

COMPARISON OF ROUGH MULTI LAYER PERCEPTRON AND ROUGH
RADIAL BASIS FUNCTION NETWORKS USING FUZZY ATTRIBUTES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HÜLYA VURAL

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2004

Approval of the Graduate School of Natural and Applied Sciences.

 Prof. Dr. Canan Özgen
 Director

I certified that this thesis satisfies all the requirements as a thesis for the degree of
Master of Science.

 Prof. Dr. Ayşe Kiper
 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Ferda Nur Alpaslan
 Supervisor

Examining Committee Members

Assoc. Prof. Dr. Ferda N. Alpaslan (METU, CENG)

Prof. Dr. Mehmet Tolun (Çankaya Uni.)

Prof. Dr. Adnan Yazıcı (METU, CENG)

Assoc. Prof. Dr. İ. Hakkı Toroslu (METU, CENG)

Dr. Ayşenur Birtürk (METU, CENG)

 iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name:

Signature :

 iv

ABSTRACT

COMPARISON of ROUGH MLP and ROUGH RBF USING FUZZY
ATTRIBUTES

Vural, Hülya

MS, Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ferda Nur Alpaslan

September 2004, 64 pages

The hybridization of soft computing methods of Radial Basis Function

(RBF) neural networks, Multi Layer Perceptron (MLP) neural networks with back-

propagation learning, fuzzy sets and rough sets are studied in the scope of this

thesis. Conventional MLP, conventional RBF, fuzzy MLP, fuzzy RBF, rough fuzzy

MLP, and rough fuzzy RBF networks are compared. In the fuzzy neural networks

implemented in this thesis, the input data and the desired outputs are given fuzzy

membership values as the fuzzy properties “low”, “medium” and “high”. In the

rough fuzzy MLP, initial weights and near optimal number of hidden nodes are

estimated using rough dependency rules. A rough fuzzy RBF structure similar to the

rough fuzzy MLP is proposed. The rough fuzzy RBF was inspected whether

dependencies like the ones in rough fuzzy MLP can be concluded.

Keywords: Radial Basis Function network, Multi Layer Perceptron, fuzzy sets,

rough sets, hybrid soft computing.

 v

ÖZ

HAM ÇKP ve HAM MÇDTF’NİN BELİRSİZ NİTELİKLERİN
KULLANILARAK KARŞILAŞTIRILMASI

Vural, Hülya

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ferda Nur Alpaslan

Eylül 2004, 64 sayfa

 Bu tez çalışmasının erimi Merkez Çevre Doğrultulu Taban

Fonksiyonları’nın (MÇDTF), geri yayılım yöntemi ile öğrenen Çok Katmanlı

Pörseptron (ÇKP) konseptine sahip ağların, belirsiz setlerin, ve ham setlerin

melezleştirilmesini kapsamaktadır. Geleneksel ÇKP, geleneksel MÇDTF, belirsiz

ÇKP, belirsiz MÇDTF, ham belirsiz ÇKP ve ham belirsiz MÇDTF ağlar

karşılaştırılmıştır. Bu tezde gerçekleştirilen belirsiz nöron konseptine sahip

ağlardaki girdi bilgilerine ve istenilen çıktı bilgilerine “düşük”, “orta” ve “yüksek”

gibi belirsiz üyelik değerleri atanmıştır. Ham Belirsiz ÇKP için atanan başlangıç

ağırlıkları ve yaklaşık optimal gizli düğüm sayısı ham bağımlılık kuralları

kullanılarak tahmin edilmiştir. Ham belirsiz ÇKP’ye benzer bir ham belirsiz

MÇDTF yapısı önerilmiştir. Bu ham belirsiz MÇDTF için, ham belirsiz ÇKP’de

olanlara benzer bağımlılıkların varlığı araştırılmıştır.

Anahtar Kelimeler: Merkez Çevre Doğrultulu Taban Fonksiyonlu ağlar, Çok

Katmanlı Perseptron, belirsiz setler, ham setler, melez elektronik hesaplamalar

 vi

To my dear family and to my love

 vii

ACKNOWLEDGEMENTS

I would like to express sincere appreciation to Assoc. Prof. Dr. Ferda Nur

Alpaslan for her precious guidance and invaluable insight throughout the research.

 I also would like to thank to my family, - especially to my sister, Hüsniye -

for their ever-lasting support and encouragement.

 Finally, my admiration goes to my love, Murat, for cheering me up all the
time with love.

 viii

TABLE OF CONTENTS

PLAGIARISM .. iii
ABSTRACT.. iv
ÖZ .. v
ACKNOWLEDGEMENTS ... vii
TABLE OF CONTENTS..viii
LIST OF TABLES ... x
LIST OF FIGURES... xi
CHAPTER

I. INTRODUCTION.. 1
I.1. Radial Basis Function Networks.. 1
I.1.1. K-means Clustering Algorithm.. 3
I.1.2. Least Mean Square Algorithm ... 3
I.2. Feedforward Multi-Layer Perceptron .. 4
I.3. Backpropagation Algorithm... 5
I.4. Fuzzy Sets .. 5
I.4.1. Fuzzy Set Membership... 6
I.4.2. Fuzzy Membership Functions .. 7
I.5. Rough Sets ... 8
I.5.1. Information and Decision System.. 8
I.5.2. Indiscernibility ... 9
I.5.3. Rough Set Approximation.. 9
I.5.4. Reducts... 13
I.5.5. Attribute Dependency .. 14
I.5.6. Rough Membership.. 14
I.6. Relationship between Rough Sets and Fuzzy Sets............................... 16
II. COMPARISON of ROUGH MLP and ROUGH RBF USING FUZZY
ATTRIBUTES ... 18
II.1. Background .. 18
II.2. Fuzzy Neural Networks.. 20
II.2.1. Input Fuzzification ... 20
II.2.2. Output Fuzzification... 23
II.3. Rough Fuzzy Neural Network Structure.. 25
II.4. Implementation and Results... 27
II.4.1. Parameters Used in the Compared Algorithms................................ 31
II.4.2. Vowel Input Set.. 32
II.4.2.1. Back-Propagation Neural Network (BPNN) Algorithm.............. 32
II.4.2.2. Fuzzy BPNN Algorithm... 36
II.4.2.3. Rough Fuzzy BPNN Algorithm... 39
II.4.2.4. Radial Basis Function (RBF) Algorithm...................................... 40
II.4.2.5. Fuzzy RBF ... 41

 ix

II.4.2.6. Rough Fuzzy RBF Algorithm .. 44
II.4.3. PAT1 Input Set... 45
II.4.3.1. BPNN Algorithm ... 45
II.4.3.2. Fuzzy BPNN Algorithm... 48
II.4.3.3. Rough Fuzzy BPNN Algorithm... 50
II.4.3.4. RBF Algorithm... 50
II.4.3.5. Fuzzy RBF Algorithm.. 51
II.4.3.6. Rough Fuzzy RBF Algorithm .. 55
II.4.4. IRIS Input Set... 56
II.4.4.1. Fuzzy RBF Algorithm.. 56
II.4.4.2. Rough Fuzzy RBF Algorithm .. 57
II.4.5. EnglishVow Input Set .. 57
II.4.5.1. Fuzzy RBF Algorithm.. 58
II.4.5.2. Rough Fuzzy RBF Algorithm .. 59
III. CONCLUSION.. 60

REFERENCES... 62

 x

LIST OF TABLES

Table 1 Decision table of ... 10 A
Table 2 Decision table of set with two conditional attributes 11 Tall
Table 3 Decision table of set with three conditional attributes 12 Tall
Table 4 Decision table of set X .. 15
Table 5 An -output-class sample train data table ... 23
Table 6 Dependency rule generation.. 26

 xi

LIST OF FIGURES

Figure 1 Radial Basis Function Network ... 2
Figure 2 Multi-Layer Perceptron ... 4
Figure 3 Crisp set representation of sets Shor and Ta . .. 7 t ll
Figure 4 Fuzzy set representation of sets and Ta 7 Short ll
Figure 5 Rough set approximation of decision system 10 A
Figure 6 Rough set approximation of set Ta with two attributes 12 ll
Figure 7 Rough set approximation of set Ta with three attributes 13 ll
Figure 8 Rough set approximation of set X ... 16
Figure 9 Structure of the process with fuzzification and neural network parts 21
Figure 10 The π functions for linguistic properties low, medium and high. 22
Figure 11 Train data with two output classes, A and B ... 24
Figure 12 Sample rough fuzzy BPNN ... 27
Figure 13 Projection of vowel data set onto and ... 28 1F 2F
Figure 14 Snapshot of the program.. 30
Figure 15 Mean square test error graphics of “vowel1” data for 4-layered BPNN

with different numbers of hidden nodes (a) 21 Hidden Nodes (b) 23 Hidden
Nodes (c) 25 Hidden Nodes ... 33

Figure 16 Mean square test error graphics of “vowel1” data for 3-layered BPNN
with different numbers of hidden nodes (a) 13 Hidden Nodes (b) 15 Hidden
Nodes (c) 17 Hidden Nodes (d) 19 Hidden Nodes (e) 21 Hidden Nodes 34

Figure 17 (a) Mean square test error graphics of “vowel1” data for 5-layered BPNN
with different numbers of hidden nodes (a) 7 Hidden Nodes (b) 9 Hidden
Nodes (c) 11 Hidden Nodes (d) 13 Hidden Nodes (e) 15 Hidden Nodes 35

Figure 18 Mean square test error graphics of “vowel1” data for fuzzy BPNN with
different numbers of hidden nodes (a) 11 Hidden Nodes (b) 13 Hidden Nodes
(c) 15 Hidden Nodes (d) 17 Hidden Nodes (e) 19 Hidden Nodes 36

Figure 19 Mean square test error graphics of “vowel2” data for fuzzy BPNN with
different numbers of hidden nodes (a) 10 Hidden Nodes (b) 12 Hidden Nodes
(c) 14 Hidden Nodes (d) 16 Hidden Nodes (e) 18 Hidden Nodes 37

Figure 20 Mean square test error graphics of “vowel3” data for fuzzy BPNN with
different numbers of hidden nodes (a) 15 Hidden Nodes (b) 17 Hidden Nodes
(c) 19 Hidden Nodes (d) 21 Hidden Nodes (e) 23 Hidden Nodes 38

Figure 21 Mean square test error graphic of “vowel1” data for rough fuzzy BPNN
with 16 hidden nodes ... 39

Figure 22 Mean square test error graphics of “vowel1” data for RBF with different
numbers of hidden nodes (a) 27 Hidden Nodes (b) 29 Hidden Nodes (c) 31
Hidden Nodes (d) 33 Hidden Nodes (e) 35 Hidden Nodes.............................. 40

Figure 23 Mean square test error graphics of “vowel1” data for fuzzy RBF with
different numbers of hidden nodes (a) 17 Hidden Nodes (b) 19 Hidden Nodes
(c) 21 Hidden Nodes (d) 23 Hidden Nodes (e) 25 Hidden Nodes 41

 xii

Figure 24 Mean square test error graphics of “vowel2” data for fuzzy RBF with
different numbers of hidden nodes (a) 6 Hidden Nodes (b) 8 Hidden Nodes (c)
10 Hidden Nodes (d) 12 Hidden Nodes (e) 14 Hidden Nodes (f) 16 Hidden
Nodes.. 42

Figure 25 Mean square test error graphics of “vowel3” data for fuzzy RBF with
different numbers of hidden nodes (a) 15 Hidden Nodes (b) 17 Hidden Nodes
(c) 19 Hidden Nodes (d) 21 Hidden Nodes (e) 23 Hidden Nodes 43

Figure 26 Mean square test error graphic of “vowel1” data for rough fuzzy RBF
with 16 hidden nodes ... 44

Figure 27 Mean square test error graphics of “pat1_1” data for 3-layered BPNN
with different number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes
(c) 9 Hidden Nodes (d) 11 Hidden Nodes.. 45

Figure 28 Mean square test error graphics of “pat1_1” data for 5-layered BPNN
with different number of hidden nodes (a) 5 Hidden Nodes (b) 11 Hidden
Nodes (c) 17 Hidden Nodes (d) 23 Hidden Nodes (e) 25 Hidden Nodes (f) 27
Hidden Nodes (g) 29 Hidden Nodes .. 46

Figure 29 Mean square test error graphics of “pat1_1” data for 4-layered BPNN
with different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes
(c) 7 Hidden Nodes (d) 9 Hidden Nodes.. 47

Figure 30 Mean square test error graphics of “pat1_1” data for fuzzy BPNN with
different number of hidden nodes (a) 5 Hidden Nodes (b) 6 Hidden Nodes (c) 7
Hidden Nodes... 48

Figure 31 Mean square test error graphics of “pat1_2” data for fuzzy BPNN with
different number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c) 9
Hidden Nodes... 49

Figure 32 Mean square test error graphics of “pat1_3” data for fuzzy BPNN with
different number of hidden nodes (a) 4 Hidden Nodes (b) 6 Hidden Nodes (c) 8
Hidden Nodes... 49

Figure 33 Mean square test error graphics of “pat1_1” data for RBF with different
number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c) 9 Hidden
Nodes (d) 11 Hidden Nodes... 51

Figure 34 Mean square test error graphics of “pat1_1” data for fuzzy RBF with
different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c) 7
Hidden Nodes (d) 9 Hidden Nodes (e) 11 Hidden Nodes................................ 52

Figure 35 Mean square test error graphics of “pat1_2” data for fuzzy RBF with
different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c) 7
Hidden Nodes (d) 9 Hidden Nodes (e) 11 Hidden Nodes................................ 53

Figure 36 Mean square test error graphics of “pat1_3” data for fuzzy RBF with
different number of hidden nodes (a) 2 Hidden Nodes (b) 4 Hidden Nodes (c) 6
Hidden Nodes (d) 8 Hidden Nodes (e) 10 Hidden Nodes................................ 54

Figure 37 Mean square test error graphic of “pat1_1” data for rough fuzzy RBF
with 6 hidden nodes ... 55

Figure 38 Mean square test error graphics of “iris” data for fuzzy RBF with
different number of hidden nodes (a) 2 Hidden Nodes (b) 4 Hidden Nodes (c) 6
Hidden Nodes (d) 8 Hidden Nodes (e) 10 Hidden Nodes................................ 56

 xiii

Figure 39 Mean square test error graphic of “iris” data for rough fuzzy RBF with 6
hidden nodes... 57

Figure 40 Mean square test error graphics of “EnglishVow” data for fuzzy RBF
with different number of hidden nodes (a) 25 Hidden Nodes (b) 27 Hidden
Nodes (c) 29 Hidden Nodes ... 58

Figure 41 Mean square test error graphic of “EnglishVow” data for rough fuzzy
RBF with 27 hidden nodes... 59

 1

i

CHAPTER I

INTRODUCTION

I. INTRODUCTION
According to Lotfi A. Zadeh “Soft computing differs from conventional (hard)

computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty,

partial truth, and approximation...”(1994). The basic soft computing methods are

fuzzy logic, neural computing, and genetic programming. There are also many other

soft computing methods like; rough sets, probabilistic reasoning, belief networks,

chaos theory, and so on. This chapter is a short introduction to fuzzy sets, rough

sets, and two feedforward neural networks which are radial basis function network

and multi layer perceptron.

I.1. Radial Basis Function Networks

A Radial Basis Function (RBF) network is a two layered network, whose hidden

layer activation function is a basis function, having linear output (see Figure 1). The

basis function which produces a localized response can be Gaussian, Mexican hat,

etc. Gaussian function of the form is the mostly used basis function. The

activation level of of hidden node i is:

2(/)bx ae−

iO

2[().() / 2]i iX W X W

iO e σ− − −= (0.1)

where is the activation level of hidden node , iO i X is the input vector, and is

the centre (weight vector) and is the normalization factor of hidden node i

respectively.

iW

2
iσ

 2

Output nodes - Linear

Least Mean Square

Hidden nodes - Gaussian

K-means Clustering

Input nodes

Figure 1 Radial Basis Function Network

Let be the activation level of hidden node and be the activation level of

output node

iO i jO

j , the activation level of output node j is:

 j jO W= i iO∑ (0.2)

where W is the weight value between hidden node and output node ji i j

Normalization factor is a measure of spread of data and calculated as

follows:

2
iσ

 2 1 ().(i iM)iX W X Wσ = − −∑ (0.3)

where X is the input vector clustered in hidden node i , W is the weight vector of

hidden node i and

i

M represents the number of inputs clustered in hidden unit . i

The learning of the hidden layer is carried out by unsupervised algorithms such

as k-means clustering or self organized feature maps. Learning of the output layer is

carried out by supervised algorithms like least mean square algorithm. [24]

 3

I.1.1. K-means Clustering Algorithm

The k-means clustering is used for portioning N data points to K disjoint

clusters. The algorithm tries to minimize which is the sum of squares of the

distance between the data points and the cluster centres that they are belonging to.

J

2

1 j

K

n j
j n C

J x
= ∈

= −∑∑ c (0.4)

where K represents the number of clusters, cluster jC j , x data point and

geometric centre of cluster

jc

j respectively.

Algorithm processes as follows:

• The dataset is partitioned into K clusters and the data points are randomly

assigned to the clusters.

• For each data point:

• Calculate the distance from the data point to each cluster.

• Find the cluster that has the minimum distance and move the data

point to that cluster.

• Repeat the above step until there is no change in the members of the

clusters. [24]

I.1.2. Least Mean Square Algorithm

Least Mean Square (LMS) algorithm tries to minimize the mean square error

between the desired output and the actual output. Let η be the learning rate and

be the actual activation level value for node i . Weight update rule for linear

activation function is follows:

iO

(1) ()ji ji ji

ji j i

j j j

W t W t W

W O

T O

ηδ

δ

+ = + ∆

∆ =

= −

 (0.5)

 4

where is the desired output value for output node i and is the actual output

value for node

iT jO

j . [24]

I.2. Feedforward Multi-Layer Perceptron

A Multi-Layer Perceptron is a two or more layered network, whose activation

functions of all layers can be sigmoid, linear, ramp, etc. (see Figure 2). Sigmoid

function is the most popular activation function with the formula

 1()
1 Kaf a

e−=
+

 (0.6)

where is the activation output of the neuron and is the exponential constant. a K

The backpropagation algorithm is the most widely used training algorithm for

multi-layered feedforward networks. [24]

Output layer

Hidden layer(s)

Input layer

Figure 2 Multi-Layer Perceptron

 5

I.3. Backpropagation Algorithm

The main aim of the backpropagation algorithm is to minimize the error

between the desired output and the actual output. During convergence, the

algorithm propagates the error backwards and updates the weights in accordance.

[24]

Let be the output value of node i which is one level below the node iO j and

 be the bias parameter for node jΘ j . Output value of a hidden node or an output

node is as follows: jO

 (

1
1 ji i j

j W O
O

e− −Θ
= ∑+) (0.7)

where : Weight value between the node i and node jiW j .

(1) () [() (1)]ji ji ji ji ji

ji j i

W t W t W W t W t

W O

α

ηδ

+ = + ∆ + − −

∆ =
 (0.8)

where is the desired output value for output node , is the actual output value

for node i and

iT i jO

jδ is the error gradient of node j . The terms η and α represent the

learning rate and the momentum term respectively.

Error gradient of output node j is:

 (1)()j j j j jO O T Oδ = − − (0.9)

Error gradient of a hidden node j is calculated as follows

 (1)j j j k
k

O O Wδ = − kjδ∑ (0.10)

I.4. Fuzzy Sets

Fuzzy sets were introduced by Zadeh in 1965 [1]. Fuzzy sets can be seen as a

generalized version of crisp (ordinary) sets. Fuzzy set theory basically extends the

crisp set theory that has membership of its elements described by the classical

 6

characteristic function to allow for partial membership described by a membership

function.

I.4.1. Fuzzy Set Membership

Let be a set in universe A X and Xx∈ . According to crisp set theory

definition of set A is:

1,

()
0,

if x A
A x

if x A
∈⎧

= ⎨ ∉⎩
 (0.11)

Fuzzy set definition enables giving a degree of membership of an object to a set.

Definition: Let X be a space of points (objects), with a generic element of X

denoted by x . A fuzzy set in A X is characterized by a membership function

)(xAµ which associates with each point x a real number in the interval

representing the grade of membership function of

]1,0[

x in . [3] A

 {(, ()); }AA x x x Xµ= ∈ (0.12)

where

 () : [0,1]A x Xµ → (0.13)

Zadeh proposed another notion for fuzzy sets [4]:

 () /A
x X

A xµ
∈

= x∑ (0.14)

when universe of discourse is a finite set

 () /Ax
A x xµ= ∫ (0.15)

when universe of discourse is an infinite set.

As an example; in crisp sets a man with height 1.85 meters is accepted as

“Tall”, but a man with height 1.75 meters is accepted as short (see Figure 3). In

fuzzy sets, a man with height 1.85 is a member of fuzzy set to degree 1.0 and a

man with height 1.75 is a member of fuzzy set to degree 0.5 (see Figure 4).

Tall

Tall

 7

Figure 3 Crisp set representation of sets and Ta . Short ll

Figure 4 Fuzzy set representation of sets and Ta . Short ll

I.4.2. Fuzzy Membership Functions

Fuzzy set membership is defined by fuzzy membership functions those can be

triangular, trapezoidal, , gaussian, and so on. The formulas of the triangular,

trapezoidal,

1∏

1∏ membership functions are shown below [5]:

0
() /()

(: , ,)
() /()

0

x a
x a b a a x b

triangle x a b c
c x c b b x c

x c

<⎧
⎪ − − ≤⎪= ⎨

≤
− − ≤⎪

⎪ >⎩

≤
 (0.16)

0

1
Tall

D
eg

re
e

of

m
em

be
rs

hi
p

1.851.65

0.5

Short
1.75

0

1
Tall

D
eg

re
e

of

m
em

be
rs

hi
p

0.5

Short
1.65 1.75 1.85

 8

0
() /()

(: , , ,) 1
() /()

0

x a
x a b a a x b

trapezoid x a b c d b x c
d x d c c x d

x d

<⎧
⎪ − − ≤⎪⎪=

<
≤ <⎨

⎪ − − ≤⎪
≥⎪⎩

<
 (0.17)

 1 2
1(: ,)

1
x a b

x a
b

∏ =
−⎛ ⎞+ ⎜ ⎟

⎝ ⎠

 (0.18)

1∏ membership function is a symmetric function having value of 0. at

points and . [5]

5.0

ba − ba +

I.5. Rough Sets

Rough set theory was developed by Zdislaw Pawlak in 1982 [2]. The main goal

of rough set analysis is to derive concepts using the data set which is called data

table.

I.5.1. Information and Decision System

Data set is represented as a table whose rows are the objects and columns are the

attributes. Information system is represented as A (,)U A=A , where U

(universe) is a non-empty set of objects and is non-empty finite set of attributes

such that for every

A

VaUa →: Aa∈ , Va is the value set of . a

When there is a decision attribute in the data set then the relevant information

system is called decision system. Decision system is represented as follows:

 where is the decision attribute such that . The elements

of are called conditional attributes or conditions.

A

(, { })U A d= ∪A d Ad ∉

A

 9

I.5.2. Indiscernibility

A decision system can become excessively large because of the repetition of

data. This repetition can be seen in two ways; repetition of an object or repetition of

a column. If two rows or two columns are indiscernible (same) then there won’t be

data loss if one of them is omitted.

To define the indiscernibility equivalence relation will be used. A binary

relation which is reflexive, symmetric, and transitive is called an

“equivalence relation”. The equivalence class of an element consists of all

objects such that .

XXR ×⊆

Xx∈

Xy∈ xRy

Let be an information system, then with any there is

associated an equivalence relation which is called

(,)U A=A AB ⊆

)(BINDΑ B -indiscernibility

relation:

 2() {(,) | , () ()}IND B x x U a B a x a x′ ′= ∈ ∀ ∈ =A (0.19)

When (,) ()x x IND B′ ∈ A , objects x and x′ are indiscernible from each other by

the attributes from B . The equivalence classes of the B -indiscernible relation are

denoted as [] . Bx

Let be a decision system, if (, { })U A d= ∪A (,) ()x x IND A′ ∈ A then omitting

one of x or x′ will not cause loss of data. This is the one way of reducing the data

table; removing an object. [6]

I.5.3. Rough Set Approximation

Let be a decision system where d is the decision attribute, (, { })U A d= ∪A A

is the attribute set , is the universe 1 2{ , }A a a= U 1 2 3 4 5 6{ , , , , , }U F F F F F F= as seen

in Table 1. Let set X be a rough set such that X U⊂ . In crisp sets, an object can be

an element of a set or not, but in rough sets, an object can be certainly an element,

certainly not an element, or roughly an element of set as seen in the Figure 5. In

Table 1, and are indiscernible according to attributes and . The objects 1F 2F 1a 2a

 10

3F and are also indiscernible according to attributes and . In Figure 5, the

objects in the white shaded area are exactly the element of set

4F 1a 2a

X and the objects in

the black shaded area are exactly not the element of set X . The objects in the grey

part can not be decisively classified into set X on the basis of knowledge in . A

Table 1 Decision table of A

 1a 2a d

1F 1 1 1

2F 1 1 0

3F 1 0 1

4F 1 0 1

5F 0 1 0

6F 0 2 0

In Figure 5, each of , , and is an equivalence class of

set

3 4{ , }F F 1 2{ , }F F 5{ }F 6{ }F

X according to attribute set . A

X

5 6{{ },{ }}F F

3 4{{ , }}F F

1 2{{ , }}F F

Figure 5 Rough set approximation of decision system A

 11

Set X can be approximated according to attributes contained in . As seen in

Figure 5 white shaded area is the -lower approximation of

A

A X and denoted by AX

such that []{ | }
A

AX x x X= ⊆ . White union grey shaded area is the -upper

approximation of

A

X , denoted by AX such that []{ | 0}
A

AX x x X= ∩ ≠ .

The boundary region of A X is ()ABN X AX AX= ⇔ , containing the objects

that are not certainly the element of X when approximated by the attributes of .

If the boundary region of a set is empty then the set is a crisp (conventional set). If a

set has a non-empty boundary region then that set is a rough set. Accuracy of set

approximation of a rough set is:

A

 ()()
()A

A XX
A X

α = (0.20)

Quality of approximation of X by A which expresses the percentage of objects

correctly classified, is:

 ()()A
A XX Uγ = (0.21)

As a concrete example assume an indecisive set Tall . Let the Table 2 be the

decision matrix of set Tall which depends on attributes and . gender height

Table 2 Decision table of set Ta with two conditional attributes ll

 gender height Tall

1F Woman 1.70 YES

2F Woman 1.70 NO

3F Woman 1.50 NO

4F Man 1.90 YES

5F Man 1.65 NO

 12

In Figure 6 the object is the element of rough set Ta . The objects and

are exactly not the elements of set Tall . The objects and are at the boundary of

rough set Tall . This means that only the attributes and are not enough

to represent the set Tall .

4F ll 3F 5F

1F 2F

gender height

Tall

3 5{{ },{ }}F F

4{{ }}F

1 2{{ , }}F F

Figure 6 Rough set approximation of set Tall with two attributes

If one more attribute is added to set Tall , it becomes a decisive set. Let the

Table 3 be the decision matrix of set Ta which depends on attributes ,

 and .

ll gender

height nationality

Table 3 Decision table of set Ta with three conditional attributes ll

 gender height nationality Tall

1F Woman 1.70 China YES

2F Woman 1.70 Russia NO

3F Woman 1.50 Russia NO

4F Man 1.90 China YES

5F Man 1.65 Russia NO

 13

In Figure 7 the objects and are the element of rough set Tall . The objects

, and are exactly not the element of set Ta .

1F 4F

2F 3F 5F ll

Tall

2 3 5{{ },{ },{ }}F F F

1 4{{ },{ }}F F

∅

Figure 7 Rough set approximation of set Ta with three attributes ll

I.5.4. Reducts

A reduct of information system is a minimal set of attributes such

that

A AB ⊆

() ()IND B IND A=A A . One way of reducing the data table is removing

superfluous attributes. The superfluous attributes are BA − for a reduct consisting

of elements of B . In order to find a set of superfluous attributes having the

maximum cardinality, minimal reduct has to be found. Finding minimal reduct is a

NP-hard problem.

Discernibility function, which is derived by using discernibility matrix, is used

for finding the set of all reducts of A . Discernibility matrix for the information

system with objects and attributes has the elements . Each element is

the list of attributes upon which the objects and differ;

 for

A n m ijc ijc

ix jx

)}()(|{ jiij xaxaAac ≠∈= nji, ,,1…= . Discernibility function

 14

},1|{),,(***
1 ∅≠≤≤≤∨∧=Α ijijm cnijcaaf … , where and

 are the boolean variables corresponding to attributes . [6]

}|{ **
ijij caac ∈=

),,(**
1 maa …),,(1 maa …

I.5.5. Attribute Dependency

Given a decision system (, { })U A d= ∪A� , the cardinality of the image

 is called the rank of and denoted by . Let the

set of values of decision is equal to .

() { | () , }d U k d x k x U= = ∈ d ()r d

dV d 1 ({ , , }r d
d dv v…)

)

d

The decision attribute d determines the partition

of the universe U , where

1 (() { , , }r dCLASS d X X= …A A A

{ | () }k kX x U d x v= ∈ =A k r d for 1 ()≤ ≤ ()CLASS dA.

is called the classification of objects in determined by the decision . The set A d
iXA is called the i th decision class of . By A ()X uA we denote the decision class

{ | () ()}x U d x∈ d u= , for any u U∈ . If are the decision classes of

, then the set

1 , , r dX X…A A
()

A 1 r dBX BX∪ ∪… () is called the B -positive region of and

denoted by [6].

A

()BPOS d

Let , totally depends on , denoted by C , if all values

of attributes from are uniquely determined by values of attributes from .

Degree of dependency of on C is denoted by and [6],

,C A D A⊆ ⊆ D C D⇒

D C

D kC ⇒ D

()

(,) CPOS D
k C D

U
γ= = (0.22)

I.5.6. Rough Membership

The rough membership function quantifies the degree of relative overlap

between the set X and the equivalence []x class to which x belongs. It is defined

as follows: [6].

 15

[]
[]

: [0,1] and () BB B
X X

B

x X
U x

x
µ µ

∩
→ = (0.23)

The rough membership function is the probability that object x is an element of

set X regarding the frequencies according to attribute set B .

A concrete example of rough set can be seen in Table 4. The rough set

membership of the object with attribute values (0,1) is , because it

is exactly the element of set

101F 101()A
X Fµ =1

X . The rough set membership of the object with

attribute values (0,0) is

301F

301()A
X Fµ 0= , because it is exactly not the element of set X .

The rough set membership value of an object with value 1 for attribute and value

1 for attribute is 0.99.

1a

2a

Table 4 Decision table of set X

 1a 2a X
Number of

Data Samples

1 9F F− 9 1 1 YES 99

100F 1 1 NO 1

101 300F F− 0 1 YES 200

301 310F F− 0 0 NO 10

In Figure 8, the equivalence classes of rough set X are ,

 and . The objects are closer

to set

101 102 300{{ , , , }F F F… }

1 2 99 100{{ , ,..., }, }F F F F 301 302 310{{ , , , }}F F F… 1 2 99, ,...,F F F

X then the object in some manner that is not obvious by the current

attributes. When the number of points closer to lower boundary of rough set

100F

X

increases, the rough set memberships of the points in the boundary also increase.

 16

301 302 310{{ , , , }}F F F…

101 102 300{{ , , , }}F F F…

1 2 99 100{{ , ,..., }, }F F F FX

Figure 8 Rough set approximation of set X

I.6. Relationship between Rough Sets and Fuzzy Sets

“Rough set theory and fuzzy set theory are complementary. It is natural to

combine the two models of uncertainty (vagueness for fuzzy sets and coarseness for

rough sets) in order to get a more accurate account of imperfect information” [25].

In rough set theory, approximations of sets are defined according to a

background knowledge given by a data table. The rough membership function B
Xµ ,

where X U⊆ and B A⊆ , can be used to define approximations and boundary

region of a set, as shown below [6]:

 () { : () 1}B
XB X x U xµ= ∈ = (0.24)

 () { : () 0}B
XB X x U xµ= ∈ >

X

 (0.25)

 () { : 0 () 1}B
BBN X x U xµ= ∈ < < (0.26)

The rough membership function has the following properties [26]:

1. () 1 iff ()B
X x x B Xµ = ∈

2. () 0 iff ()B
X x x B Xµ = ∈−

3. 0 () 1 iff ()B
X Bx x BN Xµ< < ∈

 17

4. If () {(,) : } , then () is the characteristic function of B
XIND B x x x U x Xµ= ∈

5. If () , then () ()B B
X XxIND B y x yµ µ=

6. () 1 () for any B B
U X Xx x xµ µ− = − ∈U

7. () max((), ()) for any B B
X Y X Yx x x xµ µ µ∪ ≥ ∈U

8. () min((), ()) for any B B B
X Y X Yx x x xµ µ µ∩ ≤ ∈U

9. If is a family of pairwise disjoint sets of U , then for any X x U∈

X
X

() () B B
X

X
x xµ µ

∈

= ∑∪

From the above properties, the 7th and the 8th one show that rough sets can be

seen as a generalized version of fuzzy sets. Also it has been shown in [26] that if the

7th and the 8th property above become () max((), ()) for any B B B
X Y X Yx x x xµ µ µ∪ U= ∈

and () min((), ()) for any B B B
X Y X Yx x x xµ µ µ∩ U= ∈ respectively, they are not true in

general. Besides, the rough membership function, in contrast to fuzzy membership

function, has a probabilistic flavor.

 18

CHAPTER III

COMPARISON of ROUGH MLP and ROUGH
RBF USING FUZZY ATTRIBUTES

II. COMPARISON of ROUGH MLP and ROUGH RBF USING FUZZY ATTRIBUTES

II.1. Background

There have been lots of hybridizations of soft computing methods. In these

hybridizations, fuzzy Neural Networks have the first rank in number of work

performed until now. The network structure in [7] was selected as a model in fuzzy

MLP with Back Propagation (fuzzy BPNN). In [7], the input vector was fuzzified to

represent fuzzy linguistic properties low, medium and high. The desired output

vector was also fuzzified, so it can take values in the range [0,1]. The resultant

fuzzy MLP was superior to conventional MLP and Bayes classifier on highly

overlapping data sets. Unlike the fuzzy BPNN used in this thesis, a decay factor

[16] was used in calculation of change in weights.

In [14], a fuzzy RBF was proposed. In the hidden layer of the RBF network,

fuzzy basis functions were used and the parameters of these functions were tuned

by genetic algorithms. The proposed controller did better than a PID controller.

Another fuzzy RBF was defined in [15]. This fuzzy RBF constructed the base

used in this thesis, but the fuzzification functions of these two approaches were

different. The fuzzification function used in [7] is included in the fuzzy RBF

structure used in this thesis.

Rough sets are the newest paradigm of soft computing and there is a tremendous

amount of research ongoing on this topic recently [10, 11, 18].

R. Yasdi proposed a method in [17] to construct weight values of MLP

according to dependency rules generated by rough sets. The method first finds

 19

reducts of the system. Secondly, it simplifies the indiscernibility matrix according

to this reduct. The reduced indiscernibility matrix is used for finding the

dependency rules and the dependency factors of these rules are used for generating

weight values of the neural network.

In this thesis, fuzzy-rough membership concept was used in RBF [13]. The

hidden node outputs are the fuzzy membership values of the input. The weights

between the hidden nodes and the output layer correspond to rough fuzzy

membership functions. The output of the network is rough-fuzzy membership value

of the input data.

There are many combinations of rough sets and fuzzy sets. Some of these are on

rough fuzzy set or membership [9] and some are on fuzzy-rough set or membership

[19].

In [22], using rough sets, a knowledge base was determined. By the help of this

knowledge base, number of hidden nodes in MLP is calculated. Additionally, initial

weight values of the neural network are also found according to the dependency

factors of the dependency rules of this knowledge base. This network structure was

taken as the model to the rough-fuzzy BPNN used in this thesis.

In [12], quantitative input data was fuzzified to get fuzzy set of linguistic terms.

Rough lover and upper bounds are calculated for the fuzzy set of linguistic terms.

Fuzzy rules were generated while the missing attributes were being estimated.

The c-means clustering is dependent on the initial cluster centres and the

sequence of the data introduced to the c-means. In [20] subtractive learning was

used to overcome the dependency of c-means onto initial cluster centres. Also the

number of clusters does not need to be given to the algorithm, it concludes to an

optimum solution itself.

All the soft computing methods, which were explained in ‘Chapter I’, have their

own strengths and weaknesses. The feedforward neural networks are good at

handling error prone data, but their black-box structure prevents obtaining human

interpretative rules. Fuzzy logic enables human type reasoning but it needs expert

knowledge to construct rules. It is possible to construct generalized rules by means

 20

]

n
F
J

of rough sets by reducing the size of data table. Combining fuzzy and rough sets

leads to more accurate account of imperfect information.

Mostly combination of these methods do better than when they are alone. The

absence of a property in one method can be found in the other method. In this thesis

MLP, RBF, fuzzy MLP, fuzzy RBF, rough fuzzy MLP and rough fuzzy RBF will

be compared.

II.2. Fuzzy Neural Networks

Each input feature is represented with membership values of overlapping

linguistic properties low, medium and high. This representation enables easier

human interpretation and also more appropriate way of showing overlapping data.

In conventional neural networks, an output vector is expected to have the value 1 at

one node and value 0 at the other nodes. In a fuzzy neural network output

membership function is in the interval [0, 1], which allows a better classification

when the feature class has overlapping pattern classes.

II.2.1. Input Fuzzification

Each input feature is represented in 3n-dimensional vector,

where represents the attribute of input feature . After the fuzzification,

the fuzzy form of the input vector becomes

 (0.27)

1, 2[, ,i i i inF F F F=
JG

…

inF thn iF

1 1 1() () () ()[(), (), (), , ()]
i i i i

i low F i medium F i high F i high F iF F F Fµ µ µ µ=
JG JJG JJG JJG JG

…

where represents the fuzzy membership value of to fuzzy property

“ ”, represents the fuzzy membership value of to fuzzy

property “ ”, and

1() ()
ilow F iFµ
JJG

1iF

low
1() ()

imedium F iFµ
JJG

1iF

medium
1() ()

ihigh F iFµ
JJG

 represents the fuzzy membership value of

to fuzzy property “ ”. These membership values are calculated by using

1iF

high π

membership function

 21

2

2

2 1
2

(; ,) 1 2 0
2

0

r c
for r c

r c
r c for r c

otherwise

λ λ
λ

λπ λ
λ

⎧ ⎛ − ⎞
⎪ − ≤ − ≤⎜ ⎟
⎪ ⎝ ⎠
⎪

⎛ − ⎞⎪
= − ≤ − ≤⎨ ⎜ ⎟

⎝ ⎠⎪
⎪
⎪
⎪
⎩

 (0.28)

such that 0λ > . The parameters and c λ represent the centre and the radius of the

π function respectively.

Figure 9 Structure of the process with fuzzification and neural network parts

As seen in Figure 9, the data coming from the data table are first fuzzified and

the result obtained in 3n-dimensional vector is used as the input layer of the neural

network.

In this thesis three π functions, (; ,)low low lowr cπ λ , (; ,)medium medium mediumr cπ λ ,

(; ,)high high highr cπ λ has been chosen in fuzzification to be consistent with the work

done in [7] to construct an objective comparison.

low

medium medium

high

medium

high
lowlow high

Output Layer N
eural N

etw
ork

Hidden Layer

Fuzzified Input
Layer Fuzzification

Input Layer

 22

nLet the data table has input patterns and, L 1 2[, , , , ,]i iF a a a a=
JJG

… … where is

the attribute. In the scope of patterns, and denote minimum and

maximum value of the attribute respectively. Let

ia

thi L minia maxia

ia 1 2[, , , , ,i i i ij iF F F F F=]n

JJG
… … ,

where is the ijF thj attribute of input feature iF
JJG

 and jF
JJG

 represents the thj attribute

of all pattern points. Then L 1 2[, , , ,j j j ij LF F F F F=]j

JJG
… … , where is the ijF thj

attribute of input feature iF
JJG

.

1.0

m
em

be
rs

hi
p

0.5

0
FjmaxFjmin clow(Fj) cmeduim(Fj) chigh(Fj)

jF
JJG

Figure 10 The π functions for linguistic properties low, medium and high.

As seen in Figure 10, and represent the minimum and the maximum

values in respectively. Centre (c) and radius (

minjF maxjF

jF λ) of the π functions are

computed as follows:

 () max min

() min ()

1 ()
2j

j

medium F j j

medium Fj j medium F

F F

c F

λ

λ

= −

= +
 (0.29)

() () min

() () ()

1 ()

0.5

j j

j j

low F medium F j

low Fj medium F low F

c F
fdenom

c c

λ

λ

= −

= −
 (0.30)

 23

() max ()

() () ()

1 ()

0.5

j

j j

high F j medium F

high Fj medium F high F

F c
fdenom

c c

λ

λ

= −

= +

j (0.31)

The parameter fdenom is used for controlling the overlapping of the fuzzy

membership functions. The above and c λ computations ensure that a feature

vector has a value greater than 0.5 in one of the , ijF () ()
ijlow F iFµ
JJG

() ()
ijmedium F iFµ
JJG

,

. So each feature value has a strong membership in one or more of the

properties low, medium, and high.

() ()
ijhigh F iFµ
JJG

II.2.2. Output Fuzzification

In conventional neural networks, desired output has to be a distinct value.

Although there can be points on the boundaries or in the overlapping sets, winner

takes all mechanism is applied. In these fuzzy neural networks, desired output is

calculated by means of fuzzy data and takes values in the range [. As a result

desired output can take a value greater than in more than one output node. This

representation is highly suitable for learning data with so much overlapping.

0,1]

0

Output fuzzification is the process of finding the membership of an input data to

each output class. While finding this membership, weighted distance of the input to

the corresponding output class is used.

Table 5 An -output-class sample train data table

 jF
JG

 1, 1F … 1, 1nF − 1, nF
 2, 1F …

iF
JG

 …
 …

…

 1, 1LF − … 1, 1L nF − − 1,L nF −
 , 1LF … , 1L nF − ,L nF

 24

Assume training data in Table 5 is given, where iF
JJG

 represents object, and

 represents attribute vector

thi

jF
JJG

j . Let for each output class k, be the mean and

 be the standard deviation vectors with n dimensions. Let

kO

kV ikZ be the weighted

distance of object from the class. Then iF thk

2

1

2

1

, , for 1,...,

, , for 1,...,

>0

=0

n

j

n

j

ij kj k lkj
kjik

k lkjij kj

F O V
VZ

VF O

=

=

⎧
⎪
⎪
⎪ =
⎪
⎨=
⎪
⎪
⎪ =−⎪
⎩

⎡ ⎤−
∑⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤∑⎣ ⎦

 (0.32)

Let ()k iFµ
JJG

 represent the membership of the input object to output class .

Then

i k

 () 1 , where 0, 0

1

e dk i
e

ik

d

F ffz
f

µ =
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

JJG
f> > (0.33)

The variables df (denominational fuzzy generator) and ef (exponential fuzzy

generator) are used to control the fuzziness of the membership.

In the training data set, there can be objects with the same attributes except the

decision attribute. This case is mostly seen in points which reside through the

overlapping boundaries.

A B

b

a

Figure 11 Train data with two output classes, and A B

 25

In the example in Figure 11, point and point are the same points. They are

at the intersection set of set and set

a b

A B . According to input data set, the decision

attribute of point is a A and the decision attribute of point b is B . In the test data

set, if any point x takes place at the intersection of set and A B , the decision

attribute of point x should better be element of both and A B . In conventional

neural networks, point x can be either element of A or B , but not both.

In the fuzzy neural network approach, point a (or) is used for calculating

mean and standard deviation of both the set and the set

b

A B . So, in the test set, if a

point with the same characteristics of point (or) is seen, it is said to be both the

element of the set and the set

a b

A B .

The fuzziest case is defined as the case that a point belongs to all output classes

of the train set. Fuzziest cases need extra computation to enhance difference. As a

result, the desired output of the thj output node is [7]

()

()
()
()

2

() 2

2 , for 0
,

1 2 ,otherwise

,

k

iINT k

j

ik

k i
F for the fuzziest case

d
k i

F ot

F

F

µ
µ

µ

µ

µ

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨=
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧
<⎪

⎪
=⎨
⎪ −⎪
⎩

⎡ ⎤
⎣ ⎦
⎡ ⎤
⎣ ⎦

JJG

JJG
herwise

JJG

JJG (0.34)

where the fuzzy membership of the input object i to output class () is

given in equation (0.29). In equation (0.30), the fuzzy membership of the input

object to output class for the fuzziest case is represented with .

k ()k iFµ
JJG

i k ()()INT k iFµ
JJG

II.3. Rough Fuzzy Neural Network Structure

Embedding rough sets into fuzzy neural networks enables deciding the number

of nodes in the hidden layer. It also gives rough weight values, which can be used as

initial weight in the BPNN. The steps of finding dependency rules are given in

Table 6. [17]

 26

Each group found in the 2nd step of the Table 6 is divided into subgroups having

same decision attributes. Unlike [22], Tr of the group α in step 2 is the mean value

of cardinalities of the sub groups that take place in group α . The variable Tr in

step 3 of Table 6 is calculated for each output class.

Table 6 Dependency rule generation

For each output class:

1. Fuzzify the input data.

2. Group data having the same conditional attributes.

3. Apply threshold Tr to grouped fuzzy data and take the groups having

cardinality more than or equal to Tr .

4. Construct a decision matrix using a representative element from each

selected group.

5. Find the decision function of this decision matrix.

6. Turn this decision function into Disjunctive Normal Form (DNF) and

simplify it; e.g. . 1 1 2 2() (L M M H∧ ∨ ∧)

7. Select a minimum reduct. Each element of “ ” operator in the DNF form

is a reduct; e.g. .

∨

1 1()L M∧

8. Reduce the discernibility matrix using the selected reduct [22].

9. Construct a function from the reduced discernibility matrix for each object

[17].

10. Apply “ ” operator to combine the results in step 9. ∨

11. Simplify the result in 10 to get the dependency rule for the class selected.

The number of hidden nodes in neural network can be decided by the

dependency rules generated for each class. With the help of this method,

tremendous search for finding optimum number of hidden nodes is prevented.

Assume the dependency rule found for output class in Table 6 is k

 27

12 1()M M H∨ ∧ . Then there will be two hidden nodes for output class in rough

fuzzy neural network. One of the hidden nodes is for

k

2M and the other is for

1 1()M H∧ .

The dependency factors of the dependency rules found in Table 6 are used as

the initial weight values of the fuzzy BPNN. The structure of the fuzzy BPNN for

the output class k is seen in Figure 12, where α and β are very small numbers.

They are included to the network to add randomization in weight values. In Figure

12 only the output node is shown. Although the rough fuzzy BPNN has a fully

connected structure, only the calculated weights for the output node are shown in

the figure. The other weights are small random values. Signs of the all weight

values are given randomly.

k

k

k
Output Layer

Figure 12 Sample rough fuzzy BPNN

II.4. Implementation and Results

The BPNN and RBF included in this thesis are in their conventional structures

as explained in Chapter I. In this thesis the fuzzy BPNN is same as the one in [7].

The rough fuzzy BPNN is same as the one in [22] except the calculation of

Hidden Layer

Fuzzified Input
Layer

2M
1 1

1 1()M H∧

1/ 2 α+
1 1/ 2 β+

1L 1M 1H 2L 2M 2H

 28

threshold Tr used in rough set dependency rule generation. Fuzzy RBF is a mixture

of [15] and [22]. It takes the fuzzification function from [22] and the structure from

[15]. In literature, the rough fuzzy RBF proposed in section II.3 is the attempt on

hybridization of rough, fuzzy, and RBF soft computing methods. The comparison of

BPNN, fuzzy BPNN, and rough fuzzy BPNN and RBF, fuzzy RBF, and rough

fuzzy RBF is done in the scope of this thesis.

Figure 13 Projection of vowel data set onto and .

During the comparison, three different data sets are used. The first one is the

“Vo

1F 2F

wel Data” taken from http://isical.ac.in/~sushmita, which includes Indian

Telugu vowel sounds. The sounds are represented in three different frequencies and

the results are six different vowel sounds. There are 871 objects in the data set, 67%

of these sounds are used for training and the rest are left for the testing process. This

data exhibits a highly overlapping structure. The vowels which are ∂, a, i, u, e, o, are

shown in Figure 13 according to their frequency of occurrences [8, 21]. Actually,

 29

m ~sushmita. It is a

syn

d by R.A. Fisher and

Mic

Vow” which is also known as “vowel.data”. The

sou

d the best results of the mentioned algorithms an automated

test

there are three frequencies in the data set, but in the figure only the 2 dimensional

projection on frequency 1 (1F) - frequency 2 (2F) space is shown.

The second data set “Pat1” is also taken fro http://isical.ac.in/

thetic data with 2 attributes and 3 different output classes. The data is linearly

inseparable and has 880 objects. In the training phase 67% of the data set is used,

and in the testing phase the remaining 33% of the data is used.

The third data set used is the “Iris Plants Database” prepare

hael Marshall [23]. It has 4 attributes and 3 output classes. One of these output

classes is linearly separable, whereas the others are not. This is the simplest data set

used in the content of this thesis.

The fourth data set is “English

rces of “EnglishVow” are D. Deterding, M. Niranjan, and T. Robinson [23]. The

data set is a speaker independent recognition of the eleven steady state vowels of

British English using a specified training set of lpc derived log area ratios. There are

total of 990 instances in the data set with 10 attributes. The data set is divided into

11 output classes.

In order to fin

ing was generated. A range for the number of layers and the number of hidden

nodes can be defined in the user interface. The lower boundary and the upper

boundary for the range of layers are taken from the user interface. The application is

executed for each number between the boundaries and at the boundaries. The lower

bound and the upper bound and also the hidden node step-size are defined for the

range of hidden number of nodes in each layer. The application is executed for the

lower bound and the previous number of hidden node plus the hidden node step-size

until the number of hidden nodes exceeds the upper boundary. The number of

iterations and the step size for the iterations (“IC Step Size”) can also be defined

during the automated execution. The iteration count step-size decides on the

frequency of the test performed.

 30

Figure 14 Snapshot of the program.

If the “Run Iteratively” checkbox in Figure 14 is checked, then the program

executes for each number of layers for each number of hidden nodes for iterations

time. The number of tests performed is equal to Iteration Count / IC Step Size⎢ ⎥⎣ ⎦ .

A test graphic and a train graphic are drawn after number of iterations is defined. As

this process can be very long especially for the BPNN, a progress bar is added to

the application to see the progress.

Mean square error is used as the criteria to the evaluation of the results. In the

test graphs included below, the behavior of the mean square error is analyzed

according to the number of iterations carried out during the training. For every “IC

Step Size” iterations, a test error is calculated. As the number of train iterations

increases the train error decreases. Most of the times, this is the case for the test

error after a settlement in learning, unless there is an oscillation.

 31

The “Vowel” and the “Pat1” data are executed for each of the six algorithms

mentioned. The “Iris Plant Database” and “EnglishVow” data are used for rough

fuzzy RBF. When the distributions of test and training data sets change, the results

also differ. So the test and training sets of “Vowel” and “Pat1” data were randomly

selected for three times. The resultant data are called “vowel1”, “vowel2”,

“vowel3” for the versions of “Vowel” data and “pat1_1”, “pat1_2”, “pat1_3” for the

versions of “Pat1” data. For this randomization and split operations two different

implementations were generated. The files are first randomized then split into train

and test files with the percentage of 67 for train and 33 for the test.

As an analysis and inspection tool for the results of the testing and training, Plot

Graph Library (PGL) is integrated into the program. PGL is a graphic library

especially specialized in scientific chart drawings on VC 6.0 and VC 7.0

environments by inputting the data from the code. It is designed to be able to easily

plot data generated in a project without the need of any external software. PGL was

originally based on the OpenGL to raster graphics, but revised versions uses GDI+ -

revised version of Graphics Device Interface- for that purpose, like the one used in

this thesis.

II.4.1. Parameters Used in the Compared Algorithms

There are three fuzzification parameters, which are fd , fe and fdenom , used

in fuzzy BPNN and fuzzy RBF. As seen in equation (0.29), the output membership

function is directly proportional with denominational fuzzification parameter (fd),

and inversely proportional with the exponential fuzzification parameter (fe). When

the fd is decreased, the output layer values of fuzzy neural network decreases, so

does the mean square error. However, this decrease does not mean an improvement

in the algorithm. In addition, when the fe is decreased, the output values of fuzzy

neural network increases, so does the mean square error. Nonetheless, this increase

does not show poor performance of the algorithm. The results are the same as they

were but only a kind of scaling is done. For this reason, fd and fe parameters are

 32

kept constant throughout the entire implementation. The value for fd was chosen

as 5 and the value of fe was chosen as 1. The other fuzzification parameter

fdenom gives the extent of fuzzification. As fdenom increases, the overlapping

structure of the membership functions increases. The fdenom was chosen as 0.8.

The threshold Th is used for selecting fuzzy inputs for rough set indiscernibility

matrix formation. When the Th decreases, the number of objects included into the

indiscernibility matrix increases. So the number of hidden nodes estimated changes.

The is chosen as 0.8 to be consistent with [22]. Th

The neural network parameter “learning rate” was given as 0.5 at the beginning.

Afterwards, it was continually decreased at each iteration. The momentum value

was given 0.5 to keep the direction of search.

II.4.2. Vowel Input Set

All the algorithms considered are executed with “vowel1” data. The other two

“vowel” data were used for fuzzy BPNN, fuzzy rough BPNN, fuzzy RBF and fuzzy

rough RBF. The test error graphics of the results were shown near the optimum

runs.

II.4.2.1. Back-Propagation Neural Network (BPNN) Algorithm

The “vowel1” data was run with 3, 4 and 5 number of layers. Theoretically, 5-

layers are enough for modeling any type of data. The networks with 3 and 4 layers

were run to find out whether less number of layers are enough to model the data –

“vowel1”. All these results were tried for wider ranges of number of hidden nodes

(2 to 40) and iterations (25 to 32000), but only the results near the optimum ones

are included.

 33

(a)

(b)

(c)

Figure 15 Mean square test error graphics of “vowel1” data for 4-layered BPNN
with different numbers of hidden nodes (a) 21 Hidden Nodes (b) 23 Hidden Nodes

(c) 25 Hidden Nodes

As seen in Figure 16, the best result for 3-layered BPNN was reached with 17

hidden nodes at the iteration 32000. For the 4-layered BPNN, Figure 15 shows that

the minimum error is produced near the 5500 iterations for 23 hidden nodes in each

layer. In Figure 17, the test results that belong to 5-layered BPNN can be seen. The

best result for 5-layered BPNN is between 9 and 11 hidden nodes. The number of

iterations needed is between 2500 and 3500.

 34

(a)

(b)

(c)

(d)

(e)

Figure 16 Mean square test error graphics of “vowel1” data for 3-layered BPNN
with different numbers of hidden nodes (a) 13 Hidden Nodes (b) 15 Hidden Nodes

(c) 17 Hidden Nodes (d) 19 Hidden Nodes (e) 21 Hidden Nodes

 35

(a)

(b)

(c)

(d)

(e)

Figure 17 (a) Mean square test error graphics of “vowel1” data for 5-layered BPNN
with different numbers of hidden nodes (a) 7 Hidden Nodes (b) 9 Hidden Nodes (c)

11 Hidden Nodes (d) 13 Hidden Nodes (e) 15 Hidden Nodes

The optimum result for this algorithm was found as 5-layered network with 10

hidden nodes at about 3000 iterations. This result is consistent with the one stated in

[7].

 36

II.4.2.2. Fuzzy BPNN Algorithm

The fuzzy BPNN algorithm was run with all three versions of “vowel” data,

which are “vowel1”, “vowel2”, and “vowel3”. Although all the results were taken

for wider ranges of number of hidden nodes, only the optimal number of hidden

nodes for each run and two graphics below optimal and two graphics above optimal

were chosen.

(a)

(b)

(c)

(d)

(e)

Figure 18 Mean square test error graphics of “vowel1” data for fuzzy BPNN with
different numbers of hidden nodes (a) 11 Hidden Nodes (b) 13 Hidden Nodes (c) 15

Hidden Nodes (d) 17 Hidden Nodes (e) 19 Hidden Nodes

 37

(a)

(b)

(c)

(d)

(e)

Figure 19 Mean square test error graphics of “vowel2” data for fuzzy BPNN with
different numbers of hidden nodes (a) 10 Hidden Nodes (b) 12 Hidden Nodes (c) 14

Hidden Nodes (d) 16 Hidden Nodes (e) 18 Hidden Nodes

 38

(a)

(b)

(c)

(d)

(d)

Figure 20 Mean square test error graphics of “vowel3” data for fuzzy BPNN with
different numbers of hidden nodes (a) 15 Hidden Nodes (b) 17 Hidden Nodes (c) 19

Hidden Nodes (d) 21 Hidden Nodes (e) 23 Hidden Nodes

As seen in Figure 18, 15 hidden nodes are optimal for fuzzy BPNN with

“vowel1” data. When “vowel2” data was given as input to fuzzy BPNN, the NN

with 14 hidden nodes (Figure 19-(c)) did the best. In Figure 20, 19 hidden nodes

gave the best result for fuzzy BPNN run with “vowel3” data. These results show

that the optimal number of hidden nodes changes according to random distribution

 39

of data chosen as input. The results of fuzzy BPNN are better than the conventional

MLP for “vowel” data.

II.4.2.3. Rough Fuzzy BPNN Algorithm

Figure 21 Mean square test error graphic of “vowel1” data for rough fuzzy BPNN
with 16 hidden nodes

When the rough set dependency rules were generated for “vowel1” data, the

estimated hidden node numbers for fuzzy BPNN was found as 16 as seen in Figure

21. The optimum hidden node number found was 15 for fuzzy BPNN with

“vowel1” data (Figure 18). Although the estimation proposed by rough set

dependency rules is not exactly the same as the optimum result, it is not

exceptionally far away. The number of 14 hidden nodes is estimated for near

optimum solution of “vowel2” data for fuzzy BPNN. This result coincides with the

result found in Figure 19. The estimation of 19 hidden nodes was done for fuzzy

BPNN with “vowel3” data. This result is same with the one found for fuzzy BPNN

in Figure 20.

 40

II.4.2.4. Radial Basis Function (RBF) Algorithm

The conventional RBF was run with wider range of number of hidden nodes for

“vowel1” data. The results included here are the ones that are enough to show the

tendency of the algorithm for different number of hidden nodes. In Figure 22, the

best result was gained with 31 hidden nodes for RBF in “vowel1” data.

(a)

(b)

(c)

(d)

(e)

Figure 22 Mean square test error graphics of “vowel1” data for RBF with different
numbers of hidden nodes (a) 27 Hidden Nodes (b) 29 Hidden Nodes (c) 31 Hidden

Nodes (d) 33 Hidden Nodes (e) 35 Hidden Nodes

 41

II.4.2.5. Fuzzy RBF

The fuzzy RBF was run with all versions of “vowel” data which are “vowel1”,

“vowel2” and “vowel3”. The graphics enough to show the tendency of the

algorithm and the optimum number of hidden nodes - if there exists - were

included.

In Figure 23, the minimum error is reached with 23 hidden nodes for “vowel1”

data executed for fuzzy RBF.

(a)

(b)

(c)

(d)

(e)

Figure 23 Mean square test error graphics of “vowel1” data for fuzzy RBF with
different numbers of hidden nodes (a) 17 Hidden Nodes (b) 19 Hidden Nodes (c) 21

Hidden Nodes (d) 23 Hidden Nodes (e) 25 Hidden Nodes

 42

(a)

(b)

(c)

(d)

(e)

(f)

Figure 24 Mean square test error graphics of “vowel2” data for fuzzy RBF with
different numbers of hidden nodes (a) 6 Hidden Nodes (b) 8 Hidden Nodes (c) 10

Hidden Nodes (d) 12 Hidden Nodes (e) 14 Hidden Nodes (f) 16 Hidden Nodes

 43

(a)

(b)
]

(c)

(d)

(e)

Figure 25 Mean square test error graphics of “vowel3” data for fuzzy RBF with
different numbers of hidden nodes (a) 15 Hidden Nodes (b) 17 Hidden Nodes (c) 19

Hidden Nodes (d) 21 Hidden Nodes (e) 23 Hidden Nodes

 44

In Figure 24, the test error of fuzzy RBF continually decreases as the number of

hidden node decreases. Therefore, a conclusion on the optimum number of hidden

nodes cannot be stated for fuzzy RBF which was executed with “vowel2” data.

In Figure 25, the optimum number of nodes is 19 for fuzzy RBF that has

“vowel3” as input data. The results of the fuzzy RBF are better than that of the

conventional RBF.

II.4.2.6. Rough Fuzzy RBF Algorithm

Figure 26 Mean square test error graphic of “vowel1” data for rough fuzzy RBF
with 16 hidden nodes

According to rough set dependency rule generation, near optimum number of

hidden nodes is estimated as 19 for “vowel3” data. This coincides with the result

found in Figure 25. However, the optimal hidden node number is found as 16 for

“vowel1” data (Figure 26), and this contradicts with the result found in Figure 23.

The estimated and the actual number for hidden nodes also differ for “vowel2” data.

The estimated number of hidden nodes is 14 whereas the same result cannot be

observed in the actual results. (see Figure 24)

 45

II.4.3. PAT1 Input Set

In conventional BPNN and RBF, only the “pat1_1” data is used. In fuzzy

BPNN, fuzzy RBF, rough fuzzy BPNN and rough fuzzy RBF, all “pat1” data

versions are used. (“pat1_1”, “pat1_2”, and “pat1_3”).

II.4.3.1. BPNN Algorithm

The conventional MLP algorithm was run for 3, 4, and 5 layers for “pat1_1”

data. The aim was to decide on the optimum number of hidden nodes for the

optimum number of layers.

(a)

(b)

(c)

(d)

Figure 27 Mean square test error graphics of “pat1_1” data for 3-layered BPNN
with different number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c)

9 Hidden Nodes (d) 11 Hidden Nodes

 46

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 28 Mean square test error graphics of “pat1_1” data for 5-layered BPNN
with different number of hidden nodes (a) 5 Hidden Nodes (b) 11 Hidden Nodes (c)
17 Hidden Nodes (d) 23 Hidden Nodes (e) 25 Hidden Nodes (f) 27 Hidden Nodes

(g) 29 Hidden Nodes

 47

The best result was achieved with 7 hidden nodes for 3-layered BPNN with

“pat1_1” data as seen in Figure 27. Optimum number of hidden nodes is 5 at each

layer for 4-layered BPNN as seen in Figure 29. The results of 4-layered BPNN were

better than those of the 3-layered BPNN.

5-layered BPNN for “pat1_1” data has an unstable structure as seen in Figure

28. In addition, its generalization capability is not as good as that of a 4-layered

BPNN. The cause for these results is that the structure of “pat1_1” data is much

simpler than the “vowel1” data.

The optimum number of layers is 4 and the optimum number of hidden nodes is

5 for the conventional MLP with “pat1_1” data.

(a)

(b)

(c)

(d)

Figure 29 Mean square test error graphics of “pat1_1” data for 4-layered BPNN

with different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c)
7 Hidden Nodes (d) 9 Hidden Nodes

 48

II.4.3.2. Fuzzy BPNN Algorithm

The fuzzy BPNN algorithm was run for “pat1_1”, “pat1_2”, and “pat1_3” data.

The optimum number of hidden nodes was explored for each run. The graphics

below were included to show the tendency of the algorithm near optimum number

of hidden nodes.

(a)

(b)

(c)

Figure 30 Mean square test error graphics of “pat1_1” data for fuzzy BPNN with
different number of hidden nodes (a) 5 Hidden Nodes (b) 6 Hidden Nodes (c) 7

Hidden Nodes

 49

(a)

(b)

(c)

Figure 31 Mean square test error graphics of “pat1_2” data for fuzzy BPNN with
different number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c) 9

Hidden Nodes

(a)

(b)

(c)

Figure 32 Mean square test error graphics of “pat1_3” data for fuzzy BPNN with
different number of hidden nodes (a) 4 Hidden Nodes (b) 6 Hidden Nodes (c) 8

Hidden Nodes

 50

In Figure 30, the minimum error is reached with 6 hidden nodes in fuzzy BPNN

which was executed with “pat1_1” data. When the fuzzy BPNN has “pat1_1” as

input data, 7 as the number of hidden nodes was the best result as can be seen in

Figure 31. The best result is reached at 6 hidden nodes in fuzzy BPNN with

“pat1_3” data, as seen in Figure 32. Though the “pat1_1”, “pat1_2”, and “pat1_3”

train data are the random selection of the same data, the optimum number of hidden

nodes differs. These results show that the optimum number of hidden nodes is

dependent on the random distribution of data. When the overall performance is

taken into consideration, the results of the fuzzy BPNN are better than the

conventional MLP for “pat1_1”data.

II.4.3.3. Rough Fuzzy BPNN Algorithm

In rough fuzzy BPNN, the estimated hidden nodes numbers is 6 according to

rough set dependency rules generated for “pat1_1” data. The actual optimum

number of hidden nodes shown in Figure 30 was also 6 for “pat1_1” data. The

rough set dependency rules generated for “pat1_2” data estimated the optimum

number of hidden nodes as 7. This result is exactly the same as the one shown in

Figure 31. The optimum number of hidden nodes for “pat1_3” was found as 6 and

this coincides with the result in Figure 32.

II.4.3.4. RBF Algorithm

The conventional RBF was run with “pat1_1” to find the optimum number of

hidden nodes and to see the performance of the algorithm. In conventional RBF,

when the “pat1_1” data was given as input, best result is reached at 7 hidden nodes,

as seen in Figure 33. The optimum results were reached less in less than 750

iterations. This indicates that the “pat1_1” data is simpler then the “vowel” data.

 51

(a)

(b)

(c)

(d)

Figure 33 Mean square test error graphics of “pat1_1” data for RBF with different
number of hidden nodes (a) 5 Hidden Nodes (b) 7 Hidden Nodes (c) 9 Hidden

Nodes (d) 11 Hidden Nodes

II.4.3.5. Fuzzy RBF Algorithm

The fuzzy RBF was run with all versions of “pat1” data which are “pat1_1”,

“pat1_2”, and “pat1_3”. The tendency of the algorithm in each run is shown in

Figure 34, Figure 35, and Figure 36.

 52

(a)

(b)

(c)

(d)

(e)

Figure 34 Mean square test error graphics of “pat1_1” data for fuzzy RBF with
different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c) 7

Hidden Nodes (d) 9 Hidden Nodes (e) 11 Hidden Nodes

 53

(a)

(b)

(c)

(d)

(e)

Figure 35 Mean square test error graphics of “pat1_2” data for fuzzy RBF with
different number of hidden nodes (a) 3 Hidden Nodes (b) 5 Hidden Nodes (c) 7

Hidden Nodes (d) 9 Hidden Nodes (e) 11 Hidden Nodes

 54

(a)

(b)

(c)

(d)

(e)

Figure 36 Mean square test error graphics of “pat1_3” data for fuzzy RBF with
different number of hidden nodes (a) 2 Hidden Nodes (b) 4 Hidden Nodes (c) 6

Hidden Nodes (d) 8 Hidden Nodes (e) 10 Hidden Nodes

 55

When the fuzzy RBF is executed for every version of “pat1” data, error

decreases as the number of hidden nodes decreases, as seen in Figure 34, Figure 35,

and Figure 36. Consequently, it is impossible to decide on the minimum number of

nodes. Additionally, the optimum error value is reached with a very few iterations –

less than 600. This implies the conclusion that “pat1” data is too simple for fuzzy

RBF to learn.

II.4.3.6. Rough Fuzzy RBF Algorithm

Rough set dependency rules generated for “pat1_1” data estimates 6 for number

of hidden nodes, as it is seen in Figure 37. This estimation is not true because there

is no minimum number of hidden nodes for “pat1_1” data for fuzzy RBF. The

estimated results for “pat1_2” and “pat1_3” are 7 and 6; however these are also

wrong because the “pat1_2” and “pat1_3” does not have minimum number of

hidden nodes for fuzzy RBF.

Figure 37 Mean square test error graphic of “pat1_1” data for rough fuzzy RBF
with 6 hidden nodes

 56

II.4.4. IRIS Input Set

The “iris” input set is run with fuzzy RBF to explore why the algorithm does not

have a minimum number of hidden nodes for “pat1” data. The reason for choosing

the “iris” data is that the data set is simpler than the “pat1” data. If the “pat1” data is

too simple for fuzzy RBF to learn, then also the “iris” data has to be too simple for

fuzzy RBF to learn.

II.4.4.1. Fuzzy RBF Algorithm

(a)

(b)

(c)

(d)

(e)

Figure 38 Mean square test error graphics of “iris” data for fuzzy RBF with

different number of hidden nodes (a) 2 Hidden Nodes (b) 4 Hidden Nodes (c) 6
Hidden Nodes (d) 8 Hidden Nodes (e) 10 Hidden Nodes

 57

The “iris” data was given as input to the fuzzy RBF. The aim is to decide

whether the data given is too simple for fuzzy RBF to learn.

In Figure 38, as the number of hidden nodes decreases, the error continually

decreases, as it does in “pat1” input data set. The minimum number of hidden nodes

could not be calculated in “iris” data for fuzzy RBF. This results shows that the

“iris” data is too simple for the fuzzy RBF to give acceptable results.

II.4.4.2. Rough Fuzzy RBF Algorithm

According to rough set dependency rules, the estimated number of hidden nodes

is 6 for “iris” data (see Figure 39). It is concluded that the “iris” data is also too

simple for fuzzy RBF. This result is not surprising as the “iris” data is the simplest

data set of all data sets considered in this thesis.

Figure 39 Mean square test error graphic of “iris” data for rough fuzzy RBF with 6
hidden nodes

II.4.5. EnglishVow Input Set

The “EnglishVow” data set is more complex than the “pat1” and the “iris” data.

This data set is used to understand the characteristic of the rough fuzzy RBF.

 58

II.4.5.1. Fuzzy RBF Algorithm

The “EnglishVow” data is given as input to fuzzy RBF with different number of

hidden nodes. Only the results which are enough to show the tendency of the

algorithm and the optimum number of hidden nodes are included. As seen in Figure

40, the optimum number of hidden nodes for fuzzy RBF is 27. The fuzzy RBF has

meaningful results for “EnglishVow” data, because this data set is more complex

than “pat1” and “iris” data sets.

(a)

(b)

(c)

Figure 40 Mean square test error graphics of “EnglishVow” data for fuzzy RBF
with different number of hidden nodes (a) 25 Hidden Nodes (b) 27 Hidden Nodes

(c) 29 Hidden Nodes

 59

II.4.5.2. Rough Fuzzy RBF Algorithm

The number of hidden nodes estimated according to the rough set dependency

rules generated for “EnglishVow” data is 27 (see Figure 41). This result is exactly

the same as the actual optimum number of hidden nodes. It can be concluded that

whenever a data is complex enough to be learned by fuzzy RBF, there is a

probability that estimated number of hidden nodes by rough fuzzy RBF coincides

with the optimum number of hidden nodes.

Figure 41 Mean square test error graphic of “EnglishVow” data for rough fuzzy
RBF with 27 hidden nodes

 60

CHAPTER IV

CONCLUSION

III. CONCLUSION
In this thesis conventional MLP, fuzzy BPNN, rough fuzzy BPNN and RBF

fuzzy RBF, rough fuzzy RBF are compared. During these comparisons, four

different types of data were used. The characteristics of rough fuzzy RBF were

explored.

The test error of fuzzy BPNN is less than that of conventional MLP for both the

“vowel” and the “pat1” data. This result is same as the ones in [7, 21]. The test error

in fuzzy RBF is less than that of conventional RBF for the “vowel” data. This result

is parallel with [15]. The “vowel” data has highly overlapping output regions. It has

three input attributes and six output classes. On the other hand “pat1” data has also

overlapping structure, but not as much as “vowel” data. The “pat1” data has two

input attributes and three output classes. The “pat1” data is simpler than “vowel”

data. As a result conventional methods did better for “pat1” than fuzzy RBF. The

“iris” data is the simplest data set used in comparisons. The “iris” data has three

output classes, one of which is linearly separable from other two. The overlapping

structure of the data is so less for fuzzy RBF to be successful.

Rough fuzzy BPNN found the near optimal number of hidden nodes in each run

of “vowel” and “pat1” data. This result was also shown in [22]. The initial weight

values of fuzzy BPNN were generated by rough set dependency factors of

dependency rules constructed.

A known study of rough fuzzy RBF was carried out for the first time in this

thesis. It was explored whether the there can be a relation between the number of

hidden nodes and dependency rules in fuzzy RBF. Because the results showed that

“pat1” and “iris” data are not appropriate for the fuzzy RBF, number of hidden

nodes estimated using rough sets can not be taken as the only base for the

 61

evaluation of rough fuzzy RBF. When the rough fuzzy RBF was run with three

versions of the “vowel” data, estimated number of hidden nodes found by rough

sets coincide the actual results for only one version of “vowel” data. In “vowel1”

data the estimated number is 16 whereas the actual number is 23. The error in

“vowel2” decreases, as the number of nodes decreases.

When fdenom and Th values were changed in rough fuzzy RBF, in some cases

estimated number of hidden nodes coincide with the optimum number of hidden

nodes. However, as these cases do not show common properties, a generalization

could not be made. As a result, in rough fuzzy RBF proposed, a direct relationship

between dependency rules and optimum number of hidden nodes could not be

made. Because the result of RBF is highly dependent on the initial clusters given

and the sequence of data introduced to the network, defining optimum number of

hidden nodes for RBF has to be dependent on what RBF is dependent.

 62

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets.” Information and Control, Vol. 8, no. 3, pp. 338-353,
June 1965.

[2] Z. Pawlak, “Rough sets.” International Journal of Computer and Information
Science, Vol. 11, pp. 341-356, 1982.

[3] D. Rutkowska, “Neuro-Fuzzy Architectures and Hybrid Learning”, Physica
Verlag Heidelberg New York, 2002.

[4] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and
decision processes”, IEEE Transactions on System, Man and Cybernetics, Vol. 3,
no. 1, pp. 28-44, 1973.

[5] J. Yen, R. Langari, “Fuzzy logic: intelligence, control and information”,
Prentice-Hall, 1999.

[6] J. Komorowski, L. Polkowski, A. Skowron, “Rough Sets: A Tutorial”, Lecture
Notes of the 11th European Summer School in Logic, Language and Information
(ESSLLI), 1999.

[7] S. K. Pal, S. Mitra, “Multilayer Perceptron, Fuzzy Sets, and Classification”,
IEEE Transactions on Neural Networks, Vol. 3, no. 5, pp. 683-697, 1992.

[8] S. K. Pal, S. Mitra, P. Mitra, “Rough Fuzzy MLP: Modular Evolution, Rule
Generation and Evaluation”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 15, pp. 14-25, 2003.

[9] M. Sarkar, B. Yegnanarayana, “Rough-Fuzzy Membership Functions”, Proc.
IEEE International Conference on Fuzzy Systems, Alaska, USA, pp. 796-801, May
4-9, 1998.

[10] M. Sarkar and B. Yegnanarayana, “A review on merging some recent
techniques with artificial neural networks”, Proc. IEEE International Conference
on Systems, Man and Cybernetics, California, USA, October 11-14, 1998.

[11] S. Mitra and Y. Hayashi, “Neuro-fuzzy rule generation: Survey in soft
computing framework”, IEEE Transactions on Neural Networks, Vol. 11, pp. 748-
768, 2000.

 63

 [12] T. P. Hong, L. H. Tseng, B. C. Chien, “Learning fuzzy rules from incomplete
Quantitative Data by Rough Sets”, IEEE World Congress on Computational
Intelligence, Hawaii, USA, pp. 1438-1443, May 12-17, 2002.

[13] M. Sarkar, B. Yegnanarayana, “Fuzzy-Rough Neural Networks for Vowel
Classification”, IEEE Transactions on System, Man, and Cybernetics, Vol. 5, pp.
4160-4165, 1998.

[14] T. L. Seng, M. Khalid, R. Yusof, “Tuning of a Neuro-Fuzzy Controller by
Genetic Algorithms with an application to a Coupled-Tank Liquid-Level Control
System”, International Journal of Engineering Applications on Artificial
Intelligence, Pergamon Press, Vol. 11, pp. 517-529, 1998.

[15] S. Mitra and J. Basak, “FRBF: A fuzzy radial basis function network”, Neural
Computing and Applications, Vol. 10, pp. 244-252, 2001.

[16] L. M. Fu, “Knowledge-Based Connectionism for Revising Domain Theories”,
IEEE Transactions on System, Man, and Cybernetics, Vol. 3, pp. 173-182, 1993.

[17] R. Yasdi, “Combining Rough Sets Learning- and Neural Network Learning-
method to Deal with Uncertain and Imprecise Information”, Neurocomputing,
Elsevier Science, Vol. 7, pp. 61-84, 1995.

[18] S. Mitra, S. K. Pal and P. Mitra, “Data mining in soft computing framework: A
survey”, IEEE Transactions on Neural Networks, Vol. 13, pp. 3-14, 2002.

[19] M. Sarkar, “Fuzzy-rough nearest neighbors algorithm”, Proc. IEEE Internat.
Conf. on Systems, Man and Cybernetics, Tennessee, USA, pp. 3556-3601, October
8-11, 2000.

[20] W. Y. Liu, C. J. Xiao, B. W. Wang, Y. Shi, S. F. Fang, “Study on Combining
Subtractive Clustering with Fuzzy C-means Clustering”, Proc. of the Second
International Conference on Machine Learning and Cybernetics, 2-5 November
2003.

[21] S. Mitra and S. K. Pal, “Fuzzy multi-layer perceptron, inferencing and rule
generation”, IEEE Transactions on Neural Networks, Vol. 6, pp. 51-63, 1995.

[22] M. Banerjee, S. Mitra and S. K. Pal, “Rough fuzzy MLP: Knowledge encoding
and classification”, IEEE Transactions on Neural Networks, Vol. 9, pp. 1203-1216,
1998.

[23] C.L. Blake, C.J. Merz,. “UCI Repository of machine learning databases”,
[http://www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA: University of
California, Department of Information and Computer Science, 1998. Last reached
on 18 August 2004.

 64

[24] L. Fu, “Neural Networks in Computer Intelligence”, The McGraw-Hill
Companies, New York, January 1994.

[25] D. Dubois, H. Prade, “Putting rough sets and fuzzy sets together”, Intelligent
Decision Support, Handbook of Applications and advances of the Rough Set
Theory, R. Slowinski (Ed.), Kluwer Academic Publishers, Boston, 204-232, 1992.

[26] Z. Pawlak, “Conflict analysis”, Proceedings of the Fifth European Congress on
Intelligent Techniques and Soft Computing (EUFIT'97), pp.1589-1591, Verlag
Mainz, Aachen, 1997.

