
SEMANTICALLY ENRICHED WEB SERVICE COMPOSITION IN
MOBILE ENVIRONMENTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

K. ALPAY ERTÜRKMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2003

Approval of the Graduate School of Informatics.

Prof. Dr. Neşe Yalabik
Director

I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

Assoc. Prof. Dr. Onur
Demirörs

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

Prof. Dr. Asuman Doğaç
Supervisor

Examining Committee Members

Prof. Dr. Asuman Doğaç

Prof. Dr. Semih Bilgen

Assoc. Prof. Dr. Onur Demirörs

Assist. Prof. Dr. Ahmet Coşar

Dr. Altan Koçyiğit

ABSTRACT

SEMANTICALLY ENRICHED WEB SERVICE COMPOSITION IN

MOBILE ENVIRONMENTS

Ertürkmen, Kulubey Alpay

M.Sc., Department of Information Systems

Supervisor: Prof. Dr. Asuman Doğaç

September 2003, 110 pages

Web Services are self-contained, self-describing, modular applications that can

be published, located, and invoked through XML artefacts across the Web. Web

services technologies can be applied to many kinds of applications, where they of-

fer considerable advantages compared to the old world of product-specific APIs,

platform-specific coding, and other “brittle” technology restrictions.

Currently there are millions of web services available on the web due to

the increase in e-commerce business volume. Web services can be discovered

using public registries and invoked through respective interfaces. However how

to automatically find, compose, invoke and monitor the web services is still an

issue. The automatic discovery, composition, invocation and monitoring of web

services require that semantics will be attached to service definitions.

The focus of this thesis is on the composition of web services. The approach

taken is to extend the DAML-S ontology that is used to define the semantics

of services to include the “succeeding services” for any service provided. These

definitions for individual service instances are declared by the service providers.

iii

They are presented to the users of the service to construct a workflow in a

mobile environment. The workflow generated is represented both graphically in

the mobile device and in XML-format as a BPEL4WS document.

The aim of this thesis is to prove that it is possible to build a semi-automatic

web service composition utility incorporating semantic constructs, using a mo-

bile device. The generated workflow is suitable for deployment on an engine

where it can be executed multiple times with different configurations.

Keywords: Web Service Composition, Web Service Semantics, DAML-S, BPEL4WS,

OWL-S.

iv

ÖZ

MOBİL ORTAMDA SEMANTİKLE ZENGİNLEŞTİRİLMİŞ AĞ SERVİSİ

DÜZENLENMESİ

Ertürkmen, Kulubey Alpay

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Asuman Doğaç

Eylül 2003, 110 sayfa

Ağ servisleri kendi içlerinde kapalı, kendi kendilerini tanımlayabilen, Web üzerin-

den XML elemanlar kullanarak yayınlanabilen, bulunabilen ve çalıştırılabilen

modüler uygulamalardır. Ağ servis teknolojileri çok çeşitli yerlerde uygulanabilir

ve buralarda eski tip API’ler, platforma bağlı kodlar gibi, kırılgan teknoloji

kısıtlamalarına kıyasla büyük avantajlar sunarlar.

Artan elektronik ticaret hacmine bağlı olarak şu anda ağ üzerinde milyon-

larca ağ servisi bulunmaktadır. Ağ servisleri saklayıcılar üzerinden bulunabilir

ve gerekli arayüzler üzerinden çalıştırılabilir. Fakat bu servislerin otomatik

olarak nasıl bulunacağı, düzenleneceği, çalıştırılacağı ve gözleneceği henüz bir

tartışma konusudur. Ağ servislerinin otomatik bulunması, düzenlenmesi, çalıştı-

rılması ve gözlenmesi icin servis tanımlarına semantiğin de eklenmesi gerekmek-

tedir.

Bu tez ağ servislerinin düzenlenmesi üzerinedir. İzlenen yol servis seman-

tiklerinin tanımlanmasında kullanılan DAML-S ontolojisinin, sunulan servisler

icin “takip eden servis” tanımını içerecek şekilde genişletilmesidir. Bu servis

v

tanımları servisi sunanlar tarafından belirlenir ve kullanıcıya bir iş akışı çıkarması

icin mobil bir ortamda sunulur. çıkarılan iş akısı hem görsel olarak mobil ci-

hazda, hem de XML formatında bir BPEL4WS dökümanı şeklinde oluşturulur.

Bu tezin amacı semantik yapılar içeren yarı-otomatik bir ağ servisi düzenleme

uygulamasının bir mobil cihazda bile gerçekleştirilebileceğini gostermektir. Oluş-

turulan iş akışı ise bir iş akış motoruna yüklenerek değişik girdilerle birçok kere

çalıştırılmaya uygundur.

Anahtar Kelimeler: Ağ Servis Düzenlenmesi, Ağ Servis Semantiği, DAML-S,

BPEL4WS, OWL-S.

vi

To my family

vii

ACKNOWLEDGMENTS

I would like to thank my supervisor Prof.Dr.Asuman Doğaç for her guidance,

support, patience and motivation during this study.

I would like to thank Yıldıray Kabak, Meltem Sönmez and Yasemin Salihoğlu

for their help.

Finally, I am grateful to Gökçe Banu Laleci for her vision, endless patience

and invaluable support.

viii

TABLE OF CONTENTS

ABSTRACT . iii

ÖZ . v

DEDICATON . vii

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ACRONYMS AND ABBREVIATIONS xiii

CHAPTER

1 Introduction . 1

2 Enabling Technologies . 6

2.1 Web Services . 6

2.1.1 WSDL . 8

2.2 Semantic Web and Web Service Semantics 14

2.2.1 DAML+OIL 17

2.2.2 DAML-S . 21

2.3 BPEL4WS . 30

2.4 J2ME . 36

3 System Architecture . 40

4 Design and Implementation . 47

4.1 Module Objectives . 47

4.2 Ontology Processing . 48

ix

4.3 Messaging Scheme . 54

4.4 Presentation (Mobile) Layer 58

4.5 Application Layer . 68

4.5.1 Controller Sub-Module 69

4.5.2 BPEL4WS Generator Sub-Module 71

5 Conclusions and Future Work 74

REFERENCES . 76

APPENDICES . 81

A Classes of Mobile Module . 81

B Classes of Application Module 83

C Extended DAML-S Profile . 85

D DAML-S Tourism Mini-Ontology 97

E Generated BPEL4WS Document 103

F WSDL Documents . 106

F.1 SeekHotels.com.wsdl . 106

F.2 WorldofWonders.com.wsdl 107

F.3 Health-onHotel.wsdl . 108

F.4 Ph.DCard.wsdl . 108

F.5 WHOOPSParcelService.wsdl 109

x

LIST OF TABLES

4.1 Ontology Database Tables . 54
4.2 DAML-S Ontology - Ontology Database Mapping 55
4.3 Messaging Scheme . 59

xi

LIST OF FIGURES

1.1 Global System View . 4

2.1 Web Service Model . 7
2.2 Top level of the service ontology 23
2.3 Generic and implementation specific J2ME architecture 39

3.1 The Overall System Architecture 45

4.1 Logical Relationships in Ontology Database 53
4.2 Overall System Flow Chart . 56
4.3 Sequence Diagram for Initialization 56
4.4 Sequence Diagram for Service Selection 57
4.5 Sequence Diagram for Termination 58
4.6 User Interface Map for the Mobile Module 59
4.7 Mobile Module Welcome Message Screen 60
4.8 Mobile Module Main Menu . 61
4.9 Mobile Module List of Generic Services 62
4.10 Mobile Module List of Service Instances 63
4.11 Mobile Module Input Properties Text Boxes 64
4.12 Mobile Module List of Workflow Constructs 65
4.13 Mobile Module Graphical Representation of the Workflow . . . 66
4.14 Mobile Module List of Succeeding Services 67

xii

LIST OF ACRONYMS AND ABBREVIATIONS

API: Application Programming Interface

BPEL4J: Business Process Execution Language for Web Services Java Runtime

BPEL4WS: Business Process Execution Language for Web Services

B2B: Business to Business e-Commerce

B2C: Business to Consumer e-Commerce

CDC: Connected Device Configuration

CEO: Chief Executive Officer

CLDC: Connected Limited Device Configuration

DAML-S: DARPA Agent Markup Language based Web Service Ontology

ebXML: Electronic Business using Extensible Markup Language

EDI: Electronic Data Interchange

EU: European Union

GUI: Graphical User Interface

HTML: Hyper Text Markup Language

HTTP: Hyper Text Transfer Protocol

IBM: International Business Machines

JVM: Java Virtual Machine

J2EE: Java 2 Enterprise Edition

J2ME: Java 2 Micro Edition

J2SE: Java 2 Standard Edition

MIDP: Mobile Information Device Profile

xiii

OWL: Web Ontology Language

OWL-S: Web Ontology Language based Web Service Ontology

PDA: Personal Digital Assistant

RDF: Resource Description Framework

RDFS: Resource Description Framework Schema

RPC: Remote Procedure Call

SMTP: Simple Mail Transfer Protocol

SOAP: Simple Object Access Protocol

SQL: Standard Query Language

TCP/IP: Transmission Control Protocol / Internet Protocol

UDDI: Universal Description, Discovery and Integration of Web Services

URI: Uniform Resource Identifier

URL: Uniform Resource Locator

WSDK: IBM WebSphere Software Development Kit for Web Services

WSDL: Web Services Description Language

WSFL: Web Services Flow Language

WWW: World Wide Web

W3C: World Wide Web Consortium

XML: Extensible Markup Language

xiv

CHAPTER 1

Introduction

This thesis describes how semantically enriched web services can be composed

and used in mobile environments.

As the hardware components of computers get smaller in size and offer more

computational power, mobile computing became a reality. As of today, state-of-

the-art PDAs (Personal Digital Assistant) offer the same computational power,

memory and storage space as the high-end desktop computer of 5-6 years ago.

The small size and high computing power, combined with the wireless communi-

cation technologies offering high data transmission speeds up to tens of megabits

per second, created a new breed of communication technologies.

In the meantime, web has evolved from a communication medium to a social

concept and pulled the business into itself. Businesses used the web as a digital

marketplace where reaching millions was a matter of seconds. Also finding

business partners are much easy in this medium.

Web Services carrying their roots from Electronic Data Interchange (EDI)

come into existence on the web to create large volumes of e-Commerce both in

Business-to-Business (B2B) and Business-to-Consumer (B2C) domains.

The format centered web contains vast amount of data and information,

where nothing could be found easily. The creators of the web have a vision: The

Semantic Web [24], is the only way to solve this problem, where every piece of

1

data and information is understandable by the computers as well as humans.

Extensible Markup Language (XML); the elegant solution to messaging, data

storage, data structuring etc. in the sense that it is flexible, extensible, simple

and platform-independent; came in to the scene to offer its potential. XML was

one of the interesting areas of computer research. Many extensions had been

done to XML, the most important of which for the Semantic Web is the Resource

Description Framework (RDF) [32]. RDF introduced the graph theory to XML

to describe everything as a triplet: ”Subject hasProperty Object”.

DAML-OIL [12] is an effort to create classes that describe part of an object

domain. It uses RDF constructs to describe the relationships between domains.

These classes and properties build up the basis for the semantic constructs the

Semantic Web needs.

DAML-S [11] builds on DAML-OIL to provide an ontology for describing

Web Services. DAML-S aims the following four concepts to be realized: Auto-

matic discovery, invocation, composition and monitoring of web services. Auto-

matic discovery of web services needs the integration of the semantic constructs

with public registries like Universal Description, Discovery and Integration of

Web Services (UDDI) [36] and Electronic Business using eXtensible Markup

Language (ebXML) [17]. In the work described in [23] DAML-S ontology is

converted into ebXML registry constructs and successfully stored and queried

through the ebXML registry.

Automatic invocation of web services has become a reality with the intro-

duction of technologies like Web Services Description Language (WSDL) [39]

and Simple Object Access Protocol (SOAP) [34] that define the implementa-

tions of web services in a platform-independent manner. With the aid of the

semantic definitions of the services, developers can build platforms where ser-

vices can be automatically discovered from public registries and invoked using

WSDL definitions through protocols like HTTP or SOAP.

Automatic composition of web services requires more research in the sense

that although the services can be discovered, some matchmaking process is

2

needed to check whether the services can actually work together in a composi-

tion. Current research builds on the fact that outputs of a given web service

would provide a perfect or an approximate match to the inputs of another ser-

vice, thus the service may succeed the current one in the flow [31].

In this thesis a semi automated approach is taken where the possible succeed-

ing services is discovered automatically and presented to the user. The decision

on the choice of the succeeding service is taken by the user.

In this thesis, the DAML-S service ontology is extended to include succeeding

service definitions for each service. The choice of succeeding service definitions

are left to the service providers to decide. Also a mini-tourism ontology is defined

to demonstrate how the inputs and the outputs of the services are semantically

matchable.

The system is designed in three layers: presentation, application and data

layer. Data Layer stores the service ontology in an Ontology Database. Ap-

plication Layer is responsible of connecting the Presentation Layer to the Data

Layer and producing an XML representation of the workflow generated. The

Presentation Layer presents service information to the user and gets user inputs.

The XML representation for the workflow is chosen to be Business Process

Execution Language for Web Services (BPEL4WS) [3]. BPEL4WS is designed to

represent web service compositions in XML format and provide an engine where

this workflow can be executed. An alpha version BPEL4WS engine (BPEL4J)

is available from IBM’s “alphaWorks Emerging Technologies” [1].

A workflow is created with the assumption that it will be executed repeat-

edly. A single-use workflow generation is not a feasible effort. Since the workflow

resides in the engine for a period of time, it can be executed several times. The

workflows can be executed with the same configuration, or with a new set of

inputs every time it is executed. A web interface can be configured to take the

new set of inputs. The process may also be configured as a web service. In this

case, protocols such as SOAP can be used to invoke the BPEL4WS workflow

that has been composed and deployed on BPEL4J. A complex banking trans-

3

Figure 1.1: Global System View

action; that involves several steps like sale of stocks or bonds, money transfer

and payment; and which is executed repeatedly can be defined as a workflow

and deployed on a BPEL4J engine. Similarly a workflow for frequent travellers

which discovers hotels and flights, reserves rooms and flight tickets, makes pay-

ments can be defined so that the user can execute the process with different set

of inputs.

In this thesis, BPEL4WS documents that can be deployed on a BPEL engine

like BPEL4J are generated. The validity of the documents generated is checked

by the BPEL4J Editor developed by IBM alphaWorks [1].

4

The presentation layer stated above is implemented in a cellular phone to

prove that it is possible to perform such complex activities in a limited device.

The cellular phone can show the workflow generated through a graphical user

interface and let the user navigate on the workflow.

The system developed in this thesis is designed to be a part of a larger system

that is presented in Figure 1.1. The part of it that is implemented in this thesis

is shown in shaded area.

The thesis is organized as follows: Technologies employed in the thesis are

explained in Chapter 2. System Architecture is presented in Chapter 3. Design

decisions and system implementation is explained in Chapter 4. The objectives

of the three layers are given in Section 4.1. Section 4.2 explains how the DAML-

S ontology is processed. Section 4.3 explains the messaging scheme developed.

Section 4.4 and 4.5 include the implementation details of the Presentation and

Application Layers respectively. The thesis is concluded and future work are

given in Chapter 5.

5

CHAPTER 2

Enabling Technologies

2.1 Web Services

Web Services are self-contained, self-describing, modular applications that can

be published, located, and invoked through XML artefacts across the Web [41].

Web services perform functions that can be anything from simple requests to

complicated business processes. A sample Web service might provide stock

quotes, process credit card transactions, or accept purchase orders automatically.

Individual Web Services can be composed to accomplish more complex business

processes.

Web services technologies can be applied to many kinds of applications,

where they offer considerable advantages compared to the old world of product-

specific APIs, platform-specific coding, and other “brittle” technology restric-

tions [7]:

• Loose coupling – if the message format stays the same, the system won’t

break just because software on one side or the other changes.

• Ability to use any operating system, any programming language, any ven-

dor’s software, any object model – by focussing on the message format

and standards for governing the exchange of messages, Web services hides

implementation technology choices from partners.

6

Figure 2.1: Web Service Model

• Late binding – current version of the service can be determined by looking

in a registry, further protecting software from inevitable change.

• Reusable code available on the Web with new kinds of functions that

integrate real-time information.

• Faster integration by using standard descriptions that application develop-

ment tools use to assist the programmer with service access requirements

or to generate code.

Interactions among Web services involve three types of participants: service

provider, service registry and service requester as presented in Figure 2.1. The

components in Web Service model can be described as follows [42]:

• Service: This is the application being provided for use by requesters that

fit the prerequisites specified by the Service Provider. Its implementation

is deployed on a network accessible platform. It is described through a

service description language mostly in WSDL (Web Services Description

Language) [39]. Its description and access policies have been published to

a registry.

7

• Service Provider: From a business perspective, this is the owner of the ser-

vice. From an architectural perspective, this is the platform that provides

access to the service.

• Service Registry: This is a searchable repository of service descriptions

where service providers publish their services and service requesters find

services and obtain binding information for services. There are two well

known service registries: Electronic Business XML (ebXML) [17] Reg-

istries and the The Universal Description, Discovery, Integration frame-

work (UDDI) [36] Registries. Service Providers advertise (publish) the

availability of their e-business service to one or more service registries, or

to remove the advertisement of (unpublish) their service.

• Service Requestor: From a business perspective, this is the business that

requires certain function to be fulfilled. From an architectural perspective,

this is the application or client that is looking for and invoking a service.

Service Requestors interact with one or more service registries to discover

a set of e-business services that it can interact with to provide a solution.

They negotiate with Service Providers to access and invoke e-business ser-

vices. The universal standard for invoking Web services is SOAP (Simple

Object Access Protocol) [34], which is an XML based messaging and re-

mote procedure call (RPC) mechanism.

2.1.1 WSDL

The introduction of Web services has created excitement within many technical

circles. This excitement stems from many roots; two of which are the promises of

interoperability and speedy time-to-market. Interoperability is partly achieved

through the use of common, open protocols like HTTP and SOAP [34]. This is

not enough, however, to make the implementation of a server process completely

transparent to the client.

8

The client also has to know about the data types, parameters, return types,

location, and transmission details of Web services. There is a need for a meta-

protocol that can describe these essentials in a non-vendor and non-implementation

specific manner so that the client and server might be completely decoupled [38].

Web Services Description Language (WSDL) [39] enables one to separate

the description of the abstract functionality offered by a service from concrete

details of a service description such as “how” and “where” that functionality is

offered.

WSDL is an XML-based file format that describes not only these Web service

interface details but also how the abstract interface is tied to a given transport

protocol (HTTP, SMTP, etc.,) and encoding (SOAP, etc.,). The advantages

of WSDL, however, are more than just those that come from interoperability.

WSDL is a World Wide Web Consortium (W3C) [43] Standard. Being bound

to a specification, vendors are able to create tools that use WSDL to generate

not only client run-time code for interacting with a Web service but also tools

that use WSDL to generate server-side template code.

WSDL, then, not only does help disparate processes interoperate but also

helps to lower the development time required to Web service-enable the client

and server. The IBM WebSphere SDK for Web Services (WSDK) [37] comes

with the WSDL2WebService tool that uses WSDL to help the developer get

his/her project up and running by generating the client run-time code and server

template code for a Web service [38].

WSDL describes Web services starting with the messages that are exchanged

between the service provider and requestor. The messages themselves are de-

scribed abstractly and then bound to a concrete network protocol and message

format. A message consists of a collection of typed data items. An exchange

of messages between the service provider and requestor are described as an op-

eration. A collection of operations is called a portType. A service contains a

collection of ports, where each port is an implementation of a portType, which

includes all the concrete details needed to interact with the service [39].

9

These constructs are expressed in a WSDL document as follows:

PortTypes: A portType describes the operations provided by a Web ser-

vice. It is like a Java interface in that it describes a set of operations. It combines

message elements into an operation.

Messages and types: A message is a data element. It is used by an oper-

ation to carry the data of the operation. Messages describe the communication

between client and service, by listing the data types exchanged. The types are

described in the types element, which is usually done with XML Schema [45].

Types are like Java classes and primitive types.

Operations, messages, and faults: An operation is like a Java method.

It consists of incoming, outgoing, and fault messages. It is possible to consider

an incoming message for an operation like a method’s parameters in Java pro-

gramming language. An outgoing message for an operation can be thought like

a method’s return type in Java programming language. A fault message can be

considered as a Java exception.

Bindings: A binding binds a portType to a particular protocol (for example,

SOAP 1.1, HTTP GET/POST, or MIME).

Services: A service defines the connection information for a particular bind-

ing. Services can have one or more ports, each of which define a different con-

nection method (for example, HTTP / SMTP, etc.).

The <types> WSDL element allows you to specify the data types which are

required by the Web service interface a WSDL file describes, no matter how

simple or complex they are. The WSDL Specification puts no requirements on

what protocol is used to define types although it supports XML Schema for

its canonical type protocol. XML Schema is both common and open, so its

use within WSDL keeps the Web service definition free from the type-specifics

of programming languages and vendor-specific types. Following is two type

declarations employing XML schema:

<wsdl:types>

<xsd:schema>

<xsd:simpleType name="EmailAddressType">

10

<xsd:restriction base="xsd:string">

<xsd:pattern value=".+@.+"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="PriceType">

<xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="6"/>

<xsd:fractionDigits value="2"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</wsdl:types>

The <message> element groups data (whose types are defined in the <types>

element) into a signature for a logical network transmission and binds them to

a name. This name is used to reference a <message> within the context of an

operation definition. Each instance of data within a <message> is declared in

a <part> element as follows.

<wsdl:definitions xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/ ...>

...

<wsdl:message name="Subscribe">

<wsdl:part name="email" type="tns:EmailAddressType"/>

<wsdl:part name="until" type="xsd:date"/>

</wsdl:message>

<wsdl:message name="PurchaseResponse">

<wsdl:part name="paymentResponse" type="tns:ResponseConfirmationType" />

<wsdl:part name="purchaseDate" type="xsd:date" />

</wsdl:message>

The <portType> element is the WSDL equivalent of a Java interface. It

groups references to <message> elements into logical operations that a process

can execute on another process and binds them to a name. An <operation>

can contain <input>, <output>, and <fault> elements. For all three elements

the message attribute references a <message> element defined in the WSDL

file. The <input> element declares the requirements of a client request trans-

mission to a Web service. The <output> declares the content of a Web service’s

11

response. The <fault> element describes any message-level exceptions that oc-

curred while trying to respond to the client’s request.

<wsdl:portType name="DVDRenting">

<wsdl:operation name="SubscribeToSpecialsAlertList">

<wsdl:input message="tns:Subscribe" />

</wsdl:operation>

<wsdl:operation name="RentDVD">

<wsdl:input message="tns:RentalRequest" />

<wsdl:output message="tns:PurchaseResponse" />

<wsdl:fault name="tns:RentFault" message="tns:PaymentFault" />

</wsdl:operation>

</wsdl:portType>

The WSDL elements listed so far have all been abstract as far as a par-

ticular transport or messaging protocol is concerned (that is, SOAP, SMTP,

HTTP, etc.) An organization using any protocols could implement the Web

service interface described above. The content of a WSDL <binding> element

ties down these abstract hooks to a Web protocol. The binding element has

both a name attribute to identify it within the WSDL document and a type

attribute that references the portType for which this element describes a bind-

ing. It also has an <operation> element for every <operation> element in

the <portType> for which this is a binding. The <operation> element in turn

has <input>/<output>/<fault> elements for those defined in its corresponding

<operation> element. Elements describing a binding are nested within these de-

scendents of the <binding> element in order to link messaging protocol specifics

to generalities mentioned in the target portType. Following is an example with

no messages defined [38].

<wsdl:binding name="SoapDVDRenting" type="tns:DVDRenting">

<wsdl:operation name="tns:SubscribeToSpecialsAlertList">

<wsdl:input>

</wsdl:input>

</wsdl:operation>

<wsdl:operation name="tns:RentDVD">

<wsdl:input>

</wsdl:input>

12

<wsdl:output>

</wsdl:output>

<wsdl:fault>

</wsdl:fault>

</wsdl:operation>

</wsdl:binding>

The W3C recommends three bindings for Web services: SOAP over HTTP,

HTTP GET/POST, SOAP/MIME. A short example for SOAP over HTTP is:

<wsdl:binding name="SoapDVDRenting" type="tns:DVDRenting">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="SubscribeToSpecialsAlertList">

<soap:operation soapAction=""/>

<wsdl:input>

<soap:body namespace="http://dvd.com" use="literal"/>

</wsdl:input>

</wsdl:operation>

The <soap:binding> element intimates the messaging style (rpc) of the soap

communications (see Messaging Styles) and the intended transport protocol

(HTTP) . The soapAction attribute of the <soap:operation> element gets trans-

lated into an HTTP header that declares the intention of the HTTP request that

will be sent.

Finally, the <service> WSDL element associates a particular binding to one

or more processes on the network that can service requests according to the

portType that the binding implements. For SOAP over HTTP this is simply a

URL pointing to that process [38]. Following is an example service declaration.

<wsdl:service name="DVDRentalServices">

<wsdl:documentation>Here are some endpoints that support the DVDRental SOAP

HTTPbinding

</wsdl:documentation>

<wsdl:port name="LPCDVDRentalService" binding="tns:SoapDVDRenting">

<soap:address location="http://localhost:6080/soap/servlet/rpcrouter" />

</wsdl:port>

<wsdl:port name="ClassicsDVDRentals" binding="tns:SoapDVDRenting">

<soap:address

location="http://www.classicsdvdrentals.com/soap/servlet/rpcrouter" />

</wsdl:port>

</wsdl:service>

13

2.2 Semantic Web and Web Service Semantics

The World Wide Web has been made possible through a set of widely estab-

lished standards which guarantee interoperability at various levels: the TCP/IP

protocol has ensured that nobody has to worry about transporting bits over the

wire anymore; similarly, HTTP and HTML have provided a standard way of

retrieving and presenting hyperlinked text documents. Applications were able

to use this common infrastructure and this has led to the WWW as we know it

now.

The current Web can be characterised as the second generation Web: the

first generation Web was characterised by handwritten HTML pages; the second

generation made the step to machine generated and often active HTML pages.

These generations of the Web were meant for direct human processing (read-

ing, browsing, form-filling, etc.). The third generation Web aims to make Web

resources more readily accessible to automated processes by adding meta-data

annotations that describe their content [19]. This coincides with the “Semantic

Web” vision of Tim Berners-Lee, which aims to bring structure to the mean-

ingful content of Web pages, creating an environment where software agents

roaming from page to page can readily carry out sophisticated tasks for users

[24].

The WWW has also drastically changed the availability of electronically

available information. However, this success and exponential growth makes it

increasingly difficult to find, to access, to present, and to maintain the informa-

tion of use to a wide variety of users. In reaction to this bottleneck many new

research initiatives and commercial enterprises have been set up to enrich avail-

able information with machine processable semantics. Such support is essential

for “bringing the web to its full potential” in areas such as knowledge man-

agement and electronic commerce. This semantic web will provide intelligent

access to heterogeneous and distributed information enabling software products

(agents) to mediate between the user needs and the available information sources

[18].

14

The Semantic Web is not a separate Web but an extension of the current one,

in which information is given well-defined meaning, better enabling computers

and people to work in cooperation [24].

The first step in this direction is taken by RDF which define a syntactical

convention and a simple data model for representing machine-processable se-

mantics of data. The Resource Description Framework (RDF) [32] is a standard

for Web meta data developed by the World Wide Web Consortium (W3C) [43].

A second step is taken by the RDF Schema (RDFS) [33] recommendation that

defines basic ontological modeling primitives on top of RDF. RDFS in partic-

ular is recognisable as an ontology/knowledge representation language: it talks

about classes and properties (binary relations), range and domain constraints

(on properties), and subclass and subproperty (subsumption) relations.

RDFS is, however, a very primitive language, and more expressive power

would clearly be necessary/desirable in order to describe resources in sufficient

detail. Moreover, such descriptions should enable automated reasoning if they

are to be used effectively by automated processes, e.g., to determine the semantic

relationship between syntactically different terms [19].

As a response to these needs, third step is taken by OIL [29] that uses RDFS

as a starting point and extends it to a full-fledged ontology modeling language.

OIL unifies three important aspects provided by different communities: Rich

modeling primitives as provided by the Frame community, formal semantics and

efficient reasoning support as provided by Description Logics, and a standard

proposal for syntactical exchange notations as provided by the Web commu-

nity. Another candidate for such a web-based ontology modeling language is

DAML-ONT [9] funded by DARPA [8]. In 1999 the DARPA Agent Markup

Language (DAML) program was initiated with the aim of providing the foun-

dations of a next generation Semantic Web. As a first step, it was decided that

the adoption of a common ontology language would facilitate semantic interop-

erability across the various projects making up the program. RDFS was seen

as a good starting point, and was already a proposed World Wide Web Con-

15

sortium (W3C) standard, but it was not expressive enough to meet DAML’s

requirements. A new language called DAML-ONT was therefore developed that

extended RDF with language constructors from object-oriented and frame-based

knowledge representation languages. Like RDFS, DAML-ONT suffered from a

rather weak semantic specification, and it was soon realised that this could lead

to disagreements, both amongst humans and machines, as to the precise mean-

ing of terms in a DAML-ONT ontology [18]. The developers of DAML-ONT

and OIL have combined their efforts to produce DAML+OIL [12]. The merged

language has a formal (model theoretic) semantics that provides machine and

human understandability, and a reconciliation of the language constructors from

the two languages. The development of DAML+OIL has been undertaken by a

committee largely made up of members of the two language design teams titled

the Joint EU/US Committee on Agent Markup Languages. DAML+OIL will be

presented in detail in Section 2.2.1. Recently World Wide Web Consortium has

started the initiative to develop Semantic Web and a semantic markup language

for publishing and sharing ontologies, namely Web Ontology Language (OWL)

[30]. OWL is derived from DAML+OIL by incorporating learnings from the

design and application use of DAML+OIL.

Among the most important Web resources are those that provide services.

The Semantic Web should enable greater access not only to content but also to

services on the Web. [11]. To exploit the Web Services in their full potential

semantics of the Web Services should be defined so that users and software

agents should be able to discover, invoke, compose, and monitor Web resources

offering particular services and having particular properties automatically [16].

Web services, like their real life counterparts, may have many properties such

as:

• The methods of charging and payment.

• The channels by which the service is requested and provided.

• Constraints on temporal and spatial availability.

16

• Service quality, security, trust and rights attached to a service and many

more.

Web Service Description Language (WSDL) specifies only the technical in-

terface of the Web services. To be able to describe the properties of the services,

the semantics of the service should be defined in a machine processable and

interoperable manner by using ontologies. In other words, all the necessary

properties of services can easily be defined through an ontology language and

domain specific ontologies can be developed by standard bodies [15].

In this respect, DAML-S [11] is an initiative by BBN Technologies, Carnegie

Mellon University, Nokia, Stanford University, and SRI International to provide

an ontology, within the framework of the DARPA Agent Markup Language

(DAML), for describing Web services. DAML-S defines an upper ontology, that

is, a generic ”Service” class. In order to make use of DAML-S upper ontology, the

lower levels of the ontology need to be defined [15]. DAML-S will be presented

in detail in Section 2.2.2.

As the time of writing, DAML-S 0.9 Beta Specification is available which is

expected to be the latest release based on DAML+OIL. Subsequent releases will

be based upon the Web Ontology Language [30] developed by the Web-Ontology

Working Group at the World Wide Web Consortium [10] and be named as OWL-

S [35].

Defining languages for the semantic web is just the first step into this direc-

tion. Developing new tools, architectures, and applications is the real challenge

afterwards. In this respect, this thesis provides an important basis since it covers

both an extension to DAML-S Service Ontology and the usage of this semantic

web constructs to implement a system architecture that lets semi-automatic web

service composition.

2.2.1 DAML+OIL

DAML+OIL is an ontology language, and as such is designed to describe the

structure of a domain. DAML+OIL takes an object oriented approach, with the

17

structure of the domain being described in terms of classes and properties. An

ontology consists of a set of axioms that assert, e.g., subsumption relationships

between classes or properties. Asserting that resources (pairs of resources) are

instances of DAML+OIL classes (properties) is left to RDF, a task for which it

is well suited [19]. DAML+OIL divides the universe into two disjoint parts [13].

One part consists of the values that belong to XML Schema datatypes. This part

is called the datatype domain. The other part consists of (individual) objects

that are considered to be members of classes described within DAML+OIL (or

RDF). This part is called the object domain.

DAML+OIL is mostly concerned with the creation of classes that describe

(or define) part of the object domain. Such classes are called object classes and

are elements of daml:Class, a subclass of rdfs:Class. DAML+OIL also allows

the use of XML Schema datatypes to describe (or define) part of the datatype

domain. These datatypes are used within DAML+OIL simply by including

their URIs within a DAML+OIL ontology. They are (implicitly) elements of

daml:Datatype.

Relations between classes are defined with rdf:Property elements. Properties

can be either instances of ObjectProperty, which relate objects to other objects;

or datatype properties, DatatypeProperty which relate objects to datatype val-

ues.

From a formal point of view, DAML+OIL can be seen to be equivalent to

a very expressive description logic, with a DAML+OIL ontology corresponding

to a DL (Description Logics) terminology. As in a DL, DAML+OIL classes can

be names (URIs) or expressions, and a variety of constructors are provided for

building class expressions. The expressive power of the language is determined

by the class (and property) constructors supported, and by the kinds of axiom

supported. The constructors supported by DAML+OIL are as follows:

• intersectionOf

• unionOf

18

• complementOf

• disjointUnionOf

• oneOf

• toClass

• hasClass

• hasValue

• minCardinalityQ

• maxCardinalityQ

• cardinalityQ

The meaning of the first four constructors (intersectionOf, unionOf and com-

plementOf) is relatively self-explanatory: they are just the standard boolean

operators that allow classes to be formed from the intersection, union and nega-

tion of other classes. An example Class definition using the ”intersectionOf”

construct is as follows:

<daml:Class rdf:ID="Human">

<daml:unionOf rdf:parseType="daml:collection">

<daml:Class rdf:about="#Female"/>

<daml:Class rdf:about="#Male"/>

</daml:unionOf>

</daml:Class>

The oneOf constructor allows classes to be defined existentially, i.e., by enu-

merating their members. In DAML it is possible to define property restrictions.

The rest of constructors enumerated in the preceding list are used to indicate

the type of the restrictions. A property restriction is a special kind of class

expression. It implicitly defines an anonymous class, namely the class of all

objects that satisfy the restriction. There are two kinds of restrictions. The

first kind, ObjectRestriction, works on object properties, i.e., properties that

19

relate objects to other objects. The second kind, DatatypeRestriction, works on

datatype properties, i.e., properties that relate objects to datatype values. Both

kinds of restrictions are created using the same syntax, with the usual difference

being whether a class element or a datatype reference is used.

• toClass element defines the class of all objects for whom the values of

property P all belong to the class expression.

• hasValue element defines the class of all objects for whom the property P

has at least one value equal to the named object or datatype value (and

perhaps other values as well).

• hasClass element defines the class of all objects for which at least one value

of the property P is a member of the class expression or datatype.

• maxCardinality element defines the class of all objects that have at most

N distinct values for the property P.

• minCardinality element defines the class of all objects that have at least

N distinct values for the property P.

• cardinalityQ element defines the class of all objects that have exactly N

distinct values for the property P that are instances of the class expression

or datatype (and possibly other values not belonging to the class expression

or datatype).

As already mentioned, besides the set of constructors supported, the other as-

pect of a language that determines its expressive power is the kinds of axiom

supported. These axioms make it possible to assert subsumption or equivalence

with respect to classes or properties, the disjointness of classes, the equivalence

or nonequivalence of individuals (resources), and various properties of proper-

ties. The set of axioms supported by DAML+OIL are listed as follows:

• subClassOf

• sameClassAs

20

• subPropertyOf

• samePropertyAs

• disjointWith

• sameIndividualAs

• differentIndividualFrom

• inverseOf

• transitiveProperty

• uniqueProperty

• unambiguousProperty

2.2.2 DAML-S

DAML-S [11] is an attempt by BBN Technologies, Carnegie Mellon Univer-

sity, Nokia, Stanford University, and SRI International to provide an ontology,

within the framework of the DARPA Agent Markup Language, for describing

Web services. It enables users and software agents to automatically discover,

invoke, compose, and monitor Web resources offering services, under specified

constraints. It is an ontology for services written in DAML-the DARPA Agent

Markup Language, which enables the creation of ontologies for any domain and

the instantiation of these ontologies in the description of specific Web sites.

DAML-S supports both simple and complex services. It aims to manage the

following automations:

Automatic Web service discovery: Automatic Web service discovery in-

volves the automatic location of Web services that provide a particular service

and that adhere to requested constraints. DAML-S provides declarative adver-

tisements of service properties and capabilities that can be used for automatic

service discovery.

21

Automatic Web service invocation: Automatic Web service invocation

involves the automatic execution of an identified Web service by a computer

program or agent.

Automatic Web service composition and interoperation: This task

involves the automatic selection, composition and interoperation of Web services

to perform some task, given a high-level description of an objective.

Automatic Web service execution monitoring: Individual services and,

even more, compositions of services will often require some time to execute

completely.

DAML-S provides an upper ontology for services. The class Service stands

at the top of taxonomy of services, and its properties are the properties normally

associated with all kinds of services. The upper ontology for services is silent as

to what the particular subclasses of Service should be, or even the conceptual

basis for structuring this taxonomy, but it is expected that the taxonomy will

be structured according to functional and domain differences and market needs.

The structuring of the ontology of services is motivated by the need to provide

three essential types of knowledge about a service as presented in Figure 2.2,

each characterized by the question it answers:

• What does the service require from the user(s), or other agents, and provide

for them? The answer to this question is given in the “profile”. Thus, the

class Service presents a ServiceProfile.

• How does it work? The answer to this question is given in the “model”.

Thus, the class Service is describedBy a ServiceModel.

• How is it used? The answer to this question is given in the “grounding”.

Thus, the class Service supports a ServiceGrounding.

The properties presents, describedBy, and supports are properties of Service.

The classes ServiceProfile, ServiceModel, and ServiceGrounding are the respec-

tive ranges of those properties. The DAML-S definition of the service can be

found in [14].

22

Figure 2.2: Top level of the service ontology

The service profile, tells, “what the service does”; that is, it gives the

type of information needed by a service-seeking agent to determine whether

the service meets its needs (typically such things as input and output types,

preconditions and postconditions, and binding patterns). A service profile pro-

vides a high-level description of a service and its provider; it is used to request

or advertise services with discovery/location registries. Service profiles consist

of three types of information: a human readable description of the service; a

specification of the functionalities that are provided by the service; and a host

of functional attributes which provide additional information and requirements

about the service that assist when reasoning about several services with similar

capabilities.

Service functionalities are represented as a transformation from the inputs

required by the service to the outputs produced. For example, a news report-

ing service would advertise itself as a service that, given a date, will return the

news reported on that date. Functional attributes specify additional informa-

tion about the service, such as what guarantees of response time or accuracy it

provides, or the cost of the service.

While service providers use the service profile to advertise their services,

service requesters use the profile to specify what services they need and what

23

they expect from such a service. The service profile contains only the information

that allows registries to decide which advertisements are matched by a request.

To this extent, the information in the profile is a summary of the information

in the process model and service grounding.

In these thesis The DAML-S Service Profile is extended to include additional

features. The specifics of this extension is given in Section 4.2, Hence the DAML-

S Service Profile is presented in more detail later in this section.

The service model tells, “How the service works”; that is, it describes

what happens when the service is carried out. For non-trivial services (those

composed of several steps over time), this description may be used by a service-

seeking agent in at least four different ways: (1) to perform a more in-depth

analysis of whether the service meets its needs; (2) to compose service descrip-

tions from multiple services to perform a specific task; (3) during the course of

the service enactment, to coordinate the activities of the different participants;

(4) to monitor the execution of the service. For non-trivial services, the first two

tasks require a model of action and process; the last two involve, in addition, an

execution model.

A service grounding (“grounding” for short) specifies the details of how an

agent can access a service. Typically a grounding will specify a communications

protocol, message formats, and service-specific details such as port numbers

used in contacting the service. In addition, the grounding must specify, for each

abstract type specified in the ServiceModel, an unambiguous way of exchanging

data elements of that type with the service (that is, the marshaling serialization

techniques employed). In DAML-S version 0.9 beta, service grounding is based

on WSDL definitions of the services.

Generally speaking, the ServiceProfile provides the information needed for

an agent to discover a service. Taken together, the ServiceModel and Service-

Grounding objects associated with a service provide enough information for an

agent to make use of a service.

24

DAML-S Service Profile Model

In this section, the details of the fields of the profile model will be presented

in four sections: first section describes the properties that link the Service Profile

class with the Service class and Process Model class; the second section describes

the form of contact information and the Description of the profile this is infor-

mation usually intended for human consumption; where in the third section , the

functional representation and specifically the IOPEs are described; and finally,

in the last section, the attributes of the Profile are described.

• Service Profile: The class ServiceProfile provides a superclass of every type

of high-level description of the service. ServiceProfile does not mandate

any representation of services, but it mandates the basic information to

link any instance of profile with an instance of service. There is a two-way

relation between a service and a profile, so that a service can be related

to a profile and a profile to a service. These relations are expressed by the

properties presents and presentedBy. presents describes a relation between

an instance of service and an instance of profile, it basically says that the

service is described by the profile. presentedBy is the inverse of presents;

it specifies that a given profile describes a service.

• Service Name, Contacts and Description: Some properties of the profile

provide human-readable information that is unlikely to be automatically

processed. These properties include serviceName, textDescription and con-

tactInformation. A profile may have at most one service name and text

description, but as many items of contact information as the provider

wants to offer. serviceName refers to the name of the service that is be-

ing offered. It can be used as an identifier of the service. textDescription

provides a brief description of the service. It summarizes what the service

offers, it describes what the service requires to work, and it indicates any

additional information that the compiler of the profile wants to share with

the receivers. contactInformation specifies a person or other entity that

the provider of the service wants to share with the reader. Each item of

25

contact information is an instance of the class Actor described below.

• Actor: The class Actor provides information on the provider or the re-

quester of the service; specifically, it provides the following information:

name: The name property of Actor specifies the name of the actor.

This could be either a person name or a company name.

title: Title of the contact, a CEO, or Service Department or whatever

is deemed appropriate.

phone: A phone number that can be used to gather information on

the service.

fax: A fax number that can be used to gather information on the

service.

email: An e-mail address that can be used to gather information on

the service.

physicalAddress: A physical address that can be used to gather infor-

mation on the service.

webURL: A URL of the product or company Website.

• Functionality Description: An essential component of the profile is the

specification of what functionality the service provides and the specifica-

tion of the conditions that must be satisfied for a successful result. In

addition, the profile specifies what conditions result from the service, in-

cluding the expected and unexpected results of the service activity. The

DAML-S Profile represents two aspects of the functionality of the service:

the information transformation and the state change produced by the ex-

ecution of the service. For example, to complete the sale, a book-selling

service requires as input a credit card number and expiration date, but

also the precondition that the credit card actually exists and is not over-

drawn. The result of the sale is the output of a receipt that confirms the

proper execution of the transaction, and as effect the transfer of ownership

26

and the physical transfer of the book from the warehouse of the seller to

the address of the buyer. The information transformation produced by the

service is represented by input and output properties of the profile. The in-

put property specifies the information that the service requires to proceed

with the computation. For example, a book-selling service could require

the credit-card number and bibliographical information of the book to sell.

The outputs specify what is the result of the operation of the service. For

the book-selling agent the output could be a receipt that acknowledges

the sale. The state change produced by the execution of the service is

specified through the precondition and effect properties of the profile. Pre-

condition presents logical conditions that should be satisfied prior to the

service being requested. These conditions should have associated explicit

effects that may occur as a result of the service being performed. Effects

are the result of the successful execution of a service. The representation

of preconditions and effects depends on the representation of rules in the

DAML language. Currently, a working group is trying to specify rules

in DAML, but no proposal has been put forward. For this reason, the

fields precondition and effect are mapped to thing meaning that anything

is possible, but this will have to be modified in future releases of the profile.

input: specifies one of the inputs of the service. It takes as value an

instance of ParameterDescription (see below) that specifies an id of the

input, a value and a reference to the corresponding input in the process

model. The value of the property is an instance of ParameterDescription

described below.

output: specifies one of the outputs of the service. It takes as value

an instance of ParameterDescription (see below) that specifies an id of the

output, a value and a reference to the corresponding output in the process

model. The value of the property is an instance of ParameterDescription

described below.

27

precondition: specifies one of the preconditions of the service. It takes

as value an instance of ParameterDescription that specifies an id of the

precondition, a value and a reference to the corresponding precondition in

the process model. The value of the property is an instance of Parameter-

Description described below.

effect: specifies one of the effects of the service. It takes as value

an instance of ParameterDescription that specifies an id of the effect, a

reference and a reference to the corresponding effect in the process model.

The value of the property is an instance of ParameterDescription described

below.

ParameterDescription: The class ParameterDescription provides val-

ues to inputs and outputs. It collects in one class the name of the input

or output that can be used as an identifier, its value and a reference to the

corresponding input or output in the process model.

parameterName: provides the name of the input or output, which

could be just a literal, or perhaps the URI of the process parameter (a

property).

restrictedTo: provides a restriction on the values of the input or output.

refersTo: provides a reference to the input or output in the process

model.

• Profile Attributes: In the previous section we introduced the functional

description of services, but there are other aspects of services of which

users should be aware. These additional attributes include the quality

guarantees that are provided by the service, possible classification of the

service, and additional parameters that the service may want to specify.

serviceParameter: is an expandable list of properties that may accom-

pany a profile description. The value of the property is an instance of the

class ServiceParameter.

28

serviceCategory: refers to an entry in some ontology or taxonomy of

services. The value of the property is an instance of the class ServiceCat-

egory.

QualityRating: is used to specify the rating of a service using some

rating system. The rating of a service provides the potential client with

information about the quality of the service provided.

• ServiceParameter:

serviceParameterName: is the name of the actual parameter, which

could be just a literal, or perhaps the URI of the process parameter (a

property).

sParameter: points to the value of the parameter within some DAML

ontology.

• QualityRating:

ratingName: points to the name of the rating service.

rating: stores the value of the rating within a given rating service.

• ServiceCategory:

ServiceCategory: describes categories of services on the basis of some

classification that may be outside DAML-S and possibly outside DAML. In

the latter case, they may require some specialized reasoner if any inference

has to be done with it.

categoryName: is the name of the actual category, which could be just

a literal, or perhaps the URI of the process parameter (a property).

taxonomy: stores a reference to the taxonomy scheme. It can be either

a URI of the taxonomy, or a URL where the taxonomy resides, or the name

of the taxonomy or anything else.

value: points to the value in a specific taxonomy There may be more

than one value for each taxonomy, so no restriction is added here.

29

codeTo: each type of service stores the code associated to a taxonomy.

2.3 BPEL4WS

The goal of the Web Services effort is to achieve universal interoperability be-

tween applications by using Web standards. Web Services use a loosely coupled

integration model to allow flexible integration of heterogeneous systems in vari-

ety of domains including business-to-consumer, business-to-business and enter-

prise application integration. Currently specifications such as WSDL, DAML-S,

Universal Description, Discovery and Integration of Web Services (UDDI) [36]

or ebXML [17] and SOAP define the web service space.

Systems integration requires more than the ability to conduct simple in-

teractions by using standard protocols. The full potential of Web Services as

an integration platform will be achieved only when applications and business

processes are able to integrate their complex interactions by using a standard

process integration model.

Models for business interactions typically assume sequences of peer-to-peer

message exchanges, both synchronous and asynchronous, within stateful, long-

running interactions involving two or more parties. To define such business inter-

actions, a formal description of the message exchange protocols used by business

processes in their interactions is needed. The definition of such business proto-

cols involves precisely specifying the mutually visible message exchange behavior

of each of the parties involved in the protocol, without revealing their internal

implementation. There are two good reasons to separate the public aspects of

business process behavior from internal or private aspects. One is that busi-

nesses obviously do not want to reveal all their internal decision making and

data management to their business partners. The other is that, even where this

is not the case, separating public from private process provides the freedom to

change private aspects of the process implementation without affecting the pub-

lic business protocol.

30

Business protocols must clearly be described in a platform-independent man-

ner and must capture all behavioral aspects that have cross-enterprise business

significance. Each participant can then understand and plan for conformance

to the business protocol without engaging in the process of human agreement

that adds so much to the difficulty of establishing cross-enterprise automated

business processes today [3].

Defining business protocols and defining executable business processes re-

quire very similar concepts. The concepts required for defining business proto-

cols and those required for defining executable business processes form a contin-

uum, and Business Process Execution Language for Web Services (BPEL4WS)

[3] is designed to cover this continuum. BPEL4WS defines a model and a gram-

mar for describing the behavior of a business process based on interactions be-

tween the process and its partners. The interaction with each partner occurs

through Web Service interfaces, and the structure of the relationship at the in-

terface level is encapsulated in a service link. The BPEL4WS process defines

how multiple service interactions with these partners are coordinated to achieve

a business goal, as well as the state and the logic necessary for this coordination.

BPEL4WS also introduces systematic mechanisms for dealing with business ex-

ceptions and processing faults. Finally, BPEL4WS introduces a mechanism to

define how individual or composite activities within a process are to be compen-

sated in cases where exceptions occur or a partner requests reversal.

BPEL4WS is layered on top of several XML specifications: WSDL 1.1, XML

Schema 1.0, and XPath 1.0. WSDL messages and XML Schema type definitions

provide the data model used by BPEL4WS processes. XPath provides support

for data manipulation. All external resources and partners are represented as

WSDL services. BPEL4WS provides extensibility to accommodate future ver-

sions of these standards, specifically the XPath and related standards used in

XML computation [2].

BPEL4WS specification is positioned to become the Web services standard

for composition. It allows developers to create complex processes by creating

31

and wiring together different activities that can, for example, perform Web ser-

vices invocations, manipulate data, throw faults, or terminate a process. These

activities may be nested within structured activities that define how they may

be run, such as in sequence, or in parallel, or depending on certain conditions

[4].

BPEL4WS represents the merging of IBM’s Web Services Flow Language

(WSFL) [40] and Microsoft’s XLANG [44]. BPEL4WS combines the best of both

WSFL (support for graph oriented processes) and XLANG (structural constructs

for processes) into one cohesive package that supports the implementation of

any kind of business process in a very natural manner. In addition to being an

implementation language, BPEL4WS can be used to describe the interfaces of

business processes as well – using the notion of abstract processes.

As an executable process implementation language, the role of BPEL4WS

is to define a new Web service by composing a set of existing services. Thus,

BPEL4WS is basically a language to implement such a composition. The inter-

face of the composite service is described as a collection of WSDL portTypes,

just like any other Web service.

The BPEL4WS process itself is basically a flowchart like expression of an

algorithm. Each step in the process is called an activity. There are a collection

of primitive activities: invoking an operation on some Web service (<invoke>),

waiting for a message to operation of the service’s interface to be invoked by

someone externally (<receive>), generating the response of an input/output op-

eration (<reply>), waiting for some time (<wait>), copying data from one place

to another (<assign>), indicating that something went wrong (<throw>), ter-

minating the entire service instance (<terminate>), or doing nothing (<empty>).

These primitive activities can be combined into more complex structures

using any of the structure activities provided in the language. These are the

ability to define an ordered sequence of steps (<sequence>), the ability to have

branching using the now common ”case-statement” approach (<switch>), the

ability to define a loop (<while>), the ability to execute one of several alternative

32

paths (<pick>), and finally the ability to indicate that a collection of steps

should be executed in parallel (<flow>). Within activities executing in parallel,

one can indicate execution order constraints by using the links.

BPEL4WS allows the structured activities to be recursively combined to

express arbitrarily complex algorithms that represent the implementation of the

service.

As a language for composing together a set of services into a new service,

BPEL4WS processes mainly consist of making invocations to other services

and/or receiving invocations from clients. BPEL4WS calls these other services

that interact with a process, partner.

BPEL4WS uses service link types to define partners. Basically, a partner is

defined by giving it a name and then indicating the name of a service link type

and identifying the role that the process will play from that service link type and

the role that the partner will play. In order for it to work at runtime, the partner

must resolve to an actual Web service. Thus, a partner is really eventually just

a typed service reference, where the typing comes from the service link type and

the roles. The BPEL4WS process itself does not indicate how a partner is bound

to a specific service; that is considered a deployment time or runtime binding

step that must be supported by the BPEL4WS implementation.

Developers need ways to handle and recover from errors in business processes.

BPEL4WS has exceptions (faults) built into the language via the <throw> and

<catch> constructs. The fault concept on BPEL4WS is directly related to the

fault concept on WSDL and in fact builds on it.

In addition, BPEL4WS supports the notion of compensation, which is a

technique for allowing the process designer to implement compensating actions

for certain irreversible actions. For example, imagine a travel reservation pro-

cess. Once a reservation has been confirmed, one must perform some explicit

operations to cancel that reservation. Those actions are called ”compensating

actions” for the original action.

33

Fault handling and compensating is supported recursively in BPEL4WS by

introducing the notion of a scope, which is essentially the unit of fault handling

and/or compensation.

Following is a simple BPEL4WS document example. The document needs

WSDL documents to reflect the process completely and executed.

<process name="loanApprovalProcess"

targetNamespace="http://acme.com/simpleloanprocessing"

xmlns="http://schemas.xmlsoap.org/ws/2002/07/business-process/"

xmlns:lns="http://loans.org/wsdl/loan-approval"

xmlns:loandef="http://tempuri.org/services/loandefinitions"

xmlns:apns="http://tempuri.org/services/loanapprover">

BPEL4WS documents rely heavily on WSDL documents in order to refer to

the messages being exchanged, the operations being invoked, and the portTypes

these operations belong to. Above are the definitions of the namespaces that

will allow the BPEL4WS document to refer to the required WSDL information.

<partnerLinks>

<partner name="customer" partnerLinkType="lns:loanApprovalLinkType"

myRole="approver"/>

<partner name="approver" partnerLinkType="lns:loanApprovalLinkType"

partnerRole="approver"/>

</partnerLinks>

The next step is to declare the parties involved. Named partners are defined,

each characterized by a WSDL partnerLinkType. partnerLinkTypes are defined

in respective WSDL documents.

<variables>

<variable name="request" messageType="loandef:CreditInformationMessage"/>

<variable name="approvalInfo" messageType="apns:approvalMessage"/>

</variables>

Incoming messages should be stored where the BPEL activity can access it.

In BPEL, data is written to and accessed from data variables which can hold

instances of specific WSDL message types.

34

<sequence>

<receive name="receive1"

partnerLink="customer" portType="apns:loanApprovalPT"

operation="approve"

variable="request"

createInstance="yes">

</receive>

<invoke name="invokeapprover"

partnerLink="approver"

portType="apns:loanApprovalPT"

operation="approve"

inputVariable="request"

outputVariable="approvalInfo">

</invoke>

<reply name="reply"

partnerLink="customer"

portType="apns:loanApprovalPT"

operation="approve"

variable="approvalInfo">

</reply>

</sequence>

</process>

The BPEL process is defined as a sequence in the example, consisting of

simple receive, invoke and reply activities. The simple activities will be executed

in sequence. When the process is deployed into a supporting engine, it will wait

until somebody starts it through the receive activity.

IBM’s alphaWorks made a BPEL4WS engine publicly available. The IBM

Business Process Execution Language for Web Services Java Run Time (BPWS4J)

[1] includes the following: a platform upon which business processes written us-

ing the BPEL4WS can be executed; a set of samples demonstrating the use of

BPEL4WS; and a tool that validates BPEL4WS documents.

A workflow is created with the assumption that it will be executed repeat-

edly. A single-use workflow generation is not a feasible effort. Since the workflow

resides in the engine for a period of time, it can be executed several times. The

workflows can be executed with the same configuration, or with a new set of

inputs every time it is executed. A web interface can be configured to take the

new set of inputs. The process may also be configured as a web service. In this

35

case, protocols such as SOAP can be used to invoke the BPEL4WS workflow

that has been composed and deployed on BPEL4J. A complex banking trans-

action; that involves several steps like sale of stocks or bonds, money transfer

and payment; and which is executed repeatedly can be defined as a workflow

and deployed on a BPEL4J engine. Similarly a workflow for frequent travellers

which discovers hotels and flights, reserves rooms and flight tickets, makes pay-

ments can be defined so that the user can execute the process with different set

of inputs.

2.4 J2ME

The ability to program custom applications that can work on limited devices

like PDAs and cellular phones offers great potential. The increase in computing

power, memory and display opportunities, combined with the ever increasing

data communication bandwidth is the main reason behind mobile computing.

It is estimated that over 20 million Java 2 Micro Edition (J2ME) enabled phones

are manufactured in 2001, Japan only. [26]

J2ME is the final addition to Java 2 family with Java 2 Standard Edition

(J2SE) and Java 2 Enterprise Edition (J2EE). J2ME is aimed at devices with

low computing power; memory, display, bandwidth and power resources. J2SE

support would be acceptable; however with the entire classes approaching a size

of 1+ Megabytes, this is not feasible. A Java Virtual Machine (JVM) with a

smaller footprint is needed.

However these devices vary greatly. It is not wise to compare a state-of-the-

art PDA with a 400 MHz processor to a J2ME enabled cellular phone, although

they are both supported by J2ME. It is obvious from the discussion that a single

Java platform will not be able to cover the broad range of devices. Two concepts

are introduced at this point in J2ME: configurations and profiles.

Configuration:

A configuration defines a Java platform for a broad range of devices. In fact

a configuration defines the Java language features and the core Java libraries

36

of the JVM for that particular configuration. What a configuration applies is

most of the time based on memory, display, network connectivity and processing

power available.

Currently there are two configurations defined: Connected Device Config-

uration (CDC) [5] and Connected, Limited Device Configuration (CLDC) [6].

CDC applies to devices with:

• 512 Kb minimum memory for running Java

• 256 Kb minimum for runtime memory allocation

• Network connectivity, possibly persistent and high bandwidth

CLDC applies to devices with:

• 128 Kb memory for running Java

• 32 Kb memory for runtime memory allocation

• Restricted user interface

• Low power, typically battery powered

• Network connectivity, typically wireless, with low bandwidth and inter-

mittent access

It should be noted that, as the technology progresses the overlap between the

configurations will increase and the boundary between them will be less signifi-

cant. Although devices can be classified as being a member of one configuration

or the other, there is still the fact that a scarce resource for one device can be

abundant to another. To provide for more flexibility Sun introduced the concept

of a profile to the J2ME platform.

Profiles:

A profile is an extension to a configuration which provides libraries for a

particular type of device. For example, the Mobile Information Device Profile

37

(MIDP) [25] defines APIs for user interface components, input and event han-

dling, persistent storage, networking and timers, taking into the consideration

the screen and memory limitations of mobile devices.

The configurations are developed by open industry working groups utilizing

Sun’s Java Community Process Program [20]. This way industries can decide for

themselves what elements are necessary to provide a complete solution targeted

at their industry [22].

Java Virtual Machines:

The engine behind any Java Platform is the JVM. The JVM is responsible

for changing the compiled byte code into machine code. Also providing security,

allocating and freeing memory and managing threads of execution are respon-

sibilities of the JVM. The JVM for CDC has the same specification as J2SE,

however for CLDC Sun developed a reference implementation of a smaller JVM,

namely KVM (where K is from Kilobyte) which:

• Requires 40-80 kilobytes of memory

• Requires ony 20-40 kilobytes of dynamic memory (heap)

• Can run on 16-bit processors clocked at 25 Mhz.

In this thesis, an application for a J2ME enabled cellular phone is developed

using the CLDC and MIDP. The generic architecture of J2ME and the specific

architecture used in this thesis is given in Figure 2.3.

CLDC provides an assortment of vital classes from the J2SE including:

• System Classes in java.lang package: Class, Object, Runnable, Runtime,

String, StringBuffer, System, Thread and Throwable

• Data Type Classes in java.lang package: Boolean, Byte, Character, Inte-

ger, Long, Short

• Collection Classes in java.util package: Enumeration, Hashtable, Stack,

Vector

38

Figure 2.3: Generic and implementation specific J2ME architecture

• Input/output Classes in java.io.package.

• Calendar and Time Classes in java.util package: Calendar, Date, Time-

Zone

• Utility Classes: java.lang.Math, java.util.Random

• Exception Classes

• Error Classes

• Internalization classes

CLDC also includes classes specific to itself that are used to access storage

and network systems. MIDP provides an API for specific devices that helps

building user interfaces on small displays, support for HTTP Connection etc.

39

CHAPTER 3

System Architecture

TheWorldWideWeb is developed for human use. Hyper Text Markup Language

(HTML), one of the building blocks of the web is obviously designed for the

humans; to format the text such that it is easier and more interesting to read.

As the web became a widely used communication medium, unstructured

scatter of data and information in large amounts made discovery of information

harder. Search engines appeared on the web that searched and cached every

web page to create a structure.

This increase in amount of data led to two things. The first one is the con-

cern for metadata, data about data, thus the appearance of XML. Second one

is the deployment of web services previously published on dynamic web pages.

Web Services are self-contained, self-describing, modular applications that can

be published, located, and invoked through XML artefacts across the Web. Web

services technologies can be applied to many kinds of applications, where they of-

fer considerable advantages compared to the old world of product-specific APIs,

platform-specific coding, and other “brittle” technology restrictions. XML and

XML-based languages like RDF let the metadata to be described in an elegant

way. Data can be published in a structured manner. Whereas technologies like

WSDL and SOAP enabled platform independant definitions of web services so

that web services were deployed and worked globally.

40

Currently there are millions of web services available on the web due to the

increase in e-commerce business volume. The service information is stored in

public registries so they are easy to find. Service interfaces are described by

WSDL documents and service requesters use this information to configure their

own programs that will use the service.

Web services can be discovered using public registries and invoked through

respective interfaces. However to automatically find, compose, invoke and mon-

itor the web services is still an issue. The automatic discovery, composition,

invocation and monitoring of web services require that semantics are attached

to service definitions. Computers can understand what the service is about in a

consistent way with semantics through ontologies. This enables the automatic

processing of web services.

The focus of this thesis is on the composition of web services. Currently the

web service definitions are described in DAML-S ontology. DAML-S ontology

define the service properties including inputs and outputs. One of the several

approaches to the composition of web services is based on the fact that outputs

of a given web service would provide a perfect or an approximate match to the

inputs of another service, thus this service may succeed the current one [31].

The methodology is to extract the input and output properties of services from

a DAML-S ontology and match them to come up with a sequence of services or

a workflow.

The approach taken in this thesis is to let the service providers decide the

possible succeeding services.A high-level service ontology is defined and stored in

a DAML-S document which includes all the service types and their properties.

There is no property defined for the service providers to state a succeeding

service as the time of writing in DAML-S specification. In this thesis, the service

ontology is extended to include the possible alternatives as the next service.

With this architecture the publishers of the service can decide whether a

generic service and/or a specific (promoted) service follows their service. The

provider can choose to state a generic service as succeeding in case it is known

41

that a service type is applicable as succeeding service to his service. This type

of succeeding services are called Succeeding Generic Services (SGS). From a

business view, there may also be cases where the provider would like to promote

a specific service instance; a service that is known to be a perfect match; a

service that belongs to the same enterprise; or a service for which an agreement

between two organizations exists. This type of succeeding services are called

Succeeding Service Instances (SSI). An example may be a book selling service

that has an agreement with a postal service. The user is able to choose from

alternatives and construct a workflow of services that meets her needs. As the

services are chosen by the user, inputs for the services are requested from the

user and stored.

The services, their properties and succeeding service alternatives are taken

from a DAML-S ontology. The ontology is parsed and the service definitions

are stored in a format that is easily accessible, like a registry or a relational

database.

Service interface definitions are taken from the WSDL documents that be-

long to each service. This information is combined with the user’s choices to

build a composition of web services and service definitions from the DAML-S

ontology into a flow. The flow at the end, is represented both graphically and

textually. Textual representation is in the form of a BPEL4WS document, which

employs a language that is XML-based and used to represent web service compo-

sitions. It is made up of simple activities (invoke, reply, receive etc.) combined

into more complex activities representing sequences, concurrent flows, loops and

conditional branches.

A BPEL4WS document can be fed into a BPEL4WS engine along with

the respective WSDL documents to automatically execute the workflow. An

alpha version BPEL4WS engine is available from IBM’s “alphaWorks Emerging

Technologies” [1].

A workflow is created with the assumption that it will be executed repeat-

edly. A single-use workflow generation is not a feasible effort. Since the workflow

42

resides in the engine for a period of time, it can be executed several times. The

workflows can be executed with the same configuration, or with a new set of

inputs every time it is executed. A web interface can be configured to take the

new sset of inputs. The process may also be configured as a web service. In this

case, protocols such as SOAP can be used to invoke the BPEL4WS workflow

that has been composed and deployed on BPEL4J. A complex banking trans-

action; that involves several steps like sale of stocks or bonds, money transfer

and payment; and which is executed repeatedly can be defined as a workflow

and deployed on a BPEL4J engine. Similarly a workflow for frequent travellers

which discovers hotels and flights, reserves rooms and flight tickets, makes pay-

ments can be defined so that the user can execute the process with different set

of inputs.

In this thesis, BPEL4WS documents that can be deployed on a BPEL engine

like BPEL4J are generated. The validity of the documents generated is checked

by the BPEL4J Editor developed by IBM alphaWorks [1].

Time is an important asset for the people of the 21st century. Almost all

technological research in IS/IT sector aims to shorten the time required to com-

plete a certain activity (e.g. information access time, data gathering time, data

processing time). As the technology lets computers to be smaller while more

powerful and nomadic through wireless high bandwidth communication tech-

nologies, people can carry their computers with themselves. This provides the

information accessible at any time to the user, thus the term mobile comput-

ing. Ranging from workstation replacement to ultra-light notebooks, Tablet

PCs and PDAs; currently cellular phones with programmable memories and ad-

equate processing power offer the extreme mobility. Integrated communication

technologies like WAP, GPRS and UMTS; along with platform independency of

Java makes information available anytime, anywhere.

It is the aim of this thesis to prove that even in the extreme mobility of

state-of-the-art cellular phones it is possible to develop a web service composi-

tion utility with a Graphical User Interface (GUI). Information for alternative

43

services is presented to the user. As the user chooses some service, inputs of

the service is requested from her. The user then chooses the workflow construct

which identifies whether the service will be followed by concurrent execution, a

sequence, a loop or a branch of services. At every step the workflow is shown

on the screen of the mobile phone so that the user can follow her choices. The

user can navigate on the flow and get information for any service in the flow.

The utility developed is not a device dependent solution. It is compati-

ble with widely accepted standards through Java 2 Micro Edition (J2ME) and

can work on many devices from different vendors through Connected Limited

Device Configuration (CLDC) and Mobile Information Device Profile (MIDP)

specifications.

The final system has a three-layered architecture as shown in the Figure 3.1.

The top layer is the presentation layer where in this thesis a mobile device is

chosen. A standard PC, a PDA or any kind of device can be used. This layer

interacts with the user to present the results of her choice and take inputs from

her to build a workflow. The middle layer is the application layer where data is

gathered and the resulting workflow is produced in the form of a BPEL4WS file.

The implementation can be in the form of a servlet residing on an application

server or a standard application. In this thesis a standard Java application is de-

veloped. The bottom layer is the data layer where service ontologies, individual

service definitions and service interface definitions are stored. The implemen-

tation can be done using plain DAML-S and WSDL documents; a relational

database can be used; or a public registry like ebXML or UDDI can be used

provided that the ontology constructs are successfully integrated into the reg-

istries as in [23]. In this thesis the DAML-S ontology is parsed and results are

placed in a relational database.

The contributions of this thesis are as follows:

• A DAML-S extension including SGS and SSI as Service Properties.

• Service definitions in DAML-S document.

44

Figure 3.1: The Overall System Architecture

• Service interface specifications in WSDL format.

• A mobile application written in J2ME, in accordance with the CLDC and

MIDP specifications. This application presents the service information to

the user and takes user choices. It presents the resulting workflow through

a GUI. The mobile application uses standard socket connection.

• An application that connects the mobile client to the service ontology. It

parses the service definitions into a relational database. It queries this

ontology database with respect to the user choices to combine that service

ontology and service interface data to come up with a BPEL4WS document

representation of the workflow produced, which is executable on a certain

45

engine.

• A messaging scheme that effectively connects the three layers.

46

CHAPTER 4

Design and Implementation

As stated in the Chapter 3, the system is implemented in three layers which are

treated as three modules. These three modules are:

• Presentation (Mobile) Module

• Application Module

• Data Module

The design and implementation details of each layer are explained in detail

in Sections 4.1 through 4.5.

4.1 Module Objectives

Presentation (Mobile) Module’s main objective is to interact with the user.

The others are to:

• Get user choices for services in the flow.

• Get service inputs from the user.

• Get workflow constructs from the user.

• Show the workflow graphically.

47

• Let the user navigate on the workflow and get information.

Application Module’s main objective is to act like the bridge between

the Mobile Module and the Ontology Database. It compiles user and service

information to build a textual representation of the workflow as a BPEL4WS

file. The other objectives are to:

• Store the DAML-S ontology in the database.

• Retrieve information about the services from the database and the corre-

sponding WSDL files.

• Store user inputs.

• Construct a BPEL4WS representation of the workflow.

Data Module’s main objective is to store service ontologies and return

appropriate result sets to application module.

4.2 Ontology Processing

The details of the Mobile Module and the Application Module are available

in Section 4.4 and Section 4.5 respectively. In this section the details of the

ontology and how it is mapped to a relational database is given.

DAML-S service profile class is extended to include a succeding generic ser-

vice class. A succeeding generic service of a service is also an instance of a profile

class and therefore domain and range values are as follows:

<daml:ObjectProperty rdf:ID="succeedingGenericService">

<daml:domain rdf:resource="#Profile" />

<daml:range rdf:resource="#Profile" />

</daml:ObjectProperty>

Each DAML-S profile should have at least one succeeding generic service.

If no succeeding generic service is applicable, a special generic service named

“nullService” should be defined. Thus the cardinality constraint:

48

<daml:Class rdf:about="#Profile">

<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="1">

<daml:onProperty rdf:resource="#succedingGenericServices" />

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

Also the succeeding service instances are defined for each DAML-S service

profile. There is no cardinality constraint for the following definition.

<daml:ObjectProperty rdf:ID="succeedingServiceInstance">

<daml:domain rdf:resource="Profile" />

<daml:range rdf:resource="Profile" />

</daml:ObjectProperty>

A complete DAML-S extended service profile definition (Profile.daml) is

given in Appendix C.

A mini-ontology for tourism services is developed for this thesis using DAML-

S specification. The namespace and class declarations are as follows:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY daml "http://www.daml.org/2001/03/daml+oil">

<!ENTITY xsd "http://www.w3.org/2000/10/XMLschema.xsd">

<!ENTITY time "http://www.ai.sri.com/daml/ontologies/time/Time.daml">

<!ENTITY profile "http://www.daml.org/services/daml-s/0.7/Profile.daml">

<!ENTITY DEFAULT "http://www.daml.org/services/damls/0.7/ProfileHierarchy.daml">

]>

<rdf:RDF

xmlns:rdf= "&rdf;#"

xmlns:rdfs= "&rdfs;#"

xmlns:daml= "&daml;#"

xmlns:xsd= "&xsd;#"

xmlns:profile= "&profile;#"

xmlns= "&DEFAULT;#">

<daml:Ontology>

<daml:versionInfo>

$MiniTravelOntology.daml v0.01 by K.Alpay Erturkmen $

</daml:versionInfo>

49

<daml:comment>

A sample ontology developed by K.Alpay Erturkmen

</daml:comment>

<daml:imports rdf:resource="&rdf;" />

<daml:imports rdf:resource="&daml;" />

<daml:imports rdf:resource="&profile;" />

</daml:Ontology>

The following is a generic “Hotel Reservation Service” declaration. Notice

that the restriction on the succedingGenericService property. The restriction

makes sure that the succeding generic service of any “Hotel Reservation Service”

is only a “Payment Service”. “Payment Service” should also be available in

the same document or a different document should be defined including the

definition.

<daml:Class rdf:ID="HotelReservationService">

<rdfs:subClassOf rdf:resource="&profile;#Profile" />

<daml:comment>

Generic Hotel Reservation Service

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="&profile;#succedingGenericService" />

<daml:hasValue rdf:resource="#PaymentService" />

</daml:Resctriction>

</rdfs:subClassOf>

</daml:Class>

The following is a property definition. This definition restricts the “HotelAr-

rivalDate” to be an input of generic “Hotel Reservation Service” and its type to

be “Arrival Date”.

<daml:DatatypeProperty rdf:ID="hotelArrivalDate">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelReservationService" />

<daml:range rdf:resource="#ArrivalDate"/>

</daml:DatatypeProperty>

In the above example notice that the range of the property is defined as

“ArrivalDate” which is a sub-class of a super parameter definition as follows:

50

<daml:class rdf:ID="ArrivalDate">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

The StringParameter super parameter is defined as follows:

<daml:class rdf:ID="StringParameter">

</daml:class>

<daml:DatatypeProperty rdf:ID="value">

<daml:domain rdf:resource="#StringParameter" />

<daml:range rdf:resource="&xsd;#String" />

</daml:DatatypeProperty>

The complete DAML-S tourism mini-ontology developed for the thesis is

available in Appendix D.

After the DAML-S profile class is extended and a tourism mini-ontology is

developed, individual service’s DAML-S definitions can be prepared. Following

is the DAML-S definition for an instance of “Hotel Reservation Service”:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY daml "http://www.daml.org/2001/03/daml+oil">

<!ENTITY service "http://www.daml.org/services/daml-s/0.9/Service.daml">

<!ENTITY profile "http://www.daml.org/services/daml-s/0.9/Profile.daml">

<!ENTITY minitronto "http://www.ii.metu.edu.tr/~kalpaye/daml-s/mini-tronto.daml">

<!ENTITY process "http://www.daml.org/services/daml-s/0.9/Process.daml">

<!ENTITY four_reasons_service "http://www.ii.metu.edu.tr/~kalpaye/daml-s/fourReasonsService.daml">

<!ENTITY four_reasons_process "http://www.ii.metu.edu.tr/~kalpaye/daml-s/fourReasonsProcess.daml">

<!ENTITY DEFAULT "http://www.ii.metu.edu.tr/~kalpaye/daml-s/fourReasonsProfile.daml">

]>

<rdf:RDF

xmlns:rdf= "&rdf;#"

xmlns:rdfs= "&rdfs;#"

xmlns:daml= "&daml;#"

xmlns:service= "&service;#"

xmlns:process= "&process;#"

xmlns:profile= "&profile;#"

xmlns:mini-tronto= "&minitronto;#"

xmlns= "&DEFAULT;#">

51

<daml:Ontology>

<daml:versionInfo>

$Id: fourReasinsProfile.daml,v 0.01 $

</daml:versionInfo>

<rdfs:comment>

Four Reasons Hotel Reservation Service Profile

</rdfs:comment>

<daml:imports rdf:resource="&rdf;" />

<daml:imports rdf:resource="&rdfs;" />

<daml:imports rdf:resource="&daml;" />

<daml:imports rdf:resource="&service;" />

<daml:imports rdf:resource="&profile;" />

<daml:imports rdf:resource="&process;" />

<daml:imports rdf:resource="&four_reasons_service;" />

<daml:imports rdf:resource="&four_reasons_process;" />

<daml:imports rdf:resource="&minitronto;" />

</daml:Ontology>

<minitronto:HotelReservationService rdf:ID="Four_Reasons_Reservation_Service">

<service:presentedBy rdf:resource="&four_reasons_service;#Four_Reasons_Reservation_Service"/>

<profile:has_process rdf:resource="&four_reasons_process;#Four_Reasons_Reservation_Service_Process"/>

<profile:serviceName>Four_Reasons_Reservation_Service</profile:serviceName>

<profile:textDescription>

This service provides reservation to Four Reasons Hotel. The service inherits its inputs

(fromDate, toDate, noOfPersons) and its outputs (HotelReservationID) from the mini travel

ontology.

The succeeding generic service is restricted to only "Payment Service". However the service

can declare succeeding service instances.

</profile:textDescription>

<profile:succedingServiceInstance>PHdCard</profile:succeedingServiceInstance>

</minitronto:HotelReservationService>

A sub-module (Ontology Database Creator Sub-Module) of the application

module parses the DAML-S service ontology and individual service profile def-

initions using HP’s Jena Toolkit [21], which is used to parse RDF and offers a

specialized API for DAML processing. The parsed ontology is loaded into the

ontology database. The ontology is parsed and stored in a relational database

every time the application is initialized.

The database of choice is MySQL [27] since its free, offers high performance

and uses standard SQL. It offers a visual administration tool called MySQL

Control Center [28] to manipulate the database. The tables created in MySQL

52

Figure 4.1: Logical Relationships in Ontology Database

are given in the Table 4.1 with the fields, field types and keys. MySQL does not

force or implement relationships, however relationships given in Figure 4.1 built

when the ontology is parsed and stored in the database, through the application

module.

Generic services are stored in the “genericServices” table with unique IDs

associated with them. In the DAML-S ontology, generic services are defined as

sub-classes of the Profile itself. Thus whenever the parser encounters a sub-class

of the Profile a new entry in the “genericServices” table is created.

In the DAML-S ontology, the inputs and the outputs of a generic service

are defined as properties having their domain as the generic service itself and

the range as a sub-class of a super parameter class. This super parameter class

represent the data type of the property value. The sub-classes correspond to

properties in the “properties” table. The type of the super parameter defines

the data type of the property in the table (i.e. string in the previous example).

Values for these properties are stored in “propertyValues” table.

“hasProperty” table shows the input and output properties for generic ser-

vices. The entries in this table are created from the ontology when a property

has a generic service as its domain value. The super property of the property

shows whether an input or output relation exists.

53

Table 4.1: Ontology Database Tables

Table Name Field Name Field Type Key

genericServices GenericServiceID Varchar(100) Yes

GenericServiceDescriptions Varchar(100)

hasProperty GenericServiceID Varchar(100) Yes

PropertyID Varchar(100) Yes

Type Varchar(100)

isA ServiceInstanceID Varchar(100) Yes

GenericServiceID Varchar(100)

properties PropertyID Varchar(100) Yes

PropertyDataType Varchar(100)

PropertyDescription Varchar(100)

propertyValues PropertyID Varchar(100) Yes

Value Varchar(100) Yes

serviceInstances ServiceInstanceID Varchar(100) Yes

ServiceDescription Varchar(100)

succeeds serviceID Varchar(100) Yes

succeedingServiceID Varchar(100) Yes

Service instances are stored in a table with their unique IDs and they are

associated with their generic service types through the “isA” relation table.

They are defined as instances of generic services in the ontology.

Succeeding Generic Services and Succeeding Service Instances are stored in a

different table called “succeeds”. SGSs are described using a restriction on SGS

property in Generic Service definitions. SSIs are described using a SSI property

in the service instance definitions.

The summary of this mapping is available Table 4.2. This mapping is used

by the Ontology Database Creator Sub-Module to store the DAML-S ontology

in the Ontology Database.

4.3 Messaging Scheme

As the three modules of the system can be physically apart as they are logically,

a reliable messaging scheme is needed.

The Application Module and the Data Module communicate over a JDBC

connection. Application Module sends SQL queries through the connection and

54

Table 4.2: DAML-S Ontology - Ontology Database Mapping

Description in Ontology Description in Ontology Database

subClassOf #profile “genericServices” table

<daml:genericServiceID> “serviceInstances” table

subClassOf #DatatypeParameter “properties” table with type Datatype

subPropertyOf #input “hasProperty” with type input

subPropertyOf #output “hasProperty” with type output

Restriction on Property SGS “succeeds” table

Value of Property SSI “succeeds” table

Data Module returns the results as ResultSet Java objects.

There are five types of SQL queries that are sent through the JDBC connec-

tion. These are:

• getGenericServices: this query is used to retrieve all the generic services.

The result is shown to the user to start the workflow selection.

• getInstances: this query is used to retrieve all the instances of a generic

service.

• getProperties: this query is used to retrieve the input fields of a service.

• getSucceedingService: this query is used to retrieve all the succeeding ser-

vices, both generic services and service instances, of a given service in-

stance.

• findType: this query is used to find out whether a given ID belongs to a

service instance or a generic service.

The results of the above stated queries are processed and converted into a

string representation very similar to the technique known as URL rewriting for

which examples can be found in Section 4.4. This helps grouping and pairing

the results in the long result string made up of multiple entries and pairs.

For the fundamentals of the messaging scheme to be clear the first few steps

of it is explained in detail. The messaging scheme is summarized in Figure 4.2

through Figure 4.5. The following example clearly shows that the communica-

tion between the Application and Mobile Module is actually synchronous.

55

Figure 4.2: Overall System Flow Chart

Figure 4.3: Sequence Diagram for Initialization

The process is initiated when the mobile module sends an “initialConnec-

tion” string through a socket to the Application Module. Upon receipt of this

special string, application module retrieves all the generic services from the data

module using the getGenericServices query. The list of genericServiceIDs and

genericServiceDescriptions are sent to the Mobile Module in the following form:

56

Figure 4.4: Sequence Diagram for Service Selection

genericServices?id=genericServiceID&

description=genericServiceDescription?id=...?

Mobile Module parses the incoming message string. The first phrase of the

message string indicates that the following pairs are generic service IDs and de-

scriptions. It lists the genericServiceDescriptions to the user. The user chooses

one of them and the module sends back only the genericServiceID of the selected

generic service.

57

Figure 4.5: Sequence Diagram for Termination

If no initial phrase exists, application module understands that the number is

in fact an ID: either a genericServiceID or a serviceInstanceID. The application

module proceeds accordingly.

The requests and respective replies the two modules generate are listed in

Table 4.3. The two modules generate the replies whenever they receive the

corresponding request, however it should be noted that; if the expected order of

the requests are not followed, generated flow and BPEL4WS file may be invalid.

4.4 Presentation (Mobile) Layer

The presentation layer is implemented using the Java 2 Micro Edition (J2ME)

platform. The code written is in accordance with the CLDC and MIDP spec-

ifications thus, the application runs on even the most limited, J2ME-enabled

mobile devices.

The user interface is designed in grayscale and menus are employed for the

user to make choices. The user interface map is given in Figure 4.6. Text boxes

are used for the user to enter free text service inputs. When the workflow is

created and drawn on the screen, the user can navigate on the workflow and get

information about the services.

The main MobileWare class which is instantiated by the application manager

of the cellular phone is a sub-class of MIDlet class in MIDP API. It has methods

like startApp, pauseApp and destroyApp for MIDlet state changes. The Mobile-

58

Table 4.3: Messaging Scheme

ID Request Requesting Reply

Module To

1 initialConection Mobile -

2 GenericServices?id=genericServiceID& Application 1

description=genericServiceDescription?...?

3 genericServiceID Mobile 2,8

4 ServiceInstances?ServiceInstanceID=serviceInstanceID& Application 3

ServiceInstanceDescription=serviceInstanceDescription?...?

5 serviceInstanceID Mobile 6

6 ServicePropertyDescriptions?PropertyID=propertyID& Application 5

PropertyDataType=propertyDataType&

PropertyDescription=propertyDescription?...?

7 userInfo?propertyID=propertyValue&...? Mobile 6

8 SucceedingServices?value=genericServiceID&genericServiceDesc Application 7,9

ription=genericServiceDescription?value=serviceInstanceID&servi

ceDescription=serviceInstanceDescription?...?

9 wfc=wfcName Mobile 8

10 wfcOK Application 9

Figure 4.6: User Interface Map for the Mobile Module

Ware class also implements the CommandListener interface to get commands

from the user in the form of menu selection, text box input, soft button com-

59

Figure 4.7: Mobile Module Welcome Message Screen

mands etc. The actions performed by the user call the commandAction method.

User commands are identified for the program to perform respective actions.

All classes, their methods and important fields for the mobile module of the

classes are listed in Appendix A.

Following is a detailed view of the steps the system takes in the mobile

module in the order of execution. The steps can also be followed from Figure

4.2 through Figure 4.5.

1. As the MIDlet starts its execution the constructor of the MobileWare class

is called which initiates the screen and data objects.

2. A welcome message screen as in Figure 4.7 with two commands, Menu

and Exit is displayed. Exit quits the program and Menu brings up a main

60

Figure 4.8: Mobile Module Main Menu

menu (Figure 4.8) that has links to more information about the program,

help text and a Connect option that starts actual execution.

3. When the Connect option is selected, the connectNowmethod with a string

parameter “initialConnection” is called. This method opens a standard

socket connection to application module, sends the request and starts a

timer that waits while the application module to gather data, process it

and return a result. The timer triggers the connectingMIDLET a sub-

class of TimerTask in MIDP API. This class opens an InputStream that

reads the response from the application module into a string. The string

is parsed using the parseResponse method which separates the message

header from the contents and stores the contents into a two dimensional

61

Figure 4.9: Mobile Module List of Generic Services

array of strings named serviceArray. The MIDlet then proceeds depending

on the header of the message. From now on the process of connecting to

the application module, sending a message, getting a response and parsing

it is called “submitting the request containing a message to the application

module”.

4. From Table 4.3, the response for the “initialConnection” string is the IDs

and descriptions of all generic services. The listServices method is called

with the serviceArray parameter. A list of generic services appears on the

screen (Figure 4.9). The user will choose one of them and a request con-

taining the ID of the selected generic service is submitted to the application

module.

62

Figure 4.10: Mobile Module List of Service Instances

5. The application module’s response contains IDs and descriptions of all

instances of the generic service selected in Step 4. It should be noted that

it is possible to apply a filter that reduces the number of instances returned

by forcing a condition on some service attribute. This can be quality of

service, geographical location, service provider etc. However this filtering

mechanism is out of the scope of this thesis. The service instances are

listed on the screen through the listServices method as in Figure 4.10

and the user will choose one of them. A request containing the ID of

the selected service instance is submitted to the application module. The

service instance information is used to create a WFServiceInstance object

and stored in memory. The data structure contains a series of objects,

63

Figure 4.11: Mobile Module Input Properties Text Boxes

which are either service instances represented by a WFServiceInstance

object or flow objects represented by WFFlow objects. WFFlow objects

are actually arrays any of which can contain sequences of WFFlow and

WFServiceInstance objects.

6. The application module’s response contains all the property IDs, descrip-

tions and data types of the service instance selected in step 5. Text boxes

corresponding to each property is shown on the screen (Figure 4.11). The

user will fill the text boxes in free text and a request containing the property

IDs and user input corresponding is submitted to the application module.

The format of the message is:

userInfo?propertyID=propertyValue&...?

64

Figure 4.12: Mobile Module List of Workflow Constructs

7. The application module’s response contains the IDs of SGSs and SSIs of

the service instance selected in step 5. They are listed on the screen (Fig-

ure 4.14) through the listServices method. The user should first give the

selectWFC command to choose a workflow construct. A list of available

workflow constructs is shown in Figure 4.12 which includes: a new flow

command, a branch completed command and a sequence (next) command.

If a “new flow” command is issued, the MIDlet creates as much WFFLow

objects as the number of branches and pushes them into a stack. If a

“branch completed” command is issued the WFFlow object is popped. If

a “next” command is issued the flow continues with another service. The

user will choose one of them and a request containing the workflow con-

65

Figure 4.13: Mobile Module Graphical Representation of the Workflow

struct name is submitted to the application module. The format of the

message is:

wfc=wfcName

The user can see the workflow upto that moment by giving the showWF

command. This commands sets the displayed object to an instance of

workFlowCanvas object which is a sub-class of Canvas. The paint method

of this object will traverse the data structure representing the flow and

create a visual representation of services as boxes and lines connecting

consecutive services (Figure 4.13). The user can use cellular phone depen-

dent “soft” buttons to navigate through the flow and choose any of the

services to get information about it.

66

Figure 4.14: Mobile Module List of Succeeding Services

8. If the workflow construct chosen in step 7 does not imply any changes in

the succeeding services the response is “wfcOK”. If the selected workflow

construct implies a different set of succeeding services, the new set of

succeeding services is received from the application module. This kind of

a change can be necessary if a flow ends and the next service could be the

union of last services of the ending branches. This policy of combining

succeeding service sets could be changed; e.g. to be the intersection of

service sets.

9. The user sees the list of the succeeding services again (Figure 4.14) and user

will choose one of them. A request containing the ID of the selected service

instance or generic service is submitted to the application module. The

67

execution will go back to step 6 or step 7 depending on whether a service

instance or a generic service is selected until a special “terminate” service

is chosen. In this case, the finalized flow is shown and the application

module is notified.

4.5 Application Layer

The application layer is implemented as a standard application using Java 2

Standard Edition. It communicates with the Data Module through a JDBC

Connection; and Presentation (Mobile) Module through a standard socket con-

nection. All classes, methods and important fields of the Application Module is

available in Appendix B.

Application Module has five sub-modules with respect to functionality. These

are:

• Controller: this sub-module makes decisions about the actions of the Ap-

plication Module. It calls other sub-modules to fulfill the requests from

the Mobile Module; and reply them correctly. This module is explained in

detail in Section 4.5.1.

• Messenger: this sub-module is responsible for the communication between

the Application Module and the Mobile Module. Two Java classes make

up the messenger sub-module.

MessageReceiver listens to the port 5678 and has an infinite loop to accept

connections. When a connection is made, it opens a BufferedInputStream

to accept the Mobile Module request. The request is stored in a string

object. A new instance of the Controller class is generated and its run

method is called with the mobile module request as the parameter. The

run method returns the message to be sent as a string. The returned string

is used to call the MessageSender class.

MessageSender is the other class that makes up the Messenger sub-module.

It is also called by the MessageReceiver and replies the Mobile Module

68

through the same socket connection. The connection is closed afterwards.

• Ontology Database Creator: This sub-module is once executed when the

Application Module is initialized. Its responsibility is to populate the

Ontology Database using the DAML-S ontology.

The DAML-S ontology is parsed using HP’s Jena RDF Parser. Using the

mapping given Table 4.2, the database tables in Table 4.1 are created and

are populated with data. Details of the process is given in Section 4.2.

• BPEL4WS Generator: This sub-module is executed after the “terminate”

signal from the Mobile Module is received. The workflow structure stored

in the memory, that has been generated from the service instance and

workflow construct choices of the user, is combined with the service inter-

face definitions from the WSDL files. This information is used to construct

an executable BPEL4WS instance. Details of BPEL4WS document gen-

eration are given in Section 4.5.2.

• Ontology Database Retriever: This sub-module is executed each time the

application module needs to get some data from the Ontology Database.

The OntologyDatabaseRetriever class has methods for the generation of

five types of SQL queries stated in the Section 4.3: getGenericServices,

getInstances, getProperties getSucceedingServices, and findType. The queries

generated by these methods are fed into the runSQL method. runSQL

method returns ResultSet Java objects which are converted into strings by

the getStringRepresentation method. The string representation is sent to

the Mobile Module by the Messenger Sub-Module.

4.5.1 Controller Sub-Module

Controller Sub-Module organizes the actions performed by the Application Mod-

ule. The sub-module is created and called by the MessageReceiver class of the

Messenger sub-module with the Mobile Module request as a parameter to the

run method.

69

The run method of the Controller Sub-Module employs an “if..else if..” struc-

ture with the header of the Mobile Module request as the condition. This struc-

ture is used to construct a string that is sent back to the Mobile Module. Gen-

erally the header is added by the run method and the payload of the message

is created by a method of the Controller Sub-Module or Ontology Database

Retriever Sub-Module.

The Mobile Module request “initialConnection” means this is the first request

of the session. Controller Sub-Module sets the header of the message as “Gener-

icServices” and calls getGenericServices method of the Ontology Database Re-

triever Sub-Module, which generates the necessary string including generic ser-

vice ID and dexcriptions.

If the request starts with “userInfo”, this means that the Mobile Module

is submitting the inputs of a service that the user supplied. userInfoParser

method of Controller Sub-Module is called to parse the values supplied and

the succeeding services are retrieved using the getServiceInstance method of the

Ontology Database Retriever Sub-Module.

Mobile Module sends a workflow construct with a header “wfc”. If such a

request arrives to Controller Sub-Module, the workflow construct is checked to

see whether it is a special construct implying a new set of succeeding services.

A new set of succeeding services (using the getSucceedingServices method of

the Ontology Database Retriever Sub-Module) or a “wfcOK” message is sent

depending on the workflow construct type.

The Controller Sub-Module possesses the same data structures to hold the

workflow in memory as the one built for the Mobile Module. The same actions

as in step 7 of Section 4.4 are executed.

If a “terminate” message is received from the Mobile Module, the execution

is stopped and BPEL4WS Generator Sub-Module is initiated.

If none of the above are found in the incoming string, then the Mobile Module

has obviously submitted an ID. Controller Sub-Module calls the findTypemethod

of the Ontology Database Retriever Sub-Module to see whether the ID belongs

70

to a generic service or a service instance. If the ID belongs to a generic ser-

vice, instances of the generic service are retrieved using the getInstances method

of Ontology Database Retriever Sub-Module. If the ID belongs to a service

instance, inputs of the service are retrieved using the getProperties method.

Respective headers are added and sent to the Mobile Module.

When a service instance is selected by the user and its inputs are sent to the

Mobile Module by the Application Module, Controller Sub-Module stores the

service instance information into a data structure that is the same as the Mobile

Module. The same actions as in step 5 of Section 4.4 are executed.

4.5.2 BPEL4WS Generator Sub-Module

The BPEL4WS Generator Sub-Module is called by the Controller Sub-Module

when the Mobile Module signals that the user has chosen to end the workflow

via the ”terminate” service.

BPEL4WS, XML representation of the generated workflow relies heavily on

WSDL service interface definitions. Thus, during the BPEL4WS generation pro-

cess, WSDL documents for services that are available are parsed when needed.

A BPEL4WS document automatically generated using the system developed

in this thesis is available in Appendix E. WSDL documents used for the gener-

ation of the BPEL4WS documents are given in Appendix F.

This process combines the flow of services created by the user with the in-

terface definitions of the services chosen. The service flow structure resides in

the memory in a custom designed data structure which has been explained in

Chapter 3. WSDL files are parsed using an XML parser.

<message name="approvalMessage">

<part name="accept" type="xsd:string"/>

</message>

<portType name="loanApprovalPT">

<operation name="approve">

<input message="loandef:creditInformationMessage"/>

<output message="tns:approvalMessage"/>

<fault name="loanProcessFault"

71

message="loandef:loanRequestErrorMessage"/>

</operation>

</portType>

From the above WSDL definition of a service the following partnerLinkType

and partnerLinks are generated:

<slnk:partnerLinkType name="loanApprovalLinkType">

<slnk:role name="approver">

<portType name="apns:loanApprovalPT"/>

</slnk:role>

</slnk:partnerLinkType>

<partnerLinks>

<partnerLinks name="approver"

partnerLinkType="lns:loanApprovalLinkType"

partnerRole="approver"/>

</partners>

The BPEL4WS workflow structure uses these declarations as follows:

<sequence>

<receive name="receive1" partner="customer"

portType="apns:loanApprovalPT"

operation="approve" variable="request"

createInstance="yes">

</receive>

</sequence>

The variable in the example above is declared as the following code section;

from the property entries in the Ontology Database where the messageType dec-

larations are taken from the WSDL documents’ message declarations:

<variables>

<variable name="request" messageType="loandef:CreditInformationMessage"/>

<variable name="approvalInfo" messageType="apns:approvalMessage"/>

</variables>

A BPEL4WS document consists of two sections. The “declaration” section

includes: namespace declarations; partnerLinkType and partnerLink declarations

for each service; and variable declarations for data exchange between partners.

72

The “activity” section includes regular activities and structure activities that

define the flow of work.

The data structure representing the flow is traversed once and above stated

sections are generated concurrently.

Each service in the flow has its own partnerLinkType and partnerLink defi-

nition. variables correspond to the propertyValues table in Ontology Database.

For every entry in the table a BPEL4WS variable is created. If the variable is

input by the user, the value is copied using an Xpath expression to the respective

variable. If the variable value is generated by a service as an output, the value

in the appropriate variable is assigned directly.

For every service in the flow the above declarations are given. When the flow

branches and several services or service sequences are executed concurrently, a

<flow> structure activity is written. <sequence> activity structure is used for

activities that need to to be executed in sequence. The other structure activities

like <switch>, <while> and <pick> are not implemented in this thesis.

73

CHAPTER 5

Conclusions and Future Work

The first revolution was the introduction of the Personal Computer (PC). The

second revolution was the Web. It is claimed that the third will be the realization

of the Semantic Web.

For the first two revolutions, the social impact was so huge that the econom-

ical and business opportunities followed the social impacts.

Semantic Web coupled with the current e-Commerce technologies like WSDL,

SOAP, ebXML etc. unleash great opportunities involving the automatic dis-

covery, composition, invocation and monitoring of web services for e-Business.

However with the current level of technology only some of these four activities

can be performed to some extent, since the involvement of semantics in the

process is minor.

Of all the four activities, web service composition is currently the most chal-

lenging since it needs a full semantic description of the services and an infras-

tructure capable of carrying the semantics. DAML-S, especially designed and

evolved for semantic web service definitions, is the main building block of this

thesis.

It seems that current technology is not able to perform full automatic service

composition. In this thesis, we have realized a semi automatic web service

composition architecture in which the user has the control of the composition

74

and service semantics aids her in service discovery and automation.

BPEL4WS on the other hand is the natural choice for the description of

the service composition generated since it is designed for this specific purpose.

BPEL4WS documents generated in this thesis are validated by the BPEL4J

Validator by IBM alphaWorks. The scope of this thesis includes the generation

of valid BPEL4WS documents. These documents along with the respective

WSDL documents of the services in the flow can be fed into a BPEL engine, an

implementation of which is available from IBM alphaWorks BPEL4J. When the

process represented by the BPEL4WS document is deployed into the engine, it

waits for a specific message from a specific port type to be executed.

Building of a workflow is justified if the workflow is executed many times.

The workflows can be executed with the same configuration, or with a new set of

inputs every time it is executed. A web interface can be configured to take the

new set of inputs. The process may also be configured as a web service. In this

case, protocols such as SOAP can be used to invoke the BPEL4WS workflow

that has been composed and deployed on BPEL4J. A complex banking trans-

action; that involves several steps like sale of stocks or bonds, money transfer

and payment; and which is executed repeatedly can be defined as a workflow

and deployed on a BPEL4J engine. Similarly a workflow for frequent travellers

which discovers hotels and flights, reserves rooms and flight tickets, makes pay-

ments can be defined so that the user can execute the process with different set

of inputs.

It should be noted that, realization of such a complex activity on a cellular

phone and the seamless integration with different platforms and the level of

flexibility provided by Java 2 Micro Edition is impressive.

This thesis will be used as a part of the IST-1-002103-STP ARTEMIS:A Se-

mantic Web Service-based P2P Infrastructure for the Interoperability of Medical

Information Systems Project. The architecture provided and realized in this the-

sis can be taken as a basis for other projects also, to develop semi automatic web

service composition systems in mobile environments. Even an inference engine

75

to perform matchmaking can be used to let the service providers free of deciding

succeeding services to the services they provide.

In this thesis we have proved that it is possible to compose semantically

enriched web services in a mobile environment. A state-of-the-art and compre-

hensive implementation of this thesis is left as a future work, which includes:

The implementation of other work flow constructs like loops and branches; the

implementation of the application layer in an application server; the realization

of the Ontology Database in a public registry like UDDI or ebXML; and the

filtering of service instances with respect to any service attribute. The deploy-

ment of executable BPEL4WS documents into a BPEL engine like BPEL4J and

their invocation with different input configurations constitutes an extension to

this thesis.

76

REFERENCES

[1] IBM Business Process Execution Language for Web Services Java Run
Time (BPWS4J), http://www.alphaworks.ibm.com/tech/bpws4j, last up-
dated April 30, 2003.

[2] Business Process Execution Language for Web Services (BPEL4WS) Spec-
ification Version 1.0,
http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp

[3] Business Process Execution Language for Web Services (BPEL4WS) Spec-
ification Version 1.1,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/,
last updated May 5, 2003.

[4] Business Process with BPEL4WS: Learning BPEL4WS, IBM developer-
Works Tutorial,
http://www-106.ibm.com/developerworks/webservices/library/ws-
bpelcol1/, last updated August 1, 2002.

[5] Connected Device Configuration (CDC),
http://java.sun.com/products/cdc/

[6] Connected Limited Device Configuration (CLDC),
http://java.sun.com/products/cldc/

[7] M. Colan, ”Web Services: What’s It All For?”,
http://ibm.com/developerworks/webservices

[8] Defense Advanced Research Projects Agency (DARPA),
http://www.darpa.mil/

[9] DARPA Agent Markup Language (DAML), http://www.daml.org, last up-
dated August 19, 2003.

[10] DAML-Services, http://www.daml.org/services/daml-s/0.9/, last updated
May 7, 2003.

[11] The DAML Services Coalition: Anupriya Ankolekar, Mark Burstein, Jerry
R. Hobbs, Ora Lassila, David L. Martin, Drew McDermott, Sheila A.

77

McIlraith, Srini Narayanan, Massimo Paolucci, Terry R. Payne and Ka-
tia Sycara. ”DAML-S: Web Service Description for the Semantic Web.”
In The Proceedings of the First International Semantic Web Conference
(ISWC), 2002

[12] DAML+OIL, http://www.daml.org/2001/03/daml+oil-index.html, last
updated March, 2001.

[13] DAML+OIL (March 2001) Reference Description,
http://www.w3.org/TR/2001/NOTE-daml+oil-reference-20011218

[14] The DAML-S Definition of the Service,
http://www.daml.org/services/daml-s/0.9/Service.daml, last updated May
7, 2003.

[15] A. Dogac, ”A Tutorial on Exploiting Semantic of Web Services through
ebXML Registries”, eChallenges 2003, October 2003, Bologna, Italy

[16] A. Dogac, Y. Kabak, G. B. Laleci,”A Semantic-Based Web Service Com-
position Facility for ebXML Registries”, 9th International Conference of
Concurrent Enterprising, Espoo, Finland, June 2003

[17] Electronic Business using eXtensible Markup Language (ebXML),
http://www.ebxml.org

[18] D. Fensel, ”The Semantic Web and its Languages”, IEEE Computer Society
NOVEMBER/DECEMBER 2000

[19] I. Horrocks, ”DAML+OIL: a Reason-able Web Ontology Language”, In.
Proceedings of EDBT 2002, March 2002

[20] Java Community Process Program, http://www.jcp.org

[21] Jena Semantic Web Toolkit, HP,
http://www.hpl.hp.com/semweb/jena.htm

[22] J2ME Frequently Asked Question (FAQ),
http://java.sun.com/j2me/faq.html

[23] Kabak, Y., “Exploiting Web Service Semantics through ebXML Registries”,
MS Thesis, Middle East Technical University, 2003

[24] T. B. Lee, J. Hendler, O. Lassile, ”The Semantic Web, A new form of Web
content that is meaningful to computers will unleash a revolution of new
possibilities”, Scientific American, May 2001.

[25] Mobile Information Device Profile (MIDP),
http://java.sun.com/products/midp/

78

[26] core J2ME Technology & MIDP, John W.MUCHOW, Sun Microsystems
Press, 2002

[27] MySQL Relational Open Source Database, http://www.mysql.com/

[28] MySQL Control Center, http://www.mysql.com/products/mysqlcc

[29] OIL, http://www.daml.org/2001/03/daml+oil-index.html, last updated
March 2001.

[30] Web Ontology Language, http://www.w3.org/TR/owl-ref, last updated
August 18, 2003.

[31] Paolucci, M., Kawamura, T., Payne, T., Sycara, K., “Semantic Matching
of Web Services Capabilities”, in Proc. of Intl. Semantic Web Conference,
Sardinia, Italy, June 2002.

[32] Resource Description Framework (RDF), http://www.w3.org/RDF/

[33] Resource Description Framework Schema (RDFS),//
http://www.w3.org/TR/rdf-schema/, last updated September 05, 2003.

[34] Simple Object Access Protocol (SOAP), http://www.w3.org/TR/soap12-
part1/, last updated June 24, 2003.

[35] Web Ontology Language (OWL) Reference Version 1.0,//
http://www.daml.org/2002/06/webont/owl-ref-proposed, last updated Au-
gust 18, 2003.

[36] Universal Description, Discovery and Integration of Web Services (UDDI),
http://www.uddi.org

[37] IBM WebSphere SDK for Web Services (WSDK) Version 5.0.1, Overview,
http://www-106.ibm.com/developerworks/webservices/wsdk/

[38] Describing Web services: WSDL, IBM Developerworks tutorial,
http://www-106.ibm.com/developerworks/edu/ws-dw-ws-dewsdl-i.html

[39] Web Services Description Language (WSDL) Version 1.2,
http://www.w3.org/TR/wsdl12/, last updated June 11, 2003.

[40] Web Services Flow Language Specification version 1.0, http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[41] Web Services - The Web’s next revolution,
http://www-106.ibm.com/developerworks/ edu/ws-dw-wsbasics-i.html

[42] Web Services Toolkit Tutorial, IBM,
http://ibm.com/developerworks/webservices

[43] World Wide Web Consortium (W3C), http://www.w3.org/

79

[44] XLANG, Web Services for Business Process Design,
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm

[45] XML Schema, http://www.w3.org/XML/Schema

80

APPENDIX A

Classes of Mobile Module

public class MobileWare extends javax.microedition.midlet.MIDlet implements CommandListener

public MobileWare()

public void startApp()

public void pauseApp()

public void destroyApp(boolean unconditional)

public void commandAction(Command c, Displayable s)

public void listServices(String[][] serviceArray, Displayable currentDisplay, boolean isSucceeding)

public void userInput(String[][] serviceArray)

public void connectNow(String str)

public class screenObject

public screenObject(String ID, String description, int x, int y)

public class drawingStackObject

public drawingStackObject(WFFlow flowObject, int branch, int leftInterval, int rightInterval, int y)

public class workFlowCanvas extends Canvas implements CommandListener

public void paint(Graphics g)

public void commandAction(Command c, Displayable s)

public int getMinX(int cursorY)

public int getMaxX(int cursorY)

public void keyPressed(int keyCode)

public workFlowCanvas(MobileWare midlet)

public class WFServiceInstance

public WFServiceInstance()

public class WFFlow

81

public WFFlow(int size)

public class connectingMIDLET extends TimerTask

public void run()

public String[][] parseResponse(String response)

82

APPENDIX B

Classes of Application Module

public class ebXMLMessenger

public String getPropertyValue(String propertyID)

public String checkPropertyValues(String serviceInstanceID)

public String getServiceDescription(String serviceInstanceID)

public void insertPropertyValues(String propertyID, String value)

public String getServiceOutputs(String serviceInstanceID)

public String getSucceedingServices(String serviceInstanceID)

public String getProperties(String serviceInstanceID)

public String getGenericServices()

public String getInstances(String genericServiceID)

public String findType(String id)

public ResultSet runSQL(String sql)

public String getStringRepresentation(ResultSet rs)

public ebXMLMessenger()

public class MessageReceiver

public static void main(String[] args)

public class MessageSender

public MessageSender(String str)

public class MiddleControl

public String userInfoParser(String mobileRequest)

public boolean wfcChecker(String wfc)

public String run(String mobileRequest)

public void MiddleControl()

class ServiceOutputVectorObject

83

public ServiceOutputVectorObject(String propertyID, String messageName)

public class WFFlow

public WFFlow(int size)

public class WFServiceInstance

public WFServiceInstance()

public class WritingStackObject

public WritingStackObject(WFFlow flowObject, int branch)

public class WSDLContentHandler implements ContentHandler

public void setDocumentLocator(Locator locator)

public void startDocument()

public void endDocument()

public void startPrefixMapping(String prefix, String url)

public void endPrefixMapping(String prefix)

public void startElement(String namespaceURI, String localname, \\ String qname, Attributes atts)

public void endElement(String namespaceURI, String localname, String qname)

public void characters(char[] ch, int start, int length)

public void ignorableWhitespace(char[] ch, int start, int length)

public void processingInstruction(String target, String data)

public void showCharacters(char[] ch, int start, int length)

public void skippedEntity(String name)

public class WSDLParser

public WSDLServiceObject run(String filename)

public WSDLParser()

public class WSDLServiceObject

public WSDLServiceObject()

84

APPENDIX C

Extended DAML-S Profile

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY daml "http://www.daml.org/2001/03/daml+oil">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY service "http://www.daml.org/services/daml-s/0.9/Service.daml">

<!ENTITY process "http://www.daml.org/services/daml-s/0.9/Process.daml">

<!ENTITY DEFAULT "http://www.daml.org/services/daml-s/0.9/Profile.daml">

<!ENTITY country "http://www.daml.org/services/daml-s/0.9/Country.daml">

<!-- <!ENTITY country "http://www.daml.ri.cmu.edu/ont/Country.daml"> -->

]>

<rdf:RDF

xmlns:rdf= "&rdf;#"

xmlns:rdfs= "&rdfs;#"

xmlns:daml= "&daml;#"

xmlns:xsd= "&xsd;#"

xmlns:service= "&service;#"

xmlns:process= "&process;#"

xmlns= "&DEFAULT;#">

<daml:Ontology>

<daml:versionInfo>

$Id: Profile.daml,v 1.22 2003/07/25 23:22:14 martin Exp $

</daml:versionInfo>

<daml:comment>

Process and Service Coalition

85

First cut at DAML ontology for Advertisements (i.e. Profiles) based

upon the Service Model.

Version of Profile for DAML-S 0.9 Release

Created by Terry Payne (terryp@cs.cmu.edu).

Modified by Massimo Paolucci (paolucci@cs.cmu.edu)

</daml:comment>

<daml:imports rdf:resource="&rdf;" />

<daml:imports rdf:resource="&daml;" />

<daml:imports rdf:resource="&service;" />

<daml:imports rdf:resource="&process;" />

</daml:Ontology>

<daml:Class rdf:ID="Profile">

<daml:label>Profile</daml:label>

<rdfs:subClassOf rdf:resource="&service;#ServiceProfile" />

<daml:comment>

Definition of Profile

</daml:comment>

</daml:Class>

<!--***-->

<!--*************** Extended by K.Alpay Erturkmen ***************-->

<!--***-->

<daml:ObjectProperty rdf:ID="succeedingGenericService">

<daml:domain rdf:resource="#Profile" />

<daml:range rdf:resource="#Profile" />

</daml:ObjectProperty>

<daml:Class rdf:about="#Profile">

<rdfs:subClassOf>

<daml:Restriction daml:minCardinality="1">

<daml:onProperty rdf:resource="#succedingGenericServices" />

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="succeedingServiceInstance">

<daml:domain rdf:resource="Profile" />

<daml:range rdf:resource="Profile" />

</daml:ObjectProperty>

<!--***-->

<!--***-->

<!--***-->

<daml:DatatypeProperty rdf:ID="serviceName">

86

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:about="#Profile">

<rdfs:comment>

A profile can have only one name

</rdfs:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#serviceName"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:DatatypeProperty rdf:ID="textDescription">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:about="#Profile">

<rdfs:comment>

A profile can have only one text description

</rdfs:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#textDescription"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="contactInformation">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="#Actor"/>

</daml:ObjectProperty>

<daml:UniqueProperty rdf:ID="has_process">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&process;#ProcessPowerSet"/>

</daml:UniqueProperty>

<daml:Property rdf:ID="serviceCategory">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="#ServiceCategory"/>

</daml:Property>

87

<daml:Property rdf:ID="serviceParameter">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="#ServiceParameter"/>

</daml:Property>

<daml:Property rdf:ID="qualityRating">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="#QualityRating"/>

</daml:Property>

<daml:ObjectProperty rdf:ID="parameter">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="#ParameterDescription"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="input">

<daml:subPropertyOf rdf:resource="#parameter" />

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="output">

<daml:subPropertyOf rdf:resource="#parameter" />

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="precondition">

<daml:subPropertyOf rdf:resource="#parameter" />

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="effect">

<daml:subPropertyOf rdf:resource="#parameter" />

</daml:ObjectProperty>

<daml:Class rdf:ID="ParameterDescription"/>

<daml:DatatypeProperty rdf:ID="parameterName">

<daml:domain rdf:resource="#ParameterDescription"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Property rdf:ID="restrictedTo">

<daml:domain rdf:resource="#ParameterDescription"/>

<daml:comment>

Range is left unspecified, to allow for both DAML classes and

XSD datatypes.

</daml:comment>

<!-- <daml:range rdf:resource="&daml;#Class"/> -->

</daml:Property>

88

<daml:Class rdf:about="#ParameterDescription">

<daml:comment>

a Parameter is restricted to refer to only one concept in some

ontology

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#restrictedTo"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="refersTo">

<daml:domain rdf:resource="#ParameterDescription"/>

<daml:range rdf:resource="&process;#parameter"/>

</daml:ObjectProperty>

<daml:Class rdf:about="#ParameterDescription">

<daml:comment>

a Parameter is restricted refer to only one parameter in the

process model

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#refersTo"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="ServiceCategory"/>

<daml:DatatypeProperty rdf:ID="categoryName">

<daml:domain rdf:resource="#ServiceCategory"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:about="#ServiceCategory">

<daml:comment>

a ServiceCategory is restricted to refer to only onename

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#categoryName"/>

</daml:Restriction>

</rdfs:subClassOf>

89

</daml:Class>

<daml:DatatypeProperty rdf:ID="taxonomy">

<daml:domain rdf:resource="#ServiceCategory"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:about="#ServiceCategory">

<daml:comment>

a ServiceCategory is restricted to refer to only one taxonomy

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#taxonomy"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:DatatypeProperty rdf:ID="value">

<daml:domain rdf:resource="#ServiceCategory"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:about="#ServiceCategory">

<daml:comment>

a ServiceCategory is restricted to refer to only one taxonomy

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#value"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:DatatypeProperty rdf:ID="code">

<daml:domain rdf:resource="#ServiceCategory"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:about="#ServiceCategory">

<daml:comment>

a ServiceCategory is restricted to refer to only one taxonomy

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#code"/>

90

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="ServiceParameter"/>

<daml:DatatypeProperty rdf:ID="serviceParameterName">

<daml:domain rdf:resource="#ServiceParameter"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:about="#ServiceParameter">

<daml:comment>

A ServiceParameter should have at most 1 name (more precisely only

one serviceParameterName)

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#serviceParameterName"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:ObjectProperty rdf:ID="sParameter">

<daml:domain rdf:resource="#ServiceParameter"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:ObjectProperty>

<daml:Class rdf:about="#ServiceParameter">

<daml:comment>

a Parameter is restricted to refer to only one concept in some

ontology

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#sParameter"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="QualityRating"/>

<daml:DatatypeProperty rdf:ID="ratingName">

<daml:domain rdf:resource="#QualityRating"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

91

<daml:ObjectProperty rdf:ID="rating">

<daml:domain rdf:resource="#QualityRating"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:ObjectProperty>

<daml:Class rdf:ID="Actor">

<daml:label>Actor</daml:label>

<rdfs:subClassOf rdf:resource="&daml;#Thing" />

<daml:comment>

Actor represents a Requester or Provider who might request or offer a service.

</daml:comment>

</daml:Class>

<daml:DatatypeProperty rdf:ID="name">

<daml:domain rdf:resource="#Actor"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="title">

<daml:domain rdf:resource="#Actor"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="phone">

<daml:domain rdf:resource="#Actor"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="fax">

<daml:domain rdf:resource="#Actor"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="email">

<daml:domain rdf:resource="#Actor"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="physicalAddress">

<daml:domain rdf:resource="#Actor"/>

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="webURL">

<daml:domain rdf:resource="#Actor"/>

92

<daml:range rdf:resource="&xsd;#string"/>

</daml:DatatypeProperty>

<daml:Class rdf:ID="NAICS">

<daml:comment>

Hook to the NAICS taxonomy

</daml:comment>

<rdfs:subClassOf rdf:resource="#ServiceCategory"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#categoryName"/>

<daml:hasValue>

NAICS

</daml:hasValue>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#taxonomy"/>

<daml:hasValue>

www.naics.com

</daml:hasValue>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="UNSPSC">

<daml:comment>

Hook to the UNSPSC taxonomy

</daml:comment>

<rdfs:subClassOf rdf:resource="#ServiceCategory"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#categoryName"/>

<daml:hasValue>

UNSPSC

</daml:hasValue>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#taxonomy"/>

<daml:hasValue>

www.un-spsc.net

</daml:hasValue>

</daml:Restriction>

93

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="MaxResponseTime">

<rdfs:subClassOf rdf:resource="#ServiceParameter"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#sParameter"/>

<daml:toClass rdf:resource="#Duration"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="AverageResponseTime">

<rdfs:subClassOf rdf:resource="#ServiceParameter"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#sParameter"/>

<daml:toClass rdf:resource="#Duration"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="Duration" />

<daml:Class rdf:ID="GeographicRadius">

<rdfs:subClassOf rdf:resource="#ServiceParameter"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#sParameter"/>

<daml:toClass rdf:resource="&country;#Country"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:Class rdf:ID="DAndBRating">

<rdfs:subClassOf rdf:resource="#QualityRating"/>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="#ratingName"/>

<daml:hasValue>

<xsd:string rdf:value="Dun and Bradstreet Rating"/>

</daml:hasValue>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

94

<daml:Class rdf:ID="OfferedService">

<daml:label>OfferedService</daml:label>

<rdfs:subClassOf rdf:resource="&service;#ServiceProfile"/>

</daml:Class>

<daml:Class rdf:ID="NeededService">

<daml:label>NeededService</daml:label>

<rdfs:subClassOf rdf:resource="&service;#ServiceProfile"/>

</daml:Class>

<daml:Class rdf:ID="ServiceRequester">

<daml:label>ServiceRequester</daml:label>

<rdfs:subClassOf rdf:resource="#Actor" />

<daml:comment>

ServiceRequester provides general contract details such as address, fax etc.

</daml:comment>

</daml:Class>

<daml:Class rdf:ID="ServiceProvider">

<daml:label>ServiceProvider</daml:label>

<rdfs:subClassOf rdf:resource="#Actor" />

<daml:comment>

ServiceProvider provides general contract details such as address, fax etc.

</daml:comment>

</daml:Class>

<daml:Property rdf:ID="serviceType">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:Property>

<daml:Property rdf:ID="intendedPurpose">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:Property>

<daml:ObjectProperty rdf:ID="role">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="#Actor"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="requestedBy">

<daml:subPropertyOf rdf:resource="#role" />

<daml:range rdf:resource="#ServiceRequester"/>

</daml:ObjectProperty>

95

<daml:ObjectProperty rdf:ID="providedBy">

<daml:subPropertyOf rdf:resource="#role" />

<daml:range rdf:resource="#ServiceProvider"/>

</daml:ObjectProperty>

<daml:Property rdf:ID="domainResource">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:Property>

<daml:ObjectProperty rdf:ID="geographicRadius">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="#Location"/>

</daml:ObjectProperty>

<daml:Class rdf:ID="Location">

<daml:label>Location</daml:label>

<rdfs:subClassOf rdf:resource="&daml;#Thing" />

<daml:comment>

This class represents the scope or availability

of a service to some area.

</daml:comment>

</daml:Class>

<daml:Property rdf:ID="degreeOfQuality">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:Property>

<daml:Property rdf:ID="qualityGuarantee">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:Property>

<daml:Property rdf:ID="communicationThru">

<daml:domain rdf:resource="#Profile"/>

<daml:range rdf:resource="&daml;#Thing"/>

</daml:Property>

</rdf:RDF>

96

APPENDIX D

DAML-S Tourism Mini-Ontology

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY daml "http://www.daml.org/2001/03/daml+oil">

<!ENTITY xsd "http://www.w3.org/2000/10/XMLschema.xsd">

<!ENTITY time "http://www.ai.sri.com/daml/ontologies/time/Time.daml">

<!ENTITY profile "http://www.daml.org/services/daml-s/0.7/Profile.daml">

<!ENTITY DEFAULT "http://www.daml.org/services/damls/0.7/ProfileHierarchy.daml">

]>

<rdf:RDF

xmlns:rdf= "&rdf;#"

xmlns:rdfs= "&rdfs;#"

xmlns:daml= "&daml;#"

xmlns:xsd= "&xsd;#"

xmlns:profile= "&profile;#"

xmlns= "&DEFAULT;#">

<daml:Ontology>

<daml:versionInfo>

$MiniTravelOntology.daml v0.01 by K.Alpay Erturkmen $

</daml:versionInfo>

<daml:comment>

A sample ontology developed by K.Alpay Erturkmen

</daml:comment>

<daml:imports rdf:resource="&rdf;" />

<daml:imports rdf:resource="&daml;" />

<daml:imports rdf:resource="&profile;" />

97

</daml:Ontology>

<daml:Class rdf:ID="HotelReservationService">

<rdfs:subClassOf rdf:resource="&profile;#Profile" />

<daml:comment>

Generic Hotel Reservation Service

</daml:comment>

<rdfs:subClassOf>

<daml:unionOf>

<daml:Restriction>

<daml:onProperty rdf:resource="&profile;#succedingGenericService" />

<daml:hasValue rdf:resource="#PaymentService" />

</daml:Restriction>

<daml:Restriction>

<daml:onProperty rdf:resource="&profile;#succedingGenericService" />

<daml:hasValue rdf:resource="#FlightDiscoveryService" />

</daml:Restriction>

</daml:unionOf>

</rdfs:subClassOf>

</daml:Class>

<daml:DatatypeProperty rdf:ID="hotelArrivalDate">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelReservationService" />

<daml:range rdf:resource="#ArrivalDate"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="ArrivalDate">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:DatatypeProperty rdf:ID="hotelDepartureDate">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelReservationService" />

<daml:range rdf:resource="#DepartureDate"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="DepartureDate">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:DatatypeProperty rdf:ID="hotelNoOfPeople">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelReservationService" />

<daml:range rdf:resource="#NoOfPeople"/>

</daml:DatatypeProperty>

98

<daml:class rdf:ID="NoOfPeople">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:DatatypeProperty rdf:ID="hotelReservationId">

<daml:subPropertyOf rdf:resource="&profile;#output" />

<daml:domain rdf:resource="#HotelReservationService" />

<daml:range rdf:resource="#ReservationId"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="ReservationId">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:Class rdf:ID="HotelDiscoveryService">

<rdfs:subClassOf rdf:resource="&profile;#Profile" />

<daml:comment>

Generic Hotel Discovery Service

</daml:comment>

<rdfs:subClassOf>

<daml:unionOf>

<daml:Restriction>

<daml:onProperty rdf:resource="&profile;#succedingGenericService" />

<daml:hasValue rdf:resource="#HotelReservationService" />

</daml:Restriction>

<daml:Restriction>

<daml:onProperty rdf:resource="&profile;#succedingGenericService" />

<daml:hasValue rdf:resource="#HotelInfoService" />

</daml:Restriction>

</daml:unionOf>

</rdfs:subClassOf>

</daml:Class>

<daml:DatatypeProperty rdf:ID="hotelDiscoveryArrivalDate">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelDiscoveryService" />

<daml:range rdf:resource="#ArrivalDate"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="hotelDiscoveryDepartureDate">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelDiscoveryService" />

<daml:range rdf:resource="#DepartureDate"/>

</daml:DatatypeProperty>

99

<daml:DatatypeProperty rdf:ID="hotelDiscoveryNoOfPeople">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelDiscoveryService" />

<daml:range rdf:resource="#NoOfPeople"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="hotelDiscoveryCity">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelDiscoveryService" />

<daml:range rdf:resource="#City"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="discoveryHotelId">

<daml:subPropertyOf rdf:resource="&profile;#output" />

<daml:domain rdf:resource="#HotelDiscoveryService" />

<daml:range rdf:resource="#HotelId"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="HotelId">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:class rdf:ID="City">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:Class rdf:ID="HotelInfoService">

<rdfs:subClassOf rdf:resource="&profile;#Profile" />

<daml:comment>

Generic Hotel Info Service

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="&profile;#succedingGenericService" />

<daml:hasValue rdf:resource="#HotelReservationService" />

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:DatatypeProperty rdf:ID="infoHotelId">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#HotelInfoService" />

<daml:range rdf:resource="#HotelId"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="infoHotelReservationServiceId">

100

<daml:subPropertyOf rdf:resource="&profile;#output" />

<daml:domain rdf:resource="#HotelInfoService" />

<daml:range rdf:resource="#HotelReservationServiceId"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="HotelReservationServiceId">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:DatatypeProperty rdf:ID="infoHotelInfo">

<daml:subPropertyOf rdf:resource="&profile;#output" />

<daml:domain rdf:resource="#HotelInfoService" />

<daml:range rdf:resource="#HotelInfo"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="HotelInfo">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:Class rdf:ID="PaymentService">

<rdfs:subClassOf rdf:resource="&profile;#Profile" />

<daml:comment>

Generic Payment Service

</daml:comment>

<rdfs:subClassOf>

<daml:Restriction>

<daml:onProperty rdf:resource="&profile;#succedingGenericService" />

<daml:hasValue rdf:resource="#PostalService" />

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

<daml:DatatypeProperty rdf:ID="paymentReservationId">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#PaymentService" />

<daml:range rdf:resource="#ReservationId"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="paymentBillId">

<daml:subPropertyOf rdf:resource="&profile;#output" />

<daml:domain rdf:resource="#PaymentService" />

<daml:range rdf:resource="#BillId"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="BillId">

<daml:subClassOf rdf:resource="#StringParameter" />

101

</daml:class>

<daml:Class rdf:ID="PostalService">

<rdfs:subClassOf rdf:resource="&profile;#Profile" />

<daml:comment>

Generic Postal Service

</daml:comment>

</daml:Class>

<daml:DatatypeProperty rdf:ID="postalBillId">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#PostalService" />

<daml:range rdf:resource="#BillId"/>

</daml:DatatypeProperty>

<daml:DatatypeProperty rdf:ID="postalDestinationAdress">

<daml:subPropertyOf rdf:resource="&profile;#input" />

<daml:domain rdf:resource="#PostalService" />

<daml:range rdf:resource="#DestinationAddress"/>

</daml:DatatypeProperty>

<daml:class rdf:ID="DestinationAddress">

<daml:subClassOf rdf:resource="#StringParameter" />

</daml:class>

<daml:class rdf:ID="StringParameter">

</daml:class>

<daml:DatatypeProperty rdf:ID="value">

<daml:domain rdf:resource="#StringParameter" />

<daml:range rdf:resource="&xsd;#String" />

</daml:DatatypeProperty>

102

APPENDIX E

Generated BPEL4WS Document

<process name="process"

targetNamespace="http://euclid.ii.metu.edu.tr/~kalpaye/bpel/process.bpel"

xmlns:tns="http://euclid.ii.metu.edu.tr/~kalpaye/bpel/process.bpel"

xmlns:slt="http://schemas.xmlsoap.org/ws/2003/03/service-link/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:Seek="http://euclid.ii.metu.edu.tr/~kalpaye/wsdl/SeekHotels.com.wsdl"

xmlns:Worl="http://euclid.ii.metu.edu.tr/~kalpaye/wsdl/WorldofWonders.com.wsdl"

xmlns:Heal="http://euclid.ii.metu.edu.tr/~kalpaye/wsdl/Health-onHotel.wsdl"

xmlns:Ph.D="http://euclid.ii.metu.edu.tr/~kalpaye/wsdl/Ph.DCard.wsdl"

xmlns:WHOO="http://euclid.ii.metu.edu.tr/~kalpaye/wsdl/WHOOPSParcelService.wsdl"

>

<slt:serviceLinkType name="SeekHotels.comSLT">

<slt:role name="service">

<slt:portType name="Seek:SeekHotels.comPT"/>

</slt:role>

</slt:serviceLinkType>

<slt:serviceLinkType name="WorldofWonders.comSLT">

<slt:role name="service">

<slt:portType name="Worl:WorldofWonders.comPT"/>

</slt:role>

</slt:serviceLinkType>

<slt:serviceLinkType name="Health-onHotelSLT">

<slt:role name="service">

<slt:portType name="Heal:Health-onHotelPT"/>

</slt:role>

</slt:serviceLinkType>

<slt:serviceLinkType name="Ph.DCardSLT">

<slt:role name="service">

103

<slt:portType name="Ph.D:Ph.DCardPT"/>

</slt:role>

</slt:serviceLinkType>

<slt:serviceLinkType name="WHOOPSParcelServiceSLT">

<slt:role name="service">

<slt:portType name="WHOO:WHOOPSParcelServicePT"/>

</slt:role>

</slt:serviceLinkType>

<partners>

<partner name="SeekHotels.comPartner" serviceLinkType="SeekHotels.comSLT"/>

<partner name="WorldofWonders.comPartner" serviceLinkType="WorldofWonders.comSLT"/>

<partner name="Health-onHotelPartner" serviceLinkType="Health-onHotelSLT"/>

<partner name="Ph.DCardPartner" serviceLinkType="Ph.DCardSLT"/>

<partner name="WHOOPSParcelServicePartner" serviceLinkType="WHOOPSParcelServiceSLT"/>

</partners>

<variables>

<variable name="SeekHotels.comInput" messageType="Seek:SeekHotels.comRequest"/>

<variable name="SeekHotels.comOutput" messageType="Seek:SeekHotels.comReply"/>

<variable name="WorldofWonders.comInput" messageType="Worl:WorldofWonders.comRequest"/>

<variable name="WorldofWonders.comOutput" messageType="Worl:WorldofWonders.comReply"/>

<variable name="Health-onHotelInput" messageType="Heal:Health-onHotelRequest"/>

<variable name="Health-onHotelOutput" messageType="Heal:Health-onHotelReply"/>

<variable name="Ph.DCardInput" messageType="Ph.D:Ph.DCardRequest"/>

<variable name="Ph.DCardOutput" messageType="Ph.D:Ph.DCardReply"/>

<variable name="WHOOPSParcelServiceInput" messageType="WHOO:WHOOPSParcelServiceRequest"/>

<variable name="WHOOPSParcelServiceOutput" messageType="WHOO:WHOOPSParcelServiceReply"/>

</variables>

<sequence name="sequence">

<sequence name="sequence0">

<receive name="receive0" partner="SeekHotels.comPartner" portType="Seek:SeekHotels.comPT"

operation="Seek:SeekHotels.comOper" variable="SeekHotels.comInput" createInstance="yes"/>

<invoke name="invoke0" partner="SeekHotels.comPartner" portType="Seek:SeekHotels.comPT"

operation="Seek:SeekHotels.comOper" inputVariable="SeekHotels.comInput"

outputVariable="SeekHotels.comOutput"/>

</sequence>

<flow>

<sequence>

<sequence name="sequence1">

<receive name="receive1" partner="WorldofWonders.comPartner" portType="Worl:WorldofWonders.comPT"

operation="Worl:WorldofWonders.comOper" variable="WorldofWonders.comInput" />

<invoke name="invoke1" partner="WorldofWonders.comPartner" portType="Worl:WorldofWonders.comPT"

operation="Worl:WorldofWonders.comOper" inputVariable="WorldofWonders.comInput"

outputVariable="WorldofWonders.comOutput"/>

</sequence>

</sequence>

<sequence>

104

<sequence name="sequence2">

<receive name="receive2" partner="Health-onHotelPartner" portType="Heal:Health-onHotelPT"

operation="Heal:Health-onHotelOper" variable="Health-onHotelInput" />

<invoke name="invoke2" partner="Health-onHotelPartner" portType="Heal:Health-onHotelPT"

operation="Heal:Health-onHotelOper" inputVariable="Health-onHotelInput"

outputVariable="Health-onHotelOutput"/>

</sequence>

</sequence>

</flow>

<sequence name="sequence3">

<receive name="receive3" partner="Ph.DCardPartner" portType="Ph.D:Ph.DCardPT"

operation="Ph.D:Ph.DCardOper" variable="Ph.DCardInput" />

<invoke name="invoke3" partner="Ph.DCardPartner" portType="Ph.D:Ph.DCardPT"

operation="Ph.D:Ph.DCardOper" inputVariable="Ph.DCardInput" outputVariable="Ph.DCardOutput"/>

</sequence>

<sequence name="sequence4">

<receive name="receive4" partner="WHOOPSParcelServicePartner" portType="WHOO:WHOOPSParcelServicePT"

operation="WHOO:WHOOPSParcelServiceOper" variable="WHOOPSParcelServiceInput" />

<invoke name="invoke4" partner="WHOOPSParcelServicePartner" portType="WHOO:WHOOPSParcelServicePT"

operation="WHOO:WHOOPSParcelServiceOper" inputVariable="WHOOPSParcelServiceInput"

outputVariable="WHOOPSParcelServiceOutput"/>

</sequence>

</sequence>

</process>

105

APPENDIX F

WSDL Documents

F.1 SeekHotels.com.wsdl

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<xsd:schema>

<xsd:simpleType name="StringType">

<xsd:restriction base="xsd:string">

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</wsdl:types>

<wsdl:message name="SeekHotels.comRequest">

<wsdl:part name="City" type="#StringType"/>

<wsdl:part name="FromDate" type="#StringType"/>

<wsdl:part name="ToDate" type="#StringType"/>

<wsdl:part name="#ofPersons" type="#StringType"/>

</wsdl:message>

<wsdl:message name="SeekHotels.comReply">

<wsdl:part name="HotelID" type="#StringType"/>

</wsdl:message>

<wsdl:portType name="SeekHotels.comPT">

<wsdl:operation name="SeekHotels.comOper">

<wsdl:input message="#SeekHotels.comRequest" />

<wsdl:output message="#SeekHotels.comReply" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="SoapSeekHotels.com" type="#SeekHotels.comPTi">

106

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http">

<wsdl:operation name="SeekHotels.comOper">

<soap:operation soapAction=""/>

<wsdl:input>

<soap:body namespace="http://SeekHotels.com.com" use="literal"/>

</wsdl:input>

</wsdl:operation>

</soap:binding>

</wsdl:binding>

</wsdl:definitions>

F.2 WorldofWonders.com.wsdl

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<xsd:schema>

<xsd:simpleType name="StringType">

<xsd:restriction base="xsd:string">

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</wsdl:types>

<wsdl:message name="WorldofWonders.comRequest">

<wsdl:part name="HotelID" type="#StringType"/>

</wsdl:message>

<wsdl:message name="WorldofWonders.comReply">

<wsdl:part name="ServiceInstanceID" type="#StringType"/>

<wsdl:part name="HotelInfo" type="#StringType"/>

</wsdl:message>

<wsdl:portType name="WorldofWonders.comPT">

<wsdl:operation name="WorldofWonders.comOper">

<wsdl:input message="#WorldofWonders.comRequest" />

<wsdl:output message="#WorldofWonders.comReply" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="SoapWorldofWonders.com" type="#WorldofWonders.comPTi">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http">

<wsdl:operation name="WorldofWonders.comOper">

<soap:operation soapAction=""/>

<wsdl:input>

<soap:body namespace="http://WorldofWonders.com.com" use="literal"/>

</wsdl:input>

</wsdl:operation>

</soap:binding>

107

</wsdl:binding>

</wsdl:definitions>

F.3 Health-onHotel.wsdl

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<xsd:schema>

<xsd:simpleType name="StringType">

<xsd:restriction base="xsd:string">

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</wsdl:types>

<wsdl:message name="Health-onHotelRequest">

<wsdl:part name="FromDate" type="#StringType"/>

<wsdl:part name="ToDate" type="#StringType"/>

<wsdl:part name="#ofPersons" type="#StringType"/>

</wsdl:message>

<wsdl:message name="Health-onHotelReply">

<wsdl:part name="HotelReservationID" type="#StringType"/>

</wsdl:message>

<wsdl:portType name="Health-onHotelPT">

<wsdl:operation name="Health-onHotelOper">

<wsdl:input message="#Health-onHotelRequest" />

<wsdl:output message="#Health-onHotelReply" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="SoapHealth-onHotel" type="#Health-onHotelPTi">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http">

<wsdl:operation name="Health-onHotelOper">

<soap:operation soapAction=""/>

<wsdl:input>

<soap:body namespace="http://Health-onHotel.com" use="literal"/>

</wsdl:input>

</wsdl:operation>

</soap:binding>

</wsdl:binding>

</wsdl:definitions>

F.4 Ph.DCard.wsdl

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

108

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<xsd:schema>

<xsd:simpleType name="StringType">

<xsd:restriction base="xsd:string">

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</wsdl:types>

<wsdl:message name="Ph.DCardRequest">

<wsdl:part name="ReservationID" type="#StringType"/>

</wsdl:message>

<wsdl:message name="Ph.DCardReply">

<wsdl:part name="BillID" type="#StringType"/>

</wsdl:message>

<wsdl:portType name="Ph.DCardPT">

<wsdl:operation name="Ph.DCardOper">

<wsdl:input message="#Ph.DCardRequest" />

<wsdl:output message="#Ph.DCardReply" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="SoapPh.DCard" type="#Ph.DCardPTi">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http">

<wsdl:operation name="Ph.DCardOper">

<soap:operation soapAction=""/>

<wsdl:input>

<soap:body namespace="http://Ph.DCard.com" use="literal"/>

</wsdl:input>

</wsdl:operation>

</soap:binding>

</wsdl:binding>

</wsdl:definitions>

F.5 WHOOPSParcelService.wsdl

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>

<xsd:schema>

<xsd:simpleType name="StringType">

<xsd:restriction base="xsd:string">

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

</wsdl:types>

109

<wsdl:message name="WHOOPSParcelServiceRequest">

<wsdl:part name="BillID" type="#StringType"/>

<wsdl:part name="DestinationAddress" type="#StringType"/>

</wsdl:message>

<wsdl:message name="WHOOPSParcelServiceReply">

</wsdl:message>

<wsdl:portType name="WHOOPSParcelServicePT">

<wsdl:operation name="WHOOPSParcelServiceOper">

<wsdl:input message="#WHOOPSParcelServiceRequest" />

<wsdl:output message="#WHOOPSParcelServiceReply" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="SoapWHOOPSParcelService" type="#WHOOPSParcelServicePTi">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http">

<wsdl:operation name="WHOOPSParcelServiceOper">

<soap:operation soapAction=""/>

<wsdl:input>

<soap:body namespace="http://WHOOPSParcelService.com" use="literal"/>

</wsdl:input>

</wsdl:operation>

</soap:binding>

</wsdl:binding>

</wsdl:definitions>

110

