
 

 
 

COMPARISON OF ROUGH MULTI LAYER PERCEPTRON AND ROUGH 
RADIAL BASIS FUNCTION NETWORKS USING FUZZY ATTRIBUTES 

 
 
 
 
 
 
 
 
 

A THESIS SUBMITTED TO 
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 
MIDDLE EAST TECHNICAL UNIVERSITY 

 
 
 
 
 

BY 
 
 
 
 

HÜLYA VURAL 
 
 
 
 
 
 
 

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS 
FOR 

THE DEGREE OF MASTER OF SCIENCE 
IN 

COMPUTER ENGINEERING 
 
 
 
 
 
 
 

SEPTEMBER 2004 
 



 

 
 

Approval of the Graduate School of Natural and Applied Sciences. 
 
 
 
 
 

 Prof. Dr. Canan Özgen 
 Director 

 
 

I certified that this thesis satisfies all the requirements as a thesis for the degree of 
Master of Science. 

 
 
 
 

 Prof. Dr. Ayşe Kiper 
 Head of Department 

 
 
 

This is to certify that we have read this thesis and that in our opinion it is fully 
adequate, in scope and quality, as a thesis for the degree of Master of Science. 

 
 
 
 

 Assoc. Prof. Dr. Ferda Nur Alpaslan 
 Supervisor 

 
 
 

Examining Committee Members 
 
 

Assoc. Prof. Dr. Ferda N. Alpaslan (METU, CENG) 

Prof. Dr. Mehmet Tolun  (Çankaya Uni.) 

Prof. Dr. Adnan Yazıcı  (METU, CENG) 

Assoc. Prof. Dr. İ. Hakkı Toroslu (METU, CENG) 

Dr. Ayşenur Birtürk   (METU, CENG) 

 



 

 
 
 iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PLAGIARISM 
 
 
 

I hereby declare that all information in this document has been obtained and 
presented in accordance with academic rules and ethical conduct. I also 
declare that, as required by these rules and conduct, I have fully cited and 
referenced all material and results that are not original to this work. 

 
 
 

Name, Last Name: 
 
 

Signature              : 
 
 



 

 
 
 iv

ABSTRACT 
 
 

COMPARISON of ROUGH MLP and ROUGH RBF USING FUZZY 
ATTRIBUTES 

 
 

Vural, Hülya 

MS, Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Ferda Nur Alpaslan 

 

September 2004, 64 pages 
 
 
 

The hybridization of soft computing methods of Radial Basis Function 

(RBF) neural networks, Multi Layer Perceptron (MLP) neural networks with back-

propagation learning, fuzzy sets and rough sets are studied in the scope of this 

thesis. Conventional MLP, conventional RBF, fuzzy MLP, fuzzy RBF, rough fuzzy 

MLP, and rough fuzzy RBF networks are compared. In the fuzzy neural networks 

implemented in this thesis, the input data and the desired outputs are given fuzzy 

membership values as the fuzzy properties “low”, “medium” and “high”. In the 

rough fuzzy MLP, initial weights and near optimal number of hidden nodes are 

estimated using rough dependency rules. A rough fuzzy RBF structure similar to the 

rough fuzzy MLP is proposed. The rough fuzzy RBF was inspected whether 

dependencies like the ones in rough fuzzy MLP can be concluded. 

 
 

Keywords: Radial Basis Function network, Multi Layer Perceptron, fuzzy sets, 

rough sets, hybrid soft computing. 
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ÖZ 
 
 

HAM ÇKP ve HAM MÇDTF’NİN BELİRSİZ NİTELİKLERİN 
KULLANILARAK KARŞILAŞTIRILMASI 

 
 

Vural, Hülya 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Ferda Nur Alpaslan 

 
Eylül 2004, 64 sayfa 

 
 
 

 Bu tez çalışmasının erimi Merkez Çevre Doğrultulu Taban 

Fonksiyonları’nın (MÇDTF), geri yayılım yöntemi ile öğrenen Çok Katmanlı 

Pörseptron (ÇKP) konseptine sahip ağların, belirsiz setlerin, ve ham setlerin 

melezleştirilmesini kapsamaktadır. Geleneksel ÇKP, geleneksel MÇDTF, belirsiz 

ÇKP, belirsiz MÇDTF, ham belirsiz ÇKP ve ham belirsiz MÇDTF ağlar 

karşılaştırılmıştır. Bu tezde gerçekleştirilen belirsiz nöron konseptine sahip 

ağlardaki girdi bilgilerine ve istenilen çıktı bilgilerine “düşük”, “orta” ve “yüksek” 

gibi belirsiz üyelik değerleri atanmıştır. Ham Belirsiz ÇKP için atanan başlangıç 

ağırlıkları ve yaklaşık optimal gizli düğüm sayısı ham bağımlılık kuralları 

kullanılarak tahmin edilmiştir. Ham belirsiz ÇKP’ye benzer bir ham belirsiz 

MÇDTF yapısı önerilmiştir. Bu ham belirsiz MÇDTF için, ham belirsiz ÇKP’de 

olanlara benzer bağımlılıkların varlığı araştırılmıştır. 

 
 

Anahtar Kelimeler: Merkez Çevre Doğrultulu Taban Fonksiyonlu ağlar, Çok 

Katmanlı Perseptron, belirsiz setler, ham setler, melez elektronik hesaplamalar  
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CHAPTER I 

 
 

INTRODUCTION 
 

I. INTRODUCTION  
According to Lotfi A. Zadeh “Soft computing differs from conventional (hard) 

computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, 

partial truth, and approximation...”(1994). The basic soft computing methods are 

fuzzy logic, neural computing, and genetic programming. There are also many other 

soft computing methods like; rough sets, probabilistic reasoning, belief networks, 

chaos theory, and so on. This chapter is a short introduction to fuzzy sets, rough 

sets, and two feedforward neural networks which are radial basis function network 

and multi layer perceptron. 

I.1. Radial Basis Function Networks 

A Radial Basis Function (RBF) network is a two layered network, whose hidden 

layer activation function is a basis function, having linear output (see Figure 1). The 

basis function which produces a localized response can be Gaussian, Mexican hat, 

etc. Gaussian function of the form  is the mostly used basis function. The 

activation level of  of hidden node i is: 

2( / )bx ae−

iO

 
2[ ( ).( ) / 2 ]i iX W X W

iO e σ− − −=  (0.1) 

where  is the activation level of hidden node , iO i X  is the input vector, and  is 

the centre (weight vector) and  is the normalization factor of hidden node i  

respectively. 

iW

2
iσ
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Output nodes - Linear 

Least Mean Square 

Hidden nodes - Gaussian

K-means Clustering 

Input nodes 
 

Figure 1 Radial Basis Function Network 
 

 

Let  be the activation level of hidden node  and  be the activation level of 

output node 

iO i jO

j , the activation level of output node j  is: 

 j jO W= i iO∑  (0.2) 

where W  is the weight value between hidden node  and output node ji i j  

Normalization factor  is a measure of spread of data and calculated as 

follows: 

2
iσ

 2 1 ( ).(i iM )iX W X Wσ = − −∑  (0.3) 

where X  is the input vector clustered in hidden node i  , W  is the weight vector of 

hidden node i  and 

i

M  represents the number of inputs clustered in hidden unit . i

The learning of the hidden layer is carried out by unsupervised algorithms such 

as k-means clustering or self organized feature maps. Learning of the output layer is 

carried out by supervised algorithms like least mean square algorithm. [24] 
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I.1.1. K-means Clustering Algorithm 

The k-means clustering is used for portioning N data points to K disjoint 

clusters. The algorithm tries to minimize  which is the sum of squares of the 

distance between the data points and the cluster centres that they are belonging to. 

J

 
2

1 j

K

n j
j n C

J x
= ∈

= −∑∑ c  (0.4) 

where K  represents the number of clusters,  cluster jC j , x  data point and  

geometric centre of cluster 

jc

j  respectively. 

Algorithm processes as follows: 

• The dataset is partitioned into K clusters and the data points are randomly 

assigned to the clusters. 

• For each data point: 

• Calculate the distance from the data point to each cluster. 

• Find the cluster that has the minimum distance and move the data 

point to that cluster. 

• Repeat the above step until there is no change in the members of the 

clusters. [24] 

I.1.2. Least Mean Square Algorithm 

Least Mean Square (LMS) algorithm tries to minimize the mean square error 

between the desired output and the actual output. Let η  be the learning rate and  

be the actual activation level value for node i . Weight update rule for linear 

activation function is follows: 

iO

 

( 1) ( )ji ji ji

ji j i

j j j

W t W t W

W O

T O

ηδ

δ

+ = + ∆

∆ =

= −

 (0.5) 
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where  is the desired output value for output node i  and  is the actual output 

value for node 

iT jO

j . [24] 

I.2. Feedforward Multi-Layer Perceptron 

A Multi-Layer Perceptron is a two or more layered network, whose activation 

functions of all layers can be sigmoid, linear, ramp, etc. (see Figure 2). Sigmoid 

function is the most popular activation function with the formula 

 1( )
1 Kaf a

e−=
+

 (0.6) 

where  is the activation output of the neuron and  is the exponential constant. a K

The backpropagation algorithm is the most widely used training algorithm for 

multi-layered feedforward networks. [24] 
 

 

Output layer 

Hidden layer(s) 

Input layer 

 

Figure 2 Multi-Layer Perceptron 
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I.3. Backpropagation Algorithm 

The main aim of the backpropagation algorithm is to minimize the error 

between the desired output and the actual output. During convergence, the 

algorithm propagates the error backwards and updates the weights in accordance. 

[24] 

Let  be the output value of node i  which is one level below the node iO j  and 

 be the bias parameter for node jΘ j . Output value of a hidden node or an output 

node  is as follows: jO

 (

1
1 ji i j

j W O
O

e− −Θ
= ∑+ )  (0.7) 

where : Weight value between the node i  and node jiW j . 

 
( 1) ( ) [ ( ) ( 1)]ji ji ji ji ji

ji j i

W t W t W W t W t

W O

α

ηδ

+ = + ∆ + − −

∆ =
 (0.8) 

where  is the desired output value for output node ,  is the actual output value 

for node i  and 

iT i jO

jδ is the error gradient of node j . The terms η  and α  represent the 

learning rate and the momentum term respectively. 

Error gradient of output node j  is: 

 (1 )( )j j j j jO O T Oδ = − −  (0.9) 

Error gradient of a hidden node j  is calculated as follows 

 (1 )j j j k
k

O O Wδ = − kjδ∑  (0.10) 

I.4. Fuzzy Sets 

Fuzzy sets were introduced by Zadeh in 1965 [1]. Fuzzy sets can be seen as a 

generalized version of crisp (ordinary) sets. Fuzzy set theory basically extends the 

crisp set theory that has membership of its elements described by the classical 
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characteristic function to allow for partial membership described by a membership 

function. 

I.4.1. Fuzzy Set Membership 

Let  be a set in universe A X  and Xx∈ . According to crisp set theory 

definition of set A  is: 

 
1,

( )
0,

if x A
A x

if x A
∈⎧

= ⎨ ∉⎩
 (0.11) 

Fuzzy set definition enables giving a degree of membership of an object to a set. 

Definition: Let X  be a space of points (objects), with a generic element of X  

denoted by x . A fuzzy set  in A X  is characterized by a membership function 

)(xAµ  which associates with each point x  a real number in the interval 

representing the grade of membership function of 

]1,0[  

x  in . [3] A

 {( , ( )); }AA x x x Xµ= ∈  (0.12) 

where 

 ( ) : [0,1]A x Xµ →  (0.13) 

Zadeh proposed another notion for fuzzy sets [4]: 

 ( ) /A
x X

A xµ
∈

= x∑  (0.14) 

when universe of discourse is a finite set 

 ( ) /Ax
A x xµ= ∫  (0.15) 

when universe of discourse is an infinite set. 

As an example; in crisp sets a man with height 1.85 meters is accepted as 

“Tall”, but a man with height 1.75 meters is accepted as short (see Figure 3). In 

fuzzy sets, a man with height 1.85 is a member of fuzzy set to degree 1.0 and a 

man with height 1.75 is a member of fuzzy set to degree 0.5 (see Figure 4). 

Tall

Tall
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Figure 3 Crisp set representation of sets  and Ta . Short ll
 

 

 

 

Figure 4 Fuzzy set representation of sets  and Ta . Short ll
 

 

I.4.2. Fuzzy Membership Functions 

Fuzzy set membership is defined by fuzzy membership functions those can be 

triangular, trapezoidal, , gaussian, and so on. The formulas of the triangular, 

trapezoidal, 

1∏

1∏  membership functions are shown below [5]: 

 

0
( ) /( )

( : , , )
( ) /( )

0

x a
x a b a a x b

triangle x a b c
c x c b b x c

x c

<⎧
⎪ − − ≤⎪= ⎨

≤
− − ≤⎪

⎪ >⎩

≤
 (0.16) 

0 

1 
Tall  

D
eg

re
e 

of
 

m
em

be
rs

hi
p 

1.851.65

0.5 

Short
1.75

0 

1 
Tall  

D
eg

re
e 

of
 

m
em

be
rs

hi
p 

0.5 

Short
1.65 1.75 1.85
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0
( ) /( )

( : , , , ) 1
( ) /( )

0

x a
x a b a a x b

trapezoid x a b c d b x c
d x d c c x d

x d

<⎧
⎪ − − ≤⎪⎪=

<
≤ <⎨

⎪ − − ≤⎪
≥⎪⎩

<
 (0.17) 

 1 2
1( : , )

1
x a b

x a
b

∏ =
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 (0.18) 

1∏  membership function is a symmetric function having value of 0.  at 

points  and . [5] 

5.0

ba − ba +

I.5. Rough Sets 

Rough set theory was developed by Zdislaw Pawlak in 1982 [2]. The main goal 

of rough set analysis is to derive concepts using the data set which is called data 

table. 

I.5.1. Information and Decision System 

Data set is represented as a table whose rows are the objects and columns are the 

attributes. Information system  is represented as A ( , )U A=A , where U  

(universe) is a non-empty set of objects and  is non-empty finite set of attributes 

such that  for every 

A

VaUa →: Aa∈ , Va  is the value set of . a

When there is a decision attribute in the data set then the relevant information 

system is called decision system. Decision system  is represented as follows: 

 where  is the decision attribute such that . The elements 

of  are called conditional attributes or conditions. 

A

( , { })U A d= ∪A d Ad ∉

A
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I.5.2. Indiscernibility 

A decision system can become excessively large because of the repetition of 

data. This repetition can be seen in two ways; repetition of an object or repetition of 

a column. If two rows or two columns are indiscernible (same) then there won’t be 

data loss if one of them is omitted. 

To define the indiscernibility equivalence relation will be used. A binary 

relation  which is reflexive, symmetric, and transitive is called an 

“equivalence relation”. The equivalence class of an element  consists of all 

objects  such that . 

XXR ×⊆

Xx∈

Xy∈ xRy

Let  be an information system, then with any  there is 

associated an equivalence relation  which is called 

( , )U A=A AB ⊆

)(BINDΑ B -indiscernibility 

relation: 

 2( ) {( , ) | , ( ) ( )}IND B x x U a B a x a x′ ′= ∈ ∀ ∈ =A  (0.19) 

When ( , ) ( )x x IND B′ ∈ A , objects x  and x′  are indiscernible from each other by 

the attributes from B . The equivalence classes of the B -indiscernible relation are 

denoted as [ ] . Bx

Let  be a decision system, if ( , { })U A d= ∪A ( , ) ( )x x IND A′ ∈ A  then omitting 

one of x  or x′  will not cause loss of data. This is the one way of reducing the data 

table; removing an object. [6] 

I.5.3. Rough Set Approximation 

Let  be a decision system where d  is the decision attribute, ( , { })U A d= ∪A A  

is the attribute set ,  is the universe 1 2{ , }A a a= U 1 2 3 4 5 6{ , , , , , }U F F F F F F=  as seen 

in Table 1. Let set X  be a rough set such that X U⊂ . In crisp sets, an object can be 

an element of a set or not, but in rough sets, an object can be certainly an element, 

certainly not an element, or roughly an element of set as seen in the Figure 5. In 

Table 1,  and  are indiscernible according to attributes  and . The objects 1F 2F 1a 2a
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3F  and  are also indiscernible according to attributes  and . In Figure 5, the 

objects in the white shaded area are exactly the element of set 

4F 1a 2a

X  and the objects in 

the black shaded area are exactly not the element of set X . The objects in the grey 

part can not be decisively classified into set X  on the basis of knowledge in . A
 

 

Table 1 Decision table of  A

 1a  2a  d  

1F  1 1 1 

2F  1 1 0 

3F  1 0 1 

4F  1 0 1 

5F  0 1 0 

6F  0 2 0 

 

 

In Figure 5, each of , ,  and  is an equivalence class of 

set 

3 4{ , }F F 1 2{ , }F F 5{ }F 6{ }F

X  according to attribute set . A
 

 

X

5 6{{ },{ }}F F

3 4{{ , }}F F

1 2{{ , }}F F

 

Figure 5 Rough set approximation of decision system  A
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Set X  can be approximated according to attributes contained in . As seen in 

Figure 5 white shaded area is the -lower approximation of 

A

A X  and denoted by AX  

such that [ ]{ | }
A

AX x x X= ⊆ . White union grey shaded area is the -upper 

approximation of 

A

X , denoted by AX  such that [ ]{ | 0}
A

AX x x X= ∩ ≠ . 

The  boundary region of A X  is ( )ABN X AX AX= ⇔ , containing the objects 

that are not certainly the element of X  when approximated by the attributes of . 

If the boundary region of a set is empty then the set is a crisp (conventional set). If a 

set has a non-empty boundary region then that set is a rough set. Accuracy of set 

approximation of a rough set is: 

A

 ( )( )
( )A

A XX
A X

α =  (0.20) 

Quality of approximation of X  by A  which expresses the percentage of objects 

correctly classified, is: 

 ( )( )A
A XX Uγ =  (0.21) 

As a concrete example assume an indecisive set Tall . Let the Table 2 be the 

decision matrix of set Tall  which depends on attributes  and .  gender height

 

 

Table 2 Decision table of set Ta  with two conditional attributes ll

 gender  height  Tall  

1F  Woman 1.70 YES 

2F  Woman 1.70 NO 

3F  Woman 1.50 NO 

4F  Man 1.90 YES 

5F  Man 1.65 NO 
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In Figure 6 the object  is the element of rough set Ta . The objects  and  

are exactly not the elements of set Tall . The objects  and  are at the boundary of 

rough set Tall . This means that only the attributes  and  are not enough 

to represent the set Tall . 

4F ll 3F 5F

1F 2F

gender height

 

 

Tall

3 5{{ },{ }}F F

4{{ }}F

1 2{{ , }}F F

 

Figure 6 Rough set approximation of set Tall  with two attributes 

 

 

If one more attribute is added to set Tall  , it becomes a decisive set. Let the 

Table 3 be the decision matrix of set Ta  which depends on attributes , 

 and .  

ll gender

height nationality

 

 

Table 3 Decision table of set Ta  with three conditional attributes ll

 gender  height  nationality  Tall  

1F  Woman 1.70 China YES 

2F  Woman 1.70 Russia NO 

3F  Woman 1.50 Russia NO 

4F  Man 1.90 China YES 

5F  Man 1.65 Russia NO 
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In Figure 7 the objects  and  are the element of rough set Tall . The objects 

,  and  are exactly not the element of set Ta .  

1F 4F

2F 3F 5F ll

 

 

Tall

2 3 5{{ },{ },{ }}F F F

1 4{{ },{ }}F F

∅
 

Figure 7 Rough set approximation of set Ta  with three attributes ll
 

 

I.5.4. Reducts 

A reduct of information system  is a minimal set of attributes  such 

that 

A AB ⊆

( ) ( )IND B IND A=A A . One way of reducing the data table is removing 

superfluous attributes. The superfluous attributes are BA −  for a reduct consisting 

of elements of B . In order to find a set of superfluous attributes having the 

maximum cardinality, minimal reduct has to be found. Finding minimal reduct is a 

NP-hard problem. 

Discernibility function, which is derived by using discernibility matrix, is used 

for finding the set of all reducts of A . Discernibility matrix for the information 

system  with  objects and attributes has the elements . Each  element is 

the list of attributes upon which the objects  and  differ; 

 for 

A n m ijc ijc

ix jx

)}()(|{ jiij xaxaAac ≠∈= nji, ,,1…= . Discernibility function 
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},1|{),,( ***
1 ∅≠≤≤≤∨∧=Α ijijm cnijcaaf … , where  and 

 are the boolean variables corresponding to attributes . [6] 

}|{ **
ijij caac ∈=

),,( **
1 maa … ),,( 1 maa …

I.5.5. Attribute Dependency 

Given a decision system ( , { })U A d= ∪A� , the cardinality of the image 

 is called the rank of  and denoted by . Let the 

set  of values of decision  is equal to . 

( ) { | ( ) , }d U k d x k x U= = ∈ d ( )r d

dV d 1 ({ , , }r d
d dv v… )

)

d

The decision attribute d  determines the partition  

of the universe U , where 

1 (( ) { , , }r dCLASS d X X= …A A A

{ | ( ) }k kX x U d x v= ∈ =A k r d for 1 ( )≤ ≤ ( )CLASS dA.  

is called the classification of objects in  determined by the decision . The set A d
iXA  is called the i th decision class of . By A ( )X uA  we denote the decision class 

{ | ( ) ( )}x U d x∈ d u= , for any u U∈ . If  are the decision classes of 

, then the set 

1 , , r dX X…A A
( )

A 1 r dBX BX∪ ∪… ( )  is called the B -positive region of  and 

denoted by  [6]. 

A

( )BPOS d

Let ,  totally depends on , denoted by C , if all values 

of attributes from  are uniquely determined by values of attributes from . 

Degree of dependency of  on C  is denoted by and  [6], 

,C A D A⊆ ⊆ D C D⇒

D C

D kC ⇒ D

 
( )

( , ) CPOS D
k C D

U
γ= =  (0.22) 

I.5.6. Rough Membership 

The rough membership function quantifies the degree of relative overlap 

between the set X  and the equivalence [ ]x  class to which x  belongs. It is defined 

as follows: [6].  
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[ ]
[ ]

: [0,1] and ( ) BB B
X X

B

x X
U x

x
µ µ

∩
→ =  (0.23) 

The rough membership function is the probability that object x  is an element of 

set X  regarding the frequencies according to attribute set B . 

A concrete example of rough set can be seen in Table 4. The rough set 

membership of the object  with attribute values (0,1) is , because it 

is exactly the element of set 

101F 101( )A
X Fµ =1

X . The rough set membership of the object  with 

attribute values (0,0) is 

301F

301( )A
X Fµ 0= , because it is exactly not the element of set X . 

The rough set membership value of an object with value 1 for attribute  and value 

1 for attribute  is 0.99. 

1a

2a

 

 

Table 4 Decision table of set X  

 1a  2a  X  
Number of 

Data Samples 

1 9F F− 9  1 1 YES 99 

100F  1 1 NO 1 

101 300F F−  0 1 YES 200 

301 310F F−  0 0 NO 10 

 

 

In Figure 8, the equivalence classes of rough set X  are , 

 and . The objects  are closer 

to set 

101 102 300{{ , , , }F F F… }

1 2 99 100{{ , ,..., }, }F F F F 301 302 310{{ , , , }}F F F… 1 2 99, ,...,F F F

X  then the object  in some manner that is not obvious by the current 

attributes. When the number of points closer to lower boundary of rough set 

100F

X  

increases, the rough set memberships of the points in the boundary also increase. 
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301 302 310{{ , , , }}F F F…

101 102 300{{ , , , }}F F F…

1 2 99 100{{ , ,..., }, }F F F FX

 

Figure 8 Rough set approximation of set X  
 

 

I.6. Relationship between Rough Sets and Fuzzy Sets 

“Rough set theory and fuzzy set theory are complementary. It is natural to 

combine the two models of uncertainty (vagueness for fuzzy sets and coarseness for 

rough sets) in order to get a more accurate account of imperfect information” [25]. 

In rough set theory, approximations of sets are defined according to a 

background knowledge given by a data table. The rough membership function B
Xµ , 

where X U⊆  and B A⊆ , can be used to define approximations and boundary 

region of a set, as shown below [6]: 

 ( ) { : ( ) 1}B
XB X x U xµ= ∈ =  (0.24) 

 ( ) { : ( ) 0}B
XB X x U xµ= ∈ >

X

 (0.25) 

 ( ) { : 0 ( ) 1}B
BBN X x U xµ= ∈ < <  (0.26) 

The rough membership function has the following properties [26]: 

1. ( ) 1 iff ( )B
X x x B Xµ = ∈  

2. ( ) 0 iff ( )B
X x x B Xµ = ∈−  

3. 0 ( ) 1 iff ( )B
X Bx x BN Xµ< < ∈  
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4. If ( ) {( , ) : } , then ( ) is the characteristic function of B
XIND B x x x U x Xµ= ∈  

5. If ( ) ,  then ( ) ( )B B
X XxIND B y x yµ µ=  

6. ( ) 1 ( ) for any B B
U X Xx x xµ µ− = − ∈U  

7. ( ) max( ( ), ( )) for any B B
X Y X Yx x x xµ µ µ∪ ≥ ∈U  

8. ( ) min( ( ), ( )) for any B B B
X Y X Yx x x xµ µ µ∩ ≤ ∈U  

9. If  is a family of pairwise disjoint sets of U , then for any X x U∈  

X
X

( ) ( ) B B
X

X
x xµ µ

∈

= ∑∪  

From the above properties, the 7th and the 8th one show that rough sets can be 

seen as a generalized version of fuzzy sets. Also it has been shown in [26] that if the 

7th and the 8th property above become ( ) max( ( ), ( )) for any B B B
X Y X Yx x x xµ µ µ∪ U= ∈  

and ( ) min( ( ), ( )) for any B B B
X Y X Yx x x xµ µ µ∩ U= ∈  respectively, they are not true in 

general. Besides, the rough membership function, in contrast to fuzzy membership 

function, has a probabilistic flavor. 
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CHAPTER III 
 
 

COMPARISON of ROUGH MLP and ROUGH 
RBF USING FUZZY ATTRIBUTES 

 
II. COMPARISON of ROUGH MLP and ROUGH RBF USING FUZZY ATTRIBUTES 

II.1. Background 

There have been lots of hybridizations of soft computing methods. In these 

hybridizations, fuzzy Neural Networks have the first rank in number of work 

performed until now. The network structure in [7] was selected as a model in fuzzy 

MLP with Back Propagation (fuzzy BPNN). In [7], the input vector was fuzzified to 

represent fuzzy linguistic properties low, medium and high. The desired output 

vector was also fuzzified, so it can take values in the range [0,1]. The resultant 

fuzzy MLP was superior to conventional MLP and Bayes classifier on highly 

overlapping data sets. Unlike the fuzzy BPNN used in this thesis, a decay factor 

[16] was used in calculation of change in weights. 

In [14], a fuzzy RBF was proposed. In the hidden layer of the RBF network, 

fuzzy basis functions were used and the parameters of these functions were tuned 

by genetic algorithms. The proposed controller did better than a PID controller. 

Another fuzzy RBF was defined in [15]. This fuzzy RBF constructed the base 

used in this thesis, but the fuzzification functions of these two approaches were 

different. The fuzzification function used in [7] is included in the fuzzy RBF 

structure used in this thesis. 

Rough sets are the newest paradigm of soft computing and there is a tremendous 

amount of research ongoing on this topic recently [10, 11, 18]. 

R. Yasdi proposed a method in [17] to construct weight values of MLP 

according to dependency rules generated by rough sets. The method first finds 
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reducts of the system. Secondly, it simplifies the indiscernibility matrix according 

to this reduct. The reduced indiscernibility matrix is used for finding the 

dependency rules and the dependency factors of these rules are used for generating 

weight values of the neural network. 

In this thesis, fuzzy-rough membership concept was used in RBF [13]. The 

hidden node outputs are the fuzzy membership values of the input. The weights 

between the hidden nodes and the output layer correspond to rough fuzzy 

membership functions. The output of the network is rough-fuzzy membership value 

of the input data. 

There are many combinations of rough sets and fuzzy sets. Some of these are on 

rough fuzzy set or membership [9] and some are on fuzzy-rough set or membership 

[19]. 

In [22], using rough sets, a knowledge base was determined. By the help of this 

knowledge base, number of hidden nodes in MLP is calculated. Additionally, initial 

weight values of the neural network are also found according to the dependency 

factors of the dependency rules of this knowledge base. This network structure was 

taken as the model to the rough-fuzzy BPNN used in this thesis. 

In [12], quantitative input data was fuzzified to get fuzzy set of linguistic terms. 

Rough lover and upper bounds are calculated for the fuzzy set of linguistic terms. 

Fuzzy rules were generated while the missing attributes were being estimated. 

The c-means clustering is dependent on the initial cluster centres and the 

sequence of the data introduced to the c-means. In [20] subtractive learning was 

used to overcome the dependency of c-means onto initial cluster centres. Also the 

number of clusters does not need to be given to the algorithm, it concludes to an 

optimum solution itself. 

All the soft computing methods, which were explained in ‘Chapter I’, have their 

own strengths and weaknesses. The feedforward neural networks are good at 

handling error prone data, but their black-box structure prevents obtaining human 

interpretative rules. Fuzzy logic enables human type reasoning but it needs expert 

knowledge to construct rules. It is possible to construct generalized rules by means 
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]

n
F
J

of rough sets by reducing the size of data table. Combining fuzzy and rough sets 

leads to more accurate account of imperfect information. 

Mostly combination of these methods do better than when they are alone. The 

absence of a property in one method can be found in the other method. In this thesis 

MLP, RBF, fuzzy MLP, fuzzy RBF, rough fuzzy MLP and rough fuzzy RBF will 

be compared. 

II.2. Fuzzy Neural Networks 

Each input feature is represented with membership values of overlapping 

linguistic properties low, medium and high. This representation enables easier 

human interpretation and also more appropriate way of showing overlapping data. 

In conventional neural networks, an output vector is expected to have the value 1 at 

one node and value 0 at the other nodes. In a fuzzy neural network output 

membership function is in the interval [0, 1], which allows a better classification 

when the feature class has overlapping pattern classes. 

II.2.1. Input Fuzzification 

Each input feature  is represented in 3n-dimensional vector, 

where  represents the  attribute of input feature . After the fuzzification, 

the fuzzy form of the input vector becomes

  (0.27) 

1, 2[ , ,i i i inF F F F=
JG

…

inF thn iF

1 1 1( ) ( ) ( ) ( )[ ( ), ( ), ( ), , ( )]
i i i i

i low F i medium F i high F i high F iF F F Fµ µ µ µ=
JG JJG JJG JJG JG

…

where  represents the fuzzy membership value of  to fuzzy property 

“ ”,  represents the fuzzy membership value of  to fuzzy 

property “ ”, and 

1( ) ( )
ilow F iFµ
JJG

1iF

low
1( ) ( )

imedium F iFµ
JJG

1iF

medium
1( ) ( )

ihigh F iFµ
JJG

 represents the fuzzy membership value of  

to fuzzy property “ ”. These membership values are calculated by using 

1iF

high π  

membership function 
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2

2

2 1
2

( ; , ) 1 2 0
2

0

r c
for r c

r c
r c for r c

otherwise

λ λ
λ

λπ λ
λ

⎧ ⎛ − ⎞
⎪ − ≤ − ≤⎜ ⎟
⎪ ⎝ ⎠
⎪

⎛ − ⎞⎪
= − ≤ − ≤⎨ ⎜ ⎟

⎝ ⎠⎪
⎪
⎪
⎪
⎩

 (0.28) 

such that 0λ > . The parameters  and c λ  represent the centre and the radius of the 

π  function respectively. 
 

 

 

Figure 9 Structure of the process with fuzzification and neural network parts 
 

 

As seen in Figure 9, the data coming from the data table are first fuzzified and 

the result obtained in 3n-dimensional vector is used as the input layer of the neural 

network. 

In this thesis three π  functions, ( ; , )low low lowr cπ λ , ( ; , )medium medium mediumr cπ λ , 

( ; , )high high highr cπ λ  has been chosen in fuzzification to be consistent with the work 

done in [7] to construct an objective comparison. 

low 

medium medium 

high 

medium 

high
lowlow high

Output Layer N
eural N

etw
ork

Hidden Layer 

Fuzzified Input 
Layer Fuzzification

Input Layer 
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nLet the data table has  input patterns and, L 1 2[ , , , , , ]i iF a a a a=
JJG

… …  where  is 

the  attribute. In the scope of  patterns, and denote minimum and 

maximum value of the attribute  respectively. Let 

ia

thi L minia maxia

ia 1 2[ , , , , ,i i i ij iF F F F F= ]n

JJG
… … , 

where  is the ijF thj  attribute of input feature iF
JJG

 and jF
JJG

 represents the thj  attribute 

of all  pattern points. Then L 1 2[ , , , ,j j j ij LF F F F F= ]j

JJG
… … , where  is the ijF thj  

attribute of input feature iF
JJG

. 

 

 

1.0 

m
em

be
rs

hi
p 

0.5 

0 
FjmaxFjmin clow(Fj) cmeduim(Fj) chigh(Fj)

jF
JJG

 

Figure 10 The π  functions for linguistic properties low, medium and high. 

 

 

As seen in Figure 10, and represent the minimum and the maximum 

values in  respectively. Centre ( c ) and radius (

minjF maxjF

jF λ ) of the π  functions are 

computed as follows: 

 ( ) max min

( ) min ( )

1 ( )
2j

j

medium F j j

medium Fj j medium F

F F

c F

λ

λ

= −

= +
 (0.29) 

 
( ) ( ) min

( ) ( ) ( )

1 ( )

0.5

j j

j j

low F medium F j

low Fj medium F low F

c F
fdenom

c c

λ

λ

= −

= −
 (0.30) 
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( ) max ( )

( ) ( ) ( )

1 ( )

0.5

j

j j

high F j medium F

high Fj medium F high F

F c
fdenom

c c

λ

λ

= −

= +

j  (0.31) 

The parameter fdenom  is used for controlling the overlapping of the fuzzy 

membership functions. The above  and c λ  computations ensure that a feature 

vector  has a value greater than 0.5 in one of the , ijF ( ) ( )
ijlow F iFµ
JJG

( ) ( )
ijmedium F iFµ
JJG

, 

. So each feature value has a strong membership in one or more of the 

properties low, medium, and high. 

( ) ( )
ijhigh F iFµ
JJG

II.2.2. Output Fuzzification 

In conventional neural networks, desired output has to be a distinct value. 

Although there can be points on the boundaries or in the overlapping sets, winner 

takes all mechanism is applied. In these fuzzy neural networks, desired output is 

calculated by means of fuzzy data and takes values in the range [ . As a result 

desired output can take a value greater than  in more than one output node. This 

representation is highly suitable for learning data with so much overlapping. 

0,1]

0

Output fuzzification is the process of finding the membership of an input data to 

each output class. While finding this membership, weighted distance of the input to 

the corresponding output class is used. 
 

 

Table 5 An -output-class sample train data table 

   jF
JG

  
 1, 1F  … 1, 1nF −  1, nF  
 2, 1F  …   

iF
JG

 …
  …
 

…
 

 1, 1LF −  … 1, 1L nF − − 1,L nF −  
 , 1LF  … , 1L nF −  ,L nF  
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Assume training data in Table 5 is given, where iF
JJG

 represents  object, and 

 represents attribute vector 

thi

jF
JJG

j . Let for each output class k,  be the mean and 

 be the standard deviation vectors with n dimensions. Let 

kO

kV ikZ  be the weighted 

distance of object  from the  class. Then iF thk

 

2

1

2

1

,     , for 1,...,

,    , for 1,...,

>0

=0

n

j

n

j

ij kj k lkj
kjik

k lkjij kj

F O V
VZ

VF O

=

=

⎧
⎪
⎪
⎪ =
⎪
⎨=
⎪
⎪
⎪ =−⎪
⎩

⎡ ⎤−
∑⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤∑⎣ ⎦

 (0.32) 

Let ( )k iFµ
JJG

 represent the membership of the input object  to output class . 

Then 

i k

 ( ) 1  ,    where   0, 0

1

e dk i
e

ik

d

F ffz
f

µ =
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

JJG
f> >  (0.33) 

The variables df  (denominational fuzzy generator) and ef  (exponential fuzzy 

generator) are used to control the fuzziness of the membership. 

In the training data set, there can be objects with the same attributes except the 

decision attribute. This case is mostly seen in points which reside through the 

overlapping boundaries. 
 

 

 

A B

b

a

Figure 11 Train data with two output classes,  and A B  
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In the example in Figure 11, point  and point  are the same points. They are 

at the intersection set of set  and set 

a b

A B . According to input data set, the decision 

attribute of point  is a A  and the decision attribute of point b  is B . In the test data 

set, if any point x  takes place at the intersection of set  and A B , the decision 

attribute of point x  should better be element of both  and A B . In conventional 

neural networks, point x  can be either element of A  or B , but not both.  

In the fuzzy neural network approach, point a (or ) is used for calculating 

mean and standard deviation of both the set  and the set 

b

A B . So, in the test set, if a 

point with the same characteristics of point (or ) is seen, it is said to be both the 

element of the set  and the set 

a b

A B . 

The fuzziest case is defined as the case that a point belongs to all output classes 

of the train set. Fuzziest cases need extra computation to enhance difference. As a 

result, the desired output of the thj  output node is [7] 

 
( )

( )
( )
( )

2

( ) 2

2 ,  for 0
,    

1 2 ,otherwise

,

k

iINT k

j

ik

k i
F for the fuzziest case

d
k i

F ot

F

F

µ
µ

µ

µ

µ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨=
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧
<⎪

⎪
=⎨
⎪ −⎪
⎩

⎡ ⎤
⎣ ⎦
⎡ ⎤
⎣ ⎦

JJG

JJG
herwise

JJG

JJG (0.34) 

where the fuzzy membership of the input object i  to output class  ( ) is 

given in equation (0.29). In equation (0.30), the fuzzy membership of the input 

object  to output class  for the fuzziest case is represented with . 

k ( )k iFµ
JJG

i k ( )( )INT k iFµ
JJG

II.3. Rough Fuzzy Neural Network Structure 

Embedding rough sets into fuzzy neural networks enables deciding the number 

of nodes in the hidden layer. It also gives rough weight values, which can be used as 

initial weight in the BPNN. The steps of finding dependency rules are given in 

Table 6. [17] 
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Each group found in the 2nd step of the Table 6 is divided into subgroups having 

same decision attributes. Unlike [22], Tr  of the group α  in step 2 is the mean value 

of cardinalities of the sub groups that take place in group α . The variable Tr  in 

step 3 of Table 6 is calculated for each output class. 
 

 

Table 6 Dependency rule generation 

For each output class: 

1. Fuzzify the input data. 

2. Group data having the same conditional attributes. 

3. Apply threshold Tr  to grouped fuzzy data and take the groups having 

cardinality more than or equal to Tr . 

4. Construct a decision matrix using a representative element from each 

selected group. 

5. Find the decision function of this decision matrix. 

6. Turn this decision function into Disjunctive Normal Form (DNF) and 

simplify it; e.g. . 1 1 2 2( ) (L M M H∧ ∨ ∧ )

7. Select a minimum reduct. Each element of “ ” operator in the DNF form 

is a reduct; e.g. . 

∨

1 1( )L M∧

8. Reduce the discernibility matrix using the selected reduct [22]. 

9. Construct a function from the reduced discernibility matrix for each object 

[17]. 

10. Apply “ ” operator to combine the results in step 9. ∨

11. Simplify the result in 10 to get the dependency rule for the class selected. 
 

 

The number of hidden nodes in neural network can be decided by the 

dependency rules generated for each class. With the help of this method, 

tremendous search for finding optimum number of hidden nodes is prevented. 

Assume the dependency rule found for output class  in Table 6 is k
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12 1( )M M H∨ ∧ . Then there will be two hidden nodes for output class  in rough 

fuzzy neural network. One of the hidden nodes is for 

k

2M  and the other is for 

1 1( )M H∧ . 

The dependency factors of the dependency rules found in Table 6 are used as 

the initial weight values of the fuzzy BPNN. The structure of the fuzzy BPNN for 

the output class k  is seen in Figure 12, where α  and β  are very small numbers. 

They are included to the network to add randomization in weight values. In Figure 

12 only the output node  is shown. Although the rough fuzzy BPNN has a fully 

connected structure, only the calculated weights for the output node  are shown in 

the figure. The other weights are small random values. Signs of the all weight 

values are given randomly. 

k

k

 

 

k
Output Layer 

 

Figure 12 Sample rough fuzzy BPNN 
 

 

II.4. Implementation and Results 

The BPNN and RBF included in this thesis are in their conventional structures 

as explained in Chapter I. In this thesis the fuzzy BPNN is same as the one in [7]. 

The rough fuzzy BPNN is same as the one in [22] except the calculation of 
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threshold Tr  used in rough set dependency rule generation. Fuzzy RBF is a mixture 

of [15] and [22]. It takes the fuzzification function from [22] and the structure from 

[15]. In literature, the rough fuzzy RBF proposed in section II.3 is the attempt on 

hybridization of rough, fuzzy, and RBF soft computing methods. The comparison of 

BPNN, fuzzy BPNN, and rough fuzzy BPNN and RBF, fuzzy RBF, and rough 

fuzzy RBF is done in the scope of this thesis. 
 

 

 
Figure 13 Projection of vowel data set onto  and . 

 

During the comparison, three different data sets are used. The first one is the 

“Vo

1F 2F

 

wel Data” taken from http://isical.ac.in/~sushmita, which includes Indian 

Telugu vowel sounds. The sounds are represented in three different frequencies and 

the results are six different vowel sounds. There are 871 objects in the data set, 67% 

of these sounds are used for training and the rest are left for the testing process. This 

data exhibits a highly overlapping structure. The vowels which are ∂, a, i, u, e, o, are 

shown in Figure 13 according to their frequency of occurrences [8, 21]. Actually, 
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m ~sushmita. It is a 

syn

d by R.A. Fisher and 

Mic

Vow” which is also known as “vowel.data”. The 

sou

d the best results of the mentioned algorithms an automated 

test

there are three frequencies in the data set, but in the figure only the 2 dimensional 

projection on frequency 1 ( 1F ) - frequency 2 ( 2F ) space is shown. 

The second data set “Pat1” is also taken fro  http://isical.ac.in/

thetic data with 2 attributes and 3 different output classes. The data is linearly 

inseparable and has 880 objects. In the training phase 67% of the data set is used, 

and in the testing phase the remaining 33% of the data is used. 

The third data set used is the “Iris Plants Database” prepare

hael Marshall [23]. It has 4 attributes and 3 output classes. One of these output 

classes is linearly separable, whereas the others are not. This is the simplest data set 

used in the content of this thesis. 

The fourth data set is “English

rces of “EnglishVow” are D. Deterding, M. Niranjan, and T. Robinson [23]. The 

data set is a speaker independent recognition of the eleven steady state vowels of 

British English using a specified training set of lpc derived log area ratios. There are 

total of 990 instances in the data set with 10 attributes. The data set is divided into 

11 output classes. 

In order to fin

ing was generated. A range for the number of layers and the number of hidden 

nodes can be defined in the user interface. The lower boundary and the upper 

boundary for the range of layers are taken from the user interface. The application is 

executed for each number between the boundaries and at the boundaries. The lower 

bound and the upper bound and also the hidden node step-size are defined for the 

range of hidden number of nodes in each layer. The application is executed for the 

lower bound and the previous number of hidden node plus the hidden node step-size 

until the number of hidden nodes exceeds the upper boundary. The number of 

iterations and the step size for the iterations (“IC Step Size”) can also be defined 

during the automated execution. The iteration count step-size decides on the 

frequency of the test performed. 
 

 



 

 
 
 30

 
Figure 14 Snapshot of the program. 

 

 

If the “Run Iteratively” checkbox in Figure 14 is checked, then the program 

executes for each number of layers for each number of hidden nodes for iterations 

time. The number of tests performed is equal to Iteration Count /  IC Step Size⎢ ⎥⎣ ⎦ . 

A test graphic and a train graphic are drawn after number of iterations is defined. As 

this process can be very long especially for the BPNN, a progress bar is added to 

the application to see the progress. 

Mean square error is used as the criteria to the evaluation of the results. In the 

test graphs included below, the behavior of the mean square error is analyzed 

according to the number of iterations carried out during the training. For every “IC 

Step Size” iterations, a test error is calculated. As the number of train iterations 

increases the train error decreases. Most of the times, this is the case for the test 

error after a settlement in learning, unless there is an oscillation. 
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The “Vowel” and the “Pat1” data are executed for each of the six algorithms 

mentioned. The “Iris Plant Database” and “EnglishVow” data are used for rough 

fuzzy RBF. When the distributions of test and training data sets change, the results 

also differ. So the test and training sets of “Vowel” and “Pat1” data were randomly 

selected for three times. The resultant data are called “vowel1”, “vowel2”, 

“vowel3” for the versions of “Vowel” data and “pat1_1”, “pat1_2”, “pat1_3” for the 

versions of “Pat1” data. For this randomization and split operations two different 

implementations were generated. The files are first randomized then split into train 

and test files with the percentage of 67 for train and 33 for the test. 

As an analysis and inspection tool for the results of the testing and training, Plot 

Graph Library (PGL) is integrated into the program. PGL is a graphic library 

especially specialized in scientific chart drawings on VC 6.0 and VC 7.0 

environments by inputting the data from the code. It is designed to be able to easily 

plot data generated in a project without the need of any external software. PGL was 

originally based on the OpenGL to raster graphics, but revised versions uses GDI+ -

revised version of Graphics Device Interface- for that purpose, like the one used in 

this thesis. 

II.4.1. Parameters Used in the Compared Algorithms 

There are three fuzzification parameters, which are fd , fe  and fdenom , used 

in fuzzy BPNN and fuzzy RBF. As seen in equation (0.29), the output membership 

function is directly proportional with denominational fuzzification parameter ( fd ), 

and inversely proportional with the exponential fuzzification parameter ( fe ). When 

the fd  is decreased, the output layer values of fuzzy neural network decreases, so 

does the mean square error. However, this decrease does not mean an improvement 

in the algorithm. In addition, when the fe  is decreased, the output values of fuzzy 

neural network increases, so does the mean square error. Nonetheless, this increase 

does not show poor performance of the algorithm. The results are the same as they 

were but only a kind of scaling is done. For this reason, fd  and fe  parameters are 
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kept constant throughout the entire implementation. The value for fd  was chosen 

as 5 and the value of fe  was chosen as 1. The other fuzzification parameter 

fdenom  gives the extent of fuzzification. As fdenom  increases, the overlapping 

structure of the membership functions increases. The fdenom  was chosen as 0.8. 

The threshold Th  is used for selecting fuzzy inputs for rough set indiscernibility 

matrix formation. When the Th  decreases, the number of objects included into the 

indiscernibility matrix increases. So the number of hidden nodes estimated changes. 

The  is chosen as 0.8 to be consistent with [22]. Th

The neural network parameter “learning rate” was given as 0.5 at the beginning. 

Afterwards, it was continually decreased at each iteration. The momentum value 

was given 0.5 to keep the direction of search. 

II.4.2. Vowel Input Set 

All the algorithms considered are executed with “vowel1” data. The other two 

“vowel” data were used for fuzzy BPNN, fuzzy rough BPNN, fuzzy RBF and fuzzy 

rough RBF. The test error graphics of the results were shown near the optimum 

runs. 

II.4.2.1. Back-Propagation Neural Network (BPNN) Algorithm 

The “vowel1” data was run with 3, 4 and 5 number of layers. Theoretically, 5-

layers are enough for modeling any type of data. The networks with 3 and 4 layers 

were run to find out whether less number of layers are enough to model the data – 

“vowel1”. All these results were tried for wider ranges of number of hidden nodes 

(2 to 40) and iterations (25 to 32000), but only the results near the optimum ones 

are included. 
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(a) 

 
(b) 

 

 
(c) 

 

Figure 15 Mean square test error graphics of “vowel1” data for 4-layered BPNN 
with different numbers of hidden nodes (a) 21 Hidden Nodes (b) 23 Hidden Nodes 

(c) 25 Hidden Nodes 
 

 

As seen in Figure 16, the best result for 3-layered BPNN was reached with 17 

hidden nodes at the iteration 32000. For the 4-layered BPNN, Figure 15 shows that 

the minimum error is produced near the 5500 iterations for 23 hidden nodes in each 

layer. In Figure 17, the test results that belong to 5-layered BPNN can be seen. The 

best result for 5-layered BPNN is between 9 and 11 hidden nodes. The number of 

iterations needed is between 2500 and 3500. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 

Figure 16 Mean square test error graphics of “vowel1” data for 3-layered BPNN 
with different numbers of hidden nodes (a) 13 Hidden Nodes (b) 15 Hidden Nodes 

(c) 17 Hidden Nodes (d) 19 Hidden Nodes (e) 21 Hidden Nodes 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 

Figure 17 (a) Mean square test error graphics of “vowel1” data for 5-layered BPNN 
with different numbers of hidden nodes (a) 7 Hidden Nodes (b) 9 Hidden Nodes (c) 

11 Hidden Nodes (d) 13 Hidden Nodes (e) 15 Hidden Nodes 
 

 

The optimum result for this algorithm was found as 5-layered network with 10 

hidden nodes at about 3000 iterations. This result is consistent with the one stated in 

[7]. 
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II.4.2.2. Fuzzy BPNN Algorithm 

The fuzzy BPNN algorithm was run with all three versions of “vowel” data, 

which are “vowel1”, “vowel2”, and “vowel3”. Although all the results were taken 

for wider ranges of number of hidden nodes, only the optimal number of hidden 

nodes for each run and two graphics below optimal and two graphics above optimal 

were chosen. 
 
 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 

Figure 18 Mean square test error graphics of “vowel1” data for fuzzy BPNN with 
different numbers of hidden nodes (a) 11 Hidden Nodes (b) 13 Hidden Nodes (c) 15 

Hidden Nodes (d) 17 Hidden Nodes (e) 19 Hidden Nodes 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 

Figure 19 Mean square test error graphics of “vowel2” data for fuzzy BPNN with 
different numbers of hidden nodes (a) 10 Hidden Nodes (b) 12 Hidden Nodes (c) 14 

Hidden Nodes (d) 16 Hidden Nodes (e) 18 Hidden Nodes 
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(a) 
 

(b) 
 

 
(c) 

 
(d) 

 

 
(d) 

 

Figure 20 Mean square test error graphics of “vowel3” data for fuzzy BPNN with 
different numbers of hidden nodes (a) 15 Hidden Nodes (b) 17 Hidden Nodes (c) 19 

Hidden Nodes (d) 21 Hidden Nodes (e) 23 Hidden Nodes 

 

 

As seen in Figure 18, 15 hidden nodes are optimal for fuzzy BPNN with 

“vowel1” data. When “vowel2” data was given as input to fuzzy BPNN, the NN 

with 14 hidden nodes (Figure 19-(c)) did the best. In Figure 20, 19 hidden nodes 

gave the best result for fuzzy BPNN run with “vowel3” data. These results show 

that the optimal number of hidden nodes changes according to random distribution 



 

 
 
 39

of data chosen as input. The results of fuzzy BPNN are better than the conventional 

MLP for “vowel” data. 

II.4.2.3. Rough Fuzzy BPNN Algorithm 

 
 

 
 

Figure 21 Mean square test error graphic of “vowel1” data for rough fuzzy BPNN 
with 16 hidden nodes 

 

 

When the rough set dependency rules were generated for “vowel1” data, the 

estimated hidden node numbers for fuzzy BPNN was found as 16 as seen in Figure 

21. The optimum hidden node number found was 15 for fuzzy BPNN with 

“vowel1” data (Figure 18). Although the estimation proposed by rough set 

dependency rules is not exactly the same as the optimum result, it is not 

exceptionally far away. The number of 14 hidden nodes is estimated for near 

optimum solution of “vowel2” data for fuzzy BPNN. This result coincides with the 

result found in Figure 19. The estimation of 19 hidden nodes was done for fuzzy 

BPNN with “vowel3” data. This result is same with the one found for fuzzy BPNN 

in Figure 20. 
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II.4.2.4. Radial Basis Function (RBF) Algorithm  

The conventional RBF was run with wider range of number of hidden nodes for 

“vowel1” data. The results included here are the ones that are enough to show the 

tendency of the algorithm for different number of hidden nodes. In Figure 22, the 

best result was gained with 31 hidden nodes for RBF in “vowel1” data. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 22 Mean square test error graphics of “vowel1” data for RBF with different 
numbers of hidden nodes (a) 27 Hidden Nodes (b) 29 Hidden Nodes (c) 31 Hidden 

Nodes (d) 33 Hidden Nodes (e) 35 Hidden Nodes 
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II.4.2.5. Fuzzy RBF 

The fuzzy RBF was run with all versions of “vowel” data which are “vowel1”, 

“vowel2” and “vowel3”. The graphics enough to show the tendency of the 

algorithm and the optimum number of hidden nodes - if there exists - were 

included. 

In Figure 23, the minimum error is reached with 23 hidden nodes for “vowel1” 

data executed for fuzzy RBF. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 23 Mean square test error graphics of “vowel1” data for fuzzy RBF with 
different numbers of hidden nodes (a) 17 Hidden Nodes (b) 19 Hidden Nodes (c) 21 

Hidden Nodes (d) 23 Hidden Nodes (e) 25 Hidden Nodes 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
(f) 

 

Figure 24 Mean square test error graphics of “vowel2” data for fuzzy RBF with 
different numbers of hidden nodes (a) 6 Hidden Nodes (b) 8 Hidden Nodes (c) 10 

Hidden Nodes (d) 12 Hidden Nodes (e) 14 Hidden Nodes (f) 16 Hidden Nodes 

 
 



 

 
 
 43

 

 
(a) 

 

 
(b) 
] 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Figure 25 Mean square test error graphics of “vowel3” data for fuzzy RBF with 
different numbers of hidden nodes (a) 15 Hidden Nodes (b) 17 Hidden Nodes (c) 19 

Hidden Nodes (d) 21 Hidden Nodes (e) 23 Hidden Nodes 
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In Figure 24, the test error of fuzzy RBF continually decreases as the number of 

hidden node decreases. Therefore, a conclusion on the optimum number of hidden 

nodes cannot be stated for fuzzy RBF which was executed with “vowel2” data. 

In Figure 25, the optimum number of nodes is 19 for fuzzy RBF that has 

“vowel3” as input data. The results of the fuzzy RBF are better than that of the 

conventional RBF. 

II.4.2.6. Rough Fuzzy RBF Algorithm 

 
 

 
 

Figure 26 Mean square test error graphic of “vowel1” data for rough fuzzy RBF 
with 16 hidden nodes 

 

 

According to rough set dependency rule generation, near optimum number of 

hidden nodes is estimated as 19 for “vowel3” data. This coincides with the result 

found in Figure 25. However, the optimal hidden node number is found as 16 for 

“vowel1” data (Figure 26), and this contradicts with the result found in Figure 23. 

The estimated and the actual number for hidden nodes also differ for “vowel2” data. 

The estimated number of hidden nodes is 14 whereas the same result cannot be 

observed in the actual results. (see Figure 24) 
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II.4.3. PAT1 Input Set 

In conventional BPNN and RBF, only the “pat1_1” data is used. In fuzzy 

BPNN, fuzzy RBF, rough fuzzy BPNN and rough fuzzy RBF, all “pat1” data 

versions are used. (“pat1_1”, “pat1_2”, and “pat1_3”). 

II.4.3.1. BPNN Algorithm 

The conventional MLP algorithm was run for 3, 4, and 5 layers for “pat1_1” 

data. The aim was to decide on the optimum number of hidden nodes for the 

optimum number of layers. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 27 Mean square test error graphics of “pat1_1” data for 3-layered BPNN 
with different number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c) 

9 Hidden Nodes (d) 11 Hidden Nodes 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

 
(g) 
 

Figure 28 Mean square test error graphics of “pat1_1” data for 5-layered BPNN 
with different number of hidden nodes (a) 5 Hidden Nodes (b) 11 Hidden Nodes (c) 
17 Hidden Nodes (d) 23 Hidden Nodes (e) 25 Hidden Nodes (f) 27 Hidden Nodes 

(g) 29 Hidden Nodes 
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The best result was achieved with 7 hidden nodes for 3-layered BPNN with 

“pat1_1” data as seen in Figure 27. Optimum number of hidden nodes is 5 at each 

layer for 4-layered BPNN as seen in Figure 29. The results of 4-layered BPNN were 

better than those of the 3-layered BPNN. 

5-layered BPNN for “pat1_1” data has an unstable structure as seen in Figure 

28. In addition, its generalization capability is not as good as that of a 4-layered 

BPNN. The cause for these results is that the structure of “pat1_1” data is much 

simpler than the “vowel1” data. 

The optimum number of layers is 4 and the optimum number of hidden nodes is 

5 for the conventional MLP with “pat1_1” data. 
 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 29 Mean square test error graphics of “pat1_1” data for 4-layered BPNN 

with different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c) 
7 Hidden Nodes (d) 9 Hidden Nodes 
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II.4.3.2. Fuzzy BPNN Algorithm 

The fuzzy BPNN algorithm was run for “pat1_1”, “pat1_2”, and “pat1_3” data. 

The optimum number of hidden nodes was explored for each run. The graphics 

below were included to show the tendency of the algorithm near optimum number 

of hidden nodes. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 30 Mean square test error graphics of “pat1_1” data for fuzzy BPNN with 
different number of hidden nodes (a) 5 Hidden Nodes (b) 6 Hidden Nodes (c) 7 

Hidden Nodes 
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(a) 

 
(b) 

 
(c) 

 

Figure 31 Mean square test error graphics of “pat1_2” data for fuzzy BPNN with 
different number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c) 9 

Hidden Nodes 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 32 Mean square test error graphics of “pat1_3” data for fuzzy BPNN with 
different number of hidden nodes (a) 4 Hidden Nodes (b) 6 Hidden Nodes (c) 8 

Hidden Nodes 
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In Figure 30, the minimum error is reached with 6 hidden nodes in fuzzy BPNN 

which was executed with “pat1_1” data. When the fuzzy BPNN has “pat1_1” as 

input data, 7 as the number of hidden nodes was the best result as can be seen in 

Figure 31. The best result is reached at 6 hidden nodes in fuzzy BPNN with 

“pat1_3” data, as seen in Figure 32. Though the “pat1_1”, “pat1_2”, and “pat1_3” 

train data are the random selection of the same data, the optimum number of hidden 

nodes differs. These results show that the optimum number of hidden nodes is 

dependent on the random distribution of data. When the overall performance is 

taken into consideration, the results of the fuzzy BPNN are better than the 

conventional MLP for “pat1_1”data. 

II.4.3.3. Rough Fuzzy BPNN Algorithm 

In rough fuzzy BPNN, the estimated hidden nodes numbers is 6 according to 

rough set dependency rules generated for “pat1_1” data. The actual optimum 

number of hidden nodes shown in Figure 30 was also 6 for “pat1_1” data. The 

rough set dependency rules generated for “pat1_2” data estimated the optimum 

number of hidden nodes as 7. This result is exactly the same as the one shown in 

Figure 31. The optimum number of hidden nodes for “pat1_3” was found as 6 and 

this coincides with the result in Figure 32. 

II.4.3.4. RBF Algorithm 

The conventional RBF was run with “pat1_1” to find the optimum number of 

hidden nodes and to see the performance of the algorithm. In conventional RBF, 

when the “pat1_1” data was given as input, best result is reached at 7 hidden nodes, 

as seen in Figure 33. The optimum results were reached less in less than 750 

iterations. This indicates that the “pat1_1” data is simpler then the “vowel” data. 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 33 Mean square test error graphics of “pat1_1” data for RBF with different 
number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c) 9 Hidden 

Nodes (d) 11 Hidden Nodes 

II.4.3.5. Fuzzy RBF Algorithm 

The fuzzy RBF was run with all versions of “pat1” data which are “pat1_1”, 

“pat1_2”, and “pat1_3”. The tendency of the algorithm in each run is shown in 

Figure 34, Figure 35, and Figure 36. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Figure 34 Mean square test error graphics of “pat1_1” data for fuzzy RBF with 
different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c) 7 

Hidden Nodes (d) 9 Hidden Nodes (e) 11 Hidden Nodes 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Figure 35 Mean square test error graphics of “pat1_2” data for fuzzy RBF with 
different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c) 7 

Hidden Nodes (d) 9 Hidden Nodes (e) 11 Hidden Nodes 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

Figure 36 Mean square test error graphics of “pat1_3” data for fuzzy RBF with 
different number of hidden nodes (a) 2 Hidden Nodes (b) 4 Hidden Nodes (c) 6 

Hidden Nodes (d) 8 Hidden Nodes (e) 10 Hidden Nodes 
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When the fuzzy RBF is executed for every version of “pat1” data, error 

decreases as the number of hidden nodes decreases, as seen in Figure 34, Figure 35, 

and Figure 36. Consequently, it is impossible to decide on the minimum number of 

nodes. Additionally, the optimum error value is reached with a very few iterations – 

less than 600. This implies the conclusion that “pat1” data is too simple for fuzzy 

RBF to learn. 

II.4.3.6. Rough Fuzzy RBF Algorithm 

Rough set dependency rules generated for “pat1_1” data estimates 6 for number 

of hidden nodes, as it is seen in Figure 37. This estimation is not true because there 

is no minimum number of hidden nodes for “pat1_1” data for fuzzy RBF. The 

estimated results for “pat1_2” and “pat1_3” are 7 and 6; however these are also 

wrong because the “pat1_2” and “pat1_3” does not have minimum number of 

hidden nodes for fuzzy RBF. 
 

 

 
 

Figure 37 Mean square test error graphic of “pat1_1” data for rough fuzzy RBF 
with 6 hidden nodes 
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II.4.4. IRIS Input Set 

The “iris” input set is run with fuzzy RBF to explore why the algorithm does not 

have a minimum number of hidden nodes for “pat1” data. The reason for choosing 

the “iris” data is that the data set is simpler than the “pat1” data. If the “pat1” data is 

too simple for fuzzy RBF to learn, then also the “iris” data has to be too simple for 

fuzzy RBF to learn. 

II.4.4.1. Fuzzy RBF Algorithm 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 
Figure 38 Mean square test error graphics of “iris” data for fuzzy RBF with 

different number of hidden nodes (a) 2 Hidden Nodes (b) 4 Hidden Nodes (c) 6 
Hidden Nodes (d) 8 Hidden Nodes (e) 10 Hidden Nodes 
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The “iris” data was given as input to the fuzzy RBF. The aim is to decide 

whether the data given is too simple for fuzzy RBF to learn. 

In Figure 38, as the number of hidden nodes decreases, the error continually 

decreases, as it does in “pat1” input data set. The minimum number of hidden nodes 

could not be calculated in “iris” data for fuzzy RBF. This results shows that the 

“iris” data is too simple for the fuzzy RBF to give acceptable results. 

II.4.4.2. Rough Fuzzy RBF Algorithm 

According to rough set dependency rules, the estimated number of hidden nodes 

is 6 for “iris” data (see Figure 39). It is concluded that the “iris” data is also too 

simple for fuzzy RBF. This result is not surprising as the “iris” data is the simplest 

data set of all data sets considered in this thesis. 
 

 

 
 

Figure 39 Mean square test error graphic of “iris” data for rough fuzzy RBF with 6 
hidden nodes 

 

II.4.5. EnglishVow Input Set 

The “EnglishVow” data set is more complex than the “pat1” and the “iris” data. 

This data set is used to understand the characteristic of the rough fuzzy RBF. 
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II.4.5.1. Fuzzy RBF Algorithm 

The “EnglishVow” data is given as input to fuzzy RBF with different number of 

hidden nodes. Only the results which are enough to show the tendency of the 

algorithm and the optimum number of hidden nodes are included. As seen in Figure 

40, the optimum number of hidden nodes for fuzzy RBF is 27. The fuzzy RBF has 

meaningful results for “EnglishVow” data, because this data set is more complex 

than “pat1” and “iris” data sets. 
 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 40 Mean square test error graphics of “EnglishVow” data for fuzzy RBF 
with different number of hidden nodes (a) 25 Hidden Nodes (b) 27 Hidden Nodes 

(c) 29 Hidden Nodes 
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II.4.5.2. Rough Fuzzy RBF Algorithm 

The number of hidden nodes estimated according to the rough set dependency 

rules generated for “EnglishVow” data is 27 (see Figure 41). This result is exactly 

the same as the actual optimum number of hidden nodes. It can be concluded that 

whenever a data is complex enough to be learned by fuzzy RBF, there is a 

probability that estimated number of hidden nodes by rough fuzzy RBF coincides 

with the optimum number of hidden nodes. 
 

 

 
 

Figure 41 Mean square test error graphic of “EnglishVow” data for rough fuzzy 
RBF with 27 hidden nodes 
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CHAPTER IV 
 
 

CONCLUSION 
 

III. CONCLUSION 
In this thesis conventional MLP, fuzzy BPNN, rough fuzzy BPNN and RBF 

fuzzy RBF, rough fuzzy RBF are compared. During these comparisons, four 

different types of data were used. The characteristics of rough fuzzy RBF were 

explored. 

The test error of fuzzy BPNN is less than that of conventional MLP for both the 

“vowel” and the “pat1” data. This result is same as the ones in [7, 21]. The test error 

in fuzzy RBF is less than that of conventional RBF for the “vowel” data. This result 

is parallel with [15]. The “vowel” data has highly overlapping output regions. It has 

three input attributes and six output classes. On the other hand “pat1” data has also 

overlapping structure, but not as much as “vowel” data. The “pat1” data has two 

input attributes and three output classes. The “pat1” data is simpler than “vowel” 

data. As a result conventional methods did better for “pat1” than fuzzy RBF. The 

“iris” data is the simplest data set used in comparisons. The “iris” data has three 

output classes, one of which is linearly separable from other two. The overlapping 

structure of the data is so less for fuzzy RBF to be successful. 

Rough fuzzy BPNN found the near optimal number of hidden nodes in each run 

of “vowel” and “pat1” data. This result was also shown in [22]. The initial weight 

values of fuzzy BPNN were generated by rough set dependency factors of 

dependency rules constructed. 

A known study of rough fuzzy RBF was carried out for the first time in this 

thesis. It was explored whether the there can be a relation between the number of 

hidden nodes and dependency rules in fuzzy RBF. Because the results showed that 

“pat1” and “iris” data are not appropriate for the fuzzy RBF, number of hidden 

nodes estimated using rough sets can not be taken as the only base for the 
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evaluation of rough fuzzy RBF. When the rough fuzzy RBF was run with three 

versions of the “vowel” data, estimated number of hidden nodes found by rough 

sets coincide the actual results for only one version of “vowel” data. In “vowel1” 

data the estimated number is 16 whereas the actual number is 23. The error in 

“vowel2” decreases, as the number of nodes decreases. 

When fdenom  and Th  values were changed in rough fuzzy RBF, in some cases 

estimated number of hidden nodes coincide with the optimum number of hidden 

nodes. However, as these cases do not show common properties, a generalization 

could not be made. As a result, in rough fuzzy RBF proposed, a direct relationship 

between dependency rules and optimum number of hidden nodes could not be 

made. Because the result of RBF is highly dependent on the initial clusters given 

and the sequence of data introduced to the network, defining optimum number of 

hidden nodes for RBF has to be dependent on what RBF is dependent. 
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