ON AN ARCHITECTURE FOR A PARALLEL FINITE FIELD
MULTIPLIER WITH LOW COMPLEXITY BASED ON COMPOSITE
FIELDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS
OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

NIHAL KINDAP

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN

THE DEPARTMENT OF CRYPTOGRAPHY

AUGUST 2004

Approval of the Graduate School of Applied Mathematics

Prof. Dr. Aydin AYTUNA

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

Prof. Dr. Ersan AKYILDIZ
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ferruh OZBUDAK

Supervisor

Examining Committee Members

Prof. Dr. Ersan AKYILDIZ

Assoc. Prof. Dr. Ferruh OZBUDAK

Assoc. Prof. Dr. Ali DOGANAKSOY

Assist. Prof. Dr. Ali Aydin SELCUK

Dr. Muhiddin UGUZ

ABSTRACT

ON AN ARCHITECTURE FOR A PARALLEL FINITE
FIELD MULTIPLIER WITH LOW COMPLEXITY
BASED ON COMPOSITE FIELDS

Kindap, Nihal
M.Sc., Department of Cryptography
Supervisor: Assoc. Prof. Dr. Ferruh OZBUDAK

August 2004, 69 pages

In this thesis, a bit parallel architecture for a parallel finite field multiplier
with low complexity in composite fields GF((2")™) with k =n-m (k < 32) is
investigated. The architecture has lower complexity when the Karatsuba-Ofman
algorithm is applied for certain k. Using particular primitive polynomials for
composite fields improves the complexities. We demonstrated for the values

m = 2,4, 8 in details.

This thesis is based on the paper “A New Architecture for a Parallel Finite
Field Multiplier with Low Complexity Based on Composite Fields ” by Christof
Paar. The whole purpose of this thesis is to understand and present a detailed

description of the results of the paper of Paar.

Key words: Bit Parallel Architecture, VLSI , Efficient Polynomial Multiplica-
tion, Karatsuba-Ofman Algorithm, Space Complexity, Time Complexity

il

Oz

BILESIK ALANLARA DAYALI DUSUK
KOMLEKSITILI BIR PARALEL SONLU ALAN
CARPANTI ICIN BIR YAPI

Kindap, Nihal
Yiiksek Lisans, Kriptografi Boliimii
Tez Yoneticisi: Doc. Dr. Ferruh OZBUDAK

Agustos 2004, 69 sayfa

Bu tezde, £ = n-m ve (k < 32) kosulunu saglayan GF((2")™) bilegik
alanlarinda diisiik kolpleksitili bir paralel sonlu carpan igin bir bit paralel yapisi
incelendi. Belirli k degerleri i¢in Karatsuba-Ofman algoritmasinin kullanildig:
yapilar daha diigtik bir kompleksitiye sahiptir. Bilegik alanlar i¢in belirli primitif
polinomlar: kullanmak kompleksitiyi diigtiriir. Karatsuba-Ofman algoritmasinin
uygulamasimi m = 2,4, 8 degerleri i¢in ayrintili olarak gosterdik.

Bu tez Christof Paar'in “A New Architecture for a Parallel Finite Field

7

Multiplier with Low Complexity Based on Composite Fields ” adli makalesini
esas almigtir. Bu tezin genelde amaci Paar’in bahsedilen makalenin sonuglarini

anlamak ve makale ile ilgili detayli bir tanim vermektir.

Anahtar Kelimeler: Bit Paralel Yapisi, VLSI, Etkili Polinom Carpimi, Karatsuba-

Ofman Algoritmasi, Yer Kompleksitisi, Zaman Kompleksitisi.

v

To my family

ACKNOWLEDGMENTS

I am grateful to Assoc. Prof. Dr. Ferruh OZBUDAK for patiently guiding,

motivating, and encouraging me throughout this study.

I want to thank my parents for supporting me.

vi

TABLE OF CONTENTS

ABSTRACT .o oo e et e e 11l
O iv
ACKNOWLEDGMENTS . vttt et et e e e e e vi
TABLE OF CONTENTS ..ottt e e e vil
LIST OF TABLES ..ottt s viii
LIST OF FIGURES ...t e i X
CHAPTER
1 INTRODUCGTION ..ttt et e s 1
1.1 Motivation o 1
1.2 Thesis Outline 4
2 MULTIPLIERS IN BIT PARALLEL ARCHITECTURES 5
2.1 Multipliers)
2.2 General Multiplication in GF(2") 6

vil

2.3 Multiplication with a constant in GF(2") 15

3 EFFICIENT POLYNOMIAL MULTIPLICATION 21

3.1 The Karatsuba-Ofman Algorithm 22

3.2 Complexities of the KOA for polynomials over fields of charac-

teristic 2 L, 31

3.3 Karatsuba-Ofman Algorithm for Polynomials over GF'(2") . . . 51

4 REDUCTION MODULO THE PRIMITIVE POLYNOMIAL ... 56
4.1 The Special Case GF((2")%) 58

5 CONCLUSION . vttt e e e 68
REFERENCES .. oottt e e 69

viil

4.1

4.2

LisT OF TABLES

Space and time complexities for multipliers in GF((2")?) 61

Composite fields GF((2™)™) up to nm = 32, primitive field poly-
nomials, and the space complexities and theoretical delays of

parallel multipliers 0L 65

X

3.1

3.2

3.3

4.1

4.2

4.3

LisT OF FIGURES

Block diagram of a parallel realization of the KOA for polynomi-

als of degree 7 over fields with characteristic 2. 53

Block diagram of a paralel realization of the KOA for polynomials

of degree 3 over fields with characteristic 2. 54

Block diagram of a paralel realization of the KOA for polynomials

of degree 1 over fields with characteristic 2. 55
Block diagram of a paralel multiplier in GF((2")%) 60
Block diagram of a paralel multiplier in GF((2°)*) 66
Block diagram of a paralel multiplier in GF((21)*%) 67

CHAPTER 1

INTRODUCTION

1.1 Motivation

The mathematical discipline, Algebra, includes the theory of finite fields. It is
also referred as Galois fields because of French mathematician Evariste Galois’s
fundamental work on it. Finite fields have many applications in modern digital

communication system. Areas where they have applications are:

e Algebraic codes
e Cryptographic schemes
e Digital signal processing

e VLSI testing

In this thesis, VLSI(Very Large scale Integration) implementation will be
focused on. VLSI allows the designers of today to allocate complex systems
consisting of several thousands or even millions transistors on one or very few
chips. The systems involving finite fields are fast. So implementing the modules
providing Galois fields arithmetic on chips is necessary. VLSI modules using Ga-
lois field arithmetic can be classified into bit parallel and bit serial architectures.

Bit parallel architectures tend to be faster and only uses combinatorial logic.

On the other hand, bit serial architectures require less area and uses registers
in addition to combinatorial logic. Bit parallel (or simply ”parallel”) will be

handled in this thesis.

To evaluate VLSI architectures, the following are mainly considered:

e Space complexity

e Time complexity

Hierarcy

Regularity

Modularity

Hierarchy involves dividing the system into a set of modules. Modularity sat-
isfies to understand and document the design of designer. Furthermore, mod-
ularity provides a number of designer to work on different parts of a chip.
Regularity is often used to reduce complexity, see [3]. Hierarchy, regularity and
modularity is considered in an architecture but first two items, space complexity
and time complexity, are more important and will mainly be mentioned. The
architectures in this thesis will be measured using theoretical space and time
complexities. The theoretical space complexity is measured by the number of
two input modulo 2 adders (logical exclusive OR,XOR) and the number of two
input modulo 2 multipliers (logical AND).The theoretical time complexity is
the number of gate delays in the cricital path.

For efficient VLSI implementation efficient hardware structure is needed. It
is obtained by using addition and multiplication, field operations, suitably in
the architecture. Addition can be implemented with a very low space complex-
ity, multiplication is required to be fast but it is implemented with a higher
complexity. Efficient architectures require low complexity and fast multipliers.
This thesis reviews on an architecture of a bit parallel, i.e. fast, multiplier for

extension fields of GF'(2) with improved space complexity in [1].

Finite fields GF(2") with n > 1 are considered. The elements can be in

standard base as polynomials with a maximum degree n — 1 over GF'(2"):
A(z) = an2™ "+ +ag, a; € GF(2); A€ GF(2").

The extension fields of the form GF'((2")™) are sometimes referred as composite
fields. Composite fields are isomorphic to fields GF(2%) iff k = nm. We can
also represent the elements of an extension field GF((2")™) in the standard
(canonical) base as polynomial with a maximum degree m — 1 over GF(2"):
B(z) = byp_12™ ' 4 -+ + by, where b; € GF(2"), and B = B(z)mod P(z) €
GF((2")™). The polynomial P(z) of degree m over GF'(2") is chosen as an

irreducible polynomial (even primitive polynomial).

Two elements A and B of a composite field GF((2")™) can be multiplied in

standard representation as:

A(z) x B(z)mod P(x) (1.1.1)

The field multiplication in (1.1) can be performed in two steps:

1. Ordinary multiplication (x).

2. Reduction modulo the field polynomial (mod).

When we multiply the elements A and B of a composite field GF((2")™),
we firstly multiply A(z) and B(x) as an ordinary multiplication, and then
we do reduction modulo the field polynomial P(z). The arithmetic opera-
tions are done in the ground field GF(2"). The field polynomial notation
of the ground field GF(2") is Q(y) = ¥ + ¢u_1y™ ' + -+ + qo, where ¢; €
GF(2) and the field polynomial notation of the composite field GF((2")™) is
P(x) = 2™ + pp1x™ '+ -+« + pg, with p; € GF(2"). The irreducible polyno-

mials Q(y) and P(x) are chosen monic primitive polynomials.

In the polynomial multiplication, Karatsuba-Ofman algorithm is used to to

make multiplication efficient which means algorithm saves multiplication at the

cost of extra addition. Because multiplication is more costly than addition.

Addition requires n XOR gates,

1.2 Thesis Outline

Chapter 2 provides an overview of multipliers, particularly Mastrovito multi-
plier in bit parallel architectures. General Multiplication in GF'(2"), constant

multiplications in GF'(2") and the space complexities of them are investigated.

In Chapter 3, efficient polynomial multiplication in composite field GF'((2™)™)
is overviewed. Karatsuba-Ofman Algorithm which provides lower complexity
for polynomial multiplication is discussed. Computational and time complexi-

ties are found for some m values.

In Chapter 4, reduction modulo the field polynomial in field polynomial

multiplication is investigated.

CHAPTER 2

MULTIPLIERS IN BiT PARALLEL

ARCHITECTURES

By a parallel multiplier it is intended that a device performs multiplication of
two arbitrary field elements in one single step. It is also intended that this

multiplication is to be fast over GF'(2").

2.1 Multipliers

There are mainly three approaches for bit parallel multipliers. These multipliers

have the following properties basically:

e The multipliers do not operate over extension fields of GF'(2")

e The space complexity of the multipliers is lower bounded by a total of

2n% — 1 gates (XOR, AND)

It is mentioned that there are three different approaches for traditional parallel
multipliers. Each of these uses different bases, namely standart (SB), nor-
mal (NB) and dual base(DB). In this thesis standart (or canonical) base SB
multiplier proposed by Mastrovito [3] will be studied. The reason preferring

Mastrovito’s multiplier is having good properties in VLSI design. For instance,

this multiplier yields low complexity and high performance when the suitable
field generator is selected. It can be seen in chapter 7 of [2] that SB multiplier

has better measures for delay and gates than NB and DB architectures.

2.2 General Multiplication in GF(2")

Review of the Mastrovito Multiplier

In this section Mastrovito’s standart base multiplier will be reviewed. Mas-
trovito’s architecture, used to perform multiplication of field elements given in
standard base multipliers, has one of the lowest gate counts among standard
base multipliers. In addition, it will be used as the ground field multiplier over
composite fields in this thesis. Detail description of the multiplier is given in
[3] explicitly.

It will be used matrix notation for the multiplication of two field polynomials.
Let C(y) be the multiplication of two polynomials A(y) and B(y) mod Q(y) in
the field GF'(2"). Q(y) is the primitive polynomial of the ground field GF(2").
This multiplication with coefficients of the polynomial entries in GF(2) is ab-

breviated as the following:
Coay" o = (apay" T+ ag) - (beay™ T+ Do) mod Q(y)

This multiplication will be shown in the matrix form. Let C(y) and B(y) are
denoted as column vectors and a new matrix Z defined as Z = f(A(y), Q(y))

be introduced. So the multiplication in matrix notation is as follows:

Co fo,o fo,n—1 bo
: S : : (2.2.1)

Cn—1 fnfl,O fnfl,nfl bn—1

The matrix Z is called "product matrix” . Its coefficients f;;’s are calculated
as follows:
a; j=0 1=0,---,n—1

fig = o - . .
u(i — J)ai—; + Eizé QGj-1-tiGn-1—¢ j=1,---,n—1 i=0,--- ,n—1

(2.2.2)
where a; ’s are the binary coefficients of the polynomial A(y), ¢;; 's are the

coefficients of the matrix @), and step function u is defined as

1 u>0
u(p)
0 u<0

() matrix is required for the matrix Z and defined as follows:

yn 40,0 c.. qo,n—1 1
n+1 : . :
Ly | dn20 o Gue2ar | [YT

The entries g;; of the matrix () are binary entries, and matrix-vector prod-
uct (2.2.3) describes reduction mod Q(y), i.e. the terms y™ y" ™ ... y?=2

occured after the multiplication of A(y) and B(y) can be written in terms of
17y7 T ’yn—l‘

The implementational complexity of the matrix-vector product (2.2.1) de-
pends only on the primitive polynomial Q(y). For the field polynomial Q(y) in
GF(2"), trinomials such as Q(y) = y™ +y + 1 are optimum with respect to the
number of gates, i.e. these show better performance (satisfies low complexity)
than other primitive polynomials having same degree. The best field generators

for 2 < n < 16 satisfying minimum complexity is shown in Table 4.5 in [3].

Primitive polynomials of the form

Qly) =y" +y+1 (2.2.4)
exist for n = 2,3,6,7,15. The space complexity is given by
#AND + #XOR =2n* — 1 (2.2.5)

However for the trinomials Q(y) = v° + v* 4+ 1, Q(y) = " + y* + 1, Qy) =
v+ 42+ 1, Q(y) = y'!' + y* + 1, the space complexity measurements, (2.2.5),
are also satisfied. So we prefer also these trinomials as our ground field. For
n = 8,12,13, 14, 16 values, pentanomial field generators having low complexities
exist. Acording to Mastrovito’s conjecture in chapter4 in [3], the only classes of
polynomial yielding maximum performance are the class of trinomial 1+ x+2".

But primitive trinomials exist for any degree < 34 not for the degrees > 34.

The delay (time complexity) of the multiplier is upper bounded by:
T = TAND + TXOR S 1+2 |_10g2 ’rl-l (226)

measured in gate delays. The following table ([2],chapter3) shows the improved

space and time complexity of the Mastrovito multiplier in GF'(2") .

n Q(y) | AND | XOR | Tand | Txor
2 2,1,0 4 30 1| 2
3 3,1,0 9 8| 1| 3
4 41,0 16| 15| 1| 3
5 52,0 25| 24| 1| 5
6 6,1,0| 36| 35| 1| 4
7 71,0 49| 48| 1| 4
8| 853,20 64| 8| 1| 5
9 9,40 81| 8| 1| 6
10 10,3,0| 100 99| 1| 6
11 11,2,0| 121| 120 1| 6
121 12,8,5,1,0 | 144 | 207| 1| 7
13]13,7,6,1,0 | 169 | 202| 1| 6
14| 14,9,7,2,0 | 196 | 282| 1| 7
15 15,1,0 | 225| 224 1| 5
16 | 16,116,5,0 | 256 | 281 1] 6

Paar comments on the Mastrovito Multiplier

In matrix-vector product (2.2.3) Paar ([2]) described a formula for comput-

ing the entries ¢; ; of the matrix (). Matrix () is computed as follows:

Let Q(y) = y" + ¢u1y™ ' + -+ + quy + 1 be the ground field polynomial.
First row entries are computed as qp; = ¢; and ¢o = 1 then other entries are
found as follows:

) di-1n—1 =1, mn—=2 ;5=0;
e ¢i-1j-1+Gi-1n-1Go; ;i=1,---,n—=2 ;5=1---,n—1
If the trinomials in (2.2.4) are used for the field generator Q(y), the space
complexity will be the same as (2.2.5). Otherwise, the space complexity will
be greater because of higher value of XOR . Time complexity is taken as the
multiples of XOR and AND gate delays. These delays are abbreviated as 7y,
and 7,,q respectively. Delays can be upper bounded by:

T < Tana + 2T [logy 1] . (2.2.7)

Table shows the numbers of AND gates, XOR gates, T, and 7,,q for the given
trinomials ground fields in GF(2") for 2 < n < 16. The numbers specify

polynomials are the degrees of nonzero coefficients of polynomial.

It is time to give an example to find the matrix (2.2.1) and see space and

time complexities of the given ground field polynomial.

Example 2.2.1. Let Q(y) = y” +y + 1 be the primitive field polynomial of
GF(27) and the field element is A(y) = y* + y® + y* + y + 1. Find the product
matrix C(y) mod Q(y).

Solution:

For n = 7 and Q(y) = y” +y + 1 coefficients with g5 = 0, ¢5 = 0, ¢4 = 0,

10

g3 =0, =0,q =1, gy = 1, entries of the matrix () are found as the following:

doo =qo =1 q1,0 = o6 = q6 = 0
Qo1 =q =1 q1,1 = qo,0 T Go6 - Go1 = 1
qo2=¢q2 =10 q12 = qo1+ Gos - o2 =1
o3 =¢q3 =0 71,3 = qo,2 + Go6 - o3 = 0
Gos =qs =0 q1.4 = qo3 + Go6 - Goa =0
qos5 = q5 =0 q1,5 = qo4 + Go6 - o =0
go,s = g6 = 0 q16 = 905+ Go6 " Go =0
42,0 = q1,6 = 0 430 = G2,6 = 0
®21=q0+q6 q1=0 731 =420+ q26° g1 =0
G22 = q1,1 T q16° Qo2 =1 432 = q2,1 + q2,6 * o2 = 0
(23 =q1,2 T q16-Go3z =1 33 = G221 q26 o3z =1
G2.4 = q1,3 T q1,6 - Goa =0 434 = G231+ G26 - Qoa = 1
@5 =q4a+qeqs5=0 @35 = @24+ G265 =0
426 = q1,5 + q1,6 - o6 = 0 436 = 92,5 T q2,6 - o6 = 0
q10 = q36 =0 g0 = qae =0
qa1 = 930 T q36 - o1 = 0 d51 = q4,0 + qa,6-9o,1 = 0
Ga2 = @31+ q36 - Go2 = 0 d52 = q4,1 + Qa6-Go2 = 0
G443 = G32 + q36 - Go3 = 0 453 = Q42 + Qa6-9o3 = 0
Qa4 =933+ Gq36 Goa =1 ¢5,4 = a3+ Ga6-9oa = 0
Ga5 = @34 T q36 Qo5 = 1 455 = Qa4+ Que-os = 1
da6 = G35 1+ G3,6 - Go,6 = 0 J56 = Q45+ Ga6-Go = 1

11

So matrix () is the following:

1100 0 00
01 1 0O0O00O0
0011000
Q:
0001100
0O 0O0OO0OT1T1O0
0O 00O0O0T1T1
A(y)=y4+y3+y2+y~|—1wherea0:1,alzl, =1l,a3=1, a4 =1,

as = 0, ag = 0 is the polynomial in GF(27). The entries of the product matrix

7 are calculated as follows:

Joo=ao=1 Joa=u(0—1)a_1 +qoo-as =0
o=a =1 fii=u(l —1)ao+qo1-as =1
foo=a2=1 for=u2—1)a; + qa2-as =1
fso=ua3=1 fa1=uB3—1)as + qoo2-ag =1
Jio=as=1 f41 u(4 —1)az + qoz - ag = 1
fs0=a5=0 =u(d —1)as + qos-as =1
feo=as =0 =u(6—1)as+qos5-as =0
=u(0—2)a_as+qi0- a6+ qoo-as =0
f12—U(1—2)Cl—1+CI1,1'a6+QO,1'a5:0
foz =u(2—=2)ao+ qr2- a5+ qoa2-as =1
fao=u(3—2)a1 +q13 a6+ qo3-as =1
fro=u(4—2)as+ qr14- a6+ qoa-a5 =1
fs2=u(db—2)as+q5- a6+ qos - a5 =1
Joo =u(6 —2)as+ qr-as+ qoe - as =1

12

foz =u(0—3)a_3+quo-as+qro-as+qo-as=1
fis=u(l—=3)a_s+q1-a6+q1-a5+qo1-as=1
fas=u(2—3)a_1 +q2-a6+qr2-a5+ a2 -as=0
fss=uB3—3)ao+ q23 a6+ q1,3- a5+ qoz-as =1
fiz =u(4—3)ar + g4 - a6+ qra- a5+ qoa-as =1
foa=u(b—3)as+ qp- a6+ qi5- a5+ qos-as =1
fo3 =u(6—3)as+ q26- a6+ q1.6- a5+ Gop - as =1
Joa=u(0—4)a_s+ qs0- a6+ a0 - a5+ 10 Gs+ qoo-az =1
fia=u(l—4)a_s+qs1-a6+qe1-a5+qi1-as+qos-a3=0
foa=u@2—4)a 2+ g2 a5+ qua-as+qa-as+qoz-az=1
faa=uB—4)a 1 +q33 a6+ quz-as+q3-as+qoz-az3 =0
aa=ud—4)ao+q3a-a6+qea-a5+qra-as+qoa-az =1
fsa=ud—4)ar +gs5-as+ o5 a5+ Q15 Qs+ gos - az =1
foa=u(6—4)az + g3 - as + G2 - a5 + q1.6 - a4 + qog - az =1
fos =u(0—5)a_s 4+ quo- a6+ 30 a5+ 201+ G- a3+ qopo- a2 =1
Jfis=u(l—=5)a_q+qu1-as+qs1-as+qe1-as+qa-az+qo-ax =0
fos =uw(2—5)a_3+qu2- a6+ Gz a5+ o204+ qra-az+ qo-az =0
fas =u(3—>5)a_s+ quz-a6+qss-as+qaz-as+qi3-as+qos-as =1
fas =u(4—=5)a_1+ qaa-a6+qsa-a5+qoa- s+ qa-as+ qa-a2=0
fss =u(b—=5)ao+ qus a6+ G35 a5+ G251+ q5- a3+ qos-az =1
Jo5 =u(6—5)ar + que - a6+ G- a5+ G2 - a1+ qu6- a3+ qog - a2 =1

13

foe = u(0 —6)a_g + gs0
fie =u(l—=06)a_s+gs:
fos =u(2 = 6)a—s+ gs2
fas=u(3 —6)a_3+qs3

16 =u(4—6)a_z+ g5
fse =u(b —6)as +gs5

“ Qg + 44,0
“ Qg + Q4,1

206+ Qa2

“ag + Q4,3
“ Qg + Qa4
0 + Qa5

“ a5+ q30
a5+ g3
“as + g3 2
a5+ G33
“ a5 + Q34
“as + g3

“ Q4+ G20

“Qy4 + Qo1

S0y + G22

“a4+ Qo3

“a4+qoq -

“Qy + Q25

as+qiq4-

“az + qip
“az +qia
ca3+qi2
“az + q13

-as+ q15

a2+ qo,0
“a2 + qoa
< Q2+ qo2
“az + qo,3

az + qou

< Q2 + Qo5

cap =1
ca; =0
cap =0
ca; =0
ca; =1
ca; =0

Joo =u(6—06)ap+ qs6 - a6+ qae - a5 + 36 a1+ Q26 - a3+ 16 a2+ Gop - a1 =1

So the matrix Z is the following:

N
I
O O = = = e

O = = = = = O
—_ = = = = OO
_ = = = O =

e = e == =

I =S s B N <o B B =Y
_ O = O O O =

Then the multiplication C(y) = A(y)B(y) mod Q(y) is shown as:

Co
(&)
C3
C4
Cs

Ce

I
O O V) = ==

O = = = = = O
—_ = = = = OO
e e i e = T e

14

e e = =

_ = O R O O
_ O = O O O =

bo
by
by

Hence the vector C' with entries in mod 2 is the following:

bo + b3 + by + bs + bs

bo + b1 + bs

bo + b1 + by + by

C'= | by+ by + by + b3+ bs

bo + by + by + b3 + by + bs
by + by + bz + by + bs

by + by + by + bs + bg

2.3 Multiplication with a constant in GF(2")

In this section an efficient scheme for performing parallel multiplication of an
arbitrary element in GF'(2") with a constant element is developed. We consider
the multiplication of the product C' = AB in GF(2") where A(y) or B(y) is
regarded as a constant in the former section. If one of the multiplicands is a
constant, then it is expected that the architecture of a multiplier will simplify.

Choosing A(y) as a constant makes the matrix Z in (2.2.1) be constant matrix.

We may take the example in the former section. We assume A(y) is a

constant field polynomial.

Example 2.3.1. Let Q(y) = y” +y + 1 is the primitive polynomial in GF(2").
Let w denote the primitive element of the field, i.e. Q(w) = 0. Let A(y) =
y* + v + 9> +y + 1 be constant element in GF(2"). This constant element is

equal to w*” which is found as follows:

Show the equality of the field element A(y) = w!" =y* + 32 + > +y + 1

w’ =1 w! =w w? = w? w? = w?
wt = w? wd = w® wb = w® w=w+1
wd = w?+w w =w+w* w=w'+w wM=wd+w

15

w=w" w' = (w+1)* =w?+1

w?® = (w*+ 1?2 =w+1

w2 = w2 M = (w4 1) - (w4 1) = Wb+ wh 4 w? 41

W = w2 = (Wb 4wt w? 1) wb = w4+ w0+ W+ W

=w v+ +uwitw+l+o’ =w+w +uwitw+1

The multiplication of the variable element B = (by . ..bs) and constant element

Aly) = yt+ 3 + 2 4+ y + 1 is found:

by + bs + by + bs + bg
bo + b1 + b3

bo + b1 + ba + by
C=w""B=2ZB| by+by +by+ bs + bs (2.3.8)
bo 4 b1 + by + b3 + by + bg
by + by + b3 + by + bs

by + bs + by + bs + bg

Each operation (+) in (2.3.8) denotes a mod 2 multiplication.

It is seen that constant multiplication requires only additions, not multiplica-
tion in GF'(2"). Hence it defines the space complexity as the number of XOR
addition. Mastrovito previously described the constant multiplication in [3].

The average complexity for constant multiplication in GF'(2") is defined as:

- n?

#XOR= - —n (2.3.9)

This equality depends on the idea that the average Hamming weight of a
field element is %. This idea is handled widely in [3]. Equation (2.3.9) is
the average complexity value in all 2" binary matrices of type (2.3.8). In the
example (1.3.1), (2.3.8) has 26 XOR addition. However there is redundancies

in the example be performed. For instance, by+b; appears four times in 2, 3,4, 5

16

rows and it is taken as different addition in computation of 26 XOR addition.
But in searching constant multiplication with low comlexity, it is necessary to
solve the optimization problem on Boolean equations of form (2.3.8). The cost
function of the optimization problem is the number of mod 2 additions required
to realize a set of n equations in n variables b;, © = 0,1,...,n — 1 where each
equation is a sum over certain b;. To reach optimum solution the most often
occuring pair by + b; is precomputed. Then a locally optimum solution is found.
The new pair b, = by, + b is taken as a new element and computed once having
1 addition. In the next time the new pair b, is taken as the element and we look
for the second most often occuring element. This application goes on iterately
until the last step where each possible pairs appears only once. In the sequal
we will compute actual XOR gates in (2.3.8) where it may seem to have 26

XOR gates.

In the first step bz 4+ by pair is computed and denoted as k;. It requires 1
addition. In the first row the b3 + b4 pair is computed but in the fifth,sixth and
seventh columns the pair is not computes again and eventually we get rid of 3

additions. The number of additions are computed as 23 additions.

ki = bs + by — 1 addition
Y
bo + k1 + bs + bs
bo + b1 + bs
bo + b1 + by + by
= | bo+ by + by + bs + bs
by + by + by + k1 + bg
by + by + ki + bs
by + Ky + by + bg
23 addition

In the second step ki + bg pair is computed and denoted as ko which is

actually bs + by + bg. The new element ks also requires 1 addition. We also get

17

rid of 2 addition in fifth and seventh rows. The number of additions reduces 21

additions.

ko = k1 + bg — 1 addition
=b3+ by + b
Y
bo + ko + bs
bo + b1 + bs
bo + b1 + b2 + by
= | bo+ by +bs+ b3+ bs
bo + b1 + by + ko
by + b + k1 + b5
by + ko + bs
21 addition

In the third step by + b; pair is computed and denoted as k3. The new
element k3 requires 1 addition. We get rid of 2 addition in sixth and seventh

rows. The number of additions reduces 19 additions.

ks = by + bs — 1 addition
Y

bo + ko + bs

bo + by + b3

bo + b1 4 by + by

= | b+ by + b3+ k3

bo + b1 + by + k2

by + ki + ks

ko + ks

19 addition

In the fourth step by 4+ b; pair is computed and denoted as ks. The new
element k4 requires 1 addition. We get rid of 3 addition in third,fourth and fifth

18

rows. The number of additions reduces 16 additions.

ky = by + by — 1 addition
Y

bo + ko + bs
k4 + b3

kg + by + by
= | ks + b3+ ks
ky + by + ko
by + k1 + ks
ko + ks

-16 addition

In the fifth step k4+ by pair is computed and denoted as k5. The new element
ks requires 1 addition. We get rid of 1 addition in fifth row. The number of

additions reduces 15 additions.

ks = k4 + by — 1 addition
Y

bo + ko + b5
k4 + b3

ks + by

= | ka+bs+ ks
ks + ko

by + k1 + ks
ko + ks

-15 addition

In the fifth step k4+ b3 pair is computed and denoted as kg. The new element
k¢ requires 1 addition. We get rid of 1 addition in fourth row. The number of

additions reduces 14 additions.

19

ke = ks + b — 1 addition

~ U -
bo + ko + b5
ke
ks + by

= | k¢ + ks

ks + ko

by + k1 + ks

ko + ks

-14 addition

So we found 14 additions in the last step and we cannot further reduce the
number of additions. It is an optimized solution when we compare with Mas-
trivoto’s average complexity. For n = 7, #XOR = g — 7 = 17.5 is computed

using average complexity formula but our solution gives better result.

Paar developed two greedy algorithms, namely Greedyl and Greedy2, to
all elements of the fields GF(2") for n = 4,5,--- ,16 in [[2],chapter 4]. Two
algorithms have considerably lower space complexity as n increases. Although
the algorithm Greedy2 gives lower comlexity, its space complexity can not be
computed for n > 11 because of slowness of the algorithm. For instance, for
n = 7 the number of XOR is 11.3 for Greedyl, 5.3 for Greedy2. Measurements
of the space complexities of the primitive polynomials for 4 < n < 16 are shown

in Table 4.1 in [2].

The actual complexities can be found in Appendix B in [2] forn = 4,5, ,...,8.

2 2" -3

Complexity of first few w, w*, ... and the last few ..., w ,w?" 72 field elements
of each field have a gate count which is significantly lower than the average com-

plexity.

20

CHAPTER 3

EFFICIENT POLYNOMIAL

MULTIPLICATION

In this chapter an efficient scheme for multiplying two polynomials in the
composite field GF((2")™) will be derived. We consider the composite fields
GF((2")™) where m = 2, i integer. The elements of the fields are field poly-
nomials with a maximum degree m — 1 over GF(2"). The generator of the

extension field is primitive polynomial P(x) of degree m over GF'(2").

For the performing field multiplication (1.1) in chapter 1, first part (ordinary
polynomial multiplication) is the first and major step. The basic operations,

addition and multiplication, are performed in the ground field GF(2").

For efficient multiplication of polynomials over GF(2") to step 1, Karatsuba-
Ofman Algorithm is used in the multiplier. As it is mentioned before, efficient
means algorithm saves multiplication at the cost of extra additions. Multipli-
cations are more costly than additions. However, we need multiplication to
make algorithm fast. So we replace multiplications with additions to reduce the

complexity.

21

3.1 The Karatsuba-Ofman Algorithm

The Karatsuba-Ofman algorithm (KOA) was first described by Karatsuba and
Ofman in 1962 in the “ Doklady Akademii Nauk SSSR ”. Acompact version is
described in [4]. The algorithm is a recursive method for efficient polynomial
multiplication. Its application is based on “ divide and conquer ” principle or

splitting of polynomials.

The computational complexity of the straightforward method, also called
school book method, for the polynomial multiplication is given as m? for the
multiplicative complexity and (m — 1)? for the additive complexity where m — 1
is the degrees of the polynomials and having coefficients in F. The following

example computes the complexity of two polynomial multiplication for m = 4.

Example 3.1.1. Let A(x) = azx®+axx®+a1x+ag and B(z) = byz3+box? +by o+
bo where a;, b; € GF(2") for some n € N. When we compute C(z) = A(x)B(x)

as the following:

C(x) = (as2®+ azx® + a1 + ap) - (bsa® + box® + by + by)
= a3bsw® + agbex® + ashix* + asbor® + asbsx® + asbex® + asbix® + asbyr?
+aybsx? + a1byr® + a1bix? + a1bo + agbsz® + agbex? + agbiz + agby
= agbsz® + (azby + azbs)x® + (azby + asbs + arbz)x?
+(agbo + asby + aiby + agbs)z®
+(agbg + a1by + agbs)x? + (aiby + agby)x + agby

we found m? = 4? = 16 multiplicative complexity and (m — 1)?2 = 32 = 9

additive complexity as observed above.

The KOA which is a recursive algorithm reduces the multiplicative com-
plexity and the additive complexity for large enough m. We consider here the

multiplication of the polynomials A(x) and B(z) with a maximum degree m — 1

22

over a field F. So each polynomial has at most m coefficients, i.e.

A(r) = apm12™ 1 + -+ + ag
and

B(z) = by 2™+ -+ + by

As it is stated before m is a power of two, i.e m = 2',i € Z. Here our
attention is finding the product C'(z) = A(z) - B(z) with deg(C'(x)) < 2m —2.
Algorithm starts with splitting polynomials into lower and upper half.

m
2

A=z% (22 Yamy +---+ am) + (x%_la%_l + - tag) =x2Ap + A
B

:x?(x%ilbm_lﬂ—-"—f—b%)+(x%71b%—1+'.'+bo>:x%Bh—i_Bl (311)

Using (3.1.1), a set of auxilary polynomials D(z) is defined:

Di(x) = (Aila) + A(@)) (Bi(a) + Bu(x)) (3.1.2)

The product polynomial C’'(z) = A(z)B(x) is computed by:

C'(x) = Do(z) + 2% [Dy(z) — Do(z) — Do(z)] 4+ 2™ Dy(x) (3.1.3)

The number of multiplications which is found as m? by school book method
reduces to %mQ in (3.1.2) by KOA. The calculations will be given later for some
m values. The next step requires to split Do(x), Di(x) and Ds(x) into a lower
and an upper half again. That is A;, Ay, A; + Ay and their B counterparts will
be split into half. It is computed as:

23

+ [Dol(l')—Doo(l')—DOQ(.I')}—F%’%DOQ(%)
Dy(a) = Dy, (&) + 2% [Dy, (2) = Diy(a) — Diy(@)] + 2% Diy(a) (3.14)
+ [D21(x)_DQO(ZE)_D%(ZE)}—*—J”%DOQ(‘T)

The algorithm is concluded after ¢ steps where ¢ = log, m. This happens
because every step halves the number of coefficients. In the final step D;(z)’s
are degenerated into single coefficients. The following examples show how the

computations are for the values m = 2,4, 8.

Example 3.1.2. For m=2

Let A(x) and B(z) are field polynomials with degrees 1 which is m — 1 over
a field F.

A(z) = a1z + agp
B(.T) = blflf + b()

Then we get the followings by splitting the polynomials using KOA:

Ah(.l?) = a1 Bh(.CE) = bl

Do(x) = Ai(z) - Bi(x) = ag - by
Dl(ﬂf) = (Al(x) + Ah(l’)) . (Bl<l’> + Bh(:c)) = (CLQ + al) : (bo + bl)

Ds(x)

Ah(l') . Bh(x) =dai - bl
Example 3.1.3. For m=4

If A(x) and B(x) are field polynomials with degrees 3 which is m — 1 over
a field F. Then we get the followings by splitting the polynomials using KOA:

A(z) = 2*(azx + a2) + (a1 + ap)

B(l’) = $2(b3$ + bz) + (b1£lf + bo)

24

Ah(m) = asx + G2 Bh<$) = bgflf + bg
Al(l‘) = a1x + agp Bl([)?) = bll' + b()

Dy(z) = Ai(z) - Bi(z) = (a12 + ag) - (byz + by)
Dy(z) = (Aix) + An(z)) - (Bi(x) + Bu(x))
= [((ll + ag)[E + (CL() + CLQ)] : [(bl + bg)l’ + (bo + bg)]

DQ(I‘) = Ah(l’) . Bh(l’) = (CL3{L’ + CLQ) . (bgl’ + bg)

1. Take Do(x) = Aj(x) - Bi(z) = (a1 + ag) - (b + bo)

2. Take Dy(z) = (Ai(z) + An(x)) - (Bi(z) + Bp(z))

= [(a3 + a1)x + (ag + a0)] - [(bs + b1)z + (ba + bo)]

Let C(x) = Ai(z) + Ap(z) and E(z) = Bi(z) + By(x)

Ch(l’> =asz+ a; Eh(x) = b3 + b1

Cl(SC) =as + ag El(l’) = bg + b(]
Dlo (x) = ((12 —+ CLQ) . (bQ + bg)

Dy, (x) = [(ag + ag) + (az + a1)] - [(ba + bo) + (b3 + by)]
D12($) = ((13 + al) . (bg + bl)

25

3. Take Dy(z) = (asx + az) - (bsx + bs)

Example 3.1.4. For m=8

If A(x) and B(z) are field polynomials with degrees 7 which is m — 1 over
a field F. Then we get the followings by splitting the polynomials using KOA:

A(z) = ¥ (ar23 + agx® + asr + aq) + (a3z® + as2® + ayx + ag)

B(x) = 2 (by2® + bea® + bsx + by) + (b3x® + box® + byx + by)

Ap(z) = a72® + agr® + asx + ay = 2%(arx + ag) + asr + ay

Ay(z) = azx® + ax® + a1 + ag = 2*(azxr + az) + a1 + ag

Bh<I> = b7LL’3 + bGLL’Q + b5ZL' + b4 = .Z‘2<b713 + b6> + b5l’ + b4
Bl(ZL‘) = b3CC3 + bgl’z + bll’ —|— bo = 172(b3$ + bg) —I— blfL‘ —f- b()

1. Take Dy(z) = Ai(x) - By(z)

Al(z) = 2% (azx + ag) + a1z +ag Ay, (z) = agz +ay By, (v) = bz + by
Bi(z) = 2*(bsx + by) + iz + by Ay, (x) = a1z + a9 By (z) = biz + by

26

(a) DOO(ZL') = All (.Z') . Bll(ZC) = (alx + Go) . (blx + bo)

Ay, (2) = a By, (x) = by
Alll (l’) = Qo Blzl (l‘) = bo

DOoO (z) =ag-by = do
.D()O1 (ZL’) = ((lo + CL1> . (bo + bl> = d1
D002 (I‘) = ai - bl = dg

(b) Do, (z) = [Ay(z) + Ay, (z)] - [By(2) + By, (2)]
= [(a1 + a3)x + (ag + ag)] - [(b1 + bs)z + (bo + b2)]

A}?(x) = a; + as B}}j’@) — by + bs
AV (x) = ag + as B (x) = by + by

Dglo (I) = (CL() + (12) . (b() + bg) = d3
Dy, (z) = [(a1 + a3) + (ao + a2)] - [(b1 + b3) + (bo + b2)] = ds
D012 (x) = (a1 + Clg) . (bl + bg) = d5

l)OQ0 (.Z') = as - b2 = dG

2. Take Dy(z) = [Ai(z) + Ap(2)] - [Bi(z) + Bu(z)]

27

Aj(x) + Ap(z) = [(az + a7)z® + (a2 + ag)x? + (a1 + a5)z + (ag + a4)]

Bi(x) + Bp(x) = [(bs + by)x® + (by + bg)x* + (by + bs)z + (bo + bs)]

Let C(x) = Aj(z) + Ap(x)

E(x) = Bi(x) + By(x)

C(x) = (az + a7)x® + (ay + ag)x* + (a1 + as)x + (ag + a4)

= 2%[(az + a7)x + (ag + ag)| + [(a1 + as)z + (ag + a4)

E(x) = (bg + br)x® + (by + bg)x? + (b1 + bs)x + (b + bs)

= 2?[(b3 + br)z + (b2 + bo)] + (b1 + bs)z + (bo + ba)]

Ch(z) = (as + ar)x + (a2 + ag) En(z) = (bs + br)x + (b + bg)
OZ<I> = (Cbl + CL5)JJ + (CL() + a4) El(l‘) = (bl -+ b5>[)§ + (bo + b4)

(a) Dyy(z) = Ci(2)- Ei(x) = [(a1 +as)z + (a0 +aq)] - [(b1 +b5)2 + (bo +ba)]

Clh(ZL‘) = a1+ as Elh(I) = b1 + b5
Cll (SC) = a9+ aq Ell(x) = bg -+ b4

Dy, (z) = (ag + aa) - (bo + bs) = dy
Dlol (iL‘) = [(a1 + CL5) + (ao + a4)] . [(bl + b5) + (bg + b4)] = le
Dy, () = (a1 + as) - (b1 + bs) = dny

(b) Dy, (z) = [Ci(x) + Cp(2)] - [Er(z) + En(z)]
= [[(as + a7) + (a1 + as)]x + [(az + ag) + (ao + a4)]] - [(b3 + b7)
+(b1 + bs)]x + [(b2 + bs) + (bo + bs)]]

28

Let C(z) = Cy(x) + Ch(z) EW(2) = Ey(x) + Eu(z)

V() = (as + az) + (a1 + a5) EM(x) = (bs + br) + (by + bs)
C(z) = (as + ag) + (ao + as) EM () = (by + bg) + (by + by)
Dy, () = [(az2 + as) + (a0 + as)] - [(b2 + bg) + (bo + ba)] = di2

Dy, (z) = [(a3 + a7) + (a1 + a5) + (a2 + ag) + (ao + aa)]
(b3 + b7) + (b1 4 b5) + (b2 + b6) + (bo + ba)] = di3
Di,, () = [(as + a7) + (a1 + a3)] - [(bs + b7) + (b1 + b5)] = dua

(¢) Dy,(z) = Cp(x)- En(z) =

Ch, () = as +ar
Ch,(z) = as + ag

Dy, (z) = (a2 + a) -

Dy, (x) = [(a3 + a7)

Dy, (z) = (a3 + az) -

[(a3+a7)x+(az+as)] - [(bs+b7)z+ (b2 +bg)]

Elh (l’) = bg + b7
Ehl (Q?) = bQ + b6

(by + bg) = di5
+ (az + ag)] - [(bs + b7) + (ba + bg)] = dis
(bs + by) = di7

= [2%(arz + ag) + (asz + aq)] - [22(brx + bg) + (bsz + by)]

D200 () = a4 - by = dig

(b) D21(x) = [Ahh(x) + Ahz(:ﬂ)] : [th(l') + Bhl (x)]
= (a7 + as)x + (ag + a4)] - [(brz + bs)x + (bg + by)]

Let AV (2) = Ay, (z) + A (2) = [(a7 + a5)z + (a6 + a4)]
B\ (x) = By, (x) + B, (x) = [(br + bs)z + (bs + ba)]

AW(@) = a7 + as B (x) = by + bs
AW (x) = ag + ay B (x) = bg + by

Do, () = (as + ay) - (be + by) = dn
D5, (z) = [(a7 + a5) + (ag + aa)] - [(b7 + b5) + (b6 + ba)] = doo
D212 (x) = (a7 + as) - (by + bs) = das

(¢) Doy(x) = Ay, (x) - By, (2) = (a7z + ag) - (byz + be)

Ap,, (x) = az By, (x) = br
Ap,, () = ag By, (z) = b
Dy, () = ag - bg = day

Dy, (7) = (a7 + ag) - (by + bg) = dos
Dy, (z) = a7 - by = dgg

30

3.2 Complexities of the KOA for polynomials

over fields of characteristic 2

The following theorems determines the computational complexity and the time
complexity of the KOA for polynomials over fields of characteristic 2 with re-

spect to a parallel hardware implementation.

Theorem 3.2.1. [1] Two arbitrary polynomials in one variable of degree less
or equal m — 1, where m s a power of two, with coefficients in a field F of
characteristic 2 can be multiplied by means of the Karatsuba-Ofman algorithm

with:

#® = mloe3 (3.2.5)
#D < 6m'°s23 — 8m + 2 (3.2.6)

multiplications and additions, respectively, in F.

Theorem 3.2.2. [1] Consider two arbitrary polynomials in one variable of de-
gree less or equal m — 1, where m is a power of two, with coefficients in a field F
of characteristic 2. A parallel realization of the Karatsuba-Ofman algorithm for
the multiplication of two polynomials can be implemented with a time complexity

(or delay) of:
T =Ty + 3(logy m)Ty (3.2.7)

where "Ty” and 7T " denote the delay of one multiplier and one adder, respec-

tively, i F.

These theorems are utilized to compute the complexities for the field mul-
tiplication to step 1 of (1.1.1). It is important that subtractions and additions
have the same meaning in fields of characteristic 2. After giving this note, it

comes to give the proofs of the theorems.
Proof:

We will consider the proofs of theorems in three parts.

31

1. In the first part we only consider the number of additions as splitting of the
polynomials. This is because inside of parantheses which has additions is
computed firstly. By KOA the multiplication partitioned into three parts
whereas the length of the polynomials is reduced by half. Then each part
is partitioned into three parts again. It finishes until single coefficients are

obtained. Hence the following formula is obtained:

logy m ‘ m log2m3i71
for = 5 3l _am 3 b
i=1 i=1
10g2m3i_1 logy, m 3
= 2 — .2 = —)t
log, m—1 31
3, [L=@rer
- m Z () =m -
2 1—2
1=0 2
_ 3 log, m B 3log2m
= 2m |:(§) 2 - 1:| =2 210g2m —2m
310g2m
= 2m-
m
= 2.3°8"m_2m
That is:
log, m m
_ i—19"" __ o qlogom __
#O) = ; 37125 =230 — 2m (3.2.8)
In the above formula 7 denotes the place of the adder.
The delay equals:
T, = Tz logy m, (3.2.9)

where T, shows the delay for one adder in F.

2. In the second part we find the number of multiplication. As we are split-
ting polynomials, we get three multiplications in the auxiliary polyno-
mials D(x) at first. In the next iteration we repeat the process of the
partitioned polynomials and get three multiplications for each of them.
Then 3°%2™ = m!°&23 (remember m = 2¢) polynomials are multiplied. So

the formula which gives the number of multiplication can be stated as:

32

#®y = m'e2? (3.2.10)

The delay of parallel implementation is:

Ty =T, (3.2.11)
where "T” denotes the delay of one multiplier in F.

. The third part computes the number of additions of polynomials acording
to the additions (or subtractions) of (3.1.3). These additions (or subtrac-
tions) are two kinds. First kind is based on subtracting three polynomials
with 2¢ — 1 coefficients and the second kind is based on subtracting 2¢ — 2

additions due to overlapping of three terms.

Claim 3.2.3. Subtracting three polynomials with 2° —1 coefficients needs
2 - (2" — 1) additions over F,.

Proof: One can prove this claim by induction.

e Fori=1

Subtracting three polynomials with 2! — 1 coefficients. Let p; = ao,
pa = by and p3 = ¢y are polynomials with single coefficients, i.e.

degree of the polynomials is 0, then when we subtract them over F,

ag — by — ¢p needs two additions.It is equal to 2 - (2! — 1) =2

e Foriv=F
Assume when i = k each three polynomials will have 28 — 1 coeffi-

cients. That is,

Let pi(x), p2(z) and ps(z) be three polynomials with 2% — 1 coeffi-

cients,

33

p(z) = g o2 2 4 agr 512 B 4+ gz + ar + ag
pa(z) = Dok 02?2 + by _g2% 73 4 4 bya? + bia + by

k_ k_
P3(2) = cor_o? 2 4 Cop_32% B 4 2 4 17 + ¢

Then subtracting three polynomials needs 2¥ — 1 coefficients over F,

i.e.,

() —pa(2) —p3(x) = (Agk_g—bok g —Cor_o) a2 24+ -4 (ag—by— o)

e Fori=Fk+1
When i = k+1, each three polynomials will have 2¥+1 —1 coefficients.
Let p,(z), py(x) and py(z) be three polynomials with 2 -2F — 1 coef-

ficients,

/

pi(z) = a2.2k_2x2'2k_2 +-+ CLQk_Q.ka_Q + -+ a1+ ag
po(z) = by 9?2 T2 b by 02 2 by + by

/ 9k _ k_
pg(ﬂi) = 02.2k72x22 2 +---+ CQk,2$2 2 + -+ cx+co

Then subtracting three polynomials p, () — py(x) — ps(z) yields

_ 22k -2
= (agar_g — bygk_g — Copr_3)T +-

+(a2k_2 — b2k_2 — CQk_Q)..'E2k_2 + s + (CLO — bO — CO)

2.2k 2
= (kg — bogk_o — Copk_o)T

22k 3
(g _149r 9 — Dok 149k o — Cop_1 49k _o)T +-

+(agr_y — byr_y — 02’“71)372’6_1]

+[(a2k_2 — bgk_g — Cgk_2)$2k_2 + s + (CLO — bO — CO)]

2 additions comes from the addition of coefficients of the (2 - 2% —

)™ term, 2 - (2¥ — 1) additions comes from the second bracket and

34

2 - (28 — 1) additions comes from the third bracket. So subtracting

three polynomials with 257! — 1 coefficients needs

242-(2k—1)+2-(2k—1) = 4-2F 2242 = k2 _2 — 9. (2F+1 1)

additions over F, which satisfy the claim for : = k + 1

The formula giving the number of additions computed in the third part

18:

35

#Ds3

That is:

logy m

D glermTi (220 — 1) + (28 — 2)]

The delay is also computed as:

i=1
logy m ' ' '
D 3leemmi[. 20— 2420 — 2]
i=1
logy m
Z 310g2 m—1i |:3 i 21 _ 4:|
=1
logy m logy, m
Z 3logy m—i 3 21 Z 4 . glogzm—i
i=1
log, m 2 log, m
3log2 m+1 — 4. 3log2m
2 G Z
logy, m—1 9 logy m—1
3log2 m+1 Z (3)z+1 4. 3log2m Z z+1
=0
logy m—1 9 10g2m 1 1
2. 310g2m Y 4. 3log2m—1 Y
2\log, m _ (1\logom
2 310g2m(1_(§> ®)_4.3log2m—1(1 (3) ®
1—2 1—2
3 3
210g2m 1
logo m logy m
2308 31—) = 20308 (L)
63182 — 6m — 2. 3027 42
438" — 6m 2
H#®3 =437 —6m + 2 (3.2.12)
Ty = 2(log, m)Ts (3.2.13)

O

The complexities consist of the summation of the partial complexities in the

proofs.

36

Multiplication complexity is equal to result of the second part in the

proofi.e.
#® — mlogQ 3

And additive complexity is not equal to but equal or less than the summation

of results of first and third parts of the proof which is:

#HB < 2ml°%23 — 2m + 4m'e23 — 6m 4+ 2 = 6m'%23® — 8m + 2

Additive complexity can have lower values for some values m. For instance
m = 4, it is expected to appear 24 additive complexity. But it is computed 22

which gives lower complexity.

KOA provides lower complexitities for both additions and multiplication
with respect to school book multiplication which gives m? for multiplication and
(m — 1)? for addition. Here comes computational complexities for m = 2,4, 8
values.

Example 3.2.4. For m=2

For m = 2, #@®, = 22923 _ 2.2 = 2. So we have the value 2 as the first

additive complexity. It is also seen in the following: dy = ag - by — Dy
dy = (ap+ ay) - (b + by) — Dy
dy = a; -by — Dy
(ap + a1) and (by + by) gives 2 additions.

For the second part #®, = 29923 = 3 is computed. They are dy, d; and ds

multiplications.

In the third part computational complexity is found using the following

equations:

C'(z) = Do(z) 4+ 2™?[Dy(x) — Do(x) — Dy(x)] + 2™ Dy(x)

37

So form =2

C'(x) = Do(z) + z[D1(2) — Do(z) — Dy(2)] + 22Ds(z)

= do + $(d1 - do — dg) + ZL‘2d2

Subtracting three polynomials with 2! — 1 coefficients
> S gon (2~ 1)
2! — 2 additions due to overlapping of 3 terms

- T g [)

1 =1
1-2=2
1-0=0
(¢ = 1) subtracting
d1 — d() — dg 2 addition

(1 = 1)overlapping NO overlapping

So #@3 = 2.

The additive complexity is # @ +#P3 = 2+2 = 4 = (- 210823-824+2=4 The
multiplicative complexity is #® = 3.

The delays are:

T1 = TEB 10g2 2= T@
TQ — T®
T3 - 2(10g2 2)T@ - QT@

So, T'= 3Ty + T equality holds for m = 2.

38

Example 3.2.5. For m=4

For m =4, #@®; = 2-4!923 — 2.4 = 10. This is also observed below.
do = ag - by — Do,

di = (ap+ay) - (b + b1) — Dy,

dy = ay - by — Dy,

d3 = (a0 + as) - (bo + b2) — D1,

dy = [(ao + az) + (a1 + a3)] - [(bo + b2) + (by + b3)] — Dy,

ds = (a1 + ag) - (by + b3) — Dy,

de = ag - by — Dy,

d7 = (ag + as) - (ba 4+ b3) — Da,

ds = az-bs — D5, For m = 4 we found that there are 38 additions. Additions

are shown below explicitly. Terms between commas imples 1 addition. So the
additions are: (ag + a1), (bo + b1), (ag + az), (a1 + as), (bo + ba), (b1 + b3), [(ap +
az) + (a1 + as)], [(bo + b2) + (b1 + b3)], (a2 + a3), (b2 + b3)

The multiplication ®, = 41823 = 9,

Lastly @3 =4 - 41823 — 6.4 4 2 = 14 is observed below
C'(x) = Do(w) +2™?[Di(x) — Do(x) — Da(x)] + 2™ Da(z)
form =14

C'(z) = Do(x) + 2*[D1(z) — Do(x) — Da(z)] + 2* Dy ()

— [Duy () + 2[Do, () — Doy () — Do, ()] + 22Dy, ()]
+2?[[D1,(2) + w1(Dy, () — Dy, () — Dyy(x)) + 22Dy, (a)]

_[DOO(I) + x[D(h(x) - DOO(:L‘) - DOQ(:L‘)] + x2D02(x)]

39

—[Day () + 2Dy, () = Day () = Do, ()] + 2* Do, ()]

+24[Dyy (x) + [D2, (x) = Doy (x) = Doy ()] + 22 Do, ()]

= [(do + x(dy — dy — do) + °d>)
+22([d3 + x(dy — d3 — d5) + 22ds5]
—[do + x(dy — do — do) + 2%ds]
—[ds + x(d7 — dg — dg) + 22dg]]
+at[ds + x(d7 — dg — dg) + x2dg]

Let

Oélzdl—do—dQ Oé2:d4—d3—d5 a3:d7—d6—d8

Then
= [do + a1 + dax®] + 22[(d3 + oz + dsz?) — (do + a1 + dax?)

—(de + azr + dgx?)] + x*[ds + azx + dgz?]

= [d() —f- T + dQIQ] —|— 1’2[(d3 — d() — dﬁ) —|— I’(Ozg — 1 — 013))
+[E2(d5 - dg - dg)] + $4[d6 + azx + ngZ]

Let

ﬁlzds—do—dﬁ Bo =0y —a; —ag ﬂszds—dQ—ds

Then
= [do + a1 + dax®] + 22[B1 + Box + B32?] + 2 [dg + sz + dgz?]

Let

Nn=ds+ 1 =dy+ (d3s —dy —ds) Vo= 3+ dg=(ds —dy —dg)+ds

40

Subtracting three polynomials with 2! — 1 coefficients
— T g (2 (2 1)
2¢ — 2additions due to overlapping of 3 terms

- L g2 =)

(1 = 1)subtracting
ap =dy —dy — dy
ay =dy — d3 — ds
az = d7 — dg — dg
(i = 1)overlapping
NO overlapping

(1 = 2)subtracting
p1=dz —dy — dg
P2 =0y — a1 — a3
P3 =ds —dy — dg
(1 = 2)overlapping
Y1 =dy+ B = dy + (d3 — do — ds)
Yo = f3+d = (ds — dy — dg) + ds

The additive complexity is # @ +#®3 = 10+14 = 24 = 6-41°223 8.4 42 = 24
The multiplicative complexity is #® = 9.

The delays are:

T1 = TEB 10g2 4 = QT@
TQ - T®
T3 - 2(10g2 4)T@ - 4T@

41

So, T'= 6Ty + T, equality holds for m = 4.

Example 3.2.6. For m=8

For m = 8, #@®; = 2-8/°923 — 2.8 = 38. This is also observed below.
do = ag by — DOOO

di = (ap+ ay) - (bo + by) — Do,

dy = a; -by — D002

d3 = (ag + az) - (bo + b2) — Dy,

dy = [(a1 + a3) + (ao + az)] - [(b1 + b3) + (bo + b2)] — Do,

ds = (a1 + az) - (b1 + b3) — Do,

dg = az - by — D,

d7 = (az + az) - (b + b3) — Do,,

ds =az - b3 — D022

dy = (ap + ag) - (bg + bs) — Dlo0

dio = [(a1 + as) + (ao + as)] - [(by + b5) + (bo + ba)] — Dy,

diy = (a1 + as) - (b1 + bs) — Dy,

diy = [(az + ag) + (ao + as)] - [(ba + b) + [bo + ba]] — D1,

(
diz = [(a3 + a7) + (a1 + a5) + (a2 + ag) + (ao + a4)] - [(b3 + b7) + (b1 + bs)

(
(
+(62 + b6) (bo —|— b4)] — Dllo

(

+ o+ o+

dis = [(a3 + a7) + (a1 + as)] - [(b3 + b7) + (b1 + bs) — D,
dis = (ag + ag) - (b2 + bs) — Dy,
dig = [(a3 + a7) + (ag + ag)] - [(bs + b7) + (b2 + bs) — D1,
diz = (a3 + az) - (b3 + br) — Dy,

dis = as - by — DQOO

dig = (as + as) - (by + bs) — Doy,

42

dao = a5 - bs — D,

dyn = (s + ag) - (by + bg) — Do,

dya = [(as5 + az7) + (a4 + ag)] - [(bs + b7) + (b + bs)] — D2,
das = (a5 + az) - (bs + br) — Do,

dos = a6 - bg — Da,,

das = (ag + ar) - (bg + by) — Do,

da = a7 - by — Da,,

For m = 8 we found that there are 38 additions. Additions are shown below
explicitly. Terms between commas imples 1 addition. So the additions are:
(ag + a1), (bo + b1), (ag + az2), (bo + ba), (a1 + asz), (b1 + bs),[(a1 + a3) + (ap +
az2)], [(b1 + b3) + (bo + ba2)], (a2 + as), (b2 + bs), (ag + as), (bg + bs), (a1 + as), (by +
bs), [(a1+as) + (ao+ aq)], [(b1 + b5) + (bo + b4)], (a2 + ag), (b2 +bg), (as+az), (bs+
b7), [(az+ag)+(ao+as)], [(ba4be)+ [bo+ba], [(as+azr)+(a1+as)], [(bs+b7)+ (b1 +
bs)].[(as+a7)+(a1+as)+(az+ae)+(ao+aq)], [(bs+b7)+ (b1 +b5)+ (ba+be)+ (bo+
ba)], [(as+a7) + (a2 +ag)], [(bs +b7) + (b2 +be)], (as+as), (ba+bs), (as+ae), (ba+
bs), (as+ar), (bs+b7), [(as+az)+(as+ag)], [(bs+b7) + (ba+be)], (as+az), (bs+br).

The multiplication ®, = 81823 = 27,

Lastly @3 = 4 - 819823 — 6.8 4+ 2 = 62 is observed below

C'(z) = Do(x) + 2™?[Dy(2) — Do(x) — Dy(2)] 4+ 2™ Dy ()

= [Doy(2) + 2?[Dy, () — Doy () — Do, ()] + 21Dy, (2)]
+24[[Dy, (z) + 22(Dy, (x) — Diy(z) — Dy, () + 21Dy, (2)]
—[Do, () + 2*[Do, (x) — Doy (x) — Do, (x)] + 2Dy, ()]
—[Day () + 2[Da, (x) = Day () = Da,(x)] + 2 Do, ()]

_’_xs[D?o(m) + xQ[D%(l‘) - D20(:E) - Dﬂz(l‘)] + ZE4D22(ZL“)]

43

= [(DOO0 + a:[DOO1 — Dy, — DOOQ] + x2D002)
—i—xQ[(Dolo + z[Dy,, — Do,, — Do,,] + w2D012)
—(DOOO + a:[DOO1 — Do, — DOOQ] + .21:2D002)
—(DO20 + x[D()Ql — Do,, — DOQQ] + $2D022)]

—|—1‘4(D020 + CL'[D021 - D020 - D022] + ZL‘2D022)]

+$4[[(D100 + x[D101 — Dloo - D102] + $2D102)
—i—xQ[(Dho +a[Dy, — Dy, — Dy, + 2°Dy,)
—(Dyy, +2[D1,, — D1y, — Dy,] + 2*Dy,)
—(Duy, +2[D1,, — D1, — Dy,] + 2*Dy,,)]

+x4<D120 + LT)[D121 - D120 - D122] + $2D122)]

—[(DOOO + gL’[DOO1 — Doy, — DOOZ} + xQDOOQ)
+x2[(D010 + z[Dy,, — Do,, — Do,,] + :1:2D012)
—(DOO0 + x[DOO1 — Do, — DOOQ] + $2D002)
—(Do,, + z[Do,, — Do, — D022] + mQDOQQ)]

+174(D020 + I[D(hl - D020 - D022] + $2D022)]

—[(Day, + x[Day, — D2y — Day, | + 2? D,)
+x2[(D210 +x[Dy, = Dy, — Dy,] + 2°Dy,)
—(Day, + [D2y — Doy, — Dy,] + 2° Dy,)
—(D220 + :c[D221 — Dy, — D222] + £C2D222)]

—|—3§'4(D220 + x[D221 - D220 - D222] + x2D222)]
+$8[(D200 +];I:Dzol - D200 - D202] + $2D202)

44

+$2[(D210 + 2[Dq,, — Da,, — Dy,] + x2D212)
—(D2OO + 35[D201 — Dy, — D202] + x2D202)
—(D220 + a:[D221 — Dy, — D222] + :1:2D222)]
+3*(Dy, + x[Day — Dy, — Da, | + 37Dy,)]]

Replace d;ns for m = 0,---,26 in terms of D, fori =0,1,2, 757 =0,1,2
and £ =0,1,2. Then

= [(do + x(dy — dy — do) + 2°d>)
+x?[(d3 + x(dy — d3 — ds) + x2d5)
—(do + x(dy — do — do) + 2%dy)
—(dg + x(d7 — dg — dg) + x2dg)

+I’4(d6 + l‘(d7 — d6 — dg) + Jf2d8)

+2*[[(do + x(d1o — do — dyy + 22dn)
+2?[(diz + 2(dig — dra — dua) + 2%d1s)
~(do + (dro — do — duy + 22dy)
—(dys + 2(dy — dys — di7 + 22dy7)]

+l’4(d15 + ZU(dlﬁ — d15 — d17 + $2d17)]

~[(do + 2(dy — do — d2) + x%ds)
+x?[(d3 + x(dy — d3 — ds) + 22d5)
—(do + x(dy — dy — do) + 22dy)
—(dg + 2(d7 — dg — dg) + x2dg)]

+$4(d6 —+ Jf(d7 — d6 — dg) + $2d8)]

—[(dys + x(drg — dig — dao) + 332d20)

45

+2?[(do1 + 2(da2 — do — dos) + 2?da3)
—(dis + 2(drg — dig — dap) + 2°dy)
—(daq + x(dys — dos — dag) + 1% dyg)]

‘|‘[L’4(d24 + ZE(d25 — d24 — dgﬁ) + JIngG)]

+28[(d1s + 2(drg — dig — dao) + 2°da)
+a2((do1 + x(dao — do1 — daos) + 2%da3)
—(dys + 2(dvg — dyg — dag) + 22da)
—(dag + (das — dag — dag) + 22dag)]
2 (dog + 2(dos — dag — dag) + 23dae)]]
Let
=dy—dy—dy ap—=ds—ds—ds 3= dr— ds — ds

oy =dyg—dg—dyy o5 =diz—dig —diy g =dig— dis — diy

Q7 = d19 - d18 - d20 Qg = dyy — doy — d23 Qg = d25 — day — d26

Then,

= [(do + anx + 22ds)
+2%[(d3 + aox + 22ds) — (doy + cyx + 22ds) — (dg + sz + 22dg)]

+174(d6 + a3 + JIng)]

+.T4H(d9 =+ a4 + J]lel)
+$2[(d12 + (0754 + $2d14) — (dg + Ay + xzdn) — <d15 + Qg + $2d17)]

+ﬂ74(d15 + g + $2d17>]

—[do + ox + .Z’ng)

+22[(ds + qox + 22d5) — (do + a1 + 2%ds) — (dg + sz + 22dg)]

46

+x(dg + azr + 13dg)]

—[dlg + a7x + $2d20>
+l’2[(d21 + agx + 332d23) — (dlg + arx + Z’2d20) — (d24 + g + $2d26)]

‘|‘[L’4(d24 + Qg + $2d26)]

—I—I‘S[(dlg + a7 —f- l’zdgo)
—f-l’Q[(dQl + agl —|— ZL‘ngg) — (dlg —I— a7 —|— Izdgo) — (d24 —|— Qg —f- .172d26)]

+$4(d24 + agx + ZL’2d26)]

= [(do + o + .T2d2)
+.’1§'2[<d3 — d() — dﬁ) -+ .T(Oéz — 1 — 063) + $2<d5 — d2 — dg)]

+x(dg + azr + 13dg)]

+2[[(dg + ayx + x%dyy)
+$2[(d12 — dg — d15) + 33(&5 — Q04 — 046) + .T2(d14 — dll — d17)]

+l’4(d15 + (675 + [L’an)]

—[do + o + $2d2)
+172[(d3 - do —d— 6) + ZL‘(O{Q — 1 — 043) + $2(d5 — dg — dg)]
+~T4(d6 + azx + J/’ng)]

—[dlg + (0%49 + .Izdg(])
+I‘2[(d21 - d18 — d24> + 37(068 — Qp — Oég) + $2(d23 — d20 — d26)]

+$4<d24 + Qg -+ £C2d26)]]

+.’L'8[(d18 + arx + $2d20)

A7

+~T2[(d21 - dlg — d24> + .T(Oég — Q7 — 069) + %2(d23 — dgo — d26)]
+374(d24 + Qox + $2d26>]

Let

B = ds — dy — dg, Bo =0 —a; —az, [B3=ds—dy—dg
By =dig —dy —di5, s =05 —as— g, [s=diy—dn—dir
57:d21—d18—d247 ﬁszag—%—@g, 59:d23—d20—d26

= [(do + ayw + 22dy) +22(B1 + 282 + 2%63) +2*(dg + azx + 22dg)]

+2*[(dy + oz + 22dy1) +2?(By + 265 + %0s) +a(dis + e + 22di7)]
—[do + crz + 22dy) +2*(B1 + 22 + 22 33) +at(dg + azz + 22dy)]
—[dig + azx + 2%dag) +2%(B7 + 203 + 12 B9) +xt(doy + a9 + 2%dog)]

+28[(dig + arx + 2%dag) +2%(B7 + 205 + 22 By) +xt(doy + gz + 22dag)]

Let overlap for i=2

m=do+ 0, Ye=ds+ P, v3=di1+ s
Yo =dis + Bs, V5 =dao + Br, Y6 = doa + By

= [do + zay + 2%y + 2365 + lyy + 2Paz + 25dg]
+2t[(dy + zay + 223 + 2365 + 2ty + 250 + 2%d17)
—(do + zay + 22y + 236 + 2ty + 2Pag + 28dy)
—(dig + Ty + 2275 + 23 Fs + 16 + 2Py + 25dag)]

+28[dig + rar + 2%y5 + 236 + 2ty + 20y + 18dag]

48

for i = 3 Let

ki =dy—dy—dig, ke =as—o1 —ay, ks=v—7 —5, ka= 05— P2— s

ks =1 — v — 7, ke¢=as— a3 —ag, ky=diz —dg— dg

= [do + xay + 2%y, + 236y + xhye + 2Oaz + 20dg)
+atky + wky + 2%ks + 23ky + 2'ks + 2%k + 2Oks]

+a8[dis + zor + x5 + 2205 + 16 + 2P + 2]

for ©+ = 3 overlapping

ny ="y + ki, mne=as+ky ng=ds+k;
ng = d18 + ks, ns=ke+ar, ng ="+ kr

= dy+ 0 + 2%y + 2360 +xtng +a%ng +ans +a ks + 28y + 2%ns + 206 +

2 B + 21275 + 23y + 21 dag

Subtracting three polynomials with 2° — 1 coefficients
— ST e 2. (2 - 1)
2¢ — 2additions due to overlapping of 3 terms

- L a2)

1=1 1=2 =3
9-2.1=1813-2-3=18]1-2-7T=14
9-0=0 |3.2=6 [1-6=6

041=d1—d0—d2 Oé4=d1o—d9—d11 Oé7=d19—d18—d20
ag=dy—ds—ds o5 =dig—dig—dis ag=dy —dy —das

ag =dy —dg —dg o =dig— di5 — dir g = dos — dog — das

49

Then subtracting three polynomials with (i = 2) 3 coefficients. (when i = 2

18).These are:

Bir=ds—do—ds [ys=dia—dyg—dis [r=du —dig—du
Bo=ay—a1—a3 [Bs=a5— s —ag Bs = ag — oy — g

ﬁ3zd5_d2_d8 ﬁ6:d14_d11_d17 69:d23_d20_d26

(when i = 2) 2 — 2 = 2 additions due to overlapping of 3 terms [6 overlap-
ping]

Mm=de+ 01 v3=din+Bs 5 =da + Pr
Yo=dg+ 3 ya=dis+Bs V6= daa+ P

Then subtracting three polynomials with (i = 3) 3 coefficients (when i = 3).

These are:
k1 =dg — do — dig ks = Ps5 — P2 — s k7 = di7 — dg — da
ko =0a4—a1 —ay ks =71 — 72— 76
ks=v—m—"7 ke = ag — a3 — ag

(when i = 3) 2! — 2 = 6 additions due to overlapping

ni ="y +k ng=ds+ks mns=a;+ks
n2:a3+k2 n4:d18+k5 n6:75+k;7

The additive complexity is # @ +#®3 = 38+62 = 24 = 6-81°823 8.8 42 = 100.
The multiplicative complexity is #&® = 27.

The delays are:

20

Ty = Tglog,8 = 3Ty
TQ - T®
T3 = 2(logy,8)Ty = 6T,

So, T' = 9T + Ty equality holds for m = 8.

In the next pages we give the graphics of the architectures for the values
m = 2,4,8. These graphics show the field polynomial multiplication, i.e. these

do not consist of the reduction part.

3.3 Karatsuba-Ofman Algorithm for Polynomi-
als over GF'(2")

In this section it will be showed when the Karatsuba-Ofman algorithm is applied
in GF((2")™). Here polynomials A(z) and B(z) are with degree m — 1 and
coefficients a;,b; are in GF(2"). The aim is here to reduce the elementary

units, namely XOR-(mod 2 adder) and AND (mod 2 multiplier) gates.

The two operations ,namely addition and multiplication, are required for the
KOA with coefficients in GF'(2"). For the module in “GF(2") adder” and for
the module “GF(2") multiplier” the structures defined in chapter 2 will be used
for efficient VLSI implementation. Also the ground field Q(y) will be choosen as
(2.2.4) to obtain optimized solution.Then overall complexities for polynomial

multiplication (in AND and XOR gates) are:

#AND = n*los23loe. 3 (3.3.14)
k

#XOR < (=)°€3(n? 4 6n — 1) — 8k + 2n; certainn (3.3.15)
n

where k& = nm and m = 2°. This formulas gives that the order of elememtary

o1

gates increases only proportional to k%823 as k increases. The optimum solutions

are found for the condition GF((2")™) = GF(2F) .

Equation (1.7) gives the expressions for Ty and Ty. As mentioned before
addition in GF(2") has a delay of one XOR gate,i.e. Ty = Tior. The delay for
multiplication is bounded by chapter 2. So overall delay can be upper bounded
by:

T < Tior(2 [logyn] + 3logym) + Tona (3.3.16)

52

By
B [T ‘
- ﬁ 3 E
42 Lok i =0
t:@-ﬂ Bt X
: H—F
3 Fﬁ[zﬂ_ﬁ
L EI_ |- _m_m
= i3
S - — .
; . =
&

L

—18 i | % I o |
—is & I':ﬁ-:_f _: e
:$ i = =
i ! | E‘ L _%E__E'
__E i i_ﬂ - |_"‘:I __= — —
A Y :
g}ﬁ | &
n g ﬂ:““ L—E
B— —p.
————n =m_:| ia
=
: 2 .

Figure 3.1: Block diagram of a paralleP3ealization of the KOA for polynomials
of degree 7 over fields with characteristic 2.

C

=

[
o[

e
X Q] 1] Q] K] | ||
o
]
B
D
D

e |

i
o @

T:‘EE’*_@ %

Figure 3.2: Block diagram of a paralel realization of the KOA for polynomials
of degree 3 over fields with characteristic 2.

o4

ko @ 1
. B
o & d,
|
®|
o &
do
b: G

Figure 3.3: Block diagram of a paralel realization of the KOA for polynomials
of degree 1 over fields with characteristic 2.

25

CHAPTER 4

REDUCTION MODULO THE

PRIMITIVE POLYNOMIAL

This chapter describes the second step of the field multiplication, the opera-
tion "mod P(x)” (1.1) in capter 1. Remember that choosing suitable P(z) is

important to satisfy low complexity.

The pure polynomial multiplication of two polynomials A(z) x B(x) gives
the product polynomials C'(z) over GF(2") with deg(C'(z)) < 2m—2. But the
field multiplication ends with modula reduction with respect to field polynomial
P(z). After the modulo operation we get the polynomial C'(z) with deg(C(z)) <

m — 1.

The General Case GF((2")™)

The field element:
C(x) = cpoga™ 4+ +¢=C'(z)mod P(z);C(x) € GF((2M)™)

can be obtained by a lineer mapping of the 2m — 1 coefficients of C’ () into the

m coefficients of C'(x). This mapping can be represented in a matrix form as

26

follows:

Co
Co 1 0 --- 0 7”0’0 cee To’m,Q :
!
1 o1 --- 0 1.0 T1.m—2 Con1
_ ’ ’ B (4.0.1)
o Lo : .. : Cpm,
Cm—1 00 - 1 "m-10 °"°° Tm—1,m-2
!
Com—2

The matrix on the right hand side of (4.0.1) consists of a (m,m) identity
matrix and (m,m — 1) matrix R which is called reduction matriz. The matrix
R depends on the coefficients of the generating field polynomial P(z) = 2™ +

Prm_12™ L 4 - 4+ py. The entries of the matrix R are calculated as follows:

S Di 1=0,....m—1 ; 7=0 (40.2)
Y Ti,l,j,1+rm,17j,17"io Z:O,,m—l) jzl,,m—Q

where r;_; ;-1 = 0 if i = 0. From equation (4.0.2) r,; € GF(2") since p; €
GF(2"). It must be noted that (4.0.1) only contains addition and constant
multiplications from GF(2™). Constant multiplication is mentioned in chapter
2 explicitly.

Paar gives a general expression for the average complexity for (4.0.1)(see

[1]). It is as follows:

#XOR=m(m—1)® +m(m — 1)®cnst = %k(k(l + %) —n—1) (4.0.3)

where k = mm. This can be observed easily that (4.0.1) requires m(m — 1)
additions and m(m — 1) constant multiplications. However real complexities

are smaller than average complexities for certain field polynomials.

S7

4.1 The Special Case GF((2")?)

In this part we will consider the composite fields GF((2")?) for the special case
m = 2. In this case there exists primitive polynomials of the form P(z) =
r? + x + po as mentioned in [2]. Here the polynomial P(z) is in the simple
form. So we can consider the operations polynomial multiplication and modulo
reduction in just one single step. But the values m satisfying m > 2 will not be
taken into this consideration. That is, we will not consider the two operations

polynomial multiplication and modulo reduction in just one single step.

If we take the polynomial P(x) = 2 + x + py, the multiplication of two field
elements A(z) = ayz + ag and B(z) = by + by in GF((2")?) is the following:
At first we apply KOA to compute the pure polynomial multiplication of two
elements A(x), B(x) € GF((2")%):

C'(x) = A(x)B(z) = (a1x + ag)(byz + by)
= Qg - b() —f- ZL‘[(CLll‘ + ao)(bll' + bo) + agp - b() + aj - bl] —I— ay - b1ZE2

Then we do the reduction C'(x) = mod P(x) which gives the product field
element C(x) = A(z)B(xz) = mod P(z). From the generating polynomial P(z)

we replace 22 = x + po to the multiplication C'(x) as follows:

/

C(z) = C(x)=modP(z)
= ag-by+ z[(a1x + ag)(byx + by) + ag - by + a1 - b1] + a1 - by(z + po)
= Qq- bo + ZE[(CLll’ + a0)<blﬂf + bg) + agp - bo +aj - bl] +a - bll‘ +aj - blpO

= (ap-bo+ai-bipo) + x((ar1x + ag)(brx + bo) + ag - by)
It is seen that C(x) has 3 multiplications (ag.bo, a1.b1, (ao + a1)(by + b1)), 4

additions ((ag.bp + a1.b1.po), (ap + a1), (bo + b1), (ag + a1)(bo + b1) + ag.by) and 1

constant mmultiplication (ag.bg.po)

o8

So the computational complexity is:

#® =3
#b =4
#®p0:1

where ®,, denotes the constant multiplication by py.

In ([2],chapter 6), Paar gives a general formula for the computational com-
plexity of the multiplier in the composite field. Mastrovito multiplier is applied
to the ground field multiplication. Remember that the computational complex-
ity of the ground field multiplier is n? AND, n? — 1 XOR gates. The formula

(see [2])which gives the space complexity of the composite field is:

3

#AND = ZW (4.1.4)
3
#XOR = Zk:Q +2k —3+Cg,, (4.1.5)

where Cg, ~denotes the complexity of constant multiplication with the coeffi-

cient pg of the field polynomial P(z).

In addition to space complexity, Paar ([2]) gives also a formula for the time

complexity for the special case GF((2")?). Tt is:

AT, = 1 (4.1.6)
#Txor = 2 |—10g2 n-l +1+ T®p0 (417)

where Tf, denotes the delay caused by the multiplication with po.

Here comes to see the figure of a parallel multiplier in GF((2")?) for P(x) =
x? + 4 po

29

: o5
o B
®)
b B
b &=+ 4

Figure 4.1: Block diagram of a paralel multiplier in GF((2")?)

Paar gives a table ([[2], chapter 6]) showing the space complexity and time
complexity of multipliers in the fields GF((2")?) , n = 2,3,...,16. The space
complexity of the given primitive polynomial P(z) is computed using the equa-
tions (4.1.4), (4.1.5), (4.1.6) and (4.1.7) . Primitive polynomial P(z) is of the
form P(z) = 2 + z + py where py € GF(2"). For the ground field GF(2"), the
Mastrovito multiplier with actual complexities and field polynomials shown in
table 2.1 is utilized. The primitive root of the ground field polynomial is denoted
as w such that Q(w) = 0. Primitive polynomial P(x) in table 4.1 are found by
the exhaustive search. In table 4.1, the symbol Cg, ~denotes the complexity of
multiplication with the coefficient py. This multiplication is a constant multi-
plication and computed in XOR addition as mentioned in chapter 2. Constant
multiplication is optimized which is described in chapter 2. Cg, ~shows the
complexity computed in reduction part then the numbers of AND and XOR

(in bold face letters) show overall complexities after reduction part. The num-

60

Cgy, AB modP AB modP

k n|P(x) XOR | AND XOR k* | Tona Tior
4 2| 11lw? 1 12 18 16 1 4
6 3| 11uw® 1 27 37 36 1 5
8 4| 11wt 1 48 62 64 1 5
10 5| 11w? 3 75 95| 100 1 7
12 6| 11w%? 1 108 130 | 144 1 6
14 7| 11w'* 3| 147 175 196 1 8
16 8| 11w?” 8| 192 292 | 256 1 9
18 9| 11w° 5| 243 281 | 324 1 8
20 10 | 11w 71 300 344 | 400 1 8
22 11 | 11w?03¢ 11| 363 415 | 484 1 12
24 12 | 11w 3| 432 672 | 576 1 9
26 13 | 11888 7| 507 665 | 676 1 10
28 14 | 11w® 12| 588 833 | T84 1 10
30 15 | 11w3276 1] 675 733 | 900 1 7
322 16 | 11098 16 | 768 923 | 1024 1 9

Table 4.1: Space and time complexities for multipliers in GF((2")?)

ber of XOR includes Cg, in terms of additions with the complexity of pure

polynomial multiplication. The rightmost column shows the time complexities.

The following example gives the complexities of a multiplier in GF(2'°).

Example 4.1.1. As stated in this section, a multiplier in the composite field
GF((2°)%) consists of 3 multiplications, 4 additions and 1 constant multiplica-
tion with the constant w? in the ground field GF(2°). Multiplication with w?

is foud as follows:

Let w? is described by A(y) = w?® where A(y) is a constant polynomial
with the coefficients ag = 0,a7 = 0,a, = 0,a3 = 1,a4 = 1. The ground field
polynomial Q(y) = y° + y* + 1 which satisfies low complexity is chosen. To find

61

the product matrix Z, we compute the matrix () at first which is:

10100
01010
Q=100101
10110

01011

Then using the matrix @ and the coefficients a;’s of A(y), we find the product

matrix Z;
(0010 0]
00010
Z=100101
1 00 10
O 1 00 1

So we calculate the element C

by
b3
C=uw’B=ZB=| by+b,
by + bs
| b1+ by

Hence the last vector shows that there are 3 additions which is equal to Cg, as
shown in table 1.1. Addition in GF(2°) requires 5 XOR gates. The Mastrovito
multiplier in GF(2°) can be implemented with n? = 52 = 25 AND n? — 1 = 24
XOR gates. The space complexity of the multiplier in GF(2'%) is 325 = 75
AND gates and 3-24 +5-4+ 3 =95 XOR gates.

Now we give an example in composite field GF((2°)1). We used the primitive

polynomial shown in table 4.2.

Example 4.1.2. Let m = 4 and n = 5 and primitive polynomial of the compos-

62

ite field GF((2°)) is P(x) = x'4w-z+w with coefficients py = w, p; = w,py = 0,p3 =0

The reduction matrix will be:

To,0o Toa1 70,2
10 Tia T12
20 T21 T22

30 731 73,2

The entries of the matrix R is calculated as follows:

To0 =Po=W To1=7T_10+7T30700=0 7To2=7_11+7131700=0

T0=pP1 =W 71,1 = T0,0 + 73,0710 = W ri2 ="o1+ 131710 =0
ro0 =p2 =0 To1 =1T10 + 73,0720 = W roo =T11+ 731720 =0
r3o =p3 =0 r31 = T20+ 130730 =0 r32 =T21 + 131730 =0

So the matrix R is:

w 0
w 0
0 w
0 w

o & 8 o

Then we compute the coefficients of the poynomial C(x).

o

¢

co 1000w 0 0 ,
C

¢ 0100 ww 0 2
— C

cs 00100 w w ’
C

cs 00010 0 w !
s

Cg

63

So the coefficients of the field element C(x) is the following:

! i
! ! !
¢ = ¢ F+w-(c,+cs)
/ / !
o = cyt+w-(cs+cg)
I i
g = C3+W-Cq

In the above there is 4 constant multiplications and 6 additions. So in reduction
part we find 6 -5+ 4 - 1 = 34 addition which can be seen in modXOR column
in the table.

The figure of the related example and the graphic of the complete architec-
ture in composite field GF((2%)*) are shown at the end of this chapter.

Paar([1]) gives a table that shows the complexities and architectures of par-
allel multipliers in the composite fields GF(2%) k = 2,4, --- ,32. In this table an
optimized field polynomial P(z) is chosen for each field so minimum complexity

is satisfied.

64

mod AB modP AB modP
kK n m P(x) | XOR | AND XOR B | Tona Tror
4 2 2 1,1, w? 1 12 18 16 1 4
6 3 2 1,1, w° 1 27 37| 36 1 5
8 4 2 1,1, w™ 1 48 62 64 1 5
100 5 2 1,1, w? 3 75 95 | 100 1 7
12 6 2 1,1, w"? 1| 108 130 | 144 1 6
12 3 4 1,0,0,1,w® 21 81 159 | 144 1 11
14 7 2 1,1, w' 3| 147 175 | 196 1 8
16 4 4 1,1,1,0,w 35| 144 258 | 256 1 12
18 9 2 1,1, w° 5| 243 281 | 324 1 8
20 5 4 1,0,0, w,w 34| 225 360 | 400 1 14
22 11 2 1,1, w2036 11| 363 415 | 484 1 12
24 6 4| 1,w% w w? w? 60 | 324 507 | 576 1 14
26 13 2 1,1, w88 71 507 665 | 676 1 10
280 7 4 1,0,0, w'?6, w26 46 | 441 632 | 784 1 13
30 15 2 1,1, w3766 1| 675 733 | 900 1 7
32 4 8/(1,0,0,1,0,0,1,0,w 91 | 432 896 | 1024 1 15

Table 4.2: Composite fields GF((2")™) up to nm = 32, primitive field polyno-
mials, and the space complexities and theoretical delays of parallel multipliers

65

[y

";‘:Iéj (=T =

oe SPrT

(=1

[STAN

(=]

o ro R py M L=

[ST O) T

e

6] s
2 gl Fj
e
& clo
3]
-
T se s
T 3
—— 4
B HEH B 1

iy
= SR
C%Q@tl— &3
W

Figure 4.2: Block diagram of a paralel multiplier in GF((2°)%)

66

!
e

i_@_
&

i

—5

=

[=

17

— 5

C

| ———

[

ks
slle][@][8)] @ [@][@][@]@
&

AP D

5

[|

D

Figure 4.3: Block diagram of a paralel multiplier in GF((2)?%)

67

CHAPTER 5

CONCLUSION

In this thesis, we study a bit paralel multiplier architecture for composite fields
GF((2")™) by Paar [1]. Using Karatsuba-Ofman algorithm the architecture
reduces the complexity. We provide a detailed description of the architecture,

in particular the complexity computations, and give some examples.

68

REFERENCES

[1] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with
Low Complexity Based on Composite Fields”, IEEE Trans. Comp., vol. 45
pp- 856-861, July 1996.

2] C. Paar, Efficient VLSI Architectures for Bit Parallel Computation in Ga-
lois Fields, PhD thesis, Institute for Experimental Mathematics, University

of Essen, Essen, Germany, June 1994.

[3] E. Mastrovito, VLSI Architectures for Computation in Galois Fields. PhD
thesis, Linkoping University, Dept. Electr. Eng., Linkoping, Sweden, 1991.

[4] D. Knuth, The Art of Computer Programming. Volume 2: Seminumerical
Algorithms. Reading, Massachusetts: Addison-Wesley, 2nd ed, 1981.

69

