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Abstract

MANUAL AND AUTO CALIBRATION OF STEREO CAMERA

SYSTEMS

Özuysal, Mustafa

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Uğur Halıcı

August 2004, 90 pages

To make three dimensional measurements using a stereo camera system, the intrinsic

and extrinsic calibration of the system should be obtained. Furthermore, to allow

zooming, intrinsic parameters should be re-estimated using only scene constraints. In

this study both manual and autocalibration algorithms are implemented and tested.

The implemented manual calibration system is used to calculate the parameters of

the calibration with the help of a planar calibration object. The method is tested

on different internal calibration settings and results of 3D measurements using the

obtained calibration is presented. Two autocalibration methods have been imple-

mented. The first one requires a general motion while the second method requires a

pure rotation of the cameras.

The autocalibration methods require point matches between images. To achieve

a fully automated process, robust algorithms for point matching have been imple-

mented. For the case of general motion the fundamental matrix relation is used in

the matching algorithm. When there is only rotation between views, the homography

relation is used. The results of variations on the autocalibration methods are also

presented.

The result of the manual calibration has been found to be very reliable. The results of
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the first autocalibration method are not accurate enough but it has been shown that

the calibration from rotating cameras performs precise enough if rotation between

images is sufficiently large.

Keywords: camera calibration, autocalibration, stereo camera system.
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Öz

STEREO KAMERA SİSTEMLERİNİN ELLE VE ÖZDEVİMLİ

KALİBRASYONU

Özuysal, Mustafa

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Uğur Halıcı

Ağustos 2004, 90 sayfa

Stereo kamera sistemleri kullanılarak üç boyutlu ölçüm yapılabilmesi için kamera

sisteminin iç ve dış parametrelerinin kalibre edilmesi gerekmektedir. Ayrıca kamera-

lardaki yakınlaştırma özelliğinin kullanılabilmesi için iç parametrelerin ortama bağlı

kısıtlamalar kullanılarak tekrar hesaplanması gerekir. Bu çalışmada hem elle hem de

özdevimli kalibrasyon yöntemleri hazırlanıp test edilmiştir. Hazırlanan elle kalibras-

yon yöntemi, düzlemsel bir kalibrasyon nesnesi yardımıyla kalibrasyon parametreleri-

nin hesaplanması için kullanılmıştır. Hazırlanan sistem, farklı kamera ayarlarıyla test

edilmiş ve hesaplanan parametreler kullanılarak yapılan üç boyutlu ölçüm sonuçları

verilmiştir. İki özdevimli kalibrasyon yöntemi denenmiştir. Bunlardan ilki genel bir

hareket için geçerli olup ikincisi ise kameraların sadece dönme hareketi yapmasını

gerektirmektedir.

Özdevimli kalibrasyon yöntemleri resimler arasında eşleştirilmiş noktaları kullanır.

Tamamen otomatik çalışan bir sistem elde edilebilmesi için nokta eşleştirmelerini elde

eden, hatalara dayanıklı yöntemler kullanılmıştır. Nokta eşleştirmede genel hareketler

için temel matris ilişkileri, sadece dönme hareketi olan görüntülerde ise düzlemsel

dönüşüm ilişkileri kullanılmıştır. Özdevimli kalibrasyon yöntemleri üzerinde farklı-

lıklar yaratılarak bunların sonuçları sunulmuştur.
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Elle kalibrasyon sonuçlarının oldukça güvenilir olduğu gözlenmiştir. İlk özdevimli ka-

librasyon yönteminin sonuçları yeterli doğrulukta olmamakla birlikte, eğer görüntüler

arasındaki dönme açısı yeterliyse dönen kameralardan kalibrasyon sonuçlarının iste-

nen hassasiyette olduğu gösterilmiştir.

Anahtar Kelimeler: kamera kalibrasyonu, özdevimli kalibrasyon, stereo kamera sis-

temi.
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Chapter 1

Introduction

1.1 Motivation and Problem Definition

In this thesis, the aim is to develop a stereo camera system which can be calibrated

manually with good precision and also can maintain its calibrated state in the case

of zooming using autocalibration techniques.

The developed system can be used in visual guidance of robotic systems, surveillance

systems as well as in map building tasks. Such systems will generally require 3D

measurements and sometimes the flexibility of zooming. To be able to obtain 3D

measurements, the internal and external parameters of the camera system should be

found. The internal parameters define how a 3D point is imaged on the 2D imaging

surface. The most notable internal parameter is the focal length and is a measure of

the magnification of the camera. The focal length should be known to good precision

in order to obtain reliable measurements. The external parameters refer to the 3D

relation between the position of the cameras with respect to each other and possibly

with respect to another coordinate frame. To be able to make any measurements,

the external parameters should be calculated.

Although the parameters of calibration can be calculated before the system is started,

not all of these parameters are constant during operation. Most notably, when the

camera is zoomed, the focal length changes as well as other internal parameters. One

alternative is to stop the process and calibrate the camera using the manual calibra-

tion techniques. However, this is not flexible and even impossible in some situations.

Recent developments in the uncalibrated vision area allows the computation of in-

ternal parameters without the use of a calibration object with known 3D structure.
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These methods only require the rigidity of the scene and by placing constraints on

3D projective objects, generally over an image sequence, the internal parameters are

recovered.

The following general constraints are considered in the design of the system. The

manual calibration should be easily performed and the calibration object should allow

simple construction to achieve higher precision. The autocalibration process should

not take too much time and should be completely automated.

The above requirements are due to the fact that the system will be used in robot

navigation tasks. An example of such a simulated system is given by Ulusoy et

al [31]. This simulated system is also being tested on a real robot platform. For

localization studies using the vision system constructed in this study, the reader may

refer to [2]. The vision system will be used to obtain three dimensional data from

the environment. Hence, the performance measure for the developed system is the

measured 3D lengths and angles. The calibration system can be used on a variety of

stereo systems for different scenarios.

1.2 Literature on Manual Calibration

The manual calibration methods are based on the knowledge of three dimensional

structure of a calibration object. This knowledge is then used to find the internal

and external calibration of the camera system.

The manual calibration of camera systems is a well studied problem. The earlier

work is done by researchers in the field of photogrammetry. A seminal paper on the

subject providing a closed form solution to the problem is written by Tsai [30]. The

method requires a 3D calibration object and begins the computation by using a closed

form expression for the rotation and the first two components of the translation. The

main difficulty with the method is that it can not calculate the aspect ratio of the

pixels if a planar object is used for calibration [20]. Therefore a calibration object

spanning a volume should be used to recover the aspect ratio. The construction of

such a calibration object provides difficulties.

A more recent work is done by Heikkilä and Silven [19]. The presented approach

emphasizes both the feature extraction and solution steps. The method is also im-

plemented as a Matlab toolbox in the public domain available through Internet.
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The method used in this study is due to Zhang [33]. The method uses a planar

calibration pattern and by calculating the relation between 3D and imaged corners,

constraints are formed on the internal calibration. The external calibration is then

easily achieved.

Although the methods above use point correspondences between the calibration pat-

tern and the images, there are other alternatives. A method that uses images of

circles to calculate the internal parameters is presented by Agrawal and Davis [1].

It is shown that the projection of the circle is a conic on the imaging plane and the

dual to this conic is directly related to the internal calibration. Then a semi-definite

programming (SDP) algorithm is used to achieve calibration.

1.3 Literature on Autocalibration

The autocalibration algorithms try to obtain the calibration information using only

the rigidity of the scene. Generally, projective objects that are constant for a specific

class of transformations are located by placing constraints on their representation.

These objects are then used to obtain calibration parameters. The first autocalibra-

tion methods make use of the Kruppa equations. The Kruppa equations are quadratic

constraints on epipolar lines that are tangent to a conic [18]. Although Kruppa equa-

tions are the traditional route to autocalibration, they have several drawbacks. The

solution of the Kruppa equations have ambiguities due to the formulation of the

problem [18].

The Kruppa equations solve for the Euclidean components directly. An alternative

route is provided by stratified approaches. Using these methods, one achieves a

projective reconstruction and then proceeds to recover affine and Euclidean structure.

It has been shown that it is possible to achieve Euclidean structure from a projective

reconstruction by using scene constraints only [14]. The affine calibration has been

shown to be difficult to achieve. The method presented in [24] recovers the affine

structure first by locating the plane at infinity using the modulus constraint. Then

the Euclidean structure is restored by using constraints on the absolute conic.

There are other methods which use a more direct approach and achieve Euclidean

structure right after the projective one. The method presented by Pollefeys and Van

Gool uses constraints on the absolute dual quadric to recover Euclidean information

[23]. The method can also work with varying intrinsic parameters.

3



The above methods use a projective structure to start with. The projective camera

matrices can be obtained from the computed fundamental matrices [18]. An optimal

way to achieve projective reconstruction of points is given by Hartley and Sturm [17].

The autocalibration methods generally assume that the motion in the sequence is

general enough so that the constraints lead to a unique solution for the calibration.

However, when the motion is not general enough, there are more than one, generally

infinite solutions for intrinsic parameters. A classification of such critical motion

sequences in the case of constant calibration parameters has been made by Sturm

[25].

Aside from the general autocalibration problem, there has been research on particular

cases. A method for affine calibration of a mobile platform making a planar motion is

shown by Beardsley and Zisserman [3]. A closed-form formula to achieve calibration

of a mobile device both in the general motion and planar motion cases is given by

Csurka et al [6]. The method uses real Jordan factorizations of a 3D homography

between projective reconstructions achieved by a moving stereo system. It is also

possible to autocalibrate cameras if homographies between images of the ground

plane can be computed [21].

Given some constraints on the internal parameters it is also possible to calibrate

the camera directly using the form of the recovered fundamental matrix. One such

method is presented by Brooks et al [4].

It is also possible to perform autocalibration from purely rotating cameras. For the

case of constant calibration a method is given by Hartley [15] and the extended

version to the case of varying intrinsic parameters is presented by Agapito, Hartley

and Hayman [7].

1.4 Methods Used

The system is designed in the Computer Vision and Artificial Intelligence Labora-

tory of the Electrical and Electronics Engineering Department of the Middle East

Technical University. Two analog cameras are attached to a planar platform almost

in parallel form. The video signals from the cameras are then connected to the frame

grabber card installed on a personal computer.

The manual calibration method uses a planar calibration object. The stereo images
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of the calibration object is taken by capturing single frames with the frame grabber.

The calibration object is composed of a checker board pattern printed on A4 paper

and attached to a planar surface. The corners of the calibration pattern squares

are then extracted automatically using OpenCV C++ Library functions. The four

extreme corners are then selected by the user in each image to allow for a consistent

ordering of the corner points. The calibration software then processes the ordered

corner lists to produce the internal calibration. The algorithm is due to Zhang [33].

The first autocalibration method is the absolute dual quadric method of Pollefeys and

Van Gool[23]. The projective reconstruction is achieved by robust fundamental ma-

trix computation over the image sequences. Then the linear algorithm processes the

obtained projective camera matrices to place constraints on the internal parameters.

The second autocalibration method uses pure rotations of the camera. Different ver-

sions of the algorithm are implemented [7, 15] . The homography relation between

views are computed in a robust manner much like the fundamental matrix computa-

tion. Then the calculated homograhies are used to find calibration parameters. Since

the method requires pure rotations, pan-tilt-zoom cameras are used to capture image

sequences. The camera rotations and zoom are controlled using a C++ software

library written by Zafer Arıcan by a serial port connection.

1.5 Organization of the Thesis

The organization of the thesis is as follows:

• Chapter 2 gives the necessary mathematical background. Some of the algo-

rithms as well as the camera model are detailed.

• In Chapter 3, implemented manual calibration method, the computer setup

used and test results are given.

• Chapter 4 details the implementation of an autocalibration method based on

the estimation of the Absolute Dual Quadric. Robust point matching using

RANSAC algorithm, based on fundamental matrix estimation is also explained.

The test results are given at the end of the chapter.

• Chapter 5 presents another autocalibration method based on pure rotations of

a camera. The robust point matching is implemented using RANSAC based on

5



homography estimation. The results are given at the end of the chapter with a

discussion of the method.

• Chapter 6 begins with a summary of the obtained results in this study. Then

a discussion and possible future enhancements concludes the chapter.
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Chapter 2

Theoretical Background

2.1 Introduction

In this chapter, the necessary mathematical background is presented. Understanding

these basic mathematical concepts is necessary to follow the derivations presented in

Chapters 3, 4 and 5. Section 2.2 presents elements of 2D and 3D projective geom-

etry. The representation of basic geometric entities as well as particular geometric

objects are described. The concept of duality is also introduced. Section 2.3 de-

scribes the projective, affine, similarity and Euclidean classes of transformations of

three dimensional space. For each class the associated invariants and the form of

the transformation matrices are given. Section 2.4 presents the camera model used.

Any deviations from this model are explained in the relevant chapters. The section

ends with “two view relations”. With two views the correspondence problem be-

comes more constrained. The related mathematical concepts are presented such as

the “Fundamental Matrix” and “Epipolar Lines”. Section 2.5 presents methods to

compute the fundamental matrix. In this section, the normalization of data points

is also introduced. This is required for good numerical conditioning of the problem.

Section 2.6 presents a way to triangulate rays in order to infer 3D information from

2D image pixels using the camera model developed. Section 2.7 shows that when

special conditions occur, the relation between images is a simple homography. Also

an algorithm to compute this homography is given.

For a more complete discussion of projective geometry in computer vision, the reader

should refer to the background chapters of [9] or [18]. References for particular

elements are given in the related sections.
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2.2 Projective Geometry

This section will present the two and three dimensional projective entities. In the

representation of these geometric entities, homogeneous coordinates will be used.

The homogeneous coordinates of a 2D point with Cartesian coordinates (x/z, y/z) is

denoted as follows

x = [x y z]T .

The advantage of the homogeneous representation is its ability to treat infinite points

in the same way as finite ones. The points with z = 0 represent points at infinity.

In the homogeneous representation, multiplication by a non-zero scalar does not

change the Cartesian coordinates of the point hence k · x ≡ x. This is true for all

homogeneous quantities and the sign “≈” will be used to denote equality up to scale.

The line ax + by + c = 0 is represented as l = [a b c]T . The line equation can be

written as xTl = [x y 1] [a b c]T = 0. Following these conventions, the line joining

two points x and x′ is represented by l = x × x′. The intersection point of two lines

l and l′ is x = l × l′. The cross product of two 3-vectors is given as

a × b =









a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1









.

In the above formulas it can be seen that the role of points and lines are interchange-

able. This is known as the duality principle and points and lines are called the dual

of each other.

A conic in two dimensions can be written as xTCx = 0 where C is a 3 × 3 symmetric

matrix. The same conic equation can be written in terms of lines tangent to the conic

as lTC∗l = 0 where C∗ is a 3 × 3 symmetric matrix and is called the dual conic. In

the case where C is invertible C∗ = C−1.

A projective transformation of 2D preserves the collinearity of three points and is

represented by an invertible 3 × 3 matrix H. The points can be transformed by

x′ ≈ Hx. To preserve collinearity the lines are transformed by l′ ≈ H−Tl and conics

are transformed by C′ ≈ H−TCH−1. A dual conic transforms as C∗′ ≈ HC∗HT. The

notation H−T is used to denote (H−1)T = (HT)−1.

In two dimensions, objects of particular interest are the line at infinity and the circular

points. The line at infinity is represented by l∞ = [0 0 1]T. It is easy to see that if
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x is a point at infinity then it lies on l∞. Circular points are two complex point on

the line at infinity with homogeneous coordinates I = [1 i 0]T and J = [1 − i 0]T.

These objects are invariants of affine and similarity transformations of 2D space

respectively. Groups of transformations and their invariants (including affine and

similarity transformations) are explained in Section 2.3 for three dimensional space.

In three dimensions a point can be represented by a 4-vector as X = [X Y Z W ]T

which has Cartesian coordinates (X/W, Y/W, Z/W ). As in the case of two dimensions

the points with W = 0 represent points at infinity and multiplying a point vector by

a non-zero scalar does not change the point it represents, k · X ≈ X.

The plane in three dimensions with equation aX + bY + cZ + d = 0 is repre-

sented by a 4-vector Π = [a b c d]T . The plane equation can be written as XTΠ =

[X Y Z 1] [a b c d]T = 0. In three dimensions points and planes are dual to each

other.

In three dimensions the representation for lines is more complicated than the two

dimensional case. The reader may refer to Section 2.2.2 of [18] for various represen-

tations of lines in three dimensions.

A quadric equation in three dimensions can be written as XTQX = 0, where Q is a

4×4 symmetric matrix. The same equation can be written in terms of planes tangent

to the quadric as ΠTQ∗Π = 0, where Q∗ is a 4 × 4 symmetric matrix and is called

the dual quadric. As in the case of conics of two dimension, if Q is invertible then

Q∗ = Q−1.

Table 2.1: Transformation rules for three dimensional objects

Object Transformed Object

Point X′ = TX

Plane Π′ = T−TΠ

Quadric Q′ = T−TQT−1

Dual Quadric Q∗′ = TQ∗TT

A projective transformation of three dimensions is represented by a 4 × 4 invertible

matrix T. Table 2.1 shows the transformation rules for various three dimensional

objects [18].
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In three dimensions there are three objects of particular interest. The plane repre-

sented by Π∞ = [0 0 0 1]T is called the plane at infinity. It is easy to see that all

points at infinity are on this plane. The points on this plane correspond to directions

in 3D. All lines parallel to each other intersect at a unique point on this plane. Hence

any transformation that preserves parallelism of lines should preserve Π∞.

The second object is called the absolute conic and represented by Ω∞. Ω∞ is a point

conic on Π∞ with C = I4×4 and is composed of only imaginary points. The impor-

tance of Ω∞ is that it can be used to measure angles (See [18] for more information).

Hence if a transformation changes Ω∞ then there is no trivial way to measure angles.

The image of Ω∞, ω is also closely coupled with intrinsic camera calibration (See

Section 2.4).

The third object is the absolute dual quadric, denoted by Q∗∞ which is dual to Ω∞. In

a metric frame, Q∗∞ is represented by the following 4 × 4 homogeneous matrix

Q∗∞ =

[

I3×3 0

0T 0

]

.

Q∗∞ combines the information encoded by both Ω∞ and Π∞. The use of the absolute

quadric in autocalibration is due to Triggs [29].

2.3 Stratification of 3D Space

In this section transformations in three dimensions are divided into classes. This clas-

sification helps in the understanding of projective concepts and in the development

of new algorithms. This classification has been introduced to the computer vision

literature by Faugeras [8].

With each class of transformations there are a number of associated invariant prop-

erties which do not change under a transformation of the respective class. These

invariants have helped the development of stratified approaches to many problems in

computer vision. These stratified approaches start with the most general class and

then restrict the solution by recovering invariants of the more restrictive classes while

updating the geometry of the problem.

The most general class of transformations is the group of projective transformations.

As stated in Section 2.2, projective transformations preserve the collinearity of points.

Projective transformations of 3D are represented by 4×4 homogeneous matrices which

10



are invertible. As in the case of homogeneous vectors, homogeneous matrices have

arbitrary scale such that k · T = T. The matrix entries are not constrained. Since

projective group is the most general case, it has only a few invariants. Most notably

projective transformations preserve intersection, tangency and the cross ratio. The

cross ratio is a ratio of ratios. The cross ratio of four collinear points is defined to be

Cr(x1,x2;x3,x4) =
‖x1 − x3‖ ‖x2 − x4‖
‖x1 − x4‖ ‖x2 − x3‖

.

The next class is the group of affine transformations. Affine transformations preserve

every property that is preserved by the projective group and has a number of very

useful invariants itself. Most notably parallelism is preserved by the affine group.

This corresponds to the fact that the plane at infinity is preserved by affine trans-

formations and if a transformation preserves the plane at infinity then it is an affine

transformation. For affine transformations the last row of the transformation matrix

is [0 0 0 1]. Hence the matrix has the special form
[

A t

0T 1

]

and to see that this preserves Π∞ consider
[

A t

0T 1

] [

X

a

]

=

[

AX + at

a

]

.

If a = 0 then the point is at infinity as well as the result, if a 6= 0 then point is finite

and so is the result. Hence this preserves Π∞ as a set however the points change

their places over Π∞.

A more restrictive class of transformations is the group of similarity transformations.

A similarity transformation preserves every invariant of the affine group plus angles.

This is only possible since a similarity transformation preserves the Ω∞. In the case of

a similarity transformation the transformation matrix is even more constrained. The

upper left 3 × 3 part of the matrix is a scalar times a rotation matrix. A similarity

transformation is a combination of rotation, isotropic scaling and translation. The

matrix has the form
[

sR t

0T 1

]

where R is a rotation matrix.

The most constrained class is the group of Euclidean transformations. These trans-

formations correspond to a rotation about an arbitrary axis plus translation and are
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represented by a matrix of the form

[

R t

0T 1

]

where R is a rotation matrix. Since there is no scaling absolute lengths can be

measured after a Euclidean transformation. In the autocalibration process there is

no way to recover this level of representation without external information such as a

reference length.

See related book on the sucject for a more complete discussion [9, 18].

2.4 Camera Model and Two View Geometry

In this section the camera model used, namely the pinhole camera model is described.

The detailed derivation of the model is presented using the notation of Hartley and

Zisserman [18]. The model presented in this section does not include any distortion

model. In Chapter 3, the radial distortion is also added to this model. In the first

part of this section, the relation between the 3D points and pixel values of their

projections is investigated. Meanwhile a projection matrix composed of internal and

external parameters is formed. In the second part, the relation between the 2D image

points of two views of the same scene is derived.

C

XC

x

x–axis

y–axis

z–axis

Figure 2.1: Camera coordinate system and projection of a point on the imaging plane
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To develop a consistent and clear model of camera geometry, first a number of co-

ordinate systems should be introduced. The first of these coordinate systems is the

“Camera Coordinate System”. The center of this coordinate system is the camera

center. The imaging plane is parallel to the xy plane of this coordinate system, placed

at a distance f on the z-axis. f is called the focal length. The point at which the

z-axis intersects the imaging plane is called the principal point. This setup is shown in

Figure 2.1. The perspective projection equations are valid in this coordinate frame.

Hence if point XC is a point in this coordinate frame with homogeneous coordinates

(XC, YC, ZC, WC) then its projection can be written as

x =









x

y

z









=









f 0 0 0

0 f 0 0

0 0 1 0























XC

YC

ZC

WC















where the projected point x is in a 2D homogeneous coordinate system in the imaging

plane with the principal point as its origin.

When the image is digitized and represented in a computer system the points are

measured in pixels. Hence a transformation from the imaging plane coordinates to

pixel coordinates is necessary. The resulting projection matrix can be written as

P =









fx s u0 0

0 fy v0 0

0 0 1 0









.

The different focal lengths are due to the fact that pixels can be rectangular. The

ratio fy/fx is called the aspect ratio. In the case of square pixels the aspect ratio is

equal to 1. s is called the skew and represents a tilted imaging plane or equivalently

non-rectangular pixels. Skew is given by the equation s = cot(α)fy where α is the

skew angle. Today most of the cameras are manufactured precise enough and skew

is generally assumed to be 0 and α = 90°. u0 and v0 represent a shift in the origin

of the coordinate system. This is due to the fact that pixel units are measured from

the top-left or bottom-left corner of the image. If no information is present then they

are taken to be the coordinates of the mid-point of the image.

The matrix P is called the camera matrix [18]. P is generally decomposed into parts

representing the internal parameters such as focal length and representing perspective

13



(u0, v0)
x–axis

y–axis

(0, 0) u–axis

v–axis

Figure 2.2: Pixel coordinate system

projection. The form of the matrix is

P =









fx s u0

0 fy v0

0 0 1

















1 0 0 0

0 1 0 0

0 0 1 0









= K [I3×3 | 0]

where K is called the internal calibration of the camera. The resulting pixel coordinate

system is shown in Figure 2.2 where (u, v) are the pixel coordinates. Note that x-axis

and u-axis point at opposite directions. This is easily achieved by reversing the sign

of fx. A similar argument is valid for fy.

Up to now it is assumed that the measurements for 3D points are taken in the

coordinate system of the camera. However, in practice the 3D measurements are done

in a world coordinate system. Hence, the 3D measurements should be transformed

from the world coordinates to the camera coordinates. This is easily achieved by a

Euclidean transformation of 3D as

XC =

[

RT −RTt

0T 1

]

XW

where R and t are the rotation and translation of the camera in the world coordinate

system. Hence the resulting camera matrix can be written as

P = K [I3×3 | 0]

[

RT −RTt

0T 1

]

= K
[

RT | −RTt
]

. (2.1)

To simplify the notation, the following form of the camera matrix will be used:

P = K [R | t] (2.2)
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where R and t represent an inverse motion of the camera in the world coordinate

system. Of course the two representations are equivalent. Since R and t depend on

the choice of the world coordinate system, they are called the external calibration of

the camera.

The camera model presented above can be used to analyze the projection of 3D points

and the resulting image. In the following part of this section the inverse problem will

be investigated. The problem is to infer 3D information from several images. It

turns out that a single image is insufficient for this task since a point in an image

back projects to a line and depth is ambiguous (Although scene constraints can be

used to recover depth information, this is not relevant to the study in this thesis.

See [5] for more information on single view metrology). Hence more than one image

is necessary to recover 3D information. The rest of this section is devoted to the

analysis of the case of two images. The derivations will assume the images form a

stereo pair obtained from two different cameras however the same equations apply to

the case of images taken by a single, moving camera.

ΠX

C C′

X

x

x′

l
l′

Figure 2.3: The corresponding points x and x′ lie on the epipolar lines

Consider the case that two images of the same scene are taken by two cameras with

camera matrices P and P′. To recover the depth of a 3D point X, the pixel coordinates

of its projections, x and x′ should be found. If x and x′ are found then the back

projected lines from these points intersect at X. Hence the problem is to find x′

given x where x and x′ are called corresponding points. If no further constraints are

provided, a two dimensional search over the second image is required. However, the

geometry of the problem narrows the search to a single dimension. Let the camera
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centers be C and C′. The 3D point X and the camera centers form a plane ΠX as

shown in Figure 2.3. This plane intersects the imaging planes of the two cameras at

two lines l and l′. Note that projections of X must lie on these lines. Hence if x is

given then the search for x′ is constrained to the line l′.

ΠX

C C′

X

x

x′

l
l′

e

e′

Hπ

Figure 2.4: The epipolar lines pass through the epipoles e and e′

What remains is a way to obtain l′ given x. The line joining C and C′ intersects

the imaging planes at two points e and e′ which are called the epipoles as shown in

Figure 2.4. Note that the lines l and l′ must pass through e and e′, since they are in

the imaging planes and ΠX at the same time. Hence l and l′ are called the epipolar

lines corresponding to points x and x′. Since x and x′ are in the same plane, there

is a homogeneous transformation of 2D taking x to x′ as

x′ = Hπx.

The line l′ passes through x′ and e′ hence can be written as (See Section 2.2)

l′ =
[

e′
]

× x′ =
[

e′
]

×Hπ x

where

[

e′
]

× =









0 −e′z e′y

e′z 0 −e′x

−e′y e′x 0









(2.3)

is the matrix multiplication form of the cross product of two vectors. The matrix

[e′]×Hπ is called the fundamental matrix and denoted by F. The fundamental matrix

has been introduced to the literature by O. Faugeras and Q.-T. Luong (See [22]).

16



The equation of the epipolar line can now be written as

l′ = Fx. (2.4)

The fact that x′ is on l′ can be written as x′Tl′ = 0. Which is equal to

x′TFx = 0. (2.5)

Equation (2.5) is called the epipolar constraint and plays an important role in the

computation of the fundamental matrix. An important property of the fundamental

matrix is that it is of rank 2. The null space is spanned by e. Note that in the case

there is no rotation between the cameras, the imaging planes are parallel to each

other and the epipoles are at infinity.

2.5 Computation of the Fundamental Matrix

The fundamental matrix encodes the geometry of two views. In this section, meth-

ods of computing the fundamental matrix based on known corresponding points is

presented. In particular, solutions for the case of seven and the case of eight or more

correspondences are shown.

When there are eight or more point correspondences, the fundamental matrix can

be found by placing constraints on the solution using equation (2.5). A constraint,

linear in the entries of F is obtained by rewriting the epipolar constraint as

x′TFx =
[

x′ y′ 1
]









f1 f2 f3

f4 f5 f6

f7 f8 f9

















x

y

1









= f1xx′ + f2yx′ + f3x
′ + f4xy′ + f5yy′ + f6y

′ + f7x + f8y + f9

=
[

xx′ yx′ x′ xy′ yy′ y′ x y 1
]

f = 0.

(2.6)

If there are eight correspondences then each equation of the form (2.5) can be stacked

together to obtain a linear equation of the form

Af = 0 subject to ‖f‖ = 1 (2.7)

whose solution is the right null vector of A. If there are more than eight correspon-

dences than the problem is over constrained and a least-squares solution is found by

the singular value decomposition (SVD) of A. The SVD of a rectangular matrix is of
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the form A = UWVT where U and V are orthogonal matrices and W is a diagonal matrix

with non-negative entries. The diagonal elements of W are called the singular values of

A. The columns of U and V are the left and right singular vectors of A respectively. In

this case the solution is the unit right singular vector corresponding to the smallest

singular value of A. The constraint ‖f‖ = 1 is chosen to ensure a unique solution

since F is a homogeneous matrix whose scale is arbitrary. In any case, the algorithm

is called the eight point algorithm.

The computed F matrix satisfies the epipolar constraint, but is not necessarily of rank

2. As a result, the epipolar lines corresponding to this F matrix do not intersect at a

single point e, but are scattered in the vicinity of the epipole [18]. One way to solve

this problem is to compute a new matrix F̂ of rank 2 that is closest to the computed

F matrix in the sense that the Frobenius norm
∥

∥F− F̂
∥

∥

F
is minimized. The solution

is found by taking the singular value decomposition of F as

F = U









w1 0 0

0 w2 0

0 0 w3









VT

and then computing the new fundamental matrix F̂ as

F̂ = U









w1 0 0

0 w2 0

0 0 0









VT

assuming that the singular values are in descending order.

Although the above procedure is mathematically correct, the obtained solution is not

robust to noise in data points. Hartley has pointed out that the reason for this is

the numerical conditioning of the matrix A [16]. The entries of the matrix are of

different orders where sometimes two pixel coordinates are multiplied and sometimes

the entry is simply equal to 1. Hartley also showed that an affine transformation

of the coordinates can help to increase the numerical conditioning of A dramatically.

The affine transformation is chosen to center data points around origin and scale the

average distance of the points from the origin to
√

2. The computations are done

using the normalized data and the resulting F matrix is converted so that the epipolar

constraint is satisfied for the unnormalized data. The procedure is as follows:

1. Compute the mean values of the x and y coordinates of the data points in the
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first and second images as

mx =
1

n

n
∑

i=1

xi, my =
1

n

n
∑

i=1

yi, mx′ =
1

n

n
∑

i=1

x′
i, my′ =

1

n

n
∑

i=1

y′i

2. Compute the average distance of the data points to the origin as

σx =
1

n

n
∑

i=1

√

[(xi − mx)2 + (yi − my)2]

σx′ =
1

n

n
∑

i=1

√

[

(x′
i − mx′)2 + (y′i − my′)2

]

3. Transform points as

x̂ =
√

2 ·
(

x − mx

σx

)

, ŷ =
√

2 ·
(

y − my

σx

)

x̂′ =
√

2 ·
(

x′ − mx′

σx′

)

, ŷ′ =
√

2 ·
(

y′ − my′

σx′

)

4. Compute the matrix F′ using (x̂, ŷ, x̂′, ŷ′) with the 8-Point algorithm.

5. Compute the matrix F = T′TF′T where

T =









√
2

σx

0 −
√

2mx

σx

0
√

2
σx

−
√

2my

σx

0 0 1









, T′ =









√
2

σ
x
′

0 −
√

2mx′

σ
x
′

0
√

2
σ
x
′

−
√

2my′

σ
x
′

0 0 1









The above normalization procedure should be used at any point where numerical

conditioning may present a problem. In the computation steps generally the normal-

ization is carried out in the beginning, all computations are done on the normalized

data and then an inverse transformation is carried out on the computed entities.

However it should be noted that at intermediate steps some quantities such as dis-

tance measures may need to be computed. The computed values may not be the

same for normalized and unnormalized data. Hence if a distance is computed at in-

termediate steps either the unnormalized entities should be used in the computation,

or if possible the computed distance itself should be renormalized.

When only seven corresponding points are known, up to three solutions for the fun-

damental matrix are possible. Although the solution may not be unique the seven

point algorithm plays an important role in robust estimation algorithms as will be

explained in Chapter 4. In the case of seven points, the matrix A in equation (2.7)

is 9 × 7 hence is of rank 7. This results in a null space of dimension 2. Let F1 and
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F2 be the F matrices corresponding to the unit vectors spanning the null space of A.

Then the solution is of the form

F = αF1 + (1 − α)F2. (2.8)

Applying the constraint det F = 0, a third order equation in α is obtained. The real

solutions for α is used to compute F, hence there are either one or three solutions.

One advantage of the 7-Point algorithm is that the solutions are of rank 2. Hence

further steps of ensuring the rank constraint are not necessary.

For the computation of the fundamental matrix, there are some degenerate config-

urations of 3D points. For example, if all the 3D points used in the F computation

lie on a plane then the corresponding points are related by a homography, hence

the camera geometry is not constrained enough to allow a unique solution for the F

matrix. These degenerate cases should be detected and avoided if possible. One way

to increase robustness is to choose corresponding points that are scattered evenly

across the image which decreases the probability of a degenerate case. This also in-

creases the accuracy of the estimated F matrix. For a comparison between methods

for fundamental matrix computation the reader may refer to [27].

2.6 Triangulation

As stated in Section 2.4 to reconstruct a 3D point, the corresponding points are back

projected to lines. Ideally the back projected lines intersect at the 3D point. However

in practice due to noise in the detection of corresponding points, the back projected

lines do not intersect. Hence, there is a need to select a point in 3D, that is as close

as possible to the back projected lines. One solution is to choose the mid-point of the

line segment that joins the points on the lines that are closest to each other. The other

solution is to use the camera matrices in the reconstruction process. In this thesis

the latter method is preferred due to its applicability in projective reconstruction.

Suppose that the camera matrices for the images are P and P′. Then a projected

point can be written as x = PX. Hence the cross product x×PX must be zero. This

provides two linear constraints on the entries of X. To completely determine X, two

other constraints come from the equation x′ × P′X = 0. To obtain a unique solution,

the homogeneous scale of X should be eliminated hence the constraint ‖X‖ = 1 is
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added to the problem. Assume that the structure for the camera matrices is

P =









r1

r2

r3









, P′ =









r′1

r′2

r′3









where ri and r′i are row vectors of size 1 × 4 corresponding to the ith rows of P and

P′ respectively. Now the form of the equations is

AX =















xr3 − r1

yr3 − r2

x′r′3 − r′1

y′r′3 − r′2





























X

Y

Z

W















= 0 subject to ‖X‖ = 1. (2.9)

The solution is the unit eigenvector of A corresponding to the smallest singular value.

The solution is a 4-vector and can represent points at infinity. This is particularly

useful when computing a projective reconstruction of the scene, since in this case

some parts of the scene may be reconstructed at infinity. In the case of projective

reconstruction there are other issues that should be considered and an optimal method

is presented by Hartley and Sturm [17]. The main difficulty is that since Euclidean

information is not available, terms like middle-point do not have any meaning and a

method invariant to changes in the projective frame is needed. For other triangulation

methods, along with a comparison between them, the reader may refer to [17].

2.7 Homography Relations

When some special conditions are satisfied, points in two different views are related

to each other by a transformation of 2D, called a homography. A homography is

represented by a 3× 3 homogeneous matrix, H. The homography relation is given as

x′ = Hx (2.10)

where x is a point in the first view and x′ is the corresponding point in the second

view. In effect, H can be used to transfer points in the first view to corresponding

points in the second view.

When multiple images of a planar scene is acquired, the obtained images are related

by a homography. To see that this is possible let the world coordinate system z-axis

be orthogonal to the plane and let the origin of the world coordinate system be on
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the plane. Hence, for all points on the plane z coordinate is equal to zero. Now

consider a point of this plane X = [X, Y, 0, 1]T. Assuming the camera matrix is P,

the projected point can be written as

x = PX = K
[

r1 r2 r3 t
]















X

Y

0

1















= K
[

r1 r2 t
]









X

Y

1









. (2.11)

Writing K[r1 r2 t] = H1 and X̂ = [X, Y, 1]T the equation becomes

x = H1X̂. (2.12)

Following a similar argument, it can be shown that for another view, the same point

X projects onto

x′ = H2X̂. (2.13)

Writing X̂ = H1
−1x,

x′ = H2H1
−1x = Hx (2.14)

is obtained. Note that the computed homography is independent of the choice of the

world coordinate system.

When the camera motion has only a rotational component, the acquired images are

also related by a homography. To see this, assume that the first image is located at

the origin and hence has the projection matrix

P = K[I | 0].

Let the camera matrix for the second view be

P′ = K′[R′ | 0]

where R′ is the rotation between the first and the second views. Hence a world point

X = [X Y Z 1]T is projected as

x = KX̃, x′ = K′R′X̃

where X̃ = [X Y Z]T. Writing X̃ = K−1x,

x′ = K′R′K−1x

is obtained. The matrix H = K′R′K−1 is the homography between the first and the

second views.
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The Direct Linear Transformation (DLT) algorithm is used to compute a homography

between two images. The relation given as Equation (2.10) can be rewritten as

x′ × Hx = 0.

Hence, the following linear system of equations is obtained

Ah =









0T −xT y′xT

xT 0T −x′xT

−y′xT x′xT 0T









h = 0. (2.15)

where x′ = [x′ y′ 1]T and h is the vector containing the elements of H in row major

order [18]. Note that only two of the rows of A are linearly independent. If four

corresponding points are given, this system can be solved for a unit vector h and

the homography can be obtained. The vector is chosen to be a unit vector since H

is of arbitrary scale and a unique solution should be guaranteed. If more than four

correspondence is available, then the least squares solution is obtained by SVD as

the unit right singular vector of A corresponding to the smallest singular value.

Of course the correspondence data should be normalized as detailed in Section 2.5.

Then the computed homography H′ is normalized as

H = T′
−1
H′T.

For a detailed discussion of DLT see [18].

2.8 Summary

In this chapter background information on projective geometry, camera model, two-

view relations as well as some algorithms to compute the fundamental matrix and

3D points based on corresponding points are presented.

It is shown that the use of projective geometry both simplifies the notation and

provides invaluable insight into the problem structure. The equations such as (2.2)

can not be written in the convenient matrix form without the homogeneous notation

or the presented projective concepts. The projective entities and transformations

introduced in this chapter are used extensively in the following chapters.

In sections 2.4 and 2.5 the fundamental matrix along with methods to compute it

from point correspondences is described. The Fundamental matrix is an essential
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tool in the computation of the multiple view geometry. The point correspondences

depend on F, which in turn depends on the point correspondences. This coupling

itself presents a difficulty in the solution of structure and geometry computation.

However the combination of robust algorithms and powerful optimization methods

such as bundle adjustment, uses this coupling to solve both problems simultaneously.

The triangulation method of Section 2.6 will be used in Chapter 3 to provide mea-

surements to evaluate the performance of the calibration procedure.

The homography relations are used in Chapters 3 and 5 in the calibration processes.

Chapter 3 uses the homography relation for the case of a planar scene and Chapter 5

uses a set of homographies to relate images taken by a rotating camera.
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Chapter 3

Manual Calibration

3.1 Introduction

In this chapter the implementation of the manual calibration system based on the

method presented in [33] is explained. The method has been chosen for its flexibility

in the construction of the calibration pattern and ease of implementation. In general

manual calibration methods use a calibration object with precisely known 3D struc-

ture to obtain camera calibration. To achieve this the corresponding imaged points

of the calibration object should be detected with high precision in the images. Then

the relations between imaged points and 3D points are used to obtain parameters of

the camera model.

Section 3.2 describes the camera setup and the calibration pattern used. The image

sequences used in the calibration process are also explained. Section 3.3 will show

how the imaged points are detected and the computation of a planar homography

between the imaged points and the 3D coordinates of the calibration pattern. In Sec-

tion 3.4 the constraints on the internal calibration are obtained using the computed

homography and then an initial solution is found using a linear method. Section 3.5

shows how the distortion effects are added to the camera model developed in Sec-

tion 2.4 and the initial solution found in Section 3.4 is used to compute a better

calibration using a non-linear algorithm including the distortion model. Section 3.6

shows a way to obtain external calibration of the stereo camera system. Finally in

Section 3.7 the obtained calibration results for the stereo system is presented and the

stereo system is used to obtain 3D information from the acquired images.
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3.2 Camera Setup

The camera system used in this thesis is a stereo pair of cameras attached to a fixed

platform approximately in a parallel position. The cameras have zoom capability

but during the manual calibration procedure this capability should not be used. The

cameras have PAL output connectors which are connected to the Matrox Meteor

frame grabber card located on a PC Desktop System. The frames from the camera

system are captured and stored on the computer system using the Matrox MIL-

Light software. Table 3.1 shows the hardware and software used in the testing of the

algorithms in this thesis.

Table 3.1: Hardware and software setup used in the testing steps

System Properties

PC Desktop System Intel Pentium 4 2.4GHz

512 MB RAM

Windows XP Proffessional

Frame Grabber Card Matrox Meteor II/Standard

Analog Camera Sony FCB-IX47AP

IDE Microsoft Visual C++ 2003

Software Libraries
Intel OpenCV Library beta3.1

Matrox MIL-Light 7.5

The calibration object used in the computation of internal and external calibration is

a planar checkerboard pattern. The checkerboard pattern is obtained by a laser qual-

ity printer on A4 sized paper. The use of the checkerboard pattern allows sub-pixel

corner detection of checkerboard corners hence increasing accuracy. The calibration

pattern is shown in Figure 3.1. Each square box over the calibration pattern has di-

mensions 30mm × 30mm. Only the inner corners are used in the calibration process

giving 8 × 6 = 48 feature points per image of the calibration pattern.

The internal calibrations for the cameras are found individually. Then internal cali-

bration together with the stereo images are used to obtain the external parameters.

An alternative way is to obtain both internal and external parameters at the same

time. However this requires more sophisticated parametrization schemes in the non-
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Figure 3.1: An image of the calibration pattern used in the calibration process

linear algorithms hence it is not preferred in this study.

The implementation is tested on several image sequences. To be able to refer to these

sequences, their labels together with information on the image contents is presented

in Table 3.2. Image sequences Leftseq1 and Leftseq2 correspond to the same camera

settings however the digitizer is used to sample an image of smaller size. A similar

argument applies to Rightseq1 and Rightseq2. Overall the scale column shows the

scaling of the image in both directions. The scaling is done by using the related frame

grabber options. The thumbnail views of the sequences are given as Appendix D.

3.3 Homography Computation

The first step in the calibration process is to obtain a 3 × 3 matrix representing a

homography between the imaged points and the 3D points of the calibration pattern.

To make this possible the world coordinate system is chosen so that its x and y axes

correspond to the x and y axes of the pixel coordinate system with the top left corner

point as the origin [33]. Hence a corner point which is third from the left, fourth
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Table 3.2: Image sequences used in the manual calibration process

Image Sequence Resolution # of Images Scale Properties

Leftseq1 768 × 576 12 1 Wide-Angle

Rightseq1 768 × 576 12 1 Wide-Angle

Leftseq2 384 × 288 10 0.5 Wide-Angle

Rightseq2 384 × 288 10 0.5 Wide-Angle

Leftseq3 384 × 288 9 0.5 Telephoto

Rightseq3 384 × 288 9 0.5 Telephoto

Leftseq4 384 × 288 10 0.5 Telephoto

Rightseq4 384 × 288 10 0.5 Telephoto

from the top has 3D homogeneous coordinates [2 × 30, 3 × 30, 0, 1]T = [60, 90, 0, 1]T

in the world coordinate frame where all units are in mm. In Section 2.7 it is shown

that the relation between the point on the plane and the imaged point is given by

x = HX̂ (3.1)

where X̂ = [X, Y, 1]T.

Hence a homography is obtained between image features and 3D points. The aim

is to compute this homography which will be used in the next section to constrain

the internal parameters. In order to do this first checkerboard corners are detected

to sub-pixel resolution. The detected corners are ordered interactively in the left to

right, top to bottom order. This way correspondences between image pixels and 3D

points are obtained.

An initial homography is calculated using the normalized DLT method described in

Section 2.7. This initial homography is then refined using Levenberg-Marquardt min-

imization algorithm. The cost function is the sum of the squared distances between

the imaged pixels and the transferred 3D points using H. In practice this non-linear

minimization step is found to provide improvement only in isolated cases. In most

of the cases the linear estimation works just as fine. The comparison is based on the

residual pixel error which in this case is defined to be

ǫres =

√

√

√

√

1

2n

n
∑

i=1

∥

∥

∥
xi − HX̂i

∥

∥

∥

2
(3.2)
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where xi and X̂i is the ith corresponding pair of points. See [18] for the definition of

residual error in different cases.

3.4 Internal Calibration

The calculated homographies are used to place constraints on the internal parameters.

To obtain these constraints consider the equation

H = λ K
[

r1 r2 t
]

=
[

h1 h2 h3

]

where λ indicates the unknown homogeneous scaling factor of the estimated H. Using

orthonormality of r1 and r2 the following constraints are derived

rT

1 r2 =
(

K−1h1

)T
K−1h2

= hT

1 K
−TK−1h2 = 0

(3.3)

rT

1 r1 = rT

2 r2

hT

1 K
−TK−1h1 = hT

2 K
−TK−1h2.

(3.4)

These constraints are then used to solve for the internal parameters of the camera

(See [33] for details). At least three views are required if no information is available

and two views are sufficient if skew is assumed to be zero. The solution obtained

from this linear algorithm is then used to calculate the external parameters for each

view.

After the linear step we have a complete projection model for each view. Hence we can

project the 3D points onto the imaging planes and the resulting projections should

match with the detected corner points. In practice this is not satisfied. Hence a non-

linear minimization technique is used to minimize the sum of squared distances of the

projected points and the detected corner points. This requires a parametrization of

the internal and external parameters. The parametrization of K and t is easy and is

equal to the unknown entries. The parametrization of R is done using the Rodrigues

formula as described in Appendix A [33].

In contrast to the homography computation the non-linear minimization step for the

internal calibration is an essential step. The residual error is significantly decreased

during the minimization and all parameters of the calibration is optimized.
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3.5 Radial Distortion

Up to now it is assumed that the camera model conforms to the pinhole camera model.

However this is not true for all imaging conditions. In particular for shorter focal

lengths (in the wide-angle settings) the image is subject to a non-linear distortion.

Since the distortion amount is related to the distance from the principal point the

distortion is called the radial distortion. In this section radial distortion model is

shown and a way to undistort points when the distortion parameters are known is

described.

Radial distortion is applied to points after they are projected onto the imaging plane

but before changing to the pixel coordinates. Since it is a non-linear effect we can

not use the matrix notation. Let the notation x̃ = RadialDistort(x) denote that the

projected point x is distorted radially to get point x̃. The complete camera model is

then

x = [R | t]X

x̃ = RadialDistort(x)

x̂ = Kx̃.

(3.5)

The radial distortion function applies only to the radial component and is related to

the even powers of the radial component. Hence if a point with polar coordinates

(r, θ) is distorted, the resulting point has the same angle θ but the radius is distorted

as

r̃ = r
(

1 + κ1r
2 + κ2r

4
)

(3.6)

where κ1 and κ2 are radial distortion coefficients [33]. In this model two coefficients

are used. Higher order models are possible but their effects tend to diminish very

rapidly.

In the calibration process the effect of the radial distortion is added after an initial

solution is found for the internal and external calibration. As indicated in Section 3.4

the non-linear minimization step minimizes the distance between the detected corners

and the projected points. Now the projection is done using Equation (3.5). The initial

values for κ1 and κ2 are taken as zero.

Although calculating the distorted points is easy, the inverse transformation does

not have a closed form expression. Hence an iterative approach is necessary. We

have simply used a gradient descent approach to accomplish the undistortion. In the
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undistortion problem a distorted point with polar coordinates (r̃, θ) and the distortion

coefficients κ1 and κ2 are given. The aim is to find the point (r, θ) that minimizes

ϕ =
[

r̃ − r
(

1 + κ1r
2 + κ2r

4
)]2

. (3.7)

The algorithm used in the computations is given in Appendix B.

3.6 External Calibration

In the camera setup used the left camera coordinate system is chosen to be the

world coordinate system. The external calibration of the stereo camera system is

then defined to be the rotation and translation of the right camera with respect to

the left camera. The already computed information can be used to calculate these

two parameters if the computations are based on stereo images of the calibration

pattern. Assume that the rotation and translation from the world coordinates to the

left and right imaging planes are (R0, t0) and (R1, t1). Then the transformation from

the left camera to the imaging plane is the inverse transformation
(

RT

0 ,−RT

0 t0

)

. The

transformation from the left camera to the right camera can then be computed as
[

R1 t1

0T 1

] [

RT

0 −RT

0 t0

0T 1

]

=

[

R1R
T

0 −R1R
T

0 t0 + t1

0T 1

]

(3.8)

where the external calibration is
(

R = R1R
T

0 , t = −R1R
T

0 t0 + t1

)

.

In earlier discussions the world coordinates system is taken to coincide with the planar

surface of the calibration pattern. Hence the orientation of each camera with respect

to this common coordinate system has already been computed. Then for each pair of

images we can compute the external calibration of the camera system. However since

previous steps used a single camera system, the constancy of the external calibration

of the stereo camera system is not enforced during the computation. This results in

multiple solutions for the external calibration.

One way to solve this problem is to compute the residual error for each case and

to choose the one corresponding to the smallest residual error. Another way is to

combine the solutions possibly by taking a weighted average using residual error

information. However these methods are suboptimal. An optimal way can be found

by enforcing the constancy of the external calibration in the non-linear minimization

by a suitable parametrization. In the next section the computation of the external

calibration is based on choosing the calibration with the minimum residual error.
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The results of this approach is shown to perform well enough for the task of robot

navigation.

3.7 Results and Conclusion

In this section the results of the implemented manual calibration algorithm will be

presented. The algorithm has been tested on the image sequences listed in Table 3.2.

Table 3.3: Internal calibration results

Sequence fx fx/fy skew α u0 v0 κ1 κ2

Leftseq1 909.003 0.9987 -0.078 90.000 378.34 310.51 -0.279 0.367

Rightseq1 904.629 0.9989 0.051 90.000 365.39 312.15 -0.267 0.280

Leftseq2 454.189 0.9981 0.015 90.000 181.60 151.73 -0.290 0.362

Rightseq2 452.501 0.9986 0.174 90.000 180.56 147.70 -0.267 0.336

Leftseq3 1522.48 0.9995 0.076 90.000 186.89 147.73 0.088 -10.8

Rightseq3 1631.99 0.9983 1.074 89.999 181.17 149.03 0.192 -13.3

Leftseq4 2033.44 0.9979 1.656 89.999 156.18 146.85 -0.216 -0.536

Rightseq4 2272.06 0.9957 6.449 89.997 166.74 129.98 -0.460 132.9

The calculated internal calibration at the end of the non-linear minimization step is

listed in Table 3.3. The aspect ratio is very close to 1 indicating square pixels as

expected. The skew value are found to be very close to zero. Since Leftseq1 and

Rightseq1 are obtained with the same camera as Leftseq2 and Rightseq2 respectively,

the calibration should be at least close in both cases. Since the images are scaled

by 0.5 in the case of Leftseq2 and Rightseq2 the focal lengths and principal point

coordinates are nearly half the values obtained for Leftseq1 and Rightseq1. Especially

the focal lengths have the same ratio as required. This points to the fact that a

consistent set of results has been obtained using different image sets. The last two

rows shows the results for the telephoto setting. The focal length is much larger as

expected. For the sequence Rightseq4 the value for κ2 is found to be 132.938. This

is the result of the fact that the focal length is very large and the radial components

become very small. Since κ2 value is the multiplier for the fourth power its effect is

very small. Hence the non-linear step without bounds on this value swept away from
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the actual value. The value of the κ2 will be taken as zero for sequences Leftseq4 and

Rightseq4 in the further experiments.

Table 3.4: Residual pixel error for all data points in the sequence

Sequence eres (Linear) eres (Non-Linear)

Leftseq1 130.326 0.127

Rightseq1 19.469 0.201

Leftseq2 7.461 0.060

Rightseq2 42.753 0.057

Leftseq3 8.133 0.058

Rightseq3 33.59 0.052

Leftseq4 8.133 0.058

Rightseq4 8.898 0.062

One way to test the model is to project the 3D points onto the images using Equa-

tion (3.5) and to compare these to the detected corners. The quantitative way to do

this to measure the residual pixel error computed with Equation (3.2). Table 3.4 show

the residual pixel error computed considering all points on all images of the sequence

used in the computations. The error value after the linear estimation and after the

non-linear minimization step is shown. The linear step performs very poorly due to

the fact that the radial distortion coefficients are taken as zero and other parameters

are calculated using radially distorted points. As expected the values after non-linear

minimization are very close to zero and the projected points differ by a fraction of a

pixel.

To get a visual feedback the projected points are drawn on the images. Figure 3.2

shows an image from the sequence Rightseq2 with projected 3D points marked as

gray diamonds. The projected points are very close to the detected corners. To show

the effect of the radial distortion the same points are projected without the distortion

model. The resulting image is shown in Figure 3.3. As expected the points away from

the center are subject to radial distortion and the effect can not be neglected.

The radial distortion coefficients can be used to undistort the image. The image can

be sampled to obtain an undistorted version. Figure 3.4 shows a distorted image. The

curvature of the edges of the table and the paper shows the effect of the distortion.
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Figure 3.2: The projected 3D points are very close to the corner points

Figure 3.5 shows the undistorted image.

Although the above results show consistency they are not enough to completely

evaluate the calibration results. The obtained calibration should be tested with real

3D data. For this purpose a test pattern is prepared and attached to a planar surface.

The pattern consists of two line segments each of length 15cm and at an angle of 37°to

each other. Stereo images of the test pattern are captured for Leftseq2, Rightseq2,

Leftseq3, Rightseq3 and Leftseq4, Rightseq4 sequences. The corners are detected to

sub-pixel resolution and the end points of the line segments are picked by the user.

Using the obtained calibration information from these sequences the end points of

the line segments are reconstructed in 3D and the reconstruction is used to compute

the line segment lengths and to measure the angle between them. Figure 3.6 shows

the detected corners and selected end points on the test pattern. The test pattern is

shown as Figure 3.7 with the measured lengths and the angle shown as overlaid text.

The MetaPost code to draw the test pattern is given in Appendix C.

Tables 3.5, 3.6 and 3.7 shows the obtained results for the test pattern. Lengths are

in millimeters. As can be seen from the tables the length estimations and the angle
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Figure 3.3: The points close to the boundary are distorted significantly when radial

distortion is neglected
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Figure 3.4: The distorted image belonging to the sequence LeftSeq1

Figure 3.5: The image is undistorted using the calculated radial distortion coefficients
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Figure 3.6: The end points of the line segments are selected by the user from the

detected corners.
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Figure 3.7: An image of the test pattern with measured lengths and the angle indi-

cated

38



measurements shows that the calibration process is successful. Especially the results

for the telephoto sequences Leftseq3, Rightseq3 and Leftseq4, Rightseq4 show that the

camera system is calibrated to good precision.

Table 3.5: Results of the measurements on the test pattern using calibration from

Leftseq2 and Rightseq2

Sequence Image Number ‖ab‖ ‖ac‖ 6 (bac)

TestSeq1

1 138.646 155.909 41.4

2 143.966 163.909 42.1

3 146.470 152.901 43.4

4 146.049 155.647 40.0

5 149.519 158.492 42.9

6 151.298 160.613 40.2

7 152.992 157.868 38.7

8 152.640 160.784 38.2

9 153.667 154.206 39.1

10 153.682 157.712 38.6

11 154.554 155.466 36.6

12 154.566 154.735 36.3

Average 149.838 157.354 39.8
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Table 3.6: Results of the measurements on the test pattern using calibration from

Leftseq3 and Rightseq3

Sequence Image Number ‖ab‖ ‖ac‖ 6 (bac)

TestSeq2

1 149.976 150.104 37.0

2 150.124 150.433 37.1

3 150.256 149.872 37.3

4 150.032 149.935 36.9

5 150.016 150.105 36.8

6 150.028 151.266 37.6

Average 150.072 150.286 37.1

Table 3.7: Results of the measurements on the test pattern using calibration from

Leftseq4 and Rightseq4

Sequence Image Number ‖ab‖ ‖ac‖ 6 (bac)

TestSeq3

1 150.329 151.278 37.4

2 151.457 150.239 35.5

3 151.468 150.927 36.6

4 152.508 153.132 36.6

5 149.721 151.343 36.4

6 151.179 151.336 35.8

Average 151.11 151.376 36.4
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Chapter 4

Autocalibration by Absolute

Dual Quadric

4.1 Introduction

In this chapter calibration without using 3D information of the scene points is consid-

ered. Although manual calibration using a calibration pattern provides good results

it has several disadvantages. Recent developments in the area of uncalibrated vision

allowed the development of several algorithms to calibrate the cameras on-line, just

using rigidity assumptions on scene points. This is only possible when there is no

motion in the scene points.

Autocalibration methods are based on multiple view relations. In this thesis only two

view relations are considered. As noted in Section 2.4 two view relations are developed

using epipolar geometry and fundamental matrix can be used to pack information on

the relation of two views. Therefore robust estimation of fundamental matrix from

scene point correspondences is a must for reliable autocalibration. Section 4.2 gives

details on robust estimation of scene points. Two methods for the computation of the

fundamental matrix from point correspondences were given in Section 2.5. Section 4.3

gives details on another algorithm based on the minimization of geometric error. The

results of this algorithm is compared to that of the normalized 8-Point algorithm.
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4.2 Robust Correspondence Detection

The estimation of the fundamental matrix requires the computation of the feature

matches between pairs of images. To reliably match features across images some

properties of the feature points should be conserved between images. Although it

is possible to use edge segments as features better results are obtained by matching

corner points across images. Hence corner correspondences are used in the estimation

of the fundamental matrix. The detection of corner points is relatively easy. However

only corners which are invariant to affine changes can be reliably detected across

multiple images especially if there is significant scaling between images. Hence the

corners are detected to sub-pixel resolution using the implementation present in the

Intel Open Computer Vision library. The implementation uses the Harris corner

detector [13]. Figure 4.1 and Figure 4.2 shows the detected corner points over a pair

of images belonging to a sequence used in the autocalibration process. It can be

observed from the figures that many corner points are detected reliably in both of

the images.

After corner points are detected the correspondence between them should be found.

This requires a measure of similarity between corner points. One such similarity mea-

sure is the normalized cross-correlation (NCC) between blocks around the detected

corners. Although there are other measures such as squared sum of differences the

NCC measure is found to be more reliable. Hence a first matching is done using this

measure. NCC is defined to be

NCC =

∑

R(s1 − ms1
)(s2 − ms2

)
√

∑

R(s1 − ms1
)2

∑

R(s2 − ms2
)2

(4.1)

where the summations are over all pixels in the image blocks R centered at the tested

corners, s1 and s2 are the image intensity values at the first and second images,

and msi
is the mean intensity value over R [12]. For each corner point at the first

image the NCC value for each corner in the second image that is within a search

region is calculated. The block size depends on the image size but generally 7 × 7

blocks are used. The search region size depends on the motion of the sequence

but to be on the safe side generally large search regions are used. Typical size of

the search region is 2/3 of the image size. When the correspondence between a

stereo pair of images is to be found, the search region is a narrow band around the

y coordinate of the corner in the left image. Although the NCC measure is quite

robust, the correspondence found in a large region contains many mismatches. In

the next step these correspondence will be refined using robust measures. Hence the

42



Figure 4.1: Detected corners are shown as black circles on the first image

Figure 4.2: Detected corners are shown as black circles on the second image
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correspondence found in this step will be called raw correspondence. Figures 4.3 and

4.4 show the detected raw correspondence between the pair of images with detected

corners shown before.

During raw correspondence formation, multiple matches to a point should be avoided.

In the implementation this is achieved by deleting the already matched corners from

the feature list. Although this is not an optimal choice it has the advantage that

less corners are left in each iteration decreasing time complexity. Also the obtained

NCC values are thresholded to avoid further mismatches. If a corner does not have

a match with an NCC value higher than the threshold then a correspondence is not

generated for this corner. A typical value for the threshold is 0.85.

Since the raw correspondence contains a lot of mismatches the obtained correspon-

dence is not suitable for further computations. In fact these mismatches are outliers

to the Gaussian error model assumed in much of the algorithms. Especially the linear

algorithms find biased solutions in the presence of outliers. Hence a way to classify

the raw correspondences as inliers and outliers is needed. The robust algorithms are

used to achieve this. The implementation presented in this thesis uses Random Sam-

ple Consensus (RANSAC) algorithm introduced in [10] to eliminate outliers. The

algorithm is based on drawing minimal sets of random samples and then classifying

samples as inliers and outliers to the estimated model. The sample set with most

inliers is then taken as the inlier set.

In the case of fundamental matrix computation the minimal set consists of seven point

correspondences. With seven correspondences up to three solutions are possible for

F. However this does not cause a problem since all of the obtained fundamental

matrices can be used in the inlier classification and hence spurious solutions can be

eliminated.

One important issue with RANSAC is how to decide if a sample is inlier or not. In

the case of F matrix computation the distance to the epipolar line should be used.

The epipolar line for a point x is given as Fx, hence the distance of the corresponding

point x′ to the epipolar line is given as

d =
|(Fx)1 · x′ + (Fx)2 · y′ + (Fx)3|

√

(Fx)21 + (Fx)22
(4.2)

where (Fx)i is the ith component of Fx and x′ = [x′ y′ 1]T. A similar distance can

be calculated between x and FTx′. The threshold is generally selected as 1.25 but

in the implementation it is selected as 1 to ensure the inliers are mismatch free.

44



Figure 4.3: Raw correspondance shown as black lines on the first image

Figure 4.4: Raw correspondance shown as black lines on the second image
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The threshold selection is a drawback for the RANSAC algorithm and sometimes its

variant MLESAC is used where the threshold is computed automatically from the

median of the sample errors. However RANSAC can tolerate much higher ratio of

outliers. Hence, it is preferred in the implementation.

Another issue is the number of random sample sets selected before the algorithm

stops. If the ratio of inliers is known a priori then it is easy to compute the number

of iterations necessary to ensure a high probability that at least one sample set

contains all inliers. The required number of iteratons is equal to

n =
log(1 − p)

log(1 − rk
inlier)

(4.3)

where p is the required probability that all samples are inliers, k is the number of

samples in a minimal set and rinlier is the ratio of inliers. p is set to a high value

such as 0.99. In the case of F matrix computation with the 7-Point algorithm k is

equal to 7. This is also the reason to use the 7-Point algorithm instead of the 8-Point

algorithm, i.e. to decrease the number of iterations. In practice the ratio of inliers is

not known a priori. In this case an adaptive scheme is used. Initially the number of

inliers is set to a low value. In each iteration the number of inliers is calculated and

if it is higher than the previous values the number of required iterations is updated

with the new inlier ratio using Equation(4.3). Figures 4.5 and 4.6 show the detected

inliers. The white circles indicate the corner points and the lines in each image are

drawn from the corner point to the corresponding point coordinates.

Also it is better to select the random samples so that they are scattered across the

image. This ensures that the calculated F matrix has the same covariance over the

image. If this is not ensured then the F matrix is biased to a smaller region [18].

After the RANSAC algorithm a set of inliers are detected. However the F matrix is

calculated using only the 7 points in this set. Hence does not reflect the information

from all inliers. Here the 8-Point algorithm is used to find the fundamental matrix

matching all of the inliers.

In finding the raw correspondence a large search region has been used since there

was no information on the possible location of the corresponding point. After the

RANSAC algorithm a fundamental matrix is found. Hence the epipolar lines can

now be computed which can guide the matching process. This fact is used to find

more point matches with a search around the epipolar line. This step ensures that

the potential correspondences are not lost due to the raw correspondence search.
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Figure 4.5: Detected inliers after running the RANSAC algorithm are shown on the

first image

Figure 4.6: Detected inliers after running the RANSAC algorithm are shown on the

second image
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Although guided matching step finds new corresponding points it may introduce new

outliers if the fundamental matrix found after RANSAC is not precise enough. To

avoid this the RANSAC step and guided matching are repeated successively until

the number of inliers does not change. In practice sometimes the number of inliers

oscillate between iteration and a threshold may be used as a stopping criterion.

Figures 4.7 and 4.8 shows the results after iteration has converged.

Overall the implemented algorithm can be summarized as follows:

• Detect Harris corner points in both of the images up to sub-pixel resolution.

• Form raw correspondence by a search over a suitably sized window using the

normalized cross correlation measure.

• RANSAC algorithm given below is used to compute a set of inliers

While p < 0.99

- Select seven random correspondence scattered across the image.

- Calculate a number of F matrices using the 7-Point algorithm and the

randomly selected correspondences.

- For each F matrix find the set of inliers

- Keep the F matrix with the largest number of inliers

• Use the 8-point algorithm to find a fundamental matrix compatible with all

inliers.

• Find more corresponding points using the calculated F matrix and the NCC

measure.

• Iterate the RANSAC and guided matching steps until the number of inliers are

stable.

For more information on robust algorithm for fundamental matrix computation the

reader is referred to [28].
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Figure 4.7: Detected inliers after guided matching and RANSAC algorithm is iterated

are shown on the first image

Figure 4.8: Detected inliers after guided matching and RANSAC algorithm is iterated

are shown on the second image
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4.3 Estimation of Fundamental Matrix Based on Geo-

metric Distance

Up to now the normalized 8-Point and 7-Point algorithms have been used in the

estimation of the fundamental matrix. Although the algorithms perform as required

when the noise level is low, they have some inherent disadvantages. The error that

they minimize is purely algebraic and do not have an immediate geometric meaning.

Also the 8-Point algorithm enforces the rank constraint by simply using the singular

value decomposition however this method is not optimal since the entries of F should

have different weighting [18]. The rank 2 constraint should be enforced using a

suitable parametrization of F.

An alternative method is to minimize a geometric error. In this case the error to

be minimized is the distance that the corresponding points should move to ensure

that the epipolar constraint (Equation (2.5)) is satisfied exactly. This is called the

reprojection error and the error function can be written as

ǫReproj =
n

∑

i=1

(

‖xi − x̂i‖2 +
∥

∥x′
i − x̂′

i

∥

∥

2
)

(4.4)

subject to

x̂′TFx̂ = 0.

In practice minimization of Equation (4.4) requires minimization over the coordinates

of the corresponding points. This increases the size of the problem significantly and

requires special care in the design of the minimization algorithm. Due to these

complications it is preferred to minimize an approximation to this error. A first

order approximation is the Sampson error [18]. The Sampson error is defined to be

ǫSamps =
n

∑

i=1

(x′T
i Fxi)

2

(Fxi)21 + (Fxi)22 + (FTx′
i)

2
1 + (FTx′

i)
2
2

. (4.5)

The minimization of this cost function is relatively easy since the minimization is

over the parameters of F.

The Levenberg-Marquardt minimization algorithm is used in the minimization of

Equation (4.5). The implementation is based on the method described in [14]. The

Levenberg-Marquardt minimization is used commonly in computer vision since it

minimizes the squared sum of n functions and the cost function encountered in com-

puter vision is generally of this form. This is due to the fact that generally it is
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required to minimize the cost over n entities such as correspondences, pixels and

the like. Also the convergence properties of the Levenberg-Marquardt provides the

advantages of both Newton’s Method and Gradient Descent at a relatively low cost.

Of course the Levenberg-Marquardt minimization uses a linear approximation to the

cost function to avoid the computation of the Hessian. Hence, it requires a good

initial point to start with. If this is not satisfied the algorithm may converge to a

local minimum or may not converge at all.

The computation of the fundamental matrix requires a suitable parametrization of F.

A minimization over the nine elements is not attractive because it does not enforce

the rank 2 constraint. A better parametrization is obtained as

F = [t]×M

where

F =









f1 f2 f3

f4 f5 f6

f7 f8 f9









, t =









t1

t2

t3









, M =









m1 m2 m3

m4 m5 m6

m7 m8 m9









.

The skew symmetric nature of [t]× provides the necessary rank deficiency. This

requires a parametrization over 12 entries of t and M. This provides more redundancy

than that is necessary but does not create any problem.

The initial solution may be found using the 8-Point algorithm. Then the initial F is

decomposed into t and M. t is the left null vector of F such that tTF = 0T and can be

obtained by SVD. The decomposition for M can be obtained by writing the equality

for each component of F. Hence nine linear equations are obtained in the parameters

of M plus a scalar term. The following system of linear equations is formed:

Am =









































0 0 0 −t3 0 0 t2 0 0 −f1

0 0 0 0 −t3 0 0 t2 0 −f2

0 0 0 0 0 −t3 0 0 t2 −f3

t3 0 0 0 0 0 −t1 0 0 −f4

0 t3 0 0 0 0 0 −t1 0 −f5

0 0 t3 0 0 0 0 0 −t1 −f6

−t2 0 0 t1 0 0 0 0 0 −f7

0 −t2 0 0 t1 0 0 0 0 −f8

0 0 −t2 0 0 t1 0 0 0 −f9























































































m1

m2

m3

m4

m5

m6

m7

m8

m9

1















































=















































0

0

0

0

0

0

0

0

0

0















































.
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A solution to this system of equations is found by taking the singular vector corre-

sponding to the least singular value of A. The singular vector is normalized so that

the last entry is 1. Although this solution may not be unique it provides a valid

starting point for the minimization process.

After an initial solution is found the Levenberg-Marquardt iterations are used to

minimize the cost function given by Equation (4.5). An iteration of the algorithm

consists of the computation of an increment of the parameters that decreases the cost

function. At each step the increment ∆ to the parameter vector p is computed by

solving the augmented normal equations
(

JTJ + λI
)

∆ = −JTǫi (4.6)

The parameter vector p contains the elements of t and M. It is given as

p =
[

t1 t2 t3 m1 m2 m3 m4 m5 m6 m7 m8 m9

]T

.

In Equation (4.6) ǫi represents the error vector at the ith iteration. J is the Jacobian

matrix and is given as

J =















∂e1

∂p1

∂e1

∂p2
· · · ∂e1

∂p12

∂e2

∂p1

∂e2

∂p2
· · · ∂e2

∂p12

...
...

. . .
...

∂en

∂p1

∂en

∂p2
· · · ∂en

∂p12















where ei is the error term for the ith correspondence computed using a term in

Equation (4.5) and pi is the ith element of p. The computation of the Jacobian

requires the partial derivatives of the error terms with respect to each parameter

pi. Although an analytical formula for the partial derivatives can be obtained a

numerical formulation has been used. The numerical derivative is taken to be the

forward difference approximation as

∂ej

∂pi
=

ej(p1, p2, . . . , pi + δ, . . . , p12) − ej(p1, p2, . . . , pi, . . . , p12)

δ
.

The value of the increment δ is taken to be δ = max(10−6, 10−4pi) as noted in [14].

The parameter λ in Equation (4.6) plays a vital role in the behavior of the algorithm.

When λ is large then the algorithm behaves as the Gradient Descent, when λ is small

the algorithm behaves like Newton’s Method [18]. At each iteration Equation (4.6) is

solved for different values of λ until an acceptable ∆ is found that results in a smaller

error. The initial value of λ is taken to be λ0 = 10−3× (the average of the diagonal

elements of JTJ).
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Of course the correspondences are normalized before starting the algorithm using the

method described in Section 2.5 and then at the end of the algorithm the computed

fundamental matrix is denormalized.

Overall the algorithm consists of the following steps:

1. Normalize correspondences.

2. Find an initial solution using the 8-point algorithm.

3. Compute t and M such that F = [t]×M.

4. While number of iterations is less than a predefined number

(a) Compute J, the error vector ǫi and the total error Ei.

(b) Solve for ∆ using
(

JTJ + λI
)

∆ = −JTǫi.

(c) Compute new F = [t]×M and Ei+1.

(d) If (Ei+1 < Ei) then set λ = λ/10 and increase the iteration counter

else set λ = λ × 10 and go to step 4(b).

5. Compute the unnormalized F matrix.

The evaluation of the algorithms is then based on the residual error which in this

case given by

ǫres =
1

n

n
∑

i=1

(

‖x′
i − Fxi‖2 + ‖xi − FTx′

i‖2
)

. (4.7)

Table 4.1 shows the residual error for the 8-Point algorithm and the nonlinear min-

imization. Results show that the nonlinear algorithm performs slightly better than

the 8-Point algorithm and the performance of the 8-point algorithm is still suitable

when accuracy is not at utmost importance.

4.4 Linear Method Using Absolute Dual Quadric

The method of absolute dual quadric requires the computation a projective recon-

struction. This requires the computation of a set of camera projection matrices Pj

for each view j. A pair camera projection matrices can be computed from the fun-

damental matrix as

P0 = [I3×3 | 0] , Pj =
[

[

e′
]

× F0j | e′
]

(4.8)
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Table 4.1: Residual pixel error for a test sequence

eres (8-Point) eres (Non-Linear)

0.188109 0.187877

0.197193 0.193001

0.146169 0.146029

0.104161 0.104009

0.136168 0.136168

0.157491 0.157486

where F0j is the fundamental matrix between views 0 and j and e′ is the corresponding

left epipole [18]. However given F0j this choice of camera matrices is not unique. The

above set of projection matrices can be transformed by a projective transformation

of 3D and the new set of projection matrices also have the same fundamental ma-

trix. Due to this projective ambiguity, a reconstruction using the calculated camera

matrices will have the same ambiguity hence called a projective reconstruction.

Given an image sequence the first camera projection matrix is taken to be P0 so that

a initial projective frame for the sequence is obtained. Then using the fundamental

matrices F0j the camera matrices for other views are obtained. To remove the pro-

jective ambiguity the form of the absolute dual quadric needs to be recovered in the

computed projective frame. Once the absolute dual quadric is computed then it is

easy to compute the calibration for each view. Note that absolute dual quadric is a

quadric in three dimensions, so it is represented by a symmetric matrix of dimensions

4 × 4 and also it is of rank 3.

A linear algorithm to constrain the absolute dual quadric is introduced in [23] so

that given enough projective camera matrices one can solve for the calibration of the

cameras even when the intrinsic parameters are varying. The constraining equation

is that the absolute dual quadric projects to the dual image of the absolute conic in

each view:

ω∗
j = PjQ

∗
∞PT

j for each j = 0, . . . , n. (4.9)

The dual image of the absolute conic (ω∗
j ) is directly related to the internal calibration
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as

ω∗
j = KjK

T

j .

So the constraints on the internal parameters can be written on constraints on ω∗.

And using Equation (4.9) these constraints can be used to constrain Q∗∞. Assume

that the form of K is

K =









fx s u0

0 fy v0

0 0 1









.

Then the form of ω∗ is

ω∗ =









f2
x + s2 + u2

0 sfy + u0v0 u0

sfy + u0v0 f2
y + v2

0 v0

u0 v0 1









. (4.10)

If the coordinates of the principal point is taken to be at the center of the image

then the coordinates of each point can be translated so that u0 = v0 = 0. Further if

skew is assumed to be zero and aspect ratio is taken to be unity then the form of ω∗

becomes

ω∗ =









f2 0 0

0 f2 0

0 0 1









. (4.11)

Considering Equation (4.9) and Equation (4.11) together the following constraints

are avaliable on Q∗∞:

(PjQ
∗
∞PT

j )1,2 = 0

(PjQ
∗
∞PT

j )1,3 = 0

(PjQ
∗
∞PT

j )2,3 = 0

(PjQ
∗
∞PT

j )1,1 = (PjQ
∗
∞PT

j )2,2

(4.12)

where (PjQ
∗
∞PT

j )k,l is the component at the kth row and lth column. Since these

constraints are linear in the entries of Q∗∞ if enough number of these equations are

stacked on top of each other then the obtained system of linear equations can be solved

for Q∗∞. Then using Equation (4.9), ω∗
j can be obtained for each view. Using Cholesky

decomposition of ω∗
j , calibration is obtained for each view. For more information on

Cholesky decomposition see [11]. The C++ code used in the implementation of

Cholesky decomposition is given in Appendix F.

One drawback of the algorithm is that the planar motion is a degenerate motion

for the autocalibration methods based on the recovery of the absolute conic or the
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absolute dual quadric. A unique solution is not possible if the motion consists of

translations over a plane and rotations around a screw axis that is perpendicular to

the translation plane. Hence when capturing autocalibration sequences this situa-

tion should be avoided. These kind of motion sequences are called critical motion

sequences and have been studied extensively [25, 26].

4.5 Results and Conclusion

The algorithm is tested on a sequence of images captured by the stereo system

mounted on the robot platform. Since planar motion is a degenerate motion se-

quence for the algorithm, the robot platform also makes a tilt motion in the first

couple of frames to avoid degeneracy. The fundamental matrices between the first

view and all other views have been computed. These fundamental matrices are then

used in the computation of focal lengths in each view. Since the aspect ratio is taken

to be unity and the principal point at the center of the image only the focal lengths in

the x-direction are estimated. The resulting focal lengths and the manual calibration

results are presented in Table 4.2.

Table 4.2: The results of the autocalibration algorithm on the first sequence

View fx (Manual Calibration) fx (Autocalibration)

0 454.2 75.04

1 454.2 112.7

2 454.2 182.9

3 454.2 113.0

4 454.2 121.8

5 454.2 136.8

6 454.2 34.50

The results show that the algorithm has failed to find a reliable focal length. The

tests are then performed on images captured by a digital camera. Table 4.3 shows

the resulting focal lengths.

Although the focal length for view 1 is close to the expected value a consistent focal

length could not be obtained.
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Table 4.3: The results of the autocalibration algorithm on the second sequence

View fx (Manual Calibration) fx (Autocalibration)

0 1137.49 5909.0

1 1137.49 1338.2

2 1137.49 839.72

There may be several reasons for the failure of the algorithm. The first one is the

problem of critical motion sequences. The sequences are obtained trying to avoid

such situations but autocalibration algorithms are known to perform poorly also

when the sequence is close to a critical motion sequence. This is not very easy to

avoid especially when using the robot platform with a fixed set of cameras. If motion

type is known to be strictly planar then that information should be used if possible.

Also the sequence length presents another problem. While setting up a projective

set of camera matrices we have used a simple strategy. The fundamental matrices

between the first and all other views are computed using point matches between the

first view and others. Hence the projective frame is consistent for all views. However

in longer sequences when the rotation and translation are large the first and the last

views have little overlapping area which prevents consistent matching between views.

This severely limits the motion content of the whole sequence.

The strategy for obtaining a projective reconstruction of camera matrices presented

in [23] is quite different, the fundamental matrices are computed between neighboring

views and then the obtained projective frames are matched to each other using 3D

homographies between projectively reconstructed points. However this is costly and

the obtained structure may require further optimization over all reconstructed points

and cameras. Although this approach is attractive for obtaining a reconstruction

from the sequence, it is not suitable for focal length estimation. Chapter 5 details

the implementation of another autocalibration method based on pure rotations of the

cameras.

57



Chapter 5

Autocalibration from

Rotating Cameras

5.1 Introduction

It is possible to perform autocalibration when there is only camera rotation. The

method is introduced in [15] and extended to the case of varying intrinsic parameters

in [7]. In this chapter the implementation of the method and comparison of alternative

routes in the implementation is discussed.

Since it is necessary that the camera motion has no translational component pan-

tilt-zoom (PTZ) cameras are used in capturing image sequences used in this chapter.

The camera model used in the study is Sony EVI-D100P.

Sections 5.2 and 5.3 describe the algorithm in the case of constant and varying cal-

ibration parameters. The necessary constraints and the form of the image of the

absolute conic where these constraints arise is presented. Section 5.4 describes how

the required homographies are computed in a robust manner. Section 5.5 shows

how the rotations around a specific axis affect the computed homography and dis-

cusses possible problems with the procedure. The last section shows the results of

the autocalibration process and discusses the validity of the obtained results.
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5.2 Linear Algortihm for Constant Calibration

In this section it is assumed that the images are captured by a rotating camera and

the camera has the same internal parameters throughout the sequence. The images

are denoted by Ii where i = 0, . . . , (n − 1) and n is the number of images.

Section 2.7 shows that when the camera motion has only a rotational component,

the acquired images are related by a 3×3 homography matrix. Assume that the first

image is located at the origin and hence has the projection matrix

P0 = K[I | 0].

Since the internal parameters are the same for all images the projection matrix for Ii

is given as

Pi = K[Ri | 0]

where Ri is the rotation between I0 and Ii. Then the matrix Hi = KRiK
−1 is the

homography between I0 and Ii.

The homograhies between the first image and all other images can be easily computed

using the methods described in Section 5.4. Then the computed homographies are

used to constrain the internal calibration parameters as follows. Writing

Ri = K−1HiK

and using the fact that RiR
T

i = I due to orthogonality

KKT = HiKK
THT

i (5.1)

is obtained. Taking inverse of the both sides of the Equation(5.1) and writing

(KKT)−1 = ω

ω = H−T

i ωH−1
i (5.2)

is the constraint on the internal parameters [18]. Note that ω represents the image

of the absolute conic and Equation (5.2) states the the image of the absolute conic

is constant when transferred by the related homography.

Equation (5.2) can be used to form a set of linear equations on the entries of ω. Since

ω is symmetric there are 6 unknowns. Each homography provides 6 equations in the

entries of ω. Hence in general 2 views are enough to solve for ω. After ω is computed

one can use Cholesky decomposition to obtain ω = UUT. Then K is found as K = U−T.
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For more information on Cholesky decomposition see [11]. The C++ code used in

the implementation of Cholesky decomposition is given in Appendix F.

There is one issue that must be taken into account with the described algorithm.

Since the matrix H is homogeneous the estimated homography is of arbitrary scale.

However since the homography considered here is conjugate to a rotation it should

have unit determinant [15]. Hence the estimated homographies should be scaled as

H′ =
H

3

√

det(H)
.

If the form of H−1
i is

H−1
i =

[

h1 h2 h3

]

where hi is the ith column of H−1
i then the constraints are of the form

ω(i, j) = hT

i ωhj (5.3)

where ω(i, j) is the entry in the ith row and jth column of ω.

5.3 Linear Algortihm for Varying Calibration

The algorithm described in Section 5.2 is valid for only when the calibration is con-

stant throughout the sequence. However when there is some information on the

calibration parameters the method can be extended to the case of varying calibration

parameters [7]. In particular zero-skew and known aspect ratio are two commonly

used constraints.

Let Ki denote the calibration matrix for view i. Then the form of Equation (5.2) for

varying calibration is

ωi = H−T

i ω0H
−1
i (5.4)

where ωi is the image of the absolute conic in Ik. If skew is zero and the aspect ratio

is unity the following constraints are used:

ωi(1, 2) = 0

ωi(1, 1) = ωi(2, 2).
(5.5)

If enough of these constraints are formed then ω0 can be found. The calibration in

other views are found by using Equation (5.4).

The constraints in Equation (5.5) can also be used in the case of constant calibration

if the skew is zero and the aspect ratio is unity.
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5.4 Homography Estimation

The presented algorithms above assume that a set of homographies between I0 and

all other views is computed. The computation is based on a well known algorithm,

namely the Direct Linear Transformation (DLT), which was described in Section 2.7.

The computation of a homography requires a set of point matches between the images.

The initial matches are found by using the NCC measure as described in Section 4.2.

However this set of matches contains outliers which should be eliminated. Again the

RANSAC algorithm is used in this case to compute a homograhy and a set of inliers

compatible with this homography. The approach is very similar to the one presented

in Section 4.2 with a few differences. A point match is accepted as an inlier if it

satisfies both ‖x′ − Hx‖2 < d and
∥

∥x − H−1x′∥
∥

2
< d where d is the distance threshold

typically set to 1.5. In practice the iteration of RANSAC and guided matching steps

is found to be unnecessary for homography computation since a good set of inliers is

obtained in the first run. The search window used to find the initial matches is set to

the whole image to allow for computation of the homography even for large amounts

of rotation.

Note that the minimum number of point correspondences necessary to compute a

homography is 4. Which means that k = 4 in Equation (4.3) in the case of robust

point matching using homographies (k = 7, in the case of matching points using a

fundamental matrix relation). Hence the maximum number of necessary iterations

is a lot smaller in the case of matching points by homography computation when

compared to point matching using the fundamental matrix.

The overall algorithm is as follows:

• Detect Harris corner points in both of the images up to sub-pixel resolution.

• Form raw correspondence by a search over a suitably sized window using the

normalized cross correlation measure.

• Use RANSAC to find inliers.

While p < 0.99

- Select four random correspondences scattered across the image.

- Calculate a homography using these correspondences.

- Find the set of inliers
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- Keep the H matrix with the largest number of inliers

• Use the DLT algorithm to find a homography compatible with all inliers.

• Find more corresponding points using the calculated homography and the NCC

measure.

Figures 5.1 and 5.2 show the detected corners in two of the images from a sequence

used in the autocalibration tests. Figures 5.3 and 5.4 show the result of the guided

matching step. Note that there is no false match despite the fact that there is sig-

nificant rotation. In practice, point matching with RANSAC, based on homography

estimation is much more robust then point matching with fundamental matrix com-

putation since the uncertainty is reduced to a point once an initial homography is

computed. In the case of fundamental matrix estimation the uncertainty is a line

and wrong matches along the line are possible.

5.5 An Analysis of Pan-Tilt Motion

In this section an analysis of pan-tilt motion is done to gain further insight to the

constraints that the computed homography puts on the intrinsic parameters. Let Rx

and Ry denote rotations around the x and y axes respectively. Since a PTZ camera

can only tilt (rotate around x-axis) and/or pan (rotate around y-axis), the overall

rotation is a combination of these two principal rotations. The forms of Rx and Ry

are

Rx =









1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)









, Ry =









cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)









. (5.6)

where θ is the tilt angle and φ is the pan angle. Assume that the camera has zero-skew

and hence

K =









fx 0 u0

0 fy v0

0 0 1









.

Now the forms of the homographies arising from a rotation around each one of the

principal axes can be computed to be

Hx = KRxK
−1 =









1 u0sθ

fy
−u0 − u0v0sθ

fy
+ u0cθ

0
fycθ+v0sθ

fy
−fyv0cθ+v2

0
sθ

fy
− fysθ + v0cθ

0 sθ

fy
−v0sθ

fy
+ cθ









(5.7)
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Figure 5.1: Detected corners in a sequence with camera rotation is shown on the first

image

Figure 5.2: Detected corners in a sequence with camera rotation is shown on the

second image
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Figure 5.3: The resultant inliers after guided matching is shown on the first image

Figure 5.4: The resultant inliers after guided matching is shown on the second image
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and

Hy = KRyK
−1 =









fxcφ−u0sφ

fx
0 −fxu0cφ−u2

0
sφ

fx
+ fxsφ + u0cφ

−v0sφ

fx
1

u0v0sφ

fx
− v0 + v0cφ

− sφ

fx
0

u0sφ

fx
+ cφ









(5.8)

where sθ = sin(θ), cθ = cos(θ) and sφ = sin(φ), cφ = cos(φ). An analysis of the

above homographies reveals a few facts about the autocalibration method. When

there is only a rotation about the x-axis the computed homography is independent

of fx. This results in the fact that the computed homography can not be used to

constrain fx. Similarly a rotation around the y-axis results in a homography which

is independent of fy. Therefore these two cases are degenerate and without known

aspect ratio they lead to an incomplete calibration.

A more important fact is that in both cases the focal length is coupled with the sine

or the cosine of the rotation angle. And if the angle of rotation is small then the

computed homographies become nearly independent of the focal lengths. Hence a

poor calibration is expected when the rotation is small. The following rule of thumb

is then should be taken into account:

• The image that results in the largest rotation angle should be used as I0. Other

choices lead to smaller rotations and they do not constrain the focal lengths in

the best possible way.

However automated matching is not possible if the degree of overlap between images

is small. If the rotation is so large that automated matching is problematic between

I0 and Ik then an intermediate image Il can be used to compute the homography

between I0 and Ik. The homography should be computed as

H0k = HlkH0l.

Of course this leads to error propagation and should be used only when direct com-

putation is not possible.

The results show that the analysis presented in this section is also valid in practice.

5.6 Results and Conclusion

Several experiments are performed on three sets of images. The thumbnail views of

the sequences are given in Appendix E. At each setting the camera is also calibrated
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using the manual calibration method described in Chapter 3. The results will be

compared with the manual calibration results. The basis of the discussion will be

on the recovered focal lengths. The image size is 768 × 576 and the principal point

coordinates should be around (384, 288). However it should be noted that the recon-

struction process is generally not very sensitive to small changes in principal point

coordinates.

There are three algorithms that has been used to achieve autocalibration. The first

one assumes only constant calibration and will be referred as Constant. The second

one assumes square pixels (Zero skew and unit aspect ratio) and constant calibration

parameters. This will be referred to as Constant + Square. The last algorithm

assumes square pixels and the calibration can vary hence, it will be referred as Vary

+ Square.

The first sequence will be referred to as PTRot1. This sequence is composed of 4

images. There is slight pan and tilt in each of the images. Table 5.1 shows the manual

calibration and autocalibration results for the three algorithms when all three of the

homographies have been used. A dash in a column means that due to the assumptions

on the parameter it has not been calculated. By inspecting the table, the following

observations can be made:

• The method Constant finds a more reasonable focal length in the x direction

then the y direction. The reason for this is the larger pan motion in the images

which constrain only fx as indicated in Section 5.5. The focal lengths could not

be detected with good precision. This indicates that the angle of rotation may

be insufficient. The x coordinate of the principal point is very reasonable.

• The method Constant + Square performs very poorly in estimating any of the

parameters.

• The method Vary + Square finds a very reasonable principal point but the

estimated focal length is not acceptable.

The second sequence will be referred to as PTRot2. There are 12 images in the

sequence. The dominating motion in the sequence is panning. The camera is con-

tinuously panned from left to right while adding some small tilt motions at each

frame. The rotation between the last and the first frame is almost 2 times the largest

motion in the sequence PTRot1. Table 5.2 shows the results of the autocalibration

when all homographies have been used. Since this time the rotation is larger, method
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Table 5.1: Autocalibration results for sequence PTRot1

Method fx fy skew α u0 v0

Manual 1035.36 1035.1 0.0248 90.000 380.771 277.972

Constant 1244.13 1402.86 112.3 89.920 386.047 368.715

Constant + Square 570.994 — — — 183.599 127.091

Vary + Square 1341.56 — — — 320.246 269.635

Constant finds a very good fx. Again since there is not enough tilt motion fy and v0

are estimated poorly. The skew is also very large. When square pixels are assumed

for constant calibration the estimated focal length becomes somehow biased but the

error remains below 10%. The algorithm Vary + Square find a very accurate cali-

bration. The focal length is almost precisely found and the estimated principle point

is within expected bounds.

Table 5.2: Autocalibration results for sequence PTRot2 when all homographies have

been used

Method fx fy skew α u0 v0

Manual 1175.35 1175.46 -0.167 90.000 408.547 296.843

Constant 1120.62 717.278 592 89.310 400.131 166.284

Constant + Square 1268.73 — — — 316.529 350.155

Vary + Square 1203.37 — — — 434.686 307.4

When compared to results of PTRot1 sequence, the accuracy gained in Ptrot2 se-

quence can be due to either the larger rotation or the increased number of homogra-

phies. To test this only the first two and last three images are used in the following

experiment. The number of homographies is four but there is significant rotation.

Table 5.3 shows the results. The estimated focal lengths do not change significantly

and the calibration from Vary + Square method is still very good although the princi-

pal point is less accurate. This shows that the rotation angle plays a more important

role than the number of homographies.

The third sequence contains four images and will be referred to as PTRot3. There
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Table 5.3: Autocalibration results for sequence PTRot2 when four homographies

have been used

Method fx fy skew α u0 v0

Manual 1175.35 1175.46 -0.167 90.000 408.547 296.843

Constant 1056.82 701.58 461 89.419 351.244 136.472

Constant + Square 1272.94 — — — 306.913 374.347

Vary + Square 1133.39 — — — 447.35 348.495

is only rotation around the y axis and the amount of rotation is so large that the

homography between I0 and I3 can not be computed directly. The intermediate image

I2 has been used to compute the combined homography as described in Section 5.5.

The total rotation is twice the largest rotation in sequence PTRot2. The results are

shown in Table 5.4. The Constant method finds a quite reasonable focal length in

x direction but the focal length in y direction is not acceptable. This is of course

expected since there is no tilt motion. When square pixels are enforced using method

Constant + Square the obtained ω is not positive definite hence Cholesky decomposi-

tion fails to find the intrinsic calibration matrix. This is a common problem in many

autocalibration methods when the calibration is not constrained enough. Again the

results for Vary + Square method is very good. The focal length is almost equal to

the one found by manual calibration and the principal point location is very close to

expected values.

Table 5.4: Autocalibration results for sequence PTRot3

Method fx fy skew α u0 v0

Manual 1224.05 1227.42 -26.83 90.022 348.9 281.0

Constant 1159.67 63.72 -31.77 90.462 372.2 98.2

Constant + Square ω is not positive definite

Vary + Square 1213.59 — — — 378.98 257.75

Comparing the above tables the best choice seems to be the Vary + Square method

even when the calibration is known to be constant. Of course this requires that skew
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is zero and aspect ratio is at least known and scaled to unity. In robotics applications

these two are very reasonable assumptions. The rotation angle should be chosen large.

A large tilt angle is not always possible and simply panning gives very good results.
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Chapter 6

Conclusion

6.1 Summary of the Results

In this study a manual calibration method and two autocalibration methods are

implemented. Each method is tested on real world image sequences. The results of

the algorithms are also presented.

All of the calibration methods use point correspondences and require the computation

of a two view relation, either in the form of a homography or a fundamental matrix.

Different methods to compute two view relations are implemented and these are then

used in robust computation of corresponding points. The matching of the points are

done using fully automated processes. The results of this matching process are shown

in the related chapters.

In Chapter 3 implementation of a manual calibration system based on the method

presented in [33] has been given. The results of the calibration experiments with

different camera settings have been presented and shown to be consistent with the-

oretical values. The obtained calibration results are further tested using 3D mea-

surements on a test pattern. Two known lengths and one angle have been measured.

The results show that the system is calibrated with good precision and the obtained

measurements are reliable enough.

In Chapter 4 a method based on the work of [23] is implemented to autocalibrate the

cameras using constraints on the Absolute Dual Quadric. To obtain near real-time

results the setting of the projective frame uses a simpler approach than the work

presented in [23] where a 3D reconstruction was aimed. However the results are
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not satisfying and the implemented method suffers from a few degeneracies in the

fundamental matrix estimation between views that are far away from each other.

In the light of the experience gained from the experiments on the Absolute Dual

Quadric method another autocalibration method is implemented in Chapter 5. The

method uses images captured by a purely rotating camera as described in [15]. The

corresponding point matching is done based on homography computation. The re-

sults have been shown to be much more stable than the method presented in Chap-

ter 4. Of course this is only possible for images captured by a purely rotating camera.

The method is implemented using different assumptions and constraints. The results

show that when the rotation is large enough, using the variable calibration and square

pixel assumptions provides the best results. The results of the method is compared

with the results of the manual calibration and the focal lengths are found to be nearly

the same and the principal point positions are within expected boundaries.

6.2 Discussion and Future Work

Although the implemented manual calibration and autocalibration from rotating sys-

tem performs at the expected precision, there are numerous possible enhancements

to the study presented in this study.

The stereo system used in the study is a fixed platform of two cameras and the

autocalibration experiments are done one monocular PTZ cameras. The stereo sys-

tem should be upgraded to one that uses the PTZ cameras. Of course this requires

additional electronics to control the both cameras from the same PC terminal.

The manual calibration algorithm works well but due to poor lightning conditions

the corners of the calibration pattern can not be detected reliably at all images.

Although this is rare it causes unnecessary delays since new images are needed to

be captured. This is almost always due to lost contrast in the black squares due

to reflections from the light sources. The images can be preprocessed or an on-line

strategy in capturing the images can be used where the image is captured only when

all corners are detected.

The external calibration step requires more elaborate methods. Although the pre-

sented methods works fine at most occasions sometimes user intervention is necessary

to eliminate spurious solutions. More information on this can be found in the discus-
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sion of Section 3.6.

A resolution versus depth test can be performed on the manual calibration results

to provide more insight on the calibration accuracy. A new test pattern can be used

providing more angle and length measurements. Also the points on the test pattern

may be detected in an automated way which is a feature the current system lacks.

The autocalibration efforts should be directed more on the pure rotation methods

since the results seem more promising. There are less ambiguities and the matching

step is much more robust and also faster. The autocalibration results presented

here only uses a comparison with the focal lengths of the manual calibration results.

When the stereo system is constructed using PTZ cameras, 3D measurements can be

obtained and these measurements can be used to evaluate the autocalibration results.
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Appendix A

Parametrization of Rotations

The parametrization of rotations are done using a 3-vector of the form

r = θ









r1

r2

r3









where θ is the rotation angle in radians and [r1 r2 r3]
T is a unit vector representing

the rotation axis. Hence there is a need for conversion between the matrix form R

and the vector form r, and vice versa.

The conversion from r to R is easily achieved using the Rodrigues formula ([32]) as

R =









cos θ + r2
1(1 − cos θ) r1r2(1 − cos θ) − r3 sin θ r2 sin θ + r1r3(1 − cos θ)

r3 sin θ + r1r2(1 − cos θ) cos θ + r2
2(1 − cos θ) −r1 sin θ + r2r3(1 − cos θ)

−r2 sin θ + r1r3(1 − cos θ) r1 sin θ + r2r3(1 − cos θ) cos θ + r2
3(1 − cos θ)









.

To achieve conversion from R to r the rotation matrix is written as

R = e[r]
×

θ = I3×3 + [r]× sin θ + [r]2× (1 − cos θ)

where [r]× is the matrix form of vector cross product as given in Equation (2.3). Now

writing

trace(R) = 3 + 0 + (−r2
3 − r2

2 − r2
3 − r2

1 − r2
2 − r2

1)(1 − cos θ)

and since r is a unit vector

trace(R) = 3 + (1 − cos θ)(−2) = 1 + 2 cos θ

then

θ = cos−1

(

trace(R) − 1

2

)

.
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To obtain the rotation axis the following equation is solved for a unit vector

R− RT = 2 [r]× sin θ.

However in the case where sin θ = 0 the above equation can not be solved and the

equation R = I3×3 + [r]× sin θ + [r]2× (1− cos θ) should be used with the known value

of θ to get the rotation axis.
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Appendix B

Radial Undistortion

In the undistortion problem a distorted point with polar coordinates (r̃, θ) and the

distortion coefficients κ1 and κ2 are given. The aim is to find the point (r, θ) that

minimizes

ϕ =
[

r̃ − r
(

1 + κ1r
2 + κ2r

4
)]2

.

Taking the derivative with respect to r

ϕ′ = −2
(

1 + 3κ1r
2 + 5κ2r

4
) [

r̃ − r
(

1 + κ1r
2 + κ2r

4
)]

is obtained. The following algorithm can be used to find the required point:

1. Set r = r̃

2. Calculate e = r̃ − r
(

1 + κ1r
2 + κ2r

4
)

3. While |e| > tolerance

(a) Calculate δr = −ϕ′ = 2 e
(

1 + 3κ1r
2 + 5κ2r

4
)

(b) Set r = r + 0.3 δr

(c) Calculate e = r̃ − r
(

1 + κ1r
2 + κ2r

4
)

4. Calculate the point (r, θ) taking into account the quadrant of (r̃, θ)

The coefficient of update used in step (3.b) is found to be 0.3 by heuristic methods.

The larger numbers tend to create oscillations and smaller ones converge slowly. The

algorithm generally converges in 3 or 4 iterations.
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Appendix C

MetaPost Code for The Test

Pattern

The following code fragment can be used to generate the test pattern used in the

manual calibration tests.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% TestPattern.mp

def checkerbox(expr x, n) =

fill unitsquare scaled n shifted (x);

fill unitsquare scaled n shifted (x - (n, n));

draw unitsquare scaled (2 * n) shifted (x - (n, n));

enddef;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

beginfig(1);

pair a[];

a0 = (15cm, 5cm);

a1 = a0 + (0cm, 15cm);

a2 = a0 + 15cm * dir(90 + 37);

checkerbox(a0, 4cm);

checkerbox(a1, 4cm);

checkerbox(a2, 4cm);

endfig;

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Appendix D

Manual Calibration Sequences

The following figures in this chapter show the image sequences used in the manual

calibration tests. The images are captured by holding the calibration pattern at

different distance and angles. The method requires that the calibration pattern plane

is not parallel in any pair of images.
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Figure D.1: Thumbnail images of LeftSeq1

Figure D.2: Thumbnail images of RightSeq1
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Figure D.3: Thumbnail images of LeftSeq2

Figure D.4: Thumbnail images of RightSeq2
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Figure D.5: Thumbnail images of LeftSeq3

Figure D.6: Thumbnail images of RightSeq3
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Figure D.7: Thumbnail images of LeftSeq4

Figure D.8: Thumbnail images of RightSeq4
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Appendix E

Autocalibration Sequences

with Pure Rotation

The following figures show the image sequences that has been used in the autocalibra-

tion tests. The motion in the sequences is pure rotation as required by the algorithm.

The sequences have been captured by a single PTZ camera.
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Figure E.1: Thumbnail images of PTRot1
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Figure E.2: Thumbnail images of PTRot2
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Figure E.3: Thumbnail images of PTRot3
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Appendix F

C++ Code for Cholesky

Decomposition

The following code fragment computes the cholesky decomposition of a positive def-

inite symmetric matrix and is based on the pseudo code given in [11]. Note that the

Matrix class has two methods Matrix::getData(i, j) and Matrix::setData(i,

j, val) which are used to obtain and set the value of the element at row i and

column j respectively.

// Compute cholesky decomposition for symmetric positive

// definite matrix M.

// If successful M = UUT where U is lower triangular and returns 0.

// If M is not square then returns -1

// If M is not positive definite then returns -2.

// Uses only the diagonal and lower left part of M.

int Cholesky(LynxLib::Math::Matrix &M, LynxLib::Math::Matrix &U)

{

if(M.getNumCols() != M.getNumRows())

return -1;

U.setZero();

int n = M.getNumRows();

LynxLib::Math::Matrix v(n, 1);

for(int j = 0; j < n; j++)
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{

for(int i = j; i < n; i++)

{

v.setData(i, 0, M.getData(i, j));

}

for(int k = 0; k <= (j - 1); k++) for(int i = j; i < n; i++)

{

double temp;

temp = v.getData(i, 0) - U.getData(j, k) * U.getData(i, k);

v.setData(i, 0, temp);

}

for(int i = j; i < n; i++)

{

double temp = v.getData(j, 0);

if(temp < 0)

return -2;

else

temp = std::sqrt(temp);

U.setData(i, j, v.getData(i, 0) / temp);

}

}

return 0;

}
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