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FATMA BÍLGE YILMAZ

AUGUST 2004



A MATHEMATICAL MODELING AND APPROXIMATION

OF GENE EXPRESSION PATTERNS

BY LINEAR AND QUADRATIC REGULATORY RELATIONS

AND ANALYSIS OF GENE NETWORKS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY
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abstract

A MATHEMATICAL MODELING AND

APPROXIMATION OF GENE EXPRESSION PATTERNS

BY LINEAR AND QUADRATIC REGULATORY

RELATIONS AND ANALYSIS OF GENE NETWORKS

Fatma Bilge Yılmaz

M.Sc., Department of Scientific Computing

Supervisor: Prof. Dr. Gerhard-Wilhelm Weber

August 2004, 86 pages

This thesis mainly concerns modeling, approximation and inference of gene regu-

latory dynamics on the basis of gene expression patterns. The dynamical behavior

of gene expressions is represented by a system of ordinary differential equations.

We introduce a gene-interaction matrix with some nonlinear entries, in particular,

quadratic polynomials of the expression levels to keep the system solvable. The

model parameters are determined by using optimization. Then, we provide the

time-discrete approximation of our time-continuous model. We analyze the approx-

imating model under the aspect of stability. Finally, from the considered models we

derive gene regulatory networks, discuss their qualitative features of the networks

and provide a basis for analyzing networks with nonlinear connections.

Keywords: Gene Expression, Gene Regulation, Mathematical Modeling, Gene Net-

work, Inference, Optimization, Dynamical Systems.
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öz

GENE MOTÍFLERÍNÍN DOĞRUSAL VE ÍKÍNCÍ DERECE

DÜZENLEYÍCÍ ÍLÍŞKÍLERLE MATEMATÍKSEL

MODELLENMESÍ VE MOTÍFLERE YAKLAŞILMASI VE

GENLERÍN OLUŞTURDUĞU AĞ YAPILARININ ANALÍZÍ

Fatma Bilge Yılmaz

Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi: Prof. Dr. Gerhard-Wilhelm Weber

Ağustos 2004, 86 sayfa

Bu tez esas olarak, gen motiflerini baz alarak, gen düzenleyici dinamiğinin mo-

dellenmesi, sistemi belirleyen denklemlere yaklaşılması ve onun hakkında çıkarımda

bulunulması hakkındadır. Gen motiflerinin dinamik davranışları olağan differen-

siyel denklemlerle gösterilir. Sistemi çözülebilir tutmak için, bazı doğrusal olmayan

alanlara sahip gen etkileşim matrisleri kullanılır, bu alanlar özel olarak gen seviyeler-

ine bağımlı ikinci derece polinomlardır. Model parametrelerini optimizasyon kulla-

narak buluruz. Daha sonra, kesintisiz zamanda evrilen modelimiz için kesintili za-

manda evrilen bir yaklaşım sağlarız. Kesintili zamanda evrilen modelimizi kararlılık

yönünü göz önüne alarak inceleriz. Son olarak, önceden geliştirilmiş modellerle gen

düzenleyici ağlarını elde eder, bu ağların nitel özelliklerini tartışır ve doğrusal ol-

mayan bağlantıları olan gen ağlarının incelenmesine esas bilgiler veririz.

Anahtar Kelimeler: Gen Motifleri, Gen Düzenlemesi, Gen Ağ Yapıları, Mate-

matiksel Modelleme, Çıkarım, Optimizasyon, Dinamik Sistemler.
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my gratitude for this thesis and valuable remarks on my research.

I would like to thank Prof. Dr. Gerhard-Wilhelm Weber who has always encour-

aged me for my study. I am pleased that I have a very kind, friendly advisor and

also a good friend like him. I would like to thank him for all his efforts, energy and

support. I am very glad that I meet Prof. Dr. Gerhard-Wilhelm Weber and Prof.

Dr. Marat Akhmet who always make me laugh with their nice jokes. Also, I thank

to nice friends of Prof. Dr. Gerhard-Wilhelm Weber, especially to Dr. Stefan Pickl,

who try to help and coorporate with us.
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to my mother Şadan Yılmaz and my father Murat Yılmaz for their efforts. I would

like to dedicate this study to my family whom I am proud of.

vii



table of contents

abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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chapter 1

INTRODUCTION

1.1 Background to the Study

The genome of an organism plays a crucial role in the regulation of cellular pro-

cesses like adaptation, differentiation, development and maintenance [7, 53, 79]. The

main role in these processes is the information flow from the genome to the proteins,

i.e., protein synthesis. Proteins synthesized by transcription of genes control almost

every cellular function, but here we underline two important functions related to

the regulation mechanisms.

According to the current metabolic state, a cell activates or deactivates some

particular biochemical reactions [79]. For example, in the absence of dietary glucose,

glucose availability should be maintained by activating related biochemical reactions.

These reactions are catalyzed by enzymes most of which are proteins. Enzymes

stabilize the transition states of the reactions by increasing the rate of the reactions.

Biochemical reactions without enzymes usually take a very long time compared to

the catalyzed reactions.

Here, the most significant question is how cells adjust the expression of genes in

response to different environmental conditions. The answer is gene regulation. Gene

regulation is introduced by Jacob, Lwoff and Monod in [52], where they discovered

that proteins bind to regulatory regions of other genes and function as transcrip-

tion factors. This discovery constitutes the second important function related to

genes. For example, phosphofructokinase is an enzyme which controls the flux of

metabolites through the glycolytic pathway.

These roles imply that proteins generate a regulation network where they not

only regulate the cellular processes, but the availability of each other as well [52, 79].

Although we define the regulation network in terms of proteins, we underline that
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genes constitute a basis for all regulatory factors in biological processes since proteins

are encoded by genes. Thus, a regulation network should be constructed by means

of gene interactions.

Nowadays, biochips are mentioned and enthusiastically praised in television,

magazines and newspapers. There is a big public attention and fashion which almost

expect medical wonders from this technology, regarded as a breakthrough combina-

tion of biology and computer engineering. However, what is mathematically behind

such high expectations? The emergence of new high-throughput functional genomics

technologies is a crucial driving factor in our ability to understand gene interactions

[7, 44, 53]. Microarray technologies provide us with gene expression profiles which

are reflections of the dynamical behavior of biological systems and the underlying

regulatory network of interacting genes [44, 64].

Achieving an understanding of gene regulation requires more than merely col-

lecting the gene expression profiles. The dynamics of the underlying gene interaction

network, chemical structure of the enzymes, allosteric regulations, enzymatic reac-

tion rates, environmental factors that affect the regulation mechanisms should be

studied to gain such an understanding. Mathematical modeling of such a complex

system is a key issue in bioinformatics that deals with the time-series gene expression

patterns to infer the underlying gene regulatory network.

1.2 Current Mathematical Research Studies

The idea of mathematical description of biological organisms was first introduced

by Turing in 1952 [20, 75]. Turing stated that the change of state of a cell is the sum

of all forces acting on that cell, which is a foundation for regulation mechanisms.

Until 1952, different model classes reflecting the dynamics of genetic regulatory net-

works have been studied, including Boolean networks, Bayesian networks, stochastic

models and differential equations.

The most widespread formalism is the latter modeling approach, i.e., differential

equations, because of the qualitative dynamics of regulatory interactions. Regula-

tion mechanisms are composed of interconnected regulatory pathways, and most of

the factors which affect the dynamical behavior have not been determined yet [79].
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This mystery distinguishes the modeling approach from the others which either

make strong assumptions on the structure and dynamics of regulatory interactions

or totally disregard the dynamical behavior of the genetic regulatory systems [44].

Another attractive feature of using differential equations is that they evolve in con-

tinuous time which is appropriate for the nature of the regulation networks [44, 64].

Response to a constant environmental data in a stable level of gene expressions and

differential equations can determine the steady states analytically [49, 64]. This is

another critical advance of using differential equations in modeling.

Mathematically modeling such a system with differential equations combined

with the theories of inverse problems and statistical learning constitutes our wish to

model and anticipate the gene interactions.

Although we underline the advantages of using differential equations to model

the dynamical behavior of gene expression patterns, two critical disadvantages of

the model come into existence, the computation time [64] and accuracy of the sys-

tem [71]. The interconnected structure and global view of the biological system is

protected by using differential equations which makes the computational drawbacks

less important. But some improvements can effectively reduce the computation

time. Since gene regulatory matrices are essentially sparse [37], the matrix can be

partitioned into appropriate subsystems and this partitioning enables parallel pro-

cessing. Accuracy deficiency of the system results from the insufficient experimental

data. When sufficient source of data is available, differential systems can be solved

numerically to any desired precision by adjusting the prediction error between real

and approximated data [71].

1.3 Brief Description of the Study

The metabolic state of a cell is usually regulated by gene and enzyme regula-

tion mechanisms in the cell which ensures that the current metabolic state can be

used to predict the next metabolic states. Since only a limited portion of the gene

interactions are known, we do not have sufficient information to build a first prin-

ciple model. Our approach, also being preferred by most of the functional genomic

modeling researchers, is selecting a model class and inferring the parameters from

3



empirical data. Here, selecting the appropriate model class is the most crucial step.

Firstly, estimation of parameters characterizing the dynamics of the system should

have a unique solution. Secondly, the model should be able to approach the dynam-

ics of the system as accurate as possible. For example, a linear differential system is

not sufficient to seize the nonlinearities in the behavior of the system. On the other

hand, the exact model will be included within the class of ”any possible differential

equations” but it cannot be distinguished from the infinitely many other solutions

fitting to a particular data.

1.4 Purpose of the Study

The contribution of this work consists in continuously approximating the be-

havior of time-series gene expression patterns by a system of ordinary differential

equations based on the approach described in [25]. We use a smooth model given

by differential equations where the dynamics of the gene interactions, constituting

the right-hand side of that system of ordinary differential equations, is represented

by quadratic polynomials. The inverse problem, estimation of the polynomial co-

efficients, is solved by discrete approximation which is a least squares optimization

problem. The solution of the inverse problem gives us polynomials for each inter-

action. Finally, we construct a dynamic regulatory gene network by means of the

polynomials and give a brief discussion about the analysis of gene interactions by

dynamic shortest path algorithms.

This thesis concerns an efficient approximation to the regulatory dynamics of cells

in a particular stationary state. The multistationary nature of genomic regulation

was discussed in several articles [71]. Some Boolean and piecewise linear algorithms

were proposed for seizing the transitions from one stationary steady state to another.

However, the inherent nonlinearities like the effect of enzyme concentrations on

reactions has a potential risk of concluding on faulty state transitions with piecewise

linear approach, while Boolean models do not provide quantitative solutions. Thus,

this thesis aims at providing an efficient approximation to the behavior of cells at

a particular stationary steady state. Involving transitions between the metabolic

states can then be considered as a further research subject.
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1.5 Significance of the Study

There are three crucial properties related to our model. Firstly, we provide a

continuous approximation to the experimental data to reflect the natural biological

regulatory systems. Secondly, we model gene interactions by polynomials which

both guarantee to have a unique solution for the inverse problem and handle a

much larger range of dynamics with respect to a linear approximation. The idea

comes from the fact that biological systems are quite sensitive. Finally, our model

enables inference of a wide range of biological pathways since there is no assumption

on the structure and the dynamics of the pathways under consideration.

Unfortunately, the available experimental data is insufficient to make strong

conclusions about biochemical reactions in nature. We underline that our model

approximates the experimental data and provides us with valuable results for these

reactions, such as strong clues about the biological roles of genes, as well as the

dependencies between genes.

Given sufficient information, our methodology improved by involving transitions

between the metabolic states, the response of a cell to changes in environmental

conditions, differentiation and evolutionary factors can be determined. For exam-

ple, the change in the expression levels of genes in two cells can be analyzed and

the results can be used for prediction of healthy and cancer cells, in better medical

treatment and drug design. Another outcome is identifying environmental effects

and cell capability of adaptation. It must be underlined that with sufficient infor-

mation about the responses of cells to external and internal stimulus, the utilities

of our model will exponentially grow.
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chapter 2

BACKGROUND

2.1 Genetic Material

Organisms contain a genetic material which controls both phenotypic and geno-

typic traits (for details see [45]). There are four major characteristics of this genetic

material stated: Replication, variation of mutation, storage and expression of infor-

mation.

The main characteristic related to genotype is replication which is a source of

heredity. Genetic material is used as a template for the synthesis of a new strand,

i.e., information encoded in genetic material is fully transferred to the offspring by

replication.

Expression of information is a foundation for phenotypic processes. A phenotypic

process requires some proteins to be synthesized. Information needed for each pro-

tein is encoded in some expressive part of the genetic material, called gene. Genes

which are capable of information storage, serve as a template for the synthesis of

related proteins, regulate transcription and make the phenotypic processes possible.

In addition to the role in phenotypic processes, proteins have various functions in a

cell cycle. However, in this study, we concentrate on the gene regulation mechanism

in phenotypic processes.

In the following sections, we will explain how genes are linked to organism pheno-

type by protein synthesis and clarify the regulating mechanisms in protein synthesis.
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Figure 2.1: DNA and RNA (a modified figure taken from the Genome Research
Institute, Genetic Illustrations).

2.2 Central Dogma of Biology

2.2.1 Nucleic Acids

Except some viruses and prions as described in [47], DNA (Deoxyribose nucleic

acid) is the chemical component that constitutes genetic information for phenotypic

traits [6]. Basic unit of DNA is a nucleotide, which is composed of a phosphoric

acid, a sugar and a nitrogenous base. As shown in Figure 2.1, DNA exists in a

double helix where corresponding nucleotides in two helices are linked together with

weak hydrogen bonds between base pairs adenine (A)- thymine (T) and guanine

(G)- cytosine (C). This special structure was first described by Watson and Crick

[80], where they introduced the basis for the concept of complementarity, i.e., the

chemical affinity provided by the hydrogen bonds between the specific base pairs.

The complementarity is universal but the source of diversity comes from the variation

in the sequence of the nucleotides.

We explained in Chapter 1, that the success of a phenotypic process depends on

the existence of some proteins. The genes are the initial chemical components and

proteins are the end products in information flow for protein synthesis. Guyton and

Hall [32] explain that there must be another chemical component in the cell to carry
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the information from DNA to ribosome, the organelle that is responsible of protein

synthesis. This material is RNA (Ribo nucleic acid).

RNA is another nucleic acid that is generated, constituted and controlled by DNA

and has a similar structure like DNA (see Figure 2.1). The component serves as an

intermediate in transferring genetic code from DNA to proteins by means of this

structural similarity. RNA is a single-strand chain of nucleotides that contains base

urasile (U) instead of T. There are three major types of RNA: mRNA (messenger

RNA), whose nucleotide sequence transfers the genetic codes to proteins; tRNA

(transfer RNA), which is capable of delivering amino acids to the ribosomes; rRNA

(ribosomal RNA), constituting two-third of the ribosomal mass. As statements

for the main responsibilities of the RNAs indicate, protein synthesis is a common

activity for all types of RNA.

Two intermediate processes come into existence in protein synthesis (see Figure

2.2 and 2.3). The first process is transcription of information encoded in one gene

into RNA and the second step is translation of the information from RNA to a

protein. These two processes serve as a foundation for the central dogma of biology :

Genes encode for proteins via RNA.

Figure 2.2: Central Dogma of Biology (a modified figure taken from U.S. Department
of Energy Human Genome Program).
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2.2.2 Transcription

The first step in protein synthesis is transcription. Information necessary for

a protein is encoded in one of the DNA strands which we call antisense (noncod-

ing) strand. Transcription is initialized by binding of RNA Polymerase enzyme to

base sequences called promotor in antisense strand. RNA Polymerase breaks the

hydrogen bonds between nucleotides and opens some portion of the double-stranded

DNA. Suitable nucleotides which are available in the environment, are linked to the

nucleotides in noncoding DNA strand with hydrogen bonds. Hydrogen bonds exist

between bases A-U and G-C as shown in Figure 2.3. Linked nucleotides are acti-

vated and added to current incomplete RNA strand, called pre-mRNA. This process

continues until the stop condition is reached.

The genetic code encoded in the antisense strand is completely transcribed onto

its complementary pre-mRNA strand by transcription. After transcription, some

processes like adding poly-A tail and splicing are applied to pre-mRNA (for details

see [45]). The resulting sequence is called mRNA. Adding a sequence of A nucleotides

is very critical in DNA experiments and regulated by polyadenylase enzyme. In the

splicing process, some portions of pre-mRNA, called introns, are dropped from the

sequence since they are useless in protein synthesis. Although adding poly-A tail

and splicing seem to cause a lack of information, mRNA corresponds to the pseudo

genes in DNA strand and it is almost a mirror image of the portion of the DNA

strand providing important clues about the related gene.

2.2.3 Translation

After construction of mRNA, mRNA moves to ribosomes to start translation

which is the second step in protein synthesis. The smallest meaningful sequence in

mRNA is called codon and consists of three consecutive nucleotides. For example,

to synthesize the amino acid Gly, necessary codon consists GGC sequence as shown

in Figure 2.3.

Translation can be summarized as the synthesis of an amino acid chain where in-

formation necessary for each amino acid is stored in corresponding codon of mRNA.

Amino acids are located in the cytoplasm of the cell, but translation takes place
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on ribosomes. Transfer of the amino acids from cytoplasm to the ribosomes is a

responsibility of tRNA. Each tRNA consists of three nucleotide sequences corre-

sponding to an amino acid. Necessary amino acids combine with particular tRNAs

and are transferred to ribosomes. Ribosomes are the organelles, where anticodon in

the tRNA links to the corresponding codon in mRNA to put the amino acid into

a suitable place in the amino acid sequence. For example, to synthesize the amino

acid Gly, a tRNA that contains CCG sequence is combined with the amino acid and

linked to the codon GGC. This is shown in Figure 2.3.

The amino acid is then combined with other amino acids by peptide bonds. Af-

ter the amino acid is located, mRNA goes forward for the next codon. In the figure,

the next codon is UGU and it is used to synthesize the amino acid Cys. The corre-

sponding tRNA containing the anticodon ACA is combined with Cys and transfer

it to the ribosome for the current incomplete amino acid chain. Translation ends

when the last amino acid is bonded to the current amino acid chain.

Figure 2.3: Protein synthesis.

In the previous section, we described that the proteins regulate transcription of

each other. Thus, a brief summary of enzymes and enzyme kinetics will give an

insight into the rate of biological processes, consequently clues about the regulation

mechanisms related to enzymes. The following section summarizes enzymes and

enzyme kinetics (for details see [79]).
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2.3 Enzymes

2.3.1 Enzymes as Catalysts

Enzymes increase the rates of biochemical reactions by lowering the free energy

barrier that separates the reactants and products and stabilize the transition state,

the point of highest free energy of the catalyzed reaction. So, they are usually called

biological catalysts of livings. Despite of the functional similarity between an enzyme

and an ordinary catalyst, enzymes have some distinctive properties compared to

ordinary chemical catalysts, such as higher reaction rates, greater reaction specificity

and capacity of regulation [79].

2.3.2 Enzyme Kinetics

At constant temperature, the rate of an elementary reaction is proportional

to the frequency with which the reactants come together, thus the rate increases

when the concentrations of the reactants increase, and vice versa. Environmental

changes affect the rate of a chemical reaction. For example, as temperature increases,

the energy of each reactant, i.e., the probability of collisions between reactants,

increases which results in an increase in the reaction rate. Another example for

environmental changes is adding an inhibitor to the environment, which reduces the

available catalysts in the environment and decreases the rate of the reactions.

Enzymatic reactions in reality pass through several reactions, which are usually

indeterminate, so the analysis of these reactions is more complex than elementary

reactions. Under steady state assumption, i.e., the rate of synthesis and consump-

tion are equal, the rate determining reaction in an enzymatic reaction chain is the

reaction with the highest transition state. As ordinary chemical reactions, environ-

mental changes are reflected in the rate of the enzymatic reactions, but the main

difference in studying kinetics of an ordinary catalyst and an enzyme is that the

transcription regulations are directly affected by the rate of enzymatic reactions.

This constitutes the main challenge in studying enzyme kinetics. Another chal-

lenge is that the mechanisms which regulate the pathway activity under different

physiological conditions, have not been entirely discovered yet.
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The study of enzymatic reaction rates combined with information about the

chemical structure of the enzymes and related metabolic pathways, gives us im-

portant clues about not only the biological function of the enzymes, but also the

reasons for changes in transcription rates and, consequently, regulation mechanisms

for transcription as well.

2.3.3 Metabolism

Metabolism is the overall process through which organisms acquire and use their

free energy to carry out various cellular functions. The principles which govern

metabolism are the same in all organisms according to common evolutionary origin

and constraints of thermodynamics laws, as explained in [79]. Except some small

variations in source of free energy, many of the metabolic reactions are essentially

identical in all organisms.

A metabolism can also be seen as an integrated and regulated metabolic path-

ways each contributing to the cellular activities. Metabolic pathways are series of

biochemical reactions that produce and consume specific products. A simple classifi-

cation of the pathways can be made depending on whether they consume or produce

energy. The metabolic pathways which concern with the synthesis of cellular com-

ponents are called anabolic pathways, while catabolic pathways are involved in the

breakdown of cellular constituents.

Multistep metabolic pathways are usually irreversible and have independent con-

trol mechanisms for anabolic and catabolic pathways. This comes from the fact that

an exergonic (irreversible) reaction early in a multistep metabolic pathway makes

the entire pathway irreversible and requires different anabolic pathway correspond-

ing to a catabolic pathway, and vice versa. The irreversibility implies that the

network of metabolic pathways is strongly connected.

2.4 Regulation of Transcription

In order to respond environmental changes, growth and differentiation, organisms

regulate the catalytic activities of enzymes by controlling the availability and activity

12



of enzymes.

Enzyme availability is regulated by the rate of synthesis and degradation of

an enzyme. Allosteric mechanisms, the structural alterations which influence the

enzyme’s binding affinity, alter the enzymatic activity. Donald et al. [79] and Guyton

et al. [32] explain the gene and enzyme regulation mechanisms in detail. In the

following sections, we give a brief summary of the regulation mechanisms.

The regulation mechanisms not only include gene and enzyme regulations, but

external stimulus, e.g., hormones, as well. For example, insulin and glucagon are the

two major hormones that regulate glycolysis pathway [51]. Glucagon acts to main-

tain glucose availability in the absence of dietary glucose where insulin is an anabolic

hormone that acts in the opposite way. Although regulation networks consists of

very complex and integrated regulation mechanisms, we underline that gene regu-

lation is a very important factor in regulation mechanisms since gene transcription

regulates transcription factors, which in turn regulate gene transcription.

2.4.1 Enzyme Regulation

The first regulator mechanism in a cell is enzyme regulation. Main characteristics

related to enzyme regulation are feedback loops in biochemical reactions and self-

regulating substances. In biochemical synthesis, usually the synthesized substance

can deactivate the first necessary enzyme for the reactions. This inhibition makes

a decrease in concentrations of the intermediate substances by deactivating tran-

scription and regulates the synthesis. In addition to this, some of the biochemical

substances also have an ability to inhibit the enzymes which syntheses themselves.

2.4.2 Gene Regulation

Expression of a gene depends on the activation of operon sequences. Activation

and degradation of operon sequences are regulated by the promotor region. There

are two main regions in promoter: repressor and activator operators. A repressor

operator is critical in inhibition of protein synthesis because, if a repressor protein

binds to this region, protein synthesis will be deactivated. There are activator

proteins in the cell to break this bond and activate the transcription. An activator
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operator in promoter helps RNA polymerase to bind to promoter region, activates

the operon and makes transcription possible.

If the synthesized material quantity reaches a critical value, the operon which

is responsible for the synthesis of this material is inhibited by a negative feedback

mechanism, either breaking the bonds between activator protein and operator, or

binding repressor protein to repressor operator. In any case, operon is deactivated

and protein synthesis is controlled.

Figure 2.4 is shown in [79] and includes genes X, Y and Z encoding for three

proteins, β − galactosidase, galactoside permease and thiogalactosidase transacety-

lase for lactose metabolism in E.coli and the regions that regulate the expression

of these genes. The regulatory gene is not part of the lactose operon but encodes

a repressor protein that inhibits transcription of the lac operon. Promotor region

is named as control sides, where activator and repressor regions, P and O, in the

promotor are shown separately in the figure.

Figure 2.4: Lac operon in E.coli [79].

Synthesis and regulation mechanisms in complex systems lead to hierarchical

organization, differentiation and increased functionality [38, 39, 74]. In prokaryotic

genomes, genes with related functions are usually located in the same operon, as

shown in the figure and transcribed together, while in eukaryotes most of the protein

coding genes are transcribed individually. We will analyze how the complexity

of organisms, i.e., the complexity of synthesis and regulation mechanisms, affects

mathematical modeling approach in the coming sections.

If we have an information about the expression levels of genes, this informa-
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tion provides us an understanding about the gene interactions, i.e., gene regulation

mechanisms. DNA arrays technology enables gene expression profiling, measuring

the level of the mRNA gene products of a living cell simultaneously [7]. The next

section summarizes this technology and discusses the importance of the gene expres-

sion profiling.

2.5 DNA Microarray Experiments

2.5.1 Purpose of the Experiments

DNA microarrays are designed to observe the gene expression of an experimental

cell compared to a reference cell. For example, adding a suitable nutrient to an

experimental cell makes a metabolic shift in the cell, by inhibiting or stimulating

expressions levels of the genes, while metabolic state of the reference cell remains the

same. A small example is shown on the left-hand side in Figure 2.5. After adding a

nutrient, transcription rate of Gene A is lowered, while the expression level of Gene

B becomes increased and Gene C does not give a response to the environmental

change.

Another example, shown on the right-hand side of Figure 2.5, simulates the dif-

ference in the expression levels in normal and cancer cells. Since cancer cells lose the

original phenotypic characteristics; in this figure, Gene C has some mutations, the

expression profiles differ in two cells. In both cases, the change in expression levels

of genes in experimental and reference cells can be observed by DNA microarrays

technology.

2.5.2 Design and Implementation

There are several steps in design and implementation of a DNA microarray ex-

periment. These steps are shown in Figure 2.6, and they can be mainly listed as

array preparation, hybridization and image processing.

Array preparation is the first step in DNA microarray experiments. Suitable

cDNA sequences which are obtained from mRNAs of experimental and reference
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cells, are selected and deposited on distinct glass arrays. Before printing, the glass

arrays are treated to enhance binding of the cDNA to the glass surface by air drying

and UV-crosslinking procedure, which increases fixation of the cDNA probes to the

glass [53]. The last step in array preparation is heating the arrays to separate strands

of cDNA.

Figure 2.5: Gene expression profiles change according to the environment (A) and
in a normal and cancer cells (B) (a modified figures taken from the Cancer Genome
Anatomy Project, Conceptual Tour).

The second step is the critical step in the experiments. cDNAs from the ex-

perimental and reference samples are labeled with different fluorescent dyes, mixed,

and hybridized to probes on the array. Hybridization refers to the binding of two

cDNA strands by base pairing. After a sufficient time for hybridization and a series

of washes to eliminate all unbounded target cDNAs and solution, each probe shows

the expression level changes of a gene in experimental cell.

The last step of the experiments includes image processing techniques. The array

is scanned for image processing analysis which is required to extract the numerical

data. This process involves estimating the location of the spot on the array and,

then, measuring the spot intensity as well as the background intensity based on the

area outside the spot.

DNA microarray experiments provide us time-series experimental data for ex-
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Figure 2.6: Design and implementation of DNA microarray experiments [25].

pression levels of genes, which show the relation between genotype and phenotype

and, consequently, helps understanding biological processes [7, 53]. Systems rang-

ing from gene regulation, to development, evolution and diseases, to differentiation

as well as annotation of gene functions, identifying the effects of environment and

life style, giving an insight into nutritional intake and therapeutic drugs, can be

understood by DNA microarray experiments [7].

Our present study concerns the analysis of the gene expression levels and in-

ference for the underlying gene regulatory dynamics. So, our study may serve as

a new explanation of this promising modern technology by means of mathematical

modeling, dynamical systems, algorithms and networks.
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chapter 3

REVIEW OF LITERATURE

3.1 Challenges in Modeling

Given a finite number of gene expression patterns, identifying the underlying

dynamics of gene regulatory interactions contains many challenges.

The first challenge is insufficient information about the underlying biochemical

reactions, allosteric regulations, chemical structure of the biochemical substances

and regulatory dynamics. Although there are some pathways which are relatively

better known, such as glycolysis pathway studied in [15, 62], the current information

is not sufficient to solve the mystery in the regulatory relations and gain a general

perspective of the dynamics.

With current technology, microarray experiments give us valuable information

about gene expression patterns and deliver an insight into regulatory relations. The

success of a model depends on the quality of the training data. Repetition of the

experiments and a large number of experimental data with smaller sampling time

will play an important role in eliminating noisy data and modeling the continuous

biological processes. The current experimental data are insufficient to describe the

natural processes, which constitute the second important challenge in modeling.

Specification and organisation in the organisms is another challenge to be con-

sidered. With current technologies in hand, we are able to view gene expression

profiles related to some specific pheotypic processes, and the limited portion of the

genomic data is objective to analyze. External factors that have effects on regulatory

relations should be considered carefully to gain a general idea about the interactions.

Despite of these challenges, modeling such a complex dynamics gives us some

crucial clues about the underlying regulatory relations. The research in this direction

combined with biochemical and genetic studies will guide us to future approaches.
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3.2 Continuous vs Discrete

Microarray experiments provide a finite number of experiment results, say

Ē0, Ē1, Ē2, ..., Ēl−1, where Ēm is a row vector representing the concentrations of all

observed mRNAs at time t̄m, where t̄m < t̄m+1 (m = 0, 1, 2, ..., l − 2). Thus, the j th

entry in the m th row vector represents the concentration of the j th gene at time point

t̄m. Given the finite set of gene expression levels, the question is how to model the

dynamic nature of the gene regulations. There are mainly two modeling strategies:

time-discrete and time-continuos modeling.

In [81], Weaver et al. explain that the current sampling times of expression

data are very large so that continuous models can only be based on theoretical

data. Another motivation for using discrete models is explained in [72], where

Thomas et al. state that differential systems, a continuous approach, cannot be

solved analytically but can be solved numerically to any desired precision. These

motivations are the basis for most of the discrete models.

On the other hand, continuous models serve for a good approximation of the

underlying regulatory network. As explained in [25], given a very large but finite

number of gene expression levels, the gene expression behavior can be predicted,

where gene expression levels mean training of our model from this viewpoint. In

addition, repetition of the experiments and large number of experimental data with

smaller sampling time strengthen the structure of the predicted behavior. Also

stochastic models serve as a basis to rule out the noisy experimental data.

In the next sections, we briefly explain some of the model classes and pay at-

tention for the continuous approaches which constitute a basis for our modeling

strategy.

3.3 Current Modeling Strategies

3.3.1 Boolean Networks

Boolean networks are one of the most studied discrete approaches. The classical

logical description of regulatory relations is explained by Somogyi and Sniegoski in
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Figure 3.1: Boolean approach.

[65]. The Boolean approach represents the regulatory relations by stepwise functions.

The genes in a regulatory network are assumed to be logical variables, i.e., their

expression is either on or off. In other words, enzymes are said to be present, if

the expression levels lie in a predefined interval which is identified by the threshold

values for the enzymes and absent otherwise (see Figure 3.1).

The considered gene is inactive before threshold value, e, and is activated after

the concentration achieves the threshold concentration. Then, the Boolean function

related to the figure looks like:

w(x) :=

{
0, if x < ti

1, if x > ti.

At a particular time, some of the genes in a cell are active while others are

inactive. All active and inactive genes construct a set of Boolean variables, usually

called the metabolic state of the cell. Gene expressions for the next time point

are described by Boolean logical rules and updated synchronously in the classical

description.

Liang, Fuhrman and Somogyi [48] describe an algorithm called REVEAL for in-

ferring gene regulatory network from state transition table which corresponds to the

time-series expression profiles. Given a finite set of gene expressions, the algorithm

searches for the Boolean logical rules to infer the underlying regulation network. A
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small number of state transitions, input/output pairs is used in the algorithm, which

results in a reduced search space. If the number of regulator variables for each vertex

is bounded, then the algorithm identifies the network in polynomial time, but still

not efficiently.

Akutsu, Miyano and Kuhara [2] propose a simpler algorithm to infer the under-

lying regulation network with an assumption that the number of regulatory genes

are bounded by a constant. They formally define the identification problem as given

number of variables and expression patterns, to decide whether there exists a unique

Boolean network, and to give the output if it exists. The algorithm uses a simple

exhaustive search for each pair of vertices and all possible Boolean functions. Un-

fortunately, the algorithm works less efficienctly than REVEAL and allocates more

space [2]. Akutsu et al. [2] also state that the network cannot be identified uniquely

when real expression scores are given to the algorithm, because the number of dif-

ferent expression patterns generated by the algorithm is so small, if the data are not

random, i.e., the periodic solution problem is encountered.

Glass and Kaufmann [31] state that the Boolean network model cannot detect

all the steady states in the continuous representation and the determined periodic

solutions may not correspond to periodic solutions in the continuous system, when

synchronous updating exist. Furthermore, they propose another approach, where

the Boolean variables are updated asynchronously. Edwards and Glass [19] also

study asynchronous updating and they use directed graphs on a bounded domain

where each edge corresponds to the Boolean functions. They define the continuous

Boolean function by differential equations which are piecewise linear. The existence,

stability and periods of periodic orbits are deeply explained in the study.

Thomas [70, 73] introduces multiple delays associated with the different time

scales and further expand the theory with Kauffman [71, 72]. The logical description

of the model consists of two delays for each variable state change. The delays denote

the time between activation signal and the response of the deactivated variable, and

between deactivation signal and the response of the activated variable, respectively.

The next network state is then determined according to the first possible state

change. With the approach discussed, it becomes possible to detect additional

logical steady states.

21



The theoretical approaches listed above clarify some problems, but insufficient

information about the delays in the natural regulatory networks constitute a chal-

lenge to use the model for regulatory networks in nature. The Boolean approach

can effectively be used for large regulatory systems and gives important clues about

the biological questions. Modeling the dynamic structure and behaviour of the sys-

tem with a time-discrete model has some advantages, as we discussed in Section 3.2,

which are drawbacks for the Boolean network models. To overcome these challenges,

some new methods have also been proposed, please refer to [54] for details where

Öktem, Pearson and Egiazarian propose a time-continuous Boolean network with

delays in the study.

3.3.2 Bayesian Networks and Statistics

Bayesian networks use statistical knowledge on analyzing the interactions be-

tween genes. Since the regulatory factors are not only the gene expression levels,

other regulatory factors like protein concentrations and experimental conditions are

also included in most of the Bayesian approaches. In [24], the dynamics of these

factors are modelled by a directed acyclic graph, where vertices 1, 2, ..., n represent

the regulatory factors which correspond to the random variables X1, X2, ..., Xn, re-

spectively. These random variables are the expression levels of the genes, if the

corresponding regulatory factor is a gene. Friedman et al. [24] define a conditional

distribution p(Xi|parents(Xi)), where parents(X i) represents the regulatory factors

that have a direct influence on i, i.e., all edges that have an outgoing edge directed

towards Xi. The resulting conditional distributions generate a joint probability dis-

tribution p(X1, X2, ..., Xn). The joint probability distribution can be stated in the

following way by means of Markov assumption (see for details [35]):

p(X1, X2, ..., Xn) =
n∏

i=1

p(Xi|parents(Xi)).

Given a finite set of experimental data, Bayesian approach gives a score for the

possible networks and searches for the best network which matches the given data

most, or an equivalence class of networks (explained in [24, 34, 44]) which infer the
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underlying network. Although this problem cannot be solved in polynomial time,

Bayesian networks give valuable results about the interactions. For example, in [24],

instead of searching for a network or a class of networks, Markov relations and order

relations are studied and the study determined the genes having similar functions in

S. cerevisiae, which is studied in [66]. Please refer to [34, 41, 58] for other approaches

in the literature.

Statistical analysis of the experimental data is a very effective technique to learn

from the data. Pavlidis, Lewis and Noble [57] state that there are mainly three

methodologies used in analyzing gene expressions, unsupervised, supervised and

semi-supervised learning and explain the methodologies in detail. Supervised learn-

ing uses data with classification labels to train a learning algorithm and predict the

unknown genes. On the other hand, unsupervised learning clusters the data based

on the similarities and using classification labels generate functional clusters which

are used for prediction. The last methodology, semi-supervised learning, which is

described and used by Pavlidis et al. [57], gets the data and a set of labels to di-

vide the data set into class groups, where these groups are then used to identify

high-scoring groups.

Bayesian networks and statistical methodologies enable to deal with stochastic

aspects of gene expression and noisy measurements [35, 44]. Although Bayesian

networks are not computationally feasible, anticipation of the gene regulations and

clustering of genes with similar functions can be easily adopted into the field.

3.3.3 Ordinary Differential Equations (ODEs)

Ordinary differential equations are deeply studied in modeling dynamical sys-

tems. The most widespread formalism to continuously model the gene regulatory

systems is ODE. The differential equations consists time-dependent regulatory vari-

ables, e.g., protein and mRNA concentrations. The dynamics of the variables are

modeled by rate equations for expression of any variable in terms of other variables.

The equations consist of production and degradation constants for each variable in

the system, introduced by Tyson and Othmer [76], which enables the feedback loops

to be modeled.

23



Chen, He and Church [12] propose a dynamic system to model the gene inter-

actions. They use two differential equations, one for the mRNA concentrations and

the second for the protein concentrations. They use Minimum Weight Solutions to

Linear Equations (MWSLE) to determine the regulatory influences. Unfortunately,

the algorithm is NP-complete and does not guarantee the solution as noted in [12].

Chen et al. [12] also introduces another algorithm, the Fourier Transform for Stable

Systems (FTSS) algorithm, to refine the model with cell cycle constraints.

De Hoon and Imoto [13] propose another continuous model which is similar to

the described model but instead of using both mRNA and protein concentrations,

only mRNA concentrations are used for approximation. De Hoon et al. first approx-

imate the differential equation by a difference equation and use maximum likelihood

estimation to estimate the regulatory relations, then determine the number and

places of the nonzero parameters in the matrix by the so called Akaikes Information

Criterion [35].

In a more flexible approach, Sakamoto and Iba [61] choose a model

Ėj = Fj(E1, E2, ..., En), where j = 1, 2, ..., n and Fj is a function in E1, E2, ..., En. In

other words, they assume that the change in the expression levels should be modeled

by a set of functions in expression levels. Sakamoto and Iba find the functions Fj

with the help of genetic programming combined with the least mean squares method.

Many new ideas to model the gene interaction matrices have been introduced

based on these approaches, including [1, 26, 25, 28, 87]. In [26], the gene interactions

are modeled by a constant gene interaction matrix, i.e., Ė = ME and by using least

squares approximation the parameters for the regulatory relations are estimated. In

this model E ∈ Rn represents a column vector, where each entry corresponds to the

concentration of the corresponding gene, where there are n genes being considered.

Furthermore, Ė ∈ Rn denotes the column vector of change in the concentrations of

genes, and M ∈ Rn×n is a constant matrix whose entries correspond to the influence

level of one gene to another. For example, Mj,i ∈ Rn denotes the influence level of

the i th gene to j th gene.

Figure 3.2 shows the characteristics of the gene influences used in the model. If

we observe this figure, we see that the influence of the inducer to the target gene

is linearly constant and the concentration of the target gene increases linearly as
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Figure 3.2: Linear approach.

the concentration of the inducer increases. In other words, if the numbers that are

used to represent the inducer and the target gene are i and j, then we can say that

Mj,i > 0.

The linear approach approximates the regulation curves by assuming that the

rate of expression of a gene linearly increases/decreases with increasing concentration

of the inducer. More precisely, in the linear approach, the interactions are expressed

as linear functions. For example, the influence of gene i to genej is expressed by

fj,i(x) = aj,ix, where x = Ei denotes the concentration of gene i and aj,i ∈ R. The

slope of the curve gives us the interaction level, in our formula given by the coefficient

aj,i.

Since there is no predefined influences, there are n genes influencing the expres-

sion level of any gene, say genej. This implies that the change in the concentration

of genej can be approximated by the following summation which consisting of n

terms:

Fj(E) =
n∑

i=1

aj,iEi,

where Ei ∈ R is the concentration of gene i, as we introduced earlier.

There are also some other approaches that allow additive terms (shifts) bj,i ∈ R in

the linear approach. Herewith, linearity means affine linearity. By these additional

parameters, it is possible to extend the parameter space, which is the solution space
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in mathematical modeling. In our model, we not only allow additive terms in linear

functions, but using quadratic polynomials to represent the interactions as well.

Also some piecewise linear approaches exist in the literature [27, 29]. Piecewise

linear differential equations are used to infer the gene regulations. For example,

if the approximation consists of three linear functions with corresponding domains

(a, e1), [e1, e2) and [e2, b), the influence of the inducer to gene i to genej can be

expressed by the following equation where for k ∈ {1, 2, 3} and (ak)j,i, (bk)j,i ∈ R.

The piecewise linear approach is summarized in the following equation where x = Ei

represents the expression level of gene i, and there are three linear functions used

to model the influence of gene i to gene j :

fj,i(x) :=


(a1)j,ix + (b1)j,i, if a 6 x < e1

(a2)j,ix + (b2)j,i, if e1 6 x < e2

(a3)j,ix + (b3)j,i, if e2 6 x 6 b.

In [25], a new approach is introduced based on the models described in [12, 13,

61]: Ė = M(E)E. Here, in the right-hand side of the equation, we see that the

interaction matrix M depends on the current state, E. The study does not use

particular functions, e.g., linear and stepwise, for inference, instead they suggest

using any model class function. They restrict the solution space to identify a unique

regulatory network. For example, if the influence of gene i on the expression level of

gene j is shaped like a sinus function, then the gene interaction may be formulated

as, e.g., fj,i(x) := aj,i sin(bj,ix); if there is an exponential growth in the rate of the

gene expression when the inducer concentration increases, then the formula can be

updated as fj,i(x) := aj,ie
bj,ix. We remind that the characteristics related to the

model function should be reflecting the dynamics in the interaction and incorporate

any preinformation about the expected expression levels in mid- and long-term. In a

process of statistical learning, where training and testing are iteratively coupled, the

model class assumptions about the functions fj,i can step by step become improved.

Based on this approach, we model gene expression patterns by Ė = F (E). Here,

the right-hand side F (E), where F = (F1, F2, ..., Fn)T of our system of differential
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equations consists of the sum of the quadratic (constant, linear) functions:

Fj(E) = fj,1(E1) + fj,2(E2) + ... + fj,n(En).

Here, n is the number of genes being considered. In other words, we use quadratic

polynomials fj,i(x) = aj,ix
2 + bj,ix + cj,i, where aj,i, bj,i, cj,i ∈ R, to represent the

influence of gene i to gene j. Please note that our approach represents the dynamic

nature of the regulatory regulations by all constant, linear or quadratic functions,

since we allow zero coefficients in the functions.

3.3.4 Other Methods

Natural language processing (NLP) and pattern matching have also been stud-

ied to infer the gene regulatory networks. Given textual biological data stored in

databases, common motifs in the text are analyzed and the underlying gene regula-

tory network is inferred (for details please refer to [40, 63, 69, 86]).

The methods discussed above are all model formalisms. There are also rule-

based or knowledge-based simulation formalisms, developed in the field of artificial

intelligence [44]; please refer to [11, 30, 50] for more information.

3.4 Discussion

In [44], properties of the different models are summarized in a table. According

to the table, all methods have both advantages and disadvantages. For example,

Bayesian networks can be defined in time-continuous or time-discrete manners and

they provide quantitative results; however, using Bayesian network is not an effi-

cient approach for larger networks. Boolean networks are deterministic and work

efficiently, but they are in the class of time-discrete models and provide qualitative

results. There are many comparative studies for the models described; please refer

to [18, 20, 64, 84] for details.

As described in the previous sections, the metabolic state of a cell is usually reg-

ulated by gene and enzyme regulation mechanisms in the cell, which ensure that the
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current metabolic state can be used to predict the next metabolic states. With this

biological motivation, we state that the regulatory interactions should be modeled

such that they reflect the dynamics of the system. In [1, 25], the state transition,

i.e., gene interactions, matrices are functions of the current metabolic state, i.e.,

M = M(E), where M is the gene interaction matrix and E is a vector of gene

expression profiles.

We defend that M(E) fits better to the experimental data than a constant ma-

trix M . In this work, we are even going to extend that model with the system’s

right-hand side M(E)E. As we discussed above, we are going to allow nonlinear

interactions and use affine linear terms, introducing shifts, there.

Aliasing is a term related to the phenomenon of a high frequency in a continuous

signal masquerading as a lower frequency in the sampled output of the continuous

signal. We assume that the time-intervals between neighbouring sampling times of

gene expressions are sufficiently small, to prevent aliasing in the sampling of the

continuous system and propose a flexible approach based on the models described

in [1, 25]. The details of our model will be discussed in the coming chapters.
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chapter 4

MATHEMATICAL MODELING

4.1 An Overview

Given a finite number of gene expression profiles for n genes, say Ē0, Ē1, ..., Ēl−1,

where each Ēm ∈ Rn is a column vector representing the gene expression profile at

time t̄m, these times satisfying t̄m < t̄m+1 (m ∈ {0, 1, ..., l − 2}), then the question

is how to infer the underlying gene regulatory network at the system level. Please

observe that equal time intervals are not needed for our model. In other words,

in this study, our focus is on the inverse problem of finding the gene interactions

given the experimental data for gene expressions. We model the gene interactions

by means of a finite set of parameters and determine the parameter values which fit

the experimental data best. Thus, our problem is a parameter estimation problem.

We use ordinary differential equations (ODEs) to model the gene regulatory

networks where each regulating effect is modeled by a quadratic polynomial of gene

expressions. Here, we note that the unknown solution is the right-hand side of our

system of ODEs. This is continuous and also continuously depending on the model

parameters. As stated in [1, 25], the time-continuous model describes the behavior

of a continuous process in the metabolism of a cell.

In order to find the differential equations, we determine the model parameters

that optimally (best) fit the experimental data based on a quadratic model ansatz.

Here, we use least squares approximation. We underline that the success of the

solution mainly depends on the size of the experimental data, i.e., whether we have

an under-determined or over-determined system. The second important factor that

affects the accuracy of the system consists in the errors made during experiments

and approximation, round-off and truncation errors.

This chapter concerns the current approaches which use ODEs for modeling the
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gene regulations. Here, we also explain our model and the parameter estimation

problem based on these approaches. In Chapter 5, we discuss the solution for the

ODEs and also explain briefly the accuracy and stability for the system. In addition,

we present a time-discrete equation and dynamics for prediction of the future behav-

ior of our genetic system. In Chapter 6, we explain our optimization problem and

introduce how we transform our system into subsystems to reduce the computational

difficulty.

4.2 Ordinary Differential Equations (ODEs)

4.2.1 Linear Idealization

Chen et al. [12] model the gene interactions by the following ordinary differ-

ential equations (ODEs). They use two differential equations, one for the mRNA

concentrations and the second for the protein concentrations:

dr
dt

= w(p)− V r, dp
dt

= Lr − Up,

where t denotes the time, r and p correspond to protein and mRNA concentrations,

respectively. Moreover, w(p) = Cp is a linear transcription function, where C

corresponds to the gene interaction matrix. In addition to this function, L denotes

translational constants and V, U are constants to represent the degradation rates for

mRNAs and proteins, respectively. We underline that the model is time-continuous,

each variable in the equations is a function of time t. Chen et al. [12] propose the

linear transcription model as follows:

dE

dt
= ME.

Here, E = (r, p)T ∈ R2n represents the mRNA and protein concentrations and

M ∈ R2n×2n is the transition matrix representing regulatory interactions for both

proteins and genes:
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M =

[
−V C

L −U

]
,

where C ∈ Rn×n represents the gene-interaction matrix where each entry Cj,i ∈ R
(i, j ∈ {1, 2, ..., n}) is used to express the influence level of the expression level of

gene i on the change of expression of genej. Note that Chen et al. use linear functions

to model the gene interactions since Cj,i ∈ R. The study mainly concerns the rate

equations for the regulating factors. In the above system of differential equations,
dE
dt

= Ė denotes the derivative of expression functions with respect to time t:

Ė1

Ė2

Ė3

...

Ė2n


=



dE1

dt
dE2

dt
dE3

dt

...
dE2n

dt


.

By calculating the model parameters, Chen et al. therefore achieve a constant

gene regulatory network, represented by the matrix C ∈ Rn×n. De Hoon and Imoto

[13] and Sakamoto and Iba [61] also propose to model the gene interactions by con-

stants. Please refer to Chapter 3 where we discussed the approaches. In other words,

they all describe a linear gene regulatory network, i.e., interactions between genes

are fixed and, consequently, the underlying network topology is fixed. Actually, the

interactions between genes are nonlinear in nature, i.e., the influence level of one

gene to another can change according to the current metabolic state.

To overcome this challenge, Gebert, Lätsch, Pickl, Weber and Wünschiers [25]

use a more flexible approach than Chen et al., De Hoon et al. and Sakamoto et al. by

letting the gene regulations depend on the current metabolic state, i.e., M = M(E),

and they regard the following system of differential equations:

Ė = M(E)E.

The metabolic state of a cell is described in terms of the gene expression levels

as we discussed so far. Furthermore, in Chapter 2 we explained that the gene and
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enzyme regulation mechanisms prepare the cell for the next state. These continuous

state transitions are an evidence for a prediction of the next state in terms of the

current state. This idea sustains the fact that M(E) fits better to the experimental

data than a constant matrix M .

4.2.2 Polynomials for Regulatory Effects

The dynamic nature of the gene interactions should be modeled by a wide range

of functions to reflect the dynamics. Gebert et al. [25] propose to model the gene

interactions by the general case of M(E) creating a need of additional restrictions

on the solution space. They assume that the number of regulating factors for each

gene is bounded, which corresponds to the number of incoming edges in the gene

network. In other words, the number of non-zero parameters for each column of

M(E) is bounded.

As an inverse problem, the modeling approach does not give a unique solution

without any restriction on the functions. We use the term ”restriction on func-

tions” because given a finite number of experimental data, the interactions can be

approximated by more than one function, each having a different response for the

future prediction. Unique solution to the inverse problem is an essential issue to be

considered when a first principles model is not available.

In this study, we propose the following continuous equation:

(CE) Ė = F (E).

Here, we use a tuple F = (F1, F2, ..., Fn)T , i.e., a tuple of functions defined in the

vector E of expression levels. We note that Ė(t) ∈ Rn represents the change in the

expression levels of genes, where n denotes the number of genes being considered.

We also state that each of Fj additively comprises the functions for the change in the

expression level of the gene j and it is defined in terms of E ∈ Rn, i.e., the expression

levels of all genes.

In particular, we use quadratic polynomials to model the gene interactions. Since

we do not have known regulatory interactions between some particular genes, i.e.,

activating genes for some gene and the genes that are activated by that gene are
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not known, we have in total n2 polynomials which generate a set of gene interac-

tion polynomials. For example, the influence of gene i on genej is represented by a

quadratic polynomial, say fj,i(x) = aj,ix
2 + bj,ix + cj,i, where x = Ei denotes the

concentration of gene i and aj,i, bj,i, cj,i ∈ R.

Consequently, the increase/decrease in the expression level of genej is represented

by Fj(E), determined by the following summation:

Fj(E) =
n∑

i=1

fj,i(Ei) =
n∑

i=1

(aj,i(Ei)
2 + bj,i(Ei) + cj,i).

Our model class extension by additional constant terms on the right-hand side

of our system can also be represented by the introduction of an additional shift

vector C on the right-hand side of the continuous equation, Ė = M(E)E, which

is proposed by [25]. Without any constant terms, 0 ∈ Rn always belongs to the

stationary points. In our model, 0 can but needs not to be a stationary point.

This shows that our extended modeling also implies an extension in the range of

structures of trajectory sets. Please note that these constant terms represent the

environmental effects and other constraints which affect the gene expression levels

in the environment.

Our approach is pioneering and shall serve for a next step in the understand-

ing, after approaches by linear functions fj,i(x) = aj,ix [12, 13, 26, 61]. Quadratic

polynomials extend the solution space when compared to the linear idealization and

produce more accurate results than the linear models. As a model class, quadratic

polynomials include the linear polynomials, which is an advantage of our quadratic

approach.

For future research, we recommend and plan further refined investigation with

extended classes of polynomials, splines, trigonometric, exponential functions and

suitable combinations of these functions such that the ODEs are solvable. Up to

multiplying in the right-hand side with E, which incorporates some kind of a trend

factor, for example, trigonometric functions represent cyclical (e.g., seasonal) com-

ponents, while splines are a time-interval wise refinement of representing the process

polynomially.
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Jacob and Monod [52] has observed that gene activation or inhibition takes place

when the corresponding protein concentration exceeds a threshold. This behavior

can be formulated by using switching local polynomials where the state transition

function is a polynomial, but the parameters of this polynomial may switch when a

relevant threshold is exceeded. In fact, such a formulation will add the capability

of handling multistationary dynamics to our model. Then, it will be possible to

involve differentiation, cell specialization and adaption into the model. Finding out

the methods to infer the system in such a model class is in our future research plan.
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chapter 5

FUTURE PREDICTION

5.1 Discrete Equation and Dynamics

A numerical solution for an ODE provides a finite set of values of the solution

function which reflects the behavior of the cell metabolism identified by the differ-

ential equation. Let us refer to the system (CE). For a particular state, the next

states are generated iteratively, i.e., Ê(tk), Ê(tk+1), ..., Ê(ts−1) are approximated in

consecutive order, where k, s ∈ N. Given E(t0), some initial state, we start with the

initial state Ê(t0) = E(t0) and predict the next state which is then used to predict

the next states. In our examples which will be given in the next chapters, we use

Ê(t0) = Ē0, the first expression profile given by the experiments as the initial state.

In [25], depending on the model described in the following sections, a time-

discrete equation and dynamics is represented as follows:

Êk+1 = MkÊk (k ∈ N0),

where Mk := I + hkM(Êk), I is the n× n unit matrix and hk := tk+1 − tk.

Here, hk represents the time difference between two consecutive approximations.

In our examples, we take hk = h̄m (k = m ∈ {0, 1, 2, ..., l − 2}) for the approxima-

tion part to be able to compare the experimental data with approximated expres-

sion levels, i.e., to be able to compare Ē0, Ē1, Ē2, ..., Ēl−1 with Ê0, Ê1, Ê2, ..., Êl−1.

Please note that the time differences between approximations can be adjusted ac-

cording to the underlying biological motivation. In our work, we take h̄m = 1

(m ∈ {0, 1, 2, ..., l − 2}) and hk = 1 (k ∈ {0, 1, 2, ..., l − 1}). In other words, we

approximate the experimental data with our time-discrete equation and also predict

the next state, i.e., Êl.

35



Very analogously from the viewpoint of definition of the time-discrete dynamics,

we present the following discrete equation:

(DE) Êk+1 = Fk(Êk) (k ∈ N0),

where Fk = ((Fk)1, (Fk)2, ..., (Fk)n)T is a tuple of functions defined in terms of the

expression levels of the considered genes for the k th time step, i.e., Êk, such that:

(Fk)j(Êk) := (Êk)j + hk

n∑
i=1

fj,i((Êk)i).

Please note that in the given formula (Êk)j denotes the concentration of gene j at

the current state, i.e., at kth time step. In this definition, functions fj,i(x) are the

influence functions defined in Chapter 4. We remind that in the linear case, the coef-

ficients of the linear functions corresponds to the entries of the matrix M . However,

in our model, for each time step we have a distinct set of functions F1, F2, ..., Fn.

In this general approach, which basically comes from statistical learning, we

infer the model from empirical observation which is already sampled, so we do not

discretize the system. Based on [25], in the next section, we introduce Euler’s

Method mainly for conceptual reasons. In fact, higher frequency components of the

gene expression profile which might cause instability of the numerical solutions, are

already lost during sampling due to an effect called aliasing (please refer to Section

3.4). However, it is a completely instrumentation related problem and, therefore we

had to ignore such effects.

5.2 Euler’s Method

Euler’s Method is derived from Taylor’s Theorem which states:

Suppose p ∈ N, that E and its derivatives E
′
, E ′′, ..., E(p−1) are defined and

continuous on D = [a, b], and that E(p) exists in (a, b). If t, t + h ∈ D, then there
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exists a number γ ∈ (t, t + h) (if h > 0) or γ ∈ (t + h, t) (if h < 0) such that:

E(t + h) = E(t) + E
′
(t)h +

1

2!
E

′′
(t)h2 + ... +

1

(p− 1)!
E(p−1)(t)hp−1 +

1

p!
E(p)(γ)hp.

The proof for the theorem is given in [8].

Euler’s method uses Taylor’s Theorem for p = 2. In case of existence of infinitely

often differentiability and local convergence, our function can locally be represented

by a power series. More precisely, Euler’s Method [43] approximates the solution

value by the following equation, where Ê and Ê ′ denote the approximated expression

scores and approximated change in the expression scores and hk := tk+1 − tk:

Ê(tk+1) = Ê(tk) + Ê ′(tk)hk.

Let us denote Êk := Ê(tk). Furthermore, use Ê ′(tk) = F (Êk), which we obtained

for the approximation to the derivative. Thus, we get:

Êk+1 = Êk + F (Êk)hk.

We define Fk = ((Fk)1, (Fk)2, ..., (Fk)n)T with (Fk)j just as we have written in the

previous section. Then, we obtain the following time-discrete equation and dynamics

for all k ∈ N0:

Êk+1 = Fk(Êk).

The discrete equation and dynamics enables us to find the next states, given an

initial state Ê(t0). We note that the recursive definition of the next states show

that, for the (k + 1)th approximation, we get Êk+1 = Fk(Fk−1(Fk−2(...F0(Ê0)...))).

Here, let us also state the recursive definition for the model Ė = M(E)E, to allow

an insight into the difference between this model and our model. We see that

given the initial state, i.e., Ê0, the (k + 1)th state is defined in the following way:

Êk+1 = MkMk−1Mk−2...M0Ê0.

This special structure enables us to study boundedness of the solution easily.

The following sections show the accuracy and stability issues for our problem. We

always refer to the linear and nonlinear functions together to show the similarities
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and differences between approaches. The following sections also explain both cases.

5.3 Accuracy of the System

Accuracy measures the approximation error between actual and computed solu-

tion. There are two main sources which increase the approximation error: rounding

and truncation errors.

Finite precision of floating-point arithmetic generates the rounding error. Com-

puters store a real number in a finite number of bytes and, if necessary, round

the number. Rounding of a real-number results in a rounding error. For exam-

ple, numbers smaller than machine precision are rounded to zero. We reduce the

rounding-error by some methods discussed in [36].

On the other hand, the source for truncation error is the method used in dis-

cretization. There are two kinds of truncation errors: local and global truncation

errors. The local truncation error is defined as Lk = Êk − uk−1(tk) (k ∈ N\{1}),
where Êk is the computed solution at time tk and uk−1 is the solution curve deter-

mined for the previous time step, tk−1. The global truncation error is the difference

between the computed solution and the true solution determined the initial solution

curve u0 and stated as: Gk = Êk − u0(tk) (k ∈ N). Global truncation errors are

defined in [36], and they show the error, made in one step of the numerical method,

and the difference between the computed and true solution determined by the initial

state. A numerical method is said to be first-order accurate if Lk = O(h2
k). Euler’s

method is first-order accurate; please refer to [36] for the proof.

There is a trade-off between the rounding and truncation error when we consider

the sample times. In order to continuously approximate the given experimental data

effectively, we need a very small sampling time, h̄m (m ∈ {0, 1, 2, ..., l − 2}), but a

small sampling time generates rounding errors. On the other hand, a large sample

time produces worse results than the latter case but results in a lowered rounding

error. A suitable experimental sample time should be decided according to the

current considerations about the model and the system availability.
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5.4 Stability and Boundedness of the System

Stability theory, which studies the sensitivity of a solution of an ODE with

respect to perturbations, is described in [36]. If the responses of solution curves

for an ODE gets closer with time, a small perturbation to a solution will shrink

(or essentially remain of the same order) within time, i.e., the system is stable. On

the other hand, instability of an equation means that a small perturbation to a

solution will grow within time since the members of the solution family for an ODE

move away from each other with time. Another stability term is balanced (neutrally

stable), which means that there is no convergence or divergence of solution curves

within time.

The stability concept of an ODE depends on the entire family of solutions, not

on a particular solution [36]. For
.

E = F (E) = ME, the eigenvalues of the following

Jacobian matrix J = (Ji,j) shows the stability/instability of the system:

Ji,j =
∂Fi

∂Ej

.

This type of stability is the most widely accepted stability criterion. Sometimes,

it is referred to as Lyapunov stability, to distinguish if any other stability criterion

is also used [77, 78].

In [28], stability in the theory of ODEs is referring to the case of autonomous

systems, where the right hand-side of F (E) = M(E)E does not depend on t [56].

Furthermore, in [4, 28, 56], the analytic definition of stability refers to stationary

points E∗, where F (E∗) = 0.

5.4.1 Stability for a Linear System

Observe that, for M ∈ Rn×n, the Jacobian matrix, J is equal to M . For such

a system, the negativity of the eigenvalues of the matrix M implies the stability

of the system. Let the eigenvalues of M be δ1, δ2, δ3, ..., δn, and let us focus on

the case, where all these values are real numbers, i.e., δi ∈ R (i ∈ {1, 2, ..., n}).
This is, e.g., guaranteed in the case where M (or, lateron, J) is symmetric: M =

MT (or, in general nonlinear case, if, e.g., we have a so-called gradient flour). If,
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however, there is an eigenvalue with nonvanishing imaginary point, i.e., one (or

more) Im(δi′) ∈ C\R, then we would study the signs of the eigenvalues’ real parts

Re(δi) (i ∈ {1, 2, ..., n}) in the sequel instead. If any eigenvalue is positive, then the

equation is unstable. If all the eigenvalues are negative, then the equation is stable.

Finally, a neutrally stable equation exists when one or more eigenvalues are zero

and all other eigenvalues are negative. The following table illustrates stability and

unstability conditions:

if ∀i ∈ {1, 2, ..., n} δi < 0 -> stable system,

if ∃i ∈ {1, 2, ..., n} δi > 0 -> unstable system.

Let us consider a gene interaction matrix for two genes:

M =

[
a1,1 a1,2

a2,1 a2,2

]
∈ R2×2.

For any E =

[
E1

E2

]
we have F =

[
a1,1E1 + a1,2E2

a2,1E1 + a2,2E2

]
, which is used to determine:

J =

[
a1,1 a1,2

a2,1 a2,2

]
.

All entries of the Jacobian matrix are constant values and correspond to the

entries in the gene interaction matrix. Please note that, for a linear idealization,

estimated parameters show the stability/instability of the system. In addition, in

linear time-invariant case, the system is stable for all states if it is stable for any

state and this also corresponds to boundedness of solutions. In other words, Bounded

Input and Bounded Output (BIBO) stability [55].

5.4.2 Stability for a Nonlinear System

When the system is nonlinear, it might be unstable for some range of the state

space while it is stable for the rest [3]. In fact, such nonlinear system structures are

necessary for regulatory dynamics [1, 54, 71, 72].
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Stability analysis for M = M(E) needs more effort than in the constant case.

The stability analysis of such a system gives a parametrical boundary for the stable

solution, since we search for the values of parameters that satisfy the stability crite-

rion, i.e., a subspace that satisfies the negativity of the eigenvalues of the Jacobian

matrix.

Let fj,i(x) = aj,ix
2 + bj,ix+ cj,i be a function that corresponds to the ith additive

contribution in Fj matrix, where x = Ei denotes the concentration of gene i and

aj,i, bj,i, cj,i ∈ R. Then, we have the following F vector and J matrix:

For any E =

[
E1

E2

]
, we have

F =

[
(a2

1,1E1 + b1,1E1 + c1,1) + (a1,2E
2
2 + b1,2E2 + c1,2)

(a2,1E
2
1 + b2,1E1 + c2,1) + (a2,2E

2
2 + b2,2E2 + c2,2)

]
,

which we use to determine the Jacobian matrix J = J(E):

J =

[
2a1,1E1 + b1,1 2a1,2E2 + b1,2

2a2,1E1 + b2,1 2a2,2E2 + b2,2

]
.

Here, the estimated parameters are not the only considerations for stability cri-

teria. The eigenvalues of the Jacobian matrix, which are functions of E1 and E2,

are used to analyze the stable and unstable regions for the solution.

Stability analysis for numerical methods is different from the described analysis.

The time-discrete system for the model
.

E = M(E)E is stable if the absolute value

of the eigenvalues of all considered matrices Mi (i ∈ {0, 1, 2, ..., q − 1}) and of any

finite product of them are smaller than 1 [10, 28, 56]. Here, q is the number of

considered approximative matrices. Please note that a similar spectral analysis can

be made for our nonlinear (quadratic) case.

5.4.3 BIBO Stability and Boundedness

When we use linear idealization, the stability of the system implies the bound-

edness of the solution since the matrices in each iteration are constant and equal to
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the gene interaction matrix M. An extremely useful criterion for nonlinear systems

is BIBO stability, meaning that any bounded input (in our case, a perturbation) to

the system will result in a bounded deviation of the solutions [55].

For (CE), given an initial state, the discrete equation (DE) presented above,

calculates the next state recursively, i.e., the right-hand side of the equation comes

from a matrix multiplication of gene interaction matrices calculated at previous

states and the initial state. Let us at each step k consider a set of matrices M =

{M0, M1, M2, ..., Mq−1} , which we regard to finitely approximate the corresponding

continuous range of matrices. The cardinality of this set, q, needs not but can be

adopted, when k increases. In our notation of the set M, the index ν of the matrices

Mν must not be the iteration index k for the first steps.

For the kth step, if the absolute values of the eigenvalues of any finite product

of matrices from M are smaller than 1, then this implies that we have a bounded

solution. In [25, 28], this kind of stability provided by these matrix products, i.e.,

by the linear mappings defined by the elements of M is analyzed by an algorithm in

[10, 59] which is detecting stability. However, a recent trend is explicitly stating if

any criterion else than Lyapunov stability is used.
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chapter 6

OPTIMIZATION PROBLEM

We described our model in Chapter 4 where we explained the system of ODEs

and discussed the characteristics of quadratic polynomials to model the regulatory

relations. Then, in Chapter 5, our focus was on the solution for the ODE where

we also gave a brief discussion about the stability and accuracy of the system.

This chapter concerns the optimization problem to solve the model parameters,

where we also discuss the uniqueness of the solution. Because of the underlying

biological motivation, i.e., gene networks are very large networks, we show a way to

decompose our optimization problem into subproblems which significantly reduces

the computation time.

6.1 Fundamental Approaches

In [1, 25], Akhmet et al. and Gebert et al. introduce nonlinear regulatory rela-

tions and propose the model: Ė = M(E)E. The system is solved by optimization

techniques. While explaining their approach, firstly, they determine the regulatory

relations with a constant regulatory matrix. We find the idea compatible to facil-

itate in describing our approach. They determine the model parameters, i.e., the

entries in regulatory matrix M ∈ Rn×n, by the least squares method. The mini-

mization problem is then transformed to the well-known canonical form to achieve

the availability of the least squares approaches for this form as shown in [1, 25].

An important note from statistical learning should be stated here: The param-

eters used in the optimization problem are divided into two parts in these studies.

The first set of parameters consists of the expression metabolism parameters which

are in the second step used to analyze the boundedness (stability) of the system.

The remaining parameters are in the first step used for modeling. Please note that
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the parameters of the second set play a similar role as training data, while the pa-

rameters in the first set are similar to test data (please refer to [35] for details). A

stable solution for the optimization problem is then used to infer the underlying

regulatory network.

6.2 Existence and Uniqueness

Inverse problems are known to be hard problems since given the experimental

data, it is usually hard to obtain the exact model that satisfies the model constraints

among all models which adequately fit the given data [5]. On the other hand,

there may be no model which exactly fits the data if the given data contain high

experimental noise. Our least squares problem has at least one solution M̂ because of

the continuous dependence of the nonnegative objective function on M and because

of this objective function’s (generically) quadratic growth. Now, the uniqueness of

the solution should be considered for an inverse problem. In the next paragraphs,

we discuss this uniqueness of the solution.

If polynomials are used for regulatory relations, the number of unknowns for each

regulatory relation is equal to the degree of the polynomial, say p. Since there are n2

regulatory polynomials, for such a system, there are in total (p+1)n2 unknowns for

the optimization problem. In our quadratic approach, for each regulatory quadratic

polynomial fj,i, we have three unknowns corresponding to the coefficients of the

polynomial, namely aj,i, bj,i, cj,i. Thus we have in total 3n2 unknowns. On the other

hand, the number of knowns is equal to the size of the experimental data, i.e., l.

For such a system, the uniqueness of the solution depends on all: p, n and l, i.e., on

their constellation, and on the rank of the system matrix which we get when turning

our approximation problem into the form of n subproblems of canonical linear least

squares form. We shall come to the subproblems very soon.

If the number of knowns is smaller than the number of unknowns, then the

system is an under-determined system. Under-determined systems do not have a

unique solution. Unavailability of the current experimental data forces us to restrict

the solution space to have a unique solution for our under-determined system. Here,

we should note that repetition of the experiments and a wide range of experimental
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data combined with smaller sampling times will help us in determining the model

parameters and obtaining a high accurate system.

However, when we have a linear system, if the number of knowns and unknowns

are equal and if we have a full-rank matrix, there is a unique solution. Furthermore,

if the number of knowns is even larger, i.e., over-determined system, then we search

for the curve that fits to the experimental data best. Given an accuracy criterion,

we can numerically search for the curve that fits the data until the needed accuracy

value is reached. Because of the growth reasons (for the forthcoming n objective

functions), there is at least one solution for such a problem. Please refer to Isaacson

and Keller [42] for analytical discussions on numerical solutions.

In this study, we use the optimization problem mentioned above where all model

parameters are assumed to be used in gene regulations. Then, we discuss the family

of regulatory polynomials and transform the system to a new form where the opti-

mization problem is equivalently divided into n subproblems. For each subproblem,

we have in total 3n unknowns and l knowns.

6.3 Approximation to the Derivative

As we noted earlier, experiments provide us a finite set {Ē0, Ē1, ..., Ēl−1}, where

Ēm ∈ Rn is the experiment result given at time t̄m, where t̄m < t̄m+1 and m ∈
{0, 1, 2, ..., l−2}. In addition to this information, using a finite difference quotient, we

get an approximation of the left hand-side of the algebraic equation
.

E(t) = M(E)E

as follows:
.

Ēm :=

{
Ēm+1−Ēm

t̄m+1−t̄m
, if 0 6 m < l − 1

Ēm−Ēm−1

t̄m−t̄m−1
, if m = l − 1.

6.4 Revised Optimization Problem

6.4.1 Linear Approach

For a static regulatory network, the model parameters, i.e., the entries in the

regulatory matrix M ∈ Rn×n, are determined by the least squares method which

has the form:

45



min
M=(Mj,i)

`−1∑
m=0

||MĒm −
.

Ēm||2 .

Please note that this problem has at least one solution M̂ . Here, Ēm and
.

Ēm are

column vectors for the experimental data and difference quotients of the expression

levels of n genes at time t̄m for m ∈ {0, 1, 2, ..., l−1}, and ||.|| is the Euclidian norm.

The idea comes from the fact that, the increase/decrease in the expression level of

a gene, say gene i can be approximated by the sum of products of influence factors

for gene i and expression levels of influencing genes. More precisely, we have the

following equality for all j ∈ {1, 2, ..., n} and for all m ∈ {0, 1, ..., l − 1}:

(
.

Ēm)j = (Mj,1(Ēm)1 + Mj,2(Ēm)2 + Mj,3(Ēm)3 + ... + Mj,n(Ēm)n) + (AEm)j.

Here, (AEm)j is used to express the approximation error for the change in the

concentration of genej in the mth experiment time point and Mj,i ∈ R denotes the

influence of the expression level of gene i to the rate of trancription of genej, being

an entry of the following matrix:

M =



M1,1 M1,2 M1,3 ... M1,n

M2,1 M2,2 M2,3 ... M2,n

M3,1 M3,2 M3,3 ... M3,n

.. ... ... ... ...

Mn,1 Mn,2 Mn,3 ... Mn,n


.

Please note that the parameters estimated by the main problem are equal to

the parameters which are estimated by means of these subproblems. Since there is

no coupling between the equations corresponding to any two genes, say gene j1 and

gene j2 (j1 6= j2), the minimization problem can in fact equivalently be separated
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into n subproblems, each including l approximations as follows, for each genej:

(
.

Ē0)j = (Mj,1(Ē0)1 + Mj,2(Ē0)2 + ... + Mj,n(Ē0)n) + (AE0)j,

(
.

Ē1)j = (Mj,1(Ē1)1 + Mj,2(Ē1)2 + ... + Mj,n(Ē1)n) + (AE1)j,

...

(
.

Ēl−2)j = (Mj,1(Ēl−2)1 + Mj,2(Ēl−2)2 + ... + Mj,n(Ēl−2)n) + (AEl−2)j,

(
.

Ēl−1)j = (Mj,1(Ēl−1)1 + Mj,2(Ēl−1)2 + ... + Mj,n(Ēl−1)n) + (AEl−1)j.

Now, our subproblem associated to gene j looks as follows: We want to minimize

the approximation errors with respect to the entries of (MT )j, i.e., j th row vector of

M written as a column vector:

min
(MT )j

`−1∑
m=0

(ĒT
m(MT )j − (

.

Ēm)j)
2 ,

where MT denotes the transpose of the matrix M. Furthermore, ĒT
m is used to

express the transpose of the vector Ēm. Please note that the approximated change

in the expression levels and expression levels at time point t̄m are represented by

Ēm and
.

Ēm in this formula. All of these n subproblems are of canonical linear least

squares form, i.e., they have a vectorial unknown.

Let us summarize the linear approach: Given a finite set of expression levels,{
Ē0, Ē1, Ē2, ..., Ēl−1

}
, the finite difference quotients give us another finite set of

the approximate increase/decrease in the expression levels,
{ .

Ē0,
.

Ē1,
.

Ē2, ...,
.

Ēl−1

}
.

We search for the most accurate matrix M that minimizes the sum of squares of

differences between approximated and given data. As we noted in the previous

chapter, estimates for the next states are given by the iteration procedure Êk+1 =

MkÊk (k ∈ N0), where Êk denotes the approximated expression scores for the genes

at the corresponding time. This is a time-discrete dynamics, based on the initial

value Ê0, e.g., Ê0 = Ē0. The following example illustrates the optimization problem.
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Example 6.4.1.1

Let us analyze the response of our model for randomly generated sample, where

the number of genes being observed is n = 3 and the number of time points as

l = 5 given in Table 6.1. As you observe from this table, the entries in the first row

correspond to the entries of the vector Ē0. For example, the concentration of the

second gene at the initial time point is expressed by (Ē0)2 = 0, 9726.

gene1 gene2 gene3

at t̄0 [ 0,7778 0,9726 0,7802 ] = Ē0

at t̄1 [ 0,2324 0,6999 0,1815 ] = Ē1

at t̄2 [ 0,7026 0,9657 0,0424 ] = Ē2

at t̄3 [ 0,0032 0,8392 0,0503 ] = Ē3

at t̄4 [ 0,4908 0,0975 0,2250 ] = Ē4

Table 6.1: Expression scores of three genes on five time points.

We have in total three genes and nine interaction functions between these genes.

So, for this particular problem, the gene interaction matrix M ∈ R3×3 generally

looks as follows:

M =


M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

M3,1 M3,2 M3,3

 .

Assuming the difference between two consecutive time points, h̄m = 1 for m =

0, 1, ..., l−2, we use finite difference quotients and get the approximate increase and

decreases in the expression levels shown in Table 6.2.

gene1 gene2 gene3

at t̄0 [ −0, 5454 −0, 2727 −0, 5987 ] =
.

Ē0

at t̄1 [ +0, 4702 +0, 2658 −0, 1391 ] =
.

Ē1

at t̄2 [ −0, 6994 −0, 1265 +0, 0079 ] =
.

Ē2

at t̄3 [ −0, 4876 −0, 7417 +0, 1747 ] =
.

Ē3

at t̄4 [ −0, 4876 −0, 7417 +0, 1747 ] =
.

Ē4

Table 6.2: Approximation to the changes in the expression levels.
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We explained that since there is no coupling between the expression functions of

any two genes, we can equivalently divide the problem into n subproblems. Please

observe that the following least squares problem represents the j th subproblem, i.e.,

the optimization problem for gene j by using the Euclidian norm ‖.‖:

min
Mj,1,Mj,2,Mj,3

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0, 7778 0, 9726 0, 7802

0, 2324 0, 6999 0, 1815

0, 7026 0, 9657 0, 0424

0, 0032 0, 8392 0, 0503

0, 4908 0, 4908 0, 2250




Mj,1

Mj,2

Mj,3

−



(
.

Ē0)j

(
.

Ē1)j

(
.

Ē2)j

(
.

Ē3)j

(
.

Ē4)j



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

.

Let a solution of this problem be expressed as (M̂T )j =
[
M̂j,1 M̂j,2 M̂j,3

]T

. The

least squares problem is solved by lsqlin function provided by MATLAB. lsqlin solves

a linear system in the least squares sense and outputs the solution vector, the residual

and the residual norm. For the subproblem we presented, the solution vector is

(M̂T )j and the residual vector R̂j = ((R̂j)0, (R̂j)1, ..., (R̂j)l−1)
T is defined as follows:

R̂j =



ĒT
0 (M̂T )j − (

.

Ē0)j

ĒT
1 (M̂T )j − (

.

Ē1)j

ĒT
2 (M̂T )j − (

.

Ē2)j

...

ĒT
l−1(M̂

T )j − (
.

Ēl−1)j


,

and shows the least squares approximation error. Furthermore, the residual norm

is the norm of the residual vector:

norm(R̂j) =
l−1∑
m=0

((R̂j)m)2.

For each gene, we solved the least squares problem for this particular example

and obtained the following gene regulatory matrix for this particular problem:
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M̂ =


−0, 8138 +0, 2048 +0, 2926

−0, 2018 −0, 1542 −0, 0889

+0, 1744 +0, 0188 −0, 8617

 .

After determining the gene regulatory matrix, we can conclude about the gene

interactions. In the previous chapters, we expressed the linear regulatory function

in the following way fj,i(x) = aj,ix, where x = Ei denotes the expression level of

gene i . After we solve the model parameters, i.e., the coefficients of the functions, we

observe that aj,i = M̂j,i. For example, we denoted the influence of gene1 to gene2 by

f2,1(x) = a2,1x, where x denotes the expression level of gene1 . After we solved the

least squares subproblem for the second gene, we determined that a2,1 = −0, 2018,

a2,2 = −0, 1542 and a2,3 = −0, 0889.

In Chapter 5, we explained that the next expression level of the gene j can be

approximated by the following equation:

(Êk)j + hk

n∑
i=1

fj,i((Êk)i),

where k denotes the current step, hk is the difference between two consecutive time

points and Êk is an approximation vector of expression levels at time point k. Sup-

pose the initial expression levels are equal to the first expression level vector provided

by the experiment, i.e., Ê0 := Ē0. Also, suppose that the time difference between

any two approximations is 1, i.e., hk = tk+1 − tk = 1 (k ∈ {0, 1, ..., s − 2}). Here,

s ∈ N0 denotes the chosen number of iterations to approximate and predict the next

states given the initial state. In fact, as we stated earlier, to be able to compare

the experimental data with the approximated data, we take hk = 1, since the time

difference between the experimental data points are 1. However, please observe that,

in general, the time differences between two consecutive approximations need not

to be the same as the time difference between neighboring sampling times.

For example, the next expression level for gene2 can in our example be calculated
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gene1 gene2 gene3

at t0 [ 0,7778 0,9726 0,7802 ] = Ê0

at t1 [ 0,5723 0,5963 0,2619 ] = Ê1

at t2 [ 0,3053 0,3655 0,1473 ] = Ê2

at t3 [ 0,1748 0,2344 0,0805 ] = Ê3

at t4 [ 0,1041 0,1558 0,0460 ] = Ê4

at t5 [ 0,0648 0,1067 0,0275 ] = Ê5

Table 6.3: Approximation with linear functions.

as follows:

(Ê1)2 = (Ê0)2 +
3∑

i=1

f2,i((Ê0)i)

= (Ê0)2 + f2,1((Ê0)1) + f2,2((Ê0)2) + f2,3((Ê0)3)

= 0, 9726 + f2,1(0, 7778) + f2,2(0, 9726) + f2,3(0, 7802)

= 0, 5963.

Here, the functions f2,1, f2,2 and f2,3 are the linear functions stated above. For

example f2,1((Ê0)1) can be determined in the following way:

f2,1((Ê0)1) = f2,1(0, 7778)

= a2,1 × 0, 7778

= −0, 2018× 0, 7778

= −0, 1570.

Starting from the initial point Ē0, we calculate the next metabolic states similarly

and infer the next metabolic states as in Table 6.3.

In this work, our focus is not on the stability analysis but a small discussion

about stability analysis and boundedness of the solution is given in the previous

chapters. As we stated in those chapters, the stability of a linear system depends

on the eigenvalues of matrix M , since the Jacobian matrix J is equal to M in linear

case. The eigenvalues of the matrix are determined as δ1 = −0, 2611, δ2 = −0, 5139
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and δ3 = −1, 0547. The eigenvalues are calculated by means of eig function provided

by MATLAB. Since all eigenvalues are negative, then this implies that our system

is stable.

6.4.2 Approximation with Polynomials

As in the previous section, we have some approximations when we infer the un-

derlying regulatory networks by interactions represented by quadratic polynomials.

For all genes j ∈ {1, 2, ..., n} and all samples m ∈ {0, 1, ..., l−1}, the approximation

changes in the following way:

(
.

Ēm)j = (fj,1((Ēm)1) + fj,2((Ēm)2) + fj,3((Ēm)3) + ... + fj,n((Ēm)n)) + (AEm)j.

Here, fj,i : R → R denotes the influence of the expression level of gene i to the rate of

trancription of genej, being a quadratic function defined as follows: fj,i(x) = aj,ix
2+

bj,ix + cj,i, where x = Ei denotes the concentration of gene i and aj,i, bj,i, cj,i ∈ R.

The minimization problem can in fact be separated into n subproblems, each

subproblem including l approximations as follows:

(
.

Ē0)j = (aj,1(Ē0)
2
1 + bj,1(Ē0)1 + cj,1) + ... + (aj,n(Ē0)

2
n + bj,n(Ē0)n + cj,n) + (AE0)j,

(
.

Ē1)j = (aj,1(Ē1)
2
1 + bj,1(Ē1)1 + cj,1) + ... + (aj,n(Ē1)

2
n + bj,n(Ē1)n + cj,n) + (AE1)j,

(
.

Ē2)j = (aj,1(Ē2)
2
1 + bj,1(Ē2)1 + cj,1) + ... + (aj,n(Ē2)

2
n + bj,n(Ē2)n + cj,n) + (AE2)j,

...

(
.

Ēl−1)j = (aj,1(Ēl−1)
2
1 + bj,1(Ēl−1)1 + cj,1) + ... + ( ... + cj,n) + (AEl−1)j.

For all j, the minimization of these approximation errors is done in the following
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simultaneous way of least squares:

min
cj,1,bj,1,aj,1,

...
cj,n,bj,n,aj,n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



1 (Ē0)1 ((Ē0)1)
2
... 1 (Ē0)n ((Ē0)n)

2

1 (Ē1)1 ((Ē1)1)
2
... 1 (Ē1)n ((Ē1)n)

2

1 (Ē2)1 ((Ē2)1)
2
... 1 (Ē2)n ((Ē2)n)

2

... ... ... ... ... ...

1 (Ēl−1)1 ((Ēl−1)1)
2
... 1 (Ēl−1)n ((Ēl−1)n)

2





cj,1

bj,1

aj,1

cj,2

bj,2

aj,2

...

cj,n

bj,n

aj,n



−



(
.

Ē0)j

(
.

Ē1)j

(
.

Ē2)j

...

(
.

Ēl−1)j



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

.

Thus, for all j ∈ {1, 2, ..., n} the subproblem can be stated as:

min
Ăj

`−1∑
m=0

(ĔmĂj − (
.

Ēm)j)
2,

where Ĕ is a collection of Vandermonde matrices for polynomials as represented in

the optimization problem at the top of the page. Here, Ĕm represents the m th row

vector of the matrix Ĕ. In addition, Ăj = ((Ăj)1, (Ăj)2, (Ăj)3..., (Ăj)3n)T is a column

vector consisting of the coefficients of the polynomials for the regulating functions

fj,1, fj,2, ..., fj,n.

Please note that dividing the problem into subproblems does not require any ad-

ditional restrictions and is completely equivalent to the huge optimization problem.

This special division also enables us to use parallel computing, i.e., we can com-

pute the regulating functions’ coefficients for each gene separately. Computational

complexity of the system highly reduces when we use parallel computing. Another

important issue to consider is that, when we do not divide the problem but instead

decompose the original system, we use the sparsity of the gene interaction matrix

and cause an increase in the rounding errors. What we do instead, is dividing the

system into subproblems and for each problem using Singular Value Decomposition

(SVD). More precisely, we use SVD to decompose Ĕ, and analyze and improve the
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rank deficiency of the matrices.

Singular Value Decomposition (SVD)

The least squares problems which reveal a rank deficiency, have no unique solu-

tion [33, 36]. A common practice is to select the minimum residual solution having

the smallest norm. If a least squares problem is close to rank-deficiency, then the

system will be quite sensitive to the perturbations in the input data. In addition,

the condition number for a matrix also measures how close a matrix is from being

singular. Please note that the sensitivity to perturbations is so important for our

model that we should make our system less sensitive to the perturbations in the

experimental data. This is being called regularization or stabilization.

When we have ill-conditioned or rank deficient systems in least squares problems,

we usually use a method of analyzing and solving the problem called singular value

decomposition (SVD).

Let A ∈ Rm×n, then the singular value decomposition has the form:

A = USV T ,

where is U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices and S ∈ Rm×n is a rectangu-

lar matrix which consists of a leading diagonal matrix D and 0 values around. The

dimension of the matrix D is the rank of A. Thus, the diagonal entries of D, all of

them being positive, are called the singular values of A . In addition, the columns

of the orthogonal matrices correspond to singular vectors.

When we use SVD in solving ill-conditioned least squares problems, SVD drops

the small singular values from the solution and make the system less sensitive to

the perturbations. Please refer to [33, 36] for more information about SVD. Hansen

[33] developed the Regularization Tools Version 3.1 for analysis and solution of

discrete ill-posed problems. The developed package provides different regularization

strategies, enables to compare the results and draw conclusion about the strategies.

The Regularization Tools Version 3.1 is available for MATLAB users.

Here, we note some useful properties related to SVD and conclude what do

these properties mean for our system. Let us denote the singular values of A as
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α1, α2, α3, ...αr, where αµ 6 αµ+1 for µ = 1, 2, ..., r − 1.

The condition number of A measures closeness to rank deficiency. The rank of

the matrix A is equal to the non-zero singular values and also the condition number

for the matrix A, cond(A) can be calculated by means of singular values in the

following way:

cond(A) =
αr

α1

.

Here, we comment that our regularization strategy should be decided according

to our system, and the package is a useful tool in determining the best strategy.

Now, we continue with our example.

Example 6.4.2.1

In Example 6.4.1.1, we analyzed the behavior of the linear approach given the ex-

perimental data in Table 6.1. Please remember that the difference quotients related

to the data are calculated and shown in Table 6.2. Similar to the linear approach,

we solve the optimization problem to determine the coefficients for the quadratic

polynomials.

Let us firstly determine whether our system is close to rank deficiency or not

using one of the functions provided by MATLAB, i.e., svd. Please note that the

following matrix, Ĕ is same for each subproblem:

Ĕ =



1 0, 7778 0, 6050 1 0, 9726 0, 9460 1 0, 7802 0, 6087

1 0, 2324 0, 0540 1 0, 6999 0, 4899 1 0, 1815 0, 0329

1 0, 7026 0, 4936 1 0, 9657 0, 9326 1 0, 0424 0, 0018

1 0, 0032 0, 0000 1 0, 8392 0, 7043 1 0, 0503 0, 0025

1 0, 4908 0, 2409 1 0, 0975 0, 0095 1 0, 2250 0, 0506


.
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Using svd for this matrix we determine the following singular values

α1 = 0,0843

α2 = 0,5099

α3 = 0,8495

α4 = 1,0316

α5 = 4,6545,

which are used to determine the condition number for Ĕ :

cond(Ĕ) =
α5

α1

= 55, 2135.

If the condition number of the matrix was very large, then this would indicate

that we have a nearly singular matrix. Please note that svd produces very valuable

results for our least squares problem. We refer to [33, 36] for details.

For each subproblem j, we calculate the coefficients of the functions fj,1, fj,2, ..., fj,n.

The following polynomials represent the influence of one gene to another. Note that

some of these polynomials are linear while the rest of them are quadratic. This re-

minds that our model produces linear functions as well as quadratic functions which

constitutes an advantage for our model.

f1,1(x) = −1, 3137x + 1, 0019

f2,1(x) = −2, 0613x− 2, 5403

f3,1(x) = −0, 4766x + 0, 8010

f1,2(x) = −1, 5202x + 0, 6461

f2,2(x) = −9, 0193x2 + 9, 7244x

f3,2(x) = +2, 0340x2 − 2, 4042x

f1,3(x) = +0, 3641x

f2,3(x) = −0, 3357x

f3,3(x) = −0, 7880x.

Please observe that the coefficients of the functions fj,1, fj,2 and fj,3 are calculated in

the jth subproblem. In other words, after solving each subproblem j, the coefficients

which affect the next expression level of gene j are determined.
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Similar to the linear case, we suppose the time differences between two approx-

imations, hk = tk+1 − tk = 1 (k ∈ {0, 1, ..., s − 2}), where s denotes the number of

iterations made during approximation and prediction. We take the initial expression

level vector Ē0 as the initial approximation and recursively infer the next metabolic

states as seen in Table 6.4.

gene1 gene2 gene3

at t0 [ 0,7778 0,9726 0,7802 ] = Ê0

at t1 [ 0,2324 0,6999 0,1815 ] = Ê1

at t2 [ 0,7026 0,9657 0,0424 ] = Ê2

at t3 [ 0,0032 0,8392 0,0503 ] = Ê3

at t4 [ 0,4908 0,0975 0,2250 ] = Ê4

at t5 [ 0,9784 -0,6442 0,3997 ] = Ê5

Table 6.4: Approximation with quadratic polynomials.

If we concentrate on Table 6.3 and Table 6.4, we can observe that our model

approximates the experimental data better than the linear model. In the next

section, we explain the success of the methods in detail.

The stability analysis for our nonlinear system is more complex than the linear

case. In the linear case, we stated that our system is stable and also satisfies the

criterion for the BIBO stability since the eigenvalues of the matrix M are all negative.

In our model, we cannot state the stability or unstability for all E, but we can for

some particular metabolic states, i.e., for some particular E, state the stability. The

previous chapters describe the stability analysis in detail.

6.5 Comparative Results

6.5.1 Least Squares Approximation Errors

Microarray experiments, like many other experiment concerning dynamic sys-

tems, contain noise. Thus, artificially created data are more reliable for numerical

comparison. Here, we use the least squares approximation errors to compare the

linear and nonlinear approaches.
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Figure 6.1: Approximated expression levels and the experimental data.

Linear approach and modeling the gene interactions with quadratic polynomials

both predict the next state depending on the initial state. We note that in our

examples, given in the previous section, we use the first experimental data Ē0 as

the initial state. The success of the next predicted states depends on the model

chosen. In Figure 6.1, for the example we gave in the previous sections, we analyze

the approximated expression levels for the first gene.

Figure 6.1 illustrates that the approximated expression levels for the first gene

are almost the same with the experimental data in the quadratic model, but in

linear approximation we see that the expression levels differ from the given data.

As we remember, the example data consist of five time point, i.e., l = 4, where the

expression levels of three genes, i.e., n = 3, are given at each time point. In this

figure, we see six time point, the last of which shows the predicted expression level for

the coming state, so the last time point does not contain the experimental data, but

it contains only the predicted levels. If we concentrate on the experimental data and

the approximated values for the linear approach, we see that the difference between

the values is not so small while this is not the case for the quadratic approach.

This figure is shown only to emphasize that for only a small number of genes and
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discrete time intervals, the linear approach is not so successful as our model in

approximation.

Please note that the expression levels form a monotone sequence, namely, de-

creases within time, when we use linear idealization which is an expected result

because of the linearity. In the next few iterations, the expression level of the gene

goes to zero which is not usually true for the real expression levels. On the other

hand, because of the nonlinear behavior of our model functions, the expression level

for the same gene can increase or decrease, i.e., it is not a monotone sequence, similar

to the real expression levels.

A better way to compare the success of linear and nonlinear approaches is using

the residuals and residual norms. Please remember that since we divided our opti-

mization problem into n subproblems, where n denotes the number of genes being

considered, we should make n comparisons. For the j th optimization subproblem, we

use the residuals, i.e., Fj(Ēm)−(
.

Ēm)j (m = 0, 1, ..., l−1), to express the least squares

error at time tm. Thus, residual vector R̂j ∈ Rl, R̂j = ((R̂j)0, (R̂j)1, ..., (R̂j)l−1)
T ,

for each subproblem j can then be defined in the following way:

R̂j =



Fj(Ē0)− (
.

Ē0)j

Fj(Ē1)− (
.

Ē1)j

Fj(Ē2)− (
.

Ē2)j

...

Fj(Ēl−1)− (
.

Ēl−1)j


.

Table 6.6 shows the residuals for the example we gave in the previous chapters.

For both linear and quadratic case, we have three columns, each standing for a sub-

problem, and five rows, each standing for the time point. If we want to compare the

approximation errors for the first gene, i.e., the difference between the experimental

data and the approximated values for the first gene, we concentrate on the first and

the fourth column vectors where each entry in the column vectors correspond to the

approximation error for each time point. Please observe that these column vectors

correspond to the approximation errors which we observed in Figure 6.1.

Furthermore, we can use the residual norm for each subproblem j, which is
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defined as follows:

norm(R̂j) =
l−1∑
m=0

((R̂j)m)2.

More precisely, the residual norm is the sum of squares of the entries in the residual

vector R̂j. The residual norm is defined as square of the minimal error value we

have got by least squares approximation. Table 6.5 shows the residual norms for the

same problem. Please observe that we have three rows for both linear and quadratic

approaches, where each row corresponds to the subproblem.

Linear Approach Quadratic Approach
n Residual Norm Residual Norm
1 1,1780 7,1491*10−31

2 0,9676 5,6091*10−30

3 0,1368 3,6482*10−31

Table 6.5: Residual norms for linear and quadratic approximation (n denoting the
number of genes being considered).

Linear Approach Quadratic Approach
n 1 2 3 1 2 3

0,34 -0,10 0,08 -0,56*10−15 0,09*10−14 -0,56*10−15

-0,46 -0,44 0,04 -0,33*10−15 0,05*10−14 -0,03*10−15

0,34 -0,17 0,10 -0,22*10−15 -0,19*10−14 0,15*10−15

-0,30 0,61 -0,20 -0,44*10−15 0,09*10−14 -0,08*10−15

-0,80 0,61 -0,28 -0,22*10−15 -0,01*10−14 -0,17*10−15

Table 6.6: Residuals for linear and quadratic approximation (n denoting the number
of genes being considered).

These results show that nonlinear approximation generates more accurate results

when we compare with the linear approach. Here, we should note that a better

comparison of the approaches should be made after training the system with a

large number of experimental data. After training of the system, the success of

the determined parameters should be tested for other experimental data. More

precisely, given some experimental data, we should compare the experimental data
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and the predicted data determined by our time-discrete equation, given the initial

state. However, we showed earlier that our model not only produces quadratic

polynomials but linear functions as well. This implies that the future behavior of

the system described by a linear model can also be regarded as a special case of

modeling by a quadratic polynomial.

6.5.2 Pathway Analysis

In 1998, Spellman et al. [66] carried a famous study for the yeast Saccharomyces

cerevisiae and determined some of the regulator genes in the yeast. Here, we study

the gene interactions between some parts of the genes which are responsible for the

glycolysis pathway. More precisely, we study the interactions between NTH2, ATH1,

TPS1, TPS2, TSL1, TPS3, GSY2, GSY1 and GLG1, given the experimental data

in Appendix.

The experimental data are public and we use these data to compare the residual

norms with different models. The figures given in Appendix show the calculated

values for approximation with polynomials of degree one, two and three, respectively.

The results for the first, second and third degree polynomials are shown in Table

6.7.

Linear Quadratic Polynomial of degree 3
n Residual Norm Residual Norm Residual Norm
1 0,4714 0,0380*10−28 0,1093*10−29

2 0,0352 0,0389*10−28 0,2790*10−29

3 0,1549 0,2190*10−28 0,1581*10−29

4 0,1855 0,0433*10−28 0,1773*10−29

5 0,5443 0,0477*10−28 0,3920*10−29

6 0,2137 0,0732*10−28 0,0579*10−29

7 2,6724 0,0677*10−28 0,2846*10−29

8 0,5964 0,0246*10−28 0,2861*10−29

9 1,2069 0,3414*10−28 0,4610*10−29

Table 6.7: Residual norms for approximation with first, second and third degree
polynomials (n denoting the number of genes being considered).

This table shows that the least squares errors corresponding to the linear and
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nonlinear polynomials are quite different. For the linear case, the relative error is

quite high, i.e., the model approximates the experimental data not accurately, while

quadratic polynomials can approximate the data with negligible quadratic errors.

Increasing the degree of the polynomials provides a better fit to the training data.

However, this results in higher sensitivity to measurement noise and process un-

certainties. Therefore, polynomials with the smallest degree providing a reasonable

approximation should be preferred.

Since the enzyme concentrations have multiplicative effects, there are strong

nonlinearities in gene regulation. This is the most important reason for the poor

performance of linear approximation. In experimental results, we obtained lower

residual errors for cubic polynomials. It is natural that a cubic polynomial provides

a better fit to a given wave-form, since quadratic polynomials are a subclass of

it. However, the residual error does not give us the error but it gives the minimum

possible error because there exist both measurement noise and process uncertainties.

A perfect fit also includes all those errors as if they are part of the systems dynamics;

this will result in very high prediction errors for long term. Modeling the system

by a more limited range of functions is a popular method to attenuate the noise.

If sufficient data were available, the correct comparison should be as follows: We

use only a portion of data to train our system and estimate the parameters. Let us

denote this first portion of data by Ē0, Ē1, ..., Ēl1−1. Then, we test the model with

some of the remaining data, e.g., Ēl1 , Ēl1+1, ..., Ēl1+l2−1 (l = l1 + l2). If the test ends

with a reasonable approximation error, we could consider using our model to predict

the later behavior. However, available data are very limited for a real test.
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chapter 7

GENE NETWORK ANALYSIS

7.1 Modeling of Gene Interactions

In the previous sections, we explained how to infer a gene regulatory network,

given a finite set of gene expression profiles. In the literature [12, 13], the gene

interactions are characterized by some functions of the expression levels of genes.

In these idealizations, the modeling functions are linear, while in our approach we

use quadratic polynomials. For any modeling function, we can construct a weighted

directed graph corresponding to a gene regulatory network, where each gene cor-

responds to a vertex in the graph. The influences are represented by the directed

edges and the weights of the influences are described by the modeling functions.

In our model, we do not have any restriction on the regulatory dynamics. For

example, there is no restriction on the number of regulator genes for a gene that

corresponds to the input edges targeting that edge. Furthermore, we also allow

self-regulating genes which correspond to the loops in the network. The followed

strategy constructs a gene regulatory network, where each gene in the network can

both have influences on some genes and be influenced by some other genes including

itself in the network.

Here, we give a brief summary of gene networks. We first assume that the gene

interactions are constant, i.e., the influence of any gene on another gene does not

change. For such a case, the next influence of the genes does not change whatever

the expression level of the influencing gene is. This special case corresponds to a

static network, where each weight is constant. Please note that such a modeling

cannot give an inference for the underlying dynamics in reality, since the underlying

network topology is fixed for such a definition.

When we define the weights as linear functions, we have an increased dynamics in
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the network. The influence of any gene to another gene changes linearly, depending

on the expression level of the regulating gene. We discussed the linear approaches

[12, 13, 81] in Chapter 3. In our approach, we assume nonlinear interactions between

genes. In the following sections, we consider a particular nonlinear function, namely,

quadratic polynomials.

7.1.1 Constant Influences

Assume that the genes that have an influence on the expression level of genej

(j ∈ {1, 2, ..., n}) are represented by a set Ij = {genej,ij1
, genej,ij2

, ..., genej,ijnj
}, where

ij1, ..., i
j
nj
∈ N and nj 6 n ∈ N. Furthermore, the influence levels are given by the set{

aj,ij1
, aj,ij2

, ..., aj,ijnj

}
with aj,ijκ

∈ R for κ ∈ {1, 2, ..., nj}. In other words, assuming

that the influence of gene i to genej is described by a constant function fj,i ≡ aj,i, for

the next state, the change in the expression level of genej will be a constant value,

i.e.,

Fj(E) =

nj∑
κ=1

fj,ijκ
(Eijκ

) =

nj∑
κ=1

aj,ijκ
,

whatever the expression levels of influencing genes, i.e., Eij1
, Eij2

, ..., Eijnj
, are.

Based on the definitions in [9, 85], we formally define such a weighted directed

network in the following way: A weighted directed network is an ordered triple

G = (V, E, W ), where V = {vi|i = 1, 2, 3, ..., n} is a finite, non-empty set of n ∈ N
different elements, where each element in the set is called a vertex. Furthermore, E

represents a finite set of ordered pairs of vertices, i.e., E ⊆ {ei,j = (vi, vj)|vi, vj ∈ V } ,

and W = {(ei,j, wj,i)|ei,j ∈ E} is a relation set which associates an edge with a weight

value, where (fj,i ≡) wj,i ∈ R.

By our introduction of a weighted directed network, we allow that there are loops,

i.e., edges starting and terminating in the same vertex, and that an edge may go in

both directions between two different vertices. Figure 7.1 shows a gene network of

three genes, where the gene expression levels also shown on the left-hand side. We

64



Figure 7.1: A directed graph with constant weights for a gene network consisting of
three genes whose influences are shown on the left-hand side.

formally define this network by these sets:

V = {vi|i = 1, 2, 3} ,

E = {e1,2 = (v1 , v2), e2,3 = (v2, v3), e3,1 = (v3, v1)} ,

W = {(e1,2, 3), (e2,3, 5), (e3,1,−2)}.

Please note that for this problem we have w2,1 = 3, w3,2 = 5, w1,3 = −2.

7.1.2 Linear Idealization

In Section 3.3, we discussed the linear approach and represented the influence of

gene i to genej by a function fj,i(x) = aj,ix, where aj,i ∈ R and x = Ei denotes the

expression level of gene i. The definition given for a static network in Section 7.1.1

remains the same for the network definition which we use now for linear idealization,

except the relation set. Here, W = {(ei,j, wj,i)|ei,j ∈ E} represents the relation

between edges and influence functions where wj,i = fj,i(x) = aj,ix is an influence

function of x = Ei ∈ R, denoting the expression level of the i th gene.

Assume that the genes which have an influence on the expression level of genej

are represented by a set Ij = {genej,ij1
, genej,ij2

, ..., genej,ijnj
}, similar to the case

we consider the constant influences. The change in the expression level of genej

is modelled by the sum of products of expression levels of the influencing genes,

i.e., Eij1
, Eij2

, ..., Eijnj
, and the influence levels, aj,ij1

, aj,ij2
, ..., aj,ijnj

. More precisely, the
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Figure 7.2: A directed graph with linear weights for a gene network consisting of
three genes whose influence functions are shown on the left-hand side.

change in the expression level of genej is

Fj(E) =

nj∑
κ=1

fj,ijκ
(Eijκ

) =

nj∑
κ=1

aj,ijκ
Eijκ

.

Figure 7.2 shows a gene network of three genes, where the gene influence func-

tions are also shown on the left-hand side. In this figure, x1, x2 and x3 denote the

expression levels of the first, second and third genes, i.e., E1, E2 and E3, respectively.

We formally define this network by these sets:

V = {vi|i = 1, 2, 3} ,

E = {e1,2 = (v1 , v2), e2,3 = (v2, v3), e3,1 = (v3, v1)} ,

W = {(e1,2, w2,1), (e2,3, w3,2), (e3,1, w1,3)},

where w2,1 = 3x (x = E1), w3,2 = 5x (x = E2) and w1,3 = −2x (x = E3).

From our representation of the change in the expression level of genej by Fj,

i.e., by the right-hand side of the system dynamics Ė = F (E), we learn the close

relation between our system of ODEs and the corresponding gene network. While

here we have referred to the linear case F (E) = ME, in the following we shall refer

to our quadratic case of modeling.
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Figure 7.3: A directed graph whose weights are given by quadratic polynomials on
the left-hand side, corresponding to a gene network of three genes.

7.1.3 Modeling with Quadratic Polynomials

In our approach, we represent the interactions by quadratic polynomials. As we

did in the previous chapters, now we represent the influence of gene i to genej by

a quadratic function wj,i = fj,i(x) = aj,ix
2 + bj,ix + cj,i, where aj,i, bj,i, cj,i ∈ R and

x = Ei denotes the expression level of gene i.

Assume that all genes which have an influence on the expression level of gene i,

are represented by a set Ij = {genej,ij1
, genej,ij2

, ..., genej,ijnj
}. The change in the

expression level of gene i is approximated by the corresponding influence functions.

More precisely, the change in the expression level of genej is

Fj(E) =

nj∑
κ=1

fj,ijκ
(Eijκ

) =

nj∑
κ=1

(aj,ijκ
(Eijκ

)2 + bj,ijκ
Eijκ

+ cj,ijκ
).

Figure 7.3 shows a gene network of three genes, where the gene influence poly-

nomials are also shown on the left-hand side. We formally define this network by

these sets:

V = {vi|i = 1, 2, 3} ,

E = {e1,2 = (v1 , v2), e2,3 = (v2, v3), e3,1 = (v3, v1)} ,

W = {(e1,2, w2,1), (e2,3, w3,2), (e3,1, w1,3)}.

Here, w2,1 = 3x2 + 2x (x = E1), w3,2 = 5x + 2 (x = E2) and w1,3 = −x2 − 4x + 3

(x = E3).
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7.2 Analysis of Gene Networks

Given a gene regulatory network, we can analyze the underlying topology de-

pending on the biological questions to be answered. If we are given a network where

the vertex set consists of genes in a particular metabolic reaction and we are asked

to find the effects of lack of any gene in this reaction, we search for cut vertices in

the given network and analyze the network connectivity when any fixed cut vertex is

removed from the network. This is also related with so-called knockout experiments.

If the question concerns the influence of a fixed gene to others, we analyze the short-

est paths from the fixed vertex to others. Similarly, we compute the shortest path

from all vertices to one fixed vertex to express the influence of all genes to the fixed

gene. Please refer to [16] for the graph theoretical foundations and algorithms.

With current technology and biological information in hand, we analyze par-

ticular groups of genes, for example, the interactions between genes functioning in

consecutive metabolic reactions. Analyzing larger networks, for example, analyzing

human genome which consists of thousands of genes interacting with each other,

needs other questions to be answered. In addition to the questions asked for small

networks, such as finding cut vertices or a shortest path between two distinct ver-

tices, some other questions arise, e.g., how the network connectivity is affected by

deleting some percentage of vertices, or what is the average shortest path length for

current larger networks.

The coming sections concern the main problems to be answered in the analysis

of gene networks.

7.2.1 Degree Related Questions

To indicate the number of genes which have an influence on a particular gene, we

use the term indegree. The indegree of a vertex, say vi with i ∈ {1, 2, ..., n}, denotes

the number of directed edges whose target is that particular vertex. We denote

the indegree of vertex vi by in(vi). Similarly, when we want to know the number

of genes which are influenced by a particular gene, we speak about the outdegree

of that vertex which is defined as the number of edges originating from the target
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vertex, out(vi).

Indegree and outdegree of a vertex are the cardinalities of the following edge

sets:

A(v) = {(vi, vj) ∈ E|vj = v},

B(v) = {(vi, vj) ∈ E|vi = v}.

7.2.2 Path Related Questions

Biologists usually ask questions about the relation between some genes, where

the question can be answered by means of paths. A path in a directed weighted

graph G = (V, E, W ) is a non-empty sequence of vertices

P = (v1, v2, ..., vk),

where vi ∈ V (i ∈ {1, 2, ..., n}) such that (vi, vi+1) ∈ E (i 6 n − 1). The length of

the path is k − 1. If there is a path connecting one vertex to a particular vertex,

then we can say that the gene has an influence on that particular gene.

By means of paths we detect whether there is one gene regulating another, but

the answer is not quantitative. To answer such questions, we use shortest path algo-

rithms to determine the weak and strong interactions between genes. The shortest

path problem is discussed in the coming sections. Another interesting and for our

research promising approach to the connectedness in gene networks is given by the

properties of gossiping and broadcasting. Both of them have already successfully

been studied for special network classes [22].

7.2.3 Shortest Path Problem

Gene network analysis mainly concerns shortest path problems, which give a

strong clue about weak and strong interactions between genes. In a static network,

finding shortest paths from a vertex can be solved by Dijkstra’s Algorithm [17].

This algorithm gives us the enumerated shortest paths from a source vertex to other

vertices. This shows the influence of the source gene to other genes. Similarly, if the
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shortest path from one vertex to a destination vertex is smaller than the shortest

path from another vertex to the destination, we conclude that the influence of the

second gene is stronger that the influence of the first one.

An important note should be stated here: Dijkstra’s Algorithm is used for di-

rected, acyclic networks. A directed, acyclic graph is a directed graph which contains

no cycles. The examples we have given in the previous sections contain cycles, i.e.,

there are paths whose start vertices and end vertices are the same. We cannot use

Dijkstra’s Algorithm for finding shortest paths for such examples. This constitutes

a challenge for the nature of the regulations, since feedback loops in the regulatory

relations generate a cycle in the gene regulatory network.

7.3 Choice of Representation and Algorithm

For the shortest path problems, there are some other algorithms with better

complexity than Dijkstra’s Algorithm mentioned in the literature [9, 14, 60]. Here,

we only give a motivation to the problem of weak and strong interactions and provide

an introduction to graph theory. Please refer to [16, 23] for closer details on graph

theory, and [46, 67, 83] for more information on the algorithms and data structures

used for networks.

Here, we should note that the best choice among all shortest path algorithms

depends on the underlying biological motivation. In order to make the appropriate

choice when selecting a graph representation scheme and algorithm, it is necessary

to understand the time and space issues. Space and time considerations depend on

the current network and underlying topology.

There is always a trade-off between the complexity of an algorithm and the

space allocation for the data structures. So, given a gene interaction matrix, one

should decide on an optimum decision. We contribute that depending on the bio-

logical motivation and biological questions to be answered, we should decide on the

underlying data structure and choose a suitable algorithm for analyzing the weak

and strong interactions between genes.
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chapter 8

SUMMARY AND CONCLUSION

In this study, we focussed on the inverse problem of inference of the gene regula-

tory dynamics based on time-series gene expression patterns. Our particular interest

was concentration on the model class selection. Here, we underlined that the model

should describe the continuous nature of the biochemical processes and reflect the

nonlinearities when approximating and predicting the gene expression patterns. We

used the gene expression rates by ordinary differential equations (ODEs) where each

regulator effect is modeled by a nonlinear function, in particular, a quadratic poly-

nomial. The expression rates were approximated by means of difference quotients.

In fact, our problem is an inverse problem which aims to find the polynomial

coefficients that best fit the training data. The coefficients of these polynomials were

determined by least squares approximation. We studied the corresponding general

cases of solvability, assumed that the experimental data are sufficient not to have

a rank deficient system, and clarified the selection of the model class of quadratic

polynomials for gene interactions.

Furthermore, we also considered the stability of the referred dynamical system.

We discussed that a linear system is stable if it is stable for any particular state

(especially, any stationary point), while biological systems which consist of highly

nonlinear mechanisms may be stable for some range and unstable for another range.

More precisely, we explained that when we have a linear system, the gene interaction

matrix is a constant matrix. Thus, if the matrix satisfies the stability criterion for

any expression vector E = E(t), at any time t, then the system is stable, since

the interaction matrix is constant. On the other hand, when we have a nonlinear

system, we explained that we cannot easily state the stability of our system, but

we can analyze the stability of the system by assigning suitable values to the model

parameters. In other words, we can divide the subspace spanned by the coefficients
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to separate the stable and unstable ranges. We also discussed the BIBO stability

which is a useful criterion to generate an accurate dynamical system and explained

that BIBO stability studies the response of the system to a bounded input, i.e.,

perturbation, more precisely the boundedness of our system.

The time-discrete equation, which we carefully provided and discussed, is an

autonomous system, i.e., the system does not depend on time but it depends only

on the current state. The anticipation of the gene expressions is described by the

initial value provided to the system and the recursive definition for the next states.

So, the accuracy of the predicted values depends on the initial value given to the

system.

Estimated parameters are used to construct a gene regulatory network. We

discussed the gene network analysis where we stated that for nonlinear systems,

determining the quantitative regulatory effects is not so simple. Even for a quadratic

polynomial and very few edges, we have to decide on the shortest paths which

are also optimization problems. The difficulty of analyzing such a complex and

continuously depending network constitutes a big challenge for determining valuable

results. However, we have an opportunity to show the Boolean relations, e.g., a

particular gene has an effect or no effect on some other gene. We concluded that the

data structures and algorithms to be used in the analysis of a particular biosystem

should be chosen depending on the biological questions to be answered and on the

underlying biological motivation.

Modeling and anticipation of the gene expressions and inference of the gene

regulatory networks is one of the most interesting problems in dynamical systems.

Highly nonlinear mechanisms constitute a challenge for the anticipation of the gene

expressions. Another challenge consists in compensating the insufficiency about

the biochemical reactions, enzyme kinetics, chemical affinities, binding factors and

unknown variables, which all have effects on the regulatory dynamics.

Describing the nonlinear structure of the gene regulations is a pioneering ap-

proach and an improvement for the approach of linear idealization. In this study,

we particularly worked with quadratic polynomials. For future work, we recommend

to work on polynomials, splines, trigonometric, exponential functions and solvable

combinations of these functions to represent the dynamics of the regulatory relations.
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Finally, with teachers and students from Institute of Applied Mathematics of

Middle East Technical University and international colleagues, anticipatory (predic-

tive) systems are under investigation [21]. For these systems, where our study of gene

patterns in time and its future extensions are a central motivation for, generalized

semi-infinite optimization [68, 82] is a further promising mathematical technology.
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APPENDIX

Figure A1: Time-series data for the genes in the

glycolysis pathway [66].
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Figure A2: Approximation and inference by linear

functions.
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Figure A3: Approximation and inference by

quadratic polynomials.
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Figure A4: Approximation and inference by

polynomials of degree three.
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