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ABSTRACT 

 

COMPUTER SIMULATION OF 
GRAIN BOUNDARY GROOVING AND CATHODE VOIDING IN BAMBOO 

INTERCONNECTS BY SURFACE DIFFUSION 
UNDER CAPILLARY AND ELECTROMIGRATION FORCES 

 

AKYILDIZ, Öncü 

M.S., Department of Metallurgical and Materials Engineering 

Supervisor: Prof. Dr. Tarık Ö. OĞURTANI 

 

September 2004, 128 pages 

 

 

The processes of grain boundary grooving and cathode voiding which are 

important in determining the life times of thin films connecting the transistors in 

an integrated circuit are investigated by introducing a new mathematical model, 

which flows from the fundamental postulates of irreversible thermodynamics, 

accounting for the effects of applied electric field and thermal stresses. The 

extensive computer studies on the triple junction displacement dynamics shows 

that it obeys the first order reaction kinetics at the transient stage, which is 

followed by the familiar time law as 1/ 4t , in the normalized time and space 

domain, at the steady state regime in the absence of the electric field (EF). The 

application of EF doesn’t modify this time law very; but puts only an abrupt 

upper limit for the groove depth and fixes the total elapse time for that event, 

which is found to be inversely proportional with the electron wind intensity 

parameter. The drift in the cathode edge due to the surface diffusion along the 

side walls is simulated under the constant current regime. An analytical formula is 

obtained in terms of system parameters, which shows well defined threshold level 

for the onset of electromigration induced cathode drift, showing an excellent 

agreement with the reported experimental values in the literature.  

 

Key words : Electromigration, thermal grooving, cathode failure, surface diffusion. 
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ÖZ 

 

MİKRO ELETRONİK DEVRELERDEKİ BAMBU BENZERİ ARABAĞLANTI 
ELEMANLARINDA GERÇEKLEŞEN  

KAPİLERİ VE ELEKTROGÖÇ KUVVETLERİNİN ETKİSİNDE TANE SINIRI 
OLUKLANMASI VE KATOT BÖLGESİNDE BOŞLUK OLUŞUMU 

OLAYLARININ BİLGİSAYAR MODELLEMESİ  
 

AKYILDIZ, Öncü 

Y. Lisans, Metalurji ve Malzeme Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Tarık Ö. OĞURTANI 

 

Eylül 2004, 128 sayfa 

 

 

Bu çalışma ile mikro elektronik devrelerde transistörleri birbirlerine bağlayan 

iletkenlerin yaşam sürelerini belirlemekte büyük öneme sahip olan tane sınırı 

oluklanması ve katot bölgesi boşluk oluşumu olayları, dönüşümsüz 

termodinamiğin temel postülatlarını baz alan yeni bir matematik modelleme 

yöntemi ile incelenip, çok zengin bilgisayar simülasyon sonuçları elde edilmiştir. 

Simülasyon sonuçları elektrik alanın yokluğunda, üçlü kavşak hareketinin geçiş 

süresi boyunca birinci derece reaksiyon kinetiğine uyup, kararlı halde ise alışıla 

geldik zaman kanununa ( 1/ 4t ) uyduğunu göstermiştir. Elektrik alanın devreye 

girmesi ile zaman kanununun çok fazla değiştirmeyip, oluk derinliği için bir üst 

sınırın ortaya çıktığı ve bunun gerçekleşmesi için geçen zamanın elektron rüzgar 

kuvveti ile ters orantılı olduğu gözlemlenmiştir. Yan duvarlarda meydana gelen 

yüzey difüzyonunun yol açtığı katot ucundaki sürüklenme, sabit akım altında 

simüle edilip bu olayı betimleyen analitik bir formül ortaya koyulmuştur. Bu 

formül ile birlikte, katot sürüklenmesi için literatürde yer alan deneysel çalışmalar 

ile mükemmel bir şekilde uyum gösteren, ortam parametrelerine bağımlı bir eşik 

değeri bulunmuştur. 

 

Anahtar Sözcükler : Elektrogöç, termal oluklanma, katot bozulması, yüzey 

difüzyonu. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Thermal grooving at grain boundaries is a process of capillary-driven evolution of 

surface topography in the region where a grain boundary emerges to intersect a free 

surface of a polycrystal.  

 

Thermal grooving, or speaking more generally, grain-boundary grooving affects 

many properties of polycrystalline materials especially in the presence of applied or 

internal fields. Common examples are growth of grain boundary grooves and 

cavities, stress relaxation and diffusional creep, stress voiding, electromigration 

behavior, liquid metal penetration along grain boundaries, and stress induced 

groove modification. 

 

Mullins (1957) made the very first analytical study that was related to the grooving 

of a grain boundary without having the grain boundary diffusion by considering the 

triple junction to have the equilibrium capillarity configuration satisfying the Young 

(1805) relationship. With this study problem has been put into a theoretical basis 

and since then an extensive research effort has been put forth by scientists. 

 

Some applications of the theory foreseen at the time it appeared first were the 

calculation of the surface diffusion coefficient (Ds) and absolute free energies (γ). 

Also it was foreseen that the theory could explain some features of the grain 

boundary motion. And finally Mullins (1957) stated that there was a possibility that 

thermal grooves were responsible for the inhibition of grain growth in a sample 

which has a large proportion of grain boundaries terminating on a surface, e.g. a 

thin sheet. 
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Experiments carried out up to day verified that the theory is successful in estimating 

surface diffusion coefficients and surface free energies. In any experiment, the 

groove width and depth are measured as functions of time and the diffusion 

coefficient is obtained from comparison with theory. Some examples are the studies 

on Cu (Mullins and Shewmon, 1959), Ag (Sharma and Spitz, 1981), Mo, Mo-Re, 

and Cr (Srinivasan, 1981). 

 

However, the real success of the model is its ability to describe the surface profile at 

a given time and its evolution under certain circumstances. Actually not only the 

grain boundary grooving process but many fields of physics, chemistry, and 

metallurgy encounter the need for an understanding of surface structures of crystals 

which are subjected to various applied or internal fields. Examples of such areas of 

interest include thermionic emission, sintering, many problems in adsorption and 

catalysis.  

 

Especially today’s microelectronics industry demands a good understanding of 

morphological changes occurring in circuit elements called ‘interconnects’. 

 

In integrated circuits, electricity is conducted via thin film structures that are in 

direct contact with an effective heat sink (e.g., a silicon wafer). Through more than 

30 years of experience, today thin films of Al - Cu alloys (interconnects) with a 

ranging width of about 50 µm to less than 1 µm are manufactured commercially for 

microelectronics industry.  A near bamboo structure is produced as the width of 

these interconnects is reduced to microscopic dimensions. This near bamboo 

structure contains both interconnected networks of grain boundaries as well as 

grains, which span along the width of the line.  Thus large proportions of grain 

boundaries in these thin films terminating at a free surface, and several grain 

boundary grooves are form.  

 

Moreover these thermal grooves are subjected to large current densities (~106 

A/cm2 (Ohring, 1971)) which presents a problematic mechanism called 

Electromigration.  
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Electromigration is the mass transport of a metal due to momentum transfer 

between the conducting electrons and the diffusing metal atoms when an electrical 

current passes through a metal thin film.  

 

Electromigration induced failure of metallic interconnects is a complicated process, 

which involves flux divergence, vacancy and/or atom accumulation with or without 

compositional variations, void and hillock nucleation, growth and shape changes 

(Artz and Nix, 1991; Nix and Artz, 1992).  

 

Grain-boundary grooves, is nothing however but surface voids nucleated at the sites 

of grain boundary intersections with free surfaces, so that the examination of the 

combined action of thermal grooving and electromigration inevitably becomes a 

major interest for microelectronics industry.  

 

Computer simulation studies to consider multiple mechanisms involved in 

morphological changes take place in interconnect lines by the combined action of 

thermal grain boundary grooving and electromigration induced surface and grain 

boundary diffusion to observe the macroscopic effects of the microscopic variables 

lead successful developments to overcome the reliability problems.  

 

The aim of this study is to examine the grooving dynamics under the effect of 

capillary and electromigration forces, evaluate the circumstances under which 

cathode failure takes place, and provide some suggestions on how to increase the 

mean time to failure. To this end a new mathematical model, which flows from the 

fundamental postulates of irreversible thermodynamics, was developed and 

computer simulation experiments were utilized. 

 

In Chapter 2, a detailed literature review for grain-boundary grooving and cathode 

voiding phenomenons with and without electromigration are given.  

 

In Chapter 3, a summary of rigorous irreversible thermodynamic treatment of 

morphological evaluation of curved surface layers, and their intersections with the 

grain boundaries, at the presence of electromigration-induced forces is presented.  
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In Chapter 4, the mathematical model and the numerical methods and procedures 

used in the solution of the completely normalized and scaled partial differential 

equation obtained in Chapter 3, are described briefly. 

 

Results of the simulation experiments with their brief discussions are given in 

Chapter 5.  

 

The computer code developed in C++ programming language to carry out the 

experiments is also given in Appendix. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

2.1. Overview 

 

Groove formation on the tip of the triple junction formed by grain boundary (GB) 

and the two surfaces can occur via several mass transport mechanisms, such as 

surface diffusion, bulk diffusion, and evaporation and condensation, to reduce the 

combined free energy of the surface and the GB. Among these, surface diffusion 

dominates for temperatures far below the melting temperature and for grooves less 

than 10 µm in size (Xin and Wong, 2003). The familiar condition for the vanishing 

of the two surface tensions and the one GB tension along the line of intersection 

may be expressed as (Bailey and Watkins, 1950), 

 

( )2 sins bγ θ γ=  (2.1.1) 

 

where γs and γb are, respectively, the surface and boundary free energies per unit 

area, and θ  is the equilibrium angle. This can be visualized by Fig. 2.1.1.  

 

The rapid establishment of the equilibrium angle by atomic migration in the 

infinitesimal region of intersection produces sharp ridges that border each side of 

the boundary. These ridges tend to flatten by preferential mass transport 

mechanism. This flattening perpetually upsets the equilibrium angle and forces the 

groove to deepen (Mullins, 1957).  



 6

 
 

Figure 2.1.1: Classical Mullins-type GB groove, where bγ  and sγ  are GB and 

surface energies and θ  is the dihedral angle (L. Klinger and E. Rabkin, 2001). 

 

In the case of thermal grooving the effective mass transport mechanism is the 

surface diffusion, referring to the movement of atoms/molecules over the solid 

surface. This movement at the surface ends up with diversity in chemical potential 

of atoms then drive fluxes whose divergence leads to shape changes of the body. 

These changes are called capillary induced shape changes of a body. 

 

When an electrical current passes, it is generally agreed that the force acting on 

diffusing atoms (i.e., ion cores) whether in bulk or thin films originates from the 

sum of two contributions, the direct electrostatic field force tending to drive ions 

toward the cathode, and the “friction” force caused by the momentum exchange 

between ions and scattered electrons, for electron conductors (electromigration), 

which tends to cause ionic motion in the opposite direction. The latter effect 

generally dominates so that atomic drift is toward the anode (Ohring, 1971). Thus 

the combined action of electromigation and capillary forces form a net driving 

force, and determine the characteristics of profile changes of a groove, which forms 

a basis to overcome reliability problems in interconnect lines. 
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2.2. Triple Junction Problem 

 

Importance of capillarity-driven shape and micro structural evolution in solids can 

be connected with the fundamental role of surfaces and heterophase boundaries in 

physical and chemical processes, in stability and of structure and properties of 

materials.  

 

The most obvious problem in this field is that of what shape a small crystal must 

take if its surface free energy is to be minimum for a given volume. In other words, 

when can the free energy of a plane surface be lowered by rearranging the atoms 

into hills and valleys? 

 

The very fist study in this field came from Herring (1951), Neumann (1952) and 

Mullins (1957) which strictly relies on the equilibrium thermodynamics and the 

Gibbs description of interfaces and surfaces (Gibbs, 1948; Defay et al., 1966). Later 

the problem studied by considering two coupled processes, namely the surface 

diffusion taking place on the interface separating the bulk phase from the void 

phase, and the GB diffusion driven by the gradient of the normal stress acting on the 

boundary. Triple junction, a geometric singularity, appears to be the place where 

these two processes are coupled.  

 

The boundary conditions at the triple junction are assumed to be the continuity of 

the chemical potential, the conservation of mass, and the equilibrium capillarity 

configuration for geometry. These boundary conditions relying on the validity of 

Herring’s relationship between chemical potential and the curvature are mutually 

incompatible for the triple junction. 

 

At the triple junction there is no way of defining single curvature because of the 

large discontinuity due to the finite dihedral angle. Therefore Herring’s relationship, 

which is valid for only smoothly varying surfaces, cannot be used at the triple 

junction. Continuity of the chemical potential implicitly assumes that there is no 

local equilibrium, which violates the possibility of internal entropy production. 

However the triple junction motion is completely natural (irreversible) process. 



 8

The driving force not only depends on the curvature gradient but also depends on 

the gradient of the Gibbs free energy difference between bulk and surface layers. In 

reality this additional term becomes responsible for the growth of the void surface 

layer during the shape evolution.  

 

Takahashi et al. (1991) made similar studies on the void shrinkage process utilizing 

two different numerical but rather ad hoc models. One of them always restricts 

dihedral angle θ  to the value of the equilibrium balance. In the other model, the 

local equilibrium at the triple junction is ignored (free dihedral angle). The second 

model resulted in a bonding pressure exponent that is in agreement with the 

experimental observations, namely; the dihedral angle is not always constant and 

changes as increasing net stress is applied to the bond-interface. 

 

Triple junction steady state kinetics is also investigated recently by Gottstein and 

Shvindlerman (2002) in their studies related to the grain growth in 2D polycrystals 

by utilizing a modified version of the Von Neumann-Mullins relationship (Mullins, 

2001) as a basis for the theoretical work. As a driving force for the triple junction 

mobility they assume an ad hoc connection, which may be valid only for the 

symmetrically disposed dihedral angles having an equilibrium value exactly equal 

to 60°. Very similar problem, namely the grain boundary crack growth in 

interconnects with electric field is considered by Liu et al. (2001). They also 

proposed that one has steady state shape evolution having an equilibrium angle at 

the crack apex by further arguing that the crack apex does not constitute a point 

source of entropy production, which is actually the key point in our theory of 

irreversible processes associated with the evolution dynamics of closed curved 

interfaces having triple junction singularities. 

 

Recently, non-boundary tracking methods have been increasingly applied to 

simulate complex microstructural evolutions, including the Monte Carlo methods, 

the cellular automata, and the phase field method (Mahadevan and Bradley, 1999). 

In the phase field approach the field variables governed by semi-phenomenological 

equations of motion, e.g. the Cahn-Hilliard (Chan and Hilliard, 1958) non-linear 
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diffusion equation for the density field and the time-dependent Ginzburg-Landau 

(Landau and Lifshitz, 1980) equation for the long-range order parameter field. 

Kazaryan et al. (1999) generalized phase field approach by incorporating the rigid–

body rotation for the computer simulation of sintering by further assuming that the 

triple junction velocity can be determined from the steady state requirement at the 

grain boundary. Triple junction motion is also investigated by Cahn et al. (1996) for 

an Allen-Cahn / Cahn-Hilliard (Novick-Cohen, 2000) system utilizing long time 

asymptotic, which is still incorporated by the requirement of the uniform 

displacement. They also assumed that one has local physico-chemical equilibrium 

and continuity of chemical potentials at the triple junction. However, the more 

serious restriction associated with the method of phase field is the utilization of 

symmetric free energy form “double well potential” which results not only equal 

interfacial energies but also hinders the particle growth process as admitted by the 

authors themselves. Nathan et al. (2000) and Khenner et al. (2001) applied the level 

set approach to study grain boundary grooving and cathode edge displacement, 

while assuming a fixed surface slope and zero atomic flux at the groove root. The 

most recent computer simulation experiments in bare bamboo-type of lines under 

diffusion and electromigration (EM) fields are performed by Averbuch et al. 

(2003). These authors utilized highly sophisticated numerical procedures in their 

studies, but still they assumed that there is an equilibrium configuration at the triple 

junction, and the triple junction displacement velocity can be extrapolated from the 

projection of the normal velocities of the neighboring nodes in the direction of the 

intergranular grain boundary. 

 

Ogurtani (2000) developed a model for the void configurational evolution during 

the intergranular motion, considering the generalized forces, the conjugate fluxes, 

and the energy dissipation at a triple junction in multi-component systems. Ogurtani 

also states that the first two of the normally used three boundary conditions at the 

triple point – the continuity of the chemical potential, the equilibrium capillarity 

configuration for geometry, and the conservation of mass – are mutually 

incompatible. Considering the internal entropy production associated with the 

virtual displacements of the junction, and applying the laws of linear 
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thermodynamics only, they deduced (longitudinal and transverse) the displacement 

velocities of the triple junction. 

 

 

2.3. Mullins’ Theory of Thermal Grooving 

 

Mullins derived a general partial differential equation for the rate of change of the 

profile of a surface for profile changes occurring by surface diffusion mechanism. 

In the derivation and solution of the differential equations describing the 

development of a groove profile, the following assumptions were made, 

 

1) The system is closed and contains a metal poly-crystal in quasi-

equilibrium with its vapor. 

2) The properties of an interface are independent of its orientation with 

respect to the adjacent crystals. 

3) All matter transport occurs by surface diffusion. 

4) Macroscopic concepts such as surface free energy and surface 

curvature are valid. 

5) There is negligibly flow of matter out of the boundary proper; 

instead, the role of the boundary is to maintain the correct 

equilibrium angle in the infinitesimal region of intersection. 

6) The absolute value of the profile slope is everywhere small compared 

to unity, 

(0, )1 sin tan
2

b

s

dy t
dx

γ θ θ
γ

<< = ≈ =  

 

The surface profile is described a function ( )txy ,  where y  is the departure from of 

the actual profile from the initial flat surface, x  is the distance from the GB, and t  

is the elapsed time since the groove started to grove. The arc length measured along 

the curve from the boundary intersection is denoted by s , and the curvature 

by )(sK . 
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The increase in the chemical potential per atom that is transferred from a point of 

zero curvature to a to a point of curvature K  on the surface is given by, 

 

( )K Kµ γ= Ω  (2.3.1) 

 

where γ  is the surface free energy per unit area, and Ω  is the molecular volume. 

Gradients of chemical potential along the surface will therefore be associated by 

gradients of curvature. Such gradients will produce a drift of surface atoms with an 

average velocity given by the Nernst-Einstein relation, 

 

s sD D KV
kT s kT s

γµ Ω∂ ∂
= − = −

∂ ∂
 (2.3.2) 

 

where sD  is the coefficient of surface diffusion, k  is the Boltzmann’s constant, 

andT  is the absolute temperature. The surface current J is the product of average 

velocity of surface atoms, V , by the number of atoms per unit area, ν , 

 

sD KJ
kT s
γ νΩ ∂

= −
∂

 (2.3.3) 

 

If the surface divergence of negative value of surface current, J− , is taken, one 

obtains the increase in the number of atoms per unit area per unit time. This may be 

converted to the speed of movement nr  of the surface element along its normal by 

multiplying byΩ . Then, 

 
2 2

2
s

n
D Kr

kT s
γ νΩ ∂

=
∂

 (2.3.4) 

 

In expressing above equation in terms of ( )txy , , the following relationships were 

used, 
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x
s s x
∂ ∂ ∂⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠

 (2.3.5) 

 

( ) 1/ 2'21n
yr y
t

− ∂⎛ ⎞= + ⎜ ⎟∂⎝ ⎠
 (2.3.6) 

 

( )
'

3/ 2'21

yK
y

−
=

+
 (2.3.7) 

 

( ) 1/ 2'21x y
s

−∂
= +

∂
 (2.3.8) 

 

Substituting these to Eq. (2.3.4) yields the general partial differential equation for 

the rate of change of the surface profile, 

 

( )
( )

''1/ 2'2
3/ 2'2

1
1

y yB y
t x x y

−
⎛ ⎞⎛ ⎞
⎜ ⎟∂ ∂ ∂ −⎜ ⎟

= − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

 (2.3.9) 

where, 

 
2

sDB
kT
γ νΩ

=    (2.3.10) 

 

This equation solved for the function ( , )y x t  subjecting to the following boundary 

conditions, 

 

( ),0 0y x =            (2.3.11) 

 

( ) ( )0,
tan

dy t
m

dx
β= =    (2.3.12) 
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( )
( )

( )

2

3 2

3 2

0,
30,

0
1

d y t
md y t dx

dx m
= =

+
   (2.3.13) 

 

The last condition is the small slope approximation (assumption 6) of the main 

equation when we require a vanishing current of atoms out of the boundary, i.e. flux 

out of the boundary equals to zero.  

 

Through a series of operations, utilizing Laplace transforms, Mullins obtained 

solution of the PDE, subject to initial and boundary conditions as, 

 

( ) ( )
( )

1/ 4
1/ 4, xy x t m Bt Z

Bt

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦

       (2.3.14) 

 

defining 
( )1/ 4

xu
Bt

= , an analytic solution of the function ( )Z u is developed as a 

power series form, 

 

0
( )

n
n

n
n

Z u a u
=

= ∑     (2.3.15) 

 

As a final step for the complete solution, the values of coefficients na were 

tabulated. 

 

Mullins (1957) also stated that the form of the dependence of y  (Eq. (2.3.14)) upon 

its variables implies a profile shape depending on m , but independent of the time 

and of the physical parameters comprising B . The linear dimensions of this shape 

are evidently proportional to 1/ 4t . The analysis continued by selecting ( )1/ 4 1Bt =  

and plotting the normalized profile / ( )y m Z x= . 
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Figure 2.3.1: Normalized profile shape due to surface diffusion. 

 

The zero, the maximum, and the point of inflection are indicated in Fig. 2.3.1. 

Using Eq. (2.3.14) and the data of Fig. 2.3.1 that the depth of the groove measured 

in the y  direction from the maximum of the surface to the grain boundary is given 

by, 

 
1/ 40.973 ( )d m Bt=    (2.3.16) 

 

whereas the seperation of the two maxima is given by, 

 
1/ 44.6( )s Bt= .   (2.3.17) 

 

 

2.4. Grain Boundary Grooving in Conjunction with Electromigration 

 

Electromigration is the process of current induced self diffusion in metal lines. It is 

generally considered to be the result of momentum transfer from the electrons, 

which move in the applied electric field, to the ions which make up the lattice of the 

interconnect material (Arzt, and Nix, 1991). 

 

When electrons are conducted through a metal, they interact with imperfections in 

the lattice and scatter. Scattering occurs whenever an atom is out of place for any 

reason. Thermal energy produces scattering by causing atoms to vibrate. This is the 

source of resistance of metals. The higher the temperature, the more out of place the 

atom is, the greater the scattering and the greater the resistivity.  
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It is generally agreed that the force acting on diffusing atoms whether in bulk or 

thin films originates from the sum of two contributions, the direct electrostatic force 

tending to drive ions toward the cathode, and the ‘friction force’ caused by the 

momentum exchange between ions and scattered electrons, for electron conductors 

(electromigration), which tends to cause ionic motion in the opposite direction. The 

latter (electromigration) effect usually dominates so that atomic drift is towards the 

anode. The term “electron wind force” generally refers net force on the diffusing 

ions is given by, 

 

total direct frictionF F F= +   (2.4.1) 

 

Whereas an electrostatic analogue for the driving force of electromigration may be 

expressed as, 

 
*

totalF Z qE=   (2.4.2) 

 

where q  is the electronic charge, E  is the electric field, *Z  is the effective valance 

whose magnitude is determined by the competition between the field and electron 

friction effects. Theoretical estimates and experimentally measured values of *Z  

have appeared in the literature (Huntington, 1961). 

 

The electromigration ionic drift and atomic diffusion are connected via the Nernst-

Einstein relation, 

 
* *

s s s
drift

D D Z qE D Z q jv
kT kT kT

ρ
= = =   (2.4.3) 

 

where, driftv  is the drift velocity, SD  is the surface diffusion coefficient, ρ  and j  

are resistivity and current density, respectively, and kT  has the usual meaning.  
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The drift velocity, driftv , will be a function of the diffusion pathway and the 

temperature dependence of driftv  will be characterized by the activation energy of 

the predominant diffusion mechanism, Q , as shown in the following equation ( oD is 

the temperature independent pre-exponential); 

 

0 exp QD D
kT

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (2.4.4) 

 

After a series of operations with appropriate assumptions, just as the derivation of 

Mullins’, the electromigration induced GB grooving found that governed by the 

following equation (Ohring, 1971), 

 
3

3 0i i
i

y yA
t x

∂ ∂
+ =

∂ ∂
           1, 2...i =   (2.4.5) 

 

where, 

 

( )

* 2 *

2
i s

i
B Z e j D Z e jA

kT kT

ρ γ ν ρΩ
= =   (2.4.6) 

 

with the similar boundary conditions given for thermal GB grooving problem. 

 

 

2.5. Further Improvements of Mullins’ Theory 

 

After Mullins’ published his work in 1957, an extensive effort was performed on 

the characteristics of the derived partial differential equation, in order to evaluate 

several cases to understand the groove profile changes under several circumstances. 
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2.5.1. Finite Slope Consideration 

 

Lots of numerical approaches were developed to get a more general solution and 

one of them was the finite slope consideration of the equation. In Mullins work, for 

simplifying the solution small slope approximation was done, by doing this the 

equation for normal displacement of the surface is linearized. Later, the problem has 

been extended to finite slopes in several independent studies. Robertson (1971) 

evaluates the cases of finite slopes ranging from 0 to 4. The main conclusion of this 

solution is that the groove profile is self similar; the width and height of the groove 

grow with time t as t1/4.  

 

Zhang and Schneibel (1995), Wong et al. (1997), and Sun and Suo (1997) obtain 

similar results. 

 

 

2.5.2. Grain Boundary Diffusion; The Presence of Grain Boundary Fluxes 

 

If the grain boundaries, which intersect the free surface, do not transport matter, the 

corresponding profile evolves via surface diffusion under well-known conditions of 

scale and temperature, as completely discussed above. In this approach the only role 

of the triple junction present in the system is to maintain the equilibrium angle. 

However, the presence of GB fluxes I change the surface morphology drastically.  

 

GB grooving with a GB flux in real thin film interconnects is a complex problem. 

An adequate numerical modeling technique should be capable of managing such 

issues as GB grooving with an arbitrary flux, and various ratios of GB to surface 

diffusivities (Khenner et al., 2001). 

 

Huang and Yang (1987) studied the surface profiles generated by the 

electromigration induced surface and GB diffusion in a bicrystal film having a 

varying surface diffusivity. The grooving solution for a periodic array of GB 

grooves, each with an external flux, has been studied by Thouless (1993), only for 

steady state and the small slope case. Klinger et al. (1995) examine the case, under 
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isotropic conditions for the intersection of a periodic array of grain boundaries with 

an external surface for arbitrary GB fluxes. Authors stated that, two modes of 

surface evolution can occur:  

 

1) For moderate magnitudes of I the entire surface advances or recedes as material 

is supplied or removed by the intersecting grain boundaries; 

2) For sufficiently large magnitudes of I, the GB roots break away from the 

remaining surface to form rapidly growing ridges ( 0)I >  or slits ( 0)I < . The 

transition from the first to the second mode occurs at limiting values of I which 

depend on geometry and material parameters Finally they obtain upper and 

lower limiting values for I (α+  and α−  respectively), after which a global 

steady-state profile no longer exists, and conclude with the following remarks: 

 

i. Equilibrium profiles ( 0)I = : Circular arcs (constant curvature), thus 

assuring that surface flux vanishes and that the surface remains stationary. 

ii. Global steady state profiles ( 0)Iα− < < or (0 )I α+> > : More complex 

curvature determined by the condition that the divergence of the surface flux 

is uniform over the periodic distance 2L , thus assuring that the surface flux 

is displaced at a constant velocity. 

 

iii. Ridge ( )I α+>  and slit ( )I α−<  profiles: The surface cannot accept or 

supply sufficient GB flux, thus the groove root breaks away from the 

remaining surface and assumes the form of a slit or ridge, translating at a 

constant velocity. Increasing grain size (2L) favors slit-like grooving. 

 

And also creep cavity growth in a GB, a similar problem to GB grooving, was 

studied by Chuang and Rice (1973), Pharr and Nix (1979), Huang et al. (2000) 

under this consideration.  
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2.5.3. Effect of Diffusivity Variation 

 

The surface diffusivity D  is known to vary with the crystalline orientation. Further 

quantitative clarification of D  in this regard calls for an extremely careful 

determination of the surface transport (Huang, Yang, 1987). Gungor and Maroudas 

(2001) adopted a useful functional form for varying surface diffusivity, relying on 

older studies of Liu (1995), Gungor and Maroudas (1999) and Liu et al. (1991). 

 

 

2.5.4. Effect of Aspect Ratio & Equilibrium Angle 

 

Huang et al. (2001) examine GB grooving on a polycrystalline surface by finite 

element method. They simulate the shape evolution dynamics as a function of 

equilibrium angleθ , and the initial aspect ratio β  of the interconnect line. They 

found that there is a critical thermal grooving or equilibrium angle θ min for given 

β  value. If h < θ min, the plate cannot split, otherwise, the plate will split along the 

internal boundary of the plate-like grain. An approximate formulation of θ min as a 

function of β  is given based on a number of finite element analyses. The effect of 

initial termination shape of the plate on θ min is also examined, and a weak effect 

was found. When β  > 10, its effect can be neglected. They also stated that when 

there is no longer a GB exists in the system i.e. the case where the the interconnect 

break apart into grains, grains will evolve into cylinders directly. 

 

 

 
 

(a) 020, 45β θ= =  
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             (b) 06, 45β θ= =     (c) 06, 14.57β θ= =  

 

Figure 2.4.1: The shape and evolution process of plate-like grains with different 

initial aspect ratio β  and thermal angle θ  for a given mobility and surface free 

energy (Huang et al., 2001). 

 

 

2.5.5. Effect of Anisotropic Surface Free Energies 

 

Maybe the most serious simplification made in the Mullins model is the assumption 

of the full isotropy of the surface energy, sγ . Obviously, this assumption justifies 

the use of the continuum approach, with the macroscopic curvature as the only 

driving force for surface diffusion. However, the importance of the surface free 

energy anisotropy in determining the dihedral angle of the groove and the groove 

shape was recognized soon after Mullins’ original work (Rabkin et al., 2000).  

 

In the case of a coherent twin boundary, it is stated that the surface anisotropy may 

even cause the formation of a ridge instead of a groove (Mykura, 1961). The 

evolution of a pre-perturbed surface topography of the vicinal surface, which is 

essentially anisotropic, was also considered. It was found that the in the small slope 
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approximation, the flux of the surface atoms is again proportional to the gradient of 

the surface curvature defined in the proper frame of reference, but sγ  should be 

substituted by a complex expression which depends on the energy of an isolated 

step, the energy of interaction between steps and the direction of perturbation 

(Bonzel and Mullins, 1996).  

 

Zhang et al. (2002) derive models describing groove growth while the dihedral 

angle changes. Inevitably the change in the dihedral angle is assumed to be caused 

by the change in the surface energy. They express sγ  as a function of time, and 

after a serious of simulations they conclude that changes in the dihedral angle affect 

the growth exponent for the groove depth much more than the groove width. 

Growth exponents for depth values as high as 0.4 are possible in this model, 

whereas Mullins’ model predicts an exponent of 0.25 for both the width and depth 

of the groove.  

 

Xin and Wong (2003) study grooving by capillarity driven surface diffusion with 

strong surface energy anisotropy and find that faceted grooves still grow with time t 

with an exponent of 0.25. They stated that, an isotropic groove can be smooth if the 

groove surface does not cross a facet orientation, moreover the groove has the same 

shape as the corresponding isotropic groove, but the growth rate is reduced by a 

factor that depends on the degree of anisotropy.  

 

Recently, Zhang et al. (2004) study the effect of anisotropic surface free energy on 

thermal GB grooving using modeling, simulation and experiments on tungsten. 

Based on Herring’s model they show that, for tungsten, when the anisotropy is mild, 

the groove profiles are self-similar in the evolution but are often not are in 

proportion to those developed under isotropic material properties. The grooving 

kinetics obey power laws with the exponent 0.25. When the anisotropy is critical 

surface faceting occurs. And, when it is severe the facets coarsen in the evolution. 

They exhibit the groove profiles in evolution under different degrees of anisotropy. 
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2.5.6. Migrating Grain Boundary Consideration 

 

When we rewrite the boundary conditions of the evaluated by Mullins, by calling 

the grain at right hand side as Grain I, and the other Grain II, matching boundary 

conditions connect the two solutions at the origin becomes, 

 

(0, ) (0, )I IIy t y t=  (2.5.6.1) 

 

(0, ) (0, ) bI II

s

y t y t
x x

γδ δ
δ δ γ

⎡ ⎤ ⎡ ⎤− =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (2.5.6.2) 

 
2 2

2 2

(0, ) (0, )I IIy t y t
x x

δ δ
δ δ

=  (2.5.6.3) 

 

Again, the first and third of these conditions expresses the continuity of the profile 

depth and mass flux across the boundary root respectively. The second condition 

maintains a constant angle between the profile surfaces under the approximation of 

small slopes. This condition, however; implies that the GB will rotate in the xy  

plane and may thus migrate. (Allen D.J., 1982).  It is not common to observe GB 

migration in interconnect lines that are operating at relatively low temperatures.  

 

 

2.5.7. The Temperature Effect 

 

When the temperature gradients are small we end up with Mullins’ classical 

grooving equation. Cases of high temperature gradients were also studied in 

connection with electromigration problems, Ohring (1971) states that, where the 

current flows in the direction of increasing temperatures a mass accumulation 

occurs while conversely mass depletion and thinning occurs where the current flows 

in the direction of decreasing temperatures.  
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2.5.8. The Effect of Stress 

 

A theory of the effect of stress on the GB grooving was also developed by Genin et 

al. (1993). The analysis predicts an acceleration of grooving by a tensile stress and 

offers the possibility of an absolute measurement of the GB diffusion data for mass 

transport. 

 

 

2.6. Electromigration Induced Cathode Voiding and Drift 

 

When DC current is applied to a metal interconnect line, electromigration takes 

place resulting in the depletion or accumulation of metal atoms at the locations 

where the imbalance of atom fluxes occurs. Over time this net flux of atoms will 

cause voiding and extrusion in the line which in turn can cause failure of the 

interconnect.  

 

The standard approach to electromigration testing involves measuring resistance as 

a function of time for a large number of samples to determine a failure distribution 

curve based on a predetermined failure criterion. This is typically done at high 

temperature and high current density and the data are then used to extrapolate what 

the expected lifetime would be under use conditions. Failure analysis of tested 

structures can reveal information concerning the failure mechanism, provided the 

applied current is shut off soon after the sample has failed. Continued testing of 

samples after failure can cause significant localized damage (e.g., melting) which 

makes failure analysis much more difficult. 

 

Void growth rate can be estimated by measuring the final void size and dividing by 

the total testing time. To obtain additional data points, one can either test a large 

number of samples and stop the test at different times, or one can periodically 

interrupt the electromigration testing of samples to monitor void growth, however 

this becomes cumbersome, as it involves repeated heating and cooling of the test 

structures. 
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In situ electromigration testing studies enables one to observe void growth as it 

takes place and therefore make a direct correlation between changes in resistance 

and physical changes taking place in the test line. Koetter et al. (2000) looked at the 

correlation between void and hillock growth and microstructure in unpassivated 

physical vapor deposited Cu lines. Lee et al. (1995) carried out Blech-type (Blech I. 

E., 1976) in situ drift experiments on 10-µm-wide Ta/Cu/Ta and Ta/Cu(Sn)/Ta 

sandwich line structures and showed that the addition of Sn reduced drift velocity 

significantly and also increased the measured electromigration activation energy 

from 0.73 eV for pure evaporated Cu, to 1.25 eV for a Cu (2 at. % Sn) alloy. Proost 

et al. (2000) have carried out drift experiments on passivated Blech-type test 

structures looking at the effect of various barrier layers on drift velocity in both 

polycrystalline and bamboo plated Cu structures. They concluded that drift 

proceeds at the Cu/barrier layer interface, with the highest drift velocity measured 

in the case of Ta followed next by TaN and then TiN. Kageyama et al. (1998) 

showed that the texture of Al and Cu lines could be controlled by the texture of the 

underlying Ti and TiN and that highly 111  textured Al and Cu showed improved 

electromigration resistance. 

 

Hu et al. (1999) measured void size in unpassivated Cu lines to determine drift 

velocity as a function of linewidth and sample temperature by occasionally 

interrupting the testing in order to make void size measurements. For fine lines 

( )width 1 mµ<  with a bamboo grain structure, an increase in drift velocity was 

observed with decreasing linewidth suggesting surface diffusion dominated mass 

transport along the three free surfaces of the lines. For wide lines ( )width >1 mµ  

with a polycrystalline grain structure there was a slight increase, then a decrease, 

and then a leveling off in drift velocity with increasing linewidth due to the 

secondary contribution of grain boundary diffusion. The tested samples were 

fabricated using a lift-off technique which differs considerably from today’s typical 

commercial single or dual damascene Cu processing.  

 

Liniger E. et al. (2002) studied in situ SEM electromigration in dual-damascene 

electroplated Cu lines to examine the effect of sample temperature and linewidth on 
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the rate of void growth. They observed void growth takes place by consuming 

grains in a stepwise fashion, either by grain thinning or by an edge displacement 

mechanism. Surface diffusion was found to be the primary diffusion path for void 

growth. In addition they stated that, grain boundaries provided a secondary path for 

copper diffusion in polycrystalline structures and nucleation sites for void growth in 

bamboo structures. A direct correlation between the test line resistance change and 

void growth behavior was also presented in their study. Void growth rate was 

measured as a function of sample temperature and linewidth using a scanning 

electron microscope. Electromigration activation energy of 0.9 0.1± eV was 

determined for the copper voiding process. The effect of linewidth on void growth 

rate was also investigated and found to be negligible, consistent with a surface-

diffusion dominated model for void growth.  
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CHAPTER 3 

 

 

IRREVERSIBLE THERMOKINETIC THEORY OF  

SURFACES & INTERFACES 

 

 

3.1. Introduction 

 

Defining the smallest molecular region in which microscopic fluctuations are 

negligible and whose intensive properties are homogeneous as a micro-discrete 

element, and relying only on the fundamental postulates of linear irreversible 

thermodynamics of bulk phases as advocated by Prigogine (1961), Ogurtani (2000) 

develop a novel analytical theory of a network of interfaces that are interconnected 

by triple junctions which successfully describes the evolution dynamics of ordinary 

points along an interface (e.g. a free surface) and the displacement kinetics of triple 

junctions.  

 

Discretization is applied to an open composite system composed three distinct 

phases, namely the free surface, grain boundary, interconnect where the grain 

boundary separates interconnect into two different sub domains. Then by applying 

legitimate limiting and normalization procedures convenient differential equations 

describing the phenomenon are obtained. The interfacial regions are considered as 

autonomous, i.e. their thermodynamic properties do not require any special 

definition, as for bulk phases.  
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3.2. Internal Entropy Production for Discrete Micro-Elements 

 

Variations taking place in micro-extent (discrete micro-element) are denoted by of 

∆ space-scaling operator. Following this notation, the total reversible work done on 

a flat surface phase is given by: 

 

w Pd V d Aσ σδ γ∆ = − ∆ + ∆  (3.2.1) 

 

where P  is the mean isotropic pressure in the layer, and γ is called the surface 

tension whose value may be given roughly by: 

 

0

h

Qdz
σ

γ = ∫  (3.2.2) 

 

 where Q  is the deviatoric part of the stress tensor and hσ is the thickness of the 

surface layer and also the integration is performed along the surface normal. 

 

The local anisotropic properties of the medium are now automatically embedded in 

the intensive variables, which are characterized by second order tensors or dyadics. 

Hence the Helmholtz free energy for an open surface phase of a micro-extent and 

embedded in an isotropic media may be written as, 

 
i i j j

i j
d F S dT P d V d A d n A dσ σ σ σ σ σ σ σ σ σγ µ ξ∆ = −∆ − ∆ + ∆ + ∆ − ∆∑ ∑   (3.2.3) 

 

where, Sσ∆  denotes the entropy, i
σµ denotes the chemical potential, inσ∆  is the 

number of thi  chemical species in the micro-element, jd σξ  is the extent of the 

homogeneous thj  chemical reaction taking place in the phase under consideration, 

and jAσ∆  is the affinity of the homogeneous thj  chemical reaction and is related to 

the chemical potentials and the stoichiometric numbers as defined by Th. De 

Donder and Rysselberghe (1936).  



 28

For a bulk phase one may rewrite very similar expression for a micro-system 

namely, 

 
j ji i

b b b b b b b b b
i j

d F S dT P d V d n A dµ ξ∆ = −∆ − ∆ + ∆ − ∆∑ ∑   (3.2.4) 

 

In the case of a composite system as defined previously, the total Helmholtz free 

energy differential can be easily written down from Eqs. (3.2.3) and (3.2.4) by using 

the fact that the extensive thermodynamic quantities are additive. 

 

The entropy of any system whether it is close or open can change in two distinct 

ways, namely by the flow of entropy due to the external interactions, exd S∆ , and by 

the internal entropy production (IEP) due to the changes inside the system, ind S∆ . 

Symbolically, one may write this as:  

 

in exd S d S d S∆ = ∆ + ∆  (3.2.5) 

 

The entropy increase ind S∆  due to changes taking place inside the system is 

positive for all natural or irreversible changes, is zero for all reversible changes and 

is never negative.  

 

For an open system, in which not only the energy but also the matter exchange takes 

place between the system and its surroundings, the conservation of energy becomes, 

 

( )d U w d F T S wδ δ δ∆Φ = ∆ − ∆ = ∆ + ∆ − ∆   (3.2.6) 

 

where δ∆Φ  is the energy received by the system, in terms of heat and matter 

transfer processes from the surroundings, d U∆  is internal energy change, and wδ∆  

is the reversible work done on the system by external agents, and this work is equal 

to Pd V− ∆  or ( )Pd V d Aγ− ∆ − ∆  depending upon whether one deals with the bulk 

phase or the surface phase, respectively.  
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For a global composite system having discontinuous phases, the total IEP due to the 

irreversible processes should include the entropy contributions due to transport of 

heat and chemical species among various phases of the system. Hence from Eqs. 

(3.2.3) or (3.2.4) and (3.2.6), one can obtain the following relationship for multi-

phase systems with interfaces by first using the additive property of the entropy 

changes, and then performing a similar splitting procedure as also applied by 

Prigogine (1961) to the system consists of two open phases but is closed as a whole: 

 

, ,

1 j ji i
in k k k k k

k k ki k k j k

A dd S d n
t T t T t T t

ξµ δ
δ δ δ δ

∆∆ ∆ ∆Ω
= − + +∑ ∑ ∑  (3.2.7) 

 

The expression given by Eq. (3.2.7) is generalized in order to take into account of 

the existence of the various homogeneous chemical reactions occurring in different 

phases of a global system. Double summations with respect to k and i or j indicate 

summation over various phases (bulk or surface), and over different chemical 

species or reactions taking place simultaneously in the same phase, respectively. 

kδ∆Ω  is the amount of energy transported to the individual phase from the other 

phases present in the global system due to heat or mass transfer, which also 

employed by Prigogine (1961) in the treatment of lump and close composite 

systems. The first term in Eq. (3.2.7) represents an additional contribution to the 

IEP in the composite system due to internal entropy flow associated with the 

transfer of chemical species from one sub-domain to another sub-domain. One 

should be noticed that the second term in the entropy production for a composite 

system immediately drops out for those sub-domains having identical temperatures.  

 

The IEP is not an additive property of a thermodynamic system composed of 

interacting open sub-systems unless the whole system is in the state of complete 

physico-chemical equilibrium. Therefore, the rate of entropy flow (REF) should be 

also formulated in order to calculate global IEP for the whole system, which is 

composed of a set of discrete but interconnected micro-elements and the embedding 

matrix, by utilizing summation or integration operation as demonstrated by 

Ogurtani and Oren (2001). 
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Similarly, the REF from the surrounding to an open composite system may be 

written as, 

 

,

1i i
ex k k s k s

k ki k k

d S d n
t T t T t

µ δ
δ δ δ

↔ ↔∆ ∆ ∆Ω
= − +∑ ∑ (Open composite micro-system) (3.2.8) 

 

where the subscript k s↔  indicates that the matter and energy exchange takes place 

between the phases of the system, k , and the surrounding, s . Here, /k s tδ δ↔∆Ω  

and ,/i i
k s k sd n t Jδ↔∆ =  are, the rate flow of energy and the flux of chemical species 

i to the domain k of the composite open micro-system from its surrounding denoted 

by s through the heat and matter exchange processes respectively. 

 

 

3.3. Internal Entropy Productions Associated With the Virtual 

Displacements of the Triple Junction and the Ordinary Points  

 

As far as the kinetic behavior of a triple junction is concerned, it is assumed that the 

whole system is in thermal equilibrium and no insitu chemical reaction is taking 

place other than the phase transformation occurring between the free surface and the 

grain boundary region. This last point, which is closely connected with the entropy 

point source term, up to now, is completely omitted in the literature (Rice and 

Chuang, 1981) in the formulation of conservation of species (mass balance) in 

terms of flux balance at the triple junction. In the present theory the sampling 

domain is a very small composite and discrete open micro-system, which is 

eventually localized into a point of singularity, and situated just in the immediate 

neighborhood of the junction as illustrated in Fig. 3.3.1. This selected composite 

micro-system is also connected to the neighboring micro-discrete elements by nodes 

where the exchange or the flow of matter only contributes to the REF but nothing to 

do with the IEP. 



 31

 
Figure 3.3.1: Triple junction longitudinal displacement along the grain boundary. 

(a) Triple junction macrostructure. (b) Triple junction microstructure. BB′  is the 

grain boundary, ABC and ADC are the initial and the displaced position of the free 

surface, respectively, and δη  is the longitudinal virtual displacement of the triple 

junction along the grain boundary. (Ogurtani and Oren, 2003) 

 

Now, let us calculate the internal entropy variation for the left hand side sub-system 

when the triple junction moves along the grain boundary with a distance δη+ . From 

Fig. 3.3.1, one immediately finds the following variational relationships among 

various quantities by using simple geometric arguments and assuming that: 

δη+ +∆ >>A  and δη− −∆ >>A ; 

 

cosδ θ δη+ + +∆ =A , sinHδ θ δη+ + +=   (3.3.1) 

 

1 sin
2b

b
nδ θ δη+ + + +∆ = − ∆

Ω
A , 1 sin

2v
v

nδ θ δη+ + + +∆ = ∆
Ω

A  (3.3.2) 
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coshn σ
σ

σ
δ θ δη+ + +∆ =

Ω
,  

2
g

g
g

h
nδ δη+ +∆ = −

Ω
  (3.3.3) 

 

where ,   ,   and  g b vσΩ Ω Ω Ω  are the mean atomic specific volumes, respectively, 

associated with free surface, grain boundary, bulk and gaseous phases. +∆A  and 
−∆A  denote segment lengths of the free surface just next to the triple junction right 

and left hand sides, respectively. hσ  and gh  are the thickness of the surface layer 

and the grain boundary region and assumed to be invariant. vnδ +∆  and bnδ +∆  are the 

number of atoms gained in the reaction zones associated with the void / interfacial 

layer, and the bulk / interfacial layer, respectively, while the transformation 

processes are taking place there during the virtual displacement of the interfacial 

layer. gnδ +∆  is the total number of atoms misplaced by the half of the grain 

boundary during triple junction motion. Similarly, nσδ +∆  is identically equal to the 

net atomic gain by the interfacial layer denoted by σ  due to enlargement (extension 

without stretching) of that layer during the displacement operation. δ and ∆ are 

variational and micro-discretization operators, respectively. Eventually, by using a 

set of novel limiting procedures of calculus, they will be replaced by exact 

differential, and zero that corresponds to the infinitesimal volume or better to say to 

the singularity associated with the triple junction. 

 

 One can obtain exactly similar expressions for the other side of the triple junction, 

which will be identified by a negative sign as superscript in the formulas. The 

following identities are employed in our future formulas; /hσ σ σΓ = Ω  and 

/g g ghΓ = Ω . They correspond to the specific mean atomic densities associated 

with the free surface and grain boundary, respectively. 

 

By applying the first term of Eq. (3.2.7) that is the only term that does not vanish to 

the left and right side sub-composite systems, the IEP generation can be calculated 

for any arbitrary virtual displacement of the triple junction along the grain 

boundary. Also, one should recall that in the case of multi-component system, the 
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variations in the number of atomic species could be easily obtained by simply 

multiplying the total atomic number variations by the respective atomic fractions 

denoted by i
jx . As an example, the number of chemical species involved in the left 

hand side bulk phase due to the virtual displacement may be given by 

 

sin
2

i
i i b
b b b

b

xn x nδ δ θ δη+ + + + +∆ = ∆ = ∆
Ω

A  (3.3.4) 

 

One can than rigorously write down the rate of entropy production due to triple 

junction virtual displacement for the left as well as for the right hand side domains 

using Eqs. (3.2.7, 3.3.1-3.3.4). In the case of left hand side it is denoted by the 

following formula: 

 

1 sin
21

cos
2

i i
i ib v
b v

b viin

g i i i i
g g

i i

x x
S
t T t

x xσ σ σ

µ µ θ
δ δη
δ δ

µ θ µ

+ +
+ + + +

+ +

+ + +

⎧ ⎫⎛ ⎞
− ∆⎪ ⎪⎜ ⎟⎜ ⎟Ω Ω∆ ⎪ ⎪⎝ ⎠= ⎨ ⎬

Γ⎪ ⎪+ −Γ⎪ ⎪
⎩ ⎭

∑

∑ ∑

A
 (3.3.5) 

 

In above relationship, we have employed special subscript, +, above the atomic 

fractions as well as the chemical potentials related to the surface phase in order to 

indicate explicitly that those quantities may depend upon the orientation of the local 

surface normal. One should also recall that for the multi-component surface phases, 
i i
σ σµΓ∑ , and i i

g gµΓ∑  are exactly equal to the specific Gibbs free energy 

densities associated with the free surface, and the grain boundary, respectively. 

They will be denoted by gσ  and gg . Here, i ixσ σ σΓ = Γ , and i i
g g gxΓ = Γ  are by 

definition known as the specific surface concentration of chemical species in 

surface layer, and the grain boundary, respectively. 

 

The terms appearing in the first group on the right side of Eq. (3.3.5) such as, 

/i i
b b bx µ Ω∑  and /i i

v v vx µ Ω∑  are the volumetric Gibbs free energy densities. 

These quantities are denoted by bg� and vg� , and associated with the bulk phase and 
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gaseous region having their own instantaneous compositions just next to the 

hypothetical geometric boundaries of the interfacial layer (reaction fronts or zones). 

Furthermore, these quantities are related to the specific Gibbs free energy densities 

by the relationship: g h gσ σ σ= �  . 

 

By dividing both sides by tδ , and then taking consecutive limiting procedures first 

with respect to 0tδ → , and then 0∆ →A , one immediately obtains the following 

differential equations representing IEP associated with the virtual displacement of 

the left and right sides of the triple junction singularity, 

 

o
0
0

ˆ 1 1 cos     (erg/ K/cm/sec)
2

in in
g

t

S d S dlim g g
t dt T dtσ

δ

δ ηθ
δ

+ + +
+ +

→
∆ →

∆ ∆ ⎛ ⎞= = −⎜ ⎟
⎝ ⎠

A

   (3.3.6) 

 

and  

 

o
0
0

ˆ 1 1 cos     (erg/ K/cm/sec)
2

in in
g

t

S d S dlim g g
t dt T dtσ

δ

δ ηθ
δ

− − −
− −

→
∆ →

∆ ∆ ⎛ ⎞= = −⎜ ⎟
⎝ ⎠

A

  (3.3.7) 

 

On the left sides of above expressions, the symbol, ∧, has been tacitly employed to 

emphasize that these entropy production terms are line source in three dimensional 

space. Superscripts over the specific Gibbs free energies indicate that those 

quantities may depend upon the orientation of the local surface normal vector.  

 

The entropy production for the combined system can be easily calculated using 

above arguments for the virtual displacement of the triple junction along the grain 

boundary. The result is as follows:  

 

( )
( )

1 sin sin1 2 0
cos cos

g vb vb gin in in

g

g gS S S
t t t T tg g g

σ

σ σ

θ θ δηδ δ δ
δ δ δ δθ θ

+ + + − − −
+ −

+ + − −

⎧ ⎫− ∆ + ∆⎪ ⎪∆ ∆ ∆
= + = ≥⎨ ⎬

⎡ ⎤⎪ ⎪+ − +⎣ ⎦⎩ ⎭

� �A A
 (3.3.8) 
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which yields IEP due to longitudinal displacement of the triple junction along the 

grain boundary, after applying the consecutive limiting procedures as described 

previously,  

 

( )ˆ 1 cos cos 0
g

gin
g

ddS g g g
dt T dt

σ

σ σ
η

θ θ+ + − −⎡ ⎤= − + ≥⎣ ⎦    (3.3.9) 

 

where ( )vb v bg g g= −� � � , and it corresponds by definition to the volumetric density of 

Gibbs Free Energy of Transformation (GFET) (negative of the affinity of an 

interfacial reaction such as condensation or adsorption, 0vbg > ) associated with the 

transformation of the bulk phase into the gaseous phase which contains chemical 

species even though they are present in a trace amount. In the case of thermostatic 

equilibrium between a gaseous phase and an adjacent bulk phase, GFET becomes 

identically equal to zero, if the reaction front would be a flat interface. There is a 

very simple connection between this quantity GFET and the Specific Gibbs Free 

Energy of transformation vbg  (evaporation or desorption, vbg <0) between the 

parent phase and gaseous phase that may be given by vb vbg g hσ= � . 

 

One should also mentioned here that IEP density associated with the virtual 

displacement of an ordinary point along the normal direction of free surface can be 

also deduced from Eq. (3.3.8) by the application of proper and rigorous 

mathematical manipulations. Namely, first taking out the contribution due to the 

grain boundary interaction, and furthermore recognizing that the displacement 

motion of the curved interface takes place along the local surface normal vector. 

Since the right and the left hand segments around the selected ordinary point can be 

chosen arbitrarily, we may take them equal in length that automatically results 

identical take off angles between the surface normal and the right and the left 

segments. Now if one applies the limiting procedure such as; 0∆ →A  and 0tδ → , 

then the following rigorous continuum relationship may be obtained, by recalling 

that the definition of the local radius of curvature 1ρ κ −= ,  

 



 36

0

cos
/ 2

lim θκ
∆ →

=
∆A A

          (3.3.10) 

 

Similarly 
0

lim
∆ →A

 results / 2θ π= . Hence, using above described limiting quantities in 

Eq. (3.3.13), one may deduce the following expression for the internal entropy 

production density (the entropy source term) associated with ordinary points:  

 

( ) o 2int
ˆ 1 0    (erg/ K/cm /sec)vb

dS dg g
dt T dtσ

ηκ= − + ≥�              (3.3.11) 

 

There is a certain freedom exists in the choice of fluxes and forces, because the 

entropy production can be split in several ways into fluxes and forces as clearly 

demonstrated by De Groot (1951). The interpretation of the first set of forces and 

fluxes is rather abstract and they may be also called as the affinities in the field of 

irreversible thermodynamics. On the other hand, the second set can be easily 

understood in terms of ordinary drag force versus velocity concept, and their 

physical interpretation is rather straight forward, but its validity is rather restricted 

to the systems that are in complete thermal equilibrium and the processes are 

isothermal. Since it has been assumed on the on set that there is a thermal 

equilibrium in the system, we may rather use a direct and more plausible approach 

for the triple junction singularity, namely the concept of power dissipation in the 

close sense of classical mechanics, and sometimes it is called Helmholtz dissipation 

function (Haase, 1969). This concept is also advocated and extensively used by 

Ogurtani and Seeger (1983) in the general formulation of internal friction and 

dislocation damping phenomenon associated with atomic hopping motions in 

discrete body centered cubic lattice, that is exposed to the interaction fields which 

are inhomogeneous in space and fluctuating in time. The power dissipation function 

is simply given by the internal entropy production multiply by the temperature for 

an isothermal system, and for the present case obviously it is identically equal to 

driving force velocity product, namely: 

 

ˆ
0    (erg/cm/sec) indS dT F

dt dt
η ±±

±= ≥
�

  (3.3.12) 
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Hence comparing this expression with Eq. (3.3.6) one can immediately deduce the 

generalized force for the left side as; 

 

cos     (dyne/cm) 
2
gg

F gσ θ+ + +⎛ ⎞
= −⎜ ⎟
⎝ ⎠

�
  (3.3.13) 

 

and similarly by comparing the Eq. (3.3.12) with Eq. (3.3.7) one can write down an 

equivalent expression, for the right side; 

 

cos     (dyne/cm) 
2
gg

F gσ θ− − −⎛ ⎞
= −⎜ ⎟
⎝ ⎠

�
  (3.3.14)  

 

These generalized forces are associated with the net material flow during the triple 

junction longitudinal displacement along the grain boundary without making any 

distinction between intrinsic fluxes related to the individual chemical species. They 

are also given in terms of per unit length, because in our formulation of the IEP, a 

sample of unit length in thickness is chosen. In the phenomenological relationship 

between velocity and force, one may prefer to use the force acting on a single 

atomic particle. Therefore above expressions for generalized forces should be 

multiplied by an atomic length, ad , which may be taken as equal to the interatomic 

distance along the sample thickness. Hence, the connection between the triple 

junction velocity and the atomic generalized force can be now written by 

introducing the phenomenological mobility coefficient /long kTℜ ,  

 

cos
2

long
ga gdd g

dt kT σ
η θ
+

+ +⎛ ⎞ℜ
= −⎜ ⎟

⎝ ⎠
 (3.3.15) 

 

and 

 

cos
2

long
ga gdd g

dt kT σ
η θ
−

− −⎛ ⎞ℜ
= −⎜ ⎟

⎝ ⎠
 (3.3.16) 
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where, the same mobilities for both sides are employed. One can now immediately 

formulate the atomic fluxes coming from the triple junction towards the both sides 

of the free surface. These are simply given by the number of atoms present in a 

volume swept by the triple junction motion along the grain boundary per unit time, 

and plus the incoming grain boundary atomic flux ˆ
gJ  (#/cm.sec) associated with 

the long-range drift-diffusion. Since, the velocity of the triple junction is 

proportional with the net flux accumulated or depleted at the junction, one can write 

the following expressions; 

 

( )2 ˆ ˆ / 2g
g

g

d
J J

dt σ
η+

+= −
Γ

 and  ( )2 ˆ ˆ / 2g
g

g

d
J J

dt σ
η−

−= − +
Γ

 (3.3.17) 

 

Using these expressions in Eqs. (3.3.15) and (3.3.16) for the triple junction 

velocities, one gets immediately the following generalized conjugate fluxes: 

 

( ) ˆcos / 2
2

long
a

g g
dJ g J

kTσ σ λ θ+ + + +ℜ
= Γ − +

�
 (3.3.18) 

 

and  

 

( ) ˆcos / 2
2

long
a

g g
dJ g J

kTσ σ λ θ− − − −ℜ
= −Γ − −

�
 (3.3.19) 

 

where one takes the sample thickness as one unit length, and also considers the right 

and left sub-domains separately by splitting the grain boundary diffusion flux 

equally. At this stage one can immediately write down the expression for the 

velocity of the triple junction either directly from Eq. (3.3.9), or applying the law of 

conservation of species to the displacement motion of triple junction, and utilizing 

Eqs. (3.3.18) and (3.3.19) for the out-going fluxes from the transformation front: 

 

( ) ( )1 cos cos
2

long
glong a

g g g
g

d dv J J J g g g
dt kT σ σ
η

θ θ+ − + + − −ℜ ⎡ ⎤= = − − = − +⎣ ⎦Γ

� � �
 (3.3.20) 
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In above flux relations, λ−  and λ+  are very important parameters which may be 

assumed to be constant and equal especially in the case of isotropic behavior of 

surface phases. They may be called as the wetting parameters and are given by the 

following expressions: 
2

gg

gσ
λ− −=  and 

2
gg

gσ
λ+ += . The specific Gibbs free energy 

of the free surface may depend on the orientation of the local surface normal due to 

the anisotropic behavior of the surface tension γ and/or the specific Helmholtz free 

energy itself in crystalline solids (Defay et al., 1966). 

 

In above expressions, a phenomenological mobility coefficient has been introduced 

and denoted by longℜ , which may be called as the reaction rate constant associated 

with the phase transformation denoted symbolically by gbσ ⇔ . For the present 

case, it refers a transformation, which takes place continuously and reciprocally 

between two surface phases, namely, between the free surface and the grain 

boundary region just at the triple junction. This phenomenological mobility does not 

make any distinction between individual chemical species and their rate of transfer 

over the activation energy barrier. It is strongly dependent on the temperature, and 

that may be formulated according to the activated complex rate theory of chemical 

reactions (Yeremin, 1979) as follows: 

 
*

,exp glong GkT
h kT

σ⎛ ⎞∆⎛ ⎞ ⎜ ⎟ℜ = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (3.3.21) 

 

In above expression *
,gGσ∆  is the Gibbs free energy of activation for the 

transformation of surface phase into the grain boundary phase or vice versa. Eq. 

(3.3.20) clearly shows that in the case of thermostatic equilibrium at the triple 

junction, the displacement velocity becomes identically equal to zero regardless the 

magnitude of the grain boundary flux. Thermostatic equilibrium establishes when 

the dihedral angles have reached those values, which make generalized forces given 

in Eqs. (3.3.13) and (3.3.14) identically equal to zero, under the assumed constrain 

on the triple junction, namely no lateral motion is possible. Similarly in above 
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equation, the fluxes associated with the surface diffusion, they may go through 

certain modifications in the case of anisotropic behavior of the free surface as 

demonstrated by Ogurtani and Oren (2001) and Oren and Ogurtani (2002). In the 

case of isotropic specific Gibbs free energies, namely g g gσ σ σ
+ −= = , Eq. (3.3.20) 

may be written in the following form by utilizing the dimensionless parameter λ , 

which is given by /(2 )gg gσλ = .  

 

( )2 cos cos     (cm/sec)
2

long
long a
g

d gv
kT

σ λ θ θ+ −ℜ ⎡ ⎤= − +⎣ ⎦  (3.3.22) 

 

One can easily show, using the technique developed in this section that the internal 

entropy production associated with the transverse virtual displacement of the triple 

junction, namely the motion perpendicular to the grain boundary, may be given by 

the following rigorous relationship; 

 

( )1 cos cos1 2 0
sin sin

trans trans
vb vbin g gS

t T t
g gσ σ

θ θδ δη
δ δ

θ θ

+ + + − − −

+ + − −

⎧ ⎫∆ − ∆∆ ⎪ ⎪= − ≥⎨ ⎬
⎪ ⎪+ −⎩ ⎭

� �A A
 (3.3.23) 

 

from which one can deduce the following expression for the triple junction 

singularity by imposing the limiting procedures such as; 0t∆ →  and 0±∆ →A . 

Hence, the internal entropy production for the transverse motion of the triple 

junction along the designated positive direction becomes; 

 

( )ˆ 1 sin sin 0
trans trans
indS dg g
dt T dtσ σ

ηθ θ+ + − −= − − ≥  (3.3.24) 

 

Since, it is assumed that the composite system is under the thermal equilibrium 

condition, according to Eq. (3.3.24) the projection of the dissipative force acting 

along the direction perpendicular to the grain boundary may be given by  

 

sin sin     (dyne/cm)transF g gσ σθ θ− − + += −  (3.3.25) 
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This relationship together with Eq. (3.3.20) clearly shows that triple junction 

without having any constrain (completely free junction) can be in complete 

physico-chemical equilibrium configuration if and only if the specific interfacial 

Gibbs free energies associated with the grain boundary and the both sides of the free 

surface satisfy a Nil Vectorial Summation Rule, which may represented by the 

following equation; 0gg g gσ σ
+ −+ + =

G G G . We should mentioned here that the similar 

vectorial connection exist among the surface tensions γ associated with the 

intersecting interfaces in order to have a mechanical equilibrium at the triple 

junction, which is also known as Young formula in the literature (Young, 1805). 

 

Above findings related to the transverse virtual motion of the triple junction is very 

important if one considers a more general problem where the grain boundary 

migration occurs as a result of some thermally activated processes. In that situation, 

the transverse component of the triple junction velocity according to Eq. (3.3.25) 

may be given by the following expression; 

 

( )sin sin     (cm/sec)
trans
gtrans

g av d g g
kT σ σθ θ− − + +ℜ

= −   (3.3.26) 

 

where ad  is the atomic distance and /trans
g kTℜ  is the triple junction transverse 

migration mobility, and it is a phenomenological coefficient depending upon the 

temperature of the system through an activation energy barrier. 

 

In the case of lateral constraint on the grain boundary motion, the generalized lateral 

force now generates a particle flow at and through the triple junction along the free 

surface to establish thermostatic equilibrium configuration there by adjusting 

orientations of the neighboring left and right micro-elements. The conjugate particle 

flux (transverse flow) associated with this force can be immediately written as; 

 

( ) ( )ˆ sin sin     (#/cm.sec)
trans
gtrans

g aJ Sign d g g
kTσ σ σψ θ θ− − + +ℜ

= − Γ −  (3.3.27) 
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In above expression the angle ψ denotes the amount of rotation of the 

microelements adjoint to the triple junction in the anti-clockwise direction, and Sign 

is the usual sign function. A close inspection of above flux expression reveals that 

the direction of which as such that it tries to eliminate any deviation from the 

thermostatic equilibrium at the triple junction through the dihedral angles 

readjustment by transferring mass from one side to another. Where, the direction of 

mass flow is always towards the establishment of the thermostatic equilibrium 

configuration, as one expects a priory from very meaning of the postulate of 

positive internal entropy production in the irreversible thermodynamics. 

 

 

3.4. Global Internal Entropy Production Associated With the Virtual 

Displacement of an Interface Interacting With Grain Boundaries 

 

During the derivation of the formula for the global IEP (GIEP) associated with the 

arbitrary virtual displacement, /d dtη , of the interfacial loop of a finite thickness, 

which separates gaseous phase denoted by v from the bulk matrix having multi-

components, one has to integrate the rate of local entropy density change along the 

curved interphase in order to obtain desired connection between generalized forces 

and conjugate fluxes. The rate of local entropy density change is the only quantity, 

which has the additive property that allows to be integrated. Therefore, not only the 

local internal entropy production (source term) given by Eq. (3.3.11), but also the 

external entropy flow term should be evaluated for the virtual displacement of an 

interface. The linear combination of these two terms, which may be called the rate 

of local entropy density change, is given by the following expression in the case of 

isothermal processes; where the last term represents REF, which can be 

immediately obtained from Eq. (3.2.8): 

 

( ) ( )
ˆ 1 ˆ ˆ ( )vb b v
S dg g g J g J J
t T dtσ σ σ σ σ

ηκ∂ ⎧ ∂ ⎫⎡ ⎤= − + +Ω + +⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭

� � �
A

 (3.4.1) 
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where, ˆ
vJ  and ˆ

bJ  are the total atomic fluxes in such directions that they are 

perpendicular and oriented towards the interfacial layer, just at the reaction fronts 

between the gaseous phase and free surface and the bulk and the interfacial layer, 

respectively. Since the evaporation region can be assumed to be a homogeneous 

system having zero gradient of intensive variables, it can only generate a finite flux 

at the dividing interface next to the interfacial layer during the virtual displacement, 

due to the condensation or evaporation processes. 

 

The first group of terms in the above expression represents the IEP density (the 

entropy source for a ordinary point virtual displacement). The second group of 

terms similarly represents, respectively, the divergence of the surface entropy flow 

(DEF) and the possible contribution due to lateral flow of entropy due to exchange 

of chemical species between bulk phase and interface and/or gaseous phase and the 

interface (evaporation and condensation), assuming that the interfacial layer is a 

completely open system, and the displacement process is isothermal. In order to 

calculate the global rate of entropy change of the whole curved interfacial layer, 

which is between the gaseous and the bulk phases, let us first take the line integral 

of Eq. (3.4.1) all along the closed curved interface, excluding any possible 

singularity such as a triple junction that may be situated at a point denoted by the 

open interval ( ),ε ε−  when 0ε → : 

 

( ) ( )

0

0

ˆ ˆ

1 ˆ             vb vb

S Sd lim d
t t

dlim d g g g J g J
T dt

ε

εε ε

σ σ σ σ σ
ε ε

ηκ

−

→
+

→

∂ ∂
=

∂ ∂

⎧ ⎫⎡ ∂ ⎤⎪ ⎪⎛ ⎞= − + +Ω +⎨ ⎬⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

∫ ∫

∫

A A

G
� � �A

A

v

v
 (3.4.2) 

 

The entropy source terms associated with the normal components of the atomic 

flows are considered as coming from the bulk phase, and the open void region 

(region formed by grooving) due to condensation or evaporation processes which 

may be summarized by ˆ ˆ ˆ
vb v bJ J J= + . Hence, one may have the following rigorous 

expression (even both phases may be in condensed states such as the precipitation 

of second phase particles in supersaturated alloy matrixes) for the conservation of 
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atomic species during the virtual displacement of curved interphases having no 

stretching and thickness variations: 

 

( ) ˆ ˆ ˆ( )
i

i i
b v b v bv

i i

J Jdc c h c J J J
dt

σ σ
σ σ

ηκ
∂ ∂

⎡ ⎤− − = − + = −⎣ ⎦ ∂ ∂∑ ∑A A
 (3.4.3) 

 

where bc , vc  and cσ  are the atomic volumetric concentrations associated with the 

bulk, gaseous and surface phases, respectively. Gaseous phase may be treated as 

polyatomic dilute gas, such as: 0,vc =  and 0hσκ = . One would get the following 

result using the fact that 1
b bc−Ω = , which is mostly adapted in the literature 

(Ogurtani and Oren, 2001; Guggenheim, 1959;Wang and Suo, 1996): 

 

ˆˆ b vb
Jd rn J

dt t
ση ∂∂ ⎛ ⎞= ⋅ = Ω −⎜ ⎟∂ ∂⎝ ⎠

G

A
  (3.4.4) 

 

where, nG  and rG  are the surface normal and the position vectors, respectively.  

 

Then, one can write down the following relationship by substituting Eq. (3.4.4) into 

the integrated entropy expression Eq. (3.4.2), to obtain the following expression: 

 

( ) ( )

( ) ( )
0

ˆ
ˆ

ˆ

vb vb vb

vb

Jd g g d g g J
Sd im
t T

d g J d g J

ε ε
σ

σ σε
ε εσ
ε εεε

σ σ σ
ε ε

κ κ
− −

−
+ +
− −→

+

+ +

⎧ ⎫∂⎡ ⎤ ⎡ ⎤+ − +⎪ ⎪⎢ ⎥ ⎣ ⎦∂⎣ ⎦⎪ ⎪Ω∂
= − ⎨ ⎬∂ ⎪ ∂ ⎪

+ +⎪ ⎪∂⎩ ⎭

∫ ∫
∫

∫ ∫

� �A A
A

A A
� �A A

A

  (3.4.5) 

             

The first and the third group of terms on the right side of above relationship can be 

integrated by parts, which result; 
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( ) ( )

( ) [ ] ( )
0

ˆ

ˆ ˆ

vb vb

vb vb vb

d J g g g g J
d d S lim
dt T

d g g J g J d g J

ε
ε

σ σ σ σ εε
εσ
ε εε εε

σ σ σ σε
ε ε

κ κ

κ

−
−

+−
+
− −→ −+

+
+ +

⎧ ⎫∂⎡ ⎤ ⎡ ⎤+ − +⎪ ⎪⎣ ⎦⎢ ⎥∂⎣ ⎦⎪ ⎪Ω
= ⎨ ⎬

⎪ ⎪⎡ ⎤+ + − −⎪ ⎪⎣ ⎦
⎩ ⎭

∫
∫

∫ ∫

� �A
A

A
� � �A A

 (3.4.6) 

 

Now, we can split the rate of global entropy change into two parts, namely the 

global IEP term and the REF term by carefully inspecting the individual 

contributions in Eq. (3.4.6). Hence, one can write for the global IEP term is as 

follows: 

 

( ) ( )

( ) ( )
0

ˆ
vb vb vb

IEP

vb vb

d J g g d g g Jd S im
dt T

g g J g g J

ε ε

σ σ σσ
ε ε

ε
σ σ σ σε ε

κ κ

κ κ

− −

+ +
→

− +

⎧ ⎫∂⎡ ⎤ ⎡ ⎤+ + +⎪ ⎪Ω ⎪ ⎪⎢ ⎥ ⎣ ⎦∂⎣ ⎦= ⎨ ⎬
⎪ ⎪⎡ ⎤ ⎡ ⎤− + + +⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫ ∫
� �A A

AA
� �

 (3.4.7) 

 

Similarly, we can collect those terms in Eq. (3.4.6), which are clearly related to the 

rate of entropy flow or in another word the external entropy contribution associated 

with the free surface phase excluding the triple junction as a singularity. Hence, one 

may write: 

 

( ) [ ] [ ]
0

ˆ
REF vb

d S im d g J g J g J
dt T

ε
σ

σ σ σ σ σε εε ε

−

− +→
+

⎧ ⎫Ω ⎪ ⎪= − − +⎨ ⎬
⎪ ⎪⎩ ⎭
∫

� � �A A   (3.4.8) 

 

In these expressions ∪ indicates volumetric densities and ∧ denotes the bulk flux 

intensities (#/cm2.sec). Here, i

i
J Jσ σ=∑  denotes the sum-over surface atomic 

fluxes (#/cm.sec) in the interfacial layer. Similarly, ˆ ˆ i
b b

i
J J=∑  and ˆ ˆ i

v v
i

J J=∑  are 

the total atomic flux densities normal to the interface, and they are coming from the 

adjoint bulk and gaseous phase, respectively. As far as the definition of fluxes is 

concerned, the lattice structure is assumed to be the reference system in our 

treatment, therefore existence of vacancies and their flow ˆ
VJ  is automatically 
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considered in this representation. In those phases (i.e., bulk and interface regions) 

with well-defined crystal structures, the lattice vacancies (especially athermal 

vacancies) should be regarded as independent chemical species in the summation 

operation dealing with respective Gibbs free energies even though their chemical 

potentials become identically equal to zero when thermodynamic equilibrium 

established in the system. One should remember that we are using the postulate of 

conservation of lattice sites rather than the real chemical species in the crystalline 

materials as long as there is no sink and source for annihilation and generation of 

intrinsic point defects such as mono-vacancies in the domain of interest as first 

mentioned by Bardeen and Herring (1951). However, in the total atomic flux 

calculations relevant summation operations do not include vacancies, but rather one 

would have following rigorous identities; ˆ ˆV
b bJ J= −  and VJ Jσ σ= − , where 

superscript, V , denotes vacancy flux density in the relevant phase assuming that it 

has a crystalline structure, otherwise no such connection can have any meaning.  

 

In the absence of any possible singularity, the last two terms of Eq. (3.4.7) and 

(3.4.8) become identically zero and drops out completely. Then the integrated 

internal entropy production, given by Eq. (3.4.7), immediately results in the 

following expressions for the generalized forces utilizing the fundamental 

connection between conjugated forces and fluxes by considering the additional 

contribution due to the external forces ExtF
G

 as formulated in the Appendix-B of 

Ogurtani and Oren (2001) namely, 

 

( )1
vb ExtF g g t F

Tσ σ σκ
⎧ ∂ ⎫⎡ ⎤= Ω + + ⋅⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭

GG�
A

,  (3.4.9) 

 

and 

 

( )1
vb vb ExtF g g n F

Tσ σκ
⎧ ⎫⎡ ⎤= Ω + + ⋅⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

GG� , (valid for ordinary points)  (3.4.10) 
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where Fσ  and vbF  denote longitudinal and transverse generalized forces that are 

acting on the interfacial layer respectively. t
G

 and nG  denote unit tangent and normal 

vectors at the free surface, respectively. The last contribution in Eq. (3.4.10) 

becomes identically zero since the normal component of the electric field intensity 

and the traction are all vanish at the free surface. Then, it can immediately be 

written down the conjugate fluxes associated with the above forces using the 

conventional approach in the irreversible thermodynamics of linear (isothermal) 

processes exposed to conservative external force fields as; 

 

( )vbJ g g eZ
kT
σ

σ σ σ
σ

ϑκ λ σ∗⎡ ⎤Μ ∂
= Ω + − + ⊗⎢ ⎥∂ Ω⎣ ⎦

�
A

  (surface flux)  (3.4.11) 

 

and  

 

( )vb
vb vbJ g g

kT σ σκ
Μ

= Ω +
� �   (incoming net lateral flux density) (3.4.12) 

 

where, the cross-coupling terms between generalized forces and fluxes have also 

been neglected. / kσΜ  and /vb kΜ  are generalized phenomenological mobilities 

associated with the respective conjugated forces and fluxes, and k  is Boltzmann’s 

constant. λ  and eZ∗  are the mean values of the elastic dipole tensor and the 

effective electromigration charge associated with the interacting species, 

respectively. Double bars in the expressions indicate tensor quantities, and ⊗  

operator denotes enlarged double inner product of tensors or dyadics 

( ij ija b a b⊗ = ). For multi-component systems, where we are interested only in the 

net atomic (mass) transport regardless to the contributions of individual chemical 

species, the first generalized-mobility given above may not be easily connected to 

any combination of the intrinsic surface diffusivities of individual chemical species 

in the interfacial layer or in the bulk phase. However, for one component system 

having minor amount of doping elements or impurities, the situation is rather simple 
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where one can easily identify the existence of the following relationship between 

generalized mobility and the surface self-diffusivity of host matter denoted by Dσ
� , 

 

ˆ D h D
kT kT kT
σ σ σ σ

σ σ
σ

Μ
Μ = = = Γ

Ω

� �
, (3.4.13) 

 

Hence, for the future discussions, the following compact form will be used, which is 

more suitable to take other driving forces such as the electromigration and the stress 

assisted drift motion of surface atoms into considerations: 

 

( )ˆ
vbJ g g eZσ σ σ σ σκ ϑ λ σ∂ ⎡ ⎤= Μ Ω + − +Ω ⊗⎢ ⎥⎣ ⎦∂
�

A
 (3.4.14) 

 

where ˆ
σΜ  may be called surface atomic mobility, and it has the dimension given 

by [1/erg.sec]. The generalized mobility vbΜ  [cm2/sec] associated with the 

incoming bulk diffusion flux is related to the transformation rate of chemical 

species from bulk phase to the interfacial layer or vice versa over the activation 

energy barrier denoted by *
vbG∆ . Hence, it can be defined according to the 

transition rate theory of chemical kinetics advocated by Eyring (Yeremin, 1979), as: 
*

exp vb
vb

GkT
h kT

⎛ ⎞∆⎛ ⎞Μ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
, where h  is Planck’s constant. In our future formula we 

will use rather renormalized mobility, which may be defined by ˆ /vb vb kTΜ =Μ , 

which has the following dimension [cm2/erg.sec].  
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CHAPTER 4 

 

 

MATHEMATICAL MODEL & NUMERICAL PROCEDURES 

 

 

4.1. Introduction 

 

As entirely discussed in the literature survey, up to the novel studies carried out by 

Ogurtani (2000), Ogurtani and Oren (2001, 2003), all the theoretical studies related 

to the interfaces and surfaces, which are reported and cited, are strictly relying on 

the classical thermodynamics as a general tool for the macroscopic description of 

physico-chemical processes with some obscure modifications in the concept and 

usage of chemical potentials, and the free energies especially in the presence of 

externally imposed force fields without considering their original strictly 

mathematical definitions by Gibbs (1948). The more serious limitation of these 

approaches lies in the fact that the methods are based on reversible processes and 

true equilibrium states. 

 

However, the groove formation at the sites of grain boundary intersections with a 

free surface starts at a point we can call the ‘groove root’, which is nothing but a 

triple junction itself. Triple junction motion is a completely natural (irreversible) 

process, and although Mullins’ theory of thermal grooving is successful in 

describing profile changes, we believe that this special point should be treated as it 

is, not with the formulations based on reversible processes. The theory given in 

Chapter 3 enables this special treatment, and showed to be successful by former 

studies of Ogurtani and Oren (2001, 2002, 2003).  
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4.2. Mathematical Modeling 

 

In the present model, a constant electric field oE  is imposed far away from the 

groove surface, which generates an electrical field denoted by E, having zero 

normal components at the free surfaces. Fig. 4.2.1 shows the schematic 

representation of the model, which is under discussion. 

 

 
 

Figure 4.2.1: The schematic representation of the problem. 

 

Following a series of normalization and scaling procedures, final form of the 

boundary value problem whose theoretical considerations are fully discussed in 

Chapter 3 is given in sections 4.2.2 and 4.2.3.  

 

 

4.2.1. Normalization & Scaling 

 

In Chapter 3 equations describing the phenomenon are obtained without the use of 

simplifications or normalization procedures. However we perform the actual 

calculations using normalized units to make the algorithms more efficient, to 

eliminate any necessity for the knowledge of the specific material properties, and to 

avoid numerical overflow and underflow. In the following formulas the bars over 

the symbols indicates the normalized and scaled quantities. 
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The curvilinear coordinate along the curved surface formed by grooving (arc 

length),A , the interconnect with w , the local curvature, κ , that represents the 

capillary effect, and the system time, t , are normalized with respect to selected 

scales ( ,o oτA ) as shown below:  

 

/ o=A A A , /o o ow w= A , oκ κ= A   and ott τ/= ,   (4.2.1.1) 

 

The volumetric Gibbs free energy difference between the gaseous phase and the 

bulk phase can be normalized by using the specific Gibbs free energy of the 

interfacial layer, denoted by σg , 

 

vb o
vb

gg
gσ

=
� A   (4.2.1.2) 

 

The electrostatic potential generated at the void surface may be normalized with 

respect to the remote applied electric field denoted by 0E  and it is given by 

 

o oE
ϑϑ =
A

   (4.2.1.3) 

 

The relative importance of electromigration with respect to capillary forces can be 

easily represented by a single variable χ  that may be called as the electron wind 

intensity. 

 
2

o oe Z E
gσ σ

χ =
Ω

�
A

  (4.2.1.4) 

 

where ˆeZ  is the effective charge in multi-component systems. 

 

And similarly the generalized mobility vbΜ̂  associated with the interfacial 

displacement reaction taking place during the surface growth process, ˆ longΜ  and 
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ˆ transΜ , which correspond to the longitudinal and transverse triple junction 

mobilities, are normalized with respect to the mobility of the surface diffusion 

denoted by σΜ̂ , 

 
2ˆ

ˆ
vb o

vb
w

σ

Μ
Μ =

Μ
, 

ˆ
ˆ

long
long

σ

Μ
Μ =

Μ
  and  

ˆ
ˆ

trans
trans

σ

Μ
Μ =

Μ
         (4.2.1.5) 

 

where,  

 

ˆ
long

glong

g

h
kT

ℜ
Μ =

Ω
, ˆ

trans
trans h

kT
σ

σ

ℜ
Μ =

Ω
    and  ˆ

oD h
kT
σ σ

σ
σ

Μ =
Ω

  (4.2.1.6) 

 

In above description we have tried to scale the time and space variables { },t A in a 

following fashion; first of all, ˆ
σΜ , an atomic mobility associated with mass flow at 

the surface layer, is defined by the relationship given in the previous section, and 

then a new time scale is introduced by ( )4 2 ˆ/o o gσ σ στ = Ω ΜA , where oA  is the 

arbitrary length scale, which is for the present simulation studies chosen as  

/ 3o ow=A ,  where   ow   is the halve width of the interconnect specimen. The size 

of the scaling length is only important for the stress calculations using BEM 

technique to obtain proper convergency, which utilizes the Kelvin’s solution for the 

elastostatic problems. σΩ is the atomic volume in the surface layer, Dσ σδ�  is the 

thickness of the surface layer times its diffusivity, k  is the Boltzmann’s constant, T  

is the absolute temperature and ϑ  is the electrostatic potential generated at the 

surface due to the remote applied electric field denoted by oE . The surface specific 

Gibbs free energy, gσ , plays very important role in above definitions. vbg  ( vbg <0  

evaporation)  is the volumetric Gibbs free energy difference (the Gibbs free energy 

of transformation) between the realistic void and the bulk phase, and it is 

normalized with respect to the specific surface Gibbs free energy.  
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Using these, the evolution kinematics of the surfaces or the interfacial layers 

(simply connected domains) may be described by the following well-posed moving 

boundary value problem in 2D space, for the ordinary points and TJ singularities, in 

terms of normalized and scaled parameters and variables, assuming that the surface 

drift-diffusion and the specific Gibbs free energy of the interfacial layer are 

anisotropic and isotropic (for the time being), respectively. 

 

 

4.2.2. Normal Displacement Velocity of the Ordinary Points 

 

After these normalizations, the normal displacement velocity of an ordinary point at 

the surface layer, may be given by the following fourth order partial differential 

(nonlinear) equation in curvilinear coordinate system, 

 

( ) ( )( , )ord vb vb vbv D g gθ φ χϑ κ ψ κ∂ ∂⎡ ⎤′′= ∆ + + + Φ −Μ ∆ +⎢ ⎥∂ ∂⎣ ⎦A A
  (4.2.2.1) 

 

where, the angular dependent post factor ),( θϑD ′′  denotes the anisotropic surface 

diffusivity. 

 

Assumption of isotropic specific surface Gibbs free  energy gσ  and the Gibbs free 

energy of transformation is homogeneous in space ( ( )2 0vbg∇ ∆ = ) brings further 

simplification to Eq. (4.2.2.1) which takes into account that one may have 

condensation ( vbg∆ >0)  or/and  evaporation ( vbg∆ <0): 

 

( ) ( )( , )ord vb vbv D gθ φ χϑ κ ψ κ∂ ∂⎡ ⎤′′= + + Φ −Μ ∆ +⎢ ⎥∂ ∂⎣ ⎦A A
  (4.2.2.2) 
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4.2.3. Triple Junction Motion 

 

Similarly, the triple junction drift velocity in the direction along the grain boundary 

can be represented by, 

 

( )2 2 cos cos
2

g along long
g

g

d
v

hσ
λ θ θ+ −Ω ⎡ ⎤= Μ − +⎣ ⎦Ω

  (4.2.3.1) 

 

In our formulation of the problem, we have adapted the convention such as that the 

positive direction of the motion is always towards the bulk material whether one 

deals with inner voids or outer surfaces or interfaces. The following boundary 

conditions at the triple junction in terms of right and left side fluxes may be written; 

 

  ( ) ( )2 2cos / 2 sin sin
2

long transa a
o g

d dJ J Jϑ
σ σ

λ θ θ θ+ −= Μ − + +Μ −
Ω Ω

∓ ∓∓ ∓     (4.2.3.2) 

 

where gbΜ  is the grain boundary drift diffusion mobility ˆgn  is the normal vector 

along the grain boundary direction.  

 

gJ  denote the normalized atomic fluxes associated with grain boundary mass flow 

due to some driving force such as thermal stress field inhomogeneities, and/or the 

drift-diffusion due to electromigration, which is given by the expression 

 

ˆ( )gb
g g

g
J n gradχ ϑ

Μ
= − ⋅

Ω
  (4.2.3.3) 

 

Jϑ  is the usual contribution due to electromigration forces acting on the both 

branches of the void at the triple junction. The electrostatic potential exhibits well 

known discontinuity at the triple junction (at edges and corners, etc.). On the 

contrary to this behavior, the tangential component of the electric field intensity 

vector along the interfacial layers or surfaces is continuous everywhere including 
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the triple junction singularity. In the present problem, the positive direction of the 

flux is chosen as the clock-wise direction around the interconnect body starting 

from the upper left edge (anode side). 

 

A careful examination of Eq. (4.2.3.1) and Eq. (4.2.3.2) shows immediately that 

there is no conservation of fluxes at the triple junction in ordinary sense.  This is 

due to fact during the displacement of the triple junction there is a phase 

transformation taking place (positive entropy production), which is precisely 

accounted by Eq. (4.2.3.1).  If one combines incoming Jσ
−  and outgoing   Jσ

+  

conjugated fluxes at the triple junction using Eq. (4.2.3.2), and recalling that the 

clockwise direction is chosen as to represent the positive direction of the fluxes in 

our work, then one arives the following universal connection in the presence of Eq. 

(4.2.3.1), namely the conservation of chemical species including the phase 

transformation at the triple junction:    

 
long
g g

g
g

v h
J J Jσ σ
− +− + ≡

Ω
 (4.2.3.4) 

 

Where the term on right side represents the rate of material rejection or gain by the 

grain boundary during the displacement of the triple junction along the grain 

boundary. Similarly, the third term on the left side  gJ  is the incoming material flux 

from the grain boundary to triple junction. 

 

However, in the present investigation, it is assumed that even in the case of tilt 

boundary, there is no grain boundary diffusion taking place,  0gbM = ,  though there 

is a non-vanishing electric field intensity projection along the GB, when  0χ ≠ .  So 

that the groove tip fluxes can be given by the following simplified form of Eq. 

(4.2.3.2): 
   

( ) ( )2 2cos sin sin
2

long transa a
o

d dJ
σ σ

λ θ θ θ+ −= Μ − +Μ −
Ω Ω

∓ ∓∓ .    (4.2.3.5) 
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4.2.4. Boundary Conditions 

 

For a disconnected interfacial layer (finite or infinite) such as one or two-grain 

sector of interconnect, the additional boundary conditions  should be set at the end 

points of the metallic line, where the direct contact with electrodes through an 

interface  does exist or not.  In our computer simulation studies, we have considered 

three types of boundary conditions (excluding the periodic BC) for a finite system, 

depending upon the experimental conditions in the laboratory testing and the 

interaction of the test piece with its immediate surroundings. 

 

 

4.2.4.1.The Reflecting Boundary Condition (R-BC): 

 

This boundary condition is also known as insulating BC, which does not allow any 

material flow or leakage due to drift-diffusion caused by chemical, capillary and 

electromigration forces at the anode and/or cathode edges. The net flux at the edge 

may written  as in the normalized and scaled time and space domain (NSTS) : 

 

( )( , ) 0edge
vbJ D gσ θ φ χϑ κ∂′′= ∆ + + ≡

∂A
      (4.2.4.1)

   

In the computation of the electrostatic potential  at the interface between substrate 

and the interconnect, and also at the free surface layer, which is exposed to air or 

just detached from the cathode electrode, we will set the electromigration boundary 

conditions such as that the normal component of the electric field intensity vector is 

identically equal to zero. At the cathode and anode pads, we will assume that an 

adaptive external potential difference is applied in order to maintain a constant 

current flow during the evolution period, regardless the variation of the electrode 

contact areas there.  
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4.2.4.2.The Interactive-Barrier Boundary Condition (IB-BC): 

 

This boundary condition is taken into account where the capillary reaction (wetting) 

is taking place at the contact layer between electrode and the interconnect material. 

This boundary condition is very similar to the grain boundary surface interaction 

problem (one-sided GB) with one modification, namely the interfacial layer 

between electrode pad and the edge of the interconnect line stays rigid and 

impermeable to drift-diffusion flux. However, the contact area will diminish or 

increase due time, as it will be demonstrated later in the following chapter by 

computer simulations. This boundary condition is especially very suitable for the 

anode side of the interconnect structures, which results a hillock formation at that 

edge with proper topology, rather then the ordinary up-hill mass accumulation 

resulted from the application of the reflection BC. It can be also used for the 

cathode edge, up to the point where the detachment of the interconnect from the 

electrode pad occurs, which normally indicates catastrophic cathode failure.  As a 

special application of Ogurtani’s  theory,  one can  show that the displacement 

velocity of  the one-sided triple junction at the electrode end may be written in 

NSTS domain as: 

 

2 2 cos
2

e e ee a e
e

e

d gv
gh σσ

λ θ
⎡ ⎤⎛ ⎞Ω

=Μ − +⎢ ⎥⎜ ⎟
Ω ⎝ ⎠⎣ ⎦

      (4.2.4.2) 

 

One can also write down the following expression for the incoming flux to the 

interconnect surface from the interface junction at the electrode pad, 

 

( )2 cos
2

s e e ea
o eb eb

dJ J Jϑ
σ

λ θ= Μ − + +
Ω

      (4.2.4.3) 

 

where  / 2eb ebg gσλ =  is the electrode wetting parameter, and eg , gσ  are the 

specific surface Gibbs free energies associated with electrode and the interconnect 

material, respectively. Similarly, ebg  is the interfacial Gibbs free energy between 
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interconnect material and the electrode. eM  is the normalized mobility of the one-

sided triple junction along the electrode surface. eθ  is dihedral angle at the 

electrode edge of the interconnect. ebJ  is the flux coming from the electrode-

interconnect interface to the junction due to the residual stress inhomogeneities. eJϑ  

is the flux due to drift-diffusion driven by EM at the junction on the interconnect 

side. Similarly the flux coming from the triple junction towards the exposed area of 

the electrode to air may be written as: 

 

22
e e a e
o eb

d gJ
gσσ

λ
⎛ ⎞

= −Μ −⎜ ⎟
Ω ⎝ ⎠

 (4.2.4.4)

   

One can easily see that the combination of Eq. (4.2.4.2), Eq. (4.2.4.3) and Eq. 

(4.2.4.4) results a relationship similar to Eq. (4.2.4.1), which satisfies the 

conservation of particles at the electrode junction. As far as the electrostatic 

boundary conditions are concerned, the situation is exactly equivalent to the case 

described in type (R-BC). 

 

 

4.2.4.3.The Free-Moving Boundary Condition (FM-BC):  

 

 This BC assumes that there is no direct contact with electrode pads at the cathode 

and/or anode edges. The whole interconnect test piece like Blech type experimental 

set-up rests on a substrate (TiN or Mo, W), which has very high specific resistivity 

compared to the interconnect material (i.e., the aluminum and copper stripes carry 

most of the current since their sheet resistance (a measure of resistance of very thin 

doped regions; expressed in ohm/square; commonly used to evaluate outcome of 

semiconductor doping operations, for Al and Cu 0.07 /≈ Ω , ) are much lower than 

of the TiN ( 10 /≈ Ω , )). Since the distribution of the specific conductivity, eσ  in the 

physical system under consideration is discontinuous: the conductivity inside the 

conductor material differs by a finite value from that of the surrounding (substrate), 
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one has to use the following relationships for the small aspect ratio according to 

Averbuch et. al.(2001): 

 

2 2( . ) 0eσ ϑ∇ ∇ =      (4.2.4.5) 

   

The finite difference solution of this electrostatic problem in the prescribed physical 

system under given boundary conditions is the ‘bottleneck’ of the numerical 

simulation. The indirect boundary element method utilizing the constant element 

approach may be used rather effectively to handle the distribution of the 

electrostatic potential in the interconnect material even at the triple junction 

singularity, where the substrate plays the role of a shunt on the the test peace during 

the cathode evolution. In practice two types of boundary conditions may be 

considered at the cathode and anode edges.  As follows:  

 

i) During the evolution process (cathode drift) of the interconnect test 

specimen a constant potential difference applied to the electrodes, which are 

fixed in space at their original positions on the substrate. 

 

 ii) By utilizing a constant current source a steady state current flow (the 

strength of the external electric field is invariant and homogeneous in space) 

is maintained through the system regardless its overall resistivity and the 

surface topology and the shape of interconnect specimen. This is the most 

common experimental situation encountered in practice while applying the 

accelerated test measurements in the determination of the mean cathode 

failure time. 

 

The boundary element method (BEM) solution of the first type of boundary value 

problem (BVP) still requires the complete knowledge of the instantaneous values of 

the electrostatic potential distribution at the moving cathode and anode ends of the 

interconnect material. This moving boundary data can be obtained only by solving 

the complete BVP in the specified composite domain (interconnect plus the 

substrate). Therefore, one has to supplement some workable analytical solution for 

the electrostatic potential distribution at the moving cathode end using the 
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symmetry considerations. The exact solution of the electrostatic potential at the 

moving cathode tip is possible because of the reflection symmetry of the problem 

with respect to the longitudinal axis of the test specimen facilitates the conversion 

of two dimensional problem described by Eq. (4.2.4.5) into one dimension.  

 

 

4.3. Numerical Procedures 

 

We consider an interconnect system composed of two grains and naturally having 

two triple junctions associated with a grain boundary as illustrated in Fig. 4.3.1.  

 

The interconnect system is considered to be groove free at the beginning and 

appeared as a collection of nodes as a result of discretization, forming 

predetermined segment lengths. Present model employs symmetry in the 

preparation of upper and lower strips of interconnect. This eases control of indices 

throughout the development of computer code. In some experiments upper and 

lower strips are notched in order to track changes take place in an ordinary node on 

a curved surface.  

 

 
 

Figure 4.3.1: Schematic representation of the initial system showing ordinary 

points and triple junctions. ‘nu‘ and ‘nl‘  are respectively total number of nodes at 

the upper and lower strips of the interconnect. 

 

2nd GRAIN 1st GRAIN 
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In Appendix the C++ code developed is given, whose algorithms are discussed 

below. 

 

The model is two dimensional; however, node positions are stored in 3x1 matrices 

in order to make use of vector algebra. Once node, node centroid positions and 

segment lengths are introduced, turning angles or angle between two successive 

segments and local boundary normal vectors are calculated by certain algorithms 

(Appendix). Similarly the node curvatures are calculated by using a discrete 

geometric relationship in connection with the fundamental definition of radius of 

curvature and the normal vector applying vector and dot products wherever needed.  

 

The electrostatic potential ( )rϑ∇  on system boundaries obey the Laplace equation 

given by  

 

0)(2 =∇ rϑ  (4.3.1) 

 

and subjected to the Neumann boundary conditions, 

 

0ˆ)(ˆ)(ˆ =
∂

∂
⋅=∇⋅ r

r
rnrn ϑϑ  (4.3.2) 

 

which indicates that the electric field at the boundary along the boundary normal is 

zero.  

 

Comparing with finite element method (FEM), IBEM requires less number of 

nodes, less computing time, and stroge but offers higher accuracy and efficiency in 

analysis, especialy in analysis of thin structures (Beer and Watson, 1992). So we 

seek a solution to Eq. (4.3.1) preferably by the use of Indirect Boundary Element 

Method (IBEM). 

 

Numerical integrations required by IBEM is carried out by trapezoidal rule using 

‘mint’ (Appendix) sub segments, and an electrostatic connection matrix utilizing the 

element centroids, is obtained. Finally the normal component of the electric field at 
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the centroid positions on the boundary due to uniformly distributed charge is 

calculated by solving the system of linear equations formed by IBEM.  

 

For the solution of the linear system, Gaussian elimination with back substitution 

method is performed.  

 

Explicit Euler’s method (Mathews, 1992) is used to perform the time integration of 

Eqs. (4.2.2.2) & (4.2.3.5). The time step is determined from the maximum surface 

velocity such that the displacement increment is kept constant for all time step 

increments. This so-called adapted time step auto-control mechanism combined 

with the self-recovery effect associated with the capillary term guarantees the long 

time numerical stability and the accuracy of the explicit algorithm even after 

performing several hundred to several millions steps. 

 

Accuracy and efficiency of the numerical methods require a strict control of number 

and position of system nodes. For an accurate and efficient study a remeshing 

technique that guarantees keeping the distance between two successive nodes, i.e. 

the segment lengths below a critical value in order to keep the accuracy in an 

acceptable level, and inhibits formation of useless nodes causing loss of efficiency 

should be employed. This technique is explained by Fig. 4.3.3. 

 

 
a) b) 

 

Figure 4.3.3: Remeshing, a) the segment length is bigger than the maximum 

allowable segment length: midpoint is converted to a new node, b) the segment 

length is smaller than the minimum allowable segment length: the node-in-share is 

discarded and remaining two nodes are combined (after this combination the new 
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segment is checked whether it is bigger than the maximum allowable segment 

length or not). 

 

The following figure summarizes the iterative process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.4: Program flow chart. 
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CHAPTER 5 

 

 

RESULTS & DISCUSSION 

 

 

5.1. Experimental Setup 

 

Experimental setup considers the metallic (Al-Cu) interconnects in the presence of 

insulators, vias, and shunts. It is assumed that the sample sandwiched as sketched in 

Fig. 5.1.1.  with a top and bottom  high resistance (TiAl3, TiN etc)  coatings, which 

together with the substrate  constitute diffusion barrier layers. We also assumed 

here that only the sidewalls and the edges of the interconnect lines are subjected to 

the surface drift-diffusion, and they are exposed to environment (air) whose 

conductivity is neglected in this study. 

 

 
(a) 

 
(b) 
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(c) 

 

Figure 5.1.1: Schematic representation of experimental setup: 

 a) Initial configuration.  b) A representative configurational change.  

 c) Side view. 

 

On a silicon chip interconnects are made of several levels of Al or Cu lines. Silicon 

dioxide fills the space in between to provide insulation.  The whole structure is a 

metal network embedded in an oxide matrix. The tungsten studs serves as vias to 

link interconnect lines between different levels. The titanium aluminide (or TiN) 

shunt the electic current where voids deplete the metallic Al or Cu. Fig. 5.1.2. (Z. 

Suo, 1998) 

 

 
a) 

 

 
    b) 

Figure 5.1.2: Two and three dimensional interconnect networks in silicon chip. 

a) Interconnect with the insulator removed showing more clearly the multi-metal 

construction. b) A TEM cross-section of a multilevel interconnect structure (Z. Suo 

et.al, 2000). 
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For the above configuration we consider first the classical Mullins problem with a 

normal and tilted boundary between the grains, examining positive and negative 

tilts, without applied electrostatic field. 

 

The effect of the electromigration on the GB grooving kinetics is simulated by 

applying first a constant voltage difference (CVD) between electrodes (applied 

electric field intensity, χ  is invariant), and assuming that surface drift-diffusion as 

well as the surface specific Gibbs free energy are isotropic. 

 

The second topic, which is studied thoroughly in this thesis, deals with the cathode 

drift or voiding under electromigration while hillocks grew at the anode end. In both 

case studies, the surface drift-diffusion and the specific surface Gibbs free energy 

are all assumed to be isotropic. 

 

In order to obtain the cathode drift regime, we have further continued our 

experiments by terminating the CVD condition after 95% reduction in the cathode 

contact area (or equivalent increase in specimen resistance), and switched on the 

constant current test (CCT) program by allowing the whole cathode area (the 

complete width, 02w ) is exposed to the original applied electrostatic field intensity 

denoted by oE
G

 (or χ  invariant), and then connecting two terminal nodes, which 

define the remaining part of the cathode contact area (5%), to form a fully-

connected cathode contour. 

 

This is the first experimental setup used in this thesis, namely CVD-CCT 

experiments (mixed electrostatic boundary conditions).  

 

The second setup employs constant current type electrostatic boundary condition for 

the electromigration forces from beginning to the end. 

 

In these investigations reflecting boundary conditions at the anode, and reflecting or 

free-moving boundary conditions at the cathode electrodes are utilized, which 

resulted void formation at the cathode edge and the mass accumulation (hillock) at 
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the anode end of the interconnect material as can be seen from Fig. 5.1.3. As far as 

the specimen configuration is concerned; the sandwich structure is selected such as 

that only the lateral surfaces are exposed to the environment (air, etc.), and they also 

constitute free excess (path) for the electromigration enhanced drift-diffusion of 

matter (including vacancies).  

 

 
a)      

 
b) 

 

Figure 5.1.3: SEM micro-graphs of Cu interconnect lines showing; 

a) Mass accumulation at the anode (Ogawa et.al, 2000). b) Voiding at the cathode 

end of a 0.18 µm wide line at (a) 0 h, (b) 9 h,   (c) 46 h, (d) 74 h (Liniger et.al, 

2002). 

 

 

5.2 Thermal Grooving  

 

5.2.1. Thermal Grooving Without GB Tilt 

 

In Fig. 5.2.1.1, the snapshots from the surface grain boundary interactions for 

various wetting parameters in the range of  0.1 0.8λ = −  shows clearly the effect of 

the wetting parameter on the morphology as well as on the time dependence of the 

groove tip displacement. 
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Figure 5.2.1.1: Corresponding profiles for each λ  value, no GB tilt. 
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The evolution behavior of the dihedral angles, θ ±  and the normalized groove tip 

depth 0/gb gbH H≡ A  are presented as a function of normalized time in a semi-

logarithmic plots in Fig. 5.2.1.2 and Fig. 5.2.1.3, respectively. In the simulation 

studies, groove tip displacement is measured with respect to the original surface of 

the interconnect material, and the positive direction of the motion is chosen towards 

the bulk region. Fig. 5.2.1.2 shows that the surface - grain boundary system starts to 

evolve towards the equilibrium configuration having proper dihedral angles dictated 

by thermostatic theory, which are generally given by and arccos( )eqθ λ± ±=  for the 

left and right sides respectively as soon as they have in close contact with each 

others. 

 

 
Figure 5.2.1.2: Normalized groove 

depth vs. logaritmic normalized time 

for 0.8λ =  (nearly complete wetting). 

 

Figure 5.2.1.3: Dihedral angles,θ ± , 

vs. logaritmic normalized time for 

0.8λ = . 

 

The rate of this shape evolution process in the transient regime seems to obey the 

first order reaction kinetics and it is controlled by three independent unit processes, 

namely the mobility of surface drift-diffusion, and the generalized mobilities 

associated with longitudinal movement of triple junction and the transverse flow of 

matter through the junction, respectively. In Fig. 5.2.1.4 the transient and steady 

state behavior of the normalized groove tip velocity is illustrated in the gross-grain 
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window by filtering out the random fluctuations. The noise, which occurs in the 

triple junction velocity as well as in the dihedral angles, is due to the global nature 

of this highly nonlinear problem.   

 

 
 a)   b) 

 

Figure 5.2.1.4: Normalized triple junction velocity vs. logaritmic normalized time 

for a) 0.8λ =  and, b) 0.16λ = . 

 

The following analytical expression is obtained for the steady state regime by the 

linear regression analysis, in the normalized and scaled time and space domain: 

 

( )1/ 41/ 44( , ) 0.01 ( )
5gbH t t cλλ λ⎡ ⎤= − +⎢ ⎥⎣ ⎦

  (5.2.1.1) 

 

3/ 4( , )
5gbV t tλλ −=   (5.2.1.2)  

 

Where, ( , )gbV t λ  is the triple junction (TJ) steady state displacement velocity,  and 

( , )gbH t λ  is the normalized TJ height, and ( )c λ  is the modification  term and it is 

closely related to the value of the TJ depth at onset of the steady state regime,  

which is found to be about 0.01onsett ≅ .  According to the data shown in  
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Fig. 5.2.1.4, the following analytical expression is obtained for this term by a linear 

regression analysis: 

 
2( ) 0.459 0.17 0.028c λ λ λ= + +   (5.2.1.3) 

 

The substitution of above connection in Eq. (5.2.1.1) and rearranging the terms 

results, the following compact formula may be obtained for the groove tip depth in 

normalized and scaled space: 

 

1/ 41/ 4 24( , ) ( 0.01 ) 0.459 0.17 0.028
5

ST
gbH t tλλ λ λ⎡ ⎤= − + + +⎣ ⎦       (5.2.1.4)  

 

Similarly, the transient plus the steady state regimes may be represented by the 

following formula, which involves the first order reaction kinetics: 

 

( ) 1/ 41/ 4 24( , ) 1 0.97exp( ( 0.01 ) 0.459 0.17 0.028
5

T
gb oH t ka t t tλλ λ λ⎡ ⎤⎡ ⎤= − − − − + + +⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

   

 (5.2.1.5) 

 

Where ka  and ot  are system parameters, and found to be 32.5 10×  and 710− , 

respectively. 

 

The validity of these formulas is checked for each experiment carried out for 

different wetting parameters, Fig. 5.2.1.5 summarizes our results. 
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Figure 5.2.1.5: Logarithmic normalized groove depth versus normalized time plot 

( )0.16 0.8λ = − .   

 

By applying the inverse scaling procedures to our analytical findings denoted by 

Eq. (5.2.1.4) by utilizing the expressions for the normalized parameters that are 

given Chapter 4.2.1, one finds the following equation for the grain boundary  TJ 

displacement in terms of the surface diffusivity Dσ , the interfacial layer thickness 

hσ , the wetting parameter λ ,  and the specific surface Gibbs free energy gσ : 

 

( )
1/ 4

1/ 4 1/ 4 24 0.01 0.459 0.17 0.028
5gb

D h gH t
kT

σ σ σ σλ λ λΩ⎡ ⎤ ⎡ ⎤= ⋅ − + + +⎣ ⎦⎢ ⎥⎣ ⎦
    (5.2.1.6)  
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The first term on the  right side of  this expression is almost identical to the one 

obtained by Mullins (1957, Eq.36) for a surface layer of  infinite extent, using the 

small slope approximation in addition to the assumption that the dihedral angles are 

in equilibrium configuration. The В parameter, which is introduced by Mullins 

(1957) in his paper for scaling purpose, is exactly equal to 4 /o oτA  in our 

representation, which operates on two dimensional finite domain (actually, the 

general cylindrical surfaces in 3-D). Mullins obtains as a prefactor 0.7803oa = −  

compared to our value of 4/5 appears in Eq. (5.2.1.6). The sign difference is due to 

our adapted convention differences as mentioned above. Similarly, renormalization 

of Eq. (5.2.1.2) results the following expression for the steady state TJ displacement 

velocity, which may be also obtained from Eq. (5.2.1.6) in a trivial fashion: 

 
3/ 4 1/ 4

3/ 40

0
( , )

5 5gb
D h gV t t

kT
σ σ σ σλ λλ

τ

−
−⎡ ⎤ Ω⎡ ⎤= ≡⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

A     (5.2.1.6) 

 

Needless to say, this expression is almost identical to the one, which can be deduced 

from Mullins’ formula (1957, Eq.36). 

 

In Chapters 5.2.2 and 5.2.3 results of the experiments carried out for positive and 

negative grain boundary tilts are given without any further discussion.  
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5.2.2. 30° of GB Tilt In The Clockwise Direction 

 

 
 

Figure 5.2.2.1: Corresponding profiles for each λ  value, 30° of GB tilt in the 

clockwise direction.
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Figure 5.2.1.2: Normalized groove 

depth vs. logaritmic normalized time 

for 0.3λ = . 

 
Figure 5.2.1.3: Upper dihedral 

angles,θ ± , vs. logaritmic normalized 

time for 0.3λ = . 

 

 
 a)   b) 

 

Figure 5.2.2.4: Normalized triple junction velocity vs. logaritmic normalized time 

for a) 0.8λ =  and, b) 0.3λ = . 
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5.2.3. 30° of GB Tilt In The Counter Clockwise Direction 

 

 
 

Figure 5.2.3.1: Corresponding profiles for each λ  value, 30° of GB tilt in the 

counter clockwise direction
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Figure 5.2.3.2: Normalized groove 

depth vs. logaritmic normalized time 

for 0.16λ = . 

 

Figure 5.2.3.3: Dihedral angles,θ ± , 

vs. logaritmic normalized time for 

0.16λ = . 

 

 
 a)   b) 

 

Figure 5.2.3.4: Normalized triple junction velocity vs. logaritmic normalized time 

for a) 0.5λ =  and, b) 0.16λ = . 
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5.3. Effect of Electromigration 

 

5.3.1. CVD-CCT Experiments 

 

i. Electromigration Grooving & Cathode Shrinkage 

 

In Fig.5.3.1.1, a typical behavior of the electromigration grooving for a normal GB, 

and the surface topographical evolution under the action of the capillary and 

electromigration forces is presented. As far as the surface topology is concerned, 

there is a pronounce asymmetry in the profile. The windward side of the GB shows 

an extra mass accumulation compared to the leeward side, which shows almost flat 

appearance. This asymmetry shows further enhancement upon any increase in the 

electron wind intensity parameter.  

 

 
 

Figure 5.3.1.1:  Evolution profile of the test specimen for selected time steps for 

0.8 and 5λ χ= = . Upper window shows the initial and final states of the groove. 

 

Since, we are using the reflecting boundary conditions at edges of the sidewalls, and 

assuming further that the bulk drift-diffusion is absent, the whole interconnect line, 

during the electromigration testing will be a conservative close system in terms of 

the number of particles, as long as one doesn’t consider the growth (evaporation or 

condensation) term in Eq. (4.2.2.2). That means the total volume (area) of the test 
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specimen stays constant regardless its shape.  This point is always checked in order 

to insure that there is no numerical or programming error present during the 

simulation studies.  
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Figure 5.3.1.2:  a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of Figure 5.3.1.1. 

 

As mentioned above, since this first set of simulations is done under the constant 

voltage condition up to 95% reduction in the cathode contact area; there is a steady 

decrease in the net current flow through the cathode contact area, showing almost 

inverse exponential type shrinkage with the normalized time. This application 

manifests itself in the electrostatic potential vs. arclength graphs with a drastic 

decrease on the onset of cathode detachment in Fig. 5.3.1.2.  

 

In Fig. 5.3.1.3, the normalized groove depth as a function of the scaled time is 

presented on a semi-logarithmic plot for, 0.8λ =  and 5 50χ = − . 
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Figure 5.3.1.3: Normalized groove depth vs. normalized time graph for 0.8λ =  

and 5 50χ = −  interval. 

 

Following figures show the effect of increasing electronwind intensity on the profile 

evolution for nearly complete wetting case. In these figures first two series 

(distinguished by the colors of green and magenta) are belong to the case of 

constant voltage difference testing, and the rest belongs to the profiles after 

switching to the constant current regime. 

 

 

 
 

Figure 5.3.1.4:  Evolution profile of the test specimen for selected time steps 

for 0.8 and 10λ χ= = . Upper window shows the initial and final states of the 

groove. 
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Figure 5.3.1.5:  a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of  Fig. 5.3.1.4. 

 

 

 
 

Figure 5.3.1.6: Evolution profile of the test specimen for selected time steps 

for 0.8 and 25λ χ= = . Upper window shows the initial and final states of the 

groove. 
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Figure 5.3.1.7: a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of  Fig. 5.3.1.6. 

 

 

 
 

Figure 5.3.1.8: Evolution profile of the test specimen for selected time steps 

for 0.8 and 50λ χ= = . Upper window shows the initial and final states of the 

groove. 
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Figure 5.3.1.9: a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of Fig. 5.3.1.8. 

 

The shrinkage in the cathode area means that the net resistance of the interconnect 

during the constant voltage differential testing is also increases exponentially with 

time, as demonstrated by a semi-logarithmic plot in Fig. 5.3.1.10. One may obtain 

the following analytical connection for the cathode contact area shrinkage versus 

normalized time using the nonlinear regression procedure at two different regimes:  

 

( )

( )

3 1 4.5     if  1
( , )                   

3 1 8        if  0.1

CVD

t
A t

t

χ χ
χ

χ χ

− ≥⎧ ⎫
⎪ ⎪

≅ ⎨ ⎬
⎪ ⎪− ≤⎩ ⎭

  (5.3.1.1) 

 

If we assume that the solder joint has failed when the degradation reaches some 

critical value (e.g. it is 5% drop in electrical resistance of solder joint in the US 

microelectronic industry) of the fractional cathode area reduction, the time required 

to reach the failure can be easily obtained from Eq. (5.3.1.1). One may easily write 

the following expression for the fractional resistance variation using the well known 

inverse relationship between the resistance and the cathode cross section: 

 

1
R A tf

R A t
δ δ αχ

αχ
≡ ≡ − =

−
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Where 0.05f = , ( )%5  is the fractional change in the resistance due to the cathode 

shrinkage because of voiding. 4  for  1   and   8    0.1forα χ α χ≅ ≥ ≅ ≤  as stated 

above.  

 

 
 

Figure 5.3.1.10: Semilogaritmic cathode contact area shrinkage versus normalized 

time. 

 

The time dependent normalized and renormalized resistance ( ) / oR t R  of the sample 

may be obtained by the following expressions by referring to its original value 

denoted by oR : 

 

[ ]
1

1
2

0

ˆ9( , , ) 1 1

                      

D h eZ jR t j w t t
R w kT

σ σ ραχ α
−

− ⎡ ⎤
= − = −⎢ ⎥

⎣ ⎦   (5.3.1.2) 

 

One may write following expression for cathode failure time (CFT) using the fact 

that j denotes the current density (invariant quantity for this test) at the cathode 

edge, which is given by ( )1 1 /oj E Lρ ρ ϑ− −= ≡ ∆ . ϑ∆  is applied voltage difference 

and L  is the electrode to electrode specimen length, which is constant.  
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( , , )
1 9CFT

D hf wt j w f eZ
f kT L

σ σ ϑα
−

∆⎡ ⎤= ⎢ ⎥+ ⎣ ⎦

�
  (5.3.1.3) 

 

This expression shows that the cathode failure time depends upon the width of the 

interconnect quadraticaly if the cathode voiding occurs by sidewall surface 

diffusion. On the other hand if the cathode voiding takes place rather by the grain 

thinning, which implies that the diffusion path is upper and/or lower surfaces, the 

width in above equation should be replace by h , the thickness of the interconnect 

line. 

 

In order to obtain the cathode drift regime, we have further continued our 

experiments by terminating the CVD condition after 95% reduction 

( )0.005 for 50trst χ≅ =  in the cathode contact area (or equivalent increase in 

specimen resistance), and switched on the constant current test (CCT) program by 

allowing the whole cathode area (the complete width, 02w ) is exposed to the 

original applied electrostatic field intensity denoted by oE
G

 (or χ  invariant), and 

then connecting two terminal nodes, which define the remaining part of the cathode 

contact area (5 %), to form a fully-connected cathode contour. 

 

 

ii. Cathode Drift Due to Electromigration Induced Voiding 

 

Two different experimental procedures are applied to reveal this peculiar 

phenomenon. The first procedure as described in the previous section starts with 

application of the constant voltage differential to the electrodes up to the point of 

almost complete cathode failure (95%  by voiding). Above figures showing profile 

evolutions under different electronwind intersities, belong to constant current 

testing (except the colors of green and magenta) which is followed after constant 

voltage difference testing, as described above.  
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According to Eq. (5.3.1.1) the complete cathode detachment actually never takes 

place ( )CFT
t →∞ , under the constant voltage differential testing, because of the 

exponential character of the phenomenon. Therefore, the constant current source 

program should be activated by an external agent as soon as the distance between 

two leading nodes of the cathode edge becomes equal to the minimum segment 

length generated during the simulation experiments. This roughly corresponds to 

5% of the total width in our discretization scheme. 

 

In Fig. 5.3.1.11 cathode drift-displacements for different electronwind intensities 

are plotted as a function of normalized time for an interconnect subjected to the 

mixed-electrostatic boundary conditions as described above.  

 

 
 

Figure 5.3.1.11: Semilogaritmic cathode-drift displacement (displacement from 

initial specimen length due to electromigration) versus normalized time. 

 

This figure clearly shows the linear behavior of the cathode-drift during the constant 

current test procedure. The slopes (drift velocity) of these drift-displacement time 

plots show very systematic connection with the applied electric field intensity, 

which is also invariant for the constant current set-up. The results are analyzed by 

linear regression procedure, which deduced following analytical and very useful 

expression in practice.  
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( ), 0.661 0.0126
CVD

driftd t t tχ χ= +   (5.3.1.4) 

 

Where, the normalized elapsed time for the cathode drift is referred to the onset of 

the cathode edge displacement stabilization. Due to the sudden change over from 

the constant voltage regime to the constant current condition, the some fluctuations 

in the cathode edge position always take place. The extrapolation of this   

relationship to zero electron wind intensity parameter ( )0χ →  implies that there 

should be a cathode-drift phenomenon, which corresponds to the cases where there 

is no applied electric field ( )0χ = . In reality, our extensive computer simulation 

studies showed that one can not have any cathode voiding and drifting in the 

absence of the applied electric field as long as one uses the R-BC.  Similarly, no 

accumulation takes place at the anode end if one uses R-BC there.  However, as will 

see in the next section; FM-BC at the cathode edge results in voiding and cathode 

drifting even in the absence of the applied electric field.  

 

Now, above findings can be transformed into the real time and space domain by 

inverse normalization procedure, which results : 

 

 ( ) 3
0 0

, 1.983 3.4
CVD

drift
D h eZ j D h gd t t t

w kT w kT
σ σ σ σ σ σρχ Ω

= +   (5.3.1.6) 

 

2
0

1.7156thr
thr

E gj
w eZ

σ σ
ρ ρ

Ω⎛ ⎞
= =⎜ ⎟
⎝ ⎠

        (threshold current density)  (5.3.1.7) 

 

The importance of the threshold current density may be more appreciated when we 

examine the behavior of the cathode drift velocity with the applied electric field. 

The value of the threshold current density depends linearly upon the surface specific 

Gibbs free of the interface between the interconnect material and its surrounding 

coatings, and inversely on its bulk resistivity. The specimen width (or thickness) 

also plays very important role on this parameter. It  is  easy to realize that the wide  

(or thick)  lines show much better performance then the  narrow  (thin) lines as far 

as the deactivation of the cathode drift phenomenon is concerned.  
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Similarly, the cathode drift velocity may be calculated from Eq. (5.3.1.6), by taken 

its differential and adjusting the terms, which reads: 

 

( )0.983CVD

drift thr
D h eZv j j

w kT
σ σ ρ

= +   (5.3.1.8) 

 

This formula clearly shows that below the current threshold level, there is long 

extended plateau region in the cathode drift velocity versus applied current density 

plot, which may be depended on the operating temperature due to the possible 

temperature dependence of  intrinsic properties of the interconnect 

material{ },  and   Z gσ ρ . The close inspection of the first term in above equation 

shows that there is very close resemblance between the cathode drift velocity in EM 

influence regime and the steady state drift velocity of a circular void in an infinite 

and isotropic interconnect as calculated analytically by Ho (1970), namely: 

 

2Void

drift
o

D h eZ jv
r kT

σ σ ρ
=   (5.3.1.9) 

 

where, or  is the radius of the internal void. 

 

 

5.3.2. CCT Experiments 

 

The second approach employs free-moving boundary condition (FM-BC) at the 

cathode edge and reflecting boundary condition (R-BC) for the anode end of the 

interconnect material having an aspect ratio of 40 / 3β = . The constant current 

source (CCS) may be put into the operation from the beginning of the simulation 

experiments rather then waiting for the end of the complete cathode failure by the 

shrinkage of the contact area. This can be easily accomplished by the usage of 

IBEM rather then the direct BEM, which is mostly used by investigators. For the 

application of IBEM, we are somehow taking different path from the traditional 

approach for the solution of the Laplace equation under the Neumann boundary 

condition. First, as an initial condition we apply a constant and uniform external 
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electric field ( ˆ
o oE iE=
G

) to the three dimensional space in which the sample is 

situated. Physically this can be realized if the underlayer of high resistance material 

(Ta, TiN and TiAl3) is acting as a shunt, similar to Blech’s experiments (1975). 

Secondly, during the calculation of the virtual charge distribution at the specimen 

boundaries (the sidewalls and the cathode and anode edges), we modified the 

Neumann boundary conditions (NBC) such as that the part of the cathode end 

bounded by the original sidewalls ( 2 ow -width) of the specimen, and the whole 

anode edge regardless their shapes should have zero virtual electric field intensity 

distribution, not along surface normal of the boundary but along the direction of the 

applied field. On contrary to this restriction, at the sidewalls the induced electric 

field intensity should counter act against to the normal component of the external 

field at the boundary (usual Neumann BC). Hence, the actual (net) electric field 

intensity at the cathode and anode boundaries becomes equal to the applied electric 

field intensity there. Therefore, according to the Gauss theorem: the path integral 

along the restricted cathode profile,
02

0
0

ˆ 2
w

I n Ed w Eσ σ= =∫
K
i A , gives the total current 

flowing through the specimen, and it stays invariant regardless the shape of the 

contour formed at the cathode edge of the specimen. 

 

Hence, a perfect and very efficient constant current test program using IBEM 

method is utilized in this program, without referring to the tedious and time 

consuming finite difference shame as suggested and used by Khenner et. al. (2001) 

and later by Averbuch et. al (2003) in order to compute the time dependent 

( , , )x y tϑ  electrostatic potential everywhere in the bulk material including the shunt 

in order to obtain the electric field intensity at the cathode contour. This shows the 

power of IBEM method (the constant element) to handle the electrostatic problems 

concerning boundaries and surfaces, which are described by most authors as the 

‘bottleneck’ of the numerical simulations. Even for the sharp corners and edges, 

where the electrostatic potential is discontinuous but not the tangential component 

of the electric field, one can develope very efficient forward and backward 

extrapolation procedures, while using IBEM.  
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i. Electromigration Grooving & Cathode Shrinkage 

 

Same considerations made for the constant voltage difference case can be made for 

Fig. 5.3.2.1 and the rest of the profile snapshots in this chapter, asymmetry towards 

extra mass accumulation in the windward side become more pronounced with the 

increase in the electron wind intensity parameter.  

 

 

 
 

Figure 5.3.2.1:  Evolution profile of the test specimen for selected time steps 

for 0.8 and 5λ χ= = . Upper window shows the initial and final states of the groove. 
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Figure 5.3.2.2:  a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of Fig. 5.3.2.1. 

 

 

In Fig. 5.3.2.3, the triple junction depth obtained from the constant current test 

( 5 50  and =0.8χ λ= − ) is plotted as a function of the normalized time, which also 

shows very similar characteristics behavior compared to the constant voltage test 

outcomes.  

 

 
 

Figure 5.3.2.3: Normalized groove depth vs. normalized time graphs for 0.8λ =  

and 5 50χ = −  interval. 
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Following figures show the effect of increasing electronwind intensity on the profile 

evolution for the case of constant current testing.  

 

 
 

Figure 5.3.2.4:  Evolution profile of the test specimen for selected time steps 

for 0.8 and 10λ χ= = . Upper window shows the initial and final states of the 

groove. 
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Figure 5.3.2.5:  a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of Fig. 5.3.2.4. 
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Figure 5.3.2.6:  Evolution profile of the test specimen for selected time steps 

for 0.8 and 25λ χ= = . Upper window shows the initial and final states of the 

groove. 
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Figure 5.3.2.7:  a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of  Fig. 5.3.2.6. 
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Figure 5.3.2.8:  Evolution profile of the test specimen for selected time steps 

for 0.8 and 50λ χ= = . Upper window shows the initial and final states of the 

groove. 
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Figure 5.3.2.9:  a) total electrostatic potential, b) charge density function,  

c) curvature vs. arc length graphs, each following the color series of  Fig. 5.3.2.8. 

 

These figures clearly show the existence of the voiding (shrinkage) and edge 

drifting at the cathode end with FM-BC. There are no observable variations in the 
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anode end of the surface profile, where we have employed R-BC. Linear regression 

analysis is applied also on the cathode voiding or shrinkage  experiments, and the 

following analytical expressions obtained for the normalized cathode contact area or 

inverse electrical resistivity variations with respect the normalized time: 

 

( ) [ ] ( )
1

, 2 1 2 1 0.5exp 10CCT

o

RA t w t t
R

χ χ χ
−

⎡ ⎤
≡ = − × + −⎡ ⎤⎢ ⎥ ⎣ ⎦

⎣ ⎦
  ,  ( )1χ ≥   (5.3.2.1) 

 

 
 

Figure 5.3.2.10: Semilogaritmic cathode contact area shrinkage versus normalized 

time under constant current. 

 

Above expression clearly shows that there is a finite elapse time for the cathode 

failure by voiding, which is given by ( )1/ 2CFTt χ= ⋅ , in normalized time and space 

domain which can easily be checked from Fig. 5.3.2.10. Where 3w = , is the 

normalized full width of the test specimen.  

 

 

ii. Cathode Drift Due to Electromigration Induced Voiding 

 

Similarly, the analytical expression for the cathode drift under the FM-BC utilizing 

the constant current source program is found. This is not surprisingly exactly the 
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same analytical expression that  we obtained from the constant voltage source setup 

as out line above, namely:  

 

( ), 0.661 0.0126
CCT

driftd t t tχ χ= +   (5.3.2.2) 

 

Where, the end of the cathode drift-incubation period, which includes the shrinkage 

stage, is used as a reference point for the measurements of the normalized time 

scale for the development of cathode edge displacement. Hence, one can easily see 

from above equation that as we observed independently, even under the zero 

applied electric field, 0χ = , the cathode edge drift is possible without introducing 

any external interference agent, as in the case of the constant voltage experiments. 

However, both simulations experiments, CVE and CCE give the same results, 

because the cathode drift stage are all driven under the same constant current 

source. In the first situation; it is artificially created by the switching operation, and 

in the second case; it is developed naturally after the termination of the cathode 

shrinkage stage. 

 

Following figures compare the two experimental setup in terms of electromigration 

induced cathode shrinkage and drift. 

 

 
 

Figure 5.3.2.11: Linear cathode contact area shrinkage (s) followed by cathode drift 

(d) versus normalized time for set-up one. 
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Figure 5.3.2.12: Linear cathode contact area shrinkage (s) followed by cathode drift 

(d) versus normalized time for set-up two. 

 

It became obvious that the differences between the results of the constant voltage 

and the constant current experiments are negligibly small as far as the cathode drift 

phenomenon is concerned. The main difference comes from the types of the 

analytical functions Eq. (5.3.1.1) and Eq. (5.3.2.1) describing the time dependence 

of the cathode shrinkage processes at the cathode regions, respectively.  

 

The incubation time of the cathode drift phenomenon, which is also coinciding with 

the time of complete cathode failure (CFT) by voiding due to surface drift-diffusion 

of atomic species is also analyzed. In Fig. 5.3.2.13 the incubation time versus 

electron wind intensity parameters ( )0.001 50χ = − are plotted on a double 

logarithmic scale, where the wetting parameter and aspect ratio are chosen such as 

0.8   and  40/3λ β= = , respectively. The linear regression analysis is applied to the 

inverse time versus electron wind intensity parameter, which resulted the following 

analytical expression: 

 

( ) ( ) 0.5757
0.3219

CCT

Incu CFTt tχ χ
χ

≅ =
+

  (complete cathode failure time )   (5.3.2.3) 
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Figure 5.3.2.13: Normalized incubation time of the cathode drift phenomenon vs. 

electronwind intensity ( )0.001 50χ = − , and the analytical expression describing it. 

  

Above expression is also plotted on Fig. 5.3.2.13, which shows an excellent match 

with the data points obtained from our computer simulation experiments under 

constant current condition. This modified hyperbolic function in log-log plot shows 

two distinct domains; the first region corresponds to the capillary dominating 

0.01χ ≤  plateau region, where the current exponent is equal to zero, and the 

second linear region 1χ ≥  dominated by the applied electric field, which shows a 

current exponent is equal to unity. Between these two regimes lies the transition 

state with varying current exponent. Now we may transform above equation into the 

real time and space domain, which results: 

 

( )
1

2 4
2 4, 0.576 3 0.322 3

CCT

CFT

D h eZ j D h gt w
w kT w kT

σ σ σ σ σ σρχ
−Ω⎡ ⎤= + ×⎢ ⎥⎣ ⎦

 (sec.)  (5.3.2.4) 

 

This general expression, which covers the whole domain of capillary and 

electromigration dominating regions can give following two formulas, which are 

perfectly represents both domain very accurately: 
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( )
1

2
2, 6.4 10

CCT

CFT

D h eZ jt w
w kT

σ σ ρχ
−

− ⎡ ⎤= × ⎢ ⎥⎣ ⎦
 (sec.,  EM  dominating region)       (5.3.2.5) 

 

( )
1

2
4, 2.2 10

CCT

CFT

D h gt w
w kT

σ σ σ σχ
−

− Ω⎡ ⎤= × ⎢ ⎥⎣ ⎦
(sec., capillary dominating region) (5.3.2.6) 

 

As mentioned before, this test configuration of the interconnect line (FM-BC) 

resembles the famous experimental set-up by Blech (1975), in the measurement of 

the drift velocity at the cathode edge. The main difference is the drift-diffusion 

paths between these experiments and the present chosen simulation studies. Blech is 

worried about the bulk drift -diffusion with or without grain boundary contributions 

in polygrain metal stripe under the electromigration forces. On the hand present 

study puts main emphasis on the evolution behavior of the single crystals and the 

bamboo type interconnect lines when the surface drift-diffusion becomes dominant 

mass transport mechanisms under the electromigration and capillary forces. As far 

as the validity of FM-BC is concerned the specific type of the surface paths is 

immaterial, which can be upper and lower surfaces or interfaces, even the lateral 

sides and edges of the interconnect line.  

 

According to Hu et al. (1997), drift-velocity and resistance measurements in narrow 

(0.25 µ M) bamboo-like grained structures suggests that the mass transport of Cu 

during electromigation measurements occur primarily along the sidewall surfaces of 

the line. These Cu lines, sandwiched with a top and bottom Ta layer, were 

connected to underlying W bars on each end of the Cu line. Above findings are also 

confirmed recently by Hu et al. (1999), who found that in narrow (0.15 µ M) 

bamboo-like and near- bamboo structures (0.5 µ M), the dominant mechanism is 

surface diffusion. They speculated that there is a linear relationship between failure 

lifetime and metal line width, despite the fact that these narrow lines were close to a 

perfect bamboo-like grain structure. However, according to our findings concerning 

the cathode voiding (Eq. (5.3.1.3)), cathode failure time should be quadratic 

function of the line width, which is also proved by the analysis of the data provided 

by Hu et al. (1999) presented in Fig. 5.3.2.14.  
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Figure 5.3.2.14: Drift velocity data by Hu et al. (1999) for bamboo ( )0.15µ and 

near bamboo ( )0.5µ structures. 

 

All these experimental results suggest that the mass transport of Cu during 

electromigration primarily occurs along the side wall surfaces of the lines. In most 

recent study of Hu et al. (2001), experiments on 0.27 mµ  wide Cu damascene 

interconnects shows that the electromigration time to failure is greatly influenced by 

the thickness of the metal liner at the contact between the via and underlying line. 

They obtained remarkably long lifetime when they used a 3nm  thick liner (at the 

via/metal line interface), since the abrupt mass flux divergence at this interface 

normally seen is greatly diminished. This situation exactly corresponds to the 

perfect reflecting boundary conditions as adopted in our computer simulation 

studies while we were using constant voltage CVD test program. They concluded 

that the dominant diffusion path is along the top surface (Cu/SiNx, interface) of a 

Cu damascene line. We should mention here that the results of our computer 

simulation studies can be easily applied to this case without to much trouble. All 

one has to do is to replace w  line width in our equations by the line thickness 

denoted by h . Then, according to Eq. (5.3.1.8) the cathode drift velocity becomes 
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inversely proportional with the line thickness ( 1h− ) as suggested by Hu et al. (2001) 

after interpreting their test results. We should mention here that the ad hoc 

relationship used by them for the cathode drift velocity is only valid for high current 

density regime, where the capillary effect doesn’t play predominant role, as stated 

above. On the contrary to these accelerated test results, at low current densities 

where one operates on the plateau region, the negative effect of the specimen 

thickness on the cathode failure time becomes more detrimental due to the inverse 

cubic 3( )h−  variation of the drift velocity with respect to the line thickness. 

 

 
 

 

Figure 5.3.2.15: Drift velocity data by Hu et al. (1999), and Liniger et al. (2002), 

for different current densities. 

 

In Fig. 5.3.2.15, the experimental data on the cathode drift velocity versus current 

density obtained by Hu et al. (1999) and Liniger et al. (2002) for copper 

interconnects exposed to different test temperatures are plotted on a double 

logarithmic scale. In the same plot, the cathode drift velocity relationship denoted 

by Eq. (5.3.1.8) is also plotted using the experimental information (the specimen 

width, the grain size, the current density and the test temperature) supplied by those 
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authors in regards to their test samples. There are only three adjustable parameters 

in our theoretical curves such as the diffusion activation enthalpy CuQ , the effective 

electromigration valence ˆ
CuZ , and diffusivity constant denoted by o

CuD . The 

activation enthalpy can be directly and more accurately measurable from the 

cathode drift velocity versus temperature data.  

 

While plotting of the theoretical curves, the diffusional parameters are used as 

follows: 0.99 , CuQ eV= 0 5 22.21 10 / sec.,CuD m−= × and  12CuZ = . These figures are 

very close to the results obtained by Ogurtani and Oren (2004) for the surface 

diffusion of internal voids having no contaminations. Where, they have analyzed 

the available experimental data in the literature, utilizing the model developed by 

them for the cathode failure mean time MTTF, associated with the internal voids 

drifting and interacting with the grain boundaries under EM forces, in bamboo 

structures. 

 

 

 

Figure 5.3.2.16: Drift velocity data by 

Hu et al. (1999), and Eq. (5.3.1.8). 

 
 

Figure 5.3.2.17: Drift velocity data by 

Liniger et al. (2002), and Eq. (5.3.1.8). 

 

In Fig. 5.3.2.16 and Fig. 5.3.2.17, the data obtained by Hu et al. (1999) and Liniger 

et al. (2002) is plotted respectively in semi-logarithmic scale. The fitting of our 
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analytical expression to those experimental data points obtained by these authors 

resulted in a consistent activation enthalpy of the surface diffusion such as 

0.99CuQ eV= . On the other hand, the linear regression analysis of the data 

presented by Hu et al. (1997) and Liniger et al. (2002) gives same and again 

consistent results, namely, 0.93 
App

Cu
Q eV= . The main difference between these two 

activation enthalpy values comes from the fact that the slope obtained by linear 

regression analysis represents the apparent activation enthalpy, which overlooks the 

contribution of 1/ kT  in the mobility expression known as Einstein & Nerst 

relationship in the literature. Where the apparent activation enthalpy may be given 

by the following expression (Ogurtani and Oren 2003): 

 

1/
App

Cu Cu

driftV
Q Q kT

T
∂

= − = −
∂

     (5.3.2.7) 

 

Where, the temperature dependence of others parameters, which enter the 

theoretical expression, namely: the specific surface Gibbs free energy, the 

conductivity etc. are neglected. The contribution from kT  amounts to 0.049 eV  at 

the temperature of about 560K, which corresponds to the mean value of the 

temperature range employed by those authors in their experiments. Hence, the true 

activation energy of the surface diffusion of copper in both experimental test 

conditions, which may heavily dependence upon the properties of the substrates and 

underlayers used, amount to 0.99 eV  as we obtained directly from the fitting of our 

theoretical expression to their data. 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

These extensive simulation study results in certain analytical connections 

concerning thermal grooving, and electromigration induced cathode voiding and 

cathode drifting, whose proprieties are checked with the experimental data in the 

literature. 

 

As far as the current density dependence of the mean cathode failure time (MTTF) 

is concerned, the relationship given in Eq. (5.3.2.4), which can be directly 

applicable to the those cases where the cathode voiding and edge thinning takes 

place predominantly by the mass diffusion along the paths such as sidewalls and /or 

upper and lower surfaces. There may be two different regimes which result 

completely different current exponents at high and low current densities, yielding 

1n = −  and 0n = , respectively. The first regime is governed by the first term in Eq. 

(5.3.2.4), namely electromigration dominating stage, and the second regime is 

controlled by the second term, which is noting but capillary prevailing regime over 

the external applied electric field. The second regime is very important for the 

device operations. It seems that there is substantial decrease in actual life takes 

place compared to those results obtained by extrapolating the accelerated test data 

down to the device operating conditions; relatively low current densities and 

temperatures. This situation becomes more trouble some if one considers the effect 

of the miniaturization on MTTF. Since the second capillary dominating regime has 

very strong dependence on the size such as line width or thickness ( 3h− ) rather 1h−  

in the EM dominating regime.  
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The change over current density between these two regimes is given by Eq.(5.3.1.7) 

as:  

 

 21.7156thr
gj

w eZ
σ σ

ρ
Ω

= . 

 

This threshold current density should be as small as possible for the benefit of 

MTTF. Hence, one should try to select those materials for the underlayers that they 

can be able to modify the properties of the interfacial layers to obtain low specific 

surface Gibbs energies, high specific resistivity and diffusion coefficients. 
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APPENDIX 

 

 

COMPUTER CODE 

 

 
/************************************************************************** 

Grain Boundary Grooving + Cathode Drift 
 

Finite Interconnect with Grain Boundary: 
 

Boundary element method used in the solution of the Laplace equation 
related to the groove growth under the effect of electron wind in a finite 
interconnect which is incorporated with the surface diffusion  
due to curvature dependent chemical potential. 
 
Utilizes RC-BC at anode, FM-BC at cathode. 
 
Modified : 10 December 2003, CSL, Ankara, Turkey 
Copyright : (C) 2003 by Oncu AKYILDIZ 
Email : oncu_a@yahoo.com 
**************************************************************************/ 
 
#include <iostream.h> 
#include <iomanip.h> 
#include <math.h> 
#include <time.h> 
#include <fstream.h> 
#define pi  3.1415926535897932384626433832795 
#define sqr(x) ((x)*(x)) 
#define magnitude(a,b,c) sqrt(a * a + b * b + c * c) 
#define dotpro(a0,a1,a2,b0,b1,b2) (a0*b0+a1*b1+a2*b2) 
#define sign(a) ((a>0) ? (1):(-1)) 
using namespace std; 
typedef double arr1[1001]; 
typedef double arr2[3][1001]; 
typedef double arr3[1001][1001]; 
typedef double arr4[3]; 
typedef double arr5[3][3]; 
int mdiv,mc,nloop,nt,nu,nl,ms,t,gb1,gb2,gmdiv,newdata,mint,ca,cu,cd; 
double sl,sw,timet,omega,vmax,mpow,e,emax,emin,rmax,rmin,ksi,dm,delta,mgl 
 ,mgb,tmgb,dot,ddot,dotp,alfa,beta,lamda,lamda1,lamda2,deltat,epstime
 ,dihedral1l,dihedral2l,dihedral1r,dihedral2r,vgb1,vgb2,H,a,b,c,HL; 
arr1 su,psi,ekap,tetau,kapkapu,v,cff,mu,fieldtn,fieldt; 
arr2 delru,rt,rg,noo,llnu,noc,rcw; 
arr3 tt; 
arr4 tgu,tgd,rui,ruii,ruf,vect; 
arr5 anti; 
string sy; 
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/* this function determines the record time steps */ 
int timer(int m, int e){ 
 int powa = 1; 
 if (e != 0) { 
  for (int ki = 1; ki <= e; ki++) powa *= m; 
 } 
 return powa; 
} 
/* this function finds the vector product of two vectors */ 
inline void vectorpro(double a0,double a1,double a2,double b0, double 
b1,double  b2){ 
 vect[0] = a1*b2-a2*b1; 
 vect[1] = -a0*b2+a2*b0; 
 vect[2] = a0*b1-a1*b0; 
} 
/* production of a anticlockwise rotation matrix */ 
void antirotma(double w){ 
 anti[0][0] = cos(w); 
 anti[0][1] = -sin(w); 
 anti[0][2] = 0.0; 
 anti[1][0] = sin(w); 
 anti[1][1] = cos(w); 
 anti[1][2] = 0.0; 
 anti[2][0] = 0.0; 
 anti[2][1] = 0.0; 
 anti[2][2] = 1.0; 
} 
/* Gauss Jordan elimination method in the solution of simulataneous set 
 equations au=b */ 
void trian(long colon, double *tek, double (*cift)[1001]){ 
 arr1 ddd; 
 arr3 trio; 
 long ki, kj, kk, de; 
 double tot, bol, max; 
 for (ki = 0; ki <= colon; ki++) cift[ki][colon + 1] = tek[ki]; 
 for (ki = 0; ki <= colon; ki++) { 
  max = fabs(cift[ki][ki]); 
  de = ki; 
  for (kk = ki; kk <= colon; kk++) { 
    if (max < fabs(cift[kk][ki])) { 
    max = cift[kk][ki]; 
    de = kk; 
   } 
  } 
  if (de != ki) { 
   for (kk = 0; kk <= colon + 1; kk++) { 
    ddd[kk] = cift[ki][kk]; 
    cift[ki][kk] = cift[de][kk]; 
    cift[de][kk] = ddd[kk]; 
   } 
  } 
  bol = cift[ki][ki]; 
  for (kj = 0; kj <= colon + 1; kj++) cift[ki][kj] /= bol; 
  for (kk = ki; kk <= colon; kk++) { 
   if (kk != ki) { 
    for (kj = 0; kj <= colon + 1; kj++)
 trio[ki][kj]     = cift[ki][kj] * cift[kk][ki]; 
    for (kj = 0; kj <= colon + 1; kj++)
 cift[kk][kj]     -= trio[ki][kj]; 
   } 
  } 
 } 
 mu[colon] = cift[colon][colon + 1]; 
 for (ki = 1; ki <= colon; ki++) { 
   tot = 0.0; 
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   for (kj = 1; kj <= ki; kj++) tot += mu[colon - kj + 1] *  
    cift[colon - ki][colon - kj + 1]; 
   mu[colon - ki] = cift[colon - ki][colon + 1] - tot; 
 } 
} 
double det(double a11,double a12,double a13,double a21,double a22,double  
 a23,double a31,double a32,double a33) 
{ 
 return (a11*a22*a33+a12*a23*a31+a13*a21*a32-a13*a22*a31-a12*a21*a33-
 a11*a23*a32); 
} 
void inter(double x0,double x1,double x2,double y0,double y1,double y2) 
{ 
 arr5 a2,b2,c2,del; 
 double ddel; 
 a2[0][0] = y0; 
 a2[0][1] = x0; 
 a2[0][2] = 1; 
 a2[1][0] = y1; 
 a2[1][1] = x1; 
 a2[1][2] = 1; 
 a2[2][0] = y2; 
 a2[2][1] = x2; 
 a2[2][2] = 1; 
 b2[0][0] = sqr(x0); 
 b2[0][1] = y0; 
 b2[0][2] = 1; 
 b2[1][0] = sqr(x1); 
 b2[1][1] = y1; 
 b2[1][2] = 1; 
 b2[2][0] = sqr(x2); 
 b2[2][1] = y2; 
 b2[2][2] = 1; 
 c2[0][0] = sqr(x0); 
 c2[0][1] = x0; 
 c2[0][2] = y0; 
 c2[1][0] = sqr(x1); 
 c2[1][1] = x1; 
 c2[1][2] = y1; 
 c2[2][0] = sqr(x2); 
 c2[2][1] = x2; 
 c2[2][2] = y2; 
 del[0][0] = sqr(x0); 
 del[0][1] = x0; 
 del[0][2] = 1; 
 del[1][0] = sqr(x1); 
 del[1][1] = x1; 
 del[1][2] = 1; 
 del[2][0] = sqr(x2); 
 del[2][1] = x2; 
 del[2][2] = 1; 
 ddel = 
 det(del[0][0],del[0][1],del[0][2],del[1][0],del[1][1],del[1][2], 
 del[2][0],del[2][1],del[2][2]); 
 a = 
 det(a2[0][0],a2[0][1],a2[0][2],a2[1][0],a2[1][1],a2[1][2],a2[2][0], 
 a2[2][1],a2[2][2])/ddel; 
 b = 
 det(b2[0][0],b2[0][1],b2[0][2],b2[1][0],b2[1][1],b2[1][2],b2[2][0], 
 b2[2][1],b2[2][2])/ddel; 
 c = 
 det(c2[0][0],c2[0][1],c2[0][2],c2[1][0],c2[1][1],c2[1][2],c2[2][0], 
 c2[2][1],c2[2][2])/ddel; 
} 
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/* this procedure generates the initial system */ 
void generate(){ 
 nt = 4*mdiv+2*mc; 
 for (int kl = 0; kl <= 4*mdiv+2*mc; kl++){ 
  if (kl <= 2*mdiv){ 
   rt[0][kl] = (kl-mdiv)*sl/mdiv; 
   rt[1][kl] = sw; 
  } 
  if (kl > 2*mdiv){ 
    if (kl <= 2*mdiv+2*mc-1){ 
     rt[0][kl] = sl; 
     rt[1][kl] = -(kl-2*mdiv-mc)*sw/mc; 
    } 
    else{ 
     rt[0][kl] = -(kl-3*mdiv-2*mc)*sl/mdiv; 
     rt[1][kl] = -sw; 
    } 
  } 
  rt[2][kl] = 0; 
 } 
} 
void delr1(){ 
 for (int ki = 0; ki<=nt-1; ki++) 
 { 
  for (int kj = 0; kj<=2; kj++) 
   delru[kj][ki] = rt[kj][ki+1]-rt[kj][ki]; 
  su[ki] = magnitude(delru[0][ki],delru[1][ki],delru[2][ki]); 
 }  
} 
void psir(){ 
 double dummy; 
 for (int ki = 1; ki<=nt-1; ki++){  
  vectorpro(delru[0][ki-1],delru[1][ki-1],delru[2][ki-  
   1],delru[0][ki],delru[1][ki],delru[2][ki] ); 
  dummy = (magnitude(delru[0][ki-1],delru[1][ki-1],delru[2] 
  [ki-1]))*(magnitude(delru[0][ki],delru[1][ki],delru[2][ki])); 
  tetau[ki] =asin(dotpro((vect[0]/dummy),vect[1]/dummy, 
  vect[2]/dummy,0,0,1)); 
  dummy = dotpro( delru[0][ki-1],delru[1][ki-1],delru[2] 
  [ki-1],delru[0][ki],delru[1][ki],delru[2][ki] ); 
  if ( dummy <= 0 ){ 
   tetau[ki] = pi - tetau[ki]; 
  } 
  if (tetau[ki] > pi){ 
   tetau[ki] = tetau[ki] - 2*pi; 
  } 
  tetau[ki] = -tetau[ki]; 
 } 
} 
/* This procedure calculates the local curvature and the local line 
 normal vector at any given node knowing the successive segment 
 vector set in this procedure: 
     kapkap : local curvature 
    lln    : local line normal */ 
void kappa() 
{ 
 for (int ki = 1; ki<=nt-1; ki++) 
 {  
  alfa = atan(sin(tetau[ki])/((su[ki-1]/su[ki]) 
  +cos(tetau[ki]))); 
  kapkapu[ki] = 2*sin(alfa)/su[ki]; 
  beta = (pi-2*alfa)/2; 
  antirotma(-beta); 
  for (int kj = 0; kj<=2; kj++) 
  { 
   noo[kj][ki] =  anti[kj][0]*delru[0][ki] 
   +anti[kj][1]*delru[1][ki]+anti[kj][2]*delru[2][ki]; 
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  } 
  for (int kj = 0; kj<=2; kj++) 
  { 
   llnu[kj][ki] = noo[kj][ki] 
   /magnitude(noo[0][ki],noo[1][ki],noo[2][ki]); 
  } 
  kapkapu[ki] = -kapkapu[ki]; 
 } 
 for (int kj = 0; kj<=2; kj++) 
 { 
  llnu[kj][nt] = llnu[kj][nt-1]; 
  llnu[kj][0] = llnu[kj][1]; 
 } 
 kapkapu[0] = kapkapu[1]; 
 kapkapu[nt] = kapkapu[nt-1]; 
} 
/* This procedure calculates the normal unit vectors at the centroids 
 for the upper and lower cut interfaces. Directions towards the 
 interconnect material for edges. */ 
void noc1() 
{ 
 for (int i=0; i<=nt-1; i++) 
 { 
  vectorpro(0,0,-1,delru[0][i],delru[1][i],delru[2][i]); 
  noc[0][i] = vect[0]/su[i]; 
  noc[1][i] = vect[1]/su[i]; 
  noc[2][i] = vect[2]/su[i]; 
 } 
} 
/* This procedure calculates the centroid position vectors for the 
 whole upper and lower edges */ 
void rcw1() 
{ 
 for (int ki=0; ki<=nt-1; ki++) 
  for (int kj=0; kj<=2; kj++) 
   rcw[kj][ki] = ( rt[kj][ki]+rt[kj][ki+1] )/2; 
} 
/* Indirect Boundary Element Method 
 This is an electrostatic connection matrix utilizing the element 
 centroids, m is the numder of subsegment used in the integration
 procedure. */ 
void tin() 
{ 
 arr1 rcij; 
 arr2 rc; 
 double tot, total, rcos, rcms; 
 for (int i=0; i<=nt-1; i++) 
 { 
  for (int j=0; j<=nt-1; j++) 
  { 
   if (i == j) tt[i][j] = 0.5; 
   else 
   { 
    for (int k=0; k<=mint; k++) 
     for (int kj=0; kj<=1; kj++)  
    rc[kj][k] = (rt[kj][j]-rcw[kj][i]) 
    +k*delru[kj][j]/mint; 
     rcij[0] = 0; 
     rcij[1] = 0; 
    for (int kj=0; kj<=1; kj++) 
     for (int k=1; k<=mint-1; k++)rcij[kj] += 
     rc[kj][k]/(sqr(rc[0][k])+sqr(rc[1][k]));
     rcos = sqr(rc[0][0])+sqr(rc[1][0]); 
     rcms = sqr(rc[0][mint])+sqr(rc[1][mint]); 
    for (int kj=0; kj<=1; kj++) rcij[kj] +=  
     0.5*(rc[kj][0]/rcos+rc[kj][mint]/rcms); 
  tt[i][j] =  - su[j]* 
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 dotpro(noc[0][i],noc[1][i],0,rcij[0],rcij[1],0)*0.5/(pi*mint); 
   } 
  } 
 } 
} 
/*  CF is the normal component of the electric fied on the both strip 
 surfaces  as well as the anod and cathod edges. Due to the 
 applied voltage along the x-axis. Where we assumed that the cathod 
 edge exposed to the applied current sources and sinks, therefore not 
 insulated like others surfaces. */ 
void cf() 
{ 
 for (int ki=0; ki<=nt-1; ki++){ 
  if ((ki>=cu-2) && (ki<=cd+1)) cff[ki] = 0; 
  else cff[ki] = -noc[0][ki]; 
 } 
} 
/* Calculation of the electrostatic potential due to the boundary 
 charge distribution at any point in the interior region or at the 
 boundary rq denotes the position vector. 
 field1 : electrostatic applied voltage along the negative x 
 direction.(electric field in the positive direction) 
 field2 : electrostatic potential due to boundary charge distribution 
          which satisfies the neumann condition. 
 fieldt : total electrostatic potential at the void surface. */ 
 
 
 
void field() 
{ 
 double eta,tot; 
 arr1 rrq,rrq1,rrkq,delu,fieldi,fieldii; 

 
/* Below line generates mu that is the charge to be inserted in order 
 to satisfy the Neumann Boundary Condition along the free 
 surfaces, by using  procedure trian. "mu" is a charge density 
 function at a given segment which is assumed to be uniformly 
 distributed along each segment. */ 
 trian(nt-1, cff, tt); 
/* delu calculation and field2 */ 
 for (int i=0; i<=nt-1; i++){ 
  fieldi[i] = -1*rcw[0][i]; // fieldi 
  for (int j=0; j<=nt-1; j++){ 
   for (int kj=0; kj<=1; kj++){ 
    rrq[kj] = rt[kj][j]-rcw[kj][i]; 
    rrq1[kj] = rt[kj][j+1]-rcw[kj][i]; 
   } 
   eta =  0.5*(log(magnitude(rrq[0],rrq[1],0)) 
   +log(magnitude(rrq1[0],rrq1[1],0))); 
   tot = 0; 
   for (int k=1; k<=mint-1; k++){ 
    for (int kj=0; kj<=1; kj++) 
     rrkq[kj] = rt[kj][j]+k*(rt[kj][j+1]- 
    rt[kj][j])/mint-rcw[kj][i]; 
    tot = tot+log( magnitude(rrkq[0],rrkq[1],0) ); 
   } 
   delu[j] = -0.5*fabs(su[j])*(tot+eta)/(pi*mint); 
  } 
  fieldii[i] = 0; 
  for (int kl=0; kl<=nt-1; kl++)fieldii[i] += delu[kl]*mu[kl]; 
  fieldt[i] = fieldi[i]+fieldii[i];  // fieldt 
 } 
/* Below lines transfer the centroid data to the node positions for the 
 whole system. */ 
 fieldtn[0] = fieldt[0]; 
 for (int i=1; i<=nt-1; i++) fieldtn[i] = ( fieldt[i-1]*su[i] 
 +fieldt[i]*su[i-1] )/(su[i]+su[i-1]); 
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 fieldtn[nt] = fieldt[nt-1]; 
} 
void tg(){ 
 arr1 dummy; 
 for (int kj=0; kj<=2; kj++) 
 { 
  dummy[kj] = rt[kj][gb2]-rt[kj][gb1]; 
 } 
 for (int kj=0; kj<=2; kj++) 
 { 
  tgu[kj] = dummy[kj]/magnitude(dummy[0],dummy[1],dummy[2]); 
  tgd[kj] = -tgu[kj]; 
 } 
} 
/* This procedure calculates the node velocities at the upper and lower 
 strip edges and also at the grain boundary nodes as proposed by 
 Ogurtani theory, and then calculates the new node positions */ 
void vcalc() 
{ 
  arr1 dummy1,dummy2,dummy3,dummy4; 
  double dummy1c,dummy2c,dummy3c,dummy4c,dummy1d,dummy2d, 
  dummy3d,dummy4d,dummymt1,dummymt2,dummyx,dummyxx,xx; 
  for (int aii=0; aii<=nt; aii++) 
  { 
   psi[aii] = ksi*fieldtn[aii]; 
   ekap[aii] = kapkapu[aii]+psi[aii]; 
  } 
  for (int kj=0; kj<=2; kj++) 
  { 
   dummy1[kj] = delru[kj][gb1]/su[gb1]; 
   dummy2[kj] = delru[kj][gb1-1]/su[gb1-1]; 
   dummy3[kj] = delru[kj][gb2]/su[gb2]; 
   dummy4[kj] = delru[kj][gb2-1]/su[gb2-1]; 
  } 
   dummy1d = dotpro(dummy1[0],dummy1[1],dummy1[2] 
   ,tgu[0],tgu[1],tgu[2]); 
   dummy2d = dotpro(dummy2[0],dummy2[1],dummy2[2] 
   ,tgu[0],tgu[1],tgu[2]); 
   dummy3d = dotpro(dummy3[0],dummy3[1],dummy3[2] 
   ,tgd[0],tgd[1],tgd[2]); 
   dummy4d = dotpro(dummy4[0],dummy4[1],dummy4[2] 
   ,tgd[0],tgd[1],tgd[2]); 
   dihedral1l = acos(-dummy1d); 
   dihedral2l = acos(-dummy3d); 
   dihedral1r = acos( dummy2d); 
   dihedral2r = acos( dummy4d); 
 vectorpro(dummy1[0],dummy1[1],dummy1[2],tgu[0],tgu[1],tgu[2]); 
 dummymt1 = dotpro(0,0,1,vect[0],vect[1],vect[2]); 
 vectorpro(dummy2[0],dummy2[1],dummy2[2],tgu[0],tgu[1],tgu[2]); 
 dummymt1 = dotpro(0,0,1,vect[0],vect[1],vect[2])-dummymt1; 
 vectorpro(dummy3[0],dummy3[1],dummy3[2],tgd[0],tgd[1],tgd[2]); 
 dummymt2 = dotpro(0,0,1,vect[0],vect[1],vect[2]); 
 vectorpro(dummy4[0],dummy4[1],dummy4[2],tgd[0],tgd[1],tgd[2]); 
 dummymt2 = dotpro(0,0,1,vect[0],vect[1],vect[2])-dummymt2; 
  //node velocities 
/* 0 */ v[0] = 2*(ekap[1]-ekap[0])/sqr(su[0]); 
  for (int ajj=1; ajj<=nt-1; ajj++) 
  { 
/*gb1-1 */ if (ajj==gb1-1) 
   { 
    dummyx = (su[gb1-3]+2*su[gb1-2]+su[gb1-1])*0.5; 
    dummyxx = (su[gb1-3]+su[gb1-2])*0.5; 
    xx = 0.5*su[gb1-3]+su[gb1-2]+su[gb1-1]; 
    inter(0,dummyxx,dummyx,ksi*fieldt[gb1-3] 
    ,ksi*fieldt[gb1-2],ksi*fieldt[gb1-1]); 
    psi[gb1] = a*sqr(xx)+b*xx+c; 
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    v[ajj] = -delta/omega*(mgl*0.5*(lamda-dummy2d)-
    tmgb*dummymt1); 
    v[ajj] = v[ajj] -(ekap[gb1-1]-ekap[gb1-2]) 
    /su[gb1-2]+(psi[gb1]-psi[gb1-1])/su[gb1-1]; 
    v[ajj] = v[ajj]/(su[gb1-1]+0.5*su[gb1-2]); 
      } 
/* gb1*/   else if (ajj==gb1) 
   { 
    v[ajj] = mgb*(lamda+0.5*(dummy1d-dummy2d)) 
    /omega; 
    vgb1 = v[ajj]; 
   } 
/* gb1+1*/ else if (ajj==gb1+1) 
   { 
    dummyx = (su[gb1+2]+2*su[gb1+1]+su[gb1])*0.5; 
    dummyxx = (su[gb1+1]+su[gb1+2])*0.5; 
    xx = 0.5*su[gb1+2]+su[gb1+1]+su[gb1]; 
    inter(0,dummyxx,dummyx,ksi*fieldt[gb1+2] 
    ,ksi*fieldt[gb1+1],ksi*fieldt[gb1]); 
    psi[gb1] = a*sqr(xx)+b*xx+c; 
    v[ajj] = -delta/omega*(mgl*0.5*(lamda+dummy1d) 
    +tmgb*dummymt1); 
    v[ajj] = v[ajj] +(ekap[gb1+2]-ekap[gb1+1]) 
    /su[gb1+1]-(psi[gb1+1]-psi[gb1])/su[gb1]; 
    v[ajj] = v[ajj]/(su[gb1]+0.5*su[gb1+1]); 
      } 
/*gb2-1 */ else if (ajj==gb2-1) 
   { 
    dummyx = (su[gb2-3]+2*su[gb2-2]+su[gb2-1])*0.5; 
    dummyxx = (su[gb2-3]+su[gb2-2])*0.5; 
    xx = su[gb2-1]+su[gb2-2]+0.5*su[gb2-3]; 
    inter(0,dummyxx,dummyx,ksi*fieldt[gb2-3] 
    ,ksi*fieldt[gb2-2],ksi*fieldt[gb2-1]); 
    psi[gb2] = a*sqr(xx)+b*xx+c; 
    v[ajj] = -delta/omega*(mgl*0.5*(lamda-dummy4d) 
    -tmgb*dummymt2); 
    v[ajj] = v[ajj] -(ekap[gb2-1]-ekap[gb2-2]) 
    /su[gb2-2]+(psi[gb2]-psi[gb2-1])/su[gb2-1]; 
    v[ajj] = v[ajj]/(su[gb2-1]+0.5*su[gb2-2]); 
      } 
/* gb2*/   else if (ajj==gb2) 
   { 
    v[ajj] = mgb*(lamda+0.5*(dummy3d-ummy4d))/omega; 
    vgb2 = v[ajj]; 
   } 
/* gb2+1*/ else if (ajj==gb2+1) 
   { 
    dummyx = (su[gb2+2]+2*su[gb2+1]+su[gb2])*0.5; 
    dummyxx = (su[gb2+2]+su[gb2+1])*0.5; 
    xx = su[gb2]+su[gb2+1]+0.5*su[gb2+2]; 
    inter(0,dummyxx,dummyx,ksi*fieldt[gb2+2] 
    ,ksi*fieldt[gb2+1],ksi*fieldt[gb2]); 
    psi[gb2] = a*sqr(xx)+b*xx+c; 
    v[ajj] = -delta/omega*(mgl*0.5*(lamda+dummy3d) 
    +tmgb*dummymt2); 
    v[ajj] = v[ajj] +(ekap[gb2+2]-ekap[gb2+1]) 
    /su[gb2+1]-(psi[gb2+1]-psi[gb2])/su[gb2]; 
    v[ajj] = v[ajj]/(su[gb2]+0.5*su[gb2+1]); 
      } 
/*rest*/   else 
   { 
    v[ajj] = (ekap[ajj+1]-ekap[ajj])/su[ajj]- 
    (ekap[ajj]-ekap[ajj-1])/su[ajj-1]; 
    v[ajj] = 2*v[ajj]/(su[ajj]+su[ajj-1]); 
     } 
  } 
/*nt*/  v[nt] = 2*(ekap[nt-1]-ekap[nt])/sqr(su[nt-1]); 
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  vmax = v[0]; 
  for (int ajj=0; ajj<=nt; ajj++) 
  { 
   if (fabs(v[ajj])>=vmax) 
   { 
    vmax = fabs(v[ajj]); 
   } 
  } 
  for (int ajj=1; ajj<=nt-1; ajj++) 
  { 
   for (int aii=0; aii<=1; aii++) 
   { 
    if (ajj==gb1) 
    { 
    rt[aii][ajj] = rt[aii][ajj]+deltat*v[ajj] 
    *tgu[aii]; 
    } 
    else if (ajj==gb2) 
    { 
    rt[aii][ajj] = rt[aii][ajj]+deltat*v[ajj] 
    *tgd[aii]; 
    } 
    else 
    { 
   rt[aii][ajj]= rt[aii][ajj]+deltat*v[ajj] 
   *llnu[aii][ajj]; 
    } 
   } 
  } 
 rt[1][0] = rt[1][0]-deltat*v[0]; 
 rt[1][nt] = rt[1][nt]+deltat*v[nt]; 
} 
 
/* This procedure performs the remeshing by eliminating those segments 
 smaller than rmin and dividing those which are greater than rmax 
 into two parts and also keeps the grain boundary triple junction 
 as a stable point.*/ 
void remeshing() 
{ 
 int ka = 1; 
 int gnew1,gnew2,nn; 
 double magi; 
 int flag = 0; 
 rmax = emax*dm; 
 rmin = emin*dm; 
 arr2 rm,delrr; 
 rm[0][0] = rt[0][0]; 
 rm[1][0] = rt[1][0]; 
 rm[2][0] = rt[2][0]; 
 int Z = 0; 
 for (int ki=0; ki<=gb1-2; ki++) 
 { // {zone 1} 
  if (su[ki] >= rmax) 
  { 
   if (Z==1) 
    { 
     for(int kj=0; kj<=2; kj++) 
     { 
     rm[kj][ka] = (rt[kj][ki+1]+rt[kj][ki-1]) 
     /2; 
     } 
     Z = 0; 
    } 
   else 
    for(int kj=0; kj<=2; kj++) 
    { 
      rm[kj][ka] = (rt[kj][ki+1]+rt[kj][ki])/2; 
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    } 
   for(int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka+1] = rt[kj][ki+1]; 
   } 
   ka = ka+2; 
  } 
  if ((su[ki] < rmax) && (su[ki] > rmin)) 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka] = rt[kj][ki+1]; 
   } 
   ka = ka+1; 
  } 
  if (su[ki] <= rmin) 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    delru[kj][ki+1] = delru[kj][ki+1]+delru[kj][ki]; 
   } 
   Z=1; 
  } 
 } 
 if ((su[gb1-1] >= rmax) || (su[gb1] >= rmax)  
 || (su[gb2-1] >= rmax) || (su[gb2] >= rmax)) 
 { 
  flag = 1; 
 } 
 if ((su[gb1-1] < rmax) && (flag != 1)) 
 { 
  for (int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = rt[kj][gb1]; 
  } 
  gnew1 = ka; 
  ka = ka+1; 
 } 
 if (flag == 1) 
 { 
  for (int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = (rt[kj][gb1]+rt[kj][gb1-1])/2; 
   rm[kj][ka+1] = rt[kj][gb1]; 
  } 
  gnew1 = ka+1; 
  ka = gnew1+1; 
 } 
 Z = 0; 
 if ((su[gb1] < rmax) && (flag != 1)) 
 { 
  for (int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = rt[kj][gb1+1]; 
  } 
  ka = ka+1; 
 } 
 if (flag == 1) 
 { 
  for(int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = (rt[kj][gb1+1]+rt[kj][gb1])/2; 
   rm[kj][ka+1] = rt[kj][gb1+1]; 
  } 
  ka = ka+2; 
 } 
 for (int ki=gb1+1; ki<=gb2-2; ki++) 
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 { // {zone 2} 
  if (su[ki] >= rmax) 
  { 
   if (Z==1) 
    { 
     for(int kj=0; kj<=2; kj++) 
     { 
     rm[kj][ka] = (rt[kj][ki+1]+rt[kj][ki-1]) 
     /2; 
     } 
     Z = 0; 
    } 
   else 
    { 
     for(int kj=0; kj<=2; kj++) 
     { 
      rm[kj][ka] = (rt[kj][ki+1]+rt[kj][ki])/2; 
     } 
    } 
   for(int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka+1] = rt[kj][ki+1]; 
   } 
   ka = ka+2; 
  } 
  if ((su[ki] < rmax) && (su[ki] > rmin)) 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka] = rt[kj][ki+1]; 
   } 
   ka = ka+1; 
  } 
  if (su[ki] <= rmin) 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    delru[kj][ki+1] = delru[kj][ki+1]+delru[kj][ki]; 
   } 
   Z=1; 
  } 
 } 
 if ((su[gb2-1] < rmax) && (flag != 1)) 
 { 
  for (int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = rt[kj][gb2]; 
  } 
  gnew2 = ka; 
  ka = ka+1; 
 } 
 if (flag == 1) 
 { 
  for (int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = (rt[kj][gb2]+rt[kj][gb2-1])/2; 
   rm[kj][ka+1] = rt[kj][gb2]; 
  } 
  gnew2 = ka+1; 
  ka = gnew2+1; 
 } 
 Z = 0; 
 if ((su[gb2] < rmax) && (flag != 1)) 
 { 
  for (int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = rt[kj][gb2+1]; 
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  } 
  ka = ka+1; 
 } 
 if (flag == 1) 
 { 
  for(int kj=0; kj<=2; kj++) 
  { 
   rm[kj][ka] = (rt[kj][gb2+1]+rt[kj][gb2])/2; 
   rm[kj][ka+1] = rt[kj][gb2+1]; 
  } 
  ka = ka+2; 
 } 
 for (int ki=gb2+1; ki<=nt-2; ki++) 
 { // {zone 3} 
  if (su[ki] >= rmax) 
  { 
   if (Z==1) 
   { 
    for(int kj=0; kj<=2; kj++) 
    { 
     rm[kj][ka] = (rt[kj][ki+1]+rt[kj][ki-1]) 
     /2; 
    } 
    Z = 0; 
   } 
   else 
    for(int kj=0; kj<=2; kj++) 
    { 
     rm[kj][ka] = (rt[kj][ki+1]+rt[kj][ki])/2; 
    } 
   for(int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka+1] = rt[kj][ki+1]; 
   } 
   ka = ka+2; 
  } 
  if ((su[ki] < rmax) && (su[ki] > rmin)) 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka] = rt[kj][ki+1]; 
   } 
   ka = ka+1; 
  } 
  if (su[ki] <= rmin) 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    delru[kj][ki+1] = delru[kj][ki+1]+delru[kj][ki]; 
   } 
   Z=1; 
  } 
 } 
 for (int kj=0; kj<=2; kj++) 
 { 
  rm[kj][ka] = rt[kj][nt]; 
  if (su[nt-1] >= rmax) 
  { 
  rm[kj][ka] = (rm[kj][ka-1]+rt[kj][nt])/2; 
  rm[kj][ka+1] = rt[kj][nt]; 
  nn  = ka+1; 
  } 
  else nn  = ka; 
 } 
 delrr[0][0] = delru[0][nt-1]+delru[0][nt-2]; 
 delrr[1][0] = delru[1][nt-1]+delru[1][nt-2]; 
 delrr[2][0] = delru[2][nt-1]+delru[2][nt-2]; 
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 magi = magnitude(delrr[0][0],delrr[1][0],delrr[2][0]); 
 if (su[nt-1] <= rmin) 
 { 
  if (magi >= rmax) 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka-1] = (rt[kj][nt]-rm[kj][ka-2])/2; 
    rm[kj][ka] = rt[kj][nt]; 
   } 
  } 
  else 
  { 
   for (int kj=0; kj<=2; kj++) 
   { 
    rm[kj][ka-1] = rt[kj][nt]; 
   } 
  } 
 } 
 gb1 = gnew1; 
 gb2 = gnew2; 
 nt = nn; 
 for (int ki=0; ki<=nt; ki++) 
 { 
  rt[0][ki] = rm[0][ki]; 
  rt[1][ki] = rm[1][ki]; 
  rt[2][ki] = rm[2][ki]; 
 } 
} 
void getparam() 
{ 
 ifstream in; 
 in.open("ms2.dat"); 
 in >> newdata ; //{1:  if 0 new experiment if 1 continuous from 
        cont.dat} 
 in >> gmdiv;  //{2: gb division} 
 in >> mc;  //{3: cathode division} 
 in >> deltat ; //{3:  initial time interval} 
 in >> epstime ; //{4:  time step correction} 
 in >> emin;  //{5:  minimum segment length} 
 in >> emax;  //{6:  maximum segment length} 
 in >> t;  //{7:  initial loop number} 
 in >> ms;  //{8:  data record number} 
 in >> ksi;  //{9:  electron wind intensity} 
 in >> nloop;  //{10: loop number} 
 in >> timet;  //{11: real time} 
 in >> mint;  //{12: integration segment number (odd)} 
 in >> sl;  //{13: strip length coefficient} 
 in >> sw;  //{14: strip coefficient} 
 in >> mdiv;  //{15: division} 
 in >> delta;  //{16: grain boundary thickness} 
 in >> gb1;   //{17: location of the first grain boundary} 
 in >> lamda1;  //{18: equilibrium dihedral angle between gb1  
     and upper strip} 
 in >> gb2;  //{19: location of the second grain boundary} 
 in >> lamda2 ; //{20: equilibrium dihedral angle between gb2  
     and lower strip} 
 in >> mgb;  //{21: grain boundary longitudinal mobility} 
 in >> tmgb;  //{22: grain boundary transverse mobility} 
 in >> mgl;  //{23: grain boundary longtidunal transverse  
     mobility} 
 in.close(); 
 lamda = lamda1; 
 ruii[0] = -(gb2-mdiv)*sl/mdiv; 
 ruii[1] = -sw; 
 gb2 = gb2+2*mdiv+2*mc; 
 omega = delta*delta*delta;   // atomic volume} 



 126

 dm = sl/mdiv;                // mean segment lenght} 
 rui[0] = (gb1-mdiv)*sl/mdiv; 
 rui[1] = sw; 
} 
/* This procedure gets parameters from " cont.txt"  */ 
void getcontparam() 
{ 
 double sil; 
     ifstream in("cont.txt"); 
 in >>rt[0][0]>>rt[1][0]>>sil>>sil>>sil>>sil>>sil>>nu>>t>>ms>>timet>> 
 gb1>>gb2>>nl; 
 nt = nu+nl+1; 
 gb2 = gb2+nu+1; 
 for(int i=1; i<=nt; i++) 
 { 
   in >>rt[0][i]>>rt[1][i]>>sil>>sil>>sil>>sil>>sil  ; 
 } 
 t = t+1; 
} 
/* OGURTANI Model: 
 Grain boundary grooving under the effect of electron wind and 
 thermal streses using IBEM calculations. Finite strip with "grain 
 boundary". */ 
void gbgroove() 
{ 
 int kk=100; 
 int kt; 
 //for determining cathode escape rate 
 double rtmax; 
 time_t curtime; 
 time(&curtime); 
 getparam(); 
 if (newdata==0) generate(); 
 else getcontparam(); 
 tg(); 
 ofstream out1; //open files for multiple write 
 out1.open("angles.txt",ofstream::out | ofstream::app); 
 out1 << setiosflags(ios::showpoint); 
 out1 << setiosflags(ios::fixed); 
 ofstream out2; 
 out2.open("accessories.txt",ofstream::out | ofstream::app); 
 out2 << setiosflags(ios::showpoint); 
 out2 << setiosflags(ios::fixed); 
 kt = t+32; 
 while(t <= nloop) 
 { 
  delr1(); 
  psir(); 
  kappa(); 
  if (ksi != 0) 
  { 
  if ( (t/kk)*kk==t || t<=kt ){ 
   noc1(); 
   rcw1(); 
   tin(); 
   cf(); 
   field(); 
   } 
  } 
  vcalc(); 
  deltat = epstime*dm/vmax; 
  if (((t+1)/kk)*kk==t+1 || t<=kt || ksi==0){ 
   delr1(); 
   // perform remeshing 
   remeshing(); 
  } 
  //runaway cathode 
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  rtmax = rt[0][gb1]; 
  for (int ajj=gb1+1; ajj<=gb2; ajj++) 
  { 
   if ((rt[0][ajj]>rtmax) && (rt[1][ajj]>=0)) 
   ca = ajj; 
   if (fabs(rt[1][ajj+1])<fabs(rt[1][ajj])) 
   ca = ajj+1; 
   if (rt[1][ajj]<0) break; 
  } 
//indexes for determining the electric field normals at cathode 
  for (int ajj=ca-1; ajj>=gb1; ajj--) 
  { 
  if ((rt[1][ajj]>=rt[1][ajj+1]) && (rt[1][ajj]<sw)) 
  cu = ajj; 
  if (rt[1][ajj]<=rt[1][ajj+1]) break; 
  } 
  for (int ajj=ca+1; ajj<=gb2; ajj++) 
  { 
  if ((rt[1][ajj]<=rt[1][ajj-1]) && (rt[1][ajj]>-sw)) 
  cd = ajj; 
  if (rt[1][ajj]>=rt[1][ajj-1]) break; 
  } 
  //calculate the groove depth 
  for (int j=0; j<=1; j++) 
  { 
   ruf[j] = rt[j][gb1]-rui[j]; 
  } 
  H = sign(-ruf[1])*magnitude(ruf[0],ruf[1],0); 
    for (int j=0; j<=1; j++) 
  { 
   ruf[j] = rt[j][gb2]-ruii[j]; 
  } 
  HL = sign(-ruf[1])*magnitude(ruf[0],ruf[1],0); 
  if (t < 257){ mpow = timer(2,ms);} 
  else if (t < 1001){ mpow = 300+100*(ms-9);} 
  else if (t < 20001){ mpow = 10000+1000*(ms-25);} 
  else if (t < 100001){ mpow = 20000+2500*(ms-35);} 
  else  { mpow = 100000+5000*(ms-67);} 
  timet = timet+deltat; 
  if (t == mpow) 
  { 
   ofstream out; 
   ifstream in; 
   out.open("name.txt"); 
   out << ms << "csl.txt" ; 
   out.close(); 
   in.open("name.txt"); 
   in >> sy ; 
   in.close(); 
   out << setiosflags(ios::showpoint); 
   out << setiosflags(ios::fixed); 
   out.open(sy.c_str(),ios::app ); 
 out<<setprecision(17)<<rt[0][0]<<""<<rt[1][0]<<""<<kapkapu[0]<<"" 
 <<mu[0]<<" "<<fieldtn[0]<<" "<<llnu[0][0]<<" "<<llnu[1][0]<<" " 
 <<nt<<" "<<t 
 <<" "<<ms<<" "<<timet<<" "<<gb1<<" "<<gb2<<" "<<endl; 
   for(int i=1; i<=nt; i++){ 
 out<<setprecision(17)<<rt[0][i]<<""<<rt[1][i]<<""<<kapkapu[i]<<" " 
 <<mu[i]<<" "<<fieldtn[i]<<" "<<llnu[0][i]<<" "<< llnu[1][i]<<endl;} 
   out.close(); 
 out1<<setprecision(17)<<dihedral1l<<" "<<dihedral1r<<" "<<dihedral2l 
 <<" "<<dihedral2r<<endl; 
 out2<<setprecision(17)<<timet<<""<<vgb1<<""<<vgb2<<""<<H<<" " 
 <<rt[0][ca]<<""<<rt[1][ca]<<""<<v[ca]<<""<<rt[0][cu]<<""<<rt[1][cu] 
 <<" "<<rt[0][cd]<<" "<<rt[1][cd]<<" "<<HL<<endl; 
 ms++ ;} 
  if ( rt[1][gb1] < 0 || rt[1][gb2] > 0 || 
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  rt[1][gb1] == rt[1][gb2]) 
  { 
   ofstream out; 
   ifstream in; 
   out.open("name.txt"); 
   out << "ms2final.txt" ; 
   out.close(); 
   in.open("name.txt"); 
   in >> sy ; 
   in.close(); 
   out << setiosflags(ios::showpoint); 
   out << setiosflags(ios::fixed); 
   out.open(sy.c_str(),ios::app ); 
 out<<setprecision(17)<<rt[0][0]<<""<<rt[1][0]<<""<<kapkapu[0]<<" " 
 <<mu[0]<<" "<<fieldtn[0]<<" "<<llnu[0][0]<<" "<<llnu[1][0]<<" " 
 <<nt<<" "<<t<<" "<<ms<<" "<<timet<<" "<<gb1<<" "<<gb2<<" "<<endl; 
   for(int i=1; i<=nt; i++){ 
 out<<setprecision(17)<<rt[0][i]<<""<<rt[1][i]<<""<<kapkapu[i]<<" 
 <<mu[i]<<" "<<fieldtn[i]<<" "<<llnu[0][i]<<" "<< llnu[1][i]<<endl;} 
   out.close(); 
   break; 
  } 
  t++ ; 
 } 
} 
int main() 
{ 
 gbgroove(); 
} 


