
DATA MINING FOR RULE DISCOVERY IN RELATIONAL DATABASES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERKAN TOPRAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences.

Prof. Dr. Canan Özgen
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

Prof. Dr. Ayşe Kiper
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ferda N.
Alpaslan

Supervisor

Examining Committee Members

Prof. Dr. Adnan Yazıcı (METU, CENG)

Assoc. Prof. Dr. Ferda N. Alpaslan (METU, CENG)

Prof. Dr. Mehmet R. Tolun (Çankaya University)

Assoc. Prof. Dr. İsmail H. Toroslu (METU, CENG)

Dr. Ayşenur Birtürk (METU, CENG)

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last Name:

Signature :

iii

ABSTRACT

DATA MINING FOR RULE DISCOVERY IN RELATIONAL DATABASES

Toprak, Serkan

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ferda N. Alpaslan

September 2004, 53 pages

Data is mostly stored in relational databases today. However, most data mining

algorithms are not capable of working on data stored in relational databases

directly. Instead they require a preprocessing step for transforming relational

data into algorithm specified form. Moreover, several data mining algorithms

provide solutions for single relations only. Therefore, valuable hidden knowledge

involving multiple relations remains undiscovered. In this thesis, an implemen-

tation is developed for discovering multi-relational association rules in relational

databases. The implementation is based on a framework providing a repre-

sentation of patterns in relational databases, refinement methods of patterns,

and primitives for obtaining necessary record counts from database to calculate

measures for patterns. The framework exploits meta-data of relational databases

for pruning search space of patterns. The implementation extends the frame-

work by employing Apriori algorithm for further pruning the search space and

discovering relational recursive patterns. Apriori algorithm is used for finding

large itemsets of tables, which are used to refine patterns. Apriori algorithm

iv

is modified by changing support calculation method for itemsets. A method

for determining recursive relations is described and a solution is provided for

handling recursive patterns using aliases. Additionally, continuous attributes of

tables are discretized utilizing equal-depth partitioning. The implementation is

tested with gene localization prediction task of KDD Cup 2001 and results are

compared to those of the winner approach.

Keywords: Relational Data Mining, Association Rules, Relational Databases,

Apriori Algorithm, Discretization, Recursive Relations

v

ÖZ

İLİŞKİSEL VERİ TABANLARINDA VERİ MADENCİLİĞİ İLE

KURALLAR BULUNMASI

Toprak, Serkan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ferda Nur Alpaslan

Eylül 2004, 53 sayfa

Günümüzde veri genellikle ilişkisel veri tabanlarında saklanmaktadır. Buna

rağmen çoğu veri madenciliği algoritması ilişkisel veri tabanlarındaki veri ile

doğrudan çalışamamaktadır. Dolayısıyla bu algoritmaları ilişkisel veri üzerinde

çalıştırabilmek için ilişkisel veriyi ön işlemeyle algoritmaların anlayacağı biçime

çevirmek gerekmektedir. Ayrıca birçok veri madenciliği algoritması tek ilişki kul-

lanan çözümler sunmaktadır. Dolayısıyla çoklu ilişkisel yapıda olan gizli kalmış

değerli bir bilgiyi bu algoritmaları kullanarak elde etmek mümkün olmamak-

tadır. Bu çalışma kapsamında ilişkisel veri tabanları üzerinde çoklu ilişkisel

yapıdaki ortak kuralları bulmayı sağlayan bir uygulama geliştirilmiştir. Uygu-

lama altyapısı olarak ilişkisel veri tabanlarındaki desenleri tanımlayabilen, bu de-

senleri eklerle geliştirebilen ve bu desenlerin çeşitli ölçmeleri için gerekli sayımları

veri tabanından temel yetilerle alan bir yapı kullanılmıştır. Bu altyapı, veri

tabanının tanımında yer alan bilgileri kullanarak arama alanının daraltılmasını

sağlamıştır. Bu çalışma, Apriori algoritmasını arama alanını daha da küçültmek

vi

için kullanarak ve altyapı tarafindan desteklenmeyen özyinelemeli desenlerin bu-

lunmasını sağlayarak altyapıya yenilikler getirmiştir. Apriori algoritması her

tablo üzerinde sık karşılaşılan desenleri bulmak için kullanılmış ve bu algorit-

manın gerekli destek değerini bulma yöntemi değiştirilmiştir. Veri tabanındaki

özyinelemeli ilişkileri belirlemek için bir yöntem sunulmuş ve uygulama bu du-

rumlar için tablo kısaltmalarının kullanıldığı bir çözüm sağlamıştır. Veri tabanı

alanlarında saklanan sürekli değerleri bölümleyebilmek için eşit derinlik yöntemi

kullanılmıştır. Uygulama bir veri madenciliği yarışması olan KDD Cup 2001’den

alınan örnek bir genlerde yer tahmini problemi ile test edilmiş ve ortaya çıkan

sonuçlar yarışmayı kazanan yaklaşımın sonuçlarıyla karşılaştırılmıştır.

Anahtar Kelimeler: İlişkisel Veri Madenciliği, Ortak Kurallar, İlişkisel Veri Ta-

banları, Apriori Algoritması, Bölümleme, Özyinelemeli İlişkiler

vii

To Seda with love. . . .

viii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Ferda Nur Alpaslan, who

encouraged and guided me in writing of this thesis. I also express my sincere

appreciation to Assoc. Prof. Dr. İ. Hakkı Toroslu, who also guided me in

this study. Thanks to the other committee members, Prof. Dr. Mehmet R.

Tolun, Prof. Dr. Adnan Yazıcı and Dr. Ayşenur Birtürk for their comments

and suggestions.

I would like to express my deepest gratitude to my wife, Seda, who encour-

aged and supported me in this demanding study with her never ending patience.

I would also like to thank to my employer, MilSOFT, for providing me time

for studying whenever I needed.

Thanks are also to all of my friends for their direct or indirect help. Finally,

my deepest thanks are to my parents who supported and motivated me with their

never ending patience, tolerance and understanding throughout the study.

ix

TABLE OF CONTENTS

PLAGIARISM . iii

ABSTRACT . iv

ÖZ . vi

DEDICATON . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Rationale . 1

1.2 Approach . 3

1.3 Road Map . 4

2 DATA MINING BACKGROUND 6

2.1 Knowledge Discovery in Databases (KDD) 6

2.2 Data Mining . 7

2.3 Relational Data Mining 10

2.3.1 Inductive Logic Programming (ILP) 10

2.3.2 Bayesian Networks 11

2.3.3 Neural Networks 12

2.3.4 Multi-Relational Data Mining 13

x

3 MULTI RELATIONAL DATA MINING FRAMEWORK 15

3.1 Multiplicity of Associations 16

3.2 Patterns . 17

3.3 Refinements . 19

3.4 Primitives . 21

4 IMPLEMENTATION . 24

4.1 Preprocessing . 25

4.1.1 Reading Meta Data of Database 25

4.1.2 Analyzing Associations and Resolving Recur-
siveness . 27

4.1.3 Discretization of Continuous Attributes 29

4.2 Pruning Search Space Utilizing Apriori Algorithm . . . 32

4.3 Searching . 34

5 TEST RESULTS . 38

5.1 Tests Without Using Relational Information 40

5.2 Tests Using Relational Information 41

5.3 Winner’s Approach . 42

5.4 Discussion . 43

6 CONCLUSION . 45

REFERENCES . 47

xi

LIST OF TABLES

3.1 Translating a Selection Graph to SQL Query Algorithm 19

4.1 Graph Construction Algorithm 29
4.2 Apriori-Gen Algorithm . 33
4.3 Apriori Algorithm . 34
4.4 Searching Algorithm . 35

5.1 Values of Parameters Used During Test 39
5.2 Distinct Values for Attributes of Tables in Dataset 40
5.3 Results Without Using Relational Information on Training Dataset 40
5.4 Results Without Using Relational Information on Test Dataset . 41
5.5 Results Using Relational Information on Training Dataset . . . 42
5.6 Results Using Relational Information on Test Dataset 42

xii

LIST OF FIGURES

3.1 Visualization of Selection Graph 18
3.2 Adding a Condition to Selection Graph 20
3.3 Adding an Edge and a Node to Selection Graph 20
3.4 Adding an Edge to Selection Graph 21

4.1 User Interface for Database . 26
4.2 Graph Constructed Using Associations Between Tables 30

5.1 Database Design of Test Database 39

xiii

CHAPTER 1

INTRODUCTION

1.1 Rationale

Large amounts of information have been gathered from several fields including

sales, marketing, chemistry, biology, banking, and have been stored in databases

all around the world. This information is mostly used and maintained by an

application performing regular tasks such as providing personnel list or storing

the transactions of a store. However stored information can also provide some

valuable knowledge that could help the owners of the information to improve

their benefit. For example a GSM company knowing that ”people between ages

18 and 25 tends to make fewer calls during weekends” can start a campaign

like %50 discount for teenagers on weekends to favor calls of that age group at

weekends. The process of extracting such valuable knowledge from a database

is known as Data Mining.

Data mining is often defined as finding hidden knowledge in a given set of

data. There are various data mining tasks and various algorithms for solving

them. Most of data mining algorithms run on single table databases or single

relations. However, hidden knowledge to be found may be related to multiple ta-

bles or multiple relations. Data mining over multiple tables or multiple relations

is known as multi-relational data mining. Relations can be in the form of logic

1

programs or in the form of tables in a relational database. Since data is mostly

stored in relational databases, data mining algorithms directly working with re-

lational data stored in relational databases are practical, at least they do not

need data to be transformed into a different format required by the algorithm.

Each data mining algorithm have a searching step in which data is searched

to discover valuable hidden knowledge for the given task. When upgrading from

single relation data mining to multi-relational data mining, search space in-

creases drastically. Therefore, a multi-relational data mining algorithm should

have methods for enormous search space. Otherwise, performance of the algo-

rithm would be very low.

There are various data mining algorithms directly working with data stored

in relational databases for data mining tasks including classification, regression

and association rule discovery. Some of them require modification of existing

tables in database by adding columns to be used by the algorithm. Some of them

require creation of new tables in database for storing temporary information

needed by the algorithm. Modification of database can be infeasible in some

cases. For example in a large database, creation of new tables for storing the

records already processed would create a table with the same size as original

table, or users running data mining algorithm may not have the right to add

new columns or create new tables. Therefore, it is better to have a data mining

algorithm requiring no modifications on relational databases.

Sometimes, hidden knowledge to be discovered in a relational database may

have a recursive description. For example, description of a relation R can include

relation R itself. It is important for a data mining algorithm to find recursive

descriptions of relations in a relational database.

In this study, a multi-relational data mining algorithm for discovering rules

in a relational database is implemented providing solutions to difficulties pre-

sented so far. The algorithm employs methods to prune search space, can dis-

cover recursive rule descriptions and requires no modifications to given relational

database.

2

1.2 Approach

In this thesis, data mining task of discovering association rules from a relational

database is implemented based on the framework proposed in [1].

This framework employs defined foreign key constraints of a relational database

to prune the search space. In addition, a measure providing the likelihood of re-

fining a candidate description to yield valuable knowledge is used. This measure

is employed in to eliminate weak candidates for pruning the search space.

Implementation presented in this study works on relational databases with-

out requiring the modification of existing tables or introducing new tables. Re-

lational database is only accessed for running ”select” queries. Therefore, there

is no extra storage needed for creating new tables and a user having only a

”select” privilege on database can run this implementation for to discover rules.

Framework proposed in [1] excludes discovery of recursive association rules.

However, this study extends this framework to discover recursive association

rules. Conditions to determine whether a database has recursive associations

are provided and aliases are used for tables so that a description can have one

or more aliases of the same table.

In the implementation, a graph is constructed presenting the foreign key

relations and aliases for tables. Aliases of tables form nodes and associations

between aliases form edges in this graph. Several aliases may exist for the same

table in the graph in case of recursive relationships. This graph is used during

running Apriori algorithm [2]for each table and searching. An algorithm is

implemented to find distinct paths with no repeating nodes between two aliases

in the graph.

Equal-depth partitioning method is used in this study for partitioning con-

tinuous attributes of tables into discrete intervals. Partitions are used during

running Apriori algorithm on tables.

Apriori algorithm is implemented to find a set of attribute=value conditions

of each table with a support value greater than a specified support value. Apriori

algorithm is modified by calculating support against the same table, target table,

3

for each table in this study. Results of Apriori algorithm is used in searching

step.

In general, the framework in [1] is proposed to be used for all kind of data

mining algorithms working on data stored in relational databases. Implementing

WARMR, which is an extension of Apriori for mining association rules in multi-

ple relations [3], is proposed as a sample instance of the framework. In this study,

a software based on this framework is implemented to find association rules. By

finding association rules describing a single attribute of a table, a set of rules

classifying this attribute can be discovered. In this way, the implementation can

be used for classification tasks also.

Developed software is tested with Genes data set of KDD Cup 2001 compe-

tition [4], and results of the tests are compared against the test data set. Tasks

in this competition require multi-relational rules to be discovered on given data,

which makes this dataset highly suitable for this study.

1.3 Road Map

Chapter 2 provides background for Knowledge Discovery in Databases (KDD),

Data Mining, models and steps of KDD and Data Mining tasks. Then relational

data mining approaches including Inductive Logic Programming (ILP), Bayesian

Networks, Neural Networks and relational data mining on databases is presented.

Chapter 3 presents the framework used in this study. Pruning search space

using foreign key constraints between tables, concepts of the framework, struc-

tures for representing relational rules and primitives for evaluating these rela-

tional rules are presented in this chapter.

Chapter 4 provides detailed information for the implementation of a rule

discovery software for relational databases based on the framework presented

in Chapter 3. Steps of Preprocessing of relational database information, dis-

cretization of continuous attributes, running Apriori algorithm on tables and

searching for rules is described in this chapter. A solution for handling recursive

associations is also described in this chapter.

4

Chapter 5 presents the testing approach, discusses the results of the tests

and compares test results with the results of winning approach.

Chapter 6 concludes the study by providing a summary of study and test

results. Limitations and further improvements of the study are presented in this

chapter.

5

CHAPTER 2

DATA MINING BACKGROUND

This chapter provides background for Data Mining step of KDD process and

describes the distinction between KDD and Data Mining. Types of data mining

problems, such as classification and regression, and solutions to these problems

are presented. Moreover relational data mining is described and approaches to

relational data mining are discussed in this chapter.

2.1 Knowledge Discovery in Databases (KDD)

KDD is defined as the nontrivial extraction of implicit, previously unknown, and

potentially useful information from data [5]. [6] defines KDD as the nontrivial

process of identifying valid, novel, potentially useful and ultimately understand-

able patterns in data. This process consists of five steps; selection, preprocessing,

transformation, data mining and interpretation/evaluation [7].

Selection is the task of learning the application domain and creating a target

dataset by obtaining necessary data from several, possibly heterogeneous, data

sources. Preprocessing is the task of removing anomalies (e.g. noise or outliers)

in the data produced in selection step and deciding on strategies like handling

the missing data fields. Transformation is the task of transforming the prepro-

cessed data into a form with reduced number of features and variables under

6

consideration using dimensionality reduction and transformation methods for

eliminating irrelevant features and variables. In data mining step, an algorithm

is chosen according to purpose of problem, and this algorithm is applied to

transformed data to find interesting hidden information in the data. Data min-

ing step includes a searching mechanism to find interesting hidden patterns in

transformed data. Finally, interpretation/evaluation is the last step of KDD

process in which discovered patterns are interpreted, redundant and irrelevant

patterns are removed and useful ones are presented in an human understandable

format.

KDD is used in many application areas for discovery of valuable hidden

knowledge out of stored data. [8] provides an overview of common knowledge

discovery tasks and approaches to solve those tasks.

Some of main application areas of KDD are:

• Marketing [9, 10, 11, 12]

• Intrusion Detection[13, 14, 15, 16]

• Spatial Information Mining [17, 18, 19, 20, 21, 22]

• Web Mining[23, 24, 25, 26]

• Text Mining[27, 28, 29]

• Medical Information Mining[30, 31, 32, 33]

2.2 Data Mining

Most data mining methods are based on tried and tested techniques from three

different fields: machine learning, pattern recognition and statistics [34]. How-

ever, those methods have a property in common. Most data mining algorithms

can be viewed as compositions of a few basic techniques and principles; the

model, the preference criterion and the search algorithm [7].

Model is defined as the language used to describe discoverable patterns [6].

If the representation is too limited, then no amount of training time or examples

7

can produce an accurate model for the data . Preference criteria are quantitative

statements functions) of how well a particular pattern (a model and its param-

eters) meets the goals of the KDD process. Once the model and the preference

criteria are fixed, then the data-mining problem has been reduced to purely an

optimization task: Find the parameters and models from the selected family

that optimize the evaluation criteria, that is searching.

Data mining models can be divided into two categories, Predictive and De-

scriptive models. Predictive models try to predict a value for the result of an

unknown case using the known results of some existing data. On the other hand,

descriptive algorithms try to find hidden patterns or relations in data. Classifi-

cation, regression and time series analysis are the major predictive data mining

algorithms, whereas clustering, summarization, association rule extraction and

sequence discovery algorithms are the major descriptive algorithms.

Classification algorithms predict the class of an instance using the given

values for other attributes of that instance. Classes are determined prior to the

data mining task by the user, therefore classification is a supervised algorithm.

Using the data given, classification rules are found, which are applied to incoming

instance to predict which class it belongs. For example a classification algorithm

can be used to predict whether the customer of a bank can pay back the credit

s/he borrows using the past credit records of other customers.

Regression algorithms predict the value of a continuous attribute of an in-

stance using the given values for other attributes. Using the data given, a

function is found such that given the values of other attributes, it returns the

value of the continuous attribute. Using this function, missing continuous value

of an incoming instance can be predicted. For example a regression algorithm

can be used to predict a safe credit card limit value for a customer.

Time series analysis algorithms use temporal data to predict the future value

or class of an instance. For example, stock value of a company on two days later

can be predicted by using the stock values of the company for past 2 weeks

and finding a similarity of these values with other companies’ values which have

8

shown similar trends in the past.

Clustering algorithms describe the given data by grouping them into clus-

ters determined by the algorithm itself. The difference between clustering and

classification tasks is that the clustering task is unsupervised as the clusters are

determined by the algorithm. For example, given a set of images, a clustering

algorithm can form groups like forest, city, and beach, and then place the related

images into appropriate clusters. There would be no group for beach category,

if there was not an image related to beach.

Summarization algorithms try to find compact descriptions for the mined

data.

Association rule extraction algorithms try to find some relationships or hid-

den patterns in data. Given data, these algorithms try to find rules in if-then

form [2]. For example, given a bookstore’s sales database, such an algorithm

can produce a rule saying ”If a customer buys a fantasy book, s/he also buys a

mythology book”.

Sequential discovery algorithms try to find patterns that are frequent in the

given sequential data. Sequential discovery algorithms and time series analysis

algorithms are similar for they both operate on data having a time dimension.

The difference is that sequential discovery algorithms look for patterns whereas

time series analysis algorithms predict a future value for an instance. An example

to a sequential pattern would be a rule like ”If a customer buys a fantasy book,

s/he will also buy a mythology book in a month.”

Large search space size, I/O operations and methods needed to retrieve data

where it is stored are the major contributors to the complexity of data mining

algorithms. Relational Database Management Systems (RDBMS) offer efficient

indexing and retrieval of stored data. Therefore, RDBMS have been consid-

ered for efficient data mining to improve the efficiency of data retrieval and I/O

operations. Using parallel database servers and mapping KDD primitives such

as evaluation of a candidate rule into parallel database servers are proposed in

[35] for speeding up knowledge discovery. [36] presents the discovery of asso-

9

ciation rules by using functionalities of a database management system with

an efficiency comparable to specialized techniques. Even approaches combining

advantageous sides of both Inductive Logic Programming (ILP) learning and

relational databases exist [37]. ILP has the capability of representing first order

rules which makes it more expressive than relational database’s simple language

representation using SQL. However algorithms employing the simple represen-

tation, database primitives and functions are proven to be efficient. Therefore,

the proposed approach in [37] combines both approaches and uses relational

database algorithms for smaller data mining tasks and then constructs the re-

sult by applying ILP methods on the results of smaller tasks.

2.3 Relational Data Mining

Most data mining algorithms operate on a single table. However most of the

real world databases are relational and interesting patterns to be discovered can

be scattered across multiple tables or relations. For example, daughter pattern

can be found considering two relations, female and parent. Therefore Rela-

tional Data Mining (RDM) algorithms have been emerged for both predictive

and descriptive methods. To emphasize the fact that RDM involves multiple

tables (relations), RDM is often referred to as Multi-Relational Data Mining

(MRDM)[38]. There are four approaches for multi-relational data mining; In-

ductive Logic Programming (ILP), Bayesian Networks, Neural Networks and

Multi-Relational Data Mining on relational databases.

2.3.1 Inductive Logic Programming (ILP)

Inductive Logic Programming is formed at the intersection of Logic Program-

ming and Machine Learning. ILP involves the use of background knowledge to

construct an hypothesis which agrees with some set of observations according

to given relations [39]. Propositional systems find rules involving one relation,

while ILP systems can also find rules involving several relations. Using propo-

sitional approach, problems involving several relations can sometimes be solved

10

by calculating a universal relation (by joining all the relations into one relation),

however this a costly operation and universal join may be very large to handle

[40]. Therefore, ILP is a preferred choice for multi-relational data mining over

propositional approaches.

ILP algorithms operate on data which is in the form of programming language

clauses. It is also possible to link ILP systems to relational databases. [40]

presents approaches ranging from conversion of data in relational databases into

a logical form to transferring ILP techniques into other domains for operating

on relational databases.

Relational association rule induction, relational decision trees and relational

distance based methods are three major approaches of Inductive Logic Program-

ming for relational data mining[41]. Relational association rule induction finds

association rules out of data in logical form. WARMR [3] is a well known rela-

tional association rule induction algorithm. WARMR is an extended version of

propositional Apriori [2] algorithm working on relational data. [42] introduces

Mode-Directed Inverse Entailment and Progol [42].

Relational decision tree approach is used for relational classification and re-

gression. SCART [43] and Tilde [44] are well-known decision tree induction

algorithms which are extensions of their first order counterparts, CART and

C4.5 respectively. The Tilde system implements top-down induction of logical

decision trees. SCART algorithm is capable of inducing first-order trees for both

classification and regression problems by upgrading the propositional algorithm

CART into a relational learner with suitable extensions.

Relational distance based methods adapts propositional statistical methods

of classification and regression for relational classification and regression.

2.3.2 Bayesian Networks

Bayesian Networks approach is based on probability theory. The Starting point

of this approach is the Bayes theorem which is stated as

P (H|X) = P (X|H)∗P (H)
P (X)

11

where P(HIX) is the probability of H to occur given that X occurred and

P(H) and P(X) are the probabilities that H and X occur independent of any

other conditions.

A Bayesian Network is a directed acyclic graph where each vertex is a variable

and edges represent conditional dependencies between the variables[45]. [46, 47]

discusses methods for constructing Bayesian net-works from prior knowledge

and summarize Bayesian statistical methods for using data to improve Bayesian

Network graphical models. [48] discusses general methods of learning Bayesian

networks from data and presents connections of Bayesian Networks and Neural

Networks.

Bayesian Networks have also been used for multi-relational data mining.

[49] proposes an approach to model relational rules using Bayesian Networks.

Combining first-order logic and Bayesian Networks is presented in [50]. [51,

52] discuss the problem of learning probabilistic models of relational structure

and provides a framework for specifying and learning a probabilistic model of

relational structure.

2.3.3 Neural Networks

Neural Networks are the structures which are capable of learning non-linear

functions. Building blocks of the Neural Networks are called neurons for their

similarity to biological neurons. Neuron has a number of inputs coming from

other neurons and an output going to other neurons and each connection between

two neurons has a weight. The function of each neuron is to calculate a value

using the inputs and their weights, then to produce a result by comparing the

calculated value by a threshold value.

Neurons are grouped into layers and these layers are connected for solving

several learning tasks including data mining tasks. Using data, weights of con-

nections are updated iteratively and a solution to the problem is found.

Recently, neural networks are proposed for multi-relational data mining.

[53] introduces a supervised neural network learning based approach to multi-

12

relational data mining. Based on a relational database, a neural network is

constructed and trained to learn patterns in the data.

2.3.4 Multi-Relational Data Mining

Multi-relational data mining approaches can be categorized according to the kind

of data used when mining [54]. For example, ILP requires the data to be in the

form of logic clauses. However, most of the data is stored in relational database

management systems around the world. Of course, it is possible to generate data

in any form (e.g. in the form of logic clauses) from relational databases, but this

generation requires extra effort in preprocessing step. Moreover, when format

of data enforces a specialized language to be used (e.g. a logic language like

Prolog), data mining algorithms implemented in this language will inherently

be inefficient. Therefore, there is a need for approaches directly using data

stored in relational database management systems for data mining. In this way,

efficient languages and efficient built-in database functions such as querying with

SQL can be used in data mining.

[3] presents WARMR system that extends single table data mining Apri-

ori algorithm [2] to mine multiple relations for extracting association rules by

adapting some techniques from ILP. Discovered association rules are in the form

of Prolog queries. This enables the use of variables and other logic notations in

Prolog to make queries more expressive.

[1] proposes a framework for multi-relational data mining on relational databases.

Relational database’s metadata is used to avoid the explosion in the search space

providing efficiency and scalability. A graphical language for patterns that can

be translated into SQL and other logic languages is described and WARMR is

proposed to be solved using this framework as an instance in this work. [55]

further improves this framework and presents the efficient discovery of multi-

relational decision trees.

Several studies have been performed based on the framework proposed in [1].

[56] uses this framework to implement a Multi-relational Decision Tree Learning

13

(MRDTL) algorithm for inducing decision trees from relational databases. This

algorithm competes with well-known efficient classification algorithms, such as

Progol[42], Foil [57, 58] and Tilde [44]. [59] utilizes this framework to use ag-

gregates for relational database propositionalization to apply propositional data

mining algorithms. [60] presents an implementation of R-ILA (Relational In-

ductive Logic Algorithm), which is an adapted version of ILA-2 [61] algorithm

for relational data mining. R-ILA algorithm is a covering type of rule discovery

algorithm.

14

CHAPTER 3

MULTI RELATIONAL DATA MINING

FRAMEWORK

In this study, a multi-relational data mining implementation for discovering

association rules in relational databases is developed based on the framework

proposed in [1]. This chapter presents the concepts of this framework.

In multi-relational data mining tasks, the search space explodes as compared

to the single relation data mining. Each new table introduced for data mining

task increases the complexity depending on the number of attributes it has and

the number of distinct values of those attributes. When there is no information

about the relations of the attributes, all possible relations between attributes

are needed to be considered, which makes the search space huge. For example,

there are three relations: Person(Name String, Occupation String, Location

String), City(Name String, Mine String, Country String) and Country(Name

String, Capital String). When data mining on those relations for association rule

extraction (e.g. a rule like ”%60 of the people living in a location where there is

a coal mine are miners”), there is no information that the Location attribute of

the Person relation is a city, but not a country. Indeed, there is no information

stating that Occupation attribute is not related to Country relation’s Capital

attribute. Therefore, all of the possible relations between attributes must be

15

considered during data mining, and search space becomes huge.

Considering the example given, relations between the Person’s Location and

City’s Name, City’s Country and Country’s Name, Country’s Capital and City’s

Name are enough to reduce the search space, so that a rule including a statement

like ”if a person’s occupation is equal to capital of the country” will never be

considered whereas a rule including a statement like ”if a person’s location is

equal to the city name and there is a mine in this city” is among the rules to be

considered.

In relational databases, the relations between the attributes of tables are

described by foreign keys. The framework uses foreign keys existing in rela-

tional database to reduce the search space when performing data mining tasks.

Considering the example given, a foreign key is described on relation Person

relating its Location attribute with the Country’s Name attribute. Similarly,

other foreign key relations are described for other relations.

The framework describes a client-server architecture where client side is re-

sponsible for most of the data mining tasks like constructing candidates, select-

ing among candidates and server side is responsible for efficient processing of

requests for a small number of primitives like finding support of a candidate.

3.1 Multiplicity of Associations

The term relation used till now referred to both a table of a relational database

and a relation between the records of table. In the remaining of text, discussed

subjects are in the context of relational databases. Therefore, a distinction is

made, association is used for the relation between the attributes of tables, and

table is used as table, that is where records of a type reside.

Associations exist between two tables and have a multiplicity value. Mul-

tiplicity describes one-to-many property stating that a record in one table is

related to many records in the other table and optional property stating that

one record in a table is not required to be related to any record of the other

table.

16

The framework formally defines multiplicity of association A between two

tables P and Q with two predicates.

• Multiple(A,P) iff every record in Q may correspond to multiple records in

P.

• Zero(A,P) iff a record in Q may have no corresponding record in P.

Multiple predicate states one-to-many property and Zero predicate states

the optional property of association. Relational databases allow only associa-

tions having certain multiplicity properties. A foreign key association between

two tables P,Q, and an attribute in P referencing primary key attribute in Q

has the multiplicity property Multiple(A,P), Zero(A,P), not(Multiple(A,Q)),

not(Zero(A,Q)). It is impossible to define an association having multiplicity

property Multiple(A,P), Multiple(A,Q) with relational databases.

It is possible to extract missing foreign key relations of a database using data

to find multiplicity properties from which foreign keys can be extracted. This

study assumes that foreign key relations exist in database and can be accessed

as meta-data of database. However, multiplicity properties of associations can

be used by framework during search phase to improve results.

3.2 Patterns

Data mining on relational databases requires a way of representing a pattern

combining multiple tables using associations and conditions of these tables.

In single table data mining, the patterns are in the form of a list of ”at-

tribute=value” pairs. However with relational database mining, a structural

representation of the patterns are required to combine multiple tables with as-

sociations and ”attribute=value” conditions of tables. Moreover, it should be

easy to translate the pattern into a statement of SQL language since the patterns

will be run on a database server to evaluate them.

17

Person
 City

Occupation=Miner
 Mine=Coal Mine

Location=Name

Figure 3.1: Visualization of Selection Graph

The framework proposed in [1] defines Selection Graph as structural repre-

sentation of patterns used in relational data mining. Selection Graph concept is

defined as:

”A selection graph G is a pair (N, E), where N is a set of pairs (t, C), t

is a table in the data model and C is a, possibly empty, set of conditions on

attributes in t of type t.a operator c; the operator is one of the usual selection

operators, =, etc. E is a set of triples (p, q, a) called selection edges, where p

and q are selection nodes and a is an association between p.t and q.t in the data

model. A selection node n represents a selection of records in the corresponding

table n.t which is determined by the set of conditions n.C and the relationship

with records in other tables characterized by selection edges connected to n.”

Selection nodes are tables in selection graph.Considering the given example

with table Person, City and Country, pattern stating ”People living in a city

where there is a coal mine are miners.” has the following corresponding selection

graph, which is visualized as in Figure 3.1.

G = (N , E)

N=(Person,C1), (City, C2)

C1=(Occupation = Miner)

C2=(Mine=Coal Mine)

E=(SN1,SN2, (SN1.Person.Location=SN2.City.Name))

The selection graphs can be easily translated to SQL or Prolog queries. This

makes selection graphs suitable for being used in data mining tasks. During data

mining search process, selection graphs are generated as candidates, translated

18

to SQL query, and this SQL query is passed to the server side to find values

of selection graph for the evaluation criteria. The selection graphs that achieve

required values for evaluation conditions are further refined to generate other

selection graphs and this process continues until no other selection graphs can be

generated. To translate a selection graph to an SQL query, a simple algorithm

is used[1] (Table 3.1).

Table 3.1: Translating a Selection Graph to SQL Query Algorithm

Input:
S //Selection Graph
Output:
SQLString begin table list = ”
condition list = ”
join list = ”
for each node i in selection graph S do

table list.add(i.table name + T + i)
for each condition c in i do

condition list.add(T + i + . + c)
for each edge e in S do

join list.add(e.left node + . +
e.left attribute + = +
e.right node + . +
e.right attribute)

return select distinct + t0 + . + t0.primary key +
from + table list +
where + join list + and + condition list

end

3.3 Refinements

Selection graphs are generated, evaluated, and then refined in data mining search

process. Refining all selection graphs increases the search space of the process.

Therefore, only selection graphs having the possibility of yielding ”good” solu-

tions are refined in this study. Determining whether refining a selection graph

will yield a good solution is discussed in Chapter 4. There are three ways of

19

Person
 City

Occupation=Miner
 Mine=Coal Mine

Location=Name

Country=Turkey

Figure 3.2: Adding a Condition to Selection Graph

Person
 City

Occupation=Miner
 Mine=Coal Mine

Location=Name

Country

Name=Capital

Figure 3.3: Adding an Edge and a Node to Selection Graph

refining a selection graph;

• Adding Condition: This refinement adds a condition to an existing selec-

tion node of a selection graph. This refinement does not add any edges

to the selection graph. Adding condition ”Country=Turkey” to selection

graph given in Figure3.2 is an example to this type of refinement.

• Adding Edge and Node: This refinement adds edge and node to a selection

graph. This refinement does not add any conditions to the selection graph.

Adding ”City.Capital=Country.Name” association to the selection edge

shown in 3.3 is an example to this kind of refinement. Node Country and

selection edge with association City.Country=Country.Name is added to

selection graph.

• Add Edge: This refinement adds an edge to a selection graph. No con-

ditions or nodes are added by this refinement. Adding edge with the

association ”Person.Citizen=Country.Name” is an example to this kind of

20

Person
 City

Occupation=Miner
 Mine=Coal Mine

Location=Name

Country

Name=Capital

Citizen=Name

Figure 3.4: Adding an Edge to Selection Graph

refinement. Person and Country nodes already existed, but addition of

the association adds no nodes to the selection graph, but only an edge.

3.4 Primitives

This framework defines a set of primitives on the server side to be used during

data mining process for acquiring information like number of records satisfying

a selection graph from database. The framework allows a selected table to be

the target table and a selected column of target table to be the target attribute.

Target table and target attribute are determined by the problem to be solved.

For example, when the problem is to find rules describing occupation of a person,

Person table is selected as the target table and Occupation attribute is selected

as the target attribute. During search process, target table and attribute are

used to find the support and confidence values of selection graphs. Support

and confidence of a selection graph g with respect to target table t0 and target

attribute attr is defined as

support = # of records in t0 satisfying g
of all records in t0

confidence = # of records in t0 satisfying g
of all records in t0 satisfying (g−attr)

where (g-attr) is the g with condition related to attr is removed. Confidence

and support helps to evaluate a selection graph. Primitives helps the calculation

of confidence and support of a selection graph.

The framework defines four primitives to be used.

21

• CountSelection: This primitive is used for calculating the support of se-

lection graph. It returns the result of following query:

select t0.target, count(distinct t0.primary key)

from table list

where join list andcondition list group by t0.target

where tablelist, joinlist and conditionlist are calculated as in the Algorithm

3.1 to translate a selection graph to SQL query.

In this study, CountSelection is the only primitive used. It is used for

calculating evaluation criteria of selection graphs (support, confidence).

• MultiRelationalHistogram: This primitive is used to calculate the count

of each target attribute value among the records satisfying the selection

graph. The framework makes use of this primitive to compute interesting-

ness measures of the selection graph. MultiRelationalHistogram primitive

returns the result of following query:

select t0.target, count(distinct t0.primary key)

from table list

where join list and condition list group by t0.target;

• MultiRelationalCrossTable: This primitive is used to obtain statistical

measures for dependency of target attribute and an arbitrary attribute of

any table in selection graph. This primitive returns the result of following

query:

select t0.target, ti.cj, count(distinct t0.primary key)

from table list

where join list and condition list group by t0.target, ti.cj;

• MultiRelationalAggregateTable: This primitive is used to compute depen-

dency of target attribute and a numeric attribute of any table in selection

graph. It produces the counts and minimum values of numeric attribute

22

for target attribute values. This primitive returns the result of following

query:

select t0.target, m, count(*) from

(select t0.target, t0.primary key, min(ti.cj) m

from table list

where join list and condition list group by t0.target, t0.primary key)

group by t0.target, m;

This framework proposes the use of MultiRelationalCrossTable and Mul-

tiRelationalAggregateTable primitives for evaluation of Adding Condition

type of refinements. However, this task is performed by using CountSelec-

tion primitive with simple modifications to selection graph’s SQL transla-

tion and modifications to SQL query given for this primitive.

23

CHAPTER 4

IMPLEMENTATION

The implementation of software developed during this study to perform the task

of Multi-Relational Data Mining on Relational Databases is presented in this

chapter. The implementation is based on the framework proposed in [1], which

is discussed in Chapter 3. The framework is mainly used in searching step of

the implementation. Starting with an initial selection graph including only the

target table as selection node, refinements are generated by adding condition,

adding association and edge, or adding edge to initial selection graph. Refine-

ments are evaluated using the CountSelection primitive. Refinements satisfying

evaluation criteria form the next level selection nodes to be refined. Process

continues until no selection nodes to be refined is left.

Software is implemented in Java programming language using Eclipse Inte-

grated Development Environment (IDE). IBM’s DB2 is used as RDBMS. JDBC

(Java DataBase Connectivity) solution is used as an interface between Java pro-

gram and database. JDBC driver used is the one distributed by IBM.

The implementation consists of four steps; preprocessing, running Apriori

algorithm [2] on tables, searching and rule generation. In the preprocessing

step, the software inputs the database’s meta-data and asks user for target

table, target attribute and attribute properties of the tables. Then, a graph

displaying the associations between tables is displayed. The user can delete

24

the tables that are irrelevant. Once the relevant tables are identified in the

first step, Apriori algorithm is run for each of these tables in second step. The

Apriori algorithm is modified such that support is calculated on target table

using associations existing between the table on which Apriori runs and target

table. Running Apriori algorithm on tables yields a number of large item sets for

each table. Large item sets found are used to refine selection graphs in the third

step. Selection graphs are generated, evaluated and the refinements of selection

graphs, which are also selection graphs are generated. The search continues

until no selection graph is left. At this step, a number of ”good” candidates

with high possibility of generating ”good” rules are found. Finally, ”good” rules

are extracted from ”good” candidates found in third step. Being a ”good” rule

and ”good” candidate is explained later in this chapter.

4.1 Preprocessing

In this step, the software inputs the meta-data of relational database on which

data mining operation will be performed, lets the user to select the relevant

tables, relevant attributes and types of the attributes. Then distinct values of

the categorical attributes are obtained from database and values of continuous

attributes are discretized.

4.1.1 Reading Meta Data of Database

When software is started, it reads the meta-data of the database using JDBC

API. Name of tables, attributes of tables, database types of attributes (e.g.

BOOLEAN, VARCHAR, INTEGER etc.), primary key and foreign key con-

straints of tables are the information retrieved from meta data of database.

Then, a screen shown in Figure5.1 is opened presenting meta data informa-

tion to user. User selects one of tables as target table and one of attributes of

target table as target attribute. Selection of target attribute is optional depend-

ing on whether a target attribute is required by the problem. For example, in

a classification problem, target attribute is selected as the attribute on which

25

Figure 4.1: User Interface for Target Table, Target Attribute and Attribute
Type Selection

classification is performed.

Afterwards, user selects the type of attributes depending on whether they

are categorical, numeric or arbitrary. Type of an attribute which is irrelevant in

data mining task is selected as arbitrary meaning that it will be ignored in data

mining operation unless it is a part of a primary key or a foreign key constraint.

An example to such an attribute would be photograph of a person stored in

personnel table of a company. Type of an attribute is selected as categorical if

attribute stores a distinct categorical information and this information is useful

in data mining operation. For example, position attribute of a person stored in

personnel table may have distinct categorical values like ”Software Engineer”,

”System Engineer”, etc. Therefore, type of this attribute is selected as Categor-

ical.

It is possible that a categorical attribute’s database type be INTEGER if

26

this attribute stores categorical information like the grade of a student from a

course which can take the values {0,1,2,3,4,5}. Attribute’s type is selected as

numerical if this attribute stores a numeric value. Treating it as a categorical

attribute is not feasible such that it is required to handle interval values of this

attribute. Salary attribute of a Personnel table of a company is an example to

numerical type of attribute.

4.1.2 Analyzing Associations and Resolving Recursiveness

Once meta-data of database is read, then associations between tables are ana-

lyzed and a graph with recursive associations resolved is constructed.

During analysis, aliases are used for tables. This allows a table to appear

multiple times in the graph, which enables resolution of recursiveness between

tables. The following two examples describe two databases, one including recur-

sive associations and one without any recursive associations. They are used for

describing analysis and construction phases in this section.

Database DB1 with recursive associations, target table A.

Table A with attributes A1,A2 : A(A1,A2)

Table B with attributes B1,B2 : B(B1,B2)

Primary keys: A.A1

Foreign keys: B.B1 refers to A.A1, B.B2 refers to A.A1

Database DB2 without recursive associations, target table C

Table C with attributes C1 : C(C1)

Table D with attributes D1,D2 : D(D1,D2)

Table E with attributes E1,E2,E3 : E(E1,E2,E3)

Primary Keys : C.C1, D.D1, E.E1

Foreign Keys : D.D2 refers to C.C1, E.E2 refers to C.C1, E.E3 refers to D.D1

Assuming aliases are not used to resolve recursiveness for the moment, graph

construction starts with the target table. Target table is added as a node to the

graph. Associations of target table with other tables are found. A node is added

for each of those associating tables and associations are added as edges between

27

target table and other table involved in association. A breadth-first construction

is followed such that associations closer to the target table are added first.

Considering DB1, construction is performed starting with target table A. As-

sociation A.A1 = B.B1 (first foreign key constraint) is added to the graph first.

Therefore, B table is also included in the graph. Then, looking at B table’s as-

sociations, B.B2=A.A1 is added. The associations included are A.A1=B.B1 and

B.B2=A.A1 which implies B.B1=B.B2. However this implication is meaningless,

which makes DB1 recursive.

Considering DB2, analysis is performed starting with the target table C.

First C.C1=D.D2 is added to the graph, D table is included in the graph. Then

C.C1 = E.E2 is added and E is included in graph. Adding last foreign key

constraint E.E3=D.D1 of already added tables D,E, all associations in the graph

are C.C1=D.D2, C.C1=E.E2 and E.E3=D.D1. Since there are no meaningless

implications in those associations, DB2 is not recursive.

To solve recursiveness problem, aliases are used for tables during construc-

tion. Recursiveness problem arises when addition of an edge implies two different

attributes of the same table to be equal to each other. In this case, an alias is

created for this table, and an association is obtained with the new alias. Con-

sidering DB1, recursiveness problem is solved using aliases as described. Target

table A is added to the graph with alias t0. Association to.A1=t1.B1 is added

to the graph, where t1 is table B added to graph with this association. Then,

t1.B2=t0.A1 is added, which yields a recursiveness problem. The association

causing the problem, which is t1.B2=t0.A1, is removed and t2 is added as an

alias for table A. Then association is added as t1.B2=t2.A1. The algorithm for

graph construction with aliases is described in Table4.1.

When the graph is constructed, it is displayed to user using JGraphT. User

then analyzes the graph, and deletes tables that are irrelevant in data mining

operation.

28

Table 4.1: Graph Construction Algorithm

Input:
targetTable Output:
graph
begin
graph = empty addNodeToGraph(targetTable, t0);
while true

associations=findAssociationsToAddBreadthFirst();
if associations is empty

return
for each association

conflicts = addEdgeToGraph(association)
if conflicts

removeAssociation(association)
createNewAlias()
modifyAssociationForNewAlias()
addEdgeToGraph(association)

return graph
end

4.1.3 Discretization of Continuous Attributes

The user chooses types of continuous attributes as Numerical so that they are

discretized, intervals are formed and those intervals are used to add conditions

on continuous attributes to selection graphs in searching step.

Several methods have been used for discretization of continuous attributes.

Equal-width interval binning, equal-depth interval binning and recursive mini-

mal entropy partitioning are the most-widely known methods for this task.

Equal-width partitioning method is the simplest method for discretization.

Using a user supplied parameter for number of bins, NB, interval width of bins

is found as binWidth = (maximumValue - minimumValue) / NB. Intervals are

formed having binWidth size starting from the minimum value and ending with

maximum value.

Equal-depth partitioning method orders the samples according to the con-

tinuous attribute to be discretized. The user supplied parameter for number

29

Figure 4.2: Graph Constructed Using Associations Between Tables

of bins, NB, is used to calculate the number of samples to be placed into each

bin, called depth of bin as binDepth = numberOfSamples / NB. Then bins are

formed by placing samples into intervals starting with the minimum valued sam-

ple and ending with the maximum valued sample such that each interval has

binDepth number of samples. Interval bounds are the values of minimum valued

and maximum valued samples of each bin.

Recursive minimal entropy partitioning method is proposed in [62]. This

algorithm uses class entropy of candidate partitions for finding interval bound-

aries. To find the intervals of a continuous attribute a with values from v1 to

vn, a bin boundary vk is found such that the class information entropy is min-

imized for intervals (v1,vk),(vk,vn) of this attribute. Then the same technique

is recursively applied to v1 and vk, vk and vn, and so on until a termination

criterion is met. A Minimum Description Length (MDL) principle is defined as

the termination criterion for entropy partitioning method.

Considering three methods, Equal-width partitioning is a simple unsuper-

vised method and recursive minimal entropy is a supervised method[63]. Equal-

depth partitioning is also a supervised method. Equal-width partitioning is

negatively affected by outliers. For example considering samples with values

30

2,3,4,5,6,100 for a continuous attribute and assuming ten bins, first 5 samples

are placed into the first bin, last sample is placed into the last bin, and 8 bins

are left empty. However, using equal depth partitioning, samples are scaled

well. [64] proves that given any specified number of partitions, equal depth par-

titioning method minimizes the partial completeness level, which is a measure

of information lost by partitioning. Moreover, equal-depth partitioning method

is simpler than recursive minimal entropy partitioning method. Equal depth

partitioning is used to discretize continuous attributes in this study.

In real world, it is very common that some of the attributes of a record have

missing values. In fact, all the attributes of a record can be missing if this at-

tribute is not specified to be ”not null” in database description. Dealing with

missing attributes in a learning task is a common problem for all learning algo-

rithms. [65] describes the arising problems due to missing values of attributes.

These problems can be categorized into two categories considering the approach

in this study.

• How attributes of missing values are compared in training set? Will two

records having a null value for attribute A be treated as having the same

value for attribute A?

• When testing a record, how are missing values of this record will be

treated?

One solution for the first problem is ignoring cases in training set with missing

value of attribute A when finding a rule containing attribute A. Another solution

is to fill in missing values with A attribute’s most common value. There is

another solution by filling missing values of A with a value calculated using the

values of other attributes. Solutions for second problem depends on the solution

selected for the first problem. If cases for missing values are ignored in training

data, this attribute’s value is also ignored in testing. A test case with a missing

value for attribute A can not be described by a rule containing a condition of

attribute A. Similarly, missing attributes of a test case can be filled with most

31

common value or a value calculated using other attributes. Solutions by filling

missing attributes perform better than the solutions ignoring the missing values.

In this study, missing attribute values are not filled, neither they are ignored.

Missing attribute values are treated to be same. Therefore, rules containing con-

dition Attribute.value=null are discovered and test cases are evaluated against

those rules as well.

4.2 Pruning Search Space Utilizing Apriori Algorithm

Once tables, attributes, and attribute types are selected and graph is constructed

in previous step, values for the selected attributes are read for categorical at-

tributes. Numeric values are discretized and Apriori algorithm [2]is run for each

selected table in this step.

In searching step, selection graphs are refined by adding a condition, adding

an edge and a node, or adding an edge. Only adding a condition refinement adds

conditions of the form attribute=value to selection graph. When refining is done

by adding a condition, all attributes of the tables included in selection graph

must be considered. If a condition for an attribute attr doesn’t exist in selection

graph, selection graph is refined to have attr=value for all values of this attribute.

However, when support of selection graph with the only condition attr=aValue is

smaller than the required support, adding this condition to any selection graph

in a refinement will result in selection graph with support smaller than the

required value. As a result, when refining, adding this condition to any selection

graph increases search space. In general, when a selection graph has a subset of

its conditions that can not achieve required support value, this selection graph

also can not achieve required support value neither. This property is described

by Apriori algorithm. Apriori algorithm efficiently produces sets of conditions

for a single table satisfying required support value. Therefore, Apriori algorithm

is used to find conditions that are added when refining a selection graph for each

table.

Apriori algorithm presented in [2] generates all sets of conditions having

32

support greater than a certain support value, called minsupport. Sets of condi-

tions having support greater than minsupport are called large itemsets and ones

having a smaller support than minsupport are called small itemsets. Apriori

algorithm generates all large itemsets efficiently.

Apriori algorithm presented in [66] is implemented in this study with mod-

ifications. To find the support of an itemset when running Apriori on a table,

conditions in itemset and associations between this table and the target table

form a selection graph and CountSelection primitive is called with SQL query of

selection graph. As a result, support of an itemset of a table ti is calculated by

counting the records of target table t0 that are related to records of t1 satisfying

the conditions of itemset. Support is calculated against the target table, since,

in searching step, support of every selection graph is calculated against to target

table. An itemset for table ti found to be large with support calculated against

ti may possibly be a small itemset with support calculated against target table

t0. Since the implementation discovers association rules related to target table,

support of itemsets are calculated against the target table.

When calculating support of itemsets of table ti against target table t0, the

records of t0 related to records of ti satisfying conditions in itemset are found

using the associations existing in distinct paths from ti to t0. Distinct paths from

ti to t0 are found by applying an algorithm on graph constructed in preprocessing

step. This algorithm finds all paths from ti to t0 having no repeating nodes.

Table 4.2: Apriori-Gen Algorithm

Input:
Li-1 //Large itemsets of size i-1
Output:
Ci //Candidates of size i
begin
Ci = {}
for each I of Li-1 do

for each J of Li-1 different than I
if i-2 of elements in I and J are equal then

Ck = Ck U {I U J}

33

Apriori algorithm presented in [66] is modified for support calculation and the

Table 4.3: Apriori Algorithm

Input:
I //Initial Itemsets consisting of one condition
D //Database of transactions
s // minsupport
ti //alias of table
Output:
L //Large Itemsets
begin
k = 0; //k is used as the scan number
L={}
C1=I //Initial candidates are set to be the initial itemsets
distinctPaths=findDistinctPathFor(ti) //distinct paths found
repeat

k=k+1;
Lk={}
for each Ii of Ck do

selectionGraphs=formSelectionGraph(distinctPaths, Ii)
for each selectionGraph of selectionGraphs

support=CountSelection(selectionGraph)
if support > minsupport then

Lk=Lk U Ii
Ck+1=Apriori-Gen(Lk)

until Ck+1 = {}
end

resulting algorithm is presented in Tables 4.2 and 4.3. This algorithm is run for

all table aliases selected to be involved in data mining operation. Large itemsets

of all aliases are stored in memory to be used during searching step.

4.3 Searching

Searching in search space of selection graphs is performed, results are evaluated,

and selection graphs satisfying evaluation criteria are found in this step.

Initially, searching starts by forming an initial selection graph with one node

for the target table, which is the only selection graph in level 0. Then refine-

34

ments of this selection graph for level 1 are found by adding large itemsets of

target table found in previous step using Apriori algorithm by adding condi-

tion refinement. To find refinements in level 2, selection graphs are evaluated

against criteria which is described later and satisfactory selection graphs are

found. Then, next closest node to the selection graph is found, which is the

one with minimum alias not existing in the selection graph. Associations of this

node added to the selection graph using adding node and edge condition. If there

exist two nodes in selection graph having associations between them and those

associations are not added to selection graph yet, they are added to the selec-

tion graph using adding edge refinement. Large itemsets of the closest node are

added to selection graph to form refined selection graphs using adding condition

refinement to form level 2 selection graphs. Searching process continues until

there is no selection graph to refine. The search algorithm described is presented

in Table4.4. Satisfying refinements are found by evaluating refinements against

Table 4.4: Searching Algorithm

Input:
No Input
Output:
result //Selection Graphs satisfying evaluation criteria begin
result
selectionGraph = formInitialSelectionGraph();
refinements = findRefinementsAddingLargeItemSets(selectionGraph)
satisfyingRefinements = evaluateRefinements(refinements);
result.add(satisfyingRefinements);
while satisfyingRefinements is not empty

closestNode = findClosestNodeTo(satisfyingRefinements);
refinements = addAssociationsForClosestNode(satisfyingRefinements);
addLargeItemSetsOfClosestTo(refinements);
satisfyingRefinements = evaluateRefinements(refinements);
result.add(satisfyingRefinements);

return result;
end

criteria depending on the problem to be solved. If there is no target attribute

35

specified, refinements are sorted according to the support of refinements found

by using CountSelection primitive. Then a user provided number of refinements

having high support values are selected as satisfying refinements and passed to

next level for refinement and evaluation. If a target attribute is specified by

the user, then refinements are sorted according to their ”fmeasure” values and

a user supplied number of refinements are passed to the next level. ”fmeasure”

is a method to evaluate rules in Weka [67] with respect to a particular class.

”fmeasure” value is calculated by using following formulas.

fmeasure = (2 * recall * precision) / (recall + precision)

recall = (correctly classified positives) / (total positives)

precision = (correctly classified positives) / (total predicted as positive)

When searching is finished, good selection graphs are determined. If a target

attribute is specified, If-Then rules are extracted out of good selection graphs

easily. Condition of the target forms If part and all other conditions and asso-

ciations of selection graph form Then part. These rules are evaluated against a

user specified confidence value using CountSelection primitive. Rules satisfying

this confidence value are chosen to be the good rules.

When no target attribute is specified, rules are extracted from refinements as

described in [68]. To extract rules from a large itemset l, all non-empty subsets

of l are found. Then for each such subset a, support of l and a are computed,

if (support of l) / (support of a) which is the confidence of rule If a then l - a

is greater than a user supplied confidence, then a good rule is found. In this

study, rules are extracted from selection graphs in a similar way. All non-empty

subsets of a selection graph are found such that for each subset a, all conditions

of l - a are the conditions of attributes of the target table. Then support values

for l and a are calculated using CountSelection primitive. Good rules satisfying

the specified confidence value are found.

A target attribute is specified when data mining problem is a classification or

regression problem. The implementation developed in this study discovers asso-

ciation rules hidden in relational databases. The implementation is not specified

36

for classification task. Therefore, when a classification problem is given, asso-

ciation rules are discovered for the classification attribute. When classifying a

new instance, discovered association rules are searched to find the one with the

highest confidence value. However, there are some specialized methods for clas-

sification problems as in decision trees, which are not used in this study. Bagging

predictors is such a method proposed and used in classification and regression

trees[69]. This method generates multiple versions of predictors and use these

versions to form an aggregated predictor. The aggregation averages over the

versions for prediction of continuous attributes and does a majority voting for

prediction of categorical attributes, which are used in regression and classifica-

tion respectively. [70] provides two explanations for error rate reduction using

bagging both based on Bayesian learning theory. [71] reports results of applying

Bagging predictors method on C4.5 decision tree learning algorithm. An empiri-

cal comparison of algorithms using voting for classification problems is presented

in [72]. However none of the majority voting algorithms are used in this study.

Therefore, for a classification problem, best association rule (predictor) is used

to find the classification of an instance. As a result, the implementation shows

worse performance on classification problems compared to well known classifi-

cation methods.

37

CHAPTER 5

TEST RESULTS

This chapter presents test results using the localization prediction task of KDD

Cup 2001[4]. A training dataset is provided on which software runs to find good

rules for localization attribute of genes, and a test set is provided on which good

rules are applied to predict the localization of genes.

Database design for given the datasets is presented in Figure5.1. GeneIn-

dex table and index attribute of genes table don’t exist in the original genes

dataset provided. They are added to normalize the database to make genes ta-

ble have a primary key. Genes table stores a variety of details , e.g. chromosome,

phenotype, motif, etc., about the various genes of one particular type of organ-

ism. Interactions table stores the information of interacting genes, interaction

types, and correlation value of interaction. Tests are performed on a Intel(R)

Pentium(R) 4 CPU 1.60 GHz PC with 512 MB of RAM. Training dataset and

test dataset is stored on IBM DB2 database in seperate databases, TRAIN and

TEST. During tests, parameter values in Table 5.1. Size of the search space

depends on the number distinct values of the attributes of the training dataset

and tables involved in data mining. Number of distinct values of the attributes

for training dataset is shown in Table 5.2. The task is to find rules describing

the categorical Localization attribute having 15 distinct values. Distribution of

samples to 15 distinct values for target attribute Localization is {(cell wall,3),

38

Figure 5.1: Database Design of GENES and TEST Databases

Table 5.1: Values of Parameters Used During Test

Name Value Description
Support 0.0002 Support calculated against target table
FMeasure 0.05 FMeasure calculated for a class
Expand Size 50 Number of rules to expand in each level
Table Conditions 3 Max. number of conditions for each table
All Conditions 4 Max. number of conditions for a rule
Number of Bins 20 Number of bins for a continuous attribute

(cytoplasm,931), (cytoskeleton,389), (endosome,23), (extracellular,11),(er, 239),

(golgi,175), (integral membrane,4), (lipid particles,2), (mithocondria, 346), (nu-

cleus, 1671), (peroxisome,37), (plasma membrane, 328), (transport vesicles, 52),

(vocuole, 135)}. Training dataset and test dataset have many records contain-

ing missing values for attributes. These missing values are treated as having the

same value, which is ”null”. As a result, rules containing attribute=”null” are

discovered during data mining process.

39

Table 5.2: Distinct Values for Attributes of Tables in Dataset

Attribute Number of Distinct Values Selected Type
GeneIndex.GeneId 862 Arbitrary
Genes.Index 4346 Arbitrary
Genes.GeneId 862 Arbitrary
Genes.Essential 4 Categorical
GENES.Complex 52 Categorical
Genes.Phenotype 13 Categorical
Genes.Motif 236 Categorical
Genes.Chromosome 17 Categorical
Genes.Function 13 Arbitrary
Genes.Localization 15 Categorical
Interactions.GeneId1 460 Arbitrary
Interactions.GeneId2 453 Arbitrary
Interactions.Type 3 Categorical
Interactions.Correlation 817 values between -1,+1 Numerical

5.1 Tests Without Using Relational Information

Tests are performed on training dataset without using relational information

of the given dataset. The results of this set are the same as if Apriori algo-

rithm is run on single table, GENES (Table5.3). Tests are performed on test

Table 5.3: Results Without Using Relational Information on Training Dataset

Confidence Time Rules All Correct Incorrect Not Ratio
(Seconds) Found Found

0.5 1030 3159 4347 3735 490 121 %85.9
0.7 1030 2901 4347 3675 207 464 %84.5
0.9 1030 2733 4347 3602 86 658 %82.9

dataset without using relational information of given dataset. Therefore, results

of this set are the same as if Apriori algorithm is run on single table, GENES.

Results of this set of tests are shown in Table5.4. Best accuracy ratio ob-

tained without using relational information on training dataset is %85.9 and

40

Table 5.4: Results Without Using Relational Information on Test Dataset

Confidence Time Rules All Correct Incorrect Not Ratio
(Seconds) Found Found

0.5 1030 3159 383 226 124 32 %59.0
0.7 1030 2901 383 209 83 90 %54.5
0.9 1030 2733 383 197 74 111 %51.4

this ratio is achieved using a confidence value 0.5. When confidence value is

increased, number of unpredicted cases increases whereas number of incorrect

prediction decreases. Using the confidence value achieving best accuracy on

training dataset, classification task is performed in test dataset achieving an

accuracy of %59.0. Considering the accuracy values in test dataset, this is the

best ratio to be obtained.

5.2 Tests Using Relational Information

Tests are performed on training dataset using relational information of dataset.

Tables GENEINDEX, GENES and INTERACTIONS are used for rule discov-

ery for target attribute Localization. Results of this set of tests are shown in

Table5.5.

Best ratio is achieved with 0.5 confidence value. In general, when confidence

increases, the number of incorrect predictions decreases and the number of cases

with no prediction increases. This behavior is expected since when confidence

is low, then the number of rules for prediction increases. Hence, more rules

are used to predict the ”Localization” of a sample increasing the rate of total

predictions as well as incorrect predictions. Tests are performed on the test

dataset using relational information of dataset. Tables GENEINDEX, GENES,

and INTERACTIONS are used for rule discovery for target attribute ”Localiza-

tion”. Results of this set of tests are shown in Table5.6. Best accuracy ratio

obtained using relational information on training dataset is %86.3 and this ratio

41

Table 5.5: Results Using Relational Information on Training Dataset

Confidence Time Rules All Correct Incorrect Not Ratio
(Seconds) Found Found

0.5 1232 3581 4347 3754 508 84 %86.3
0.7 1232 3187 4347 3738 213 395 %86.0
0.9 1232 2977 4347 3639 74 633 %83.7

Table 5.6: Results Using Relational Information on Test Dataset

Confidence Time Rules All Correct Incorrect Not Ratio
(Seconds) Found Found

0.5 1232 3581 383 228 136 18 %59.5
0.7 1232 3187 383 212 99 71 %55.3
0.9 1232 2977 383 199 80 103 %51.9

is achieved using a confidence value 0.5. When confidence value is increased,

number of unpredicted cases tends to increase and the number of incorrect pre-

diction tends to decrease as in single table case. Using the confidence value

achieving best accuracy on training dataset, classification task is performed in

test dataset achieving an accuracy of %59.5, which is better than the single table

case. Considering the accuracy values in test dataset, this is the best ratio to

be obtained.

5.3 Winner’s Approach

Approach, implementation and test results of the winner for Localization task

of KDD Cup 2001 are presented in this section. Information about the winner

presented in this section is based on [73].

The training data includes many missing values for the attributes. Miss-

ing attributes are compensated by using the information of three attributes of

GENES table (Class, Complex, Motif) and INTERACTIONS table since those

attributes and relation are strongly correlated the Localization attribute.

42

In data analysis, three different approaches are applied. First approach dis-

covers association rules strongly relevant to the attribute Localization. Second

approach makes combinations of discovered association rules to form a predictor

using boosting method. Third approach uses nearest neighbor method. Third

approach results in better results than other two in training dataset. There-

fore, nearest neighbour method is chosen for finding Localization values of test

dataset.

Then, using a permutation of four attributes, tests are performed to find

optimal set of four attributes yielding highest performance on training dataset.

The optimal set of attributes are found to be {Complex, Class, Interaction,

Motif} for the predicting Localization attribute. Then the predictors found

by applying nearest neighbor method with optimal four attributes to training

dataset are used to predict values of cases in test dataset.

Testing achieves an accuracy of %72.2, which is better than the results of

implementation developed in this study. This is an expected result since using

association rule discovery algorithms for a classification problem is not a good

choice. Also, association rules found in this study are not combined to generate

good predictors using methods such as bagging or boosting, which may increase

the classification ability of the implementation.

5.4 Discussion

Test results have shown that the accuracy is increased when relational infor-

mation is used. Results obtained without using relational information are the

same as the results that could be obtained running Apriori algorithm on single

table. This is a property of the implementation and the framework proposed

in [1]. This framework supports a range of multi-relational data mining algo-

rithms which are direct generalization of their propositional (attribute-value)

counterparts. For this reason, the implementation developed in this study is

a generalization of Apriori algorithm and when the implementation is run on

single table, the result is the same as running Apriori algorithm on single table.

43

Comparing the results of the implementation with the results of winner ap-

proach for Localization task of KDD Cup 2001, it is observed that winner ap-

proach achieves %12.7 higher accuracy rate. This is an expected behavior since

the implementation in this study performs the task of association rule discov-

ery. And discovered rules are used for classification of Localization attribute by

selecting the association rule consistent with test case having highest confidence

value as predictor. However, winner applies algorithms which are specialized in

classification problems.

In overall, the implementation in this study performs well considering that

the problem to be solved is a classification problem and the implementation

in this study is an association rule discovery algorithm having no specialized

features for the classification problems.

44

CHAPTER 6

CONCLUSION

A relational data mining software operating on relational databases is developed

in this study. The software is based on a multi-relational data mining framework

proposed in [1] and discovers association rules related to target table from a

relational database. The framework proposes using meta-data (i.e. primary and

foreign key constraints) for pruning search space.

In order to find rules in a relational database, meta-data of the database

is read first. The user selects the target table, target attributes and types of

the attributes. Associations between tables in relational database are analyzed,

recursive cases are resolved, and a graph is constructed, which is presented to

the user for fine tuning. The framework excludes discovery of recursive descrip-

tions for the patterns. This study improves the framework by solving recursive

associations and generating recursive descriptions for the patterns.

Apriori algorithm is implemented to find large itemsets of each table. Large

itemsets are used for refining selection graphs. Before Apriori algorithm is ap-

plied, distinct values of columns are read from database and continuous at-

tributes are discretized to form intervals using equal-depth partitioning method.

Support calculation in Apriori algorithm is modified so that the support is cal-

culated against the target table. To calculate support against target table, an

algorithm is developed to find all distinct paths from a table to target table.

45

In searching step, selection graphs are refined using three refinements pro-

posed by framework. Refinements are evaluated using ”fmeasure” method,

which provides a measure to select selection graphs to refine. A specified num-

ber of selection graphs are refined in each level of searching to further prune the

search space. Searching stops when there exists no selection graphs to refine.

Then, rules are generated from the selection graphs satisfying ”fmeasure” and

confidence criteria.

Developed software is tested with KDD Cup 2001’s Localization task and

results are presented. Developed software yielded %59 accuracy rate in best

case without using relational information in training dataset. Using relational

information in training dataset, best accuracy rate is found to be %59.5. These

results show that using relational information achieves higher accuracy rates.

Comparing the results of the implementation with the results of the winner

approach, winner approach achieves an accuracy rate %12.7 higher than the ac-

curacy rate achieved in this study. This is an expected result since the winner

approach uses specialized algorithms for classification task. In overall, the im-

plementation developed in this study performs well considering that the purpose

of the implementation is to discover association rules in relational databases, not

classification.

There are some limitations of this study which are inherited from the frame-

work used. Rules involving Absence and Aggregate concepts can not be discov-

ered using the implementation in this study. In absence case, patterns including

conditions on absence of related records can not be discovered. For example,

considering two relations Personnel and Department, the rule having condition

”personnel not working in Quality Assurance Department” can not be discov-

ered. In aggregate case, patterns including conditions over groups of related

records can not be discovered. For example, a rule having condition ”a person-

nel working in three different departments” can not be discovered either using

the implementation developed in this study. As a future work, these limitation

can be eliminated.

46

Association rules discovered using the implementation developed in this

study are not suitable for classification tasks. Methods like Bagging proposed in

[69] can be used to generate better predictors using association rules. Generating

classifiers from association rules can also be a future work of this study.

Missing values of attributes are treated as having the same value in this

study. However, [65] states that filling missing values of an attribute with the

common value of the attribute or calculating the missing value of the attribute

using values of other attributes achieves better accuracy rates. Using a method

for filling missing values can be a part of a future work of this study.

47

REFERENCES

[1] Arno J. Knobbe, Hendrik Blockeel, Arno P. J. M. Siebes, and D. M. G.
van der Wallen. Multi-relational Data Mining. Technical Report INS-
R9908, 31, 1999.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining Associ-
ation Rules between Sets of Items in Large Databases. In Peter Buneman
and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, pages 207–216, Washington,
D.C., 26–28 1993.

[3] L. Dehaspe and L. De Raedt. Mining Association Rules in Multiple Rela-
tions. In S. Džeroski and N. Lavrač, editors, Proceedings of the 7th Inter-
national Workshop on Inductive Logic Programming, volume 1297, pages
125–132. Springer-Verlag, 1997.

[4] University of Wisconsin CS Department. KDD Cup 2001,
http://www.cs.wisc.edu/ dpage/kddcup2001/, Last Changed on Septem-
ber 19 2001, Last Accessed on August 20 2004.

[5] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge Dis-
covery in Databases - An Overview. Ai Magazine, 13:57–70, 1992.

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to
Knowledge Discovery in Databases. AI Magazine, 17:37–54, 1996.

[7] Smyth Padhraic Fayyad Usama, Piatetsky-Shapiro Gregory. The KDD
Process for Extracting Useful Knowledge from Volumes of Data. In Com-
munication of the ACM, volume 29, pages 27–34, November 1996.

[8] Michael Goebel and Le Gruenwald. A Survey of Data Mining and Knowl-
edge Discovery Software Tools. SIGKDD Explorations, 1(1):20–33, 1999.

[9] Charles X. Ling and Chenghui Li. Data Mining for Direct Marketing: Prob-
lems and Solutions. In Knowledge Discovery and Data Mining, pages 73–79,
1998.

[10] R. Potharst, U. Kaymak, and W. H. L. M. Pijls. Neural Networks for
Target Selection in Direct Marketing. 2001.

48

[11] M. Richardson and P. Domingos. Mining Knowledge-Sharing Sites for Viral
Marketing, 2002.

[12] Peter van der Putten. Data Mining in Direct Marketing Databases. In
W. Baets, editor, Complexity and Management: A Collection of Essays.
World Scientific Publishers, 1999.

[13] Wenke Lee and Salvatore Stolfo. Data Mining Approaches for Intrusion
Detection. In Proceedings of the 7th USENIX Security Symposium, San
Antonio, TX, 1998.

[14] Eric Bloedorn, Alan D. Christiansen, Willian Hill, Clement Skorupka,
Lisa M. Talbot, and Jonathan Tivel. Data Mining for Network Intrusion
Detection: How to Get Started, August 2001.

[15] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. A Data Mining Frame-
work for Building Intrusion Detection Models. In IEEE Symposium on
Security and Privacy, pages 120–132, 1999.

[16] Wenke Lee, Salvatore J. Stolfo, and Philip K. Chan. Learning Patterns
from Unix Process Execution Traces for Intrusion Detection. In Proceedings
of the AAAI97 workshop on AI Approaches to Fraud Detection and Risk
Management, pages 50–56. AAAI Press, 1997.

[17] D. Malerba and F. Lisi. An ILP Method for Spatial Association Rule
Mining, 2001.

[18] Vladimir Estivill-Castro and Michael E. Houle. Robust Distance-Based
Clustering with Applications to Spatial Data Mining. Algorithmica,
30(2):216–242, 2001.

[19] D. Malerba, F. Esposito, F. Lisi, and A. Appice. Mining Spatial Association
Rules in Census Data, 2002.

[20] Donato Malerba and Francesca A. Lisi. Discovering Associations between
Spatial Objects: An ILP Application. Lecture Notes in Computer Science,
2157:156–??, 2001.

[21] Martin Ester, Hans-Peter Kriegel, and Jorg Sander. Spatial Data Mining:
A Database Approach. In Michel Scholl and Agns Voisard, editors, Fifth
Symposium on Large Spatial Databases (SSD’97), volume 1262, pages 48–
66, Berlin, Germany, 1997. Springer.

[22] W. Wang, J. Yang, and R Muntz. STING+: An Approach to Active Spatial
Data Mining. In Fifteenth International Conference on Data Engineering,
pages 116–125, Sydney, Australia, 1999. IEEE Computer Society.

[23] Shi Wang, Wen Gao, Jintao Li, Tiejun Huang, and Hui Xie. Web Clus-
tering and Association Rule Discovery for Web Broadcast. In Web-Age
Information Management, pages 227–232, 2000.

49

[24] Kosala and Blockeel. Web Mining Research: A Survey. SIGKDD: SIGKDD
Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge
Discovery & Data Mining, ACM, 2, 2000.

[25] R. Cooley. Web Usage Mining: Discovery and Application of Interesting
Patterns from Web Data, 2000.

[26] R. Cooley, J. Srivastava, and B. Mobasher. Web Mining: Information and
Pattern Discovery on the World Wide Web. In Proceedings of the 9th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI’97),
November 1997.

[27] Hiroki Arimura, Atsushi Wataki, Ryoichi Fujino, Shinichi Shimozono, and
Setsuo Arikawa. An Efficient Tool for Discovering Simple Combinatorial
Patterns from Large Text Databases. In Discovery Science, pages 393–394,
1998.

[28] Hiroki Arimura, Jun ichiro Abe, Hiroshi Sakamoto, Setsuo Arikawa, Ryoichi
Fujino, and Shinichi Shimozono. Text Data Mining: Discovery of Impor-
tant Keywords in the Cyberspace. In Kyoto International Conference on
Digital Libraries, pages 121–126, 2000.

[29] H. Ahonen, O. Heinonen, M. Klemettinen, and I. Verkamo. Applying Data
Mining Techniques in Text Analysis. Technical Report C-1997-23, 1997.

[30] Carlos Ordonez, Cesar A. Santana, and Levien de Braal. Discovering In-
teresting Association Rules in Medical Data. In ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pages 78–85,
2000.

[31] Ahmed Y. Tawfik, , and Krista Strickland. Mining Medical Data for Causal
and Temporal Patterns, 2000.

[32] Carlos Ordonez, Edward Omiecinski, Levien de Braal, Cesar A. Santana,
Norberto Ezquerra, Jose A. Taboada, David Cooke, Elizabeth Krawczyn-
ska, and Ernest V. Garcia. Mining Constrained Association Rules to Pre-
dict Heart Disease. In ICDM, pages 433–440, 2001.

[33] J. Pfaltz and C. Taylor. Closed Set Mining of Biological Data, 2002.

[34] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.
Knowledge Discovery and Data Mining: Towards a Unifying Framework.
In Knowledge Discovery and Data Mining, pages 82–88, 1996.

[35] A. Freitas and S. Lavington. Using SQL Primitives and Parallel db Servers
to Speed up Knowledge Discovery in Large Relational Databases, 1996.

[36] Marcel Holsheimer, Martin L. Kersten, Heikki Mannila, and Hannu Toivo-
nen. A Perspective on Databases and Data Mining. In 128, page 10.
Centrum voor Wiskunde en Informatica (CWI), ISSN 0169-118X, 30 1995.

50

[37] K. Morik and P. Brockhausen. A Multistrategy Approach to Relational
Knowledge Discovery in Databases. In Proceedings of the 3nd International
Workshop on Multistrategy Learning, pages 17–28. AAAI Press, 1996.

[38] Proceedings of the First International Workshop on Multi-Relational Data
Mining.

[39] S. Muggleton. Inductive Logic Programming. In The MIT Encyclopedia of
the Cognitive Sciences (MITECS). MIT Press, 1999.

[40] H. Blockeel and L. De Raedt. Relational Knowledge Discovery in
Databases. In S. Muggleton, editor, Proceedings of the 6th International
Workshop on Inductive Logic Programming, pages 1–13. Stockholm Uni-
versity, Royal Institute of Technology, 1996.

[41] Saso Dzeroski. Multi-relational Data Mining: An Introduction. SIGKDD
Explor. Newsl., 5(1):1–16, 2003.

[42] S. Muggleton. Inverse Entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

[43] Stefan Kramer and Gerhard Widmer. Inducing Classification and Regres-
sion Trees in First Order Logic. pages 140–159. September 2001.

[44] H. Blockeel and L. De Raedt. Top-down Induction of Logical Decision
Trees, 1997.

[45] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, Santa Mateo, 1988.

[46] D. Heckerman. A Tutorial on Learning with Bayesian Networks, 1995.

[47] David Heckerman, Dan Geiger, and David Maxwell Chickering. Learning
Bayesian networks: The Combination of Knowledge and Statistical Data.
In KDD Workshop, pages 85–96, 1994.

[48] W. Buntine. A Guide to the Literature on Learning Probabilistic Networks
from Data. IEEE Trans. On Knowledge And Data Engineering, 8:195–210,
1996.

[49] Manfred Jaeger. Relational Bayesian Networks. In Morgan Kaufmann,
editor, Proceedings of the 13th Conference on Uncertainty in Artificial In-
telligence, pages 266–273, 1997.

[50] Daphne Koller and Avi Pfeffer. Probabilistic Frame-Based Systems. In
AAAI/IAAI, pages 580–587, 1998.

[51] Lise Getoor. Learning Probabilistic Relational Models. Lecture Notes in
Computer Science, 1864:322–??, 2000.

51

[52] Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning
Probabilistic Models of Relational Structure. In Proc. 18th International
Conf. on Machine Learning, pages 170–177. Morgan Kaufmann, San Fran-
cisco, CA, 2001.

[53] Hendrik Blockeel and Werner Uwents. Using Neural Networks for Rela-
tional Learning. In Proceedings of ICML-2004 workshop on Statistical Re-
lational Learning and its Connections to Other Fields, Banff, Canada, 2004.

[54] Ming-Syan Chen, Jiawei Han, and Philip S. Yu. Data mining: An Overview
from a Database Perspective. IEEE Trans. On Knowledge And Data Engi-
neering, 8:866–883, 1996.

[55] Arno J. Knobbe, Arno Siebes, and Daniel van der Wallen. Multi-relational
Decision Tree Induction. In Principles of Data Mining and Knowledge
Discovery, pages 378–383, 1999.

[56] Hctor Ariel Leiva. MRDTL: A Multi-relational Decision Tree Learning
Algorithm, 2002.

[57] J. Ross Quinlan and R. Mike Cameron-Jones. FOIL: A Midterm Report. In
Machine Learning: ECML-93, European Conference on Machine Learning,
Proceedings, volume 667, pages 3–20. Springer-Verlag, 1993.

[58] J. Ross Quinlan and R. Mike Cameron-Jones. Induction of Logic Programs:
FOIL and Related Systems. New Generation Computing, 13(3&4):287–312,
1995.

[59] Nico Brandt, Peter Brockhausen, Marc de Haas, Jrg-Uwe Kietz, and et al.
Mining Multi-Relational Data, Deliverable D15, 2001.

[60] Thure Etzold Mahmut Uludağ, Mehmet R. Tolun. A Multi-relational Rule
Discovery System. In ISCIS2003, pages 252–259, 2003.

[61] Sever H. Uludağ M. Tolun, M.R. and S.M. Abu-Soud. ILA-2: An Inductive
Learning Algorithm for Knowledge Discovery. In Cybernetics and Systems:
An International Journal, volume 30, pages 609–628, 2003.

[62] U. M. Fayyad and K. B. Irani. Multi-interval Discretization of Continuous-
valued Attributes for Classification Learning. In Proc. of the 13th IJCAI,
pages 1022–1027, Chambery, France, 1993.

[63] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and Un-
supervised Discretization of Continuous Features. In International Confer-
ence on Machine Learning, pages 194–202, 1995.

52

[64] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Asso-
ciation Rules in Large Relational Tables. In H. V. Jagadish and Inder-
pal Singh Mumick, editors, Proceedings of the 1996 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 1–12, Montreal, Quebec,
Canada, 4–6 June 1996.

[65] J. R. Quinlan. Unknown Attribute Values in Induction, July 12 1998.

[66] Margaret H. Dunham. Data Mining: Introductory and Advanced Topics.
Prentice Hall PTR, 2002.

[67] I. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. Cunningham.
Weka: Practical Machine Learning Tools and Techniques with Java Imple-
mentations, 1999.

[68] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–
499. Morgan Kaufmann, 12–15 1994.

[69] Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

[70] Pedro Domingos. Why Does Bagging Work? A Bayesian Account and its
Implications. In Knowledge Discovery and Data Mining, pages 155–158,
1997.

[71] J. Ross Quinlan. Bagging, Boosting, and C4.5. In AAAI/IAAI, Vol. 1,
pages 725–730, 1996.

[72] Eric Bauer and Ron Kohavi. An Empirical Comparison of Voting Classi-
fication Algorithms: Bagging, Boosting, and Variants. Machine Learning,
36(1-2):105–139, 1999.

[73] Jie Cheng, Christor Hatzis, Hisashi Hayashi, Mark-A. Krogel, Shinichi Mor-
ishita, David Page, and Jun Sese. KDD Cup 2001 Report. SIGKDD Ex-
plorations, 3(2):47–64, 2002.

53

