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Abstract

VISION-BASED ROBOT LOCALIZATION USING ARTIFICIAL

AND NATURAL LANDMARKS

Arıcan, Zafer

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Uğur Halıcı

August 2004, 76 pages

In mobile robot applications, it is an important issue for a robot to know where it is.

Accurate localization becomes crucial for navigation and map building applications

because both route to follow and positions of the objects to be inserted into the map

highly depend on the position of the robot in the environment.

For localization, the robot uses the measurements that it takes by various devices such

as laser rangefinders, sonars, odometry devices and vision. Generally these devices

give the distances of the objects in the environment to the robot and proceesing these

distance information, the robot finds its location in the environment.

In this thesis, two vision-based robot localization algorithms are implemented. The

first algorithm uses artificial landmarks as the objects around the robot and by mea-

suring the positions of these landmarks with respect to the camera system, the robot

locates itself in the environment. Locations of these landmarks are known. The

second algorithm instead of using artificial landmarks, estimates its location by mea-

suring the positions of the objects that naturally exist in the environment. These

objects are treated as natural landmarks and locations of these landmarks are not

known initially.

A three-wheeled robot base on which a stereo camera system is mounted is used as

the mobile robot unit. Processing and control tasks of the system is performed by a
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stationary PC. Experiments are performed on this robot system. The stereo camera

system is the measurement device for this robot.

Keywords: Robot Localization, Artificial Landmarks, Natural Landmarks, Stereo

Vision, Extended Kalman Filter, Coded Cylinder, Landmark Detection
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Öz

YAPAY VE DOĞAL YER İŞARETLERİ KULLANARAK GÖRME

TABANLI ROBOT YERİ BELİRLENMESİ

Arıcan, Zafer

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Uğur Halıcı

Ağustos 2004, 76 sayfa

Gezici robot uygulamalarında, robotun nerede olduğunu bilmesi önemli bir prob-

lemdir. Hassas robot yeri belirleme ilerleme ve harita oluşturma uygulamaları için

hayati bir öneme sahiptir çünkü hem izlenecek rota hem de haritaya yerleştirilecek

nesnelerin yerleri, robotun yerine çok bağlıdır.

Yer belirleme için robot, lazer telemetre, sonar telemetre, odometri ve camera gibi

çeşitli ölçüm cihazları kullanır. Genelde bu cihazlar, çevredeki nesnelerin robota olan

uzaklığını ölçerler ve robot, bu uzaklık bilgisini kullanarak bulunduğu ortam içindeki

yerini hesaplar.

Bu tezde, görme tabanlı iki robot yeri belirleme algoritması hayata geçirilmiştir.

Birinci algoritma, yapay yer işaretlerine göre pozisyonun ölçülüp, bulunduğu ortam-

daki yerini bulmaya yöneliktir. Bu yapay yer işaretlerinin yerleri bilinmektedir. İkinci

algoritma ise yapay yer işaretleri kullanmadan ortamda doğal olarak bulunan nes-

nelerin robota göre pozisyonunun bulunup, bu ölçümlere dayanarak robot yeri belir-

lemeye yöneliktir. evredeki nesneler doğal yer işaretleri olarak kabul edilir ve bu yer

işaretlerinin yerleri, başlangıçta bilinmemektedir.

Üzerine stereo kamera sistemi yerleştirilmiş 3 tekerlekli bir robot aracı, hareketli

ünite olarak kullanılmıştır. İşleme ve kontrol işlemleri sabit bir bilgisayarca yerine

getirilmektedir. Deneyler bu sistem üzerinde yapılmıştır. Stereo kamera sistemi bu
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robot için ölçüm cihazı olarak kullanılmıştır.

Anahtar Kelimeler: Robot Yeri Belirleme, Yapay yer İşaretleri, Doğal Yer İşaretleri,

Stereo Görme, Genişletilmiş Kalman Filtresi, Kodlanmış Silindir, Yer İşareti Bulma

vii



To My Father, My Mother and My Lovely Sister

viii



Acknowledgments

This thesis has been conducted in Computer Vision and Intelligent Systems Research

Laboratory in Electrical and Electronics Department and has been partly supported

in projects BAP-2002-03-01-05 and BAP.04.03.01.02.

I would like to express my sincere gratitude to my supervisor, Prof. Dr. Uğur
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Chapter 1

Introduction

1.1 Problem Definition and Motivation

In mobile robot applications, it is an important issue for the robot to know where it

is. Accurate localization becomes crucial for navigation and map building because

both route to follow and features to be inserted into the map, highly depends upon

the position of the robot in the environment where the robot operates. Although

some applications, such as automatic vacuum cleaner and lawnmower, do not need

to localize themselves to carry out their tasks, knowing where they are can improve

the performance and optimize time and cost. Robot localization is an important

property for a robot which has autonomous capabilities and it has been referred to

as “the most fundamental problem to providing a mobile robot with autonomous

capabilities”[16].

The robot localization problem can be categorized in different ways. Approaches

to solve the problem, used measurement devices and application area of the robot

are the main criteria to categorize the problem.

Commonly, pose of the robot is represented by an uncertainty and problem is

approached as probabilistic. If initial pose of the robot is known and estimation of the

pose is performed by incrementally updating the pose, it is called “position tracking”

or “incremental localization”. Position tracking seeks to correct the incremental

errors caused by the system. A second approach is the “global localization” which

tries to solve the problem without any initial robot pose and uses all the data it

obtained at once. Since it processes the data at once, it is not a real-time process.

Both position tracking and global localization needs a map of the environment

to obtain the data for the estimation of the position. It is possible to give the map
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of the environment like a plan of the building in which the robot roams. Other-

wise, the robot obtains the information about its position using the sensor mounted

on it and uses the objects around it as reference. In this manner, specific objects

called “artificial landmarks” can be used. These landmarks have specific properties

generally determined by the users who use the robot system and positions of the

landmarks are known. By this way, accurate and long-time localization of the robot

can be established. These kinds of landmarks and localization is used in industry,

because the environment is planned and artificial landmarks are placed according to

this plan. Another approach is to use the objects that naturally exist in the envi-

ronment and this kind of objects are called “natural landmarks”. Positions of these

landmarks are usually not known. Using the relative positions of the landmarks with

respect to the robot, localization of the robot can be reached but this is generally for

short-term localization. If long-time localization and the building of the map of the

environment is aimed another problem called “Simultaneous Localization and Map

Building”(SLAM) occurs.

SLAM is based on the concurrent handling of the two tasks namely robot lo-

calization and map building which are dependent on each other. For a good map

building, accurate position of the robot is needed, besides for a robot to know its

position, a map of the environment is required and this is like “chicken and egg”.

SLAM algorithms are like the ones introduced before and uses incremental and global

approaches.

For both cases of the known and the unknown map, it is required for a robot to

get data to make inference about its location. It is performed by taking measurement

using different measurement devices. Another category of the robot localization is

the measurement devices.

Most of the localization algorithms are based on the measurement devices such

as laser rangefinders, sonars, odometry and vision. Laser rangefinders are accurate

but slow. Sonar works similar in principle to laser rangefinders, however it is cheaper

and faster with a cost of high uncertainty in measurements. Odometry is based on

the determination of the location by using robot dynamics including wheel speeds,

axes length, wheel diameter. This method may give erroneous results for long-term

localization. Because systematic errors such as unequal wheel diameters, wheel mis-

alignment and non-systematic errors including slippage and skidding, may propagate

over time and causes a drift.

Vision systems are relatively cheap and give high resolution measurement data.
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High information that it gives makes it convenient for other tasks such as object

recognition and 3D reconstruction while performing operations used by localization

process. Although complexity of the operations for calculation of depth is high in

vision systems considering other methods stated above, recent advances in computer

technology reduced the computation time of the image processing tasks required for

the retrieval of the useful information required for the localization.

A good example of concurrent use of vision systems for both navigation and object

recognition and map building is studied in [18]. In that study, a robot builds the

cognitive map while navigating in the environment using the stereo camera systems.

It recognize the objects which it represents in the map. However, experiments related

to this study is performed in a virtual environment. In this environment, movement

of the robot is perfect and at each step it is able to know its exact location.

In this thesis, our aim is to construct the robot system for future realization of

the tasks performed in the virtual environment used in the study [18] and to study

the robot localization problem to make the robot system able to estimate its location

in the real environment.

1.2 Literature Review

Beginning from the second half of the 80s, interest on the robot localization problem

increased. As stated in [16], it is accepted to be the fundamental problem to make

a robot autonomous. First successful studies on the subject are [17, 15, 19]. Two

approaches which are incremental localization and absolute localization are the most

implemented ones to solve the localization problem. For incremental localization,

Extended Kalman Filter(EKF) is widely used by many researchers in [3, 4, 19, 2].

In this studies, with the knowledge of the initial position of the robot, at each time

step, robot position is estimated by updating the state of the position using the

measurements. This method is convenient for real-time use because it uses the data

at that time step only. Distributions of the random variables in this approach is

Gaussian and this provide many useful properties for the systems using EKF.

For global localization, different methods similar to those studied in [6, 21, 28]

are used. These methods do not need the initial position of the robot and in addition

distributions of the random variables do not need to be Gaussian. Sample sets are

used to represent and process non-Gaussian distributions.
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Both incremental and global localization needs a map of the environment to

estimate the position of the robot. If map of the environment is not known also,

robot localization is investigated with the map building as SLAM problem. Some

studies on this subject are [3, 4, 28, 32]. In [5], there is a good review for the SLAM

problem. In this problem, while features in the environment are put into a map

build by the system, robot position is estimated according to these features. Initial

position of the robot is assumed to be the origin of the environment and mapping

and localization is performed according to this frame of reference.

All the methods do need measurements either taken from the internal sensors or

sensors to distance measurement devices. Studies in this field use sonars [6, 8], laser

rangefinders [6, 12, 28] and vision [3, 4, 7, 24, 32].

Sonar, laser rangefinders and vision systems take measurement such that position

of the features with respect to the robot is measured. For a proper localization, fea-

tures (landmarks) should have some properties which provide the system to identify

the landmarks easily. For this purpose, two types of landmarks namely artificial and

natural landmarks are used. Artificial landmarks are specific to the system which

uses it. Self-similar intensity patterns like barcode are used in [31] as artificial land-

marks. In [26], black and white disks are used and projections of the disks on the

image plane are processed using elliptic Hough transform. Zitová and Flusser [35]

use two concentric circles as landmarks and present a recognition algoritm based on

the affine moment invariants.

Natural landmarks are the features that are extracted from the objects that nat-

urally exist in the environment. Kosaka and Kak [24] use vertical lines like doors,

wall edges and tables as landmarks. Davison [3, 4] uses strong corners as features.

Scale-invariant features (SIFT) is an innovative solution to invariant features which

is used as natural landmarks in [32].

1.3 Thesis Outline

This thesis, studies the robot localization problem using stereo vision on the existence

of artificial and natural landmarks in the environment. The organization of the thesis

is as follows:

• Chapter 2: At each step, the location of the robot in this thesis is calculated

using Extended Kalman Filter and this chapter gives information about the

4



theory behind the state estimation and the Extended Kalman Filter.

• Chapter 3: Measurement device of the the robot system that we construct is

the stereo cameras. This chapter gives the theoretical background about the

stereo vision and the calculation of the position of the objects using the stereo

vision.

• Chapter 4: In this chapter, the robot system that we build and use in this

thesis is explained.

• Chapter 5: In this chapter, detection of the artificial and natural landmarks

and matching methods are described. Properties of the artificial landmark type

that we used is given.

• Chapter 6: One of the robot localization algorithm based on the landmarks that

we implemented is the one which uses the artificial landmarks. In this chapter,

the robot localization algorithm and the experiments to test the algorithm is

explained.

• Chapter 7: The other robot localization algorithm that we implemented is the

one which uses natural landmarks. This chapter describes the algorithm and

gives information about the tests performed related to this algorithm

• Chapter 8: This chapter gives a summary of the results obtained during the

thesis study and in the light of experience gained, offers some future work to

improve the performance of the system.
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Chapter 2

State Estimation

2.1 Introduction

Estimating the state in a linear or non-linear stochastic dynamic system is a problem

in many applications like tracking, robot localization and navigation, signal process-

ing. In 1960, R.E.Kalman introduced an algorithm which is called with his name for

the linear filtering problem [23, 34] .This algorithm is composed of a set of mathe-

matical equations and describes a recursive solution to the problem. Later, for the

non-linear systems, an extension of this filter, namely Extended Kalman Filter (EKF)

was developed[34].

This chapter explains these two filters with a review of linear and non-linear

stochastic dynamic systems. Although, these filters work for both continuous and

discrete-systems, for rest of the chapter, discrete-time stochastic systems will be

investigated. Section 2.2 explains stochastic linear dynamic systems and introduces

some assumption that will be used in rest of the chapter. In section 2.3 discrete-time

linear Kalman filter is described and equations of the filter are given. Section 2.4 and

2.5, deals with non-linear stochastic dynamic systems and EKF.

2.2 Stochastic Linear Dynamic Systems

2.2.1 State Space Model

State-space model of a discrete-time linear stochastic dynamic system can be ex-

pressed as

x(k + 1) = F(k)x(k) + G(k)u(k) + B(k)w(k) (2.1)
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where x ∈ R
n, u ∈ R

m and w ∈ R
l are state, input and process noise vectors,

respectively. F(k) is an n×n matrix called transition matrix, G(k) is the n×m input

gain matrix, and B(k) is the process noise gain matrix which has dimensions of n× l.

Similarly, measurement equation of the system can be written as

z(k) = H(k)x(k) + C(k)v(k) (2.2)

where z ∈ R
p is the output vector, x ∈ R

n is the state vector, and v ∈ R
g is the

measurement noise vector. Reflection of the state to the output is accomplished by

the measurement matrix H(k) of dimension p × n. C(k) is the p × g measurement

noise gain matrix.

Noise vectors, w(k), v(k) and related gain matrices are introduced in stochas-

tic models to handle three uncertainties which deterministic system models cannot

handle. These uncertainties are:

• Imperfections in models: Physical systems cannot be sufficiently characterized

by mathematical models.

• Uncontrolled inputs or disturbances entering into system: Environment condi-

tions affect the systems in uncontrolled manner.

• Inaccuracy in measurement devices: Noise in sensors may cause the device to

take wrong measurements.

Considering these uncertainties, the noise vectors are random variables with appro-

priate probability density functions (pdf). Because the noise vectors in the state and

measurement equations are random variables, state and output vectors are random

variables, too.

Input vector, u(k) can be either deterministic or probabilistic depending on the

system being open-loop or closed-loop. In open-loop systems input is known and

independent of the output of the system. In robotic applications that have that kind

of characteristics, input is predefined or given by an operator. In closed-loop systems,

input is a function of the output z(k). Since output vector is probabilistic, input is

also probabilistic. Automated servoing in robotics navigation applications is one of

the examples to closed-loop systems.
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2.2.2 Gauss-Markov Model and Assumptions

If random variables in Equation. 2.1 and 2.2 are Gaussian and x(k + 1) depends on

only present values of random variables x(k), w(k), v(k), the state-space model is

a Gauss-Markov Model. Three basic assumptions about the system can guarantee

Gauss-Markov property.

• First of all, random variables in the system model are Gaussian. That is, each

random variable has a pdf of the form

p(x) =
1

|2πΣ|−1/2
e−1/2(x−x)TΣ−1(x−x) (2.3)

where

x = E [x] (2.4)

Σ = E
[
(x − x)(x − x)T

]
(2.5)

are mean and covariance matrix of the random vector x, respectively.

• Second, process and measurement vectors are white noise vectors. In other

words,

E
[
w(k)w(j)T

]
=

{
0 k �= j

Q(k) k = j
(2.6)

where Q(k) is the covariance matrix.

Whiteness implies that knowing the value of the noise at any time does not give

any information about the value of the noise at any other time instant. This

assumption is crucial for the Markov property of the system.

• Finally, random processes, w(k), v(k) are uncorrelated of each other. Similar to

whiteness property, knowing w(k) at any time instant, does not help predicting

the value of v(k).

Gauss-Markov property facilitates the computation of the posterior pdf of the state.

Gaussian pdf can be completely determined by mean and covariance of the random

variable, and pdf that is given in Equation. 2.3 can be represented as N(x, Σ).

Thus, to compute only mean and covariance of the random variable is enough to

determine the pdf. Another important feature of the Gaussian pdf is after a linear

transformation, output is still a Gaussian. That is if x(k) is Gaussian, Gx(k) is

also Gaussian given that G is a linear transformation. Combined with the Markov

property, this feature makes the posterior pdf of the state determinable recursively

at each time instant.
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2.3 Kalman Filter

The Kalman filter or Kalman State Estimator is optimal recursive linear state esti-

mation algorithm provided that assumptions in Section 2.2.2 hold for the system and

the system is linear with state and measurement equations are as Equation.2.1 and

2.2 with known input u(k) and noise vectors w(k), v(k) with normal probability

p(w(k)) ∼ N(0, Q(k))

p(v(k)) ∼ N(0, R(k)).

Dynamic estimation of the mean and covariance of the state is obtained by re-

cursive static estimation equations

x̂ = x + ΣxzΣ
−1
zz (z − z) (2.7)

Σxx|z = Σxx − ΣxzΣ
−1
zz Σzx (2.8)

where x̂ is the estimated state mean, x is the predicted state mean,z and z are actual

and predicted measurements, respectively. Σxz, Σzx, Σzz are covariance and cross-

covariance of the state and measurement vectors accordingly. For derivation of the

above equations, see [1].

Terms in Equation 2.7 and 2.8 can be adapted to dynamic estimation in the

following way.

• Predicted state

x → x̂(k + 1|k)

• Predicted measurement

z → ẑ(k + 1|k)

• Corrected(Updated) state

x̂ → x̂(k + 1|k + 1)

• Residual or innovation

ν(k + 1) = z̃(k + 1|k) = z(k + 1) − ẑ(k + 1|k)

• State prediction error

x̃(k + 1|k) = x(k + 1) − x̂(k + 1|k)
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• Predicted state covariance

Σxx → P(k + 1|k) � cov[x(k + 1)] = cov[x̃(k + 1|k)]

• Innovation covariance

Σzz → S(k + 1) � cov[z(k + 1)] = cov[z̃(k + 1)]

• Updated state covariance

Σxx|z → P(k + 1|k + 1) � cov[x(k + 1)] = cov[x̃(k + 1|k + 1)]

• Filter gain

ΣxzΣ
−1
zz → K(k + 1) � cov[x(k + 1), z(k + 1)]S(k + 1)−1

To obtain Kalman Filter equations, state and measurement Equations in Eqn. 2.1

and 2.2 are substituted into the covariance and mean definitions which are defined

above. Using assumptions that noise vectors are zero-mean, white and uncorrelated

with each other, following equations are obtained.

x̂(k + 1|k) = F(k)x̂(k|k) + G(k)u(k) (2.9)

P(k + 1|k) = F(k)P(k|k)F(k)T + B(k)Q(k)B(k)T (2.10)

ẑ(k + 1|k) = H(k + 1)x̂(k + 1)|k) (2.11)

S(k + 1) = H(k + 1)P(k + 1|k)H(k + 1)T

+ C(k + 1)R(k + 1)C(k + 1)T (2.12)

K(k + 1) = P(k + 1|k)H(k + 1)TS(k + 1)−1 (2.13)

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)(z(k + 1) − ẑ(k + 1|k)) (2.14)

P(k + 1|k + 1) = P(k + 1|k) − K(k + 1)S(k + 1)K(k + 1)T (2.15)

In many systems, process noise gain matrix, B(k) and measurement noise gain

matrix, C(k) are identity matrices and therefore can be removed from the equations

in which they exist.

Kalman Filter is also known as prediction-correction[34] algorithm. In prediction

phase, mean and covariance of the state and measurement vectors are projected from

previous time step k to the next step k+1 according to the state and measurement

equations. In correction phase, predicted mean and covariances are corrected with

taken measurements z(k+1). Figure 2.1 shows grouping of filter equations according
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prediction

x̂(k + 1|k) = F (k)x̂(k|k) + G(k)u(k)

P (k + 1|k) = F (k)P (k|k)F (k)T + B(k)Q(k)B(k)T

S(k + 1) = H(k + 1)P (k + 1|k)H(k + 1)T + C(k + 1)R(k + 1)C(k + 1)T

correction

K(k + 1) = P (k + 1|k)H(k + 1)TS(k + 1)−1

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)ν(k + 1)

P (k + 1|k + 1) = P (k + 1|k) − K(k + 1)S(k + 1)K(k + 1)T

x̂(0|0), P (0|0)

Figure 2.1: Kalman Filter cycle with prediction and correction equations

to being a prediction or correction equation and cycle between them starting from

the initial state x̂(0|0) and state covariance P(0|0).

Process and measurement noise covariances Q(k) and R(k) determine the trust on

state and measurement models. If matrix norm ‖Q(k)‖ of Q(k) is smaller than the

matrix norm ‖R(k)‖ of R(k), process model is more trusted than measurements and

therefore effect of the taken measurement on the state estimate is small. In other

case, if ‖R(k)‖ is smaller, measurements are more trusted, and highly affect the state

estimate. Both of the covariances take place in the filter gain expression K(k +1) and

affects the contribution of measurements on the state estimate. Thus, Q(k) and R(k)

determines the characteristics of the filter and used for fine tuning [34] of the filter.

If the system is time invariant, gain will converge quickly, therefore, gain and

covariance matrices can be computed offline. This reduces the computational time

greatly and makes the algorithm more convenient for real-time applications.

2.4 Stochastic Non-linear Dynamic Systems and

Linearization

The Kalman Filter deals with the problem of state estimation of a linear stochastic

dynamic system. However, there are systems that show nonlinear characteristics and

cannot be modelled as linear state space models in Eqn. 2.1 and 2.2. For this systems,
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state equation is

x(k + 1) = f(x(k),u(k),w(k)) (2.16)

where f is the non-linear function that takes previous state x(k), known input u(k)

and process noise w(k) as input and relates the state at time step k+1 to the state

at time step k. Measurement equation is

z(k + 1) = h(x(k),v(k)) (2.17)

In fact, these two equations are the general expression of the dynamic systems. Linear

models in Eqn. 2.1 and 2.2 are the special case of the above two equations. In the case

that, one or both of the state and measurement functions are non-linear, dynamic

system is non-linear and must be treated accordingly.

To simplify the computations, another assumption is introduced about the system

that is w(k) and v(k) are additive noise without any multiplicative factor before them,

that is

x(k + 1) = f(x(k),u(k)) + w(k) (2.18)

z(k + 1) = h(x(k + 1)) + v(k) (2.19)

With the same assumptions that process and measurement noises w(k) and u(k)

are zero-mean, white Gaussian noises with covariances Q(k) and R(k) respectively and

they are independent of each other, resultant state vector is no more Gaussian even

entering state vector of the previous time step is Gaussian, because for non-linear

transformation, Gaussian pdf is not conserved. Thus, state cannot be estimated

recursively any more.

To regain advantages in linear systems, non-linear functions f and h are expanded

in vector Taylor series around previous estimate x̂(k|k) up to first-order. The resul-

tant state and measurement equations are

x(k + 1) = f(x̂(k|k),u(k)) + fx(k)(x(k) − x̂(k|k)) + HOT + w(k) (2.20)

z(k + 1) = h(x̂(k + 1|k),u(k)) + hx(x(k + 1) − x̂(k + 1|k))

+ HOT + v(k) (2.21)

where fx(k) is the Jacobian matrix of the state function with respect to state vector

x(k), that is

fx �

[
∇xf(x,u)T

]T ∣∣
x=x̂(k|k) �

∂f

∂x
,
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hx is the Jacobian matrix of the measurement function with respect to x

hx �

[
∇xh(x)T

]T ∣∣
x=x̂(k+1|k) �

∂h

∂x
,

and HOT represents the higher order terms in the series expansion.

This procedure is also known as linearization and if HOT terms are neglected

new equations behave like linear equations. Although as higher order terms inserted

into the equations, approximated equations approaches to real non-linear equations,

its computational cost increases. Even adding second-order terms introduces Hessian

of the state and measurement functions which is computationally expensive.

For simplification, higher order terms will be neglected and notations ∂f
∂x and ∂h

∂x

without time step notation k will be used for the rest of the chapter.

2.5 Extended Kalman Filter

For non-linear stochastic dynamic systems, it is not possible to use Kalman Filter.

Thus, an extension of the Kalman Filter called Extended Kalman Filter (EKF) is

developed for these systems. EKF is suboptimal state estimator which uses linearized

state and measurement equations to estimate the state.

To obtain EKF equations, similar approach used in Section 2.3 is used. With

same assumptions introduced in Section 2.2 and 2.3, applying simplified state and

measurements in Equations 2.18, 2.19 and linearized Equations 2.20 and 2.21 into

mean and covariance definitions in Section 2.3, following EKF equations are obtained.

• Predicted state x̂(k + 1|k) is

x̂(k + 1|k) = f(x̂(k|k), u(k)) (2.22)

• Predicted measurement ẑ(k + 1|k) is

ẑ(k + 1|k) = h(x̂(k|k)) (2.23)

• Predicted state covariance P(k + 1|k) is

P(k + 1|k) =
∂f

∂x
P(k|k)

∂f

∂x

T

+ Q(k) (2.24)

• Innovation covariance S(k + 1) is

S(k + 1) =
∂h

∂x
P(k|k)

∂h

∂x

T

+ R(k) (2.25)
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• Innovation or residual ν(k + 1) is

ν(k + 1) = z(k + 1) − ẑ(k + 1|k) (2.26)

where z(k + 1) is the measurement taken at time step k + 1

• Filter gain K(k + 1) is

K(k + 1) = P(k + 1|k)
∂h

∂x
S(k + 1)−1 (2.27)

• Updated state x̂(k + 1|k + 1) is

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)ν(k + 1) (2.28)

• Updated state covariance P(k + 1|k + 1) is

P(k + 1|k + 1) = P(k + 1|k) − K(k + 1)S(k + 1)K(k + 1)T (2.29)

Similar to Kalman Filter, prediction and correction phases exist in EKF. Figure

2.2 shows the EKF cycle starting from initial state mean x̂(0|0) and covariance P(0|0)

with prediction and correction equations.

prediction

x̂(k + 1) = f(x̂(k|k),u(k))

P (k + 1|k) = ∂f
∂x

P (k|k)∂f
∂x

T

+ Q(k)

S(k + 1) = ∂h
∂x

P (k|k)∂h
∂x

T

+ R(k)

correction

K(k + 1) = P (k + 1|k)∂h
∂x

S(k + 1)−1

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)ν(k + 1)

P (k + 1|k + 1) = P (k + 1|k) − K(k + 1)S(k + 1)−1K(k + 1)T

x̂(0|0), P (0|0)

Figure 2.2: EKF cycle with prediction and correction equations

There are some limitations in EKF caused by linearization. First of all, Jacobian

expressions in the equations may lead the innovation covariance to become singular
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and therefore not invertible. Even being not singular, determinant of it that is near

to zero may cause the system to diverge. Second, linearization may cause biased

estimates, that is mean of the state prediction error, E[x(k +1)− x̂(k +1|k)] may be

non-zero. Finally, if dimensions of the state and measurement vectors are high, com-

putational cost increases. However, with proper selection of state and measurement

functions and vectors, risks caused by above limitations can be overwhelmed.

Since the Jacobian matrices are calculated in each step, system is no more time-

invariant. Therefore gain and covariances cannot be calculated offline and it may

increase the computational time compared to time-invariant linear Kalman filter

application.

Similar to Kalman filter, process and measurement noise covariances can be used

to adjust the filter characteristics. However, in EKF, for protect consistency of the

filter, these two covariances should be small. In other words, both process model and

measurement model should be trusted.

2.6 Remarks

Kalman Filter and EKF are commonly used for state estimation of linear and non-

linear stochastic dynamic system. Some final words on these filters can be stated as

follows

• Initial state mean and covariance affect the filter performance. Particularly for

EKF, initial covariance should be selected small for a good operation.

• Process and measurement noise covariances can be used to adjust the filter

characteristics.

• Predicted measurement and innovation covariance are important for determin-

ing measurement range. Particularly, for feature search in vision applications,

it can reduce the region to be searched. Feature search will be discussed in

Chapter 3.

• Computational cost of the Kalman filter is O(n2) where n is the bigger dimen-

sion of the state and measurement vectors.

For further details and derivations on the subject, see [1, 25, 27, 34]
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Chapter 3

Stereo Vision

In this chapter, vision as depth perception method will be discussed. Starting from

the basic pinhole camera, CCD cameras used mainly robotic applications will be

modeled and on these models, techniques to find the distances of the objects in a

scene seen by cameras will be discussed. Particularly, depth extraction methods for

point features in the scene will be investigated.

Section 3.1 deals with two camera models, namely the basic pinhole camera model

and finite projective model will be explained. At the rest of the chapter, finite pro-

jective model will be used. In Section 3.2, two camera systems and depth extraction

using triangulation method will be explained.

3.1 Camera Models

A camera can be defined as a mapping from object space R
3 to image space R

2. In

this section two camera models, namely the basic pinhole model, and finite projective

model will be discussed. Starting from the basic pinhole model, terms about trans-

formations and camera properties will be included to form finite projective model.

3.1.1 The Basic Pinhole Model

Let camera center be the origin of the Euclidian coordinate system and at z = f

there exist a plane called image plane. Projection of a point X = (X, Y, Z)T on the

image plane is the intersection of image plane and the line joining camera center and

X. By using triangle similarity, it can be easily shown that point on the image is

(fX/Z,fY/Z). This is shown in figure 3.1.
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Figure 3.1: The basic pinhole model

The line from the camera center perpendicular to the image plane is the principal

axis. Intersection point of the principal axis with image plane is the principal point.

x is the projection of the X on the image plane.

3.1.2 Finite Projective Camera

In finite projective model, image point x and object point X is related by a projection

matrix P, that is,

x = PX (3.1)

x is the homogeneous image point (x, y, 1)T and X is homogeneous object point

(X, Y, Z, 1)T. P is the 3 × 4 projection matrix which is

P = K[R|t] (3.2)

where K is the 3 × 4 calibration matrix, R is the 3 × 3 rotation matrix and t is the

3 × 1 translation vector. [R|t] is the transformation matrix formed by concatenating

translation vector as a column to the end of R.

Calibration matrix K contains information about the camera properties and com-

monly defined for CCD cameras. It is in the form

K =




αx s x0

0 αy y0

0 0 1


 (3.3)
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x0 and y0 are the coordinates of the principal point on the image. In pinhole

model, it is assumed that principal point is at the center of the image plane. However,

it may not be the case. For this reason, x0 and y0 are added to the calibration

matrix. In ideal case, they are not zero because image coordinate system differs from

the camera coordinate system and it’s unit is pixels. Origin in the image coordinate

system is top-left corner of the image as shown in Figure 3.2. Thus, in ideal case, the

principal point is at half of the image width and height.

p
xcam

ycam

x

y

x0

y0

Figure 3.2: Image and Camera coordinate systems

Since image coordinates are in pixels, it is necessary to convert focal length into

pixels. If mx and my are number of pixels per unit distance, focal lengths can be

written as αx = fmx and αy = fmy. Two focal lengths are defined because in CCD

cameras, it is possible that image pixels are not square.

s is the skew parameter to model skewed image elements. It is often zero, however

in the case when x and y axis are not perpendicular it is non-zero.

In pinhole camera model, camera center and origin of the coordinate frame in

which object point X is defined. To generalize the model in finite projective model,

points in space are defined in world coordinate frame. If object point X is expressed

in terms of world coordinate system, then to find the projection of X, it should be

expressed in terms of camera coordinate system. For this reason, position of the cam-

era with respect to world origin should be known. Rotation matrix R and translation

vector t express the transformation from world coordinate frame to camera coordi-

nate frame based on the position information of the camera in the world coordinate

frame as illustrated in Figure 3.3.

If world coordinate frame and camera coordinate frame coincides, equation 3.2
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Figure 3.3: Transformation from world coordinate system to camera coordinate sys-

tem

takes the form

P = K[I|0] (3.4)

where I is the identity matrix and 0 is the zero vector.

Pinhole camera model is the special case of the finite camera model of the form




x

y

1


 =




f 0 0

0 f 0

0 0 1






1 0 0 0

0 1 0 0

0 0 1 0







X

Y

Z

1




3.2 Stereo Vision and Depth

Single view of a scene is not sufficient to obtain distances of the objects seen in

the scene to the camera. For this reason, multiple cameras seeing the same scene

or multiple images taken by a single camera from different positions are required

to obtain depth information. As in the human visual system, stereo cameras are

the basic system to obtain depth. In Section 3.2.1, stereo cameras having coplanar

image planes of the cameras will be explained. The general case in which cameras in

arbitrary position and orientation will be discussed in Section 3.2.2. Triangulation

technique to compute depth will be discussed in Section 3.2.3.
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3.2.1 Coplanar Image Planes

Simplest case of the stereo vision is the two identical cameras separated in x direction

by a baseline distance b such that their image planes are coplanar. An object point

X = (X, Y, Z) is seen on different positions in left and right cameras. Displacement

between two image point coordinates is called disparity and denoted by d. In the

case of coplanar image planes, disparity is only in one direction. See Figure 3.4.

Cl Cr

pl pr

X

xl xr

baseline distance b

f

Left Image
Plane

Right Image
Plane

Figure 3.4: If an object can be seen by both cameras, displacement of image points

in two cameras is called disparity

Using similar triangles, one can find the following basic stereo vision equations.

xl = f
X + b

Z

xr = f
X

Z
d = xl − xr

X = b
xr

d

Y = b
(yl + yr)/2

d

Z = b
f

d

where xl and xr are the image points on the left and right image planes respectively.[20]
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Note that while obtaining these equations, world coordinate is chosen to be right

camera center. As it can be seen from the above equations, disparity d = xl − xr

determines object points and it is inversely proportional to depth Z. That is, if

an object approaches to the camera system, disparity associated with this object

increases. With known baseline distance and focal length, disparity is enough to find

the depth in this model.

3.2.2 Epipolar Geometry

Epipolar geometry is the geometry of intersection of two image planes and with the

plane defined by image points and camera centers. It is commonly used in cor-

respondence search for stereo matching and therefore crucial for depth perception

particularly when camera image planes are not coplanar. It depends only on cam-

era internal parameters and relative positions and it is independent of the scene.

Three terms, namely epipolar plane, epipole and epipolar line are defined in epipolar

geometry.

Suppose that an object point X has views x and x′ on two image planes, respec-

tively. As shown in Figure 3.5, object point, its projection points on two images and

camera centers lie in the same plane which is called epipolar plane. Epipolar plane

passes through baseline which is the line joining camera centers.

C′ Cbaseline

X

ee′
x′

x

l
l′

epipolar plane

epipolar line
for x′

epipolar line
for x

Figure 3.5: Epipolar plane, epipolar lines and epipoles

Intersection point of baseline with image plane is called epipole. In addition, it is

projection of the camera center of one camera on the other image.

Epipolar line is the intersection of epipolar plane with image planes. Since object
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point, image points and epipolar lines are coplanar, corresponding image point of an

image point on the other image plane lies in this line. This property is important for

determining search region for stereo matching.

Relation between image points and epipolar lines is established by the Funda-

mental Matrix F. Fundamental matrix relates one point in one image plane to the

corresponding epipolar line in the other image plane and two corresponding point of

and object is related by the equation.

x′
Fx = 0 (3.5)

F matrix is a 3× 3 matrix of rank 2 and thus epipolar line l′ is computed by the

equation

l′ = Fx

As stated earlier, epipolar geometry depends on only camera internal parameters and

relative pose of the cameras. F Matrix encapsulates all these information. Consider-

ing two cameras whose camera models are as in equation 3.1 and projection matrices

are P = K[I|0] and P′ = K′[R|t], fundamental matrix F is computed as

F = K
′−T

[t]×RK
−1

Here [t]× denotes skew-symetric matrix which is defined as

[t]× =




0 −tz ty

tz 0 −tx

−ty tx 0




for t = (tx, ty, tz)
T.

Figure 3.6 shows two nearly coplanar images and epipolar lines of some points in

the images. As shown in the figure, corresponding point of an image point in one

image lies in the epipolar line calculated by equation 3.5.

In the case of coplanar image planes, baseline intersects image planes at infinity.

Therefore, epipoles are at infinity and epipolar lines are parallel. In other words,

image rows corresponds to epipolar lines. For corresponding point search, it is enough

to search in vicinity of the row with the same y value of the image point in the other

image for this case.
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Figure 3.6: Two views taken from a nearly parallel cameras. Corresponding point of

an image point in one view lies on the corresponding epipolar line. Note that epipolar

lines are almost parallel.

3.2.3 Triangulation

Single view of a scene is not sufficient to find distances of objects in the scene to

the camera. Object may be anywhere on the ray starting from camera center and

passing through the image point of the object on the image plane. In other words,

on the ray, every object point is corresponds to the same point on the image plane.

Thus, minimum two views of the same scene is necessary. By this way, intersection

point of the two rays gives the position of object in 3D. This procedure is known

as triangulation or back-projection. Linear triangulation method will be described in

this section to find object point.

Let two image points x = PX and x′ = P′X of the same object point X. These

equations can be combined into a linear equation AX = 0. To obtain A, first, three

equations for each image point is found by cross product. Two of these equations are

linearly independent. For the first image x × (PX) gives three equations, which are

x(p3TX) − (p1TX) = 0

y((p3TX) − (p2TX) = 0

x((p2TX) − y(p1TX) = 0

where piT are the rows of P.

By selecting two of the three equations from each image,linear equation, AX = 0
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is formed where A is of the form

A =




xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T


 .

In most cases, because of noise and some distortions in the image, backprojected

rays may not intersect. The optimal solution for these cases in least square sense is

the last column of V, where A = UDVT is the Singular Value Decomposition(SVD) of

A.[14]

3.3 Remarks

Stereo vision as depth perception method is commonly used in many robotic appli-

cations including robot localization. Finding depth of features by vision is useful in

the sense that other properties of the feature can be found by other vision tools at

the same time without any need for data association. Main problem in vision based

depth perception applications is finding corresponding pair associated with the ob-

ject point. However, epipolar geometry provides useful constraints on the possible

locations of the image points and simplifies the search procedure for the correspond-

ing points of the features. For further details on topics discussed in this chapter, see

[14, 20].
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Chapter 4

Robot System and Models

4.1 System Composition

Our robot system is composed of three main components. These are

• The robot vehicle

• The stereo camera system

• The processing and control unit

Robot vehicle and cameras are mobile units of the system where processing and

control unit is a stationary PC. Mobile part of the system which is the robot vehicle

and stereo camera system mounted on the robot vehicle is shown in Figure 4.1. The

processing and control unit is the PC which takes and processes the data coming

from camera system and controls the robot. Following three subsections will describe

the system components in detail.

4.1.1 The Processing and Control Unit

The Processing and Control Unit(PCU) is a stationary PC which runs Windows XP

as the operating system and has the system properties which are shown in Table 4.1.

Some important tasks such as image processing to take measurements from the

stereo camera system requires high capacity processor and high memory. To work

near real-time, Pentium IV processor with 2.4 GHZ speed and 512 MB RAM is

convenient. In addition architecture of the processor is optimized for the multimedia
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Figure 4.1: Mobile Part of the Robot System

applications and it speeds up the processing of multimedia such as image, video

and sound. Secondary storage device, harddisk is enough to store temporary and

permanent data and fast enough to permit fast operation. Although graphics card

does not affect directly processing of the data in this thesis, it helps visualization of

the data in the monitor.

Camera system which will be described in Section 4.1.3 gives analog output. To

process data obtained from the cameras, analog data should be converted into digital

data. Matrox Meteor II frame grabber mounted on the PCI slot of the PC, samples

Table 4.1: PC system properties

Processor Intel Pentium IV 2.4GHZ

Memory 512 MB DDR RAM

Harddisk 60 GB 7200 RPM

Graphics Card 64 MB GeForce 4 MX440

Frame Grabber Matrox Meteor II Standart
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this analog output and produces digital data. Since there are two cameras in the

vision system, two input ports are required in the frame grabber. 44 pin input slot of

the frame grabber supports up to 12 video input and sufficient for two camera system.

However, it multiplexes inputs and samples only one input at a time. This limits the

operation of the system. This limitation and consequences will be discussed later.

Operating System (OS) of the PC is Windows XP. For three reasons this OS was

chosen. First of all, support of our Matrox frame grabber is only for the Windows

OS and this forced us to use Windows as the operating system. Secondly, Windows

XP provides tools for multimedia processing and support large amount of hardware

devices. Finally, most software related to the works in this thesis are written for the

Windows OS.

C++ is the programming language and Visual C++.NET is the programming

environment for this thesis. Interaction with robot vehicle, and frame grabber is

established by two C++ libraries ARIA and MIL. ARIA is used for control of the

robot vehicle and taking data about location of the robot obtained by the shaft

encoders in the robot wheels. More information about the robot vehicle and ARIA

will be given in Section 4.1.2.

Matrox Imaging Library(MIL) is a commercial library and sold separately from

the frame grabber. MIL-lite, a limited version of MIL, is used in this thesis. MIL-

lite includes only commands required for image and video acquisition and does not

include any video and image processing commands which MIL includes. For image

and video processing and also for mathematical calculations an open-source and free

library, Intel Open Source Computer Vision Library (OpenCV) is used. This library

includes many functions from corner and edge detection to complex matrix calcula-

tions. In addition, a wrapper class which converts data taken by the MIL-lite library

to OpenCV structures is used. This class is written in our laboratory as part of

another thesis[29].

4.1.2 The Robot Vehicle

Robot vehicle is a Pioneer 2 DX8 model, differential 3-wheeled robot base manufac-

tured by ActivMedia Robotics Company. Two bigger wheels are at the front and are

driven by two servo motors. Third wheel is smaller and it is at the back. This wheel is

free-running and used for stabilization of the vehicle. All movements are established

by the independent movement of the front two wheels. That is, wheel speeds and
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direction determines the movement of the vehicle. For example, for forward motion,

wheel speeds of the two wheels are same, and they turn in the same direction. For

turn around its own axis, same wheel speed but opposite turn directions are required.

Movement of the vehicle is not restricted to this type of motion. Wheel structure

gives 3 degrees of freedom for the motion of the vehicle. These are translation in

two dimensions and rotation around the axis which is perpendicular to the plane of

translation. Center of the robot vehicle is defined as the midpoint between the two

front wheels. This point will be used to place the camera system on the vehicle.

Shaft encoders are placed to read the wheel revolutions of the vehicle. Readings

are used to locate the robot according to displacement from the starting point. This

way of locating robot is called odometry. Odometry is error-prone because it cannot

handle the cases like wheel slippage or stall.

Communication with the vehicle is done by a RS-232 serial cable by the “pass

through” principle. Three pins which are RX, TX and Ground are sufficient for

communication and in our robot system these 3 pins are used.

A Hitachi microcontroller and controller board controls the servo motors, com-

munication and odometry devices. Controller board, motors and other devices in the

vehicle are feed by 3 rechargeable 12 volt batteries.

ARIA library provides a complete control over the vehicle. It includes commands

not only for movement but also for state reflection. State reflection is the term used

for getting information about the vehicle at that moment. Odometry readings, wheel

speeds, battery voltages, are some of these information. ARIA converts the com-

mands given in the program code to low level commands in the serial communication

protocol. These low level commands are processed by the controller board and control

of the vehicle is established.

On the robot base, at the front, there are sonar sensors used for depth and

proximity sensing. In many robot localization algorithms, sonar sensors are used for

depth perception. However, in this thesis, only vision based depth perception is used

because sonar sensors mounted on our robot vehicle is designed for proximity sensing

and therefore depth range is small and uncertainty of the depth values are high.
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4.1.3 The Stereo Camera System

Stereo Camera System is developed in our laboratory as part of another thesis[29].

It consists of two identical Sony color board camera, composite video cables and a

board on which cameras are fixed. The system is shown in Figure 4.2. Technical

specifications of the cameras are given in Table 4.2. Cameras are fixed, that is,

spacing and relative rotation of the cameras are constant. By this way, cameras

are calibrated manually before mounted on the robot and during thesis work, no

additional calibration is required.

Figure 4.2: Camera system is developed in the laboratory and consists of two Sony

board cameras.

Cameras give analog interlaced output which are transfered on composite video

cables. Resolution of the cameras are 768×576 in PAL standart. 768×576 resolution

is too big for real-time image processing and therefore images taken from the cameras

are scaled down to 384×288 by taking only even fields the interlaced frame and scaling

down y axis by two. Taking only even fields also prevents jitter caused by interlacing

and provides clean view of the scene. Although cameras are color cameras, color

components are not used and grayscale output is taken from the cameras and all

processing operations are done on these grayscale images. Images are taken in wide

angle mode, that is, no optic or digital zoom is used and calibration of the cameras

done according to wide angle mode of the cameras.

Right camera is chosen as the reference camera. Camera center of the right
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Table 4.2: Camera Technical Specifications

Left Right

Model Sony FCB-IX47AP Sony FCB-IX47AP

Serial No 1001511 1001512

Resolution 768 × 576 768 × 576

Optical Zoom 18× 18×

Digital Zoom 10× 10×

Focal length 3.1-31 mm 3.1-31 mm

camera is chosen as the origin of the camera coordinate frame. In addition, feature

detection and tracking operations are performed on the images taken from the right

camera. Left camera is the complementary camera to provide depth information of

the features detected on the right camera.

Camera system is mounted on the robot vehicle such that robot’s turn axis and

camera center of the reference camera coincides. By this way, calculations are sim-

plified and any translation of cameras during rotation of the robot around its own

axis is avoided.

4.2 Mathematical Models

4.2.1 Vehicle Model

This thesis deals with robots that operate in indoor environments and it is assumed

that robot vehicle moves on a ground plane. A world coordinate frame is defined

such that its x and z axis lie in the ground plane that robot vehicle moves on. Its

y axis points towards vertically upwards. Robot’s position in world coordinate is

represented as (x, z, θ)T where x and z are the position in world coordinate frame

and θ is the orientation of the robot relative to the world z axis. The point that

is chosen as the reference on the robot for position is turn axis of the robot where

reference camera is also placed. Figure 4.3 shows robot and world coordinate frames

and representation of the robot position.

As described in section 4.1.2, motion of our robot vehicle is established by different
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Figure 4.3: Representation of the robot’s location in the world coordinate frame

wheel speed of the two front wheels. In some studies [11, 30], using same or similar

robots, wheel speeds are given as input to control the robot. By this approach, it is

possible to make the robot vehicle do arbitrary motion in the x − z plane. However,

for two reasons, a different approach similar to the one in [32] is used in this thesis.

First reason is, control with wheel speeds cannot handle displacement during

acceleration and deceleration. To include acceleration in the model is difficult and

makes the calculations complicated.

Second reason is more specific to our system. As stated earlier, frame grabber that

we used, multiplexes input ports and takes only one input at a time. To get stereo

view of the scene, channel swithcing is required. However, grabbing one frame and

swithcing channel take about 110 ms in the PC system which is too long for grabbing

one frame from each camera while the robot vehicle moves. After first frame from

the right camera is taken, because of the delay caused by channel switching, frame

from the left camera is taken from a different location caused by the displacement of

the vehicle during the delay. For example, if the robot moves at speed 200 mm/sec

in the forward direction, an extra 2 cm translation occurs between two camera views.

It becomes more complicated when the vehicle is also turning. It can be handled

by calculating displacement and including in the depth calculations. However, this

makes camera model depend on the vehicle model which is not desirable.

For these reasons, robot vehicle motion is constrained to two types of motion,
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namely move forward and turn. Input vector (d, φ)T is defined to control the vehicle

where d represents the displacement in the forward direction and φ is the turn angle

in radians. ARIA library includes commands to move forward in the desired d and

to turn in the desired φ.

With known input u = (d(k), φ(k))T, robot’s location can be calculated as

x(k + 1) = x(k) + d(k) sin θ(k) (4.1)

z(k + 1) = z(k) + d(k) cos θ(k) (4.2)

θ(k + 1) = θ(k) + φ(k) (4.3)

If the above equations perfectly modeled the motion of the robot, there would be

no need for the estimation of the robot location. However, there is an uncertainty in

the motion and this should be included in the model. Error in the motion estimate

can be modeled as a Gaussian with zero-mean and covariance Q(k). Q(k) can be

calculated by using estimated robot location.

By defining estimated robot location as

fv =




x(k + 1)

z(k + 1)

θ(k + 1)




Q(k) is calculated by using first-order transfer of uncertainty and given as

Q(k) =
∂fv
∂u

U(k)
∂fv
∂u

T

where ∂fv
∂u

is the Jacobian of the fv with respect to u and U(k) is the covariance matrix

of the u:

U(k) =

[
σd

2 0

0 σφ
2

]
,

∂fv
∂u

=




∂x(k+1)
∂d

∂x(k+1)
∂φ

∂z(k+1)
∂d

∂z(k+1)
∂φ

∂θ(k+1)
∂d

∂θ(k+1)
∂φ


 .

Standart deviation for the turn, σφ is about 0.05φ. For d, standart deviation σd

is about 0.05d.

Later, in the Chapters 6 and 7 uncertainty Q(k) will be used in EKF estimation

algorithm and will be important in determining the characteristics of the filter. Al-

though there are many factors affecting the motion of the vehicle, this uncertainty

model is sufficient to handle all the errors and noise that exist in the system. In

addition, adding other errors in the model increases the complexity without giving
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significant increase in the performance. This uncertainty is introduced to the model

as an additive term without any gain factor. Details about the model with noise

added, will be described in Chapters 6 and 7.

4.2.2 Camera Model

In this thesis, finite projective camera model which is explained in chapter 3, is used

to model the camera system. In this section,values of the internal camera matrix,

rotation Matrix and translation vector in the Equations 3.1,3.2 and 3.3 will be given

and discussed.

As described in section 4.1.3, two same model Sony board cameras are used in

the vision system. Although they seem to be identical, internal camera parameters

differ and this difference should be included in the models. Table 4.3 shows internal

camera parameters of each camera[29].

Table 4.3: Internal and External Camera Parameters of each camera

Left Right

fu 454.189 452.501

fv -455.073 -453.15

s 0.015 0.174

u0 181.604 180.565

v0 151.733 147.697

tx -95.8369 0

ty 1.5005 0

tz -1.4762 0

Note thatfv is negative to make camera and robot coordinate frames coincide. In

addition there is a shift in the central points of the cameras and they are different

from the midpoint (192,144) of the scaled images. (Scaled image size is 384 × 288).

Placement of the cameras also differ from the simple parallel camera placement.

Although, it was aimed to place them parallel, in laboratory conditions, some relative

rotation and extra translation could not be avoided. As taking right camera as
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reference, projection matrices for each camera are

P
′ = K

′




0.9992 0.0215 −0.0330 −95.8369

−0.0214 0.9997 0.0032 1.5005

0.0331 −0.0025 0.9995 −1.4762


 , P = K




1 0 0 0

0 1 0 0

0 0 1 0




where P′, K′ are projection and internal camera matrices for left camera and P, K are

projection and internal camera matrices for the right camera. Since right camera is

chosen to be reference, rotation matrix is identity matrix and translation vector is

the zero vector.

Depth calculations are performed by using these parameters and matrices in the

equations given in Chapter 3. Important point in these calculations is to find the

corresponding image point pair which describes the 3D object. Chapter 5 will describe

feature detection, finding corresponding point of the feature and depth perception.
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Chapter 5

Landmark Detection and

Matching

5.1 Artificial Landmarks

In robot localization, generally distances of objects to the robot is measured and

inference about the location of the robot in the environment is reached by using this

distance information. However, measurement devices find the positions of the objects

in the robot coordinate system and to find the position of the robot in the world

coordinate system, positions of the objects in the world coordinate system should be

known. Generally for every object in the scene to give the position information is not

feasible and increases the computational time. Instead, artificial landmarks which

are easily identifiable and whose positions are known are used to find the position of

the robot.

In literature, many types of artificial landmarks exist. Barcodes, infrared leds,

colored cylinders are some of them. In this thesis, we used a new artificial landmark

type which is coded cylinder. Section 5.1.1 gives information about the properties of

the coded cylinders that we used. In Sections 5.1.2 and 5.1.3, methods to detect and

recognize each landmark is explained.

5.1.1 Landmark Properties

For a landmark to be useful, it should be identifiable from different point of views and

scales. Planar landmarks are usually affected from affine motion and seen different

from different point of views. Our artificial landmark type and the technique we use

35



to identify the landmarks are invariant to both affine transformation and scaling for

a large range.

We use a cylinder block whose radii is 10 cm and height is 12.5 cm. To the

bottom and top of the side of the cylinder, black stripes which have 1.5 cm width

are sticked horizontally. These stripes are used to distinguish the landmark from

other objects in the scene and they are called limiting stripes. Middle side of the

cylinder block is used to recognize each landmark. To the middle side, black stripes

are sticked horizontally according to the number of the landmark. These stripes are

called coding stripes. See Figure 5.1. Stripes are sticked horizontally because robot

do not move in the y-axis (axis which is perpendicular to the ground floor) and thus,

width and distances of the stripes do not change while the robot moves.

Figure 5.1: One of the artificial landmark whose number is 1

A 3-bit binary coding is done on the cylinders. That is, according to the number of

the landmark, stripes are placed to the middle side of the cylinder such that topmost

stripe is the most significant bit and the most bottom stripe is the least significant

bit. For example, to represent number 4 a black stripe close to the top limiting stripe

is sticked. Figure 5.2 shows the general properties of the landmark that we use.
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Figure 5.2: Landmark Structure and Properties

A cylinder block is chosen as the landmark because it is seen same from all

point of views. In addition, because the robot does not move in the y-axis, there is

no need to consider the top of the cylinder and this fact makes the cylinder block

more convenient for indoor robot movements. It seems difficult to find the center

point of the cylinder by looking from outside because of the smooth surface but, by

using the algorithm that is explained in the next section, it is not a problem. And

experiments show that the artificial landmark that we use is convenient for indoor

robot localization. Sections 5.1.2 and 5.1.3 explain the detection and recognition of

the coded cylinders that we use.

5.1.2 Detection of The Landmarks

As stated earlier, two limiting stripes are sticked to ends of the cylinders to distinguish

the landmarks from the other objects in the scene. In detection, this limiting stripes
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are used. Color of the main body of the cylinders are white while stripes are black.

So, there exist transitions from white to black and black to white in the cylinders.

Since stripes are placed horizontally, these transitions occur as a line. By detecting

these transition lines, detection of the landmarks can be reached.

To detect the transition lines, two image blocks, each has 12 pixel width and 4

pixel height are formed. One image block is for black to white transition and one

block is for white to black transition. Thus, for the black to white transition, the

image block is formed such that top half of the image block is white and bottom half

of the image block is black. For the white to black transition, it is vice versa. Figure

5.3 shows the formed image blocks.

12 pixels 12 pixels

4 pixels 4 pixels

black to white
transition template

white to black
transition template

Figure 5.3: Image patches which are used to detect transitions

After image block are formed. Similarity of the regions of the image in which we

search the landmark, with the image block that we formed should be found. Similarity

criterion is the Normalized Sum of Square Difference(NSSD) which is defined as

R(x, y) =

∑
x′,y′

(T (x′, y′) − I(x + x′, y + y′))2

√∑
x′,y′

T (x′, y′)2
∑

x′,y′

I(x + x′, y + y′)2
(5.1)

where T (x, y) is the image block and I(x, y) is the image in which we search for the

image block, x′, y′ is the coordinate of the pixel in the image block and x, y is the

coordinate of the pixel in the main image. This similarity criterion works as follows.

For each pixel in the main image, an image patch of the same size with the image

block around the pixel is formed. With each pixel in the image block, pixel with same

coordinate in the formed image patch from the main image is compared by taking

difference. These differences are summed and divided to the normalizing factor which

is given in the Equation 5.1. For a perfect match, the value of R(x, y) is 0. However,

for the most cases, zero value cannot be reached. For this thesis, threshold for the
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similarity is chosen to be 0.2 and values bigger than this value are eliminated.

After each pixel in the main image is assigned a value for the similarity with the

image blocks, starting from the bottom of the image, for each pixel coordinate that

has the similarity with the black to white transition image block which corresponds

to the bottom limiting stripe and has a value smaller than the threshold, a search for

the above pixels on the same column is initiated. This search is to find the closest

white to black transition line. White to black transition line is searched similar to the

black to white transition and similarity values smaller than the threshold is chosen

as the line point. If a white to black transition point is found above the black to

white transition point, one stripe is assumed to be found and above the white to

black transition point a new search for the black to transition point is initiated. This

process continues until, no white to black or black to white transition point is found

anymore above the found ones. Figure 5.4 shows the transition points and search for

the other transition points on the same vertical line.

background

first btw transition point

first wtb transition point

second btw transition point

second wtb transition point

no more transition point

Figure 5.4: After a black to white transition is found, a white to black transition

is searched above and vice versa. btw and wtb denote black to white and white to

black respectively.
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By counting the number of stripes and calculating the distance of each black to

white transition point to the white to black transition point on the same vertical line,

candidate landmark types are determined. Recognition of the landmark type will be

explained in Section 5.1.3.

For each pixel in the main image, search is run and thus, many points may give

similarity value smaller than the threshold. If there is a landmark in the scene,

points in the landmark give high similarity and points are close to each other. After

candidate landmark type is determined for each candidate point, points with the

same landmark type are placed to a binary image in the same coordinates and on

the formed binary image, connected component analysis is run.

Connected Component Analysis(CCA) is a labeling method to find the pixel

groups which are called contours. In other words, CCA finds the contours in which

pixels are neighbor to each other. Intel OpenCV library has functions to perform

CCA and give information about the contours. After contours are labeled, area and

orientation of each contour can be calculated.

Using CCA, contours in the binary image in which candidate landmark points

are located are found and area and center points of the each contour is calculated.

Contour having the biggest area is chosen and center point of it is accepted as the

location of the landmark in the image.

There may be more than one landmark type for the same landmark in the scene.

To decide on the correct type, if two locations assigned to the landmark types are

close to each other, landmark type having the bigger contour area is chosen as the

true landmark type for that landmark.

Above analysis gives course position of the landmark in the scene. However to

find the exact position of the landmark, middle point of the cylinder should be found.

In the cylinder, it has a smooth surface and there is no information which gives idea

about the middle point of the cylinder. For this reason borders of the cylinder is

found and midpoint between the borders are accepted as the center point.

To find the borders of the cylinder, edge detection could be solution but, generally,

detected edges may not be distinguishable because of the other edges close to these

edges. Instead, a method similar to the edge detection by using the similarity criterion

is used to find the borders of the cylinder.

Coarse position of the landmark is known and found coordinate is in the landmark.

In addition, height of the landmark in pixels can be found. Using these information,
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a thin slice around the found position which has a width of 4 and height which is

equal to the found height of the landmark is formed. Using NSSD, around the found

position this slice is searched along a line horizontally and NSSD for each pixel is

calculated. On the borders, the biggest difference between two adjacent values of

the NSSD occurs and this point is accepted as the border point. This operation is

performed for both borders and midpoint of the two border point is chosen as the

center point of the cylinder. Figure 5.5 shows the process of finding the center point

and the related terms.

background

Search Template

Candidate Center Point

Right End PointLeft End Point

Real Center Point

Figure 5.5: Process of Finding The Center Point of The Landmark

In this thesis, positions of the landmarks with respect to the camera system should

be calculated and for this reason, image points of the landmark at both left and right

camera should be found. Above detection algorithm is run on the reference image

which is grabbed from the right camera. To find the corresponding point on the

left camera, a similarity search is run on the pixels which are in the vicinity of the

epipolar line on the left image. As stated in the Section 4.2.2 cameras are placed

parallel and thus, epipolar line is the image row which is has the same y value with

the found coordinate of the landmark. An image block which has the same width

and height with the found landmark is found and NSSD for each pixel in the vicinity
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of the epipolar line is calculated. Best match which has the smallest NSSD value

is chosen as the match. Generally, search result does not give the center point of

the landmark in the left image and because of that, search to find the borders and

consequently the center point of the landmark is also run for the left image.

After two points in the left and right camera are found which corresponds to the

landmark, using the triangulation method explained in the Section 3.2.3 is applied

and position of the landmark in the camera coordinate system is found.

5.1.3 Recognition of The Landmarks

As explained before, after candidate points are found in the image, according to the

number of stripes and distances of each stripe to another determines the type of the

landmark. The main aim in recognizing the landmark is to find the 3-bit binary code

representing the landmark.

Each candidate landmark point has the information about the number of stripes

above the point and distances of stripes to each other using this information type of

the landmark can be determined.

Table 5.1 shows the type of the landmark according to the number of the stripes

and comparison of the distances. In this table, distances play a key role in determining

the type when number of stripes are the same. There may be maximum four distance

terms. If no stripe is found, there is one distance term d1 which shows the distance

between two limiting stripes. If one stripe is found there are two distance terms d1

showing the distance between bottom limiting stripe and the found coding stripe

and d2 showing the distance between the top limiting stripe and the found coding

stripe. If two coding stripe is found, there are three distance terms which are denoted

similarly. If there are three coding stripes, although there are four distance terms,

they are not important because there is only one combination and this case represents

the number 7. Figure 5.6 shows the naming of each distance term for different cases.

Comparison of the distance values in Table 5.1 is pixelwise. For the case, that the

number of the coding stripes is 1, d1 is not accepted as equal to the d2 when number

of pixels are same, because they may not be equal although they are very close to

each other. Rather, d1 is accepted to equal to d2 when they are close to each other.
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Table 5.1: Recognition Table showing the type of the landmark according to the

number of coding stripes and distance combinations

# of stripes Distance Comparison Landmark #

0 - 0

1

d1 < d2 1

d1
∼= d2 2

d1 > d2 4

2

d1 < d2 ∧ d3 < d2 5

d2 < d1 ∧ d3 < d1 6

d1 < d3 ∧ d2 < d3 3

3 - 7

d1

d2

d1

d2

d3

Figure 5.6: Distance names are given from bottom to top

43



5.2 Natural Landmarks

In this section, natural landmark detection and matching methods that are used in

this thesis will be described. Properties of the selected landmarks are explained in

Section 5.2.1. In Sections 5.2.2 and 5.2.3, the landmark detection technique we used

in the thesis and correlation based matching will be described.

5.2.1 Landmark Properties

Natural landmarks are features which are determined by the system and detected

according to some criteria. This requires reliable, repeatable and measurable features.

In this thesis, discrete point features are used as natural landmarks which corresponds

to some corners in the images taken from the cameras. Corners and detection will

be described in Section 5.2.2.

Since the robot moves, features should be seen for a long time with the same iden-

tifiability. These features are natural landmarks for the robot to aid it for finding its

location. Thus, reliability and repeatability is essential properties for these features.

To simplify the calculations and because of the restrictions of the algorithm that

we used, the features are assumed to be stationary. Image patches are used to

represent these features and these image patches are used to match and track the

features. In this thesis, 7 × 7 patches are used. These dimensions are commonly

used and give good results for our system. Smaller patches increases the probability

of mismatches, while larger patches increase the computational time and introduce

offset from the actual position of the feature.

Number of features to be processed in the system affects the performance. Few

features decreases the computational time but erroneous measurements directly affect

the position estimates. Too many features increases the computational time quadrat-

ically due to the covariance calculations which will be described in the next chapter.

For this reason a moderate number of features are used and parameters are selected

to establish this.

5.2.2 Detection of Landmarks

In this thesis, strong corners in the images are selected to be image features. By

finding corresponding image points in the other image, depth information associated
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with these image features are found. For corner detection the algorithm introduced

by Shi and Tomasi [33] is used. This algorithm is similar to Harris Corner Detection

[13] but have some improvements on the cornerness.

The algorithm calculates an operator which is defined as

C =

[
ΣIxIx ΣIxIy

ΣIyIy ΣIyIy

]

where Ix and Ix are horizontal and vertical gradients of the image I. Summation is

done in the patch around the point of interest. If the smaller one of two eigenvalues

λ1 and λ2 is large, this point is marked as corner. If only one eigenvalue is large

than this point is most probably an edge or even smooth surface. Figure 5.7 shows

some image patches. First and second image pathces corresponds to edges and one

of the eigenvalues of C operator for these image patches is zero. Third image patch

is a corner and at both direction it shows large gradient and both eigenvalues are

large. Fourth image patch is smooth surface and both of the eigenvalues are zero.

For all image pixels, this operator is calculated and smaller eigenvalues are stored. A

threshold value is chosen as α max(eigenvalues) and stored eigenvalues whose values

are smaller than this value are eliminated. α is the quality level and it is a parameter

to determine number and quality of corners in the image. In addition, if euclidian

distance between two corner coordinates is smaller than a threshold value, the weaker

corner is eliminated. In this thesis, threshold distance is chosen as 10. This threshold

works well for our system. A large distance, reduces the number of corners while

small distances increases the probability of mismatches. By this way, well spreaded

strong corners are found in overall image. A final step for our system is to eliminate

corners which are too close to the borders of the image because these corners become

most probably unseen after a few steps and thus are not repeatable. OpenCV library

described in Section 4.1.1 has a function which is an implementation of the algorithm

and in this thesis, this function is used.

This feature detection algorithm is applied to both left and right images at each

step. Matching and tracking is performed on the detected corners with region corre-

lation method that will be described in the next section. Rather than searching for

image patches in all image for correlation, search is performed among only detected

corners. Because, strong and reliable features have strong corners that do not vanish

easily and a search among corners eliminates weak features in a few steps.
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Figure 5.7: First and second image patches show large gradient in one direction but

zero in the other and have zero eigenvalue. Third image patch has large gradient in

both direction and both eigenvalues are large. Fourth image patch is smooth and

both eigenvalues are zero.

5.2.3 Searching for and Matching Landmarks

In this thesis, each feature is identified by an image patch (also called template)

around the image feature point. To search for and matching of a feature, this image

patch is used. After corners are detected at each image, for each corner detected on

the reference image, an image patch around the corner point is stored in the system.

Image patch is a 7 × 7 block taken from the image such that feature point is in the

center of the image block. After image patches of each corner is found, to find the

corresponding pair of the corner point in the left image and consequitive frames, a

similarity criterion is used. This criterion is the Normalized Cross Correlation(NCC)

which is defined as

R(x, y) =

∑
x′,y′

T (x′, y′)I(x + x′, y + y′)

√∑
x′,y′

T (x′, y′)2
∑

x′,y′

I(x + x′, y + y′)2

where T is the image patch around the feature found and I is the image in which the

matching feature will be searched. To find the matching point, in the image where

the feature will be searched, among the corners found in this image, image point

of the feature is compared with the image block around each corner in this image.

An image block with the same size with the image patch of the feature is formed

and and NCC between this block and the image patch is calculated. For the perfect

match, NCC gives the value 1. Usually, due to the noise, illumination changes and

transformations caused by motion, perfect match cannot be reached. 0.85 is used in

this thesis as threshold value for NCC and values below this threshold are eliminated.
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As stated in the previous section, search and matching is performed on the corners

found at each image. At initial feature detection, strong corners are found at both

images, than for each corner in the right image corresponding corner point is searched

in the left image around the epipolar line by normalized cross-correlation. (Right

camera is chosen as reference camera). Corners in the vicinity of epipolar line are

searched for the best fit and the one which has the highest correlation is chosen if it

is also bigger than the threshold value. Then, 3D points for this points are calculated

and added to the system. For the consequitive frames, to track a feature that is

already added to the system, stored image patch of this feature is used. In this case,

a search region is found and for each corners which lie in this region, correlation of

the image patch around these corners with the stored image patch is calculated. Best

match is chosen as the matched feature. Again to find the 3D point of this feature,

search around the epipolar line in the left image is performed. Determination of

search region will be described in Section 7.1.3.

5.3 Depth Tests

Accurate measurement of the position of the landmarks with respect to the robot is

important for robot localization algorithms. Although, an uncertainty is defined to

compensate the errors in measurements in these systems. True measurements both

increase the consistency and reliability of these systems.

In this section, for both artificial and natural landmarks, depth tests are per-

formed to see the response of the camera system for different types of landmarks. In

addition, for artificial landmarks, minimum and maximum distances for detectability

and recognizability are measured.

For testing, the robot vehicle on which stereo camera system is mounted, is placed

to the ground floor. From that location, through the right camera’s principal axis,

depth of the landmarks are measured. For natural landmarks, corners on a test

pattern are detected. By placing the pattern to the different places through the

principal axis. Depth of the corners are measured for different distances. Test pattern

is white bands on a black background. High contrast on the bands and the background

increases the strength of the corners.

For artificial landmarks, a selected landmark is placed the different locations

through the principal axis of the right camera and for each location depth is measured.

In addition, all landmarks are tested at some positions to find the maximum and
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minimum distances for detectability and recognizability of the landmarks.

Table 5.2 shows the measurement values of the features for different distances.

Table 5.2: Depth Tests Results of the Artificial and Natural Landmarks.

Ground Truth Artificial Landmarks Natural Landmarks

(mm) (mm) (mm)

500 514.2 515.6

1000 990.4 1039.9

1500 1451 1570.3

2000 1892.8 2074.6

2500 2290.2 2577.7

3000 2896.8 3167.8

3500 - 3676

Table 5.3: Detectability and Recognizability Ranges for the Artificial Landmarks

Detectability Recognizability

Minimum(mm) 500 800

Maximum(mm) 3000 3000

From the measurement values in Table 5.2, it can be concluded that, measured

depth values are near to the real ones. However, natural landmarks (corners) give

better results than the artificial ones. It is mainly due to the matching errors. The

center point of the coded cylinders cannot be found exactly in the left and right images

and thus measurement errors occur. For corners, finding the corresponding pair is

more successfully performed and this affects the accuracy of the depth measurements.

“-” for the value of the depth value of the artificial landmark at 350cm shows that a

measurement cannot be taken at this distance because of the limitations which are

given below. Although there exist a depth value for the natural landmark at this

distance, it does not corresponds to the same landmark. After 300cm, the corner of

the interest become undetectable.

Minimum and maximum distances for the detectability and recognizability is
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given in Table 5.3.

Although it seems that ranges for the artificial landmarks that we used is low,

for the experimental setup that we performed localization tests, these values are

sufficient. In addition, it is possible to increase ranges by increasing the resolution of

the grabbed images and increasing the dimensions of the coded cylinders.
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Chapter 6

Robot Localization Using

Artifical Landmarks

6.1 Robot Localization Algorithm

6.1.1 State Vector and its Covariance

Since position of the landmarks are known and there is no uncertainty about their

positions, the only point of interest is the position of the robot in the world coordinate

frame. As explained in Section 4.2.1, robot position is represented as (x, z, θ)T and

state vector to keep the position information is chosen as this representation. Current

estimate of the location of the robot is kept in the mean vector of the state vector

and denoted as x̂.

x̂ =




x

z

θ




Covariance matrix of the state vector is 3 × 3 symmetric matrix and defined as

P = cov[(x − x̂)(x − x̂)T]

where x is the real value of the position and x̂ is the estimate of the robot position.

Covariance of the state vector gives information about the uncertainty about the

estimated position of the robot. In other words, it gives information about how

much the estimated position deviated from the real position. Dimensions of mean

vector and covariance matrix are constant. At each step, values in this vector and

matrix will be updated. x and z in the state vector are in millimeters while θ is in

radians.
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6.1.2 Predicting State and Covariance

In EKF, first of the two phases at each step is prediction. In prediction phase, state

vector is predicted using the process model. Current robot position is predicted by

using the vehicle model equations 4.1, 4.2 and 4.3. Predicted state is

x̂(k + 1|k) = fv(x̂(k|k),u(k))

where x̂(k|k) is the updated position of the previous step and u(k) is the input vector.

Using the EKF covariance prediction equation 2.24, predicted covariance is

P(k + 1|k) =
∂fv
∂x

P(k|k)
∂fv
∂x

T

+ Q(k)

where ∂fv
∂x

is the Jacobian matrix of the fv with respect to state vector x at x̂(k|k)

and Q(k) is the process noise covariance. ∂fv
∂x

is given as

∂fv
∂x

=




1 0 d cos θ

0 1 d sin θ

0 0 1




6.1.3 Predicting Measurements and Innovation Covariance

Measurement device in our system is stereo camera system. The camera system finds

the positions of the landmarks in camera coordinate system. Since robot position in

the state vector is in world coordinate frame, relationship between found landmark

positions, and the robot position in the world coordinate frame should be determined.

Measurement function hi for the ith landmark is

hi =




hix

hiy

hiz


 =




(xi − x) cos θ − (zi − z) sin θ

yi

(xi − x) sin θ − (zi − z) cos θ


 (6.1)

where xi,yi,zi are the position values of the ith landmark in the world coordinate

frame. Since locations of the landmarks in the world coordinate frame are assumed

to be known, these values are given to the system at the beginning.

Predicted measurement for each landmark is calculated using the above equation.

Predicted measurement vector is denoted by ẑ and is equal to h(x̂(k + 1|k)) where

h =




h1

h2

...

hn



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Innovation Covariance determines the deviation from the predicted measurement

values. Innovation covariance is calculated from the Equation 2.25. ∂h
∂x is the Jacobian

matrix of h with respect to state vector x at x̂(k + 1|k).

Innovation Covariance and predicted measurement vector can be used to define a

search region for the landmark detection. However, in this thesis, artificial landmarks

that we used are needed to be searched in whole image, because image area repre-

senting each landmark is large and also a recognition phase is needed to distinguish

each landmark. Thus, a search region will be useless in this part of the thesis. Uses

of innovation covariance and predicted measurements in determining a search region

will be explained in the next chapter.

Although, determining a search region is useless for this part of the thesis, deter-

mining a field of view can be useful to eliminate false matches. That is, since position

of each landmark in the world coordinate frame is known and predicted measurement

for each landmark is calculated, landmarks which remain out of the field of view are

marked as unseen and if the measurements show that a landmark which is marked

as unseen is on the view, this measurement is accepted as false and eliminated. This

approach increases the robustness of the system and reduces the errors caused by

false measurements.

6.1.4 Correcting the State and its Covariance

After measurements are taken, mean vector and state covariance are updated using

the EKF correction equations 2.28 and 2.29.

Filter gain is

K(k + 1) = P(k + 1)
∂h

∂x
S(k + 1)−1

State estimation and covariance are

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)(z − h(x̂(k + 1|k))) (6.2)

P(k + 1|k + 1) = P(k + 1|k) − KSK
T (6.3)

At each step, at most three landmarks are seen and measurements to these seen

landmarks can be taken. For the unseen landmarks, predicted measurements are

given as measurement. By this way, contribution of the unseen landmarks becomes

zero and system is updated using only measurements of the seen landmarks.
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6.2 Experiments

6.2.1 Experimental Setup

Experiments are performed in our laboratory. General application area of robot

localization with artificial landmarks is industry, however, performed experiments

are convenient to adapt the environment to an industrial indoor environment.

Since measurements and estimates are in metric system, ground-truth measure-

ments are needed to see the actual position of the robot and to compare results. For

this reason, a grid is drawn on the floor. Regularly spaced rectangles each 50 × 50

millimeters occupy an area of 2.5×2.5 meters which is enough for characterization of

experiments. The grid provides both visual and quantitative information about the

position of the robot. Figure 6.1 shows the experimental setup.

Figure 6.1: Experimental Setup for the Artificial Landmark Tests

As explained in the Chapter 5, there are eight landmarks which are cylinders on

which black stripes are sticked to identify the landmarks. Location of each landmark

in the world coordinate frame is assumed to be known. For this reason, landmarks

are placed in the known coordinates of the grid. Four landmarks are placed to the
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outer corners of the grid area and four landmarks are placed to the midpoint of the

two adjacent landmarks which are at the corners. Figure 6.2 shows general layout of

the landmarks on the grid area.

(2500,0) (1250,0) (0,0)

(2500,2500) (1250,2500) (0,2500)

50cm

(2500,1250) (0,1250)

x

z

Figure 6.2: Placement of landmarks on the grid area

Each landmark is placed on a box of height 28.6 to bring the landmarks to the

same height with the camera system. By this way, landmarks can be seen for a long

time without going out of view caused by the height. Color of the boxes are white

and to prevent potential errors due to this white color, a blue rectangular cartoon

is sticked to the top of the seen sides of the box. To find the position of the robot,

distances to the nearest grid point is measured. Since, center of the robot is chosen

as the middle point of the two front wheels, this point is marked and measurements

are taken according to this point. For orientation, we draw lines between the points

where wheels of the robot touches the ground. Then, we measure the angle between

this line and the line parallel to the grid line.

For the reasons stated in the section 4.2.1, motion of the robot is step-by-step. At
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each step, after robot stops, images are grabbed from cameras and processed to take

measurements. In this part of the thesis, since each landmark is easily identifiable,

step size can be chosen to be long.

6.2.2 Kidnapped Robot Test

Kidnapped Robot problem [9] differs from the robot localization problem in that the

robot is told a different position from the actual position. Kidnapped robot problem

is used to test the robot’s ability to recover from big localization errors [10]. This

test aims to test the response of the algorithm for the kidnapped robot problem.

For this reason, robot is placed to the location (505,505) on the grid area but the

coordinate (1260,1260) is given to the system as the initial position. Then the robot

is given the command of 45 degrees of turn in steps of 5 degrees. During the turn, the

robot sees only the landmark of number 2. Test results are given below. As seen in

Table 6.1: Test Results for the Kidnapped Robot Experiment

Time Step Predicted Pos. Corrected Pos. Odometry

x(mm) z(mm) x(mm) z(mm) x(mm) z(mm)

1 1260 1260 1323 1164 0 0

2 1323 1164 1323 1062 0 0

3 1323 1062 1280 987 0 0

4 1280 987 1203 915 0 0

5 1203 915 1114 885 1 0

6 1114 885 995 843 1 0

7 995 843 947 667 1 0

8 947 667 812 596 2 0

9 812 596 653 586 2 1

the above test results, step by step, the system finds the robots true position. Note

that, odometry device in the robot system gives values with the assumption that its

starting point is (0,0,0). So if the robot is given that it is in (1260,1260,0), its results

are simply bias of this given initial point and it is not able to find the robots true

position.
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Chapter 7

Robot Localization Using

Natural Landmarks

7.1 Robot Localization Algorithm

Robot localization algorithm in this part of the thesis uses natural landmarks and

works similar to EKF-based SLAM algorithms. Although, robot’s position is to be

estimated, position distribution of features(landmarks) which robot measures dis-

tances with respect to, are propagated with robot’s position to next steps. In SLAM

algorithms by this way, mapping of the features in the world coordinate system is

also performed. However, since besides localization, mapping is the aim in these al-

gorithms, often, features are stored and recalculated at each step for re-association.

For short-term localization problems, with the cost of increasing uncertainty, with-

out storing features in the system, unseen features are removed from the system and

remaining features with newly added ones are used for localization. We implemented

the algorithm described in [3] by adapting it to our robot system and considering

only robot localization problem rather than SLAM. Algorithm, uses EKF for state

estimation and propagation of uncertainty. This section will describe our robot lo-

calization algorithm. For the rest of the chapter the term, “feature” will be used to

represent the term, “natural landmark”.

7.1.1 State Vector and its Covariance

Current estimate of the robot’s position and currently seen features’ locations are

kept in the mean vector and denoted as x̂. Uncertainty in the estimate is kept in
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covariance and denoted as P. x̂ and P are defined as

x̂ =




x̂v

ŷ1

ŷ2

...

ŷn




, P =




Pxx Pxy1
Pxy2

. . . Pxyn

Py1x Py1y1
Py1y2

. . . Py1yn

Py2x Py2y1
Py2y2

. . . Py2yn

...
...

...
. . .

...

Pynx Pyny1
Pyny2

. . . Pynyn




where x̂v is the robot position vector, and ŷi is the ith feature’s location vector

x̂v =




x

z

θ


 , yi =




xi

yi

zi




and Pxx,Pxyi
,Pyix,Pyiyj are 3 × 3 are covariance matrices of the subscripted vectors.

x̂ is 3(n+1)×1 vector, while P is 3(n+1)×3(n+1) symmetric matrix where n is

the number of features in the field of view. Dimensions of both x̂ and P are dynamic,

that is, as the features are added to or deleted from the system, dimensions change.

All entities are in world coordinate frame and in millimeters.

7.1.2 Predicting State and its Covariance

Current robot position is predicted by using robot model equations 4.1,4.2 and 4.3.

Since features in the scene are stationary, predicted feature locations are the same

with the previous corrected locations. Predicted state x̂(k + 1|k) is

x̂(k + 1|k) =




fv(x̂(k|k),u)

ŷ1(k|k)

ŷ2(k|k)
...

ŷn(k|k)




(7.1)

where x̂ and u are defined in section 4.2.1.

State covariance is given as

P =




∂fv
∂xv

Pxx(k|k) ∂fv
∂xv

T
+ Qv(k) ∂fv

∂xv

Pxy1

∂fv
∂xv

Pxy2
. . . ∂fv

∂xv

Pxyn

Py1x
∂fv
∂xv

T
Py1y1

Py1y2
. . . Py1yn

Py2x
∂fv
∂xv

T
Py2y1

Py2y2
. . . Py2yn

...
...

...
. . .

...

Pynx
∂fv
∂xv

T
Pyny1

Pyny2
. . . Pynyn




(7.2)
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where Qv(k)is the process noise covariance matrix that is defined in section 4.2.1

and ∂fv
∂xv

is the Jacobian matrix of the fv with respect to robot position vector xv at

x̂v(k|k) which is defined in Section 6.1.2

State Covariance is calculated by using the Equation 2.24. ∂f
∂x and Q(k) in this

equation are

∂f

∂x
=




∂fv
∂xv

0 0 . . . 0

0 I 0 . . . 0

0 0 I . . . 0

...
...

...
. . .

...

0 0 0 . . . I




, Q(k) =




Qv(k) 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0




.

Identity matrices in the Jacobian matrix and 0 terms in the process covariance matrix

comes from the assumption that features in the scene do not move.

7.1.3 Predicting Measurements and Innovation Covariance

The camera system finds the positions of the features in camera coordinate system.

Since robot position and feature locations in the state vector are in world coordi-

nate frame, relationship between found feature positions, robot position and feature

locations in the world coordinate frame should be determined. For ith feature, this

relationship is kept in the measurement function hi(x̂(k+1|k)) which is as in Section

6.1.3.

To predict the measurement value at the predicted state, predicted state values

are applied to the above equation for each feature. Predicted measurement vector is

denoted by ẑ and is equal to h(x̂(k + 1|k)) where

h =




h1

h2

...

hn




Innovation Covariance determines the deviation from the predicted measurement

values. Innovation covariance is calculated using the Equation 2.25. ∂h
∂x is the Jaco-

bian matrix of h with respect to state vector x at x̂(k + 1|k).

Predicted measurements and innovation covariance can be used to determine a

search region for the feature. However, both predicted measurement values and
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innovation covariance are defined for the camera coordinate frame and in millimeters.

Since to find position information of the features, projections of the features on the

image planes are used. These values must be converted into image coordinates in

pixels. Using projection equation x = PX as explained in Section 3.1.2, predicted

3D points can be converted into image coordinates for both cameras.

For innovation covariance, first order propagation of uncertainty is used to find

the covariance in the image coordinates. Using the internal camera matrix K, relation

of image coordinates to 3D points are written explicitly. For the right camera this

relation is

uR =
fRxhx + sRhy

hz
+ uR0 , vR =

fRyhy

hz
+ vR0.

Innovation Covariance for the image vector uR =

(
uR

vR

)
, is computed from UR =

∂uR

∂h
S(k + 1)∂uR

∂h

T
. Here the value of the Jacobian is

∂uR

∂h
=


 fRx

hz

s
hz

−
fRxhx+sRhy

h2
z

0
fRy

hz
−

fRyhy

h2
z




By applying above calculations for each camera, predicted image coordinates and

image covariance is found. To find the search region, a number of standard deviations

are specified. By this way, an ellipse is formed and image features are to be searched

in this region. To simplify the operations, rather than finding an ellipse, taking only

square roots of the diagonal elements of the image covariance, a rectangle is formed

and image features are searched in this rectangle. Finding a search region, increases

the computational efficiency and decreases the probability of mismatches.

7.1.4 Correcting the State Vector and its Covariance

After measurements for the features are taken, corrected(updated) state vector and

its covariance is calculated using EKF correction equations. Gain is

K(k + 1) = P(k + 1)
∂h

∂x
S(k + 1)−1 (7.3)

State estimate and its covariance is found by using the gain as

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)(z − h(x̂(k + 1|k))) (7.4)

P(k + 1|k + 1) = P(k + 1|k) − KSK
T (7.5)
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When taking measurements, it is probable that some features cannot be seen and

thus, there may not be any measurements for these features. In this case for this time

step, predicted measurements are entered to the state vector update equation and

by this way, contribution of these features to the state vector becomes zero. At next

step, these unseen features are deleted. Deleting a feature will be explained later.

7.1.5 Adding a new feature

As stated earlier, state vector and its covariance matrix are dynamic. Their dimen-

sions change as new features are added or deleted. At initialization and when number

of features decreases up to a threshold number(typically 2), new features are added

to the system. When adding a new feature, its initial position in the world coordinate

frame and its initial covariance should be found. In addition, cross-covariances with

other features and robot position should be added to the state covariance matrix.

For this purpose, using measurements taken from the camera system, initial po-

sition is found. Relationship between camera measurements of the feature and its

counterpart in the world coordinates and robot position is similar to the equation 6.1

and is given as

yi =




xv + hix cos θ + hiz sin θ

hiy

zv + hix sin θ + hiz cos θ


 (7.6)

Adding this new feature to the state vector is simply concatenating this column vector

to the end of state vector. To form the state covariance, Jacobians ∂yi

∂x
and ∂yi

∂h
are

calculated. New state vector and its state covariance after a new feature added to

the existing two features is as follows:

xnew =




xv

y1

y2

yi


 (7.7)

Pnew =




Pxx Pxy1
Pxy2

Pxx
∂yi

∂x

T

Py1x Py1y1
Py1y2

Py1x
∂yi

∂x

T

Py2x Py2y1
Py2y2

Py2x
∂yi

∂x

T

∂yi

∂x
Pxx

∂yi

∂x
Pxy1

∂yi

∂x
Pxy2

∂yi

∂x
Pxx

∂yi

∂x

T

+ ∂yi

∂h
R

∂yi

∂h

T


 (7.8)

where R is the measurement noise covariance.
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7.1.6 Deleting a Feature

If a feature in the state vector cannot be seen by the camera system, in other words,

image feature points corresponding to feature cannot be found in the calculated search

region. Predicted measurement is returned to update equation and feature is deleted.

Deleting is simply removing corresponding row and column from the state vector

and the state covariance. Below, an example deletion operation is shown. First

feature of three features is deleted from the state vector and its covariance:


xv

y1

y2

y3


 →




xv

y2

y3







Pxx Pxy1
Pxy2

Pxy3

Py1x Py1y1
Py1y2

Py1y3

Py2x Py2y1
Py2y2

Py2y3

Py3x Py3y1
Py3y2

Py3y3


 →




Pxx Pxy2
Pxy3

Py2x Py2y2
Py2y3

Py3x Py3y2
Py3y3




7.2 Experiments

To test the algorithm, some experiments are performed. One of the experiments tests

the system and the algorithm using specified setup and manual feature selection.

The other experiment is with automatic feature selection and detection. Also, in this

experiment, effect of the search region and feature deletion is tested.

7.2.1 Experimental Setup

Experiments are performed in our laboratory in which there are many features to be

tracked. Since there is not any artificial landmark in this part of the thesis, existence

of many features is convenient for the experiments. Layout of the laboratory is

similar to a large room in a house and this makes the robot, a potential house tool

like automatic vacuum cleaner.

Experimental setup is similar to the one which is described in Section 6.2.1.

However, there is not any artificial landmark and camera system searches for the

natural ones. Measurement method of the ground truth values are performed in the

same way on the method that is described in Section 6.2.1.

61



To simplify and specify the test on feature selection, a white board is placed to

the one edge of the grid area, and robot is moved through this board. Black objects

are placed in front of this board to represent features. Since there is high contrast

between objects and the white board, corners on the objects can be easily detected

and added as features to the system. Figure 7.1 shows the experimental setup for

the experiments performed to test the algorithm in this chapter.

Figure 7.1: Experimental Setup for the Natural Landmark Tests

7.2.2 Experiments with Manual Feature Selection

In this part of the experiments, the algorithm is tested with controlled measurements.

At each step, features are added and matched by the operator manually. At initializa-

tion, the operator selects some points which have nonuniform pattern around them.

Corresponding points of the selected point on the left image is found by correlation

method that is described in Section 5.2.3. After 3D position of the each point is

calculated, these 3D positions are added to the state vector. According to the given

motion input, position and measurement values are calculated. Finding the same

feature points on the consequitive images is also done by the operator, manually.
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Table 7.1: Experimental Results of the Manual Feature Selection for forward-

backward Motion

Time Step Predicted Pos. Corrected Pos. Odometry

(mm) (mm) (mm)

1 50 39 46

2 88 90 95

3 140 137 143

4 187 175 191

5 225 214 241

6 264 263 291

7 313 315 341

8 365 380 393

9 430 425 441

10 475 473 490

Motion pattern for this experiment is forward motion of 500 mm with 50 mm at

each step. In ideal case, in this type of motion, the robot vehicle is expected to stop

at (0,500,0) position. However, mostly there is an error and ability of the algorithm

to find this error compared to the odometry values is tested. Experimental results for

this test is given in Table 7.1. These results show only the z component of the robot

position because the robot moves on the z direction and the error on this direction

is the most significant compared to other components.

Starting from the (0,0,0) position after 10 steps of motion, ground truth z compo-

nent of the position is 475 mm. Table 7.2 shows the deviation from the ground-truth

value. As seen in the above table, algorithm gives the most true value about the

Table 7.2: Deviation From the Ground-Truth Value

Ground-truth Predicted Pos. Corrected Pos. Odometry

(mm) ∆z(mm) ∆z(mm) ∆z(mm)

475 0 2 15
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position of the robot provided that features are matched truly.

7.2.3 Experiments with Automatic Feature Selection

In this experiment, all feature addition, deletion and matching operations are per-

formed automatically. At initialization step, strong corners that have quality levels

higher than the threshold are added to the state vector after 3D positions are calcu-

lated. At each step, features at the state vector are searched around the predicted

positions in the image. If the matched point is found, its corresponding point in the

left image is searched. If found, 3D position is calculated and given to the system as

measurement.

In the cases that a match point for the features in the state vector cannot be

found or corresponding point of the match point cannot be found in the left image,

calculated predicted measurement value of this feature is given to the system as the

posterior measurement. By this way, contribution of the measurement is made zero.

Then, this feature is deleted from the state vector and the state covariance. This is

applied for the first two sets of tests. For the third set, features are not deleted right

after they cannot be detected. Instead, a feature is deleted if it cannot be detected

for a long time (for example 5 times). By this way, temporary lost of feature is

prevented.

In addition, as stated earlier in Section 7.1.3, the predicted measurement and the

innovation covariance are used to determine a search region in the images for the

search of the features. Generally three standard deviations are used for the size of

the search region. Effect of the five standard deviation is also tested.

At each step, strong corners are searched and the corners that are different from

the existing ones and above the threshold are added to the system. This increases

the accuracy of the estimation.

Two types of motion patterns are used for tests. One of them is forward-backward

motion and the other is turn clockwise-counterclockwise motion.

Forward-Backward motion is such that robot moves forward 500 mm and moves

backward 500 with steps of 50 mm. The robot is expected to stop at starting point

but generally, it stops at a position different from the starting point. Both algorithm’s

and odometry’s response to this error is tested. For the test, parameters are given in

Table 7.3 and test results are given in Table 7.4.
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Table 7.3: Test Parameters for the Forward-Backward Motion

Quality Level 0.40

MinDistance 10

Patch Size 7 × 7

Correlation Threshold 0.80

Measurement Noise Cov diag(9,100,625)

In Table 7.4, Pos(3) denotes the test results for search region with three standard

deviation. Pos(5) is the test results for search region with five standard deviations.

In these two tests, lost features are deleted immediately. Pos (ND3) denotes the test

results for the tests in which features are not deleted immediately and search region

is with three standard deviations.

As seen in Table 7.4, in the results of Pos(3), after some steps, it gives erroneous

results and the error propagates. This is due to the lost of all features, in some steps.

In this case, it detects new features and these new features are located according to

the estimated position of the robot and information related to the previous features

are completely lost. In the results of Pos(5), since search region is big, features are

not completely lost in any steps and therefore it gives close results to the ground-

truth values. In Pos(ND3), since features are not deleted immediately, information

about a feature is kept in next steps, even a feature is lost in one step. By this way,

features are tracked for a long time.

In 100. step, odometry gives the value of 5, although the actual position is 183.

This is because before the 100.step, the robot is prevented to move by holding the

robot. During this prevention, wheels continue to turn and because of this, odometry

gives this far result. The results in Pos(5) and Pos(ND3) are consistent with the

ground-truth values.

The other motion pattern for tests is turn clockwise-counterclockwise motion such

that the robot turns 40 degrees counterclockwise and 40 degrees clockwise with steps

of 2 degrees. This motion is repeated two times. Test results are given in Table 7.5

As seen in Table 7.5, for all tests, the algorithm give close results to the ground-

truth value.
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Table 7.4: Test Results of Automatic Feature Selection for Forward-Backward Motion

Time Step Pos.(3) Pos.(5) Pos.(ND3) Odometry Ground-Truth

(mm) (mm) (mm) (mm) (mm)

10 460 523 523 501 478

20 7 8 8 9 6

30 -560 -535 -590 -496 -483

40 -109 -69 -59 -27 -28

50 405 489 481 478 460

60 -55 -44 -30 -17 -16

70 -622 -540 -556 -530 -508

80 -115 -45 -65 -41 -39

90 387 486 474 463 441

100 48 158 119 5 183

110 -363 -291 -290 -484 -290

120 -123 -26 2 -13 -53

130 323 438 437 463 410

140 -148 -61 -103 -23 -63

150 -652 -591 -635 -533 -547

160 -239 -15 -114 -45 -76

170 235 441 387 461 408

180 -256 -66 -106 -25 -51

190 -803 -712 -658 -501 -558

200 -367 -159 -165 -60 -89
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Table 7.5: Test Results of Automatic Feature Selection for Turn Motion

Time Step Pos.(3) Pos.(5) Odometry Ground-Truth

(deg) (deg) (deg) (deg)

20 20.59 22.50 17.68 20.81

40 -15.96 -14.76 -17.57 -16.62

30 4.40 4.69 4.48 -3.36

40 -29.75 -31.34 -33.57 -31.98
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Chapter 8

Conclusion

8.1 Summary of The Results

From many aspects, robot localization algorithms both using artificial and natural

landmarks are successfully implemented. Some of the results for the overall system

is as follows:

• For both natural and artificial landmarks, quality of the measurements is very

important. High uncertainty and wrong results for the short-term localization

for the artificial landmark case is due to the high error in depth measurements.

Smooth surface of the cylinder and lack of the specific points which can be

fixated on both left and the right camera images has caused the system to

find erroneous corresponding pairs and therefore wrong depth values. Strong

corners are point features and can be fixated on both images and therefore

give true corresponding pairs for the calculation of the depth of the natural

landmark and therefore, more accurate localization is established by using the

natural landmarks. Consequently, position of the robot is found nearly same

as the ground truth values for the natural landmarks, while odometry results

are near to the ground truth values for the artificial landmark case.

• Data association is a problem for both localization and SLAM problems. Ar-

tificial landmarks are chosen such that they are easily recognizable. Our land-

mark type has proved to be easily recognizable and can be seen same from

many different point of views. Therefore even after long runs, landmarks can

be redetected. By this way, uncertainty of the robot position is kept in a range

and it is prevented to increase without any bound.
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• In the experiments it is seen that, even it can be found easily on left and

right images, on consequitive frames, after some scaling, previously detected

corners become undetectable. For long-time localization it is an handicap and

prevents accurate localization. In addition affine transformations affect the

detectability of the corners. Therefore, in experiments related to the robot

localization using natural landmarks, turning motion of the robot causes the

features to be undetectable even after small angles of turn.

• Stereo camera system is fixed on the robot vehicle and views the scene that is

in front of the robot vehicle. For forward and backward motion, features can

be tracked for a long time without going out of the view. However, for the turn

motion, scene changes rapidly and features quickly go out of view. Therefore,

features can be detected only for a few steps. In addition, as stated above,

the corners as features are affected from the affine transformation. These two

factors sum up when a turn motion is performed in the natural landmark case

and cause the robot localization algorithm to fail.

• On the contrary to the artificial landmarks, information about a feature is lost

after the feature is deleted. Feature deletion is performed when the feature

go out of view or is not redetected. Thus, on the long-time motion, previously

detected and deleted features cannot be redetected and uncertainty of the robot

position increases without any bound as time goes on.

• In the experiments, using artificial landmarks, it is seen that the robot system

can recover from the error and finds its position with some error even a wrong

initial position is given. For the natural landmark case, since position of the

landmarks are determined according to the position of the robot, a kidnapped

robot test cannot be applied.

8.2 Future Work

In the light of experience gained, some future work about the robot system are as

follows:

• Recognizability of the artificial landmarks can be combined with the accurate

detection of the natural landmarks to form a more robust localization algorithm.

By this way, long-time localization can be established with accurate values.
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• Use of scale and affine invariant features as natural landmarks can increase

the performance of the robot localization algorithm. Recent studies like use

of SIFT features for SLAM[32] show the tendency on this subject. Use of

reliable features is not only the subject of robot localization but also the subject

of object recognition. By following general advances in object recognition,

innovative solutions for the more robust features can be found.

• The camera system was fixed on the robot vehicle and views only the front

scene of the robot. As stated in the conclusion part, this causes the features

quickly go out of the view especially in the turn motion. To use active head

and camera systems like in [3], will provide the system to track the features for

a long time and improve the performance of the system.

• One of the handicaps of EKF based robot localization algorithms is that it

works on unimodal distributions, especially for tracking features this can cause

the features to be lost even they are in the scene. Trying different techniques

like multi-hypothesis localization and Monte Carlo Localization can improve

the performance. See [22] for these techniques.
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Appendix A

Full Set of The Artificial

Landmarks

In this thesis, for robot localization using artificial landmarks, 8 coded cylinders are

used. Full set of the coded cylinders are given in Figure A.1. Each coded cylinder is

identified by the coding stripes. Coding stripes form a 3-bit coding system from 0 to

7.
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Figure A.1: Full set of landmarks (From top to bottom and left to bottom, in as-

cending order)
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