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ABSTRACT 
 
 

THREE DIMENSIONAL FRACTURE ANALYSIS  
OF FGM COATINGS  

 
 

�NAN, Özgür 

M.S., Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Serkan Da� 

 

September 2004, 93 pages 

 

The main objective of this study is to model the three dimensional surface 

cracking problem in Functionally Graded Material (FGM) coatings bonded to 

homogeneous substrates. The FGM coating is assumed to be a (ZrO2) – (Ti-6Al-

4V) layer. Homogeneous ceramic, metal – rich, ceramic – rich and linear variation 

material compositions are considered in the analyses. The surface crack is assumed 

to have a semi – circular crack front profile. The surface crack problem in the FGM 

coating – substrate system is examined under mechanical and transient thermal 

loading. Structural and thermal problems are modeled using three dimensional 

finite elements. Strain singularity around the crack front is simulated using 

collapsed 20 – node quarter – point brick elements. Three - dimensional 

displacement correlation technique is utilized to extract the stress intensity factors. 

The main results of the study are the stress intensity factors around the crack front 

for FGM coating - substrate structures subjected to uniform tension, bending, fixed 

– grip tension, three point bending and transient thermal loading.  

 
 
Keywords: FGM coatings, fracture mechanics, semi – circular surface crack, 

displacement correlation technique, stress intensity factors. 
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ÖZ 
 

 
FONKS�YONEL DERECELENM�� KAPLAMALARIN  

ÜÇ BOYUTLU KIRILMA ANAL�Z� 
 
 

�NAN, Özgür 

Yüksek Lisans, Makina Mühendisli�i Bölümü 

Tez Yöneticisi: Y. Doç. Dr. Serkan Da� 

 

Eylül 2004, 93 sayfa 

 

Bu çalı�manın ba�lıca amacı, homojen taban tabakaya ba�lı fonksiyonel 

olarak derecelenmi� malzeme (FDM) kaplamalarda üç boyutlu yüzey çatlak 

problemlerinin modellenmesidir. FDM kaplamanın bir (ZrO2) – (Ti-6Al-4V) 

tabakası oldu�u varsayılmı�tır. Analizlerde homojen seramik, zengin metal, zengin 

seramik ve lineer de�i�imli malzeme bile�imleri dikkate alınmı�tır. Yüzey 

çatla�ının yarı dairesel bir çatlak yüzü profiline sahip oldu�u varsayılmı�tır. FDM 

kaplama – taban tabaka sistemindeki yüzey çatla�ı problemi mekanik ve zamana 

ba�lı ısıl yükleme altında incelenmi�tir. Yapısal ve ısıl problemler üç boyutlu sonlu 

elemanlar kullanılarak modellenmi�tir. Çatlak yüzündeki gerinim tekilli�i 

çökertilmi� 20 dü�ümlü çeyrek noktalı elemanlar kullanılarak benzetilmi�tir. 

Gerilme �iddeti faktörlerinin hesaplanmasında, üç boyutlu yerde�i�tirme korelasyon 

tekni�i kullanılmı�tır. Çalı�manın ba�lıca sonuçları; düzgün da�ılımlı gerilme, 

e�ilme, düzgün da�ılımlı yerde�i�tirme, üç nokta e�me veya zamana ba�lı ısıl 

yüklemeye maruz kalmı� FDM kaplama modeli için çatlak yüzü etrafındaki gerilme 

�iddeti faktörleridir. 

 
 
Anahtar Kelimeler: FDM kaplamalar, kırılma mekani�i, yarı dairesel yüzey 

çatla�ı, yerde�i�tirme korelasyon tekni�i, gerilme �iddeti faktörleri. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 
1.1 Introduction 

 

Back in the Middle Ages (and even earlier in China), weapons and tools were 

made of iron; either wrought iron, which was fairly soft and wouldn’ t hold an edge 

for long, or cast iron, which was extremely hard, unable to deform, and would break 

quite easily. Introducing a precise amount of carbon in the smelting process 

produced steel, which combined the useful qualities of wrought and cast iron, 

making it infinitely more useful and much more valuable.  

 

Materials science has come a long way since the Middle Ages, but one thing 

remains the same—as our technology improves we increase our demands on 

structural materials, subjecting them to greater loads and more severe environments. 

In the same way that steel was a big improvement over iron, today’ s metal alloys 

are giving way to advanced materials that can perform better under a variety of 

demanding conditions, from outer space to thousand-degree jet engines.  

 

An ideal material combines the best properties of metals and ceramics—the 

toughness, electrical conductivity, and machinability of metals, and the low density, 

high strength, high stiffness, and temperature resistance of ceramics. Take away 

some of the brittleness of ceramics and make strong metals lighter and stiffer, and 

the material becomes really useful. You’ ve got a material that is hard but won’ t 

break; one that will conduct electricity but can withstand high temperatures. These 

materials, known as Functionally Graded Materials (FGMs) have incredible 

promise in many engineering applications. Demand for such materials comes from 

the automotive industry (lightweight and strong materials would increase fuel 
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efficiency and last longer), electronics, telecommunications, and the aerospace and 

defense industries. 

 

FGMs are “functionally graded” to provide the exact combination of 

characteristics desired, and in these materials or structures the material properties 

vary with location in such a way as to optimize some function of the overall FGM. 

The metal, the ceramic, the volume, shape, and location of the ceramic, and the 

fabrication method can all be tailored to achieve particular desired properties. The 

design of FGMs requires an explicit understanding of the material behavior at each 

location and over all these length scales. There has been quite considerable work on 

the manufacturing methods of metal/ceramic FGMs. Advanced manufacturing 

techniques are used to process FGMs, among which we may mention spark plasma 

sintering (SPS), 3D-printing, electrophoretic deposition and high – temperature 

infiltration [1]. Due to the brittle nature of the ceramic components in 

ceramic/metal FGMs, fracture mechanics of graded materials is also studied quite 

extensively. A detailed literature review of the fracture mechanics of graded 

materials is given by Da� [2]. 

 

Surface coatings of homogeneous substrates are among the most important 

technological applications of FGMs. Usually the substrate is the main structural 

component and is a metal or a metal alloy and the coating is a metal/ceramic FGM.  

Typical applications include coatings to protect the substrate against adverse 

thermal and chemical environments and preparation of surfaces for impact, 

penetration and wear resistance. In most of these applications the FGM coating is 

designed in such a way that its composition continuously varies from 100% metal at 

the interface to 100% ceramic at the surface along the thickness direction. Thus, 

from the stand point of fracture initiation and propagation the necessary impact, 

penetration and wear resistance is provided by ceramic and ceramic – rich part of 

the coating and the toughness is provided by the metal substrate and metal-rich part 

of the coating. Considering the fact that generally ceramics are brittle materials, in 

FGM coatings fracture initiation would invariably take place in the form of part – 
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through surface cracks. The surface cracking of FGM layers can be due to 

mechanical or thermal loading. An example for the thermal fracture problem is the 

formation of the part – through cracks at the graded surface under high transient 

tensile residual stresses, as the coating – substrate system cools from an initially 

high processing temperature. The part – through nature of the crack initiation 

necessitates a three dimensional analysis of the surface crack problems in FGMs in 

order to develop a better understanding of the fracture mechanisms. 

 

In this study, three dimensional surface cracking problem in FGM coatings is 

examined using a three dimensional finite element technique. The behavior of the 

surface cracks is investigated under both mechanical and thermal loading. A brief 

summary of the work done in this thesis can also be found in the paper by �nan et 

al. [3]. 

 

1.2 Literature Survey 

 

The main objective of this study is to model three dimensional semi–circular 

surface cracks in FGM coatings and to compute the mode I stress intensity factors 

around the crack front under mechanical or transient thermal loading using the 

finite element method. Surface crack problems in functionally graded coatings are 

considered by various researchers in the past. However, in most of the previous 

studies in the literature, the crack problems studied are confined to either planar or 

axisymmetric geometries. The present study can be considered as one of the first in 

the literature dealing with three dimensional cracks in FGMs.   

 

An important study on FGMs was published in 1997 by F. Erdo�an and B. H. 

Wu [4]. In this study the plane elasticity problem for a nonhomogeneous layer 

containing an internal or an edge crack perpendicular to the boundaries is 

considered. Three different mechanical loading types, namely fixed grip, membrane 

loading, and bending, which are perpendicular to the plane of the crack, are applied 

to the layer away from the crack region. In this research, it is assumed that the 
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Young’ s modulus of the medium varies continously in the thickness direction. The 

influence of the Poisson’ s ratio on the stress intensity factors is not very significant. 

Therefore, to make the analysis tractable, it is further assumed that the Poisson’ s 

ratio of the graded medium is constant. In this paper, mode I stress intensity factors 

are presented for embedded as well as edge cracks for various values of 

dimensionless parameters representing the size and the location of the crack and the 

material nonhomogeneity. Moreover, some crack-opening displacement and stress 

distribution results are also presented. 

 

In the paper by Kadıo�lu, Da� and Yah�i [5] in 1998, internal and edge crack 

problems for an FGM layer attached to an elastic foundation are considered. It is 

assumed that the Young’ s modulus of the layer varies in thickness direction 

exponentially. Because of its insignificant effect on stress intensity factors, 

Poisson’ s ratio is assumed to be constant. Mode I stress intensity factors are 

calculated for various values of the nonhomogeneity parameter.  

 

In the study by Jin and Paulino [6], an edge crack in a strip of a functionally 

graded material is studied under transient thermal loading conditions. The material 

is assumed to be elastically homogeneous but thermally nonhomogeneous. A multi-

layered material model is used to solve the temperature field. The strip is initially at 

a constant temperature. And then, the surfaces in the thickness direction of the strip 

are suddenly cooled down to different temperatures. By using the Laplace transform 

and an asymptotic analysis, an analytical first order temperature solution for short 

times is obtained. In this paper thermal stresses and thermal stress intensity factors 

are calculated for a TiC/SiC FGM with various volume fraction profiles of the 

constituent materials, and the effect of the material composition on thermal stresses 

and thermal stress intensity factors is discussed. 

 

Da� et al. [7] considered both internal and edge cracks in a thin walled 

cylinder under transient thermal loading. The cylinder is assumed to be a 

functionally graded material and  modelled as a layer on an elastic foundation to 
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make the problem analytically tractable. Hence, a plane strain crack problem is 

obtained. The material properties of this layer are assumed to be exponential 

functions of the thickness coordinate except the Poisson’ s ratio. In this study, first 

temperature and thermal stress distributions for a crack free layer are determined. 

And then using these solutions, the crack problem is reduced to a local perturbation 

problem where the only nonzero loads are the crack surface tractions. Stress 

intensity factors are computed as functions of crack geometry, material properties 

and time. 

 

Again contributing Da� with Erdo�an in 2002 [8], a surface crack problem is 

considered in a semi-infinite elastic graded medium under general mixed-mode 

loading conditions. The elastic properties of the medium are assumed to be 

exponential functions of the depth coordinate. In this study, first the problem is 

solved in the absence of a crack in order to reduce it to a local perturbation problem 

with arbitrary self-equilibrating crack surface tractions. Then, the local problem is 

solved by approximating the normal and shear tractions on the crack surfaces by 

polynomials and the normalized modes I and II stress intensity factors are given. 

The main results of this study are the variation of the stress intensity factors as 

functions of the material nonhomogeneity. Also, some sample results on crack 

opening displacements are presented.   

 

In another paper by Da� and Erdo�an [9], the coupled problem of 

crack/contact mechanics in a nonhomogeneous medium is considered, and the 

behavior of a surface crack in a functionally graded medium loaded by a sliding 

rigid stamp in the presence of friction is investigated. The dimensions of the graded 

medium are assumed to be very large in comparison with the local length 

parameters of the crack/contact region. Thus in formulating the problem the graded 

medium is assumed to be semi-infinite. In the formulating the problem it is further 

assumed that the shear modulus of the graded medium may be approximated by a 

two-parameter exponential function. In this study, contact stresses, the in-plane 

component of the surface stress and modes I and II stress intensity factors at the 
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crack tip are determined and presented for various combinations of friction 

coefficient, material nonhomogeneity constant and crack/contact length parameters.  

 

In the study by Wang et al. [10], a functionally graded material strip 

containing an embedded or a surface crack perpendicular to its boundaries is 

considered. The graded medium is divided into a large number of layers in the 

thickness direction, with each layer being a homogeneous material. Surface crack in 

the functionally graded material is considered for arbitrarily distrubuted material 

properties in the thickness direction. In the numerical examples, the graded medium 

is subjected to two different loading types, a uniform mechanical pressure on the 

crack surfaces and a non-uniform thermal stress distribution. Using these loads, the 

mode I stress intensity factors are computed for different crack lengths and property 

distributions.  

 

Wang et al. [11] provides an analysis method for the mode II in plane and 

mode III anti-plane problems for an FGM strip containing a crack along the 

gradient direction. The FGM strip is divided into homogeneous sub-layers along the 

thickness direction. In the numerical analyses, stress intensity factors for an FGM 

layer under uniform shear load (mode II and III) on the crack surfaces are obtained. 

Using the models developed in this paper and in [10], the fracture problems of 

FGMs under general loading conditions can be investigated to optimize the 

property distributions of FGMs.   

 

Guo et al. [12] investigated a mode I crack problem for a functionally graded 

orthotropic strip. The crack which is perpendicular to the boundaries may be an 

internal or an edge crack. The elastic properties of the material are assumed to vary 

continuously along the thickness direction. The principal directions of orthotropy 

are parallel and perpendicular to the boundaries of the strip. In this study, a singular 

integral equation is derived to solve the problem. In the numerical calculations, the 

mode I stress intensity factors are computed for three different mechanical loading 

conditions, namely crack surface pressure, fixed-grip loading and bending. Using 
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these loading conditions, the influences of parameters such as the material constants 

on the stress intensity factors are investigated.  

 

Again in Guo et al. [13], the static crack problem of a functionally graded 

coating-substrate structure with an internal or edge crack perpendicular to the 

interface is investigated under in-plane loading. The crack is located in the 

functionally graded coating. The material properties are assumed to vary 

continuously from the coating to the substrate. Integral transform techniques are 

used to reduce the boundary value problem to a singular integral equation. In the 

numerical calculations, the effects of the nonhomogeneity constant, crack length 

and thicknesses of the FGM and substrate structures on the stress intensity factors 

are investigated for an internal and edge cracks under uniform tension.  

 

The transient response of a functionally graded coating-substrate system with 

an internal or an edge crack is considered under in-plane impact in the paper by 

Guo et al. [14]. The crack in the functionally graded coating is perpendicular to the 

interface and parallel to the variation direction of the material properties. These 

properties are assumed to vary continuously from the coating to the substrate. 

Fourier transform and Laplace transform techniques are used to reduce the 

boundary value problem to an integral equation. The solution in the time domain is 

obtained via numerical inverse of the Laplace transform. The dynamic stress 

intensity factors are calculated for a crack (an internal or an edge crack) subjected 

to normal impact load.  

 

In the paper by Chi and Chung [15], stress intensity factors for cracked multi-

layered and FGM coatings are calculated using the finite element method. The 

substrate is assumed to be a homogeneous material, while the coating consists of 

multi-layered media or Sigmoid FGMs (S-FGMs). For the multi-layered coatings, 

one, two, and four-layered homogeneous coatings are considered. Thirty-two layers 

are used in the thickness direction to establish the meshes in the S-FGM coating and 

to simulate the variation of the material properties. Each layer has different constant 
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material properties. In this research, MARC software is used in finite element 

analysis. In order to test the convergence of the finite element model, several 

different mesh sizes and shapes are used to calculate the stress intensity factors at 

the crack-tip. In the numerical examples, the normalized mode I stress intensity 

factors are computed and presented with respect to various crack lengths for one-, 

two- and four-layered coatings, and S-FGM coating.  

 

Jin [16] investigated the effect of the thermal property gradients on edge 

cracking in an FGM coating bonded to a homogeneous substrate subjected to a 

thermal shock. The edge crack is parallel to the thickness direction. To simplify the 

analysis, this work focuses on the thermal property gradient effect and thus assumes 

that the FGM coating/substrate system has constant Young’ s modulus and 

Poisson’ s ratio, but graded thermal properties along the thickness direction of the 

coating. The strip is initially assumed to be at a constant temperature, and its 

surfaces perpendicular to the thickness direction are suddenly cooled down. Due to 

this thermal shock, the thermal stress intensity factors are induced at the crack tip. 

In this study, a closed-form, short time asymptotic solution of the temperature field 

in the FGM coating/substrate strip is obtained using Laplace transform and its 

asymptotic properties. Thermal stress intensity factor calculations are based on this 

asymptotic temperature distribution. In the numerical analyses, the stress intensity 

factors are computed with respect to time for various volume fraction profiles and 

crack lengths.  

 

In the study of Lee and Erdo�an [17], the plane strain thermal stress problem 

for an interface crack in a homogeneous substrate with a graded coating is 

considered. The specimen contains two symmetrically oriented edge cracks along 

the interface. The substrate is a superalloy and the constituents of the graded 

coating are metals and ceramics. The volume fraction of ceramic in FGM coating is 

varied continuously from zero at the interface to 100% on the surface. The coating 

is exposed to a high temperature convective environment, the substrate on the 

bottom surface is forced cooled and the ends of the specimen are under natural 
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convection. The surfaces of the crack are assumed to be partially insulated. Thus, 

the mechanically unconstrained inhomogeneous medium is under steady-state heat 

conduction with convective boundary conditions. In the numerical examples, the 

temperature distribution on the surfaces of the substrate and coating, along the 

interface and on the crack surfaces are presented for various crack lengths for a 

sample FGM coating and heat conductivity index (this parameter describes the 

insulation condition on the crack surface). Also in this paper, the total heat flow 

across the substrate surface, modes I and II stress intensity factors, the strain energy 

release rate and normal component of the crack opening displacement are presented 

for various FGM coatings.  

 

1.3 Scope of the Study 

 

The aim of this study is to model semi-circular surface cracks in a ceramic 

(ZrO2) – titanium alloy (Ti-6Al-4V) FGM coating bonded to a homogeneous 

titanium alloy substrate under mode I mechanical or thermal loading conditions. A 

three dimensional finite element model containing a semi-circular surface crack is 

generated using the general purpose finite element software ANSYS [18]. In this 

model quarter point three dimensional finite elements are used to simulate the crack 

tip singularity around the crack front and displacement correlation technique is used 

to extract the mode I stress intensity factors. Note that in the implementation of the 

displacement correlation technique, standard stress intensity factor computation 

functions given in the Ansys Parametric Design Language (APDL) library can not 

be utilized. This is due to the fact that, the material parameters in the asymptotic 

displacement expressions are functions of the spatial coordinates in FGMs. As a 

result, new APDL subroutines are developed in order to compute the stress intensity 

factors under mode I thermomechanical loading. In order to examine the accuracy 

of the model, calculated stress intensity factors are compared with those given by 

Newman and Raju [19] for various crack dimensions under tension or bending 

loads. A homogeneous aluminum alloy (2014-T651Al) is used in the comparisons.  
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In the investigation of the semi-circular surface crack in FGM coatings, 

material property variations are modeled by specifying the thermomechanical 

properties of each finite element at its centroid. The stress intensity factors are 

calculated for FGM coating – substrate systems subjected to uniform tension, 

bending, fixed-grip tension, three point bending and temperature gradients. Four 

different coating types are considered in the parametric analyses namely, a 

homogeneous ceramic coating (H), a ceramic – rich FGM (CR), a metal – rich 

FGM (MR) and an FGM coating with linear variation (LN) in the thermomechnical 

parameters. Numerical results are provided for the mode I stress intensity factors 

around the crack front to assess the performance of the mentioned coating types 

with regard to fracture failure.  

 

This thesis contains five chapters. An introduction, literature survey and the 

scope of the study are given in the present chapter. Three dimensional fracture 

analysis techniques and problem definition are given in Chapter 2. The details of 

the finite element modeling and the displacement correlation technique (DCT) are 

given in Chapter 3. The computed results and comparisons are presented in Chapter 

4. Finally, a discussion of the results and concluding remarks are given in Chapter 

5. 
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CHAPTER 2 
 
 

PROBLEM DEFINITION 
 
 
 
2.1 Three Dimensional Fracture Analysis 

 

Stress intensity factor is used in fracture mechanics to more accurately predict 

the stress state ("stress intensity") near the tip of a crack caused by a remote load or 

residual stresses. When this stress state becomes critical the crack grows 

("extends") and the material fails. Under idealized conditions, the load at which this 

failure occurs is referred to as the fracture strength. The experimental fracture 

strength of solid materials is 10 to 1000 times below the theoretical strength values, 

where tiny internal and external surface cracks create higher stresses near these 

cracks, hence lowering the theoretical value of strength. Stress intensity factor is a 

measure of the strength of the singular fields at the crack tip under different loading 

modes. These load types are categorized as Mode I, II, or III. The Mode I stress 

intensity factor is the most often used engineering design parameter in fracture 

mechanics and hence must be calculated if we are to design fracture tolerant 

materials used in bridges, buildings, aircraft, or even bells. Polishing just won't do if 

we detect a crack. Typically for most materials if a crack can be seen it is very close 

to the critical stress state predicted by the "Stress Intensity Factor".  

 

As the stress intensity factor reaches a critical value, unstable fracture occurs. 

This critical value of the stress intensity factor is known as the fracture toughness of 

the material. The fracture toughness can be considered as the limiting value of the 

stress intensity just as the yield stress might be considered as the limiting value of 

the applied stress. The fracture toughness depends on both temperature and the 

specimen thickness. Mode I plane strain fracture toughness is denoted as KIC. KC 

which is the plane stress fracture toughness, is used to measure a material's fracture 
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toughness in a sample that has a thickness that is less than some critical value, B. 

When the material's thickness is less than B, and stress is applied, the material is in 

a state called plane stress. A material's thickness is related to its fracture toughness 

graphically in Figure 2.1. If a stress is applied to a sample with a thickness greater 

than B, it is in a state called plane strain.  

 

 
 

Figure 2.1 Fracture Toughness as a function of material thickness. 

 

Generally there are three modes to describe different crack surface 

displacements as shown in Figure 2.2. Mode I is opening or tensile mode where the 

crack surfaces move directly apart. Mode II is sliding or in-plane shear mode where 

the crack surfaces slide over one another in a direction perpendicular to the leading 

edge of the crack. Mode III is the tearing or antiplane shear mode where the crack 

surfaces move relative to one another and parallel to the leading edge of the crack. 

Combinations of these modes are also possible. Mode I is the most common loading 

type encountered in engineering design and all computations in this study are 

related to this type. 

 

The value of the stress intensity factor is a function of the applied stress, the 

size and the position of the crack as well as the geometry of the solid piece where 
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the cracks are detected. Figure 2.3 and 2.4 depict the stress field and polar 

coordinate system for a two dimensional crack. Two and three dimensional linear 

elastic crack tip fields (stress and displacement relations) and the stress intensity 

factor definitions are expressed below for each loading mode [20]. 

 

 
 

Figure 2.2 Basic modes of loading involving different crack surface displacements. 

 

 
 

Figure 2.3 Distribution of stresses in vicinity of crack tip. 
 

 
 

Figure 2.4 Two dimensional crack 
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Mode I crack: 
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where IK  is mode I stress intensity factor, xxσ , yyσ  and xyσ  are the stress 

components (Figure 2.3) at a distance r  from the crack tip and at an angle θ  from 

the crack plane. In Equations 2.2, u  and v  are the displacement in x and y 

directions, respectively, µ  is the shear modulus and κ  is ( )ν43−  for plane strain 

or �
�

	


�

�

+
−

ν
ν

1
3

 for plane stress where ν  is the Poisson’ s ratio. Relationship between the 

shear modulus and the Young’ s modulus E and Poisson’ s ratio ν  is in the following 

form:  

 

( )ν
µ

+
=

12
E

                                                                                                 (2.3) 

 

Definition of the mode I stress intensity factors at the crack tips can be written as: 

 

( ) ( ) ( )0,2lim xaxaK yyI ax
σπ −=

+→
                                                             (2.4a) 

( ) ( ) ( )0,2lim xaxaK yyI ax
σπ −−=−

−−→
                                                     (2.4b) 
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where a  is the half of the crack length. 

 

Mode II crack: 
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where IIK  is mode II stress intensity factor whose definition is given as: 
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Mode III crack: 
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( ) ( ) 0== θθ ,rv,ru                                                                                       (2.9b) 

 

where IIIK  is mode III stress intensity factor, w  is the displacement in z direction 

and xzσ , yzσ  and zzσ  are the stress components. Definition of the mode III stress 

intensity factor at the crack tip is given as: 

 

( ) ( ) ( )0,2lim xaxaK yzIII ax
σπ −=

+→
                                                          (2.10a) 

( ) ( ) ( )0,2lim xaxaK yzIII ax
σπ −−=−

−−→
                                                  (2.10b) 

 

Figure 2.5 depicts a three dimensional crack front and a local coordinate 

system composed of the normal (n), tangential (t) and binormal (b) directions, n 

pointing into the material side. The asymptotic stress and displacement distribution 

in the local coordinate system is given below (Cisilino, [20]): 

 

 
 

Figure 2.5 Three dimensional crack 
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where the parameter s is the arc length of the crack front. In Equations 2.11, 

( )b,n,tj,i,ij      =σ  are the stress components and in Equations 2.12, ( )b,n,ti,ui      =  

are the displacement components. Definitions of the stress intensity factors for 

modes I, II and III loadings are given as: 
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),r(rK bbrI 02lim
0

σπ
→

=                                                                             (2.13a) 
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In this study, we examine three dimensional semi – circular surface cracks in 

functionally graded material coatings. The cracks are assumed to be subjected to 

mode I thermomechanical loading. The asymptotic distributions of the stress and 

displacement components in functionally graded materials are previously shown to 

be the same as those for homogeneous materials (Eischen [24]) except the fact that 

the material parameters that are used in the displacement expressions (Equations 

2.12a-c) have to be calculated at the point under consideration. Thus, in the 

implementation of the displacement correlation technique (DCT) for FGMs, 

aforementioned expressions can be used with appropriate modifications. 

Furthermore, due to mode I thermomechanical loading applied to the coating – 

substrate structure IIK  and IIIK  are identically equal to zero. 

 

2.2 Geometry of the Problem 

 

The geometry of the semi – circular surface crack in an FGM coating bonded 

to a homogeneous substrate is shown by Figures 2.6 and 2.7. The thicknesses of the 

FGM coating and the substrate are taken as 2h  and ,1h  respectively. There is a semi 

– circular “thumb – nail” crack of length 2a and depth a on the surface 21 hhx += . 

A point P on the crack front can be located by using the parametric angle φ  as 

shown in Figure 2.7. The specimen dimensions used in this study are given as 

mm,  5.121 =h  mm,  22 =h  mm  20=b  and mm.  20=l The dimensions of the 

thicknesses are same as the dimensions given by Lee and Erdo�an [17].  
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Figure 2.6 The geometry of the FGM coating bonded to a homogeneous substrate 
and the semi – circular surface crack. 

 

 
 

Figure 2.7 Parametric angle φ and the corresponding point P on the semi – circular    
crack front. 
 

2.3 Material Property Variations and FGM Coating Types 

 

The parametric analyses on FGMs in this study are based on a ZrO2 (ceramic) 

– Ti-6Al-4V (Titanium alloy) FGM laid over a Ti-6Al-4V substrate. Assuming both 

the coating and the substrate to be isotropic, a total of six material parameters are 
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required to be known to carry out a transient thermal fracture analysis. These 

parameters are the elastic modulus ( )E , Poisson’ s ratio ( )ν , density ( )ρ , specific 

heat ( )c , thermal conductivity ( )k  and the thermal expansion coefficient ( )α . For 

mechanical loading only the elastic modulus and the Poisson’ s ratio are needed to 

be known. All the material parameters are assumed to be functions of the x – 

coordinate in the FGM coating and constant in the substrate. The material model 

used for the elastic modulus is expressed as 
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where the subscripts s and c stand for the metallic alloy substrate (Ti-6Al-4V) and 

the ceramic coating surface (ZrO2), respectively. This equation implies that elastic 

modulus is constant in the substrate. A power – law type variation is assumed to 

exist in the FGM coating. In Equation 2.14, p is a positive constant which may be 

adjusted to obtain a certain type of FGM coating. Exactly same type of variation is 

assumed to hold for the remaining five material parameters. The property variations 

for each of the material parameters are assumed to vary proportionally in the 

coating. Hence, the exponent p governs the variation of the material properties in 

the FGM coating for each of the six material parameters. In this study, four 

different types of material property variations are considered in the numerical 

examples. They correspond to homogeneous ceramic (H) and ceramic – rich (CR), 

linear variation (LN) and metal – rich (MR) FGM coatings. The particular values of 

the exponent p used in these examples are given in Table 2.1. 

 

Table 2.1 The values of the exponent p for the FGM coating types. 
 

FGM Coating 
Type H CR LN MR 

p ∞  8 1 0.5 
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The material properties for the ceramic (ZrO2) and metal (Ti-6Al-4V)  

components are given by Ootao et al. [21] as a function of the temperature T for the 

range K 1300K 300 ≤≤ T  as follows  

 

( ) [GPa]    108.1  1050.3  132.2 263 TTTEc
−− ×−×−=                                            (2.15a) 

 0.333  =cυ                                                                                                          (2.15b) 

( ) [W/(mK)]    100.116  100.21  1.71  2-6-3 TTTkc ×+×+=                                     (2.15c) 

( ) [J/(kgK)]    101.71  106.19  107.95  102.74 372412 TTTTcc
−−− ×+×−×+×=      (2.15d) 

( ) ( ){ } ][kg/m     300.0   1.03657.0/ 33
c −+= TT αρ                                                (2.15e) 

( ) [1/K]    1012.7  1018.9  1013.3  21296 TTTc
−−− ×+×−×=α                                   (2.15f) 

 
( ) [GPa]    .05650  122.7  TTEs −=                                                                        (2.16a) 

( ) TTs
-61032.0  0.2888 ×+=υ                                                                              (2.16b) 

( ) [W/(mK)]    .0170  1.1  TTks +=                                                                        (2.16c) 

( ) [J/(kgK)]    104.43  109.74  108.78  103.5 c 372412 TTTTs
−−− ×+×−×+×=        (2.16d) 

( ) ( ){ } ][kg/m    300.0   1.04420.0/  33−+= TTs αρ                                                  (2.16e) 

( )
( ) (2.16f)                                K          1300   K  0011  :   [1/K]    1010.291  

K 1100   K  300 :  [1/K]  102.69  105.56   107.43 
6-

21296

≤≤×=

≤≤×−×+×= −−−

TT

TTTT

s

s

α
α

 

In the analyses carried out in this study, material properties calculated at 

300=T K and 5.786=T K are used for mechanical and thermal loading problems, 

respectively. These properties are given in Table 2.2. The variations of the elastic 

moduli in the coating types considered are depicted in Figure 2.8 for K. 300=T  

Similar variations exist for the remaining five thermomechanical parameters.  

 

In the calculations carried out to make comparisons to the results given by 

Newman and Raju [19], a homogeneous aluminum alloy (2014-T651Al) plate is 

used. The dimensions of this plate are same as the dimensions of the coating – 

substrate structure depicted in Figure 2.6. The elastic modulus and the Poisson’ s 

ratio of the aluminum plate are given as 73.1 GPa and 0.33, respectively. 
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Table 2.2 Material properties of the ceramic (ZrO2) and metal (Ti-6Al-4V) 
components 
 

 ZrO2 Ti-6Al-4V 
 T = 300 K T = 786.5 K T = 300 K T = 786.5 K 

E  [GPa] 116.4 87.6 105.8 78.3 
ν 0.333 0.333 0.298 0.314 

ρ  [kg/m3] 3657 3624 4420 4355 
c [J/(kgK)] 461 600 538 654 
k [W/(mK)] 1.78 1.95 6.20 14.47 

α 710−×  [1/K] 88 63 89 101 
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Figure 2.8 Variations of the elastic moduli in the coatings at K 300=T . 
 

2.4 Loading Types and Normalizations 

 

The coating – substrate system is assumed to be subjected to mechanical or 

transient thermal loading conditions. The loading types are uniform tension, 

bending, fixed-grip tension, three point bending and transient thermal loading. Each 
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loading type and the corresponding normalized mode I stress intensity factors are 

given in this section. 

 

2.4.1 Uniform Tension 

 

In this loading condition, the FGM coating and substrate system is assumed to 

be subjected to uniform stress tσ , at the ends ly ±= . Finite element analyses are 

carried out using the material properties at 300=T K which are given in Table 2.2. 

This loading type is also considered in the comparisons to the results given by 

Newman and Raju [19]. The FGM coating – substrate structure subjected to 

uniform tension is depicted in Figure 2.9. 

 

 
 
Figure 2.9 FGM coating – substrate structure subjected to uniform tension at the 
ends ly ±= . 
 

The normalized mode I stress intensity factor is given as  
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where tσ  is the applied stress, a is the crack depth and Q is the shape factor for an 

elliptical crack. The value of Q is equal to 2.464 for the semi – circular crack 

considered in this study. 

 

2.4.2 Bending 

 

In this loading condition, the FGM coating – substrate system is subjected to a 

linearly varying normal stress at ly ±= . The normal stress yyσ  is assumed to be 

equal to bσ  at 21 hhx +=  and ( )bσ−  at 0=x . There is a linear variation in 

between. Hence, on the loaded surface the normal stress is equal to 0 at 

( ) 221 hhx +=  as can be seen in Figure 2.10. Finite element analyses are carried 

out using the material properties at 300=T K which are given in Table 2.2. This 

loading condition is also used in the comparisons to the results given by Newman 

and Raju [19]. 

 

 
 
Figure 2.10 FGM coating – substrate structure subjected to bending at the ends 

ly ±= . 
 

The normalized mode I stress intensity factor is given as  
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Qa

K
K

b

I
In

 πσ
=                                                                                       (2.18) 

 

where bσ  is the normal stress at 21 hhx += . 

 

2.4.3 Fixed - Grip Tension 

 

In this loading condition, the FGM coating and substrate system is assumed to 

be subjected to uniform normal displacement 0v  (displacement in y – direction), at 

the ends ly ±= . Finite element analyses are carried out using the material 

properties at 300=T K which are given in Table 2.2. Figure 2.11 depicts the fixed 

– grip tension case. 

 

 
 

 
Figure 2.11 FGM coating – substrate structure subjected to uniform normal 
displacement 0v  at the ends ly ±= . 
 

The normalized mode I stress intensity factor is given as  

 

( )
Q

a
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I
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where l is the half-length of cracked plate, cE  is the elastic modulus of ZrO2 at 300 

K and 0v  is the applied displacement. 

 

2.4.4 Three Point Bending 

 

 
 

 Figure 2.12 FGM coating – substrate structure subjected to three point bending. 

 

In this loading case, the FGM coating-substrate system is loaded by applying 

a uniform compressive traction of magnitude σ  to the surface, 0=x . The stress is 

applied to the rectangular region  δδ <<− y   and  bzb <<− ,  mm. 11.2≅δ  The 

structure is supported by rollers at ,ly ±=  21 hhx += . Finite element analyses are 

carried out using the material properties at 300=T K which are given in Table 2.2. 
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The FGM coating – substrate structure subjected to three point bending can be seen 

in Figure 2.12. 

 

The normalized mode I stress intensity factor is given as  

 

Q
a

bl
P

K
K I

In  π
=                                                                                            (2.20) 

 

where b is the half-width of cracked plate, l is the half-length of cracked plate and P 

is the resultant force. This force, P is defined as 

 

δσbP 4=                                                                                                    (2.21) 

 

2.4.5 Transient Thermal Loading 

 

In this loading case, the composite medium is initially assumed to be stress - 

free at a high processing temperature of 1273 K. Then, the coating – substrate 

system is placed in an environment whose temperature is 3000 =T K. It is assumed 

that at all the surfaces except the surface at 21 hhx += , there is free convection 

with a convection coefficient of 5=h  W/(m2 K). At the surface, 21 hhx += , there 

is forced convection and the convection coefficient is 10000=h  W/(m2 K). In the 

analysis, the material properties computed at the mid temperature, 5.786=mT K are 

used. The thermomechanical properties are given in Table 2.2. In this problem, 

first, the transient temperature distribution in the composite medium is computed by 

considering the heat conduction in the nonhomogeneous medium. Then, this 

computed temperature distribution is used to solve the structural problem and to 

calculate transient thermal stress intensity factors around the crack front. In the 

analysis, the crack surfaces are assumed to be completely insulated and the medium 

is free of any mechanical constraints. The boundary conditions for this loading case 

are shown in Figure 2.13. 
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Figure 2.13 The boundary conditions for transient thermal loading. 

 

The normalized mode I stress intensity factor is given as  

 

Q
a

S

K
K In

π
=                                                                                             (2.22) 

 

where S is the normalization stress and defined by 

 

( )cmcc TES να −= 1/                                                                                   (2.23) 

 

where cE , cν  and cα  are the elastic modulus, Poisson’ s ratio and thermal 

expansion coefficient of ZrO2 at 786.5 K, respectively. In this problem, the 

normalized mode I stress intensity factors are computed with respect to normalized 

time which is defined by 

 

2
2

 
h

tD
  =τ                                                                                                     (2.24) 
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where t is time, 2h  is the thickness of the coating and D  is the thermal diffusivity 

coefficient of ZrO2 which is expressed as  

 

cc

c

c
k

D
ρ

=                                                                                                    (2.25) 

 

where ck , cρ  and cc  are the thermal conductivity, density and specific heat of ZrO2 

at 786.5 K, respectively. 
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CHAPTER 3 
 
 

FINITE ELEMENT MODEL AND THE DISPLACEMENT  
CORRELATION TECHNIQUE (DCT) 

 
 
 
3.1 The Finite Element Model 

 

The finite element model of the specimen is shown in Figure 3.1. This model 

is created using the general purpose finite element analysis software ANSYS [18]. 

In all loading cases described in the previous chapter the crack plane is a plane of 

symmetry. Hence, it suffices to model only one – quarter of the composite medium 

to compute the mode I stress intensity factors.  

 

In a standard finite element program, there are two ways of creating the 

models. First is solid modelling in which the boundaries of the model are created 

and then it is meshed automatically by the program itself. The other is the direct 

generation in which the elements are generated from the nodes directly. In this 

study, the finite element model is created by using the second method. 

 

In the model totally, 29754 nodes and 6608 elements are used. These elements 

are SOLID95 for structural analysis and SOLID90 for thermal analysis in ANSYS. 

SOLID95 is defined by 20 nodes having three degrees of freedom per node: 

translations in x, y, and z directions. SOLID90 has also 20 nodes with a single 

degree of freedom, temperature, at each node. In the elements used around the crack 

front, in order to simulate the square – root strain singularity, one face of the 20 – 

node isoparametric three dimensional brick element is collapsed. In these elements, 

the mid – point nodes are moved to the quarter points to create the square – root 

singularity. The formulation of this element is given in [22]. The 20 – node brick 

element and the singular element are shown in Figures 3.2 and 3.3. 
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Figure 3.1 Finite element model. 

 

 
Figure 3.2 Node numbering of a 20 - node  isoparametric brick element 

 

The semi - circular surface crack and singular elements can be seen in Figures 

3.4 and 3.5. The radius of the singular elements are taken as 25/a . In addition, 

sixteen singular elements are used around the crack front. It is found out that the 

Free surface Symmetry surface 

Loaded surface 
(uniform tension) 
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combination of 25/a  for the radius and 16 singular elements gives sufficiently 

convergent results. 

 

 
 

Figure 3.3 Collapsed 20-node isoparametric brick element. 

 

Also, in order to avoid the creation of wedge shaped elements at the 

intersection of the free surface and the symmetry surface a small circular hole with 

a radius 250/)(1.0 21 hh +  is used in the model, as shown in Figure 3.5. 

 

In this study, the material properties vary continously in the FGM coatings as 

described in Chapter 2. This continuous variation of the thermomechanical 

properties in the graded coating is incorporated into the finite element model by 

specifying each thermomechanical property at the centroid of a finite element. An 

Ansys Parametric Design Language (APDL) source code is developed to be able to 

specify the thermomechanical properties of a finite element at its centroid. Since, a 

total of 6608 elements are used in the model, we can say that 6608 different 
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property values are calculated for each material parameter in the FGM coating. 

 

 
 

Figure 3.4 Close – up view of the singular elements.  

 

 
 

Figure 3.5 Singular elements around the crack front.  

Singular elements around the crack front 

Singular elements  

Small hole 
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In the analyses, mechanical and transient thermal problems are investigated. 

In mechanical loading problems four different loading conditions, namely uniform 

tension, bending, fixed - grip and three point bending are considered. In fixed - grip 

tension all nodes on the top surface of the model are selected and uniform 

displacement values are entered. In the other mechanical loading conditions, the 

elements on which the normal stresses are applied are selected, and the stress values 

are entered for these selected elements. ANSYS automatically moves these loads to 

the nodes of the elements. In the bending problem, the normal stress acting at the 

top surface varies linearly. In 3-D analysis with ANSYS, this linearly varying load 

is specified using a slope command (SFGRAD). The slope of the linearly varying 

load is entered for a desired point using this command. After entering the normal 

stress value acting at this point, ANSYS calculates the stress values for the other 

loaded points automatically using the specified slope. The general procedure for the 

mechanical loading problems can be summarized as follows: 

 

� Select static for analysis type, 

� Choose 3-D 20-noded quadrilateral elements (SOLID95), 

� Enter input parameters, 

� Define nodes, 

� Define elements by nodes, 

� Merge the coincident nodes, 

� Specify the material properties (Modulus of elasticity and Poisson’ s 

ratio) at the centroid of each element, 

� Enter the symmetry boundary conditions (no symmetry boundary 

conditions are used on the crack surfaces), 

� Enter the mechanical loading conditions (uniform tension, bending, 

fixed - grip or three point bending), 

� Solve, 

� Compute the stress intensity factors at the crack front nodes using the 

displacement correlation technique. 
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In the analysis of the thermal loading problem, transient coupled thermal – 

structural analysis is carried out. In this analysis, first transient heat conduction in 

the composite medium is considered and temperature distribution is computed. 

Then, this temperature distribution is used as an input to the structural problem. The 

crack surfaces are assumed to be completely insulated and the medium is free of 

any mechanical constraints. The inertia effects are not taken into account and 

coupling of the thermal and structural problems are assumed to be through the 

calculated temperature distribution only. In the thermal part of the problem, the 

environmental temperature and thermal convection coefficients given in Chapter 2 

are entered as surface loads at the free surfaces. In the solution, minimum and 

maximum time step sizes are entered. In order to overcome oscillations in the 

temperature distribution, minimum time step size is chosen as a very small number, 

and maximum time step size is chosen as not too large. In the subsequent structural 

analysis all thermal loads are deleted and thermal 20 - noded isoparametric 

elements (SOLID90) are changed to SOLID95. The computed temperature results 

are read from the thermal results file for a given time and are applied as the load. 

The procedure for the coupled thermal - structural analysis is summarized as 

follows: 

 

• In the thermal analysis: 

 

� Choose transient for the analysis type, 

� Choose 3-D 20 - noded brick elements. In thermal analysis SOLID90 

is used with temperature as the DOF, 

� Enter input parameters, 

� Define nodes, 

� Define elements by nodes, 

� Merge the coincident nodes, 

� Specify the thermomechanical properties at the centroid of each 

element, 

� Enter the initial temperature, 
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� Enter the environmental temperature and thermal convection 

coefficients (free and forced). Then, use them on the free surfaces of 

the model, 

� Enter time and  min/max time step sizes. Also, activate the automatic 

time-stepping option, 

� Compute the temperatures at each node. 

 

• In the structural analysis: 

 

� Choose static for the analysis type, 

� Delete finite-element loads, 

� Change thermal element type SOLID90 to SOLID95 whose DOFs are 

UX, UY and UZ, 

� Enter the reference temperature, 

� Enter the symmetry boundary conditions (on the crack face no 

symmetry boundary conditions are used), 

� Read the results from the thermal results file for a given time and 

apply them as the loads, 

� Solve, 

� Compute the thermal stress intensity factors at each crack front node 

using the displacement correlation technique, 

� Repeat last three steps for each required time.  

 

In order to calculate the stress intensity factors the displacement correlation 

technique is used. Details of this method is given in Section 3.2. An APDL code 

using this method is generated for the computational analysis. In this code, the 

computed displacements of the nodes at the edge of a collapsed 20 – node brick 

element are used. To compute the stress intensity factors along the crack front, the 

material properties (Modulus of elasticity and Poisson’ s ratio) on the crack front 

nodes have to be calculated. The stress intensity factors are calculated automatically 

for each crack front node, using the APDL source code developed to implement the 
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displacement correlation technique. 

 

3.2 The Displacement Correlation Technique (DCT)  

 

Once the displacement field of the FGM coating – substrate structure is 

computed using the finite element method, the displacement correlation technique 

(DCT) can be used to calculate the mode I stress intensity factors. Consider a three 

dimensional crack front under mode I loading as shown in Figure 3.6. The crack 

front is assumed to be embedded in an FGM. The parameter s in this figure is the 

arc length of the crack front and (t, n, b)  is a local coordinate system located at 

point P composed of the tangential (t), normal (n) and binormal (b) directions, n 

pointing into the material side. (r, θ) are the polar coordinates in the normal plane 

(n, b). Because of the reasons outlined in Section 2.1, the mode I asymptotic 

distribution of the normal stress and displacement components at point P can be 

expressed as 

 

 
 

Figure 3.6 Crack front and the local coordinate system 
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calculated at point P on the crack front and IK  is the mode I stress intensity factor. 

In order to calculate the mode I stress intensity factors we first take a section at 

point P parallel to the normal plane (n, b). The section and deformed shape of the 

crack are shown in Figure 3.7. The nodes 1, 2 and 3 are at the edge of a collapsed 

20 – node brick element. In the undeformed configuration the distance of node 2 to 

point P is one fourth of that of node 3. Since small displacements are considered in 

this study, it can be further assumed that 4/32 RR = . Using Equation 3.2, the 

displacement field on the crack surface ( )πθ =  can be written as 
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The mode I stress intensity factor can now be expressed as 
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Figure 3.7 Deformed shape of the crack surface and a point P on the crack front. 
 

Using the computed displacements of the nodes 2 and 3 and by using a linear 

extrapolation to the crack front, the expression for the mode I stress intensity factor 

is found as follows 
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The mode I stress intensity factors around the crack front can now be calculated for 

any type of loading provided that the displacement field is solved for using the 

finite element method. 
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CHAPTER 4 
 
 

RESULTS AND DISCUSSION 
 
 
 
4.1 Introduction 

 

In this chapter, sample results are presented and discussed. First the finite 

element model results are compared to the results given by Newman and Raju [19] 

for various crack dimensions. In these comparisons a homogeneous Aluminum 

plate is modelled. After checking out the accuracy of the finite element results, 

same model is used for FGM analysis. In these investigations, the results are 

computed for different combinations of crack dimensions, mode I loading 

conditions and FGM coating types.  

 

4.2 Comparisons to Newman and Raju Equation  

 

In this section, the results calculated using the finite element model by 

considering a homogeneous Aluminum plate are compared to those obtained by 

using the Newman - Raju equation which is given in Appendix A. These 

comparisons are made to check out the accuracy of the finite element results. In this 

analysis a homogeneous surface cracked plate is assumed to be subjected to 

uniform tension or bending load. 

 

4.2.1 Comparisons for Uniform Tension  

 

In this section, the finite element model is assumed to be subjected to uniform 

tension tσ , at the ends ly ±= . The specimen shown in Figure 2.6 is assumed to be 

homogeneous and made of an Aluminum alloy whose mechanical properties are 

given in Section 2.3. The stress value is taken as 100 MPa for all the computations. 
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Normalized mode I stress intensity factors are presented in Figures 4.1-4.5 for 

various 2/ ha  values. In addition sample results for two different crack dimensions 

are tabulated in Table 4.1.   

 

Table 4.1 Comparisons of the normalized mode I stress intensity factors InK  for a 
homogeneous plate subjected to uniform tension. 
 

 4.0/ 2 =ha  8.0/ 2 =ha  

 
πφ /2     

Present 

Study 

Newman 
and Raju 
(1981) 

 
% Diff. 

Present 

Study 

Newman 
and Raju 
(1981) 

 
% Diff. 

1.0000 1.0295 1.0407 1.0780 1.0324 1.0429 1.0080 
0.9375 1.0300 1.0407 1.0302 1.0325 1.0429 0.9936 
0.8750 1.0307 1.0407 0.9622 1.0332 1.0429 0.9372 
0.8125 1.0317 1.0409 0.8831 1.0346 1.0431 0.8124 
0.7500 1.0335 1.0413 0.7486 1.0363 1.0435 0.6887 
0.6875 1.0359 1.0421 0.5969 1.0386 1.0444 0.5582 
0.6250 1.0391 1.0437 0.4372 1.0416 1.0460 0.4165 
0.5625 1.0428 1.0461 0.3100 1.0456 1.0485 0.2722 
0.5000 1.0477 1.0497 0.1917 1.0507 1.0522 0.1480 
0.4375 1.0540 1.0547 0.0724 1.0568 1.0574 0.0569 
0.3750 1.0617 1.0614 0.0233 1.0645 1.0644 0.0124 
0.3125 1.0713 1.0701 0.1183 1.0744 1.0733 0.1015 
0.2500 1.0840 1.0807 0.3031 1.0872 1.0843 0.2622 
0.1875 1.1011 1.0936 0.6774 1.1041 1.0977 0.5838 
0.1250 1.1208 1.1088 1.0820 1.1245 1.1133 0.9988 
0.0000 1.1735 1.1458 2.4136 1.1773 1.1516 2.2308 

 

In Figures 4.1-4.5, the variation of the normalized stress intensity factors are 

plotted with respect to normalized polar angle ( πφ /2 ) and similar trends are 

observed for each crack dimension. In all of these plots, it can be seen that the 

minimum and maximum normalized stress intensity factors are obtained at 

symmetry surface ( )2πφ =  and free surface ( )0=φ , respectively. The largest 

difference is calculated at the free surface for each crack dimension. The percent 

differences at the free surface are nearly 2.55 % for 2.0/ 2 =ha , 2.41 % for 

4.0/ 2 =ha , 2.32 % for 6.0/ 2 =ha , 2.23 % for 8.0/ 2 =ha  and 2.12 % for 

0.1/ 2 =ha . All of these differences are smaller than 3 %, therefore it can be said 
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that the accuracy of the finite element model is acceptable. The results obtained by 

the equation given by Newman and Raju [19], are within % 5 ±  of the finite 

element analysis results. 

 

It can be seen that the stress intensity factors increase as 0→φ  in Figures 

4.1-4.5. The order of the stress singularity at the free surface ( )0=φ  is in fact 

different from 1/2. There is a boundary zone near the free surface which affects the 

stress intensity factors. However, the results of previous detailed analysis (Ayhan 

and Nied [23]) show that, this effect is confined to a very small region near the free 

surface. The effect is calculated to be significant for °<<° 10 φ . As a result, the 

free surface effect is not considered in this study. The results given in Figures 4.1-

4.5 for 0=φ  can be used as approximate stress intensity factors at the free surface. 

 

Table 4.2 Comparisons of the normalized mode I stress intensity factors InK  for a 
homogeneous plate subjected to bending load. 
 

 4.0/ 2 =ha  8.0/ 2 =ha  

 
πφ /2     

Present 

Study 

Newman 
and Raju 
(1981) 

 
% Diff. 

Present 

Study 

Newman 
and Raju 
(1981) 

 
% Diff. 

1.0000 0.9496 0.9636 1.4524 0.8716 0.8883 1.8772 
0.9375 0.9500 0.9639 1.4416 0.8727 0.8889 1.8244 
0.8750 0.9519 0.9649 1.3494 0.8753 0.8908 1.7416 
0.8125 0.9547 0.9665 1.2275 0.8796 0.8941 1.6129 
0.7500 0.9585 0.9690 1.0765 0.8859 0.8987 1.4206 
0.6875 0.9637 0.9724 0.8862 0.8940 0.9047 1.1856 
0.6250 0.9702 0.9769 0.6826 0.9038 0.9124 0.9401 
0.5625 0.9781 0.9827 0.4623 0.9154 0.9218 0.6992 
0.5000 0.9873 0.9900 0.2679 0.9289 0.9331 0.4479 
0.4375 0.9979 0.9989 0.1079 0.9445 0.9463 0.1913 
0.3750 1.0109 1.0098 0.1137 0.9624 0.9617 0.0797 
0.3125 1.0258 1.0227 0.3048 0.9828 0.9792 0.3682 
0.2500 1.0437 1.0377 0.5831 1.0061 0.9988 0.7321 
0.1875 1.0661 1.0548 1.0699 1.0338 1.0206 1.2963 
0.1250 1.0913 1.0740 1.6086 1.0645 1.0442 1.9396 
0.0000 1.1542 1.1174 3.2965 1.1377 1.0944 3.9556 
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4.2.2 Comparisons for Bending  

 

In this section, the finite element model is assumed to be subjected to a 

linearly varying normal stress at ly ±= . The normal stress yyσ  is assumed to be 

equal to bσ  at 21 hhx +=  and ( )bσ−  at 0=x . There is a linear variation in 

between. Hence, on the loaded surface the normal stress is equal to 0 at 

( ) 221 hhx += . In all comparisons the stress on outer fiber is taken as 100 MPa. 

The normalized stress intensity factors are presented in Figures 4.6-4.10 and Table 

4.2.  

 

In Figures 4.6-4.10, the variation of the normalized stress intensity factors are 

plotted with respect to normalized polar angle and it can be seen that the trends are 

generally similar to those observed for the uniform tension loading. In these plots, 

the minimum and maximum stress intensity factors are computed at the symmetry 

surface and free surface, respectively. When the results are compared to those given 

by Newman and Raju equation [19], the largest differences are calculated at free 

surface The percent differences are nearly 2.78 % for 2.0/ 2 =ha , 3.3 % for 

4.0/ 2 =ha , 3.6 % for 6.0/ 2 =ha , 3.96 % for 8.0/ 2 =ha  and 4.32 % for 

0.1/ 2 =ha . All of these differences are smaller than 4.5 %, therefore it can be said 

that the accuracy of the finite element model is acceptable.  

 

4.3 Mechanical Loading on the FGM Coating and Substrate Structure  

 

In this section, four different mechanical loading types, namely uniform 

tension, bending, fixed - grip tension and three point bending are considered in the 

analysis of the surface crack problem in FGM coatings. The normalized mode I 

stress intensity factors are computed for the homogeneous (H), ceramic - rich (CR), 

linear (LN) and metal - rich (MR) coatings for various crack dimensions. Finite 

element analyses are carried out using the material properties of ceramic (ZrO2) and 

metal (Ti-6Al-4V) components at 300=T K which are given in Chapter 2.  
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4.3.1 Uniform Tension  

 

In this section, the FGM coating and substrate system is assumed to be 

subjected to uniform tension tσ , at the ends ly ±=  as shown in Figure 2.9. This 

stress is equal to 100 MPa. Normalized mode I stress intensity factors are presented 

in Figures 4.11-4.18 for various values of 2/ ha . Also, results for some crack 

dimensions are tabulated in Table 4.3. 

 

In Figures 4.11-4.18, the variation of the normalized stress intensity factors 

are plotted with respect to normalized polar angle for each FGM coating type. It can 

be seen that the lowest stress intensity factors are calculated at the symmetry 

surface. The stress intensity factors continuously increase as 0→φ . At the free 

surface, MR coating gives the largest stress intensity factors for each crack 

dimension. At the symmetry surface, however MR coating gives the minimum 

stress intensity factors for all crack dimensions except the case of 1.0/ 2 =ha  that 

for which H coating gives the lowest one. In Figures 4.11–4.18, it can be observed 

that the stress intensity factors for semi – circular cracks in MR and LN coatings are 

more sensitive to the variations in the crack radius than those for cracks in H and 

CR coatings. This is due to the fact that material property gradients near the free 

surface are larger for MR and LN coatings than those of the CR and H coatings. In 

fact, there is no material property gradient for the H coating. 

 

4.3.2 Bending  

 

In this section, the FGM coating and substrate system is assumed to be 

subjected to a linearly varying normal stress at ly ±=  as shown in Figure 2.10. The 

normal stress yyσ  is assumed to be equal to bσ  at 21 hhx +=  and ( )bσ−  at 0=x . 

There is a linear variation in between. Hence, on the loaded surface the normal 

stress is equal to 0 at ( ) 221 hhx += . This stress on outer fiber is taken as 100 MPa. 

Crack dimensions are same as those used in Chapter 4.3.1. The normalized stress 
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intensity factors are presented in Figures 4.19-4.26 and in Table 4.4. 

 

Table 4.3 Normalized mode I stress intensity factors InK  for an FGM coating – 
substrate structure subjected to tension. 

 
 2.0/ 2 =ha  4.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 1.0878 1.0948 1.0970 1.0772 1.0923 1.0979 1.0773 1.0578 
0.9375 1.0872 1.0941 1.0964 1.0772 1.0927 1.0983 1.0779 1.0583 
0.8750 1.0878 1.0947 1.0973 1.0786 1.0933 1.0990 1.0796 1.0599 
0.8125 1.0893 1.0966 1.0998 1.0809 1.0942 1.1000 1.0820 1.0620 
0.7500 1.0909 1.0981 1.1021 1.0833 1.0961 1.1019 1.0849 1.0645 
0.6875 1.0933 1.1004 1.1049 1.0867 1.0988 1.1047 1.0891 1.0684 
0.6250 1.0965 1.1036 1.1096 1.0912 1.1020 1.1079 1.0947 1.0739 
0.5625 1.1006 1.1079 1.1154 1.0976 1.1058 1.1117 1.1014 1.0803 
0.5000 1.1059 1.1132 1.1224 1.1045 1.1108 1.1166 1.1095 1.0880 
0.4375 1.1123 1.1195 1.1300 1.1130 1.1172 1.1233 1.1195 1.0977 
0.3750 1.1198 1.1271 1.1402 1.1242 1.1252 1.1313 1.1311 1.1093 
0.3125 1.1299 1.1374 1.1524 1.1374 1.1352 1.1414 1.1453 1.1243 
0.2500 1.1435 1.1509 1.1686 1.1545 1.1484 1.1547 1.1632 1.1429 
0.1875 1.1612 1.1690 1.1884 1.1769 1.1662 1.1725 1.1863 1.1673 
0.1250 1.1830 1.1908 1.2135 1.2053 1.1868 1.1934 1.2124 1.1971 
0.0000 1.2365 1.2440 1.2756 1.2926 1.2407 1.2478 1.2802 1.2967 

 6.0/ 2 =ha  8.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 1.1000 1.0997 1.0587 1.0440 1.1034 1.0995 1.0406 1.0327 
0.9375 1.1001 1.1001 1.0592 1.0443 1.1035 1.1002 1.0413 1.0333 
0.8750 1.1009 1.1011 1.0610 1.0455 1.1041 1.1023 1.0433 1.0348 
0.8125 1.1018 1.1025 1.0638 1.0479 1.1052 1.1053 1.0465 1.0370 
0.7500 1.1034 1.1048 1.0676 1.0511 1.1068 1.1090 1.0509 1.0403 
0.6875 1.1054 1.1075 1.0726 1.0553 1.1089 1.1131 1.0568 1.0450 
0.6250 1.1082 1.1109 1.0791 1.0607 1.1117 1.1175 1.0642 1.0506 
0.5625 1.1121 1.1151 1.0873 1.0677 1.1155 1.1224 1.0732 1.0577 
0.5000 1.1170 1.1205 1.0967 1.0761 1.1203 1.1278 1.0840 1.0665 
0.4375 1.1231 1.1271 1.1077 1.0861 1.1266 1.1342 1.0968 1.0772 
0.3750 1.1307 1.1350 1.1213 1.0989 1.1345 1.1422 1.1120 1.0905 
0.3125 1.1409 1.1455 1.1379 1.1145 1.1447 1.1524 1.1302 1.1069 
0.2500 1.1538 1.1586 1.1574 1.1339 1.1577 1.1652 1.1519 1.1274 
0.1875 1.1714 1.1765 1.1826 1.1597 1.1755 1.1831 1.1793 1.1540 
0.1250 1.1925 1.1979 1.2118 1.1914 1.1966 1.2044 1.2107 1.1874 
0.0000 1.2459 1.2520 1.2850 1.3009 1.2508 1.2590 1.2901 1.3061 
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Table 4.4 Normalized mode I stress intensity factors InK  for an FGM coating – 
substrate structure subjected to bending. 

 
 2.0/ 2 =ha  4.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 1.0500 1.0555 1.0550 1.0357 1.0107 1.0149 0.9944 0.9760 
0.9375 1.0508 1.0561 1.0555 1.0367 1.0111 1.0155 0.9954 0.9770 
0.8750 1.0523 1.0576 1.0572 1.0383 1.0130 1.0174 0.9978 0.9793 
0.8125 1.0545 1.0597 1.0600 1.0407 1.0161 1.0204 1.0017 0.9828 
0.7500 1.0571 1.0623 1.0635 1.0444 1.0203 1.0247 1.0072 0.9880 
0.6875 1.0613 1.0667 1.0684 1.0501 1.0259 1.0304 1.0144 0.9949 
0.6250 1.0665 1.0720 1.0747 1.0563 1.0328 1.0372 1.0234 1.0033 
0.5625 1.0730 1.0784 1.0826 1.0638 1.0413 1.0457 1.0341 1.0137 
0.5000 1.0802 1.0857 1.0915 1.0729 1.0512 1.0557 1.0465 1.0258 
0.4375 1.0889 1.0944 1.1017 1.0843 1.0626 1.0672 1.0612 1.0403 
0.3750 1.1001 1.1057 1.1148 1.0979 1.0765 1.0812 1.0787 1.0574 
0.3125 1.1136 1.1191 1.1305 1.1145 1.0925 1.0973 1.0985 1.0774 
0.2500 1.1296 1.1351 1.1489 1.1344 1.1116 1.1164 1.1220 1.1015 
0.1875 1.1501 1.1558 1.1723 1.1595 1.1355 1.1404 1.1508 1.1317 
0.1250 1.1748 1.1808 1.2002 1.1908 1.1626 1.1676 1.1829 1.1668 
0.0000 1.2349 1.2411 1.2672 1.2832 1.2283 1.2336 1.2620 1.2771 

 6.0/ 2 =ha  8.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 0.9720 0.9720 0.9348 0.9216 0.9309 0.9270 0.8778 0.8713 
0.9375 0.9726 0.9727 0.9359 0.9225 0.9319 0.9285 0.8790 0.8724 
0.8750 0.9750 0.9753 0.9391 0.9253 0.9346 0.9323 0.8827 0.8756 
0.8125 0.9790 0.9797 0.9442 0.9300 0.9393 0.9386 0.8890 0.8810 
0.7500 0.9843 0.9855 0.9513 0.9365 0.9460 0.9471 0.8977 0.8888 
0.6875 0.9910 0.9927 0.9606 0.9449 0.9545 0.9575 0.9089 0.8988 
0.6250 0.9996 1.0018 0.9721 0.9553 0.9649 0.9694 0.9227 0.9110 
0.5625 1.0100 1.0126 0.9858 0.9679 0.9773 0.9826 0.9392 0.9256 
0.5000 1.0222 1.0251 1.0020 0.9828 0.9919 0.9977 0.9584 0.9428 
0.4375 1.0363 1.0395 1.0204 1.0000 1.0086 1.0147 0.9805 0.9629 
0.3750 1.0524 1.0558 1.0414 1.0200 1.0280 1.0340 1.0056 0.9860 
0.3125 1.0715 1.0751 1.0660 1.0436 1.0498 1.0559 1.0344 1.0127 
0.2500 1.0937 1.0975 1.0943 1.0715 1.0751 1.0811 1.0671 1.0439 
0.1875 1.1205 1.1246 1.1279 1.1054 1.1048 1.1108 1.1054 1.0815 
0.1250 1.1503 1.1547 1.1653 1.1450 1.1380 1.1441 1.1480 1.1252 
0.0000 1.2216 1.2265 1.2556 1.2700 1.2158 1.2222 1.2498 1.2633 

 

In Figures 4.19-4.26, the variation of the normalized stress intensity factors 

are plotted with respect to normalized polar angle for each FGM coating type. It can 

be seen that the lowest stress intensity factors are calculated at the symmetry  



 47 

surface. The stress intensity factors continuously increase as 0→φ . At the free 

surface, MR coating gives the largest stress intensity factors for each crack 

dimension. At the symmetry surface, however, MR coating gives the minimum 

stress intensity factors. The results computed for bending are observed to be more 

sensitive to the variations in the crack radius as compared to the results calculated 

for uniform tension given in Section 4.3.1. 

 

4.3.3 Fixed - Grip Tension  

 

In  this  section,  the  FGM   coating  and  substrate  system  is  assumed  to  

be subjected to uniform normal displacement 0v  (displacement in y – direction), at 

the ends ly ±=  as shown in Figure 2.11. This uniform normal displacement 0v  is 

taken as 0.5 mm. The normalized stress intensity factors are presented in Figures 

4.27-4.34 and given in the tabulated form in Table 4.5. 

 

In Figures 4.27-4.34, the variation of the normalized stress intensity factors 

are plotted with respect to normalized polar angle for each FGM coating type. It can 

be observed that the lowest stress intensity factors are calculated at the symmetry 

surface. The stress intensity factors again continuously increase as 0→φ . MR 

coating gives the largest stress intensity factors for each crack dimension at the free 

surface. Also this coating type gives the minimum stress intensity factors for each 

crack radius at the symmetry surface. In this loading case, the stress intensity 

factors calculated for H and CR coatings are generally very close to each other for 

each crack radius.  

 

4.3.4 Three Point Bending  

 
In this section, coating-substrate system is loaded by applying a uniform 

compressive traction of magnitude σ  to the surface 0=x  as shown in Figure 2.12. 

The stress, which is taken as 100 MPa, is applied to the rectangular region 

δδ <<− y  and bzb <<−  ( ).mm 112.≅δ The resultant force due to this loading is 
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δσbP 4= . The medium is supported by rollers at ly ±= , 21 hhx += . The 

computed results are presented in Figures 4.35-4.42 and tabulated in Table 4.6. 

 

Table 4.5 Normalized mode I stress intensity factors InK  for an FGM coating – 
substrate structure subjected to fixed – grip tension. 

 
 2.0/ 2 =ha  4.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 1.0371 1.0369 1.0203 0.9933 1.0375 1.0387 1.0023 0.9761 
0.9375 1.0372 1.0374 1.0214 0.9946 1.0376 1.0387 1.0024 0.9759 
0.8750 1.0370 1.0377 1.0219 0.9957 1.0383 1.0395 1.0034 0.9770 
0.8125 1.0377 1.0378 1.0223 0.9963 1.0396 1.0407 1.0057 0.9790 
0.7500 1.0399 1.0405 1.0254 0.9994 1.0415 1.0424 1.0091 0.9821 
0.6875 1.0430 1.0440 1.0296 1.0036 1.0437 1.0446 1.0129 0.9858 
0.6250 1.0458 1.0468 1.0332 1.0077 1.0469 1.0480 1.0179 0.9902 
0.5625 1.0493 1.0499 1.0375 1.0122 1.0506 1.0518 1.0240 0.9961 
0.5000 1.0543 1.0544 1.0441 1.0186 1.0556 1.0565 1.0316 1.0032 
0.4375 1.0609 1.0609 1.0522 1.0273 1.0620 1.0630 1.0411 1.0124 
0.3750 1.0682 1.0692 1.0617 1.0376 1.0697 1.0708 1.0522 1.0236 
0.3125 1.0778 1.0789 1.0732 1.0498 1.0797 1.0808 1.0660 1.0374 
0.2500 1.0909 1.0911 1.0875 1.0651 1.0924 1.0935 1.0823 1.0543 
0.1875 1.1076 1.1078 1.1065 1.0863 1.1087 1.1098 1.1028 1.0764 
0.1250 1.1271 1.1282 1.1295 1.1121 1.1296 1.1307 1.1288 1.1048 
0.0000 1.1787 1.1787 1.1857 1.1916 1.1815 1.1830 1.1925 1.1977 

 6.0/ 2 =ha  8.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 1.0421 1.0385 0.9833 0.9617 1.0444 1.0368 0.9651 0.9503 
0.9375 1.0426 1.0391 0.9843 0.9628 1.0443 1.0371 0.9653 0.9503 
0.8750 1.0430 1.0399 0.9856 0.9636 1.0450 1.0391 0.9672 0.9518 
0.8125 1.0439 1.0414 0.9878 0.9652 1.0464 1.0424 0.9707 0.9546 
0.7500 1.0457 1.0436 0.9920 0.9688 1.0480 1.0459 0.9746 0.9572 
0.6875 1.0481 1.0466 0.9971 0.9732 1.0500 1.0498 0.9800 0.9611 
0.6250 1.0508 1.0498 1.0027 0.9778 1.0531 1.0544 0.9870 0.9666 
0.5625 1.0544 1.0541 1.0100 0.9837 1.0569 1.0592 0.9958 0.9737 
0.5000 1.0591 1.0592 1.0191 0.9918 1.0616 1.0643 1.0058 0.9816 
0.4375 1.0655 1.0658 1.0300 1.0018 1.0678 1.0707 1.0175 0.9912 
0.3750 1.0730 1.0736 1.0425 1.0130 1.0760 1.0788 1.0320 1.0038 
0.3125 1.0827 1.0835 1.0577 1.0274 1.0861 1.0888 1.0493 1.0193 
0.2500 1.0956 1.0964 1.0765 1.0460 1.0986 1.1012 1.0696 1.0380 
0.1875 1.1124 1.1135 1.0998 1.0696 1.1156 1.1181 1.0950 1.0627 
0.1250 1.1327 1.1340 1.1270 1.0985 1.1366 1.1391 1.1248 1.0935 
0.0000 1.1845 1.1862 1.1958 1.2003 1.1886 1.1914 1.1989 1.2024 
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Table 4.6 Normalized mode I stress intensity factors InK  for an FGM coating – 
substrate structure subjected to three point bending. 

 
 2.0/ 2 =ha  4.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 0.9270 0.9313 0.9301 0.9122 1.7601 1.7672 1.7300 1.6969 
0.9375 0.9274 0.9315 0.9306 0.9132 1.7610 1.7681 1.7310 1.6980 
0.8750 0.9287 0.9329 0.9320 0.9147 1.7644 1.7713 1.7356 1.7022 
0.8125 0.9308 0.9350 0.9349 0.9173 1.7708 1.7778 1.7435 1.7094 
0.7500 0.9339 0.9381 0.9386 0.9208 1.7793 1.7864 1.7541 1.7195 
0.6875 0.9377 0.9420 0.9433 0.9258 1.7901 1.7971 1.7680 1.7326 
0.6250 0.9427 0.9469 0.9492 0.9320 1.8036 1.8106 1.7850 1.7489 
0.5625 0.9489 0.9530 0.9561 0.9393 1.8200 1.8272 1.8056 1.7688 
0.5000 0.9560 0.9603 0.9648 0.9482 1.8399 1.8472 1.8297 1.7921 
0.4375 0.9650 0.9692 0.9753 0.9589 1.8625 1.8699 1.8579 1.8197 
0.3750 0.9753 0.9797 0.9874 0.9717 1.8888 1.8963 1.8909 1.8526 
0.3125 0.9876 0.9920 1.0019 0.9873 1.9201 1.9277 1.9291 1.8908 
0.2500 1.0029 1.0074 1.0194 1.0060 1.9570 1.9649 1.9735 1.9361 
0.1875 1.0221 1.0267 1.0411 1.0294 2.0019 2.0099 2.0272 1.9920 
0.1250 1.0444 1.0490 1.0656 1.0569 2.0530 2.0611 2.0879 2.0580 
0.0000 1.0991 1.1037 1.1274 1.1412 2.1751 2.1838 2.2337 2.2601 

 6.0/ 2 =ha  8.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 2.5038 2.5038 2.4046 2.3691 3.1520 3.1373 2.9658 2.9434 
0.9375 2.5061 2.5064 2.4073 2.3723 3.1550 3.1418 2.9702 2.9473 
0.8750 2.5129 2.5137 2.4162 2.3801 3.1656 3.1566 2.9840 2.9593 
0.8125 2.5240 2.5259 2.4307 2.3931 3.1842 3.1807 3.0072 2.9797 
0.7500 2.5395 2.5428 2.4511 2.4117 3.2091 3.2119 3.0391 3.0082 
0.6875 2.5597 2.5642 2.4776 2.4358 3.2414 3.2501 3.0804 3.0453 
0.6250 2.5853 2.5909 2.5103 2.4656 3.2814 3.2950 3.1319 3.0908 
0.5625 2.6153 2.6222 2.5494 2.5015 3.3293 3.3463 3.1932 3.1457 
0.5000 2.6505 2.6581 2.5946 2.5436 3.3849 3.4037 3.2646 3.2104 
0.4375 2.6919 2.7000 2.6472 2.5931 3.4492 3.4688 3.3471 3.2854 
0.3750 2.7398 2.7486 2.7084 2.6506 3.5228 3.5427 3.4413 3.3720 
0.3125 2.7948 2.8041 2.7777 2.7176 3.6073 3.6270 3.5489 3.4725 
0.2500 2.8585 2.8686 2.8575 2.7963 3.7038 3.7233 3.6714 3.5893 
0.1875 2.9346 2.9452 2.9518 2.8913 3.8168 3.8365 3.8147 3.7292 
0.1250 3.0198 3.0312 3.0577 3.0022 3.9430 3.9631 3.9730 3.8917 
0.0000 3.2215 3.2344 3.3101 3.3468 4.2352 4.2564 4.3504 4.3961 

 

In Figures 4.35-4.42, the variation of the normalized stress intensity factors 

are plotted with respect to normalized polar angle for each FGM coating type. The 

lowest stress intensity factors are computed at the symmetry surface. MR coating 
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gives the minimum stress intensity factors for all crack dimensions at the symmetry 

surface. The trends are generally similar to those observed for the other loading 

cases. 

 

4.4 Transient Thermal Loading  

 

In this section, thermal fracture analysis of the FGM coatings is carried out. 

The composite medium is initially assumed to be at a high processing temperature 

of 1273 K. Then, the coating – substrate system is left in an environment whose 

temperature is 3000 =T K. It is assumed that at all the surfaces except the surface at 

21 hhx += , there is free convection with a convection coefficient of 5=h  W/(m2 

K). At the surface, 21 hhx += , there is forced convection and the convection 

coefficient is 10000=h  W/(m2 K). The thermal boundary conditions are shown in 

Figure 2.13. In the analysis, the material properties computed at the mid 

temperature 5.786=mT K are used. These thermomechanical parameters are given 

in Chapter 2. The results are presented in Figures 4.43-4.58 and in Tables 4.7-4.8. 

 

In Figures 4.43, 4.47, 4.51 and 4.55, the temperature of the deepest point on 

the crack front ( )2πφ =  is plotted with respect to normalized time for 2.0/ 2 =ha , 

3.0/ 2 =ha , 4.0/ 2 =ha  and 6.0/ 2 =ha , respectively. Double scales are used in 

these figures in order to clearly present the temperature variations for short times. 

As expected the temperature decreases from the initial value 1273 K to 300 K and 

reaches to its steady – state value at about 50=τ  for each crack radius. The 

temperature decrease starts with a sudden drop for each crack dimension and as 

expected the amount of this drop is less for larger crack radius.   

 

In the computations it is observed that the semi – circular crack remains fully 

open only for a short time interval as the composite system starts cooling. The 

variation of the normalized stress intensity factors at the deepest point with respect 

to normalized time is shown in Figure 4.44 for 2.0/ 2 =ha . Again, a double time 
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scale is used in this figure. The stress intensity factors are zero initially. Then, they 

increase and go through a maximum in a short time period. These maximum values 

are about 0.6, 0.57, 0.36 and 0.37 for H, CR, LN and MR coatings, respectively. 

After reaching these maximum values, the stress intensity factors start to decrease. 

Crack closure is found to begin at the deepest point for H, CR and LN coatings at 

1.37  and  6.6  8.9  ,≅≅≅≅τ , respectively and at the free surface for MR coating at 

15.1≅τ . It can be seen in Figure 4.44 that the stress intensity factors of LN and 

MR coatings are close to each other. It is also found that crack contact occurrence 

time for MR and LN coatings is shorter than those of H and CR coatings. The 

curves given for the coatings in Figure 4.44 are valid only up to the point of closure. 

During the relatively short time interval when the crack is fully open, maximum 

stress intensity factor is calculated as 0.6 for H coating at 0.43≅τ . As a result, it 

can be concluded that material gradation causes a decrease in the amplitude of the 

transient stress intensity factors. Minimum peak occurs for LN coating. 

 

Figure 4.48 shows the transient stress intensity factors for 3.0/ 2 =ha . Crack 

closure in this case begins at the deepest point for H, CR and LN coatings at 

1.37  and  5.7  8.0  ,≅≅≅≅τ , respectively and at the free surface for MR coating at 

2.1≅τ . If these crack closure times are compared with the ones computed for 

2.0/ 2 =ha , it can be seen that crack closure times decrease for H and CR coatings, 

does not change for LN coating and increases a little for the MR coating. The peak 

values for the stress intensity factors are about 0.53, 0.49, 0.29 and 0.32 for H, CR, 

LN and MR coatings, respectively. After reaching these maximum values, the stress 

intensity factors start to decrease and approach to their steady state value at 50≅τ . 

Again, the curves given for the coatings in Figure 4.48 are valid only up to the point 

of closure. 

 

The stress intensity factors for 402 .h/a =  are given in Figure 4.52. Crack 

closure begins at the deepest point for H, CR and LN coatings at 

1.37  and  4.8  7.0,  ≅≅≅≅τ , respectively and at the free surface for MR coating at 
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25.1≅τ . The peak values are about 0.28 and 0.24 0.4, 0.45,  for H, CR, LN and MR 

coatings, respectively. After reaching these maximum values, the stress intensity 

factors again start to decrease and approach to their steady state value at 50≅τ .  

 

The results for 6.0/ 2 =ha  are given in Figure 4.56. In this case, crack closure 

begins at the deepest point for H, CR and LN coatings at 1.56 and 3.0 ,1.5≅τ , 

respectively and at the free surface for MR coating at 33.1≅τ . The shortest crack 

closure times for H and CR coatings are found for this crack dimension. The 

maximum values are calculated as 0.23 and  0.18 0.25, 0.32,  for H, CR, LN and MR 

coatings, respectively. For this crack radius, we also observe that material property 

gradation causes a decrease in the amplitude of the stress intensity factors.  

 

The distribution of the stress intensity factors at two given points in time are 

depicted in Figures 4.45-4.46 for 2.0/ 2 =ha , Figures 4.49-4.50 for 3.0/ 2 =ha , 

Figures 4.53-4.54 for 4.0/ 2 =ha  and Figures 4.57-4.58 for 6.0/ 2 =ha . Also, 

results related to these figures are tabulated in Tables 4.7 and 4.8. It can be 

observed that the semi circular crack is fully open at 67.0=τ  in all coatings and 

stress intensity factors are larger in H coating for each crack dimension. There is 

crack closure at steady state ( )67=τ  in Figures 4.46, 4.50, 4.54 and 4.58. Hence, 

the results given in these figure are not valid and the problem has to be remodeled 

by taking into account the crack closure. However, these results can still be useful if 

they are used to obtain the solution for given arbitrary loads by using the principle 

of superposition provided that the resultant stress intensity factor is positive. 
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Table 4.7 Normalized mode I stress intensity factors InK  for an FGM plate 
subjected to transient thermal load at 67.0=τ . 

 
 3.0/ 2 =ha  6.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 0.4891 0.4292 0.1695 0.1976 0.2997 0.2094 0.1268 0.1742 
0.9375 0.4901 0.4303 0.1699 0.1977 0.3014 0.2112 0.1271 0.1745 
0.8750 0.4930 0.4335 0.1709 0.1981 0.3065 0.2167 0.1279 0.1754 
0.8125 0.4977 0.4389 0.1726 0.1988 0.3149 0.2259 0.1294 0.1769 
0.7500 0.5044 0.4463 0.1750 0.1997 0.3267 0.2388 0.1316 0.1789 
0.6875 0.5128 0.4558 0.1782 0.2009 0.3417 0.2555 0.1345 0.1814 
0.6250 0.5231 0.4672 0.1823 0.2023 0.3600 0.2760 0.1382 0.1846 
0.5625 0.5351 0.4806 0.1872 0.2039 0.3813 0.3001 0.1430 0.1882 
0.5000 0.5489 0.4958 0.1932 0.2057 0.4057 0.3278 0.1488 0.1923 
0.4375 0.5643 0.5129 0.2004 0.2076 0.4329 0.3587 0.1560 0.1968 
0.3750 0.5816 0.5317 0.2089 0.2097 0.4628 0.3926 0.1647 0.2017 
0.3125 0.6007 0.5525 0.2190 0.2120 0.4951 0.4290 0.1755 0.2070 
0.2500 0.6219 0.5754 0.2311 0.2143 0.5298 0.4677 0.1887 0.2125 
0.1875 0.6461 0.6011 0.2456 0.2167 0.5671 0.5088 0.2053 0.2182 
0.1250 0.6724 0.6288 0.2626 0.2188 0.6059 0.5513 0.2258 0.2237 
0.0000 0.7331 0.6920 0.3080 0.2292 0.6919 0.6438 0.2885 0.2452 

 

 
Table 4.8 Normalized mode I stress intensity factors InK  for an FGM plate 
subjected to transient thermal load at 67=τ . 

 
 3.0/ 2 =ha  6.0/ 2 =ha  
πφ /2     H CR LN MR H CR LN MR 

1.0000 -0.3875 -0.4295 -0.4030 -0.2854 -0.4260 -0.4321 -0.2451 -0.1537 
0.9375 -0.3875 -0.4296 -0.4038 -0.2861 -0.4258 -0.4324 -0.2465 -0.1547 
0.8750 -0.3876 -0.4296 -0.4062 -0.2885 -0.4252 -0.4332 -0.2506 -0.1576 
0.8125 -0.3877 -0.4298 -0.4102 -0.2923 -0.4243 -0.4343 -0.2575 -0.1625 
0.7500 -0.3879 -0.4301 -0.4158 -0.2978 -0.4230 -0.4356 -0.2671 -0.1694 
0.6875 -0.3882 -0.4305 -0.4229 -0.3050 -0.4217 -0.4370 -0.2794 -0.1784 
0.6250 -0.3887 -0.4310 -0.4316 -0.3139 -0.4204 -0.4383 -0.2942 -0.1895 
0.5625 -0.3893 -0.4318 -0.4418 -0.3246 -0.4193 -0.4395 -0.3117 -0.2029 
0.5000 -0.3902 -0.4329 -0.4536 -0.3374 -0.4184 -0.4406 -0.3317 -0.2188 
0.4375 -0.3915 -0.4344 -0.4670 -0.3523 -0.4180 -0.4419 -0.3541 -0.2374 
0.3750 -0.3933 -0.4365 -0.4821 -0.3697 -0.4182 -0.4435 -0.3789 -0.2590 
0.3125 -0.3958 -0.4394 -0.4989 -0.3901 -0.4193 -0.4456 -0.4062 -0.2841 
0.2500 -0.3993 -0.4433 -0.5176 -0.4139 -0.4215 -0.4487 -0.4359 -0.3133 
0.1875 -0.4043 -0.4489 -0.5389 -0.4424 -0.4255 -0.4535 -0.4685 -0.3480 
0.1250 -0.4104 -0.4558 -0.5620 -0.4760 -0.4308 -0.4594 -0.5030 -0.3890 
0.0000 -0.4267 -0.4741 -0.6121 -0.5651 -0.4461 -0.4758 -0.5742 -0.4977 
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4.5 Figures 
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Figure 4.1 Comparisons to Newman and Raju equation for uniform tension, 
2.0/ 2 =ha  
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Figure 4.2 Comparisons to Newman and Raju equation for uniform tension, 
4.0/ 2 =ha  
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Figure 4.3 Comparisons to Newman and Raju equation for uniform tension, 
6.0/ 2 =ha  
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Figure 4.4 Comparisons to Newman and Raju equation for uniform tension, 
8.0/ 2 =ha  



 56 

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

Newman and Raju (1981)
Present study

2φ / π

K
I /

 [
σ t (

π 
a 

/ Q
)1/

2 ]

 
 

Figure 4.5 Comparisons to Newman and Raju equation for uniform tension, 
0.1/ 2 =ha  
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Figure 4.6 Comparisons to Newman and Raju equation for bending, 2.0/ 2 =ha  
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Figure 4.7 Comparisons to Newman and Raju equation for bending, 4.0/ 2 =ha  
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Figure 4.8 Comparisons to Newman and Raju equation for bending, 6.0/ 2 =ha  
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Figure 4.9 Comparisons to Newman and Raju equation for bending, 8.0/ 2 =ha  
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Figure 4.10 Comparisons to Newman and Raju equation for bending, 0.1/ 2 =ha  
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Figure 4.11 Normalized mode I stress intensity factors for uniform tension, 
1.0/ 2 =ha  

 

0.0 0.2 0.4 0.6 0.8 1.0
1.06

1.14

1.22

1.30

H
CR
LN
MR

2φ / π

K
I /

 [
σ t (

π 
a 

/ Q
)1/

2 ]

 
 

Figure 4.12 Normalized mode I stress intensity factors for uniform tension, 
2.0/ 2 =ha  
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Figure 4.13 Normalized mode I stress intensity factors for uniform tension, 
3.0/ 2 =ha  
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Figure 4.14 Normalized mode I stress intensity factors for uniform tension, 
4.0/ 2 =ha  
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Figure 4.15 Normalized mode I stress intensity factors for uniform tension, 
5.0/ 2 =ha  
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Figure 4.16 Normalized mode I stress intensity factors for uniform tension, 
6.0/ 2 =ha  
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Figure 4.17 Normalized mode I stress intensity factors for uniform tension, 
7.0/ 2 =ha  
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Figure 4.18 Normalized mode I stress intensity factors for uniform tension, 
8.0/ 2 =ha  
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Figure 4.19 Normalized mode I stress intensity factors for bending, 1.0/ 2 =ha  
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Figure 4.20 Normalized mode I stress intensity factors for bending, 2.0/ 2 =ha  
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Figure 4.21 Normalized mode I stress intensity factors for bending, 3.0/ 2 =ha  
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Figure 4.22 Normalized mode I stress intensity factors for bending, 4.0/ 2 =ha  
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Figure 4.23 Normalized mode I stress intensity factors for bending, 5.0/ 2 =ha  
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Figure 4.24 Normalized mode I stress intensity factors for bending, 6.0/ 2 =ha  
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Figure 4.25 Normalized mode I stress intensity factors for bending, 7.0/ 2 =ha  
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Figure 4.26 Normalized mode I stress intensity factors for bending, 8.0/ 2 =ha  
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Figure 4.27 Normalized mode I stress intensity factors for fixed - grip tension, 
1.0/ 2 =ha  
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Figure 4.28 Normalized mode I stress intensity factors for fixed - grip tension, 
2.0/ 2 =ha  
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Figure 4.29 Normalized mode I stress intensity factors for fixed - grip tension, 
3.0/ 2 =ha  
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Figure 4.30 Normalized mode I stress intensity factors for fixed - grip tension, 
4.0/ 2 =ha  
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Figure 4.31 Normalized mode I stress intensity factors for fixed - grip tension, 
5.0/ 2 =ha  
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Figure 4.32 Normalized mode I stress intensity factors for fixed - grip tension, 
6.0/ 2 =ha  
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Figure 4.33 Normalized mode I stress intensity factors for fixed - grip tension, 
7.0/ 2 =ha  
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Figure 4.34 Normalized mode I stress intensity factors for fixed - grip tension, 
8.0/ 2 =ha  
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Figure 4.35 Normalized mode I stress intensity factors for three point bending, 
1.0/ 2 =ha  
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Figure 4.36 Normalized mode I stress intensity factors for three point bending, 
2.0/ 2 =ha  
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Figure 4.37 Normalized mode I stress intensity factors for three point bending, 
3.0/ 2 =ha  
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Figure 4.38 Normalized mode I stress intensity factors for three point bending, 
4.0/ 2 =ha  



 73 

0.0 0.2 0.4 0.6 0.8 1.0
2.00

2.22

2.44

2.66

2.88

H
CR
LN
MR

2φ / π

K
I /

 [
(P

 / 
bl

) (
π 

a 
/ Q

)1/
2 ]

 
 

Figure 4.39 Normalized mode I stress intensity factors for three point bending, 
5.0/ 2 =ha  
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Figure 4.40 Normalized mode I stress intensity factors for three point bending, 
6.0/ 2 =ha  
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Figure 4.41 Normalized mode I stress intensity factors for three point bending, 
7.0/ 2 =ha  
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Figure 4.42 Normalized mode I stress intensity factors for three point bending, 
8.0/ 2 =ha  
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Figure 4.43 Temperature of the deepest point ( 2πφ = ) with respect to normalized 
time, 2.0/ 2 =ha  
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Figure 4.44 Normalized stress intensity factors at the deepest point ( 2πφ = ) with 
respect to normalized time, 2.0/ 2 =ha  
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Figure 4.45 The distribution of the stress intensity factors around the crack front at 
670.=τ , 2.0/ 2 =ha  
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Figure 4.46 The distribution of the stress intensity factors around the crack front at 
67=τ , 2.0/ 2 =ha  
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Figure 4.47 Temperature of the deepest point ( 2πφ = ) with respect to normalized 
time, 3.0/ 2 =ha  
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Figure 4.48 Normalized stress intensity factors at the deepest point ( 2πφ = ) with 
respect to normalized time, 3.0/ 2 =ha  
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Figure 4.49 The distribution of the stress intensity factors around the crack front at 
670.=τ , 3.0/ 2 =ha  
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Figure 4.50 The distribution of the stress intensity factors around the crack front at 
67=τ , 3.0/ 2 =ha  
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Figure 4.51 Temperature of the deepest point ( 2πφ = ) with respect to normalized 
time, 4.0/ 2 =ha  
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Figure 4.52 Normalized stress intensity factors at the deepest point ( 2πφ = ) with 
respect to normalized time, 4.0/ 2 =ha  
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Figure 4.53 The distribution of the stress intensity factors around the crack front at 
670.=τ , 4.0/ 2 =ha  
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Figure 4.54 The distribution of the stress intensity factors around the crack front at 
67=τ , 4.0/ 2 =ha  
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Figure 4.55 Temperature of the deepest point ( 2πφ = ) with respect to normalized 
time, 6.0/ 2 =ha  
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Figure 4.56 Normalized stress intensity factors at the deepest point ( 2πφ = ) with 
respect to normalized time,  6.0/ 2 =ha  
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Figure 4.57 The distribution of the stress intensity factors around the crack front at 
670.=τ , 6.0/ 2 =ha  
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Figure 4.58 The distribution of the stress intensity factors around the crack front at 
67=τ , 6.0/ 2 =ha  
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CHAPTER 5 
 
 

CONCLUDING REMARKS 
 
 
 

In this study, in order to calculate the stress intensity factors around a semi-

circular crack front for a surface crack in an FGM coating, finite element models 

are developed. 3-D finite element models are generated using the finite element 

analysis software ANSYS 7.0 and several case studies containing various loading 

conditions, FGM variations and crack radii are performed. The stress intensity 

factors around the circular crack front are calculated using the displacement 

correlation technique in which the varying material properties on the crack front 

nodes are required for the FGM analysis. Hence, the stress intensity factors are not 

calculated directly using the default stress intensity factor calculation command 

(KCALC) in ANSYS and additional APDL programming is performed.  

 

In order to check out the accuracy of the displacement correlation technique 

first homogeneous material properties are used for two mechanical loading 

conditions, namely uniform tension and bending. Then, the results are compared to 

those given by Newman and Raju [19]. In these comparisons the maximum percent 

differences are found to be smaller than 5 % for all crack dimensions used in these 

computations. So, it can be concluded that the results of the finite element model 

are sufficiently accurate. 

 

It is important to note that the stress intensity factor at the free surface can not 

be determined correctly using this method, since the order of the stress singularity is 

different from 1/2 here. There is a boundary zone near the free surface which 

affects the stress intensity factors. This effect is not considered in this study. 

However, free surface results can still be used as approximate stress intensity 

factors. 
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In the FGM analysis, four different material profiles, namely homogeneous 

(H), ceramic-rich (CR), metal-rich (MR) and linear (LN) variation coatings are 

used. In this case coating-substrate system containing a surface crack in the FGM 

coating is investigated under different loading conditions which are uniform 

tension, bending, fixed - grip tension, three point bending and transient thermal 

loading.  

 

In all the computations carried out for mechanical loading cases, it is observed 

that normalized mode I stress intensity factors monotonically increase as φ  

decreases from symmetry plane to surface. For all coating types and crack radii 

considered, maximum mode I stress intensity factors are calculated at the free 

surface. This leads to the conclusion that under cyclic loading, the semi – circular 

crack will tend to propagate slower in the thickness direction. It is also interesting 

to note that for all mechanical loading cases and crack radii considered (except for 

uniform tension and 1.0/ 2 =ha ), the minimum stress intensity factors at the 

symmetry surface are calculated for the MR coating. It is also seen that, the stress 

intensity factors are more sensitive to the variations in the crack length when the 

medium is under bending or three point bending rather than uniform tension or 

fixed – grip tension. 

 

In transient thermal loading, as expected, the temperature at the symmetry 

surface first drops rapidly and afterwards reaches to a steady - state value. When the 

crack radius is increased, the rate of the sudden drop decreases due to the increase 

in the distance between the deepest crack tip node and loaded (force convected) 

surface.  For all cases the crack remains fully open only for a short time interval as 

the composite system starts cooling. The crack closure begins at the symmetry 

surface for H, CR and LN coatings, and at free surface for MR coating. During 

transient period, maximum and minimum peaks for the transient stress intensity 

factors at the deepest point are computed for H and LN coatings, respectively. As a 

result, it can be concluded that material gradation causes a decrease in the 

amplitude of the transient stress intensity factors. Due to the crack closure at steady-
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state the results are not valid and the problem has to be remodeled by taking into 

account the crack closure. However, these results can still be useful if they are used 

to obtain the solution for given arbitrary loads by using the principle of 

superposition provided that the resultant stress intensity factor is positive. 

 

An immediate extension of the present study can be the modelling of the semi 

– elliptical surface cracks with arbitrary aspect ratio in FGM coatings subjected to 

thermomechanical loading. Another problem that is of particular interest is the three 

dimensional fracture analysis of FGM coatings under mixed – mode loading 

conditions. This requires the modelling of inclined surface cracks in functionally 

graded materials. After developing reliable models to compute the three 

dimensional stress intensity factors in functionally graded materials under mixed – 

mode loading, the next step would be the computation of the crack front 

morphology under cyclic loading. This will allow the life estimation of the FGM 

coatings and layers under repeated loads. 
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APPENDIX A 
 
 

NEWMAN AND RAJU EQUATION 
 
 
 

This section presents a stress-intensity factor equation [19] for a semi - 

elliptical surface crack as a function of parametric angle, crack depth, crack length, 

plate thickness and plate width for tension and bending loads.  

 

 
 

Figure A.1  Surface-cracked plate subjected to tension or bending loads. 

 

A.1 Notation 
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A.2 Stress Intensity Factor Equation for the Semi - Elliptical Surface Crack 

 

The stress-intensity factor equation for combined tension and bending loads is 
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The functions F and H are defined so that the boundary-correction factor for tension 

is equal to F and the boundary-correction for bending is equal to the product of H 

and F. The function F is obtained from a systematic curve-fitting procedure to FEA 

results by using double-series polynomials in terms of a/c, a/t, and angular 

functions of φ . The choice of functions was based on engineering judgment. The 

function F was taken to be 
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where 
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The function φf  is 
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The function wf  is 
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The function H is developed also by curve fitting and engineering judgment, and 

has the form 
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where  
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1G  and 2G  are given as,  
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