o agree on their individual special defect-searching role

assignments which were suggested by the planner of the inspection in

the master plan

o hand out the recently produced materials as well as their

source materials, relevant rules and checklists

o ask any general questions about the documents being checked

o obtain group or individual instruction on how to do the

inspection work

o inform team about current logging rates and effectiveness

o identify and agree to use suitable new tactics for meeting their

improvement targets

• Individual Checking: The search for potential defects

The inspectors work individually on the work product using the source

documents, and the rules, procedures and checklists provided. The purpose

of each inspector is to find the maximum number of defects.

12

• Logging Meeting: Log issues found earlier and check for more

potential defects

A logging meeting is held for three purposes:

o To log the issues which have already been identified by each

inspector during individual inspection process

o To detect more defects during the meeting

o To identify and log ways of improving the development of the

inspection process like improvement suggestions to procedures, rules

or checklists

• Edit: improving the product

Someone, usually the producer, is given the log of issues to resolve. He

or she works on the work product and resolves all the problems.

• Follow up: Checking the editing

The inspection leader checks that all logged issues are resolved by the

producer and process improvement suggestions are sent to the inspection

process management.

• Exit: Making sure the product is economic to release

The exit process is performed by the inspection leader using specific

exit criteria. For example, follow up must be complete and the number of

errors left in the document should be below a quality threshold.

• Release: The close of the inspection process

The product is made available, as officially exited with an estimate of

the remaining major defects in a warning label.

13

2.2.3 Other Inspection Techniques

In this part, information about other inspection techniques proposed to

increase the effectiveness of inspections is given.

2.2.3.1 N-Fold Inspection

N-Fold inspection uses formal inspections but replicates these

inspection activities using N independent teams. The same software product

is given to N inspection teams. Each inspection team performs formal

inspection process and analyzes the software product. All results of the

independent inspection processes are recorded in a database.

The primary use of N-Fold inspection is to identify defects that might not

be detected by a single inspection team [7].

2.2.3.2 Two-Person Inspection

Two-person inspection uses the formal method of Fagan inspection with

a two-person team which does not require initial resources of Fagan

inspection technique. It eliminates the role of the moderator, assigns one

person for tester and one person for producer roles [8].

2.2.3.3 Phased Inspection

A phased inspection consists of a series of coordinated partial

inspections called phases. Each phase is applied to ensure that the product

has a specific property. For example, phases can be used to ensure that a

work product has characteristics such as portability, reusability or

maintainability. The properties checked during phases are ordered so that

each phase can assume the existence of properties checked in preceding

phases [9].

14

2.3 Reading Techniques

Reading techniques provide a systematic and well-defined way of

inspecting a document, allowing feedback and improvement [10]. It is a

sequence of steps guiding the individual analysis of a text-based document in

order to achieve the goals of a particular inspection task.

Different reading techniques are offered for the success of inspection

process. General classifications of reading techniques used for the inspection

process are given below:

2.3.1 Ad-Hoc Reading

Ad-hoc reading is not really a guided reading technique. The work

product is given to the inspector without any guidelines, checklists and help.

Therefore the success of the defect detection strongly depends on the skills

and experience of the inspector.

2.3.2 Checklist-Based Reading

In the checklist-based reading technique, the inspector is given a

checklist consisting of several questions. These questions are answered

during the inspection by the inspector.

The inspector has to match the questions to the tasks he performs

during the defect detection. The checklist reminds him which parts are to be

checked and what aspects he should think of.

Heuristics that are commonly suggested for creating an effective

inspection checklist include [11]:

• Checklists should be regularly updated based on defect analysis

• Checklists should not be longer than a single page

15

• Checklist items should be phrased in the form of a question

• Checklist items should not be too general

2.3.3 Scenario-Based Reading

The scenario-based reading technique provides guidance to the

inspector by a scenario. The scenario can be a set of questions or a more

detailed description of work. Usually, scenarios focus on certain details of the

document, not the whole document. Therefore, to cover the whole document,

different scenarios must be provided to each inspector. The teams’

effectiveness can be increased by this way.

Scenario-based reading is a family of inspection techniques. These

techniques are given below:

2.3.3.1 Defect-Based Reading

Defect-based reading is focused on different defect types. For each type

of defect, there is a scenario or questions which guide the inspector in

detecting them.

2.3.3.2 Perspective-Based Reading

Perspective-based reading defines roles for the inspectors. Each

inspector inspects the document with this role. Therefore, each inspector

inspects the documents with different point of views. This provides the

individual inspector to spend more inspection time for his/her part of the

documents and read it more carefully.

Table 2 given below presents some characteristics of reading

techniques according to the following criteria [12]:

16

• Is systematic. Are the specific steps of the individual review process

definable?

• Is focused. Must different reviewers focus on different aspects of the

document?

• Allows controlled improvement. Based on feedback, can reviewers

identify and improve specific aspects of the technique?

• Customizable. Can reviewers customize the technique to a specific

project or organization?

• Allows training. Can reviewers use a set of steps to train themselves in

applying the technique?

Table 2 Characteristics of Reading Techniques

Technique Systematic Focused
Controlled

improvement
Customizable Training

Ad hoc No No No No No

Checklist Partially No Partially Yes Partially

Defect-based

reading
Yes Yes Yes Yes Yes

Perspective-

based reading
Yes Yes Yes Yes Yes

The choice of defect detection method significantly affects inspection

performance. To discover the effectiveness of reading techniques, several

experiments are conducted and several different results are achieved. One

experiment states that Ad Hoc is less efficient or similar than Checklist, which

is less efficient than Scenario [13]. Another experiment states that the

Scenario detection methods resulted in the highest defect detection rates,

followed by Ad Hoc detection methods, and finally by Checklist detection

methods [14]. As both experiments stated, scenario based reading is the

most effective technique among the reading techniques.

2.4 Automated Tools

In this part, information about automated tools developed for

requirements verification is provided.

17

2.4.1 Automated Requirements Measurement (ARM)

The Goddard Space Flight Center’s (GSFC) Software Assurance

Technology Center (SATC) has developed the tool for assessing

requirements that are specified in natural language [15]. The SATC’s mission

is to assist National Aeronautics and Space Administration (NASA) projects

to improve the quality of software that they acquire or develop. The tool

developed searches the documents for terms the SATC has identified as

quality indicators. The reports produced by the tool are used to identify

specification statements and structural areas of the requirements

specification document that need to be improved.

The tool uses indicators of quality attributes to evaluate the

requirements documents. These indicators are grouped into two classes.

Those related to the examination of individual specification statements which

are Imperatives, Continuances, Directives, Options and Weak Phrases and

those related to the total requirements document which are Size,

Specification Depth and Text Structure.

• Imperatives

Imperatives are words and phrases that command something must be

provided. The ARM report uses Shall, Must or must not, Is required to, Are

applicable, Responsible for, Will and Should imperatives and lists the total

number of times imperatives were detected.

• Continuances

Continuances are phrases such as Below, As follows, Following, Listed,

In particular and Support which introduce the specification of requirements at

a lower level. They are found to be an indication that requirements were

organized and structured.

18

• Directives

Directives are the category of words and phrases such as Figure, Table,

For example and Note which point to illustrative information within the

requirements document. The data and information pointed to by directives

strengthens the document’s specification statements and makes them more

understandable. A high ratio of the total count for the Directives category to

the documents total lines of text appears to be an indicator of how precisely

requirements are specified.

• Options

Options are the category of words such as Can, May and Optionally

which give the developer latitude in satisfying the specification statements

that contain them. This category loosens the specification, reduces the

acquirer’s control over the final product, and establishes a basis for possible

cost and schedule risks.

• Weak Phrases

Weak Phrases is the category of clauses that are apt to cause

uncertainty and leave room for multiple interpretations. Use of phrases such

as “adequate” and “as appropriate” indicate that what is required is either

defined elsewhere or the requirement is open to subjective interpretation.

Phrases such as “but not limited to” and “as a minimum” provide a basis for

expanding a requirement or adding future requirements. The total number of

weak phrases found in a document is an indication of the extent that the

specification is ambiguous and incomplete.

19

• Size

Size is the category used by the ARM tool to report three indicators of

the size of the requirements specification document. They are:

o lines of text

o imperatives

o subjects of specification statements

The number of lines of text in a specification document is accumulated

as each string of text is read and processed by the ARM program. The

number of subjects used in the specification document is a count of unique

combinations and permutations of words immediately preceding imperatives

in the source file. This count appears to be an indication of the scope of the

document. The ratio of lines of text to imperatives provides an indication of

how concise the document is in specifying the requirements.

• Specification Depth

Specification Depth is a category used by the ARM tool to report the

number of imperatives found at each of the document’s levels of text

structure. This data is significant because it reflects the structure of the

requirements statements as opposed to that of the document’s text.

Differences between the Text Structure counts and the Specification Depth

were found to be an indication of the amount and location of text describing

the environment that was included in the requirements document. The ratio

of the specification depth category to document’s total lines of text appears to

be an indication of how concise the document is in specifying requirements.

• Text Structure

Text Structure is used by the ARM tool to report the number of

statement identifiers found at each hierarchical level of the requirements

20

document. These counts provide an indication of the document’s

organization, consistency, and level of detail. The text structure of documents

judged to be well organized and having a consistent level of detail were

found to have a pyramidal shape. Documents that exhibited an hour-glass

shaped text structure were usually those that contain a large amount of

introductory and administrative information. Diamond shaped documents

indicated that subjects introduced at the higher levels were addressed at

different levels of detail.

2.4.2 Feature Interaction Extractor (FIX)

FIX was developed to be used in telecommunication services. First a

formal specification language is presented based on temporal logic. In this

language, features of the system are defined. As an example, a telephony

feature, such as call waiting or call forwarding, typically specifies the behavior

over time of one or more entities in terms of their current state and a set of

input events. The informal specification for call forwarding “If entity x has call

forwarding enabled and calls to x are to be forwarded to z then, whenever x

is busy, any incoming call from y to x is eventually forwarded to z.” can be

expressed with predicates call_forwarding_enabled(x), forward_from_to(x,z),

forwarded_call_from_to(y, x, z), busy(x), and incoming_call_from_to(y, x).

Feature conflict is defined as mutually inconsistent properties; that is, no

program exists that can implement both features. Consider the two features

A and B defined below.

A : calls(a, b) => connected(a, b) v disconnect(a)

(“Whenever a calls b, a and b are connected, unless a disconnects”),

B : calls(a, b) => forwards(a, b, c) v disconnect(a)

(“Whenever a calls b, the call is forwarded to c, unless a disconnects”).

These features are conflicting because forwarding from b and

connecting to b should not both happen for the same call [16].

21

2.4.3 TCAS II

TCAS II was developed to be used in avoidance systems required on all

commercial aircrafts. The method ensures that the verified properties hold for

the specification by using functional composition rules.

A high level specification language RSML (Requirements State Machine

Language) was developed by adding some features of state charts to RSM.

The RSML is composed of Super states, AND decomposition and transition

definitions.

• Super states

In RSML, states may be grouped into super states as shown in figure 3.

Such groupings reduce the number of transitions by allowing transitions to

and from the super state rather than requiring explicit transitions to and from

all of the sub states. There are two ways to a super state. First, the transition

to the super state may end at the super state’s border. In this case, a default

state must be specified within the super state. Alternatively, the transition

may be made to a particular state inside the super state.

Figure 3 Superstates

• AND decomposition

It contains two or more state machines separated by dashed borders as

shown in figure 4. When a parallel state is entered, each of the state

machines within it is entered. All state machines are exited when any

transition is taken out of the parallel state. The use of parallel states greatly

reduces the size of the specification.

22

Figure 4 And composition

• Transition definition

Transitions are taken upon the occurrence of the trigger event, provided

that the guarding condition is true. The guarding condition defines what must

be true before the transition can be taken and is specified using AND/OR

tables. Output actions identify events that are generated when the transition

is taken.

The rules for union, parallel, and serial composition can then be applied

to show that the behavior of the entire hierarchical and parallel machine is

complete and consistent.

• Union Composition:

Union composition requires that the domains of the functions describing

the transitions involved in the composition must be disjoint, i.e., no two

transitions out of the same state can be satisfied at the same time. In

addition, functions require that the entire domain must be covered. Thus,

there must be a satisfiable transition out of every state independent of what

input arrives at the model boundary.

• Serial Composition:

Serial composition of functions requires that if an event is generated,

there must always be a transition elsewhere in the model ready to be

triggered by this event.

23

• Parallel Composition:

Parallel composition occurs when two or more transitions in parallel

state machines are triggered by the same event. If the truth value of the

guarding condition of one transition can be affected by a state change

caused by a parallel transition, then there exists a possibility of non

determinism and the transitions are said to conflict with each other [17].

2.4.4 SAMMDF

The motivation for the development of SAMM was originated in

response to the need to perform an analysis of current aircraft manufacturing

processes. SAMM is based on the Human Directed Activity Cell Model

developed by Hori in 1971 [18].

The purpose of SAMM is to model a system through a layered structure

of activities and data flow. The SAMM representation scheme is comprised of

three elements which are tree structure, activity diagram and condition chart.

• Tree structure

In SAMM, the nodes of trees represent activities which are a

generalized concept to represent any action performed by a machine, or

people, or combination of both to accomplish a task as shown in figure 5. The

tree structure is used to organize the semantic refinement of an activity into

its subordinate sub activities. An activity and its subordinates form the basis

of an activity diagram.

Figure 5 Tree structure

24

• Activity Diagram

An activity diagram consists of a description of sub activities and a data

table. The description of sub activities is comprised of activity cells, a

boundary, and data flows. The data table is comprised of data descriptions

with indexes. A sub activity is referred to as an activity cell and is represented

graphically by a rectangular box containing a descriptive verb phrase and a

label, and data flows into and/or out of the cell.

In Figure 6, Box A is an example of an activity cell. The word "Process

Masterfile" is the descriptive phrase and the letter "A" is the label. The arrow

into the top of the cell with the numeral 1 by it indicates that the line is an

input data flow. Numeral 1 refers to the first entry in the data description table

titled "Employee Masterfile." Numbers 2, 3, 4, and 5 depicts data flowing from

cell A to B.

Figure 6 Activity Diagram

• Condition Chart

The purpose of a condition chart is to state for an activity diagram the

input requirements of each output and to describe the behavioral aspects of

the diagram. The entry 6|3, 5|1 in Figure 7 means output 6 (Average Age) is

the result of inputs 3 (Age Total of All Employees) and 5 (Number of

Employees) as shown in Figure 6 under condition 1 (Process Completed

Successfully) from Figure 7 again.

25

Figure 7 Condition Chart

The automation of verification is accomplished in three ways: basic

syntax and consistency checking; analysis of model, both on a diagram and

global basis, utilizing graph-theoretic techniques; and by providing reports to

utilize the human pattern-matching capability.

• Consistency Checking

This approach is taken on a diagram basis. When reviewing a diagram

and its chart, certain questions must be asked. Are there indexes referencing

undefined data or control descriptions? Are there data or control descriptions

defined but not used? For each output item of a cell, is the output-input

relationships specified on the chart? Does each diagram have at least one

external input and one external output? Is the external data of a diagram

related back to the data in the parent diagram?

• Connectivity Analysis

In analyzing the data flow graph, it is essential to determine that the

graph is connected and each is accessible either from the input set node or

the output set node.

26

Figure 8 Data flow graph

The data flow graph is derived from a diagram or a layer of interrelated

diagrams as shown in figure 8. A connection matrix for the graph is then

constructed. A connection matrix is a square Boolean matrix where there is a

row and column for each node in the graph. A one is placed in the connection

matrix, C, at Cij if the node represented by column j can be reached directly

from the node represented by row i. After the connection matrix is formulated,

a reachability matrix is computed. The reachability matrix shows which nodes

can be reached from other nodes. The information developed from the matrix

is used to identify the sources and sinks of the graph.

• Computer-Assisted Checking

The objective of this approach is to present the different perspectives of

the relationships found in a model. The perspectives are then detailed in a

report which can be evaluated by a human for correctness.

A useful report produced is the data path report. The report provides

insight into the behavior characteristics of the system and a scenario on how

an external global output is transformed through the cells of a layer from its

external global input.

A comparison of the tools, their usage areas, modeling techniques and

methods used to detect the defects is given in table 3.

27

Table 3 Automated Tools

Tool Name Usage Area
Modeling
Technique

Method

Automated Requirements
Measurement (Arm)

Nasa
Natural

language Individual indicators

Feature Interaction
Extractor (Fix)

Telecom
W-

Automata Feature conflict

TCAS II
Avoidance

systems
RSML

Union Composition, Serial
Composition, Parallel
Composition

SAMMDF
Aircraft

manufacturing
SAMM

Consistency Check,
Connectivity Analysis,
Computer-Assisted Check

ARM tool assess requirement specifications written in natural language

and searches the document for terms the SATC has identified as quality

indicators. SATC use metrics to identify risks by using the indicators. ARM

does not assess the correctness of requirements. But the tool we developed

assesses completeness, consistency, ambiguity and semantic/syntax

properties of models and detect the defects related to these properties.

Three major aspects comprise SAMMDF are model generation and

modification, automated analysis and report generation. The tool we

developed only focus on automated analysis of models.

SAMMDF uses consistency checking and connectivity analysis, TCAS II

uses completeness and consistency checking and FIX uses conflict detection

to verify the requirements. The tool we developed uses completeness,

consistency, ambiguity and semantic/syntax properties of the models to verify

the requirements.

Additionally, the verification tool we developed can be used with any

modeling tool which provides eEPC and organizational chart modeling

techniques if the tool uses the same DTD file with Aris.

28

2.5 eEPC and Organizational Chart

There are numerous modeling techniques that can be used to model the

system requirements like data flow diagram and UML. In the project under

consideration which models The Turkish Army’s organizational structure and

command-control system, eEPC and organizational chart modeling

techniques in Aris are used. Organizational chart modeling technique is

chosen because it is suitable to model the structure of an organizational

hierarchy and eEPC modeling technique is chosen because it is suitable to

model high level business processes, inputs, outputs and the relations

between them.

In this part, information about eEPC and organizational chart modeling

techniques is provided [19].

2.5.1 Extended Event-Driven Process Chain (eEPC)

In this model, the sequence of functions is illustrated in the form of

process chains. The start and end events can be specified for each function.

Events not only do trigger functions but are also results of functions.

Functions are displayed as rectangles with rounded corners and events

are graphically represented as hexagons as shown in figure 9.

Function Event

Figure 9 Function and Event

Since events determine which state or condition will trigger a function

and which status will define the end of a function, the starting and end nodes

of an eEPC are always events.

29

Several functions can be triggered from one event and a function can

result in several events.

Functions and events are linked to each other by AND, OR or XOR

operators.

Function

Event1 Event2

Figure 10 And Link Example

In the example given in figure 10, the starting events are linked by an

AND operator. This means that the procedure Function is only started if the

triggering events have been verified. Therefore both events must have

occurred before the procedure can begin.

Function

Event1 Event2

Figure 11 Xor Link Example

The second example given in figure 11 shows an exclusive OR

operator. The Function may either result in Event1 or in Event2. Both results

cannot occur at the same time.

Definitions of operators are given below:

AND operator: The outgoing can only be started after all incomings

have occurred or the incoming results in all outgoings occurring.

30

OR operator: The outgoing can be started after at least one of the

incomings has occurred or executing the incoming results in at least one of

the outgoings occurring.

XOR operator (Either/Or operator): The outgoing is started after

exactly one and only one incomings has occurred or executing the incoming

results in one outgoing at the most occurring.

Event AND Links:

Event1 Event2

Function Event1 Event2

Function

Figure 12 Event AND Links

Event OR Links:

Event1 Event2

Function Event1 Event2

Function

Figure 13 Event OR Links

Event XOR Links:

Event1 Event2

Function

Event1 Event2

Function

Figure 14 Event XOR Links

31

Function AND Links:

Event

Function1 Function2

Event

Function1 Function2

Figure 15 Function AND Links

Function OR Links:

Event

Function1 Function2

Figure 16 Function OR Link

Function XOR Links:

Event

Function1 Function2

Figure 17 Function XOR Link

In figure 18, an example eEPC model from the project is given with the

names changed to illustrate the use of eEPC in the project. In the figure, the

triggering events Event1, Event2, Event3 and Event4 are linked by an Or

operator. This means that the procedure Function is started if at least one of

these events has been verified. The result events Event5, Event6 and Event7

are linked by an Or operator which is linked Event8 by an And operator. This

means that the execution of procedure Function results in Event8 and at

least one of the events Event2, Event3 and Event4.

32

Function

Event1 Event2 Event4Event3

Event6

Event7Event5 Event8

Figure 18 Example eEPC from the project

2.5.2 Organizational Chart

An organizational chart is a model used to represent organizational

structures. It reflects the organizational units and their interrelationships. The

relationships are the links between the organizational units.

In order to show the individual positions, a separate Position object type

is available.

Organizational units are displayed as ellipses and positions are

graphically represented as rectangles as shown in figure 19.

Organizational
unit

Position

Figure 19 Organizational Unit and Position

One organizational unit can be linked to multiple positions. The

connection means that the position is the manager of that organizational unit.

In figure 20, an example organizational chart model from the project is

given with the names of the objects changed to illustrate the use of

33

organizational chart in the project. In the figure, Unit1 is the root of the model.

Unit2, Unit3, Unit5, Unit6 and Unit7 are linked Unit1 and Unit4 is linked Unit3.

This means that Unit4 is a sub unit of Unit3 and the other organizational units

are the sub units of Unit1. Position1 is linked Unit1 and Position2 is linked

Unit4. This means that Position1 is the manager of Unit1 and Position2 is the

manager of Unit4.

Unit3

Unit5

Unit6

Unit7

Unit1

Unit2

Position1

Unit4 Position2

Figure 20 Example Organizational Chart from the project

34

 CHAPTER 3

3 THE TOOL

This chapter gives information about the tool that is developed to detect

the defects in a requirements specification modeled by eEPC and

organizational chart.

3.1 Defect Detection Steps

First, models are exported to an XML file by using Aris XML export

utility. Then these XML files are converted into given prolog structures by

using “xerces-2_6_2” XML Parser. A class is written which examines the

elements, gets the specified values and writes them to a file. Then these

prolog files are consulted to a prolog interpreter with prolog scripts written to

find the defects in the models as shown in figure 21.

Figure 21 Application Process

3.2 Xerces XML Parser

An XML parser parses XML documents and sends data to display in a

browser or to write to a file. The parser makes sure that the document meets

the predefined structures which are defined in the form of a DTD or a schema

[24].

35

The Xerces2 java parser is a free software which is a member of

Apache parser family. For the thesis, Xerces 2.6.2 release is used. A class

named Writer.java is written which converts Aris XML files to prolog files.

3.3 SWI Prolog

SWI-Prolog is a free software prolog compiler. Its development started

in 1987 in the SWI department of the University of Amsterdam. Being free,

small and standard compliant, SWI-Prolog has become very popular for

education [25].

The SWI-Prolog executable plwin.exe can be started from the Start

Menu or by opening a .pl file holding Prolog program text from the Windows

explorer. After loading a program, one can ask Prolog queries about the

program.

3.4 Prolog Structures

By examining ARIS-Export.dtd file, two prolog structures are defined

which are object and model structures.

object(

assigned model id,

object id,

[incoming connections],

object type,

object name,

[outgoing connection, target object]).

model(

model id,

model type,

model name,

[model objects]).

36

The object structure defines each object in a model and the model

structure defines a model and its components. Explanations of components

of structures are:

 assigned model id: if the object has a sub model assigned to it, id of that

sub model is written. Otherwise component gets ‘no’ value.

object id: Id of the object is written to that component.

incoming connections: if the object has incoming connections, id’s of these

connections are written as a list. Otherwise component gets empty list.

object type: Type of the object is written.

object name: Name of the object is written.

[outgoing connection, target object]: if the object has outgoing

connections, id’s of these connections and their target objects are written as

a list of lists. Otherwise component gets empty list.

model id: : Id of the model is written to that component.

model type: Type of the model is written.

model name: Name of the model is written.

model objects: ids of all objects in the model is written as a list.

3.5 Prolog Scripts

In this part of the thesis, scripts written in prolog are explained and

pseudo code of each script is given.

37

• No_manager_for_organizational_units (rule 1)

This script finds the organizational units in the organizational charts

which have no connection to a manager. The script is given in appendix A.

Pseudo code of the script:

Select organizational unit type objects as a list

For each organizational unit, find incoming object connections

For each connection, check the source object

If the source object is a position type, append this organizational unit

type object to a list

Compare organizational unit type objects list with the list of

organizational unit type objects connected to a position

If an organizational unit is detected that is in organizational unit type

objects list but not in organizational unit type objects connected to a position

list, write an error message

• No_manager_for_functions (rule 2)

This script finds the functions in eEPC models which have no

connection to a manager. The script is given in appendix B.

Pseudo code of the script:

Select function type objects as a list

Select position type objects as a list

Select application system type objects as a list

Get the function type objects that are connected to a position by using

position type objects list

Get the function type objects that are connected to an application

system type by using application system type objects list

Append these two connected functions lists

38

Compare connected functions list with function type objects list

If a function is detected that is not in connected functions list but in

function type objects list, write an error message

• Assigned_model (rule 3)

This script finds the function and sub-function relations which have

inconsistencies with incoming or outgoing event names, info carriers and

performing organizational units. The script is given in appendix C.

Pseudo code of the script:

Select a function type of object

Get the object’s incoming and outgoing objects

Get assigned-model object ids of this function type object

Convert assigned-model object ids to names

Compare function type object’s incoming and outgoing object names

with assigned-model object names

If an object name is detected that is in incoming and outgoing objects

list but not in assigned-model objects list, write an error message

• Assigned_model_name (rule 4)

This script finds the function and sub-function relations which have

inconsistencies with names given to the function and sub-function assigned

to it. The script is given in appendix D.

Pseudo code of the script:

Select a function of type object and get its name

Get the name of assigned-model of this function type object

Compare the names

If they are not the same, write an error message

39

• Rule_must_be_used (rule 5)

This script finds the objects which have more than one same kind of

incoming or outgoing objects with no rule connection. The script is given in

appendix E.

Pseudo code of the script:

Select a function type of object

For each incoming connection, find the type of source object and

append it to a list

For each outgoing connection, find the type of destination object and

append it to a list

Check each lists individually

If they have more than one same kind of object type, write an error

message

• Have_same_name (rule 6)

This script finds the functions that the names of a function and its

incoming or outgoing event are the same. The script is given in appendix F.

Pseudo code of the script:

Select a function type of object and get its name

Get this object’s incoming objects and their names

Get this object’s outgoing objects and their names

Compare function type object’s name with the names of incoming and

outgoing objects

If they are the same, write an error message

40

• One_in_one_out_rule (rule 7)

This script finds the rules with only one incoming and one outgoing

objects. The script is given in appendix G.

Pseudo code of the script:

Select a rule type object

Get the number of incoming connections for this rule type object

Get the number of outgoing connections for this rule type object
If both numbers are equal to 1, write an error message

3.6 Example

In this part of the thesis, an example is given to illustrate the functioning

of the tool. First, an example eEPC model is constructed as shown in figure

22 and 23 which has all kinds of defects defined in the thesis. The defects in

the example model are listed below:

a) Function31 has no connection to a manager

b) Function32 has no connection to a manager

c) Function33 has no connection to a manager

d) Function5 has no connection to a manager

e) Function51 has no connection to a manager

f) Function52 has no connection to a manager

g) Function53 has no connection to a manager

h) Function7 has no connection to a manager

i) Function5 has two outgoing events Event3 and Event4 which are not

in its sub model

j) Function3 has a connection to Position2 which is not in its sub model

k) Function5 has a sub model named Function Error which is different

from the function’s name

l) Function1 has two incoming events with no rule connection

m) Function3 has two outgoing rules with no rule connection

41

n) Function4 has two outgoing functions with no rule connection

o) Function5 has two outgoing events with no rule connection

p) Function7 has an outgoing event named Function7 which is the same

with the function’s name

q) Function7 has an incoming rule with only one incoming and one

outgoing objects

Event1 Event2

Function1 Position1

Function2 Function3

Function4

Application
syste...

Position2

Function7

Function5 Function6 Position3

Event3 Event4

Event5 Event6

Function7

Figure 22 Example EEPC Main Model

42

Function31 Function32

Function33

Function51 Function52

Function53

Figure 23 Example EEPC Sub-Models (Function 3 and Function Error)

Then the XML file is exported by using Aris XML Export utility. After that,

by using Xerces java parser, information in the xml file is converted into two

prolog structures which are explained in the preceding part and written in a

file named arisOutput.pl. This file is given in appendix H. This prolog file is

consulted to the prolog interpreter with the prolog scripts written to find the

defects and the interpreter is run. The defects detected by using the scripts

are given below:

• Defects detected by No_manager_for_functions script

Function5 does not have a manager

Function51 does not have a manager

Function52 does not have a manager

Function7 does not have a manager

Function33 does not have a manager

Function31 does not have a manager

Function53 does not have a manager

Function32 does not have a manager

This script finds the defects a, b, c, d, e, f, g and h given above.

43

• Defects detected by Assigned_model script

Event3 can not be found in sub-model

Event4 can not be found in sub-model

Position2 can not be found in sub-model

This script finds the defects i and j given above.

• Defects detected by Assigned_model_name script

Function5 is not the same with assigned sub-model name

This script finds the defect k given above.

• Defects detected by Rule_must_be_used script

Function5 must use a rule connection for incoming or outgoing objects

Function3 must use a rule connection for incoming or outgoing objects

Function1 must use a rule connection for incoming or outgoing objects

Function4 must use a rule connection for incoming or outgoing objects

This script finds the defects l, m, n and o given above.

• Defects detected by Have_same_name script

Function7 has an incoming or outgoing with the same name

This script finds the defect p given above.

• Defects detected by One_in_one_out_rule script

Rule outgoing from Function7 has one incoming and one outgoing

44

This script finds the defect q given above.

When the application results of the scripts are compared with the

defects in the example model listed above, it is seen that all the defects in the

model are detected by the tool.

45

 CHAPTER 4

4 EXPERIMENTAL STUDY

In this chapter, we give information about the experiment that is

conducted to assess the effectiveness of verification techniques. First,

application of reading techniques and their comparison are considered.

Second, the application results of automated tool are given. Lastly,

comparison of manual and automated verification techniques is given.

4.1 Manual Verification

As part of our approach for the development of the tool, we have

performed a manual verification experiment. In this experiment, a coherent

part of a project is taken and inspected by using different reading techniques.

The results are collected, categorized and used for the development of the

tool.

The manual verification of the project is executed by one person. First,

reading techniques for requirements verification are surveyed and checklists

and scenarios are obtained from past experiences to be used in verification

procedure. The selected model is divided into four parts to apply each

technique on a different part of the model. Ad-Hoc Reading, Checklist-Based

Reading, Defect-Based Reading and Perspective-Based Reading techniques

are used for the application and the result of each technique is classified

according to the characteristics of Software Requirements Specifications

defined by IEEE [20].

46

4.1.1 Application of Ad-Hoc Reading

During this application, no guidelines, checklists and scenario are

provided. Result of the application is given in table 4:

Table 4 Application Results of Ad-Hoc Reading

Defect Type Class Defects

There are some organizational units which does

not have performing organizational unit.
Incompleteness 17

There are some functions which does not have performing

organizational unit.
Incompleteness 22

There are some functions named “registering to related file”

which does not have any related file info.
Incompleteness 1

There are some function and sub-function relations which

have inconsistencies with incoming or outgoing events names,

info carriers, performing organizational units and connected

decimal files

Inconsistency 1

There are some function and sub-function relations which

have inconsistencies with names given to the function and

sub-function assigned to it

Inconsistency 4

Some objects have more than one same kind of incoming or

outgoing objects with no rule connection.
Ambiguous 41

There are some functions with the names of the function and

its incoming or outgoing event are the same
Ambiguous 1

There are some rules with only one incoming and one

outgoing event.

Semantic

/Syntax
2

It is observed from the results of application that the technique is

applicable to the project. The success of the defect detection strongly

depends on the skills of the inspector and defects detected are only related

to completeness, consistency, ambiguity and Semantic/Syntax.

47

4.1.2 Application of Checklist-Based Reading

The checklist used for the application is given in appendix I [21].

Result of the application is given in table 5:

Table 5 Application Results of Checklist-Based Reading

Defect Type Defect

Complete 0

Correct (not applicable)

Precise, unambiguous and clear 1

Consistent 0

Relevant (not applicable)

Testable (not applicable)

Traceable (not applicable)

Feasible (not applicable)

Free of unwarranted design detail (not applicable)

Manageable (not applicable)

It is observed from the results of application that the technique is not

applicable to the project. The questions in the checklists are about low level

details of specification written in natural language and because the project

works on high level specification of business work flow, only completeness,

consistency and ambiguity characteristics of the project can be examined.

Other questions related to the other characteristics are not applicable.

4.1.3 Application of Defect-Based Reading

The defect types used for the application are given in appendix J [22].

Result of the application is given in table 6:

48

Table 6 Application Results of Defect-Based Reading

Type Defect Class Defects
Omission There are some functions or org. Units which

does not have performing organizational unit.

Incompleteness
15

Ambiguous
information

There are some function and sub-function

relations which have inconsistencies with

incoming or outgoing events names, info

carriers, performing organizational units etc.

Inconsistency
2

Ambiguous
information

There are some function and sub-function

relations which have inconsistencies with

names given to the function and sub-function

assigned to it.

Inconsistency
1

Ambiguous
information

Some objects have more than one same kind

of incoming or outgoing objects with no rule

connection

Ambiguous 14

Incorrect
fact

Not applicable
-

Extraneous No defect 0

Other
defects

There are some rules with only one incoming

and one outgoing event

Semantic/

Syntax
1

It is observed from the results of application that the technique is

applicable to the project. It gives the same results with ad hoc reading and it

has no additional advantage over ad hoc reading technique.

4.1.4 Application of Perspective-Based Reading

Only Perspective-Based Reading User-based Reading scenario is

applied to the model. The other scenarios (Design based Reading scenario

and Test based Reading scenario) are not applicable because of lack of

sufficient detail. The questions used for the application is given in appendix

K, L and M [22].

Result of the application is given in table 7:

49

Table 7 Application Results of Perspective-Based Reading

Defect Type Class Defects

Is there anything that prevents you from writing this operational

scenario? (position omissions)

Incompleteness
0

Are all the functions necessary to write this operational

scenario specified in the requirements or functional

specifications?

Correctness 0

Are the initial conditions for starting up this operational

scenario clear and correct? (All functions are triggered by an

event)

Ambiguous 0

Are the interfaces well defined and compatible, e.g., do the

inputs of one function link to the outputs of the previous

function?

Not applicable

-

Are the effects of the operational scenario specified in the

requirements or functional specifications under all possible

circumstances?

Not applicable

-

Might some portion of the operational scenario give different

answers depending on how a requirement or functional

specification is interpreted?

Not applicable

-

Does the requirement or functional specification make sense

from what you know about the application or from what is

specified in the general description?

General

Question -

Can you get into a state of the system that must be avoided,

e.g. for reasons of safety or security?

Not applicable
-

It is observed from the results of application that the technique is not

applicable to the project. The project does not contain the necessary

information to answer the questions in the scenarios. Only some questions

from user based reading technique can be applied which check the defects

related to work flow.

A comparison of the reading techniques, their applicability and reasons

for that is given in table 8.

50

Table 8 Reading Techniques

Reading technique Applicability Reason

Ad-Hoc Reading applicable to the

project

-

Checklist-Based

Reading

not applicable to

the project

questions in the checklist are about low level

details of specification written in natural

language

Defect-Based

Reading

applicable to the

project

-

Perspective-Based

Reading

not applicable to

the project

the model of the project does not contain the

necessary information to apply different

viewpoints

4.2 Automated Verification

For the categorization of defects, we used characteristics of a good

SRS. In IEEE Recommended Practice for Software Requirements

Specifications [20], characteristics of a good SRS are defined as:

• Correct

• Unambiguous

• Complete

• Consistent

• Ranked for importance and/or stability

• Verifiable

• Modifiable

• Traceable.

4.2.1 Defects

As the result of manual verification, eight different types of defects are

detected. Then they are grouped according to characteristics of a good SRS

given above. The defects detected and the characteristics they belong to are

given below:

51

• Incompleteness

o There are some organizational units which does not have

performing position (No_manager_for_organizational_units, rule 1)

o There are some functions which does not have performing

position (No_manager_for_functions, rule 2)
o There are some functions named “registering to related file”

which does not have any related file info (no rule can be written)

• Inconsistency

o There are some function and sub-function relations which have

inconsistencies with incoming or outgoing event names, info carriers,

performing organizational units and connected decimal files

(Assigned_model, rule 3)

o There are some function and sub-function relations which have

inconsistencies with names given to the function and sub-function

assigned to it (Assigned_model_name, rule 4)

• Ambiguous

o Some objects have same kind of incoming or outgoing objects

with no rule connection (Rule_must_be_used, rule 5)

o There are some functions whose names are the same with its

incoming or outgoing events (Have_same_name, rule 6)

• Semantic/Syntax

o There are some rules with only one incoming and one outgoing

event (One_in_one_out_rule, rule 7)

The names given in parenthesis are the names of scripts written to

detect the defects.

52

For automated verification, seven of detected defects are selected. The

defect “There are some functions named registering to related file which does

not have any related file info” is not selected because it can not be detected

by an automated tool.

Then, prolog scripts are written for each defect type and applied to the

same project models which are used for manual verification. The results of

the application are given in table 9:

Table 9 Application Results of Automated Verification

 Rule 1 rule 2 rule 3 rule 4 rule 5 rule 6 rule 7

Total 17 40 4 6 76 1 3

4.3 Comparison of Results

In table 10, application results of manual verification and in table 11,

comparison of manual and automated verification results are given.

Table 2 Application Results of Manual Verification

 Rule 1 rule 2 rule 3 rule 4 rule 5 rule 6 rule 7

Ad-Hoc Reading 17 22 1 4 41 1 2

Checklist-Based

Reading
- - - - 1 - -

Defect-Based

Reading
- 15 2 1 14 - 1

Perspective-Based

Reading
- - - - - - -

Total 17 37 3 5 56 1 3

Table 31 Comparison of Results

 rule 1 rule 2 rule 3 rule 4 rule 5 rule 6 rule 7 total

Manual 17 37 3 5 56 1 3 122

Automated 17 40 4 6 76 1 3 147

53

As given in the table above, number of defects detected during

automated verification (147) is higher than the number of defects detected

during manual verification (122 + the defect that can not be automated).

When the defects detected during each verification technique are compared,

it is seen that all the defects detected during manual verification are also

detected during automated verification except the defect type that can not be

automated. During automated verification, some additional defects are

detected which could not detected during manual verification.

All defect types can not be detected by the automated tool. As an

example, we can not automate the defect “There are some functions named

registering to related file which does not have any related file info”.

The time spent for manual verification is approximately three days. This

time includes defining the defect types in the models. For automated

verification, it takes thirty minutes to complete the verification for the same

models.

Main difference between the manual and automated verification

occurred at “Rule_must_be_used” script. Reasons for this difference are

considered as:

• Number of defects is high at this defect type.

• Because all the connection and object occurrences have to be

checked in “Rule_must_be_used”, possibility of missing the defects during

manual verification is the highest.

54

 CHAPTER 5

5 CONCLUSION AND FUTURE DIRECTIONS

This thesis focused on the verification of requirements specifications by

using manual and automated verification techniques, comparison of results

and advantages and disadvantages of the automated tool we developed.

This chapter gives how the tool we developed fulfilled the objectives and

points out the future work for related issues.

5.1 Fulfillment of Objectives and Aim

In recent years, several tools have been developed for automated

verification of software requirements. Some of them are focused on the

assessment of requirements specified in natural language and some others

on the assessment of graphical representations.

In this thesis, we focused on the verification of eEPC and organizational

chart modeling techniques used in a military project.

First, we applied different reading techniques to different parts of the

project and categorized the results of applications to determine the defect

types which can be detected by an automated tool. The application results of

reading techniques are summarized below:

Ad-hoc reading technique is applicable to the project because it requires

no past experience such as checklist questions or scenarios.

55

Checklist-based reading technique is not applicable to the project

because the checklists used in the application have questions related to

requirements specifications written in natural language. So, for the success

of checklist-based reading technique, a new checklist must be written with

the experience of this work.

Defect-based reading technique is applicable to the project because the

defect types given in the example are general classifications. So, during an

application, reviewers can check different kind of issues under each defect

class and detect different kind of defects.

Perspective-based reading technique is not applicable to the project

because the modeling techniques used in the project does not contain low

level details of different view points.

After determination of defect types, we developed an automated tool to

automatically detect these defect types by using an xml parser and a prolog

interpreter. Then, we executed automated verification of the manually verified

project models by using the tool and compare the results of manual and

automated verification.

The tool developed for automated detection of defects has significant

advantages over manual verification of models. First, during manual

verification, the time spent for verification is approximately three days. This

time includes defining the defect types in the models and searching the

models for these defect types. For automated verification, it takes thirty

minutes to complete the verification process for the same models. Second,

during manual verification, total number of automatically detectable defects

found is 122. But, for automated verification, total number of defects found is

147. It means that, by manual verification, only 83 percent of total defects

could be found.

56

The tool proposed here also has some disadvantages over manual

verification. First, all defect types can not be detected by the automated tool.

As an example, we can not automate the defect “There are some functions

named registering to related file which does not have any related file info”.

Second, the tool is specific to Aris Tool eEPC and organizational chart

modeling techniques. It can not be used with other modeling tools unless the

same DTD file is used.

5.2 Future Work

The result of the application of the tool suggests that the tool is

applicable for verification of software requirements modeled using Aris eEPC

and organizational chart modeling techniques. But some further experiments

must be conducted to compare the verification results of manual verification

and the tool we developed which shows the effectiveness of the tool.

For widespread use of the tool, new defect types for eEPC and

organizational chart must be defined and new scripts must be written. This

provides a higher number in detection of automatically detectable defects.

The same experiments must be conducted for other modeling

techniques such as UML. This provides the usage of the tool with a wide

variety of modeling techniques and increases the tool’s applicability in

requirements engineering domain.

A study must be done to define new rules by using user interfaces

instead of writing new scripts for each new defined defect type. And lastly, a

better user interface might be a good idea to ease the use of the tool.

57

REFERENCES

1. IEEE Std 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology, The Institute of Electrical and Electronics
Engineers

2. Kit E., (1995), Software Testing In The Real World, Harlow, ACM
Press Books

3. Fagan, M. E., (1976), Design And Code Inspections To Reduce Errors
In Program Development, IBM Systems J., Vol. 15, No. 3, pp 182-211

4. Humphrey W. S., (1989), Managing The Software Process, Addison
Wesley Publishing Company

5. Fagan. M. E., (1986), Advances In Software Inspections, IEEE Trans.
Software Eng., Vol. 12, No. 7, pp 744-751

6. Glib T., Graham D., (1993), Software Inspection, Harlow, Addison
Wesley Longman Limited

7. Martin J., Tsai W. T., (1990), N-Fold inspection: A Requirements
Analysis Technique, ACM, Vol. 33, No. 2, pp 225-232

8. Bisant D. B., Lyle J. R., (1989), A Two Person Inspection Method To
Improve Programming Productivity, IEEE Trans. Software Eng., Vol. 15, No.
10, pp 1294-1304

9. Knight J. C., Myers E. A., (1993), An Improved Inspection Technique,
ACM, Vol. 36, No. 11, pp 51-61

58

10. Shull F., Rus I., Basili V., (2001), Improving Software Inspections By
Using Reading Techniques, IEEE, pp 726-727

11. Brykczynski B., (1999), A Survey of Software Inspection Checklists,
ACM SIGSOFT, Vol. 24, No. 1, pp 82-89

12. Shull F., Rus I., Basili V., (2000), How Perspective Based Reading
Can Improve Requirements Inspections, IEEE, pp 73-79

13. Kirner T. G., Abib J. C., (1997), Inspection Of Software Requirements
Specification Documents: A Pilot Study, Utah, ACM, pp 161-171

14. Porter A. A., Votta L. G., (1994), An Experiment To Assess Different
Defect Detection Methods For Software Requirements Inspections, IEEE, pp
103-112

15. Wilson W. M., Rosenberg L. H., Hyatt L. E., (1997), Automated
Analysis Of Requirement Specifications, Boston, ICSE, pp 161-171

16. Felty A. P., Namjoshi K. S., (2003), Feature Specification And
Automated Conflict Detection, ACM, Vol. 12, No. 1, pp 3-27

17. Heimdahl M. P. E., Leveson N. G., (1995), Comleteness And
Consistency Analysis Of State-Based Requirements, Seattle, ACM, pp 3-14

18. Stephens S. A., Tripp L. L., (1978), Requirements Expression And
Verification Aid, pp 101-108

19. IDS Scheer AG., (2003), Aris methods, Saarbrücken

20. IEEE Std 830-1998, IEEE Recommended Practice for Software
Requirements Specifications, The Institute of Electrical and Electronics
Engineers

21. Freedman D. P., Weinberg G. M., (1990), Walkthroughs, Inspections
and Technical Reviews, New York, Dorset House Publishing

59

22. Laitenberger O., (1995), Perspective Based Reading: Technique,
Validation And Research In Future, ISERN Technical Report

23. Williamson H., (2001), The Complete Reference XML, California,
McGraw-Hill

60

WEB REFERENCES

24. Xerces2 Java Parser Read me, http://xml.apache.org/xerces2-
j/index.html, Last visited in December 2004

25. What is SWI-Prolog?, http://www.swi-prolog.org , Last visited in
December 2004

61

APPENDICES

62

APPENDIX A

No_Manager_For_Organizational_Units Script

nomanagerfororgunits:-

findall(Ot_org_unit,object(_,_,_,'OT_ORG_UNIT',Ot_org_unit,_),ListOutgoing
s),
 List2 = [],
 getfacts(ListOutgoings,ListOutgoings,List2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getfacts(ListOutgoings,[],List):-
 results(ListOutgoings,List).

getfacts(ListOutgoings,[Head|List1],List2):-
 object(_,_,[Z|Tail1],_,Head,_),
 object(_,_,_,'OT_POS',Name2,[[X,Y]|Tail2]),
 nomanager([Z|Tail1],[[X,Y]|Tail2],[[X,Y]|Tail2]),
 append(List2,[Head],List3),
 getfacts(ListOutgoings,List1,List3).

getfacts(ListOutgoings,[Head|List1],List2):-
 object(_,_,[Z|Tail1],_,Head,_),
 object(_,_,_,'OT_POS',Name2,[[X,Y]|Tail2]),
 not(nomanager([Z|Tail1],[[X,Y]|Tail2],[[X,Y]|Tail2])),
 getfacts(ListOutgoings,List1,List2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

results([],List1).

results([Head|List1],List2):-
 member(Head,List2),
 results(List1,List2).

results([Head|List1],List2):-
 not(member(Head,List2)),

63

 write(Head),write(' does not have a manager'),nl,
 results(List1,List2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nomanager([],[[X,Y]|Tail2],Tail2copy):- fail.

nomanager([Z|Tail1],[],Tail2copy):-
 nomanager(Tail1,Tail2copy,Tail2copy).

nomanager([X|Tail1],[[X,Y]|Tail2],Tail2copy):-!.

nomanager([Z|Tail1],[[X,Y]|Tail2],Tail2copy):-
 nomanager([Z|Tail1],Tail2,Tail2copy).

64

APPENDIX B

No_Manager_For_Functions Script

nomanagerforfunctions :-
 findall(Ot_func,object(_,_,_,'OT_FUNC',Ot_func,_),Listotfunc),
 findall(Ot_pos,object(_,_,_,'OT_POS',Ot_pos,_),Listotpos),

findall(Ot_appsystype,object(_,_,_,'OT_APPL_SYS_TYPE',Ot_appsystype,_)
,Listotappsystype),
 getotposfunctions(Listotpos,Listotposfunctions),
 getotappsystypefunctions(Listotappsystype,Listotappsystypefunctions),

append(Listotposfunctions,Listotappsystypefunctions,ListFunctionswithmana
gers),
 results(Listotfunc,ListFunctionswithmanagers).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getalloutgoings([],[]).

getalloutgoings([[Head1Listoutgoings|[Head2Listoutgoings]]|TailListoutgoings
],Listoutgoingsobjects):-
 getalloutgoings(TailListoutgoings,NewListoutgoingsobjects),
 object(_,Head2Listoutgoings,_,_,NameofFunction,_),
 append(NewListoutgoingsobjects,[NameofFunction],Listoutgoingsobjects).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getotappsystypefunctions([],[]).

getotappsystypefunctions([HeadListotappsystype|TailListotappsystype],Listot
appsystypefunctions):-

getotappsystypefunctions(TailListotappsystype,NewListotappsystypefunction
s),
 object(_,_,_,_,HeadListotappsystype,Listoutgoings),
 getalloutgoings(Listoutgoings,Listoutgoingsobjects),

65

append(NewListotappsystypefunctions,Listoutgoingsobjects,Listotappsystype
functions).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getotposfunctions([],[]).

getotposfunctions([HeadListotpos|TailListotpos],Listotposfunctions):-
 getotposfunctions(TailListotpos,NewListotposfunctions),
 object(_,_,_,_,HeadListotpos,Listoutgoings),
 getalloutgoings(Listoutgoings,Listoutgoingsobjects),
 append(NewListotposfunctions,Listoutgoingsobjects,Listotposfunctions).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

results([],List1).

results([Head|List1],List2):-
 member(Head,List2),
 results(List1,List2),!.

results([Head|List1],List2):-
 not(member(Head,List2)),
 write(Head),write(' does not have a manager'),nl,
 results(List1,List2).

66

APPENDIX C

Assigned_Model Script

assignedmodel1:-

object(AssignedModel,ObjectId,Listincomings,'OT_FUNC',Name,Listoutgoing
s),
 assignedmodel2(AssignedModel,Listincomings,Listoutgoings,Name).

assignedmodel2(AssignedModel,Listincomings,Listoutgoings,Name):-
 getincomings(Listincomings,Listinc,Name),
 getoutgoings(Listoutgoings,Listoutg,Name),
 append(Listinc,Listoutg,AllList),
 getAssignedObjects(AssignedModel,AssignedObjectsIds),
 convertIdsToNames(AssignedObjectsIds,AssignedObjectsNames),
 checkObjects(AllList,AssignedObjectsNames),
 fail.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

checkObjects([],AssignedObjectsNames):-!.

checkObjects([Head|Tail],AssignedObjectsNames):-
 not(member(Head,AssignedObjectsNames)),
 not(object(_,_,_,'OT_FUNC',Head,_)),!,
 write(Head),write(' can not be found in sub-model'),nl,
 checkObjects(Tail,AssignedObjectsNames).

checkObjects([Head|Tail],AssignedObjectsNames):-
 checkObjects(Tail,AssignedObjectsNames).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

convertIdsToNames([],[]).

convertIdsToNames([Head|Tail],AssignedObjectsNames):-
 convertIdsToNames(Tail,AssignedObjectsNames2),
 object(_,Head,_,_,Name,_),
 New = [Name],
 append(AssignedObjectsNames2,New,AssignedObjectsNames).

67

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getAssignedObjects(AssignedModel,AssignedObjectsIds):-
 model(AssignedModel,_,_,AssignedObjectsIds).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getincomings([],[],Name).

getincomings([Head|Tail],List,Name1):-
 getincomings(Tail,NewList,Name1),
 object(_,_,_,TypeNum,Name,Listoutgoings),
 find([Head|Tail],Listoutgoings),
 New = [Name],
 append(NewList,New,List).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getoutgoings([],[],Name).

getoutgoings([[Head1,Head2]|Tail],List,Name1):-
 getoutgoings(Tail,NewList,Name1),
 object(_,Head2,_,TypeNum,Name,_),
 New = [Name],
 append(NewList,New,List).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

find([X|Tail1],[[X,Y]|Tail2]):-!.

find([Z|Tail1],[[X,Y]|Tail2]):-
 find([Z|Tail1],Tail2),!.

find([Z|Tail1],[]):-
 fail.

68

APPENDIX D

Assigned_Model_Name Script

assignedmodelname:-
 object(AssigedModel,_,_,'OT_FUNC',Name1,_),
 model(AssigedModel,_,Name2,_),
 not(Name1 = Name2),
 write(Name1),write(' is not the same with assigned sub-model
name'),nl,fail.

69

APPENDIX E

Rule_Must_Be_Used Script

rulemustbeused:-
 object(_,_,Listincomings,'OT_FUNC',NameMain,ListOutgoings),
 Listinc = [],
 Listoutg = [],
 getincomings(Listincomings,Listinc,NameMain),
 getoutgoings(ListOutgoings,Listoutg,NameMain),
 fail.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getincomings([],Listinc,NameMain):-
 check(Listinc,NameMain).

getincomings([Head|Tail],Listinc,NameMain):-
 object(_,_,_,TypeNum,Name,Listoutgoings),
 find([Head|Tail],Listoutgoings),
 New = [TypeNum],
 append(Listinc,New,NewListinc),
 getincomings(Tail,NewListinc,NameMain).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getoutgoings([],Listoutg,NameMain):-
 check(Listoutg,NameMain).

getoutgoings([[Head1,Head2]|Tail],Listoutg,NameMain):-
 object(_,Head2,_,TypeNum,Name,_),
 New = [TypeNum],
 append(Listoutg,New,NewListoutg),
 getoutgoings(Tail,NewListoutg,NameMain).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

find([],[[X,Y]|Tail2]).

find([X|Tail1],[[X,Y]|Tail2]):-!.

70

find([Z|Tail1],[[X,Y]|Tail2]):-
 find([Z|Tail1],Tail2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

check([],Name):-!.

check([Head|Tail],Name):-
 member(Head,Tail),!,
 delete(Tail,Head,NewTail),
 write(Name),write(' must use a rule connection for incoming or outgoing
objects'),nl,
 check(NewTail,Name).

check([Head|Tail],Name):-
 check(Tail,Name).

71

APPENDIX F

Have_Same_Name Script

havesamename:-
 object(_,_,Listincomings,'OT_FUNC',NameMain,ListOutgoings),
 Listinc = [],
 Listoutg = [],
 getincomings(Listincomings,Listinc,NameMain),
 getoutgoings(ListOutgoings,Listoutg,NameMain),
 fail.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getincomings([],Listinc,NameMain):-
 check(Listinc,NameMain).

getincomings([Head|Tail],Listinc,NameMain):-
 object(_,_,_,TypeNum,Name,Listoutgoings),
 find([Head|Tail],Listoutgoings),
 New = [Name],
 append(Listinc,New,NewListinc),
 getincomings(Tail,NewListinc,NameMain).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getoutgoings([],Listoutg,NameMain):-
 check(Listoutg,NameMain).

getoutgoings([[Head1,Head2]|Tail],Listoutg,NameMain):-
 object(_,Head2,_,TypeNum,Name,_),
 New = [Name],
 append(Listoutg,New,NewListoutg),
 getoutgoings(Tail,NewListoutg,NameMain).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

find([],[[X,Y]|Tail2]).

find([X|Tail1],[[X,Y]|Tail2]):-!.

72

find([Z|Tail1],[[X,Y]|Tail2]):-
 find([Z|Tail1],Tail2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

check([],Name):-!.

check([Head|Tail],Name):-
 member(Name,[Head|Tail]),!,
 write(Name),write(' has an incoming or outgoing with the same name'),nl.

check([Head|Tail],Name).

73

APPENDIX G

One_In_One_Out_Rule Script

oneinoneoutrule:-
 object(_,_,ListIncomings,'OT_RULE',Name1,[[Head1,Head2]|Tail]),
 getnumber(ListIncomings,X),
 getnumber([[Head1,Head2]|Tail],Y),
 X =:= 1,
 Y =:= 1,
 object(_,Head2,_,_,Name2,_),
 write('Rule outgoing from '),write(Name2),
 write(' has one incoming and one outgoing'),nl,fail.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

getnumber([],0).

getnumber([Head|Tail],Number1):-
 getnumber(Tail,Number2),
 Number1 is Number2 + 1.

74

APPENDIX H

Example eEPC Prolog File

object(
'no',
'ObjDef.di----4-----p--',
['CxnDef.jj----4-----q--'],
'OT_EVT',
'Event3',
[]).

object(
'no',
'ObjDef.a3----5-----p--',
['CxnDef.hu----5-----q--','CxnDef.h5----5-----q--'],
'OT_RULE',
'OR rule',
[['CxnDef.hv----5-----q--','ObjDef.fu----4-----p--']]).

object(
'Model.k9----4-----u--',
'ObjDef.fg----4-----p--',
['CxnDef.if----4-----q--'],
'OT_FUNC',
'Function5',
[['CxnDef.jh----4-----q--','ObjDef.h7----4-----p--'],
['CxnDef.jj----4-----q--','ObjDef.di----4-----p--']]).

object(
'no',
'ObjDef.h0----4-----p--',
['CxnDef.j1----4-----q--','CxnDef.jb----4-----q--'],
'OT_RULE',
'OR rule',
[['CxnDef.ib----4-----q--','ObjDef.cq----4-----p--']]).

object(
'no',
'ObjDef.hs----4-----p--',
['CxnDef.ir----4-----q--'],

75

'OT_EVT',
'Event5',
[]).

object(
'no',
'ObjDef.fn----4-----p--',
[],
'OT_FUNC',
'Function51',
[['CxnDef.ix----4-----q--','ObjDef.gm----4-----p--']]).

object(
'no',
'ObjDef.ev----4-----p--',
[],
'OT_FUNC',
'Function52',
[['CxnDef.jf----4-----q--','ObjDef.gm----4-----p--']]).

object(
'no',
'ObjDef.cc----4-----p--',
['CxnDef.jl----4-----q--'],
'OT_EVT',
'Function7',
[]).

object(
'no',
'ObjDef.hl----4-----p--',
['CxnDef.7a----5-----q--'],
'OT_FUNC',
'Function7',
[['CxnDef.jl----4-----q--','ObjDef.cc----4-----p--']]).

object(
'no',
'ObjDef.gm----4-----p--',
['CxnDef.jf----4-----q--','CxnDef.ix----4-----q--'],
'OT_RULE',
'AND rule',
[['CxnDef.hz----4-----q--','ObjDef.eo----4-----p--']]).

object(
'no',
'ObjDef.x-----5-----p--',
['CxnDef.7z----5-----q--'],
'OT_RULE',

76

'OR rule',
[['CxnDef.7a----5-----q--','ObjDef.hl----4-----p--']]).

object(
'no',
'ObjDef.e3----4-----p--',
['CxnDef.ip----4-----q--'],
'OT_EVT',
'Event6',
[]).

object(
'no',
'ObjDef.fu----4-----p--',
['CxnDef.hv----5-----q--'],
'OT_FUNC',
'Function33',
[]).

object(
'no',
'ObjDef.h7----4-----p--',
['CxnDef.jh----4-----q--'],
'OT_EVT',
'Event4',
[]).

object(
'Model.jn----4-----u--',
'ObjDef.f2----4-----p--',
['CxnDef.il----4-----q--','CxnDef.rq----5-----q--'],
'OT_FUNC',
'Function3',
[['CxnDef.7z----5-----q--','ObjDef.x-----5-----p--'],
['CxnDef.jb----4-----q--','ObjDef.h0----4-----p--']]).

object(
'no',
'ObjDef.d4----4-----p--',
[],
'OT_FUNC',
'Function31',
[['CxnDef.hu----5-----q--','ObjDef.a3----5-----p--']]).

object(
'no',
'ObjDef.dw----4-----p--',
['CxnDef.in----4-----q--','CxnDef.j3----4-----q--','CxnDef.i3----4-----q--
','CxnDef.i1----4-----q--'],

77

'OT_FUNC',
'Function1',
[['CxnDef.r0----5-----q--','ObjDef.ko----5-----p--']]).

object(
'no',
'ObjDef.eo----4-----p--',
['CxnDef.hz----4-----q--'],
'OT_FUNC',
'Function53',
[]).

object(
'no',
'ObjDef.c5----4-----p--',
[],
'OT_POS',
'Position2',
[['CxnDef.il----4-----q--','ObjDef.f2----4-----p--']]).

object(
'no',
'ObjDef.f9----4-----p--',
[],
'OT_POS',
'Position3',
[['CxnDef.ij----4-----q--','ObjDef.g1----4-----p--']]).

object(
'no',
'ObjDef.cx----4-----p--',
[],
'OT_EVT',
'Event1',
[['CxnDef.i3----4-----q--','ObjDef.dw----4-----p--']]).

object(
'no',
'ObjDef.ko----5-----p--',
['CxnDef.r0----5-----q--'],
'OT_RULE',
'OR rule',
[['CxnDef.rq----5-----q--','ObjDef.f2----4-----p--'],
['CxnDef.r1----5-----q--','ObjDef.he----4-----p--']]).

object(
'no',
'ObjDef.cq----4-----p--',
['CxnDef.ib----4-----q--','CxnDef.j7----4-----q--'],

78

'OT_FUNC',
'Function4',
[['CxnDef.ih----4-----q--','ObjDef.g1----4-----p--'],
['CxnDef.if----4-----q--','ObjDef.fg----4-----p--']]).

object(
'no',
'ObjDef.eh----4-----p--',
[],
'OT_FUNC',
'Function32',
[['CxnDef.h5----5-----q--','ObjDef.a3----5-----p--']]).

object(
'no',
'ObjDef.he----4-----p--',
['CxnDef.j5----4-----q--','CxnDef.r1----5-----q--'],
'OT_FUNC',
'Function2',
[['CxnDef.j1----4-----q--','ObjDef.h0----4-----p--']]).

object(
'no',
'ObjDef.g1----4-----p--',
['CxnDef.ij----4-----q--','CxnDef.ih----4-----q--'],
'OT_FUNC',
'Function6',
[['CxnDef.it----4-----q--','ObjDef.db----4-----p--']]).

object(
'no',
'ObjDef.g8----4-----p--',
[],
'OT_APPL_SYS_TYPE',
'Application system type1',
[['CxnDef.j5----4-----q--','ObjDef.he----4-----p--'],
['CxnDef.j7----4-----q--','ObjDef.cq----4-----p--'],
['CxnDef.j3----4-----q--','ObjDef.dw----4-----p--']]).

object(
'no',
'ObjDef.gt----4-----p--',
[],
'OT_EVT',
'Event2',
[['CxnDef.i1----4-----q--','ObjDef.dw----4-----p--']]).

object(
'no',

79

'ObjDef.gf----4-----p--',
[],
'OT_POS',
'Position1',
[['CxnDef.in----4-----q--','ObjDef.dw----4-----p--']]).

object(
'no',
'ObjDef.db----4-----p--',
['CxnDef.it----4-----q--'],
'OT_RULE',
'AND rule',
[['CxnDef.ip----4-----q--','ObjDef.e3----4-----p--'],
['CxnDef.ir----4-----q--','ObjDef.hs----4-----p--']]).

model(
'Model.k9----4-----u--',
'MT_EEPC',
'Function_hata',
['ObjDef.fn----4-----p--','ObjDef.ev----4-----p--','ObjDef.eo----4-----p--
','ObjDef.gm----4-----p--']).

model(
'Model.jn----4-----u--',
'MT_EEPC',
'Function3',
['ObjDef.fu----4-----p--','ObjDef.a3----5-----p--','ObjDef.eh----4-----p--
','ObjDef.d4----4-----p--']).

model(
'Model.kv----4-----u--',
'MT_EEPC',
'example_eepc',
['ObjDef.fg----4-----p--','ObjDef.gf----4-----p--','ObjDef.x-----5-----p--','ObjDef.cq-
---4-----p--','ObjDef.ko----5-----p--','ObjDef.cx----4-----p--','ObjDef.hl----4-----p--
','ObjDef.gt----4-----p--','ObjDef.e3----4-----p--','ObjDef.g1----4-----p--
','ObjDef.f2----4-----p--','ObjDef.db----4-----p--','ObjDef.cc----4-----p--
','ObjDef.he----4-----p--','ObjDef.h0----4-----p--','ObjDef.h7----4-----p--
','ObjDef.dw----4-----p--','ObjDef.di----4-----p--','ObjDef.f9----4-----p--
','ObjDef.g8----4-----p--','ObjDef.hs----4-----p--','ObjDef.c5----4-----p--']).

80

APPENDIX I

Checklist-Based Reading Inspection Checklist

1. Complete

All items that are needed for the specification of the requirements of the

solution to the problem have been included?

2. Correct

Each item in the requirements specification is free from error.

3. Precise, Unambiguous and Clear

Each item in the requirements specification is exact and is not vague,

there is a single interpretation of each item in the requirements specification,

the meaning of each item in the requirements specification is understood,

and the specification is easy to read.

4. Consistent

No item in the requirements specification conflicts with another item in

the specification

5. Relevant

Each item in the requirements specification is pertinent to the problem

and its solution.

6. Testable

During program development and acceptance testing, it will be possible

to determine whether the item in the requirements specification has been

satisfied.

7. Traceable

Each item in the requirements specification can be traced to its origin in

the problem environment.

8. Feasible

81

Each item in the requirements specification can be implemented with

the techniques, tools, resources and personnel that are available within the

specified cost and schedule constraints.

9. Free of Unwarranted design Detail

The requirements specifications are a statement of the requirements

that must be satisfied by the problem solution and they are not obscured by

proposed solutions to the problem.

10. Manageable

The requirements specifications are expressed in such a way that each

item can be changed without excessive impact on other items.

82

APPENDIX J

Defect-Based Reading Defect Classes Scenario

A defect in a requirements document is an omission, inaccuracy,

inconsistency, ambiguity or anything that would lead to an unsatisfactory

solution of the problem to be solved. It can fall into any of the following

classes:

Omission (O)

Necessary information about the system for me to do my job has been

omitted from the requirements document/functional specification.

Ambiguous Information (A)

Information within the requirements document/functional specification is

inconsistent or ambiguous with other information.

Incorrect fact (I)

Some sentence contained in the requirements document/functional

specifications asserts a fact that cannot be true under the condition specified

in the requirements document/functional specifications.

Extraneous(E)

Information is provided that is not needed or used.

83

Miscellaneous (M)

Other defects

84

APPENDIX K

Perspective-Based Reading Test Based Scenario

For each requirement or functional specification (item), make up a test

or set of tests that will allow you to ensure that the implementation satisfies

the requirement. Use your standard test approach and test criteria to make

up the test suite. For each requirement or functional specification, ask

yourself the following questions:

1. Do you have all the information necessary to identify the item being tested

and to identify your test criteria? Can you make up reasonable test cases for

each item based upon the criteria?

2. Is there another requirement or functional specification for which you

would generate a similar test case but would get a contradictory result?

3. Can you be sure that the test you generated should yield the correct value

in the correct units?

4. Are there other interpretations of this requirement that the implementor

might make based upon the way the requirement or functional specification is

defined? Will this effect the tests you make up?

5. Does the requirement or functional specification make sense from what

you know about the application or from what is specified in the general

description?

85

APPENDIX L

Perspective-Based Reading Design Based Scenario

Given the requirements or functional specification generate a design

using your standard design method. In so doing, ask yourself the following

questions:

1. Are all the necessary objects (data, data structures, and functions)

defined?

2. Is there sufficient information to specify the interfaces e.g., do the inputs of

one function link to the outputs of the previous function?

3. Can all data types be defined e.g., are the required precisions and units

specified?

4. Is all the necessary information available to do the design? Are all the

conditions involving all objects specified is a requirement or functional

specification missing?

5. Are there any points in which you are not clear about what you should do,

because either the requirement or functional specification is not clear, not

consistent or open to multiple interpretations?

6. Is there anything in the requirements or functional specifications that you

can not design e.g., an infeasible constraint?

86

7. Does the requirement or functional specification make sense from what

you know about the application or from what is specified in the general

description/introduction?

87

APPENDIX M

Perspective-Based Reading User Based Scenario

Assume you are generating a user's manual for this system. Define the

set of functions that the user should be able to perform. Define the set of

input objects necessary to perform each function and the set of output

objects that are generated by the function. This may be viewed as writing

down as many operational scenarios or subsets of operational scenarios that

the system should perform as possible. Start with the most obvious or

nominal operational scenarios and proceed to the least common functions or

special/contingency conditions. For each operational scenario ask yourself

the following questions:

1. Is there anything that prevents you from writing this operational scenario?

2. Are all the functions necessary to write this operational scenario specified

in the requirements or functional specifications e.g., are all the capabilities

listed in the general description specified?

3. Are the initial conditions for starting up this operational scenario clear and

correct?

4. Are the interfaces well defined and compatible e.g., do the inputs of one

function link to the outputs of the previous function?

5. Are the effects of the operational scenario specified in the requirements or

functional specifications under all possible circumstances?

88

6. Might some portion of the operational scenario give different answers

depending on how a requirement or functional specification is interpreted?

7. Does the requirement or functional specification make sense from what

you know about the application or from what is specified in the general

description?

8. Can you get into a state of the system that must be avoided e.g. for

reasons of safety or security?

89

APPENDIX N

Aris Dtd File

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT AML (Header-Info, Language+, Prefix*, Database?, User*,

UserGroup*, FontStyleSheet*, FFTextDef*, OLEDef*, Group, Delete*)>

<!ELEMENT Header-Info EMPTY>

<!ATTLIST Header-Info

 CreateTime NMTOKEN #IMPLIED

 CreateDate NMTOKEN #IMPLIED

 DatabaseName CDATA #IMPLIED

 UserName CDATA #IMPLIED

 ArisExeVersion (61 | 62) #REQUIRED

>

<!--General elements, used by several other elements-->

<!ELEMENT Prefix (#PCDATA) >

<!ATTLIST Prefix

 Default (YES | NO) "NO"

>

<!ELEMENT Blob (#PCDATA)> <!-- Base64 encoded binary data -->

<!ELEMENT Flag (#PCDATA)>

90

<!ELEMENT GUID (#PCDATA)>

<!ELEMENT FilterGUID (#PCDATA)>

<!ELEMENT MasterGUID (#PCDATA)>

<!ELEMENT Pen EMPTY>

<!ATTLIST Pen

 Color NMTOKEN #REQUIRED

 Style NMTOKEN #REQUIRED

 Width NMTOKEN #REQUIRED

>

<!ELEMENT Brush EMPTY>

<!ATTLIST Brush

 Color NMTOKEN #REQUIRED

 Style NMTOKEN #REQUIRED

 Hatch NMTOKEN #REQUIRED

>

<!ELEMENT Size EMPTY>

<!ATTLIST Size

 Size.dX NMTOKEN #REQUIRED

 Size.dY NMTOKEN #REQUIRED

>

<!ELEMENT Position EMPTY>

<!ATTLIST Position

 Pos.X NMTOKEN #REQUIRED

 Pos.Y NMTOKEN #REQUIRED

>

<!--End: General elements-->

<!-- BEGIN: Database -->

91

<!ELEMENT Database (AttrDef+)>

<!-- END: Database -->

<!--Begin: Language-->

<!ELEMENT Language (LanguageName?, LogFont?)>

<!ATTLIST Language

 Language.ID ID #IMPLIED

 LocaleId NMTOKEN #REQUIRED

 Codepage CDATA #REQUIRED

>

<!ELEMENT LanguageName (#PCDATA)>

<!ELEMENT LogFont EMPTY>

<!ATTLIST LogFont

 FaceName CDATA #REQUIRED

 Height NMTOKEN #REQUIRED

 Width NMTOKEN #REQUIRED

 Escapement NMTOKEN #REQUIRED

 Orientation NMTOKEN #REQUIRED

 Weight NMTOKEN #REQUIRED

 Italic (YES | NO) "NO"

 Underline (YES | NO) "NO"

 StrikeOut (YES | NO) "NO"

 CharSet NMTOKEN #REQUIRED

 OutPrecision NMTOKEN #REQUIRED

 ClipPrecision NMTOKEN #REQUIRED

 Quality NMTOKEN #REQUIRED

 PitchAndFamily NMTOKEN #REQUIRED

 Color NMTOKEN #REQUIRED

>

<!--End: Languge-->

92

<!--Begin of User-Definition-->

<!ELEMENT User (GUID?, AttrDef+, FilterGUID*, Prefix?)>

<!ATTLIST User

 User.ID ID #REQUIRED

 isSystem (true | false) "false"

 Passwd NMTOKEN #IMPLIED

>

<!--End: User-->

<!--Begin of UserGroup-Definition-->

<!ELEMENT UserGroup (GUID?, AttrDef+, FilterGUID*, Prefix?)>

<!ATTLIST UserGroup

 UserGroup.ID ID #REQUIRED

 User.IdRefs IDREFS #IMPLIED

>

<!--End: UserGroup-->

<!--Begin of Font-Definition-->

<!ELEMENT FontStyleSheet (GUID?, AttrDef*, FontNode+)>

<!ATTLIST FontStyleSheet

 FontSS.ID ID #REQUIRED

>

<!ELEMENT FontNode EMPTY>

93

<!ATTLIST FontNode

 LocaleId NMTOKEN #REQUIRED

 FaceName CDATA #REQUIRED

 Height NMTOKEN #REQUIRED

 Width NMTOKEN #REQUIRED

 Escapement NMTOKEN #REQUIRED

 Orientation NMTOKEN #REQUIRED

 Weight NMTOKEN #REQUIRED

 Italic (YES | NO) "NO"

 Underline (YES | NO) "NO"

 StrikeOut (YES | NO) "NO"

 CharSet NMTOKEN #REQUIRED

 OutPrecision NMTOKEN #REQUIRED

 ClipPrecision NMTOKEN #REQUIRED

 Quality NMTOKEN #REQUIRED

 PitchAndFamily NMTOKEN #REQUIRED

 Color NMTOKEN #REQUIRED

>

<!--End: Font-Definition-->

<!ELEMENT ExtCxnDef (GUID?, AttrDef*, ExtCxnDef*)>

<!ATTLIST ExtCxnDef

 ExtCxnDef.ID ID #REQUIRED

 ExtCxnDef.Type NMTOKEN #REQUIRED

 ToDef.IdRef IDREF #REQUIRED

 Reorg (DELETE|NODELETE) "DELETE"

>

<!ELEMENT CxnDef (GUID?, AttrDef*, ExtCxnDef*)>

94

<!--Format for CxnDef.Type: CxnBaseType or

FromObjType.CxnBaseType.ToObjType-->

<!ATTLIST CxnDef

 CxnDef.ID ID #REQUIRED

 CxnDef.Type NMTOKEN #REQUIRED

 ToObjDef.IdRef IDREF #REQUIRED

 Reorg (DELETE|NODELETE) "DELETE"

>

<!ELEMENT ObjDef (GUID?, MasterGUID?, SymbolGUID?, AttrDef*,

CxnDef*, ExtCxnDef*)>

<!ATTLIST ObjDef

 ObjDef.ID ID #REQUIRED

 TypeNum NMTOKEN #REQUIRED

 LinkedModels.IdRefs IDREFS #IMPLIED

 ToCxnDefs.IdRefs IDREFS #IMPLIED

 Reorg (DELETE|NODELETE) "DELETE"

 SubTypeNum NMTOKEN #IMPLIED

 SymbolNum NMTOKEN #IMPLIED

>

<!--End: ObjDefs-Definition-->

<!--Begin: Attribute Definition-->

<!ELEMENT AttrValue (#PCDATA)>

<!ATTLIST AttrValue

 LocaleId NMTOKEN #REQUIRED

>

<!ELEMENT AttrDef (AttrValue+)>

<!ATTLIST AttrDef

 AttrDef.ID ID #IMPLIED

 AttrDef.Type NMTOKEN #REQUIRED

>

<!--End: Attribute Definition-->

95

<!ELEMENT SymbolGUID (#PCDATA)>

<!--Begin: ObjOcc-Definition-->

<!ELEMENT ObjOcc (SymbolGUID?, Pen?, Brush?, Position?, Size?,

CxnOcc*, AttrOcc*, ExtCxnOcc*)>

<!ATTLIST ObjOcc

 ObjOcc.ID ID #REQUIRED

 ObjDef.IdRef IDREF #REQUIRED

 ToCxnOccs.IdRefs IDREFS #IMPLIED

 Zorder NMTOKEN #IMPLIED

 SymbolNum NMTOKEN #REQUIRED

 Active (YES | NO) "YES"

 Shadow (YES | NO) "NO"

 Visible (YES | NO) "YES"

 Hints NMTOKEN #IMPLIED

>

<!--End: ObjOcc-Definition-->

<!--Begin: FFText-Definition-->

<!ELEMENT FFTextOcc (Position?)>

<!ATTLIST FFTextOcc

 FFTextOcc.ID ID #IMPLIED

 FFTextDef.IdRef IDREF #REQUIRED

 FontSS.IdRef IDREF #IMPLIED

 SymbolFlag (TEXT | SYMBOL | ATTRNAME |

ATTRNAME_AND_SYMBOL | POSTIT | SYMBOL_AND_POSTIT |

ATTRNAME_AND_POSTIT | ATTRNAME_AND_SYMBOL_AND_POSTIT)

#REQUIRED

 Alignment (LEFT | CENTER | RIGHT) "LEFT"

 Zorder NMTOKEN #IMPLIED

>

96

<!--End: FFText-Definition-->

<!ELEMENT AttrOcc EMPTY>

<!ATTLIST AttrOcc

 AttrOcc.ID ID #IMPLIED

 AttrTypeNum NMTOKEN #REQUIRED

 Port (CENTER | N | NE | E | SE | S | SW | W | NW | NONE |

UPPER_MIDDLE | LOWER_MIDDLE | PORT_FREE) #REQUIRED

 OrderNum NMTOKEN #REQUIRED

 Alignment (LEFT | CENTER | RIGHT) "LEFT"

 SymbolFlag (TEXT | SYMBOL | WIDTH_ATTR_NAME |

ATTR_NAME_AND_SYMBOL) #REQUIRED

 FontSS.IdRef IDREF #IMPLIED

 OffsetX NMTOKEN #IMPLIED

 OffsetY NMTOKEN #IMPLIED

>

<!ELEMENT ExtCxnOcc (Pen?, Position*, AttrOcc*, ExtCxnOcc*)>

<!ATTLIST ExtCxnOcc

 ExtCxnOcc.ID ID #REQUIRED

 ExtCxnDef.IdRef IDREF #REQUIRED

 ToOcc.IdRef IDREF #REQUIRED

 Zorder NMTOKEN #IMPLIED

 Active (YES | NO) "YES"

 Diagonal (NO | YES) "NO"

 Visible (YES | NO) "YES"

 Hints NMTOKEN #IMPLIED

>

<!--Begin: CxnOcc-Definition-->

<!ELEMENT CxnOcc (Pen?, Position*, AttrOcc*, ExtCxnOcc*)>

97

<!ATTLIST CxnOcc

 CxnOcc.ID ID #REQUIRED

 CxnDef.IdRef IDREF #REQUIRED

 ToObjOcc.IdRef IDREF #REQUIRED

 Zorder NMTOKEN #IMPLIED

 Active (YES | NO) "YES"

 Diagonal (NO | YES) "NO"

 Visible (YES | NO) "YES"

 Hints NMTOKEN #IMPLIED

>

<!--End: CxnOcc-Definition-->

<!--Begin: Lane-Definition-->

<!ELEMENT Lane (GUID?, Pen?, Brush?, AttrDef*)>

<!ATTLIST Lane

 Lane.ID ID #IMPLIED

 Lane.Type NMTOKEN #REQUIRED

 Orientation (VERTICAL | HORIZONTAL) #REQUIRED

 StartBorder NMTOKEN #REQUIRED

 EndBorder NMTOKEN #REQUIRED

>

<!--End: Lane-Definition-->

<!ELEMENT OLEDef (GUID?, Blob, Blob)> <!-- first blob is Metafile-BLOB;

second blob is Data-BLOB -->

<!ATTLIST OLEDef

 OLEDef.ID ID #REQUIRED

 Link CDATA #IMPLIED

>

<!ELEMENT OLEOcc (Position?, Size?)>

<!ATTLIST OLEOcc

98

 OLEOcc.ID ID #IMPLIED

 OLEDef.IdRef IDREF #REQUIRED

 Zorder NMTOKEN #IMPLIED

>

<!ELEMENT FFTextDef (GUID?, AttrDef+)>

<!ATTLIST FFTextDef

 FFTextDef.ID ID #REQUIRED

 IsModelAttr (TEXT | MODELATTR) "TEXT"

>

<!ELEMENT Group (GUID?, AttrDef*, Group*, (ObjDef | Model)*)>

<!ATTLIST Group

 Group.ID ID #REQUIRED

>

<!ELEMENT Polygon (Position*)>

<!ATTLIST Polygon

 FillStatus (FILLED | TRANSPARENT) "TRANSPARENT"

>

<!ELEMENT RoundedRectangle (Position)>

<!ATTLIST RoundedRectangle

 Shaded (YES | NO) "NO"

>

<!ELEMENT GfxObj (Pen?, Brush?, Position?, Size?, (Polygon |

RoundedRectangle))>

<!ATTLIST GfxObj

 GfxObj.ID ID #IMPLIED

 Zorder NMTOKEN #IMPLIED

>

99

<!ELEMENT Union (Union*)>

<!ATTLIST Union

 OLEObjOccs.IdRefs IDREFS #IMPLIED

 ObjOccs.IdRefs IDREFS #IMPLIED

 Gfxs.IdRefs IDREFS #IMPLIED

 TextOccs.IdRefs IDREFS #IMPLIED

 Zorder NMTOKEN #IMPLIED

>

<!--Begin: Model definition-->

<!ELEMENT Model (Flag?, GUID?, MasterGUID?, Lane*, AttrDef*, ObjOcc*,

FFTextOcc*, GfxObj*, OLEOcc*, Union*)>

<!ATTLIST Model

 Model.ID ID #REQUIRED

 Model.Type NMTOKEN #REQUIRED

 AttrHandling (OVERLAP | RESIZESYM | BREAKATTR |

SHORTENATTR) #IMPLIED

 CxnMode (ONLYVERTICAL | ANGULAR) #IMPLIED

 GridUse (NO | YES) #IMPLIED

 GridSize NMTOKEN #IMPLIED

 Scale NMTOKEN #IMPLIED

 PrintScale NMTOKEN #IMPLIED

 BackColor NMTOKEN #IMPLIED

 CurveRadius NMTOKEN #IMPLIED

 ArcRadius NMTOKEN #IMPLIED

>

<!--end of Modeldefinition-->

<!-- PCDATA is GUID of object that should be deleted -->

<!ELEMENT Delete (#PCDATA)>

<!ATTLIST Delete

 Type (GROUP|MODEL|OBJDEF|USER|USERGROUP|CXNDEF)

#REQUIRED

100

APPENDIX O

Dtd Content Model Rules

This information is from an xml reference book named “The Complete

Reference XML” by [23].

1. A | B

(Either A or B occurs, but not both)

2. A, B

(Both A and B occur, in that order)

3. A&B

(Both A and B occur, in any order)

4. A?

(A occurs zero or one time)

5. A*

(A occurs zero or more times)

6. A+

(A occurs one or more times)

Valid Types Of Content For Xml Elements

1. EMPTY

(Specifies that this element can contain no content whether that content

is text or child element)

<! ELEMENT IMAGE EMPTY>

101

2. ANY

(Specifies that this element can contain any content whether that

content is text, child elements or a combination of both)

<! ELEMENT ADDRESSBOOK ANY>

3. MIXED CONTENT

(Allows you to specify the exact content you wish the element to

contain. You can specify only text data or a combination of text and

specified child elements.)

<! ELEMENT ADDRESSBOOK (NAME | NICKNAME | #PCDATA)>

4. CHILDREN

(Specify child element(s) that can be found within the body of the

identified element. This content can't contain any character data.)

<! ELEMENTCONTACT (NAME.STREET, CITY, PHONE)>

Attribute Data Types

1. CDATA

It allows the attribute to contain any string of text characters.

2. ENTITY, ENTITIES

The entity allows to link external unparsed entities that reference

external binary files into the document. The entities is the same as the entity

type, but it allows to reference multiple entities.

3. ENUMERATED

It allows to specify a list of possible text values for the attribute. Each

value must be separated by a vertical bar or pipe symbol.

4. İD

It allows to identify a single element uniquely within the document. The

nature of the id attribute type prohibits the use of the same name over

multiple elements.

102

5. IDREF, IDREFS

It allows to refer to a previously used id attribute type value.

6. NMTOKEN, NMTOKENS

It is used to restrict the values of the attribute to well formed xml names.

These are text strings that start with either a letter or underscore character,

contain only letters , numbers or the underscore character, and do not have

any white white space within them.

7. NOTATION

It allows the attribute to reference the name of a notation that has been

declared within the xml document. Notations are used to identify the format

used with non-xml information such as video, audio or image files.

Attribute Default Value Keywords

1. #REQUİRED

It allows to force the existence of the attribute within the document.

2. #IMPLIED

It is optional. it is used to allow, but not require, the existence of a

particular piece of information.

3. #FIXED

It is used to set a default value for an attribute that is also the only value

that is available far that attribute.

