
ON AN ARCHITECTURE FOR A PARALLEL FINITE FIELD

MULTIPLIER WITH LOW COMPLEXITY BASED ON COMPOSITE

FIELDS

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

NİHAL KINDAP

INPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF CRYPTOGRAPHY

AUGUST 2004

Approval of the Graduate School of Applied Mathematics

Prof. Dr. Aydın AYTUNA

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree

of Master of Science.

Prof. Dr. Ersan AKYILDIZ

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Ferruh ÖZBUDAK

Supervisor

Examining Committee Members

Prof. Dr. Ersan AKYILDIZ

Assoc. Prof. Dr. Ferruh ÖZBUDAK

Assoc. Prof. Dr. Ali DOĞANAKSOY

Assist. Prof. Dr. Ali Aydın SELÇUK

Dr. Muhiddin UĞUZ

Abstract

ON AN ARCHITECTURE FOR A PARALLEL FINITE

FIELD MULTIPLIER WITH LOW COMPLEXITY

BASED ON COMPOSITE FIELDS

Kındap, Nihal

M.Sc., Department of Cryptography

Supervisor: Assoc. Prof. Dr. Ferruh ÖZBUDAK

August 2004, 69 pages

In this thesis, a bit parallel architecture for a parallel finite field multiplier

with low complexity in composite fields GF ((2n)m) with k = n ·m (k ≤ 32) is

investigated. The architecture has lower complexity when the Karatsuba-Ofman

algorithm is applied for certain k. Using particular primitive polynomials for

composite fields improves the complexities. We demonstrated for the values

m = 2, 4, 8 in details.

This thesis is based on the paper “A New Architecture for a Parallel Finite

Field Multiplier with Low Complexity Based on Composite Fields ” by Christof

Paar. The whole purpose of this thesis is to understand and present a detailed

description of the results of the paper of Paar.

Key words: Bit Parallel Architecture, VLSI , Efficient Polynomial Multiplica-

tion, Karatsuba-Ofman Algorithm, Space Complexity, Time Complexity

iii

Öz

BİLEŞİK ALANLARA DAYALI DÜŞÜK

KOMLEKSİTİLİ BİR PARALEL SONLU ALAN

ÇARPANI İÇİN BİR YAPI

Kındap, Nihal

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi: Doç. Dr. Ferruh ÖZBUDAK

Ağustos 2004, 69 sayfa

Bu tezde, k = n · m ve (k ≤ 32) koşulunu sağlayan GF ((2n)m) bileşik

alanlarında düşük kolpleksitili bir paralel sonlu çarpan için bir bit paralel yapısı

incelendi. Belirli k değerleri için Karatsuba-Ofman algoritmasının kullanıldığı

yapılar daha düşük bir kompleksitiye sahiptir. Bileşik alanlar için belirli primitif

polinomları kullanmak kompleksitiyi düşürür. Karatsuba-Ofman algoritmasının

uygulamasını m = 2, 4, 8 değerleri için ayrıntılı olarak gösterdik.

Bu tez Christof Paar’ın “A New Architecture for a Parallel Finite Field

Multiplier with Low Complexity Based on Composite Fields ” adlı makalesini

esas almıştır. Bu tezin genelde amacı Paar’ın bahsedilen makalenin sonuçlarını

anlamak ve makale ile ilgili detaylı bir tanım vermektir.

Anahtar Kelimeler: Bit Paralel Yapısı, VLSI, Etkili Polinom Çarpımı, Karatsuba-

Ofman Algoritması, Yer Kompleksitisi, Zaman Kompleksitisi.

iv

To my family

v

Acknowledgments

I am grateful to Assoc. Prof. Dr. Ferruh ÖZBUDAK for patiently guiding,

motivating, and encouraging me throughout this study.

I want to thank my parents for supporting me.

vi

Table of Contents

Abstract . iii

Öz . iv

Acknowledgments . vi

Table of Contents . vii

List of Tables . viii

List of Figures . ix

CHAPTER

1 Introduction . 1

1.1 Motivation . 1

1.2 Thesis Outline . 4

2 Multipliers In Bit Parallel Architectures 5

2.1 Multipliers . 5

2.2 General Multiplication in GF (2n) 6

vii

2.3 Multiplication with a constant in GF (2n) 15

3 Efficient Polynomial Multiplication 21

3.1 The Karatsuba-Ofman Algorithm 22

3.2 Complexities of the KOA for polynomials over fields of charac-

teristic 2 . 31

3.3 Karatsuba-Ofman Algorithm for Polynomials over GF (2n) . . . 51

4 Reduction Modulo The Primitive Polynomial . . . 56

4.1 The Special Case GF ((2n)2) . 58

5 Conclusion . 68

References . 69

viii

List of Tables

4.1 Space and time complexities for multipliers in GF ((2n)2) 61

4.2 Composite fields GF ((2n)m) up to nm = 32, primitive field poly-

nomials, and the space complexities and theoretical delays of

parallel multipliers . 65

ix

List of Figures

3.1 Block diagram of a parallel realization of the KOA for polynomi-

als of degree 7 over fields with characteristic 2. 53

3.2 Block diagram of a paralel realization of the KOA for polynomials

of degree 3 over fields with characteristic 2. 54

3.3 Block diagram of a paralel realization of the KOA for polynomials

of degree 1 over fields with characteristic 2. 55

4.1 Block diagram of a paralel multiplier in GF ((2n)2) 60

4.2 Block diagram of a paralel multiplier in GF ((25)4) 66

4.3 Block diagram of a paralel multiplier in GF ((24)4) 67

x

Chapter 1

Introduction

1.1 Motivation

The mathematical discipline, Algebra, includes the theory of finite fields. It is

also referred as Galois fields because of French mathematician Evariste Galois’s

fundamental work on it. Finite fields have many applications in modern digital

communication system. Areas where they have applications are:

• Algebraic codes

• Cryptographic schemes

• Digital signal processing

• VLSI testing

In this thesis, VLSI(Very Large scale Integration) implementation will be

focused on. VLSI allows the designers of today to allocate complex systems

consisting of several thousands or even millions transistors on one or very few

chips. The systems involving finite fields are fast. So implementing the modules

providing Galois fields arithmetic on chips is necessary. VLSI modules using Ga-

lois field arithmetic can be classified into bit parallel and bit serial architectures.

Bit parallel architectures tend to be faster and only uses combinatorial logic.

1

On the other hand, bit serial architectures require less area and uses registers

in addition to combinatorial logic. Bit parallel (or simply ”parallel”) will be

handled in this thesis.

To evaluate VLSI architectures, the following are mainly considered:

• Space complexity

• Time complexity

• Hierarcy

• Regularity

• Modularity

Hierarchy involves dividing the system into a set of modules. Modularity sat-

isfies to understand and document the design of designer. Furthermore, mod-

ularity provides a number of designer to work on different parts of a chip.

Regularity is often used to reduce complexity, see [3]. Hierarchy, regularity and

modularity is considered in an architecture but first two items, space complexity

and time complexity, are more important and will mainly be mentioned. The

architectures in this thesis will be measured using theoretical space and time

complexities. The theoretical space complexity is measured by the number of

two input modulo 2 adders (logical exclusive OR,XOR) and the number of two

input modulo 2 multipliers (logical AND).The theoretical time complexity is

the number of gate delays in the cricital path.

For efficient VLSI implementation efficient hardware structure is needed. It

is obtained by using addition and multiplication, field operations, suitably in

the architecture. Addition can be implemented with a very low space complex-

ity, multiplication is required to be fast but it is implemented with a higher

complexity. Efficient architectures require low complexity and fast multipliers.

This thesis reviews on an architecture of a bit parallel, i.e. fast, multiplier for

extension fields of GF (2) with improved space complexity in [1].

2

Finite fields GF (2n) with n > 1 are considered. The elements can be in

standard base as polynomials with a maximum degree n− 1 over GF (2n):

A(x) = an−1x
n−1 + · · ·+ a0, ai ∈ GF (2); A ∈ GF (2n).

The extension fields of the form GF ((2n)m) are sometimes referred as composite

fields. Composite fields are isomorphic to fields GF (2k) iff k = nm. We can

also represent the elements of an extension field GF ((2n)m) in the standard

(canonical) base as polynomial with a maximum degree m − 1 over GF (2n):

B(x) = bm−1x
m−1 + · · · + b0, where bi ∈ GF (2n), and B = B(x) mod P (x) ∈

GF ((2n)m). The polynomial P (x) of degree m over GF (2n) is chosen as an

irreducible polynomial (even primitive polynomial).

Two elements A and B of a composite field GF ((2n)m) can be multiplied in

standard representation as:

A(x)×B(x)mod P (x) (1.1.1)

The field multiplication in (1.1) can be performed in two steps:

1. Ordinary multiplication (×).

2. Reduction modulo the field polynomial (mod).

When we multiply the elements A and B of a composite field GF ((2n)m),

we firstly multiply A(x) and B(x) as an ordinary multiplication, and then

we do reduction modulo the field polynomial P (x). The arithmetic opera-

tions are done in the ground field GF (2n). The field polynomial notation

of the ground field GF (2n) is Q(y) = yn + qn−1y
n−1 + · · · + q0, where qi ∈

GF (2) and the field polynomial notation of the composite field GF ((2n)m) is

P (x) = xm + pm−1x
m−1 + · · ·+ p0, with pi ∈ GF (2n). The irreducible polyno-

mials Q(y) and P (x) are chosen monic primitive polynomials.

In the polynomial multiplication, Karatsuba-Ofman algorithm is used to to

make multiplication efficient which means algorithm saves multiplication at the

3

cost of extra addition. Because multiplication is more costly than addition.

Addition requires n XOR gates,

1.2 Thesis Outline

Chapter 2 provides an overview of multipliers, particularly Mastrovito multi-

plier in bit parallel architectures. General Multiplication in GF (2n), constant

multiplications in GF (2n) and the space complexities of them are investigated.

In Chapter 3, efficient polynomial multiplication in composite field GF ((2n)m)

is overviewed. Karatsuba-Ofman Algorithm which provides lower complexity

for polynomial multiplication is discussed. Computational and time complexi-

ties are found for some m values.

In Chapter 4, reduction modulo the field polynomial in field polynomial

multiplication is investigated.

4

Chapter 2

Multipliers In Bit Parallel

Architectures

By a parallel multiplier it is intended that a device performs multiplication of

two arbitrary field elements in one single step. It is also intended that this

multiplication is to be fast over GF (2n).

2.1 Multipliers

There are mainly three approaches for bit parallel multipliers. These multipliers

have the following properties basically:

• The multipliers do not operate over extension fields of GF (2n)

• The space complexity of the multipliers is lower bounded by a total of

2n2 − 1 gates (XOR, AND)

It is mentioned that there are three different approaches for traditional parallel

multipliers. Each of these uses different bases, namely standart (SB), nor-

mal (NB) and dual base(DB). In this thesis standart (or canonical) base SB

multiplier proposed by Mastrovito [3] will be studied. The reason preferring

Mastrovito’s multiplier is having good properties in VLSI design. For instance,

5

this multiplier yields low complexity and high performance when the suitable

field generator is selected. It can be seen in chapter 7 of [2] that SB multiplier

has better measures for delay and gates than NB and DB architectures.

2.2 General Multiplication in GF (2n)

Review of the Mastrovito Multiplier

In this section Mastrovito’s standart base multiplier will be reviewed. Mas-

trovito’s architecture, used to perform multiplication of field elements given in

standard base multipliers, has one of the lowest gate counts among standard

base multipliers. In addition, it will be used as the ground field multiplier over

composite fields in this thesis. Detail description of the multiplier is given in

[3] explicitly.

It will be used matrix notation for the multiplication of two field polynomials.

Let C(y) be the multiplication of two polynomials A(y) and B(y) mod Q(y) in

the field GF (2n). Q(y) is the primitive polynomial of the ground field GF (2n).

This multiplication with coefficients of the polynomial entries in GF (2) is ab-

breviated as the following:

cn−1y
n−1 + · · ·+ c0 = (an−1y

n−1 + · · ·+ a0) · (bn−1y
n−1 + · · ·+ b0) mod Q(y)

This multiplication will be shown in the matrix form. Let C(y) and B(y) are

denoted as column vectors and a new matrix Z defined as Z = f(A(y), Q(y))

be introduced. So the multiplication in matrix notation is as follows:

C =

c0

...

cn−1

 = ZB =

f0,0 · · · f0,n−1

...
. . .

...

fn−1,0 · · · fn−1,n−1

 ·

b0

...

bn−1

 (2.2.1)

6

The matrix Z is called ”product matrix” . Its coefficients fij’s are calculated

as follows:

fij =

 ai j = 0 i = 0, · · · , n− 1

u(i− j)ai−j +
∑j−1

t=0 qj−1−t,ian−1−t j = 1, · · · , n− 1 i = 0, · · · , n− 1

(2.2.2)

where ai ’s are the binary coefficients of the polynomial A(y), qi,j ’s are the

coefficients of the matrix Q, and step function u is defined as

u(µ)

 1 µ ≥ 0

0 µ < 0

Q matrix is required for the matrix Z and defined as follows:

yn

yn+1

...

y2n−2

 =

q0,0 . . . q0,n−1

...
. . .

...
...

. . .
...

qn−2,0 . . . qn−2,n−1

 ·

1

y
...

yn−1

 mod Q(y) (2.2.3)

The entries qij of the matrix Q are binary entries, and matrix-vector prod-

uct (2.2.3) describes reduction mod Q(y), i.e. the terms yn, yn+1, · · · , y2n−2,

occured after the multiplication of A(y) and B(y) can be written in terms of

1, y, · · · , yn−1.

The implementational complexity of the matrix-vector product (2.2.1) de-

pends only on the primitive polynomial Q(y). For the field polynomial Q(y) in

GF (2n), trinomials such as Q(y) = yn + y + 1 are optimum with respect to the

number of gates, i.e. these show better performance (satisfies low complexity)

than other primitive polynomials having same degree. The best field generators

for 2 ≤ n ≤ 16 satisfying minimum complexity is shown in Table 4.5 in [3].

7

Primitive polynomials of the form

Q(y) = yn + y + 1 (2.2.4)

exist for n = 2, 3, 6, 7, 15. The space complexity is given by

#AND + #XOR = 2n2 − 1 (2.2.5)

However for the trinomials Q(y) = y5 + y2 + 1, Q(y) = y9 + y4 + 1, Q(y) =

y10 + y3 + 1, Q(y) = y11 + y2 + 1, the space complexity measurements, (2.2.5),

are also satisfied. So we prefer also these trinomials as our ground field. For

n = 8, 12, 13, 14, 16 values, pentanomial field generators having low complexities

exist. Acording to Mastrovito’s conjecture in chapter4 in [3], the only classes of

polynomial yielding maximum performance are the class of trinomial 1+x+xn.

But primitive trinomials exist for any degree ≤ 34 not for the degrees > 34.

The delay (time complexity) of the multiplier is upper bounded by:

T = TAND + TXOR ≤ 1 + 2 dlog2 ne (2.2.6)

measured in gate delays. The following table ([2],chapter3) shows the improved

space and time complexity of the Mastrovito multiplier in GF (2n) .

8

n Q(y) AND XOR Tand Txor

2 2, 1, 0 4 3 1 2

3 3, 1, 0 9 8 1 3

4 4, 1, 0 16 15 1 3

5 5, 2, 0 25 24 1 5

6 6, 1, 0 36 35 1 4

7 7, 1, 0 49 48 1 4

8 8, 5, 3, 2, 0 64 84 1 5

9 9, 4, 0 81 80 1 6

10 10, 3, 0 100 99 1 6

11 11, 2, 0 121 120 1 6

12 12, 8, 5, 1, 0 144 207 1 7

13 13, 7, 6, 1, 0 169 202 1 6

14 14, 9, 7, 2, 0 196 282 1 7

15 15, 1, 0 225 224 1 5

16 16, 116, 5, 0 256 281 1 6

9

Paar comments on the Mastrovito Multiplier

In matrix-vector product (2.2.3) Paar ([2]) described a formula for comput-

ing the entries qi,j of the matrix Q. Matrix Q is computed as follows:

Let Q(y) = yn + qn−1y
n−1 + · · · + q1y + 1 be the ground field polynomial.

First row entries are computed as q0,j = qj and q0 = 1 then other entries are

found as follows:

qi,j =

 qi−1,n−1 ; i = 1, · · · , n− 2 ; j = 0;

qi−1,j−1 + qi−1,n−1q0,j ; i = 1, · · · , n− 2 ; j = 1, · · · , n− 1.

If the trinomials in (2.2.4) are used for the field generator Q(y), the space

complexity will be the same as (2.2.5). Otherwise, the space complexity will

be greater because of higher value of XOR . Time complexity is taken as the

multiples of XOR and AND gate delays. These delays are abbreviated as Txor

and Tand respectively. Delays can be upper bounded by:

T ≤ Tand + 2Txor dlog2 ne . (2.2.7)

Table shows the numbers of AND gates, XOR gates, Txor and Tand for the given

trinomials ground fields in GF (2n) for 2 ≤ n ≤ 16. The numbers specify

polynomials are the degrees of nonzero coefficients of polynomial.

It is time to give an example to find the matrix (2.2.1) and see space and

time complexities of the given ground field polynomial.

Example 2.2.1. Let Q(y) = y7 + y + 1 be the primitive field polynomial of

GF (27) and the field element is A(y) = y4 + y3 + y2 + y + 1. Find the product

matrix C(y) mod Q(y).

Solution:

For n = 7 and Q(y) = y7 + y + 1 coefficients with q6 = 0, q5 = 0, q4 = 0,

10

q3 = 0, q2 = 0, q1 = 1, q0 = 1, entries of the matrix Q are found as the following:

q0,0 = q0 = 1 q1,0 = q0,6 = q6 = 0

q0,1 = q1 = 1 q1,1 = q0,0 + q0,6 · q0,1 = 1

q0,2 = q2 = 0 q1,2 = q0,1 + q0,6 · q0,2 = 1

q0,3 = q3 = 0 q1,3 = q0,2 + q0,6 · q0,3 = 0

q0,4 = q4 = 0 q1,4 = q0,3 + q0,6 · q0,4 = 0

q0,5 = q5 = 0 q1,5 = q0,4 + q0,6 · q0,5 = 0

q0,6 = q6 = 0 q1,6 = q0,5 + q0,6 · q0,6 = 0

q2,0 = q1,6 = 0 q3,0 = q2,6 = 0

q2,1 = q1,0 + q1,6 · q0,1 = 0 q3,1 = q2,0 + q2,6 · q0,1 = 0

q2,2 = q1,1 + q1,6 · q0,2 = 1 q3,2 = q2,1 + q2,6 · q0,2 = 0

q2,3 = q1,2 + q1,6 · q0,3 = 1 q3,3 = q2,2 + q2,6 · q0,3 = 1

q2,4 = q1,3 + q1,6 · q0,4 = 0 q3,4 = q2,3 + q2,6 · q0,4 = 1

q2,5 = q1,4 + q1,6 · q0,5 = 0 q3,5 = q2,4 + q2,6 · q0,5 = 0

q2,6 = q1,5 + q1,6 · q0,6 = 0 q3,6 = q2,5 + q2,6 · q0,6 = 0

q4,0 = q3,6 = 0 q5,0 = q4,6 = 0

q4,1 = q3,0 + q3,6 · q0,1 = 0 q5,1 = q4,0 + q4,6.q0,1 = 0

q4,2 = q3,1 + q3,6 · q0,2 = 0 q5,2 = q4,1 + q4,6.q0,2 = 0

q4,3 = q3,2 + q3,6 · q0,3 = 0 q5,3 = q4,2 + q4,6.q0,3 = 0

q4,4 = q3,3 + q3,6 · q0,4 = 1 q5,4 = q4,3 + q4,6.q0,4 = 0

q4,5 = q3,4 + q3,6 · q0,5 = 1 q5,5 = q4,4 + q4,6.q0,5 = 1

q4,6 = q3,5 + q3,6 · q0,6 = 0 q5,6 = q4,5 + q4,6.q0,6 = 1

11

So matrix Q is the following:

Q =

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1

A(y) = y4 + y3 + y2 + y + 1 where a0 = 1, a1 = 1, a2 = 1, a3 = 1, a4 = 1,

a5 = 0, a6 = 0 is the polynomial in GF (27). The entries of the product matrix

Z are calculated as follows:

f0,0 = a0 = 1 f0,1 = u(0− 1)a−1 + q0,0 · a6 = 0

f1,0 = a1 = 1 f1,1 = u(1− 1)a0 + q0,1 · a6 = 1

f2,0 = a2 = 1 f2,1 = u(2− 1)a1 + q0,2 · a6 = 1

f3,0 = a3 = 1 f3,1 = u(3− 1)a2 + q0,2 · a6 = 1

f4,0 = a4 = 1 f4,1 = u(4− 1)a3 + q0,3 · a6 = 1

f5,0 = a5 = 0 f5,1 = u(5− 1)a4 + q0,4 · a6 = 1

f6,0 = a6 = 0 f6,1 = u(6− 1)a5 + q0,5 · a6 = 0

f0,2 = u(0− 2)a−2 + q1,0 · a6 + q0,0 · a5 = 0

f1,2 = u(1− 2)a−1 + q1,1 · a6 + q0,1 · a5 = 0

f2,2 = u(2− 2)a0 + q1,2 · a6 + q0,2 · a5 = 1

f3,2 = u(3− 2)a1 + q1,3 · a6 + q0,3 · a5 = 1

f4,2 = u(4− 2)a2 + q1,4 · a6 + q0,4 · a5 = 1

f5,2 = u(5− 2)a3 + q1,5 · a6 + q0,5 · a5 = 1

f6,2 = u(6− 2)a4 + q1,6 · a6 + q0,6 · a5 = 1

12

f0,3 = u(0− 3)a−3 + q2,0 · a6 + q1,0 · a5 + q0,0 · a4 = 1

f1,3 = u(1− 3)a−2 + q2,1 · a6 + q1,1 · a5 + q0,1 · a4 = 1

f2,3 = u(2− 3)a−1 + q2,2 · a6 + q1,2 · a5 + q0,2 · a4 = 0

f3,3 = u(3− 3)a0 + q2,3 · a6 + q1,3 · a5 + q0,3 · a4 = 1

f4,3 = u(4− 3)a1 + q2,4 · a6 + q1,4 · a5 + q0,4 · a4 = 1

f5,3 = u(5− 3)a2 + q2,5 · a6 + q1,5 · a5 + q0,5 · a4 = 1

f6,3 = u(6− 3)a3 + q2,6 · a6 + q1,6 · a5 + q0,6 · a4 = 1

f0,4 = u(0− 4)a−4 + q3,0 · a6 + q2,0 · a5 + q1,0 · a4 + q0,0 · a3 = 1

f1,4 = u(1− 4)a−3 + q3,1 · a6 + q2,1 · a5 + q1,1 · a4 + q0,1 · a3 = 0

f2,4 = u(2− 4)a−2 + q3,2 · a6 + q2,2 · a5 + q1,2 · a4 + q0,2 · a3 = 1

f3,4 = u(3− 4)a−1 + q3,3 · a6 + q2,3 · a5 + q1,3 · a4 + q0,3 · a3 = 0

f4,4 = u(4− 4)a0 + q3,4 · a6 + q2,4 · a5 + q1,4 · a4 + q0,4 · a3 = 1

f5,4 = u(5− 4)a1 + q3,5 · a6 + q2,5 · a5 + q1,5 · a4 + q0,5 · a3 = 1

f6,4 = u(6− 4)a2 + q3,6 · a6 + q2,6 · a5 + q1,6 · a4 + q0,6 · a3 = 1

f0,5 = u(0− 5)a−5 + q4,0 · a6 + q3,0 · a5 + q2,0 · a4 + q1,0 · a3 + q0,0 · a2 = 1

f1,5 = u(1− 5)a−4 + q4,1 · a6 + q3,1 · a5 + q2,1 · a4 + q1,1 · a3 + q0,1 · a2 = 0

f2,5 = u(2− 5)a−3 + q4,2 · a6 + q3,2 · a5 + q2,2 · a4 + q1,2 · a3 + q0,2 · a2 = 0

f3,5 = u(3− 5)a−2 + q4,3 · a6 + q3,3 · a5 + q2,3 · a4 + q1,3 · a3 + q0,3 · a2 = 1

f4,5 = u(4− 5)a−1 + q4,4 · a6 + q3,4 · a5 + q2,4 · a4 + q1,4 · a3 + q0,4 · a2 = 0

f5,5 = u(5− 5)a0 + q4,5 · a6 + q3,5 · a5 + q2,5 · a4 + q1,5 · a3 + q0,5 · a2 = 1

f6,5 = u(6− 5)a1 + q4,6 · a6 + q3,6 · a5 + q2,6 · a4 + q1,6 · a3 + q0,6 · a2 = 1

13

f0,6 = u(0− 6)a−6 + q5,0 · a6 + q4,0 · a5 + q3,0 · a4 + q2,0 · a3 + q1,0 · a2 + q0,0 · a1 = 1

f1,6 = u(1− 6)a−5 + q5,1 · a6 + q4,1 · a5 + q3,1 · a4 + q2,1 · a3 + q1,1 · a2 + q0,1 · a1 = 0

f2,6 = u(2− 6)a−4 + q5,2 · a6 + q4,2 · a5 + q3,2 · a4 + q2,2 · a3 + q1,2 · a2 + q0,2 · a1 = 0

f3,6 = u(3− 6)a−3 + q5,3 · a6 + q4,3 · a5 + q3,3 · a4 + q2,3 · a3 + q1,3 · a2 + q0,3 · a1 = 0

f4,6 = u(4− 6)a−2 + q5,4 · a6 + q4,4 · a5 + q3,4 · a4 + q2,4 · a3 + q1,4 · a2 + q0,4 · a1 = 1

f5,6 = u(5− 6)a−1 + q5,5 · a6 + q4,5 · a5 + q3,5 · a4 + q2,5 · a3 + q1,5 · a2 + q0,5 · a1 = 0

f6,6 = u(6− 6)a0 + q5,6 · a6 + q4,6 · a5 + q3,6 · a4 + q2,6 · a3 + q1,6 · a2 + q0,6 · a1 = 1

So the matrix Z is the following:

Z =

1 0 0 1 1 1 1

1 1 0 1 0 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

1 1 1 1 1 0 1

0 1 1 1 1 1 0

0 0 1 1 1 1 1

Then the multiplication C(y) = A(y)B(y) mod Q(y) is shown as:

C =

c0

c2

c3

c4

c5

c6

=

1 0 0 1 1 1 1

1 1 0 1 0 0 0

1 1 1 0 1 0 0

1 1 1 1 0 1 0

1 1 1 1 1 0 1

0 1 1 1 1 1 0

0 0 1 1 1 1 1

·

b0

b1

b2

b3

b4

b5

b6

14

Hence the vector C with entries in mod 2 is the following:

C =

b0 + b3 + b4 + b5 + b6

b0 + b1 + b3

b0 + b1 + b2 + b4

b0 + b1 + b2 + b3 + b5

b0 + b1 + b2 + b3 + b4 + b6

b1 + b2 + b3 + b4 + b5

b2 + b3 + b4 + b5 + b6

2.3 Multiplication with a constant in GF (2n)

In this section an efficient scheme for performing parallel multiplication of an

arbitrary element in GF (2n) with a constant element is developed. We consider

the multiplication of the product C = AB in GF (2n) where A(y) or B(y) is

regarded as a constant in the former section. If one of the multiplicands is a

constant, then it is expected that the architecture of a multiplier will simplify.

Choosing A(y) as a constant makes the matrix Z in (2.2.1) be constant matrix.

We may take the example in the former section. We assume A(y) is a

constant field polynomial.

Example 2.3.1. Let Q(y) = y7 + y + 1 is the primitive polynomial in GF (2n).

Let w denote the primitive element of the field, i.e. Q(w) = 0. Let A(y) =

y4 + y3 + y2 + y + 1 be constant element in GF (2n). This constant element is

equal to w47 which is found as follows:

Show the equality of the field element A(y) = w47 = y4 + y3 + y2 + y + 1

w0 = 1 w1 = w w2 = w2 w3 = w3

w4 = w4 w5 = w5 w6 = w6 w7 = w + 1

w8 = w2 + w w9 = w3 + w2 w10 = w4 + w3 w11 = w5 + w4

· · · · · ·

15

w14 = w7 · w7 = (w + 1)2 = w2 + 1

w28 = (w2 + 1)2 = w4 + 1

w42 = w28 · w14 = (w4 + 1) · (w2 + 1) = w6 + w4 + w2 + 1

w47 = w42 · w5 = (w6 + w4 + w2 + 1) · w5 = w11 + w9 + w7 + w5

= w5 + w4 + w3 + w2 + w + 1 + w5 = w4 + w3 + w2 + w + 1

The multiplication of the variable element B = (b0 . . . b6) and constant element

A(y) = y4 + y3 + y2 + y + 1 is found:

C = w47B = ZB

b0 + b3 + b4 + b5 + b6

b0 + b1 + b3

b0 + b1 + b2 + b4

b0 + b1 + b2 + b3 + b5

b0 + b1 + b2 + b3 + b4 + b6

b1 + b2 + b3 + b4 + b5

b2 + b3 + b4 + b5 + b6

(2.3.8)

Each operation (+) in (2.3.8) denotes a mod 2 multiplication.

It is seen that constant multiplication requires only additions, not multiplica-

tion in GF (2n). Hence it defines the space complexity as the number of XOR

addition. Mastrovito previously described the constant multiplication in [3].

The average complexity for constant multiplication in GF (2n) is defined as:

#XOR =
n2

2
− n (2.3.9)

This equality depends on the idea that the average Hamming weight of a

field element is n
2
. This idea is handled widely in [3]. Equation (2.3.9) is

the average complexity value in all 2n binary matrices of type (2.3.8). In the

example (1.3.1), (2.3.8) has 26 XOR addition. However there is redundancies

in the example be performed. For instance, b0+b1 appears four times in 2, 3, 4, 5

16

rows and it is taken as different addition in computation of 26 XOR addition.

But in searching constant multiplication with low comlexity, it is necessary to

solve the optimization problem on Boolean equations of form (2.3.8). The cost

function of the optimization problem is the number of mod 2 additions required

to realize a set of n equations in n variables bi, i = 0, 1, . . . , n − 1 where each

equation is a sum over certain bi. To reach optimum solution the most often

occuring pair bk + bl is precomputed. Then a locally optimum solution is found.

The new pair bµ = bk + bl is taken as a new element and computed once having

1 addition. In the next time the new pair bµ is taken as the element and we look

for the second most often occuring element. This application goes on iterately

until the last step where each possible pairs appears only once. In the sequal

we will compute actual XOR gates in (2.3.8) where it may seem to have 26

XOR gates.

In the first step b3 + b4 pair is computed and denoted as k1. It requires 1

addition. In the first row the b3 + b4 pair is computed but in the fifth,sixth and

seventh columns the pair is not computes again and eventually we get rid of 3

additions. The number of additions are computed as 23 additions.

k1 = b3 + b4 → 1 addition

⇓

=

b0 + k1 + b5 + b6

b0 + b1 + b3

b0 + b1 + b2 + b4

b0 + b1 + b2 + b3 + b5

b0 + b1 + b2 + k1 + b6

b1 + b2 + k1 + b5

b2 + k1 + b5 + b6

23 addition

In the second step k1 + b6 pair is computed and denoted as k2 which is

actually b3 + b4 + b6. The new element k2 also requires 1 addition. We also get

17

rid of 2 addition in fifth and seventh rows. The number of additions reduces 21

additions.

k2 = k1 + b6 → 1 addition

= b3 + b4 + b6

⇓

=

b0 + k2 + b5

b0 + b1 + b3

b0 + b1 + b2 + b4

b0 + b1 + b2 + b3 + b5

b0 + b1 + b2 + k2

b1 + b2 + k1 + b5

b2 + k2 + b5

21 addition

In the third step b2 + b5 pair is computed and denoted as k3. The new

element k3 requires 1 addition. We get rid of 2 addition in sixth and seventh

rows. The number of additions reduces 19 additions.

k3 = b2 + b5 → 1 addition

⇓

=

b0 + k2 + b5

b0 + b1 + b3

b0 + b1 + b2 + b4

b0 + b1 + b3 + k3

b0 + b1 + b2 + k2

b1 + k1 + k3

k2 + k3

19 addition

In the fourth step b0 + b1 pair is computed and denoted as k4. The new

element k4 requires 1 addition. We get rid of 3 addition in third,fourth and fifth

18

rows. The number of additions reduces 16 additions.

k4 = b0 + b1 → 1 addition

⇓

=

b0 + k2 + b5

k4 + b3

k4 + b2 + b4

k4 + b3 + k3

k4 + b2 + k2

b1 + k1 + k3

k2 + k3

16 addition

In the fifth step k4+b2 pair is computed and denoted as k5. The new element

k5 requires 1 addition. We get rid of 1 addition in fifth row. The number of

additions reduces 15 additions.

k5 = k4 + b2 → 1 addition

⇓

=

b0 + k2 + b5

k4 + b3

k5 + b4

k4 + b3 + k3

k5 + k2

b1 + k1 + k3

k2 + k3

15 addition

In the fifth step k4+b3 pair is computed and denoted as k6. The new element

k6 requires 1 addition. We get rid of 1 addition in fourth row. The number of

additions reduces 14 additions.

19

k6 = k4 + b3 → 1 addition

⇓

=

b0 + k2 + b5

k6

k5 + b4

k6 + k3

k5 + k2

b1 + k1 + k3

k2 + k3

14 addition

So we found 14 additions in the last step and we cannot further reduce the

number of additions. It is an optimized solution when we compare with Mas-

trivoto’s average complexity. For n = 7, #XOR = 72

2
− 7 = 17.5 is computed

using average complexity formula but our solution gives better result.

Paar developed two greedy algorithms, namely Greedy1 and Greedy2, to

all elements of the fields GF (2n) for n = 4, 5, · · · , 16 in [[2],chapter 4]. Two

algorithms have considerably lower space complexity as n increases. Although

the algorithm Greedy2 gives lower comlexity, its space complexity can not be

computed for n > 11 because of slowness of the algorithm. For instance, for

n = 7 the number of XOR is 11.3 for Greedy1, 5.3 for Greedy2. Measurements

of the space complexities of the primitive polynomials for 4 ≤ n ≤ 16 are shown

in Table 4.1 in [2].

The actual complexities can be found in Appendix B in [2] for n = 4, 5, , . . . , 8.

Complexity of first few w,w2, . . . and the last few . . . , w2n−3, w2n−2 field elements

of each field have a gate count which is significantly lower than the average com-

plexity.

20

Chapter 3

Efficient Polynomial

Multiplication

In this chapter an efficient scheme for multiplying two polynomials in the

composite field GF ((2n)m) will be derived. We consider the composite fields

GF ((2n)m) where m = 2i, i integer. The elements of the fields are field poly-

nomials with a maximum degree m − 1 over GF (2n). The generator of the

extension field is primitive polynomial P(x) of degree m over GF (2n).

For the performing field multiplication (1.1) in chapter 1, first part (ordinary

polynomial multiplication) is the first and major step. The basic operations,

addition and multiplication, are performed in the ground field GF (2n).

For efficient multiplication of polynomials over GF (2n) to step 1, Karatsuba-

Ofman Algorithm is used in the multiplier. As it is mentioned before, efficient

means algorithm saves multiplication at the cost of extra additions. Multipli-

cations are more costly than additions. However, we need multiplication to

make algorithm fast. So we replace multiplications with additions to reduce the

complexity.

21

3.1 The Karatsuba-Ofman Algorithm

The Karatsuba-Ofman algorithm (KOA) was first described by Karatsuba and

Ofman in 1962 in the “ Doklady Akademii Nauk SSSR ”. Acompact version is

described in [4]. The algorithm is a recursive method for efficient polynomial

multiplication. Its application is based on “ divide and conquer ” principle or

splitting of polynomials.

The computational complexity of the straightforward method, also called

school book method, for the polynomial multiplication is given as m2 for the

multiplicative complexity and (m−1)2 for the additive complexity where m−1

is the degrees of the polynomials and having coefficients in F . The following

example computes the complexity of two polynomial multiplication for m = 4.

Example 3.1.1. Let A(x) = a3x
3+a2x

2+a1x+a0 and B(x) = b3x
3+b2x

2+b1x+

b0 where ai, bi ∈ GF (2n) for some n ∈ N . When we compute C(x) = A(x)B(x)

as the following:

C(x) = (a3x
3 + a2x

2 + a1x + a0) · (b3x
3 + b2x

2 + b1x + b0)

= a3b3x
6 + a3b2x

5 + a3b1x
4 + a3b0x

3 + a2b3x
5 + a2b2x

4 + a2b1x
3 + a2b0x

2

+a1b3x
4 + a1b2x

3 + a1b1x
2 + a1b0x + a0b3x

3 + a0b2x
2 + a0b1x + a0b0

= a3b3x
6 + (a3b2 + a2b3)x

5 + (a3b1 + a2b2 + a1b3)x
4

+(a3b0 + a2b1 + a1b2 + a0b3)x
3

+(a2b0 + a1b1 + a0b2)x
2 + (a1b0 + a0b1)x + a0b0

we found m2 = 42 = 16 multiplicative complexity and (m − 1)2 = 32 = 9

additive complexity as observed above.

The KOA which is a recursive algorithm reduces the multiplicative com-

plexity and the additive complexity for large enough m. We consider here the

multiplication of the polynomials A(x) and B(x) with a maximum degree m−1

22

over a field F . So each polynomial has at most m coefficients, i.e.

A(x) = am−1x
m−1 + · · ·+ a0

and

B(x) = bm−1x
m−1 + · · ·+ b0

As it is stated before m is a power of two, i.e m = 2i, i ∈ Z. Here our

attention is finding the product C
′
(x) = A(x) ·B(x) with deg(C

′
(x)) ≤ 2m−2.

Algorithm starts with splitting polynomials into lower and upper half.

A = x
m
2 (x

m
2
−1am−1 + · · ·+ am

2
) + (x

m
2
−1am

2
−1 + · · ·+ a0) = x

m
2 Ah + Al

B = x
m
2 (x

m
2
−1bm−1 + · · ·+ bm

2
) + (x

m
2
−1bm

2
−1 + · · ·+ b0) = x

m
2 Bh + Bl (3.1.1)

Using (3.1.1), a set of auxilary polynomials D(x) is defined:

D0(x) = Al(x)Bl(x)

D1(x) = (Al(x) + Ah(x))(Bl(x) + Bh(x))

D2(x) = Ah(x)Bh(x)

(3.1.2)

The product polynomial C ′(x) = A(x)B(x) is computed by:

C ′(x) = D0(x) + x
m
2 [D1(x)−D0(x)−D2(x)] + xmD2(x) (3.1.3)

The number of multiplications which is found as m2 by school book method

reduces to 3
4
m2 in (3.1.2) by KOA. The calculations will be given later for some

m values. The next step requires to split D0(x), D1(x) and D2(x) into a lower

and an upper half again. That is Al, Ah, Al + Ah and their B counterparts will

be split into half. It is computed as:

23

D0(x) = D00(x) + x
m
4 [D01(x)−D00(x)−D02(x)] + x

m
2 D02(x)

D1(x) = D10(x) + x
m
4 [D11(x)−D10(x)−D12(x)] + x

m
2 D12(x)

D2(x) = D20(x) + x
m
4 [D21(x)−D20(x)−D22(x)] + x

m
2 D02(x)

(3.1.4)

The algorithm is concluded after t steps where t = log2 m. This happens

because every step halves the number of coefficients. In the final step Dt(x)’s

are degenerated into single coefficients. The following examples show how the

computations are for the values m = 2, 4, 8.

Example 3.1.2. For m=2

Let A(x) and B(x) are field polynomials with degrees 1 which is m− 1 over

a field F .

A(x) = a1x + a0

B(x) = b1x + b0

Then we get the followings by splitting the polynomials using KOA:

Ah(x) = a1 Bh(x) = b1

Al(x) = a0 Bl(x) = b0

D0(x) = Al(x) ·Bl(x) = a0 · b0

D1(x) = (Al(x) + Ah(x)) · (Bl(x) + Bh(x)) = (a0 + a1) · (b0 + b1)

D2(x) = Ah(x) ·Bh(x) = a1 · b1

Example 3.1.3. For m=4

If A(x) and B(x) are field polynomials with degrees 3 which is m − 1 over

a field F . Then we get the followings by splitting the polynomials using KOA:

A(x) = x2(a3x + a2) + (a1x + a0)

B(x) = x2(b3x + b2) + (b1x + b0)

24

Ah(x) = a3x + a2 Bh(x) = b3x + b2

Al(x) = a1x + a0 Bl(x) = b1x + b0

D0(x) = Al(x) ·Bl(x) = (a1x + a0) · (b1x + b0)

D1(x) = (Al(x) + Ah(x)) · (Bl(x) + Bh(x))

= [(a1 + a3)x + (a0 + a2)] · [(b1 + b3)x + (b0 + b2)]

D2(x) = Ah(x) ·Bh(x) = (a3x + a2) · (b3x + b2)

1. Take D0(x) = Al(x) ·Bl(x) = (a1x + a0) · (b1x + b0)

Alh(x) = a1 Blh(x) = b1

All(x) = a0 Bll(x) = b0

D00(x) = a0 · b0

D01(x) = (a1 + a0) · (b1 + b0)

D02(x) = a1 · b1

2. Take D1(x) = (Al(x) + Ah(x)) · (Bl(x) + Bh(x))

= [(a3 + a1)x + (a2 + a0)] · [(b3 + b1)x + (b2 + b0)]

Let C(x) = Al(x) + Ah(x) and E(x) = Bl(x) + Bh(x)

Ch(x) = a3 + a1 Eh(x) = b3 + b1

Cl(x) = a2 + a0 El(x) = b2 + b0

D10(x) = (a2 + a0) · (b2 + b0)

D11(x) = [(a2 + a0) + (a3 + a1)] · [(b2 + b0) + (b3 + b1)]

D12(x) = (a3 + a1) · (b3 + b1)

25

3. Take D2(x) = (a3x + a2) · (b3x + b2)

Ahh
(x) = a3 Bhh

(x) = b3

Ahl
(x) = a2 Bll(x) = b2

D20(x) = a2 · b2

D21(x) = (a3 + a2) · (b3 + b2)

D22(x) = a2 · b2

Example 3.1.4. For m=8

If A(x) and B(x) are field polynomials with degrees 7 which is m − 1 over

a field F . Then we get the followings by splitting the polynomials using KOA:

A(x) = x4(a7x
3 + a6x

2 + a5x + a4) + (a3x
3 + a2x

2 + a1x + a0)

B(x) = x4(b7x
3 + b6x

2 + b5x + b4) + (b3x
3 + b2x

2 + b1x + b0)

Ah(x) = a7x
3 + a6x

2 + a5x + a4 = x2(a7x + a6) + a5x + a4

Al(x) = a3x
3 + a2x

2 + a1x + a0 = x2(a3x + a2) + a1x + a0

Bh(x) = b7x
3 + b6x

2 + b5x + b4 = x2(b7x + b6) + b5x + b4

Bl(x) = b3x
3 + b2x

2 + b1x + b0 = x2(b3x + b2) + b1x + b0

D0(x) = Al(x) ·Bl(x)

D1(x) = [Al(x) + Ah(x)] · [Bl(x) + Bh(x)]

D2(x) = Ah(x) ·Bh(x)

1. Take D0(x) = Al(x) ·Bl(x)

Al(x) = x2(a3x + a2) + a1x + a0 Alh(x) = a3x + a2 Blh(x) = b3x + b2

Bl(x) = x2(b3x + b2) + b1x + b0 All(x) = a1x + a0 Bll(x) = b1x + b0

26

(a) D00(x) = All(x) ·Bll(x) = (a1x + a0) · (b1x + b0)

Allh
(x) = a1 Bllh

(x) = b1

Alll
(x) = a0 Blll

(x) = b0

D000
(x) = a0 · b0 = d0

D001
(x) = (a0 + a1) · (b0 + b1) = d1

D002
(x) = a1 · b1 = d2

(b) D01(x) = [All(x) + Alh(x)] · [Bll(x) + Blh(x)]

= [(a1 + a3)x + (a0 + a2)] · [(b1 + b3)x + (b0 + b2)]

A
(1)
lh

(x) = a1 + a3 B
(1)
lh

(x) = b1 + b3

A
(1)
ll

(x) = a0 + a2 B
(1)
ll

(x) = b0 + b2

D010
(x) = (a0 + a2) · (b0 + b2) = d3

D011
(x) = [(a1 + a3) + (a0 + a2)] · [(b1 + b3) + (b0 + b2)] = d4

D012
(x) = (a1 + a3) · (b1 + b3) = d5

(c) D02(x) = Alh(x) ·Blh(x) = (a3x + a2) · (b3x + b2)

Alhh
(x) = a3 Bllh

(x) = b3

Alhl
(x) = a2 Blhl

(x) = b2

D020
(x) = a2 · b2 = d6

D021
(x) = (a2 + a3) · (b2 + b3) = d7

D022
(x) = a3 · b3 = d8

2. Take D1(x) = [Al(x) + Ah(x)] · [Bl(x) + Bh(x)]

27

Al(x) + Ah(x) = [(a3 + a7)x
3 + (a2 + a6)x

2 + (a1 + a5)x + (a0 + a4)]

Bl(x) + Bh(x) = [(b3 + b7)x
3 + (b2 + b6)x

2 + (b1 + b5)x + (b0 + b4)]

Let C(x) = Al(x) + Ah(x)

E(x) = Bl(x) + Bh(x)

C(x) = (a3 + a7)x
3 + (a2 + a6)x

2 + (a1 + a5)x + (a0 + a4)

= x2[(a3 + a7)x + (a2 + a6)] + [(a1 + a5)x + (a0 + a4)

E(x) = (b3 + b7)x
3 + (b2 + b6)x

2 + (b1 + b5)x + (b0 + b4)

= x2[(b3 + b7)x + (b2 + b6)] + [(b1 + b5)x + (b0 + b4)]

Ch(x) = (a3 + a7)x + (a2 + a6) Eh(x) = (b3 + b7)x + (b2 + b6)

Cl(x) = (a1 + a5)x + (a0 + a4) El(x) = (b1 + b5)x + (b0 + b4)

(a) D10(x) = Cl(x) ·El(x) = [(a1 +a5)x+(a0 +a4)] · [(b1 +b5)x+(b0 +b4)]

Clh(x) = a1 + a5 Elh(x) = b1 + b5

Cll(x) = a0 + a4 Ell(x) = b0 + b4

D100
(x) = (a0 + a4) · (b0 + b4) = d9

D101
(x) = [(a1 + a5) + (a0 + a4)] · [(b1 + b5) + (b0 + b4)] = d10

D102
(x) = (a1 + a5) · (b1 + b5) = d11

(b) D11(x) = [Cl(x) + Ch(x)] · [El(x) + Eh(x)]

= [[(a3 + a7)+ (a1 + a5)]x+ [(a2 + a6)+ (a0 + a4)]] · [[(b3 + b7)

+(b1 + b5)]x + [(b2 + b6) + (b0 + b4)]]

28

Let C(1)(x) = Cl(x) + Ch(x) E(1)(x) = El(x) + Eh(x)

C
(1)
h (x) = (a3 + a7) + (a1 + a5) E

(1)
h (x) = (b3 + b7) + (b1 + b5)

C
(1)
l (x) = (a2 + a6) + (a0 + a4) E

(1)
l (x) = (b2 + b6) + (b0 + b4)

D110
(x) = [(a2 + a6) + (a0 + a4)] · [(b2 + b6) + (b0 + b4)] = d12

D111
(x) = [(a3 + a7) + (a1 + a5) + (a2 + a6) + (a0 + a4)]

·[(b3 + b7) + (b1 + b5) + (b2 + b6) + (b0 + b4)] = d13

D112
(x) = [(a3 + a7) + (a1 + a5)] · [(b3 + b7) + (b1 + b5)] = d14

(c) D12(x) = Ch(x) ·Eh(x) = [(a3+a7)x+(a2+a6)] · [(b3+b7)x+(b2+b6)]

Chh
(x) = a3 + a7 Elh(x) = b3 + b7

Chl
(x) = a2 + a6 Ehl

(x) = b2 + b6

D120
(x) = (a2 + a6) · (b2 + b6) = d15

D121
(x) = [(a3 + a7) + (a2 + a6)] · [(b3 + b7) + (b2 + b6)] = d16

D122
(x) = (a3 + a7) · (b3 + b7) = d17

3. Take D2(x) = Ah(x) ·Bh(x)

= [x2(a7x + a6) + (a5x + a4)] · [x2(b7x + b6) + (b5x + b4)]

Ahh
(x) = a7(x) + a6 Bhh

(x) = b7(x) + b6

Ahl
(x) = a5(x) + a4 Bhl

(x) = b5(x) + b4

(a) D20(x) = Ahl
(x) ·Bhl

(x) = (a5x + a4) · (b5x + b4)

Ahlh
(x) = a5 Bhlh

(x) = b5

29

Ahll
(x) = a4 Bhll

(x) = b4

D200
(x) = a4 · b4 = d18

D201
(x) = (a5 + a4) · (b5 + b4) = d19

D202
(x) = a5 · b5 = d20

(b) D21(x) = [Ahh
(x) + Ahl

(x)] · [Bhh
(x) + Bhl

(x)]

= [(a7 + a5)x + (a6 + a4)] · [(b7x + b5)x + (b6 + b4)]

Let A
(1)
h (x) = Ahh

(x) + Ahl
(x) = [(a7 + a5)x + (a6 + a4)]

B
(1)
h (x) = Bhh

(x) + Bhl
(x) = [(b7 + b5)x + (b6 + b4)]

A
(1)
hh

(x) = a7 + a5 B
(1)
hh

(x) = b7 + b5

A
(1)
hl

(x) = a6 + a4 B
(1)
hl

(x) = b6 + b4

D210
(x) = (a6 + a4) · (b6 + b4) = d21

D211
(x) = [(a7 + a5) + (a6 + a4)] · [(b7 + b5) + (b6 + b4)] = d22

D212
(x) = (a7 + a5) · (b7 + b5) = d23

(c) D22(x) = Ahh
(x) ·Bhh

(x) = (a7x + a6) · (b7x + b6)

Ahhh
(x) = a7 Bhhh

(x) = b7

Ahhl
(x) = a6 Bhhl

(x) = b6

D220
(x) = a6 · b6 = d24

D221
(x) = (a7 + a6) · (b7 + b6) = d25

D222
(x) = a7 · b7 = d26

30

3.2 Complexities of the KOA for polynomials

over fields of characteristic 2

The following theorems determines the computational complexity and the time

complexity of the KOA for polynomials over fields of characteristic 2 with re-

spect to a parallel hardware implementation.

Theorem 3.2.1. [1] Two arbitrary polynomials in one variable of degree less

or equal m − 1, where m is a power of two, with coefficients in a field F of

characteristic 2 can be multiplied by means of the Karatsuba-Ofman algorithm

with:

#⊗ = mlog2 3 (3.2.5)

#⊕ ≤ 6mlog2 3 − 8m + 2 (3.2.6)

multiplications and additions, respectively, in F .

Theorem 3.2.2. [1] Consider two arbitrary polynomials in one variable of de-

gree less or equal m−1, where m is a power of two, with coefficients in a field F
of characteristic 2. A parallel realization of the Karatsuba-Ofman algorithm for

the multiplication of two polynomials can be implemented with a time complexity

(or delay) of:

T = T⊗ + 3(log2 m)T⊕ (3.2.7)

where ”T⊗” and ”T⊕” denote the delay of one multiplier and one adder, respec-

tively, in F .

These theorems are utilized to compute the complexities for the field mul-

tiplication to step 1 of (1.1.1). It is important that subtractions and additions

have the same meaning in fields of characteristic 2. After giving this note, it

comes to give the proofs of the theorems.

Proof:

We will consider the proofs of theorems in three parts.

31

1. In the first part we only consider the number of additions as splitting of the

polynomials. This is because inside of parantheses which has additions is

computed firstly. By KOA the multiplication partitioned into three parts

whereas the length of the polynomials is reduced by half. Then each part

is partitioned into three parts again. It finishes until single coefficients are

obtained. Hence the following formula is obtained:

#⊕1 =

log2 m∑
i=1

3i−12
m

2i
= 2m

log2 m∑
i=1

3i−1

2i

= 2m

log2 m∑
i=1

3i−1

2i−1
· 2 = m

log2 m∑
i=1

(
3

2
)i−1

= m

log2 m−1∑
i=0

(
3

2
)i = m

[
1− (3

2
)log2 m

1− 3
2

]
= 2m

[
(
3

2
)log2 m − 1

]
= 2m · 3log2 m

2log2 m
− 2m

= 2m · 3log2 m

m

= 2 · 3log2 m − 2m

That is:

#⊕1 =

log2 m∑
i=1

3i−12
m

2i
= 2 · 3log2 m − 2m (3.2.8)

In the above formula i denotes the place of the adder.

The delay equals:

T1 = T⊕ log2 m, (3.2.9)

where T⊕ shows the delay for one adder in F .

2. In the second part we find the number of multiplication. As we are split-

ting polynomials, we get three multiplications in the auxiliary polyno-

mials D(x) at first. In the next iteration we repeat the process of the

partitioned polynomials and get three multiplications for each of them.

Then 3log2 m = mlog2 3 (remember m = 2i) polynomials are multiplied. So

the formula which gives the number of multiplication can be stated as:

32

#⊗2 = mlog2 3 (3.2.10)

The delay of parallel implementation is:

T2 = T⊗ (3.2.11)

where ”T⊗” denotes the delay of one multiplier in F .

3. The third part computes the number of additions of polynomials acording

to the additions (or subtractions) of (3.1.3). These additions (or subtrac-

tions) are two kinds. First kind is based on subtracting three polynomials

with 2i− 1 coefficients and the second kind is based on subtracting 2i− 2

additions due to overlapping of three terms.

Claim 3.2.3. Subtracting three polynomials with 2i−1 coefficients needs

2 · (2i − 1) additions over F2.

Proof: One can prove this claim by induction.

• For i = 1

Subtracting three polynomials with 21 − 1 coefficients. Let p1 = a0,

p2 = b0 and p3 = c0 are polynomials with single coefficients, i.e.

degree of the polynomials is 0, then when we subtract them over F2

a0 − b0 − c0 needs two additions.It is equal to 2 · (21 − 1) = 2

• For i = k

Assume when i = k each three polynomials will have 2k − 1 coeffi-

cients. That is,

Let p1(x), p2(x) and p3(x) be three polynomials with 2k − 1 coeffi-

cients,

33

p1(x) = a2k−2x
2k−2 + a2k−3x

2k−3 + · · ·+ a2x
2 + a1x + a0

p2(x) = b2k−2x
2k−2 + b2k−3x

2k−3 + · · ·+ b2x
2 + b1x + b0

p3(x) = c2k−2x
2k−2 + c2k−3x

2k−3 + · · ·+ c2x
2 + c1x + c0

Then subtracting three polynomials needs 2k − 1 coefficients over F2

.

i.e.,

p1(x)−p2(x)−p3(x) = (a2k−2−b2k−2−c2k−2)x
2k−2+· · ·+(a0−b0−c0)

• For i = k + 1

When i = k+1, each three polynomials will have 2k+1−1 coefficients.

Let p
′
1(x), p

′
2(x) and p

′
3(x) be three polynomials with 2 · 2k − 1 coef-

ficients,

p
′
1(x) = a2·2k−2x

2·2k−2 + · · ·+ a2k−2x
2k−2 + · · ·+ a1x + a0

p
′
2(x) = b2·2k−2x

2·2k−2 + · · ·+ b2k−2x
2k−2 + · · ·+ b1x + b0

p
′
3(x) = c2·2k−2x

2·2k−2 + · · ·+ c2k−2x
2k−2 + · · ·+ c1x + c0

Then subtracting three polynomials p
′
1(x)− p

′
2(x)− p

′
3(x) yields

= (a2·2k−2 − b2·2k−2 − c2·2k−2)x
2·2k−2 + · · ·

+(a2k−2 − b2k−2 − c2k−2)x
2k−2 + · · ·+ (a0 − b0 − c0)

= (a2·2k−2 − b2·2k−2 − c2·2k−2)x
2·2k−2

+[(a2k−1+2k−2 − b2k−1+2k−2 − c2k−1+2k−2)x
2·2k−3 + · · ·

+(a2k−1 − b2k−1 − c2k−1)x
2k−1]

+[(a2k−2 − b2k−2 − c2k−2)x
2k−2 + · · ·+ (a0 − b0 − c0)]

2 additions comes from the addition of coefficients of the (2 · 2k −
1)th term, 2 · (2k − 1) additions comes from the second bracket and

34

2 · (2k − 1) additions comes from the third bracket. So subtracting

three polynomials with 2k+1 − 1 coefficients needs

2+2 ·(2k−1)+2 ·(2k−1) = 4 ·2k−2−2+2 = 2k+2−2 = 2 ·(2k+1−1)

additions over F2 which satisfy the claim for i = k + 1

�

The formula giving the number of additions computed in the third part

is:

35

#⊕3 =

log2 m∑
i=1

3log2 m−i
[
2(2i − 1) + (2i − 2)

]
=

log2 m∑
i=1

3log2 m−i
[
2 · 2i − 2 + 2i − 2

]
=

log2 m∑
i=1

3log2 m−i
[
3 · 2i − 4

]
=

log2 m∑
i=1

3log2 m−i(3 · 2i)−
log2 m∑
i=1

4 · 3log2 m−i

= 3log2 m+1

log2 m∑
i=1

(
2

3
)i − 4 · 3log2 m

log2 m∑
i=1

(
1

3
)i

= 3log2 m+1

log2 m−1∑
i=0

(
2

3
)i+1 − 4 · 3log2 m

log2 m−1∑
i=0

(
1

3
)i+1

= 2 · 3log2 m

log2 m−1∑
i=0

(
2

3
)i − 4 · 3log2 m−1

log2 m−1∑
i=0

(
1

3
)i

= 2 · 3log2 m(
1− (2

3
)log2 m

1− 2
3

)− 4 · 3log2 m−1(
1− (1

3
)log2 m

1− 2
3

)

= 2 · 3log2 m · 3(1− 2log2 m

3log2 m
)− 2 · 3log2 m(1− 1

3log2 m
)

= 6 · 3log2 m − 6m− 2 · 3log2 m + 2

= 4 · 3log2 m − 6m + 2

That is:

#⊕3 = 4 · 3log2 m − 6m + 2 (3.2.12)

The delay is also computed as:

T3 = 2(log2 m)T⊕ (3.2.13)

�

The complexities consist of the summation of the partial complexities in the

proofs. Multiplication complexity is equal to result of the second part in the

36

proof,i.e.

#⊗ = mlog2 3

And additive complexity is not equal to but equal or less than the summation

of results of first and third parts of the proof which is:

#⊕ ≤ 2mlog2 3 − 2m + 4mlog2 3 − 6m + 2 = 6mlog2 3 − 8m + 2

Additive complexity can have lower values for some values m. For instance

m = 4, it is expected to appear 24 additive complexity. But it is computed 22

which gives lower complexity.

KOA provides lower complexitities for both additions and multiplication

with respect to school book multiplication which gives m2 for multiplication and

(m − 1)2 for addition. Here comes computational complexities for m = 2, 4, 8

values.

Example 3.2.4. For m=2

For m = 2, #⊕1 = 2 · 2log23 − 2 · 2 = 2. So we have the value 2 as the first

additive complexity. It is also seen in the following: d0 = a0 · b0 → D0

d1 = (a0 + a1) · (b0 + b1) → D1

d2 = a1 · b1 → D2

(a0 + a1) and (b0 + b1) gives 2 additions.

For the second part #⊗2 = 2log23 = 3 is computed. They are d0, d1 and d2

multiplications.

In the third part computational complexity is found using the following

equations:

C
′
(x) = D0(x) + xm/2[D1(x)−D0(x)−D2(x)] + xmD2(x)

37

So for m = 2

C
′
(x) = D0(x) + x[D1(x)−D0(x)−D2(x)] + x2D2(x)

= d0 + x(d1 − d0 − d2) + x2d2

Subtracting three polynomials with 2i − 1 coefficients

→
∑log2 m

i=1 3log2 m−i · [2 · (2i − 1)]

2i − 2 additions due to overlapping of 3 terms

→
∑log2 m

i=1 3log2 m−i · [2i − 2]

i = 1

1 · 2 = 2

1 · 0 = 0

(i = 1) subtracting

d1 − d0 − d2 2 addition

(i = 1)overlapping NO overlapping

So #⊕3 = 2.

The additive complexity is #⊕1 +#⊕3 = 2 + 2 = 4 = 6 · 2log2 3−8·2+2=4. The

multiplicative complexity is #⊗ = 3.

The delays are:

T1 = T⊕ log2 2 = T⊕

T2 = T⊗

T3 = 2(log2 2)T⊕ = 2T⊕

So, T = 3T⊕ + T⊗ equality holds for m = 2.

38

Example 3.2.5. For m=4

For m = 4, #⊕1 = 2 · 4log23 − 2 · 4 = 10. This is also observed below.

d0 = a0 · b0 → D00

d1 = (a0 + a1) · (b0 + b1) → D01

d2 = a1 · b1 → D02

d3 = (a0 + a2) · (b0 + b2) → D10

d4 = [(a0 + a2) + (a1 + a3)] · [(b0 + b2) + (b1 + b3)] → D11

d5 = (a1 + a3) · (b1 + b3) → D12

d6 = a2 · b2 → D20

d7 = (a2 + a3) · (b2 + b3) → D21

d8 = a3 ·b3 → D22 For m = 4 we found that there are 38 additions. Additions

are shown below explicitly. Terms between commas imples 1 addition. So the

additions are: (a0 + a1), (b0 + b1), (a0 + a2), (a1 + a3), (b0 + b2), (b1 + b3), [(a0 +

a2) + (a1 + a3)], [(b0 + b2) + (b1 + b3)], (a2 + a3), (b2 + b3)

The multiplication ⊗2 = 4log2 3 = 9.

Lastly ⊕3 = 4 · 4log2 3 − 6 · 4 + 2 = 14 is observed below

C
′
(x) = D0(x) + xm/2[D1(x)−D0(x)−D2(x)] + xmD2(x)

for m = 4

C
′
(x) = D0(x) + x2[D1(x)−D0(x)−D2(x)] + x4D2(x)

= [D00(x) + x[D01(x)−D00(x)−D02(x)] + x2D02(x)]

+x2[[D10(x) + x1(D11(x)−D10(x)−D12(x)) + x2D12(x)]

−[D00(x) + x[D01(x)−D00(x)−D02(x)] + x2D02(x)]

39

−[D20(x) + x[D21(x)−D20(x)−D22(x)] + x2D22(x)]]

+x4[D20(x) + x[D21(x)−D20(x)−D22(x)] + x2D22(x)]

= [(d0 + x(d1 − d0 − d2) + x2d2)

+x2[[d3 + x(d4 − d3 − d5) + x2d5]

−[d0 + x(d1 − d0 − d2) + x2d2]

−[d6 + x(d7 − d6 − d8) + x2d8]]

+x4[d6 + x(d7 − d6 − d8) + x2d8]

Let

α1 = d1 − d0 − d2 α2 = d4 − d3 − d5 α3 = d7 − d6 − d8

Then

= [d0 + α1x + d2x
2] + x2[(d3 + α2x + d5x

2)− (d0 + α1x + d2x
2)

−(d6 + α3x + d8x
2)] + x4[d6 + α3x + d8x

2]

= [d0 + α1x + d2x
2] + x2[(d3 − d0 − d6) + x(α2 − α1 − α3))

+x2(d5 − d2 − d8)] + x4[d6 + α3x + d8x
2]

Let

β1 = d3 − d0 − d6 β2 = α2 − α1 − α3 β3 = d5 − d2 − d8

Then

= [d0 + α1x + d2x
2] + x2[β1 + β2x + β3x

2] + x4[d6 + α3x + d8x
2]

Let

γ1 = d3 + β1 = d2 + (d3 − d0 − d6) γ2 = β3 + d6 = (d5 − d2 − d8) + d6

40

Subtracting three polynomials with 2i − 1 coefficients

→
∑log2 m

i=1 3log2 m−i · [2 · (2i − 1)]

2i − 2additions due to overlapping of 3 terms

→
∑log2 m

i=1 3log2 m−i · [2i − 2]

i = 1 i = 2

3 · 2 = 6 1 · 2 · 3 = 6

3 · 0 = 0 1 · 2 = 2

(i = 1)subtracting

α1 = d1 − d0 − d2

α2 = d4 − d3 − d5

α3 = d7 − d6 − d8

(i = 1)overlapping

NO overlapping

(i = 2)subtracting

β1 = d3 − d0 − d6

β2 = α2 − α1 − α3

β3 = d5 − d2 − d8

(i = 2)overlapping

γ1 = d2 + β1 = d2 + (d3 − d0 − d6)

γ2 = β3 + d6 = (d5 − d2 − d8) + d6

The additive complexity is #⊕1+#⊕3 = 10+14 = 24 = 6·4log2 3−8·4+2 = 24.

The multiplicative complexity is #⊗ = 9.

The delays are:

T1 = T⊕ log2 4 = 2T⊕

T2 = T⊗

T3 = 2(log2 4)T⊕ = 4T⊕

41

So, T = 6T⊕ + T⊗ equality holds for m = 4.

Example 3.2.6. For m=8

For m = 8, #⊕1 = 2 · 8log23 − 2 · 8 = 38. This is also observed below.

d0 = a0 · b0 → D000

d1 = (a0 + a1) · (b0 + b1) → D001

d2 = a1 · b1 → D002

d3 = (a0 + a2) · (b0 + b2) → D010

d4 = [(a1 + a3) + (a0 + a2)] · [(b1 + b3) + (b0 + b2)] → D011

d5 = (a1 + a3) · (b1 + b3) → D012

d6 = a2 · b2 → D020

d7 = (a2 + a3) · (b2 + b3) → D021

d8 = a3 · b3 → D022

d9 = (a0 + a4) · (b0 + b4) → D100

d10 = [(a1 + a5) + (a0 + a4)] · [(b1 + b5) + (b0 + b4)] → D101

d11 = (a1 + a5) · (b1 + b5) → D102

d12 = [(a2 + a6) + (a0 + a4)] · [(b2 + b6) + [b0 + b4]] → D110

d13 = [(a3 + a7) + (a1 + a5) + (a2 + a6) + (a0 + a4)] · [(b3 + b7) + (b1 + b5)

+(b2 + b6) + (b0 + b4)] → D110

d14 = [(a3 + a7) + (a1 + a5)] · [(b3 + b7) + (b1 + b5) → D112

d15 = (a2 + a6) · (b2 + b6) → D120

d16 = [(a3 + a7) + (a2 + a6)] · [(b3 + b7) + (b2 + b6) → D121

d17 = (a3 + a7) · (b3 + b7) → D122

d18 = a4 · b4 → D200

d19 = (a4 + a5) · (b4 + b5) → D201

42

d20 = a5 · b5 → D202

d21 = (a4 + a6) · (b4 + b6) → D210

d22 = [(a5 + a7) + (a4 + a6)] · [(b5 + b7) + (b4 + b6)] → D211

d23 = (a5 + a7) · (b5 + b7) → D212

d24 = a6 · b6 → D220

d25 = (a6 + a7) · (b6 + b7) → D221

d26 = a7 · b7 → D222

For m = 8 we found that there are 38 additions. Additions are shown below

explicitly. Terms between commas imples 1 addition. So the additions are:

(a0 + a1), (b0 + b1), (a0 + a2), (b0 + b2), (a1 + a3), (b1 + b3), [(a1 + a3) + (a0 +

a2)], [(b1 + b3) + (b0 + b2)], (a2 + a3), (b2 + b3), (a0 + a4), (b0 + b4), (a1 + a5), (b1 +

b5), [(a1 +a5)+(a0 +a4)], [(b1 + b5)+(b0 + b4)], (a2 +a6), (b2 + b6), (a3 +a7), (b3 +

b7), [(a2+a6)+(a0+a4)], [(b2+b6)+[b0+b4]], [(a3+a7)+(a1+a5)], [(b3+b7)+(b1+

b5)].[(a3+a7)+(a1+a5)+(a2+a6)+(a0+a4)], [(b3+b7)+(b1+b5)+(b2+b6)+(b0+

b4)], [(a3 +a7)+(a2 +a6)], [(b3 +b7)+(b2 +b6)], (a4 +a5), (b4 +b5), (a4 +a6), (b4 +

b6), (a5+a7), (b5+b7), [(a5+a7)+(a4+a6)], [(b5+b7)+(b4+b6)], (a6+a7), (b6+b7).

The multiplication ⊗2 = 8log2 3 = 27.

Lastly ⊕3 = 4 · 8log2 3 − 6 · 8 + 2 = 62 is observed below

C
′
(x) = D0(x) + xm/2[D1(x)−D0(x)−D2(x)] + xmD2(x)

= [D00(x) + x2[D01(x)−D00(x)−D02(x)] + x4D02(x)]

+x4[[D10(x) + x2(D11(x)−D10(x)−D12(x)) + x4D12(x)]

−[D00(x) + x2[D01(x)−D00(x)−D02(x)] + x4D02(x)]

−[D20(x) + x2[D21(x)−D20(x)−D22(x)] + x4D22(x)]]

+x8[D20(x) + x2[D21(x)−D20(x)−D22(x)] + x4D22(x)]

43

= [(D000
+ x[D001

−D000
−D002

] + x2D002
)

+x2[(D010
+ x[D011

−D010
−D012

] + x2D012
)

−(D000
+ x[D001

−D000
−D002

] + x2D002
)

−(D020
+ x[D021

−D020
−D022

] + x2D022
)]

+x4(D020
+ x[D021

−D020
−D022

] + x2D022
)]

+x4[[(D100
+ x[D101

−D100
−D102

] + x2D102
)

+x2[(D110
+ x[D111

−D110
−D112

] + x2D112
)

−(D100
+ x[D101

−D100
−D102

] + x2D102
)

−(D120
+ x[D121

−D120
−D122

] + x2D122
)]

+x4(D120
+ x[D121

−D120
−D122

] + x2D122
)]

−[(D000
+ x[D001

−D000
−D002

] + x2D002
)

+x2[(D010
+ x[D011

−D010
−D012

] + x2D012
)

−(D000
+ x[D001

−D000
−D002

] + x2D002
)

−(D020
+ x[D021

−D020
−D022

] + x2D022
)]

+x4(D020
+ x[D021

−D020
−D022

] + x2D022
)]

−[(D200
+ x[D201

−D200
−D202

] + x2D202
)

+x2[(D210
+ x[D211

−D210
−D212

] + x2D212
)

−(D200
+ x[D201

−D200
−D202

] + x2D202
)

−(D220
+ x[D221

−D220
−D222

] + x2D222
)]

+x4(D220
+ x[D221

−D220
−D222

] + x2D222
)]

+x8[(D200
+ x[D201

−D200
−D202

] + x2D202
)

44

+x2[(D210
+ x[D211

−D210
−D212

] + x2D212
)

−(D200
+ x[D201

−D200
−D202

] + x2D202
)

−(D220
+ x[D221

−D220
−D222

] + x2D222
)]

+x4(D220
+ x[D221

−D220
−D222

] + x2D222
)]]

Replace d
′
ms for m = 0, · · · , 26 in terms of Dijk

for i = 0, 1, 2 , j = 0, 1, 2

and k = 0, 1, 2. Then

= [(d0 + x(d1 − d0 − d2) + x2d2)

+x2[(d3 + x(d4 − d3 − d5) + x2d5)

−(d0 + x(d1 − d0 − d2) + x2d2)

−(d6 + x(d7 − d6 − d8) + x2d8)

+x4(d6 + x(d7 − d6 − d8) + x2d8)

+x4[[(d9 + x(d10 − d9 − d11 + x2d11)

+x2[(d12 + x(d13 − d12 − d14) + x2d14)

−(d9 + x(d10 − d9 − d11 + x2d11)

−(d15 + x(d16 − d15 − d17 + x2d17)]

+x4(d15 + x(d16 − d15 − d17 + x2d17)]

−[(d0 + x(d1 − d0 − d2) + x2d2)

+x2[(d3 + x(d4 − d3 − d5) + x2d5)

−(d0 + x(d1 − d0 − d2) + x2d2)

−(d6 + x(d7 − d6 − d8) + x2d8)]

+x4(d6 + x(d7 − d6 − d8) + x2d8)]

−[(d18 + x(d19 − d18 − d20) + x2d20)

45

+x2[(d21 + x(d22 − d21 − d23) + x2d23)

−(d18 + x(d19 − d18 − d20) + x2d20)

−(d24 + x(d25 − d24 − d26) + x2d26)]

+x4(d24 + x(d25 − d24 − d26) + x2d26)]

+x8[(d18 + x(d19 − d18 − d20) + x2d20)

+x2[(d21 + x(d22 − d21 − d23) + x2d23)

−(d18 + x(d19 − d18 − d20) + x2d20)

−(d24 + x(d25 − d24 − d26) + x2d26)]

+x4(d24 + x(d25 − d24 − d26) + x2d26)]]

Let

α1 = d1 − d0 − d2 α2 = d4 − d3 − d5 α3 = d7 − d6 − d8

α4 = d10 − d9 − d11 α5 = d13 − d12 − d14 α6 = d16 − d15 − d17

α7 = d19 − d18 − d20 α8 = d22 − d21 − d23 α9 = d25 − d24 − d26

Then,

= [(d0 + α1x + x2d2)

+x2[(d3 + α2x + x2d5)− (d0 + α1x + x2d2)− (d6 + α3x + x2d8)]

+x4(d6 + α3x + x2d8)]

+x4[[(d9 + α4x + x2d11)

+x2[(d12 + α5x + x2d14)− (d9 + α4x + x2d11)− (d15 + α6x + x2d17)]

+x4(d15 + α6x + x2d17)]

−[d0 + α1x + x2d2)

+x2[(d3 + α2x + x2d5)− (d0 + α1x + x2d2)− (d6 + α3x + x2d8)]

46

+x4(d6 + α3x + x2d8)]

−[d18 + α7x + x2d20)

+x2[(d21 + α8x + x2d23)− (d18 + α7x + x2d20)− (d24 + α9x + x2d26)]

+x4(d24 + α9x + x2d26)]

+x8[(d18 + α7x + x2d20)

+x2[(d21 + α8x + x2d23)− (d18 + α7x + x2d20)− (d24 + α9x + x2d26)]

+x4(d24 + α9x + x2d26)]

= [(d0 + α1x + x2d2)

+x2[(d3 − d0 − d6) + x(α2 − α1 − α3) + x2(d5 − d2 − d8)]

+x4(d6 + α3x + x2d8)]

+x4[[(d9 + α4x + x2d11)

+x2[(d12 − d9 − d15) + x(α5 − α4 − α6) + x2(d14 − d11 − d17)]

+x4(d15 + α6 + x2d17)]

−[d0 + α1x + x2d2)

+x2[(d3 − d0 − d− 6) + x(α2 − α1 − α3) + x2(d5 − d2 − d8)]

+x4(d6 + α3x + x2d8)]

−[d18 + α7x + x2d20)

+x2[(d21 − d18 − d24) + x(α8 − α7 − α9) + x2(d23 − d20 − d26)]

+x4(d24 + α9x + x2d26)]]

+x8[(d18 + α7x + x2d20)

47

+x2[(d21 − d18 − d24) + x(α8 − α7 − α9) + x2(d23 − d20 − d26)]

+x4(d24 + α9x + x2d26)]

Let

β1 = d3 − d0 − d6, β2 = α2 − α1 − α3, β3 = d5 − d2 − d8

β4 = d12 − d9 − d15, β5 = α5 − α4 − α6, β6 = d14 − d11 − d17

β7 = d21 − d18 − d24, β8 = α8 − α7 − α9, β9 = d23 − d20 − d26

= [(d0 + α1x + x2d2) +x2(β1 + xβ2 + x2β3) +x4(d6 + α3x + x2d8)]

+x4[(d9 + α4x + x2d11) +x2(β4 + xβ5 + x2β6) +x4(d15 + α6 + x2d17)]

−[d0 + α1x + x2d2) +x2(β1 + xβ2 + x2β3) +x4(d6 + α3x + x2d8)]

−[d18 + α7x + x2d20) +x2(β7 + xβ8 + x2β9) +x4(d24 + α9x + x2d26)]

+x8[(d18 + α7x + x2d20) +x2(β7 + xβ8 + x2β9) +x4(d24 + α9x + x2d26)]

Let overlap for i=2

γ1 = d2 + β1, γ2 = d6 + β3, γ3 = d11 + β4

γ4 = d15 + β6, γ5 = d20 + β7, γ6 = d24 + β9

= [d0 + xα1 + x2γ1 + x3β2 + x4γ2 + x5α3 + x6d8]

+x4[(d9 + xα4 + x2γ3 + x3β5 + x4γ4 + x5α6 + x6d17)

−(d0 + xα1 + x2γ1 + x3β2 + x4γ2 + x5α3 + x6d8)

−(d18 + xα7 + x2γ5 + x3β8 + x4γ6 + x5α9 + x6d26)]

+x8[d18 + xα7 + x2γ5 + x3β8 + x4γ6 + x5α9 + x6d26]

48

for i = 3 Let

k1 = d9 − d0 − d18, k2 = α4 − α1 − α7, k3 = γ3 − γ1 − γ5, k4 = β5 − β2 − β8

k5 = γ4 − γ2 − γ6, k6 = α6 − α3 − α9, k7 = d17 − d8 − d26

= [d0 + xα1 + x2γ1 + x3β2 + x4γ2 + x5α3 + x6d8]

+x4[k1 + xk2 + x2k3 + x3k4 + x4k5 + x5k6 + x6k7]

+x8[d18 + xα7 + x2γ5 + x3β8 + x4γ6 + x5α9 + x6d26]

for i = 3 overlapping

n1 = γ2 + k1, n2 = α3 + k2, n3 = d8 + k3

n4 = d18 + k5, n5 = k6 + α7, n6 = γ5 + k7

= d0 +xα1 +x2γ1 +x3β2 +x4n1 +x5n2 +x6n3 +x7k4 +x8n4 +x9n5 +x10n6 +

x11β8 + x12γ6 + x13α9 + x14d26

Subtracting three polynomials with 2i − 1 coefficients

→
∑log2 m

i=1 3log2 m−i · [2 · (2i − 1)]

2i − 2additions due to overlapping of 3 terms

→
∑log2 m

i=1 3log2 m−i · [2i − 2]

i = 1 i = 2 i = 3

9 · 2 · 1 = 18 3 · 2 · 3 = 18 1 · 2 · 7 = 14

9 · 0 = 0 3 · 2 = 6 1 · 6 = 6

α1 = d1 − d0 − d2 α4 = d10 − d9 − d11 α7 = d19 − d18 − d20

α2 = d4 − d3 − d5 α5 = d13 − d12 − d14 α8 = d22 − d21 − d23

α3 = d7 − d6 − d8 α6 = d16 − d15 − d17 α9 = d25 − d24 − d26

49

Then subtracting three polynomials with (i = 2) 3 coefficients. (when i = 2

18).These are:

β1 = d3 − d0 − d6 β4 = d12 − d9 − d15 β7 = d21 − d18 − d24

β2 = α2 − α1 − α3 β5 = α5 − α4 − α6 β8 = α8 − α7 − α9

β3 = d5 − d2 − d8 β6 = d14 − d11 − d17 β9 = d23 − d20 − d26

(when i = 2) 2i − 2 = 2 additions due to overlapping of 3 terms [6 overlap-

ping]

γ1 = d2 + β1 γ3 = d11 + β4 γ5 = d20 + β7

γ2 = d6 + β3 γ4 = d15 + β6 γ6 = d24 + β9

Then subtracting three polynomials with (i = 3) 3 coefficients (when i = 3).

These are:

k1 = d9 − d0 − d18 k4 = β5 − β2 − β8 k7 = d17 − d8 − d26

k2 = α4 − α1 − α7 k5 = γ4 − γ2 − γ6

k3 = γ3 − γ1 − γ5 k6 = α6 − α3 − α9

(when i = 3) 2i − 2 = 6 additions due to overlapping

n1 = γ2 + k1 n3 = d8 + k3 n5 = α7 + k6

n2 = α3 + k2 n4 = d18 + k5 n6 = γ5 + k7

The additive complexity is #⊕1+#⊕3 = 38+62 = 24 = 6·8log2 3−8·8+2 = 100.

The multiplicative complexity is #⊗ = 27.

The delays are:

50

T1 = T⊕ log2 8 = 3T⊕

T2 = T⊗

T3 = 2(log2 8)T⊕ = 6T⊕

So, T = 9T⊕ + T⊗ equality holds for m = 8.

In the next pages we give the graphics of the architectures for the values

m = 2, 4, 8. These graphics show the field polynomial multiplication, i.e. these

do not consist of the reduction part.

3.3 Karatsuba-Ofman Algorithm for Polynomi-

als over GF (2n)

In this section it will be showed when the Karatsuba-Ofman algorithm is applied

in GF ((2n)m). Here polynomials A(x) and B(x) are with degree m − 1 and

coefficients ai, bj are in GF (2n). The aim is here to reduce the elementary

units, namely XOR-(mod 2 adder) and AND (mod 2 multiplier) gates.

The two operations ,namely addition and multiplication, are required for the

KOA with coefficients in GF (2n). For the module in “GF (2n) adder” and for

the module “GF (2n) multiplier” the structures defined in chapter 2 will be used

for efficient VLSI implementation. Also the ground field Q(y) will be choosen as

(2.2.4) to obtain optimized solution.Then overall complexities for polynomial

multiplication (in AND and XOR gates) are:

#AND = n2−log2 3klog2 3 (3.3.14)

#XOR ≤ (
k

n
)log2 3(n2 + 6n− 1)− 8k + 2n; certain n (3.3.15)

where k = nm and m = 2i. This formulas gives that the order of elememtary

51

gates increases only proportional to klog2 3 as k increases. The optimum solutions

are found for the condition GF ((2n)m) ∼= GF (2k) .

Equation (1.7) gives the expressions for T⊕ and T⊗. As mentioned before

addition in GF (2n) has a delay of one XOR gate,i.e. T⊕ = Txor. The delay for

multiplication is bounded by chapter 2. So overall delay can be upper bounded

by:

T ≤ Txor(2 dlog2 ne+ 3 log2 m) + Tand (3.3.16)

52

Figure 3.1: Block diagram of a parallel realization of the KOA for polynomials
of degree 7 over fields with characteristic 2.

53

Figure 3.2: Block diagram of a paralel realization of the KOA for polynomials
of degree 3 over fields with characteristic 2.

54

Figure 3.3: Block diagram of a paralel realization of the KOA for polynomials
of degree 1 over fields with characteristic 2.

55

Chapter 4

Reduction Modulo The

Primitive Polynomial

This chapter describes the second step of the field multiplication, the opera-

tion ”mod P(x)” (1.1) in capter 1. Remember that choosing suitable P (x) is

important to satisfy low complexity.

The pure polynomial multiplication of two polynomials A(x) × B(x) gives

the product polynomials C
′
(x) over GF (2n) with deg(C

′
(x)) ≤ 2m−2. But the

field multiplication ends with modula reduction with respect to field polynomial

P (x). After the modulo operation we get the polynomial C(x) with deg(C(x)) ≤
m− 1.

The General Case GF ((2n)m)

The field element:

C(x) = cm−1x
m−1 + · · ·+ c0 ≡ C

′
(x) mod P (x); C(x) ∈ GF ((2n)m)

can be obtained by a lineer mapping of the 2m− 1 coefficients of C
′
(x) into the

m coefficients of C(x). This mapping can be represented in a matrix form as

56

follows:

c0

c1

...

cm−1

 =

1 0 · · · 0 r0,0 · · · r0,m−2

0 1 · · · 0 r1,0 · · · r1,m−2

...
...

. . .
...

...
. . .

...

0 0 · · · 1 rm−1,0 · · · rm−1,m−2

c
′
0

...

c
′
m−1

c
′
m

...

c
′
2m−2

(4.0.1)

The matrix on the right hand side of (4.0.1) consists of a (m, m) identity

matrix and (m, m− 1) matrix R which is called reduction matrix. The matrix

R depends on the coefficients of the generating field polynomial P (x) = xm +

pm−1x
m−1 + · · ·+ p0. The entries of the matrix R are calculated as follows:

rij =

 pi i = 0, . . . ,m− 1 ; j = 0

ri−1,j−1 + rm−1,j−1ri0 i = 0, . . . ,m− 1 ; j = 1, . . . ,m− 2
(4.0.2)

where ri−1,j−1 = 0 if i = 0. From equation (4.0.2) ri,j ∈ GF (2n) since pi ∈
GF (2n). It must be noted that (4.0.1) only contains addition and constant

multiplications from GF (2n). Constant multiplication is mentioned in chapter

2 explicitly.

Paar gives a general expression for the average complexity for (4.0.1)(see

[1]). It is as follows:

#XOR = m(m− 1)⊕+m(m− 1)⊗cnst =
1

2
k(k(1 +

1

n
)− n− 1) (4.0.3)

where k = nm. This can be observed easily that (4.0.1) requires m(m − 1)

additions and m(m − 1) constant multiplications. However real complexities

are smaller than average complexities for certain field polynomials.

57

4.1 The Special Case GF ((2n)2)

In this part we will consider the composite fields GF ((2n)2) for the special case

m = 2. In this case there exists primitive polynomials of the form P (x) =

x2 + x + p0 as mentioned in [2]. Here the polynomial P (x) is in the simple

form. So we can consider the operations polynomial multiplication and modulo

reduction in just one single step. But the values m satisfying m > 2 will not be

taken into this consideration. That is, we will not consider the two operations

polynomial multiplication and modulo reduction in just one single step.

If we take the polynomial P (x) = x2 +x+ p0, the multiplication of two field

elements A(x) = a1x + a0 and B(x) = b1x + b0 in GF ((2n)2) is the following:

At first we apply KOA to compute the pure polynomial multiplication of two

elements A(x), B(x) ∈ GF ((2n)2):

C
′
(x) = A(x)B(x) = (a1x + a0)(b1x + b0)

= a0 · b0 + x[(a1x + a0)(b1x + b0) + a0 · b0 + a1 · b1] + a1 · b1x
2

Then we do the reduction C
′
(x) = mod P (x) which gives the product field

element C(x) = A(x)B(x) = mod P (x). From the generating polynomial P (x)

we replace x2 = x + p0 to the multiplication C
′
(x) as follows:

C(x) = C
′
(x) = mod P (x)

= a0 · b0 + x[(a1x + a0)(b1x + b0) + a0 · b0 + a1 · b1] + a1 · b1(x + p0)

= a0 · b0 + x[(a1x + a0)(b1x + b0) + a0 · b0 + a1 · b1] + a1 · b1x + a1 · b1p0

= (a0 · b0 + a1 · b1p0) + x((a1x + a0)(b1x + b0) + a0 · b0)

It is seen that C(x) has 3 multiplications (a0.b0, a1.b1, (a0 + a1)(b0 + b1)), 4

additions ((a0.b0 + a1.b1.p0), (a0 + a1), (b0 + b1), (a0 + a1)(b0 + b1) + a0.b0) and 1

constant mmultiplication (a0.b0.p0)

58

So the computational complexity is:

#⊗ = 3

#⊕ = 4

#⊗p0 = 1

where ⊗p0 denotes the constant multiplication by p0.

In ([2],chapter 6), Paar gives a general formula for the computational com-

plexity of the multiplier in the composite field. Mastrovito multiplier is applied

to the ground field multiplication. Remember that the computational complex-

ity of the ground field multiplier is n2 AND, n2 − 1 XOR gates. The formula

(see [2])which gives the space complexity of the composite field is:

#AND =
3

4
k2 (4.1.4)

#XOR =
3

4
k2 + 2k − 3 + C⊗p0

(4.1.5)

where C⊗p0
denotes the complexity of constant multiplication with the coeffi-

cient p0 of the field polynomial P (x).

In addition to space complexity, Paar ([2]) gives also a formula for the time

complexity for the special case GF ((2n)2). It is:

#Tand = 1 (4.1.6)

#Txor = 2 dlog2 ne+ 1 + T⊗p0
(4.1.7)

where T⊗p0
denotes the delay caused by the multiplication with p0.

Here comes to see the figure of a parallel multiplier in GF ((2n)2) for P (x) =

x2 + x + p0

59

Figure 4.1: Block diagram of a paralel multiplier in GF ((2n)2)

Paar gives a table ([[2], chapter 6]) showing the space complexity and time

complexity of multipliers in the fields GF ((2n)2) , n = 2, 3, . . . , 16. The space

complexity of the given primitive polynomial P (x) is computed using the equa-

tions (4.1.4), (4.1.5), (4.1.6) and (4.1.7) . Primitive polynomial P (x) is of the

form P (x) = x2 + x + p0 where p0 ∈ GF (2n). For the ground field GF (2n), the

Mastrovito multiplier with actual complexities and field polynomials shown in

table 2.1 is utilized. The primitive root of the ground field polynomial is denoted

as w such that Q(w) = 0. Primitive polynomial P (x) in table 4.1 are found by

the exhaustive search. In table 4.1, the symbol C⊗p0
denotes the complexity of

multiplication with the coefficient p0. This multiplication is a constant multi-

plication and computed in XOR addition as mentioned in chapter 2. Constant

multiplication is optimized which is described in chapter 2. C⊗p0
shows the

complexity computed in reduction part then the numbers of AND and XOR

(in bold face letters) show overall complexities after reduction part. The num-

60

C⊗p0
AB modP AB modP

k n P(x) XOR AND XOR k2 Tand Txor

4 2 11w2 1 12 18 16 1 4
6 3 11w6 1 27 37 36 1 5
8 4 11w14 1 48 62 64 1 5

10 5 11w3 3 75 95 100 1 7
12 6 11w62 1 108 130 144 1 6
14 7 11w124 3 147 175 196 1 8
16 8 11w217 8 192 292 256 1 9
18 9 11w5 5 243 281 324 1 8
20 10 11w7 7 300 344 400 1 8
22 11 11w2036 11 363 415 484 1 12
24 12 11w4094 3 432 672 576 1 9
26 13 11w8188 7 507 665 676 1 10
28 14 11w5 12 588 833 784 1 10
30 15 11w32766 1 675 733 900 1 7

322 16 11w16948 16 768 923 1024 1 9

Table 4.1: Space and time complexities for multipliers in GF ((2n)2)

ber of XOR includes C⊗p0
in terms of additions with the complexity of pure

polynomial multiplication. The rightmost column shows the time complexities.

The following example gives the complexities of a multiplier in GF (210).

Example 4.1.1. As stated in this section, a multiplier in the composite field

GF ((25)2) consists of 3 multiplications, 4 additions and 1 constant multiplica-

tion with the constant w3 in the ground field GF (25). Multiplication with w3

is foud as follows:

Let w3 is described by A(y) = w3 where A(y) is a constant polynomial

with the coefficients a0 = 0, a1 = 0, a2 = 0, a3 = 1, a4 = 1. The ground field

polynomial Q(y) = y5 + y2 +1 which satisfies low complexity is chosen. To find

61

the product matrix Z, we compute the matrix Q at first which is:

Q =

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 1 1 0

0 1 0 1 1

Then using the matrix Q and the coefficients ai’s of A(y), we find the product

matrix Z;

Z =

0 0 1 0 0

0 0 0 1 0

0 0 1 0 1

1 0 0 1 0

0 1 0 0 1

So we calculate the element C

C = w3B = ZB =

b2

b3

b2 + b4

b0 + b3

b1 + b4

Hence the last vector shows that there are 3 additions which is equal to C⊗p0

as

shown in table 1.1. Addition in GF (25) requires 5 XOR gates. The Mastrovito

multiplier in GF (25) can be implemented with n2 = 52 = 25 AND n2 − 1 = 24

XOR gates. The space complexity of the multiplier in GF (210) is 3 · 25 = 75

AND gates and 3 · 24 + 5 · 4 + 3 = 95 XOR gates.

Now we give an example in composite field GF ((25)4). We used the primitive

polynomial shown in table 4.2.

Example 4.1.2. Let m = 4 and n = 5 and primitive polynomial of the compos-

62

ite field GF ((25)4) is P (x) = x4+w·x+w with coefficients p0 = w, p1 = w, p2 = 0, p3 = 0

The reduction matrix will be:

R =

r0,0 r0,1 r0,2

r1,0 r1,1 r1,2

r2,0 r2,1 r2,2

r3,0 r3,1 r3,2

The entries of the matrix R is calculated as follows:

r0,0 = p0 = w r0,1 = r−1,0 + r3,0r0,0 = 0 r0,2 = r−1,1 + r3,1r0,0 = 0

r1,0 = p1 = w r1,1 = r0,0 + r3,0r1,0 = w r1,2 = r0,1 + r3,1r1,0 = 0

r2,0 = p2 = 0 r2,1 = r1,0 + r3,0r2,0 = w r2,2 = r1,1 + r3,1r2,0 = 0

r3,0 = p3 = 0 r3,1 = r2,0 + r3,0r3,0 = 0 r3,2 = r2,1 + r3,1r3,0 = 0

So the matrix R is:

R =

w 0 0

w w 0

0 w w

0 0 w

Then we compute the coefficients of the poynomial C(x).

c0

c1

c2

c3

 =

1 0 0 0 w 0 0

0 1 0 0 w w 0

0 0 1 0 0 w w

0 0 0 1 0 0 w

 ·

c
′
0

c
′
1

c
′
2

c
′
3

c
′
4

c
′
5

c
′
6

63

So the coefficients of the field element C(x) is the following:

c0 = c
′

0 + w · c′

4

c1 = c
′

1 + w · (c′

4 + c
′

5)

c2 = c
′

2 + w · (c′

5 + c
′

6)

c3 = c
′

3 + w · c′

6

In the above there is 4 constant multiplications and 6 additions. So in reduction

part we find 6 · 5 + 4 · 1 = 34 addition which can be seen in modXOR column

in the table.

The figure of the related example and the graphic of the complete architec-

ture in composite field GF ((24)4) are shown at the end of this chapter.

Paar([1]) gives a table that shows the complexities and architectures of par-

allel multipliers in the composite fields GF (2k) k = 2, 4, · · · , 32. In this table an

optimized field polynomial P (x) is chosen for each field so minimum complexity

is satisfied.

64

mod AB modP AB modP
k n m P(x) XOR AND XOR k2 Tand Txor

4 2 2 1, 1, w2 1 12 18 16 1 4
6 3 2 1, 1, w6 1 27 37 36 1 5
8 4 2 1, 1, w14 1 48 62 64 1 5

10 5 2 1, 1, w3 3 75 95 100 1 7
12 6 2 1, 1, w62 1 108 130 144 1 6
12 3 4 1, 0, 0, 1, w6 21 81 159 144 1 11
14 7 2 1, 1, w124 3 147 175 196 1 8
16 4 4 1, 1, 1, 0, w 35 144 258 256 1 12
18 9 2 1, 1, w5 5 243 281 324 1 8
20 5 4 1, 0, 0, w, w 34 225 360 400 1 14
22 11 2 1, 1, w2036 11 363 415 484 1 12
24 6 4 1, w62, w61, w3, w2 60 324 507 576 1 14
26 13 2 1, 1, w8188 7 507 665 676 1 10
28 7 4 1, 0, 0, w126, w126 46 441 632 784 1 13
30 15 2 1, 1, w32766 1 675 733 900 1 7
32 4 8 1, 0, 0, 1, 0, 0, 1, 0, w 91 432 896 1024 1 15

Table 4.2: Composite fields GF ((2n)m) up to nm = 32, primitive field polyno-
mials, and the space complexities and theoretical delays of parallel multipliers

65

Figure 4.2: Block diagram of a paralel multiplier in GF ((25)4)

66

Figure 4.3: Block diagram of a paralel multiplier in GF ((24)4)

67

Chapter 5

Conclusion

In this thesis, we study a bit paralel multiplier architecture for composite fields

GF ((2n)m) by Paar [1]. Using Karatsuba-Ofman algorithm the architecture

reduces the complexity. We provide a detailed description of the architecture,

in particular the complexity computations, and give some examples.

68

References

[1] C. Paar, “A New Architecture for a Parallel Finite Field Multiplier with

Low Complexity Based on Composite Fields”, IEEE Trans. Comp., vol. 45

pp. 856-861, July 1996.

[2] C. Paar, Efficient VLSI Architectures for Bit Parallel Computation in Ga-

lois Fields, PhD thesis, Institute for Experimental Mathematics, University

of Essen, Essen, Germany, June 1994.

[3] E. Mastrovito, VLSI Architectures for Computation in Galois Fields. PhD

thesis, Linköping University, Dept. Electr. Eng., Linköping, Sweden, 1991.

[4] D. Knuth, The Art of Computer Programming. Volume 2: Seminumerical

Algorithms. Reading, Massachusetts: Addison-Wesley, 2nd ed, 1981.

69

